
Make:
FPGAs

Turning Software into Hardware with
Eight Fun & Easy DIY Projects
David Romano

D
avid

 R
o

m
an

o

Technology & Engineering/Electronics

US $29.99 CAN $34.99

ISBN: 978-1-4571-8785-8

FP
G

A
s

Make: FPGAs
Field Programmable Gate Arrays (FPGAs) allow you to use programming to specify the
fundamental hardware functionality of a chip just as if you’d designed a chip from
scratch. Using software, you define the behaviors you want to see, and the FPGA
implements your design in its reconfigurable hardware.

FPGAs are a powerful tool well known to embedded systems engineers; but until
affordable and easy-to-use FPGA boards like the Papilio and Red Pitaya appeared, they
had largely been out of reach of Makers. This easy-to-follow guide helps Makers get
over FPGAs’ initial conceptual hump and sets you on the path to creating amazing
things. Step-by-step instructions for eight fun projects help you to get up and running
right away with low-cost FPGA boards.

Develop the skills you need to turn software into hardware. You’ll learn to select the
right board, set it up, and then get all of the applications you need to start making right
away. What’s more, you’ll learn contemporary digital logic design methods and
practices in a fun, practical, and affordable way with these great projects!

Explore the building blocks of programmable logic.

In Make: FPGAs, you’ll learn to:

» Construct a binary counter using FPGA Circuit Schematic Design Entry

» Build an implementation of Bell Labs’ classic mechanical cardboard “CARDIAC”
educational computer

» Create a real System-on-Chip (SoC) Design

» Design two classic arcade games that you’ll love to play

» Mine Bitcoins with a system you program yourself

» Create a Software-Defined Radio, one of the “holy grails” of embedded design

Along the way, you’ll get comfortable with the Papilio suite of boards, be introduced
to the work of DesignLab and the Gadget Factory, and gain enough mastery to begin
your own builds.

Make:
FPGAs

Turning Software into Hardware with
Eight Fun & Easy DIY Projects
David Romano

D
avid

 R
o

m
an

o

Technology & Engineering/Electronics

US $29.99 CAN $34.99

ISBN: 978-1-4571-8785-8

FP
G

A
s

Make: FPGAs
Field Programmable Gate Arrays (FPGAs) allow you to use programming to specify the
fundamental hardware functionality of a chip just as if you’d designed a chip from
scratch. Using software, you define the behaviors you want to see, and the FPGA
implements your design in its reconfigurable hardware.

FPGAs are a powerful tool well known to embedded systems engineers; but until
affordable and easy-to-use FPGA boards like the Papilio and Red Pitaya appeared, they
had largely been out of reach of Makers. This easy-to-follow guide helps Makers get
over FPGAs’ initial conceptual hump and sets you on the path to creating amazing
things. Step-by-step instructions for eight fun projects help you to get up and running
right away with low-cost FPGA boards.

Develop the skills you need to turn software into hardware. You’ll learn to select the
right board, set it up, and then get all of the applications you need to start making right
away. What’s more, you’ll learn contemporary digital logic design methods and
practices in a fun, practical, and affordable way with these great projects!

Explore the building blocks of programmable logic.

In Make: FPGAs, you’ll learn to:

» Construct a binary counter using FPGA Circuit Schematic Design Entry

» Build an implementation of Bell Labs’ classic mechanical cardboard “CARDIAC”
educational computer

» Create a real System-on-Chip (SoC) Design

» Design two classic arcade games that you’ll love to play

» Mine Bitcoins with a system you program yourself

» Create a Software-Defined Radio, one of the “holy grails” of embedded design

Along the way, you’ll get comfortable with the Papilio suite of boards, be introduced
to the work of DesignLab and the Gadget Factory, and gain enough mastery to begin
your own builds.

David Romano

Make: FPGAs

Turning Software into Hardware with
Eight Fun and Easy DIY Projects

978-1-457-18785-8

[LSI]

Make: FPGAs
by David Romano

Copyright © 2016 David Romano. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco, CA 94111.

Maker Media books may be purchased for educational, business, or sales promotional use. Online edi-
tions are also available for most titles (http://safaribooksonline.com). For more information, contact
O’Reilly Media’s institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Roger Stewart
Production Editor: Melanie Yarbrough
Copyeditor: Rachel Head
Proofreader: Christina Edwards
Indexer: Judy McConville

Interior Designer: David Futato
Cover Designer: Brian Jepson
Cover Art: Shawn Wallace
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-02-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781457187858 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media
logo is a trademark of Maker Media, Inc. Make: FPGAs and related trade dress are trademarks of Maker
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Maker Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the informa-
tion contained herein.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781457187858

Preface . ix

1. Overview . 1
Papilio . 2

Opal Kelly . 4

Red Pitaya . 6

Numato Lab . 8

Design Flow . 11

Concept Phase . 11

Design Phase . 12

Test Phase . 15

Synthesize Phase . 17

Build Phase . 18

Run Phase . 18

Takeaways . 19

2. Count on It! . 21
Blink LEDs Concept . 22

How It Works . 22

Xilinx ISE WebPACK Installation . 23

iii

Table of Contents

Design . 25

Peripheral Breadboard . 25

FPGA Circuit Schematic Design Entry . 27

FPGA Circuit HDL Design Entry . 45

Simulation . 60

Build . 65

Creating the Constraints File . 68

Open Kelly Setup . 72

Setup Test . 73

Clock Frequency Experimentation . 75

Takeaways . 76

3. That’s Refreshing . 79
Stopwatch Concept . 79

How It Works . 80

Design . 82

Peripheral Breadboard . 83

FPGA Circuit . 84

Digital Clock Manager (DCM) . 87

Verilog Code and Concurrency . 90

Simulation . 98

Build . 100

Assigning Physical I/O . 100

Takeaways . 101

4. Testing 1, 2, 3, 4 . 103
The Test Bench . 103

Test Bench Anatomy . 104

Reuse . 105

Running the Test Bench Project . 105

Step 1: Selection and Download of Core . 105

Step 2: Documentation . 107

iv Make: FPGAs

Step 3: RTL . 109

Step 4: Adding Test Bench Files and Running the Simulation . 112

Exploring the Test Bench Project . 116

Overview . 116

Takeaways . 124

5. It Does Not Compute . 125
The CARDIAC Computer Model . 125

Getting Started with VTACH . 128

Numato Elbert V2 Setup . 130

Modifications . 134

Step 1: Device Section . 134

Step 2: Pin Assignments . 135

Step 3: Clocking . 137

Step 4: I/O Polarity . 138

Step 5: Memory Block Update . 141

Design, Build, and Simulation . 145

Simulation . 145

Building and Running . 150

Programing and Assembler . 151

Takeaways . 153

6. It’s a Small World! . 155
System on Chip . 155

SoC Architecture . 157

DesignLab . 160

Installation . 160

Papilio DUO Setup . 161

Step 1: Power Up . 162

Step 2: Select COM Port . 162

Step 3: Create Project . 164

Step 4: Associate Circuit . 164

vTable of Contents

Step 5: Load FPGA Bit File . 166

Step 6: Compile and Upload Sketch . 168

Getting Started with the DesignLab Video-Audio Player . 169

How It Works . 169

Design . 171

Step 1: Create New DesignLab Project . 171

Step 2: Edit Your Design in Xilinx ISE . 172

Step 3: Add VGA Adapter Block . 175

Step 4: Add Audio Blocks . 175

Step 5: Implement and Generate Bit File . 177

Step 6: Create Sketch, Load, and Run . 178

Experiments . 179

Source Code . 181

Takeaways . 181

7. Just for the Fun of It . 183
Getting Started with VGA-Displayed Arcade Games . 183

How It Works . 184

Loading a Game . 185

Source Code and ROM Files . 189

Getting Started with LED Dot Matrix–Displayed Arcade Games . 192

How It Works . 193

Design . 195

Experiments . 197

Source Code . 198

Takeaways . 199

8. Cha-Ching! . 201
Getting Started with the Bitcoin Miner . 202

How It Works . 203

Design . 204

Source Code . 207

vi Make: FPGAs

Takeaways . 207

9. I Hear You! . 209
Getting Started with the SDR Receiver . 210

How It Works . 212

Red Pitaya Setup . 213

Loading the SDR . 213

Step 1: Copy Red Pitaya SD Card Image . 213

Step 2: Install SDR Applications on PC . 214

Step 3: Connect Red Pitaya to the Network . 214

Step 4: Run SDR Applications . 214

Source Code . 216

Takeaways . 217

Appendix A. FPGA Boards . 219

Appendix B. Papilio AVR Loading . 223

Appendix C. Text and Code Editor . 229

Index . 231

viiTable of Contents

ix

Mention FPGAs to most people, and they will either give you a blank stare or think you are
talking about some kind of golf league. To most of us Makers, the term conjures up
thoughts of hardware creativity, exploration, and discovery, but many of you may have
written it off as being way too complicated to even consider for your next project. This
book is for you! It’s all about learning what amazing, easy, and affordable projects you can
construct with field programmable gate array (FPGA) technology. We will be doing this
with hands-on experiments, in a fun and practical way.

This book is not a university textbook providing in-depth studies on hardware description
languages (HDLs), HDL coding techniques, digital logic design theory, or validation meth-
ods. There are many very good resources both online and in textbook form that accom-
plish this goal. This will be more a learn-as-you-go experience. You can think of the book as
a road map to a journey of design discovery, and I’ll be your guide. But before we jump in, I
want to give you a little background on the history of FPGAs.

Most of the technical community was first introduced to this exciting technology back in
the ’80s. I was a recent college graduate (RCG) with a degree in electrical engineering and
had just been hired by a small telecommunications company that designed and manufac-
tured modems and TI multiplexers. The company was developing a product that was, at
the time, implemented using many 7400 series integrated circuits (ICs) and programmable
array logic (PAL) devices. For many of you, this is probably like talking about funny animal
paintings on cave walls. It wasn’t the Stone Age of electronic design, but 7400 ICs and PALs
are primitive compared to today’s state-of-the-art systems-on-a-chip (SoCs). My new man-
ager came to me one day with a data book in hand that he had just received from a com-
pany called Xilinx. He dropped the book on my desk and said, “Well, since you’re the
college kid, I want you to convert all of this logic design to an FPGA device,” pointing to a
large and very complex circuit board. Being a little naive and always eager to work on the
latest cutting-edge technology, I said, “No problem, should be a piece of cake.” It wasn’t a

Preface

x Make: FPGAs

piece of cake, but it was my introduction into the incredible world of field programmable
array logic—sort of a baptism by fire.

A lot has happened in the past three decades in the world of digital design, and program-
mable logic devices (PLDs) are a big part of it. A PLD is an electronic component used to
build reconfigurable digital circuits. Unlike logic gates, like those in the 7400 series ICs,
which have fixed logic functions, a PLD has an undefined function at the time of manufac-
ture. Before the PLD can be used in a circuit, it must be programmed (i.e., reconfigured).
Before PLDs were invented, read-only memory (ROM) chips were used to create arbitrary
combinational logic functions—talk about the Stone Age!

Today, there are many reasons a design team will consider FPGA technology in industry.
For example, in many silicon IC design companies, FPGA-based platforms are used for what
is called “shift left,” where a new SoC device is mapped to FPGAs early in the design phase,
in order to begin software integration long before the actual silicon device is manufac-
tured. This is called “emulation” of the design. The big advantage here is that emulation
runs orders of magnitude faster than simulation, so you can get some real-world hard-
ware/software interactions very early in the validation phase (mostly on a functional level).
The FPGA system typically operates at only a fraction of the silicon operating frequency,
but the time saved in integration is tremendous.

Another example of where FPGAs are considered a viable solution in industry is where the
design requires having multiple hardware personalities in the same footprint. For example,
this was the case for a portable test and measurement instrument that I architected when I
was a design engineer. By using an FPGA in the design, the customer was able to down-
load different test instruments to the same hardware, essentially having multiple instru-
ments in one hardware device.

The real question, then, for this book is: why would you, the do-it-yourself hobbyist or stu-
dent, even consider experimenting with FPGAs? For students, it exposes you to contempo-
rary digital logic design methods and practices in a fun, practical, affordable way. For the
hobbyist, my goal is to show you how an affordable, off-the-shelf FPGA platform can be
used in some very interesting and fun DIY projects. Many of you have had experience with
Arduino or similar small microcontroller projects. With these types of projects, you usually
breadboard up a small circuit, connect it to your Arduino, and write some code in the C
programming language (which Arduino is based on) to perform the task at hand. Typically
your breadboard can hold at best a few discrete components and one or two small ICs.
Then you always need to go through the pain of wiring up the circuit and connecting it to
your Arduino with a rat’s nest of jumper wires. Instead, imagine having a breadboard the
size of a basketball court or football field to play with and, best of all, no jumper wires.
Imagine you can connect everything virtually. You don’t even need to buy a separate
microcontroller board; you can just drop different processors into your design as you
choose. Now that’s what I’m talking about! Welcome to the world of FPGAs.

xiPreface

FPGA History

Xilinx Inc. was founded in 1984, and as the result of numerous patents and technology
breakthroughs, the company produced the first family of general-purpose, user-
programmable logic devices based on an array architecture. It called this technology
breakthrough the Logic Cell Array (LCA), and with this the Xilinx XC 2000 family of FPGAs
was born.

You can think of an LCA as being made up of three types of configurable elements: input/
output (I/O) blocks, logic blocks, and an interconnect matrix (see Figure P-1). From these, a
designer can define individual I/O blocks that interface to external circuitry. You can think
of these as configurable pins of ports. The designer can also use logic blocks, connected
together through the interconnect matrix, to implement logic functions. These functions
can be as simple as a counter or as complex as a microcontroller core. In a way the inter-
connect matrix is like the wires on a breadboard that connect everything together, but
completely programmable.

Figure P-1 Xilinx LCA architecture

Before there were FPGAs, you needed to use dozens of discrete ICs on a circuit board, or
sometimes even hundreds of ICs on multiple circuit boards, to accomplish the hardware
functionality you can achieve today with one FPGA device. For example, today you can cre-
ate the entire Pac-Man game on a single FPGA device, including the game software. Now
that’s fun!

Xilinx and Altera are the two major players in the FPGA product space. Each of them pro-
vides a complete solution including a design tool suite. Altera came on the scene in 1992
when it introduced its first FPGA device family, the FLEX 10K line. There are pros and cons
for each manufacturer, and many design wins come down to preference and price. For the

xii Make: FPGAs

purposes of this book, we will be focusing mainly on Xilinx, but the designs and experi-
ments that follow will easily map to comparable Altera FPGAs, if you so desire.

The configuration of an FPGA device is accomplished through programming the memory
cells, which determine the logic functions and interconnections. In the early days, the pro-
gram (or what has become known as the bit file) was loaded at power-up from EEPROM,
EPROM, or ROM on the circuit board, or loaded from a PC through a serial connection on
the board from the FPGA programming tool. Since the underlying technology is volatile
static RAM (SRAM), the bit file must be reloaded with every power cycle of the device.
Today, SD flash memory replaces the EPROM and USB or JTAG replaces the serial connec-
tion, but the programming function remains much the same as it was in the beginning.

About the Book

This book is made up of eight interesting FPGA projects that will help you develop some of
the skills you will need to really begin exploring this exciting world of turning software into
hardware through FPGA technology. The projects will show you how to select an FPGA
development board and set it up, and then give you the applications you will need to start
making. The first chapter provides an overview of the boards and workflow we will be
using in the book. The next two chapters walk you through a couple of simple projects,
providing you with a hands-on look at the basics of the FPGA design flow. You can find the
example code for these projects at my GitHub repository. The rest of the book concen-
trates on fun FPGA SoC projects. You can also check out my website for more information
on learning with FPGAs. Always remember that learning is a lifelong adventure. I hope you
enjoy the journey.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

http://github.com/tritechpw/Make-FPGA
http://tritechpw.com

xiiiPreface

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://
github.com/tritechpw/Make-FPGA.

This book is here to help you get your job done. In general, if example code is offered with
this book, you may use it in your programs and documentation. You do not need to con-
tact us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from Make: books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Make: FPGAs by David Romano (Maker Media).
Copyright 2016 David Romano, 978-1-457-18785-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at bookpermissions@makermedia.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead-
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solv-
ing, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, educa-
tion, and individuals.

https://github.com/tritechpw/Make-FPGA
https://github.com/tritechpw/Make-FPGA
mailto:bookpermissions@makermedia.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/academic-public-library/

xiv Make: FPGAs

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett,
Course Technology, and hundreds more. For more information about Safari Books Online,
please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

Make:
1160 Battery Street East, Suite 125
San Francisco, CA 94111
877-306-6253 (in the United States or Canada)
707-639-1355 (international or local)

We have a web page for this book, where we list errata, examples, and any additional infor-
mation. You can access this page at http://bit.ly/make-fpgas.

Make: unites, inspires, informs, and entertains a growing community of resourceful people
who undertake amazing projects in their backyards, basements, and garages. Make: cele-
brates your right to tweak, hack, and bend any technology to your will. The Make: audi-
ence continues to be a growing culture and community that believes in bettering
ourselves, our environment, our educational system—our entire world. This is much more
than an audience, it’s a worldwide movement that Make: is leading—we call it the Maker
Movement.

For more information about Make:, visit us online:

Make: magazine: http://makezine.com/magazine
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

Acknowledgments

Many experiences led me to ultimately writing this book. Some were years in the making
as I made my way through a very exciting and rewarding engineering career. Along the
way, many people helped me learn and gave me great opportunities to explore and
invent. I can’t list them all here, but I would like to thank them. I also want to thank my
publisher, Brian Jepson, for offering me this chance, and my editor, Roger Stewart, who

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/make-fpgas
http://makezine.com/magazine
http://makerfaire.com
http://makezine.com
http://makershed.com
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

xvPreface

was so understanding throughout the writing process. I’d also like to thank Jack Gassett for
all his help and support. Most of all I want to thank my wife, Elaine, for always believing in
me and my Lord Jesus Christ for blessing me each step of the way.

Oh, and I can’t forget Gracie the high-tech cat. She worked tirelessly by my side every day,
overseeing the entire project.

Figure P-2 Gracie, the high-tech cat, hard at work!

Overview

When it comes to off-the-shelf FPGA development boards, the sky is the limit. There are
many options to choose from. Prices can range from under $50 to thousands of dollars. For
this book, I chose to keep the price window between $50 and $200. After price, one of the
primary things to consider when choosing an FPGA board is what you will be using it for.
For most of us it will be general experimentation, but some of you may already have a
specific project in mind.

When looking at FPGA boards we obviously want to know the vendor, family, and size of
the FPGA device. A good rule of thumb is the larger the device, the more it will cost. The
next thing to look at is what features the platform supports. The most important of these is
external interface connectors. Obviously, if you can’t connect anything to the board easily,
you are very limited in what you can do with it. It’s good to note the size (number of pins)
and frequency rating (this is less important for us) of the interfaces provided. Also note if
the interfaces allow for connection to standard-form-factor add-on modules like the popu-
lar Ardunio shields, Digilent’s Pmods, and the Papilio Wings. Other interface options to
consider are the type and number of onboard standard communication interfaces that are
provided, such as USB, Gigabit Ethernet, HDMI/DVI, PCI/PCI Express, external nonserial
memory (DDR/flash, etc.), SD card, I2C/SPI, VGA, UART, etc.

FYI

Xilinx is standardized on the FPGA Mezzanine Connect (FMC), which is an
industry standard. There are a lot of companies that make FMC-based
plug-in cards.

I also like to have some number of onboard LED, switches, buttons, or even a 7-segment
display, which are all very handy to have on the baseboard. These features can help you

1

1

with the initial bring-up of the module, as we shall see in the next chapters, and also with
the learning curve of the platform. They can also provide a convenient and cost-effective
way to build some very basic experiments without the hassle of ordering additional boards
or breadboarding your own circuits.

The other big thing to consider is the development tools that you will need to design and
program your FPGA with. For our purposes, the tool license should be free of charge and
provide a robust design entry method that supports both schematic capture and HDL
(VHDL and Verilog) input. The tool should provide some basic simulation capability and a
solid synthesis engine with good output reporting. Connection to the FPGA device should
be easy with a standard interface like USB, and uploading to the FPGA should be done
easily through a PC. OS support should include Windows and Linux with Mac as an option.

One other thing to consider on the FPGA platform is if there is some type of microcontrol-
ler integrated onboard or onchip. The Papilio DUO and Xilinx Zynq are examples of these.
Having a local microcontroller available opens up another great dimension for creativity
and exploration. In Appendix A, you will find a list of many low-cost FPGA boards that you
can choose from.

In the rest of this chapter, I will review a few boards that I think have some unique features.
The features that I’ll be highlighting may provide you with some interesting opportunities
for innovation.

Papilio

For the FPGA hobbyist and DIYers, Papilio by Gadget Factory is second to none. Everything
about these products, from the array of affordable hardware modules to the innovative
design environment and abundant learning material, was created with you in mind. As you
can tell, I’m over the top with these guys. I felt like a kid on Christmas morning when I
opened the box the day my shipment of Papilio products arrived. There were so many
options to play with, I really didn’t know where to begin. Now that’s impressive!

So what is Papilio?

Papilio is a series of FPGA development boards and add-on hardware application modules
called “Wings” that plug into the main board—sort of like Arduino shields.

As the Gadget Factory website points out, Papilio is Latin for butterfly:

Papilio conveys the ability of an FPGA to undergo “digital metamorphosis.”
FPGA technology allows the Papilio to become any type of digital circuit
including microcontrollers and custom chips such as the Commodore 64 audio
(SID) chip.

You clearly get a sense of the creativity level that we are dealing with from that. This is
going to be fun!

2 Make: FPGAs

Papilio

Papilio FPGA boards come in a range of affordable options, from the $37.99 Papilio One to
the $87.99 Papilio DUO. You read that right: you can get into experimenting with FPGAs for
as little as $37.99.

Did You Know?

With the $37.99 Papilio One 250K, you can start experimenting with FPGAs
using the Xilinx XC3S250E, a 5.5K logic cell device. You also get onboard
Papilio Wings connectors, a two-channel USB connection, and 48 general-
purpose input/output (GPIO) pins.

I will start at the other end of spectrum, with the $87.99 Papilio DUO. This module is
unique because it combines an Arduino-compatible microcontroller with a Xilinx FPGA on
the same board. Not only does the board provide the ability to connect to the optional
Papilio Wings modules, it also provides full compatibility with the Arduino shield ecosys-
tem through the standard onboard Arduino connectors. There’s even support for a “Pmod”
(Peripheral Module interface, an open standard defined by Digilent Inc. in the Digilent
Pmod™ Interface Specification for peripherals used with FPGAs or microcontrollers) con-
nector on the board. Talk about add-on options!

The Papilio DUO uses the Xilinx Spartan-6 XC6SLX9 FPGA as its core. Table 1-1 describes
the features of this FPGA device.

Table 1-1 Spartan-6 XC6SLX9 features

XC6SLX9
feature

Description

9K logic cells Logic cell ratings are intended to show the logic density of one Xilinx device
as compared to another device. Like a logic block, the typical cell includes a
couple of flip-flops, multiplier, logic gates, and a small amount of RAM for a
configurable lookup table (LUT). The logic cell is normalized to a 4-input
lookup table (LUT).

576 Kb of
block RAM

A block RAM (BRAM) is a dedicated two-port memory block containing
several kilobits of RAM. The FPGA contains several (or many) of these blocks.
In the Spartan-6 family, the block size is 18 Kb and the 6SLX9 has 32 of these,
so the total size is 576 Kb.

2 CMTRs There are two clock management tiles (CMTs) in the 6SLX9. Each CMT
contains two digital clock managers (DCMs) and one phase-locked loop
(PLL). The DCM core is a very versatile and complex piece of Xilinx
intellectual property (IP). It can be used to implement a delay locked loop,
digital frequency synthesizer, a digital phase shifter, or a digital spread
spectrum.

3Chapter 1

Papilio

XC6SLX9
feature

Description

TMDS I/O Transition minimized differential signaling (TMDS) I/O support means that
DVI and HDMI interfaces can be implemented directly with the FPGA I/O pins
without any extra chips.

16 DSP slices There are 16 digital signal processor (DSP) slices in the 6SLX9.

You can check out the full data sheet for the Xilinx Spartan 6-LX9 on the Xilinx website.

Opal Kelly

I chose to feature Opal Kelly in this book because of their unique approach to bridging the
gap between FPGA design/development and interconnection with a PC or other comput-
ing device using USB or PCI Express. For the hobbyist, this opens some very interesting
opportunities for innovation. Opal Kelly offers a full product line of FPGA modules ranging
in price from the very affordable XEM6001-6002 at $174.95 to the $1399.95
XEM5010-50M256. We will be using the XEM6002 for our experiments. This module uses
the same Xilinx Spartan-6 XC6SLX9 FPGA as the Papilio DUO for its core. This FPGA con-
tains 9K Logic cells, 576Kb of Block RAM, 16 DSP slices, and two CMTs. For details on this
device, see the previous section.

The Opal Kelly XEM6002 module is also equipped with four Digilent Pmod-compatible
connectors, as seen in Figure 1-1, which allow for interfacing to a wide variety of low-
bandwidth peripheral modules available from several semiconductor manufacturers. Think
of the possibilities!

Figure 1-1 XEM6002 module block diagram

Check out the Digilent Peripheral Modules page for a look at some of the fun and interest-
ing plug-in modules you’ll have access to.

4 Make: FPGAs

Opal Kelly

http://bit.ly/1SfM4iy
https://www.opalkelly.com
https://www.digilentinc.com/Products/Catalog.cfm?NavPath=2,401&Cat=9

Did You Know?

Pmods are small I/O interface boards that offer a great way to extend the
capabilities of an FPGA or embedded controller board. Pmods communi-
cate with system boards using standard 6- or 12-pin connectors. In addi-
tion to various sensors and connectors, there are Pmods for I/O, data
acquisition and conversion, external memory, and much more.

The key to the Opal Kelly innovation is the FrontPanel SDK. The software development kit,
or SDK, provides a small FPGA library block that integrates with your FPGA design to make
USB (or PCI Express) host communication simple and easy. It also includes a software API,
simplifying the programming development of the communication interface, and a robust
driver to communicate with your device over USB or PCI Express (see Figure 1-2). The USB
driver and FrontPanel API work together to provide an easy-to-use software interface to
your hardware that is consistent across the Windows (32-/64-bit), Linux (32-/64-bit), and
Mac OS X development environments.

Figure 1-2 Opal Kelly FrontPanel SDK

Opal Kelly also provides prebuilt wrappers to the FrontPanel API for C, C#, C++, Python,
and Java, and the DLL can be used from any software that allows external calling, such as
MATLAB or LabVIEW.

The standalone FrontPanel application lets you quickly and easily define your own graphi-
cal user interface (GUI) that communicates with your hardware. It supports a variety of user
interface elements, including LEDs, hexadecimal displays, sliders, push buttons, check-

5Chapter 1

Opal Kelly

boxes, toggle buttons, and numerical entry. You can think of the FrontPanel as a virtual
breadboard environment.

Wow, A Virtual Breadboard Sandbox!

With the Opal Kelly FrontPanel virtual interface you can quickly and easily
create a GUI of an instrument right on your PC that interfaces with your
FPGA design! How cool is that?

Red Pitaya

The Red Pitaya platform, according to its developers, is an “open-source measurement and
control tool replacing many expensive laboratory instruments.” It is based on the Xilinx
Zynq-7010 programmable SoC device, which combines a dual-core ARM® Cortex™-A9
MPCore processor with a programmable logic array that contains 28K logic cells, 240 Kb of
block RAM, and 80 DSP slices. The processing subsystem operates autonomously from the
programmable logic, “booting on reset like any other processing device.” It acts as the “sys-
tem master” and controls the configuration of the programmable logic, enabling full or
partial reconfiguration during operation.

The retail cost of the Red Pitaya platform at the time of writing is $238.80, which makes it
one of the higher-priced platforms of the group being used for this book—and you will
need more than just the board to get going. Figure 1-3 shows the Red Pitaya v1.1 board
and required accessories. If you are planning on using scope probes, you will need to pur-
chase a couple of those and a couple of SMA male to BNC female adapters (the adapters
are required to connect standard BNC-type oscilloscope probes because Red Pitaya uses
SMA connectors on the board). You will also need a 5V, 2A, USB micro, power supply, and a
4–8 GB micro SD card. All of this is conveniently offered on the Red Pitaya website as a Red
Pitaya website as a Diagnostic Kit for a grand total of $310.80, not including any taxes or
shipping.

6 Make: FPGAs

Red Pitaya

http://www.redpitaya.com
http://bit.ly/1K7IqEI
http://bit.ly/1K7IqEI
http://store.redpitaya.com/red-pitaya-board-32.html

Figure 1-3 Red Pitaya board and accessories

7Chapter 1

Red Pitaya

Did You Know?

The ARM A9 core is the application processor used in many tablets and cell
phones. It is a high-performance, low-power microprocessor core.

What is really impressive about this platform are the three major technology subsystems
that you have access to. The first is the RF/analog frontend, which gives you the ability to
instantiate a true oscilloscope, spectrum analyzer, or signal generator. The second is the
ARM CPU core, and the third is the FPGA itself. You can purchase premade instrument files
(Oscilloscope + Signal Generator or Spectrum Analyzer) from the Red Pitaya online store.
Check out the Detail specification page on the Red Pitaya wiki for a full description of the
frontend hardware.

That being said, let’s crack open the box and see what’s inside (Figure 1-4). Like on a first
date, first impressions are lasting ones. I must admit I was impressed by the small size of
the platform, measuring only about 4 × 2.5 inches (the website calls it a “credit card foot-
print”).

Figure 1-4 The impressive small size of the Red Pitaya platform

Numato Lab

Numato Lab provides a complete product line of low-priced FPGA development boards
and accessories. But just because the prices are low doesn’t mean that they are short on
features—on the contrary, the bang for your buck you get with these products is amazing.
I was able to take a look at three of the Numato FPGA platforms, pictured in Figure 1-5:

• The $29.95 Elbert V2 - Spartan 3A FPGA Development Board

• The $49.95 Mimas V2 Spartan 6 FPGA Development Board with DDR-SDRAM

8 Make: FPGAs

Numato Lab

http://store.redpitaya.com
http://bit.ly/1KKcf8Z
http://www.numato.com

• The $199.95 Waxwing Spartan 6 FPGA Development Board

Figure 1-5 Numato Lab Elbert V2 (top), Mimas V2 (middle), and Waxwing (bottom)

That’s right—for just $29.95 you can jump into working with FPGA technology! I may
sound like a used car salesman, but this is not a barebones FPGA board. Take a look at the
Elbert V2 feature list:

• FPGA: Spartan XC3S50A in TQG144 package

• 16 Mb SPI flash memory (M25P16)

• USB 2.0 interface for onboard flash programming

• FPGA configuration via JTAG and USB

• 8 LEDs, six push buttons, and an 8-way DIP switch for user-defined applications

• VGA output

• Stereo audio out

• Micro SD card adapter

• Three 7-segment displays

• 39 I/Os for user defined-purposes

• Onboard voltage regulators for single power rail operation

9Chapter 1

Numato Lab

This is a remarkable value, as you get almost everything you need: LEDs, push buttons, DIP
switches, and even three 7-segment displays. The only downside is that the Spartan
XC3S50A is a 1.5K logic cells device, compared to the Spartan-6 LX9 FPGA, which is a 9K
logic cell device.

If FPGA size is an issue, for another $20.00 you can jump up to the Mimas V2, which has a
Spartan-6 XC6SLX9 and also includes 512 Mb of DDR memory along with all the other fea-
tures of the Elbert.

For $199.95, the Waxwing development board should really be called a development labo-
ratory. This board has everything you can imagine on it:

• Spartan-6 FPGA (XC6SLX45 in CSG324 package on Waxwing Mini Module)

• 166 MHz 512 Mb LPDDR

• 100M Ethernet (LAN8710A)

• National Semiconductor LM4550 AC ‘97 audio codec

• 128 Mb SPI flash memory (W25Q128FV)

• 100 MHz CMOS oscillator

• DVI-D connector for video (compatible with HDMI)

• 8-bit VGA output connector

• 2 channel audio out through 3.5 mm audio jack

• 16 × 2 character LCD display

• Micro-SD adapter

• 3 common anode 7-segment LED displays

• 7 onboard push button switches

• 44.5 × 35.1 mm mini breadboard for easy prototyping

• High-speed USB 2.0 interface for onboard flash programming

• FT2232H channel A dedicated for SPI flash programming; channel B can be used
for custom applications

• FPGA configuration via JTAG and USB

• Onboard voltage regulators for single power rail operation

They even provide you with a mini-solderless breadboard, right on the board. This is really
an experimenter’s dream—you don’t need to buy any additional add-on modules to do
some really cool experiments.

10 Make: FPGAs

Numato Lab

Design Flow

For all of these boards, the design process is basically the same, so I think this is a good
place to provide a short overview of a typical FPGA design flow. Most SoC projects follow a
similar path when creating a new device, as illustrated in Figure 1-6. The process usually
starts with a concept, transitions to the actual design of the device, followed by testing,
synthesis, building, and finally running or executing the device in the system.

Figure 1-6 SoC design flow

Each phase contributes to the overall success or failure of the project.

Concept Phase
You can see that we start with the concept phase for any given SoC project. The concept
may be just an idea or something more formal, like a design description or even a written
functional specification. In the concept phase, you’re pretty much free to dream up any-
thing, but you will also need to do some preliminary feasibility analysis to see if what you
are imagining will actually map to the technology you are targeting. In our case, it’s FPGA.
You need to consider things like number of I/O pins and speed, amount of on-chip RAM
required, and a rough estimate of size (gate count) and clock speed, to name a few. In
designs where you haven’t already selected an FPGA, you have the luxury of doing the
design first and then synthesizing it. From the synthesis reports you can see how many
FPGA resources the design requires, and you can then select the optimum FPGA device for
your particular design. In most cases, though, this will not be an option because you will
already have purchased the FPGA board. Instead, you will need to adapt your design to
your FPGA device. Most of the time when you are dealing with IP block libraries, the
description provides a gate count number. You can get a quick ballpark estimate by just
doing some research on the IP blocks you think you will be using in your design and
adding up the gate counts. This is where a quick sketch of a block diagram for your design
will be extremely handy.

11Chapter 1

Design Flow

Design Phase
For me, the design phase is the most fun. There are multiple ways to approach SoC design,
but I’m going to describe two basic methods. The first is the top down method of design.
This is where you start with a very high level view of the design and work your way down
into the details. For me, this is the most natural method, and it’s the one we will be using
most in our upcoming experiments. This method is also known as the hierarchical design
method. The block diagram that you sketched in the concept phase should be a good rep-
resentation of the top level of your design hierarchy. Design hierarchies can be repre-
sented in HDL form, graphical form, or both. For example, you could have a top level that
looks something like the block diagram in Figure 1-7.

Figure 1-7 Top SoC level

Drilling down one level into the I2C (Inter-Integrated Circuit) block, the diagram could look
something like Figure 1-8.

12 Make: FPGAs

Design Flow

Figure 1-8 I2C controller top level: graphical form

Or it can be represented in Verilog as shown in Figure 1-9.

13Chapter 1

Design Flow

Figure 1-9 I2C controller top level: partial Verilog code example

Each subblock in the hierarchy is another logical function of the next level of design detail.
In this way, a very complex design is broken down into very manageable pieces. With HDL,
it is easy to stitch together the hierarchy and create a useful file structure to manage and
control the design. This is an example of the benefits and power of using HDL, and it’s how
you can create a design that is made up of over a billion transistors. With HDL and hierarch-
ical design you can efficiently break the design down and have teams of engineers work-
ing on different blocks at the same time. There can be hundreds or even thousands of
engineers working on a single SoC design at once. There are hardware engineers doing
this very thing, right now, all over the world.

The other design method is called the bottom up method. Here you start with one section
of your design and work out all the details of that aspect of the design, and then move to
the next section. This method is also known as the flat design method. Schematic drawings
are typically used for a flat representation of a design. There can be many sheets of sche-
matics tied together, but they are all at the same very detailed level. This method works
well for very small designs, but when you get into larger SoCs, the hierarchical method is
really the only the way to go. Most printed wiring boards (PWBs) are flat designs and use

14 Make: FPGAs

Design Flow

computer-aided design (CAD) schematic entry tools to capture the design, but flat design
is not typically used in SoC development.

Test Phase
The test phase, also known as the validation phase, is basically where you apply some type
of stimulus to the design or a design element and observe the results. This sounds simple
enough, but SoC validation can be just as or even more complex than the design itself. In
industry, the validation team can be two or three times the size of the design team for a
complex SoC project. This is particularly the case for full custom or standard cell chips.
Remember the cost is extremely high for that first chip with these technologies, so you
need to make every effort to be sure that it is right and more than just pass the DOA test.

FYI

A DOA (dead on arrival) test is a very popular test for SoC validation engi-
neers to write (typically it is the first test they write for a new chip or design
block). This test usually checks to see if the chip or design has any life at all
after power-up. For example, does the chip come out of reset to a known
state? If the DOA test fails, there is something catastrophically wrong with
the design.

The test bench is the method used for most SoC validation. The test bench is nothing more
than a simulation wrapper that is put around the unit under test (UUT), along with virtual
test generators and test instruments to stimulate and monitor the UUT (see Figure 1-10).
For SoC designs, the test bench can be written in HDL or C++. Behavioral models and bus
functional models are used as generators and monitors in the test bench. A behavioral
model is HDL code that mimics the operation of a device, like a CPU, but is not gate-level
accurate. In other words, it is not synthesizable. When coding bus functional models you
have much more freedom to optimize out many details that don’t affect the focus of your
test—these models only create the sequence of states on a bus necessary for the test (for
example, read/write transactions on the CPU bus). (In the last decade, a language called
System Verilog has become very popular in industry validation engineering circles, but it’s
beyond the scope of this book and we won’t be covering it here.)

15Chapter 1

Design Flow

Figure 1-10 I2C controller test bench

A test can also be as simple as a quick simulation of your design, conducted by manually
forcing the clock and control signals from within the simulation tool itself, then visually
inspecting the output waveforms for the results. With this method no extra test bench
code is required. I like to use this method to check my design while I’m in the design pro-
cess itself—which brings up another interesting point. There are basically two design-
validation philosophies that one can follow. The first is the complete design method. Here
the designer carefully maps out and plans every detail of the design block, then codes it in
HDL, writes the test bench code, and then tests it. There is very little iteration in this
method with the exception of fixing bugs in the design code. The second method is the
iterative method of design. Here the designer builds up the design in stages of complexity
iterating between design and test. There could be many iterations between the design
phase and test phase in this method until the design converges on the expected output
results (see Figure 1-11).

16 Make: FPGAs

Design Flow

Figure 1-11 Design-test phase iteration

There are obviously pros and cons for both of these methods and much of it comes down
to style and personal preference. I tend to use the iterative method more because I like to
use the power of the simulation tools to help me visualize my design assumptions in real
time. Keep in mind that there is always some number of iterations between design and
test phases; nothing works perfectly the first time through!

Synthesize Phase
Logic synthesis is the process by which the register-transfer level (RTL) of the SoC is turned
into a design implementation in terms of logic gates, typically by a CAD tool called a syn-
thesis tool.

17Chapter 1

Design Flow

RTL

Not to be confused with register transistor logic,
the term used in transistor circuit design, register
transfer level (RTL) is a design abstraction that
models a synchronous digital circuit in terms of
the flow of digital signals (data) between hard-
ware registers and the logical operations per-
formed on those signals.

The acronym RTL is used by many engineers in
industry when referring to hardware description
languages (HDLs) like Verilog and VHDL that cre-
ate high-level representations of a circuit.

We talk a lot more about RTL in Chapter 2.

The synthesize phase is often the most complicated and challenging phase in the design
flow, and the designer must have some knowledge of the target technology and the syn-
thesis tool being used. Trade-offs in functionality versus size may need to be made in order
for the design to fit in the targeted device. Routing of critical clock and control signals may
need to be considered in order to meet timing and performance requirements. HDL cod-
ing styles may need to be considered in order to reduce propagation delay of combina-
tional signals through multiple logic levels. The use of on-chip SRAM versus registers may
to be considered for state retention data. The list goes on and on. In industry, it’s common
for the hardware engineer to hand the RTL over to a synthesis team who performs the
actual synthesis run—that’s how specialized it can be.

In our case, the FPGA tool from Xilinx that we will be using has a pretty good synthesis tool
included, but the old adage “garbage in, garbage out” reigns supreme. As we go through
each experiment, I will be covering different aspects of the synthesis process, so we will be
coming back to this topic in upcoming chapters.

Build Phase
The build phase can be as simple as a push of a button, as is the case for us with FPGA and
CPLD (complex programmable logic device) technologies, or can entail a multitude of
manufacturing steps, costing many thousands or even millions of dollars (as is the case for
some of the other technologies we discussed earlier in this chapter). We won’t be getting
into integrated circuit manufacturing in this book. The build phase for us just involves
hooking up our USB cable to our FPGA module and uploading the bit file to the FPGA
device. Piece of cake!

Run Phase
The run phase is where the design is put into operation, physically executing in the target
technology. Here, the proof is in the pudding, although with FPGA this is not as critical as it
is with the nonreprogrammable technologies. For us, if the design does not work we will
need to go back through the flow and begin debugging. Often, in simple FPGA designs,
the validation phase can be pushed into the run phase. Testing is done only at the power-
on, chip level. For example, if your FPGA design just blinks an LED, there is no real reason to
build a test bench for that. For that matter, there is no real reason to do a simulation of the

18 Make: FPGAs

Design Flow

design. Just by running the design you will know whether it works or not. That is one of
the big advantages of designing with FPGAs—they are reprogrammable!

As illustrated in Figure 1-12, our toolbox of integrated development environment (IDE)
tools will focus on for the most part the design, test, synthesize, and build phases of an SoC
project.

Figure 1-12 Focus of IDE design flow

Takeaways

The main takeaway for this chapter is that there are many FPGA development boards to
choose from, in a very wide price range (for a more comprehensive list of low-cost options,
see Appendix A). As I said at the beginning of the chapter, it really comes down to what
features you are looking for and what your budget is. The good news is that there is some-
thing for everyone. Here are a couple of other points to keep in mind:

• Most of the boards are easy to set up on Windows, but for the most part Linux
support is definitely lagging and Mac support is not in the mix. You may just have
to struggle through the setup with many of these boards, because I have found
that no matter how smoothly it may go on one machine, on another it can be a
complete nightmare. It’s just part of the joy of DIY!

• When we talk about FPGA design, a lot of people immediately get all wrapped
around the axle thinking you have to be a VHDL or Verilog guru in order to jump
in. That is far from the truth—in fact, one of the main purposes of this book is to
prove that you don’t have to be a VHDL or Verilog expert to start building cool
FPGA projects!

19Chapter 1

Takeaways

Count on It!

Basic FPGA Design Flow Using a Frequency Divider
Circuit

In this chapter, I’ll walk you through a basic FPGA design flow using a simple frequency
divider circuit. I recommend that everyone read through this chapter just to review the
basics. If you are new to FPGAs and FPGA design methods, this will be a very practical
guide for you. If you have some experience designing with FPGAs, then you may find this
to be a good refresher.

I’ll be going through, in some very detailed steps, installing the Xilinx ISE tool, creating a
project in the Xilinx ISE tool, creating a schematic and Verilog source file, synthesis, basic
simulation, creating a user constraints file (UCF), bit file generation, and programming your
target FPGA device. I will not be going through these steps in the following chapters,
because I’ll assume you have mastered them here before moving on.

When I begin working with any new FPGA module, I like to start with a very simple design
to get me familiar with the lay of the land, so to speak, of the module and tool flow. I use a
very simple counter circuit to help me do this. We’ll be following the SoC development
flow outlined in the previous chapter and shown again in Figure 2-1 as our guide to build-
ing this simple test circuit.

Figure 2-1 SoC development flow guide

21

2

Keep in mind that this little circuit gives you the opportunity to quickly go through the
whole design process, touching on all the major concepts and functions of your module.
You’ll be able to flush out a lot of the ins and outs of the design by going through this
experiment. I highly recommend that you start here.

Blink LEDs Concept

The requirements for our design are very simple: we would like to blink two indicator lights
(LEDs) on and off at different rates based on the system clock of our FPGA module. We
would also like to have a mechanism to hold the circuit in reset. A nice-to-have require-
ment is for the lights to be different colors, say red and green. We can sketch a simple
block diagram for the system as shown in Figure 2-2.

Figure 2-2 Blink system sketch

How It Works
The theory of operation for this system is simple. Our input clock will be operating at some
nominal frequency—let’s say 100 MHz. We want to use the clock signal to somehow flash
our two LEDs (lights). We know that frequency is equal to the inverse of the period, so 100
MHz is equal to a 10 ns period. If we turn the LED on and off every 10 ns, though, it will be
way too fast for our eyes to register the transition. We won’t see the light blinking at all,
even though it will actually be blinking very rapidly. We need to divide the primary clock
signal down to a much slower frequency in order for our eyes to register the on-to-off state
transition of the LED. In essence, we want to generate a slower clock from a faster clock. We
can observe that when counting in binary, the least significant bit toggles twice as fast as
the next significant bit. The same is true of the next significant bit, and so forth. Given this
fact, we can use a simple binary counter as a clock frequency divider circuit (see
Figure 2-3). The question now is, how many bits does our counter need to be? We know
that at flicker rates beyond 100 times per second, humans stop noticing the blackness of,
say, a TV screen refresh. House lights turn on and off at 60 Hz, the frequency of electric
power, and our eyes cannot detect the flicker. The LEDs here are similar. We can think of
each as one TV screen pixel. So, we have to slow the 100 Mhz clock down below the 100 Hz
range. We need to divide our 100 Mhz clock frequency by at least a million to get our eyes
to notice the change from off to on. That means we need at least a 20-bit binary counter (2
raised to the 20th power).

22 Make: FPGAs

Blink LEDs Concept

Figure 2-3 Clock frequency divider circuit

Xilinx ISE WebPACK Installation
Now is a good point to talk about the development tools we will be using. Just as any good
builder needs a toolbox full of the right tools for the job, the FPGA designer needs a good
toolbox with the right tools to complete an FPGA project. The primary tool in our FPGA
design toolbox will be the ISE WebPACK from Xilinx. First and foremost, ISE is free, and you
can install the tool on as many computers as you wish. For students and hobbyists, I think
free tools are a must-have! You still need to generate a license file with the install, which
enables only the free features of the tool. The feature set that Xilinx provides with the free
license will be more than sufficient to meet our needs.

As of October 2013, ISE has moved into the “sustaining” phase of its product lifecycle. But
this does not mean that it will no longer be available for use by the Make community—on
the contrary, it is my understanding from my sources at Xilinx that ISE will be available for
the foreseeable future; there just will not be any new features added to it. For all new Xilinx
device families, starting with the Artix® family, you will need to use the Vivado® Design
Suite WebPACK from Xilinx. While this WebPACK edition is also free, it has a much more
limited feature set than ISE. We will not be using Vivado in this book.

Getting started

You will need to create a Xilinx account to proceed with the download. First, you will need
to go to the Xilinx website and download a copy of the ISE WebPACK that matches the OS
of the computer you will be running it on. Choose Support→Downloads Licensing in the
main menu bar, and then click the ISE tab; the default download page is for Vivado, and
you don’t want to download that by accident! The ZIP file is very large, and it may take a
while for it to complete the download.

The Xilinx website also provides you with the option of requesting a free DVD version of
the software, which can be shipped to you. You can request only one copy of the DVD.

23Chapter 2

Blink LEDs Concept

http://bit.ly/1KKhG84
http://bit.ly/1KKhG84
http://bit.ly/1JWwCVt
http://bit.ly/1KKhJAI

Installation

The installation of the ISE WebPACK is relatively straightforward. You can find the official
install guide on the Xilinx website. They also provide a good tutorial guide on the tool.

Here’s a quick summary of the installation process:

1. Unzip the download file to a directory on your computer.

2. Run the xsetup.exe file. For Linux installs, you will need to run as a superuser (sudo).

3. Choose the defaults and accept the licensing agreements.

4. Under “Product to select,” choose ISE WebPACK.

5. You can select the defaults for everything else.

6. Wait for the “Install Completed” message.

7. Once the install is complete it will pop up a window where you can select Acquire
a License. Select “Get Free Vivado/ISE WebPack License” and click Next.

8. You should automatically be connected to the Xilinx page, and a license will be
generated for you. Sometimes that may not work, though, and you will have to
generate, download, and install the license manually. To install the license man-
ually:

a. Go to the Xilinx website.

b. Log in to the account you created to download the installer.

c. Click Manage Licenses and find your WebPACK license. Click the Down-
load icon in the bottom-left corner to download your license.

d. Go back to the License Configuration Manager and click the Load License
button. A file dialog should pop up, and you will need to select the license
file you just downloaded.

9. Run ISE WebPACK. Linux users will need to run the start script (settings32.sh, loca-
ted in the /opt/Xilinx/14.7/ISE_DE directory) first, then type ise on the command
line.

Did You Know?

You can install the ISE WebPACK on as many computers as you like—just
copy the same license file you generated to the other computers. You do
not need to generate a new license file for each computer.

24 Make: FPGAs

Blink LEDs Concept

http://bit.ly/1KKhLIU
http://bit.ly/1KKhNR3
http://xilinx.com/getlicense

Heads Up!

Windows 8 bug! If you are running 64–bit Windows 8 you will not be able
to load a license file or open any projects.

When you click the Load License button, the License Configuration Man-
ager will crash. To fix this, follow the steps outlined by Nachum Kanovsky
on his blog.

Once you have the Xilinx ISE WebPACK installed on your computer and have gone through
your FPGA modules and start-up guide, you are ready to take that first big step on your
journey of FPGA design.

Design

With our system concept in hand, we can now start our design. The first thing we’ll need to
decide is what method we will use to capture our FPGA design details. For our first design
we will use graphical schematic entry. I’ll also show the HDL version of the same design
later in the chapter. The graphical entry will enable us to see some of the features of the
design easily, especially if you’re new to this.

We’ll also need to build a small breadboard circuit that will act as our peripheral device,
which will contain our LED lights that will connect to our FPGA module. I like to build this
external circuit because it is completely independent of any LEDs on your module. In this
way you really get to dig into the I/O mapping of your board. You can also add a push but-
ton for the reset function or just use a jumper wire.

Peripheral Breadboard
If you’re like me, you’ll have all of the components required to build this little circuit lying
around your bench somewhere; if not, take a look at the Bill of Materials (BoM) for a parts
list.

The BoM for the circuit shown in Figure 2-4 will include a couple of LEDs, current limiting
resistors, a pull-up resistor, a switch (optional), some male-to-male jumper wires, and a
small solderless half-size breadboard.

25Chapter 2

Design

http://bit.ly/1NTYllS

Figure 2-4 Blink LED peripheral schematic

BoM

R1, R2, R3 = 330—10K ohm (any value of resistor in this range will work)

D1 = Red LED (can be any color)

D2 = Green LED (can be red or any color)

TP1, TP2, TP3 = Connection points in your breadboard

SW1 = 1 × push-button switch (optional)

1 × small 1/2 size breadboard

4 × male-to-male jumper wires

Once you have all the parts, it should only take you a few minutes to build this circuit on
your breadboard. It should look something like Figure 2-5.

26 Make: FPGAs

Design

Figure 2-5 LED breadboard

FPGA Circuit Schematic Design Entry
Now we get into the good stuff! Let’s open our first, new, FPGA project in the Xilinx ISE
WebPACK tool, as seen in Figure 2-6.

27Chapter 2

Design

Figure 2-6 Open new project

Name the new project BlinkLEDs1. Don’t forget to select Schematic as the top-level source
type, as shown in Figure 2-7.

28 Make: FPGAs

Design

Figure 2-7 Name the project and select Schematic as the top level

You should also specify your device properties at this point, as seen in Figure 2-8. The fam-
ily, device package, and speed are all dependent on the FPGA module you are using.

29Chapter 2

Design

Figure 2-8 Specify your device properties

Heads Up!

Be sure to specify the correct FPGA device information for your module! You
will need to have these properties set correctly for later, when you build. Do
it now before you forget! It will save you a whole lot of errors down the
road.

You can click through the defaults for the rest of the settings at this point.

Next, we will open a new source file, as shown in Figure 2-9.

30 Make: FPGAs

Design

Figure 2-9 Open new source file

Select Schematic as the source type, name the file BlinkSystem, and hit Next, as seen in
Figure 2-10.

31Chapter 2

Design

Figure 2-10 Name your schematic file and hit Next

We’re almost there! Now go to the Design panel and click your BlinkSystem.sch file (see
Figure 2-11). This will be your schematic drawing.

32 Make: FPGAs

Design

Figure 2-11 Open the schematic drawing

We are now ready to start designing our circuit using the schematic symbol library. You
may want to zoom in a bit on your drawing at this point (see Figure 2-12).

33Chapter 2

Design

Figure 2-12 Zoom in to your schematic drawing

Now drop a couple of binary counters into your drawing, as shown in Figure 2-13. We will
be using the CB16CE macro. This is a 16-bit cascadable binary counter with clock enable
and asynchronous clear. We will be cascading two of these macros together to create a 32-
bit binary counter, as illustrated in Figure 2-14. Remember we need at least 20 bits of fre-
quency division to get our clock slowed down enough for our eyes to see the difference in
on/off time.

Figure 2-13 Add counter symbol

34 Make: FPGAs

Design

Figure 2-14 Two CB16CE cascadable binary counters

FYI

Xilinx provides a set of guides that describe all the macros in the schematic
library for different device families, such as the Spartan-6 Libraries Guide
for Schematic Designs.

Now we are ready to wire up our counters. We’ll start by clicking on the Add Wire tool in
the toolbar on the left (see Figure 2-15).

35Chapter 2

Design

http://bit.ly/1K7IsMV
http://bit.ly/1K7IsMV

Figure 2-15 Add a wire

Connect the two CLR inputs together with wires, then connect the two C (or clock) inputs
together. Now add a single wire to the bottom CE (count enable) input, but don’t wire this
to the top one. Next, connect the two Q(15:0) output buses together. Finally, connect the
bottom CEO (count enable out) to the CE of the top counter. This is how you cascade the
counters together. When the lower counter reaches its terminal count, it will generate a
single output strobe, for one clock cycle, on its CEO pin. This will be used to enable the
high count, so for every 216 lower counts the high count will count once. Your schematic
should look something like Figure 2-16.

36 Make: FPGAs

Design

Figure 2-16 Wire up your counters

Now let’s add some labels to our wires and buses. It’s very important to use a naming con-
vention for labeling—this is a good design habit to get yourself into. For small designs like
this, it is not critical, but in larger designs or joint designs it becomes essential. I like to use
lowercase text for internal signals and buses. Standard convention is to use either the “_n”
or “_low” designation at the end of the signal name for signals that are active low. Figures
2-17 and 2-18 illustrate the procedure for adding a label.

37Chapter 2

Design

Figure 2-17 Double-click the wire to add a label

38 Make: FPGAs

Design

Figure 2-18 Click Apply and then Add to add text, then click OK

When you’re done, you should have labels that look like those in Figure 2-19. Notice that
the output bus is labeled “count(31:0).” This is because this is a 32-bit (wire) bus; 31:0
means 31 down to 0.

39Chapter 2

Design

Figure 2-19 Signal names added

Next, we need to add bus taps on our 32-bit output bus, so we can get two individual wires
of this bus to act as outputs to our LEDs.

Clicking the Add Bus Tap icon in the lefthand toolbar brings up the Add Bus Tap Options
pane in the Options panel, as seen in Figure 2-20.

40 Make: FPGAs

Design

Figure 2-20 Add bus tap

Notice that the Add Bus Tap tool’s Options panel provides an orientation selection. You
want the bus tap’s V-shaped end to intersect perpendicular to the bus that you are trying
to tap. In this example, the tap requires a left orientation in order to connect to the bus
properly.

The next step is required for the build process and is mostly just a quirk of ISE. We need to
add an output buffer between the bus tap and the output pin, which we will be adding
next. If you fail to do this, you will not be able to name your output pin correctly. Select the
obuf from the IO symbol library category, add it to your schematic, and connect the bus
tap and obuf together with a wire (see Figure 2-21). Do this for both counter signals.

41Chapter 2

Design

Figure 2-21 Add an obuf

Add labels to your wires and you should have something that looks like Figure 2-22. I
chose to assign bits 20 and 21 of the 32-bit counter to the two bus taps. This will be a good
place to start our experiment because we know that we need a reduction of at least 1 mil-
lion (20 bits) for our 100 Mhz input clock.

Heads Up!

Don’t forget to occasionally save your work as you create your schematic!

42 Make: FPGAs

Design

Figure 2-22 Schematic with bus taps added

The last thing we need to add to our schematic is I/O pin symbols. These symbols will tell
the ISE Place and Route tool (discussed in “Build”) what physical FPGA pins we want our
signals to be active on. We also need to add a pull-up function to our ce_low signal. We
need the lower half of our 32-bit counter to count continually on every input clock cycle.
To achieve this, we will simply assign a constant value of 1 (high) to this input signal. This is
done in the schematic editor by placing a pull-up symbol on the wire, as seen in
Figure 2-23. I also named the I/O pins with capital letters, keeping to my convention. This
allows for easy identification of physical I/O pins from internal signals when simulating.

Figure 2-23 Complete schematic

43Chapter 2

Design

You are now ready to implement (compile) your module. To do this, simply click the green
triangle on the top toolbar. You should get the following errors when you do this:

• ERROR:DesignEntry:20 - Pin “Q(15:0)” is connected to a bus of a different width.

• ERROR:DesignEntry:20 - Pin “Q(15:0)” is connected to a bus of a different width.

I intentionally constructed our schematic to generate these errors to illustrate the point
that the Xilinx schematic editor is not very robust in many regards. This is another one of
those quirks that is a real pain to deal with. Bus merging, apparently, is something that the
ISE schematic tool does not do very well. To work around this problem, I found that we
need to break the 32-bit bus into two 16-bit segments, giving each segment a unique
name (see Figure 2-24). Keep in mind that this is not a design requirement; it is a tool work-
around. As you grow in your FPGA design capabilities, you may encounter similar errors
that turn out to be other tool issues. When you encounter an error, click the word “ERROR”
in the error message string in the console window. This will bring up some information
about the error in the Xilinx database. You can also search the Web for information that
relates to the problem by cutting and pasting the error message into your search engine or
searching on a related topic, such as “Xilinx schematic bus merging.”

Figure 2-24 Schematic with errors corrected

Once you correct the schematic and re-run the compile, which will take a few seconds, you
should get a “Process ‘Generate Post-Place & Route Static Timing’ completed successfully”
message in your console window. You should get in the habit of reviewing any warning
messages that are generated. In this case, there should be a few of them, but a quick
review shows that the warnings pertain to the unconnected counter_low bus and are of no
concern. When debugging a problem, it is also a good idea to go back and look at the
warning reports for clues.

44 Make: FPGAs

Design

FPGA Circuit HDL Design Entry
Now we’ll capture the same design using an HDL source file instead of a schematic. This
will give you a good opportunity to experience firsthand the benefits of using an HDL edi-
tor to capture your design details. For this example, I will be using Verilog to code the
design. At this point, some of you may be thinking HDL stands for “hard/difficult language”
instead of “hardware description language,” but here you’ll see just how HDL really simpli-
fies SoC design.

To get started we will create a new project in ISE and name it HDL_BlinkLEDs1. Be sure to
select HDL as the top-level source type when you create your new project, as shown in
Figure 2-25.

Figure 2-25 Select HDL as the top-level source

After you click Next, select Verilog as your preferred language in the Project Settings dialog
box (see Figure 2-26).

45Chapter 2

Design

Figure 2-26 Preferred Language to Verilog

Hit Next, and open a new source file from the Project menu in the top toolbar. Select Veri-
log Module from the Select Source Type dialog box and name your file BlinkLED_Sys2, as
shown in Figure 2-27.

46 Make: FPGAs

Design

Figure 2-27 Create a Verilog module source file

After clicking Next again, you will need to define your module’s ports. Verilog modules are
like functions in other programming languages. They are pieces of code that can be used
and reused within a single program. Verilog modules are defined using the module key-
word, and end with the endmodule keyword. The module is declared with a module name
(in this case, BlinkLEDSys2), followed by a list of parameters, which is the list of input and
output signals that connect to the module. When we synthesize our Verilog code, the
parameters will signify the physical wire connections that connect our module to the rest
of the SoC.

Think of the module as a top-level block in a block diagram. Remember our system block
diagram from earlier in the chapter (Figure 2-2)?

This is the module we are describing now in Verilog. Notice that the block has four ports:
two input ports labeled Clock and Reset and two output ports labeled Lgt1 and Lgt2. The
great thing about the ISE tool is that it gives you a headstart on your source file construc-
tion with a handy port declaration wizard. For this example, we can just rename the labels
to CLOCK_IN, RESET, OUT_HIGH, and OUT_LOW using all capital letters, keeping to our naming
convention (see Figure 2-28).

47Chapter 2

Design

Figure 2-28 Port declaration wizard

Click Next and just like magic, you’ve created your first HDL source file (Figure 2-29)—but
we’re not done yet!

48 Make: FPGAs

Design

Figure 2-29 Verilog module source file

Notice that the ISE HDL editor color-codes the text. This is very helpful when constructing
and reading code. First, you’ll see there is a lot of green text. This text is comments, and it
has no effect on the compilation of the code. You can add comment text anywhere in the
source file by simply preceding the text with two forward slashes (//); this tells the com-
piler that what follows on this line is a comment. You can add a multiline comment by
starting each line with //, or you can use a /* (forward slash and asterisk) at the beginning
of the comment and a */ (asterisk then forward slash) to close your comment block. You
can use this method to easily comment out a whole block of code when you are debug-
ging, for example.

Full details on the color coding for Verilog and VHDL are given in Table 2-1.

Table 2-1 ISE text color coding

Color Verilog VHDL

Green Comment Comment

Blue Reserved word Reserved word

Pink Directive STD LOGIC reserved word

Orange Function N/A

Red UNISIM reserved word

SIMPRIM reserved word

UNISIM reserved word

SIMPRIM reserved word

49Chapter 2

Design

Color Verilog VHDL

Gray Attribute string String

Black Default text
Identifier

Number

Operator

Default text

Identifier

Number

Operator

Most of the time you will be coding with blue reserved words and black identifiers.

In Verilog, circuit components are designed inside the module. Modules can contain both
structural and behavioral statements. Structural statements represent circuit components
like logic gates, counters, and microprocessors. Behavioral-level statements are program-
ming statements that have no direct mapping to circuit components like loops, if-then
statements, and stimulus vectors that are used to exercise a circuit.

Our next step is to code our 32-bit counter circuit component. Basically, a counter is just a
code loop that adds one to itself each time through the loop. This is illustrated in pseudo-
code in Example 2-1.

Example 2-1 Pseudocode of counter

Start
 count = count + 1.
 goto Start

Since Verilog is a hardware description language, we need to code up some of the basic
hardware building blocks of our circuit—in this case, registers and wires. If you don’t have
a hardware background, this may seem a little confusing at first, but let’s go back to our
counter diagram. We said that we needed at least a 20-bit counter to meet our require-
ments and in our previous schematic example, we used a 32-bit counter. To keep every-
thing the same, we will use a 32-bit counter in our HDL example, too. The 32-bit counter
needs to be realized in hardware by 32 storage elements called registers or flip-flops. Flip-
flops are digital logic circuits that can be in one of two states. They maintain their state
indefinitely until an input pulse called a trigger is received. Typically this is the rising edge
of an input clock. When a trigger is received, the flip-flop outputs change state according
to the defined rules and remain in those states until another trigger is received. Flip-flops
can be used to store one bit of data. The data may represent the value of a counter, the
state of a sequencer, an ASCII character in a computer’s memory, or any other piece of
information.

50 Make: FPGAs

Design

Did You Know?

The most common flip-flop is the D-Flip-Flop (DFF) or D Register. As illustra-
ted in Figure 2-30, this is represented by the schematic symbol that has two
inputs and one output: C (clock), D (data in), and Q (data out). You can see
the DFF in your ISE schematic symbol library by choosing “fd” in the
“Flip_Flop” category. The DFF transfers the value on D to Q on the rising
edge of C.

Figure 2-30 ISE DFF schematic symbol

So, we need to define our counter variables to be made up of 32 registers (DFF.) We do this
by using the reg reserved word, followed by the size [31:0] and the name blinkcount:

reg[31:0]blinkcount;

Notice the semicolon at the end of the text string. Verilog requires a semicolon at the end
of every code string. If you get errors when you first compile your code, check for proper
semicolon placement. You will most likely miss one or two while coding your first pass,
which will generate a lot of bizarre errors.

Heads Up!

Make sure you add a semicolon at the end of every Verilog code string.

51Chapter 2

Design

We also have to declare the wires that connect from our module port to our counter:

wire clk_in;
wire reset_in;

Now we have three elements defined in our circuit: ports, registers, and wires. We just need
to hook them together, and we do that through the assign statement:

assign clk_in = CLOCK_IN;
assign reset_in = RESET;
assign OUT_HIGH = blinkcount[21];
assign OUT_LOW = blinkcount[20];

Notice that I did not define a wire from our counter but tied the blinkcount bit 21 and bit
20 directly to the ports OUT_HIGH and OUT_LOW. We can do this because Verilog understands
that the output of a register is an internal wire or signal. When using the assign statement,
you must be aware of the direction of the signal flow as it relates to the equal sign. The
flow in the declaration is from right to left, so in our assign clk_in = CLOCK_IN statement
we are assigning the input port CLOCK_IN to the wire clk_in. You can say that the wire
clk_in “gets” port CLOCK_IN. Notice the difference in the last two declarations—the output
of our counter blinkcount[21] is going to port OUT_HIGH or in other words OUT_HIGH gets
blinkcount[21]. In this case, the port is on the left side of the equals sign because it is at
the end of the flow.

Now we just need to define our counter loop and reset functionality:

always @(posedge clk_in)

if (reset_in) begin
 blinkcount <= 32'b0;
end

else

begin
 blinkcount <= blinkcount + 1;
end

We start by declaring that we want all state changes to always happen on the rising edge
of the input clock. In other words, this is a synchronous design. We next use the behavioral
if statement to perform our reset function. What we are saying here is that if our signal
reset_in is true (high), then all the bits of the counter, 31 down to 0, are equal to zero.
Then we use our else statement to begin counting on every rising edge of our clk_in
signal, which is connected to our CLOCK_IN port, when reset_in is not true (low).

52 Make: FPGAs

Design

FYI

The CLR pin of the CB16CE used in the earlier schematic design (see
Figure 2-14) is an async reset (i.e., reset) or the clear function happens asyn-
chronously to the clock. In this Verilog code I use a sync reset, meaning the
reset is not active until the rising edge of the clock. It’s a subtle difference
for this design and really doesn’t make much of a difference, but it’s some-
thing you should be aware of when you are designing.

The complete code for our counter circuit is shown in Figure 2-31.

Figure 2-31 Completed counter circuit Verilog code

FYI

You can find this code on GitHub.

You are now ready to compile your code. Hit the green triangle and check for errors.

53Chapter 2

Design

https://github.com/tritechpw/Make-FPGA

Next, I’ll show you a cool tool that I like to use to see how the HDL synthesizer has inter-
preted my code. You are going to love this one!

Go to Tools→Schematic Viewer and select RTL (see Figure 2-32).

Figure 2-32 Launch the RTL schematic viewer

In the dialog box that appears (see Figure 2-33), select “Start with a schematic of the top-
level block.” I like to use this view because it builds the schematic using the register trans-
fer level (RTL) abstraction model form we talked about in Chapter 1.

54 Make: FPGAs

Design

Figure 2-33 Select top-level block

Click OK and, just like magic, there is your top-level block! It should look like Figure 2-34.

Figure 2-34 Top-level block

It’s funny how it looks a lot like our system block diagram, reproduced in Figure 2-35. That
was no accident.

55Chapter 2

Design

Figure 2-35 Blink system block diagram

Now, are you ready for more fun? Double-click the BlinkLED_Sys2 block and click “Zoom to
Full View” in the upper toolbar. You now see the bottom level of the RTL view, as shown in
Figure 2-36.

Figure 2-36 Bottom level of RTL view

You will notice two blocks here: the one on the right represents our 32 registers
(reg[31:0]blinkcount), and the one on the left is what we call the combinational logic
block. These two blocks represent the current state (right block) and next state (left block)
logic sequences. Notice that the clock only goes to the right block. That is because it is reg-
istering (FF) the next state, which becomes the current state on every rising edge of the
clock. Remember our always @(posedge clk_in) statement? This is how the synthesizer
interpreted this and implemented it. Notice that the output of the fdr block (right) is fed
back to the input of the left block. This is the next state generation logic. Remember when
we said that blinkcount <= blinkcount + 1? Well, the synthesizer is doing just that in this
block: it’s taking the current count, which is the feedback from the registers (current state
or current count), adding one to it in the left block and presenting that as the data going
into the register block (right) to be the clock-in on the next rising edge of the clock (i.e.,
this becomes the new current count). This is a classic RTL model of how most synchronous
HDL logic designs get coded and synthesized, represented graphically in Figure 2-37. If you
can remember this simple RTL model, you will be able to understand a lot of HDL code.

56 Make: FPGAs

Design

Figure 2-37 Simple RTL design abstraction model

We now can see that a synchronous circuit consists of two kinds of elements: registers and
combinational logic. Registers (usually implemented as D flip-flops) synchronize the cir-
cuit’s operation to the edges of the clock signal, and are the only elements in the circuit
that have memory properties. Combinational logic performs all the logical functions in the
circuit, and it typically consists of logic gates.

Now let’s take a look at the bottom level of the Technology view (Figure 2-38). Select
Tools→Schematic Viewer→Technology, double-click the BlinkLED_Sys2 block, and click
Zoom to Full View in the upper toolbar.

Figure 2-38 Bottom level of Technology view

Now we see the details of what the synthesizer actually built and is targeting for the FPGA.
If you count the blocks in this view, across the schematic, you’ll see that there are 21
blocks. Each one of these is a bit in our counter. You’re probably thinking, “Wait a minute, I
coded a 32-bit counter, not 21!” That’s right, but since we tied only our high-order bit 21 to
an output port, the synthesizer optimized out the unused bits. That’s a good thing because
it saves FPGA resources. We were able to easily verify this optimization with this view.

A closer look will show you some of the elements of our logic design. In the zoomed-in
view in Figure 2-39, we can see the input buffer on our reset line, the clock buffer on our
clock line, and some XOR gates, registers, and multiplexers (a multiplexer, or mux, is a digi-
tal logic element that selects one output out of several inputs).

57Chapter 2

Design

Figure 2-39 Elements of logic design

The option to generate HDL code from your schematic source file is also available in the ISE
tool. To do this, go to the Design panel, select a .sch file in the Implementation window of
your schematic design project, and then click “View HDL functional model.” This will gener-
ate the HDL code for the selected schematic. But it won’t be very useful because
schematic-to-HDL conversion is typically very messy. You may use it to get a look at some
basic HDL code, but it most likely will confuse you more than help. You’ve been warned.

The RTL and Technology views of your HDL design are more than just entertaining. They
give you a good graphical way to check on how well your code is being interpreted by the
synthesizer. As with everything, however, there is more than one way to skin a cat, and
HDL coding is no exception. Some styles of coding result in a more optimum synthesis out-
come (using less resources or less logic levels) while others tend to blow up on you and the
synthesizer will create a lot of levels of logic. You can read the Xilinx whitepaper, “HDL Cod-
ing Practices to Accelerate Design Performance” to fully explore this topic.

You may be wondering why all this is important. There are two answers. First, there are
only a finite number of FPGA resources in your chip, so you’ll want to use these in the most
optimum synthesis solutions. The second reason is what we call “meeting timing.” Remem-
ber in our bottom level of the RTL view (Figure 2-36), we had the register block and the
combinational block. Getting all those combinational logic steps through all of those gates
that you see in the Technology view can take a long time. This is called propagation delay,
which is the total path delay for D to CLOCK IN. If you have a very high-speed clock, the
cycle time between rising edges of the clock may not be enough time for the signal to
propagate through all that combinational logic. For example, if we are using a 100 MHz
clock, then the period from edge to edge is 10 ns. If the worst-case delay through the
longest combinatorial path is 10 ns or greater, we have a problem. In this case your design
may work functionally (in simulation) but will not work in the real world (in the FPGA). Tim-

58 Make: FPGAs

Design

http://bit.ly/1JW7FcH
http://bit.ly/1JW7FcH

ing issues are the most challenging issues to debug in an FPGA design, and we can spend
a whole book talking about this topic. For our purposes, it’s good to know that we will not
be working with clock speeds that push the envelope of our FPGA technology. The ISE syn-
thesis tools have come a long way over the years.

To help FPGA designers with analyzing their design, Xilinx has provided some timing tools
in ISE that we can use to generate all kinds of timing reports. We’ll take a quick look at
some of these now, just so you’ll know where they are if you need them later.

Start by clicking Tools→Timing Analyzer→Post Place & Route. This will activate the Timing
tool in your toolbar and generate a Data Sheet report. This report provides the setup and
hold timing information for your design. From the Timing tool, you can go to Reports and
generate the Clock Topology, Reports by Clock Regions, and Nets by Delay reports. Of
these, the one I find most useful is the Nets by Delay report. This gives us the 20 worst nets
by delay. The Net report provides us with the net delay and not the total path delay, which
can be affected by multiple net delays, logic delays, and FF setup and clock-to-out delays.
You cannot determine directly if the design meets timing just by looking at this report. If
you add a constraint file and put a constraint on the clock, you will be able to determine
immediately if you are meeting timing. It’s another step, but it can be crucial if the design
is complex and pushes performance, which in our case is not a concern.

From the Net report (see Figure 2-40), you can quickly tell which net is going to make tim-
ing just by inverting the delay that will give you the maximum clock frequency at which a
particular path can operate. If the frequency of operation is above your system clock, then
you are in good shape. If the frequency of operation is below your system clock, then that
particular net has a problem.

Figure 2-40 Net Delay report

59Chapter 2

Design

For example, in our sample report we see that the RESET_IBUF net has a max delay of 3.662
ns. If we invert this, we get 273 MHz as our maximum frequency of operation. If our system
clock is 100 MHz, then we have plenty of headroom on this one net (more than double).

It’s a good idea to keep this notion of “making timing” in the back of your mind during the
final build step. This is when we will be able to run our “Post Fit” timing analysis and gener-
ate our final reports. Until we do this step, the timing information is just preliminary, so you
need to be cautious when viewing the results. If you are not making timing before the
fitting stage, it will most likely only get worse.

Simulation

Now we are ready to do a quick test of our circuit before we build it and load the bit file to
our FPGA. I always like to try a simple simulation first, even for small designs, because it is a
good sanity check to see if the design works at a rudimentary level. I think it is a good habit
to get into, rather than just going right to building and loading, even if you just take the
design out of reset in the simulation. You would be surprised how many bugs I have found
in HDL code just by doing this. This will be a simple manual simulation test; we won’t be
coding an elaborate test bench for this exercise.

We’ll start with our schematic design project first and then rerun the same simulation on
our HDL design project. We expect the results to be the same. To start the simulation,
select Simulation in the Design panel, select your schematic, and then click Simulate
Behavioral Model. This will open the simulation window (see Figure 2-41).

60 Make: FPGAs

Simulation

Figure 2-41 Start simulation

You will next need to force your clock and reset signals to known states in order to provide
stimulus to your circuit, which will cause the simulator to respond or change state. You do
this by right-clicking the label of the signal you want to set (force). Since the clock is a
repeating periodic signal, we will use the “Force Clock” selection to set our CLOCK_IN
parameters, as shown in Figure 2-42.

61Chapter 2

Simulation

Figure 2-42 Select force clock

Set the leading edge value to 1, followed by the trailing edge value to 0, and the period to
100. Then hit OK.

We next will force our reset signal to 1, which will place our circuit in reset, clearing our
counter. Right-click on the RESET signal and select Force Constant this time (we don’t want
a periodic signal here—we are just looking for a steady state signal). Set Force to Value to
1, as seen in Figure 2-43, and click OK.

62 Make: FPGAs

Simulation

Figure 2-43 Force reset

Now select “Run for the time specified on the toolbar,” which defaults to 1 microsecond
(1.00 μs). Select Zoom to Full View, and you should see all the signals turn to green, the
clock toggle, and the output of your counter set to all zeros (see Figure 2-44).

Figure 2-44 Run for 1.00 μs

Now force the RESET signal to 0 and change the time in the Run window to 1000 μs. You
should see you OUT_HIGH and OUT_LOW outputs toggling now. You can zoom in and out to
see your signals and counter outputs more closely (see Figure 2-45).

63Chapter 2

Simulation

Figure 2-45 Run for 1000 μs

Notice how OUT_HIGH is double the period of OUT_LOW, which is because the higher we go in
the bit order of our counter, the greater our frequency division is, and therefore the slower
our signal is. This is exactly what we expected, and it appears that our design is functioning
properly.

You can try doing this same simulation of your HDL design project, and you will see the
exact same results (Figure 2-46). This confirms that the two design projects are functionally
identical, just captured in two different ways.

FYI

Remember async versus sync resets? The sims may still look the same
depending on when the reset is asserted in relation to the clock (see
Figure 2-46).

64 Make: FPGAs

Simulation

Figure 2-46 HDL project simulation

We are now ready to continue on to the next step in our design flow.

Build
In the build process, we will be assigning the physical I/O pins of our FPGA to our design by
creating a constraint file. Then we will re-run the ISE implementation tool, which will per-
form the place and route processes with our pin assignment information.

Assigning Physical I/O

This next step can be the most difficult in the whole process, because it is here that you will
need to link the virtual world of your ISE design to the real world of the actual FPGA chip
and your particular FPGA module’s circuit board layout. Sometimes it can take a little bit of
detective work to pull all the pieces together. It really depends on how good your FPGA
module vendor is at providing documentation; some do a better job than others. The good
news is that once you go through it, you will have all the information you need for every
build after that, so it’s really only painful the first time through. The key to success is to
know what you are looking for.

We’ll start by going back to our original block diagram model (Figure 2-47).

Figure 2-47 Original block diagram model

65Chapter 2

Simulation

Notice that we need an input clock in order to operate our synchronous blink system
design. Typically on all FPGA modules you will find some type of timing generation circuit
that outputs the master clock for the module. You can think of this as the master platform
clock or timing circuit. The first thing we need to do is find out the source of this clock on
the circuit board and determine what physical FPGA pin it is connected to on the FPGA
chip. A good place to start is the user manual of your board, if there is one available; if not,
the next place to search is the schematic of the module, if one is available.

I’ll be using the Opal Kelly XEM6002 module for this build. Opal Kelly is an example of a
good documentation provider: the XEM6002 User Manual provides all the information we
need in an easy-to-read format.

Looking at our block diagram of the XEM6002 module we can see that the PLL (phase lock
loop) circuit block is clearly identified (green block). The PLL circuit is typically related to
the master timing reference clock generation circuit (see Figure 2-48).

Figure 2-48 XEM6002 module block diagram with PLL block at lower left

We can see that the PLL generates three clocks that we can use in our designs. We’ll need
to go to the user manual for more information on these reference clocks. In the table of
contents, we can see that there’s a section on the PLL under “Introducing the XEM 6002.”
We find the following information about the PLL in this section:

Cypress CY22150 PLL

A multi-output, single-VCO PLL can provide up to five clocks, three to the FPGA
and another two to the expansion connectors JP2 and JP3. The PLL is driven by
a 48-MHz signal output from the USB microcontroller. The PLL can output
clocks up to 150-MHz and is configured through the FrontPanel software inter-
face or the FrontPanel API.

We now have a few more pieces of the puzzle. We know that the maximum frequency of
the three FPGA input clocks is 150 Mhz and that we can configure their frequency from the

66 Make: FPGAs

Simulation

http://assets00.opalkelly.com/library/XEM6002-UM.pdf

XEM6002 FrontPanel application that is running on the PC. That is a really nice feature! We
also see that there are two additional master clocks that we have access to through the
expansion connectors (also a nice feature).

We still don’t have all the information we need, though, so we need to dig a little deeper.
The next section in the table of contents of the user manual is titled “FPGA Pin Connec-
tions” (they’re making this too easy!). In this section, we find a subsection called “PLL Con-
nections.” Bingo! That’s what we’re looking for. Going to that section, we find this
description:

The PLL contains six output pins, two of which are unconnected. The other four
are labelled SYS_CLK1 through SYS_CLK4. SYS_CLK4 connects to JP1. The other
three pins are connected directly to the FPGA. The table below illustrates the
PLL connections.

Now we know that SYS_CLK1 is connected to FPGA physical pin T8. That’s exactly what we
were looking for. We won’t need to go looking for the schematic at this point, which is just
as well since Opal Kelly doesn’t provide one for this module. If the manufacturer of the
module you purchased doesn’t provide you with such a well-thought-out user manual as
Opal Kelly, then you will have to go to the schematic of the board (if available) and trace
out the clock signals to find what FPGA pins they connect to.

Now we need to identify the connections for our RESET input signal and our two LGT out-
put signals. We also need power and ground connections to complete our peripheral
breadboard. These connections come from the general-purpose I/O (GPIO) connectors of
the module. On the XEM6002, the GPIOs are called expansion connectors and labeled
POD1 through POD4. We’ll use POD1 for our connections to our LED breadboard. The user
manual describes these connectors as follows:

POD1 through POD4 connectors are 12-pin, dual-row, 0.1” female headers
which have a pinout satisfying the Digilent Pmod specification. Two pins of
each connector are connected to +3.3VDD (3.3V Power) and two pins are con-
nected to DGND (Digital Ground). The remaining 8 pins are connected to the
FPGA on banks 1 and 3.

67Chapter 2

Simulation

We now have all the connection information we need. Using the information we gathered
from the user manual, we can build the pin mapping table (shown in Table 2-2) for our
design.

Table 2-2 Pin mapping table

Design signal Direction Board connection FPGA pin

CLOCK_IN Input SYS_CLK1 T8

RESET Input POD1-1 M1

LGT1 (OUT_HIGH) Output POD1-2 L1

LGT2 (OUT_LOW) Output POD1-3 K1

Ground N/A POD1-5 N/A

Power N?A POD1-6 N/A

Creating the Constraints File
The next thing we need to do is create a constraints file to tell the ISE implementation tool
where we want to make our physical connections. You can assign I/O signals to physical
pins in your design through the PlanAhead tool in ISE. Using this tool, you can assign I/O
locations, specify I/O banks, specify I/O standards, prohibit I/O locations, and create legal
pin assignments using the built-in design rule checks (DRC) system. The constraints are
saved to the user constraints file (UCF).

Follow these steps to open the PlanAhead tool:

1. In the Design panel, select the Implementation view.

2. In the Hierarchy pane, select the top module image or the associated UCF file.

68 Make: FPGAs

Simulation

3. In the Processes pane, expand User Constraints, and double-click “I/O Pin Planning
(PlanAhead).” You can select Pre-Synthesis or Post-Synthesis in this case, because
we already synthesized our design and don’t care if we resynthesize.

The PlanAhead software opens with the PlanAhead environment loaded and extracts the
top-level I/O port information from your associated source files. If a UCF file does not exist,
an empty one is created for you.

Once you are in the editor all you need to do is type the FPGA pin assignments that are in
your table into the Site configuration dialog box of your Scalar ports list, as shown in
Figure 2-49.

Figure 2-49 Add pin assignments to site configuration

After updating the constraints, you must save the PlanAhead project and exit the PlanA-
head software. This updates the UCF files in the ISE project and updates the ISE project
status accordingly. If you do not save and exit from the PlanAhead software, the ISE project
and UCF files are not updated.

Heads Up

Make sure you update your constraints before you exit PlanAhead!

You can open the UCF file to look at what was generated by PlanAhead by just double-
clicking on the UCF file in the Hierarchy pane. You should see something like Figure 2-50.

69Chapter 2

Simulation

Figure 2-50 PlanAhead Generated UCF file

Did You Know?

Opal Kelly also provides a very nice application on its website to help with
the UCF file generation called Pins. You can use the Pins application to gen-
erate your UCF file and then just place it in your ISE project directory. When
using this method you must be sure you do not have any assignments in
your UCF file that are not in your design, as this will cause ISE to generate
errors when you try to reimplement the design.

We are now ready to generate our bit file.

Bit File Generation

Before you run the Generate Programming File process, click Implement Top Module (the
green triangle) one more time, just to make sure everything is updated. The Generate Pro-
gramming File process runs BitGen, the ISE bitstream generation program, which produces
a bitstream (.bit) file for your FPGA device configuration. To initiate this process:

1. In the Design panel, select the Implementation view.

2. In the Hierarchy pane, select the top module image.

3. In the Processes pane, double-click Generate Programming File.

The programming file is saved in your project directory. After running this process, you are
ready to program your target FPGA device.

Program Target Device
To program your target device, you will need to follow the instructions in your module’s
user manual. Unfortunately this is another one of those quirky issues with the ISE tool.
Xilinx considers the programming protocol used in its iMPACT tool proprietary, and there-

70 Make: FPGAs

Simulation

fore only Xilinx modules can use this tool. Most other manufacturers of FPGA modules, like
the ones we are using in this book, have come up with their own applications to program
the Xilinx FPGAs on their modules. Opal Kelly makes this very easy through its FrontPanel
application, which runs on your PC. You will need to consult the documentation of your
particular module to find the exact programming methods and tools required.

Before we program our device, let’s hook up our module to the breadboard we made ear-
lier. First, get yourself oriented with the GPIO connector on your module. In this example,
I’m using the POD1 connector of the XEM6002, so I connected my jumper wires to the POD
connector pins following the table I constructed earlier (Table 2-2), as shown in
Figure 2-51.

Figure 2-51 Blink project ready for programming.

Now all we need to do is hook up our USB cable to the module (or whatever connection
method is required for power and loading the bit file), and we are ready to go.

71Chapter 2

Simulation

Open Kelly Setup

Heads Up!

Please note that due to the rapidly changing world of FPGA development
boards and development technology, the setup procedures described here
are subject to change. The following procedures were accurate at the time
of writing but may have changed since.

To get started with your Opal Kelly board, you will first need to create an account on the
Opal Kelly Pins page. Once that is done, you will need to send a request to download the
SDK via the Downloads page. The approval response should take only a few minutes to get
to your inbox, and then you can download the FrontPanel SDK for your OS. I started with
the Windows x64 version, which I installed on a Lenovo laptop running Windows 7. I had
no issues with the install. I plugged the USB cable that was provided with the XEM6002
into my laptop and into the XEM6002 module and opened FrontPanel on the laptop, and
the board was there on the FrontPanel Welcome screen (Figure 2-52). So far, so good!

Figure 2-52 You should see the XEM6002 on the Welcome screen

You are now ready to load a FrontPanel Profile by clicking on the arrow icon. Well, not
quite! You will need to download a sample bit file from the Opal Kelly web page. I found
this out after fumbling around on my system and locating the Getting Started Guide. I rec-
ommend that you read this guide before you get started.

Heads Up!

Be sure to read the GettingStarted-USB.pdf file in your C:/Program Files/
Opal Kelly/FrontPanelUSB/Documentation folder before you begin!

72 Make: FPGAs

Open Kelly Setup

https://www.opalkelly.com/pins/
https://pins.opalkelly.com/downloads

Setup Test
You can locate sample bit files on the Downloads page of the Opal Kelly website (under
the Support tab). You will need to download the ZIP file that contains the XEM6002 files
(see Figure 2-53) and extract the files to a directory on your system.

Figure 2-53 Sample bit files on Opal Kelly site

Now you are ready to test the setup by moving a sample file to the XEM6002 board. I fol-
lowed the steps outlined in the section “An Introductory Project” of the Getting Started
Guide and was able to successfully run my first FrontPanel example (Figure 2-54). I suggest
that first-time users do the same.

73Chapter 2

Open Kelly Setup

Figure 2-54 Successful loading of “First” sample bit file and profile to XEM6002

With Opal Kelly’s FrontPanel successfully installed, and having determined that the board
is working properly, all you need to do now is drag and drop your bit file onto the configu-
ration icon, as shown in Figure 2-55.

Figure 2-55 Drag bit file onto configuration icon

Once your programming is complete you should see the LEDs flashing, or just continu-
ously on (this depends on your master clock reference frequency). Congratulations—you
have completed your first FPGA design!

74 Make: FPGAs

Open Kelly Setup

If you have no LEDs on at all, you will need to check your connections. If your LEDs are
constantly on, then you will need to either slow down your master clock reference or use
higher-order bits of your counter for OUT_HIGH and/or OUT_LOW.

Clock Frequency Experimentation

At this point you can go on to experiment with the frequency configuration of your mod-
ule’s master timing circuit or you can change the taps of your counter to be higher-order
bits to get a lower-frequency clock. For example, instead of using bits 20 and 21, you can
use 25 and 29. You will need to edit your schematic or Verilog source file and then reimple-
ment and generate a new bit file to see the results of this on your LEDs.

Opal Kelly provides a great PLL configuration tool in FrontPanel that lets you configure the
clock frequencies, as seen in Figure 2-56. You can do this while your design is running, and
you don’t need to reprogram the FPGA.

Figure 2-56 Opal Kelly FrontPanel PLL configuration utility

75Chapter 2

Clock Frequency Experimentation

Takeaways

Here are some of the key takeaways from the exercises in this chapter:

• Binary counters make good frequency dividers.

• The human eye cannot detect flicker rates much above 100 Hz.

• Using a simple LED blink test and an FPGA frequency divider is a good vehicle to
test the functionality of a new FPGA platform.

• Be sure to specify the correct FPGA device information for your FPGA platform
when setting up your Xilinx ISE project.

• Don’t forget to occasionally save your work as you create your project source file.

• Graphical design entry (schematics) and HDL (Verilog or VHDL) produce the same
synthesis results for the most part.

• Schematics may be easier to follow at first, but it takes much more effort to create
a graphical design than it does to use an HDL and a text editor.

• Flip-flops are digital logic circuits that can be in one of two states.

• The most common flip-flop is the D-flip-flop (DFF) or D register.

• Verilog requires a semicolon at the end of every code string.

• The RTL consists of two kinds of elements: registers and combinational logic.
Registers (usually implemented as D flip-flops) synchronize the circuit’s operation
to the edges of the clock signal, and are the only elements in the circuit that have
memory properties. Combinational logic performs all the logical functions in the
circuit, and it typically consists of logic gates.

• Timing issues are the most challenging issues to debug in an FPGA design. For us,
it’s good to know that we will not be working with clock speeds that push the
envelope of our FPGA technology. The ISE synthesis tools have come a long way
over the years. The clock frequency can be set in the UCF file as a constraint,
forcing the tool to attempt to meet the timing requirements.

• Doing a simple DOA simulation first, even for small designs, provides a good sanity
check to see if the design works functionally at some level.

• Assigning physical I/O connections can be the most difficult part of the whole
design process, because this is where you link the virtual world of your ISE design
to the real world of the actual FPGA chip and your particular FPGA module’s circuit
board layout. Sometimes it can take a little bit of detective work to pull all the
pieces together; some FPGA module vendors do a better job of providing
documentation than others.

76 Make: FPGAs

Takeaways

• Create a constraints file (UCF) to tell the ISE implementation tool where you want
to make your physical connections to the FPGA device.

• To program your target device you will need to follow your module’s user manual’s
instructions. Xilinx considers the programming protocol used in its iMPACT tool
proprietary, so only Xilinx modules can use this tool. Most other manufacturers of
FPGA modules have come up with their own applications to program the Xilinx
FPGAs on their modules.

77Chapter 2

Takeaways

That’s Refreshing

Concurrent HDL Code Execution with Seven-
Segment Displays

In this chapter, I’ll be getting you familiar with the fundamental concept of HDL concur-
rency in FPGA design. The whole idea of HDL concurrency may be somewhat strange to
you at first, especially if you are coming from a software programming background or have
done some projects with an embedded microcontroller like an Arduino and created
sketches in the C programming language for it.

The first thing you need to wrap your head around is that when you are coding in HDL, you
are not writing a software program; rather, you are describing digital hardware logic func-
tionality. With concurrency, there are no sequential steps of code execution like: “first do
this, then do this, then do that.” There really is only one instant in time, and that is the clock
tick. Remember our RTL model of the binary counter in the last chapter: it had the current-
state vector stored in flip-flops. It used this vector as feedback and combined it with other
inputs (RESET) to generate the next-state vector. We saw that when the clock ticked the
next state, which was the count +1, became the current state, which was the current count.

Think of the HDL you are using as more like describing a block diagram than a flow chart.
In a block diagram representation, all the functional blocks can be interdependent and in
operation simultaneously. In other words, the block operations are concurrent processes.
On the other hand, a flow chart typically represents a sequential process flow.

To help you understand this concept of concurrency, we’ll be building a 7-segment display
stopwatch circuit that measures elapsed time in seconds with 100 millisecond (1/10 of a
second) resolution. We’ll also be looking at configuring and instantiating a digital clock
manager (DCM) core in our design.

Stopwatch Concept

We will be building on the binary counter design that we completed in the last chapter.
Our stopwatch is another relatively simple design that can be described with a high-level
block diagram shown in Figure 3-1.

79

3

Figure 3-1 Stopwatch system

The input clock is the master timing reference, which will provide the timebase for the sec-
onds counter. Pushbuttons will provide us with the physical mechanism to start, stop, and
clear the elapsed time count. When a button is pressed, elapsed time is displayed with mil-
lisecond resolution; when a button is released, the elapsed time will hold and the current
elapsed time count will be displayed. When another button is pressed, the display will
reset to all zeros.

How It Works
To understand the theory of operation for this design, we will need to review how a 7-
segment display works. Seven-segment displays are used to display decimal digits and
some letters. Each digit display element has seven inputs, one for each of its segments. The
data signals control which segments are highlighted. By selecting which segments are
highlighted, several characters can be displayed. For example, every decimal digit can be
displayed as illustrated in Figure 3-2.

Figure 3-2 7-segment display decimal digits

The 7-segment display is made up of seven individual LED elements, or diodes. The diode
is a one-way electronic valve that allows current to flow through it when its anode is posi-
tive with respect to its cathode. The diode approximates an open switch when it is in the
reverse-bias state and a closed switch when forward-biased (Figure 3-3). The LED emits
light when it is in the forward-biased state.

80 Make: FPGAs

Stopwatch Concept

Figure 3-3 Diode biasing

The seven diodes for each character can be wired in a common cathode or common anode
configuration. We’ll be using a 7-segment, LED display (HS410561K-32 common anode).
This is a 12-pin device. You can see from the schematic representation of this device
(Figure 3-4) that all the anodes of each digit are wired together (common anode). Common
cathode configuration is the opposite, with all the cathodes wired together (see
Figure 3-5).

81Chapter 3

Stopwatch Concept

Figure 3-4 Four-digit 7-segment display

Figure 3-5 Pin assignments

Heads Up

You need to know if your 7-segment display is a common cathode or com-
mon anode configuration. This will determine how you connect it to your
FPGA and drive it to the “on” state.

Design

We will be using Verilog HDL once again for our FPGA design, and we will also need to
build another small breadboard circuit that will act as our peripheral device. This bread-
board will contain our 7-segment display, which will connect to the FPGA module with
jumper wires. We’ll also need to add two push buttons for the “clear” and “hold” functions.
Many FPGA boards include 7-segment displays. You will need to check your user manual or
module schematic to understand the pin out of the display that is on your module if you
decide to use it.

82 Make: FPGAs

Design

Peripheral Breadboard
I used a half-size breadboard to wire up my 7-segment display following the schematic in
Figure 3-6.

Figure 3-6 Display breadboard schematic

BoM

• 1 × HS410561K-32 4-digit 7-segment display

• R1, R2, R3, R4, R5 = 330 - 1K Ohm (any value of resistor in this range will work)

• SW1, SW2 = 2 × push button switches

• 1 × small (1/2 size) breadboard

• 14 × male-to-male jumper wires

Since the four digits of our display share the same data bus (CAT bus), the multiplexing of
the data to the display is done by our FPGA circuit. To drive all digits with the same value,
we drive ANO 1...4 high. To drive different values we change the output on the CAT bus
with the appropriate ANO signal. Since this transition can happen at a high frequency, it
gives the appearance that all digits are “on” simultaneously, when they are actually being
turned on one at a time and cycled rapidly. Remember our discussion of flicker rate and
human eye detection from the last chapter? In this case we are doing the opposite by
speeding up the refresh rate well beyond the 100 Hz rate the human eye can detect. In this
way we are actually cycling through the four characters one at a time, but at such a fast
rate that our eyes only see the four digits as “on” simultaneously. This is the same way a
computer monitor or TV screen works with refresh rates. All those pixels in your monitor
are changing very rapidly—so fast that your eye does not detect the changes but sees con-
stant images.

83Chapter 3

Design

We’ll use two push buttons to control the start/stop functions. SW2 acts like a stopwatch
function. While you are holding down the button, the stopwatch is running. When you
release the button, the count freezes and the elapsed time is displayed.

FPGA Circuit
To start our design, we will follow these steps:

1. Open a new ISE project and name it SevenSegmentDisplay1. Don’t forget to select
HDL as the top-level source type.

2. Click Next and in the Project Settings dialog box, select Verilog as your preferred
language.

3. Click Next and open a new source file from the Project menu in the top toolbar.

4. Select Verilog Module from the Select Source Type dialog box and name your file
DSPDRV.

5. Click Next and define your module’s ports, as illustrated in Example 3-1.

Example 3-1 Port definitions

module SW7SegDisplayDriver(
CAT , //Output to cathodes
ANO , //Output to anodes
CLK , //Clock input
CLEAR, //Reset input
HOLD, //Hold input
);
//------Output Ports-------
output[7:0]CAT;
output[3:0]ANO;

//------Input Ports--------
input CLK, CLEAR, HOLD;

The design of the 7-segment display driver circuit is relatively straightforward. We can see
from the block diagram in Figure 3-7 that the timing reference (clock) from our platform
master clock comes into the first block on the left, which is labeled “Clock Generation.” This
block is the DCM, which provides the system clock (sysclk, labeled “slow_clk” in our
design).

84 Make: FPGAs

Design

Figure 3-7 7-segment display driver FPGA design

The “Base Clkdiv” block provides us with our 100 ms (1/10 of a second) time base. The out-
put of this block will be used to generate the cathode codes for the millisecond digit posi-
tion. You can see that there are four blocks that generate cathode codes: one block for
each digit position. These four blocks are connected to a four-to-one multiplexer, which
takes the four independent digit cathode codes and muxes them onto our single cathode
(CAT) output bus.

The multiplexer’s output selection is controlled by the “Anode Refresh/Cathode Mux”
block, whose timing is controlled by the “Refresh Clkdiv” block. We need to run our refresh
rate much faster than our count. I chose to run it at around 1 KHz. The refresh circuit is
cycling through the cathode output for each digit approximately every millisecond; at the
same time, the anode is selected for that digit. We just see the four digits displayed; we
don’t see each digit being updated sequentially because it is happening much too fast for
our eyes to detect.

The 100 ms (1/10 of a second) cathode code block also generates an output signal that
indicates the terminal count of the 100 ms counter (1,000 ms). In this case the terminal
count is 10. This signal is then used to generate an enable strobe (one clock cycle pulse) to
the ones counter in the “Ones Max Count Enable” block. For every 1,000 ms count, we will
increment our ones counter. This then feeds our tens position, and the tens position feeds
our hundreds position.

The HOLD input, when active, causes our circuit to count by enabling the “Base Clkdiv”
block. When HOLD is not active, the count will not advance—in other words, the current
count will equal the next count. Not shown is our RESET input. When RESET is active, all
counts are cleared (reset to zero).

85Chapter 3

Design

Generating Enable Strobes

All digital logic designers have their bag of tricks that they use again and
again. Generating a single clock pulse strobe out of a very long multiclock-
period signal is one of them.

You can do this easily with just a couple of lines of HDL code:

always @(posedge clk)
begin
 reg_maxcnt <= MAXCNT;
 ENABLE <= (maxcnt & !reg_maxcnt);
end

The schematic is shown in Figure 3-8.

Figure 3-8 Schematic

Looking at a simulation of this, you will see a nice one-clock pulse at the rising edge of
each MAXCNT signal (Figure 3-9). This is a very handy circuit to have in your back pocket.

Figure 3-9 Simulation

86 Make: FPGAs

Design

Digital Clock Manager (DCM)
We learned in the last chapter the basic concept that if we want to divide a clock by n, we
simply have a counter count to n/2. So, for example, if we wanted to divide a clock by 9,
we’d use a counter to count to 4. We can easily see the limitations of this method in that
we can’t scale by odd numbers as we’ll end up with a noninteger value. We also can’t use
this method to generate a clock that is at a higher frequency than our input clock. How-
ever, if we use the DCM function that Xilinx provides from within the ISE tool and instanti-
ate this DCM module in our FPGA design, we can get most clock frequencies that we need
easily.

For our 7-segment display driver design we’ll be using a 100 MHz input clock master. Now
we need to divide the input clock down to a frequency for our 100 ms time base counter.
We also need a much higher-speed clock to generate our refresh timing, so something on
the order of 1 KHz (which is about 10 times faster than our eyes can detect, so there should
be no flicker) will work fine. Taking all this into account, I decided to use the DCM to syn-
thesize an 11.534 MHz output clock from the 100 MHz input clock. We’ll use this clock and
a 24-bit counter to generate my 10 Hz time base. I didn’t pick 11.534 MHz out of the air, if
you are wondering. You will see that if we use the last 4 bits of our 24-bit counter (bits
23:20) to count to 10, that is binary 1010 (we are only counting to 10 because we are dis-
playing the base 10 number system). Then we have the binary number:

1010 1111 1111 1111 1111 1111

This binary number represents our full 24-bit terminal count. If we convert this number to
decimal, it equals 11,534,335, or 11.534 × 106. So, if we want to have our counter take 1
second to count in 24-bit times, we will need to clock it at 11.534 MHz, or once every 86.69
nanoseconds for 11,534,335 ticks of the clock.

Let’s try another example. Let’s consider saving some FPGA register resources in construct-
ing the time base counter. You can do this by using a lower-frequency DCM output clock
and a smaller counter. If you do this, then you will need to move the 4 bits used to count to
10 to the right in the bit ordering to align your terminal count bit position with your fre-
quency. For example, you will use a 20-bit counter instead of a 24-bit counter, then you will
have 1010 1111 1111 1111, which is decimal 45,054. This will require a system clock of
45.054 KHz or 0.0450 MHz as your DCM output clock frequency. Note that you may need to
adjust your refresh counter as you drop the system clock down. I used a 13-bit counter to
generate the refresh time base, which is about 1 KHz using the 11.538 MHz clock.

You may be wondering why we need a counter at all. The answer is simple: it’s because the
DCM can’t synthesize down to a 10 MHz clock from a 100 MHz source.

87Chapter 3

Design

Heads Up!

Remember that all my calculations were based on the 100 MHz input clock
from my platform’s master timing generator. You will need to base your
design on your input clock frequency if it is not 100 MHz!

Now to generate our DCM, we need to use the Xilinx’s core generator in our ISE tool. To do
this:

• In your 7-segment display ISE project, right-click the device in the hierarchy and
click New Source.

• Next, click IP (CORE Generator & Architecture Wizard), then give it a filename and
click Next. I used DCM100to8_3886.

• Select FPGA Features and Design→Clocking→Clocking Wizard, then click Next and
Finish. The Clocking Wizard will open, as seen in Figure 3-10.

Figure 3-10 Clocking Wizard

• Set the input frequency to 100 MHz (if you’re using the Opal Kelly board; otherwise
set the frequency appropriately for your own hardware), then click Next.

• Set the output frequency to 11.534 MHz, then click Next.

• Deselect RESET and LOCK, then accept the defaults for the rest of the wizard.

88 Make: FPGAs

Design

• Click Generate This to create a new core that implements a DCM that divides the
input clock frequency.

DCM Synthesized Clock Accuracy

When I was configuring my DCM, the closest output clock frequency to the
desired 11.534 MHz that the DCM could generate using the 100 MHz input
clock was 11.538 MHz. You can see that this is a slightly faster clock than
the calculated required value of 11.534 MHz. This will result in an accuracy
error for our time base of about 0.035%, which is on the fast side. When
dealing with digital frequency synthesizers it is common to only get close
to the calculated value required for some combinations of input and out-
put clocks. In our case, for this exercise, the accuracy is not critical and the
error really has no impact. But, for example, if you are using the DCM to
generate a serial communication baud rate clock, then the error and accu-
racy of the baud clock will be critical in meeting the particular serial proto-
col specification and for avoiding bit errors in the transmission and/or
reception of data.

You can then instantiate this module core in your Verilog by simply using the following
code:

/Digital Clock Manager Module - Generated by ISE
DCM_INCLKtoSYSCLK timebase_dcm (.CLK_IN1(CLK), // Clock input (100MHz)
 .CLK_OUT1(sysclk)); // Clock out (11.538MHz)

Verilog Modules

Modules are the building blocks of Verilog designs. Modules can be instan-
tiated from within other modules—this is hierarchical design. When a
module is instantiated, connections to the ports of the module must be
specified. There are two ways to make port connections. One is connection
by name, in which variables connected to each of the module’s inputs or
outputs are specified in a set of parentheses following the name of the port.
This is the method used in the DCM module example. In this method order
of connections is not significant. The second method is called ordered con-
nection. With this method, the order of the ports must match the order in
which they appear in the instantiated module. When ports are connected
by name, it is illegal to leave any ports unconnected, but unconnected
ports may occur when ports are connected by order. The ordered connec-
tion method is prone to problems as the user makes changes to a module
and then has to connect it in the proper order.

89Chapter 3

Design

The Xilinx FPGA digital clock manager core is a very versatile and complex piece of IP. It can
be used to implement a delay-locked loop, a digital frequency synthesizer, a digital phase
shifter, or a digital spread spectrum. Most of these topics are beyond the scope of this
book, and I will not be covering them. For our purposes, we will be focusing on using it as a
simple digital frequency synthesizer. If you would like to explore more of the DCM’s func-
tions and capabilities, I recommend that you take a look at these documents:

• The Xilinx, Digital Clock Manager (DCM) Module Product Specification

• The Xilinx Spartan-6 FPGA Clocking Resources User Guide

Verilog Code and Concurrency
This section provides you with my complete Verilog code for our FPGA, 7-segment display
driver. I purposely wrote this code in a style that easily highlights the concept of concur-
rency. The code follows the block diagram I presented earlier in the chapter (Figure 3-7), so
it should be easy for you to dissect it.

In HDL, a structured procedure statement provides the means to specify concurrency. The
always block is the Verilog construct for running concurrently. You can have one or multi-
ple procedural assignment statements within an always block. The Verilog syntax for the
always block is shown in Example 3-3.

Example 3-3 Syntax of always block

always @(sensitivity_list)
begin
//one or more procedural assignment
//statements
end

Assignments inside the block must be enclosed within the begin and end statements,
which encapsulate the procedural assignment statements that can run sequentially. The
sensitivity list decides when the always block is entered. Typically this is the system clock’s
rising edge (posedge) or falling edge (negedge). The nonblocking assignment statement
(<=) provides the evaluation of the scheduled event and models the hardware behavior,
which is illustrated in Example 3-4.

Example 3-4 Nonblocking assignment statement

LeftSide <= RightSide

//Evaluate 'RightSide', schedule the value to 'LeftSide' and proceed.
//The values are assigned at the end of current simulation time
//signified by the clock tick.
//Remember that the execution order is independent of statement order!

90 Make: FPGAs

Design

http://bit.ly/1JWmNGX
http://bit.ly/1JWmMTE

When you study the full code of the 7-segment stopwatch driver (listed in Example 3-5),
you will see many always blocks. Actually, there is an always block description for every
block represented in our block diagram. These always blocks are modeling the hardware
behavior of all the logic in the circuit. These blocks are evaluated at the positive edge of
the system clock, or in other words, at the same instant in time. So, the code is not sequen-
tial in the sense of, for example, the base clock circuit runs before the Refresh Clock circuit,
even though you can plainly see in the code that one is before the other. They all are evalu-
ated at the same instant in time. This type of concurrency is not explicit in typical com-
puter programming languages like C, and you’ll need to get accustomed to thinking about
and reading HDL code in this new way.

FYI

You can find this code on this book’s GitHub page.

Example 3-5 Full Verilog code for 7-segment display stopwatch driver

`timescale 1ns / 1ps
//

// Module Name: SW7SegDisplayDriver

//
module SW7SegDisplayDriver(
CAT, //Output to cathodes
ANO, //Output to anodes
CLK, //Clock input
CLEAR, //Reset input
HOLD, //Hold input

);
//------Output Ports-------
output[7:0]CAT;
output[3:0]ANO;

//------Input Ports--------
input CLK, CLEAR, HOLD;

//-----Internal Variables-----
reg[23:0]clkdiv;
reg[23:0]cathode;

reg[7:0]cat0;
reg[7:0]cat1;
reg[7:0]cat2;
reg[7:0]cat3;

reg[13:0]refclk;

91Chapter 3

Design

https://github.com/tritechpw/Make-FPGA

reg[3:0]anode;

reg[3:0]ones;
reg[3:0]tens;
reg[3:0]hundreds;

reg onescnt;
reg tenscnt;
reg hundredscnt;

reg onesmaxcnt_en;
reg tensmaxcnt_en;
reg hundredsmaxcnt_en;

reg onesmaxcnt;
reg tensmaxcnt;
reg hundredsmaxcnt;

//---- internal signals
wire hold_in;
wire reset;
wire sysclk;

//Digital Clock Manager Module - Generated by ISE
SW7SegDisplayDriver timebase_dcm (.CLK_IN1(CLK), // Clock input (100 MHz)
 .CLK_OUT1(sysclk)); // Clock out (11.534 MHz)

//------Code Starts Here-------

assign CAT = cathode;
assign ANO = anode;
assign reset = !CLEAR;
assign hold_in = HOLD;

//------- Base clkdiv - 100 ms
always @(posedge sysclk)
 if (reset) begin
 clkdiv <= 24'b0 ;
 end
 else /// hold
 if (hold_in) begin
 clkdiv <= clkdiv;
 end /// end hold
 else
 if (clkdiv [23:20] == 4'b1010) begin // Terminal count
 clkdiv <= 24'b0;
 end
 else begin
 clkdiv <= clkdiv + 1;
 end

//------- Refresh clkdiv 1 KHz (1 ms)
always @(posedge sysclk)

92 Make: FPGAs

Design

 if (reset) begin
 refclk <= 25'b0;
 end
 else
 begin
 refclk <= refclk + 1;
 end

//------- ones max count enable
always @(posedge sysclk)
 if (reset) begin
 onescnt <= 1'b0;
 end
 else
 begin
 onescnt <= onesmaxcnt;
 onesmaxcnt_en <= (onesmaxcnt & !onescnt);
 end

//------- tens max count enable
always @(posedge sysclk)
 if (reset) begin
 tenscnt <= 1'b0;
 end
 else
 begin
 tenscnt <= tensmaxcnt;
 tensmaxcnt_en <= (tensmaxcnt & !tenscnt);
 end

//------- hundreds max count enable
always @(posedge sysclk)
 if (reset) begin
 hundredscnt <= 1'b0;
 end
 else
 begin
 hundredscnt <= hundredsmaxcnt;
 hundredsmaxcnt_en <= (hundredsmaxcnt & !hundredscnt);
 end

//------- ones count
always @(posedge sysclk)
 if (reset) begin
 ones <= 4'b0000;
 end
 else
 if (onesmaxcnt_en == 1'b1) begin
 ones <= ones + 1;
 end
 else if (ones[3:0] == 4'b1010) begin
 ones <= 4'b0000;
 end

93Chapter 3

Design

//------- tens count
always @(posedge sysclk)
 if (reset) begin
 tens <= 4'b0000;
 end
 else
 if (tensmaxcnt_en == 1'b1) begin
 tens <= tens + 1;
 end
 else if (tens[3:0] == 4'b1010) begin
 tens <= 4'b0000;
 end

//------- hundreds count
always @(posedge sysclk)
 if (reset) begin
 hundreds <= 4'b0000;
 end
 else
 if (hundredsmaxcnt_en == 1'b1) begin
 hundreds <= hundreds + 1;
 end
 else
 if (hundreds[3:0] == 4'b1010) begin
 hundreds <= 4'b0000;
 end

// ----- ms base count ------
always@(posedge sysclk)
 if (reset) begin
 cat0 <= 8'b11000000;
 onesmaxcnt <= 1'b0;
 end
 else
 if(clkdiv [23:20] == 4'b0000) begin
 cat0 <= 8'b11000000;//0
 onesmaxcnt <= 1'b0;
 end
 else
 if (clkdiv [23:20] == 4'b0001) begin
 cat0 <= 8'b11111001;//1
 end
 else
 if (clkdiv [23:20] == 4'b0010) begin
 cat0 <= 8'b10100100;//2
 end
 else
 if (clkdiv [23:20] == 4'b0011) begin
 cat0 <= 8'b10110000;//3
 end
 else
 if (clkdiv [23:20] == 4'b0100) begin
 cat0 <= 8'b10011001;//4
 end

94 Make: FPGAs

Design

 else
 if (clkdiv [23:20] == 4'b0101) begin
 cat0 <= 8'b10010010;//5
 end
 else
 if (clkdiv [23:20] == 4'b0110) begin
 cat0 <= 8'b10000010;//6
 end
 else
 if (clkdiv [23:20] == 4'b0111) begin
 cat0 <= 8'b11111000;//7
 end
 else
 if (clkdiv [23:20] == 4'b1000) begin
 cat0 <= 8'b10000000;//8
 end
 else
 if (clkdiv [23:20] == 4'b1001) begin
 cat0 <= 8'b10011000;//9
 end
 else
 if (clkdiv [23:20] == 4'b1010) begin
 onesmaxcnt <= 1'b1;
 end

// ----- Sec count ------
always@(posedge sysclk)
 if (reset) begin
 cat1 <= 8'b11000000;
 tensmaxcnt <= 1'b0;
 end
 else
 if(ones [3:0] == 4'b0000) begin
 cat1 <= 8'b01000000;//0
 tensmaxcnt <= 1'b0;
 end
 else
 if (ones [3:0] == 4'b0001) begin
 cat1 <= 8'b01111001;//1
 end
 else
 if (ones [3:0] == 4'b0010) begin
 cat1 <= 8'b00100100;//2
 end
 else
 if (ones [3:0] == 4'b0011) begin
 cat1 <= 8'b00110000;//3
 end
 else
 if (ones [3:0] == 4'b0100) begin
 cat1 <= 8'b00011001;//4
 end
 else
 if (ones [3:0] == 4'b0101) begin

95Chapter 3

Design

 cat1 <= 8'b00010010;//5
 end
 else
 if (ones [3:0] == 4'b0110) begin
 cat1 <= 8'b00000010;//6
 end
 else
 if (ones [3:0] == 4'b0111) begin
 cat1 <= 8'b01111000;//7
 end
 else
 if (ones [3:0] == 4'b1000) begin
 cat1 <= 8'b00000000;//8
 end
 else
 if (ones [3:0] == 4'b1001) begin
 cat1 <= 8'b00011000;//9
 end
 else
 if (ones [3:0] == 4'b1010) begin
 tensmaxcnt <= 1'b1;
 end

// ----- tens count ------
always@(posedge sysclk)
 if (reset) begin
 cat2 <= 8'b11000000;
 hundredsmaxcnt <= 1'b0;
 end
 else
 if(tens [3:0] == 4'b0000) begin
 cat2 <= 8'b11000000;//0
 hundredsmaxcnt <= 1'b0;
 end
 else
 if (tens [3:0] == 4'b0001) begin
 cat2 <= 8'b11111001;//1
 end
 else
 if (tens [3:0] == 4'b0010) begin
 cat2 <= 8'b10100100;//2
 end
 else
 if (tens [3:0] == 4'b0011) begin
 cat2 <= 8'b10110000;//3
 end
 else
 if (tens [3:0] == 4'b0100) begin
 cat2 <= 8'b10011001;//4
 end
 else
 if (tens [3:0] == 4'b0101) begin
 cat2 <= 8'b10010010;//5
 end

96 Make: FPGAs

Design

 else
 if (tens [3:0] == 4'b0110) begin
 cat2 <= 8'b10000010;//6
 end
 else
 if (tens [3:0] == 4'b0111) begin
 cat2 <= 8'b11111000;//7
 end
 else
 if (tens [3:0] == 4'b1000) begin
 cat2 <= 8'b10000000;//8
 end
 else
 if (tens [3:0] == 4'b1001) begin
 cat2 <= 8'b10011000;//9
 end
 else
 if (tens [3:0] == 4'b1010) begin
 hundredsmaxcnt <= 1'b1;
 end

// ----- hundreds count ------
always@(posedge sysclk)
 if (reset) begin
 cat3 <= 8'b11000000;
 end
 else
 if(hundreds [3:0] == 4'b0000) begin
 cat3 <= 8'b11000000;//0
 end
 else
 if (hundreds [3:0] == 4'b0001) begin
 cat3 <= 8'b11111001;//1
 end
 else
 if (hundreds [3:0] == 4'b0010) begin
 cat3 <= 8'b10100100;//2
 end
 else
 if (hundreds [3:0] == 4'b0011) begin
 cat3 <= 8'b10110000;//3
 end
 else
 if (hundreds [3:0] == 4'b0100) begin
 cat3 <= 8'b10011001;//4
 end
 else
 if (hundreds [3:0] == 4'b0101) begin
 cat3 <= 8'b10010010;//5
 end
 else
 if (hundreds [3:0] == 4'b0110) begin
 cat3 <= 8'b10000010;//6
 end

97Chapter 3

Design

 else
 if (hundreds [3:0] == 4'b0111) begin
 cat3 <= 8'b11111000;//7
 end
 else
 if (hundreds [3:0] == 4'b1000) begin
 cat3 <= 8'b10000000;//8
 end
 else
 if (hundreds [3:0] == 4'b1001) begin
 cat3 <= 8'b10011000;//9
 end

// ----- Anode Refresh/Cathode Mux ------
always@(posedge sysclk)
 if (reset) begin
 anode <= 4'B0000;
 cathode <= 8'b11000000;
 end
 else
 if(refclk [12:11] == 2'b00) begin
 anode <=4'b0001;
 cathode <= cat0;
 end
 else
 if(refclk [12:11] == 2'b01) begin
 anode <=4'b0010;
 cathode <= cat1;
 end
 else
 if(refclk [12:11] == 2'b10) begin
 anode <=4'b0100;
 cathode <= cat2;
 end
 else
 if(refclk [12:11] == 2'b11) begin
 anode <=4'b1000;
 cathode <= cat3;
 end

endmodule

You should be able to copy this into a new source file in your project and implement it.
We’ll do a quick simulation next to make sure everything is working as expected. (Note
that there are other ways this mux could be coded; for example, as a case statement.)

Simulation

We’ll be using the ISE waveform viewer again to do a quick DOA test of our design. To do
this:

98 Make: FPGAs

Simulation

1. Click View Simulation in your design console.

2. Double-click Simulate Behavioral Model.

3. Once the Sim window is open, force the CLK signal to have a leading edge value of
1, a trailing edge value of 0, and a period of 10000 (10 ns or 100 MHz).

4. Force the CLEAR signal to a constant 0.

5. Force the HOLD signal to a constant 1.

6. Click Run for the time specified on the toolbar, leaving this at the default 1.00 μs.

7. Force the CLEAR signal to constant 1.

8. Force the HOLD signal to constant 0.

9. Click Run for the time specified on the toolbar.

10. Click Zoom to Full View.

You should see something like the waveform view in Figure 3-11. There should be no red
signals (indicating an unknown state) after CLEAR goes high. This shows that the system is
coming out of CLEAR in a stable state.

Figure 3-11 DOA simulation

Now zoom in and check that your DCM is functioning correctly. You can do this by adding
another mark—right-click your waveform view window and selecting Markers→Add Mark-
ers (see Figure 3-12).

99Chapter 3

Simulation

Figure 3-12 DCM sysclk

We can see that the sysclk period is around 86.800 ns, which is close to our 86.670 ns
design target. Zooming out to our full extent again, we can also see that our clkdiv[23:0] is
counting along with our refclk[13:0]. Things look healthy. Doing a full one second of simu-
lation to test every function of our code would take hours, if not days. For this reason, we
will move on to building our design and checking it in real-time on the bench.

We could alter the test parameters in the simulation to reduce the frequency of the input
clock to speed up the simulation results, but even then it would still take a very long time
to simulate the full one second of operation. This is a classic problem with simulation vali-
dation, where you need to trade simulation runtime for validation coverage. One way to
shorten the runtime is to force signals, like the enables, to be active to see if logic behaves
correctly for that condition.

Build

We can now do our final build and generate our bit file for loading onto our FPGA plat-
form. Like in the last chapter, you will need to assign the physical I/O pins of our FPGA to
our design.

Assigning Physical I/O
The process for assigning the GPIO pins is the same as last time (refer to “Build”); you will
need to know your module’s GPIO to FPGA pin mapping in order to do this. I’ll be using the
Open Kelly module again.

My constraints file is shown in Figure 3-13.

Now we just need to connect our breadboard, upload our bit file like before, and check out
the operation of our design!

100 Make: FPGAs

Build

Figure 3-13 UCF file for 7-segment display driver using Open Kelly module

Takeaways

Here are the key takeaways from the exercises in this chapter:

• Real hardware operates concurrently.

• Concurrency is what differentiates HDL from other programming languages,
which are sequential. Concurrency is not explicit in programming languages like C.

• The DCM core provides an easy way to perform frequency synthesis of clocks.

• When dealing with digital frequency synthesizers, it is common to only get close
to the calculated value required for some combinations of input and output
clocks.

• Modules are the building blocks of Verilog designs. Modules can be instantiated
from within other modules.

• A classic problem with simulation validation is where you need to trade simulation
runtime for validation coverage.

• The 7-segment display is made up of seven individual LED elements that are wired
in common anode or cathode configurations.

101Chapter 3

Takeaways

Testing 1, 2, 3, 4

The HDL Test Bench

In the world of SoC design, the nature and methods of circuit verification is a topic that
could fill volumes, let alone this entire book. We have already seen in the previous chapters
how a simple simulation can be used to check the overall health of our designs. But what
happens when we move beyond a simple counter design that we’ve created to using com-
plex, off-the-shelf IP, like a communication controller or microcontroller? How do we test
something like this, and how can we use simulation to help us understand its operation?
Fortunately for us, a lot of clever engineers have spent a lot of time coming up with inno-
vative ways to accomplish these goals. The test bench is one of these innovations, and it
has become the primary vehicle used in industry for SoC verification. Designers sometimes
also refer to a test bench as a test fixture (the two terms can be considered synonymous).

In this chapter, I will provide a basic understanding of what an HDL test bench is and what
it does. More importantly, I will be walking you through the process of taking an existing IP
block that includes a test bench and becoming familiar enough with it to be able to use it
in a design project.

The Test Bench

In the simplest sense, a test bench is a virtual testing environment used to verify that a
design does everything it’s supposed to do and doesn’t do anything it’s not supposed to
do. There are different styles of writing test benches, and in industry these styles are called
methodologies. Over the years, test bench methodologies have evolved, with some of the
more popular ones currently revolving around the Open Verification Methodology (OVM),
a verification methodology developed jointly in 2007 by Cadence Design Systems and
Mentor Graphics. OVM is a fairly advanced verification topic—you can even find university-
level courses on OVM and its derivatives. For our purposes we’ll be focusing on the basics
of test bench construction by working with a Verilog test bench example. We’ll be looking
at a handful of simulation techniques that can be used on many of the digital applications
we are experimenting with.

103

4

Test Bench Anatomy
Before we begin, let’s review some of the basic components and terminology of a typical
test bench. A test bench applies stimuli (inputs) to the unit under test (UUT), also referred
to as the device under test (DUT). It monitors the outputs, providing status and error
reporting in a readable and user-friendly format.

The test bench wrapper (Figure 4-1) typically is responsible for displaying values in a termi-
nal window, generating results in a waveform viewer, and checking the correctness of the
functional operation of the DUT. Typically there are no ports for the test bench itself. In
other words, nothing is connected to it. The preferred method of instantiation of the DUT
into the test bench is by name association, where each DUT port signal is explicitly associ-
ated with a test bench signal. Another seldom-used implementation method is using a
higher-level module to instantiate both the test bench and DUT modules and then tying
them together at the higher level.

Figure 4-1 Typical test bench

104 Make: FPGAs

The Test Bench

Reuse

With the ability to capture hardware designs in a soft form through HDL and archive them
in electronic media such as databases came a whole new era for chip design. Inventories of
design libraries with hundreds of IP blocks began to spring up within companies, and it
was not long before whole corporations began to develop, sell, and support soft IP libra-
ries. Companies like Synopsys provide multiple commercial libraries of electronic design
elements, from processors to memory, USB and PCI Express (PCIe) I/O controllers, down to
simple serial devices like universal asynchronous receiver/transmitters (UARTs) and I2C
controllers. Using standard SoC fabric interfaces, like AMBA (Advanced Microcontroller Bus
Architecture) and OCP, these IP block products, for the first time, presented a true plug-
and-play design methodology. “Reuse” became a buzzword in the design community and
the mantra of many hardware design managers. While some engineers cringed at the
thought of reusing another designer’s IP in their own projects, others welcomed the idea.

Did you ever wonder how a company like Samsung or Apple can pop out an incredibly
complicated device like a smartphone every year? They can do it because of reuse. The
benefits are obvious. First, the reduction in design turnaround time is tremendous,
because major subsystems are on the shelf, so to speak, and ready to go. Also, these ele-
ments are tested and typically already proven in other products, so the quality is high. The
downside is that the functionality of the elements being reused is somewhat fixed and
leaves little room for innovation—which is what most designers want to be doing. In most
SoC companies, product differentiation efforts are focused on innovation and developing
a so-called special source. (I hope you will be inspired to start developing your own special
source IP as a result of reading and using this book.)

But this is not to say that reuse has no place in innovative design. Reuse opens some
incredible opportunities to build some pretty elaborate SoCs, given the density that is
available today at even the lowest end of the FPGA scale. Fortunately for us, there are open
source IP block libraries available free of charge. The one we will be mostly working with in
this book is provided by OpenCores, “The world’s largest site/community for development
of hardware IP cores as open source.”

We’ll be talking a lot more about OpenCores in the upcoming chapters.

Running the Test Bench Project

OK, now that we have a bit of background, let’s jump right in and learn by example what
all this means and how to use it. We are going to use an off-the-shelf IP block from Open-
Cores for this exercise. First-time users of OpenCores will need to create an account in
order to download any cores from the site.

Step 1: Selection and Download of Core
Once you have created a user account on the OpenCores website, log in and click Projects
(Figure 4-2). Then click Communication controller.

105Chapter 4

Reuse

http://www.synopsys.com/home.aspx
http://opencores.org
http://www.opencores.org

Figure 4-2 OpenCores projects

In the resulting list, scroll down and click “I2C controller core” under I2C Bus, as seen in
Figure 4-3.

Figure 4-3 Select the I2C core

Click the Download link under Details. This will download the TAR file i2c_latest.tar.gz. If
you are using a Windows OS you will need to use a file archive tool like 7-Zip to unpack this
file.

Once the download has completed, move the TAR file to a directory of your choice and use
the 7-Zip program to extract the archive. You should now have the directory structure seen
in Figure 4-4 on your computer.

106 Make: FPGAs

Running the Test Bench Project

http://www.7-zip.org/

Figure 4-4 Unpacked I2C core directories

Step 2: Documentation
This is a good point to review any documentation that has been included with the core. In
this example, there is an excellent specification provided in the doc directory titled “I2C-
Master Core Specification,” which includes a great section on the I2C bus’s functionality.
Open the file i2c_spec and read it through.

FYI

This level of documentation is not the norm for open source cores; many of
them do not come with any documentation at all.

107Chapter 4

Running the Test Bench Project

Did You Know?

For those of you who are not familiar with the I2C bus, it is a low-speed,
low-power, two-wire serial bus/protocol that is standard for many periph-
eral devices used in the electronics and computer industry. The I2C serial
bus is a multimaster, multipoint protocol, unlike the very popular UART
serial bus protocol, which is point-to-point only. This is one of the big
advantages of using I2C over UART. Most of the sensors in tablets and
smartphones communicate with the microprocessor core using I2C. If
you’ve used Arduino shields, many of the sensor shields use I2C to commu-
nicate with the Arduino. For us FPGA Makers, I2C is a very practical IP block
to get familiar with.

There is a good summary overview of the I2C bus online. You can get the
full I2C bus standard from NXP.

As you read through the I2C-Master Core Specification provided with this core, pay close
attention to Section 2.3, “External connections.” The I2C bus uses tristate buffers to imple-
ment the serial data line (SDA) and a serial clock line (SCL) for data transfers. This is impor-
tant to remember when you run the test bench and when you use it in a real FPGA design.
You will need to add some logic to your I/O layer for everything to function properly in a
real design.

Also notice that this core uses the Wishbone interface as its control/status interface (as
described in Section 2.2). Wishbone is an open source hardware computer bus that uses a
single simple, high-speed synchronous specification to connect components together in
an SoC design. This makes connecting this core to other Wishbone-compliant cores very
easy.

108 Make: FPGAs

Running the Test Bench Project

http://www.i2c.info/
http://bit.ly/um10204

FYI

You can find the full Wishbone bus specification online.

You will also need to become familiar with Sections 3.1 and 3.2 of the I2C-Master Core
Specification, which provide you with the register list and register descriptions. The regis-
ters are your interface to the I2C core’s operation, and we will be referencing these as we
walk through the test bench execution.

What Am I Going to Do with I2C?

At this point, you may be wondering what in the
world you are going to do with an I2C core. Sup-
pose you have a project in mind where you want
to have your FPGA board connect to an I2C
device, like a sensor module. Figure 4-5 shows
one possible application of an I2C core in an
FPGA design.

Figure 4-5 Possible SoC design using I2C core

In this project the I2C Core is used to communi-
cate with an I2C sensor module using a small
state machine to configure and control the core.
The information from the sensor is displayed on
a 7-segment display. The sensor could be a tem-
perature sensor, for example.

Step 3: RTL
Our next step is to get familiar with our design code. I like to pull the RTL files into Xilinx at
this point just to see if there is anything quirky in the design code itself before I layer in the

109Chapter 4

Running the Test Bench Project

http://bit.ly/1VEaosB

test bench code. Also, it gives me a good way to view the design hierarchy using the auto-
matic file ordering feature of the tool.

Heads Up!

Just because the code is released to the OpenCores repository doesn’t
mean it is without errors! You need to check everything, every step of the
way. I have learned the hard way not to assume anything.

1. Open a new project in the ISE WebPACK, and then go to Project→Add Source.

2. Navigate to the i2c/trunk/rtl/verilog directory of your I2C core, as seen in Figure 4-6,
and select all the files (in Windows you can do this by holding down the Ctrl key as
you click the files), then click Open.

Figure 4-6 Verilog RTL design files

3. When all the source files have been added, click OK (Figure 4-7).

110 Make: FPGAs

Running the Test Bench Project

Figure 4-7 Project source files

4. Click Implement Top Module (the green triangle on the top toolbar). You should
get the “Process Generate Post-Place & Route Static Timing completed success-
fully” message. This means that you have a clean set (no errors) of RTL design files.

5. At this point I like to take a quick look at the RTL schematic view of the design
using the Tools →Schematic Viewer menu option. This gives us a good visual of the
I/O pins the test bench will be connecting to (see Figure 4-8). You can also check
out the file hierarchy in the Design panel.

111Chapter 4

Running the Test Bench Project

Figure 4-8 Top-level RTL schematic view

Step 4: Adding Test Bench Files and Running the Simulation
Now that we have a known good design, it’s time to take the big step and bring in our test
bench files and run the simulation. We will be using the Xilinx iSim simulator for this exer-
cise. Here’s a quick summary:

1. Go to Project→Add Source.

2. Navigate to the i2c/trunk/bench/verilog directory of your I2C core and select all the
files except the spi_slave_model file (I’m not sure why this file is here; it is not used
and it also has RTL errors), then click Open (Figure 4-9).

Figure 4-9 Test bench files

112 Make: FPGAs

Running the Test Bench Project

3. Next, change the Association to Simulation, as seen in Figure 4-10. This is
extremely important. If you fail to do this nothing will work and the tool will try to
synthesize your test bench, giving you multiple error messages. Then click OK.

Figure 4-10 Simulation Association

4. Switch to Simulation view and you should see the updated hierarchy with the test
bench files (Figure 4-11). Notice that tst_bench_top is now the top level.

113Chapter 4

Running the Test Bench Project

Figure 4-11 Test bench hierarchy

5. Next, go to the ISE process windows, expand the iSim simulator, and right-click
Simulate Behavioral Model. Click Run.

6. Wait for the iSim tool window to open, then click Simulation and select Run All.

7. Wait for the simulation to finish.

8. Go to the Default.wcfg tab and take a look at the waveform view. Zoom to full
view to get a good look at the full simulation run (Figure 4-12).

114 Make: FPGAs

Running the Test Bench Project

Figure 4-12 Full test bench simulation run

9. Switch to the Console view and review the test bench monitor status messages.
You should see something like Figure 4-13.

115Chapter 4

Running the Test Bench Project

Figure 4-13 Test bench monitor status messages

10. Congratulations—you have run your first test bench. And you didn’t have to write
one line of HDL code! I told you this would be fun and easy.

Exploring the Test Bench Project

We should have everything we need at this point to begin exploring this IP core using the
test bench and documentation provided. We will quickly see how useful a test bench is,
and also how easy it is to construct one for our own designs.

Overview
Figure 4-14 presents a simple block diagram to help us identify the components of our I2C
Core test bench. I like to have a visual understanding of what is going on as I work through

116 Make: FPGAs

Exploring the Test Bench Project

the code. Sometimes the author of the IP will provide a good block diagram, but often this
is not the case.

Figure 4-14 I2C Core test bench block diagram

Notice that there are two files used as generators for our DUT. wb_master_module is our
Wishbone bus generator and the i2c_slave_module is our I2C slave device generator.

Did You Know?

The I2C bus protocol is made up of I2C master and slave devices. An I2C
master controls the timing of the bus (drives the SCL line), while a slave
device only responds to master requests.

Code Walk

OK, let’s walk through the tst_bench_top.v code to help us understand what is going on. To
do this, let’s go to our iSim tool (Figure 4-15).

117Chapter 4

Exploring the Test Bench Project

Figure 4-15 Test bench code

You’ll notice that we have multiple windows in iSim: Instances and Processes, Objects,
Viewer, and Console. Click the tst_bench_top.v tab in the Viewer window and scroll to the
top of the file. We can see a lot of comments here about the core and the author. Scroll
down to the first line of code at line #69.

Timescale and delays

At line 69, we see a call for the file timescale.v. This file contains a line with the compiler
directive timescale 1ns / 10ps.

This line is important in a Verilog simulation, because it sets up the time scale and operat-
ing precision for the modules. Here, it causes the unit delays to be in nanoseconds (ns) and
specifies the precision of the simulator, which, in this case, will round the events down to
the nearest 10 picoseconds (ps). This causes a #5 or #1 in a Verilog assignment to be a 5 ns
or 1 ns delay, respectively. The rounding of the events will be to .01 ns or 10 ps.

FYI

Delay control is the simplest way to control the timing of a simulation
event. It specifies the delay between the time when a statement is encoun-
tered and when it is executed. The delay is indicated by the operator # fol-
lowed by the time to wait.

Instantiating the DUT and generators

As we move down in the test bench top file, we next see the top-level module declaration,
much like in our previous projects. Then we see our familiar wires and registers defined.

118 Make: FPGAs

Exploring the Test Bench Project

Before the DUT is instantiated, each of its inputs and outputs must be declared in the test
bench. Inputs to the DUT are declared as reg and outputs are declared as wire. Note that
the outputs of the DUT are inputs to the test bench. Remember that any input must be a
wire. The inputs to the DUT are the stimuli generated in the test bench. Stimuli are usually
generated in an initial or an always procedural block in the testbench. We also see a list of
parameters—in Verilog, parameters are constants typically used to specify the width of
variables and time delays.

We then see the instantiation of the wb_master_model at line number 115 and the
i2c_master_top (our DUT) at line number 136, followed by i2c_slave_module at line number
185.

Clocks and resets

Two important elements used in almost all simulations are clocks and resets. All sequential
DUTs require a clock signal. To generate a clock signal, many different Verilog constructs
can be used. In this case, the always is used:

 // generate clock
 always #5 clk = ~clk;

The clock and reset lines are initialized, and then the reset line is toggled by the test bench:

 // initial values
 clk = 0;

 // reset system
 rstn = 1'b1; // negate reset
 #2;
 rstn = 1'b0; // assert reset
 repeat(1) @(posedge clk);
 rstn = 1'b1; // negate reset

Display

The Verilog $display is used to print a line to the terminal for viewing or recording by the
console. Variables can also be added to the display, and the format for the variables can be
set to binary using %b, hex using %h, or decimal using %d. Another common element used is
$display is $time, which prints the current simulation time:

$display("status: %t done reset", $time);

Tasks

Tasks are used to group a set of repetitive or related commands that would normally be
contained in an initial or always block. A task can have inputs, outputs, or be bidirectional
(in and out) and can contain timing or delay elements.

We can see our first instance of task calls in our code (beginning at line number 235 in our
editor view):

 // program internal registers
 u0.wb_write(1, PRER_LO, 8'hfa); // load prescaler lo-byte
 u0.wb_write(1, PRER_LO, 8'hc8); // load prescaler lo-byte

119Chapter 4

Exploring the Test Bench Project

 u0.wb_write(1, PRER_HI, 8'h00); // load prescaler hi-byte
 $display("status: %t programmed registers", $time);

 u0.wb_cmp(0, PRER_LO, 8'hc8); // verify prescaler lo-byte
 u0.wb_cmp(0, PRER_HI, 8'h00); // verify prescaler hi-byte
 $display("status: %t verified registers", $time);

To see where the task code originates, click the task in the Instances and Processes window
of iSim and then double-click the task wb_write (Figure 4-16).

Figure 4-16 iSim Instances and Processes—select task “wb_write”

You should now have the code for the task wb_write from the wb_master_model.v file in
your Viewer window. It looks like this:

//
//
// Wishbone write cycle
//

task wb_write;
 input delay;
 integer delay;

120 Make: FPGAs

Exploring the Test Bench Project

 input [awidth -1:0] a;
 input [dwidth -1:0] d;

 begin

 // wait initial delay
 repeat(delay) @(posedge clk);

 // assert wishbone signal
 #1;
 adr = a;
 dout = d;
 cyc = 1'b1;
 stb = 1'b1;
 we = 1'b1;
 sel = {dwidth/8{1'b1}};
 @(posedge clk);

 // wait for acknowledge from slave
 while(~ack) @(posedge clk);

 // negate wishbone signals
 #1;
 cyc = 1'b0;
 stb = 1'bx;
 adr = {awidth{1'bx}};
 dout = {dwidth{1'bx}};
 we = 1'hx;
 sel = {dwidth/8{1'bx}};

 end
endtask

//

We can see from the code that this task generates a Wishbone write cycle. The syntax of
the task is wb_write (delay, address, data). So, in our first task call we had:

u0.wb_write(1, PRER_LO, 8'hfa); // load prescaler lo-byte

This translates to “generate a Wishbone write cycle after a delay of 1 ns, to address 3'b000,
with a data field of 8'hFA.”

Remember that PRER_LO is a parameter (constant) set above. Our core documentation
gives us the register addresses for our DUT, as seen in Figure 4-17.

121Chapter 4

Exploring the Test Bench Project

Figure 4-17 I2C Core registers

Read Section 3.2.1 of the I2C Core spec (refer back to “Step 2: Documentation”) to learn
what writing FA hex to the prescaler lo-byte means.

You can do this same exercise for all the remaining task calls to understand what they are
doing in the test bench code, reading the register descriptions and explanations of opera-
tion provided in the documentation.

Waves

Waveforms are very useful for viewing large amounts of data quickly and efficiently. As you
gain experience with FPGA design you will become more and more mindful of the need to
look at the waves for your designs. You can also run a simulation and save a set of wave-
forms and then compare them to waveforms from another simulation run. Graphical analy-
sis is an easy way to see if there is a difference in test results. In Example 4-1, iSim uses the
SHM (Simulation History Manager) format for wave data.

Example 4-1 Wave code

initial
 begin
 `ifdef WAVES
 $shm_open("waves");
 $shm_probe("AS",tst_bench_top,"AS");
 $display("INFO: Signal dump enabled ...\n\n");
 `endif

Many formats for wave files exist. The most common is the VCD (value change dump) for-
mat.

Stepping

We’ll wrap up with a quick look at stepping through the test bench code using break
points. Here is a short summary:

1. After your first run through the code in iSim, click Simulation and select Restart.

122 Make: FPGAs

Exploring the Test Bench Project

2. Click the tst_bench_top tab in your iSim Viewer window and drop a breakpoint at
line 235. A breakpoint is added by clicking the line where you want the breakpoint
to be located and then clicking Toggle Breakpoint, as seen in Figure 4-18.

Figure 4-18 Setting a breakpoint in iSim

3. Now click Run All in the top toolbar. The simulator will stop at the breakpoint you
inserted.

4. Now you can single-step through the task code by clicking Step in the top toolbar.
Don’t forget to take a look at the waveform viewer as you step.

You can now step through the code, adding breakpoints and exploring the operation.
Refer to Section 4 of the I2-Master Core Specification, which outlines the operation of the
core.

123Chapter 4

Exploring the Test Bench Project

Takeaways

Here are the key takeaways from the exercises in this chapter:

• A test bench is a virtual testing environment used to verify that a design does
everything it is supposed to do and doesn’t do anything it’s not supposed to do.

• A test bench applies stimuli (inputs) to the unit under test (UUT), also referred to
as the device under test (DUT). It monitors the outputs, providing status and error
reporting in a readable and user-friendly format.

• OpenCores is the world’s largest site/community for development of hardware IP
cores as open source.

• The I2C bus is a low-speed, low-power, two-wire serial bus/protocol that is an
industry standard for many peripheral devices used in the electronics and com-
puter industry.

• Using the documentation provided with the IP core, if any.

• How to make effective use of the Xilinx ISE WebPACK to automatically generate
and display the file hierarchy of an IP core.

• Using the Xilinx ISE Simulator (iSim) with a Verilog test bench.

• Adding test bench simulation files to a Xilinx ISE project.

• Simulating an off-the-shelf IP core without writing any code.

• Using a block diagram to aid in our understanding of the test bench.

• Some basic building blocks of a Verilog test bench.

• Effective use of iSim breakpoints and single-stepping to help in our understanding
of IP core operation.

124 Make: FPGAs

Takeaways

It Does Not Compute

What Is a Computer?

Some of us remember hearing the phrase “It does not compute” used by the robot from
the hit 1960s television series Lost in Space. When it comes to contemplating what a com-
puter really is, I think many of us can honestly say “It does not compute” or even “Danger,
Will Robinson!” In this chapter, we will be learning about basic computer architecture
using a very cool OpenCores project, and hopefully it will compute when we are finished.

The CARDIAC Computer Model

Around the time when our robot friend from Lost in Space was hitting the TV air waves, two
engineers from Bell Telephone Laboratories, David Hagelbarger and Saul Fingerman,
developed the CARDboard Illustrative Aid to Computation, or CARDIAC for short. CARDIAC
was a learning aid developed to teach high school students how computers work. The kit
consisted of a die-cut cardboard “computer” model and an instruction manual (see
Figure 5-1). The cool thing about CARDIAC was its ability to actually function as a slow and
basic computer, demonstrating what a computer was in a very simple and interactive way.
It had 100 memory locations and only 10 instructions (Figure 5-2). The memory held
signed 3-digit numbers (–999 through 999), and instructions could be encoded such that
the first digit was the instruction and the second two digits were the address of the mem-
ory to operate on (Figure 5-3). The only register in the model was an accumulator.

125

5

Figure 5-1 The original CARDIAC cardboard computer kit

Figure 5-2 CARDIAC instruction paths

Figure 5-3 CARDIAC opcode structure

126 Make: FPGAs

The CARDIAC Computer Model

Brian Stuart of Drexel University has written a great piece on CARDIAC, where he explains
how the simple instruction set makes for very easy understanding of how complex pro-
grams can be built out of simpler sets of operations and data:

The CARDIAC CPU is a single-accumulator single-address machine. Thus each
instruction operates optionally on a single memory location and the accumula-
tor. For example, the ADD instruction reads the data in one memory location,
adds it to the current value of the accumulator, and stores the result back into
the accumulator. The ALU supports addition, subtraction, and decimal shifting.
CARDIAC’s CPU architecture is illustrated in Figure 5-4.

Figure 5-4 CARDIAC instructions (source: https://www.cs.drexel.edu/~bls96/museum/cardiac.html)

You can download the original instruction manual written by Hagelbarger Fingerman. I
think everyone should read this! It is a great way to learn the basics of computer architec-
ture.

At this point you may be wondering, what does this have to do with FPGAs? In the first
section of the CARDIAC instruction manual, Hagelbarger and Fingerman write:

CARDIAC is an acronym for CARDboard Illustrative Aid to Computation. The key
word here is “illustrative.” It means that CARDIAC illustrates the operation of a
computer without actually being a computer. In fact, it is not even a practical
aid to computing. On the other hand, it is a very practical aid to understanding
computers and computer programming.

You’ll need this kind of understanding to keep up with the Computer Age you
are about to enter. These are fast-moving times, and those who make no effort
to understand computers may very well get left behind.

These words were almost prophetic—I bet they would never have dreamed back in 1968
that less than 50 years later DIYers like us would be able to actually build a real CARDIAC
computer on a $29.95 FPGA board. These are fast-moving times!

127Chapter 5

The CARDIAC Computer Model

https://www.cs.drexel.edu/~bls96/museum/cardiac.html
https://www.cs.drexel.edu/~bls96/museum/cardiac.html
http://kylem.net/hardware/cardiac/CARDIAC_manual.pdf

Getting Started with VTACH

VTACH is an OpenCores FPGA project that is actually a Verilog implementation of the origi-
nal CARDIAC teaching computer from Bell Labs. The original VTACH implementation runs
on a Spartan 3 board from Digilent, and according to its developers “it is pretty faithful to
the original.”

VTACH is a very easy design to understand. Figure 5-5 shows that the VTACH core is where
the CARDIAC arithmetic logic unit (ALU) and 7-segment display driver are located. The
input for the core comes from the DIP switches or the push buttons. The main system clock
is generated using a DCM, and a block RAM is used for the program memory.

Figure 5-5 VTACH FPGA design

You can find the complete VTACH project on the OpenCores website under
Project→Processor→VTACH - Bell Labs CARDIAC reimagined in Verilog.

For this project I will be using the $29.95, Numato Labs, Elbert V2 - Spartan 3A FPGA Devel-
opment Board.

There are some great web pages that highlight the VTACH design on the VTACH project
overview page:

128 Make: FPGAs

Getting Started with VTACH

http://opencores.org/project,vtach
http://numato.com/elbert-v2-spartan-3a-fpga-development-board.html
http://numato.com/elbert-v2-spartan-3a-fpga-development-board.html
http://opencores.org/project,vtach

• The Heart of a CPU

• Expanding VTACH

• CARDIAC to FPGA

• Paper to FPGAz

You should read them before you move on.

To get started, download the latest version by clicking the download link on the project
page (Figure 5-6).

FYI

Remember that you will need to have an OpenCores account to download
the project.

Figure 5-6 Download the VTACH project

You should now have a ZIP file in your download folder named vtachspartan.zip. Move this
to a new folder and unzip the file. This project contains a complete Xilinx ISE project image,
so we don’t need to do much to get it going. How good is that?

Just find the ISE project file in the vtachspartan directory and double-click it (see
Figure 5-7).

FYI

If you get any warnings about ISE versions and making backups, just click
“No Back Up” and continue.

129Chapter 5

Getting Started with VTACH

http://ubm.io/1QhvNEk
http://ubm.io/1QhvN7k
http://ubm.io/1QhvQ2V
http://ubm.io/1QhvRUl

Figure 5-7 Open VTACH ISE project

Numato Elbert V2 Setup

Since we are not using the same Digilent board as the original design, we will need to
make some minor modifications to the code. You can use the description here as a model
to remap the project to whichever board you are using. I chose the Numato Elbert V2, pic-
tured in Figure 5-8, because all the LEDs, push buttons, DIP switches, and 7-segment dis-
plays that are needed for the project are already on the board.

Figure 5-8 Numato Elbert V2

130 Make: FPGAs

Numato Elbert V2 Setup

Heads Up!

Please note that due to the rapidly changing world of FPGA development
boards and development technology, the following setup procedures are
subject to change. The procedures were accurate at the time of writing but
may have changed since.

Setup of this board on Windows was relatively straightforward and the Numato Lab web-
site is clean and well laid out. You just need to select the module of your choice from the
Numato Products page and then select the DOWNLOADS tab (Figure 5-9). You’ll find every-
thing you need there to get started.

Figure 5-9 Numato Lab Elbert V2 DOWNLOADS tab

Heads Up!

Make sure you download and read the user manual! A lot of good informa-
tion about the board is provided for you here.

On Windows platforms, all you need to do is download and extract the CDC driver and
config tool to a folder of your choice and then plug the Elbert board into your USB port. In
Windows Device Manager, you should see the Elbert listed under “Other devices.” Right-
click it and select Update Driver Software, then select “Browse my computer for driver soft-
ware” and point to the folder where you extracted the CDC driver and click OK. Once the
driver is installed for the device, you should see the board moved under Ports (COM & LPT).
Make a note of which COM port has been assigned to your board, then go to the folder
where you extracted the config tool and run it (see Figure 5-10).

131Chapter 5

Numato Elbert V2 Setup

http://numato.com/products/

Figure 5-10 Elbert V2 on COM14

Waxwing

To set up Waxwing on Windows you will need to
install a D2XX driver, which can be downloaded
from their website. You will need to run the CDM
v2.08.30 WHQL Certified.exe application (or a
newer version), and it will prompt you to install

the FTDI CDM drivers. When the driver installa-
tion is complete, the module should appear in
the Waxwing Flash Config Tool as Waxwing Spar-
tan 6 FPGA Module.

At this point, all you need to do is load the Xilinx FPGA image that is generated from the
Xilinx WebPACK ISE tool and you are ready to program your FPGA.

Setup Test

You can get complete Xilinx ISE example projects for Elbert V2 from the
product page on the Numato Lab website: example Verilog source files are
available under the SAMPLE CODE tab that you can load into a Xilinx
project and build. You will need to make sure you specify the correct project
settings and have the correct FPGA device selected (see Chapter 2 for an
example flow for building a project).

Be sure to enable the Create Binary Configuration File option in the Generate Program-
ming File process properties of ISE, as shown in Figure 5-11.

132 Make: FPGAs

Numato Elbert V2 Setup

http://bit.ly/1SguMSF
http://bit.ly/1SguR8V
http://bit.ly/1SgvGP0

Figure 5-11 Create Binary Configuration File

All you need to do next is run the config tool and load your .bin file (see Figure 5-12).

Figure 5-12 Elbert V2 config tool

133Chapter 5

Numato Elbert V2 Setup

Heads Up!

Make sure you upload the .bin file not the bit file!

Modifications

Depending on your board, the modifications for the VTACH project should be fairly
straightforward. I’ll review what I did to remap the project to the Elbert V2 in the next few
sections.

Step 1: Device Section
Since the original Digilent board and the Elbert V2 use slightly different versions of the
Spartan 3 FPGA, you will need to change the settings in the Project→Design Properties of
your ISE project. The default project settings are shown in Figure 5-13.

Figure 5-13 Select new target FPGA

Checking the Elbert V2 User Guide, we see that it uses the Spartan XC3S50A in the TQG144
package for its FPGA device. We need to add this information to the project settings, as
shown in Figure 5-14.

134 Make: FPGAs

Modifications

Figure 5-14 Updated target FPGA for Elbert V2

Step 2: Pin Assignments
The next thing you will need to get straight are the physical pin mappings for your board
and device. As we learned previously, you do this through editing the UCF file in the ISE
project. You should see the vtach.ucf file in the Design→Implementation→Hierarchy view of
the ISE project window (Figure 5-15). Just double-click it to begin editing it.

Heads Up!

You should make a backup of the original UCF file before you edit it.

135Chapter 5

Modifications

Figure 5-15 vtach.ucf file

To make this a little easier, I used the UCF for the Elbert V2 development board that I
downloaded from the Numato Labs website as my guide for the pin remapping (see
Figure 5-16).

Figure 5-16 elbertv2.ucf file

136 Make: FPGAs

Modifications

Next, I took the NET names from the original vtach.ucf file and plugged them into the
matching Elbert V2 pin assignments. Figure 5-17 shows the result. It takes a little bit of cut-
ting and pasting to get all the edits straight, but I think you get the idea.

Figure 5-17 Updated vtach.ucf with Elbert V2 pin assignments

7-Segment Display

You’ll notice that the Elbert V2 board only has three digits of display, not the four that the
original Digilent board had. This is not a big deal; I just left the fourth digit enable line (ds3)
unconnected.

Step 3: Clocking
Here’s where we will need to get into the actual Verilog code and make some modifica-
tions. You will notice that in the original vtach.ucf file the input clock for the design was
operating at 50 MHz.

CLK - 50MHz oscillator
NET "clk" LOC = T9;

The Elbert V2 only has a 12 MHz clock available for input into the FPGA:

NET "clk" LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz ;

Unfortunately, we cannot use the existing VTACH clocking design with a 12 MHz main
clock, the DCM cannot synthesize a 32 MHz clock up from a 12 MHZ clock. I elected to
solve this by removing the DCM from the design altogether and just bringing in the 12
MHz clock directly, and then using the existing divide-by-two register to produce the
memory divclk. All this means is the design will operate at 12 MHz and 6 MHZ, not the
original 32 MHz and 16 MHz. This is really not a big deal for us since we are not all that
concerned about performance anyway.

137Chapter 5

Modifications

To change the clocking design, you will need to open the top (vtach.v) file and edit a cou-
ple of lines of code. First, you need to change the assign statement for clk2 from clkls to
clk:

assign clk2=clk; // Original vtach was 32MHz, Elbert V2 is 12MHz

Then you will need to comment out the instantiation of the mainclock DLL:

 // Instantiate the DLL clock module
 //Not used for Elbert V2 Development Board
/*mainclock clockdll (
 .CLK_IN1(clk),
 .CLK_OUT1(clkls),
 .CLK_OUT2(clkdiv),
 .RESET(1'b0));
*/

The last thing you need to do is right-click the mainclock module in the Implementation
view in the Design panel of your ISE project and remove it.

Heads Up!

I had some issues getting VTACH to run on an LX9-based FPGA. This may
have to do with the skew between the 12 MHz and 6 MHz clocks created by
the clock divider FF. Also, you need to be sure that a clock buffer is used on
the 6 MHz clock.

Step 4: I/O Polarity
Now that we have the clocking design ironed out, we need to make some modifications to
some of the other I/O polarity coding to match the functionality of the Elbert V2 board. We
will begin by looking at the reset signal and the push button that controls it. Again, notice
that the original UCF file has the external reset signal connected to push button 3 and it is
active high:

BTN3 (active high)
NET "extreset" LOC = L14;

The Elbert board’s push buttons will drive low when pushed, not high (see Figure 5-18).
This will cause problems if we just connect the existing logic to the push buttons, as we did
in our UCF file modification.

138 Make: FPGAs

Modifications

Figure 5-18 Elbert V2 push button hardware

We can solve this problem by simply adding an inverter to the original input signal and
creating a new active low reset pin at the top (vtach.v) level with a pull-up, as illustrated in
Figure 5-19.

FYI

Inputs have optional pull-ups that users can make use of (Figure 5-19).

Figure 5-19 Elbert V2 push button inverter circuit

139Chapter 5

Modifications

I did this for the other push buttons as well, as illustrated in Examples 5-1, 5-2, and 5-3.

Example 5-1 Adding active low push button pin to top module (vtach.v)

// This is the main CPU module
// Inputs are the main clock, external reset, push buttons, and switches
// Outputs are the 7-segment display (segX and dsN) and the 8 discrete LEDs
module top(input clk,input extreset_n, output segA, output segB, output segC,
 output segD, output segE, output segF, output segG, output segH, output ds0,
 output ds1, output ds2, output ds3, output [7:0] led,
 input pb0_n, input pb1_n, input pb2_n, input [7:0] sw);

Example 5-2 Adding inverters top module (vtach.v)

 assign extreset=~extreset_n;
 assign pb0=~pb0_n;
 assign pb1=~pb1_n;
 assign pb2=~pb2_n;

Example 5-3 Adding pull-up function to pin (vtach.ucf)

###########################
Push buttons switches
###########################

BTN3 (active high)
#SW1
#-NET "extreset" LOC = L14;
NET "extreset_n" LOC = P80 | IOSTANDARD = LVCMOS33 | DRIVE = 12 | SLEW = SLOW |
PULLUP;

BTN2 (active high)
#SW2
#-NET "pb2" LOC = L13;
NET "pb2_n" LOC = P79 | IOSTANDARD = LVCMOS33 | DRIVE = 12 | SLEW = SLOW |
PULLUP;

BTN1 (active high)
#SW3
#-NET "pb1" LOC = M14;
NET "pb1_n" LOC = P78 | IOSTANDARD = LVCMOS33 | DRIVE = 12 | SLEW = SLOW |
PULLUP;

BTN0 (active high)
#SW4
#-NET "pb0" LOC = M13;

140 Make: FPGAs

Modifications

NET "pb0_n" LOC = P77 | IOSTANDARD = LVCMOS33 | DRIVE = 12 | SLEW = SLOW |
PULLUP;

Step 5: Memory Block Update
The last thing you will need to do is rerun the IP wizard and regenerate the memory block.
Follow these steps:

1. Remove the existing mainmem module by right-clicking the module in the Design
panel and then selecting Remove, as seen in Figure 5-20.

Figure 5-20 Remove mainmem module

2. Regenerate the mainmem module by selecting “mem - memory (memory.v)” in the
Design panel and then, from the toolbar, selecting Project→New Source.

Give it the same filename as was originally used (mainmem), click IP (CORE Genera-
tor and Architecture Wizard), and then click Next. Click Yes in reply to the ques-
tions that follow; then select Memories & Storage Elements→RAMs & ROMs→Block
Memory Generator (see Figure 5-21) and click Next, followed by Finish.

141Chapter 5

Modifications

Figure 5-21 Block Memory IP Generator

3. Click Next for the first two pages of the Block Memory Generator, then on page 3
(Port A Options), change the Write Width to 13, the Write Depth to 100, and select
Read First, as shown in Figure 5-22. Then click Next.

Figure 5-22 Edit port options

142 Make: FPGAs

Modifications

4. On page 4 (Memory Initialization), check Load Init File and browse to the mainme-
mory.coe file in your vtachspartan directory, as seen in Figure 5-23.

Figure 5-23 Add memory initialization file

5. The mainmemory.coe file (reproduced in Example 5-4) contains the actual program
code that will run on your VTACH computer.

Example 5-4 COE file for testing of VTACH computer

;Generated by soloasm
MEMORY_INITIALIZATION_RADIX=16;
MEMORY_INITIALIZATION_VECTOR=
0480,
0670,
0570,
0490,
0308,
0409,
0314,
0802,
0170,
0220,
0670,
0490,
0311,
0802,
0170,
0720,

143Chapter 5

Modifications

0670,
0409,
0317,
0802,
0001;

6. The numbers in each line of the COE file is a CARDIAC.

Example 5-5 shows the same program with some comments so you can see what
is going on.

Example 5-5 The COE file with comments

0- 0480 - Read Dip Sw to ACCU
1- 0670 - Store Accu to Mem Loc 70

top:
2- 0570 - Write Loc 70 to 7-Segment
3- 0490 - Read PB
4- 0308 - TAC Test Accu & Jump to 8 (exe) is neg
5- 0409 - Read PB (-1 or 1)
6- 0314 - TAC Test Accu & Jump to 14 is neg
7- 0802 - Jump to 2 (TOP) and save PC

exe: ; add 1 to count

8- 0170 - Clear accumulator and add from memory (load)
9- 0220 - Add from memory to accumulator
10- 0670 - Store Accu to Mem Loc 70

wait: ; wait for button up
11- 0490 - Read PB
12- 0311 - TAC Test Accu & Jump to 11 (wait) is neg
13- 0802 - Jump to 2 (top) and save PC

exe2: ; decrease count
14- 0170 - Clear accumulator and add from memory (load)
15- 0720 - Subtract memory from accumulator
16- 0670 - Store Accu to Mem Loc 70

wait2: ; wait for button up
17- 0409 - Read PB
18- 0317 - TAC Test Accu & Jump to 17 (wait2) is neg
19- 0802 - Jump to 2 (top) and save PC

one:
20- 0001 - Read a card into memory

144 Make: FPGAs

Modifications

7. Finish up by clicking Next and then Generate on page 6. At this point you are
ready to implement the design and simulate it.

Design, Build, and Simulation

To build your design with these modifications, you just need to click the green triangle in
the toolbar (Implement Top Module) as we have done before. If you encounter any errors,
you will need to check your edits for syntax and make sure you have the right pin numbers
assigned in the UCF.

Once you have a clean build (you will have some warnings, but you can ignore these), you
are ready to simulate.

Simulation
Before you can run the simulator you will need to make some changes to the test bench to
accommodate the polarity changes we made for the push buttons. Switch to the Simula-
tion view in the Design panel and you’ll notice that there are two test bench files (bcadd_tb
and vtach_test). We are only interested in vtach_test for now. The other is a simulation of
the BCD (binary-coded decimal) math conversion algorithm, which you can run later if you
are interested in seeing how that works.

Double-click vtach_test and change all the push button logic, reflecting the active low des-
ignation that you made in the vtach.v design file. The file should look like Figure 5-24 when
you are done.

145Chapter 5

Design, Build, and Simulation

Figure 5-24 VTACH test bench edits

Now save your changes and click Simulate Behavioral Model. We won’t get into construct-
ing a more elaborate test bench here; we will just force a few signals to get the simulation
working. You can experiment with developing the test bench code further if you like as
one of your own projects.

To get a simulation working correctly, follow these steps:

1. Once your iSim window is open, click the Restart button in the top toolbar.

2. In the Instances and Processes window on the left, right-click uut and select “Add
to Wave Window” (see Figure 5-25).

146 Make: FPGAs

Design, Build, and Simulation

Figure 5-25 Add uut waves

3. Now go to the bottom of the wave window, right-click the signal clkdiv, and, as
shown in Figure 5-26, force the clock to have a leading edge value =1 of trailing
edge value of 0, and a period of 4000. Set Starting at Time Offset to 1010 and click
OK. This is required because there is a slight problem with the way the clock
divider design is implemented and the way iSim sees it without a delay through
the register. This is a shortcut hack, but sometimes it’s okay to do this because we
know that the design works in the real logic. It didn’t seem worth the effort to try
to fix it for simulation.

147Chapter 5

Design, Build, and Simulation

Figure 5-26 Force clkdiv

4. Next, find the sw[7:0] bus. This is the input from the dip switches. Right-click it
and select Force Constant. Set Force to Value to 07 Hex.

5. Click Run in the top toolbar and let the simulator run for a few seconds, then click
Break.

6. Click the Default.wcfg tab, zoom to full view, and you should see the 7-segment
display output changing state and putting out the right codes for the 07 Hex read
from the dip switches (Figure 5-27).

148 Make: FPGAs

Design, Build, and Simulation

Figure 5-27 7-segment display

7. Change the dbus, memaddr radix to hex and zoom in until you can see your
program codes on the dbus.

8. Select the memory tab, double-click the block memory link, and you will see the
contents of your memory, which includes your program and data (location 70)—
see Figure 5-28.

149Chapter 5

Design, Build, and Simulation

Figure 5-28 Memory display

Now that it looks like everything is working, we just need to create the bit file and upload it
to our board.

Building and Running

Go back to the Implementation view of your ISE project in the Design panel and select the
top module of your hierarchy. Right-click Generate Programming File and select Process
Properties. For the Elbert V2, we need to make sure that the -g Binary option in the General
Options category is selected. Once that’s done, click OK.

Now you can right-click Generate Programming File and select Run.

When the process is complete, upload the .bin file to the Elbert V2 board, following the
procedure in the setup chapter.

Once that’s completed, you should see the BCD number that you have set on your dip
switches displayed on your 7-segment display (see Figure 5-29).

150 Make: FPGAs

Building and Running

Figure 5-29 VTACH running on Elbert V2

Now you can go through and test the program’s functionality. Change the dip switches
and push SW1 (reset), and you should get a new number on the 7-segment display. Push
SW2, and the number decrements; pushing SW4 increments the number.

Congratulations! It computes!

Programing and Assembler

Now you can really start to experiment by writing your own CARDIAC programs and run-
ning them on your VTACH computer. To do this, you will need to create new .coe files, load
them into the memory using the IP wizard (refer back to “Step 5: Memory Block Update”),
and then resynthesize by clicking Implement Top Level in ISE. Then you will need to gener-
ate a new bit file.

Al Williams has written a universal cross assembler called axasm that you can use to test
the VTACH. It also generates a .coe file for you. You can download the assembler from Dr.
Dobb’s website.

On Windows, you will need to do the following:

1. Install Cygwin with gcc and awk packages.

2. Create a directory with your files.

3. Add Cygwin to your path.

4. Open a DOS window.

151Chapter 5

Programing and Assembler

http://ubm.io/1JWr90P
http://ubm.io/1JWr90P

5. Type sh to get to a Cygwin shell.

6. Run your axasm with ./axasm.

FYI

On Linux, this is more straightforward; just run axasm from a terminal win-
dow.

Example 5-6 shows the program used to test the VTACH, written in assembler.

Example 5-6 mainmemory test program assembly code

;; Test program to debug the BCD math
ORG 0
SFT 8,0 ; read switches to AC
STO 70
top:
OUT 70
SFT 9,0 ; read push button (-1 or 1)
TAC exe ; button down?
SFT 0,9 ; read other push button
TAC exe2
JMP top
exe: ; add one to the count
LOD 70
ADD one
STO 70
wait: SFT 9,0 ; wait for button up
TAC wait
JMP top

exe2: LOD 70 ; subtract one from the count
SUB one
STO 70
wait2: SFT 0,9 ; wait for button up
TAC wait2
JMP top

one: DATA 1
END"

You really don’t need to mess with the assembler program to get started. I just copied and
renamed the mainmemory.coe file, then started writing my own instruction list in the .coe
format.

Have fun!

152 Make: FPGAs

Programing and Assembler

Takeaways

Here are the key takeaways from this chapter’s exercises:

• The CARDboard Illustrative Aid to Computation, or CARDIAC for short, was a
learning aid developed by David Hagelbarger and Saul Fingerman in 1968 to teach
high school students how computers work. The kit consisted of a die-cut
cardboard “computer” model and instruction manual.

• VTACH is an OpenCores FPGA project that is actually a Verilog implementation of
the original CARDIAC teaching computer from Bell Labs.

• Setup of the Numato Elbert V2 board on Windows is relatively straightforward,
and the Numato Lab website provides everything you need to get started.

• You can really start to experiment by writing your own CARDIAC programs and
running them on your FPGA VTACH computer.

153Chapter 5

Takeaways

It’s a Small World!

Easy System-On-Chip (SoC) Designing

To many of you it may seem like a daunting task to tackle a real SoC design in an FPGA. We
have seen how HDL can be used to make the design task more manageable, but there’s
still a learning curve. Schematic entry provides us with a graphical design entry method,
but it typically doesn’t scale well for large, complex designs. Lucky for us, there is a hybrid
approach that combines the best of both worlds and simplifies the SoC design task. The
method involves using a hierarchical approach that begins with schematic entry for the
top level, which connects our IP blocks together, and then uses HDL at the next level down
to describe the function of each IP block. You can think of this as sort of a functional block
diagram approach. While this approach is not used much in industry, it is a great approach
for us DIYers, because the interconnection of IP blocks can be done graphically.

In this chapter, we will be exploring an SoC design of a VGA video and YM2149 audio
player project made easy with DesignLab and the Papilio DUO.

System on Chip

In recent years, with the advent of tablets and smartphones, you may have seen and heard
a lot about SoCs—so what is an SoC, and what is all the hoopla about? Simply put, an SoC
is a semiconductor microchip (“chip” for short) that contains multiple electronic compo-
nents integrated together on a single silicon die. This single chip may contain digital, ana-
log, mixed-signal, and even RF (radio frequency) functions that collectively comprise a
complete system. We will be focusing on digital logic SoC designs. From Webster’s Dictio-
nary, we get the definition of “system” as “a set of interacting or interdependent compo-
nents forming an integrated whole.” The key here is the phrase “integrated whole.” The SoC
is used and viewed as one integrated whole electronic device, even though there are many
subfunctions represented within the system. A car can be used as a good analogy—it’s a
complete system made up of many subsystems integrated into one platform. For example,
you have the fuel, braking, electrical, engine, and drive systems all integrated and function-
ing together to make one complete car.

With the massive volume of resources (transistors) that have become available on a single
silicon die over the last few decades, the idea of integrating more functions on a single

155

6

chip was a natural progression. In the past, multiple printed wiring boards (PWBs) were
used to connect computer subsystems—for example, sound cards, memory modules,
graphics processing units, networking controllers, etc. Today, in a typical tablet or smart-
phone, most of these subsystems are all integrated onto a single SoC chip (Figure 6-1).

Figure 6-1 Integrated smartphone systems on a single chip

The SoC industry is a direct result of Moore’s Law and the integrated circuit (IC) manufac-
turing capability that follows it. In 1965, Gordon Moore, cofounder of Intel Corporation,
observed that the number of transistors per square inch on integrated circuits had dou-
bled every couple of years since the IC was invented. Moore predicted that this trend
would continue for the foreseeable future.

Moore’s Law

The number of transistors that can be packed onto a microchip doubles
every two to three years.

156 Make: FPGAs

System on Chip

A Short History Lesson

This information may be handy next time you
play Trivial Pursuit. In 1958, Jack Kilby of Texas
Instruments developed the first IC. It contained
only five components, including transistors,
resistors, and capacitors. By 1997, the Intel Pen-
tium II, with a clock speed of 233 MHz, contained
over 7.5 million transistors. Think of that! In fewer
than 20 years, the integrated circuit evolved from
a couple of transistors on a crude silicon sub-
strate test bed to 7.5 million transistors on a tiny
silicon die. By 2014, the Intel i5 quad-core pro-
cessor, with a clock speed of 2.9 GHz, contained
over 1.4 billion—with a “B”!—transistors. That’s
the exponential increase in density Gordon
Moore predicted five decades ago.

Just like the cell is the basic building block for
the systems in the human body, the transistor is

the basic building block for computer systems.
Think of the transistor as a switch that is either
“on” or “off,” “one” or “zero.” Hey, that’s binary...so
that’s where all those 1s and 0s come from! Tran-
sistors are combined to form digital logic circuits,
which are combined to build digital systems.
Resistor–transistor logic is a form of logic struc-
ture that IC designers use to create logic func-
tions like TTL and CMOS. Think of a modern
computer chip, with over a billion switches turn-
ing on and off, over a billion times a second—it
makes your head spin! If you ask, how can you
even begin to connect a billion of anything?
Well, hang in there; we’re getting to that.

SoC Architecture

To help with your understanding of the FPGA designs we will be exploring in this and the
following chapters, you’ll need a little bit of background information on the architecture of
SoCs. Let’s look at a practical example. A block diagram of a typical SoC that could be
implemented in a smartphone might look something like Figure 6-2.

Figure 6-2 Smartphone block diagram

157Chapter 6

SoC Architecture

http://bit.ly/1SgBsjJ
http://bit.ly/1VE5wDA

Notice that the architecture of the SoC is built around two fabrics: the memory fabric and
the peripheral fabric. In the SoC world, a fabric is nothing more than an interconnect
structure or matrix. These fabrics can be in the form of point-to-point buses, crossbar
switch matrices, or even sophisticated packet-switched networks. Many times these inter-
connect fabrics are generated by computer-aided design (CAD) tools rather than being
coded by hand. There are a couple of fabric standards that most commercial SoC vendors
use. The Advanced Microcontroller Bus Architecture (AMBA) is used mostly with ARM-
based SoCs and is the fabric that you find in many popular ARM-based smartphones and
tablets today. The other major player in fabric technology for SoCs was created by the
Open Core Protocol (OCP-IP) organization, which started work on what became the OCP
specification. These two standards were both meant to solve pretty much the same prob-
lem. The idea is that through these fabric standards, designers are able to connect compli-
cated SoC subsystems together on a single chip.

There are other players in the SoC fabric game, of course, and some SoC vendors even
develop their own fabrics because of special functionality requirements, or just to be dif-
ferent. The fabric that will be most interesting to us as noncommercial SoC experimenters
and designers is the Wishbone Bus Interface Standard. Wishbone is an open source hard-
ware computer bus that uses a single simple, high-speed synchronous specification to
connect components together in an SoC design. Since it is open source, hobbyists like us
can use the Wishbone bus free of charge. Simple and free; what’s better than that? More
on Wishbone is coming up later. You can find the full specification on the OpenCores web-
site.

Like SoCs, chassis-based platforms are used to expand the capability of computer systems.
Here, a backplane of parallel connections forms a “bus” (often referred to as a “rack”) that
many different cards can be plugged into, as seen in Figure 6-3. A system designer can
choose cards from a catalog (library) and simply plug them into the rack to get a custom-
ized system with a processor, memory, and interfaces appropriately selected for the given
application. Many high-end network servers are configured like this.

Figure 6-3 Rack-based computer system

158 Make: FPGAs

SoC Architecture

http://bit.ly/1VEaosB
http://bit.ly/1VEaosB

Similarly, today a designer of an SoC can select design blocks, place them onto a chip, and
connect them with a standard on-chip fabric like AMBA or OCP. The backplane might not
be apparent as a set of parallel wires on the chip, but logically the solution is the same (see
Figure 6-4). SoC designers typically call these blocks intellectual property blocks, better
known as IP blocks. The name reflects the nature of the element, in that it is a soft design
element, usually coded in a hardware description language, like VHDL or Verilog. In its
library or catalog state, the IP block is not implemented into hardware yet, so it’s really just
intellectual property, like a source code file for a software program in a sense. You can
think of an IP block as a software file that turns into hardware through the magic of syn-
thesis.

Figure 6-4 SoC IP blocks and fabric

FYI

I’ll be using the Papilio DUO exclusively for these projects, but with a little
work you can remap these designs to other FPGA boards. You may need to
create some additional breadboard circuits to get the I/O you need,
though, which the Papilio DUO Computing Shield provides (this topic is
beyond the scope of this book).

We have seen that there are many IP cores available to us on sites like OpenCores, but how
do we go about hooking them together easily? The folks at Gadget Factory have taken the
hybrid design entry approach to a whole new level within their DesignLab tool, and I must
admit, it is really cool and I love it. I’ve used the hybrid approach in my own FPGA design
career with great success, so I’m excited to see it being exploited in DesignLab. I know that
some of you HDL purists are already turning off, but stay with me, I may even convert you.

159Chapter 6

SoC Architecture

http://opencores.org
http://www.gadgetfactory.net

DesignLab

The Papilio DesignLab IDE is an attempt by the folks at Gadget Factory to make FPGA
design easier for their Papilio FPGA development platforms:

Our dream is to take the hardcore out of FPGA (Field Programmable Gate Array)
and make it an amazing tool that anyone can use for creative technology
projects.

Some of you may still be struggling to get to grips with HDL, but it’s really not that bad
once you get used to some of the particulars.

DesignLab provides a drag-and-drop interface for designing FPGAs using the Arduino IDE,
adding circuit constructs into it. The tool is only good for use with the Papilio boards, so it
is very limited in that regard.

If you are using a Papilio board, you can download the DesignLab IDE from the Downloads
section of the Gadget Factory website.

Installation
The installation of DesignLab is easy: you just need to pick either a Windows or a Linux
download. The Windows download provides you with an easy setup.exe file, while the
Linux 32 and 64 downloads provide a tarball that contains a setup script.

Heads Up!

To use DesignLab you will also need to install the free Xilinx ISE WebPACK
software, as described in Chapter 2.

Here’s a short summary of the install process:

1. To download the latest version of the DesignLab IDE, go to the Gadget Factory
download page, click Agree & Download. If you’re using Linux, be sure to select
the correct version (linux32 or linux64), depending on your operating system.

2. Extract the TAR file to a location of your choice.

3. Click setup.exe or run the install script for Linux.

160 Make: FPGAs

DesignLab

http://bit.ly/1VEaAb7
http://papilio.cc/
http://bit.ly/1VEaCzW
http://bit.ly/1VEaCzW

Heads Up!

The Linux install script was created and tested on Ubuntu Linux. It may
work on other Debian derivatives, but for other flavors of Linux you will
need to install the required packages by hand. Refer to the DesignLab
installation guide for details.

Papilio DUO Setup

Heads Up!

Please note that due to the rapidly changing world of FPGA development
boards and development technology, the setup procedures described here
are subject to change. The following procedures were accurate at the time
of writing but may have changed since.

To help you visualize the default configuration of the DUO platform with respect to the
USB connectors (PWRSEL jumper and user switch SW1), I came up with the block diagram
in Figure 6-5.

Figure 6-5 Simplified block diagram of default Papilio DUO platform

161Chapter 6

Papilio DUO Setup

http://bit.ly/1R8vOwC

The DUO hardware design is actually pretty straightforward. Power for the module comes
from either the USB-Micro connector (top-left), which also provides a communication link
to the AVR (Arduino microcontroller), or the USB-Mini connector (bottom-left), which also
provides a communication path to the FPGA. The PWRSEL jumper (3-pin header) provides
the power source selection. My board was shipped with the jumper connecting the middle
(power) and top (AVR) pins. In this configuration, power is being sourced from the USB-
Micro connector. If you move the jumper block to the middle and bottom pins, then power
will be sourced from the USB-Mini connector (FPGA). The reset signal to the AVR is connec-
ted to the user switch (SW1) by an initial (factory) default FPGA configuration. If SW1 is in
the “up” position, then the AVR is “on” (reset is inactive). When SW1 is in the “down” posi-
tion, the AVR is “off” (reset is active). You must understand the routing of FPGA pin 139
(AVR reset) in your particular FPGA design when you load or create a new bit file (overwrit-
ing the factory default). If pin 139 is set to tristate, then AVR reset is pulled high and the
AVR is on. Clear as mud, right? This will become more clear as we move along.

Okay, now we’re ready to load our first FPGA sample design using the DesignLab IDE to
test our setup before we begin our project.

Step 1: Power Up
At this point, you need to be sure you have installed the Xilinix ISE WebPACK on your com-
puter. You can download it from the Xilinx website. If you are installing on a 64-bit Win-
dows 8 computer, be sure to follow the workaround instructions for the license bug.

FYI

See Chapter 2 for more details on the ISE WebPACK.

I first moved the PWRSEL jumper to the bottom position, selecting the source of power to
be the USB-Mini connector. I then plugged in the USB cable from my laptop and the board
powered up, which was indicated by the red LED coming on.

Step 2: Select COM Port
Next, you will need to select the port that is connected to your Papilio DUO FPGA from the
Tools menu of DesignLab. In my case, it was COM6. You should see it clearly labeled in the
Port submenu (Figure 6-6). It should look something like “COM6 (Papilio DUO FPGA).”

162 Make: FPGAs

Papilio DUO Setup

http://bit.ly/1JWwCVt
http://bit.ly/1NTYllS

Figure 6-6 Select your DUO FPGA port

You also need to select your board from the Tools menu. In my case, I selected Papilio DUO
FPGA 2MB ZPUino from the Board submenu because this is the physical board type that I
used (Figure 6-7).

Figure 6-7 Select your DUO FPGA board

Heads Up!

It is important that you have the right Tools config selected (port and
board type) for the side you’re working with (FPGA or AVR)!

I had some issues remembering to keep the port and board type straight in the Tools con-
fig setup tabs. This becomes really important when you have both Papilio DUO USB ports

163Chapter 6

Papilio DUO Setup

connected to your PC. More on this in a moment; for now, to make life simpler, we will just
focus on the FPGA side of the house.

Step 3: Create Project
The next step is to open the Arduino example “Blink” sketch and save it as a new project
(Figure 6-8).

Figure 6-8 Open the Arduino Blink sketch

Using “Blink” as a getting started example is a typical way to introduce a new user to an
Arduino platform. If you’re familiar with Arduino, then you must have done this at least
once before. If not, it is a simple program that blinks an LED on the board. It’s an easy way
to make sure your toolchain is set up and configured properly.

Step 4: Associate Circuit
Now we get into the major difference between the standard Arduino IDE/Arduino module
and the DesignLab IDE/Papilio DUO. Remember from our block diagram (Figure 6-5) that
there are two main devices on this Papilio module: the FPGA and the AVR (Arduino). The
key when working with DesignLab IDE and the DUO module is that you need to always
associate an FPGA design with the sketch you are working with. A sketch is simply an Ardu-
ino C program source code file. Since we’re working with an FPGA, we have to also plug an
FPGA design source file into the build environment as well. The way this is accomplished is
through the use of a #define preprocessor directive from the C programming language
within the sketch (source code) file. In the C programming language, the #define directive
allows the definition of macros within your source code. The syntax for this, in the context
of DesignLab, is:

#define circuit <name>

Notice that “circuit” is the keyword of the directive and is followed by the name of the
FPGA design bit file. The bit file we are going to use for our first quickstart case is the
ZPUino_Vanilla FPGA sample design.

164 Make: FPGAs

Papilio DUO Setup

This brings us to the next point of clarification. The ZPUino is basically what we call in the
industry a “soft design” of the Arduino microprocessor core. In other words, the digital
logic of the Arduino core is captured, then synthesized, and becomes a usable library block
for FPGA designers. The ZPUino behaves as an Arduino microcontroller, but from inside the
FPGA. I covered these concepts earlier in this chapter; you can also find a lot of information
about the ZPUino in the User Guide on the Papilio site.

For now, just think of this as another Arduino that you can load and execute sketches on
from inside the FPGA. If you take a look at the block diagram in Figure 6-9, you’ll notice
that the ZPUino and AVR are both connected to the Arduino standard shield header. This is
why you need to either turn the AVR off by putting SW1 down or pay close attention to
what pins each is using in your FPGA design and AVR code to avoid contention on the
Arduino shield connector. We will just be turning AVR off (SW1 down) for this exercise.

Figure 6-9 Papilio DUO FPGA with ZPUino added, ready for Blink test

We now need to add the following line of code to our Blink sketch, as shown in Figure 6-10,
and save it as a new file:

#define circuit ZPUino_Vanilla

Figure 6-10 shows the sketch with the #define directive added; I renamed it FirstDUO_1.

165Chapter 6

Papilio DUO Setup

http://bit.ly/1VEaEb5

Figure 6-10 Add circuit #define

Step 5: Load FPGA Bit File
We’re almost there. Now, load the FPGA bit file to the module by clicking the Load Circuit
icon in the DesignLab toolbar (Figure 6-11).

166 Make: FPGAs

Papilio DUO Setup

Figure 6-11 Load circuit

Wait for the “Done burning bit file” message to appear (Figure 6-12).

167Chapter 6

Papilio DUO Setup

Figure 6-12 Bit file done loading

Step 6: Compile and Upload Sketch
The last step is to compile and upload the sketch (C program) to the ZPUino (Arduino soft
core) so it can begin executing. Do this by clicking the Upload icon in the DesignLab tool-
bar, as seen in Figure 6-13. This is the same as if you were using the standard Arduino IDE.

168 Make: FPGAs

Papilio DUO Setup

Figure 6-13 Upload your sketch to the ZPUino soft core

Wait for the “Done uploading” message, and you should see the green LED blinking on
your board.

Getting Started with the DesignLab Video-Audio Player

Now that you have installed DesignLab and set up your DUO hardware, you are ready to
begin your first SoC design project. Here’s what you’ll need for this project:

• A Papilio DUO and the DUO Computing Shield (you can get them as a bundle from
the Gadget Factory website)

• A display with a VGA input

• A small computer speaker with an audio jack

• The latest versions of DesignLab and Xilinx ISE WebPACK

How It Works
You can think of this SoC design as a mini PC inside the FPGA. Take a look at the block dia-
gram in Figure 6-14.

169Chapter 6

Getting Started with the DesignLab Video-Audio Player

http://bit.ly/1VE5Cvd

Figure 6-14 Video-audio player block diagram

FYI

Note that there is a separate DAC device on the board.

The Papilio DUO contains our Xilinx LX9 FPGA; obviously, that’s where our SoC will be
going. The video-audio player design includes a ZPUino soft processor core. The ZPUino
core was created by Alvaro Lopes; it is a 32-bit processor that is easily programmed, like
the Arduino microcontroller we all know and love. You can read more about ZPUino at the
ZPUino website. The ZPUino is connected to a Wishbone fabric (see “SoC Architecture”)
that provides us with the address, data, and control buses for our embedded system. We
will be using a static memory map in this design, and access to our two peripheral devices
(audio and VGA) will be through register I/O transactions.

170 Make: FPGAs

Getting Started with the DesignLab Video-Audio Player

http://www.alvie.com/zpuino/

Video data will be generated by the ZPUino soft processor core and written to the VGA
adapter core. You can think of this as a PCI VGA adapter card in a PC. In the same way video
data is written to a VGA peripheral card through a dual-port RAM buffer over the PCI bus,
our VGA adapter contains a dual-port RAM that is made out of FPGA block RAM. The buffer
is written by the soft processor over the Wishbone bus on one side of the dual-port RAM,
and the VGA adapter takes the data out of the dual-port RAM on the other side of the
buffer to convert it to VGA video signals. The VGA adapter takes care of all the high-speed
signaling that is required by the VGA standard, just like a PCI VGA adapter card would do
on a PC.

Similarly, for our audio we will be using a couple of audio cores, like the Yamaha YM2149
Software-Controlled Sound Generator (SSG) chip that was used in many vintage arcade
games (you can learn more about it at Wikipedia and on the Gadget Factory website) and
the SID (short for Sound Interface Device), which was used in the Commodore 64.

This highlights the advancement of technology—at one time there were specific chips to
do specific functions, but now these functions are available in HDL code and take up rela-
tively few resources in a small FPGA.

We will be connecting the VGA adapter and audio cores to our Wishbone bus, and pro-
grams running on the ZPUino soft processor core will be able to configure and access
these cores through read/write register accesses. In other words, the soft processor will be
writing data and control words to this device much like you do in a PC to a sound card. The
output of the audio cores will be connected to a DAC (digital-to-analog converter) before it
goes out to the I/O pins. Most computer audio signals are stored in digital form (for exam-
ple, MP3s and CDs), and in order to be heard through speakers they must be converted to
analog signals. DACs are therefore found in CD players, digital music players, and PC sound
cards.

We’ll be writing programs to execute on the soft processor core in Arduino C. Here, we can
write directly into registers in the audio and VGA cores that will produce video effects on
our screen and sounds from our speakers, which we’ll connect to the logic start shield. We
can also use library functions that take a lot of the work out of coding video and sound
objects.

Design

We will be using DesignLab to design our video-audio player SoC, so go ahead and open
DesignLab now. Follow these steps, and you’ll be an SoC designer in no time!

Step 1: Create New DesignLab Project

1. Open a new ZPUino project by going to File→New ZPuino SOC Project.

2. Save the project into a new sketch by selecting File→Save As.

3. Give the project a new name. I called mine Video_Audio_Player_SoC1.

171Chapter 6

Design

http://bit.ly/1QhwbT8
http://bit.ly/1QhwbT8
http://bit.ly/1VEaYXe
http://bit.ly/1VEaZKQ
http://bit.ly/1VEb3di

4. To open the Xilinx ISE, in the top toolbar, click Edit Circuit, then click Yes to copy
the circuit to your local project (Figure 6-15).

Figure 6-15 DesignLab Edit Circuit

Step 2: Edit Your Design in Xilinx ISE
Now we need to edit the design:

1. In the Design→Implementation→Hierarchy view in ISE, double-click “Pap-
ilio_DUO_LX9 (Papilio_DUO_LX9.sch),” as shown in Figure 6-16. Here’s where the
magic begins. DesignLab has created your top-level schematic starting point for
you. This top-level schematic is really a functional block diagram of your design.
Each symbol has full HDL under it describing the design of the IP block it repre-
sents.

172 Make: FPGAs

Design

Figure 6-16 Open the schematic

2. Next, we need to delete the Papilio DUO pinout block and replace it with the Pap-
ilio DUO Computing Shield pinout block. Be sure to delete all the GPIO blocks too,
as you won’t be needing those. You can find the symbol for the Computing Shield
in the DesignLab\libraries\Papilio_Hardware> library when you click the Add Sym-
bol icon in the left toolbar. Figure 6-17 shows the starting schematic.

173Chapter 6

Design

Figure 6-17 Beginning schematic with DUO pinout block

And Figure 6-18 shows the schematic with the Computing Shield pinout block.

Figure 6-18 Edits with Computing Shield pinout block

174 Make: FPGAs

Design

Step 3: Add VGA Adapter Block
Next, we will add our VGA adapter IP block. Simply click the Add Symbol tool in ISE, and
select the DesignLab\libraries\VGA_ZPUino> library from the Categories list and
VGA_ZPUino from the Symbols list. Add a wire from the VGA adapter to Wishbone slot 14
of the ZPUino. Then connect the VGA_Bus of the VGA adapter to the VGA_Bus of the DUO
Computing Shield pinout block, as seen in Figure 6-19. There’s no need to worry about
plugging into the right Wishbone slot, because each DesignLab IP block has a slot auto-
sensing/detection function built into it. This saves you all the issues of manually sorting
out the address map in the code. The autodetection feature also keeps track of multiple
instances of the same type with an autolock feature. Nice job, Gadget Factory!

FYI

The Add Symbol tool is the first logic gate icon in the toolbar on the left.

Figure 6-19 Add VGA adapter block

Step 4: Add Audio Blocks
We’ll finish off our SoC design by adding a couple of audio generator blocks:

1. Select the DesignLab\libraries\ZPUino_Wishbone_Periperals> library from the
Categories list.

2. Add the AUDIO_zpuino_wb_YM2149 and AUDIO_zpuino_wb_sid6581 symbols.

175Chapter 6

Design

3. Connect the Wishbone bus of the YM2149 audio chip to Wishbone slot 6 of the
ZPuino soft processor and the C64 SID audio chip to slot 8. Don’t forget to connect
the ck_1MHz clock of the SID to the ck_1MHz clock of the ZPUino, as seen in
Figure 6-20.

Figure 6-20 Add audio chips

4. Add AUDIO_zpuino_sa_audiomixer and Splitter4 symbols and connect them to the
output of the YM2149 and C64 SID. Also connect the ck (clock) of the audiomixer
to the ck_96MHz clock of the ZPUino, as shown in Figure 6-21.

Figure 6-21 Add audiomixer and splitter

176 Make: FPGAs

Design

5. Lastly, just add a GND and a VCC symbol from the General category and connect
the rst pin of the audiomixer to GND and the ena pin to VCC (Figure 6-22).

Figure 6-22 Connect audiomixer control pins

FYI

If you want to see the HDL code of an IP block while you are editing the
schematic, right-click the schematic symbol for the block whose source
code you want to see and select “Push into symbol.” Once you do that, you
will be editing the source code for that symbol.

Step 5: Implement and Generate Bit File
Congratulations—you just completed your first SoC design, and you didn’t need to write
one line of HDL code. Your top-level schematic should look like Figure 6-23.

177Chapter 6

Design

Figure 6-23 Complete top-level SoC

Save your design and click the green triangle in the top ISE toolbar to implement (build)
your design. Then, in the Processes window, double-click “Generate Programming File.”

Step 6: Create Sketch, Load, and Run
We’ll need a sketch (program) to run on our ZPUino soft processor core, so we’ll copy the
example code from the Video_Audio_Player example into our DesignLab window:

1. Delete all the code for your SoC design from your DesignLab window.

2. Go to File→Examples→Video_Audio_Player.

3. Copy and paste all the code from the example into your design.

4. Save your design.

5. Connect your Papilio DUO with the Computing Shield installed to your PC using
the USB-Mini connector.

6. Connect your VGA monitor and audio speaker to the Computing Shield.

7. Select your board: Tools→Board→Papilio FPGA Boards→Papilio DUO FPGA 2 MB (or
512 KB).

8. Select your COM port: Tools→Port→COMx (Papilio DUO FPGA).

9. Click Load Circuit in the DesignLab toolbar.

10. Click Upload and you should see the test menu on your VGA display, as shown in
Figure 6-24.

178 Make: FPGAs

Design

Figure 6-24 VGA audio player menu

11. Use the push button on your Computing Shield to navigate the menu and make
selections among the test files.

Experiments
Example 6-1 is a sketch you can use to experiment with writing to your VGA display. The
example shows how you can write a color to a certain pixel using the library, and then how
you can write a color to another pixel by writing directly to the framebuffer that is created
in SRAM memory.

FYI

If you try to read the location of the framebuffer directly from a register
located in the hardware, which would be register0 on Wishbone slot 14,
you will find that that register is write-only. You’ll need to resort to reading
the framebuffer memory location from the library. During initialization the
library allocates the framebuffer in SRAM memory and then writes the base
location of the allocated memory to register0 on Wishbone slot 14. The
VGA controller then uses that shared memory to drive the VGA control lines
to create the VGA picture. So, if you write directly to the framebuffer in
memory, you will directly affect the output to the VGA monitor.

179Chapter 6

Design

Example 6-1 Writing a pixel directly to VGA

 Gadget Factory - Simple example of writing a pixel directly to VGA Framebuffer or
using the library.
 Use this as a template for DesignLab ZPUino System on Chip Projects.
 To learn more about using DesignLab please visit http://learn.gadgetfactory.net.

 Tutorials:

 Related library documentation:

 Hardware:

 Special Notes:

 created 2015
 by Jack Gassett
 http://www.gadgetfactory.net

 This example code is in the public domain.
 */

#define circuit Computing_Shield2

#include <Adafruit_GFX.h>
#include <ZPUino_GFX.h>
#include <PLL.h>

// Assign human-readable names to some common 16-bit color values:
#define BLACK 0x0000
#define BLUE 0x001F
#define RED 0xF800
#define GREEN 0x07E0
#define CYAN 0x07FF
#define MAGENTA 0xF81F
#define YELLOW 0xFFE0
#define WHITE 0xFFFF

ZPUino_GFX gfx;

void setup() {
 // put your setup code here, to run once:

 Serial.begin(115200);
 delay(3000);

 gfx.begin(&modeline_640x384_60); //Highest mode supported by Papilio DUO 512KB

 Serial.println("Framebuffer Base Address in SRAM:");
 Serial.println(uint16_t(gfx.getFramebuffer()),HEX);

 //Write a RED pixel directly to the first address of the Framebuffer in SRAM

180 Make: FPGAs

Design

 gfx.getFramebuffer()[0] = RED;

 //Use the library to more easily write green to the first pixel of the tenth line
 //on the display
 gfx.setPixel(0,10,GREEN);

}

void loop() {

}

Source Code
All the code is open source and can be found at DesignLab’s GitHub.

Takeaways

Here are some of the key takeaways from the exercises in this chapter:

• A hybrid hierarchical approach to the SoC design task—using schematic entry for
the top level and HDL on the lower levels—can make the job much easier for
novice SoC designers.

• Gadget Factory’s DesignLab is a great frontend tool for Xilinx ISE schematic entry.

• The ZPUino soft processor core, created by Alvaro Lopes, is a 32-bit processor that
is easily programmed like the Arduino and is a great building block for FPGA SoCs.

• DesignLab provides a full integrated solution for designing and programming
SoCs using ZPUino.

181Chapter 6

Takeaways

http://bit.ly/1NU8uiI

Just for the Fun of It

Old Arcade Games Made New with FPGAs

It seems that there is a universal appeal to vintage arcade games like Pac-Man and Space
Invaders. At a recent Maker Faire, I had a demo of the FPGA arcade projects we will be com-
pleting in this chapter running in my booth. I was amazed that people, young and old
alike, all seemed to know Pac-Man and were instantly compelled to play it. Let’s face it;
these old games are just plain fun!

There are some very good PC-based arcade game emulators out there that give you the
ability to play these vintage games—but playing them on a laptop is just not the same as
it was on an Atari. With FPGAs, though, you can re-create the real look and feel of the origi-
nal games! In this chapter, I’m going to show you how easy it is, thanks to our friends at
Gadget Factory and the Papilio DUO.

I’ll be showing you two cool projects in this chapter that are variations on the vintage
arcade theme. One uses a traditional VGA display and the other uses a really cool LED dot
matrix display. So what are we waiting for? Let the games begin!

FYI

I’ll be using the Papilio DUO exclusively for these projects, but with a little
work you can remap these designs to other FPGA boards. You may need to
create some additional breadboard circuits to get the I/O you need,
though, which the Papilio DUO Computing Shield provides (this topic is
beyond the scope of this book).

Getting Started with VGA-Displayed Arcade Games

Here’s what you’ll need for our first project:

• A Papilio DUO and the DUO Computing Shield. You can get them as a bundle from
the Gadget Factory website.

183

7

http://bit.ly/1VE5Cvd

• One or two vintage Atari game controllers. You can find them online, or you can
try to make one of your own. I like using the original Atari 2600 controllers—they
just add to the vintage experience.

• A small LCD display with a VGA input. You’ll need to physically turn this display 90
degrees to view the game. A VGA cable is also required. I held the display up using
a small artist’s table easel. The setup is shown in Figure 7-1.

Figure 7-1 VGA arcade project setup

Thanks to our friends at Gadget Factory, we can jump right in with playing games using
our Papilio DUO and the DUO Computing Shield hardware. But first, you’ll need to under-
stand some technical details.

How It Works
There are a couple of key design features you will need to understand before we get into
loading and playing our vintage arcade games. If you check out the diagram in Figure 7-2,
you will see that our two hardware modules, the Papilio DUO and the DUO Computing
Shield, connect together. The Papilio DUO contains our FPGA, and Computing Shield is our
I/O module, where we will connect our VGA display, audio, and joysticks.

184 Make: FPGAs

Getting Started with VGA-Displayed Arcade Games

http://bit.ly/1VE5Diy
http://bit.ly/1VE5DPD

Figure 7-2 Papilio DUO arcade system

There are two design elements that are required for the games to operate. The first is our
usual FPGA design bit file. This is the file that contains our FPGA hardware logic design. The
other element is the actual arcade game ROM files. This is the part that gets a little tricky,
because I won’t be directly providing you with any information on where and how to get
the ROM files. Most of these ROMs are still under copyright. Let’s just say that ROM files for
vintage arcade games exist on the Web. I will explain how you can use a ROM file on the
Papilio DUO system if you have one. The design bit files and design source code are pro-
vided by Gadget Factory; these are all open source and free to use.

FYI

Gadget Factory does provide you with a couple of ROM images that are
open source, which you can experiment with.

Loading a Game
You’ll be playing some of your favorite arcade games in no time just by following these few
easy steps.

185Chapter 7

Getting Started with VGA-Displayed Arcade Games

Step 1: Installing ROMVault

We start by using Gadget Factory’s very cool version of ROMVault. ROMVault is a tool that
was created as a Windows utility for verifying and managing ROMs, like those used in vin-
tage arcade games. You can visit the website to find out more about it if you like; for the
Papilio, we are interested only in the RomVault-Papilio-Edition that you can download from
the Gadget Factory website (see Figure 7-3).

Figure 7-3 RomVault-Papilio-Edition download

Once you download the ZIP file you will need to create a directory off of your C drive to
extract it into.

Heads Up!

Be sure to create a directory right off of your C drive, and do not use any
spaces in the directory name!

Your directory setup should look something like Figure 7-4 when you are done.

186 Make: FPGAs

Getting Started with VGA-Displayed Arcade Games

http://www.romvault.com
http://bit.ly/1JWs9lA

Figure 7-4 Example directory structure for RomVault-Papilio-Edition

Heads Up!

If you get any unexpected copying errors during the extraction process, like
the one in Figure 7-5, just ignore them by checking “Do this for all items”
and clicking Skip. These errors have no impact on the function of the tool.

Figure 7-5 Copying error

187Chapter 7

Getting Started with VGA-Displayed Arcade Games

Step 2: Running ROMVault

Now you just need to double-click the ROMVault application in the top directory, as seen
in Figure 7-6, to get it started.

Figure 7-6 Launch the ROMVault app

Now you should be looking at the RomVault-Papilio-Edition screen (Figure 7-7).

Figure 7-7 RomVault-Papilio-Edition

188 Make: FPGAs

Getting Started with VGA-Displayed Arcade Games

Click “Arcade: Arcade Classics” and then scroll down in the ROM status window, and you
should see Mr. Do’s Nightmare and Pong Demo highlighted in green. These two games
have ROM files included in the download.

Step 3: Programming the FPGA

Connect your Papilio DUO system to your computer’s USB port, connect your VGA monitor
to the VGA port of the DUO Computing Shield, and plug your joystick into Joystick port 1
on the computing shield.

Double-click the Pong Demo, and RomVault-Papilio-Edition does the rest; it loads the bit
file to the FPGA and maps the ROM files. After a few seconds you should see the game on
your VGA display—it’s now ready to play. Have fun!

Heads Up!

These old arcade games were designed to run on VGA displays that were
turned 90 degrees and mounted in game console cabinets, so don’t get
alarmed when you see your game displayed sideways. You will need to turn
your monitor to match the original physical screen orientation.

Source Code and ROM Files
You can find the FPGA source code for the Papilio DUO arcade designs on GitHub.

Keep in mind that the ROM files are handled differently in RomVault-Papilio-Edition than
they would be if you were to try to use them directly in the Xilinx ISE WebPACK. In ISE, the
ROM files are mapped directly to logic gates using the romgen tool, whereas in RomVault-
Papilio-Edition they are mapped to BRAM. This is done so you don’t have to generate a
new bit file every time you load new ROM files. Figure 7-8 shows the Pac-Man game source
code hierarchy in ISE.

189Chapter 7

Getting Started with VGA-Displayed Arcade Games

http://bit.ly/1VE5Li4

Figure 7-8 Pac-Man source code hierarchy

I won’t be getting into how to modify the VHDL code for these games here, but you are
free to experiment with it. Remember, it’s all reprogrammable, so you have nothing to lose.

RomVault-Papilio-Edition does provide you with a handy method for checking if any ROM
files that you may come across will work with the Papilio hardware. For example, if you
click Pac-Man in the RomVault-Papilio-Edition ROM Status window you will get some good
information about the ROM, as seen in Figure 7-9.

190 Make: FPGAs

Getting Started with VGA-Displayed Arcade Games

Figure 7-9 RomVault-Papilio-Edition Pac-Man

Notice that the Game Info section provides you with the filename of the ROM; in this case,
it is “pacman.” You also can see in the DAT Info section that the ROM path is ROMRoot
\Arcade. This is the directory where you will put any ROM ZIP files you happen to come
across. Once you do that, then all you need to do is double-click the game in the ROM Sta-
tus window, and you should be good to go.

FYI

If you change the selection in the Program drop-down from FPGA to Flash,
as shown in Figure 7-10, you will load the game to the flash memory of the
DUO, so you won’t lose the game on a power cycle.

191Chapter 7

Getting Started with VGA-Displayed Arcade Games

Figure 7-10 Load from Flash

Getting Started with LED Dot Matrix–Displayed Arcade
Games

This next project is just plain cool! We are going to run a Pac-Man–like game on an LED dot
matrix display. Here’s what you need to get started:

• A Papilio DUO, available from the Gadget Factory website

• A Papilio RGB LED Panel Wing, available from the Gadget Factory website

• A Papilio Platform Joystick Wing, available from the Gadget Factory website

• A 2.54 mm pitch 16 pin female-to-female IDC ribbon cable (Newegg item number
9SIA4SR1PN3714 or similar)

• A 32 × 32 RGB LED matrix panel, 6 mm pitch, available from Adafruit (Adafruit
provides a lot of information about this display technology on the product page)

• A 5V 2A (2000 mA) switching power supply, available from Adafruit

• A female DC power adapter (2.1 mm jack to screw terminal block), available from
Adafruit

• One or two vintage Atari game controllers (you can find these online at DKOldies)

• The latest versions of DesignLab and Xilinx ISE WebPACK

Figure 7-11 shows what the setup for this project looks like.

192 Make: FPGAs

Getting Started with LED Dot Matrix–Displayed Arcade Games

http://bit.ly/1TyJF1j
http://bit.ly/1VE5QCn
http://bit.ly/1VE5RpQ
http://bit.ly/1OZEO9w
http://bit.ly/1VE5Sdt
http://bit.ly/1VE5Pyo
http://bit.ly/1VE5Tyc
http://bit.ly/1VE5Diy

Figure 7-11 LED dot matrix project setup

How It Works
This design is basically another SoC design from the inventory of design examples pro-
vided by Gadget Factory’s DesignLab. It’s based on the 1-Pixel Pac-Man project by Mike
Szczys, which you can read about on hackaday.

Gadget Factory’s FPGA version is called Matrixman, and all the code you need to build it
comes with the latest version of DesignLab. The Matrixman design is similar to our Video
Audio Player SoC design from Chapter 6. It also uses the ZPUino soft processor core and
the Wishbone bus fabric, only this time we are using an RGB adapter block instead of a
VGA adapter to generate our display (see Figure 7-12).

193Chapter 7

Getting Started with LED Dot Matrix–Displayed Arcade Games

http://bit.ly/1VE5Mm6

Figure 7-12 Matrixman block diagram

Memory Mapping

When we think about computers, most of us
think of the PC as the prime example. We may
even say, “I’m going to work on my computer,”
referring to our PC. In reality, the personal com-
puter (PC) is just one class of computing device.
A PC is what is commonly referred to in technical
terms as a general-purpose computing device. A
lot of engineering has gone into PC architecture
over the years to make it just such a device. Most
of this effort is under the covers and, to most
users, way below the radar. Historically, early in
the evolution of the PC, it became clear that con-
sumers wanted to be able to open their comput-
ers and add expansion cards to customize or
change the functionality—just like with the rack
system we talked about in Chapter 6. This caused
some serious headaches in the early days, and
some of you may even remember the notorious
“bus conflict” or “IRQ error”... ahhh!

This whole mess came about because of how the
CPU cores of the early PCs understood where
devices like graphics cards, hard drives, floppy
drives, and sound cards connected to them lived

in the system. This in turn determined how the
CPU communicated with these devices.

As an example, think of the street you live on.
Every house on the street has a fixed address. If
you wish to communicate with your neighbor by
mailing a letter, you first need to write the letter
and then send it through the mail system by
putting your message in an envelope and writ-
ing your neighbor’s name and address on the
front of the envelope. You then put the letter in
the mailbox, and the postal service retrieves the
letter, processes it, and delivers it to the person
whose name and address appear on the front of
the envelope.

Now suppose there is an empty lot on your
street, and a home developer comes in and
builds a new house—but the addition of this
new house changes the addresses of all the
houses on the entire street, unbeknownst to you
and to the mail system. Now what happens
when you mail a letter to Joe at 114 ISA Drive,
but that’s not Joe’s address anymore? It’s Bill’s, so

194 Make: FPGAs

Getting Started with LED Dot Matrix–Displayed Arcade Games

Bill now starts getting Joe’s mail and doesn’t
know what to do with it. He calls the post office
and screams, “Bus conflict error!” You get the pic-
ture.

PC engineers needed a clever way to change the
static addressing method used by the CPU into a
dynamic method that could accommodate
moves, additions, and changes in devices con-
nected to the CPU bus—and that’s why the
Peripheral Component Interconnect (PCI) stan-
dard came into being. PCI is a very complex stan-
dard that goes way beyond the scope of this
book, but it’s important to us as SoC design wan-
nabes to understand the differences between a
static and a dynamic memory mapping system.

There is another class of computing device
known as embedded computing devices. An
embedded computing device is a computer pur-
chased as part of some other piece of equip-
ment. Typically, it contains dedicated software
(which may or may not be user customizable). It
often replaces electromechanical components
and has no “real” keyboard and a limited display,
or no general-purpose display. Examples of

embedded computers are all around us: they are
in our cars and the airlines we fly on; they are in
our home appliances, cable boxes, WiFi routers,
video game boxes, cell phones, etc. It’s hard to
touch anything in our world today that doesn’t
have an embedded computer in it. Our smart-
phones and tablets are really an extension of
embedded computing. When was the last time
that you opened up your smartphone and put in
a new graphics card?

Embedded computers have mostly closed, dedi-
cated design architectures and therefore are free
from the PC’s dynamic memory map dilemma
and all the extra baggage of the PCI standard,
MS Windows bus enumeration, and IA architec-
ture configuration complexities. Most SoCs that
contain a CPU are designed for embedded sys-
tems and follow a simple static memory map
architecture. In other words, the address loca-
tions for devices in the system are fixed at design
time and are not changed. We will be focusing
on simple fixed memory-mapped systems like
this design, which may be considered embed-
ded designs.

Design
To get started with Matrixman, just follow these few easy steps; DesignLab does the rest.

Step 1: Open Example Design

1. Open DesignLab and go to File→Examples→SmartMatrix_32x32/matrixman. Your
screen should look like Figure 7-13.

195Chapter 7

Getting Started with LED Dot Matrix–Displayed Arcade Games

Figure 7-13 Matrixman in DesignLab

2. To view your design, click View Circuit in the top toolbar. A PDF file of the top-level
schematic will open, as seen in Figure 7-14.

196 Make: FPGAs

Getting Started with LED Dot Matrix–Displayed Arcade Games

Figure 7-14 Matrixman circuit view

3. Connect your Papilio DUO with the RGB wing and joystick wing installed to your
PC, using the USB-Mini connector.

4. Connect your LED matrix and joystick.

5. Select your board: Tools→Board→Papilio FPGA Boards→Papilio DUO FPGA 2 MB (or
512 KB).

6. Select your COM port: Tools→Port→COMx (Papilio DUO FPGA).

7. Click Load Circuit in the DesignLab toolbar.

8. Click Upload, and you should see the Pac-Man game ready to play!

9. Have fun!

Experiments
Here are a couple of examples of sketches you can use to experiment with writing to your
LED dot matrix display.

You can write directly to the hardware by running a sketch like the one in Example 7-1 (it
will turn the first pixel white).

Example 7-1 Direct pixel write

*/
#define circuit RGB_Matrix
void setup() {

197Chapter 7

Getting Started with LED Dot Matrix–Displayed Arcade Games

 // put your setup code here, to run once:

 REGISTER(IO_SLOT(9),0x1000) = 0xFFFFFF;
}

void loop() {

}

To turn the first pixel red using the library, use the sketch in Example 7-2.

Example 7-2 Library pixel write

#define circuit RGB_Matrix
#include <SmartMatrix_32x32.h>

SmartMatrix matrix;

const rgb24 black = rgb24(0x0, 0x0, 0x0);
const rgb24 white = rgb24(0xff, 0xff, 0xff);
const rgb24 red = rgb24(0xff, 0x0, 0x0);
const int defaultBrightness = 15*(255/100);

void setup() {
 // put your setup code here, to run once:

 Serial.begin(115200);
 delay(3000);

 matrix.begin();
 matrix.setBrightness(defaultBrightness);

 matrix.setColorCorrection(cc24);

 matrix.fillScreen(black);

 matrix.drawPixel(0,0,red);

 matrix.apply();

}

void loop() {

}

Source Code
All the code is open source and can be found on GitHub.

198 Make: FPGAs

Getting Started with LED Dot Matrix–Displayed Arcade Games

http://bit.ly/1NOjHTZ

Takeaways

Here are some of the key takeaways from the projects in this chapter:

• The Papilio DUO can be used to easily build cool projects that are variations on the
vintage arcade theme. One of our projects used a traditional VGA display, and the
other used an LED dot matrix display.

• You can build on the Matrixman example through programming a ZPUino sketch.

199Chapter 7

Takeaways

Cha-Ching!

Bitcoin Mining Project

The California Gold Rush began in 1849 when gold was discovered in the Sacramento Val-
ley. It wasn’t long before news spread that there was gold in them there hills, and thousands
of prospective gold miners traveled to San Francisco and the surrounding area by land and
sea. By the end of 1849, the population of the California territory had grown from less than
a thousand to over 100,000. In 1852, the Gold Rush peaked; by then, 2 billion dollars’ worth
of gold had been extracted from the territory.

You may be asking, what in the world does this have to do with FPGAs? In a sense, some
believe that a new Gold Rush is on in the form of Bitcoin currency, and with the help of
FPGA technology, you can become a Bitcoin miner.

You can learn all about Bitcoin from Bitcoin’s FAQ and the Bitcoin Mining website, which
describes it as follows:

Where do bitcoins come from? With paper money, a government decides when
to print and distribute money. Bitcoin doesn’t have a central government.

With Bitcoin, miners use special software to solve math problems and are
issued a certain number of bitcoins in exchange. This provides a smart way to
issue the currency and also creates an incentive for more people to mine.

According to the Bitcoin FAQs:

Bitcoin is a consensus network that enables a new payment system and a com-
pletely digital money. It is the first decentralized peer-to-peer payment net-
work that is powered by its users with no central authority or middlemen. From
a user perspective, Bitcoin is pretty much like cash for the Internet. Bitcoin can
also be seen as the most prominent triple entry bookkeeping system in exis-
tence...Bitcoin is the first implementation of a concept called “cryptocurrency,”
which was first described in 1998 by Wei Dai on the cypherpunks mailing list,
suggesting the idea of a new form of money that uses cryptography to control
its creation and transactions, rather than a central authority.

In this chapter, we’ll learn how to become Bitcoin miners through an easy and fun FPGA
SoC project.

201

8

https://bitcoin.org/en/faq
https://www.bitcoinmining.com

FYI

Bitcoin mining technology has moved so rapidly that FPGA mining is no
longer an effective way to find Bitcoins. A part of Bitcoin technology is that
the difficulty of the mining algorithm is increased as new methods are cre-
ated. When the first ASIC rigs were created, they increased the difficulty to
the point where FPGAs can no longer find blocks on their own. So, unless
you join a mining pool, it is very improbable that you will find anything,
and even with a pool it can take quite some time, if it happens at all. Over-
all, Bitcoin mining on an FPGA is really just a fun exercise at this point; it is
not a practical way to find Bitcoins.

Once again we’ll be turning to our friends at Gadget Factory and DesignLab to help us
quickly and easily build a Bitcoin SoC.

FYI

I’ll be using the Papilio DUO and DesignLab exclusively for this project, but
as always, with a little work you can remap this design to other FPGA
boards. You may need to create some additional breadboard circuits to get
the I/O you need, though, which the Papilio LogicStart Shield provides. This
again is beyond the scope of this book.

Getting Started with the Bitcoin Miner

Here’s what you’ll need for this project:

• A Papilio DUO and the LogicStart Shield; you can get these from the Gadget
Factory website

• The latest versions of DesignLab and Xilinx ISE WebPACK

The setup is shown in Figure 8-1.

202 Make: FPGAs

Getting Started with the Bitcoin Miner

http://store.gadgetfactory.net
http://store.gadgetfactory.net

Figure 8-1 Bitcoin setup

Our picks and shovels for this project will be provided by Gadget Factory’s DesignLab and
the Papilio DUO. Before we begin, let’s take a few moments to review our design.

How It Works
This design is actually quite simple. The block diagram in Figure 8-2 shows the main Bitcoin
block connected to the USB controller that is included on the Papilio DUO board. Your PC is
connected to the board through the USB-Mini connector. The PC communicates with the
Bitcoin logic over a USB serial link. The Bitcoin block is also connected to the 7-segment
display, LEDs, and push buttons of the Papilio LogicStart Shield.

203Chapter 8

Getting Started with the Bitcoin Miner

Figure 8-2 Bitcoin block diagram

The Bitcoin block contains all the crypto logic that is used to perform the hash algorithm in
the Bitcoin mining operation. LED0 and LED1 are connected to the RX and TX lines of the
Bitcoin block.

Design
Just follow these easy steps, and you’ll be panning for Bitcoin gold:

1. Open DesignLab and go to File→Examples→BitCoin_Miner →BitCoin_Miner (see
Figure 8-3).

204 Make: FPGAs

Getting Started with the Bitcoin Miner

Figure 8-3 DesignLab Bitcoin example sketch/design

2. To view your design, click View Circuit in the top toolbar. A PDF file of the top-level
schematic will open, as seen in Figure 8-4.

205Chapter 8

Getting Started with the Bitcoin Miner

Figure 8-4 Bitcoin DesignLab schematic

3. Connect your Papilio DUO with the LogicStart Shield installed to your PC, using
the USB-Mini connector.

4. You need to have Python installed on your system.

5. Join the mining pool. (The DesignLab example is set up to use a Gadget Factory
test account, so you can skip this step if you just want to test it. But without joining
a pool, you really don’t have a chance of getting any hits.)

6. Start the Stratum proxy. On Windows, it’s in the DesignLab install directory
(DesignLab/Libraries/BitCoin_Miner/examples/BitCoin_Miner/mining_proxy.exe), or if
you create a new project with a copy of the Bitcoin Miner example, it will be in the
top directory of your new Bitcoin project.

Linux users should follow these directions.

7. Select your board: Tools→Board→Papilio FPGA Boards→Papilio DUO FPGA 2 MB (or
512 KB).

8. Select your COM port: Tools→Port→COMx (Papilio DUO FPGA).

9. In the DesignLab toolbar, click Load Circuit.

10. Start the mining Python script:

206 Make: FPGAs

Getting Started with the Bitcoin Miner

https://www.python.org/downloads/
http://mining.bitcoin.cz
http://mining.bitcoin.cz/mining-proxy-howto

a. Open the sketch folder using Ctrl-K.

b. On your command line, type python miner.py --serial COMx, substituting
your COM port.

11. Whenever a block is found, the 7-segment display will light up. The pattern will
change as new blocks are found. SW0 will turn off the display to conserve power
(up is on, down is off).

Heads Up!

After you install Python, be sure to update your system path to include its
location!

Source Code
All the code is open source and can be found on GitHub.

Takeaways

Here are some of the key takeaways from the project in this chapter:

• Bitcoin is a consensus network that enables a new payment system and a
completely digital currency.

• With Bitcoin, miners use special algorithms that can be implemented in FPGAs to
solve math problems and are issued a certain number of Bitcoins in exchange.

• The Papilio DUO can be used to easily build a Bitcoin mining rig.

• Bitcoin mining technology has moved so rapidly that FPGA mining is no longer an
effective way to find Bitcoins. Overall, Bitcoin mining on an FPGA is really just a fun
exercise at this point.

207Chapter 8

Takeaways

http://bit.ly/1Pzs1HP

I Hear You!

Software-Defined Radio (SDR) on FPGA

Software-defined radio (SDR) seems to have been the Holy Grail of embedded design for
years. I remember running into this design challenge multiple times during my engineer-
ing career, and I would always get very pumped up about the possibilities, only to come to
the conclusion that the technology wasn’t quite ready for primetime.

There are a number of definitions of software-defined radio, also known as software radio.
The SDR Forum, along with the Institute of Electrical and Electronics Engineers (IEEE),
defines SDR as a “radio in which some or all of the physical layer functions are software
defined.” It seems that their definition is stating the obvious. In this case, a radio is any kind
of device that wirelessly transmits or receives signals in the radio frequency (RF) part of the
electromagnetic spectrum to transfer information. In other words, SDR is a radio communi-
cation system where components that have typically been implemented in hardware (e.g.,
mixers, filters, amplifiers, modulators/demodulators, detectors, etc.) are implemented
through software, typically in an embedded system or PC. As I stated earlier, the concept of
SDR is not new, but with the rapidly developing capabilities of FPGAs and digital electron-
ics it has become practical and affordable to implement these processes, which used to be
only theoretically possible.

Radios exist in most of our modern gadgets, such as cell phones, computers, car door
openers, vehicles, televisions—the list goes on and on, so you can see the attractiveness of
SDR. Can you image having a single programmable hardware module that could imple-
ment all these different radio systems in one device? You get the picture. That’s still a ways
away from a technology standpoint, but we can experiment with this technology in a fun
and practical way.

In this chapter, we’ll discover the world of SDR by experimenting with an AM radio receiver
implemented on the Red Pitaya platform. So what are we waiting for? Let’s tune in and
hear who’s out there!

209

9

Implementation Technologies

There are a few different options when it comes
to manufacturing an SoC once it has been
designed and validated.

Each of these implementation technologies has
tradeoffs that can be evaluated based on design
criteria, centered around three variables: density,
performance, and cost.

Let’s take a look at the relative characteristics of
the different technologies:

Full custom
Very high transistor density, optimum per-
formance in terms of clock speed. Involves
the creation of a completely new chip,
which consists of about a dozen masks (for
the photolithographic manufacturing pro-
cess). The first chip is very expensive to
make, but thereafter each one is cheaper.
An Intel CPU chip is a good example of a
full custom design.

Standard cell
Less dense and lower performance than
full custom design. The designer uses a
library of standard cells with an automatic
place and route tool doing the layout. Still
involves creation of custom chip, so all
masks must still be made; manufacturing
costs the same as for full custom.

Gate array
Transistor density and performance can be
almost as good as with standard cell
design, but the production cost is lower.
The designer uses a library of standard
cells. The design is mapped onto an array
of transistors, which is already created on a

wafer; wafers with transistor arrays can be
created ahead of time.

FPGA
Performance is usually several factors to an
order of magnitude lower than with the
standard cell approach. Densities are an
order of magnitude lower than with stan-
dard cell but an order of magnitude higher
than with CPLDs. Much higher device cost
than with other approaches, but FPGAs are
reusable.

FPGAs have a high component case than
Custom and Semicustom, but significantly
lower upfront costs, NRE. (Got my Xilinx
hat on.)

Complex programmable logic device (CPLD) or
erasable programmable logic device (EPLD)

Less dense than FPGAs; higher cost per
gate but does not need to be reprogram-
med after power down. Very low power.
Performance similar to FPGAs.

Most SoCs are implemented in standard cell
technology, with the exception of some very
high-performance designs. For us, the FPGA is
best because it is reprogrammable, allowing us
to reuse the same chip for an infinite number of
designs. The performance and density of the
FPGAs that we are using in this book is more
than sufficient for us to experiment with some
cool IP blocks from OpenCores. We will not be
building tens of thousands of copies of our
designs, so the cost per chip is not something we
are very concerned with.

Getting Started with the SDR Receiver

I’ll be walking us through the SDR receiver tutorial that is provided by Red Pitaya. You will
need to go to the tutorial page for details and downloads to complete this project.

210 Make: FPGAs

Getting Started with the SDR Receiver

http://opencores.org
http://bit.ly/1TyJCTc

FYI

We’ll be using the Red Pitaya platform for this project exclusively; it is
beyond the scope of this book to explore other platform options, but feel
free to consider it.

Here’s what you’ll need for this project:

• The Red Pitaya platform, which you can order from one of their distributors

• A 4–8 GB micro-SD card for your Red Pitaya

• A USB-Mini cable (I also used an Ethernet cable to connect the Red Pitaya board to
my network)

• Some type of antenna setup connected to the IN2 SMA connector of the Red
Pitaya (I used some things I had lying around my lab, like an SMA male to SMA
male plug RF pigtail coax jumper cable, alligator jumper wires, and an old portable
antenna). You can try the one described on the SDR receiver page using a four-
wire telephone cable. With my setup I was able to get a few AM stations.

Figure 9-1 shows my setup for this project.

Figure 9-1 SDR setup with my makeshift antenna

211Chapter 9

Getting Started with the SDR Receiver

http://redpitaya.com/about/

How It Works
This project is by far the most technically complex one in this book. I’m presenting it to you
just to provide you with a glimpse of what is possible with FPGAs and to give you a chance
to have some fun with using the design as is. I will only be highlighting the design details
here and will not be going into any technical depth. Believe me, we would need an entire
book to cover what is going on in this design! I think it’s just fun to play with the SDR appli-
cation while exploring radio technology.

In the very high-level block diagram shown in Figure 9-2, we see the data flow model of
our SDR. The antenna is connected to the RF frontend of the Red Pitaya and the analog-to-
digital converter (ADC), which connects to the FPGA implementation of the digital down-
converter (DDC). This is where the SDR magic happens; where all those ones and zeros
coming in from the ADC are converted to digital symbols that can be interpreted by the
SDR application running on the PC, which are transferred by the ARM core through the
shared memory buffer, implemented in the BRAM of the Zynq programmable device.

Figure 9-2 Red Pitaya SDR block diagram

According to the tutorial page, “The data coming from the ADC is processed by [an] in-
phase/quadrature (I/Q) digital down-converter (DDC) running on the Red Pitaya’s FPGA.”

212 Make: FPGAs

Getting Started with the SDR Receiver

http://bit.ly/1TyJCTc

You can research what exactly the digital signal processing (DSP) elements do on the
dspGuru website.

Heads Up!

You need more than just an FPGA to pull off this design. You need an RF
(anolog) frontend and an ADC, which are electronic components outside of
the FPGA device. You also need the ARM core. For the most part, this design
is specific to the Red Pitaya board, which implements all the necessary cir-
cuitry. The principles learned here can be applied to other boards that have
similar features.

Red Pitaya Setup

Heads Up!

Please note that due to the rapidly changing world of FPGA development
boards and development technology, the setup procedures described here
are subject to change. The following procedures were accurate at the time
of writing, but may have changed since.

I like to rush right in, so the Quick Start on the START dropdown menu on the Red Pitaya
site looked good to me.

First, you need to choose a connection method that allows you to connect to the Internet. I
chose the “Wireless connection” method using the suggested USB WiFi dongle (Edimax
EW7811Un). I then simply followed the instructions provided by the online quick start
guide. I was also able to get the seven-day evaluation of Red Pitaya’s new Visual Program-
ming tool running. This tool appears to use the MIT Scratch graphical block programming
paradigm to write programs that run on the ARM core, sort of like Arduino sketches.

Loading the SDR

You’ll be tuning in to AM radio in no time just by following these few easy steps.

Step 1: Copy Red Pitaya SD Card Image

1. You need to copy the SD card image for the Zynq that you get from the Red Pitaya
SDR receiver tutorial page. Download the ZIP file and unzip it to a clean directory
on your PC. Then just insert your SD card into your PC, delete any files that are on
it, and copy the contents of the unzipped image to the SD card.

213Chapter 9

Loading the SDR

http://www.dspguru.com/dsp/articles
http://staging1.redpitaya.com/quick-start/

2. Once you do that you can plug the SD card into your Red Pitaya, connect your USB
mini-cable to your PC, and power up the board.

Step 2: Install SDR Applications on PC

1. You next need to download the Windows SDR applications to your PC. You can
find the links for them on the SDR receiver tutorial page. The programs are SDR#
and HDSDR.

2. For the SDR# download, just unzip the file to a clean directory, and for HDSDR use
the convenient Windows install executable.

3. Next, you will need to download the prebuilt ExtIO plug-in for SDR# and HDSDR.
Then, copy ExtIO_RedPitaya.dll into the SDR# and HDSDR installation directories.

Step 3: Connect Red Pitaya to the Network
For this step, I just connected my Red Pitaya directly to my router with an Ethernet cable. I
didn’t try to use the wireless connection for this experiment. Once I’d connected my Red
Pitaya to the network, I opened the administration page of my router and found its IP
address by looking at the attached devices list. You may have to consult your router’s user
manual to find out how to do this for your model; typically you just need to type the IP
address 192.168.1.1 into your browser and you should get your router’s administration
login page. You’ll need to know the username and password for your router. The default
setting for many routers is something like username = admin, password = password. Once
you log in to your router, you will need to find the attached devices list; from there, you
should see the Red Pitaya listed under “wired devices.”

Step 4: Run SDR Applications

1. Start either the SDR# or the HDSDR application.

2. To run SDR#, go to the directory where you unzipped the file and double-click
SDRharp (see Figure 9-3).

Figure 9-3 SDRSharp program

214 Make: FPGAs

Loading the SDR

To run HDSDR, go to Start→All Programs→HDSDR→HDSDR.

3. Select Red Pitaya SDR from the Source list in SDR# or from the Options (F7)→Select
Input menu in HDSDR.

4. Click the Configure icon in SDR# or the ExtIO button in HDSDR, then type in the IP
address of the Red Pitaya board and close the configuration window.

5. Click the Play icon in SDR# or the Start (F2) button in HDSDR.

Figure 9-4 shows the SDR# application window.

Figure 9-4 SDR# application window

I like the SDR# interface because I can see the peaks in the spectrum; when you click a
peak, you typically find an active station.

The HDSDR application window is shown in Figure 9-5.

215Chapter 9

Loading the SDR

Figure 9-5 HDSDR application window

Source Code
All the code is open source, and links are provided on the Red Pitaya SDR receiver page.
You will need to build a whole Linux Ubuntu development environment to work on the
code for this design, and you may also need to build the new Xilinx Vivado FPGA environ-
ment. The Red Pitaya tutorial provides some details on how to do this; I will not be going
into that here.

Xilinx ISE WebPACK Development

According to the engineers at Red Pitaya, from Red Pitaya release v0.94 (the
latest), all the RTL files can be compiled using ISE except for one that is writ-
ten in SystemVerilog (available at http://bit.ly/1mo7KMa).

It’s important to note that all the test bench files are written in SystemVeri-
log, which is a more powerful verification language. Neither the ISE nor the
Vivado built-in simulators support SystemVerilog, so Red Pitaya uses the
free version of ModelSim provided by Altera for simulations.

In release v0.93 of Red Pitaya (from May 2015), all RTL and test bench files
are Verilog 2001 or older and should be compatible with both ISE and
Vivado (although compatibility has not been fully validated on ISE).

216 Make: FPGAs

Loading the SDR

http://bit.ly/1TyJCTc
http://bit.ly/1mo7KMa
http://bit.ly/22ZTZUm
http://bit.ly/1TyJAuy

Takeaways

Here are some of the key takeaways from this chapter:

• SDR is a complex radio communication system where components that have
typically been implemented in hardware (e.g., mixers, filters, amplifiers,
modulators/demodulators, detectors, etc.) are implemented through software,
typically in an embedded system (like an FPGA) or PC.

• The SDR receiver tutorial that is provided by Red Pitaya is a great introduction to
SDR technology.

• You need more than just an FPGA to pull off an SDR design. You also need an RF
frontend and an ADC, which are electronic components outside of the FPGA
device.

• The SDR# and HDSDR PC applications are cool ways to explore radio technology
using your Red Pitaya SDR hardware.

217Chapter 9

Takeaways

FPGA Boards

Table A-1 lists some low-cost (under $200) development boards that use Xilinx FPGAs.

Table A-1 Xilinx FPGA selection list

Board Cost FPGA GPIO Interfaces Free
tools

Features

Papilio
DUO

(Gadget
Factory)

$87.99 Spartan-6
LX9

54-pin
Arduino
Mega

Papilio
Wings

1 Pmod

USB Xilinx: ISE
WebPACK

Papilio:
DesignLab

Onboard
Arduino Micro

Papilio One
250K

(Gadget
Factory)

$37.99 XC3S250E 48-pin

Papilio
Wings

USB Xilinx: ISE
WebPACK

Papilio:
DesignLab

4 Mb SPI flash
memory

Papilio One
500K

(Gadget
Factory)

$64.99 Xilinx
XC3S500E

48-pin

Papilio
Wings

USB Xilinx: ISE
WebPACK

Papilio:
DesignLab

4 Mb SPI flash
memory

Pipistrello
LX45 H

$154.95 Spartan-6
LX45

48-pin

Papilio
Wings

USB, DVI/
HDMI,
audio, SD
card

Xilinx: ISE
WebPACK

128 Mb SPI flash
memory

DRAM: 64 MB

219

A

http://bit.ly/1TyJF1j
http://bit.ly/1TyJF1j
http://bit.ly/1TyJFhJ
http://bit.ly/1TyJFhJ
http://bit.ly/1TyJIdp
http://bit.ly/1TyJIdp
http://bit.ly/1VE4ibt
http://bit.ly/1VE4ibt

Board Cost FPGA GPIO Interfaces Free
tools

Features

(Saanlima
Electronics)

1 Pmod 7 LEDs

Mojo V3

(Embedded
Micro)

$74.99 Spartan-6
LX9

84-pin USB Xilinx: ISE
WebPACK

Arduino
IDE

On board micro
and flash

8 LEDs

1 reset button

Mimas

(Numato
Lab)

$39.95 Spartan-6
LX9

70-pin USB Xilinx: ISE
WebPACK

16 Mb SPI flash
memory

8 LEDs and 4
switches

Saturn

(Numato
Lab)

$119.95 Spartan-6
LX45

Up to
158-pin

USB Xilinx: ISE
WebPACK

DDR: 512 Mb
166 MHz LPDDR

128 Mb SPI flash
memory

Waxwing

(Numato
Lab)

$199.95 Spartan-6
LX45

24-pin USB, HDMI,
VGA,
100BASE-T,
SD card,
JTAG, audio

Xilinx: ISE
WebPACK

512 Mb LPDDR

128 Mb SPI flash
memory

16 × 2-character
LCD display

7-segment
display

7 push buttons

FPGA
Module
2.00b

(ZTEX)

$81.40 Spartan-6
XC6SLX16

100-pin JTAG Xilinx: ISE
WebPACK

16 MB onboard
flash memory

USB-FPGA
Module
2.01b

(ZTEX)

$108.90 Spartan-6
XC6SLX16

100-pin USB, JTAG Xilinx: ISE
WebPACK

Cypress
CY7C68013A EZ-
USB FX2
microcontroller

220 Make: FPGAs

Takeaways

http://bit.ly/1VE4lnD
http://bit.ly/1VE4lUS
http://bit.ly/1VE4oQu
http://bit.ly/1SguMSF
http://bit.ly/1VE4pE6
http://bit.ly/1VE4pE6
http://bit.ly/1VE4pE6
http://bit.ly/1VE4nMy
http://bit.ly/1VE4nMy
http://bit.ly/1VE4nMy

Board Cost FPGA GPIO Interfaces Free
tools

Features

128 Mb onboard
flash memory

128 Kb EEPROM
memory

2 Kb MAC-
EEPROM

2 female 2 × 32
headers

USB-FPGA
Module
2.04b

(ZTEX)

$130.90 Spartan-6
XC6SLX16

100-pin USB, JTAG Xilinx: ISE
WebPACK

Cypress
CY7C68013A EZ-
USB FX2
microcontroller

64 MB DDR
SDRAM

128 Mb onboard
flash memory

128 Kb EEPROM
memory

2 Kb MAC-
EEPROM

2 female 2 × 32
headers

Basys 2

(Digilent)

$149.00 Spartan-3E 24-pin USB, JTAG Xilinx: ISE
WebPACK

8 LEDs

4-digit 7-
segment display

4 push buttons

8 slide switches

PS/2 port

8-bit VGA port

Cmod S6

(Digilent)

$69.00 Spartan-6
XC6SLX4

48-pin USB Xilinx: ISE
WebPACK

48-pin DIP form
factor board

221Appendix A

Takeaways

http://bit.ly/1VE4s2D
http://bit.ly/1VE4s2D
http://bit.ly/1VE4s2D
http://bit.ly/1VE4uYl
http://bit.ly/1VE4veY

Board Cost FPGA GPIO Interfaces Free
tools

Features

4 user LEDs

2 user buttons

222 Make: FPGAs

Takeaways

Papilio AVR Loading

If you want to check out the operation of the Papilio AVR (Arduino microcontroller), there
are a few additional steps you will need to complete.

Step 1: Power Up

First, plug your other USB-Micro cable into the Papilio module and move SW1 to the “up”
position. You still need to have the FPGA USB cable connected to the USB-Mini connector.
You don’t have to change the PWRSEL jumper for this exercise.

You’ll notice now that there are two Papilio DUOs listed in DesignLab’s Tools→Port sub-
menu: one for the FPGA and one for the AVR. You’ll need to select the FPGA COM port first,
as shown in Figure B-1.

Figure B-1 Select FPGA port

223

B

Then you will need to select the AVR board type, as shown in Figure B-2. Select “AVR-USB”
for this exercise. You do not want to select “AVR-No USB - ISP”!

Figure B-2 Select AVR board type

Need to Know

DesignLab lets you upload sketches to the AVR chip using the FPGA as an
ISP programmer. The benefit of this is that it lets you use all of the code
space available on the AVR chip. The Arduino bootloader eats up a couple
of kilobytes of code space, and some sketches for the Arduino need that
extra space. Some of the demos will not fit unless you use this method. The
downside is that this method will completely wipe out the Arduino boot-
loader, which means you will no longer be able to load sketches over the
USB port. You can replace the bootloader, but it is a bit of a hassle, so
Gadget Factory doesn’t recommend using this method unless you run into
a situation that requires it.

Step 2: Change Circuit Directive

Next, you need to change the circuit directive to remove the ZPUino soft core—but
remember that you always need to have a circuit (FPGA bit file) associated with your
sketch. You do this by simply using the “blank” circuit:

#define circuit blank

Figure B-3 shows what the sketch looks like with this directive added.

224 Make: FPGAs

Step 2: Change Circuit Directive

Figure B-3 Blank circuit directive

Step 3: Load FPGA Bit File

Now load the FPGA bit file to the module by clicking the Load Circuit icon in the DesignLab
toolbar as before. Wait for the “Done burning bit file” message to appear.

FYI

You still need a very basic FPGA image to route the reset signal through the
FPGA to the AVR.

Step 4: Change COM Port

Change the COM port to the AVR port, as shown in Figure B-4.

225Appendix B

Step 3: Load FPGA Bit File

Figure B-4 AVR port selection

Step 5: Compile and Upload Sketch

Compile and upload the sketch (C program) to the ZPUino (Arduino soft core) so it can
begin executing. You do this by clicking the Upload icon in the DesignLab toolbar. Wait for
the “Done uploading” message and you should see the green LED blinking on your board
again—only this time the code is executing in the AVR (Arduino microcontroller).

Serial Monitor
I like to add the serial monitor into my initial testing when using Arduino-compatible
boards. It’s a convenient way to check if the code you think is running is actually running.
You can also use it for some simple code debugging techniques.

To do this, you will need to add a couple more lines of C code to your sketch. First, you’ll
need to configure your serial monitor to 9,600 baud in the setup section of your code:

Serial.begin(9600);

Then you need to add a print line statement inside your main loop. Make sure you have a
semicolon at the end of each of these statements—that’s a C syntax rule. You can write any
text inside the quotes and it will be displayed in the serial monitor window of the IDE:

Serial.println("First Papilio DUO AVR Test");

Figure B-5 shows what the sketch should look like.

226 Make: FPGAs

Step 5: Compile and Upload Sketch

Figure B-5 Adding serial monitor code

Compile and upload your sketch as before, then open the serial monitor from the Tools
menu of the IDE (Figure B-6).

Figure B-6 Open serial monitor

227Appendix B

Step 5: Compile and Upload Sketch

You should see the text you coded in the serial monitor window (Figure B-7).

Figure B-7 Serial monitor window

You can use this same code in the ZPUino. I typically change the text inside the quotes,
which gives me a good visual of the code file that I’m actually executing.

Additional Resources

I highly recommend that everyone watch the Gadget Factory’s Papilio DUO Overview
video and DesignLab Tour video.

You should also review the DUO QuickStart Guide and watch the FPGA video and the AVR
video, all of which are available on the Gadget Factory website.

228 Make: FPGAs

Additional Resources

http://bit.ly/1KK2zkx
http://bit.ly/1KK2zkx
http://bit.ly/1KK2tcC
http://bit.ly/1KK2tcC
http://bit.ly/1KK2xsY
http://bit.ly/1KK2xsY

Text and Code Editor

It is a good idea to have a text and code editor in your FPGA toolbox. There will be times
when you will need to look at an HDL code file outside of the Xilinx ISE WebPACK. For
those of you who will be doing most of your FPGA exploration on a Windows PC, you will
need an editor that is more sophisticated than Notepad. I like to use the freeware editor
PSPad when I’m doing any type of code development on a Windows platform; it has a fairly
rich feature set.

There are many good text and code editors out there. Wikipedia has a good list of many of
them.

When I’m working on a Linux platform I use gedit, another freeware program. This is a
basic text/code editor with a reasonably good graphical user interface. Now, for many of
the hardcore hardware and software developers using the Linux OS platform, the whole
topic of code editors is hallowed ground. I have been in some development labs where
just the mention of gedit is like speaking blasphemy to the gods of the command line.
Seriously, I have gotten into the crossfire of many heated debates between the opposing
forces of the vi and Emacs cults. The bottom line is, choose whatever editor floats your
boat.

229

C

http://www.pspad.com/index_en.html
http://en.wikipedia.org/wiki/List_of_text_editors
https://wiki.gnome.org/Apps/Gedit

Index

Symbols
#define directive, 165
$display, 119
$time, 119
1-Pixel Pac-Man project, 193
; (semicolons), 51
<= (nonblocking assignment statement), 90

A
Add Symbol tool, 175
Altera, xi
always blocks, 90, 119
AMBA (Advanced Microcontroller Bus

Architecture), 105, 158
analog-to-digital converter (ADC), 212
anode configuration, 82
arcade games project

appeal of vintage games, 183
important points, 199
LED dot matrix-displayed, 192-198
VGA-displayed, 183-191

Arduino C program, 164, 168
Arduino shield ecosystem, 3
arithmetic logic unit (ALU), 128
ARM A9 processor, 8
ARM-based SoCs, 158
assign statement, 52, 90

async reset, 53
audio cores, 171
audio generator blocks, 175
AVR (Arduino microcontroller), 162, 223-228
axasm universal assembler, 151

B
baud rate clocks, 89
BCD math conversion algorithm, 145
begin statements, 90
behavioral models, 15
binary counters, 34
bit files, xii, 70, 166, 177
Bitcoin mining project

background on Bitcoin currency, 201
bill of materials, 202
block diagram, 203
designing in DesignLab, 204
device setup, 202
important points, 207
source code, 207

BitGen bistream generator, 70
blink LEDs concept, 22-25
block diagrams, 12
block memory, regenerating, 141
BoM (Bill of Materials)

for Bitcoin mining project, 202
for LED dot matrix-displayed games, 192

231

for LED project, 25
for SDR receiver project, 211
for stopwatch project, 83
for VGA-displayed arcade game, 183
for video-audio player, 169

bottom-up design method, 14
BRAM, 189
breadboards, 25, 71, 83
break points, 122
buffers, 41
build phase, 18
bus functional models , 15, 158
bus taps, 40

C
C programs, 168
Cadence Design Systems, 103
CARDIAC computer, 125

(see also VTACH project)
cathode configuration, 82
CB16CE, 53
chassis-based platforms, 158
circuit verification, 103

(see also test bench method)
clock frequency divider circuit, 22
clock frequency experimentation, 75
clock pulse strobes, 86
clock signals, 119
CLR pin, 53
code editors, 229
code reuse, 105
comment text, 49
common cathode vs. common anode

configuration, 82
computer-aided design (CAD), 14, 158
concept phase, 11
connection by name, 89
constraints file, creating, 68
copying errors, 187
CORE Generator & Architecture Wizard, 88, 141
counters

cascading, 36
coding, 50
complete Verilog code for, 53

defining loops and reset, 52
symbols for, 34
wiring, 35

CPLD (complex programmable logic device), 18,
210

D
D Register, 50
D-Flip-Flop (DFF), 50
D2XX driver, 131
debugging, 44
delay control, 118
design flow

build phase, 18
concept phase, 11
design phase, 12
overview, 11
run phase, 18
synthesize phase, 17
test phase, 15

design phase, 12
design rule checks (DRC) system, 68
DesignLab

audio block addition, 175
benefits of, 160
Bitcoin mining project, 204
creating new projects, 171
creating/loading sketches, 178
downloading, 160
editing designs, 172
implementing/generating bit files, 177
installation, 160
LED dot matrix display experiments, 197
opening example designs, 195
VGA adapter block addition, 175
VGA color control, 179
video-audio player, 169
viewing designs, 196

development tools, 2
device properties, specifying, 29
device under test (DUT), 104, 118
Digilent Pmod™ Interface Specification, 3
digital clock manager (DCM), 87-90
digital down-converter (DDC), 212

232 Index

digital frequency synthesizers, 89
DOA (dead on arrival) test, 15, 98
Dr. Dobb, 151
DUO Computing Shield, 175

E
Edimax EW7811Un, 213
Elbert V2

features of, 9
modifications for VTACH project, 134-145
setup, 130-134

Emacs text editor, 229
embedded computing devices, 195
end statements, 90
endmodule keyword, 47
EPLD (erasable programmable logic device), 210
error handling, 44

F
fabrics

defined, 158
standards for, 158
Wishbone Bus Interface Standard, 158

Fingerman, Saul, 125
flat design method, 14
flip-flops, 50
FPGA (field programmable gate array)

benefits of, x
history of, ix
implementation characteristics, 210

FPGA boards
design flow for, 11-19
Numato Lab, 8-10
Opal Kelly, 4-6
overview of, 219
Papilio DUO, 2-4
Papilio series, 3
prices of, 1, 3-4, 6, 8, 219
Red Pitaya, 6-8
selecting, 1, 19
Xilinx selection list, 219
Xilinx Zynq, 2

(see also individual boards)

FPGA circuit HDL design entry
attaching elements with assign statement, 52
compiling code with HDL synthesizer, 53
completed counter circuit Verilog code, 53
counter coding, 50
creating HDL source files, 48
declaring wires, 52
defining counter loop and reset, 52
defining counter variables, 51
defining module ports, 47
ISE HDL editor color codes, 49
logic design elements, 57
naming projects, 45
new project creation, 45
opening new source files, 46
overview, 45
propagation delay, 58
RTL view, 56
selecting preferred language, 45
Technology view, 57
timing tools, 59
Verilog design, 50

FPGA circuit schematic design entry
adding binary counters, 34
adding bus taps, 40
adding I/O pin symbols, 43
adding labels, 37
adding output buffers, 41
cascading counters, 36
debugging, 44
default settings, 30
diagram, 42
error handling, 44
implementing (compiling) modules, 44
naming projects, 28
opening new projects, 27
opening new source files, 30
opening schematic drawings, 32
saving work, 42
selecting source types, 31
specifying device properties, 29
wiring counters, 35
zooming in, 33

FPGA Mezzanine Connect (FMC), 1
framebuffers, 179
frequency configuration, 75

233Index

frequency synthesizers, 89
FrontPanel SDK, 5, 66
FTDI CDM drivers, 131
full custom implementation, 210

G
Gadget Factory, 159
"garbage in, garbage out" adage, 18
gate array implementation, 210
gedit, 229
general-purpose computing devices, 194
Generate Programming File process, 70
generating enable strobes, 86
GPIO (general purpose I/O), 67, 100
graphical analysis, 122
graphical form, 12

H
Hagelbarger, David, 125
hardware description languages (HDLs), 18
"HDL Coding Practices to Accelerate Design

Performance", 58
HDL concurrency

concept of, 79
important points, 101
7-segment displays, 80
stopwatch concept, 79
stopwatch design, 82-98

HDL form, 2, 12
HDSDR application, 214
Hierarchical Design method, 12, 89

I
I/O pins

assigning physical, 65-68, 100
constraints file creation, 68
pin mapping table, 68
polarity coding on Elbert V2, 138
remapping Elbert V2, 135
symbols for, 43

I2C serial bus, 12, 107, 117

I2C-Master Core Specification, 107
IDE (integrated development environment), 19
if statement, 52
iMPACT tool, 70
implementation technologies, 210
indicator lights, designing blinking, 22-25
input clock, 22, 66, 80
Institute of Electrical and Electronics Engineers

(IEEE), 209
integrated circuits (IC), 156
Intel Corporation, 156
Intel CPU chips, 210
interface connectors, 1
Internet connections, 213-214
IP blocks, 105, 159, 175
ISE HDL editor, 49
ISE Place and Route tool, 43

K
Kilby, Jack, 156

L
labels, adding to designs, 37
LED dot matrix-displayed arcade games

bill of materials, 192
block diagram, 193
designing in DesignLab, 195
LED display experiments, 197
source code, 198

LEDs, designing blinking, 22-25
Linux support, 19
local microcontrollers, 2
Logic Cell Array (LCA), xi
loops, 52
Lopes, Alvaro, 170

M
Mac support, 19
master devices, 117
Matrixman, 193
meeting timing, 58

234 Index

memory blocks, regenerating, 141
memory fabric, 158
memory mapping, 194
Mentor Graphics, 103
microcontrollers, 2
Mimas V2, 10
mining pools (Bitcoin), 206
MIT Scratch programming paradigm, 213
ModelSim, 216
module keyword, 47
modules

implementing (compiling), 44
instantiating, 89

Moore, Gordon, 156
multi-clock-period signals, 86

N
nonblocking assignment statement (<=), 90
Notepad, 229
Numato Lab, 8-10

O
OCP, 105, 158
one-clock pulse, 86
1-Pixel Pac-Man project, 193
Opal Kelly

assigning physical I/O, 66-68
features of, 4-6
Pins UCF file generator, 70
setup, 72-75

Open Verification Methodology (OVM), 103
open-source IP block libraries, 105
OpenCores library

benefits of, 105
downloading I2C controller core, 105
VTACH project, 128

operating precision, 118
ordered connection, 89
oscilloscopes, 8
output buffers, 41

P
Pac-Man, 183
Papilio AVR (Arduino microcontroller), 162,

223-228
Papilio DUO

features of, 2-4
in Bitcoin mining project, 202
in VGA-displayed arcade game project, 183
setup, 161-169

Papilio FPGA boards, 3
Papilio One 250K, 3
Papilio Wings connectors, 3
path delay, 58
peripheral breadboads, 25
Peripheral Component Interconnect (PCI), 195
peripheral fabric, 158
personal computers (PC), 194
photolithographic manufacturing process, 210
pin mapping table, 68
Pins application, 70
pixels, writing to VGA, 179
PlanAhead environment, 69
PlanAhead tool, 68
PLDs (programmable logic devices), x
PLL (phase lock loop), 66, 75
Pmod (Peripheral Module Interface), 3, 5
Pong Demo, 189
port declaration wizard, 47
ports, connecting, 89, 162
printed wiring boards (PWBs), 14, 155
projects

arcade games, 183-199
Bitcoin mining, 201-207
CARDIAC/VTACH computer, 125-153
LED blink, 22-77
naming, 28, 45
opening, 27, 45
software-defined radio, 209-217
specifying device properties, 29
stopwatch, 79-101
test bench, 103-124
updating device selection, 134
video-audio player, 155-181

propagation delay, 58

235Index

PSPad, 229
PWRSEL jumper, 162
Python mining script, 206

R
rack-based computer systems, 158
radio frequency (RF), 209
Red Pitaya

features of, 6-8
Internet connection, 214
SDR loading, 213
setup, 213

refresh rates, 83
reg reserved word, 51
register transistor logic, 17
registers, 50
reset functionality, 52
resistor-transistor logic, 156
reuse, 105
RF (anolog) frontend, 213
RGB adapter block, 193
ROM files, 189
romgen tool, 189
ROMVault

installing, 186
running, 188

RTL (register-transfer level)
bottom level view, 56
classic synchronous HDL logic design, 56
defined, 17
ISE schematic viewer, 54

run phase, 18

S
Sbuild2, 68
.sch files, 58
schematic drawings, 2, 14
schematic symbol library, 33
schematic-to-HDL conversion, 58
scope probes, 6
SDR (software-defined radio) project

antenna setup, 211
bill of materials, 211

block diagram, 212
how it works, 212
important points, 217
loading, 213
Red Pitaya setup, 213
SDR benefits, 209
SDR definitions, 209
source code, 216
tutorial page, 212

semicolons (;), 51
serial clock line (SCL), 108
serial data line (SDA), 108
7-segment displays

how they work, 80
Verilog code for, 90
VTACH project, 128

SHM (Simulation History Manager), 122
SID (sound interface device), 171
signal generators, 8
simulation test

benefits of, 60
build process, 65
creating constraints file, 68
forcing clock and reset signals, 61
opening, 60
programming target device, 70
stopwatch design, 98
VTACH project, 145-150

sketches, 164, 168, 178
slave devices, 117
smartphone block diagram, 157
SoC design

architecture, 157
functional block diagram approach, 155
history of SoCs, 155
important points, 181
Moore's law and, 156
Papilio DUO setup, 161-169
using DesignLab, 160
video-audio player, 169, 171-181

SoC development flow
blink LEDs concept, 22-25
BoM (Bill of Materials), 25
clock frequency experimentation, 75
design overview, 25
diagram, 21

236 Index

FPGA circuit HDL design entry, 45-60
FPGA circuit schematic design entry, 27-44
implementation technologies, 210
important points, 76
Opal Kelly setup, 72-75
overview, 21
peripheral breadboard, 25
simulation, 60-71
Xilinx ISE WebPACK installation, 23-25

soft designs, 165
soft IP libraries, 105
Software-Controlled Sound Generator (SSG), 171
Space Invaders, 183
"Spartan-6 Libraries Guide for Schematic

Designs", 35
Spartan 3A, 128
Spartan XC3S50A, 10
Spartan-6 LX9, 10
spectrum analyzers, 8
standard cell implementation, 210
stimuli (inputs), 104
stopwatch project

BoM (Bill of Materials), 83
build process, 100
concept for, 79
design overview, 82
digital clock manager (DCM), 87-90
FPGA circuit for, 84
peripheral breadboard, 83
7-segment display for, 80
simulation test, 98
Verilog code and concurrency, 90-98

Stratum proxy, 206
sync reset, 53
Synopsys, 105
synthesis tool, 17
synthesize phase, 17
synthesized clocks, 89
sysclk period, 100
system clock, 22
Szczys, Mike, 193

T
technologies for implementation, 210

Technology view, 57
test bench method

adding files for simulation, 112
basics of, 15, 103
block diagram of I2C core, 116
clocks and resets, 119
code examination in iSim tool, 117
code reuse and, 105
components and terminology, 104
displaying results, 119
documentation review, 107
downloading I2C controller core, 105
examining code using break points, 122
grouping commands with tasks, 119
important points, 124
instantiating DUT and generators, 118
instantiation of wrapper, 104
RTL file review, 109
viewing data with waveforms, 122

test fixture (see test bench method)
test phase, 15
Texas Instruments, 156
text editors, 229
time scale, 118
timing tools, 59
tool licenses, 2
transistors, 156
triggers, 50

U
unit under test (UUT), 15, 104
universal cross assembler, 151
USB WiFi dongle, 213
USB-Micro connector, 162
USB-Mini connector, 162
user constraints file (UCF), 68, 135

V
validation phase, 15
VCD (Value Change Dump) format, 122
Verilog

code example, 13
code for FPGA 7-segment display, 90-98

237Index

coding circuit building blocks, 50
combining elements, 52
compiling code, 53
creating module source file, 46
declaring wires, 52
defining counter loop and reset, 52
defining module ports, 47
modules in, 50, 89
selecting as preferred language, 45
semicolon use in, 51
test bench example, 103
time scale and operating precision, 118

VGA adapters, 171, 175
VGA-displayed arcade games

bill of materials, 183
block diagram, 184
how it works, 185
loading games, 185-189
source code and ROM files, 189

VHDL
ISE HDL editor color codes, 49
tools supporting, 2
vs. Verilog, 76

vi text editor, 229
video-audio player project

bill of materials, 169
block diagram, 169
designing in DesignLab, 171-181
how it works, 170

vintage arcade theme, 183
virtual breadboard sandbox, 6
virtual testing environments, 103
Visual Programming tool, 213
VTACH project

building and running, 150
design illustration, 128
downloading from OpenCores, 128
Elbert V2 modifications, 134-145
Elbert V2 setup, 130-134
generating your design, 145
important points, 153
opening, 129
programing and assembler, 151
resource pages, 128
simulation, 145-150

W
waveforms, 98, 122
Waxwing, 10, 131
WiFi connections, 213
Williams, Al, 151
Wishbone interface, 108, 158, 171

X
XEM6002 (see Opal Kelly)
Xilinx FPGA boards, 219
Xilinx ISE WebPACK

CORE Generator & Architecture Wizard, 88
creating HDL source files, 48
FPGA circuit HDL design entry, 45-60
FPGA circuit schematic design entry, 30-44
HDL editor color codes, 49
installation, 23-25
opening projects, 27, 45
Place and Route tool, 43
port declaration wizard, 47
Red Pitaya support, 216
ROM file handling, 189
Schematic Viewer, 54
schematic-to-HDL conversion, 58
timing tools, 59
wave form viewer, 98

Xilinx ISim simulator, 112, 117
Xilinx Spartan-6 XC6SLX9, 3, 4
Xilinx XC 2000, xi
Xilinx XC3S250, 3
Xilinx Zynq, 2, 6

Y
Yamaha YM2149, 171

Z
ZPUino, 165, 170, 193

238 Index

About the Author
David Romano recently founded Tri-Tech Pathways Inc. to bring STEM education to stu-
dents with a real-world industry perspective. He is a proven technical leader whose engi-
neering career has spanned over 25 years and multiple high-tech companies, including
Raytheon, Motorola, HP, Intel, and two start-up companies. He is the coauthor of multiple
technology patents and is currently the president and CEO of Tri-Tech Pathways Inc.

David is currently pursuing a doctorate degree in education and he holds degrees in elec-
trical engineering and theology. He is actively involved in STEM advisory and teaching
roles. He is also a member of the International Society for Technology in Education (ISTE)
and the Computer Science Teachers Association (CSTA).

David is an avid motorcyclist who enjoys both on-road and off-road riding; he loves hiking
and snowshoeing in the mountains of New England and is also a certified scuba diver.

Colophon
The cover image was created by Shawn Wallace. The cover fonts are Benton Sans and Soho
Pro. The text font is Adobe Myriad Pro; the heading font is Benton Sans; and the code font
is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	FPGA History
	About the Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Overview
	Papilio
	Opal Kelly
	Red Pitaya
	Numato Lab
	Design Flow
	Concept Phase
	Design Phase
	Test Phase
	Synthesize Phase
	Build Phase
	Run Phase

	Takeaways

	Chapter 2. Count on It!
	Blink LEDs Concept
	How It Works
	Xilinx ISE WebPACK Installation

	Design
	Peripheral Breadboard
	FPGA Circuit Schematic Design Entry
	FPGA Circuit HDL Design Entry

	Simulation
	Build
	Creating the Constraints File
	Program Target Device

	Open Kelly Setup
	Setup Test

	Clock Frequency Experimentation
	Takeaways

	Chapter 3. That’s Refreshing
	Stopwatch Concept
	How It Works

	Design
	Peripheral Breadboard
	FPGA Circuit
	Digital Clock Manager (DCM)
	Verilog Code and Concurrency

	Simulation
	Build
	Assigning Physical I/O

	Takeaways

	Chapter 4. Testing 1, 2, 3, 4
	The Test Bench
	Test Bench Anatomy

	Reuse
	Running the Test Bench Project
	Step 1: Selection and Download of Core
	Step 2: Documentation
	Step 3: RTL
	Step 4: Adding Test Bench Files and Running the Simulation

	Exploring the Test Bench Project
	Overview

	Takeaways

	Chapter 5. It Does Not Compute
	The CARDIAC Computer Model
	Getting Started with VTACH
	Numato Elbert V2 Setup
	Modifications
	Step 1: Device Section
	Step 2: Pin Assignments
	Step 3: Clocking
	Step 4: I/O Polarity
	Step 5: Memory Block Update

	Design, Build, and Simulation
	Simulation

	Building and Running
	Programing and Assembler
	Takeaways

	Chapter 6. It’s a Small World!
	System on Chip
	SoC Architecture
	DesignLab
	Installation

	Papilio DUO Setup
	Step 1: Power Up
	Step 2: Select COM Port
	Step 3: Create Project
	Step 4: Associate Circuit
	Step 5: Load FPGA Bit File
	Step 6: Compile and Upload Sketch

	Getting Started with the DesignLab Video-Audio Player
	How It Works

	Design
	Step 1: Create New DesignLab Project
	Step 2: Edit Your Design in Xilinx ISE
	Step 3: Add VGA Adapter Block
	Step 4: Add Audio Blocks
	Step 5: Implement and Generate Bit File
	Step 6: Create Sketch, Load, and Run
	Experiments
	Source Code

	Takeaways

	Chapter 7. Just for the Fun of It
	Getting Started with VGA-Displayed Arcade Games
	How It Works
	Loading a Game
	Source Code and ROM Files

	Getting Started with LED Dot Matrix–Displayed Arcade Games
	How It Works
	Design
	Experiments
	Source Code

	Takeaways

	Chapter 8. Cha-Ching!
	Getting Started with the Bitcoin Miner
	How It Works
	Design
	Source Code

	Takeaways

	Chapter 9. I Hear You!
	Getting Started with the SDR Receiver
	How It Works
	Red Pitaya Setup

	Loading the SDR
	Step 1: Copy Red Pitaya SD Card Image
	Step 2: Install SDR Applications on PC
	Step 3: Connect Red Pitaya to the Network
	Step 4: Run SDR Applications
	Source Code

	Takeaways

	Appendix A. FPGA Boards
	Appendix B. Papilio AVR Loading
	Step 1: Power Up
	Step 2: Change Circuit Directive
	Step 3: Load FPGA Bit File
	Step 4: Change COM Port
	Step 5: Compile and Upload Sketch
	Serial Monitor

	Additional Resources

	Appendix C. Text and Code Editor
	Index
	About the Author

