

Make:
JavaScript
Robotics

Building NodeBots
with Johnny-Five,
Raspberry Pi, Arduino,
and BeagleBone
Rick Waldron & Backstop Media
With Donovan Buck, Bryan Hughes, Pawel Szymczykowski,
Raquel Velez, Kassandra Perch, Susan Hinton, Julian David
Duque, Andrew Fisher, David Resseguie, Jonathan Beri, Emily
Rose, Anna Gerber, Sara Gorecki & Lyza Danger Gardner

R
ick W

ald
ro

n
 &

 B
acksto

p
 M

ed
ia

US $29.99 CAN $34.99

ISBN: 978-1-4571-8695-0

 JavaS
cript R

obotics

Make: JavaScript Robotics
JavaScript isn’t only the programming language for the Web—it’s one of the easiest
languages for writing asynchronous programs. Just as a web app needs to interact with a
web server in the background while managing a dynamic user interface, a robot needs to
think about where it’s going while waiting for your instructions or looking for obstacles.
Make: JavaScript Robotics shows you how to use JavaScript to build robots that react
responsively to the world around them.

Using the open source Johnny-Five robotic library with Arduino, Raspberry Pi, and
BeagleBone, you’ll learn step-by-step methods to build and program ’bots that rove, swim,
type, walk, dance, send alerts, make music, express emotion, and more.

Lead author Rick Waldron invented Johnny-Five and has recruited a roster of 14 top-notch
programmers to share their favorite JavaScript robotics projects with you.

With clear instructions on materials needed, where to find them, and their estimated costs,
as well as plenty of help along the way to plan and troubleshoot your project, you’ll have no
trouble building the projects in this book.

See what happens when JavaScript meets hardware!

In Make: JavaScript Robotics, you’ll build:

»	 Walkers, typers, swimmers, and rovers

»	 A dancing hexapod

»	 Voice-activated relay control

»	 An indoor sundial

»	 Holiday, mood, or “anytime” lighting

Technology & Engineering/Robotics

»	 A security and notification system

»	 Sonar-based artificial intelligence

»	 A delta bot

»	 Musical shoes

Once you’ve mastered these projects, you’ll be ready to make any robot you can imagine.
Perfect for the intermediate maker with a background in JavaScript, this book unlocks the
possibilities of the Johnny-Five library, Raspberry Pi, Arduino, and BeagleBone.

9781457186950_cover_1.5.indd 1 4/2/15 3:00 PM

Rick Waldron, Anna Gerber, David Resseguie,
Emily Rose, Susan Hinton, Sara Gorecki, Bryan

Hughes, Andrew Fisher, Julian David Duque,
Pawel Szymczykowski, Donovan Buck,

Jonathan Beri, Kassandra Perch, Raquel Vélez,
Lyza Danger Gardner

Make: JavaScript
Robotics

978-1-4571-8695-0

[TI]

Make: JavaScript Robotics
by Backstop Media and Rick Waldron

Copyright © 2015 Backstop Media, LLC. All rights reserved.

Printed in Canada.

Published by Maker Media, Inc., 1160 Battery Street East, Suite 125, San Francisco, California 94111.

Maker Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our distributor’s cor-
porate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Melanie Yarbrough
Copyeditor: Tracy Brown Hamilton
Proofreader: Jasmine Kwityn
Indexer: Meghan Jones, WordCo Indexing

Interior Designer: David Futato
Cover Designer: Brian Jepson
Cover Photographer: Pawel Szymczykowski
Illustrator: Rebecca Demarest

April 2015: First Edition

Revision History for the First Edition
2015-04-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781457186950 for release details.

The Make logo and Maker Media logo are registered trademarks of Maker Media, Inc. Make: JavaScript Robotics and
related trade dress are trademarks of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and Maker Media, Inc., was aware of a trademark claim,
the designations have been printed in caps or initial caps.

While every precaution has been taken in preparation of this book, the publisher and author assume no respon-
sibility for errors or omissions, or for damages resulting from the use of the information contained herein.

mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781457186950

Table of Contents

Preface . xi

1. Building Robots with Lo-tech Materials . 1
Building the SimpleBot . 2

Bill of Materials . 2
Build Steps . 3
Installing Node.js Packages . 6
Testing the Build with a Basic Program . 6
Troubleshooting . 6
A Simple Driving Program . 8
Troubleshooting . 9

Cutting the Cord . 10
Building a Wireless SimpleBot . 10
Wiring Up . 10
Controlling the SimpleBot . 12
Troubleshooting . 15

What’s Next? . 15

2. TypeBot . 17
Bill of Materials . 18

Understanding Your Servomotors . 18
Anatomy of a Robot Arm . 19

Arm Layout . 19
Arm Constraints . 20

Building the Hardware . 20
The Base and Shoulder . 20

iii

The Elbow . 21
The Wrist . 22
The Finger . 23
The Brains . 24

Writing the Software . 24
Creating the Project Files . 24
Controlling the Servos . 24
Initialization . 28
Sequencing a Key Press . 29
Running for the First Time . 32
Fine-Tuning the Arm . 32

What’s Next? . 33

3. Getting Started with NodeBoats . 35
Bill of Materials . 36

Tools . 37
The Submarine Motor Pod . 37

Why Use a Motor Driver? . 37
Motor Pod Components . 37
Modifying the Motor . 38
Testing the Motor . 39
Finishing the Motor . 39
Inserting the Motor . 40
Drilling into the Motor Pod . 41
Closing the Motor Pod . 42
Waterproofing Your Wires . 42

Setting Up Your Spark . 43
Testing the Spark . 43

Your First Spark Program . 44
Soldering the Motor Driver . 45
Wiring Up Your Boat . 46

Powering the Motor Driver . 47
Connecting the Spark and the Motor Driver . 47
Connecting the Motor . 48

Controlling Your Motor: The Code . 49
Adding Keypress Events . 50
Storing Keypress State . 50

Floating the Boat . 52
Steering with Servos . 53

Programming Servo Control . 54
Assembling the Rudder . 56

iv Make: JavaScript Robotics

Setting Sail . 57
What’s Next? . 57

4. piDuino5 Mobile Robot Platform . 59
Bill of Materials . 60

Tools . 61
Setting Up the Boards and Installing Software . 61

Installing Node.js on the Raspberry Pi . 61
Downloading the piDuino5 Code and Dependencies . 61
Plug in the Arduino . 62
Test Johnny-Five over WebSockets . 62
Walk Through app.js . 62
Initializing Johnny-Five . 63
Controlling the Hardware . 63
Low-Latency Control with WebSockets . 63
Connect from Anywhere . 64

Assemble the Hardware . 64
Controlling with a Smartphone . 66

Downloading the piDuino5 Web App . 66
Post localtunnel to the Web App . 66
Try the Web App on a Phone . 67

Walk Through app.js and index.html . 67
Storing the localtunnel Address and Frontend . 67
Serving the UI . 67
Touchscreen Joystick . 68
Establishing a Connection . 68
Sending Commands . 68

What’s Next? . 69

5. Controlling a Hexapod with Johnny-Five . 71
Bill of Materials . 71
Controlling the Robot from the Command Line . 72
An Introduction to phoenix.js . 72
Assembling the Robot . 74

Prepare the Chassis . 74
Mount the Electronics . 74
Prepare the Servos . 75
Installing the coxae . 76
Installing the Femurs . 77
Installing the Tibias . 77

The Coordinate System . 78

vTable of Contents

Trim the Servos . 78
Trim the coxae . 78
Trim the Femurs . 79
Trim the Tibias . 79

Add Ranges to the Servos . 80
Walking Is Hard! . 81
Meet the Animation Class . 81

An Array of Servos as the Target . 82
A Servo.Array as the Target . 82
An Array of Servo.Arrays as the Target . 82

The First Animation Segment . 83
Walking . 85

The Row Gait . 86
The Walk Gait . 86
The Run Gait . 87

Turning . 87
Command Reference . 88
What’s Next? . 88

6. Building Voice-Controlled NodeBots . 89
Bill of Materials . 89

BeagleBone Black . 91
Building Our Project . 92
Building a Relay Circuit . 92

Controlling the Relay Circuit from Johnny-Five . 93
Building a Microphone Preamplifier Circuit . 93

Connecting the Microphone to the Relay from Johnny-Five . 94
Building the Commands Server . 95
Simple Voice Control Using the Web Speech API . 97
Integrate the Commands Server with the Relay Circuit . 99
Advanced Voice Control Using an Android Wearable . 100

Android Mobile Application . 101
Android Wear Application . 105

What’s Next? . 108

7. An Indoor Sundial . 109
Bill of Materials . 110

Foam Core Structural Pieces . 112
Building Our Sundial . 113
Cutting and Assembling the Core Structure . 113

Assemble the Mounting Board . 113

vi Make: JavaScript Robotics

Wiring and Configuring the Servos . 114
Wiring the Servos . 114
Configuring the Servos . 115

Building the Lower Base . 116
Making the Disks . 117
Build the Base Walls and Base Disk Support . 118

Build the Base Walls . 118
Position the Disks . 118
Build the Disk Support . 119

Finish Parts and Construction . 121
Build the Azimuth Arm . 121
Construct the Elevation Arc . 122
Cut a Gnomon . 123
Wire Up the Sun . 123

Code to Make It Go . 124
Understanding sundial.js . 124
Set Up Some Configuration in sundial.js . 125
sundial.js Details . 126

Putting It All Together! . 128
Making It Go! . 129
What’s Next? . 129

8. Spooky Lights . 131
Bill of Materials . 131

Choosing a Controller Board . 133
Background . 133

What’s an LED Matrix? . 133
Assembling the Lights . 134

Tools Required . 134
Preparing the Matrices . 134
Constructing a Cable Assembly . 136
Decorating the Lights . 140
Troubleshooting . 140

Controlling an LED matrix . 140
Preparing the Arduino . 140
Running a Test Program . 141
Matrix Constructor Options . 141
Drawing to the Matrix . 141

Developing a Web Application . 142
Development Tools . 142
Using the Express Generator . 142

viiTable of Contents

Developing an API . 143
Adding a User Interface . 144
Extending the Application . 145

What’s Next? . 145

9. CheerfulJ5 . 147
Bill of Materials . 147
Wiring the Circuit . 149
The CheerfulJ5 code . 149

Connecting to the Arduino . 149
Controlling an RGB . 150
Using the Node.js Read-Eval-Print Loop . 151
Defining the CheerLights Color Map . 151
Accessing the CheerLights ThingSpeak API . 152
Using the Twitter Streaming API . 155

Going Wireless with the Spark WiFi Development Kit . 157
Adding the Spark to Your Circuit . 157
Using the Spark-io IO Plugin . 158
Switching to Battery Power . 159

Packaging It Up . 159
What’s Next? . 160

10. Interactive RGB LED Display with BeagleBone Black 161
Bill of Materials . 162

BeagleBone Black . 162
WiFi USB Adapter (optional) . 162
External 5V Power Supply (Semi-Optional) . 162
RGB LEDs . 163
Sensors . 163
Miscellaneous . 163

Getting Ready: Software . 163
LEDScape . 163
Wiring Your LEDs . 164

Wiring Up Your RGB LEDs . 164
Code Time! Let’s Bring in the JavaScript . 166

Running a Test Script . 167
Adding in Johnny-Five/Beaglebone-io . 169
Adding a Photoresistor . 171
Changing Colors with an Accelerometer . 171

What’s Next? . 172

viii Make: JavaScript Robotics

11. Physical Security, JavaScript, and You . 177
Simple Ultrasonic Sensor Project: Experimental Control Test (SUSPECT) . 178

Implementation . 178
SMS Augmented Ultrasonic Sensor Application: General Experimentation (SAUSAGE) 181

Implementation . 182
Point-of-Entry Monitoring System (PoEMS) . 183

Implementation . 183
Lasers Impress Both Enemies and Relatives, Thank You (LIBERTY) . 184

Implementation . 184
Status Indicator Necessary, Buttons and Diodes (SINBaD) . 186

Implementation . 187
What’s Next? . 190

12. Artificial Intelligence: BatBot . 191
Artificial Intelligence: The Basics . 191

Remote-Controlled Robots . 192
Semi-Autonomous Robots . 192
Autonomous Robots . 192
BatBot . 192

Bill of Materials . 193
Some Notes About the Materials . 194

Assembly . 194
Step 1: Remote Control . 196

Moving the Robot . 196
Controlling the Robot . 198
Pointing and Reading from the Sonar . 198

Step 2: Autonomy . 200
Implementing the Algorithm . 201

Troubleshooting . 204
What’s Next? . 204

13. Delta Robots and Kinematics . 207
Bill of Materials . 208
Delta Anatomy . 209
Building Junky Delta . 210

Making It Move . 214
Predictable Positioning Through Kinematics . 216

More Sophisticated Delta Options . 220
TapsterBot . 220
Robot Army . 220

What’s Next? . 221

ixTable of Contents

14. Meow Shoes . 223
Bill of Materials . 223
Parts Explained . 225
Making the Sensor Inserts . 226

Solder the Sensors to the Wiring . 226
Install Sensors into the Shoes . 227
Tunnel the Wiring out of the Shoe . 227

Connecting the Shoes . 228
Prepare the Coiled Connector Cord . 228

Connect the Shoes to an Arduino . 230
Prepare Wiring . 230
Arduino Soldering . 231
Attach the Arduino to the Right Shoe . 231

Running the Code with Johnny-Five . 231
Connecting to Johnny-Five . 231
Setting up Sensors . 232
Logging Output of Sensors . 232
Example Behavior . 233

What’s Next? . 233

Appendix A. Appendix . 235

Index . 241

x Make: JavaScript Robotics

Preface

By Rick Waldron

I love programming and I also love making
things. When I discovered Chris Williams’ node-
serialport module (for Node.js), I remember
thinking, “Now I can program the things that I
make.” So I did! I contributed an Arduino sketch
that printed a photoresistor sensor value to the
open serial port and a small JavaScript handler
program that listened for data and printed a
“graph” to the terminal. Months later, I started
contributing to Cam Pedersen’s duino project,
until Julian Gaultier approached me with his
JavaScript implementation of the Firmata pro-
tocol. From there, we set out to build a collec-
tion of high-level component classes with one
goal: to make it easy and fun to control hard-
ware with JavaScript. This book will show you
what we built and how to use it to program the
things that you make.

While the physical challenges of engineering a
hardware project remain the same as they
would for a project programmed in any other
language, this book is going to show you how
to think about that hardware in terms of ob-
jects that maintain state and provide control
behaviors in the form of intuitively designed in-
terfaces.

So, how would you verbally describe adding an
LED to a project and then turning it on? You
might say, “Connect the LED to ground and pin
9, then turn it on.” Using the Johnny-Five frame-
work, that would be written as:

// Connect the LED to ground and pin 9
var led = new five.Led(9);

// then turn it on
led.on();

What about connecting a servo and then set-
ting its horn to a specific angle in degrees? “At-
tach the servo to pin 10 and position its horn to
110°.” Here’s what that looks like:

// Attach the servo to pin 10
var servo = new five.Servo(10);

// position its horn to 110°
servo.to(110);

These examples both illustrate an output, but
what about input? Consider how Arduino
sketches work: they generally rely on a program
loop and often introduce some form of delay
when reading and processing input. This means
that your Arduino sketch is blocked whenever it
is waiting for input. When writing programs in
JavaScript, the process is never blocked; in-

xi

stead, your handlers wait for data to arrive and
process it asynchronously:

var sensor = new five.Sensor("A0");

sensor.on("data", function() {
 console.log(this.value);
});

These are trivial examples, but they illustrate
the patterns that you will see repeated consis-
tently throughout this book. Each project will
show you how to construct it in the physical
sense, then construct it in the abstract pro-
gramming sense, and the latter will align with
the former.

With these concepts, you will build and pro-
gram:

• Walkers, typers, swimmers, and rovers
(Chapters 1, 2, 3, and 4)

• A dancing hexapod (Chapter 5)

• Voice-activated relay control (Chap-
ter 6)

• An indoor sundial (Chapter 7)

• Holiday, mood, or anytime lighting
(Chapters 8 through 10)

• A security and notification system
(Chapter 11)

• Sonar-based artificial intelligence
(Chapter 12)

• A delta bot (Chapter 13)

• Musical shoes (Chapter 14)

For me, the most exciting part about this book
is the authors themselves. This group is an ex-
cellent representation of NodeBots community
members that have stood out since the very
beginning. They are more than just writers or
engineers: they are teachers, communicators,
leaders, and (in my opinion) heroes. It would be
an understatement to say that I couldn’t have
done it without them.

Enough talk, more rock. These projects do not
have to be done in any specific order, so take a
look at the Table of Contents, find a project that
sounds like fun, and start building!

Conventions Used in This
Book

The following typographical conventions are
used in this book:

Italic
Indicates new terms, URLs, email addresses,
filenames, and file extensions.

Constant width

Used for program listings, as well as within
paragraphs to refer to program elements
such as variable or function names, databa-
ses, data types, environment variables, state-
ments, and keywords.

Constant width bold

Shows commands or other text that should
be typed literally by the user.

Constant width italic

Shows text that should be replaced with
user-supplied values or by values determined
by context.

This element signifies a tip, sug-
gestion, or general note.

This element indicates a warning or
caution.

The part numbers in each chapter use the fol-
lowing abbreviations:

• MS: Maker Shed
• AZ: Amazon
• AF: Adafruit
• SF: SparkFun

xii Make: JavaScript Robotics

http://makershed.com
http://amazon.com
http://adafruit.com
http://sparkfun.com

Using Code Examples

This book is here to help you get your job done.
In general, you may use the code in this book in
your programs and documentation. You do not
need to contact us for permission unless you’re
reproducing a significant portion of the code.
For example, writing a program that uses sever-
al chunks of code from this book does not re-
quire permission. Selling or distributing a CD-
ROM of examples from Make: books does re-
quire permission. Answering a question by cit-
ing this book and quoting example code does
not require permission. Incorporating a signifi-
cant amount of example code from this book
into your product’s documentation does re-
quire permission.

We appreciate, but do not require, attribution.
An attribution usually includes the title, author,
publisher, and ISBN. For example: “Make: Java-
Script Robotics by Jonathan Beri, Donovan Buck,
Julian David Duque, Andrew Fisher, Lyza Dan-
ger Gardner, Anna Gerber, Sara Gorecki, Susan
Hinton, Bryan Hughes, Kassandra Perch, David
Resseguie, Emily Rose, Pawl Szymczykowski,
Raquel Velez, Rick Waldron (Maker Media).
Copyright 2015 Backstop Media,
978-1-4571-86950.”

If you feel your use of code examples falls out-
side fair use or the permission given here, feel
free to contact us at bookpermissions@maker-
media.com.

Safari® Books Online

Safari Books Online is an
on-demand digital library
that delivers expert content
in both book and video
form from the world’s lead-
ing authors in technology
and business.

Technology professionals, software developers,
web designers, and business and creative pro-
fessionals use Safari Books Online as their pri-
mary resource for research, problem solving,
learning, and certification training.

Safari Books Online offers a range of plans and
pricing for enterprise, government, education,
and individuals.

Members have access to thousands of books,
training videos, and prepublication manu-
scripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Pro-
fessional, Addison-Wesley Professional, Micro-
soft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress,
Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more in-
formation about Safari Books Online, please vis-
it us online.

How to Contact Us

Please address comments and questions con-
cerning this book to the publisher:

Maker Media, Inc.
1160 Battery Street East, Suite 125
San Francisco, CA 94111

Make: unites, inspires, informs, and entertains a
growing community of resourceful people who
undertake amazing projects in their backyards,
basements, and garages. Make: celebrates your
right to tweak, hack, and bend any technology
to your will. The Make: audience continues to
be a growing culture and community that be-
lieves in bettering ourselves, our environment,
our educational system—our entire world. This
is much more than an audience; it’s a world-
wide movement that Make: is leading—we call
it the Maker Movement.

For more information about Make:, visit us on-
line:

xiiiPreface

mailto:bookpermissions@makermedia.com
mailto:bookpermissions@makermedia.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

• Make: magazine: http://makezine.com/
magazine

• Maker Faire: http://makerfaire.com
• Makezine.com: http://makezine.com
• Maker Shed: http://makershed.com

All source code for the examples in this book
can be found at: https://github.com/rwaldron/
javascript-robotics.

We have a web page for this book, where we
list errata, examples, and any additional infor-
mation. You can access this page at: http://
bit.ly/1KUV1p2.

If you feel your use of code examples falls out-
side fair use or the permission given above, feel
free to contact us at permissions@oreilly.com.

Acknowledgments

Julián Duque
NodeBots is all about learning while having fun
and especially for me it’s a way to achieve social

impact. Everything started at NodeConf 2013—
it was my first time using Johnny-Five on a No-
deBots workshop guided by Rick Waldron and
Raquel Velez. My first attempt was with a piezo
buzzer, but at that time the library didn’t sup-
port the Piezo class, so I asked Rick how to use
it and he said to me, “I wasn’t able to make it
work, how about a pull request?” That’s how I
started contributing to the project. On the oth-
er hand, Raquel gave me my first Arduino kit as
a gift and told me, “Take this with you and
teach what you’ve learned in Colombia.” That
humble action was so inspiring for me and I
started a NodeBots chapter in Medellín, Colom-
bia. I also helped create the communities in Ur-
uguay, Guatemala, and Mexico through work-
shops and talks. Rick and Raquel, thank you so
much for inspiring me and letting me be part of
this Maker revolution.

xiv Make: JavaScript Robotics

http://makezine.com/magazine/
http://makezine.com/magazine/
http://makerfaire.com
http://makezine.com
http://makershed.com/
https://github.com/rwaldron/javascript-robotics
https://github.com/rwaldron/javascript-robotics
http://bit.ly/1KUV1p2
http://bit.ly/1KUV1p2
mailto:permissions@oreilly.com

Building Robots with
Lo-tech Materials

By Andrew Fisher

When you think about robots, you probably
imagine drones, self-driving cars, or humanoid
robots like Atlas or Asimo. Many of these more
serious robots start their costs at thousands of
dollars, and there is no real upper limit (Atlas
costs over a $1M, for example). It is possible,
however, to build small, interesting robots with
a few inexpensive electronic components cou-
pled with some materials you can readily find at
home.

One of the great things about NodeBots is be-
ing able to prototype rapidly. The combination
of an approachable language like JavaScript
with friendly hardware such as Arduino means
you can explore ideas and see how things work.
Being able to prototype and play with robotic
techniques quickly helps with learning and ex-
ploring concepts.

In this chapter, we’ll explore several robotic
concepts using a basic robot called the Simple-
Bot (Figure 1-1). The first design of the Simple-
Bot came as the result of a challenge from my
child, who asked to build a robot together one
evening after dinner. With the clock ticking and
only an hour to work before bedtime, it meant
using things we had on hand—no laser cutters,

CNC mills, or 3D printers. In true hacker spirit,
we fabricated using cardboard, cable ties, and
rubber bands to get something that worked.

Figure 1-1 Completed SimpleBot

Figure 1-2 shows the SimpleBot we made that
night. After building it, we fell in love with pro-
totyping using materials such as cardboard, ca-
ble ties, and more recently, corflute (corrugated
plastic board) for robotics. These materials are
inexpensive and easy to work with using scis-
sors or a good craft knife. You don’t have to
have access to tools such as a laser cutter,
though if you do, then you can still work with

1

1

these materials—it just becomes even faster to
cut things out (and a bit more accurate). Work-
ing with these materials allows you to fabricate
on your kitchen table and kids can easily work
with them, too.

Figure 1-2 The very first SimpleBot

After that first effort, the SimpleBot has gone
through numerous revisions and is now used as
a teaching robot for some NodeBot events. I
hope I’ve convinced you that building robots
out of simple materials such as cardboard is a
good idea. This chapter is going to cover:

• Building the basic SimpleBot platform

• Cutting the cord and untethering our
SimpleBot from our computer

Building the SimpleBot

Before you get building, remember there’s no
right or wrong way to build your SimpleBot.
The design of the SimpleBot was intentionally
left open-ended so you can make it any way
you want. Others have built versions as minimal
as possible on one extreme, as well as automa-
ted Nerf-Gun-Toting platforms on the other.
The point of the SimpleBot is to play, explore,
and extend it, to further your understanding of
robotics—so customize away.

Bill of Materials
The SimpleBot project is divided into two parts
with components needed at each stage. All of
the components for this chapter are listed in
Table 1-1, and then the elements needed for
each stage are listed again when you get to
that point in the chapter. Table 1-2 lists the
parts needed for the wireless version.

Table 1-1 SimpleBot materials

Count Part Estima-
ted
price

Part numbers/source

1 Arduino Uno - R3 $24.95 MS MKSP99; AF 50; SF
DEV-11021

1 Half-sized breadboard $5 MS MKKN2, SF PRT-12002, AF
64

Multi Jumper wires (male to male) $4.95 MS MKSEEED3, SF
PRT-11026, AF 758

Multi Jumper wires (male to female) $5 MS MKKN5, SF PRT-09385, AF
825

2 Make: JavaScript Robotics

Building the SimpleBot

Count Part Estima-
ted
price

Part numbers/source

2 Continuous rotation (CR) servos; if you have
standard servos, an Adafruit tutorial shows how
to mod them into CR servos

$14 MS MKPX18, AF 154, SF
ROB-09347

15 Cable ties (3–4mm wide and about 200mm
long is perfect)

$1 Various suppliers/stores

1 7.4v RC battery pack (LiPo, Li-Ion, or whatever
you can get a hold of)

$5 Old or broken RC toys are
good sources of these

1 LM7806 or NTE962 6V voltage regulator (drops
the voltage to something the servos can use)

$2 RadioShack or Amazon

1 Chassis material—a square of thick cardboard
or corflute (3–5mm thick), approximately
400mm square

$2 Various suppliers/stores

1 A printout of the template file Free Included with source code

Table 1-2 Wireless SimpleBot materials

Count Part Notes Estimated price

4x 50V 0.1uF ceramic capacitors Ceramic is best, but others will work $0.50

1x USR WiFi232-T module http://www.usr.so $15

Build Steps
1. Start by cutting out the template on

your cardboard. It doesn’t need to be
perfect. A knife, a cutting mat, and a
ruler make it easier to do the inside
holes than scissors. With the wheels,
the center hole can be cut out or just
left, it’s only a target so you know
where the center is so you can screw
through it to the servo.

You should now have a full set of chas-
sis pieces. The large piece with the
bumps at the end is the base, and the
bumps are the front. Use the bumps to
push through the small holes on the

smaller rectangle, which you can use as
a bumper to mount things on.

2. Next, mount the wheels to the servo.
Take the cross-shaped servo horn (you
should have a packet of different sha-
ped plastic fittings with your servo)
and align the center with the center of
the wheel. You can use a piece of wire
or a needle to poke small holes in your
material to mark the points to screw
(Figure 1-3).

Screw the wheels securely to the servo
horn. If you prefer, just glue them on
(but then you can’t reuse the servo
horns later)—either way works fine.

3Chapter 1: Building Robots with Lo-tech Materials

Building the SimpleBot

http://bit.ly/19LXNRw
http://www.usr.so

When you attach the cable ties,
only tighten them enough to stop
movement, but not so tight as to
rip the cardboard or corflute.

Once you have the wheels mounted on
the servo horns, screw through the
center of the wheel and the horn into
the small gear on the servo. Go easy
and hold everything in place while you
turn the screwdriver; being rough here
can strip the gears in your servo and
cause them to slip. Do this for both ser-
vos so you now have two wheels.

Figure 1-3 Mark screw points using the servo horn

and a piece of wire

Gently rotate the servo to ensure it
turns freely. If you’re using cardboard
or corflute, your mounting screws may
be a little long. They don’t have to go
all the way through, but make sure
they clear the body of the servo when
you turn them.

3. Next, mount the servos to the chassis,
as shown in Figure 1-4. You want to
place these more or less to the front so
the weight balances. You can put them
anywhere, but bear in mind you may
need to weigh down one end if you
find it’s tipping. Mount the servos so
the side with the wheel is closest to the
front of the chassis, and attach them
with two cable ties through the mount-
ing holes to keep them in place. Use
two cable ties so the servo body
doesn’t twist when you start driving.

Figure 1-4 Servo mounted to the chassis

4. Mount the battery between the wheels
as in Figure 1-5. Again, you can use a
cable tie, but double-sided tape or a bit
of Blu-Tack works well here, too, if you
want to recharge easily. Trim the cable
tie excess off as you go or it gets a little
hard to mount everything.

5. Next, fashion a simple “skid” for the
SimpleBot to stay balanced. You can do
this by looping a cable tie toward the
back of the SimpleBot in the middle of
the chassis. Do this from the top so the
catch of the tie doesn’t get caught on
anything. The underside of the loop
should be about the same height as
half the wheel so the body sits level. It
will feel “loose,” but don’t worry, you
secure this with the breadboard in the
next step.

4 Make: JavaScript Robotics

Building the SimpleBot

Figure 1-5 Battery mounted to the chassis

6. Finally, add the breadboard. Mount this
across the point you put the skid cable
tie so the board holds the skid down.
The cable tie can go down the length
of the board where the channel is and
you can still place ICs across it.

Now that you’ve finished the mechan-
ics, it’s time for the electronics. The
complete wiring diagram is shown in
Figure 1-6, with each piece explained
next.

7. Start by creating a battery power rail.
This goes to the back of the bread-
board and gives you at least 7.4V. Join
the grounds on both sides of the
breadboard together. Mount the Ardui-
no Nano at one end and join its
ground. As you can see with the Nano,
position it to either side of the main
channel, over the cable tie, and posi-
tion the USB connection on one side so
it’s easy to plug in, as shown in Fig-
ure 1-7.

Figure 1-6 SimpleBot wiring diagram

Figure 1-7 Distributing power

8. Now create the power for the servos.
The servos want 6V so the battery will
give them a bit too much, so use a +6V
voltage regulator to output a nice
clean 6V for the servos. Put that 6V on
the other rail of the breadboard so you
can attach the servos there.

5Chapter 1: Building Robots with Lo-tech Materials

Building the SimpleBot

Note that we’re using the bread-
board to bring power from the
battery to the regulator from “be-
hind,” then power from the regu-
lator to the other rail from the
“front.” This is a good way of
keeping what is going on straight
in your head when it comes time
to debug the circuit later in this
chapter.

9. The servos can be attached to the front
power rail with voltage and ground go-
ing to each. The left servo signal wire
goes to pin 9 and the right servo signal
wire goes to pin 8 on the Arduino, as
shown in Figure 1-8.

Figure 1-8 Servo wiring

Give yourself a pat on the back and tidy up all
the wires so nothing is dangling on the floor—
you are now ready to start working on your
code.

All source code for the examples in this book
can be found on GitHub.

Installing Node.js Packages
Ensure Node.js is installed (see “Installing
Node.js”). You only need a couple of packages

for the SimpleBot, which can be installed from a
terminal shell with:

npm install johnny-five temporal keypress

Testing the Build with a Basic
Program
Your Arduino needs Firmata on it (see “Ardui-
no”) so the first thing to do is test that every-
thing works before building something more
complex to control the SimpleBot. The follow-
ing code connects to the Arduino over USB and
then runs the servos forward for 3 seconds,
stops for 3 seconds, goes backward for 3 sec-
onds, and finally stops before exiting.

Connect your SimpleBot to your computer and
run the script shown in Example 1-1 and re-
place <serialport> with the serial port your Ar-
duino is connected to.

If this all works, great! Your SimpleBot is work-
ing properly.

Troubleshooting
If your SimpleBot isn’t working as described,
don’t worry, it is time for some debugging:

Neither of the servos turn
Check your wiring.

Each servo should be connected to the pow-
er rail from the battery and to ground on the
red and brown (or black) wires. The left ser-
vo’s signal wire should be connected to pin 8
on the Arduino and the right servo’s signal
wire connected to pin 9 on the Arduino.

Also ensure that the battery’s ground is con-
nected to the Arduino’s ground, as per the
wiring diagram—you need a common
ground across power sources.

One of the servos doesn’t turn
Check your wiring with a particular focus on
ensuring your servo signal line is wired into
the correct pin on the Arduino.

6 Make: JavaScript Robotics

Building the SimpleBot

http://bit.ly/19LX9n3

Example 1-1 servo-test.js (servo testing code)

var five = require("johnny-five");
var temporal = require("temporal");

var opts = {};
opts.port = process.argv[2] || "";

var board = new five.Board(opts);

board.on("ready", function() {

 var left_wheel = new five.Servo.Continuous(9);
 var right_wheel = new five.Servo.Continuous(8);

 temporal.queue([
 {
 delay: 5000,
 task: function() {
 console.log("going forward");
 left_wheel.cw();
 right_wheel.ccw();
 }
 }, {
 delay: 3000,
 task: function() {
 console.log("stopping");
 left_wheel.stop();
 right_wheel.stop();
 }
 }, {
 delay: 3000,
 task: function() {
 console.log("going backward");
 left_wheel.ccw();
 right_wheel.cw();
 }
 }, {
 delay: 3000,
 task: function() {
 console.log("stopping");
 left_wheel.stop();
 right_wheel.stop();
 }
 }, {
 delay: 1500,
 task: function() {
 console.log("Test complete. Exiting.");
 process.exit();
 }
 }
]);
});

7Chapter 1: Building Robots with Lo-tech Materials

Building the SimpleBot

The SimpleBot spins on the spot
This is caused by a servo rotating in a differ-
ent direction than is assumed in the code.
You can unhook the servo and flip it over,
which will make all the other code samples
behave. Otherwise, just modify the code to
change the offending servo’s command from
servo.ccw() to servo.cw() and vice versa.

A Simple Driving Program
Now that the SimpleBot is working correctly,
you can create a simple program to drive it

around. As a starting point, let’s take input from
the keyboard in order to drive the SimpleBot
forward and backward, spin it left or right, and
also to stop it. The code shown in Example 1-2
is a very basic example of how to drive using
keyboard control.

Example 1-2 simplebot.js (driving example)

var five = require("johnny-five");
var keypress = require("keypress");
keypress(process.stdin);

var opts = {};
opts.port = process.argv[2] || "";
var board = new five.Board(opts);

board.on("ready", function() {

 console.log("Control the bot with the arrow keys, the space bar to stop, Q to exit.")

 var left_wheel = new five.Servo.Continuous(9);
 var right_wheel = new five.Servo.Continuous(8);

 // Configure stdin for the keyboard controller
 process.stdin.resume();
 process.stdin.setEncoding("utf8");
 process.stdin.setRawMode(true);

 process.stdin.on("keypress", function(ch, key) {

 if (!key) {
 return;
 }

 if (key.name == "q") {
 console.log("Quitting");
 process.exit();
 } else if (key.name == "up") {

 console.log("Forward");
 left_wheel.cw();
 right_wheel.ccw();

 } else if (key.name == "down") {

 console.log("Backward");

8 Make: JavaScript Robotics

Building the SimpleBot

 left_wheel.ccw();
 right_wheel.cw();

 } else if (key.name == "left") {

 console.log("Left");
 left_wheel.ccw();
 right_wheel.ccw();

 } else if (key.name == "right") {

 console.log("Right");
 left_wheel.cw();
 right_wheel.cw();

 } else if (key.name == "space") {

 console.log("Stopping");
 left_wheel.to(90);
 right_wheel.to(90);
 }
 });
});

Connect to the board using the serial con-
nection supplied from the command line.

Set up an event waiting for a keypress on
the keyboard.

Check the key that was pressed and then,
depending on which direction you want to
go, engage the motors as discussed in the
section on differential drive.

Connect your SimpleBot to your computer and
run the script with:

node simplebot.js <serialport>

You should now be able to drive your Simple-
Bot around the table or floor using the arrow
keys on your keyboard and hitting the spacebar
to stop.

Troubleshooting
Here are some tips in case you get stuck:

One or both of the servos don’t move
See the previous troubleshooting section on
tracking down wiring issues.

You hit the space bar to stop, but the robot keeps
moving a little bit

This is due to continuous rotation servos be-
ing a hack on normal servos, as well as each
servo being manufactured slightly different-
ly. Some servos have a “tuning pot” at the
back, which you can turn so that it stops
when you set it to stop.

If you don’t have one of these, then you can
set your stop point in code.

On a CR servo, the stop position is defined as
the center (recall a normal servo operates in
an arc that is usually 180°), which is usually
90°. Setting a lower value than this will rotate
the servo one direction and above this will
rotate the other.

In the stop code, set the servo to move to the
90° position. As such, you might have to tune
your stop point a little, changing the stop
code to be like this:

left_servo.to(87);
right_servo.to(94);

There’s no “correct” number and every servo
will be slightly different, so a few minutes of

9Chapter 1: Building Robots with Lo-tech Materials

Building the SimpleBot

tinkering will enable you to figure out the
number you need for that servo.

Drive Considerations

The SimpleBot drive system is based on a method
called differential drive, where each wheel is con-
trolled independently by the servo motor that is
attached to it. This is a very common design for
two-wheeled robots, because the two wheels
control both forward and backward motion as
well as overall direction. In its most basic form,
this makes the robot extremely simple to control.

• To go forward, we rotate both wheels in
the forward direction.

• To go backward, we rotate both wheels
in the reverse direction.

• To turn left, we stop or rotate the left
wheel backward and drive the right
wheel forward.

• To turn right, we stop or rotate the right
wheel backward and drive the left wheel
forward.

The biggest implication of this design is that your
robot typically spins on the spot when you want
to change direction. Turning in an arc, rather than
on the spot, is possible (by slowing down one
wheel relative to the other), but results in consid-
erably more code to make it work.

Contrast this differential drive design to the way a
car drives: two wheels (or four, if the vehicle has
all-wheel drive) are rotated by a single motor via
an axle to create drive and then two wheels are
oriented at different angles in order to change di-
rection.

Different drive systems have advantages and dis-
advantages, but differential drive is a good intro-
duction.

Cutting the Cord

Now that you have your SimpleBot driving
around the table, you’ll notice one big limita-
tion—the length of the USB cable tethering

your bot to your computer. Obviously one solu-
tion is to use a longer cable; however, anything
over 3 meters long starts having signal issues,
not to mention the potential of tangles and the
weight the robot has to drag around.

A better solution is to cut the cord altogether—
letting the SimpleBot roam free and unshack-
led from its USB tether!

Building a Wireless SimpleBot
For this build, we’ll use a single battery with by-
pass filters to smooth the voltage spikes from
the servos as a result of everything using just
the one battery. We’ll also use WiFi, as this will
give a little more range than Bluetooth and al-
lows driving around the workspace or home or
wherever the WiFi network exists.

The WiFi module used in this circuit is very inex-
pensive at about $12 and is quite a clever bit of
circuitry. The module operates as a WiFi-to-Seri-
al bridge so anything sent to it over the net-
work gets copied to its serial lines and vice ver-
sa. This means our Arduino setup is almost ex-
actly the same as before, but it can go wireless
with the addition of this module—a great re-
sult for $12, and one change to the code.

Bill of Materials

The specific items you’ll need for this stage are
listed here:

• 50V 0.1uF ceramic capacitors

• M-M jumper wires

• M-F jumper wires

• USR WiFi232-T module

Wiring Up
Before starting, unplug your Arduino from the
USB so you don’t short anything out while
building this circuit.

10 Make: JavaScript Robotics

Cutting the Cord

What sort of wireless?

In this project, we’ve gone for WiFi, but there are
many other types of radio you can choose, such as
Bluetooth and 433MHz serial. Each radio type has
its own strengths, weaknesses, and trade-offs. The
key things to think about are frequency, power,
and cost.

Higher frequency gives you a higher bit rate, but
can be blocked by obstacles easily. More power
makes your signal “louder” so it can travel farther,
but is going to deplete your batter faster as a re-
sult. The rule of thumb is bitrate, range, cost—pick
two.

1. The first thing to do is add decoupling
capacitors to the Arduino ground and
VIN, as this will be powered from bat-
tery. Also add capacitors to the power
and ground for each of the servos, as
shown in Figure 1-9.

Figure 1-9 WiFi wiring diagram

2. The wireless module uses 2mm pitch
headers, so it can’t be plugged into the
breadboard directly. Use the M-F jump-
er wires to connect the module to the
breadboard instead. Add the WiFi mod-
ule with the connections illustrated in
Figure 1-10 and mapped in Table 1-3.

Table 1-3 WiFi module connections

WiFi232 Pin Arduino Pin

1 GND

2 VCC (3.3v); don’t plug this into
5V!

5 (RX) Arduino (TX) Pin 1

6 (TX) Arduino (RX) Pin 0

Figure 1-10 Added wireless module

3. Check, check, and triple check your wir-
ing. There’s no reverse or over-current
protection on these modules, and ap-
plying power with too much voltage or
GND and VCC back to front will quickly
toast your WiFi module.

These modules are designed to take an
external antenna, so your range will be
drastically reduced if you don’t use it.

11Chapter 1: Building Robots with Lo-tech Materials

Cutting the Cord

The antenna can be readily attached to
the chassis with a nice lump of Blu-Tack
or hot glue.

4. Finally, put a jumper wire from the bat-
tery power rail to the VIN pin on the Ar-
duino. This will give the Arduino 7.4V,
which is plenty for it to run.

That was easy; now for the software side.

Controlling the SimpleBot
Let’s walk through the wireless portion in
stages. When you remove wires, there’s more
complexity, so you need to make sure each ele-
ment works before moving onto the next. If
anything goes wrong, just backtrack a little and
try again.

Test and configure the module

Once 3.3V is supplied, the WiFi module will
power up. By default, it will be in Access Point
mode. Wait about 10–15 seconds and then in
your available WiFi networks on your computer
you should see the “USR-WIFI232-T” SSID ap-
pear. Connect to this network and once con-
nected, you can try two things to see if it’s all
working.

The module IP address is 10.10.100.254, and it
has a DHCP server so it should assign you
something in that range once you connect. Test
pinging 10.10.100.254 and if you’re getting re-
sponses like those shown in Example 1-3, move
to the next step.

Example 1-3 Checking connection to the module

$ ping 10.10.100.254

PING 10.10.100.254 (10.10.100.254) 56(84) bytes of data.
64 bytes from 10.10.100.254: icmp_req=1 ttl=255 time=2.21 ms
64 bytes from 10.10.100.254: icmp_req=2 ttl=255 time=23.5 ms
64 bytes from 10.10.100.254: icmp_req=3 ttl=255 time=29.5 ms
^C
--- 10.10.100.254 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 5013ms
rtt min/avg/max/mdev = 2.215/20.281/29.502/9.622 ms

If this doesn’t work, diagnose your network in-
terface and make sure you’re not using a static
IP or some other configuration that overrides
DHCP.

Now open a web browser and point it at
10.10.100.254. The username and password by
default are both “admin.” In this interface, you
can configure the common aspects of the mod-
ule itself. Try setting it to operate in STA+A
mode, which means it operates as a WiFi station
(connects to your WiFi network), but also oper-
ates as an access point if you need it (like when
taking a SimpleBot to the park).

If you’ve ever configured a WiFi router, then ev-
erything will look pretty familiar. Supply the

connection details for your network and get
the module to connect. You should now see all
of the connection information.

If you can’t get to the wireless
module using these methods for
some reason, try connecting over
serial directly. You’ll need some-
thing like an FTDI or other serial
ttl USB cable. Connect using a se-
rial console at 115200 baud. The
WIFI232-T user guide has more in-
formation on using AT com-
mands.

12 Make: JavaScript Robotics

Cutting the Cord

http://bit.ly/19LX1ni

Arduino setup

Because the WiFi module can work at a higher
baud rate, the Arduino should talk at that
speed, too. To change this, open the Standard-
Firmata sketch and then do a “Find” for the line
that looks like this:

Firmata.begin(57600);

Change it to connect at 115200 instead:

Firmata.begin(115200);

That’s all. Compile and upload the sketch to the
Arduino.

stk_500 sync error?

Because you’re using the Arduino
hardware serial port, if you need
to flash your Arduino, you’ll need
to remove the RX and TX wires
connected to the WiFi module so
you can talk to the Arduino over
USB. If you get an stk_500 sync er-
ror, it’s probably because you for-
got to unplug the serial wires.

Network test

The next step is to make sure communication is
occurring properly before trying to send mes-
sages from Johnny-Five and the application.

The WIFI232 module exposes TCP port 8899,
and whatever is sent to and from the serial con-
nection is sent through that TCP port. Messages
will get passed like this:

PC <--> WiFi Network Interface (TCP 8899)
 <--> WIFI232 Network Interface (TCP 8899)
 <--> WIFI232 Serial Interface
 <--> Arduino Serial Interface

If you connect to the module using Telnet, you
should be able to see any serial messages com-
ing from the Arduino. Although most Firmata
data is encoded, one message is in clear text—
when it sends the name of the Firmata sketch
being used to the receiver as part of startup.

On my networks, the module is using IP:
10.0.1.12 so telnet there on port 8899 with
telnet 10.0.1.12 8899.

Windows doesn’t usually install
the Telnet client by default. You’ll
need to make your way to the
Add/Remove Windows Compo-
nents section of the Control Panel
and install it.

This gives the following response:

Trying 10.0.1.12...
Connected to 10.0.1.12.
Escape character is '^]'.

That’s good, because everything is connected.
Hit the reset button on the Arduino so the
sketch restarts. You should see the telltale Pin
13 LED blink sequence and within a few sec-
onds something like this:

Trying 10.0.1.12...
Connected to 10.0.1.12.
Escape character is '^]'.
��yStandardFirmata.ino

Success! You just received a message from Fir-
mata onto your PC without any wires. Quit Tel-
net (press Ctrl+] then type “quit”). You’re now
ready for the step you’ve been waiting for.

Controlling the SimpleBot wirelessly

Now that you have Firmata messages traveling
over the network, all you have to do is get
Johnny-Five to read and write them. The prob-
lem is that Johnny-Five assumes you have a Se-
rial device connected—something like “/dev/
ttyUSB0” or “/dev/tty.USBSerial.” Instead, you
have a network socket. One option is to go and
write an IO interface for Johnny-Five, but that’s
overkill for a simple socket, and it’s not like
you’re writing a new messaging protocol—
you’re just sending messages via the magic of
WiFi rather than a pair of wires. Instead, follow
the steps described here (for Mac/Linux, use so-
cat, and for Windows, use VSPE):

13Chapter 1: Building Robots with Lo-tech Materials

Cutting the Cord

Socat for Mac/Linux computers
Socat creates relays between two otherwise
independent data channels. Knowing this,
you can use pseudoterminals to allow you to
create a “fake” serial terminal. A “faked” serial
terminal can then be used by Johnny-Five
and our application. You should be able to in-
stall socat on Linux from your distribution’s
package manager. On Mac OS X, you could
use Homebrew.

Make a relay between a pseudoterminal that
looks like a serial port and connect that to
the TCP socket used to talk to the WIFI232
module. On my networks, the WiFi module is
at 10.0.1.12—yours will be different, so just
replace that. Here’s how it will work:

 PC <--> Pseudo terminal (~/dev/ttyV0)
 <--> TCP Socket (10.0.1.12:8899)

To create this route, use this command (re-
member to replace 10.0.1.12 with the correct
address for your WiFi module):

socat -d pty,nonblock,link=$HOME/dev/ttyV0
tcp:10.0.1.12:8899

The -d switch is a debugging parameter, so
remove it if you don’t want details, and use it
up to four times for lots of messages if some-
thing doesn’t work.

This command tells socat to create a pseudo-
terminal (pty). Don’t block it (nonblock; you
can use it from other processes) and link it
to $HOME/dev/ttyV0 (in this case that puts it
at /home/ajfisher/dev/ttyV0, but put it wher-
ever you fancy). Socat then connects that ter-
minal to a TCP connection at 10.0.1.12 using
port 8899. Once socat is running, create an-
other terminal window and use screen to
connect to a fake serial connection:

screen ~/dev/ttyV0

Do the Arduino reset trick again and you will
see the Firmata sketch name. If that all works,
then you’re ready to wirelessly control your
SimpleBot. All you need to do is pass in the
fake serial connection to the program you

wrote before, and away you go. At this point,
it will work just like it did before, but your
SimpleBot will now be wireless:

node simplebot.js /home/user/dev/ttyV0

VSPE for Windows computers
On Windows, use a piece of software called
Virtual Serial Ports Emulator (VSPE). This al-
lows you to define a COM port and then cre-
ate mappings for other endpoints such as to
network services.

In the end, the messages should route like
this:

PC <--> Virtual COM Port (COM10)
 <--> Bridge
 <--> TCP Client (10.0.1.12:8899)

Download and install the software and once
you have it open create two devices:

Create the first one as a “Connector” from New
Devices and set it to be COM10—this creates a
COM port for Windows to talk to and will be
what is passed to the Node.js application:

• TCP Client

• Host: 10.0.1.12 (or whatever your WI-
FI232 IP is)

• Port: 8899

• The next one created is a
“Bridge” type, which bridges
between two data streams:

• Serial port

• Port: COM10 (type it in—it won’t be in
the drop-down as it’s not “real”)

• Speed: 115200

Save the config and press the “play” button to
have it all run.

You should now just be able to run the Simple-
Bot application like before:

node simplebot.js COM10

14 Make: JavaScript Robotics

Cutting the Cord

http://brew.sh

Troubleshooting
The most common problems here are related to
power or range causing resets.

If you don’t have enough power or haven’t used
decoupling capacitors, your Arduino or WiFi
module may reset when you do big direction
changes on the motors. Check the circuit, make
sure you put the capacitors in, and check the
power levels on your battery pack.

If you are getting persistent resetting issues,
you may be drawing too much current from
your servos. If they are particularly heavy duty
(high torque), then it’s possible you’re dropping
the voltage too much for the Arduino. You may
need a higher capacity battery designed for RC
car use.

If you are going out of range of your WiFi net-
work, you may get garbled messages and your
SimpleBot stops responding. This is where you
start thinking about bigger antennas, and other
radio types in order to make the range even
longer.

What’s Next?

Over the course of this chapter, you’ve taken
some cardboard and turned it into a robot.
With just a basic robot made from some scrap
and some inexpensive components, you’ve ex-
plored a range of topics:

• Differential drive

• Programming control systems

• Remote control

Now that you have your own SimpleBot work-
ing, you can take it in many interesting direc-
tions to learn even more robotics concepts.
Here are some things you might want to try:

• Add autonomy and collision avoidance.

• Add a Raspberry Pi running Node.js to
do all of the processing and logic on
the robot and make it even more au-
tonomous.

• Use a Raspberry Pi tethered to your
mobile phone and make a remote
web-controlled bot that can drive any-
where.

• Use some reflection sensors to get your
SimpleBot to follow lines.

• Add some encoder wheels so you can
measure distance of travel/speed, and
turn more accurately.

• Add a light sensor and program your
SimpleBot to be attracted to or run
away from light.

• Program your SimpleBot to spin
around and light up some LEDs when-
ever you get a tweet or someone sends
you an email.

• Explore different drive mechanisms us-
ing more wheels or even omniwheels
for a SimpleBot that can change direc-
tion without spinning on the spot!

15Chapter 1: Building Robots with Lo-tech Materials

What’s Next?

Figure 2-1 Completed arm

TypeBot

By Bryan Hughes

TypeBot is a robot that can type on a keyboard
for you. It was first created during a hack day at
JSConf 2013 in Florida after a team of three was

inspired by a talk given by Raquel Velez on ro-
botics. Some members of the team had prior
experience with robotics dating back to the

17

2

early 2000s, but none had ever used JavaScript
for robotics before. The ease with which Java-
Script can be used to create robots was a major
“aha!” moment for the team, as we hope it will
be for you.

The Arduino Uno is an ideal microcontroller for
TypeBot (see Figure 2-1) because it has plenty
of pins for controlling servos. Johnny-Five is al-
so quite mature on the Uno these days, and has
the best support of all its supported platforms.

So why create a typing robot? Because we can!
Also, it looks really cool.

Bill of Materials

To build TypeBot, you will need the materials
listed in Table 2-1.

Table 2-1 Bill of materials

Count Part Estimated Price Part Numbers

1 Arduino Uno $24.95 MS MKSP99; AF 50; SF DEV-11021

3 High-torque servo $12.95 SF ROB-11965, AF 155

1 Breadboard $4.95 SF PRT-12002, AF 64, MS MKKN2

14 Jumper wires (male to male) $4.95 SF PRT-11026, AF 758, MS MKSEEED3

6 Popsicle sticks $4.50 AZ B0033F7YQW

1 2 × 4 wood base $12.50 AZ B00IZ94BG2

If you have an Arduino servo shield, you can
use that instead of the breadboard and jumper
wires. The Arduino servo shield is an expansion
board that snaps onto your Arduino. This board
provides headers that you can plug your servos
into directly, without the need for manually wir-
ing everything up. You may still need a few
jumper wires if the servo cables are too short,
however.

You will also need the following tools:

• Hot glue gun

• Small Phillips screwdriver

• Drill

The drill is used to cut holes in Popsicle sticks,
so it doesn’t need to be powerful. You can use a
knife or screwdriver in a pinch if you don’t have
a drill, but they are much more difficult to work

with. If you use a knife, you can make a hole by
poking it into the stick and rotating it with your
fingers. Rotating the knife will slowly “drill” out
the stick. Using a knife in this manner will add
wear and tear on the blade, so don’t use an ex-
pensive knife.

Understanding Your Servomotors
We will be using servomotors (servos for short)
as the “joints” in the arm. There are multiple
types of servos, and it’s important to under-
stand the differences between them. Servos
can generally be divided into two categories:
standard and continuous.

A standard servo is a servo that has a limited
range of motion, measured in degrees. With a
standard servo, you send a signal to the servo
that is translated to a position. These types of
servos are commonly used in remote-con-
trolled (RC) cars to control the steering. Stan-

18 Make: JavaScript Robotics

Bill of Materials

dard servos can typically set any position within
a 180° arc, although 90° servos are also com-
mon.

A continuous servo can spin freely. With a con-
tinuous servo, you send a signal to the servo
that is translated to a speed. These types of ser-
vos are commonly used in RC cars to control
the drive wheels.

So what about this signal that is used to control
a servo? All servos are driven by a pulse-width
modulated signal, or PWM. Servos expected
pulses to come every 50 milliseconds. The
width of the pulse determines the position on a
standard servo, and the speed on a continuous
servo. A width of 5 ms is all the way to the left,
and a width of 15 ms is all the way to the right.

Sometimes you will come across a servo that
doesn’t quite match these numbers, though, so
you may need to tweak the numbers a little bit.

This project requires three 180° standard ser-
vos, although two of the three servos can be
90° servos if that’s all you have. The rest of this
chapter will assume that you have 180° servos.

Anatomy of a Robot Arm

We all know how an arm works, right? There’s
not much to think about when they are being
controlled by a human brain. Our brains are
wonderfully complex constructs that take all
the fidgety little details out of controlling arms.
Picking up an object is very easy for us. We just
kinda think about the gist of what we want to
do and our nervous system does the rest for us.

Robotic arms don’t have anything nearly as
powerful as a human brain controlling them,
however. This means that we have to handle all
the nitty-gritty details ourselves. The layout of
the arm we choose will determine what type of
constraints there are on movement, as we shall
see.

Arm Layout
TypeBot will be using an arm with three servos
to act as the joints, which we will call the
“shoulder,” “elbow,” and “wrist.”

The elbow and wrist will be connected via Pop-
sicle sticks. The servos are installed 180° apart
from each other so that they can move oppo-
site of each other. Moving the servos at the
same rate will cause the tip of the finger to
move in a straight line. Figures 2-2 through 2-4
show the various stages of movement.

Figure 2-2 Moving in a line, extended

Figure 2-3 Moving in a line, contracting

19Chapter 2: TypeBot

Anatomy of a Robot Arm

Figure 2-4 Moving in a line, contracted

This structure is then attached to the shoulder
servo and with the arm segment rotated 90°
from the rest of the arm. This third servo is used
to set the angle of the line along which the oth-
er two servos expand and contract. This allows
the tip to move to any location on the key-
board.

Arm Constraints
Most robots are pretty clumsy, and we don’t
want one to knock into our keyboards (espe-
cially if those keyboards are built into our nice
laptops). What we need is to orchestrate the
movement of the arm, just like you would or-
chestrate a complex animation in a web page. If
you think about it, this is the ultimate anima-
tion, because it’s animating something in real
life.

We could make use of some awesome math,
called constraint programming, to create an op-
timal animation that is guaranteed to never hit
anything. We could also just come up with
something quick and dirty and use the extra
time to show off TypeBot to all our friends,
which sounds a lot more fun!

So what sorts of constraints do we have to wor-
ry about? Let’s assume that you will be using
TypeBot on a laptop keyboard, because it has a
few extra constraints compared to a standalone
keyboard.

The first constraint is that we don’t want to hit
the laptop screen by overextending the arm.

The maximum amount we can extend the el-
bow joint varies based on the angle of the base
servo. This means we can’t just say “don’t ex-
tend past x degrees.” Fortunately, this con-
straint is directly related to how far we need to
extend the arm to reach the keys themselves. If
you look down at your keyboard on your laptop
and pretend the center of your trackpad is the
center servo, you can see how much closer the
6 key is than the 1 key to that point. This means
that the arm needs to extend and contract as it
moves left and right along the keyboard. If we
don’t time the extension of the arm and the ro-
tation of the shoulder, it will hit the screen.

The second constraint is that we don’t want to
drag the arm across the keyboard as we move
between keys. This isn’t a Swype virtual key-
board after all! We have to ensure a few things
here. When the arm is rotating, we need to
make sure the finger hovers safely above the
keyboard. We also need to make sure that,
when we press a key, the arm lowers onto the
key cleanly (i.e., perpendicular to the keyboard).
If we don’t lower the finger cleanly, we risk slid-
ing off of the key.

How do we solve those constraints? It wouldn’t
be any fun to tell you now, so read on!

Building the Hardware

Now it’s time to get our hands dirty and build
the robot arm!

The Base and Shoulder
Start by getting the wood base and one of the
servos. We are going to connect the servo to
the base using hot glue. Don’t worry, hot glue
peels off easily if you want to reuse the servo
later. You’ll need to follow these steps:

1. Put a layer of glue on the bottom of the
servo. Make sure to use plenty of glue
because we don’t want any air gaps be-
tween the servo and the base.

20 Make: JavaScript Robotics

Building the Hardware

2. Press the servo against the base so that
the servo axis is about 1/3 of the way
from one of the edges.

3. Quickly position the servo how you
would like it.

4. Let it sit for about 30 seconds to
solidify.

Next, we need to reinforce the servo bond. Re-
member how we are using the heavy wood
base to stabilize the arm as it moves? All of that
force will now be on this glue joint, so we need
it to be strong. Add a ring of hot glue between
the servo and the base, as if you are caulking a
shower or trimming the icing around the base
of a cake. The attached servo should look like
Figure 2-5.

Figure 2-5 Base with shoulder

The Elbow
Next up, we are going to build the first arm seg-
ment and the elbow joint. This segment needs
to be strong because it will be supporting the
entire weight of the arm. This segment is also,
unfortunately, angled such that the force of the
arm is along the flat, flexible side of the stick.
Here are the steps you should follow:

1. To make sure the arm is strong, get out
three Popsicle sticks and hot glue them
together. Once again, make sure to get
plenty of hot glue between the sticks
so that there is no air gap.

2. Allow the glue to dry for at least 30 sec-
onds.

3. Drill a hole through the center of the
stick set. This hole needs to be big
enough to allow the screw for the ser-
vo arm to fit through it. A 1/4” drill bit
should be big enough to allow the
head of the screw to fit through it.

4. Take out the servo arm and add a light
layer of hot glue on it. Try not to get
glue over the center hole where the
screw fits through if you can help it.

5. Attach the servo arm to the stick set
such that the hole in the arm lines up
with the hole you just drilled:

a. If you got glue into the hole in
the middle of the stick, you can
use the servo arm screw to drill
it by screwing it into the glue.

b. Keep screwing it until the glue
becomes loose, and push the
screw out the other end using
your screwdriver.

6. Take out another servo to serve as the
elbow joint.

7. Add enough hot glue to prevent air
gaps to one end of the stick group
from the previous step. The glue
should be placed on the opposite side
of the stick to which the servo arm is
glued.

8. Press the servo to the stick set on its
side, such that the axis is perpendicular
to the end of the stick, as shown in Fig-
ure 2-6.

21Chapter 2: TypeBot

Building the Hardware

Figure 2-6 Elbow joint and arm segment

Now it is time to connect the elbow joint to the
base. Connect the white wire on the shoulder
servo plug to pin 3 of the Arduino, the red wire
to 5V, and the black wire to GND. To make sure
that you align the arm properly; you are going
to write a tiny Johnny-Five program to keep the
shoulder servo centered.

Make sure your Arduino has been
prepared as directed in “Arduino”
and is connected to the computer
or device on which you’ll be run-
ning Johnny-Five. If you have any
trouble running this project, see
“Installing Johnny-Five”.

Let’s start by creating a folder called TypeBot/.
Open a Terminal and navigate to this folder. For
example, if you are on OS X or Ubuntu and cre-
ated this folder in your Documents/ folder, type:

cd ~/Documents/TypeBot

If you’re on a Windows, OS X, or
Linux system that doesn’t already
have Node installed, see “Instal-
ling Node.js”.

Once inside of this folder, install Johnny-Five by
typing:

npm install johnny-five

Create a new text file inside of this folder called
align.js, and paste the following code into it:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 new five.Servo(3).center();
});

Run the program with the following command:

node align.js

All source code for the examples in this book
can be found on GitHub.

You should leave the program running while
you connect the arm to make sure the servo
stays centered.

Connect the elbow joint to the shoulder servo
by sliding the servo arm on the bottom of the
stick set onto the exposed servo gears. The
stick should be perpendicular to the base, with
the elbow joint hanging over the edge of the
base. Once in place, screw the arm into the
shoulder servo to secure it. The result should
look like Figure 2-7.

Figure 2-7 Attachment of the elbow joint servo

The Wrist
The next arm segment is similar to the first arm
segment, but with a few changes. This segment
will only be built with two Popsicle sticks, in-
stead of three. We can get away with fewer
sticks here because this segment doesn’t need
to support as much weight. You might even be
able to get away with a single stick. The second
stick can be helpful in reducing flex, but it does

22 Make: JavaScript Robotics

Building the Hardware

https://github.com/rwaldron/javascript-robotics

add weight, so it’s up to your personal prefer-
ence. You’ll need to follow these steps:

1. Start by gluing two sticks together, as
before.

2. Drill a hole about one inch from one
end of the stick. The servo arm should
be as close to the edge as possible,
without hanging over.

3. Glue the servo arm to the stick using
the same techniques as before.

4. Get your final servo out.

5. Add glue to the opposite side and end
of the stick that the servo arm is glued
to.

6. Press the servo to the stick such that
the servo axis is pointing up from the
stick, as shown in Figure 2-8.

Figure 2-8 Attachment of the wrist servo

Now it’s time to connect the wrist arm to the el-
bow servo. We will use the exact same techni-
que used to connect the elbow arm to the base,
except that you should connect the elbow ser-
vo to the Arduino, instead of the shoulder ser-
vo. Connect the elbow arm so that it is pointing
straight up into the air, as shown in Figure 2-9.

Figure 2-9 Installation of the wrist segment

The Finger
Now it’s time to build the last segment of the
arm, which also happens to be the easiest! This
arm segment doesn’t need much strength, so
we will only use a single Popsicle stick. Start by
drilling a hole about one inch from the end, like
we did for the wrist arm. Glue the servo arm to
the stick, as before.

The one new thing we will do here is coat the
other end of the arm in hot glue. We coat the
end of the stick for two reasons. The first is that
we don’t want the wooden end of the stick to
scratch up our keyboard. The other reason is
that hot glue will give the stick a lot more grip.
This will prevent the arm from sliding off of a
key when we are trying to press it. The finger
should look like Figure 2-10.

Figure 2-10 Finger arm segment

Now it’s time to connect the finger. Disconnect
the elbow servo from the Arduino and connect
the wrist servo. Run the program to center the
servo, and attach the finger such that it is per-
pendicular to the wrist arm and parallel to the
ground. With this step, you now have a fully
constructed arm! There is only one thing left to
do.

23Chapter 2: TypeBot

Building the Hardware

The Brains
The final build step is to connect all of the ser-
vos to the Arduino and secure the wiring. It is
recommended that you glue the wrist servo
wire to the end of the wrist arm, as shown in
Figure 2-11. This will help keep the wrist servo
wire from getting caught while the arm is mov-
ing.

Figure 2-11 Securing the wrist wire

Connect the servos and the Arduino to the
breadboard using jumper wires or servo wire ex-
tensions, as shown in the Fritzing diagram (Fig-
ure 2-12).

Figure 2-12 Wiring diagram

You should make sure that there is plenty of
slack in the wires coming off of the arm so that
there is enough room for the arm to move. The
final arm should look like Figure 2-13.

Figure 2-13 Complete arm

Now let’s make it type!

Writing the Software

We are going to break the software into two
parts: servo control and sequence manage-
ment. The servo control module adds an ab-
straction layer on top of the Johnny-Five servo
APIs. We use this type of abstraction to make it
easy to coordinate the movements of multiple
servos.

Creating the Project Files
First, you need to create the files that will con-
tain the code:

1. Open a terminal and navigate back to
the TypeBot/ folder that you created
earlier.

2. Create two files inside of this folder:
typebot.js and servocontrol.js. These
files will contain the source code for
the two modules.

Controlling the Servos
First, create the servo control module. Start by
adding the boilerplate shown in Example 2-1.

Example 2-1 Servo control boilerplate

var five = require('johnny-five');
var positions = {};
var servos = {};

24 Make: JavaScript Robotics

Writing the Software

http://fritzing.org

var opts;

// Initializes the servo control module
function init(board, options, callback) {
}

// Move the servos
function move(destinations, callback) {
}

// Export the public methods
module.exports = {
 init: init,
 move: move
};

This creates a module with two methods, init
and move, that typebot.js will call. It also imports
the Johnny-Five library and creates some global
state variables.

The initialize method is responsible for creating
the Johnny-Five servo instances and initializing
the global state information. The init parame-
ters contain three pieces of information—the
individual servo configurations, the servo rota-
tion rate, and the settle time:

• Each servo configuration is identified
with a name and will contain the pin
number, the starting position, and
whether or not to invert the servo an-
gles (more on this momentarily).

• The servo rate will specify the maxi-
mum speed that a servo can rotate at,
in degrees per millisecond, although it
may spin slower.

• The settle time is used to add an addi-
tional delay after the servos have fin-
ished moving. When the arm moves, it
shakes around. Once it stops, it typical-
ly continues to shake for a brief period
of time. The settle time gives the arm a
chance to stop shaking before moving
on to the next step.

Here is what the configuration object looks like
with everything included (you don’t need to
add this to the code listing now):

{
 servos: {
 shoulder: {
 pin: 3,
 startPosition: 90,
 isInverted: false
 },
 elbow: {
 pin: 6,
 startPosition: 60,
 isInverted: false
 },
 wrist: {
 pin: 5,
 startPosition: 30,
 isInverted: true
 }
 },
 rate: 0.01,
 settleTime: 250
}

The complete init method is shown in Exam-
ple 2-2.

Example 2-2 The completed init method

// Initializes the servo control module
function init(board, options, callback) {

 // Store the options for use with move()
 opts = options;

 // Initialize the servos
 for (var servo in options.servos) {

 // Alias the servo config for easy access

25Chapter 2: TypeBot

Writing the Software

 var servoConfig = options.servos[servo];

 // Store the start position as the current position
 positions[servo] = servoConfig.startPosition;

 // Create the servo instance
 servos[servo] = new five.Servo({
 pin: servoConfig.pin,
 isInverted: servoConfig.isInverted
 });

 // Move to the servo to the starting position
 servos[servo].to(positions[servo]);
 }

 // Wait for the servos to move to their starting positions
 setTimeout(callback, 1000);
}

Let’s start by modifying the init function to
store the options. This way we can use
them later in the move function.

Next, let’s initialize the servos themselves.
This code will loop through each servo in
the servos object and initialize it by per-
forming the following steps:

1. Store the staring position in the
global positions variable.

2. Instantiate the Johnny-Five servo
instance and store it in the servos
global variable.

3. Move the servo to the starting po-
sition.

Finally, let’s add a timeout to give the ser-
vos time to move to their starting positions.
This line of code will call the callback after 1
second, telling typebot.js that initialization
is complete.

Now it’s time to implement the move method.
This method will take in a set of destinations for
multiple servos and make sure they move in a
coordinated manner. We will calculate the
speed that each servo needs to rotate at to
make sure they all arrive at their destinations at
the same time. The complete move method is
shown in Example 2-3.

Example 2-3 The completed move method

// Move the servos
function move(destinations, callback) {

 // Find the largest servo angle change
 var largestChange = 0;
 for (var servo in destinations) {
 var delta = Math.abs(destinations[servo] - positions[servo]);
 if (delta > largestChange) {
 largestChange = delta;
 }
 }

26 Make: JavaScript Robotics

Writing the Software

 // If none of the servos need to move, short-circuit here
 if (largestChange === 0) {

 // We still need to call the callback, but we want the callback to always be
 // asynchronous, so we use process.nextTick to call it asynchronously.
 // For more information on why this is a good thing, read:
 // http://nodejs.org/api/process.html#process_process_nexttick_callback
 process.nextTick(callback);
 return;
 }

 // Calculate how long we should take to move, based on the largest
 // change in angle. This means that only this one servo will move at full
 // speed. All of the other servos will move at a slower rate so that all
 // servos finish at the same time.
 var duration = largestChange / opts.rate;

 // Move the servos to their destinations
 for (servo in destinations) {
 positions[servo] = destinations[servo];
 servos[servo].to(destinations[servo], duration);
 }

 // Wait until we are done and call the callback
 setTimeout(callback, duration + opts.settleTime);
}

We start by finding out which servo needs
to move the furthest. We loop through
each change and find out which one needs
to move the furthest.

To make the code more efficient, let’s check
to see if none of the servos need to move.
Notice that we are not calling the callback
directly, but are wrapping it in a pro
cess.nextTick call. If we didn’t do this, the
callback would be called synchronously if
there are no changes, but asynchronously if
there are changes. This can introduce sub-
tle bugs that are hard to find. For more in-
formation on this issue, check out the link
in the code comments.

We calculate how long it will take the servo
with the greatest delta to move to its new
destination.

This code calculates how long it will take
this servo to move to its position while
moving at the rate supplied in the options.

We use the duration we just calculated to
move all of the servos, which means the
other servos will move at a slower rate. Re-
member the laptop screen constraint from
the beginning of this chapter? This is how
we handle it! It turns out that the arm can
only hit the screen when the arm starts at
keys near the middle top of the keyboard
(i.e., t, y, etc.) and moves to keys near the
upper edges of the keyboard (i.e., q, p, etc.).
Moving the other servos at slower rates
prevents the elbow and wrist from rotating
too fast and hitting the screen, because the
shoulder will always be rotating faster than
the elbow and wrist in these cases.

With that out of the way, let’s move the
arm. We loop through all of the servos, up-
date their positions, and move them.

At this point in time in our code, we have
done everything we need to do to tell the
servos to move to their positions. Now we
just need to wait for the hardware to do its

27Chapter 2: TypeBot

Writing the Software

thing. We simply wait for duration millisec-
onds to pass, and then wait for settleTime
milliseconds to pass, and call the callback.

Initialization
Now that we have our servo module, let’s initi-
alize it in the main module. Open typebot.js and
add the following code:

var five = require("johnny-five");
var servocontrol = require("./servocontrol");

Next, let’s create a sequence of keys to type.
The sequence we want to type on our first try is
quite obvious, of course:

// This is the sequence of keys that are
// pressed. Each element in the array needs
// to correspond with an entry in the
// KEYS object.
var SEQUENCE = ["h", "e", "l", "l", "o", "w",
"o", "r", "l", "d"];

Now, let’s create the servo options. First, we de-
fine the servo rotation rate to be 0.05 degrees
per millisecond, which is a little over 8 RPM. We
want to start with a low servo rotation rate as
we finetune the system. Once everything is
working at this speed, we’ll ramp it up to 0.2
degrees per millisecond, or 33 1/3 RPM (my fa-
vorite rotational speed!):

// This is the rate that the servos should
// rotate at, measured in degrees per
// millisecond. 0.05 is a good value to
// start with.
var SERVO_RATE = 0.05;

Next, we define the settle rate to be one quar-
ter of a second. If you find that the arm gets
more unstable as it types, try increasing this
value:

// This is the delay between movement steps.
// A delay gives everything a chance to
// settle and helps prevent overdriving the
// arm.
var STEP_SETTLE_TIME = 250;

Now let’s create the servo configuration:

// This is the basic servo config.
// Each key-value pair names and defines a servo.
// The port is the pin number on the Arduino head
er,

// and the defaultPosition is the position that
// the servo will start at when the app boots up.
var SERVO_CONFIG = {
 servos: {
 shoulder: {
 pin: 3,
 startPosition: 90,
 isInverted: false
 },
 elbow: {
 pin: 6,
 startPosition: 60,
 isInverted: false
 },
 wrist: {
 pin: 5,
 startPosition: 30,
 isInverted: true
 }
 },
 rate: SERVO_RATE,
 settleTime: STEP_SETTLE_TIME
};

We configure the servos to start out in the posi-
tion shown in Figure 2-14.

Figure 2-14 Starting position

If you run the code and it doesn’t match this
position, make sure you have the isInverted
flags set appropriately. It’s OK if your angles
don’t match the figure exactly, just as long as
they are close.

The last piece of configuration we need to cre-
ate is a mapping between keys and servo an-
gles:

// These are the keys on the keyboard,
// and the position of each servo when
// they are *pressing* the key
var KEYS = {

28 Make: JavaScript Robotics

Writing the Software

 a: { shoulder: 125, elbow: 19, wrist: 87 },
 b: { shoulder: 88, elbow: 21, wrist: 62 },
 c: { shoulder: 105, elbow: 21, wrist: 65 },
 d: { shoulder: 114, elbow: 21, wrist: 77 },
 e: { shoulder: 114, elbow: 19, wrist: 87 },
 f: { shoulder: 107, elbow: 21, wrist: 74 },
 g: { shoulder: 100, elbow: 21, wrist: 72 },
 h: { shoulder: 92, elbow: 21, wrist: 70 },
 i: { shoulder: 81, elbow: 20, wrist: 79 },
 j: { shoulder: 84, elbow: 21, wrist: 70 },
 k: { shoulder: 77, elbow: 21, wrist: 71 },
 l: { shoulder: 69, elbow: 21, wrist: 73 },
 m: { shoulder: 70, elbow: 21, wrist: 65 },
 n: { shoulder: 78, elbow: 21, wrist: 63 },
 o: { shoulder: 75, elbow: 20, wrist: 81 },
 p: { shoulder: 68, elbow: 20, wrist: 83 },
 q: { shoulder: 124, elbow: 16, wrist: 98 },
 r: { shoulder: 108, elbow: 20, wrist: 83 },
 s: { shoulder: 120, elbow: 20, wrist: 82 },
 t: { shoulder: 102, elbow: 20, wrist: 81 },
 u: { shoulder: 88, elbow: 21, wrist: 78 },
 v: { shoulder: 97, elbow: 21, wrist: 63 },
 w: { shoulder: 119, elbow: 18, wrist: 92 },
 x: { shoulder: 113, elbow: 21, wrist: 68 },
 y: { shoulder: 95, elbow: 20, wrist: 79 },
 z: { shoulder: 120, elbow: 21, wrist: 72 }
};

Where did these numbers come from? A small
program was written that performs some trig-
onometry to estimate the position of keys. Note
that this program can only generate estimates
because of subtle variations in servo width/
height, slightly misaligned screw holes, servos
that aren’t exactly 180°, and so on.

The last step is to initialize Johnny-Five and the
servos:

function run() {
}

var board = new five.Board();
board.on("ready", function() {
 servocontrol.init(board,
 SERVO_CONFIG, run);
});

Now it’s time to run the code. Make sure that all
of the servos are properly connected to your
Arduino, and that the Arduino is plugged into
your laptop. Run node typebot.js and the arm
should move into its starting position!

Sequencing a Key Press
Now that we have our servo module, how do
we actually use it to press a key given the con-
straints from the beginning of the chapter? We
are going to use a state machine to break a key
press into three steps:

1. Positioning the finger directly above
the key.

2. Moving the finger down until the key is
depressed.

3. Raising the finger back to the position
the finger was in at the end of step 1.

These three steps can be represented by the
state machine shown in Figure 2-15.

Figure 2-15 State Diagram

We can represent this state machine with an
event loop and a switch statement. You should
now add the code shown in Example 2-4 to the
run method.

29Chapter 2: TypeBot

Writing the Software

http://bit.ly/1wDK7CZ
http://bit.ly/1wDK7CZ

Example 2-4 The run method

function run() {

 // Define the states
 var STATE_IDLE = 0;
 var STATE_MOVING = 1;
 var STATE_PRESSING = 2;
 var STATE_RELEASING = 3;

 // State machine information
 var sequencePosition = -1;
 var state = STATE_IDLE;
 var key;

 function tick() {
 switch(state) {

 case STATE_IDLE:
 break;

 case STATE_MOVING:
 break;

 case STATE_PRESSING:
 break;

 case STATE_RELEASING:
 break;
 }
 }

 // Kickstart the event loop
 tick();
}

Here we define four states: idle, moving,
pressing, and releasing.

To keep track of the state machine, we use
three global variables: sequencePosition,
state, and key. sequencePosition keeps
track of which key in the sequence we are
currently pressing. state keeps track of
which state within the sequence we are
currently in. Finally, key is an alias for the
current key entry in the KEYS array.

We also create a function called tick that
processes a single trip through the event

loop. This method will be called four times
for each key, once per state. Each state is re-
sponsible for transitioning to the next
event. The code you see here is just the
stub for these case statements. You’ll see
the full definition of each statement next.

The application starts out in the idle state.
When the loop ticks, the idle state transitions to
the moving state with the following code,
which replaces the previous definition of case
STATE_IDLE:

case STATE_IDLE:

 // Get the next key

30 Make: JavaScript Robotics

Writing the Software

 sequencePosition++;
 key = KEYS[SEQUENCE[sequencePosition]];
 if (!key) {
 process.exit();
 }
 console.log('Typing key ' +
 SEQUENCE[sequencePosition]);

 // Move the arm to resting
 // above the key
 state = STATE_MOVING;
 servocontrol.move({
 shoulder: key.shoulder,
 elbow: key.elbow + 10,
 wrist: key.wrist - 5
 }, tick);
 break;

The first step is to get the next key from the
sequence and store it. If there is no key,
then that means we are finished typing and
can exit.

Then, we change the state to moving and
tell the servo module to move the servos.
We add an offset to the elbow and wrist so
that they hover above the keyboard by
about an inch. This prevents the arm from
dragging along the keyboard. Note that we
supply the tick method as the callback to
the servo control’s move method. This way,
we will tick through the next loop in the
event loop once the arm is finished mov-
ing.

The next state, moving, looks a lot like the sec-
ond half of the idle state. The only difference is
that we remove the offset so that the arm
moves downward to press the key. These off-

sets were chosen because they cause the fin-
gertip to move almost directly downward,
which is one of the constraints from earlier. The
following replaces the previous definition of
case STATE_MOVING::

// Press the key
case STATE_MOVING:
 state = STATE_PRESSING;
 servocontrol.move({
 elbow: key.elbow,
 wrist: key.wrist
 }, tick);
 break;

The release state simply reverses the action tak-
en in the previous state:

// Release the key
case STATE_PRESSING:
 state = STATE_RELEASING;
 servocontrol.move({
 elbow: key.elbow + 10,
 wrist: key.wrist - 5
 }, tick);
 break;

The final state is really simple. It changes state
back to the idle state so that we can loop
through again:

// Change to the idle state and pump the event
loop
case STATE_RELEASING:
 state = STATE_IDLE;
 tick();
 break;

In this state, we have to call tick directly be-
cause we aren’t telling the servo to move. The
complete tick method should now look like
Example 2-5.

Example 2-5 The final tick method

function tick() {
 switch(state) {

 case STATE_IDLE:

 // Get the next key
 sequencePosition++;
 key = KEYS[SEQUENCE[sequencePosition]];
 if (!key) {
 process.exit();

31Chapter 2: TypeBot

Writing the Software

 }
 console.log("Typing key " + SEQUENCE[sequencePosition]);

 // Move the arm to resting above the key
 state = STATE_MOVING;
 servocontrol.move({
 shoulder: key.shoulder,
 elbow: key.elbow + 10,
 wrist: key.wrist - 5
 }, tick);
 break;

 // Press the key
 case STATE_MOVING:
 state = STATE_PRESSING;
 servocontrol.move({
 elbow: key.elbow,
 wrist: key.wrist
 }, tick);
 break;

 // Release the key
 case STATE_PRESSING:
 state = STATE_RELEASING;
 servocontrol.move({
 elbow: key.elbow + 10,
 wrist: key.wrist - 5
 }, tick);
 break;

 // Change to the idle state and pump the event loop
 case STATE_RELEASING:
 state = STATE_IDLE;
 tick();
 break;
 }
}

Running for the First Time
Are you ready to watch the arm type? Let’s do
it! To start with, you should run the arm without
a keyboard below it just in case the arm goes
haywire for some reason. Connect all of the
hardware to your computer, and run node type
bot.js. The arm should go about air-typing a
message.

If nothing seems terribly wrong, it’s time to try
typing on a real keyboard. Place the keyboard
under the arm, positioned such that the center
of the shoulder servo is lined up with the B key.
Run node typebot.js again and watch it type.

If you are extremely lucky, it will work the first
time. More than likely, however, it probably
won’t get a single key right. This is OK, because
this is where we fine-tune the arm.

Fine-Tuning the Arm
The easiest way to fine-tune a key is to com-
ment out the releasing state case entry. This
way, the arm will initialize, move above the first
key, press the key, release the key, and stop. You
can then set the letter you are interested in
testing as the first entry in the sequence. Run
through each key and adjust the angles until
the key is being pressed properly. You may

32 Make: JavaScript Robotics

Writing the Software

need to adjust the arm in all three directions to
ensure that there is a good key press.

Once you are happy with how all of the keys are
being pressed, reenable the releasing state case
entry. Now TypeBot should be able to type out
“helloworld”.

Now it’s time to crank it up to 11! Start increas-
ing the speed in increments of 0.05. Run Type-
Bot with each increment and watch how it per-
forms. As you increase the speed, small errors in
the positions tend to become more pro-
nounced. Fine-tune these keys using the meth-
od described earlier until it works at the new
speed. Rinse and repeat until you have in-
creased the speed to 0.2. Now you should be
flying!

If you are feeling adventurous, you can keep
trying to increase the speed, but be warned
that you will start to run into physical limita-
tions of the arm itself. It is entirely possible to
drive the arm so fast that it tears itself apart!

What’s Next?

Now that you have a functioning TypeBot, what
else can you do with it?

TypeBot was originally created to type on a key-
board, but what about playing a piano? If you
strengthen the arm, it should be able press a
piano key without difficulty! If you string a few
arms together, you can play a (slow) piano
piece.

The current implementation requires a lot of
fine-tuning to get it to work properly. A smarter
robot would calibrate itself. You can add a cam-
era to the end of the finger that runs optical
character recognition (OCR) on the video feed
to find letters on its own. The “node-tesseract”
NPM module provides OCR capabilities in
Node.js.

Too easy for you? Here’s something pretty com-
plex. It’s a bit redundant having to type in the
message that TypeBot will type. Wouldn’t it be
more fun to tell TypeBot what to type simply by
talking to it? You can do just that with the Web
Speech API. You will need to add a web server
to TypeBot that serves up a web page to handle
the speech-to-text aspects and then sends the
text back to TypeBot telling it what to type.

33Chapter 2: TypeBot

What’s Next?

http://bit.ly/1AYW0yI
http://bit.ly/1AYW0yI

Getting Started with
NodeBoats

By Sara Gorecki

At JSConf 2014, NodeBoats was kicked-off with
a full-day workshop: robots + water = fun! By
the end of the day, participants had their boats
sailing across the hotel pool, controlled from
their laptops. I was part of a team of four that
helped guide attendees through the process of
creating their own seaworthy robots. This chap-
ter will show you how to make one, too, as
shown in Figure 3-1.

Figure 3-1 NodeBoat

One of the challenges of creating a boat is
physically untethering your hardware from your

computer. After all, you don’t want to have to
bring your laptop into the pool with you, or
have your boat limited by the length of your
USB cable. To this end, we’ll use the Spark Core
to control our boat. See “Spark WiFi Develop-
ment Kit” for more on Spark Core.

As you can see in Figure 3-1, the sealable plastic
container will be the hull of your boat, so make
sure it’s watertight! You want your breadboard
and battery holder to fit comfortably inside,
side by side. The boat pictured was made out of
a 8.5” × 5.5” × 2.5” plastic pencil case with a
cover that snaps closed (we purchased ours at a
craft store), but a disposable food container or
a small storage bin would work just as well. Just
make sure you’re willing to make a hole in
whatever you decide to use.

The size of the Styrofoam blocks that you need
depends on the size and weight of the plastic
container you use. The pictured boat uses two
2” × 12” × 4” Styrofoam blocks. You can likely
get away with smaller ones, but Styrofoam is
cheap, and it is safer to use a little more, rather
than use too little and have your boat sink as a
result.

35

3

The silicone/glue will be used to seal up any
holes that you need to make in your boat dur-
ing its construction, so it’s very important that
this is thick enough to make a good seal, and
entirely waterproof. Clear silicone is designed
for creating waterproof seals, but something
like E6000 QuickHold Contact Adhesive also
works well.

Bill of Materials

Table 3-1 lists the materials you’ll need to build
your boat.

Table 3-1 Bill of materials

Count Part Source Estimated
price

1 Tamiya submarine motor 70153 Tamiya or Amazon $10

1 Spark Core http://spark.io $40

1 Sparkfun motor driver 1A dual TB6612FNG http://sparkfun.com/
products/9457

$9

1 Row of break away headers (you need 16
pins)

http://sparkfun.com/
products/116

$1.50

1 Standard servo Electronics retailer $10

1 0.1uF Ceramic capacitor Electronics retailer < $1

1 Half-size breadboard Electronics retailer $5

1 4 AA battery holder Electronics retailer $2

4 AA batteries (spares are recommended) You probably already have
these

$3

1 Pack of at least 15 male to male jumper wires
(you’ll need at least 2 long ones)

Electronics retailer $2

1 Tube of Silicone or a goopy waterproof craft
glue

Local craft or hardware
store

$5

1 Sealable plastic container that comfortably
fits your breadboard and battery holder

Multiple options $5

2 Styrofoam blocks Local craft store $4

5+ Popsicle sticks Local craft store $2

36 Make: JavaScript Robotics

Bill of Materials

http://spark.io
http://sparkfun.com/products/9457
http://sparkfun.com/products/9457
http://sparkfun.com/products/116
http://sparkfun.com/products/116

Tools
You will also need to use the following tools to
put your boat together:

• USB Microcable for setting up your
Spark Core

• Wire cutters/strippers

• Soldering iron

• Spool of solder

• Drill with approximately a ⅛” drill bit

• Hot glue gun with glue

• Bathtub or kiddie pool

The Submarine Motor Pod

When building a boat, you need to be very
careful to keep the electronics out of the water
and keep them from shorting out. Otherwise,
it’s a quick end to your project. But if you need
to keep your electronics dry, how will you pro-
pel the boat through the water?

Say hello to the Tamiya Submarine Motor! This is
a wonderful waterproof pod, designed to keep
the motor safe and dry inside. There is a catch,
however: normally, the pod is attached via a
suction cup, and can’t be externally controlled.
You’ll need to modify this so that you can drive
it from the Spark Core.

Because the Tamiya uses a simple, bidirectional
motor, you can drive it forward and backward
with a motor driver. Some motor drivers, includ-
ing the one you’ll be using, will also let you con-
trol the speed. You’ll need to modify the motor
and the pod, however, to add wires that you
can hook up to the other electronics.

Why Use a Motor Driver?
You can simply connect most I/O components,
from LEDs to servos, to the appropriate pins on
the microcontroller and reasonably expect
them to work properly (with the possible need

of capacitors or resistors). This isn’t the case for
motors.

The problem you face is that the motor draws
too much current. In fact, it draws more current
than an Arduino or Spark can provide, and
more than can even safely travel through the
chip! This means that if you plug a motor into
your microcontroller, it may work if the motor is
very small, but you run a huge chance of frying
everything beyond repair.

The way to solve this problem is by using a mo-
tor driver or a type of chip called an H-Bridge.
These allow you to easily bring an external
power source to your motor, and the chip is de-
signed to be able to handle the current.

Using a driver or H-Bridge also brings addition-
al benefits. Some motor drivers, such as the
SparkFun driver we’re using to build this boat
(Figure 3-2), also incorporate some extra com-
ponents that allow you to control the speed at
which the motor spins.

Figure 3-2 SparkFun motor driver

Motor Pod Components
The Tamiya is normally used by inserting a bat-
tery inside the pod, but we’re going to modify it
to use an external power source, which will al-
low you to turn it on and off from your comput-
er. As such, you don’t need all of the compo-

37Chapter 3: Getting Started with NodeBoats

The Submarine Motor Pod

Tamiya variants

These modifications are based on
the yellow Tamiya motor. If you
have purchased the red Tamiya
Mini, the modifications will follow
the same concepts, although the
guts of the pods vary a bit and
the red version has a smaller
chassis to work in.

nents included in the sub kit. You’ll need the ex-
ternal casing for the pod, some of the blue plas-
tic punch-out components, the black rubber
ring, the small tube of grease, and the motor.

You can discard most of the blue plastic com-
ponents that come with the pod. You will later
fashion your own rudder, because the one in-
cluded in the submarine pod is too small to
steer a whole boat. However, you do need two
of the included pieces. One piece is the propel-
ler, the other is a small ring that is flat on one
end and clips over the motor pod, pictured in
Figure 3-3.

Figure 3-3 Plastic ring that comes with the Tamiya kit

Punch out the propeller and clip and set them
aside until you’re done with the soldering.

Modifying the Motor
In order to run an electrical current to the mo-
tor to control it, you will need to solder two
wires onto the motor. You’ll then run these
wires to the Spark Core inside the boat. There’s
not a lot of room inside the motor pod, so you
need to make sure that the wires you’re solder-
ing onto the motor are flexible and thin. As it
turns out, standard jumper wires are perfect for
this. Here are the steps you should follow:

1. Take your two longest jumper wires. If
your jumper wires have a thicker,
knobby end, clip it off with your wire
cutters. Then strip the rubber insula-
tion off one end of each wire, as shown
in Figure 3-4. Make sure not to cut
through the metal wires. You simply
want to cut away the rubber to expose
the wire underneath.

2. Take a look at the motor that came
with your Tamiya. You’ll see that there
are two little metal loops sticking out
on one side. These are the positive and
negative terminals that are used to
power the motor, and are what you will
connect your exposed jumper wires to.

Figure 3-4 Stripped jumper wire

38 Make: JavaScript Robotics

The Submarine Motor Pod

3. Loop the exposed metal of the jumper
wires through the metal loops on the
motor to help secure them in place.

4. You want to position the wires so that
the long ends are against the body of
the motor, pointing backward toward
the spindle/propeller end of the motor.
If you want, you can tape the wires to
the body of the motor to help keep
them in place while you solder.

5. Solder the jumper wires to the termi-
nals on the motor, as shown in Fig-
ure 3-5, keeping the jumper wires to-
ward the outer edges of the loops. It
doesn’t have to be perfect, but later on
you’ll need to be able to fit the blue
plastic clip that you set aside earlier on
the end of the motor.

Figure 3-5 Soldering the wires to the motor

Make sure that the exposed metal
at the end of the jumper cables does
not touch the metal body of the
motor. This could cause a short cir-
cuit and prevent your motor from
working. If you’re worried this may
happen, you can wrap some tape
around the motor where there may
be contact.

Testing the Motor
At this point, it’s a good idea to check your mo-
tor and make sure it’s soldered up correctly. To
do this, you can simply take the two wires you
soldered onto the motor and touch each to op-
posite ends of one of your AA batteries. If the
motor starts spinning, you’re well on your way
to making a boat! If it doesn’t, take a look at
your solder joints to make sure a solid connec-
tion is being made, and that nothing is shorting
out. Try using fresh batteries.

Finishing the Motor
Once you complete the soldering and confirm
that the motor is working, we need to take a
couple more steps before it’s ready to go inside
the motor pod (you’ll need the blue plastic ring
that you set aside earlier, the black rubber ring,
and the small tube of grease):

1. Place the blue plastic ring over the
white end of the motor, making sure
the clip is on the side with the wires.
The clip should fit snugly over the little
protrusion on the side of the motor.
See Figure 3-6.

Figure 3-6 Clip the ring onto the motor

39Chapter 3: Getting Started with NodeBoats

The Submarine Motor Pod

Normally, in the sub motor kit,
this plastic piece would hold the
leads in place that connect the
motor to the battery. However,
for our purposes, it will help en-
sure the motor is secured at the
back of the pod and remains in
contact with the propeller while
closed.

2. Apply grease to the flat end of the rub-
ber ring. This will help make a seal to
prevent your motor from flooding.
(Don’t use all the grease now; you’ll
need more later.)

3. Place the rubber ring over the spindle
end of the motor, with the flat end of
the ring against the body of the motor,
as shown in Figure 3-7.

You want the grease to be filling the
space between the body of the motor
and the rubber ring. If there are any no-
ticeable gaps, you can add some more
grease now.

Figure 3-7 Insulating rubber ring

Inserting the Motor
Now it’s time to insert the motor into the pod
to keep it dry!

1. Take the back half of the Tamiya pod. It
should have a hole in the back end of
it.

Look inside and find the plastic spacer
jutting a little toward the center of the
pod’s cavity (Figure 3-8). When the mo-
tor is inserted in the pod, this extra bit
of plastic could get in the way of your
wires, so take note of its position.

Figure 3-8 Motor pod interior

2. Double back the jumper wires, so that
they are pointing away from the mo-
tor’s spindle. Hold them against the
body of the motor. The two wires
should be close together, toward the
center of the motor, as shown in Fig-
ure 3-9.

Figure 3-9 Positioning the wires

3. Holding the wires in place, insert the
motor into the back half of the motor

40 Make: JavaScript Robotics

The Submarine Motor Pod

pod, spindle first, as shown in Fig-
ure 3-10.

Figure 3-10 Inserting the motor

As you’re inserting the motor, make
sure that the wires are protruding from
the pod. There is a small gap in the
blue plastic ring that they can fit
through.

4. Push the motor into the pod until it fits
in place snugly and the spindle pro-
trudes from the back end of the pod.

5. Take the plastic propeller that you set
aside earlier and push it on to the mo-
tor’s spindle, as shown in Figure 3-11.
Once the propeller is in place, the back
half of your motor is good to go!

Figure 3-11 Propeller

Drilling into the Motor Pod
Of course, you still need to close up your motor
pod, and make sure there’s a place for the wires
to exit so that you can run them to your Spark.
To do this, you need to drill into the body of the
sub. There are a couple of things you should

keep in mind when deciding where to drill the
hole.

There’s a lot of space to work with in the front
of the pod, but the casing tapers toward the
nose. The further into the nose you try to reach
your wires, the harder it will be to thread the
wires through the hole you’ll drill. Making a
hole closer to the nose would also waste valua-
ble length of wire!

If you look inside the pod, there’s a track that
runs along one side. This would usually be used
to secure part of the battery holder. You proba-
bly don’t want to drill through this because it
makes the wall of the pod thicker. Finally, the
wires should exit the pod on the side that will
be facing the boat. There is an external protru-
sion on the outside of the motor pod, make
sure this won’t interfere with your placement
either. Once you’re ready, follow these steps:

1. Line up the external nubs on the front
and back halves of the sub, as shown in
Figure 3-12. You will use these to help
guide where you’ll drill the hole.

Figure 3-12 Submarine Pod pre-assembly

Mark where on the front half of the sub
you want the jumper wires to exit.

2. Use a 1/8” drill bit to make a hole at the
location you marked on the pod cas-
ing. You want the hole to be as small as
possible while still being able to thread
both wires through it.

41Chapter 3: Getting Started with NodeBoats

The Submarine Motor Pod

Check and see if the jumper wires
emerging from the rear end of the mo-
tor pod can fit through the hole you
drilled. If not, use the drill to enlarge
the hole until both wires fit through.

3. Once the hole is large enough for the
wires to fit, thread the wires through
one at a time, from the inside of the
motor pod. See Figure 3-13.

Figure 3-13 Tamiya pod after wiring modifications

Closing the Motor Pod
Now that your motor is wired up and the wires
are accessible outside the pod, it’s time to close
the pod and seal the hole in the hull of the sub:

1. Use the remainder of the grease that
came with the motor kit around the
seam where the two halves of the pod
meet. The grease will make a better
seal.

2. Snap the two halves of the pod togeth-
er and wipe off any residue that leaks
out from the seam.

3. Pull the wires so they are taut, taking
care to not pull them loose. Take the
silicone or glue sealant, and place it
around and over the hole you drilled in
the pod, making sure there are no
gaps.

4. Set the pod aside and let it dry. If you
have a quick-dry formula, it should on-

ly take a couple of minutes before it’s
dry enough to move around.

Although most of these silicones and glues take
up to a day to completely cure, if you’re build-
ing a boat in a limited time frame you probably
don’t have to wait quite so long. Most of these
will be dry and waterproof enough for you to
set sail in a couple of hours. This is one of the
reasons why it can be a good idea to work on
the physical build of your boat first.

Waterproofing Your Wires
Maybe you’ve soldered your wires to the motor,
and now you’re realizing they’re too short. Or
maybe later in your project you’ll decide you
want to position the motor pod further away
from the body of the boat and need more
length. Either way, if you need to extend your
wires, you need to make sure you waterproof
them, too.

You’ll need to take additional steps to keep
your soldering water-tight. Shrink wrap tubing
can help with this. You can buy heat guns to
shrink the tubing, but some shrink wrap can be
heated up simply with a good hair dryer. Make
sure you buy shrink wrap that’s compatible
with the tools you have available. Then:

1. Before you solder the two wires togeth-
er, slide a piece of tubing of an appro-
priate diameter onto one of the wires.

2. Solder the two wires together.

3. Position the shrink wrap tubing fully
over where you joined the two wires.

4. Heat the tubing until it shrinks enough
to form a good seal around the wire.

5. If you’re concerned that the shrink-
wrap didn’t form a good enough seal,
you can enforce the ends with some of
your silicone or waterproof glue.

Your wire should now be able to withstand sub-
mersion.

42 Make: JavaScript Robotics

The Submarine Motor Pod

Setting Up Your Spark

Now that you have completed your pod, you’ll
have to claim your Spark so that you can begin
wiring up the hardware and controlling it from
your computer. Check out “Spark WiFi Develop-
ment Kit” if you haven’t done this yet; it will
walk you through the process.

Figure 3-14 Spark Core

Some Spark Core chips have a
Chip Antenna, while others have
a uFL Connector. The Chip Anten-
na version includes an onboard
antenna. If your Spark has a uFL
Connector, you’ll need to connect
an external antenna—either a
flex antenna or a “duck” antenna.
Make sure your antenna is in
place before trying to connect
your Spark to the WiFi!

Although you can claim your Spark over WiFi
using a mobile app, the process can sometimes
go smoother if you connect your Spark via USB
and use the Spark CLI command-line tool, par-
ticularly if there are a lot of WiFi devices or any
other Sparks around. You don’t want to acci-
dentally claim someone else’s device.

Because you’ll be configuring your Spark for
your current WiFi network, remember that if
you take your boat to another location with a

different WiFi network, you’ll have to reconfig-
ure it and go through the spark setup again!
Keep this in mind when assembling your boat.
You don’t want to have to disassemble the
whole thing just to set up your Spark’s WiFi cre-
dentials.

During setup, if at any point your Spark begins
flashing unexpected colors and you want to
know what it means, you can find out in the
documentation.

Before getting to the code for your boat, you
will also have to replace the Spark’s stock firm-
ware with VoodooSpark. This is also outlined in
“Spark WiFi Development Kit”.

Testing the Spark
Before continuing, connect the Spark to the
battery pack and test it to make sure it is work-
ing properly and can receive commands from
your computer:

1. Plug your Spark into the breadboard,
making sure that it spans the divider
running down the middle of the bread-
board.

2. Connect the red wire from the battery
pack to the pin on the Spark labeled
VIN.

3. Connect the black wire from the bat-
tery pack to GND on the Spark. If you
hold the Spark so that the USB port is
facing up, VIN and GND will both be on
the top left of the board. Figure 3-15
shows how it should be wired.

4. Put four AA batteries in your battery
holder. The Spark will turn on, flash
green to signal that it is connecting to
the WiFi, and then “breathe” cyan (a
slow fading in and out of the light as
opposed to a steady blinking) once it
connects.

43Chapter 3: Getting Started with NodeBoats

Setting Up Your Spark

http://docs.spark.io/cli/
http://bit.ly/19LX8iW
http://bit.ly/19LX8zv

Figure 3-15 Wiring for Spark test

Your First Spark Program

Now you’re going to create a simple test pro-
gram to make sure that your Spark can properly
receive commands over WiFi. This is the “Hello,
world” of electronics, blinking an LED, shown in
Figure 3-16. The Spark has an onboard LED,
which shares a connection with the pin D7, so
you will create a simple program to blink this
light.

Figure 3-16 Running the Spark test

At this point in the book, you’ve probably gone
through the basic Johnny-Five setup. If not, it
may be useful for you to take a look at “Instal-
ling Johnny-Five”. Then follow these steps:

1. Before you start coding, you’ll need to
create a directory for your project and
change directory (cd) into it.

Once in your project directory, you can
begin your project by creating a pack-
age.json file. You can do this with the
command npm init. This will walk you
through the steps of creating your proj-
ect’s package.json, which is where a list
of the dependencies for your code will
be stored.

2. Because you’re using a Spark instead of
an Arduino for this project, you’ll need
to use the Spark-IO module as a plug-in
for Johnny-Five. In your project directo-
ry, install Johnny-Five and Spark-IO.
Add the --save flag to automatically
add these modules to your pack-
age.json file:

npm install --save johnny-five
npm install --save spark-io

Now make a new file called test.js. This is where
you’ll write your code to control the Spark,
shown in Example 3-1.

Example 3-1 Spark test script for Johnny-Five

var five = require("johnny-five");
var Spark = require("spark-io");

var board = new five.Board({
 io: new Spark({
 token: <your_access_token>,
 deviceId: <spark_device_id>
 })
});

board.on("ready", function() {
 var led = new five.Led("D7");
 led.blink();
});

In this file, you should start by requiring the
Johnny-Five and Spark-IO modules, and
setting them equal to variables. This will al-
low you to access the Johnny-Five and
Spark-IO modules in this file.

Initialize a new Johnny-Five Board. When
you do this, you can pass in a JavaScript ob-

44 Make: JavaScript Robotics

Your First Spark Program

ject as an argument. Because we’re using a
Spark, and will be using the input/output
of the Spark instead of an Arduino, we will
specify the io and set it equal to a new
Spark().

Now you’re making sure your program
knows to look for a Spark, but it still does
not know how to identify your particular
Spark. In order to do this, you will need to
pass a JavaScript object as an argument to
your new Spark object. You will need to
specify the token and deviceId that you
noted while configuring your Spark.

It’s a good idea to save your ac-
cess token and device ID as envi-
ronment variables to keep them
out of your source code, as ex-
plained in “Spark WiFi Develop-
ment Kit”.

Once you save this code in your test.js file, go
ahead and run it from the command line with
the command node test.js. The small, blue
LED next to the star symbol (shown in Fig-
ure 3-16) printed on the Spark board should be-
gin blinking steadily. Good job—your Spark is
all set up! Remember, if you run into any prob-
lems, you can check out the Spark trouble-
shooting guide.

Be careful: the chip on the Spark can
get pretty hot once it’s been running
for even a few minutes!

Unplug your battery pack for now, because
you’ll wire it up a bit differently for your actual
boat build.

Soldering the Motor Driver

Now, before moving on to building the boat,
there is one more bit of soldering you need to
do. If you take a look at the SparkFun motor
driver, you’ll notice that there are no headers
attached. You won’t be able to plug it into the
breadboard until you solder some on, so let’s
take care of this now:

1. The motor driver has two rows of holes.
Hold the driver with the chip facing up.

Take your strip of breakaway headers
and snap off two rows of eight pins
each. Position the two rows of headers
underneath each of the rows of holes
in the driver. The short ends of the
header pins should be coming up
through the holes in the driver. When
both sides of headers are in position,
the motor driver should be able to
stand on its own like a table.

2. Solder the headers in place, from the
top side of the motor driver, as shown
in Figure 3-17. Make sure that you don’t
accidentally connect two pins together
with the solder. This would short-circuit
your driver and cause it to malfunction.

Figure 3-17 The soldered motor driver

45Chapter 3: Getting Started with NodeBoats

Soldering the Motor Driver

http://bit.ly/1bQQucL
http://bit.ly/1bQQucL

Wiring Up Your Boat

You’re going to have three main components
inside the boat. First, you have the motor driver.
Next, you have the Spark Core. And finally, you
have the battery holder. All three of these will
be plugged into your breadboard and wired up
to communicate with each other:

1. Plug your Spark and motor driver into
your breadboard. They should fit next
to each other comfortably. Make sure
the Spark and the driver both span the
divide in the center of the breadboard,
as shown in Figure 3-18.

Figure 3-18 The Spark and motor driver

You should position your
Spark so that the USB port is
facing the outer edge of the
breadboard, just in case you
need to access it later on.

2. Connect the battery holder to the
breadboard, as shown in Figure 3-19.
Plug the red wire of the battery holder
into one of the side columns of the
breadboard with a + sign on it. This col-
umn will be your power. Now plug the
black wire into the column of the
breadboard with a - sign on it, right
next to it. This will be your ground.
Whenever you need access to power or

ground for your Spark, driver, or motor,
we can connect to these strips on the
breadboard.

Figure 3-19 Wiring the power for the boat

3. Add your ceramic capacitor to the
breadboard. You want to plug one end
into the power, and the other end into
the ground. With a ceramic capacitor,
you can plug either end into power
and the other end into ground, but for
some other types of capacitors the di-
rection matters. You can think of the
capacitor as a type of reserve power
source, that will help fill in gaps if the
hardware needs more power than the
battery can provide at once.

The Spark can be powered by an
external power supply ranging
from 3.6–6.0 Volts. Each AA bat-
tery provides 1.5V, so the four AA
battery pack is perfect. If you use
rechargeable batteries, be aware
that each battery provides only
1.2V when fully charged.

4. Once your capacitor is in place, you’ll
connect the power to your Spark. This
time, instead of running the power and
ground directly from the battery, you’ll

46 Make: JavaScript Robotics

Wiring Up Your Boat

use jumper wires to connect the power
and ground columns of your bread-
board to the VIN and GND pins on the
Spark. The Fritzing diagram in Fig-
ure 3-19 shows this.

Powering the Motor Driver
Now it’s time to wire up the motor driver. The
driver board does have labels printed for each
of its pins, but unfortunately they’re printed on
the underside of the board. If you’re looking at
it from the top, the side with the chip on it, the
pins are set up like in Figure 3-20.

Figure 3-20 Motor driver diagram

In order to power your motor driver, you will
need to provide two sources—one from the
battery and one from the Spark:

1. Find the VM pin on the motor driver. Use
a jumper wire to connect the power
from the battery to this pin. Next, find
the GND pin, and connect it to the bat-
tery’s ground the same way.

2. In between the VM and GND pins on the
motor driver there is another pin la-
beled VCC. You will need to connect an-
other power source to this, but this pin
only accepts between 2.7V and 5.5V.

The battery pack provides more than
this, so where will you get your power
from?

The solution is the Spark. If you take a
look at the Spark, there is a pin labeled
3V3 which can supply 3.3V! You can
simply run a jumper wire from the
Spark’s 3V3 pin to the Driver’s VCC pin.

Spark has two 3.3V pins. One is la-
beled 3V3, and the other is labeled
3V3*. (The asterisk is printed very
small, so it looks more like a dot.)
Make sure to use the one without
the star when wiring up your
project! The asterisk indicates that
this is a low-noise regulated power
rail, and it may not be able to pro-
vide enough power.

Connecting the Spark and the
Motor Driver
The motor driver we’re using supports two mo-
tors, but we will use one for this boat. The three
pins on the motor driver that we care about for
our motor input are PWMA, AIN1, and AIN2. To
connect the Spark and the motor driver, follow
these steps:

1. Use jumper wires to connect PWMA on
the motor driver to A0 on the Spark.
This is one of the Spark’s PWM pins.
PWM stands for pulse-width modula-
tion. This will allow you to adjust the
speed at which the motor spins.

2. Connect AIN1 and AIN2 on the motor
driver to D0 and D1. These two input
pins will each correspond with the mo-
tor spinning in a different direction.
Figure 3-21 shows the Fritzing diagram
for the wiring.

47Chapter 3: Getting Started with NodeBoats

Wiring Up Your Boat

http://fritzing.org

Figure 3-21 Wiring the motor driver

Pulse-Width Modulation Pins

Not all pins are PWM pins. On the Spark the pulse-
width pins are A0, A1, A4, A5, A6, A7, D0, and D1.

What makes a PWM pin special? Most pins can on-
ly be turned on or off. PWM pins are different be-
cause they can be set to turn on and off incredibly
fast. You essentially pick the percentage of the
time the pin is on, and this allows additional levels
of control over components.

An LED is a good example of this. If it is connected
to a non-PWM pin, it can only be turned on or off.
Plug it into a PWM pin and that all changes. Now
the light has the ability to pulse faster than you
can see, like flickering a light on and off. This gives
the impression of it getting brighter or dimmer,
based on the percentage of time the pin is on.

Connecting the Motor
Now that the motor driver is receiving power
from the battery and is wired to receive com-
mands from the Spark, it’s time to connect the
motor that we’ve sealed inside the Tamiya pod:

1. Take one of the wires emerging from
the motor pod and connect it to A1 on
the motor driver. Connect the other
motor wire to A2. Keep in mind that be-
cause this is a bidirectional motor,
which wire is connected to which pin
does not matter here.

In this example, you’re using one
motor pod to propel the boat,
and you will later add in a servo
to act as a rudder. However, if you
wanted to, you could add in a
second motor pod. Luckily, the
motor driver can control up to
two motors! If you were to do this,
your second motor would be
plugged into B01 and B01 on the
driver board. The corresponding
pins would be BIN1 and BIN2 to
control the direction in which the
motor spins, and PWMB to control
the motor’s speed.

You can use two motors simply to
get more speed, or you could po-
sition one on each side of the
boat and steer by alternating the
speed and direction of the two
motors.

2. There’s one more bit of wiring you
need to do for your motor to work
properly. You’ll notice that the motor
driver has a pin labeled STBY. This pin
will prevent your motor from turning
on unless power is given to it. We don’t
really need this for our boat to function
properly, so you’ll effectively turn this

48 Make: JavaScript Robotics

Wiring Up Your Boat

feature off by connecting this to the
Spark’s 3V3 pin so that it always re-
ceives voltage. Figure 3-22 shows the
final wiring for the Spark and motor.

Figure 3-22 Complete wiring of Spark and motor

Controlling Your Motor:
The Code

Now that the basic motor of your boat is now
complete, let’s start coding.

All source code for the examples in this book
can be found on GitHub.

1. Create a new file in your project called
boat.js. Set up this file similar to the
test.js you created earlier, requiring
Johnny-Five and Spark-IO. This time,
though, in your ready event, you will
need to instantiate a new motor object
instead of a new LED.

2. When you create a new motor, pass a
JavaScript object as an argument. This
object will specify the three Spark pins
that we have connected to the motor
driver. You need to specify which is the
pulse-width module (pwm), which is the
forward direction (dir), and which is
the reverse direction (cdir). If you have

been following along, these will be A0,
D0, and D1, respectively:

var motor = new five.Motor({
 pins: {
 pwm: "A0",
 dir: "D0",
 cdir: "D1"
 }
});

3. In order to more easily test your motor
and control it from the terminal, you
can also add a REPL to your boat.js file:

this.repl.inject({
 m: motor
});

Remember, instantiating the motor
and adding it to the REPL should all
take place inside your ready event.

4. Connect your battery pack and insert
the batteries so that you can test the
motor.

Wait for the Spark to connect to the Wi-
Fi and breathe cyan. Then run your pro-
gram with node boat.js.

Once your terminal prints out Repl Ini
tialized, your Spark is ready to receive
commands. If you’ve wired everything
up properly, you should be able to con-
trol the direction and speed of your
motor!

5. In your terminal, you can now run
m.forward() and m.reverse() to make
the motor spin in one direction or the
other. m.stop() will stop the motor. But
don’t forget, with this motor driver you
can also control the speed of the mo-
tor!

To do this, you can pass a number, from
0 to 255, as an argument to the forward
and reverse functions. 0 is equivalent
to the stop function, and 255 is the top
speed!

49Chapter 3: Getting Started with NodeBoats

Controlling Your Motor: The Code

http://bit.ly/19LX9n3

As you’re testing your motor, you
can hold your hand behind the
motor pod and feel for air to see
which direction the motor is spin-
ning. If your forward function is
going to make your boat spin in
reverse, there are multiple ways
you can fix this. The easiest way is
to simply switch the Spark’s dir
and cdir pins in your code. (Re-
member, we’re using D0 and D1
for these.) You could instead re-
verse the two wires plugging into
the motor driver’s A01 and A02
pins if you wanted a physical sol-
ution.

Adding Keypress Events
Of course, while you could just drive your boat
from a REPL in the terminal, it would be a lot

friendlier to be able to drive it with directional
keys. To do this, include the Node keypress
module:

npm install --save keypress

The keypress module will let us listen for key-
press events, and you can specify which keys to
listen for. It also provides convenient names for
your keys, so you can listen for a keypress on
the up key by looking for key.name === "up":

1. Require “keypress” in your code, and
make sure that process.stdin will emit
keypress events.

2. On keypress events, specify what ac-
tion you want taken if different keys are
pressed. In this case, “up” should call
motor.forward(255) and “down”
should call motor.reverse(255), as
shown in Example 3-2.

Example 3-2 Node keypress events

var keypress = require("keypress");

board.on("ready", function() {
 // make process.stdin begin
 // emitting "keypress" events
 keypress(process.stdin);

 // listen for the "keypress" event
 process.stdin.on("keypress", function (ch, key) {
 if (key.name === "up") {
 motor.forward(255);
 }
 });
});

3. The keypress module does not detect
keyup events, so with this code, your
boat will never be able to stop. You’ll
need to add in another key as a brake.
The space bar is a good choice:

if (key.name === "space") {
 motor.stop();
}

Storing Keypress State
One of the problems we have with using the
keypress module is that if you hold down a key,
the function tied to that key will continually be
called until the key is released. This can over-
whelm your Spark and crash it. In order to avoid
this, you can store the state of the keypresses in

50 Make: JavaScript Robotics

Controlling Your Motor: The Code

an object and only call the function when the
key is first pressed:

1. Create an object and set it equal to the
variable state. The keys will be up and
down, and you should set the values of
both to false.

2. When you detect the keypress event in
your code, adjust your functions so
motor.forward() and motor.reverse()
are only called if the related up or

down state is false. Likewise, you will
only want motor.stop() to be called
when either the up or down state is
true.

3. When motor.forward(), motor.re

verse(), or motor.stop() is called, you
want to make sure you adjust the val-
ues of the keypress states accordingly.

So now the simple going forward function will
look more like Example 3-3.

Example 3-3 Controlling the motor through keyboard events

var keypress = require("keypress");

var state = {
 up: false,
 down: false
};

board.on("ready", function() {
 keypress(process.stdin);

 var motor = new five.Motor({
 pins: {
 pwm: "A0",
 dir: "D1",
 cdir: "D0"
 }
 });

 process.stdin.on("keypress", function (ch, key) {
 if (key.name === "up" && !state.up) {
 state.down = false;
 state.up = true;
 return motor.forward(255);
 }
 if (key.name === "down" && !state.down) {
 state.up = false;
 state.down = true;
 return motor.reverse(255);
 }
 if (key.name === 'space' && (state.up || state.down)) {
 state.down = false;
 state.up = false;
 return motor.stop();
 }

 });
});

51Chapter 3: Getting Started with NodeBoats

Controlling Your Motor: The Code

Floating the Boat

Now that you have a way to propel your boat
and have finished wiring the internal compo-
nents, you can finish up the physical build:

1. Take the two pieces of Styrofoam and
use the hot glue gun to attach one to
each side of the boat, as shown in Fig-
ure 3-23. While you’re positioning
them, remember that you want the
motor pod to be fully submerged, but
need to make sure that the top of your
boat is above water.

Figure 3-23 Assembling the boat hull

Any electronics, including the servo
that you will later rig up to the top of
the boat, must be kept out of the water
or they will short-circuit and your boat
will not work. Keep this in mind when
sticking the foam in place. You also
want to make sure that the positioning
of the foam doesn’t prevent your lid
from closing.

2. Place your breadboard and battery
pack inside the container serving as
your boat hull, and decide where you
want to position your components.
Once you have decided, mark the loca-
tion where you want the wires from the
motor pod to enter your hull.

At this point, you may want
to fill the container with your
components, or items of
equivalent weight, and check
its buoyancy.

You can remove the electronic compo-
nents from the boat.

3. Drill a hole in the bottom of your boat
at the spot you marked. The hole
doesn’t necessarily have to be cen-
tered, depending on the design of your
boat, but keep in mind how the place-
ment of the hole will affect the place-
ment of your motor pod. You do want
to make sure your motor is centered,
otherwise your boat may go off course.

Just like when you drilled the hole in
the motor pod, you want the hole you
drill here to be as small as possible
while still allowing you to thread both
wires from the motor through it.

4. Disconnect the motor pod from the
motor driver and feed the wires
through the hole you drilled in the bot-
tom of the boat.

5. Turn the boat upside down and posi-
tion the motor pod so that it is cen-
tered and facing the correct direction.
To give the motor pod stability, you
want to position it against the bottom
of your boat, as shown in Figure 3-24.

6. Holding the motor pod in place, seal
the hole in the boat with the silicone or
glue, making sure it is completely cov-
ered. You can also use the silicone or
glue to help secure the motor, al-
though you can reinforce this later. Set
the boat aside for the sealant to dry.

52 Make: JavaScript Robotics

Floating the Boat

Figure 3-24 Positioning the motor pod

7. Once the silicone or glue has dried
enough to set, flip the boat right-side
up and seal the hole from the inside as
well.

Once it dries, if your motor pod is still
moving around, add some hot glue be-
tween the motor pod and boat to sta-
bilize it.

8. Put your breadboard and battery hold-
er back inside the boat and reconnect
the motor to the motor driver.

It’s now time for you to test your boat and get it
into water. Congratulations! But you’re not
done yet. Sure, you have a boat, but at this
point it can only go forward and backward.
Next you’re going to add a rudder to steer your
boat.

Make sure you’re testing your boat
in a small, controlled body of water,
like a bathtub or kiddie pool. If it
malfunctions you want to make
sure that you’re able to save it!

Steering with Servos

In order to control your boat’s rudder, you’re
going to use use a servo. A servo is a type of
motor that allows you to control the angle to

which it can be moved, from 0° to 180°. This is
perfect for moving a rudder back and forth!

We’re using a standard servo for
our boat. Don’t confuse this with
a continuous-rotation servo.
Those can rotate a full 360°, and
instead of controlling the angle,
you control the speed at which
the servo rotates.

1. Your servo should have three wires
connected to it. The colors of these
wires may vary between servos, but the
one that is black or brown is your
ground. Use a jumper wire to connect
this wire into ground on your bread-
board.

2. The middle wire on your servo should
be red or orange. Connect this wire to
your battery power, via your bread-
board. Servos take a lot of power, so it’s
usually good to power them off of an
external battery source. For this boat,
the four AA batteries should be
enough to power the servo, motor, and
Spark, as long as your batteries are
fresh.

3. The third wire on your servo is the one
that will take input from the Spark. In
order for the servo to work properly, it
needs to be connected to a PWM pin.

Remember, the PWM pins on the Spark
are A0, A1, A4, A5, A6, A7, D0, and D1. A0 is
already being used by the motor. We
will use A4 for the servo, as shown in
Figure 3-25.

53Chapter 3: Getting Started with NodeBoats

Steering with Servos

Because the motor is connected to
A0, you cannot connect the servo to
A1. This is because A0 and A1 are
connected to the same internal
component and both will output
the same frequency for a pulse
width. The motor and the servo
each need a different frequency to
function properly, and so you need
to attach the servo to A4 to avoid
the conflict. If you were building
something that used two servos,
connecting one to A0 and the other
to A1 would not cause any issues.

Figure 3-25 Final wiring, with Servo

Programming Servo Control
Now that you have a servo wired up to your
boat, it’s time to add it in your code, too:

1. Right after you define your motor,
you’ll initialize a new Servo as well,
with new five.Servo().

2. Pass your servo an object as an argu-
ment to set the pin to A4, because
that’s the pin you connected your ser-
vo to on the Spark.

Set startAt to 90, which will make sure
your servo will center itself when your
program starts. You can adjust this a bit
if your servo is off center.

You can also add a range to define the
minimum and maximum angles that
your servo can turn to. This will make
sure that your rudder does not hit into
the hull of your boat, and also will al-
low you to define what angles you
want the servo to turn to when you call
the min() and max() functions. Set the
range to 45–135 for now:

var servo = new five.Servo({
 pin: "A4",
 range: [45, 135],
 startAt: 90
});

3. In the state object that stores the
states of the up and down keypresses,
you also want to add the states for
right and left. In the keypress event,
you can then detect those keys and call
the servo.min() and servo.max()

functions to turn the servo (your soon-
to-be-rudder) right and left (see Exam-
ple 3-4).

Example 3-4 Controlling the servo through keyboard events

var state = {
 right: false,
 left: false
};

// ...

54 Make: JavaScript Robotics

Steering with Servos

process.stdin.on("keypress", function (ch, key) {

 // ...

 if (key.name === "right" && !state.right) {
 state.right = true;
 state.left = false;
 return servo.max();
 }

 if (key.name === "left" && !state.left) {
 state.right = false;
 state.left = true;
 return servo.min();
 }
});

Now your code will allow you to
steer the boat right and left on
keypresses, but because the key-
press module cannot detect a
keyup event, your boat has no
way of going straight. Ideally you

won’t need to press another key
to have the boat start going
straight again. You will use the
temporal module to essentially
time out the keypress, as shown
in Example 3-5.

Example 3-5 Temporal queue

temporal.queue([
 {
 loop: 100,
 task: function() {
 var currentTime = Date.now();
 if (currentTime - timeOfDirection >= 500) {
 if (state.right === true || state.left === true) {
 servo.center();
 state.right = false;
 state.left = false;
 }
 }
 }
 }
]);

// ...

if (key.name === "right" && !state.right) {
 timeOfDirection = Date.now();
 // ...

55Chapter 3: Getting Started with NodeBoats

Steering with Servos

4. Initialize a timeOfDirection variable,
and in your keypress event, update it to
Date.now() whenever the right or left
directional key is pressed. This will al-
low us to see how much time has
elapsed, and center the servo if the key
is no longer being held down.

5. Because you will use the Temporal
module, in your terminal, type npm

install --save temporal to install the
module and save it to your pack-
age.json file.

6. Call temporal.queue() in your ready
event. This takes an array, and allows
you to specify when tasks will run and
whether they will loop. For our pur-
pose, we will repeat only one function,
and will loop over it every 100 ms.

7. In this function, compare the value of
timeOfDirection to the current time. If
more than 500 ms has elapsed, you can
safely say the key is no longer being
held down, and can center the servo.
Make sure you reset timeOfDirection
to the current time whenever the right
or left keys are pressed.

Assembling the Rudder
Now you can control the servo! A servo, of
course, is not a rudder. But we can build a rud-
der with Popsicle sticks and attach it to our ser-
vo.

1. Take two of your Popsicle sticks and cut
them in half. Line them up so that the
four halves are touching to make a
square or rectangle. This will be the fin
at the bottom of your rudder.

2. Glue the square or rectangle you made
with the four half-Popsicle sticks to the
bottom of a full-length Popsicle stick.
This is now your rudder.

3. Take the end of the rudder that does
not have the fin, and glue this to the

rotating piece at the end of the servo.
Your servo probably came with multi-
ple attachments. You may want to use
one of the longer ones so that you can
position the rudder a bit further away
from the boat, as shown in Figure 3-26.

4. Once your rudder is connected to the
servo, you’ll want to attach the servo to
the back of your boat, on the outside of
your boat hull. Depending on how
tight the lid of your container closes,
you may be able to simply close the
cover over the wire leading from the
boat’s inner hardware to the servo. If
the wire would prevent the cover from
closing, however, you’ll have to drill a
hole in the boat lid for this as well.

Figure 3-26 Rudder and servo

5. Use the hot glue gun to attach the ser-
vo to the boat. Depending on the type
of container you’re using and the de-
sign of the boat, you may choose to at-
tach it to the main hull, the edge of the
cover, or a clip that holds the cover in
place.

When positioning your servo, make
sure that the main part of the rudder

56 Make: JavaScript Robotics

Steering with Servos

will be fully submerged in the water
once the boat is afloat. Also make sure
that the rudder is centered, or else it
will be more difficult to control your
boat.

Remember, servos are not water-
proof! Keep them well out of the wa-
ter, or they will stop working. Many
servos have a label on the side.
When gluing your servo in place,
make sure you are gluing the actual
servo, not just this sticker, to the
boat. Otherwise, the servo may fall
off and into the water when you
least expect it!

Setting Sail

Figure 3-27 The finished boat

Now that you have your rudder in place, your
boat is sea-worthy! Set it loose in a pool, or
even just a bathtub, and watch it go!

You’re also highly encouraged to decorate your
boat. Whether you want it to look like a fish, a
pirate ship, or something in between, the de-
sign options are limitless.

What’s Next?

Now that you have a complete boat, you can
work on adding more features or experiment-
ing with other ways to control it!

For example, you could try any or all of the fol-
lowing:

• Adding a water sensor in the bottom of
your boat to sound an early warning
signal if it starts to flood.

• Steering your boat with a device that
has an accelerometer, such as a Sphero.

• Include a second motor pod and steer
by adjusting the speeds between the
two pods.

• Programming in more fine-tuned turn-
ing.

• Add in acceleration and deceleration
functions.

• Add in sonar to have a self-driving
boat.

• Include LEDs that change color with
the different commands you send to
your boat.

There are countless possibilities, and all
NodeBoats are unique! We’d love to see the cre-
ations you make. Send photos of your creations
to @NodeBoats on Twitter and have fun sailing!

57Chapter 3: Getting Started with NodeBoats

Setting Sail

https://twitter.com/nodeboats

piDuino5 Mobile Robot
Platform

By Jonathan Beri

Johnny-Five was destined for greatness from
the moment Rick demoed it at NodeConf 2012.
Sensors, Node.js, and the greatest movie robot
made for a great hardware platform, but some-
thing was absent from the demos. There was a
cool tankbot with sonar doing amazing things
via a MacBook, but it was bounded by the
length of the USB cable. Why wasn’t this wire-
less? There must be a version without a cable.
After tweeting at Rick and finding out that no
one had tried it yet, it became a personal chal-
lenge of mine to make one of the first unteth-
ered Johnny-Five projects. The final robot used
a Raspberry Pi for the main controller, an Ardui-
no for the I/O, and of course, Johnny-Five for
the software. It was cleverly called piDuino5,
and it’s shown in Figure 4-1.

Originally, the hardware combined both new
and salvaged parts to make an untethered bot,
but new parts were eventually bought online to
make a clean demo. I went with cheaper and
easier-to-acquire parts when possible, rather
than fancy Arduino shields or high-end motors.

You may ask, “Why two boards? Couldn’t you
pick either the Raspberry Pi or the Arduino?”
Combining a Raspberry Pi and an Arduino al-

lows you to take advantage of each controller’s
extensive ecosystems of peripherals. There are
all sorts of sensor shields available for the Ardu-
ino, both analog and digital, and high-perfor-
mance software on the Raspberry Pi like
OpenCV, but let’s not get ahead of ourselves
with scope-creep. We have to begin small,
starting with the hardware.

Figure 4-1 The piDuino5

59

4

http://youtu.be/jf-cEB3U2UQ

Bill of Materials

Table 4-1 lists materials used to build the origi-
nal piDuino5, plus a few improvements to the
design. Treat this list as a suggestion—there is
more than one way to skin a Terminator, so be

brave and use whatever hardware is handy. For
example, the common Arduino Motor Shield is
easier to assemble, but it will cost a bit more.
Similarly, the Magician Chassis is the cheapest
motor platform you can buy, but you could
easily cannibalize an R/C car.

Table 4-1 Bill of materials

Count Part Estimated
price

Part numbers

1 Raspberry Pi B/B+ $39.95 MS MKRPI5; AF 1914; SF DEV-12994

1 4GB or 8GB SD card $11.95 MS (included w/Pi); AF 102; SF
DEV-12998

1 Mini WiFi adapter $9 AZ B003MTTJOY

1 Arduino Uno - R3 $24.95 MS MKSP99; AF 50; SF DEV-11021

1 Magician Chassis $14.95 SF ROB-12866

1 Mini breadboard with adhesive $3.95 MS MKKN1-B; AF 65; SF PRT-12043
through PRT-12047

1 MicroB USB breakout board $1.95 AF 1833; SF BOB-12035

1 Break away male header pins $1.50 AF 392; SF PRT-00116

1 SN754410 H-Bridge motor driver $2 SF COM-00315

1 Dual-output USB battery backup $29.95 SF PRT-11360

1 Jumper wire kit $6.95 SF PRT-00124

1 Male to male jumper wire (30 pack) $6-$9 MS MKSEEED3; AF 153

2 Micro USB cables $5 AZ B00C28L5UW

1 A-Male to B-Male USB $2.50 AZ B000FW60E8

1 Cable tie assortment $7.50 AZ B000NQ16NG

1 Velcro strips $6 AZ B000TGSPV6

60 Make: JavaScript Robotics

Bill of Materials

If you plan on doing a lot of work
with Raspberry Pis, pick up an
FTDI Console cable. It allows you
to plug in a cable into your Pi and
access it via the command line
from your laptop without the
need to hook up a network con-
nection or monitor, keyboard,
and mouse. See Adafruit’s tutorial
on accessing a Raspberry Pi from
a console cable.

Tools
Most of the assembly is just screws and push
pins, but some soldering is required for this
project. Don’t fret—a basic soldering course
should be enough to build this bot:

• Soldering iron

• Solder

• Safety glasses

• Phillips screwdriver

Now let’s get the Raspberry Pi out and start ex-
ecuting code.

Setting Up the Boards and
Installing Software

In this, section you will:

• Install a Node.js build optimized for the
Raspberry Pi

• Get the piDuino5 source and all its de-
pendencies

• Connect an Arduino to the Raspberry
Pi

• Blink an LED with WebSockets

Installing Node.js on the
Raspberry Pi
To install Node.js on the Raspberry Pi, follow
these steps:

1. Power up, log in, and make sure that
your Raspberry Pi can connect to the
Internet. If you need help installing
Raspbian or configuring your WiFi, refer
to the Appendix.

2. Install Node.js and npm. There are sev-
eral ways to install Node.js onto a Rasp-
berry Pi, but the easiest way is to
download the latest version from
http://node-arm.herokuapp.com/. This is
precompiled and optimized for the
Raspberry Pi’s ARM architecture and in-
cludes npm:

wget http://node-arm.herokuapp.com/
node_latest_armhf.deb
sudo dpkg -i node_latest_armhf.deb

Downloading the piDuino5 Code
and Dependencies
After installing Node.js, you’ll need to down-
load the piDuino5 code and dependencies.
Here are the steps you’ll need to follow:

1. First, you need to install the core Git
package if it isn’t installed already:

sudo apt-get install git-core

2. Download the piDuino5 source:

git clone https://github.com/
beriberikix/piDuino5.git

3. Change the working directory to the
piDuino5/ directory:

cd piDuino5

4. Install the dependencies and piDuino5
using npm:

npm install

This installation can take 20 minutes or more. If
you want to see more information as it installs
(to assure yourself it’s really running), use this

61Chapter 4: piDuino5 Mobile Robot Platform

Setting Up the Boards and Installing Software

http://bit.ly/1wDVpr6
http://node-arm.herokuapp.com/

If you get an error installing wscat, try
prefixing the npm command with su
do, or first, try installing npm-sudo-fix.

command to install it instead: npm --loglevel
verbose install.

Plug in the Arduino

You’ll need to upload the Stan-
dard Firmata library onto the Ar-
duino before this step. See “Ardui-
no” for installation instructions.

Take the A-Male to B-Male USB and plug one
end into the Raspberry Pi and the other end in-
to the Arduino (there is only one way for the ca-
ble to go).

All source code for the examples
in this book can be found on Git-
Hub.

Test Johnny-Five over WebSockets
To test Johnny-Five over WebSockets, follow
these steps:

1. Switch back to the console on the
Raspberry Pi and start the Johnny-Five
application:

node app.js

2. Note the local IP address in the output.
It will look something like ws://

10.0.0.5:8080.

3. You may be tempted to use cURL to
connect to the socket, but cURL
doesn’t natively support WebSockets
so you need to install a library called
wscat:

npm install -g wscat

4. Create a connection to the Johnny-Five
application using wscat. Change
10.0.0.5:8080 to the address that was
displayed when you ran the app:

wscat -c ws://10.0.0.5:8080

5. Type blink into the prompt and press
Enter.

6. The Arduino has an onboard LED on
pin 13. It should now be blinking.

Figure 4-2 LED on Pin 13, labeled L

7. Type noBlink into the prompt and press
Enter to stop the LED from blinking.

Now we’re making something happen! Let’s
walk through the code to understand what we
just did.

Walk Through app.js
The main application file, app.js, provides three
core features:

• Uses Johnny-Five to control the speed
and direction of two motors

• Responds to commands over Web-
Sockets

• Creates a local address so commands
can be sent from a device on the same
network, like a web browser

62 Make: JavaScript Robotics

Setting Up the Boards and Installing Software

https://www.npmjs.com/package/npm-sudo-fix
https://github.com/rwaldron/javascript-robotics
https://github.com/rwaldron/javascript-robotics

Let’s walk through the key parts of the code
that enable those features. We’ll skip superflu-
ous code like requiring modules and error han-
dling for the sake of simplicity.

Initializing Johnny-Five
The very first thing this program does is create
an instance of a board. Johnny-Five looks for a
board plugged into the computer, connects to
it, and waits. Not very interesting.

var board = new five.Board();

What makes Johnny-Five interesting is the fact
that it can control abstracted hardware like
LEDs and motors. In order to do so, the hard-
ware needs to be initialized with the configura-
tion data like pin number. The configuration is
typically done within the ready callback han-
dler. Here’s how to initialize the onboard LED on
Pin 13; this is an abbreviated version of what’s
in the app.js file:

board.on("ready", function() {
 var led = new five.Led(13);
});

Led is a built-in class that is part of Johnny-Five.
There are many other built-in classes. Because
we’re trying to control two motors, we’ll need
to set up two motor instances:

// within the "ready" handler
var left = new five.Motor({
 pins: {
 pwm: 3,
 dir: 12
 },
 invertPWM: true
});

Our robot is using a special type of chip called
an H-Bridge. The theory behind motor control
is beyond the scope of this book, but just know
that this kind of chip can control the speed and
direction of two independent motors.

Controlling the Hardware
With the hardware initialized, you can now
make it do your bidding. Each hardware in-
stance has its own methods that you can in-

voke. For example, you can make an LED blink
on and off for 500ms (half second) intervals:

led.blink(500);

Motors also have their own methods, such as
forward(), reverse(), and stop():

// full speed
left.forward(255);

// half speed
left.reverse(127);

left.stop();

Low-Latency Control with
WebSockets
WebSockets provide bidirectional communica-
tion between a web server and web browser.
This is great for controlling a robot from a web
browser, because we do not want any lag when
issuing commands. There are many popular
ways of using WebSockets but the ws package
for Node.js is the most performant module on a
Rasberry Pi at the time of writing.

The Raspberry Pi uses ARM, a dif-
ferent type of chip than most
desktop computers and laptops.
That’s important, because it re-
quires that certain libraries need
to be compiled for that chip and
often experience different behav-
ior or level of performance.

Like Johnny-Five, you create an instance of a
WebSocketServer and wait for messages once a
connection is established.

var wss = new WebSocketServer({ port: 8080 });

wss.on("connection", function(ws) {
 ws.on("message", function(data) {
 if(data === "forward") {
 forward(255);
 }
 });
});

63Chapter 4: piDuino5 Mobile Robot Platform

Setting Up the Boards and Installing Software

WebSockets pass simple strings around. Within
the message callback, we look for strings that
map to hardware instance functions. For exam-
ple, forward() moves both wheels forward:

var forward = function(speed) {
 left.forward(speed);
 right.forward(speed);
};

The app.js example from the previous section
uses code similar to the preceding examples to
manage its WebSockets.

Connect from Anywhere
The current functionality allows you to send
WebSocket requests from devices on the same
network as the piDuino5. If you would like to
control the robot from anywhere (like a smart-
phone), you’ll need a way to expose the server
to the outside world. You can do that by proxy-
ing requests through another server. Although I
don’t cover it here, you can give free services
like localtunnel or ngrok a try.

Assemble the Hardware

With the controls in place, you can now start to
build the platform. The fully assembled version
is shown in Figure 4-3:

1. The Magician Chassis includes the ba-
sic instructions to attach the wheels,
motors, and base plates. Follow it to
construct the basic form.

2. Now would be a good time to affix the
Velcro to the back of the battery and
lower platform (Figure 4-4). Using Vel-
cro allows you to easily access it or re-
place the battery without having to
disassemble the entire chassis.

Figure 4-3 piDuino5 fully assembled

Figure 4-4 Velcro to hold down the battery

3. Use the extra spacers to mount the Ar-
duino and Raspberry Pi. You can place
these anywhere on the top plate, but
make sure you leave room for the
breadboard (next step). Use my layout
as a guide.

4. Remove the adhesive backing from the
mini breadboard and affix it to the top
plate.

5. Plug the IC into the center of the board
and start wiring up the pins to the Ar-
duino. There are extra jumper wires in
Figure 4-5 to make the board cleaner,
but these aren’t necessary.

64 Make: JavaScript Robotics

Assemble the Hardware

Figure 4-6 Detailed wiring guide for the breadboard

Figure 4-5 Breadboard with H-Bridge

Just make sure you follow the pin con-
nections shown in Figure 4-6.

1. Plug in the motors. The motors may be
reversed so try flipping their wires until
you get the desired turning direction.

2. Solder the header pins to the microUSB
breakout board and plug it into the
breadboard. The diagram shows a bat-
tery pack in the place where the head-
er pins should go.

3. Connect the A to B USB cable between
the Arduino and the Raspberry Pi. Then

65Chapter 4: piDuino5 Mobile Robot Platform

Assemble the Hardware

connect 1 microUSB cable from the
500ma port on the battery to the Rasp-
berry Pi and the other microUSB cable
from the 1A port to the microUSB
breakout on the breadboard.

4. Like we did earlier, run app.js on the
Raspberry Pi to test the motors. Use
wscat at the command line to send the
message forward.

During testing, the robot will
scurry around the table and get
away from you. A simple solution
is to prop up the robot so the
front wheels aren’t touching the
surface. You may use the extra
spacers that came with the kit,
but you can just stand up the
Magician Chassis on the flat end.

You now have a working robot that you can
drive around from the command line. Pretty
neat, right? We can always make it better,
though. Let’s add more advanced controls.

Controlling with a
Smartphone

Using wscat from the command line is conve-
nient but makes it hard to show off the robot to
friends. A custom web app that uses buttons in-
stead of text commands would be an upgrade.
But adding support for a mobile device would
be even better—and more portable. So let’s
make an easy-to-use HTML5 web app.

In this section, you will:

• Get the piDuino5 Web App source and
all its dependencies

• Save and connect to the piDuino5’s
public address

• Control the robot with a virtual touch-
enabled joystick

Downloading the piDuino5 Web
App
To download the piDuino5 web app, follow
these steps:

1. Choose where to host the web app. It
can be on localhost or even a hosting
provider.

2. Download the piDuino5 source:

git clone https://github.com/
beriberikix/piDuino5-webapp.git

3. Change the working directory to the pi
Duino5-webapp:

cd piDuino5-webapp

4. Install the dependencies using npm:

npm install

5. For the frontend, you’ll need to install
Bower and grab the dependencies:

npm install -g bower
bower install

6. Start the web app:

node app.js

Post localtunnel to the Web App
Earlier, we were outputting the local IP address
to the console. Now we’ll take that address and
POST it to our web app. Edit the app.js on the
Raspberry Pi and update the webappURL variable
to the location where you’re hosting the web
app (it’s shown as http://10.0.0.5:3000 in this
listing). This could be a host on the Internet, or
an IP address (along with the port, which is the
number following the colon) on your local net-
work:

var five = require('johnny-five'),
 board = new five.Board(),
 PORT = 8080,
 WebSocketServer = require('ws').Server,
 request = require('request'),
 networkInterfaces = require('os').networkIn
terfaces(),

66 Make: JavaScript Robotics

Controlling with a Smartphone

 motors = {},
 led = {},
 webappURL = 'http://10.0.0.5:3000',
 localIP;

Try the Web App on a Phone

1. While still on Raspberry Pi, run node
app.js. If it’s still running from before,
press Control-C to stop it.

2. Navigate to the web app on a smart-
phone (though your laptop will work
too).

3. You should see a not-so-exciting gray
page (Figure 4-7) . Tap and drag up-
ward anywhere on the screen and a vir-
tual joystick should appear. Clicking
with your mouse on your laptop should
have the same effect.

Figure 4-7 Web app virtual joystick

4. If all goes well, the robot should be
moving forward! Try swirling the joy-
stick around to make the robot change
direction.

Don’t see a joystick? Check the
browser console. If you’re seeing
errors, it is likely that the browser
hasn’t made a connection with
the robot. Try restarting the appli-
cation on the Raspberry Pi, and
then refresh the browser (in that
order).

Walk Through app.js and
index.html

The web app is a simple Express server that
handles both the backend and frontend of the
application. The core features of the web app
include the following:

• An API to retrieve the address of a ro-
bot

• Code to create a websocket connection
to the robot

• A joystick in JavaScript that sends com-
mands back to the robot

Storing the localtunnel Address
and Frontend
Earlier, we POSTed the local IP address to the
server. The application needs a route to handle
the request. In the request handler, we also
parse and store the address:

app.post('/locate', function(req, res) {
 localip = req.param('local_ip');
});

Serving the UI
The application serves an EJS template from
the root directory:

67Chapter 4: piDuino5 Mobile Robot Platform

Walk Through app.js and index.html

app.get('/', function(req, res) {
 res.render('index', { localip : localip });
});

Touchscreen Joystick
The UI portion is rather simple. There’s only a
single <div> in views/index.html. This is used to

render a joystick using a library called virtual-
joystick.js. Once the library loads, it finds the
<div> and renders the entire UI. Example 4-1 is
an excerpt that shows where the <div> resides.

Example 4-1 Location of the <div>

<div id="container"></div>

<script src="/bower_components/virtualjoystick.js/virtualjoystick.js"></script>
<script>
 var ws = new WebSocket('ws://<%= localip %>:8080');

One nice feature of this library is that it works
with both mobile touch interfaces as well as a
standard mouse.

Establishing a Connection
The application establishes a standard Web-
Socket connection using the lastLocation ad-
dress. WebSockets are in most modern brows-
ers, so all we need to create one is a URL. We’ll
pass in the URL via a template variable stored
by the API:

var ws = new WebSocket('ws://<%= localip %>:
8080');

Sending Commands
The last part to cover is the most interesting bit
of code—sending the commands to control the
robot! You will use the joystick to control the ro-
bot so you want its direction to map to a com-
mand. When the joystick is up, the robot should
go forward. When the joystick is to the left, the
robot should turn left. And so on.

virtualjoystick.js has methods to check the cur-
rent direction of the joystick. For example, joy
stick.up() and joystick.left() will return
true when the joystick is in the obvious direc-
tion. Using a requestAnimationFrame loop, you
can efficiently poll the joystick:

function step(timestamp) {
 if (joystick.up()) {

 // the joystick is up and we want
 // the robot to move forward
 }
 requestAnimationFrame(step);
}

requestAnimationFrame(step);

When one of the directions is true, all we do is
send a string to the robot over WebSockets.
When the robot receives the forward string, it
responds by turning both motors on in the for-
ward direction:

if (joystick.up()) {
 ws.send("forward");
}

if (joystick.left()) {
 ws.send("turnLeft");
}

Remember that WebSockets
passes strings around. The com-
mands chosen were somewhat
arbitrary. As long as the receiving
code knows how to interpret the
string, anything goes. “forward”
could have been replaced with
“giddy-up” as long as the code on
the Raspberry Pi is updated.

68 Make: JavaScript Robotics

Walk Through app.js and index.html

What’s Next?

Despite all of our hard effort, the robot is kinda
dumb. It doesn’t know anything about it’s envi-
ronment. There are tons of sensors you could
add to the Arduino—like an ultrasonic distance
sensor to navigate around, but you can also go
for something more exotic like a flame sensor
and build a robotic firefighter.

The robot also doesn’t use the hefty processor
on the Raspbery Pi. A challenging but fun

project might incorporate the Raspberry Pi
camera and OpenCV (the popular image pro-
cessing library) to find shapes and chase them
(Robo Tom and Jerry?).

But most important—create something new!
Build a bigger robot, a faster robot, or even a
flying robot. Don’t be afraid to dream big and
create a robot as awesome as the one that in-
spired the framework, Johnny-Five.

69Chapter 4: piDuino5 Mobile Robot Platform

What’s Next?

Controlling a Hexapod with
Johnny-Five

By Donovan Buck

In this chapter, you will learn how to build a
simple walking hexapod—a six-legged robot.
The hexapod in this chapter, shown in Fig-
ure 5-1, will have three joints in each leg. The
robot will be controlled using Johnny-Five’s
Animation class. The Animation class is useful
for scripting servos over time. It gives us a time-
line, key frames, tweening, and easing func-
tions. When you are done, you will have an ex-
cellent platform for building a more complex
and interesting robot in the future.

Figure 5-1 The finished hexapod

Bill of Materials

The materials used in this chapter are listed in
Table 5-1.

Table 5-1 Bill of materials for robot

Count Part Esti-
mated
price

Part num-
ber(s)

1 Phoenix
3DOF
Hexapod (no
servos/no
electronics)

$248.90 LM PHOE

1 Arduino
Mega 2560

$45.95 MS MKSP5;
AF 191; SF
DEV-11061

1 DFRobot
mega sensor
shield

$19.95 AZ
B0098SJ1RS

6 HiTec
HS-485HB
servos

$16.99 LM S485HB;
AZ
B00944TF72

71

5

Count Part Esti-
mated
price

Part num-
ber(s)

6 HiTec
HS-645MG
servos

$31.49 LM S645MG;
AZ
B003T6RSVQ

6 HiTec
HS-5685MH
servos

$39.99 LM S5685MH;
AZ
B003X6KT7C

1 6V - 12V
NiMH / NiCd
smart charger

$21.95 LM USC-02;
AZ
B001DHC2LO

1 6V / 2800
mAH Ni-MH
rechargeable
battery

$26.95 LM BAT-05

Six Hitec HS-485HB servos are specified for the
coxae (hip joints), six Hitec HS-645MG for the ti-
bias, and six Hitec HS-5685MH for the femurs.
Lynxmotion recommends 6 HS-485HB and 12
HS-645MG, but the HS-5685MH servos provide
more torque for the femurs. You will want all of
the torque that you can reasonably afford.

The list of required tools is modest. For the ba-
sic assembly, you will need:

• Small screwdriver set

• Needle-nose pliers

• Power drill

• 1/8” drill bit

• 1/4” drill bit

• Tie straps (a few dozen)

Controlling the Robot from
the Command Line

Throughout construction, you will want to con-
trol the servos so you can align all of the joints
with your coordinate system. Node’s REPL is the

perfect tool for this. Being able to send com-
mands to a servo and see it respond in real time
is pretty cool and useful.

REPL

REPL is short for read-eval-print loop. It gives you
the ability to input things at the command line,
then have code evaluate that input, and finally
output the results and then wait for the next com-
mand.

To control this robot with the REPL, you will
need the phoenix.js program:

1. Retrieve the Buck.Animation/ directory
from GitHub.

2. Drop the contents of this folder into a
working directory on your computer.

3. Change directory to that folder, then
use npm to install the dependencies in
that directory:

npm install

This should give you everything you need for
configuring and controlling your robot. If you
do not already have Node.js installed on your
computer, see “Installing Node.js”.

An Introduction to phoenix.js

The JavaScript file, phoenix.js, holds all of the
configuration and control code. Later in this
chapter, you will need to set some configura-
tion values in this code, but for now let’s just
read through the code and get familiar with
some of the major features.

There are two major sections of the file where
you may need to make edits. Near the begin-
ning of the file, you’ll find the first: the Configu
rables section. These objects describe the posi-
tions for all of the walking and turning steps of
our hexapod. You should only have to edit

72 Make: JavaScript Robotics

Controlling the Robot from the Command Line

https://github.com/rwaldron/javascript-robotics

these if you are using different servos than I
have listed in the instructions.

The other section where you will definitely
need to make edits is where we create the ser-
vo objects for our legs. This happens just inside
the board.on("ready") callback. You will need
to center your servos using the offset property
for all 18 servos. I’ll provide detailed instruc-
tions for this later. Also, if you are using differ-
ent hardware, you may need to adjust the
range properties of the servos.

A servo in the phoenix object is created like
this:

phoenix.r1c = new five.Servo({
 pin:27,
 invert: true,
 offset: 0,
 startAt: 90,
 range: [50, 180]
});
// + 17 more of these ...

pin is the pin the servo is connected to on
the DFRobot shield.

invert will invert angles sent to the servo
(i.e. 180 becomes 0, 45 becomes 135, etc.).

offset trims the servo position.

startAt is the starting position for the ser-
vo.

range sets the max and min values that
each servo will reach.

Table 5-2 shows which type of servo and which
pin to use for each joint.

Table 5-2 Servo table

Servo Abbrevia-
tion

Model Pin

Left 1 Coxa L1C HS-485HB 27

Left 1 Femur L1F HS-645MG 26

Left 1 Tibia L1T HS-5685MH 25

Servo Abbrevia-
tion

Model Pin

Left 2 Coxa L2C HS-485HB 23

Left 2 Femur L2F HS-645MG 21

Left 2 Tibia L2T HS-5685MH 20

Left 3 Coxa L3C HS-485HB 19

Left 3 Femur L3F HS-645MG 18

Left 3 Tibia L3T HS-5685MH 17

Right 1 Coxa R1C HS-485HB 40

Right 1 Femur R1F HS-645MG 39

Right 1 Tibia R1T HS-5685MH 38

Right 2 Coxa R2C HS-485HB 49

Right 2 Femur R2F HS-645MG 48

Right 2 Tibia R2T HS-5685MH 47

Right 3 Coxa R3C HS-485HB 45

Right 3 Femur R3F HS-645MG 44

Right 3 Tibia R3T HS-5685MH 43

If you look closely at the code, you’ll notice that
the coxae on the rear legs flip their invert val-
ue relative to the other coxae servos on the
same side. This is because you will want in-
creasing values to move the coxa forward on
the rear legs, but backward on all the others.
Further down in the code, phoenix.js defines a
Servo.Array for each leg:

phoenix.l1 = new five.Servo.Array([
 phoenix.l1c,
 phoenix.l1f,
 phoenix.l1t
]);
// Five more of these

When you call a method on a Servo.Array like
phoenix.l1, that method is called with the

73Chapter 5: Controlling a Hexapod with Johnny-Five

An Introduction to phoenix.js

same parameters on every Servo in the Ser
vo.Array. We also use Servo.Arrays to group
servos into animation targets. More on that lat-
er. phoenix.js also creates Servo.Arrays for:

coxa
All six coxa servos

femur
All six femur servos

tibia
All six tibia servos

legs
All 18 servos

Finally, phoenix.js creates an array of arrays for
the joints. Those will be used later in the sleep
and stand animations:

phoenix.joints = new five.Servo.Array([
 phoenix.coxa,
 phoenix.femur,
 phoenix.tibia
]);

You’ll see that the phoenix.js file has created Ser
vo.Arrays for many different combinations of
servos. This upfront work makes creating ani-
mation segments easier. phoenix.js only has to
send commands for those things that are
unique.

Assembling the Robot

Before you can get started with the Animation
class, you will need to assemble the robot. For
most of the process you can follow the instruc-
tions provided by Lynxmotion, but there a few
places where you will want to take extra care.
The major steps for assembly are:

1. Prepare the chassis.

2. Mount the electronics.

3. Prepare the servos.

4. Install the coxae.

5. Install the femurs.

6. Install the tibias.

Prepare the Chassis
One problem that has to be solved is how to
mount the electronics. Lynxmotion designed
the Phoenix for a BotBoarduino. That board has
mounting holes in different places than the Ar-
duino Mega. Also, the Arduino Mega is big.
Mounting it inside the Phoenix chassis is ideal
but difficult. You will have to move the chassis
offsets out enough to accommodate the
Mega’s width. For now, you can just mount the
Arduino on top of the chassis.

Take the top chassis plate and place the Ardui-
no on top. In Figure 5-2, you can see where we
have used two of the small plastic offsets. The
Arduino Mega’s mounting holes will align with
these offsets. Note that it’s not a perfect fit. The
Arduino will be at a slight angle relative to the
chassis. If this bothers you, you can drill your
own mounting holes.

Figure 5-2 Assembled chassis

From this point forward, the text will refer to
the legs of the hexapod as R1 through R3 and
L1 through L3.

Mount the Electronics
To mount the electronics, follow these steps:

1. Attach the Arduino to the 1/2” spacers.

2. Attach the shield to the Arduino.

74 Make: JavaScript Robotics

Assembling the Robot

3. The Phoenix comes bundled with a
switch for the servo power. To mount
the switch, you will need a 1/4” hole.
The holes that are pre-drilled in the
chassis will be obscured by your elec-
tronics. Drill a new hole for your switch.
I recommend installing it next to R2.
Mount the switch onto the chassis as
shown, trim the wires to length, and at-
tach them to the power inputs on the
shield.

4. The rechargeable Ni-MH battery fits
snuggly between the chassis offsets.
You won’t need any mounting hard-
ware. Insert the battery at a 45° angle
and rotate it into place. Figure 5-3
shows the assembly so far.

Figure 5-3 Chassis with electronics and power

Prepare the Servos
Next, to prepare the servers, do the following:

1. Plug all of the coxa and femur servos
into the Mega Sensor shield using
Table 5-2 for reference. You do not
need to align the tibia servos just yet,
but if you want to plug them in and
make sure they work, go ahead.

2. Plug your Arduino into your computer’s
USB port and attach power to your
shield. Figure 5-4 shows how every-
thing should look at this point.

Figure 5-4 All the servos connected

3. You will want to align the servo horns
as close to center as possible. To do
this, you need to center the servos be-
fore pressing on the servo horns. In the
directory where you put phoenix.js, run
the following command:

node phoenix

4. Upon initialization, the servos will be
set to their startAt values. You need
the servos to all be at 90° so run the fol-
lowing command in the REPL:

ph.joints.to(90);

5. This will set all of the servos to 90°. You
can now press a servo horn on with the
mounting holes parallel to the axes of
the servo. Only do this for the coxae
and femurs. Do not press servo horns
onto the tibia servos. When pressing
on a servo horn, the holes should be
aligned as shown in Figure 5-5.

6. Repeat this for all 12 coxa and femur
servos. Tighten the servo horns only af-
ter you have disconnected the shield
from its power source.

The coxae servos are threaded dif-
ferently than the femur and tibia
servos. Don’t mix up the screws or
you could ruin your servos.

75Chapter 5: Controlling a Hexapod with Johnny-Five

Assembling the Robot

Figure 5-5 Correctly aligned servo horn with servos at

90°

Installing the coxae
Follow these steps to install the coxae:

1. Assemble all six coxa/femur joint as-
semblies per the manufacturer’s in-
structions. Note that three of the as-
semblies are mirror images of the oth-
ers, as shown in Figure 5-6.

Figure 5-6 Assembled coxae

2. Now insert the two middle leg coxa/
femur assemblies into the chassis
(that’s R2 and L2). Don’t fasten the ser-
vo horns to the chassis yet.

3. Thread the servo wires between the
DFRobot shield and the chassis.

4. Plug the four servos into the DFRobot
shield. Use Table 5-2 to see where each
one plugs in.

5. With the Arduino connected to your
computer and the battery connected
to your shield, run phoenix.js and set all
of the joints to 90°. Note that you are
only concerned with the coxae right
now.

6. Rotate the coxae so that the femur ser-
vo horns are facing forward and the
servo horn mounting holes line up
with the holes in the chassis. The coxae
might not be at a perfect right angle to
the chassis yet. Don’t worry—you will
adjust that later.

7. Screw two of the servo horn screws
through the chassis and into each ser-
vo horn, but do not tighten yet.

8. Disconnect the USB and the power,
then tighten all four screws in each ser-
vo horn.

9. Repeat steps 1–8 for the front legs (R1
and L1). Notice that the mounting
holes for the coxae servo horns are ro-
tated 45°. The femur servos will be
sticking out at the same 45° angle to-
ward the front of your hexapod.

10. Finally, repeat steps 1–8 for the rear
legs (R3 and L3). These mounting holes
are also rotated 45°. The femur servos
will be sticking out at a 45° angle to-
ward the rear of the hexapod.

11. Run the phoenix.js code and attach the
servo horns to the femur segments
with the servos centered at 90°.

12. Disconnect the USB and power.

13. Fully tighten all four screws in each ser-
vo horn.

Figure 5-7 shows your work so far.

76 Make: JavaScript Robotics

Assembling the Robot

Figure 5-7 Chassis with all six coxae

Installing the Femurs
Follow these steps to install the femurs:

1. Run phoenix.js and set all of the servos
to 90°.

2. The femur segments should already
have servo horns mounted on them.
Take the six femur segments and press
them onto the femur servos. Do this for
all six legs. The femurs will be sticking
straight out, roughly parallel to the
ground.

3. Stop phoenix.js with Control-C and dis-
connect the Arduino from your com-
puter. It is now safe to screw the femur
onto the femur servo. Figure 5-8 shows
the installed femurs.

Figure 5-8 All six femurs installed

Installing the Tibias
You’re almost done with the assembly, so all
that’s left are the tibias:

1. Mount the six tibia segments onto the
tibia servos. Keep in mind that three
are mirror images of the others.

2. Run the wires for the tibia and plug
them into the shield, but do not attach
the tibia servos to the femurs just yet.

When you run phoenix.js
again, all of the joints on your
robot are going to move. If it
is sitting flat on the table it
could flop around and make
a serious mess of things.
From this point forward, your
hexapod needs to be off the
ground when you run phoe-
nix.js. You can hold it, or bet-
ter yet build a test stand and
use that. If you choose to
hold your robot, be careful, it
can pinch.

3. Run the code and set all of the servos
to 90°.

4. Attach the tibia servos to the femurs.
The end effectors should be beneath
the tibia servo horn. Angle the tibia a
few degrees inward, toward the chas-
sis.

5. Disconnect the power and USB and
screw the tibia servos to the femur.

Now is a good time to use tie straps to clean up
your wires and fasten them in place. Remember
to keep enough slack in the wires so that each
of the limbs has a full range of motion. Do not
leave so much slack that the wires can get
caught up in the legs. Figure 5-9 shows the in-
stalled tibias.

77Chapter 5: Controlling a Hexapod with Johnny-Five

Assembling the Robot

Figure 5-9 Tibias installed and all joints set to 90°

The Coordinate System

For this project, you are going to use a separate,
local coordinate system for each leg. Instead of
defining the end effector positions with a
three-tuple coordinate in X, Y, Z space, you will
be using servo angles. This is known as a joint
coordinate system. This is not as powerful as us-
ing inverse kinematics in a global coordinate
system, but is better suited for learning the Ani-
mation class.

Because phoenix.js is using the joint coordinate
system to create scripted movements, it explic-
itly sets the angle of each servo. It also orients
the local coordinate systems so that the axes
are parallel. Finally, phoenix.js inverts the direc-
tion of rotation between the right and left
sides, and also between the front and back of
the robot.

This arrangement makes animating the robot
as easy as possible. If you plan on scripting your
own custom animations, it is helpful to draw a
coordinate system onto the base of your test
stand. Set the origin point to the center of the
chassis. Consider using a grid size of one centi-
meter on a test stand.

Trim the Servos

So far we’ve done our best to align the servo
horns, but the splines limit the position of the

output gear and each servo horn is likely to be
a few degrees off. You can use the servo op-
tion’s offset property to compensate for this.

The time you spend here calibrating all of the
servos will simplify the process of scripting new
animations. If the angle for stepping forward
for all the coxae is exactly the same, you only
have to calculate the movement one time. This
upfront work will pay off in the long run.

Trim the coxae
First, let’s adjust the l2c coxa:

1. Looking down at the robot from above
(Figure 5-10), the coxa and femur
should be at a right angle to the robot
(parallel to the x axis on the coordinate
grid). If you are using the test stand
with a coordinate grid drawn upon it,
this should be pretty easy to see. If the
L2C servo needs to rotate clockwise,
you will increase the angle from 90. To
rotate counterclockwise, decrease the
angle. Try incrementing a few degrees
at a time and narrow your value down
to the best fit. Don’t bother with frac-
tions of a degree, Johnny-Five only
sends integer values to the servos:

ph.joints.to(91); // Get us closer
ph.joints.to(94); // Oops, too far
ph.joints.to(93); // Perfect!

Figure 5-10 Trimmed coxa

78 Make: JavaScript Robotics

The Coordinate System

2. Once you find the ideal value, you will
need to subtract 90 from that number,
which will give you your offset value. In
this example, 93 – 90 = 3, so the offset
is 3. Offset works exactly like the trim
adjustment on an R/C radio. It will cen-
ter servos that are off by a few degrees.

3. Find the line in phoenix.js where the
l2c servo is created and adjust the
offset value:

l2c: new five.Servo({
 pin:27,
 invert: true,
 offset: 3,
 startAt: 90,
 range: [50, 130]
})

4. Repeat steps 1 and 2 for the r2c servo,
but remember, this servo is the inverse
of the left side. You will need to invert
the rotation angles.

5. Now examine the l1c servo. This servo
is at an approximately 45° angle from
the x axis. You need it to be parallel, so
set the servo to 45°. That should get
you pretty close, but you will need to
fine-tune the position. The process
looks something like this:

ph.joints.to(45); // Much closer
ph.joints.to(47); // Doh, wrong way!
ph.joints.to(44); // Perfect!

6. Once you are done, subtract 90 from
the final angle. This will be your offset
(a negative number).

7. Update the offset value for l1c in phoe-
nix.js. It’s not unusual for the offset val-
ue to be as high as 20°.

8. Repeat steps 4–6 for the other three
coxae. Next, stop and restart phoenix.js.
Now when all of the coxae are set to
90° they should be parallel to the x axis.

Trim the Femurs
The process of trimming the femurs is similar to
the one we followed for the coxae. Again, you
want the femurs to be parallel to the x axis
when set to 90°:

1. Looking from the front or rear of the
robot, adjust the femur servo offsets so
the femurs are parallel to the ground.

2. Take that value, subtract 90, and that’s
your offset.

3. You will be setting the offset value for
all six femurs: l1f, r1f, l2f, r2f, l3f,
and r3f. Figure 5-11 shows a trimmed
femur.

Figure 5-11 Trimmed femur

Trim the Tibias
Finally, you need to adjust the tibia. This time
you want a line drawn from the center of tibia
servo horn to the end effector to be vertical
when the servo is set to 90°, as shown in Fig-
ure 5-12.

79Chapter 5: Controlling a Hexapod with Johnny-Five

Trim the Servos

Figure 5-12 Trimmed tibia

When you find the offset values for the tibias,
add them into the phoenix.js file for l1t, r1t,
l2t, r2t, l3t, and r3t.

Add Ranges to the Servos

Now you will want to set the range of each ser-
vo. Many 180° servos do not have a full 180°
range of motion. This is normal. You may be
able to reprogram servos to recover this range,
or you can insert a servo stretcher between the
servo and the shield. You won’t need the full
range of each servo on your hexapod, so try not
to worry about it. You actually want to further
limit the range of your servos so that you don’t
overextend them to the point that the legs in-
terfere with each other.

For this part, you want to control just one servo
at a time:

1. Again, let’s start with the L2 coxa. You
want to rotate the coxa in each direc-
tion and find a practical limit. The servo
will be able to rotate further than you
would ever want it to.

2. Establish a limit in both directions
through trial and error. If you reach a
value where the servo no longer re-
sponds, you’ve exceed the servo’s
range of motion. For example, if the
servo moves to 165, but does nothing

when you move it to 166, your upper
limit is 165. That process looks like:

ph.l2c.to(60); // Still room
ph.l2c.to(58); // That’s a good
 // spot
ph.l2c.to(122); // I can see the
 // tibias will hit
 // each other
ph.l2c.to(119); // PERFECT!!

3. Find the line where the l2c servo is cre-
ated in phoenix.js and update the range
property using the values you just
found:

l2c: new five.Servo({
 pin:27,
 invert: true,
 offset: 3,
 startAt: 90,
 range: [50, 130]
})

4. Repeat steps 1–3 for the other five cox-
ae servos and update those range val-
ues: l1c, l3c, r1c, r2c, r3c.

You are going to use a much wider
range for the femurs and tibias, as they
are less likely to interfere with each
other. In fact, you will probably want to
allow the entire available range for
both the femurs and the tibias.

5. Experiment to find the point at which
the servos no longer move. You can use
the same warmer/colder approach you
used to find the coxa limits. Keep in
mind that all the femur servos should
have the same (or similar) range.

6. Update the range values for all the fe-
mur servos: l1f, l2f, l3f, r1f, r2f, r3f.

7. All the tibia servos should also share
the same range values. Find those
ranges.

8. Update the range values in phoenix.js
for l1t, l2t, l3t, r1t, r2t, r3t.

80 Make: JavaScript Robotics

Add Ranges to the Servos

The benefits of finding the actual servo ranges
may not be obvious. If you set a movement to
extend to 175°, but the servo only goes to 165°,
then the end effector is not where phoenix.js
expects it to be, and the Animation thinks it is
still running even when the servo no longer
moves. That would not look right.

The l2 femur and tibia look like this when you
finish:

l2f: new five.Servo({
 pin:22,
 invert: true,
 offset: -2,
 startAt: 180,
 range: [25, 165]
}),
l2t: new five.Servo({
 pin:21,
 invert: true,
 offset: 4,
 startAt: 180,
 range: [21, 159]
}),

Once you’ve set the offset and range for all 18
servos, it’s time for the fun stuff. Let’s make this
robot move!

Walking Is Hard!

It is certainly possible to animate a robot
without the Animation() class, but it’s a lot of
work. You might think that to move the robot
forward you just put the end effector in contact
with the ground and then sweep the coxae
backward. The problem with that is the end ef-
fectors will describe a circle centered on the
coxa servo’s center of rotation, as shown in Fig-
ure 5-13. The legs will each have their own cir-
cles and will be working against each other.
This gives you a very sloppy walk sequence.

Figure 5-13 This robot will look drunk

To compensate for this, we need to move the ti-
bia in and out to keep the end effector moving
in a straight line, parallel to the direction the ro-
bot is moving, as shown in Figure 5-14. But
wait! When you move the tibia in and out, the
end effector moves up and down relative to the
ground so we also need to move the femur up
and down to compensate for that.

Figure 5-14 This walking sequence will be smooth

All 18 servos must be constantly working in
concert to keep the robot’s animation smooth.
It can seem overwhelming, but Johnny-Five
keeps it all manageable with the Animation()
class.

Meet the Animation Class

Animation.Class is used to control robots with
scripted movements. It serves as a wrapper for
the Servo class. It handles timing, tweening,
cue points, and key frames. The servo or group

81Chapter 5: Controlling a Hexapod with Johnny-Five

Walking Is Hard!

of servos you are animating is a target. The tar-
get can be an array of servos, a Servo.Array, or
an array of servos and/or Servo.Arrays. That’s
confusing, so let’s look at some examples.

An Array of Servos as the Target
In Example 5-1, the three servos of leg L1 are
moved independently.

Example 5-1 An array of servos

board = new five.Board().on("ready",
 function() {

 var l1c = new five.Servo(27);
 var l1f = new five.Servo(26);
 var l1t = new five.Servo(25);

 var myAnimation =
 new five.Animation([l1c, l1f, l1t]);

 // ...
});

This pattern allows you to pass a different value
to each of those three servos at each cuePoint
on the timeline.

A Servo.Array as the Target
Example 5-2 has the same result as the first ex-
ample, but note that a single Servo.Array is

passed as the default target. Again, the target is
a single-dimensional array.

Example 5-2 A Servo.Array

board = new five.Board().on("ready",
 function() {

 var l1c = new five.Servo(27);
 var l1f = new five.Servo(26);
 var l1t = new five.Servo(25);

 var l1 = new Servo.Array([l1c, l1f,
l1t]);

 var myAnimation = new five.Animation(l1);

 // ...

});

An Array of Servo.Arrays as the
Target
In the final example (Example 5-3), the servos
are grouped by joint type. This gives the ability
to control the coxae as a group, the femurs as
another group, and the tibias as a third group.
Sending a value (angle) to a Servo.Array will
send the same value to all the servos in the
group.

Example 5-3 An array of Servo.Arrays

board = new five.Board().on("ready", function() {

 var l1c = new five.Servo(27);
 var l1f = new five.Servo(26);
 var l1t = new five.Servo(25);
 var l2c = new five.Servo(23);
 var l2f = new five.Servo(22);
 var l2t = new five.Servo(21);

 var coxa = new Servo.Array([l1c, l2c]);
 var femur = new Servo.Array([l1f, l2f]);
 var tibia = new Servo.Array([l1t, l2t]);

 // A two-dimensional array of arrays
 var myAnimation = new five.Animation([coxa, femur, tibia]);

82 Make: JavaScript Robotics

Meet the Animation Class

 // ...
});

Being able to pass Servo.Arrays makes it possi-
ble to mix servos and Servo.Arrays in a single
target. You can animate a Servo.Array just like
any other device type.

Now look at the line in phoenix.js, where phoe-
nix.js instantiates the animation and sets the
default target:

var legsAnimation = new five.Animation(
phoenix.legs);

Here the default target, phoenix.legs, is a Ser
vo.Array that consists of all 18 servos in the ro-
bot. This default target expects a value for
every servo on the timeline at each cuePoint.

The First Animation Segment

Once you have an animation object, you can
enqueue animation segments. An animation
segment is a short modular sequence of move-
ments. Segments are the place where all the

angles, cue points, durations, and easing meth-
ods are defined. In short, they are where the
magic happens.

Animation segments are synchronous. They run
first-in/first-out through the animation’s queue.
When running phoenix.js, these animation seg-
ments can all be enqueued from the REPL. The
following series of commands will make the ro-
bot stand, walk, stop, and sleep:

> node phoenix
ph.stand();
ph.walk();
ph.stop();
ph.sleep();

These are already defined for you in phoenix.js.
You do not have to create or edit them. The fol-
lowing excerpts are shown here to help you un-
derstand how animation segments are formed.

Take a look at the first animation segment in
phoenix.js, shown in Example 5-4.

Example 5-4 Stand Animation Segment

var stand = {
 target: phoenix.altJoints,
 duration: 500,
 cuePoints: [0, 0.1, 0.3, 0.7, 1.0],
 oncomplete: function() {
 phoenix.state = "stand";
 },
 keyFrames: [
 [null, { degrees: 90 }],
 [null, { degrees: 66 }],
 [null, false, false, { degrees: 120, easing: easeOut},
 { degrees: 94, easing: easeIn}],
 [null, false, { degrees: 106}, false, { degrees: 93 }]
]
};

The target (optional) determines the ser-
vo(s) that are being animated. When the
animation was created, phoenix.legs was
passed in as the default target. For this seg-

ment, the default target is overridden with
phoenix.altJoints. See Example 5-3 from
earlier. By overriding the target, you can
control different groups of servos. They are

83Chapter 5: Controlling a Hexapod with Johnny-Five

The First Animation Segment

Example 5-5 phoenix.altJoints

altJoints: new five.Servo.Array([
 phoenix.midCoxa,
 phoenix.outerCoxa,
 phoenix.femurs,
 phoenix.tibia
]),

all bound to the same timeline and anima-
tion queue. If you do not pass a target, the
default target from the animation instantia-
tion will be used for the segment.

The duration (optional) specifies the dura-
tion of the animation in milliseconds. Note
that adjusting the animation speed during
playback will stretch or compress the dura-
tion. (Default: 1,000 ms.)

cuePoints (optional) is a single-dimension-
al array of values from 0.0 to 1.0. Every ani-
mation segment has a timeline. On this
timeline, you will define any number of cue
Points. Key frames are applied to devices
at cuePoints. The cuePoints/keyFrames do
not need to occur at regular intervals. With
the duration of 500 ms in this example, the
cuePoints are hit at 50 ms, 150 ms, 350 ms,
and 500 ms. Changing the duration of an
animation will scale the time that each cue
Point is hit (Default: [0, 1]).

Animation will call this function when the
segment has completed.

The keyFrames are required, and are a two-
dimensional array. The first dimension
maps to the devices in the target and the
length should be equal to the length of the
target. To determine which device each ele-
ment in the first dimension maps to, look at
the code where phoenix.altJoints is de-
fined, shown in Example 5-5 .

In phoenix.altJoints, there are four devices:
phoenix.midCoxa, phoenix.outerCoxa, phoe

nix.femur, and phoenix.tibia. Each one of
these is a Servo.Array of two, four, or six ser-
vos:

• keyFrames[0] maps to the inner coxae

• keyFrame[1] maps to the outer coxae

• keyFrames[2] maps to the femurs

• keyFrames[3] maps to the tibias

Each of the keyFrame arrays will have from 1 to
n elements, where n is the number of cue
Points. Let’s examine a couple of these arrays
in the stand segment. First, let’s look at key
Frames[0], the innerCoxae:

[null, { degrees: 66 }],

keyFrames[0][0] defines the value for the first
device in the target at 0ms. keyFrames[0][1]
defines that value at 50ms. Any render per-
formed between 0 ms and 50 ms will use a
tweened value.

The first element in this keyFrame array is set to
null. This indicates the animation should start
from whatever the device’s current position is. If
the device is a Servo.Array, then the current
position is read from the first member of that
array. If you use null in any other position in
the keyFrame array, the Animation will ignore
the keyframe for that device. Only the first two
cuePoints are defined in this array. All the re-
maining cuePoints will use the last known val-
ue (66).

Now look at keyFrames[3] (the tibias):

[null, false, { degrees: 106}, false, -13]

When false is used on a keyFrame element,
Animation copies the previous element’s calcu-
lated value. Setting the first two elements to
null and false tells the animation to not move
at all until the second cuePoint has passed.

When a number is passed as an element, Ani-
mation adds that number to the previous value.

84 Make: JavaScript Robotics

The First Animation Segment

Figure 5-15 The wave

In this example, keyFrame[3] gets 106 from the
prior frame and keyFrame[4] becomes 93.

This animation is designed to take the hexapod
from its sleeping position to its home position
(the home position being the assumed starting
point for most animations).

If you compare the code in Exam-
ple 5-5 to the code in phoenix.js
you will notice that it is different.
Instead of explicit number values
in the code, phoenix.js is passing
in elements of the h array. This ar-
ray, defined at the top of the file,
holds the position for the servos
in each of the primary walking
positions. Storing it in one place
makes it easier to maintain and
tweak later. Because using the ar-
ray complicates understanding,
numbers are substituted in the
examples.

Walking

Robotic walking sequences are divided into
two major categories: static and dynamic. Static
gaits are any that keep the robot’s center of

gravity over a stable base (at least three legs) at
all times. In other words, if at any time the robot
were to stop moving mid-stride, it would not
fall over. Dynamic gaits spend some time in a
state of unbalance. phoenix.js only uses static
gaits.

As stated earlier, hexapod walking sequences
are more complicated than you might expect.
You cannot just rotate the coxae to move a ro-
bot forward. Moving just the coxae causes the
end effector to rotate about the coxa servo’s
center of rotation. The end effector needs to
move in a straight line.

Moving the end effector in a straight line re-
quires coordinated movements in all three ser-
vos of the leg. If the chassis is moving forward
throughout the gait then all 18 servos must
work together. They must maintain the position
of the end effectors that are in contact with the
ground. If you don’t have all 18 servos working
together, your robot will drag its feet and the
gait will not be smooth.

There are four gaits defined in the phoenix.js
file: row, crawl, walk, and run. For each of these
gaits, an 8cm stride is used (the distance be-
tween the forward and rear end effector posi-
tions). Now let’s look at each gait in more detail.

85Chapter 5: Controlling a Hexapod with Johnny-Five

Walking

The Row Gait
The row sequence (more commonly known as
wave) moves the legs forward in pairs and then
moves the body forward. It’s not what you’d call
graceful, but it is an easy first gait and only re-
quires eight keyFrame elements. See Fig-
ure 5-15.

It takes three cuePoints to define each of the
leg movements. The first cuePoint is null or
false, so the animation will start from the cur-
rent position regardless of what that is. The sec-
ond cuePoint defines the inflection point of the
leg movement. The third cuePoint defines the
end of the movement. Example 5-6 shows this.

Example 5-6 The row gait

var row = {
 target: phoenix.jointPairs,
 duration: 1500,
 cuePoints: [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.85, 1.0],
 loop: true,
 fps: 100,
 onstop: function() { phoenix.att(); },
 oncomplete: function() { },
 keyFrames: [

 [null, null, null, null, false, null, {degrees: 56},
 false, {degrees: 70}, {degrees: 91}],
 [null, null, null, null, false, { step: 30, easing: easeOut },
 {degrees: 116}, false, {degrees: 120}, {degrees: 119}],
 [null, null, null, null, false, { step: -20, easing: easeOut },
 {degrees: 97}, false, {degrees: 110}, {degrees: 116}],

 // ... two more leg pairs

]
}

The Walk Gait
The walk gait (Example 5-7) keeps four legs in
contact with the ground at all times. The gait
starts by moving one leg forward. When that
leg reaches its inflection point, another leg is
moved forward. The first leg should reach the
ground at the same time the second leg rea-
ches its inflection point. That’s when the third
leg begins to move.

A visual representation of the keyFrames for this
movement would be hard to digest, so I’ve left
that out. If you would like to examine how it
works, change the duration of the segment to
20,000 ms and give it a run in slow-mo.

Example 5-7 The walk gait

var walk = {
 duration: 2000,
 cuePoints: [0, 0.071, 0.143, 0.214, 0.286, 0.357, 0.429, 0.5,
 0.571, 0.643, 0.714, 0.786, 0.857, 0.929, 1],
 loop: true,
 loopback: 0.5,

86 Make: JavaScript Robotics

Walking

 fps: 100,
 onstop: function() { phoenix.att(); },
 oncomplete: function() { },
 keyFrames: [
 [null, null, {degrees: 82}, null, null, null, null, {degrees: 82}, null,
 {56}, null, null, null, null, {degrees: 82}], // r1c
 [null, { step: 30, easing: easeOut }, {degrees: 119, easing: easeIn}, null,
 null, null, null, {degrees: 119}, { step: 30, easing: easeOut },
 {degrees: s.f.f[0], easing: easeIn}, null, null, null, null,
 {degrees: 119}],
 [null, { step: -20, easing: easeOut }, {degrees: 119, easing: easeIn}, null,
 null, null, null, {degrees: 119}, { step: -20, easing: easeOut },
 {degrees: 97, easing: easeIn}, null, null, null, null, {degrees: 119}],

 ... five more legs
]
};

The Run Gait
The run gait (usually called tripod, shown in Ex-
ample 5-8) gives the quickest movement, but it
is hard on the femur and tibia servos. You

should use the run gait sparingly. Run moves
three legs at a time, leaving just three in con-
tact with the ground. Those three legs carry
more weight than legs in the other gaits.

Example 5-8 The run gait

var run = {
 duration: 1000,
 cuePoints: [0, 0.25, 0.5, 0.75, 1.0],
 loop: true,
 fps: 100,
 onstop: function() { phoenix.att(); },
 oncomplete: function() { },
 keyFrames: [
 [null, {degrees: 70}, {degrees: 56}, null, {degrees: 91}],
 [null, {degrees: 120}, {degrees: 116}, { step: 30, easing: easeOut },
 {degrees: 119, easing: easeIn}],
 [null, {degrees: 110}, {degrees: 97}, { step: -20, easing: easeOut },
 {degrees: 116, easing: easeIn}],

 ... 5 more legs
]
};

Turning

Turning is harder than walking. Instead of a
straight line, the end effectors will be describ-
ing concentric circles around the center of the
robot. The radius of the circle for R2 and L2 will
be one value and the other four legs will be an-
other.

The turning gait is a lot like the run gait. We are
keeping three legs in contact with the ground
during each step and each step moves be-
tween 15° and 30°.

There are other animation segments included
in phoenix.js, but not documented here: sleep,
waveRight, waveLeft, and crawl. Once you have

87Chapter 5: Controlling a Hexapod with Johnny-Five

Turning

your robot calibrated and walking, give these
other animations a shot.

Command Reference

Any of these commands may be called from the
REPL while phoenix.js is running:

• ph.stand()

• ph.sleep()

• ph.walk()

• ph.crawl()

• ph.row()

• ph.badRow()

• ph.run()

• ph.run("rev")

• ph.turn()

• ph.turn("left")

• ph.stop()

• ph.waveLeft()

• ph.waveRight()

• ph.att()

Feel free to try them out and see what they do.

What’s Next?

You should now have a hexapod that can walk,
turn, and do a few other things on command,
but this is only the beginning. You can use this
platform to create new, even more awesome
things. Here are just a few ideas for you to ex-
plore:

Create more animation segments
Use a test stand and your imagination. Share
them with other hexapod builders over at
http://forums.nodebots.io.

Add a controller
Having to type commands at the command
line is a pain. You should explore options for
controlling your hexapod. There are Node.js
APIs for:

• Leap Motion Controller

• SparkFun Joystick shield—just use
Johnny-Five

• Kinect

• Wii Motion Controller—just use
Johnny-Five

• Brainwaves (OMG!)

Add sensors
Use cameras and sonar devices to make your
robot more aware of its environment. Teach it
to make decisions based on that information.

Build a different hexapod
The code here is not limited to the Phoenix
hexapod. You can find many other similar ro-
bot chassis, and there are even open source
designs for 3D printers from http://www.thin-
giverse.com. You’ll need to update all the val-
ues in the h, t, s, and l arrays, but if you’ve
built a test stand and aligned all your servos,
this is relatively easy to do.

The decision to build this in Node.js and
Johnny-Five really pays off. You have all of npm
at your fingertips. This gives you a head start
down whatever path you choose. What’s more,
Johnny-Five is the most flexible and best sup-
ported robotics API available, so you are free to
explore any path you want to take.

Given the rise of the Maker Movement and the
richness of the Node.js ecosystem, it’s a pretty
great time to be an amateur roboticist!

88 Make: JavaScript Robotics

Command Reference

http://forums.nodebots.io
http://bit.ly/19LY4nm
http://bit.ly/1bQRz4l
http://bit.ly/19LYoT4
http://www.thingiverse.com
http://www.thingiverse.com

Building Voice-Controlled
NodeBots

by Julián Duque

In this chapter, you will learn how to build a
voice control for your NodeBot projects, from a
basic controller using a microphone and loud
sounds to a more advanced approach using
speech recognition systems and an Android
Wearable.

Initially, we will create a relay circuit that will be
controlled with Johnny-Five, then we will create
a microphone preamplifier circuit that will en-
able us to control the relay using loud sounds
(see Figure 6-1). This approach will be useful if
we are near our relay circuit. Then we will create
a Node.js server that will respond to voice com-
mands through real-time WebSockets and a
REST API. At the end, we will see how to use
other devices to interact with our NodeBot. For
this project, we will be using a smart watch run-
ning Android Wear.

Our Johnny-Five code will control both circuits
and will be integrated into our commands serv-
er. Both the electronics and the server will be
managed by one single board. Other projects in
this book use a computer to run Johnny-Five
and the hardware board is somehow connec-
ted to the computer. Well, in this project, we

will use a board that will allow us to run Node.js
code in it: the BeagleBone Black.

Figure 6-1 Project architecture diagram

Bill of Materials

We are going to use the Samsung Galaxy Gear
Live, an Android smart watch for our advanced
voice controller, but you can use any other An-
droid Wear–capable device. Tables 6-1 through
and 6-3 list the materials you will need.

89

6

Table 6-1 Hardware

Count Part Part num-
bers

Esti-
mated
price

1 BeagleBone
Black

MS MKCCE4,
AF 1996, SF
DEV-12857

$54.95

1 Samsung
Galaxy Gear
Live

AZ
B00LTR5HP6

$199.99

In this project, we are going to build a single re-
lay circuit, but you can build as many as you
need. The following parts are needed for one
single channel. If you are planning to have
more relays in your circuit, you will need to
multiply the quantity by the number of relays
you plan to use.

Table 6-2 Relay circuit parts list

Count Part Part numbers Estimated price

1 5v / 110-220v Relay SF COM-00100 $1.95

1 1N4001 diode SF COM-08589 $0.15

1 2N3904 transistor SF COM-00521 $0.50

1 1k resistor DK 104669CT-ND $0.10

1 Terminal block 3.mm (3 ports) SF PRT-08235 $0.95

1 Solderable breadboard SF PRT-12070, AF 571 $4.95

1 Jumper wires (male to male) SF PRT-11026, AF 758, MS MKSEEED3 $4.95

1 Stick headers SF PRT-00116 $1.50

The microphone circuit will be soldered along
with the relay circuit, so if you are using more

than one relay channel, you’ll need a bigger
protoboard.

Table 6-3 Microphone circuit parts list

Count Part Estimated price Part numbers

1 Electret Microphone $0.95 SF COM-08635

1 LM358 Op amp $0.95 SF COM-09456

3 100nF capacitors $0.75 SF COM-08375

3 1k resistors $0.30 DK A104669CT-ND

2 10k resistors $0.30 DK 104668CT-ND

90 Make: JavaScript Robotics

Bill of Materials

If you connect your BeagleBone
Black to your computer using a
USB cable, it will serve as power
supply and also will create a vir-
tual network interface automati-
cally. The IP address assigned to
the BeagleBone Black is
192.168.7.2 by default. If you
are connecting your BeagleBone
Black through Ethernet or WiFi,
you’ll need to define your own IP
address and power it using a 5
V/1A DC power supply.

Count Part Estimated price Part numbers

3 100k resistors $0.30 DK A105979CT-ND

1 4.7k resistor $0.55 DK A105921CT-ND

1 220R resistor $0.10 DK CF14JT220RCT-ND

1 10k potentiometer $0.95 SF COM-09939

1 3mm Green LED $0.35 SF COM-09650

You are going to need the following tools to
solder the circuit:

• Soldering iron

• Alloy

• Helping hands

• Needle-nose pliers

• Wire cutter

BeagleBone Black
A BeagleBone Black (Figure 6-2) is a low-cost,
community-supported electronics develop-
ment platform that runs on Linux and has
Node.js installed by default. It will take less than
5 minutes after the first boot to start develop-
ing Node.js applications. This board has both
digital I/O and analog inputs, so it’s perfect for
our project. We will run our commands server
along with the circuit controller in the Beagle-
Bone Black.

Figure 6-2 BeagleBone Black

BeagleBone Black and Johnny-Five

BeagleBone Black default images (Ångström
and Debian) runs a web-based IDE called
Cloud9 (Figure 6-3). If you connected to your
BeagleBone using a USB, you can navigate in
your browser to http://192.168.7.2:3000 and
there you can start programming your board.

You can control a BeagleBone Black with
Node.js using the official package bonescript.
Take a look at the demo/ folder in Cloud9 to see
some examples.

In this project, we are going to use an I/O plug-
in for Johnny-Five called beaglebone-io, which
is a wrapper on top of bonescript. This will en-
able us to use the same abstractions used in
Johnny-Five without extra effort.

91Chapter 6: Building Voice-Controlled NodeBots

Bill of Materials

http://192.168.7.2:3000

Figure 6-3 Cloud9 running on the BeagleBone Black

All source code for the examples in this book
can be found at GitHub.

To install beaglebone-io, run the following
command in the Cloud9 terminal:

npm install beaglebone-io

And then you can create a new file with the
code shown in Example 6-1 to test if everything
is working as expected.

Example 6-1 Testing Johnny-Five with BeagleBone

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");

// Instantiate the board with BeagleBone IO
plugin
var board = new five.Board({
 io: new BeagleBone()
});

board.on("ready", function() {
 // Instantiate the default LED (USR3)
 var led = new five.Led();

 // Blink it!
 led.blink();
});

The code will blink the USR3 LED (Figure 6-4) in
the BeagleBone Black.

Figure 6-4 BeagleBone Black LEDs

Building Our Project

The following are the steps needed to build our
voice-controlled NodeBots. In the following
sections, we will cover:

• Building a relay circuit

• Building a microphone preamplifier cir-
cuit

• Building the commands server

• Simple voice control using the Web
Speech API

• Advanced voice controller using An-
droid Wearable

Building a Relay Circuit

Now that you have your BeagleBone Black
working with Johnny-Five and beaglebone-io,
it’s time to build our Relay circuit. Given how
BeagleBone Black only drives 3.3V from the
GPIO ports, you will need to use a transistor to
increase the current to use a 5VDC relay.

You can build the circuit shown in the Fritzing
schematic (Figure 6-5) on a protoboard but if
you are planning to use it to control your house
lights, it’s better to use a solderable board or
print it in a circuit. I’m going to show you what
tools you need to build this circuit in a soldera-
ble board so it will be easier to use in your
projects.

92 Make: JavaScript Robotics

Building Our Project

https://github.com/rwaldron/javascript-robotics
http://fritzing.org
http://fritzing.org

Figure 6-5 Relay circuit schematic

Figure 6-6 shows a picture of the finished circuit
on a solderable breadboard.

Figure 6-6 Relay circuit

Controlling the Relay Circuit from
Johnny-Five
This relay circuit will be controlled later using
sounds and voice commands. We will want to
turn on and off the relay switch from an exter-
nal system. Because Johnny-Five is used to sim-
plify the development of physical elements,
there is an abstraction for a relay.

Our relay circuit will be connected to a digital
port in the BeagleBone Black. We are going to
wire it to the port P8_8 and then we will write a
basic Johnny-Five code to control the relay. The
relay instance has two methods, on and off,
which will be associated later with our com-
mands server. Example 6-2 shows the source
code for relay.js.

Example 6-2 relay.js

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");

var board = new five.Board({
 io: new BeagleBone()
});

board.on("ready", function() {

 // Pin 1 corresponds to P8_8 in the Beagle
Bone Black
 var relay = new five.Relay(1);

 // Turn on the Relay
 relay.on();

 // Turn off the Relay
 relay.off();

 // Inject relay instance to the REPL
 this.repl.inject({
 relay: relay
 });
});

To wire the relay circuit, connect the 3.3V head-
er pin on the circuit to port P9_3 on the Beagle-
Bone Black. Then connect the GND header pin to
port P9_1 so you can run it from the Cloud9 ter-
minal by executing the following:

$ node relay.js
1415476684995 Device(s) BeagleBone-IO
1415476685028 Connected BeagleBone-IO
1415476685032 Repl Initialized
>>

At the Johnny-Five Repl prompt, you can exe-
cute relay.on() or relay.off() to test the re-
lay circuit.

Now that the relay circuit is working, it’s time to
create our first controller using a microphone
circuit.

Building a Microphone
Preamplifier Circuit

For the first controller we’ll play with, let’s build
a microphone preamplifier circuit (Figure 6-7).

93Chapter 6: Building Voice-Controlled NodeBots

Building a Microphone Preamplifier Circuit

Although this is not exactly voice control, it will
be used to control the relay circuit using loud
sounds like a clap, a whistle, or a shout. This cir-
cuit isn’t needed for the voice control examples.
This circuit is presented here as a basic control
if you don’t have access to Android Wear or if
you want to build a simple clapper for your
lights. All of the materials needed for this circuit
are listed at the beginning of this chapter.

Figure 6-7 Microphone preamplifier circuit schematic

R7 must be connected in series
with a 10k potentiometer. This is
very useful to control the sensitiv-
ity of the microphone.

Figure 6-8 shows the finished circuit with the
microphone preamplifier.

Figure 6-8 Microphone circuit

Connecting the Microphone to the
Relay from Johnny-Five
Now that we have our two circuits assembled,
it’s time to put this together in our code. We will
use BeagleBone Black pin P8_8 (Digital Output)
to connect the relay and P9_39 (Analog Input)

to connect the microphone circuit. This circuit
will deliver a Sound Pressure Level. If this level
reaches a maximum defined level, it will toggle
the relay (from on to off and vice versa). The
code will ignore changes in a timespan of 5 sec-
onds (this time can be changed in code accord-
ing to your needs).

Example 6-3 shows the circuit control code and
sets up two elements, a relay and a mic, using
the Johnny-Five abstractions relay and sensor.
Input from mic is scaled to a range of 0 to 100,
and then we will compare the value with a de-
fined MAX_LEVEL. If the value is higher than the
MAX_LEVEL, we will toggle the value of the re
lay. We are using a flag called detected to
avoid triggering the toggle. If multiple events
are found in less than 5 seconds, this is defined
in the WAIT_TIME variable.

Now you can try this basic control. Connect the
microphone output to the analog input port
P9_39 on the BeagleBone Black. Try shouting,
clapping, or making a loud noise near the mi-
crophone. You will see how the green LED will
detect sound level and when the MAX_LEVEL is
reached the relay will click. If this isn’t working,
try adjusting the MAX_LEVEL and WAIT_TIME val-
ues or change the microphone using the po-
tentiometer.

Next, you will learn how to create a commands
server using Node.js. This will be used along
with the voice control that will be running on
the BeagleBone Black.

94 Make: JavaScript Robotics

Building a Microphone Preamplifier Circuit

Example 6-3 Circuit controller (circuit.js)

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");
var detected = false; // Flag to control sound level detection
var WAIT_TIME = 5; // Number of seconds before accepting a new change
var MAX_LEVEL = 95;

var board = new five.Board({
 io: new BeagleBone()
});

board.on("ready", function() {

 // Pin 1 corresponds to P8_8 in the BeagleBone Black
 var relay = new five.Relay(1);

 // Pin A0 corresponds to P9_39 in the BeagleBone Black
 var mic = new five.Sensor("A0");

 // Read sound level from mic, scaled from 0 to 100
 mic.scale(0, 100).on("data", function() {
 var level = this.value;

 if (!detected && level > MAX_LEVEL) {
 detected = true;

 // Toggle relay state
 relay.toggle();

 // Wait to prevent multiple toggles in a time frame
 setTimeout(function() {
 detected = false;
 }, WAIT_TIME * 1000);
 }
 });
});

Building the Commands
Server

Our project is currently working with sound
through a microphone circuit, but we want to
add support to voice commands like on, off,
toggle, or whatever we want to configure as a
command. For this, we will need a commands
server. We will create an http server with both a
REST API and a WebSockets service to receive
commands. This will enable real-time commu-
nications between the browser and the circuit

controller. We will use express for our REST API
and Primus for our WebSockets server.

Primus is an abstraction layer for
real-time web applications; it’s a
wrapper for different WebSockets
transports. You can check the
documentation at the Primus Git-
Hub.

95Chapter 6: Building Voice-Controlled NodeBots

Building the Commands Server

http://bit.ly/19LXkyw
http://bit.ly/19LXkyw

In your Cloud9 IDE terminal, run the following
command to install the needed dependencies
for our commands server:

npm install express primus primus-emitter ws --
save

The code shown in Example 6-4 can be placed
in a file called server.js on your BeagleBone
Black.

Example 6-4 server.js

var Primus = require("primus");
var PrimusEmitter = require("primus-emitter");
var express = require("express");
var http = require("http");
var path = require("path");

// Set up express static server and routes
var app = express();
app.use(express.static(path.join(__dirname, "public")));

//
// Receives a command via GET
// http://localhost:8080/command/{on,off}
//
app.get("/command/:command", function(req, res) {
 var command = req.params.command;

 // We have the command; we will need to send it to our circuit code
 // Implementation is shown later in this chapter

 res.send("ok");
});

// Create a basic http server for express
var server = http.createServer(app);

// Add WebSockets support to http server
var primus = new Primus(server);
primus.use("emitter", PrimusEmitter);

primus.on("connection", function(socket) {

 // If WebSockets server receives a `command` event, it will process it
 socket.on("command", function(command) {

 // We have the command; we will need to send it to our circuit code
 // Implementation is shown later in this chapter
 });
});

server.listen(8080);

Then create a folder called public in your
project and put the code shown in Example 6-5
into a file called index.html. This file has a sim-

ple interaction with the WebSockets server us-
ing the Primus client. In the following example,
it will send the command off after clicking the
Send Command button.

96 Make: JavaScript Robotics

Building the Commands Server

Example 6-5 index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Voice Control</title>
 <script src="/primus/primus.js"></script>
</head>
<body>
 <button>Send command</button>
 <script>
 // Connect to the Web Socket server
 var socket = Primus.connect();

 var send = document.querySelector("button");

 send.onclick = function () {
 // Send command to the server using WebSockets
 socket.send("command", "on");
 };
 </script>
</body>
</html>

Run this server via Terminal by executing the
following:

$ node server.js

You can also click the Run button in Cloud9 IDE.
To test the example, you can go to the follow-
ing URL: http://192.168.7.2:8080.

In this server and client, we are creating an http
server using express. This server will respond to
the following routes:

• /commands/:command where :command

can be on or off

• A WebSockets server running using
Primus

• index.html file contains a simple imple-
mentation of a WebSockets client

Next, you will learn how to integrate this client
with a speech recognition system running in
the browser.

Simple Voice Control Using
the Web Speech API

We have a server ready to receive commands
through WebSockets. Now we need to imple-
ment a way to talk to the server. For this simple
controller, we will use the Web Speech API to
achieve speech recognition from browser and
mobile clients.

Web Speech API is an experimen-
tal specification and works only
on WebKit-based browsers
(Chrome, Safari, and Android).
You can check Can I Use… to see
if you can use the API in your fa-
vorite browser.

In our index.html file, we will add speech recog-
nition support and we will send the final detec-
ted transcript back to the server through Web-
Sockets using the command event. Example 6-6
shows index.html with speech recognition.

97Chapter 6: Building Voice-Controlled NodeBots

Simple Voice Control Using the Web Speech API

http://192.168.7.2:8080
http://bit.ly/19LXnKV

Example 6-6 Adding speech recognition

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Voice Control</title>
 <script src="/primus/primus.js"></script>
</head>
<body>
 <button>Send command</button>
 <h2></h2>
 <script>
 // Check if browser supports Web Speech API
 if ("webkitSpeechRecognition" in window) {
 var socket = new Primus.connect();
 var recognition = new webkitSpeechRecognition();

 // Get results inmediately
 recognition.interimResults = true;

 // Handle recognition result
 recognition.onresult = function(event) {
 var finalResult = "";

 for (var i = event.resultIndex; i < event.results.length; i++) {
 var result = event.results[i];

 // Get the final result
 if (result.isFinal) {
 finalResult = result[0].transcript;
 }
 }

 // Check if finaResult isn't empty
 if (finalResult) {
 document.querySelector("h2").innerHTML = finalResult;

 // Send result through WebSockets using the `command` event
 socket.send("command", finalResult);
 // Stop Speech Recognition
 recognition.abort();
 }
 };

 var send = document.querySelector('button');

 send.onclick = function() {
 // Start speech recognition
 recognition.start();
 document.querySelector('h2').innerHTML = "Listening...";
 };
 }
 </script>

98 Make: JavaScript Robotics

Simple Voice Control Using the Web Speech API

</body>
</html>

The code starts the speech recognition system
in the browser. After a command is recognized,
it will be sent through WebSockets using the
Primus client we created in the previous step.

Integrate the Commands
Server with the Relay Circuit

Everything is ready to be put together. In this
case, we will use an EventEmitter pattern to
communicate both the commands server with

the circuit controller. We will require a circuit
object in our server.js file. This object will han-
dle an event called j5:command, used to send a
received command from the REST API or Web-
Sockets to the circuit controller written using
Johnny-Five. Example 6-7 shows the integrated
circuit.js.

Example 6-7 instantiates a relay using Johnny-
Five and exports an emitter object. This code
will be imported in the server.js file, shown in
the excerpt in Example 6-8.

Example 6-7 circuit.js

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");
var EventEmitter = require("events").EventEmitter;

// Create an emitter object to receive the commands from the server
var emitter = new EventEmitter();

var board = new five.Board({
 io: new BeagleBone()
});

board.on("ready", function () {

 // Pin 1 corresponds to P8_8 in the BeaglBone Black
 var relay = new five.Relay(1);

 // Receive the command from the server
 emitter.on("command", function (command) {

 // Check command received and execute an associated action
 if (command === "on") {
 relay.on();
 return;
 }

 if (command === "off") {
 relay.off();
 return;
 }

 if (command === "toggle") {
 relay.toggle();
 return;
 }
 });

99Chapter 6: Building Voice-Controlled NodeBots

Integrate the Commands Server with the Relay Circuit

});

module.exports = emitter;

Example 6-8 server.js

var Primus = require("primus"),
var PrimusEmitter = require("primus-emitter");
// Import the emitter from the Circuit module
var circuit = require("./circuit");

 // ...

var path = require("path");

// Create an event emitter object

// ...

app.get("/commands/:command", function (req, res) {
 var command = req.params.command;

 // Send the command to the circuit controller through
 // the event emitter
 circuit.emit("command", command);

 res.send("ok");
});

// ...

primus.on("connection", function (socket) {
 socket.on("command", function (command) {
 // Send the command to the circuit controller through
 // the event emitter
 circuit.emit("command", command);
 });
});

The preceding code uses the circuit emitter
object and sends the command when received
from the REST API or WebSockets event.

Advanced Voice Control Using
an Android Wearable

With the appearance of wearables that can re-
spond to voice commands, we can replace the
Web Speech API part of the project with a de-
vice like Android Wear. This smart watch can be
programmed to receive commands and inter-

act with an existing API (in this case, with our
commands server).

An Android Wear application consists of two
applications: one installed on the mobile and
the other installed on the wearable. The mobile
application will be in charge of communicating
with the commands server. All of the HTTP re-
quests will be handled by this application. The
wear application will be in charge of the speech
recognition system and will send a message to
the mobile using the Message API from Google
Play services.

100 Make: JavaScript Robotics

Advanced Voice Control Using an Android Wearable

For more information about An-
droid Wear, check out the An-
droid Developer site.

We will use Android Studio to develop these
two applications. The installation instructions
and how to create a project are found in the
Appendix.

If you have the project created, then it’s time to
add some Java code to our project. If you don’t

know Java, don’t worry—all of the code exam-
ples are ready to be added to the project.

Next, we will create an Android mobile applica-
tion using the Android SDK.

Android Mobile Application
This application consists of a main activity (Ex-
ample 6-9) with one text box and a button to
test the communication between the mobile
and the BeagleBone Black.

Example 6-9 MainActivity.java

package io.nodebots.voicecontroller;

import android.app.Activity;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class MainActivity extends Activity {

 // Class in charge of the HTTP Request
 private CommandRequest request;
 // Class in charge of the UI Update
 private BroadcastReceiver uiUpdated;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Instantiate the CommandRequest class using this Activity as context
 request = new CommandRequest(this);

 // This will be used to update the Last Command text from the
 // CommandRequest class
 uiUpdated = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 TextView commandSent =
 (TextView) findViewById(R.id.commandSent);
 commandSent.setText(intent.getExtras().getString("command"));
 }
 };

101Chapter 6: Building Voice-Controlled NodeBots

Advanced Voice Control Using an Android Wearable

http://bit.ly/19LXmGC
http://bit.ly/19LXmGC

 registerReceiver(uiUpdated, new IntentFilter("COMMAND_SENT"));
 }

 // Method associated to the Button, this is useful to send commands
 // from the mobile without using the Wearable
 public void sendCommand(View view) {
 EditText commandText = (EditText) findViewById(R.id.commandText);
 String command = commandText.getText().toString();
 request.doRequest(command);
 commandText.setText("");
 }
}

All of the graphic interface is defined in the fol-
lowing two files: activity_main.xml and
strings.xml. These files are created by default us-

ing Android Studio, so you’ll need to update
the content with the code shown in Exam-
ple 6-10.

Example 6-10 activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity">

 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/commandText"
 android:inputType="text"
 android:hint="Enter a command"
 android:layout_alignBottom="@+id/sendCommand"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true"
 android:layout_toLeftOf="@+id/sendCommand"
 android:layout_toStartOf="@+id/sendCommand" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/send_command"
 android:id="@+id/sendCommand"
 android:clickable="true"
 android:layout_alignParentTop="true"
 android:layout_alignParentRight="true"
 android:layout_alignParentEnd="true"
 android:onClick="sendCommand" />

 <TextView
 android:layout_width="wrap_content"

102 Make: JavaScript Robotics

Advanced Voice Control Using an Android Wearable

 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:text="@string/command_label"
 android:id="@+id/commandLabel"
 android:layout_below="@+id/commandText"
 android:layout_alignParentStart="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceMedium"
 android:id="@+id/commandSent"
 android:layout_toEndOf="@+id/commandLabel"
 android:layout_alignTop="@+id/commandLabel"
 android:layout_alignEnd="@+id/sendCommand"
 android:textStyle="bold" />

</RelativeLayout>

Example 6-11 shows the static texts of the ap-
plication.

The XML files in Examples 6-10 and 6-11 can be
found in the res/ folder in the Android mobile
project.

Example 6-12 shows the CommandRequest.java
file.

Example 6-11 strings.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="app_name">Voice Controller</string>
 <string name="command">Command</string>
 <string name="command_label">Last command: </string>
 <string name="send_command">Send</string>
 <string name="action_settings">Settings</string>

</resources>

Example 6-12 CommandRequest.java

package io.nodebots.voicecontroller;

import android.content.Context;
import android.content.Intent;

import com.android.volley.Request;
import com.android.volley.RequestQueue;
import com.android.volley.Response;
import com.android.volley.VolleyError;
import com.android.volley.toolbox.StringRequest;
import com.android.volley.toolbox.Volley;

103Chapter 6: Building Voice-Controlled NodeBots

Advanced Voice Control Using an Android Wearable

public class CommandRequest {

 private Context context;

 public CommandRequest(Context ctx) {
 context = ctx;
 }

 public void doRequest(final String command) {
 System.out.println("Executing request");
 RequestQueue queue = Volley.newRequestQueue(context);
 // BeagleBone Black IP Address
 // This will hit the /command/:comman route on the Node.js server
 String url = "http://192.168.1.10:8080/command/" + command;

 // Request a string response from the provided URL.
 StringRequest stringRequest =
 new StringRequest(Request.Method.GET, url,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 // We will update the UI if the response is `ok`, this
 // text is returned from the Node.js server
 if (response.equals("ok")) {
 // Update UI
 Intent i = new Intent("COMMAND_SENT");
 i.putExtra("command", command);
 context.sendBroadcast(i);
 }
 }
 },
 new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError volleyError) {
 System.out.println(volleyError.networkResponse);
 }
 }
);

 // Add the request to the RequestQueue.
 queue.add(stringRequest);
 }
}

Example 6-12 will take care of the HTTP request
between mobile and the commands server run-
ning in the BeagleBone Black. The IP address is
hardcoded here, but you can create a textbox
or settings options to change it from your mo-
bile. We are using Volley, an HTTP client library
used in Android Projects. The installation in-
structions are found in the Appendix.

Now the MainActivity and CommandRequest
classes are ready. We will now create a Listener

Service, shown in Example 6-13. This class will
be in charge of receiving messages from the
wear application.

Example 6-13 receives a message from the wear
application and executes the doRequest meth-
od in the CommandRequest class.

104 Make: JavaScript Robotics

Advanced Voice Control Using an Android Wearable

Example 6-13 ListenerService.java

package io.nodebots.voicecontroller;

import com.google.android.gms.wearable.MessageEvent;
import com.google.android.gms.wearable.WearableListenerService;

public class ListenerService extends WearableListenerService {

 private static final String START_ACTIVITY = "/start/MainActivity";
 private CommandRequest request = new CommandRequest(this);

 @Override
 public void onMessageReceived(MessageEvent messageEvent) {
 if (messageEvent.getPath().equals(START_ACTIVITY)) {
 String command = new String(messageEvent.getData());
 request.doRequest(command);
 }
 }
}

Now the only thing needed to have this work-
ing is to add the respective permissions to our
AndroidManifest.xml file. We need android.per
mission.INTERNET for the CommandRequest class
and an intent-filter for our ListenerService.
Example 6-14 shows this.

And it’s done! You can test this application on
your Android mobile device.

Android Wear Application
Next, you will implement the wear application,
as shown in Example 6-15.

Example 6-14 AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="io.nodebots.voicecontroller" >

 <uses-permission android:name="android.permission.INTERNET" />
 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 ...

 <meta-data android:name="com.google.android.gms.version" android:value="@integer/
google_play_services_version" />

 <service android:name=".ListenerService">
 <intent-filter>
 <action android:name="com.google.android.gms.wearable.BIND_LISTENER" />
 </intent-filter>
 </service>
 </application>

105Chapter 6: Building Voice-Controlled NodeBots

Advanced Voice Control Using an Android Wearable

</manifest>

Example 6-15 WearMainActivity.java

package io.nodebots.voicecontroller;

import android.app.Activity;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.Bundle;
import android.speech.RecognizerIntent;
import android.support.wearable.view.WatchViewStub;
import android.view.View;
import android.widget.TextView;

import com.google.android.gms.common.api.GoogleApiClient;
import com.google.android.gms.wearable.MessageApi.SendMessageResult;
import com.google.android.gms.wearable.Node;
import com.google.android.gms.wearable.NodeApi;
import com.google.android.gms.wearable.Wearable;

import java.util.Collection;
import java.util.HashSet;
import java.util.List;

public class WearMainActivity extends Activity {

 private TextView mTextView;
 private String node;
 private GoogleApiClient apiClient;
 private static final String START_ACTIVITY = "/start/MainActivity";
 private static final int SPEECH_REQUEST_CODE = 0;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_wear_main);
 final WatchViewStub stub =
 (WatchViewStub) findViewById(R.id.watch_view_stub);

 stub.setOnLayoutInflatedListener(
 new WatchViewStub.OnLayoutInflatedListener() {
 @Override
 public void onLayoutInflated(WatchViewStub stub) {
 mTextView = (TextView) stub.findViewById(R.id.text);
 }
 });

 apiClient =
 new GoogleApiClient.Builder(this).addApi(Wearable.API).build();
 apiClient.connect();
 }

 // Start Speech Recognizer

106 Make: JavaScript Robotics

Advanced Voice Control Using an Android Wearable

 public void sendCommand(View view) {
 displaySpeechRecognizer();
 }

 // Get the connected nodes
 private Collection<String> getNodes() {
 HashSet<String> results= new HashSet<String>();
 NodeApi.GetConnectedNodesResult nodes =
 Wearable.NodeApi.getConnectedNodes(apiClient).await();
 for (Node node : nodes.getNodes()) {
 results.add(node.getId());
 }
 return results;
 }

 // Create an intent that can start the Speech Recognizer activity
 private void displaySpeechRecognizer() {
 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);

 // Start the activity, the intent will be populated
 // with the speech text
 startActivityForResult(intent, SPEECH_REQUEST_CODE);
 }

 // This callback is invoked when the Speech Recognizer returns.
 // This is where you process the intent and extract the speech
 // text from the intent.
 @Override
 protected void onActivityResult(int requestCode,
 int resultCode,
 Intent data) {
 if (requestCode == SPEECH_REQUEST_CODE && resultCode == RESULT_OK)
 {
 List<String> results =
 data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);
 String spokenText = results.get(0);
 new SendMessageTask().execute(spokenText);
 }
 super.onActivityResult(requestCode, resultCode, data);
 }

 // Async Task used to send the message to the Mobile
 private class SendMessageTask extends AsyncTask<String, Void, String> {

 @Override
 protected String doInBackground(String... command) {
 node = getNodes().iterator().next();
 SendMessageResult result =
 Wearable.MessageApi.sendMessage(
 apiClient,
 node,
 START_ACTIVITY,
 command[0].getBytes()).await();
 return result.toString();
 }

107Chapter 6: Building Voice-Controlled NodeBots

Advanced Voice Control Using an Android Wearable

 }
}

Example 6-15 starts the speech recognition sys-
tem after clicking the Send Command button.
When the speech is recognized, it will send the
command using an AsyncTask to the mobile
through the Messages API from Google Play
services.

More information about the Mes-
sage API can be found on the An-
droid Developer site.

Example 6-16 rect_activity_wear_main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent"
 android:layout_height="match_parent" android:orientation="vertical"
 tools:context=".WearMainActivity" tools:deviceIds="wear_square">

 <TextView android:id="@+id/text" android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:text="@string/welcome" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/commandButton"
 android:text="@string/command"
 android:clickable="true"
 android:onClick="sendCommand" />

</LinearLayout>

The interface is simple. We only have a text
view and a button to start the speech recogni-
tion system. The file shown in Example 6-16 can
be found in the res/ folder in the Android Wear
project.

The following line needs to be added to the An-
droidManifest.xml of the wear project in order
to use the Google Play service’s APIs:

<meta-data android:name="com.google.an
droid.gms.version" android:value="@integer/
google_play_services_version" />

Now both projects are ready to be tested. In-
stall both applications on your mobile and wear

devices, and start controlling your home lights
or appliances using voice commands!

What’s Next?

Using the commands server we built, you can
change the relay circuit with a robot rover or a
drone and receive commands such as forward,
reverse, right, left, and stop. You can also
change the colors of an RGB LED. Be creative
and build your next voice-controlled NodeBot!

108 Make: JavaScript Robotics

What’s Next?

http://bit.ly/1O9dMcP
http://bit.ly/1O9dMcP

An Indoor Sundial

By Lyza Gardner

It’s entirely absurd to design and construct an
indoor sundial like the one shown in Figure 7-1,
which is why it’s so fun to do so. We’ll craft our
sundial as a tongue-in-cheek nod to the astro-
nomical timepieces that have existed for mil-
lennia.

Unlike traditional sundials, which require a clear
day and an outdoor location, we’ll use our own
“sun” and position it as needed to tell, roughly,
our own local solar time.

A horizontal-style sundial is typically disk sha-
ped, constructed with a hand or pointer, called
the gnomon, which is aligned to true north (or
due south in the southern hemisphere). The
gnomon rises away from the center of the disk
at an angle equivalent to the local latitude.
Thus, a sundial at higher latitudes has a steeper
gnomon. The sun casts a predictable shadow
over the gnomon, allowing us to tell local solar
time based on the position of the shadow.

The Earth’s orbit around the sun is wobbly and
imperfect, and the clockwork we’re construct-
ing won’t have the elegant perfection of a true
timepiece. But it’s still fun to have an approxi-
mation of the local time and of the sun’s current

position in our own sky. And it works even
when it’s cloudy!

Figure 7-1 What time is it in Ireland? The sundial can

tell us

109

7

Bill of Materials

To build our sundial, we’ll need some tools and
materials. Building the sundial will involve
some construction. We’ll use foam core, which

is a simple material to work with and provides
the rigidity and structure we’ll need. Table 7-1
lists the electronic parts and Table 7-2 lists the
tools and supplies.

Table 7-1 Electronic parts

Count Part Notes Estima-
ted price

Part numbers

1 Arduino Uno I’ve designed the sundial using an
Arduino Uno, Rev. 3. You could
certainly use a different Arduino if
you wanted.

$25 MS MKSP99; AF 50;
SF DEV-11021

1 Half-size,
adhesive
breadboard

Approx. 3.3 x 2.1” $5 MS MKKN2; AF 64;
SF PRT-09567

1 Standard servo Standard-sized servo, 4.8-6.0v $10 MS MKPX17; AF 155;
SF ROB-09347

1 Sub-micro servo Sub-micro servo, 4.8-6.0v $9 SF ROB-09065

1 LED, white Individual LEDs are cheap, but you
may need to buy an assortment
(e.g., MS MKEE7)—they’re hard to
find in single units!

$0.35 MS MKEE7

1 220-ohm resistor 1/8- or 1/4-watt is fine A few
pennies

any electronic parts
supplier

1 Four AA battery
holder

A wired holder for 4 AA batteries
(6v) to drive the standard servo

$2 AF 830; PRT-12083

Table 7-2 Tools and supplies

Count Part item Notes Estimated price

32 × 40”
sheet or
equivalent

3/16” (or 5mm)
foam core

I used black, but white works, too. Most
parts can be cut from letter- or A4-sized
sheets, but the outer elevation arc is 9” in
diameter.

$5-6 for a 32 × 40”
sheet

10 sheets or
so

Card stock For aesthetic reasons, I used metallic-coated
card stock in gold and silver.

White card stock:
$.10/sheet Metallic
card stock: $11/25
sheets

110 Make: JavaScript Robotics

Bill of Materials

Count Part item Notes Estimated price

1 Craft knife X-ACTO or similar, with plenty of fresh
blades

$4.50

1 Circle-cutting
guide

You can use a purpose-built circle cutter,
circle templates, or a compass and a steady
hand. Circle diameters range from 6 to 9
inches.

$15-30 for a circle
cutter; $12 for a
compass

1 Protractor $4

1 Ruler Ideally cork-backed for guiding cuts $4.29

Adhesive Hot glue gun (ideal), craft glue or a strong
glue stick

$6.50-8.50 for a
glue gun; $1 or
less for a glue stick

1 pair Wire cutters/
strippers

$11.50

Stiff wire or
metal rods

I used 1/16” brass rods, which I found at a
local hobby-train shop. Memory wire (as
used in jewelry making and readily available
at craft stores) works OK, too.

$5

1 Small
screwdriver

$4

1 Awl Something sharp and pointy for marking
and finding the center of circles

$4

1 Cutting mat A self-healing cutting mat or similar will
make your life easier

$15

Assorted Spacers, screws For mounting the Arduino (recommended)

1 roll Electrical tape

1 Soldering iron For wiring up the LED (recommended) $14 to several
hundred dollars

111Chapter 7: An Indoor Sundial

Bill of Materials

Foam Core Structural Pieces
Tables 7-3 through 7-5 list of all the pieces we’ll
cut out from foam core as we work through the

process of building the sundial, listed in the or-
der we’ll cut them as we build.

Table 7-3 Pieces we’ll cut for the sundial base

Count Dimension Name Notes

1 8.5 × 5” Sundial base This is the base for the whole sundial. It will support
other pieces, contain the AA battery holder, and
allow for wire management.

1 4 × 7” Mounting board This will hold the Arduino, breadboard, and one of
the servos.

4 1 × 3.5” Mounting board
supports

These will go on the sundial base and will support
the mounting board.

3 2 × 1” Smaller supports

3 2 × .5” Support
reinforcements

Table 7-4 Pieces needed for the sundial disks

Name Diameter Notes

Gnomon
disk

6” This 6"-diameter circle holds the gnomon. It is glued to the base disk
and remains fixed, providing an inner guide for the azimuth ring to
rotate around.

Azimuth
ring

Inner 6 1/8”,
outer 8”

This 8"-diameter ring will sit on the base disk and rotate around the
gnomon disk.

Base disk 8” This 8"-diameter circle will remain fixed and will support our azimuth
ring and gnomon disk. A track arc inside of the disk allows our
azimuth servo (with attached arm) to rotate the azimuth ring from
below.

Elevation
ring

inner: 8
1/16”, outer:
9”

Actually an arc, this 9"-diameter ring pivots on the azimuth ring to
raise and lower the sun to the correct angle in the sky.

112 Make: JavaScript Robotics

Bill of Materials

Table 7-5 Pieces we’ll cut for the base walls and supports

Count Dimension Notes

1 7.5 x 4.5” Rear wall

2 2.25 x 4.5” Side walls

6 .25 x 2” Support
reinforcements

1 12 x 4.5” Base disk support
wall

1 8” diameter
semicircle

Base disk support
guide

1 9.5 x 3.5” Base disk support
foot

Table 7-6 Pieces for the azimuth arm

Count Dimension Notes

1 3.75” x 7/8” Azimuth arm

3 Small/as
needed

Square pieces to help
support the azimuth
arm wire

Building Our Sundial

Put on your crafting hat and Node.js shoes—it’s
time to build and code for your sundial. Per-
haps, like me, you’ll find that construction with
foam core and a hot glue gun is peculiarly satis-
fying! To build the sundial, you’ll need to:

1. Assemble a core mounting board and
arrange components.

2. Wire and configure servos.

3. Assemble the lower base.

4. Make the disks.

5. Build the walls and disk supports.

6. Complete construction and hardware.

7. Write code to make it work.

8. Put it all together.

Cutting and Assembling the
Core Structure

The base layout pieces can be cut from a single
letter or an A4-size sheet of foam.

Assemble the Mounting Board
This piece will hold the Arduino, breadboard,
and one of the servos that will drive our sun-
dial. You’ll use foam-core pieces from Table 7-3.

The standard-size servo mounted here will pro-
vide the rotation for your azimuth disk. It will
place the LED “sun” in the correct angle around
the circle of the horizon, where 0° is north, 90°
is east, 180° is south, and 270° is due west. Here
are the steps you’ll need to follow:

1. Find the center of the (4” × 6.5”)
mounting board. Mark this spot.

2. Align your standard-size servo such
that the shaft is directly above the cen-
ter of the board and the long side of
the servo is aligned with the short side
of the mounting board. Trace lightly
around the servo with a pencil to mark
the location.

3. Take one of the 2” × 1” pieces cut earli-
er and place the servo on it. Trace care-
fully around the bottom of the servo,
creating an outline on the foam core.

4. Cut this shape out from the center of
the piece, creating a sort of servo cozy
that should fit around your servo snug-
ly. You may need to cut an escape
notch for the servo’s wires, depending
on the exact shape of your particular
servo.

5. Position the servo cozy on the board to
match the traced outline and glue in
place. The servo should fit snugly and
not wiggle easily. If you really want to
make that servo secure, and you’re

113Chapter 7: An Indoor Sundial

Building Our Sundial

ready to commit this servo to this
project forever, you can hot glue it to
the mounting board.

6. With the servo wires facing toward you,
mount the Arduino on the right side of
the mounting board, with the USB and
barrel jack aligned along the short
edge of the board. Mount the Arduino
slightly rear of center, leaving about
1/3” clearance from the long, back
edge of the board.

7. Mount the mini breadboard on the op-
posite side of the servo, approximately
centered in the available space. See
Figure 7-2.

Figure 7-2 The mounting board showing the servo
cozy and components

Centering the servo shaft

Note that the shaft is not cen-
tered on servos, so your standard-
sized servo will be off-center front
to back on the mounting board
when the servo’s wires are facing
you.

Wiring and Configuring the
Servos

We’ve placed the azimuth servo on the mount-
ing board, and later we’ll use a second, sub-mi-
cro-sized servo to set the elevation of the sun
(i.e., its height from the horizon in degrees).

Let’s make sure our servos are ready to play
their parts by wiring them as in Figure 7-3.

A standard servo sometimes needs more power
than an Arduino’s onboard power can reliably
provide, so we’ll want to hook its power and
ground wires up to our external 6-volt AA bat-
tery holder. To power our sub-micro server, as
well as our LED sun, we’ll be using the Arduino’s
5V power.

Wiring the Servos
Let’s wire both of the servos.

Wiring the standard (azimuth) servo

To wire the standard (azimuth) servo, follow
these steps:

1. Run 6V power and ground to one pow-
er rail of the breadboard.

2. Hook up the standard servo to the 6V
power.

3. Connect the data wire to pin 9 on the
Arduino.

Wiring the sub-micro (elevation) servo

To wire the sub-micro (elevation) servo, follow
these steps:

1. Connect the Arduino’s 5V power and
ground to the other power rail.

2. Hook up the sub-micro servo to the 5V
power.

3. Connect the data wire to pin 10 on the
Arduino.

4. We need to have a common ground, so
connect the grounds from each power
rail to each other.

114 Make: JavaScript Robotics

Wiring and Configuring the Servos

Figure 7-3 Servo wiring Fritzing diagram

Configuring the Servos
We’re going to turn to the coding side for a bit,
so that we can get our servos set up. You can
find the source for the sundial project in the
Gardner.Sundial/ directory on GitHub. In the fol-
lowing sections, we’ll install project dependen-
cies and run the servos.js script to test our our
servos.

All source code for the examples in this book
can be found on this book’s GitHub page.

servos.js

The project script servos.js configures our ser-
vos. See Examples 7-1 and 7-2.

Example 7-1 The servos.js script first creates johnny-five
Servo objects for each of our servos

var azimuthServo = new five.Servo({
 center: true,
 isInverted: true,
 pin: 9
});
var elevationServo = new five.Servo({
 center: true,
 isInverted: true,

 pin: 10
});

Center each of the servos in its range (90 by
default).

Flip the rotation of the servo to be clock-
wise.

Example 7-2 The servos.js script then makes a reference
to those Servos available in the REPL

this.repl.inject({
 aServo: azimuthServo,
 eServo: elevationServo
});

aServo is the azimuth (standard) servo.

eServo is the elevation (sub-micro) servo.

Running the code

When you’re ready to run the code, follow these
steps:

1. Download or clone the Gardner.Sun-
dial/ project directory from GitHub.

115Chapter 7: An Indoor Sundial

Wiring and Configuring the Servos

http://bit.ly/19LX9n3
http://bit.ly/19LX9n3
http://bit.ly/19LX9n3

2. Install project dependencies. From
within the project directory, run:

npm install

3. Make sure your Arduino is connected
to your computer’s USB port, and exe-
cute the script by typing:

node servos.js

After the board initializes, you should hear and
see the two servos adjusting position to center
(90°).

You can interact with the servos. Try typing
things like:

>> aServo.to(120)

or:

>> eServo.to(50)

The to method on Johnny-Five’s Servo class
does what it sounds like: moves the servo to
that position. Learn more about Servo on the
johnny-five wiki.

Although servos are typically de-
scribed as having a range of 0°–
180°, in actuality they usually
have ranges of about 165°. That
means you won’t be able to get
your servos to go all the way to 0°
nor all the way to 180°.

Experiment in the REPL with each
servo, moving it closer to 0 using
the to method until it starts mak-
ing funny noises or refuses to
comply. Note the value you were
able to get to (in my case, for the
standard servo, it was 7). Do the
same at the high end of the
range, getting as close as possible
to 180. Take note of these ranges
for later.

Building the Lower Base

Now that we have our servos ready to go, let’s
get back to the hardware side and construct a
lower base so our sundial components have
something to stand on. The base will also con-
tain our azimuth servo’s battery pack and pro-
vide some room for wire management. Fun!

1. Working with the 8.5” × 5” base piece
from Table 7-3, pencil a line 3/4” inset
from the long edges and 15/16” inset
from the short edges so that you create
an inner box shape representing the
footprint of the inner base.

2. Glue two of the 3.5” × 1” support
pieces on edge, centered within the in-
side of the 15/16” lines on the short
edges. This will make 1"-high supports
at right angles to the base along its
shorter edges.

3. Cut each of the smaller support rein-
forcements (2” × .5”) in half lengthwise,
which will result in six, 1/4"-wide rein-
forcement strips. Glue one reinforce-
ment strip along the bottom inside cor-
ner of each support, strenghtening the
structure.

4. Glue the two additional 3.5” × 1” sup-
ports at right angles to the first, as
shown in Figure 7-4.

5. With one of the long edges of the sun-
dial base facing you as in Figure 7-4,
position the battery holder in the in-
side, rear right corner, with the battery
holder’s wires coming toward you.
Mark the position of the battery hold-
er’s left edge and glue a shorter, 2” × 1”
support there to create a little house
for your batteries. It doesn’t need to be
too snug or accurate.

6. Flip the inner mounting board over,
such that the Arduino is upside down
and at the top left. Take two remaining

116 Make: JavaScript Robotics

Building the Lower Base

https://github.com/rwaldron/johnny-five/wiki/Servo

1/4” × 2” support reinforcements and
glue them along the very edge of each
of the short edges. Finally, take the re-
maining 2” × 1” support and glue it
along the back, long edge of the flip-
ped-over mounting board, toward the
left side. These three little supports will
help your mounting board stay in place
on the lower base.

7. Flip your mounting board back over,
and you’ll be able to position it on the
lower base with a satisfyingly snug fit if
your cutting and gluing were accurate.

Figure 7-4 The completed base construction, with the

mounting board upside down

Making the Disks

Our sundial needs its disks now! You’ll find that
cutting these is easier if you have a circle-cut-
ting tool, or circle-shaped templates, but the
disks in Table 7-4 can certainly be drawn with a
compass and cut with a steady hand.

You’ll need two pieces of foam core to cut these
disks. The gnomon disk and azimuth ring can
be cut from one piece, concentrically. Similarly,
the circle base and elevation ring can be cut
from a single piece:

1. Using a compass or circle template,
draw a 6” circle on foam core, making
sure to note the center carefully with
an awl, compass point, or something

sharp and pointy. This will be the gno-
mon disk.

2. From the same centerpoint, draw a
(concentric) 6 1/16” circle, and then
again from the same center, draw an-
other, 7 1/2” circle. This will be the azi-
muth ring.

3. Cut out the gnomon disk and azimuth
ring.

4. In the gnomon disk, cut a slot from the
center to one edge that is exactly the
width of the foam core (3/16”). This slot
will hold the gnomon later.

5. Draw an 8” circle on a new sheet of
foam core. Within this circle, from the
same centerpoint, cut two 180° arcs on
it that will create a track 1/4” wide. The
inner arc should be 7” in diameter (3.5”
radius) and the outer 7.5” in diameter
(3.75” radius). You can see this track in
Figure 7-5.

6. Draw the elevation ring—inner diame-
ter 8 1/16”, outer diameter 9”—from
the same centerpoint as the base disk.
Cut out the base disk and the elevation
ring.

7. Glue the gnomon disk to the base disk,
orienting the gnomon slot so that it
points exactly opposite from the base
disk’s track, as in Figure 7-5.

Optionally, cut out an additional
7"-diameter circle from decora-
tive card stock (I used gold-foil
card stock). Glue this to the center
of the base disk, keeping its outer
edge inside of the inset track, be-
fore gluing the gnomon disk to
the base disk.

117Chapter 7: An Indoor Sundial

Making the Disks

Figure 7-5 The gnomon and base disks, showing the

inner track and decorative extra circle on the base disk

Build the Base Walls and Base
Disk Support

We have disks, and now we need some walls
and supports to put them on, using the pieces
in Table 7-5. First, we’ll build some walls, then
we’ll align the disks and build a support for the
base disk.

Build the Base Walls
To build the base walls, follow the steps:

1. Glue a 1/4” × 2” support reinforcement
along the long edge of the 7” × 4.5”
rear wall, and along one short edge
each of the 2.25” × 4.5” side wall pieces.
See Figure 7-6.

2. Position and glue the rear wall flush
along the rear long edge of the sundial
base. There will be a gap between the
rear wall and the mounting board. This
is intentional for wire management as
needed. The rear wall will extend be-
yond the length of the existing inner
base by the width of the foam core
(3/16” on either end).

3. Position the side walls along the short
edges of the inner base, abutting the
new rear wall. Before gluing the side
wall for the side that contains the over-
hanging Arduino jacks, cut a hole in the

wall for the Arduino’s barrel jack. You
may also need to trim the side wall
slightly narrower if the Arduino’s USB
jack gets in the way.

4. Glue ‘em up! It should look like Fig-
ure 7-7.

Figure 7-6 The three wall pieces with support

reinforcements attached

Figure 7-7 The rear and side walls in place

Position the Disks
It’s important that we align the base and gno-
mon disks correctly in relation to the sundial
base and walls:

1. Position the base disk atop the base
walls. It will be front-heavy at this
point.

2. Point the gnomon slot exactly perpen-
dicular to the rear walls—the long
walls of the sundial represent an east-

118 Make: JavaScript Robotics

Build the Base Walls and Base Disk Support

west axis and the gnomon slot points
“north.”

3. Make sure the base disk inner track
clears both side walls. The semi-circle
track should be positioned to the front
of the sundial.

4. Use a thin rod or awl through the base
disk’s center to align it with the shaft of
the azimuth servo, as in Figure 7-8.

Figure 7-8 Finding the center and placing the

guides for the base disk

5. With the disk positioned and centered,
carefully mark with a pencil along the
underside of the base disk along the
back wall.

6. Glue one of the support reinforce-
ments accuraely along the outside of
the mark on the underside of the base

disk. This support should serve as a
guide along the outside edge of the
back wall for placing the base disk.

7. Replace the base disk on the back wall,
using the new guide. Find the circle
center again, and make sure the circle
is centered, left-to-right, over the servo
shaft.

8. Mark the underside of the base disk
along the inside of the two side walls.
Glue two additional supports along the
inside of those marks, as in Figure 7-9.
These disk supports will be positioned
on the inside of the short side walls.

Figure 7-9 The bottom of the base disk, showing the

guides for positioning on the sundial walls

Build the Disk Support
Let’s fix that front-heavy disk by building a
curved support guide for it (Figure 7-10).

119Chapter 7: An Indoor Sundial

Build the Base Walls and Base Disk Support

Figure 7-10 By scoring the foam core you can shape it

into a curve

Here are the steps you’ll need to follow:

1. Take your 12” × 4.5” piece and score it
crosswise every 1/4”. Take care to cut
through the top layer of paper on the
foam core, and slightly into the foam it-
self, but not all the way through.

2. Measure 1 1/8” in from the center of
the long edge of the base disk support
foot from Table 7-5.

3. Glue the base disk support guide to the
base disk support so that its outer edge
just reaches that mark (see Fig-
ure 7-11).

Figure 7-11 The disk support guide semicircle

should overlap the disk support foot by 1 1/8” and be

centered

4. Cut the overlapping portion of the
semicircle off so that the support foot’s
edges are flush again, and the foot
(with the guide glued on top of it) is
once more rectangular.

5. Use the glued-on guide arc to position
the scored disk support wall. Center
the wall and glue it around the guide.
You may need to cut a notch in one
end of the wall to allow for the USB jack
on the Arduino (Figure 7-12).

Figure 7-12 The disk support wall glued to the guide

and the foot (note the notch on one side for the

Arduino’s USB jack)

6. Position your base disk on the base
walls and figure out where the curved
disk support needs to fit against the
front wall of the sundial. It’s important
that the disk support wall support the
base disk but not block the inner track
(Figure 7-13).

120 Make: JavaScript Robotics

Build the Base Walls and Base Disk Support

Figure 7-13 Don’t block the track with the curved

support

7. You’ll probably need to nick off the cor-
ners of the inner base to allow for the
disk support’s curve, as in Figure 7-14.

Figure 7-14 You need to cut the corners off of your

lower base to allow for the curve of the support

8. The disk support base foot is longer
than it needs to be to allow for reposi-
tioning slightly against the front of the
sundial. When you’ve figured out
where the support wall needs to be
aligned to support the disk without
blocking the track, cut the support foot
ends off to match the edges of the sun-
dial. You can see how I’ve made marks
on the foot in Figure 7-15 to note
where I need to cut off the ends of the
support foot.

Figure 7-15 The completed disk support; I cut mine

to come to a point just because

Finish Parts and Construction

We are getting close now. To finish the hard-
ware and construction of the sundial, we need
to:

1. Build an arm for the azimuth servo that
will allow it to move the azimuth ring
from underneath as it rotates, through
the base disk’s incised track.

2. Build the elevation arc by cutting and
attaching the elevation ring, and
mounting the elevation servo.

3. Cut a gnomon.

4. Wire the “sun” LED.

Build the Azimuth Arm
To build the azimuth arm, follow these steps:

121Chapter 7: An Indoor Sundial

Finish Parts and Construction

1. Cut the azimuth arm from foam core, as
per Table 7-6.

2. Taper from one long side to the other
such that the narrow end is 1/4” wide.

3. Glue, screw, or otherwise attach this
arm to your servo’s horn (I used a circu-
lar horn) such that the tip of the arm is
3 5/8” from the center of the servo
shaft.

4. Put a right-angle bend in a piece of
wire 4.25” from one end.

5. Push the wire through two small pieces
of foam core and glue to the arm. Make
sure the wire bend is at 3 5/8” from the
center of your servo shaft when the
arm is attached (see Figures 7-16 and
7-17).

6. Attach the arm to the servo and then
align the base disk on the base. The
wire should poke up through the track
in the base disk (Figure 7-16).

Figure 7-16 Alignment of the azimuth arm through

the main disks

Construct the Elevation Arc
To construct the elevation arc, follow these
steps:

1. Mark two points directly opposite each
other on the elevation ring. Cut the
ring about 1/4” beyond each of these

marks to create an arc of slightly over
180°.

2. From the outside, narrow edge, pierce
one of these marked spots with wire or
a thin metal rod (you may find it easier
to pre-poke with an awl).

3. Pierce the same wire through the edge
of the azimuth disk, creating a pivot.
Bend the wire sharply up at the outside
of the elevation ring to secure as in Fig-
ure 7-17.

Figure 7-17 Detail of the elevation arc pivot

4. Position the sub-micro servo on the
azimuth ring so that its shaft points
outward 180° opposite from the eleva-
tion ring pivot (see Figure 7-18). The
top of the shaft should be just flush
with the outside of the azimuth ring so
that it can serve to rotate one end of
the elevation arc. Use hot glue if you’re
brave, or otherwise secure the servo to
the azimuth ring using strong tape like
duct tape or try electrical tape.

5. Cut a small, square hole in the azimuth
ring next to the elevation servo and
run its wires through.

6. Attach the servo’s horn at the opposite
side of the arc from the pivot (I used a
single-pointed horn and attached it
with electrical tape) such that it points
straight “up” into the arc.

122 Make: JavaScript Robotics

Finish Parts and Construction

Figure 7-18 Detail of the opposite end of the

elevation arc, the elevation servo and the azimuth

ring

7. Immediately next to the elevation ser-
vo, make a hole through the center of
the azimuth ring with an awl. The azi-
muth arm’s wire should fit into this
hole. This is how the azimuth arm will
move the azimuth ring, through the
base disk’s track. This due-south align-
ment hole (see Figure 7-19) will point,
you guessed it, due south when the
sundial is in its initial state—that is, di-
rectly opposite of the gnomon.

Figure 7-19 The azimuth arm wire poking up

through the southern-aligned hole in the azimuth

ring

Cut a Gnomon
The shape of your gnomon will depend on your
distance from the equator. Follow these steps
to cut your gnomon (see Figure 7-20):

1. Cut a triangle from foam core. The base
should be 3 inches long (the radius of
the gnomon disk). The angle from the
base should be equivalent to your lati-
tude.

2. For higher latitudes, the larger angle
will cause your gnomon to get taller,
faster. You may have to cut your gno-
mon back (make the base shorter) so
that the elevation arc can clear the tip
of the gnomon. This is fine—the rear
angle doesn’t need to be square or of a
particular length. The only thing that
matters is that the gnomon maintains
an angle away from the center that
equates to your latitude.

3. Now you can fit your gnomon in the
slot on the gnomon disk.

Figure 7-20 My gnomon, cut for the latitude in Cork,

Ireland. The angle on the left is approximately 52°. Note

my gnomon is not square on the back (right side), and is

shorter in the base than 3 inches, so it wouldn’t be too tall

and interfere with the elevation arc.

Wire Up the Sun
This is the last hardware step! We need a sun.
Here’s what you need to do:

1. Push the anode and cathode of your
LED through the foam core at the cen-
ter of the elevation arc from the inside
such that the “sun” shines directly
down (toward the inside of the arc).

123Chapter 7: An Indoor Sundial

Finish Parts and Construction

2. Solder or otherwise connect the LED to
hookup wires (Figure 7-21).

Figure 7-21 Fritzing diagram with LED wiring

3. Run both wires down the outside of
the arc toward the servo end of the arc.
Secure with electrical tape.

4. Poke the wires through to the inside of
the arc near the pivot point.

5. Run the wires through the hole cut for
the elevation servo wires, leaving
enough slack for the elevation arc to
pivot comfortably through its range
(Figure 7-22).

Figure 7-22 Detail of the elevation arm with the

mounted LED and wiring

6. Connect the LED to 5V power through
a 220-ohm resistor.

7. Optionally, for appearance, cut two
matching arcs in decorative card stock
and glue them over each side of the el-
evation arc to cover up tape and wires.

Code to Make It Go

The physical structure of our sundial is com-
plete. Now for the code. See Example 7-3.

The algorithm for determining the sun’s posi-
tion in the sky given a latitude and longitude
and a date and time is not quite rocket science,
but it does involve calculating solar mean
anomaly, declination, ecliptic longitudes, and a
dozen or so other slightly esoteric things. I lost
a weekend or two once to delving into the
depths of this topic.

However, there’s a dead simple way to get the
same results: use the SunCalc npm package.
This package was installed for you when you
ran npm install earlier, so all we need to do is
include it and use it.

Understanding sundial.js
The sundial.js script will make our sundial go. It
uses suncalc to calculate sun position for your
latitude and longitude, and positions the azi-
muth and elevation servos to match that posi-
tion.

Example 7-3 sundial.js high-level structure

var five = require("johnny-five");
var sunCalc = require("suncalc");

var board = new five.Board();
var servos, sundial;

servos = {

124 Make: JavaScript Robotics

Code to Make It Go

};

sundial = {

};

function sunPositionInDegrees(date, latitude, longitude) {

}

board.on("ready", function() {
 var azimuthServo = new five.Servo(servos.azimuth);
 var elevationServo = new five.Servo(servos.elevation);
 var ticker;

 var tick = function tickTock() {

 };

 tick();

 this.repl.inject({

 });
});

Configuration options for our servos

Configuration options for our specific sun-
dial, including latitude/longitude

Take SunCalc’s sun position in radians and
convert to degrees (utility function)

Logic for determining where to position
the two servos; moving the servos

Invoking the tick function, which is later
managed by a setTimeout

Adding some stuff to the REPL so we can
access it if we want

Set Up Some Configuration in
sundial.js
Make a couple of changes to sundial.js to cus-
tomize it for your servos by following these
steps:

1. Update the servos object.

2. Update the sundial object, as shown in
Example 7-4.

Example 7-4 sundial.js

servos = {
 azimuth: {
 pin: 9,
 range: [7, 172],
 isInverted: true,
 center: true
 },
 elevation: {
 pin: 10,
 range: [7, 172],
 isInverted: true,
 center: true
 }
};

Update these values with the mini-
mum and maximum angles for
your azimuth (standard-sized) ser-
vo.

125Chapter 7: An Indoor Sundial

Code to Make It Go

Update these values with the mini-
mum and maximum angles for
your elevation (sub-micro-sized)
servo.

Next, update the sundial object with specifics
for your sundial and hardware:

sundial = {
 latitude: 45.52,
 longitude: -122.63,
 tickInterval: 5000,
 msPerDegree: 50
};

Change this value to your latitude. Make
sure to use negative if south of the equator.

Change this value to your longitude. Make
sure to use negative if west of the Prime
Meridian.

How often to check the sundial for updates,
in milliseconds. 5 seconds is (much) more
than adequate. Adjust if you like; default
should be fine.

A ticket to a happy sundial is moving the
servos slowly. Adjust if you like; default
should be fine.

sundial.js Details
Let’s look at what else sundial.js does. You don’t
have to make any changes to the chunks of
code shown in Example 7-5.

Example 7-5 sundial.js functionality

board.on('ready', function() {
 var azimuthServo = new five.Servo(servos.azimuth);
 var elevationServo = new five.Servo(servos.elevation);
 var ticker;

 var tick = function tickTock() {

 };

 tick();

 this.repl.inject({
 aServo: azimuthServo,
 eServo: elevationServo,
 tick: tick,
 ticker: ticker
 });
});

Servos initialized per config options

Kick of the sundial tick

Make some things available to the REPL

The tick function

The tick function, shown in Example 7-6, con-
tains the main logic for determining where the

servos should be, and moving them to those
points. Let’s dive in and look at the function in
depth. Again, you don’t need to make any
changes to this code.

126 Make: JavaScript Robotics

Code to Make It Go

Example 7-6 The entire tick function

var tick = function tickTock() {
 console.log("tick!");
 var position = sunPositionInDegrees(
 new Date(), sundial.latitude, sundial.longitude
),
 isFlipped = position.azimuth > 180,
 aPos = (isFlipped) ? position.azimuth - 180 : position.azimuth,
 ePos = (isFlipped) ? 180 - position.elevation : position.elevation,
 aChange = Math.abs(azimuthServo.value - aPos),
 eChange = Math.abs(elevationServo.value - ePos),
 aTime = aChange * sundial.msPerDegree,
 eTime = eChange * sundial.msPerDegree,
 servoTime = (aTime >= eTime) ? aTime : eTime;

 if (ticker) {
 clearTimeout(ticker);
 }

 if (position.elevation < 0) {
 console.log("It is nighttime, silly!");
 return;
 }
 if (aChange || eChange) {
 azimuthServo.to(aPos, aTime);
 elevationServo.to(ePos, eTime);
 }
 ticker = setTimeout(tick, sundial.tickInterval + servoTime);
};

First, tick gets the current sun position at
our configured latitude and longitude. sun
PositionInDegrees, shown in Example 7-7,
uses SunCalc to obtain the current position
in radians, and then converts it to (roun-
ded) degrees.

Recall that we have only 180° of motion
from each of our servos (and really not
even that). The highest possible elevation
for the sun is 90°, when the sun it at the
very zenith of the sky. So we can use angles
higher than 90° on our elevation servo to
fill in gaps for the azimuth servo when the
sun is west of 180°.

For example, an azimuth position of 272
with an elevation of 42° is equivalent to azi-
muth 92, elevation 138. 92 is directly oppo-

site from 272. Our azimuth servo can reach
92, but not 272. 42° elevation reached from
the opposite angle to 272 is 138°–90° plus
the remaining angle when 42 is subtracted
from 90° (or 180° minus 42°). We account
for this in tick by doing some quick calcu-
lations.

When the azimuth is greater than 180,
where the azimuth servo cannot reach, we
“flip” the whole thing and attempt to reach
the position from the opposite azimuth an-
gle. Then we calculate how much change
has occurred between the servos’ current
positions and where they need to be, and
from that determine how long the duration
should be for the move.

127Chapter 7: An Indoor Sundial

Code to Make It Go

We’ll be moving both servos at the same
time. Whichever one is going to take longer
roughly represents the overall time the ser-
vos need to get into position.

It’s a sundial, not a moondial!

Servo.to takes an optional second
duration argument in milliseconds. This al-
lows us to move our servos slowly and
avoid too much torque and strain on our
sundial parts.

Cue up another tick, making sure to add
the servoTime to the overall sundial.tick
Interval so we keep multiple servo moves
from happening on top of each other.

Moondials

Yes! Moondials exist! They’re somewhat rare and
they’re usually only accurate during a full moon.

Example 7-7 sunPositionInDegrees source

function sunPositionInDegrees(date, latitude, longitude) {
 var positionNow = sunCalc.getPosition(date, latitude, longitude);
 return {
 azimuth: Math.round((positionNow.azimuth + Math.PI) * 180 / Math.PI),
 elevation: Math.round(positionNow.altitude * 180 / Math.PI)
 };
}

Putting It All Together!

Time to put the pieces together, initialize stuff,
and try out the sundial:

1. Pull the elevation servo’s wires and the
LED wires through the wire hole in the
azimuth ring and then through the
track slot in the base disk, as seen in
Figure 7-23. Rest the azimuth ring in its
track on the base disk.

2. Plug the LED and servo wires into the
breadboard. Make sure power is
hooked up to the azimuth servo as
well.

3. Rest the base disk on the rear walls for
a moment.

4. Plug in the Arduino and run the follow-
ing to center both servos:

node servos.js

5. Place the azimuth arm on the azimuth
servo such that it points due south
(straight toward you).

6. Attach the elevation arc to the servo
such that the LED sun is at zenith
(straight up/overhead).

7. Guide the azimuth arm through the
base disk slot and push through the
due-south guide in the azimuth ring.

8. Align the base disk with the base walls
using the guides on the bottom of the
disk.

9. Position the disk support to support
the front of the disk, making sure it
does not block any of the base disk’s
track.

128 Make: JavaScript Robotics

Putting It All Together!

Figure 7-23 Running the servo and LED wires

through the azimuth ring and base disk

Making It Go!

Now you’re (finally) ready to execute the sun-
dial script! Run it and your sundial will slowly
move into position:

node sundial.js

Some Things to Keep in Mind

• Sundials can’t adjust for daylight saving
time. During daylight saving time, the
sundial will run one hour slow.

• Sundial accuracy varies throughout the
year as solar noon “wanders” (see Wiki-
pedia).

Figure 7-24 Early afternoon in Portland, OR (with a 45°

gnomon)

What’s Next?

Here are some additional exercises to try:

• How could you adapt sundial.js to work
in the southern hemisphere?

• The positioning of the gnomon in our
sundial results in shadows that are
mostly only on the top (northern) half
of the gnomon disk. How else could
you position the gnomon to maximize
shadow range?

• Could you adjust sundial.js to automati-
cally account for daylight saving time?

• Could you adapt the sundial to turn in-
to a moondial in certain instances?
(Hint: SunCalc also provides moon po-
sition data.)

To compute where to put hour
lines for your sundial, the equa-
tion for the spacing between
hour marks is:

Î¸ = Tan−1 SinL * TanH

Where L is latitude and H is the
hour.

129Chapter 7: An Indoor Sundial

Making It Go!

http://bit.ly/19LXyFU
http://bit.ly/19LXyFU

Spooky Lights

By Anna Gerber

NodeBots and Halloween are two of my favorite
things, so with CampJS IV falling on October 31,
I found the perfect excuse to build an interac-
tive installation combining the two (see Fig-
ure 8-1).

Johnny-Five isn’t just useful for programming
robots: you can use it to add web interfaces to
hardware devices, or you can augment web ap-
plications with physical interfaces by connect-
ing sensors and actuators that sense or act
upon the physical world. This project demon-
strates how easy it is to use Node.js and
Johnny-Five to develop application program-
ming interfaces (APIs) for controlling hardware
devices.

You’ll step through constructing a set of spooky
holiday lights using bi-color LED matrices. Then
you’ll write a web application with a user inter-
face and an API for displaying seasonal patterns
and messages on the lights.

Figure 8-1 Halloween lights with LED matrix faces

Bill of Materials

To build a string of holiday lights, you’ll need
the materials listed in Table 8-1.

The quantities for wire and heat shrink tubing
are provided as a guide—you can make your
string of lights longer or shorter by increasing
the length of wires between the lights. You can
also vary the project by connecting more or
fewer matrices, up to a total of eight to suit
your application.

Figure 8-1 shows an example of decorating the
lights with silk leaves and miniature jack-o-lan-

131

8

terns, but if Halloween isn’t your thing, you can
decorate the lights in a theme with your favor-
ite holiday instead. If you have access to a 3D

printer, you may wish to 3D print custom enclo-
sures.

Table 8-1 Materials you will need

Count Item Notes Estimated price

1 3m hookup wire in red You’re using 13 × 0.12 mm stranded
wire, equivalent to AWG 14

$0.50

1 3m hookup wire in black $0.50

1 3m hookup wire in yellow $0.50

1 3m hookup wire in green $0.50

1 3m heat shrink tubing To fit four hookup wires (e.g., 6 mm) $5.00

1 64 cm small heat shrink
tubing

To fit two hookup wires (e.g., 3 mm) $1.10

4 Female to female short
jumper wires

One each of red, black, yellow, and
green

$0.25

7 Four-pin header plug with
crimp pins

One for each matrix. Alternatively, you
can use extra female to female jumper
wires cut in half

$0.60 each

7 HT16K33 8 × 8 LED matrix
modules

You can connect up to eight Between $7.80
and $15.95 each

1 Arduino You’re using an Arduino Nano v 3.0
compatible board with ATmega328

$7.50

1 USB cable for Arduino Preferably extra long Comes with
Arduino

1 Enclosure Houses the Arduino Free (reuse
packaging)

Solder

Cable ties

132 Make: JavaScript Robotics

Bill of Materials

Table 8-2 Optional materials for decorating the lights

Item Estima-
ted price

Plastic jack-o-lanterns to fit
matrices

$2.50

Glue or modeling clay for affixing
lanterns

$2.00

Silk leaves $2.00

Green cable ties for attaching
decorative leaves to lights

Choosing a Controller Board
There are various manufacturers of HT16K33-
based I2C 8 × 8 LED matrix boards that come in
different sizes and in single-color as well as bi-
color versions. We are using bi-color OCROBOT
matrices from AliExpress. Adafruit’s bi-color
square LED Matrix with I2C backpack units pro-
vide wonderfully vibrant LED colors and re-
spond to the same I2C commands; however,
the red and green colors are inverted on the
OCROBOT board.

Background

Before you get started, it’s important to under-
stand a little bit about the components you’ll
be using.

Light-emitting diodes

The D in LED stands for diode. Di-
odes are polarized semi-conduc-
tor components. You can think of
them like one-way valves that on-
ly operate when electrical current
flows through in the correct direc-
tion.

Components in electrical circuits typically con-
vert electrical energy into other forms of ener-

gy including light, heat, sound, or kinetic ener-
gy. When current passes through an LED flow-
ing from the anode (positive lead) through to
the cathode (negative lead), the LED emits
light.

What’s an LED Matrix?
An LED matrix is a component that combines
multiple LEDs in a 2D grid arrangement. For this
project, you’ll be working with 8 × 8 LED matrix
components. Each component is arranged as a
square-shaped dot matrix of 8 rows by 8 col-
umns, giving a total of 64 LEDs per matrix. Ma-
trices are available with single-color, bi-color
(red plus green), or RGB (red, green, and blue)
LEDs.

LED matrix components take care of the hard
work of wiring together all of the individual
LEDs, and make use of common cathode and
anode pins to reduce the number of wires you
need to connect to communicate with the
LEDs. Controlling an 8 × 8 matrix directly from
Arduino requires 16 input/output (I/O) pins
(one for each row and column).

If you were connecting the Arduino I/O pins di-
rectly to an LED matrix, you’d also need to add
resistors to the circuit to reduce the current that
flows through the LEDs. Current-limiting-resis-
tors are important because if too much current
passes through an LED, the excess energy will
be converted to heat instead of light, which re-
duces the efficiency and lifespan of the LED,
and can eventually lead to failure of the com-
ponent. So the wiring of the circuit would start
to get pretty messy, and you’d soon run out of
pins on your Arduino if you tried to drive sever-
al LED matrices directly at the same time.

Fortunately, a simpler solution exists: you can
use a driver IC, which reduces the pins required
to drive a matrix by multiplexing the display.
With multiplexing, patterns are displayed by
scanning the matrix to refresh a single row or
column at a time. If the refresh rate of the ma-
trix is high enough, the scanning will happen
so quickly that the image displayed will appear

133Chapter 8: Spooky Lights

Background

steady to your eyes due to the persistence of vi-
sion effect (the afterimage that remains in your
retina).

You’ll use an HT16K33 controller driver, which
takes care of the multiplexing and communi-
cates with the Arduino via I2C using just two
wires.

I2C?

Inter-integrated circuit (I2C) is a serial bus devel-
oped in the early 1980s for communication be-
tween integrated circuits on computer mother-
boards. A communications bus like this allows da-
ta and control signals to be sent to devices con-
nected in parallel. You’ll only be connecting LED
matrices; however, there are many types of com-
ponents that use I2C, and you could connect any
of them via the same bus. I2C simplifies communi-
cation between a microcontroller and connected
devices down to just two lines: SDA for serial data
and SCL for serial clock. This makes for a very effi-
cient use of I/O pins: you could continue to add
devices to the bus but you’d still only use two I/O
pins on the Arduino to communicate with all of
them.

Assembling the Lights

Now that you know a bit about how I2C matri-
ces work, you’re ready to build your lights!
You’ll begin by preparing your matrices, and
then you’ll construct a cable assembly and con-
nect the Arduino. Next, you’ll connect each ma-
trix section by section, and finally you’ll deco-
rate your lights.

Tools Required
Many of the tools (Figure 8-2) you will need to
build the lights can be found around the home
or office:

• Wire strippers and cutters

• Pliers

• Scissors

• Hobby knife

• Ruler or measuring tape

• Marker pen

• Soldering iron

• Heat gun or hair dryer

This project does involve soldering; however,
you’ll mostly just be joining wires, so a basic
iron will do. If you don’t have wire strippers, you
can use scissors or a hobby knife in a pinch.
However, you’ll be stripping a lot of wires in this
project, so do yourself a favor and use a dedica-
ted tool.

You can use a heat gun to quickly and easily
shrink the heat shrink tubing, but if you don’t
have access to one, a hair dryer used on the hot
setting will also work.

Preparing the Matrices
Each device connected in an I2C bus needs a
unique address (Table 8-3). Addresses are repre-
sented using bits that have a binary value of 0
or 1.

Table 8-3 HT16K33 matrix
addresses

Address A2 A1 A0

0x70 0 0 0

0x71 0 0 1

0x72 0 1 0

0x73 0 1 1

0x74 1 0 0

0x75 1 0 1

0x76 1 1 0

0x77 1 1 1

134 Make: JavaScript Robotics

Assembling the Lights

Figure 8-2 Required tools

Typically, I2C uses a 7-bit address space, which
provides 27 (128) addresses, of which 16 are re-
served. This means that 112 devices can be
connected on a single I2C bus. However, many
components implement a more limited range
of addresses in practice: your HT16K33 matrix
controller board only provides three bits for
specifying addresses, so you can connect a
maximum of eight matrices. Addresses are as-
signed by shorting a combination of the three
jumpers (A0, A1, and A2) on the back of the
board. If you are using single-color Adafruit
mini LED backpacks, be aware that you can on-
ly connect four of them together, as they have
two instead of three jumpers for setting I2C ad-
dresses. To prepare the matrices, follow these
steps:

1. If your matrix boards require assembly
such as soldering the matrix or set of
header pins to the controller board,

you will need to do that first. Be sure to
follow any directions provided by the
manufacturer to orient the matrix cor-
rectly on the controller board.

2. Set unique addresses for each of your
matrices by soldering across the jump-
ers on the back of the controller board.
For example, Soldering A0 and A2 as
shown in Figure 8-3, will set the ad-
dress to 0x75. Assign addresses to the
matrices sequentially from 0x70. Hold-
ing the soldering iron close to the pads,
touch the solder against the tip of the
iron to create a small blob of molten
solder, and then quickly transfer the
blob of solder to the pads.

135Chapter 8: Spooky Lights

Assembling the Lights

To avoid heat damage that can
cause the pads to lift off the board,
minimize the time that the solder-
ing iron is touching the PCB—it
should only take about a second for
the blob to transfer. Clean the tip of
the soldering iron to remove any ex-
cess solder before moving on to the
next jumper.

3. Use a marker pen to write the address
of each matrix along the side of the
matrix as you go—this will make it eas-
ier to see the address when you are
testing the lights later, without having
to flip the matrix over to look up the
table.

Figure 8-3 Soldering I2C address jumpers

Constructing a Cable Assembly
You’ll be building a cable assembly to connect
the matrices together. The cable assembly bun-
dles the four wires used for communication and
power. The circuit you’ll be using is shown in
Figure 8-4. You’ll use different colors to identify
the I2C lines: data (yellow) and clock (green), as
well as the 5V power (red) and ground (black)
wires that provide power to the matrix control-
ler boards.

Figure 8-4 I2C matrix circuit

Arduino I2C

Arduino boards support I2C communication via
fixed pins for data (SDA) and control (SCL).

You’re using an Arduino Nano, so the I2C pins are
A4 (analog pin 4) for data and A5 for control.

If you decide to use another type of Arduino, the
pin numbers may differ. Table 8-4 shows the pin
assignments.

Table 8-4 I2C pins for various Arduino
boards

Board SDA SCL

Uno, Nano A4 A5

Leonardo 2 3

Due 20 or SDA1 21 or SCL1

Mega2560 20 21

You’ll construct the cable assembly in sections,
one matrix at a time. If you’re not very experi-
enced with soldering, this project will give you
lots of practice! You’ll begin by making lengths
of wires to run from the Arduino to the first ma-
trix. You can use female header connectors if
you want to have the option of removing the
Arduino later, or you could solder directly to the
pins if you prefer. Here are the steps you’ll need
to take:

136 Make: JavaScript Robotics

Assembling the Lights

1. Cut a 34 cm length of each color of
hookup wire and strip 2 cm off both
ends of each wire.

2. Then, cut four colors of female-female
jumper wires in half and strip 2 cm off
the cut end.

3. Join a half jumper wire to the matching
colored length of hookup wire. An in-
line splice is an effective way of joining
the wires for this project: join the wires
by crossing the two stripped ends to-
gether at their centers, and then wrap-
ping each end around the other, one at
a time, as in Figure 8-5.

4. Hold the soldering iron against the
joined wires to heat them first, then
touch the solder to the wires. It should
only take a few seconds for the solder
to start melting onto the wires. Run sol-
der along the length of the join. Pull
the solder away first and then remove
the iron about a second later to get a
nice finish.

5. Slip a length of small heat shrink tub-
ing about 2 cm long onto the wire and
use the heat gun to shrink it to com-
pletely cover where you have joined
the wires.

6. Repeat this process for all four colors of
wire.

Figure 8-5 Joining wires

Connecting the Arduino

Use a small plastic box as an enclosure for the
Arduino by cutting holes for the USB cable and
matrix cable assembly on either end of the box
using a hobby knife. Any small plastic box that
fits your Arduino snugly will do the job. Candy
containers or plastic packaging from electron-
ics components make great enclosures. Once
you’re ready, follow these steps:

1. Insert the Arduino into the enclosure,
plug in the USB cable, and connect the
long header wires you have just made
to the pins on the Arduino Nano: red
connects to 5V, black to GND, yellow to
analog pin 4, and green to analog pin 5
(or I2C pins for your Arduino board).

Figure 8-6 Connecting wires to the Arduino

2. You’ll use green heat shrink tubing as a
sheath to bundle the four wires togeth-
er. This color choice is purely for aes-
thetic reasons, so that the bundled
wires look like a pumpkin stalk. You
might like to use a different color of
heat shrink tubing, or alternatively, the
wires could be held together using ca-
ble ties, tape, cable loom, or string. Cut
a length of the larger heat shrink tub-
ing approximately 15 cm long.

3. Feed the wires through and shrink the
tubing around the wires at the Arduino
end, then shut the enclosure and wrap
a cable tie around it. The enclosure will

137Chapter 8: Spooky Lights

Assembling the Lights

help to prevent the jumper wires from
being dislodged as you work on the
rest of the cable assembly. About half
the length of your wires should be
sticking out from the heat shrink; this is
deliberate to give us more leeway
when joining wires for the next section.

Connecting a matrix

You’ll be repeating the steps in this section for
each matrix, building up your cable assembly
one section at a time.

The wire lengths given in the fol-
lowing will space your lights out
approximately 30 cm apart. If you
want a different gap between the
lights, adjust the longer wires to
desired length + 4 cm.

Cut a length of heat shrink tubing approximate-
ly 18 cm long (long enough to cover the un-
bundled length of wires currently sticking out
of your heat shrink, plus a few extra centime-
ters). Thread the heat shrink tubing over the
wires that are connected to the Arduino (or
previous matrix), but don’t shrink the tubing
yet.

Next, make a branch jutting off from the main
wire to connect to the matrix:

1. Cut a 34 cm length of wire as well as a 4
cm length of hookup wire in each color.

2. Strip 2 cm off each end of the 34 cm
wires.

3. Strip 2 cm off one end of the 4 cm
wires, and 3 mm off the other end.

4. For each color of wire, create a three-
way join to attach the main wires (the
34 cm wires) with the branch wire (the
4 cm wire). Place the short length in
parallel with the existing wire so that
the stripped wires are pointing in the

same direction and twist them togeth-
er, then use an inline splice to join
those wires with the 34 cm length of
wire that you just cut, as shown in Fig-
ure 8-7.

5. Cover each join in the wires with small
heat shrink.

6. As you go, arrange the position of
where the wires join so that they will
branch off from the main wires in the
order of pins on your matrix board
when the wires are bundled together.
For the OCROBOT boards, this order is
green (control), yellow (data), black
(ground), red (5V) from left to right
when viewing the matrixes from the
front, but this order should be reversed
for the Adafruit boards.

Figure 8-7 Three-way wire join

You’ll also need to create a three-way join with
the larger heat shrink tubing to bundle your
wires (you can see what you’re aiming for in
Figure 8-8):

1. Slice a slot in the bottom of the un-
shrunk tubing that is already threaded
on to the wires. Slide it over the three-
way joins so that the tubing complete-
ly covers the joins, with the small wires
sticking through the slot, while making
sure the other end of the tubing over-
laps with the existing heat shrink on
the previous section of wires.

138 Make: JavaScript Robotics

Assembling the Lights

Flattening the crimps can be
tricky so you might want to prac-
tice with some spare crimps first.
If you don’t want to use a plug
with crimps, you can use female-
female jumper wires that have
been cut in half in place of the 4
cm length of wires and plug.

2. Cut a 2 cm length of heat shrink tubing
and slice two short slots (about 8 mm)
on either side of one end. Slide it over
the short wires branching off from the
main wires, and push it right up to
meet and slightly overlap with the
main wires with the slotted end sliding
under the heat shrink tubing covering
the main wires.

3. Cut another 15 cm length of heat
shrink tubing and slide it onto the long
wires on the other side of the branch,
then push it up to the branch, feeding
the end of the heat shrink from the
other side of the branch inside.

4. At this point, you can shrink all of the
heat shrink around the branch. Howev-
er, if you are not confident with your
soldering, you might want to wait until
after you have attached the plug and
tested the matrix to make it easier to
get at the wires again if necessary.

Use pliers to attach the crimps for the 4-pin
plug to the ends of the branch wires, like in Fig-
ure 8-8:

1. First, use the pliers to squeeze the met-
al tabs together along the sides of each
crimp around the wire. The top set of
tabs should be flattened against the
bare wires, while the bottom can be
against the insulation.

2. Then flatten each set of tabs by
squashing them gently with pliers.

3. Once you have crimped all four wires,
insert the crimps into the plug in the
order matching the pins on your matrix
boards, and you are ready to plug a
matrix in!

Figure 8-8 Crimping

Repeat the steps in this section to connect all of
the remaining matrices to the cable assembly.
For the last matrix, you don’t need to create a
branch: add the crimps for the plug directly to
the ends of the wires to terminate your cable
assembly.

Test as you go!

It’s difficult to go back and fix wire
joins that are already covered in
heat shrink, so check each section
of your cable assembly as you go by
plugging in a matrix and running
the sample program from “Running
a Test Program” to see if it works.
When testing, make sure none of
the exposed ends of the main wires
are touching.

139Chapter 8: Spooky Lights

Assembling the Lights

Figure 8-9 Plugging in the matrix

Decorating the Lights
Plastic jack-o-lanterns from the local dollar
store make perfect enclosures for the LED ma-
trices. Here’s what you’ll need to do:

1. Hold a matrix inside each lantern and
trace around the outline using a mark-
er pen, then carefully cut out the
square using a hobby knife. Wipe off
any residual marker after the outline
has been cut out.

2. Test the size of the hole by pushing the
matrix through the hole from inside
the lantern so that the LEDs are visible
at the front of the lantern. If you cut the
outline to fit tightly around the matrix,
it should remain in place.

3. If you want the lanterns to be a perma-
nent decoration for your lights, glue
along the edges of each matrix to keep
the lanterns secure. You can use mod-
eling clay as putty to hold the matrices
in place if you want to be able to re-
move the lanterns to redecorate the
lights for other holiday seasons. Roll a
snake of clay 6 mm in diameter and
press it around the inside edges of the
square hole that you cut in the lantern,
molding the clay against the sides of
the matrix to keep it in place.

Combine yellow and red
modeling clay to make or-
ange so that you can match
the shade of the jack-o-lan-
terns—that way, any clay
that shows around the edges
of the matrix blends in.

4. Use green cable ties from the nursery
section of the hardware store to attach
silk leaves along the length of the
string of lights to complete the look.

Troubleshooting
The main place where things go wrong in this
build are the three-way wire joins. If you are not
confident in your soldering, use a multi-meter
to check continuity on each of your lines. Test
the strength of each join by gently tugging on
the wires in opposing directions.

When stripping small lengths of hookup wire,
sometimes the stranded core at the opposite
end of the wire can be exposed when the wire
stripper grips and pulls on the insulation. Ex-
posed wires have the potential to touch and
cause your circuit to short, so use additional
heat shrink or electrical tape to cover them.

Controlling an LED matrix

Let’s set everything up to control the matrices.

Preparing the Arduino
You’ll need to use at least version 2.4.0 of Firma-
ta when working with HT16K33 devices. In prior
versions of Firmata, the size of messages that
can be communicated to the Arduino via serial
was limited to 32 bytes, which is not large
enough for the I2C messages sent to each ma-
trix, however the serial buffer size was in-
creased to 64 bytes from version 2.4.0. At the
time of writing, version 2.4.0 of Firmata is avail-
able in beta and can be downloaded from the

140 Make: JavaScript Robotics

Controlling an LED matrix

http://bit.ly/19LYUAq

Firmata sourceforge page. See “Arduino” for
more details.

All source code for the examples in this book
can be found at GitHub.

Running a Test Program
See the appendix for details on how to install
Node.js and Johnny-Five. Once you have John-
ny-Five installed, you can run the test program
(Example 8-1) to make sure everything is set up
correctly.

Example 8-1 matrix-test.js (Draw a pattern to all
matrices)

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {

 var matrix = new five.Led.Matrix({
 devices: 7,
 controller: "HT16K33",
 isBicolor: true
 });

 var heart = [
 "01100110",
 "10011001",
 "10000001",
 "10000001",
 "01000010",
 "00100100",
 "00011000",
 "00000000"
];

 matrix.draw(heart);

 this.repl.inject({
 m: matrix,
 heart: heart
 });
});

Run the program from the command line as fol-
lows:

node matrix-test.js

You should see a heart displayed on all connec-
ted matrices. You can hit Ctrl-D to exit the pro-
gram.

Matrix Constructor Options
Johnny-Five includes the Led.Matrix class for
working with matrices. The default device con-
troller for the Led.Matrix class is a MAX7219
controller, so you need to set the controller op-
tion to the constructor to “HT16K33” to work
with your I2C matrix boards.

The devices option specifies how many matrices
you have connected. It is optional—you can
leave it out if you are only working with one
matrix. This is the simplest way to set up multi-
ple matrices if your devices have been assigned
sequential I2C addresses starting at 0x70.

If that is not the case (e.g., if you want to use
non-contiguous address ranges), you can pro-
vide the addresses option to the constructor to
specify the exact array of addresses for your
matrix boards. If you specify this option you
don’t need to include the devices option. The
following code will control a single matrix with
the address 0x75:

var matrix = new five.Led.Matrix({
 addresses: [0x75],
 controller: "HT16K33",
 isBicolor: true
});

The isBicolor option indicates whether your
controller board is attached to a bi-color or sin-
gle-color matrix. This is necessary because the
data sent via I2C to the matrix boards is han-
dled slightly differently depending on the type
of LEDs in the matrix. Leave this option out or
set it to false for single-color matrix controller
boards such as the Adafruit mini LED Backpack.

Drawing to the Matrix
You can control the LED matrices via the
Led.Matrix API. As shown in Example 8-2, you
can try these methods out via Johnny-Five’s
read-eval-print loop (REPL) while the test pro-
gram is running.

141Chapter 8: Spooky Lights

Controlling an LED matrix

http://bit.ly/19LYUAq
https://github.com/rwaldron/javascript-robotics

Example 8-2 Controlling the LED matrices

// controlling all matrices at once
m.draw("M") // draws the letter "M" on all matrices
m.draw(heart) // draw from pattern array on all matrices
m.clear() // clear all matrices

// controlling one at a time
m.device(0).clear() // clear just the 1st matrix
m.device(2).led(0,0,1) // turn on top left LED of 2nd matrix
m.device(0).row(3,255) // turn on all LEDs on 3rd row of 1st matrix
m.device(3).row(1,"00011000") // set pattern for 1st row of 3rd matrix
m.device(0).column(7,0) // turn off all LEDs in last column of 1st matrix

Developing a Web Application

You’ll use the express framework to develop a
web application to control your lights. You’ll
start by using the express generator to boot-
strap your application, then add routes for your
API, and finally add a user interface.

The full source code for the web
application that you will be de-
veloping can be found in the
SpookyLights/ folder in the Make:
JavaScript Robots repository on
GitHub.

Development Tools
Make sure you have Node.js installed and that
your Arduino has been flashed with Firmata
version 2.4.0 or better, as described in “Prepar-
ing the Arduino”. You’ll also need a text editor
or IDE for editing your JavaScript programs
(e.g., SublimeText), and a terminal for running
commands.

Using the Express Generator
The quickest way to get started with express is
to use the express generator. You can install the
generator using npm, and then run it from the
command line:

npm install -g express-generator
express lights-app

If you get an error installing ex
press-generator, you can try
prefixing the npm command with
sudo, or installing Sudo fix first.

This will create a directory called lights-app/
and generate a complete express web applica-
tion into that directory. Install the required li-
braries for the generated app with npm:

cd lights-app && npm install

To view the web application, run the following
command from the terminal and then visit
http://localhost:3000/ in your browser.

node bin/www

From the command line, install Johnny-Five us-
ing npm with the save option so that the latest
version will be added as a dependency in your
application’s package.json file:

npm install johnny-five --save

Example 8-3 Excerpt of app.js (require johnny-five and
set up for Led.Matrix object)

var routes = require("./routes/index");
var lights = require("./routes/lights");
var five = require("johnny-five");
var board = new five.Board();

142 Make: JavaScript Robotics

Developing a Web Application

http://bit.ly/1OebhG4
http://bit.ly/19LYYjT
http://localhost:3000/

board.on("ready",function(){
 var matrices = new five.Led.Matrix({
 devices: 7,
 controller: "HT16K33",
 isBicolor: true
 });
 app.set("matrices", matrices);
});

Developing an API
The generated application comes with boiler-
plate for view templates and routes, and in-
cludes commonly used libraries. You’ll need to
include the Johnny-Five library in app.js and
then use the library to create an Led.Matrix ob-
ject for controlling your matrices. You’ll store
the object in the express application settings so
that you can access it throughout the applica-
tion as shown in Example 8-3.

You’ll also replace the routes that express has
generated for users with routes for your lights
API. In app.js, do a search on users and replace
with lights and rename routes/users.js to routes/

lights.js. Edit routes/lights.js and delete any ex-
isting routes, and then add the API routes for
the lights API as shown in Example 8-4.

Installing on a Single-Board
Computer

At this point, your web application is running lo-
cally on a laptop or PC and the lights are connec-
ted directly to the computer via USB. This isn’t the
most convenient setup for a semi-permanent in-
stallation. Node.js and Johnny-Five are available
on single-board computers like Raspberry Pi, Bea-
gleBone Black, and Intel Galileo, so you could con-
nect your Arduino via USB to one of those and run
your web application as is. However, those devices
also support I2C, so you could eliminate the Ardu-
ino completely and use their on-board GPIO pins
directly by utilizing the third-party I/O plug-ins
that have been developed for Johnny-Five. For
more information on available plug-ins and how
to use them, check out the IO Plugins page on the
Johnny-Five GitHub site.

Example 8-4 lights.js (Excerpt) (Add routes for API)

// clear all matrixes
router.post("/clear", function(req,res) {
 var matrices = req.app.get("matrices");
 if (matrices) {
 matrices.clear();
 res.send("Cleared all matrices");
 } else {
 res.status(500);
 res.send("Matrices not ready");
 }
});

// draw pattern for a single matrix
router.post("/draw/:device", function(req, res) {
 var device = req.params.device;
 var data = req.body;
 // get johnny-five matrices object from express app
 var matrices = req.app.get("matrices");
 if (matrices) {
 matrices.device(device).draw(data);
 res.send("Updated matrix " + device);
 } else {
 res.status(500);
 res.send("Matrices not ready");

143Chapter 8: Spooky Lights

Developing a Web Application

http://bit.ly/19LYZEh

 }
});

The draw route includes a parameter and de-
vice to indicate the index of the matrix device
that you want to draw to. You get your Johnny-
Five matrices object from the express applica-
tion settings, and then use the draw method to
send the data from the POST request to the ma-
trix. You need to check whether the matrices
object exists first, because when the applica-
tion first starts, there will be a slight delay be-
fore the board is ready. This check also allows
the app to run and respond to requests if there
isn’t a board plugged in.

To keep things simple, the sample application
only includes API operations for drawing pat-
terns for individual matrices, and for clearing all
or individual matrices, but you could add more
routes in routes/lights.js to correspond to the
other methods from johnny-five’s Led.Matrix
API such as led, row, or column.

Adding a User Interface
The UI for the sample app is in index.jade (see
Example 8-5), and includes buttons to trigger
the API operations that you developed in “De-
veloping an API” and a select element for se-
lecting which matrix device to control.

The sample application also includes a graphi-
cal user interface developed using RaphaelJS
for drawing patterns to send to the matrices,
which you can see in Figure 8-10. You can find
the custom MatrixView class in public/java-
scripts/matrix-view.js in the source code. Click-
ing on each square in the grid will cycle
through all possible LED colors: green (dis-
played using web color “Chartreuse”), yellow
(“Orange”), red (“OrangeRed”), and off (“Black”).
Note that this is hardcoded to match the order
of colors used by the OCROBOT boards.

Example 8-5 index.jade (HTML UI)

h1= title
 div
 button.reset Reset pattern
 div#matrix.matrix
 div
 button.send Send to matrix
 select.device
 option(value="0") 0
 option(value="1") 1
 option(value="2") 2
 option(value="3") 3
 option(value="4") 4
 option(value="5") 5
 option(value="6") 6
 div
 button.clear Clear all
 div.status

If you are using an Adafruit board, you should
switch the green and red colors in the colors ar-
ray in MatrixView’s constructor. MatrixView’s
print method serializes the pattern of colors
from the grid into an array of strings in the for-
mat accepted by Led.Matrix.draw. For example,
for the face in Figure 8-10 the data would be:

[
 "00000000",
 "02200220",
 "02100120",
 "00000000",
 "00033000",
 "00300300",
 "00033000",
 "00000000"
]

144 Make: JavaScript Robotics

Developing a Web Application

Figure 8-10 User interface for controlling the matrices

The code that hooks up the API operations with
the buttons is also in matrix-view.js. For exam-
ple, clicking the Send to matrix button triggers
a function that gets the device index from the
HTML select, gets the LED color data from the
MatrixView by calling the print method, and
then sends the data via a POST request to your
draw API endpoint. Finally, after the POST re-
quest is complete, the status div is updated
with the message from the XMLHttpRequest re-
sponse to reflect whether the action was suc-
cessful (see Example 8-6).

Example 8-6 Calling the API

$(".send").click(function() {
 var device = $(".device").val();
 $.ajax({
 type: "POST",
 url: "/lights/draw/" + device,
 data: view.print(),
 contentType: "application/json",
 complete: function(xhr, status) {
 $(".status").html(xhr.response);
 }

 });
});

Your basic web application is ready to use! Now
you can draw 8x8 patterns and send them to
any of the connected matrix devices. The sam-
ple application has been designed for drawing
custom symbols and faces. If you want to dis-
play text messages on your lights, you might
want to extend the UI to support typing in
characters to save having to draw them each
time—your draw API already supports any of
the types of data that the Led.Matrix draw
method allows, including single character
strings.

Extending the Application
The application that you’ve developed provides
very basic functionality—it would be nice to be
able to save patterns so you could restore them
after the lights have been unplugged as well as
track pattern history, who created each pattern,
and perhaps add access control so that the API
isn’t open to abuse. Because Johnny-Five runs
on Node.js, you can integrate any of the thou-
sands of modules available via npm, to include
libraries for working with databases, key-value
stores, user authentication, and so on.

What’s Next?

I hope that this chapter has given you some
ideas for how you could include I2C LED matrix
displays in your projects. You could use the
techniques described to build a very short ca-
ble assembly connecting two I2C matrices to
install as eyes inside a jack-o-lantern or interac-
tive toy. And of course you could add a matrix
or two your favorite NodeBot, to display status
information, or to give your robot facial expres-
sions!

145Chapter 8: Spooky Lights

What’s Next?

CheerfulJ5

By David Resseguie

In this chapter, you are going to build a colored
mood light, but instead of expressing the emo-
tion of a single person or object, your Cheer-
fulJ5 project is going to hook into the global
CheerLights service: a social experiment that
uses Twitter to synchronize the color of lights
all around the world (see Figure 9-1). You’ll
learn to control an RGB LED using Johnny-Five
and how to connect to services like ThingSpeak
and the Twitter Streaming API to incorporate
real-time data from the cloud into your project.

You’ll first build and program the circuit using a
standard Arduino, then explore how to take it
wireless using a Johnny-Five IO Plugin to substi-
tute a Spark WiFi Development Kit in place of
the Arduino. However, the use of a Spark is op-
tional and not required to complete the project.
You could also substitute alternative hardware
platforms using other available Johnny-Five IO
plug-ins. To finish up, we’ll discuss options for
creating an enclosure for your final CheerfulJ5
project to make it suitable for decorative use in
the home or office.

Figure 9-1 Completed CheerfulJ5 project

Bill of Materials

The electronics for CheerfulJ5 are very simple.
The components listed in Table 9-1 can be pur-
chased individually from sites like Adafruit,
Sparkfun, Maker Shed, or Amazon. But if you
don’t already have some of these basics, most
retailers carry their own version of a “Getting
Started with Arduino” kit that typically contains
everything you need. In particular, if you plan
to use the Spark WiFi Development Kit to build

147

9

the wireless version of CheerfulJ5, the Spark
Maker Kit contains all the components needed
to complete the project.

Table 9-1 Electronic components

Count Part Estimated
Price

Part Numbers

1 Arduino Uno R3 $25 MS MKSP99; AF 50; SF DEV-11021

1 Spark Photon or Core $20-$40 http://www.spark.io

1 RGB LED (common cathode or
anode)

$2 SF COM-09264; AF 159; AZ B005VMDROS

3 200–300 Ohm resistors $0.25 SF COM-08377; AZ B00E9Z0OCG

1 Mini breadboard $4 MS MKKN1-B; AF 65; SF PRT-12043
through PRT-12047

1 Jumper wire kit $7 SF PRT-00124

1 A-Male to B-Male USB $3 AZ B000FW60E8; SF CAB-00512

1 3.7V LiPo battery $9 AF 1578; SF PRT-0034

1 LiPo battery charger $8 AF 1904; SF PRT-10217

We’ll demonstrate a sample enclosure for our
CheerfulJ5 project, but this is completely op-
tional. Feel free to make your own creative en-
closure or even leave your project exposed and
show off the underlying electronics. In our ex-
ample, you’ll create a simple tabletop mood

lamp made out of a frosted cylindrical vase that
both conceals the electronics and helps to dif-
fuse the light from the LED. Any appropriately
sized glass container will work or you can even
use a simple piece of tracing or diffusion paper
to make your own.

Table 9-2 Enclosure options

Part Estimated
Price

Source

Glass vase, globe, or jar $3–10 Hobby or craft store

Tracing paper or tissue or wax paper
(alternative diffusion option)

$3 Hobby or craft store

#216 white diffusion filter (optional, for even
better diffusion)

$6 Sold in sheets at theatrical or
photography suppliers

148 Make: JavaScript Robotics

Bill of Materials

http://www.spark.io

Wiring the Circuit

An RGB LED behaves much like a standard LED,
except it actually has three LEDs together in-
side its body: one red, one green, and one blue.
You can control the brightness of each of these
colored LEDs to mix the colors that you want to
produce. There are two types of RGB LEDs:
common cathode and common anode. Either
type will work for your CheerfulJ5 project; you
just have to wire it up appropriately. In our ex-
amples, we’ll be showing a common cathode
LED, but it’s easy to modify the circuit to sup-
port common anode. The code is essentially the
same for either type because Johnny-Five takes
care of the translation for you!

The four leads on an RGB LED correspond to
red (lead 1), green (lead 3), blue (lead 4), and a
common connection (lead 2). Note that the
common lead is the second from the flat side of
the LED and is the longest of the four. A com-
mon cathode RGB LED should have its common
lead connected to the ground pin on your Ar-
duino. If using a common anode RGB LED in-
stead, its longest lead should be connected to
the 5V pin.

Let’s wire up your RGB LED and get ready for a
simple test, as shown in Figure 9-2. We show
the circuit wired on a mini breadboard so it will
be easier to fit inside your enclosure later.

Figure 9-2 Fritzing diagram for Arduino UNO

1. Connect leads 1, 3, and 4 of the LED to
the Arduino.

Regardless of which type of RGB LED
you are using, each individual LED re-
quires its own resistor between it and
the Arduino IO pins. You have some
flexibility on which value resistor to
use, but 200–330 Ohm resistors should
be fine. The wiring diagram shown
here uses 270 Ohm resistors (red/
purple/brown). The RGB LED requires
pulse-width modulation (PWM) to con-
trol the brightness of each individual
LED so be sure to wire it up to support-
ed pins on the Arduino (see Table 9-3).

Table 9-3 PWM supported pins

Hardware PWM pins

Arduino
UNO

3, 5, 6, 9, 10, and 11

Spark D0, D1, A0, A1, A4, A5, A6
and A7

2. Connect lead 2, the LED’s common
connection, to the Arduino.

If using a common cathode RGB LED,
connect lead 2 to the Arduino ground
pin. If using a common anode RGB LED,
connect it to the 5V pin.

The CheerfulJ5 code

Now it’s time to write some code to control
your RGB and connect it to the CheerLights ser-
vice.

Connecting to the Arduino
Let’s get started by creating a bare-bones
Johnny-Five application that you can build off
of. If you need help installing StandardFirmata,
setting up Node.js, or installing Johnny-Five, re-
fer to the appendix.

1. Install Node.js, Johnny-Five, and other
dependencies.

149Chapter 9: CheerfulJ5

Wiring the Circuit

If you haven’t already done so, install
Node.js, followed by the latest version
of Johnny-Five from npm. You’ll also
need to install request, which you’ll
use later to query the CheerLights ser-
vice:

npm install johnny-five
npm install request

2. Be sure you have the latest version of
StandardFirmata running on your Ar-
duino.

Johnny-Five communicates with the
Arduino using the Firmata protocol.
StandardFirmata is generally installed
by default on most Arduino boards, but
can be reinstalled if necessary using
the Arduino IDE.

3. Create a new file named cheerful.js.

We’ll start with a “Hello World” pro-
gram that loads the Johnny-Five library,
connects to the Arduino via USB, and
then prints “Hello World” once the con-
nection is established. Create a new file
named cheerful.js and enter the code
shown in Example 9-1.

Example 9-1 cheerful.js (bare bones version)

var five = require("johnny-five"),
var board = new five.Board();

board.on("ready", function() {
 console.log("Hello World");
});

That’s not a lot of code to talk to the Ar-
duino, so what’s going on here behind
the scenes? When the five.Board ob-
ject is created, Johnny-Five automati-
cally looks for an Arduino connected
via USB. Once it’s successfully establish-
ed communication with the Arduino,
the ready event is triggered. You use
the on("ready") function to listen for

this event and then start executing the
main portion of your application. The
callback function here is where you will
include the bulk of your CheerfulJ5
code later.

4. Let’s run a quick test to be sure every-
thing is configured properly.

Plug the Arduino into the computer us-
ing the USB cable and run the follow-
ing command:

node cheerful

The program should print “Hello
World” then display a prompt awaiting
input from the console. You can just
press Ctrl-C a couple times to exit.

You’ve successfully established a connection to
your Arduino. Now on to the fun stuff!

Controlling an RGB
Johnny-Five includes an Led.RGB class for con-
trolling an RGB LED. The Led.RGB class has
many of the same functions as the standard Led
class, but adds additional functionality for con-
trolling the color. Let’s add to your bare-bones
application by defining an RGB LED object and
setting its color:

1. Initialize an Led.RGB object to represent
your LED (Example 9-2).

Example 9-2 cheerful.js (initialize LED)

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {

 var led = new five.Led.RGB({
 pins: {
 red: 3,
 green: 5,
 blue: 6
 }
 });
});

150 Make: JavaScript Robotics

The CheerfulJ5 code

This code is the same as the “Hello
World” program before, but once the
Aruino is connected, we define an RGB
LED and tell Johnny-Five that it is con-
nected on pins 3, 5, and 6 for the red,
green, and blue leads, respectively.

Alternatively, the Led.RGB class speci-
fies a shorthand constructor:

var led = new five.Led.RGB([3,5,6]);

This version will normalize an array of
pins in [r, g, b] order to an object
that is shaped like:

{
 red: r,
 green: g,
 blue: b
}

2. If you’re using a common anode RGB,
you’ll need to let Johnny-Five know.

Using the full constructor, set the
isAnode property to true. After that, all
other commands are the same as a
common cathode RGB. Johnny-Five
translates everything for you automati-
cally!

// Initialize a Common Anode RGB LED
var led = new five.Led.RGB({
 pins: {
 red: 3,
 green: 5,
 blue: 6
 },
 isAnode: true
});

3. Set the color of the LED.

To set the color of the RGB LED, you
make a call to Led.RGB.color() and
pass either a hexadecimal color string
or an array of the form [r, g, b]. For
example, if you want the RGB to be red,
you can pass the string "#ff0000":

led.color("#ff0000");
console.log(led.color());

Calling Led.RGB.color() without a col-
or value causes it to return the current
red, green, and blue values. In this case,
you simply log the returned object to
verify that red is set to its maximum
value (255) and the green and blue val-
ues are both zero.

4. Run the application again (node
cheerful) and the RGB should turn red.

Using the Node.js Read-Eval-Print
Loop
At this point, it might be helpful to experiment
with the available Led.RGB functions. The
Node.js read-eval-print loop (REPL) provides a
way to interactively run JavaScript from the
Node.js command prompt. To take advantage
of this functionality, you need to inject the led
variable into the REPL so you can interactively
enter Johnny-Five commands to control your
LED. Add the following code inside the
board.on("ready") function:

this.repl.inject({
 led: led
});

Now you can execute the application again
(node cheerful) and enter commands at the
prompt. For example, to make the LED blink
once per second, enter led.blink(1000). Feel
free to experiment with other Led.RGB func-
tions to better understand what each one does.

Defining the CheerLights Color
Map
For convenience sake, let’s define a map of col-
or names to hexadecimal values that can be
passed to Led.RGB.color(). To make your code
more modular, put it in its own file that you can
require in your main application:

1. Create a new file and name it
cheerlights-colors.js.

In this file, let’s define the color names
supported by CheerLights, as shown in
Example 9-3.

151Chapter 9: CheerfulJ5

The CheerfulJ5 code

Example 9-3 cheerlights-colors.js

var colorMap = {
 red: "#ff0000",
 green: "#00ff00",
 blue: "#0000ff",
 cyan: "#00ffff",
 white: "#ffffff",
 warmwhite: "#fdf5e6",
 purple: "#a020f0",
 magenta: "#ff00ff",
 pink: "#ff69b4",
 yellow: "#ffff00",
 orange: "#ff8c00"
};
module.exports = colorMap;

You might have to tweak the color defi-
nitions to more accurately represent
each color for your RGB LED and enclo-
sure.

2. Update cheerful.js to use the Cheer-
Lights color definitions.

Now, instead of setting the color direct-
ly by passing in a hexadecimal value,
update your previous code to reference
one of the standard color names from
the color map object. The only changes
are to require the new cheerlights-col-
ors.js at the beginning of your applica-
tion and to update the call to
Led.RGB.color():

var colorMap = require
 ("./cheerlights-colors");
// ...
led.color(colorMap["red"]);

Now that you have your RGB LED set up and are
able to control its color, it’s time to hook up
your application to CheerLights!

Accessing the CheerLights
ThingSpeak API
The CheerLights service synchronizes color via
Twitter messages sent to @cheerlights or using
the hashtag #cheerlights. CheerLights clients
around the world can listen for updated color

commands and update their own color accord-
ingly. We are going to explore two methods for
listening for new color commands. First, we’ll
look at how to query the CheerLights Thing-
Speak API. Then, we’ll see how you can tap into
the Twitter Stream directly.

ThingSpeak is an open source platform for the
Internet of Things with a RESTful API for query-
ing historical and real-time data. To simplify ac-
cess to the CheerLights service, the creators of
the project created a CheerLights ThingSpeak
“channel” that captures and stores all incoming
color messages. The CheerLights project uti-
lizes the TweetControl App from ThingSpeak to
listen to Twitter for the keyword “cheerlights”
and update the CheerLights ThingSpeak chan-
nel to store the latest requested color. The
ThingSpeak Channel API can be used to query
for the current color so you can set your RGB
LED’s color appropriately.

For CheerfulJ5, we only care about the current
CheerLights color, so you need to query Thing-
Speak for the last requested color value. Thing-
Speak provides a last endpoint as part of their
Channel API that returns the most recent value
for a ThingSpeak channel. The response is avai-
labe as XML, JSON, and plain text.

A call to the last endpoint is of the following
format: https://api.thingspeak.com/channels/
1417/feed/last.json.

You can test the Channel API by entering the
RESTful API URL directly in your browser. In this
case, 1417 is the ThingSpeak Channel ID for the
CheerLights stream, so you can request the lat-
est CheerLights color in JSON format. The only
value you care about in the returned JSON ob-
ject is field1, which contains the last color
string requested.

Let’s update your cheerful.js code to call the
ThingSpeak API, parse out the returned value,
and update the color of your RGB LED accord-
ingly:

152 Make: JavaScript Robotics

The CheerfulJ5 code

http://www.cheerlights.com
https://twitter.com/cheerlights
https://twitter.com/hashtag/CheerLights?src=hash
https://api.thingspeak.com/channels/1417/feed/last.json
https://api.thingspeak.com/channels/1417/feed/last.json
http://bit.ly/1bQNb5p

1. Add a function to cheerful.js that calls
the ThingSpeak API.

You’ll need to define a new function
called getLatestColor(), shown in Ex-
ample 9-4, that asynchronously calls
the ThingSpeak API and passes the re-
turned color to a callback function. You
will use request, a simplified Node
HTTP request client, to make your calls
to ThingSpeak. You first pass request

the URL to the last endpoint of the
ThingSpeak Channel API and tell it that
you are expecting a JSON response.
The second argument to request is a
function that is called when your API
call finishes successfully. Here you ex-
tract the latest color string from field1
and return it to the getLastColor()
callback function.

Example 9-4 The getLatestColor function

function getLatestColor(callback) {
 request({
 url: "https://api.thingspeak.com/channels/1417/feed/last.json",
 json: true
 }, function(error, response, body) {
 if (!error && response.statusCode === 200) {
 var color = body.field1;
 callback(null, color);
 } else {
 callback(error, null);
 }
 });
}

2. Update LED color based on returned
ThingSpeak value.

To update your CheerfulJ5 RGB LED,
you just need to poll ThingSpeak at a
given interval and call led.color()

with the returned result. Note that
you’re only asking for the latest Cheer-
Lights color, so it’s possible that you
will miss colors between calls to the API

—but that’s OK for these purposes.
You’ll use a standard JavaScript
setInterval() call to check the color
every 3 seconds. You’ll also save a refer-
ence to the current color so you can
output to the console when it changes.

Putting everything together, Example 9-5
shows the complete cheerful.js code.

Example 9-5 cheerful.js (using ThingSpeak API)

var request = require("request");
var five = require("johnny-five");
var colorMap = require("./cheerlights-colors");
var board = new five.Board();

board.on("ready", function() {
 console.log("Connected");

 var lastColor = "white";

153Chapter 9: CheerfulJ5

The CheerfulJ5 code

 var led = new five.Led.RGB([3, 5, 6]);

 this.repl.inject({
 led: led
 });

 led.color(colorMap[lastColor]);

 setInterval(function() {
 getLatestColor(function(err, color) {
 if (!err && colorMap[color]) {
 if (color != lastColor) {
 lastColor = color;
 console.log("Changing to " + color);
 led.color(colorMap[color]);
 }
 }
 });
 }, 3000);

});

function getLatestColor(callback) {
 request({
 url: "https://api.thingspeak.com/channels/1417/feed/last.json",
 json: true
 }, function(error, response, body) {
 if (!error && response.statusCode === 200) {
 var color = body.field1;
 callback(null, color);
 } else {
 callback(error, null);
 }
 });
}

Try running the application (node cheerful)
and sending color commands to @cheerlights
using Twitter to watch your RGB update in sync
with your Twitter messages! For example, you
might tweet:

@cheerlights Let’s celebrate JavaScript

by turning our @CheerfulJ5 yellow!

The CheerLights server listens for Twitter men-
tions and parses the color name from the mes-
sage. CheerfulJ5 picks up the change and turns
the LED yellow the next time it checks in with
the CheerLights server (assuming another user
doesn’t change the color again before your ap-
plication polls the API). See Figure 9-3.

Figure 9-3 CheerfulJ5 running on Arduino Uno after a

blue command was sent to CheerLights

154 Make: JavaScript Robotics

The CheerfulJ5 code

Using the Twitter Streaming API
Our previous approach to getting the current
CheerLights color was to poll the preprocessed
ThingSpeak channel. This provides a nice, sim-
ple solution, but has a few drawbacks. The con-
stant polling of the ThingSpeak channel is inef-
ficient if there are no updates coming in. You
could reduce the polling frequency, but that
leads to longer response times once a new col-
or command is sent. For some applications, you
may also want to avoid missed colors.

As an alternative, you could instead monitor
the Twitter stream directly using the Twitter
Streaming API. This requires a little more work
to essentially duplicate the functionality of the
ThingSpeak CheerLights API, but it means you
can get the updates immediately and not miss
any colors.

To use the Twitter Streaming API, you need to
set up a Twitter Developer account (free) and
configure a CheerfulJ5 application:

1. Create a Twitter Developer account
(free).

Go to https://dev.twitter.com and log in
with your Twitter username and pass-
word. If you do not yet have a Twitter
account, click the “Sign up now” link
under the login form.

If you have not yet used the Twitter de-
veloper site, you’ll be prompted to au-
thorize the site to use your account.
Click “Authorize App” to continue.

2. Create a new Twitter Application.

Visit the Twitter Application Manager
and click the “Create New App” button
to get started. When defining a new
application, you are requested to enter
a name (e.g., “CheerfulJ5”), description,
and a website. (You can enter a place-
holder URL if you don’t have a public
website for your project.)

3. Generate Twitter access credentials for
your application.

You need two key pairs to access the
Twitter Streaming API: the “Consumer
Key/Consumer Secret” and “Access To-
ken/Access Token Secret” for your ac-
count. These are found under the “Keys
and Access Tokens” tab in the Twitter
Application Manager. The Consumer
Key (API key) and Consumer Secret (API
secret) are automatically generated for
us and are listed under “Application
Settings.” To generate the Access To-
ken, you need to click the “Create my
access token” button at the bottom of
the page. After doing so, the newly
generated Access Token and Access To-
ken Secret are displayed.

4. Save access credentials as environment
variables.

It’s best not to keep your access cre-
dentials for Twitter in your source code,
so let’s store them as environment vari-
ables that you can access via Node.js.

Create a file in your home directory
called .twitterrc that contains your Twit-
ter API credentials:

export TWITTER_API_KEY="your API key"
export TWITTER_API_SECRET="your API se
cret"
export TWITTER_TOKEN="your access token"
export TWITTER_TOKEN_SECRET="your ac
cess token secret"

To load your credentials automatically,
you can add the following to your dot-
rc file of choice:

source ~/.twitterrc

5. Install node-tweet-stream module.

There are a number of npm modules
that allow you to easily use the Twitter
APIs. There’s no need to reinvent the
wheel, so let’s take advantage of one of
the existing solutions. Because you are

155Chapter 9: CheerfulJ5

The CheerfulJ5 code

https://dev.twitter.com
http://apps.twitter.com

only interested in the Twitter Stream-
ing API for this project, the node-

tweet-stream module will suffice for
making your queries. You’ll just need to
install it via npm:

npm install node-tweet-stream

6. Replace the ThingSpeak API call with
node-tweet-stream.

The node-tweet-stream module is very
straightforward to use. You create a
new twit object and pass in the keys
you generated previously. You then tell
twit what phrase(s) you want to moni-
tor using the track() function. Any
time a matching tweet is found, an
event is fired and you can capture the
message using the on("tweet") func-
tion.

To use the Twitter Streaming API in
place of the ThingSpeak API call, you
remove the getLatestColor() function
and associated setInterval call. In-
stead, you define your twit object, tell

it to track both “@cheerlights” and
“#cheerlights”, and update the RGB col-
or when the on("tweet") function is
triggered.

Because you’re not using the prepro-
cessed data from ThingSpeak, you have
to parse through the tweet text and ex-
tract the color string manually. Inside
the on("tweet") function, you’ll need
to look for an instance of a supported
color string in the body of the Twitter
message. To do this, extract the keys
from your colorMap object (represent-
ing valid CheerLights colors) as a Java-
Script Array. Then use the Array.proto
type.some() function to iterate
through each color string and check to
see if it is found in the Twitter message
using tweet.text.indexOf(color).
Once a match is found, you set the RGB
color with a call to led.color(color
Map[color]) as before.

Example 9-6 shows the full modified version.

Example 9-6 cheerful-twit.js (using Twitter Streaming API)

var request = require("request");
var five = require("johnny-five");
var twit = require("node-tweet-stream");
var colorMap = require("./cheerlights-colors");
var board = new five.Board();

board.on("ready", function() {

 var lastColor = "white";
 var led = new five.Led.RGB([3, 5, 6]);

 led.color(colorMap[lastColor]);

 t = new twit({
 consumer_key: process.env.TWITTER_API_KEY,
 consumer_secret: process.env.TWITTER_API_SECRET,
 token: process.env.TWITTER_TOKEN,
 token_secret: process.env.TWITTER_TOKEN_SECRET
 });

 t.track("@cheerlights");
 t.track("#cheerlights");

156 Make: JavaScript Robotics

The CheerfulJ5 code

 t.on("tweet", function(tweet) {
 // grab a matching supported color in the tweet
 Object.keys(colorMap).some(function(color) {
 if (tweet.text.indexOf(color) >= 0) {
 if (color != lastColor) {
 lastColor = color;
 console.log("Changing to " + color);
 led.color(colorMap[color]);
 }
 return true;
 } else {
 return false;
 }
 });
 });

 t.on("error", function(err) {
 console.log("Error with Twitter stream: %o", err);
 });

});

Now your CheerfulJ5 updates its color in real
time without a delay for polling! At this point,
the CheerfulJ5 project is complete if you don’t
plan to make use of a Spark WiFi device. If that’s
the case, you can skip straight to the end of this
chapter for suggestions on packaging the final
product.

Going Wireless with the Spark
WiFi Development Kit

Let’s remove the need to tether your CheerfulJ5
project to your computer by replacing the Ar-
duino with either a Spark Core or Spark Photon
WiFi Development Kit.

If you haven’t already done so, you’ll need to
claim your Spark device and configure it for use
with Johnny-Five. Full instructions for setting
up your Spark device are available in the Ap-
pendix. Our code examples here will assume
that you have installed the custom Voodoo-
Spark firmware and that Spark credentials have
been saved as environment variables as sug-
gested in the appendix.

Adding the Spark to Your Circuit
The wiring for the Spark version of CheerfulJ5 is
very similar to what you used before with the
standard Arduino. But with the Spark, you can
take advantage of the small form factor and fit
the entire circuit on a single mini breadboard.
This is very convenient when you look at
putting it in an enclosure. For simplicity, you
can just power the Spark from your computer
(via USB) during testing and then switch to an
appropriate battery later depending on which
enclosure you use. But if you want to go ahead
and hook up your battery, the wiring diagram
here also demonstrates how you can optionally
power the Spark via the vin pin (see Figure 9-4).

Now your Spark is ready to go. Next up is to
communicate with it in Johnny-Five using the
Spark-io IO Plugin.

157Chapter 9: CheerfulJ5

Going Wireless with the Spark WiFi Development Kit

Figure 9-4 Fritzing diagram for Spark Core

Using the Spark-io IO Plugin
The Spark-io plug-in is a Firmata-compatible in-
terface that allows Johnny-Five to communi-
cate with a Spark device in the same way it
would a standard Arduino. Spark-io takes care
of the interface with both the Spark Cloud and
VoodooSpark for us. It queries the Spark Cloud
to get your device’s IP address and port. Then it
uses those to connect to VoodooSpark and is-
sue commands to the device. Spark-io can be
used standalone or with Johnny-Five. When
used alone, the device’s pins can be accessed
directly via commands like this.digital

Write(). But when paired with Johnny-Five,
you get the full power and functionality of
Johnny-Five on the Spark!

Using the Spark-io IO Plugin is simple. Instead
of using the default five.Board() constructor,
you use an expanded constructor and pass a
reference to a Spark object (along with your
Spark credentials) using the io property. Once
you’ve created the board using Spark-io, the

rest of the code is the same as your previous ex-
ample using a standard Arduino!

If you don’t have a Spark device
but would like to use an alterna-
tive IO Plugin to connect another
Firmata compatible device, the
process is essentially the same.
You just need to require the nec-
essary plug-in and create the
five.Board with the io property
configured as required for your
hardware platform. Ensure that
you are using I/O pins that sup-
port PWM and the rest of the
code should work without modifi-
cation.

For more information on using
and creating IO Plugins, visit the
Johnny-Five wiki.

Let’s update your previous cheerful.js
application:

1. Start by copying your existing
cheerful.js code into a new file named
cheerful-spark.js.

2. Require spark-io to include the IO Plu-
gin in your application:

var Spark = require("spark-io");

3. Replace the call to new five.Board()
with an expanded Spark-io constructor:

var board = new five.Board({
 io: new Spark({
 token: process.env.SPARK_TOKEN,
 deviceId:
 process.env.SPARK_DEVICE_ID
 })
});

4. Change the pin assignments for your
RGB LED to use PWM pins on the Spark
and specify the pins with an A prefix:

158 Make: JavaScript Robotics

Going Wireless with the Spark WiFi Development Kit

http://bit.ly/1bQNpcI

var led = new five.Led.RGB(["A5", "A6",
"A7"]);

And you are done! Everything else is the same
as before.

Switching to Battery Power
At this point, you have a choice to make. You’ll
need to switch to battery power if you want to
go completely wireless. You have several op-
tions. You can power the Spark using a mini-
USB backup battery and the included USB port.
This is an easy solution, but may be a bit bulky
for your intended enclosure later. Alternatively,
you can supply power via the Spark’s vin pin.
The Spark datasheet lists an input voltage
range of 3.6V to 6.0V. Ideal sources of power
can be a 3.7V LiPo battery or 4AA battery pack.
Simply connect the positive wire from the bat-
tery to the Spark vin pin and the negative wire
to the Spark ground pin (see Figure 9-5).

Figure 9-5 CheerfulJ5 running wirelessly on a Spark

Core

Packaging It Up

Now that you have a working CheerLights cli-
ent, let’s finish the project by packaging it up in
an attractive way. The CheerfulJ5 circuit is pret-
ty simple and lends itself well to a variety of fun
applications. This is your opportunity to be cre-
ative! Don’t feel like you have to do it exactly as
suggested here. We’ll discuss a few options that

will hopefully inspire your own ideas to make
CheerfulJ5 unique to you. The examples here
all assume you are working with the Spark im-
plementation of CheerfulJ5 because it has a
smaller form factor. But if you don’t have a
Spark, don’t let that stop you! You can simply
find a similar, but larger, enclosure to use. Or al-
ternatively, you could embed just the RGB LED
circuit in your enclosure and run a set of exten-
sion wires to an externally placed Arduino. Here
are the steps you should follow:

1. First, select a container for CheerfulJ5.
One option is to use a very simple en-
closure to create a small tabletop
mood lamp out of your project by plac-
ing your CheerfulJ5 electronics inside a
frosted cylindrical vase, as shown back
in Figure 9-1. The vase shown here was
purchased at a local craft store. It is ap-
proximately 5” in diameter by 7” tall
and works nicely to conceal the elec-
tronics, but also allows for the RGB LED
to fully light the lamp.

If possible, take your CheerfulJ5 project
with you to the store so you can make
sure you buy a container that is large
enough to completely hold the Spark,
mini breadboard, and battery. For the
best results, power up your RGB LED
while you’re there to see how it looks
inside the container. Experiment with
several options, such as frosted or pat-
terned glass, to see how your project
will look.

2. Optionally, you may choose to add dif-
fusing material. If you use a clear glass
container or would prefer more uni-
form lighting, you may want to add an
insert made from tracing paper, wax
paper, tissue paper, or a diffusion filter.
Cut the paper or filter to size, depend-
ing on the dimensions of the container,
and roll it into a tube. After placing it
inside the glass, it should naturally un-

159Chapter 9: CheerfulJ5

Packaging It Up

roll to fill the container. If needed, a
small piece of tape can be added to
help it maintain its form. If a circle of
paper is cut to cover the bottom of
your container, it will help reflect light
back up as well.

3. Finally, cover the Spark’s built-in RGB.
The main onboard RGB on the Spark
(the board’s status light) is a bit bright
and may overpower the RGB you’re
synchronizing with CheerLights. If
that’s the case for your enclosure, you
can fold a small piece of paper over the
RGB to block it.

Don’t be afraid to think outside the box when
packaging your project. You will often find in-
spiration in unexpected departments within
your local craft store. For example, you may try
CheerfulJ5 using the following alternative en-
closures:

• Small plastic craft container

• Candle holder and wall sconce

• Touch light (disassembled with Cheer-
fulJ5 in place of the standard bulb, us-
ing the light’s existing batteries and
switch)

• Mounted behind a glass Christmas tree
ornament

• Small luminary bag

What’s Next?

Now it’s time to place your CheerfulJ5 in a
prominent place and enjoy watching the color
change in sync with other CheerLights clients
around the world. Because this project allows
for a lot of creativity in the final packaging, we’d
love to see your final project. Post your photos
to Twitter and tag @CheerfulJ5.

So where do we go from here? Hopefully you’ll
find the ability to integrate RGB LEDs very use-
ful for future NodeBots projects. LEDs are a
great way to provide feedback to users, com-
municate emotion in robotics, or just add flair
to your creation. Connecting to real-time data
sources in the cloud like ThingSpeak and Twit-
ter also opens up lots of opportunities for smart
and interactive robotics applications. My hope
is that CheerfulJ5 has inspired you to build
something amazing!

160 Make: JavaScript Robotics

What’s Next?

https://twitter.com/cheerfulj5

Interactive RGB LED Display
with BeagleBone Black

By Kassandra Perch

I’ve always loved playing with colors. Finger-
painting, drawing, working with polymer clay: I
love working with mixing colors and seeing
what happens. So when I got into robotics, I
was naturally drawn to individually addressable
RGB LEDs: millions of colors and combinations
were unlocked for me.

But I wanted a way to interact with these RGB
LED chains that used my favorite language,
JavaScript. This project shows you how you can
use a BeagleBone Black (BBB) and a few lines of
code to play with RGB LEDs yourself. This in-
cludes using the npm packages open-pixel-
control, Johnny-Five, and Beaglebone-io, and
some sensors, to create an interactive light dis-
play that changes color and intensity based on
the environment (see Figure 10-1).

Figure 10-1 A version of the completed project on

display at a conference

161

10

Bill of Materials

Table 10-1 Bill of materials

Count Part Part num-
ber/source

Esti-
mat-
ed
price

1 BeagleBone
Black

MS MKCCE4,
AF 1996, SF
DEV-12857

$45

1 Wifi USB
Adapter
(optional)

AZ
B003MTTJOY

$10

1 5V power
supply (2–10
Amps)

SparkFun or
Adafruit

$6–
$25

1 Set of RGB
LEDs

Adafruit or
http://
rgb-123.com

$6+

1 Pushbutton Adafruit,
electronics
store

$1

1 Triple-axis
accelerometer

AF 163, SF
SEN-09269

$15

1 Photoresistor SparkFun or
Adafruit

$1

1 Half-size
breadboard

MS MKKN2;
AF 64; SF
PRT-09567

$5

1 1k ohm
resistor

Electronics
shop, online

$0.25

BeagleBone Black
A BeagleBone Black is a great place to start
when working with RGB LEDs in JavaScript. If
you’ve never worked with one, let me give you
the quick version: the BeagleBone Black is a
small computer, usually running a Linux distro.

They’re fairly cheap, and easy to obtain. The dif-
ference between the BeagleBone Black and the
computer on your desk are the GPIO pins avail-
able to you—this is what you’ll use to control
your RGB LEDs, as well as accept input from
sensors, buttons, and so on.

The current model at the time of writing is the
Rev C. This model is fine to use for these
projects, and unless otherwise noted, is what
these directions address. However, any model
of BeagleBone Black can be usable to complete
this project.

The default operating system is assumed for
this build, whether that’s Debian on the Rev C
or Angstrom on the older models.

If you use a different operating
system, the software we install
may not function correctly.

WiFi USB Adapter (optional)
If you can’t be near an Ethernet port every time
you want to download or update, a WiFi USB
adapter is really helpful. There are many avail-
able at stores like Adafruit and SparkFun, and
they include the installation instructions.

For configuring your new WiFi adapter, follow
these instructions for Rev C, and these instruc-
tions for older models.

Otherwise, you will need a wired Internet con-
nection and an Ethernet cable.

External 5V Power Supply (Semi-
Optional)
These power supplies have a barrel connector
and plug into a wall socket:

You need get a power supply that provides at
least 1A of current. Be very careful to use a 5V
supply 2.1mm inner diameter barrel, center
pole positive. If you get the voltage and polari-
ty wrong, you could ruin your board! See

162 Make: JavaScript Robotics

Bill of Materials

http://rgb-123.com
http://rgb-123.com
http://beagleboard.org
http://bit.ly/1bQNJrT
http://bit.ly/1bQNGMS
http://bit.ly/1bQNGMS

BeagleBoard for recommended power supplies
and other peripherals.

The reason I say this is semi-optional is because
the LEDs can function off a 3.3V USB supply, but
not for chains of more that 20 or so without ex-
periencing some color distortion. So if you plan
on using even medium-length chains, you’ll
want a 5V supply plugged either into the BBB
or into the LEDs directly: Adafruit has a great
tutorial for directly powering your RGB LEDs.

RGB LEDs
I currently use two different brands of address-
able LEDs for my projects: either Adafruit Neo-
pixels or RGB-123 panels. However, any ad-
dressable LEDs that use a WS2812 should work
fine.

You can get Neopixels in several places: Ada-
fruit, Maker Shed, SparkFun, and so on.
RGB-123 panels can be bought from the manu-
facturer’s website at http://rgb-123.com.

Sensors
Cycling through colors is fun, but having your
RGB LEDs react to input is even better! Try as
many sensor combos as you like, but in this
chapter we will use:

• A button

• An accelerometer (three-axis)

• A photoresistor

Miscellaneous
We will use the following items, which happen
to be useful for many other electronics projects
as well:

• Breadboard

• 1k and 330 ohm resistors (for sensors)

• Breadboard wires

Getting Ready: Software

To start the project, you’ll install some software
on your BeagleBone Black that will let you more
easily communicate with your RGB LEDs.

LEDScape
LEDScape is the software that controls the RGB
LEDs on the BeagleBone Black’s IO pins. It does
this using Open Pixel Control (OPC), which is a
protocol for sending color data over IP. You’re
going to use an OPC-compliant server on the
BeagleBone Black to receive data for the pixels,
which you’ll send using Node.js.

You’re actually going to use a fork of the origi-
nal OPC designed with these LEDs. It can be
found on GitHub. You’ll need to follow these
steps:

1. Download LEDscape.

First, SSH into, or log into, your Beagle-
Bone Black. Then, in your home direc-
tory, run the commands shown in Ex-
ample 10-1.

Example 10-1 Cloning LEDscape

cd ~/
git clone https://github.com/Yona-
Appletree/LEDscape.git
cd LEDscape

2. Move a boot configuration file needed
by LEDscape into the right folder.

This file is called a device map, and it al-
lows LEDscape to use pins it otherwise
could not.

If you’re on a Rev C BeagleBone, run
the commands shown in Example 10-2
within your LEDscape/ folder. Other-
wise, use the commands shown in Ex-
ample 10-3.

163Chapter 10: Interactive RGB LED Display with BeagleBone Black

Getting Ready: Software

http://bit.ly/1bQNAVz
http://bit.ly/1bQNzRe
http://bit.ly/1bQNzRe
http://www.adafruit.com/category/168
http://www.adafruit.com/category/168
http://rgb-123.com
http://rgb-123.com
http://bit.ly/1bQNRHY

Example 10-2 Preparing device map on a Rev
C BeagleBone Black

cp /boot/uboot/dtbs/am335x-
boneblack.dtb{,.preledscape_bk}
cp am335x-boneblack.dtb /boot/
uboot/dtbs/

Example 10-3 Preparing device map on other
BeagleBone Black models

cp /boot/am335x-
boneblack.dtb{,.preledscape_bk}
cp am335x-boneblack.dtb /boot/

3. Now, load the modules, and reboot:

modprobe uio_pruss
reboot

Your BeagleBone Black should reboot,
and you’ll either need to SSH back in or
wait for the terminal to pop back up on
your display.

4. Compile/install LEDscape.

In your home directory, after your Bea-
gleBone Black restarts and you have
logged/SSH’d back in, run these com-
mands:

cd LEDscape
make

This will take a few minutes, and out-
put a lot of text. Unless you see an error
code at the end, this is normal and
means LEDscape is installing properly.

That’s it! If there are no errors, you now have
the ability to use LEDscape. Before we enable it
as a service that runs on boot, we’re going to
test it.

Wiring Your LEDs
If your RGB LEDs have two wires leading to a
connector that are black and white, and a sepa-
rate black and red wire, never fear! You just
have two ground wires. Unless you are using

external power, as noted in “Powering Many
LEDs”, just wire one ground wire from the RGB
LEDs into your circuit. If you are using external
power, wire the ground and signal wire from
the connector to the breadboard/BeagleBone
Black.

Wiring Up Your RGB LEDs

Next, we’re going to test our software installa-
tion by wiring up our RGB LEDs and running a
demo of the software.

1. Find your signal pin(s) using pinmap.

Run the following command inside
your LEDscape/ folder:

node pinmap.js

This command should output a map of
the BeagleBone Black. We’re looking for
strip index 0 on the old mapping sys-
tem. As of the time of this writing, this
maps to pin P9_22. So wire the signal
pin of your strip to whichever shows up
on pinmap.js’s output.

2. Wire up your RGB LEDs.

Grab your RGB LED chain and wire all
three wires to a piece of breadboard (if
you have four wires, see the previous
note). Then, wire ground (usually black
or white, connects to GND on the LED
strip) to P9_1 or P9_2, signal (usually
green, connects to DIN on LED strip) to
channel 0 as found in pinmap.js (pin
P9_22 at the time of this writing), and
power (usually red, connects to 5V on
LED strip) to P9_5 or P9_6.

If you are using multiple strips, wire the
signal pins of those strips to index 1, 2,
3, and so on, up to 47, according to the
output from the previous command.

3. Test your LEDscape install and wiring.

Now you’re going to test the software
installation and our hardware wiring.

164 Make: JavaScript Robotics

Wiring Up Your RGB LEDs

Figure 10-2 Wiring diagram for the RGB LEDs to the BeagleBone Black

Run the following in your LEDscape/
folder:

./run-ledscape

Because there is demo code that is set
to run by default, you should see rain-
bows! Exciting! But you’ll notice you
can’t use your terminal while the server
is running. You’ll fix this by creating a
service that runs the server in the back-
ground when the BeagleBone Black is
booted up.

4. Set up LEDscape service configuration.

Before you set up the service to run,
you need to make sure it’s configured

to suit your needs. In the LEDscape/
folder, run the following:

nano ./run-ledscape

Look for the line that says something
like:

./opc-server -p 7890 -c 176

So the LEDscape server has a few op-
tions available. If you’d like to change
the port used, change the -p value. -c
stands for the number of pixels in each
pin- change this to reflect the number
of LEDs you are using. You’re also going
to add the --no-demo flag: this will turn
off the pretty rainbows, but it will also

165Chapter 10: Interactive RGB LED Display with BeagleBone Black

Wiring Up Your RGB LEDs

Powering Many LEDs

So, if you’re here, you’re starting out with lots of
LEDs. That’s great! But powering them can be an
issue. Definitely read up on Adafruit’s power guide
before continuing.

If you’re using RGB-123 panels, use the power
supply that the manufacturer sells when working
with multiple panels—but this does require ad-
vanced soldering and electronics knowledge.

allow you to stop sending signal from
the Node programs you’ll see shortly
without those rainbows taking over. So,
you’re going to change the previous
setup to a strip with 120 pixels, and you
want to use port 7890:

./opc-server -p 7890 -c 120 --no-demo

Once you’re done, save this file and exit
your text editor (Control-O→En-
ter→Control-X if you’re using nano).

5. Install the LEDscape service to run on
boot.

Now you’ll set up the service. The com-
mands shown in Example 10-4 apply to
all models of BeagleBone Black.

Example 10-4 Enabling the service

sudo systemctl enable path/to/
LEDscape/ledscape.service
sudo systemctl enable ledscape

You’ll need to change the
path/to/ in your commands; for
Rev C this should be /root/
LEDscape/, for older models it
should be /home/root/
LEDscape/.

Nothing’s happening! That’s OK; you turned the
demo off, so the server is still running, but just
not sending data to the pixels. A quick way to
check is to run the following in your LEDscape/
directory:

./rgb-test

This script show rainbows again. It is a test
script included with the LEDscape library.

Code Time! Let’s Bring in the
JavaScript

All source code for the examples in this book
can be found on GitHub:

1. Installing dependencies:

Node is already installed, luckily, on
your BeagleBone Black. You do need to
install a module globally so you can
use it later. This module is called forev-
er, and it allows you to run Node scripts
in the background as services. To in-
stall, simply run the following:

npm install -g forever

If you get an error installing
forever, try prefixing the
npm command with sudo, or
try installing npm-sudo-fix
first.

2. Next, run the following commands on
your BeagleBone Black:

cd ~/
mkdir my-led-project
cd my-led-project
npm install johnny-five beaglebone-io
open-pixel-control
touch open-pixel-test.js

166 Make: JavaScript Robotics

Code Time! Let’s Bring in the JavaScript

http://bit.ly/1bQOelW
http://bit.ly/19LX9n3
http://bit.ly/1bQOkdg
http://bit.ly/1bQOkdg
http://bit.ly/19LYYjT

Example 10-5 open-pixel-test.js

var opc_client = require('open-pixel-control');
var client = new opc_client({
 address: "127.0.0.1",
 port: 7890
});

//when the client is connected...
client.on("connected", function(){
 //create a model of the RBG LED strip we just
 //hooked up to the BeagleBone Black
 var strip = client.add_strip({
 length: 25
 });

 //create an array of pixel data (all soft white) to send to LEDscape
 var pixels = [];
 for(var i = 0; i < strip.length; i++){
 pixels.push([50, 50, 50]);
 }

 //This is the command to send the color data to our RGB LEDs
 client.put_pixels(strip.id, pixels);
});

This creates your project directory,
changes into it, and uses npm to install
three modules:

Johnny-Five
A software layer that allows you to
run JavaScript to control many differ-
ent robotics platforms, with wrap-
pers for each platform.

beaglebone-io
The wrapper for BeagleBone Black—
this will allow you to use all the
friendly features of Johnny-Five with
your BeagleBone Black.

open-pixel-control
A module used to communicate with
LEDscape using JavaScript.

Running a Test Script
Now that all of the software is installed, you can
start writing some JavaScript.

There are two ways to handle editing your
code: use your favorite terminal editor and edit
directly on the BeagleBone Black, or use git,
scp, or other tools to copy files between your
computer and your BeagleBone. Try using git,
but do what works for you.

Open up open-pixel-test.js and add the code
shown in Example 10-5.

This connects your Node app to the LEDscape
server, and once it’s connected, it constructs a
strip object. Open-Pixel-Control handles the
math of multiple strips, so if you have multiple,
go ahead and construct a strip for each pin
(currently you need to to do this in order, but
plans are in the works to improve this).

Then you construct an array of three-value ar-
rays: the first value stands for red, the second is
for green, and the third is for blue. Each array of
three values represents the state of one LED on
the strip. We’ll talk about how to replace one
pixel at a time in a moment.

167Chapter 10: Interactive RGB LED Display with BeagleBone Black

Code Time! Let’s Bring in the JavaScript

Example 10-6 Add this code

var opc_client = require("open-pixel-control");
var client = new opc_client({
 address: "127.0.0.1",
 port: 7890
});

client.on("connected", function() {
 var strip = client.add_strip({
 length: 25
 });

 var pixels = [];
 for (var i = 0; i < strip.length; i++) {
 pixels.push([50, 50, 50]);
 }

 client.put_pixels(strip.id, pixels);

 var index = 0,
 randomColor;

 //this time we're setting an interval to animate the new pixels
 setInterval(function() {
 //creating a random color to assign to a pixel.
 randomColor = [Math.floor(Math.random() * 256),
 Math.floor(Math.random() * 256),
 Math.floor(Math.random() * 256)];

 //this time, we're modifying one pixel at a time-the library
 //keeps track of the rest.
 client.put_pixel(strip.id, index, randomColor);

 index++;
 if (index == strip.length) {
 index = 0;
 }
 }, 1000);
});

Go ahead and exit your editor, copy your files to
the BeagleBone if need be, and run:

node open-pixel-test.js

You should see a string of dim white lights!

That’s cool and all, but wouldn’t it be great if
you could animate this? Definitely. So let’s add
an animation using the put_pixel method in-
cluded with open-pixel-control. Add some code

right after the put_pixels call in your open-pix-
el-test.js file, so it looks like Example 10-6.

What this does is, on an interval, lights up the
next pixel in the chain to a random color. Go
ahead and rerun the code:

node open-pixel-test.js

The strip should start with all dim white lights,
but with each tick a light should spring up in a
random color!

168 Make: JavaScript Robotics

Code Time! Let’s Bring in the JavaScript

Adding in Johnny-Five/
Beaglebone-io
So this is great! You have animation, you have
lights, now to add some interaction. To do this,
you’re going to use the Johnny-Five API via the
beaglebone-io wrapper. You’ll also add a but-
ton that resets the animation.

First, wire a button to the BeagleBone Black.
Then, modify the Johnny-Five code to interact
with open-pixel-control. Go ahead and create a
new file called leds-with-button.js, and copy
your code from open-pixel-test.js into it so you
can add to it.

Grab a button and wire it up: one side to
ground, and one side to pin P9_39, as shown in
Figure 10-3.

Now, you’re going to add the beaglebone-io
wrapper to the code, and pull in Johnny-Five to
handle the button press, as shown in Exam-
ple 10-7.

Example 10-7 Add the beaglebone-io wrapper

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");
var board = new five.Board({
 io: new BeagleBone()
});

var opc_client = require("open-pixel-con
trol");
var client = new opc_client({
 address: "127.0.0.1",
 port: 7890
});

//When the GPIO are ready to use
board.on("ready", function() {
 //construct a model of the button we just
wired to our BeagleBone Black
 var button = new five.But
ton("P9_39"); //A0 in Arduino Mapping

 client.on("connected", function() {
 var strip = client.add_strip({
 length: 25
 });

 var pixels = [],

 animationInterval;

 //initializes- clears the strip and
starts our random color animation
 reset_strip();
 start_animation();

 //when the button is pressed down
 button.on("down", function() {
 //clear the strip again and rerun the
animation
 reset_strip();
 start_animation();
 })

 function reset_strip() {
 clearInterval(animationInterval);

 pixels = [];
 for (var i = 0; i < strip.length; i+
+) {
 pixels.push([0, 0, 0]);
 }

 client.put_pixels(strip.id, pixels);
 }

 function start_animation() {
 var index = 0;
 animationInterval = setInterval(func
tion() {
 randomColor = [Math.floor(Math.ran
dom() * 256),

Math.floor(Math.random() * 256),

Math.floor(Math.random() * 256)];

 client.put_pixel(strip.id, index,
randomColor);

 index++;
 if (index == strip.length) {
 index = 0;
 }
 }, 100);
 }

 });
});

Just like other Johnny-Five applications, you
have a board.on('ready') call. You construct a
button, and call button.on('down') to wait for
an actual button press, which resets the anima-

169Chapter 10: Interactive RGB LED Display with BeagleBone Black

Code Time! Let’s Bring in the JavaScript

Figure 10-3 Wiring diagram for the RGB LEDs and the button

tion. I pulled out the reset and animation code
into their own function so you don’t have to du-
plicate code.

Go ahead and run it with this command:

node leds-with-button.js

Hopefully, your strip will start animating, then
reset and begin again when you press the but-
ton.

Next, you’re going to add some sensors and get
some fun color combinations and brightness
values using the environment around us!

170 Make: JavaScript Robotics

Code Time! Let’s Bring in the JavaScript

beaglebone-io Notes

Because BeagleBone Black has so many more
GPIO pins than an Arduino, which Johnny-Five
was originally designed for, you need a way to ad-
dress the extra GPIO. The author of the library has
given us two ways to address pins: one is a map
from Arduino pin values to BeagleBone Black
GPIO pins, or you can just mention the pins direct-
ly. In the sample code, the pins are addressed di-
rectly, but includes the Arduino-style mapping in
comments when available. Use whichever is com-
fortable for you!

Adding a Photoresistor
First, let’s use a photoresistor to determine how
bright to make the LEDs. This is great for
projects that want to run only in the dark, or
want to scale the lights up when it’s bright so
they can still be seen. Go ahead and create a
lights-with-photoresistor.js file for this in your
project directory.

You can remove the button from the previous
project if you wish—you’ll wire the photoresis-
tor to a new pin so you can leave the button in
place if you want. Wire one end of the photore-
sistor to 5V, and one end to a 1k ohm resistor.
On the row with the photoresistor and resistor,
place your signal wire. On the row where your
resistor ends, place your ground wire. Wire
ground and 5V accordingly, and wire signal to
P9_40. Figure 10-4 shows the wiring diagram.

Next, add the light data code shown in Exam-
ple 10-8. In this version, we’re going to scale the
LEDs intensity up with the ambient lights—this
makes the LEDs easier to see in the daytime.

So when the photoresistor receives data, the
code sets the max value of the RGB values.
Then, it displays white at that intensity to each
of the pixels on the light strip. We use Johnny-
Five’s scale() function to map the photoresis-
tor’s output to a number between 0 and 255,
which saves you some math.

Go ahead and test it out; run it just as you’ve
done for all the other examples.

Changing Colors with an
Accelerometer
Wire up your accelerometer along with your
photoresistor—you’re going to keep the light
scaling code and sensor from before. A break-
out board accelerometer is the easiest way to
do this. I put mine on a separate breadboard so
I can put extra long wires on it—I like to really
wave it around to test it. I labeled the X, Y, and Z
axis as purple, orange, and yellow, and they go
to the P9_37, P9_38, and P9_35 pins, respec-
tively. Figure 10-5 shows the wiring diagram.

So now that you can scale the brightness, let’s
have some fun with color. One of my favorite
setup experiments is attaching a three-axis ac-
celerometer to the inputs, and changing the
value of R, G, and B with each axis. But first we
need to think about accelerometer math. If
your accelerometer tracks both negative and
positive acceleration (i.e., both directions sepa-
rately), we’ll need to account for this. My accel-
erometer outputs from 0 to 1. When it’s not
moving, it’s at .5—anything less is negative
movement, anything more is positive.

You don’t really care what direction it’s going in
—you just want faster acceleration to cause
brighter color. So you’re going to do some basic
arithmetic, coupled with the scale() function
from Johnny-Five. You’ll map the input of each
axis to a number from –1 to 1, then take the ab-
solute value. This will map correctly to move-
ment in either direction as a positive integer
you can use, multiplied against the light values,
to create a proportional color.

Then it’s just a matter of reading each axis,
mapping it to a color, and sending it out a strip
(see Example 10-9). Want a challenge? Map
each new color to a pixel, and have the results
scroll by!

171Chapter 10: Interactive RGB LED Display with BeagleBone Black

Code Time! Let’s Bring in the JavaScript

Figure 10-4 Wiring diagram for the photocell and RGB LEDs

What’s Next?

There are so many things you can do with this
new knowledge. Consider a pixel photo booth.
For this, a Tessel took pictures of people, a
Node server scaled it down, and then sent the
data to a BeagleBone Black, which used code
similar to the code we wrote here to show the
picture on a grid as shown in Figure 10-6.

172 Make: JavaScript Robotics

What’s Next?

https://tessel.io

Example 10-8 Adding light data code

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");
var board = new five.Board({
 io: new BeagleBone()
});

var opc_client = require("open-pixel-control");
var client = new opc_client({
 address: "127.0.0.1",
 port: 7890
});

board.on("ready", function () {
 this.digitalWrite(5, this.HIGH);
 var light = new five.Sensor("P9_40"); // A1 in Arduino Mapping

 this.repl.inject({
 light: light
 });

 client.on("connected", function(){
 var strip = client.add_strip({
 length: 25
 });

 var pixels = [];

 light.scale([0, 255]).on("data", function(){
 pixels = [];
 for(var i = 0; i < 120; i++){
 pixels.push([this.value, this.value, this.value]);
 }
 client.put_pixels(strip.id, pixels);
 });
 });
});

173Chapter 10: Interactive RGB LED Display with BeagleBone Black

Code Time! Let’s Bring in the JavaScript

Example 10-9 Mapping the input

var five = require("johnny-five");
var BeagleBone = require("beaglebone-io");
var board = new five.Board({
 io: new BeagleBone()
});

var opc_client = require("open-pixel-control");
var client = new opc_client({
 address: "127.0.0.1",
 port: 7890
});

board.on("ready", function () {
 this.digitalWrite(5, this.HIGH);
 var light = new five.Sensor("P9_40"); //A1 in Arduino Mapping
 var accelerometer = new five.Accelerometer(["P9_37", "P9_38", "P9_35"]);
 this.repl.inject({
 light: light
 });

 client.on("connected", function(){
 var strip = client.add_strip({
 length: 25
 });

 var pixels = [];
 var maxValue = 0;

 light.scale([0, 255]).on("data", function(){
 maxValue = this.value;
 });

 accelerometer.scale([-1, 1]).on("data", function(){
 pixels = [];

 var xValue = Math.abs(this.x.value),
 yValue = Math.abs(this.y.value),
 xValue = Math.abs(this.z.value),
 red = xValue * maxValue,
 green = yValue * maxValue,
 blue = zValue * maxValue;

 for(var i = 0; i < strip.length; i++){
 pixels.push([red, green, blue]);
 }

 client.put_pixels(strip.id, pixels)
 });
 });
});

174 Make: JavaScript Robotics

Code Time! Let’s Bring in the JavaScript

Figure 10-5 Wiring diagram for the photocell, accelerometer, and RGB LEDs

175Chapter 10: Interactive RGB LED Display with BeagleBone Black

Code Time! Let’s Bring in the JavaScript

Figure 10-6 Light grid showing the NodeBots logo

There’s also the entire Internet available. You
can have your lights react to Twitter, Facebook,
the weather, a software project’s build status,
email, or anything that has an API! Figuring out
new ways to show data with color is a ton of
fun with RGB LEDs.

176 Make: JavaScript Robotics

What’s Next?

Physical Security,
JavaScript, and You

By Emily Rose

DIY physical security hacking can be challeng-
ing, yet also a joy to experience. This chapter
will employ an approach of progressive en-
hancement to the development of a working
security prototype that uses the following hard-
ware:

• Arduino

• Laser diode

• 10k Ohm resistor

• Photovoltaic sensor

• HC-SR04 ultrasonic sensor

• 951WG magnetic contact switch

This chapter will be devoid of what you might
consider an actual robot. The interesting aspect
of implementing physical security systems is
that although they may lack innate wow factor
or a feeling of futurism, your creations can easi-
ly become a natural part of your daily routine.

One example would involve replacing the but-
ton of a garage door remote with a transistor
wired to an Arduino. A Node.js application can
then allow you to send SMS messages to the
garage’s dedicated phone number, which

would toggle between opening and closing the
door. Although completely mundane in its ap-
plication, this is an example that is useful and
easy to accomplish.

I cover a very similar use case in this chapter,
but with more of a security focus than one of
convenience (or laziness), as shown in Fig-
ure 11-1.

Figure 11-1 Dramatic representation of completed

project with battery-powered laser on tripod

177

11

Simple Ultrasonic Sensor
Project: Experimental Control
Test (SUSPECT)

Let’s start with the most basic circuit involving
only the ultrasonic sensor known as the HC-
SR04. The most notable thing about this partic-
ular sensor is its low price point and high availa-
bility. I typically pick these up by the handful for
around $7 each on Amazon. They are also very
flexible in their applications. They lend them-
selves to motion-detection gadgets, invisible
measuring tapes, or even a DIY back-up sensor
on that old Honda of yours! It never hurts to
have a few of these lying around.

On to the relevant bits…

Implementation
Start by wiring the power (VCC) and ground
wires directly to the respective pins for the sen-
sor itself, as shown in Figure 11-2. Next, you will
connect a wire from pin 11 on the Arduino, to
either of the middle two pins on the HC-SR04.
After carefully deciding which of the HC-SR04’s
center pins you want to wire to the Arduino,
you may now now bridge the two center pins
with an additional jumper. It is depicted in the
diagram as a very small pink wire, but in reality
you will most likely be using a much longer
wire. This is perfectly fine for the purpose of
prototyping!

Figure 11-2 Wiring the HC-SR04 and providing power to

the rails of the breadboard

Vigilance of Voltage Variance

Make certain you connect the 5V power pin on
the Arduino to the power rails of the breadboard,
and subsequently to the VCC pin on the sensor.
Using the 3V3 power pin will result in unpredicta-
ble behavior, and it will be very confusing.

Once you have the schematic complete to the
specifications of the diagram, you may turn
your attention to the small matter of program-
ming required of you prior to this new gadget
coming to life. First, fire up the text editor of
your choice, and pull up the nearest terminal
emulator window. Upon creating a new direc-
tory for your lovely new gadget-to-be, you
must now initialize the project. To do this, in-
voke the power of NPM via:

npm init

This command will immediately launch you in-
to the most difficult problem known to com-
puter science: naming a project. After intense
deliberation, select a suitable name for your
project, and continue. You don’t need to worry
about entering anything in particular on the re-
maining prompts (only the name matters for
now); you’re just doing this for the package.json
file that is created.

Now that you have generated a package.json
file for the little device, you must create your
first file! Back to the text editor you go, so you
may begin to craft the brains of our ultrasonic
beast.

You must first require Johnny-Five, declare a
board variable, and the variable for the ultra-
sonic sensor. The rest of the declarations are
defining the variables you will use to track state
for the tiny almost-robot and its sole sensor.
See Example 11-1.

178 Make: JavaScript Robotics

Simple Ultrasonic Sensor Project: Experimental Control Test (SUSPECT)

Example 11-1 Declarations

var five = require("johnny-five");
var init = false; // done taking baseline readings?
var trips = 0; // number of times the alarm has been triggered
var ultraSensor; // ultrasonic sensor to be represented by Ping object
var ultraBaseline; // baseline distance to measure triggers against
var ultraReadings = []; // array of readings from ultrasonic sensor
var ultraThreshold = 4; // tolerance in inches before triggering alarm
var ultraTriggered = false; // state of ultrasonic triggeredness

Troubleshooting the Threshold

You may find that the initial ultraThreshold value
results in many false-positives. A general rule is
that the farther away the nearest object, the larg-
er the required threshold. For distances up to 10’
or more, a threshold of up to approximately 12”
may be necessary for reliable alerts. Tweak this
value until you find one that works for your appli-
cation.

All source code for the examples in this book
can be found on GitHub.

With initialization out of the way, you can now
focus your efforts on the interesting parts, start-
ing with this:

board = new five.Board();
board.on("ready", function() {
 ultraSensor = new five.Ping(11);
 ultraSensor.on("change", ultraChange);
 ultraSensor.on("data", ultraData);
});

We’re only doing five things in the preceding
code:

Initializing our board variable as a new
Johnny-Five Board object.

Assigning the ready function as the listen-
er, and for once the board is… ready.

Once ready, initializing the ultraSensor
variable as a new Johnny-Five Ping object.

Assigning the ultraChange function as the
listener to each change event from the sen-
sor.

Assigning the ultraData function as the lis-
tener to each data event from the sensor.

Poignant Point on Pin Particulars

Note the number passed as the only argument
when we initialize our ultrasonic sensor ultraSen
sor as a Johnny-Five Ping object. It must corre-
spond to the pin number labeled on the actual Ar-
duino!

Everything is now “firing” so to speak, so all
that’s left is digging into the remaining three
functions necessary to make everything really
come to life:

ultraChange

Handler for each change event from the Ping
object, shown in Example 11-2.

ultraData

Handler for each data event from the Ping
object, shown in Example 11-3.

trigger

Called when the sensor decides a significant
event has occurred Example 11-4.

179Chapter 11: Physical Security, JavaScript, and You

Simple Ultrasonic Sensor Project: Experimental Control Test (SUSPECT)

https://github.com/rwaldron/javascript-robotics

Example 11-2 ultraChange() source code

function ultraChange() {
 // Not initialized, do nothing
 if (!init) {
 return;
 }
 var inches = this.inches;

 if (Math.abs(inches - ultraBaseline) > ultraThreshold) {
 // if we haven't already triggered the alarm, do it!
 if (!ultraTriggered) {
 trigger("ultrasonic");
 return ultraTriggered = true;
 }
 }
 ultraTriggered = false;
}

Here we do several things:

Check if we have yet been initialized; if so,
bail immediately.

Barring that, compare the current measure-
ment to the base measurement with re-
spect to the threshold we’ve set.

If the value is beyond that of the threshold,
then check if we’ve already triggered the
alarm.

If not; call the trigger function and return,
setting triggered to true on the way out.

If we don’t determine the value falls out-
side of acceptable limits, ensure that ultra
Triggered is set to false and go on our
way.

Example 11-3 ultraData() source code

function ultraData() {
 var inches = this.inches;

 if (ultraReadings.length >= 10) {
 ultraReadings.shift();

 if (!init) {
 ultraBaseline = ultraReadings.sort()[4];
 console.log("Calculated baseline: %s", ultraBaseline);
 }
 init = true;
 }
 ultraReadings.push(inches);
}

180 Make: JavaScript Robotics

Simple Ultrasonic Sensor Project: Experimental Control Test (SUSPECT)

Ah yes, our frequent-flyer function. Remember,
this one is called (by default) once every 225
milliseconds. Despite the two layers of logic,
this function is fairly straightforward:

First, declare the inches variable for conve-
nience.

Next, determine if the number of readings
sampled equals or exceeds 10.

If we do have more than 10 values in our
readings array, shift one off the top.

If the init variable is false, we have hit our
target number of readings from which to
derive the baseline measurement. We do
this by sorting the values, and picking one
close to the middle.

Set the init variable to true (as long as you
have at least 10 readings).

Finally, push the new value onto the end of
the readings array and call it a day.

Essential Event Explanation

An important distinction to make here is the dif-
ference between the change and data events. The
change event is only called when our instance of
the Ping object is able to detect a difference be-
tween the current reading and the last. The data
event is triggered continuously at a predeter-
mined rate (which can be defined, and defaults to
225 ms), regardless of any change in value.

Example 11-4 trigger() source code

function trigger(sensor) {
 console.log("* Alarm has been triggered (%s) [%s]", sensor, trips);
 ++trips;
}

This brings us to the apex of our program,
which is rather anticlimactic I’m afraid. This is
where I leave it up to you: use your imagina-
tion! With the current implementation we sim-
ply increase the counter for the number of
times the alarm has been triggered and log it to
the console. Not much of an alarm really, now is
it? Perhaps we can make it more interesting in
iterations to come?

SMS Augmented Ultrasonic
Sensor Application: General
Experimentation (SAUSAGE)

So, you’ve successfully programmed the logic
behind a very rudimentary ultrasonic sensor!
Take a moment to congratulate yourself before
you venture any further. There are a few poten-

tial problems with the design as it stands, but
it’s a good start!

Let’s now focus on turning this little proof-of-
concept into… you know, an actual alarm. As I
mentioned previously, console logging does
not an alarm make. You may be asking yourself
how you might possibly build any usable alarm
without some sort of loudspeaker or other such
device. To this, I respond: you already (proba-
bly) carry one with you every day—a mobile
phone! All you need is a little API magic from
our friends at Twilio, and you have yourself a
brand new alarm system! The best part of this is
that it’s completely free to debug and test with
the Twilio API (although I certainly have found
it quite useful—and inexpensive—to maintain
an account balance on their platform).

181Chapter 11: Physical Security, JavaScript, and You

SMS Augmented Ultrasonic Sensor Application: General Experimentation (SAUSAGE)

https://www.twilio.com

I’ll now give you some time to create a Twilio
account if you haven’t already done so. Go
ahead, I’ll wait…

Great! Welcome back! What’s next? Well, you
need to get this project set up with a Twilio API
client library. Luckily for you, Twilio themselves
have provided a pretty top-notch client just for
happy Node users like us… Yay.

Implementation
So without further ado, I give you the ultrasonic
SMS alarm! Let’s get started: install the twilio
library by navigating back to your project direc-
tory in your terminal emulator, and typing the
following into the command line:

npm install --save twilio

That’s it, you’ve just installed a Twilio client into
your application! To verify this, you can check
the contents of the package.json file to confirm
that indeed the twilio library has been listed
as a dependency.

And with that, you’re off to the text editor to
make some exciting new changes to the exist-
ing codebase! Let’s begin with requiring twilio
alongside Johnny-Five:

var five = require("johnny-five");
var twilio = require("twilio");

Along with requiring the library itself, you of
course must do a little bit of configuration in
order to make use of this wonderful API. Fortu-
nately for you, the only configuration you need
consists of two strings, which are made avail-
able to you from the Twilio dashboard once
logged in (Figure 11-3). Simply copy and paste
from the dashboard into your code like so:

var client = twilio(YOUR_TWILIO_SID,
 YOUR_TWILIO_AUTH_TOKEN);
var lastSMS = 0;
var ratelimit = 5000;

Figure 11-3 Locating your Twilio account SID and auth

token from the user dashboard

With these additions, you’re almost ready to
start sending SMS messages by waving your
hands in front of some electronics! You need
only add a few more lines of code before you
launch your very first SMS! Let’s revisit the cute
little trigger function and give it some bite.
Change the trigger function as shown in Exam-
ple 11-5.

Example 11-5 The modified trigger() function

function trigger(sensor) {
 var now = Date.now();

 console.log("* Alarm has been triggered
(%s) [%s]", sensor, trips);

 if (now - ratelimit < lastSMS) {
 return console.log("> Ratelimiting.");
 }

 ++trips;
 lastSMS = now;

 client.messages.create({
 body: "Alarm has been triggered by "
 + sensor,
 to: "YOUR RECIPIENT'S PHONE NUMBER",
 from: "YOUR SENDER'S PHONE NUMBER"
 }, function smsResults(err, msg) {
 if (err) {
 console.log("*** ERROR ***\n", err);
 return;
 }

 if (!msg.errorCode) {
 console.log("> Success!");
 } else {
 console.log("> Problem: %s",
 msg.errorCode);
 }
 });

 console.log("> Sending SMS.");
}

There are a few things to explain in the preced-
ing code. It instructs the Twilio client to create a
new message, and passes it an object contain-
ing a few important values:

182 Make: JavaScript Robotics

SMS Augmented Ultrasonic Sensor Application: General Experimentation (SAUSAGE)

body

The text body of the message you’d like to
send

to

The SMS-capable phone number that will re-
ceive the message

from

The number that will be shown on caller ID

The Twilio Sandbox and Phone
Number Formatting Follies

Twilio is particular with number formatting, so
make sure you use the exact format shown. Also
worth mentioning is that the from number used
here is a Twilio sandbox number that is free for
testing. You can find the best sandbox number to
use for your area code in the Twilio user dash-
board. Just make sure you either verify your own
number or buy a Twilio number before going into
production.

Now you find yourself in control of a coarsely
tuned alarm system that’s actually capable of
alerting you to potential intruders! All without
any circuit modifications from the preceding
SUSPECT exercise. From here on out, it just gets
crazier, so now may be the time to play with
what you already have and get comfortable
with the current set of moving parts. Seems suf-
ficiently simple so far, right?

Point-of-Entry Monitoring
System (PoEMS)

The magnetic switch,

a tried-and-true solution.

Security now!

At this point, you have a working implementa-
tion of an actual alarm system. Let’s make it a
bit more reliable and robust by way of adding
one of the most prominent components of any
real security system: the magnetic contact
switch. This overwhelmingly simple mechanism

has been a staple of security systems for eons. It
is of course not without its limitations, but if
you’re looking to monitor events such as win-
dow breaches or door traffic, you can’t get
much easier than this. The anatomy of the mag-
netic switch is simple. You are presented with a
pair of wires protruding from an enclosure
(metal or plastic). This enclosure is joined by a
mate that usually appears similarly, sans wires
(or possibly just a magnet). You may not be
able to tell, but bringing these two parts into
contact causes the connection between the
two wires to be closed. Pulling the partner
piece away from the wired piece opens the
connection, and thus triggers an alarm. This ba-
sic mechanism is what makes it so reliable.
There are no microprocessors involved in its op-
eration. Aces.

Implementation
Adding this component presents you with your
first opportunity to modify the circuit you pre-
viously completed in the SUSPECT exercise.
Fear not, as this is an extremely simple addition
to the existing work (Figure 11-4). You merely
add two jumper wires and the magnetic switch
to the breadboard, and you’re done with hard-
ware for this round. You don’t even need to
worry about polarity with these switches!

Figure 11-4 Wiring the magnetic switch to the

breadboard

As for additional programming, you only need
to declare two new variables, and register lis-

183Chapter 11: Physical Security, JavaScript, and You

Point-of-Entry Monitoring System (PoEMS)

teners for state changes. Logically, this switch
performs identically to a button, and Johnny-
Five provides you with the ability to declare
“pullup” buttons, which is perfect for what you
need to do with the switch:

var magnetSensor;
var magnetTriggered = false;

board.on("ready", function() {
 ultraSensor = new five.Ping(11);
 ultraSensor.on("change", ultraChange);
 ultraSensor.on("data", ultraData);

 magnetSensor = new five.Button({
 isPullup: true,
 pin: 12
 });
 magnetSensor.on("up", function() {
 trigger("magnet");
 });
});

Here are the changes:

Add initialization of the magnetSensor vari-
able as a new instance of the Button object,
making sure to pass the isPullup property
as true.

Begin listening for the up event (which in
this case is triggered when the partner
magnet is physically separated from the
wired portion). You could also listen for the
down event here, but you’re only interested
in knowing when the connection has been
broken.

Simple code changes;

New button and event, done!

This is Johnny-Five.

It’s almost hard to believe, but that’s it! You’ve
successfully built a magnetic-contact-switch
trigger into your alarm system. The project is
getting more useful with each successive itera-
tion, but still it feels as though something is
missing, don’t you think? Let’s unlock this fur-
ther…

Lasers Impress Both Enemies
and Relatives, Thank You
(LIBERTY)

The title of this section is your complimentary
canned response to the inevitable questioning
you will receive after building this project:

“What’s with the lasers all over your house?”

Don’t get me wrong; you owe nobody any ex-
planation for lasers. Lasers are their own explan-
ation. Not only are they incredibly impressive,
they’re also relatively simple to deploy and can
be very noticeable when placed in conspicuous
locations and the correct environment. They
are also the perfect excuse to break out the fog
machine! Security theater never looked so
good.

Implementation
To create a laser trigger, you need only three
things:

• 5mw 650nm laser diode

• Photovoltaic sensor

• 10k Ohm resistor

An optional (but extremely helpful) component
to this project is some sort of sleeve to place the
sensor into. This helps cut down on false posi-
tives from changes in ambient lighting. I have
found a piece of heat shrink tubing to work well
for prototyping. The only other materials re-
quired for this project are those related to how
you decide to mount the alarm. Take a trip to
your local hardware store and let your imagina-
tion run wild.

Let’s take a look at the modifications to our dia-
gram. We are again faced with very limited ad-
ditions to the circuit. We’re adding only the la-
ser diode, and the wiring necessary to read ana-
log values from the photovoltaic sensor, as
shown in Figure 11-5.

184 Make: JavaScript Robotics

Lasers Impress Both Enemies and Relatives, Thank You (LIBERTY)

Figure 11-5 Wiring the laser diode, photovoltaic sensor, and 10k Ohm resistor to the breadboard

An interesting thing to note is that we’re not ac-
tually controlling the voltage to the laser mod-
ule. This means that you don’t need to worry
about what pin it’s on or write any code for it!
Assuming you’re using a laser diode that can
accept 5V, there’s no reason not to wire it di-
rectly to the power rails, or even power it with a
completely separate power supply!

When working with the photovoltaic sensor it’s
important to be mindful that although the laser
is much brighter than typical ambient lighting,
other sources of light can still cause false
alarms. To mitigate this possibility, place the
sensor inside a sleeve of some sort. You can use

heat shrink tubing in a pinch (and for prototyp-
ing). This creates for the sensor a rudimentary
cone of acceptance that will significantly reduce
the opportunity for interfering light. The laser
diode can also be given the same treatment for
more discreet laser-based monitoring applica-
tions.

As for code modifications, you may already be
ahead of me at this point but let’s lay it all out
just to be safe. Adding to the ever-growing
header of variable declarations, Example 11-6
now includes the various variables necessary
for your functioning photovoltaic sensor, pow-
ered by laser!

Example 11-6 The laser-ified header

var ultraSensor;
var ultraBaseline;
var ultraReadings = [];
var ultraThreshold = 4;
var ultraTriggered = false;

var magnetSensor;
var magnetTriggered = false;

var photoSensor; // photovoltaic sensor to be represented by Sensor object
var photoReading = 0; // most recent reading from the photovoltaic sensor
var photoThreshold = 100; // difference between light readings to tolerate
var photoTriggered = false; // state of photovoltaic triggeredness

185Chapter 11: Physical Security, JavaScript, and You

Lasers Impress Both Enemies and Relatives, Thank You (LIBERTY)

var client = twilio(YOUR_TWILIO_SID, YOUR_TWILIO_AUTH_TOKEN);
var lastSMS = 0;
var ratelimit = 5000;

Along with the additional variable declarations,
you of course must add to the setup magic in
the ready function, and create a function

named photoData to handle incoming values
from the sensor, as shown in Example 11-7.

Example 11-7 New functions

board = new five.Board();
board.on("ready", function ready() {
 ultraSensor = new five.Ping(11);
 ultraSensor.on("change", ultraChange);
 ultraSensor.on("data", ultraData);

 magnetSensor = new five.Button({
 isPullup: true,
 pin: 12
 });
 magnetSensor.on("up", function() {
 trigger("magnet");
 });

 photoSensor = new five.Sensor("A0");
 photoSensor.on("data", photoData);
});

function photoData() {
 var data = this.value;
 if (Math.abs(data - photoReading) > photoThreshold) {
 if (!photoTriggered) {
 trigger("laser");
 }
 photoTriggered = true;
 return;
 }
 photoTriggered = false;
 photoReading = data;
}

Your new photoData function should look very
familiar after having written the ultraData and
ultraChange functions. With the photovoltaic
cell being a simple analog sensor, a simplified
algorithm will more than suffice. You’re em-
ploying the concept of a threshold here as well,
and again calling trigger if a new reading falls
outside of the acceptable variance.

Status Indicator Necessary,
Buttons and Diodes (SINBaD)

The defensive functionality of our dear device is
just about complete, but we are still noticeably
lacking in the user interface department. What
can we do to remedy this situation? Buttons
and LEDs, that’s what! In all reality, you will
most likely be more interested in a secure

186 Make: JavaScript Robotics

Status Indicator Necessary, Buttons and Diodes (SINBaD)

Pulse Problems Prevent Progress

You may notice that we are skipping pin 4. This is
done in case you later decide you want to make
the LED fade/pulse, or emit custom hues of light.
This requires pulse-width modulation (PWM),
which pin 4 does not support.

Figure 11-6 Wiring the two new buttons, and an RGB LED to be used as a status indicator

mechanism to arm and disarm your system, but
I’ll leave that to you to sort out. Secure systems
should avoid allowing the user to directly alter
system state without some sort of authentica-
tion.

Let’s completely disregard that for the sake of
simplicity by implementing an indicator LED, a
reset button for the ultrasonic sensor, and an
arm/disarm button! You may want to explore
adding remote arm/disarm functionality via the
Twilio API when you’re ready to take it to the
next level (just make sure you only accept input
from authorized phone numbers).

Implementation
The two new momentary push buttons will be-
have just like the existing magnetic contact

switch, but in reverse! Whereas the magnetic
switch is closed (current flowing) until the mag-
nets are separated; the momentary switch but-
tons are open until depressed. We will again be
opting for pullup buttons, so as to avoid the
hassle of reading more of those cryptic resistor
bands! In this case, we’ll wire the two buttons
up to pins 7 and 8. The RGB LED we’ve added is
of the kind known as “common cathode”; each
of the three colors of LED have their own posi-
tive lead, and share the same ground lead. Fig-
ure 11-6 shows how to connect the leads for
red, green, and blue to pins 6, 5, and 3 respec-
tively.

Obviously these new buttons also represent
some additional code. You will again be imple-
menting Johnny-Five pullup Button objects for
the new, actual buttons—finally! The RGB LED
is also covered with a special superset of the
Led object. As always, first start with declaring
our new variables up top, as shown in Exam-
ple 11-8.

187Chapter 11: Physical Security, JavaScript, and You

Status Indicator Necessary, Buttons and Diodes (SINBaD)

Example 11-8 New variables

var armButton; // armDisarm button to be represented by Button object
var resetButton; // resetUltra button to be represented by Button object
var status; // status indicator LED to be represented by Led.RGB object
var isArmed = false; // prevent alarm from triggering when device is disarmed

As for the actual functionality of our new com-
ponents, make the following modifications to
the ready function, as well as introducting the

ultraReset and armDisarm functions. Your code
should look something like Example 11-9 after
you’re done.

Example 11-9 The modified code

board = new five.Board()
board.on("ready", function ready() {

 armButton = new five.Button({
 isPullup: true,
 pin: 8
 });
 armButton.on("up", armDisarm);

 resetButton = new five.Button({
 isPullup: true,
 pin: 10
 });
 resetButton.on("up", ultraReset);

 status = new five.Led.RGB({
 pins: {
 red: 6,
 green: 5,
 blue: 3
 }
 });

 ultraSensor = new five.Ping(11);
 ultraSensor.on("change", ultraChange);
 ultraSensor.on("data", ultraData);

 magnetSensor = new five.Button({
 isPullup: true,
 pin: 12
 });
 magnetSensor.on("up", function() {
 trigger("magnet");
 });

 photoSensor = new five.Sensor("A0");
 photoSensor.on("data", photoData);

})

188 Make: JavaScript Robotics

Status Indicator Necessary, Buttons and Diodes (SINBaD)

function ultraReset() {

 console.log("* Resetting...");
 ultraReadings = [];
 init = false;
}

function armDisarm(override) {

 if (typeof override == "boolean") {
 isArmed = override;
 } else {
 isArmed = !isArmed;
 }

 if (isArmed) {
 console.log("* Arming");
 status.color("#FF0000");
 } else {
 console.log("* Disarming");
 status.color("#00FF00");
 }
}

Now that you have completed your additions
to the ready function, and added the functions
associated with the two new buttons; you may
also modify two other functions to make use of
the new user interface. To start, add the follow-
ing as the very first line of the trigger function
to prevent the alarm from triggering when the
device has been disarmed:

if (!isArmed) { return; }

It’s also useful to indicate via LED when the ul-
trasonic sensor is gathering data for the ultra

Baseline value. If this sounds like it will be use-
ful for your purposes, you can modify your ul
traData function, as shown in Example 11-10,
to make the indicator LED blue when calibrat-
ing the ultrasonic sensor upon initialization,
and when you press the reset button. We’ve al-
so modified the function to automatically re-
arm the device once the ultrasonic sensor has
finished recalibrating by calling armDi

sarm(true), which is optional.

Example 11-10 Modified ultraData()

function ultraData() {
 var inches = this.inches;
 if (ultraReadings.length >= 10) {
 ultraReadings.shift();

 if (!init) {
 ultraBaseline = ultraReadings.sort()[4];
 console.log("Calculated baseline: %s", ultraBaseline);
 armDisarm(true);
 }
 init = true;
 } else {
 statusLight.color("#0000FF");

189Chapter 11: Physical Security, JavaScript, and You

Status Indicator Necessary, Buttons and Diodes (SINBaD)

 }
 ultraReadings.push(inches);
}

What’s Next?

At this point, you are now in possession of a
physical security prototype that contains a
somewhat complete suite of functionality.
From here, you can of course make your own
customizations and improvements to dramati-
cally increase the practical usefulness of your
new device. The first recommendation is to ob-
tain and house your project within one of the
project boxes depicted in Figure 11-7. You may
also explore the option of converting your
project from breadboard to protoboard as you
begin to finalize the design and scope of your
particular implementation.

Figure 11-7 The project box that houses Arduino, the

breadboard, and applicable wires

The possibilities are quite endless, and the ma-
terial covered here has only just begun to
scratch the surface (Figure 11-8 shows our fin-
ished product).

Figure 11-8 Our final security prototype in action

For those of you who have taken interest in this
chapter, feel free to use this project as a spring-
board for new and more powerful ideas. I am
extremely interested in feedback, and look for-
ward to hearing about your creations. Potential
collaborators are welcome to engage with me
on this subject at the GitHub repository for this
project.

190 Make: JavaScript Robotics

What’s Next?

http://bit.ly/1zEHFHa

Artificial Intelligence: BatBot

By Raquel Vélez

Have you ever wondered if robots will take over
the world? If so, you’re not alone. Hollywood
and the media have done an excellent job of
trying to convince us of an impending robot
revolution.

To complete such a mission, robots would need
to be smart enough to work together and de-
velop a plan to take over the world. To accom-
plish this, however, they would need some hu-
man-enabled intelligence, also known as artifi-
cial intelligence. Fortunately, we are a long way
off from enabling robots to work together at
such a large (and certainly scary!) scale, but arti-
ficial intelligence is still very useful for all sorts
of applications, and that is why we’re going to
spend this chapter playing with it!

Figure 12-1 BatBot

In this chapter, I’m going to talk about artificial
intelligence (AI) and three categories of artifi-
cially intelligent robots (remote-controlled,
semi-autonomous, and fully autonomous). And
then you’re going to build BatBot, as shown in
Figure 12-1, a semi-autonomous robot.

Artificial Intelligence: The
Basics

As humans, our ability to make decisions and
act on them is what has propelled us to the top
of the intellectual food chain. Our abilities to
reason, rationalize, and remember give us the
leg up on other species who can’t do it quite as
well.

When we talk about artificial intelligence, all we
really mean is using algorithms to simulate de-
cision making. An artificially intelligent being
(i.e., a robot) relies entirely on these algorithms
to know what to do in certain situations. In
most circumstances, robots don’t learn like hu-
mans do; they have to be taught absolutely ev-
erything.

191

12

Machine learning is the one ex-
ception to the AI rule. To be clear,
however, even machine learning
has its limitations. Machine
learning is simply a series of in-
creasingly complex algorithms
(like Haar Cascades in neural net-
works) that can be used to
“teach” a robot how to discern
different pieces of its environ-
ment, to which it can apply other
decision-making models.

I like to group robots into one of three cate-
gories, ranging from least to most artificially in-
telligent: remote-controlled, semi-autonomous,
and autonomous.

Remote-Controlled Robots
Remote-controlled (RC) robots have no artificial
intelligence. They are completely controlled by
a human, and thus their decision making is
non-existent. Humans make every decision for
the robot.

Examples of remote-controlled robots include
RC cars, simple circuits, and computer numeri-
cal control (CNC) machines. There is a direct
correlation between what the human wants to
do and what the robot does, for better or for
worse (if a human makes a mistake, the robot
makes a mistake, too!).

Semi-Autonomous Robots
Semi-autonomous robots have some artificial
intelligence. They get most of their instructions
from a human, but also make some of their
own decisions based on factors in their envi-
ronment about which the human either doesn’t
know or doesn’t care to know.

Examples of semi-autonomous robots include
the Mars rovers, da Vinci surgical robots, and
Parrot AR drones. Humans give the robots the
important instructions (“go explore that area”),

but the robot has enough sensors and artificial
intelligence to make its own decisions within
those parameters (like avoiding obstacles or
dampening subtle movements due to shaking
or wind turbulence).

Autonomous Robots
An autonomous robot is controlled entirely by
artificial intelligence. After receiving some ini-
tial instructions from a human, it makes all of its
own decisions. Many people like to argue that
there are no fully autonomous robots in exis-
tence yet, as most robots still require a signifi-
cant amount of human intervention. However,
subsystems of semi-autonomous robots can be
fully autonomous.

Examples of semi-autonomous robots with au-
tonomous components include the Google
self-driving car, the Nest thermostat, and com-
mercial airplanes (think autopilot). After being
given a mission (“drive to X” or “keep my house
at Y degrees”), they use their sensors and artifi-
cial intelligence to figure out how to complete
their task.

BatBot
To really play with artificial intelligence, we’re
going to teach BatBot how to find its way out of
a paper bag. It’s a silly challenge, yes, but the
lessons that result from this exercise are the
foundations for any artificially intelligent robot.

BatBot is a semi-autonomous robot: we’ll re-
motely control it (so that we can put it in the
bag), and then tell it to find its own way out us-
ing its ultrasonic (sonar) sensor. As hinted by its
name, BatBot will use sonar to navigate its way
out of the paper bag. To add a bit of fun, we will
use a Playstation DualShock Controller to navi-
gate it remotely via Bluetooth, and use XBee ra-
dios to keep the robot separate from the com-
puter.

192 Make: JavaScript Robotics

Artificial Intelligence: The Basics

Bill of Materials

Table 12-1 Bill of materials for the sonar sensor array

Count Part Source Estimated price

1 MaxBotics Ultrasonic
Rangefinder LV-EZ2

AF 980; SF SEN-08503 $25

1 Generic high-torque standard
servo

SF ROB-11965; AF 155 $12

1 100 ohm resistor Electronics retailers $10 for a variety pack

1 100 uF capacitor Electronics retailers $1.50

Headers Online Electronics retailer $2 for a variety pack

Jumper wires MS MKSEEED3; SF PRT-11026;
AF 758

$2 for a variety pack

1 XBee wireless kit SF KIT-13197 $100

Glue gun and glue sticks Online retailer $10

Table 12-2 Bill of materials for the chassis

Count Item Source Estimated
price

1 Arduino Uno MS MKSP99; AF 50; SF
DEV-11021

$25

1 BOE Bot Robotics Shield Kit for
Arduino Uno

MS MKPX20; SF ROB-11494 $130

5 AA batteries Online retailer $5

1 PS3 or PS4 DualShock controller Online retailer $45

Table 12-3 Additional (optional) materials

Item Source Estima-
ted price

Bat wings, cut out of felt or similar Local craft
store

Varies

193Chapter 12: Artificial Intelligence: BatBot

Bill of Materials

Item Source Estima-
ted price

A ridiculously large paper bag, like a lawn paper bag for disposing of
autumn leaves, with most of the sides cut down

Your local
hardware
store

$3 for a
pack of
five

Decorative accessories (e.g., googly eyes, a feather boa, etc.) Local craft
store

Varies

Some Notes About the Materials
The focus of this chapter is making robots
smarter, with more of an emphasis on software
than on hardware. As such, while I assume you
have the materials listed, you also have com-
pletely free reign on the materials you choose
to use for your robot. For example, instead of
using an Arduino Uno, you can use a SainSmart
Uno R3. Instead of a BOE Bot, you can use a
SimpleBot (described in Chapter 1) or a Sumo-
Bot Jr.

You may also skip the XBee wireless kit and
simply use a very, very long USB cable (the
longest you can find!), and replace the large pa-
per bag with three sturdy walls made of non-
signal-absorbent material (Styrofoam is espe-
cially bad for this project). If you choose to use
a different type of ultrasonic sensor, refer to the
Johnny-Five-sanctioned list of sonar sensors.
Simply put, feel free to get creative—the really
interesting bits are when you get to the soft-
ware portion!

Many of the smaller components like the resis-
tor and the capacitor can be acquired with
some of the other components: for example,
the BOE Bot Robotics Kit includes such compo-
nents, as do many Arduino starter kits.

There will be some soldering required for this
project. If you don’t feel comfortable with your
soldering skills, you should practice a bit or ask
for assistance. The soldering isn’t particularly
complex, but it does require a bit of finesse.

Assembly

Let’s start building!

1. First, assemble your chassis according
to the manufacturer’s instructions. We
won’t be making any special modifica-
tions to the chassis except adding to it,
so building it should be fairly straight-
forward.

2. Solder some headers to the sensor (Fig-
ure 12-2) , so that you can easily fiddle
with your connections. The most im-
portant connections for this project are
GND (ground), +5 (voltage in), and AN
(analog output signal).

Figure 12-2 Ultrasonic sensor with headers before

soldering

3. Attach your sonar to a servo horn using
hot glue (Figure 12-3): it’s easy to take

194 Make: JavaScript Robotics

Assembly

http://sumobotkit.com
http://sumobotkit.com
https://github.com/rwaldron/johnny-five/wiki/Sonar

apart if you mess up, but holds really
well. As an added bonus, it won’t dam-
age any of your components, and your
bot shouldn’t be heating up hot
enough at any point to risk the glue
melting again.

Figure 12-3 Ultrasonic sensor with servo horn,

attached with hot glue

4. Attach your standard servo to the front
of your bot using hot glue, as shown in
Figure 12-4. Be sure to attach the servo
in such a way as to ensure that the so-
nar will rotate left to right, pointing
ahead of the robot.

Figure 12-4 Servo attached to batbot

5. Wire up the sensor array according to
Figures 12-5 and 12-6, which will also
require the 100 ohm resistor and the
100 uF capacitor.

Figure 12-5 Fritzing diagram of sonar sensor array

Dirty Power versus Clean Power

Because you’re using several electronic compo-
nents (in particular, the XBees and the ultrasonic
rangefinder), there will be electromagnetic inter-
ference. This interference occurs because the
XBees are emitting electromagnetic radiation (so
they can talk to each other). As a result, the ultra-
sonic sensor’s readings are degraded.

The technical term of this degraded performance
due to electromagnetic interference is called
“dirty power.”

To clean our power up, we regulate the voltage
coming into the sonar by using a resistor and a ca-
pacitor. When you have a dirty power situation, an
insufficient amount of voltage is coming through
to the sensor. The capacitor “cleans” the power by
sitting in the line of voltage, filling up with what-
ever voltage comes through (charging), and re-
leasing the right amount of voltage (discharging)
to the sensor. For those who like analogies, the ca-
pacitor works like a stock room at a grocery store
—shipments for produce will come in at different
times, but the shelves will always be well stocked.
Thus, a shopper (the sensor) won’t need to know
(or care) if eggs are being delivered today, as long
as there are some available on the shelves.

195Chapter 12: Artificial Intelligence: BatBot

Assembly

Figure 12-6 Schematic diagram of sonar sensor array

6. Once you’ve attached the sonar, now is
a great time to add some finishing
touches. Add a pair of wings, flame
stickers, or whatever suits your fancy.
Just make sure it doesn’t get in the way
of the wheels or the sonar; you want to
make sure the robot can still make
readings and move freely so it can fin-
ish its task!

Now that you have all of the major bits in place,
let’s get to the meat of this project: artificial in-
telligence!

Step 1: Remote Control

Before you can get to the really awesome fun
part of making BatBot find its way out of a pa-
per bag, you’re going to need to figure out how
to talk to BatBot:

1. Ensure you have the latest stable ver-
sion of Node.js and npm installed on
your computer. If you still need help
with installing Node.js and need a pri-
mer on how to use npm to install mod-
ules, see the appendix.

2. Get the code for BatBot, located in the
batbot/ folder in the Make: JavaScript
Robots repository on GitHub.

3. On your local copy of the code, find
your way into the batbot/ directory and
run npm install to install all of the
packages listed in the package.json file.
I’ll introduce each module as you need
them. The first and most important one
is johnny-five, which allows you to

send commands to the Arduino and
thus move the servos and read from
the sensor.

Moving the Robot
Now that you have a robot and your software
environment is set up, the next major task is to
get BatBot moving around under your direc-
tion. From there, you can move on to encourag-
ing BatBot to drive itself.

Let’s take a closer look at the chassis.

Notice that the BOE Bot comes with two contin-
uous servos, one for each wheel. Each wheel
moves independently, which will allow the ro-
bot to move in any direction: forward, back-
ward, left, and right.

A continuous servo moves con-
tinuously in a single direction (i.e.,
clockwise), like a motor. Where it
differs from a standard motor,
however, is that we can program-
matically tell it to move in the op-
posite direction (i.e., counter-
clockwise). (To make a standard
motor switch directions, on the
other hand, you would have to
physically change the polarity of
its inputs.)

As you can see in Figure 12-7, the two servos
are pointed in opposite directions. This means
that in order for the robot to move in a straight
line, the servos are going to have to turn in op-
posite directions (i.e., one will turn clockwise
while the other turns counterclockwise). Keep
in mind, though, that both wheels will still turn
in the same direction.

196 Make: JavaScript Robotics

Step 1: Remote Control

http://bit.ly/1N65wXs
http://bit.ly/1N65wXs

Figure 12-7 Simplified diagram of robot movement

Similarly, if both servos turn in the same direc-
tion, the robot will turn! For this project, when
the robot turns, you want it to turn in place. To
do this, one wheel needs to turn backward at
the same rate that the other wheel turns for-
ward.

By implementing each servo separately, you
have the logic shown in Table 12-4 for moving
the robot.

Table 12-4 Continuous servo logic for robot movement

Direction
of Move-
ment

Left Servo
Direction

Right Servo
Direction

Forward Forward (ccw) Forward (cw)

Backward Backward (cw) Backward
(ccw)

Left Backward (cw) Forward (cw)

Right Forward (ccw) Backward
(ccw)

Remember, all of the source code for the exam-
ples in this book can be found on GitHub. You’ll
need to follow these steps:

1. Go ahead and create a new file in the
batbot/ directory called moveBot.js. Ini-
tialize johnny-five and begin our pro-
gram like so:

var five = require("johnny-five");

var board = new five.Board();
board.on("ready", function () {
 // do stuff
});

2. Next, implement each continuous ser-
vo using the johnny-five servo API.
Add the following code after requiring
the johnny-five module, but before
initializing the board:

var leftServo =
 five.Servo.Continuous(10);
var rightServo =
 five.Servo.Continuous(11);

The pin number corresponds to the
connection of each servo to the BOE
Bot shield and thus to the Arduino. You
must also specify that these servos are
continuous servos, as opposed to stan-
dard servos.

3. To make it easier to control each servo,
write a move function, following the
logic for robot movement described in
Table 12-4:

var moveSpeed = 0.1;

function move(rightFwd, leftFwd) {
 if (rightFwd) {
 rightServo.cw(moveSpeed);
 } else {
 rightServo.ccw(moveSpeed);
 }

 if (leftFwd) {
 leftServo.ccw(moveSpeed);
 } else {
 leftServo.cw(moveSpeed);
 }
}

4. For a given movement, you want the
right wheel to move forward or back-
ward, and the same for the left wheel.
Your code uses booleans to dictate the
direction of each wheel. With this, you
can abstract each movement out even
further with easier-to-remember func-
tions:

197Chapter 12: Artificial Intelligence: BatBot

Step 1: Remote Control

http://bit.ly/19LX9n3
http://bit.ly/1bQONfn

function turnLeft() {
 move(false, true);
}

function turnRight() {
 move(true, false);
}

function goStraight() {
 move(true, true);
}

function goBack() {
 move(false, false);
}

5. Don’t forget to include a stop() func-
tion as well:

function stop() {
 lServo.stop();
 rServo.stop();
}

6. You can play with the servos and move
functions in the johnny-five REPL by
passing them into the johnny-five

REPL object:

this.repl.inject({
 left: leftServo,
 right: rightServo,
 turnLeft: turnLeft
});

and then in the johnny-five REPL:

leftServo.cw();

leftServo.stop();

turnLeft();

REPL

REPL is short for read-eval-print loop. It gives you
the ability to input things at the command line,
then have code evaluate that input, and finally
output the results and then wait for the next com-
mand.

Controlling the Robot
Now that you have the wheels hooked up with
johnny-five, let’s add the PS3 DualShock Con-

troller. The dualshock-controller module will
allow you to map different keys on the control-
ler to specific events.

1. Add the dualshock-controller mod-
ule into the mix. Depending on your
model of controller, you may need to
change dualShock3 to dualShock4:

var five = require("johnny-five");
var dualshock =
 require("dualshock-controller");

ds = dualshock({
 config: 'dualShock3'
});

2. You can make it so that when you press
the triangle button, the robot moves
forward in a straight line, via the
goStraight function. Remember, this
goes inside the
board.on("ready", ...) block:

ds.on("triangle:press", function () {
 goStraight();
});

ds.on("triangle:release", function () {
 stop();
});

3. Map as many buttons to whatever
functions suit your fancy. Remember to
stop the robot when you let go of a
button! Otherwise the robot will con-
tinue forever and ever. By only moving
on keypresses, you will have much
more control of your robot.

With your DualShock Controller mapped to
your servos, you should now be able to remote-
ly control your robot!

Try it out—how does it feel?

Pointing and Reading from the
Sonar
Now let’s hook up the sonar and its associated
standard servo into the mix:

198 Make: JavaScript Robotics

Step 1: Remote Control

1. Because the sonar is an analog sensor,
you need to wire it up to one of the an-
alog pins on the Arduino:

var sonar = new five.Sonar("A2");

2. Throw the sonar into the REPL, and
start playing around with the readings,
using sonar.cm or sonar.inches. What
happens when you point it at different
materials? Do you notice a pattern in
readings? Is there a minimum reading
or a maximum reading? You can read
more about the johnny-five sonar API
on GitHub.

3. You should notice that the sensor emits
higher values for objects that are far-
ther away. You may also notice that the
object doesn’t necessarily need to be
directly in front of the sonar to get a
reading. This is due to the MaxBotix
sensor’s beam characteristics.

For maximum control of the sonar sensor, it is
attached to a standard servo. Unlike a continu-
ous servo, which moves continuously, a stan-
dard servo moves to a specified angle measure-
ment. The benefit of a standard servo in this ap-
plication is that we can specify exactly where
we want the sonar to point. We can see the
johnny-five servo API on GitHub.

1. Initialize the sonar servo:

var sonarServo = new five.Servo({
 pin: 12,
 range: [10, 170]
});

The range parameter allows you to set
a minimum and maximum angle for
the sonar servo; this way, instead of
having to constantly remember which
angle is “left,” “center,” and “right,” you
can simply say sonarServo.max(),
sonarServo.center(), and
sonarServo.min(), respectively.

Depending on how you’ve
mounted your servo to the
robot, sonarServo.max()

and sonarServo.min() may
mean right and left, respec-
tively. This is perfectly fine;
just be sure to make the ad-
justments to your code as
necessary.

2. To finish, map the servo movement
and sonar readings to your DualShock
Controller:

var angle = 15,
 sonarStep = 10;

ds.on("r2:press", function() {
 console.log(sonar.cm);
});
ds.on("l2:press", function() {
 angle = (range[0] + range[1]) / 2;
 sonarServo.center();
});
ds.on("dPadLeft:press", function() {
 angle = angle < range[0]
 ? range[0] : angle + sonarStep;
 sonarServo.to(angle);
});
ds.on("dpadRight:press", function() {
 angle = angle > range[1]
 ? range[1] : angle - sonarStep;
 sonarServo.to(angle);
});
ds.on("dpadUp:press", function() {
 angle = range[1];
 sonarServo.max();
});
ds.on("dpadDown:press", function() {
 angle = range[0];
 sonarServo.min();
});

The r2 button press gives you sonar
measurements, while the l2 button
centers the servo. Then you’re using
the direction pad to incrementally
move the servo in steps of sonarStep
(and stopping at the minimum/maxi-
mum we set when we initialized it).
You’re also using the direction pad to

199Chapter 12: Artificial Intelligence: BatBot

Step 1: Remote Control

http://bit.ly/1bQOYav
http://bit.ly/1bQOYav
http://bit.ly/1bQONfn

Ultrasonic Sensor Quirks

To understand why the sonar is working the way
that it is, take a look at the specification sheet.
Take extra care to understand what the sheet is
saying about the sensor: the beam characteristics
change between the different models, and will re-
sult in different readings.

Unlike a laser range finder, which has such a thin
beam that it’s virtually linear, a sonar uses a coni-
cal beam to gather data. The sonar’s poor resolu-
tion makes it a cheap option for detecting walls,
but not fine details. Knowing the needs of your
project and the capabilities of different sensors is
critical to choosing the right sensor for your
project!

move entirely to the maximum and
minimum ranges. You’re keeping track
of the angle yourself to ensure you
have the maximum amount of control.

Be careful when driving your bot
around—make sure it’s on a flat
surface, preferably on the floor. If
you must drive it around on a
table, make sure you have some-
one standing guard who can
catch the bot if (when!) some-
thing goes wrong.

Drive it around the room—how does it handle?
Would you like to do anything differently? Feel
free to play around, tweaking numbers. Make it
your own!

Step 2: Autonomy

The next step on your journey to artificial intel-
ligence is to take your remote-controlled robot
and make it smart! To achieve this goal, you
need to fully understand the problem at hand,
break it down into smaller problems, “teach”
the robot to handle those smaller problems,

and walk away once the greater problem has
been solved. The steps you follow now will be
useful for any artificial intelligence problem, be-
yond helping BatBot find its way out of a paper
bag.

Start by clearly identifying the problem: you
have a paper bag, situated on the floor. The
opening is pointed out, so that the robot can
drive into the bag. Once in the paper bag, its
task is to navigate its way back out, using only
the ultrasonic sensor and its driving mecha-
nism.

The robot goes into the bag, pointing at the
back wall. How should it get out?

If you’re having trouble seeing the world from
the robot’s perspective, pretend that you are
the robot. Imagine that you are blindfolded, or
the room is very dark. The only information you
have is that there is or isn’t a wall in front of
you. On top of that, you can only turn 90° or
move forward/backward. Now how do you get
out of the room?

Your first thought may be to turn around by
180° and walk out.

While that’s a perfectly valid answer, you’re us-
ing a priori data (facts you knew before you
walked into the room, like knowing that the
room has three sides and you walked in
through the open end). The robot doesn’t have
that information.

The goal of this exercise shouldn’t be to answer
this specific question, but instead to answer a
general set of problems. This problem of the
paper bag is essentially three walls, but it can
be easily extended to solving a simple maze.

A common maze-solving algorithm is the wall
follower algorithm, also known as the lefthand
rule or the righthand rule. The general idea is
that by following a wall with either your left or
right hand along the wall, you will eventually
find the end of the puzzle.

200 Make: JavaScript Robotics

Step 2: Autonomy

http://bit.ly/1bQP02n
http://bit.ly/1bQP6GY
http://bit.ly/1bQP6GY

But going back to this problem’s limitations,
you only know if there’s a wall in front of your
eyes, not if you’re parallel to a wall (though you
can play around with that idea in a future itera-
tion!).

It’s important to note that the robot has no idea
about where it is relative to anything else. It on-
ly knows the information it has at a particular
moment, with no sense of memory.

For this specific application, then, there is an
even simpler algorithm:

1. Check if there is a wall to the left of me,
in front of me, and to the right of me.

2. If one of the directions has no wall, turn
90° or drive toward the opening; go
back to step #1.

3. If there isn’t, turn 90° to the right and
go back to step 1.

Robot State

I’m touching on a concept called state without ac-
tually going into too much detail. The concept of
state is important: a robot’s state is the data the
robot knows about itself at a given time. Robots
rely on their sensors to gather this data, and then
they can use it to get more information over time.
Typical pieces of data that contribute to a robot’s
state are its position in space, heading, pitch, roll,
velocity, acceleration, a map of its surroundings, a
list of local landmarks, and more. BatBot has no
understanding of any of these things; the only
sensor it has is its sonar. Thus, for the autonomy
portion of its semi-autonomous nature, it can only
use its single sensor to understand its environ-
ment.

By using this pattern, you don’t need to have
any information about the room, and you can
use the sensors you have available to make de-
cisions.

Open Loop and Closed Loop

This specific algorithm is called an open control
loop; it runs in a loop and doesn’t ever correct it-
self. A more robust algorithm would be a closed
control loop; it runs in a loop but uses the data it
collects to adjust its next iteration, like a thermo-
stat. I don’t cover closed loops in this project, but
no course in artificial intelligence is complete
without it.

Don’t worry if this algorithm isn’t perfect—your
first algorithm rarely, if ever, is. But at least you’ve
got a place to start; from here, you’ll push it to the
robot and test it. Then, once you’ve identified the
problems or limitations of the algorithm, you can
tweak it and adjust it to your heart’s content!

Implementing the Algorithm
Now that we’ve settled on an algorithm, let’s
write it up in the code:

1. First, check to see if there is a “wall” to
the right of the robot. Point the stan-
dard servo to the right with sonarSer
vo.max() and take a sonar measure-
ment with sonar.cm.

Next, turn the servo to the front (sonar
Servo.center()), take a measurement,
and finally to the left (sonarSer
vo.min()) with a measurement as well:

sonarServo.max();
var rightVal = sonar.cm;
sonarServo.center();
var frontVal = sonar.cm;
sonarServo.min();
var leftVal = sonar.cm;

2. Bind the start (and stop!) of the scan-
ning algorithm to buttons on your Du-
alShock Controller, to make it easy to
put your robot in (and out of) autono-
mous mode:

ds.on('select:press', function () {
 console.log('IN AUTO MODE');

 var loop = setInterval(function () {
 ds.on('r1:press', function () {

201Chapter 12: Artificial Intelligence: BatBot

Step 2: Autonomy

 clearInterval(loop);
 });

 // your algorithm goes here
 });
});

Try it out and see what happens. What kind of
values are you getting?

It’s not quite working, is it? It turns out that,
with this piece of code, the sonar readings are
happening too fast for the servo to keep up.

JavaScript, as a language, is unique in that it is
asynchronous by nature. When it sends a com-
mand, it doesn’t wait for the command to com-
plete before sending the next one. In the case
of the servo/sonar combination, you’re sending
the commands in succession, almost instanta-
neously, and you’re moving on to the next com-
mand before its predecessor has had a chance
to complete.

What you want to do, instead, is give each com-
mand as much time as it needs to complete be-
fore beginning the next command. As a result,
for this specific application, you’re going to
have to force the algorithm to be synchronous.

Fortunately, there’s a library called temporal
that will allow you to specify when each servo
movement/sonar measurement takes place:

1. Add the temporal package to your
code:

var five = require("johnny-five");
var dualshock =
 require("dualshock-controller");
var temporal = require("temporal");

2. Using temporal, create a queue that
moves the servo and takes a measure-
ment every 1,500 milliseconds (i.e., 1.5
seconds):

var scans = [];
temporal.queue([
 {
 delay: 0,
 task: function () {
 sonarServo.max();

 scans.push({ dir: "left",
 val: sonar.cm });
 }
 },
 {
 delay: 1500,
 task: function () {
 sonarServo.center();
 scans.push({ dir: "center",
 val: sonar.cm });
 }
 },
 {
 delay: 1500,
 task: function () {
 sonarServo.min();
 scans.push({ dir: "right",
 val: sonar.cm });
 }
 }
]);

You may have noticed that now you’re
pushing our sonar measurements into
an array. By using the array-extended
module, you have some very useful
utilities for manipulating arrays and ex-
tracting useful data.

3. Add the array-extended module to the
code.

4. Take the array of three directional
measurements and find the one that is
mostly likely to be the open wall (given
that higher sonar measurements indi-
cate the wall is farther away):

var maxVal = array.max(scans, "val");

5. Now use that information to imple-
ment the rest of the algorithm:

WALL_THRESHOLD = 15; // cm

var direction =
 maxVal.val > WALL_THRESHOLD
 ? maxVal.dir : "right";

if (direction === "center") {
 goStraight(1000);
} else if (direction === "left") {
 turnLeft(700);
} else {
 turnRight(700);
}

202 Make: JavaScript Robotics

Step 2: Autonomy

The WALL_THRESHOLD is the value at
which anything below it implies that
there is a wall present; anything above
it is too far away and can be considered
an opening.

6. To improve accuracy, take multiple
scans in each direction and average
them out using the array-extended
module:

var scanSpot = function (cb) {
 var sServoReadings = [];
 var read = setInterval(function () {
 sServoReadings.push(sonar.cm);
 if (sServoReadings.length === 10) {
 clearInterval(read);
 cb(null,
 array.avg(sServoReadings));
 }

 }, 100);
};

Here’s what’s going on: when you call
scanSpot(), you’re taking a servo read-
ing every 100 milliseconds (i.e., one-
tenth of a second), and logging that in
an array. After 10 sonar measurements,
you use array-extended to find the
average, and return that value via the
callback. The callback ensures that you
wait for this function to finish before
you move on to the next step in the al-
gorithm.

Put together, Example 12-1 shows the com-
plete algorithm.

Example 12-1 Finished algorithm

var scans = [];
temporal.queue([
 {
 delay: 0,
 task: function () {
 sonarServo.max();
 scanSpot(function (err, val) {
 scans.push({ dir: "left", val: val });
 });
 }
 },
 {
 delay: 1500,
 task: function () {
 sonarServo.center();
 scanSpot(function (err, val) {
 scans.push({ dir: "center", val: val });
 });
 }
 },
 {
 delay: 1500,
 task: function () {
 sonarServo.min();
 scanSpot(function (err, val) {
 scans.push({ dir: "right", val: val });
 });
 }
 },
 {
 delay: 1500,
 task: function () {

203Chapter 12: Artificial Intelligence: BatBot

Step 2: Autonomy

 WALL_THRESHOLD = 15;
 minVal = array.min(scans, "val").val;
 var maxVal = array.max(scans, "val");
 var direction = maxVal.val > WALL_THRESHOLD ? maxVal.dir : "right";
 if (direction === "center") {
 goStraight(1000);
 } else if (direction === "left") {
 turnLeft(700);
 } else {
 turnRight(700);
 }
 }
 }
]);

You’re going to want to repeat all of this indefi-
nitely, or until you tell it to stop. Take a look at
the sonarscan.js file for the complete version.

Time to try it out! Drive your robot into the pa-
per bag and turn on autonomous mode! How
does it do? Feel free to make adjustments until
your robot achieves success.

Troubleshooting

My XBees aren’t communicating—what’s going
on?

Make sure your have them properly config-
ured. See GitHub for more information.

Why does the robot sometimes not listen to my
DualShock Controller commands?

First, make sure that you’re intentionally
stopping/starting the robot in your code. If
you’re absolutely positive that the code is
good, it might be your XBee or Bluetooth
connection. XBees are known to have some
packet loss, but generally if you send another
command it will set itself right again. Try re-
placing the XBees with a USB cable. If every-
thing works perfectly, there’s either some-
thing wrong with the XBee connection or
your hardware setup. If that’s not it, check
your code again.

My robot isn’t seeing the opening of the paper
bag

Check to make sure the top of the bag isn’t
dipping into the conical beam of the ultra-
sonic sensor.

What’s Next?

Congratulations! Your little BatBot can now, on
its own, find its way out of a paper bag, as
shown in Figure 12-8!

Figure 12-8 BatBot’s movin’ on out!

While artificial intelligence requires quite a bit
of concentrated thinking, it also really takes
your robots to the next level. Want to go deep-
er? Try some of these exercises to go further in
your artificial intelligence mastery:

• Instead of making the robot turn in
place, make it turn in an arc

204 Make: JavaScript Robotics

Troubleshooting

http://bit.ly/1C2ATMe

• Make the robot find its way out of a
longer paper bag

• Make the robot solve a maze

• Implement the wall follower algorithm

• Find and implement more interesting/
complex algorithms to solve this puzzle

• Make a robot that avoids obstacles

• Add other sensors to the robot to make
it even “smarter”

205Chapter 12: Artificial Intelligence: BatBot

What’s Next?

http://bit.ly/1bQP6GY

Figure 13-1 Junky Delta, Robot Army, and TapsterBot

Delta Robots and Kinematics

By Pawel Szymczykowski

Robots can do a lot of neat things like beeping,
rolling around, chasing your dog, or bringing
you a cold beverage. That is one kind of robot
—a “fun time” robot. The other kind of robot is
hard working, precise, and industrious. These

are the kinds of robots that welded your car to-
gether and perfectly placed the fake gem in the
center of your treasure troll’s belly. Welcome to
the world of industrial robots! In this chapter, I’ll
examine one of the most common industrial

207

13

robot designs, the delta robot shown in Fig-
ure 13-1.

A delta robot is a stationary robot that uses
three multi-jointed arms connected to a central
platform that it can move around in three di-
mensional space by shifting the positions of
each of the three arms. That sounds like a
mouthful! The truth is that delta robots are fair-
ly simple mechanically. They use relatively few
components and are easy to build compared to
other types of Cartesian robots, which need
special pulleys, linear bearings, lead screws, and
more. On the flip side, they are harder to pro-
gram and require some more complicated
mathematics to control precisely. You probably
guessed there would be some trigonometry in-
volved when you saw the word delta, and you
were right!

The delta was invented in 1985 by Reymond
Clavel, a Swiss mechanical engineer, for the
purpose of loading chocolate pralines into their
packaging. Because the heavy motors are fixed
at the top and because they only have to make
small movements to move the arm a great dis-
tance, delta robots can move very quickly and
accurately. They are well suited for packaging
where they can quickly and accurately pluck
items off of a moving conveyor belt, orient
them, and place them into a package or assem-
bly in fractions of a second.

Another common use is in pick-and-place ma-
chines that place tiny surface mount compo-
nents onto circuit boards for manufacturing
electronics. In recent years, a variant of the del-
ta that uses lead screws to extend the reach of
the Z axis has become a popular design in the
hobbyist 3D printing industry.

In this chapter, I’ll show you how to build a sim-
ple delta robot out of hardware store parts. If
you happen to have access to a 3D printer, you
might want to check at the end of the chapter
for two alternative designs that you can 3D
print to save some time and effort. Once you’ve
built the bot, I’ll show you how to wire it up and
make the motors move individually. Finally, I’ll
get into some kinematics so you can position
the arm precisely.

Bill of Materials

Most of the things listed in Table 13-1 can be
found at a home improvement store. Locally, in
the United States, you can try Home Depot or
Lowe’s, but any home improvement or hard-
ware store will do!

You will need the items listed in Table 13-1.

Table 13-1 Bill of materials

Count Item Source Estimated price

1 4ft length of 5/16” hardwood dowel Hardware store $1

1 2ft length of 1/4” inner diameter
latex tubing or surgical tubing

Hardware store $10

6 5/16” bolts Hardware store $0.25 each

6 #4 screws Hardware store $1

6 Small zip ties Hardware store $3

3 Large zip ties Hardware store $3

208 Make: JavaScript Robotics

Bill of Materials

Count Item Source Estimated price

1 8.5” × 11” piece of hardboard Hardware store $5

3 180° rotation standard servos
(HS-311)

Amazon $10 each

3 Jumbo-sized Popsicle sticks or paint
stirrers

Amazon or hardware
store

$2 or free

Arduino Uno
or similar

Maker Shed, Amazon, Adafruit,
Spark Fun

$30 1

4 AA battery
case

Amazon $1 Breadboard

Amazon $3 Breakaway headers or
jumper wires

Amazon

$5 9 Cardboard pieces cut into
1.5” × 1.5” squares

A dumpster

Here are the tools you need:

• Power drill

• 5/16” drill bit

• 1/16” drill bit

• Coping saw or scroll saw

• Spray adhesive or white glue

• Duct, gorilla, gaff tape

• Scissors

Delta Anatomy

Before you get started building, let’s take a look
at what parts make up a delta robot, shown in
Figure 13-2. This will aid you in assembly, and
help you understand how they work!

End effector
The end effector is also sometimes called the
tool platform. It’s the business end of an in-
dustrial robot where you will find the gripper,
cutter, vacuum print head, paint nozzle, or
whatever the correct tool for the job is!

Universal joint
A typical joint moves in two directions. A uni-
versal joint or u-joint can bend in any direc-
tion. You might be familiar with them if
you’ve ever seen a drive shaft on a car. There
are a number of alternative ways to create a
universal joint, from bolting plate together,
to friction fit ball bearings, to magnetic joints,
and more.

Lower arm
The lower arm connects the end effector to
the upper arm. Each lower arm is actually
made of up a pair of rods that each have their
own joints, but they always move in parallel.
This forms a parallelogram between the end
effector and upper arm. It’s a very important
feature of the delta design, because without
the parallelograms, the end effector couldn’t
stay parallel to the base and would skew in
relation to its position. That would make the
design much less useful.

Upper arm
The upper arm is connected to the lower arm
and the actuator. It’s usually shorter than the

209Chapter 13: Delta Robots and Kinematics

Bill of Materials

Figure 13-2 Anatomical diagram of a delta robot

lower arm and only moved back and forth
with the position of the actuator.

Actuator
An actuator is a fancy engineering term for a
motor that moves something. It can be any
kind from an electric stepper motor to a hy-
draulic piston. The delta robots you will be
looking at all use 180° rotation servo motors,
which are inexpensive and easy to control.

Building Junky Delta

Junky Delta (shown in Figure 13-3) is the easy-
to-build and inexpensive delta robot with a fun
and zany self-deprecating name. I chose to op-
timize on ease of assembly over precision, so
you won’t need a 3D printer, CNC mill, or laser
cutter to assemble him, but you also won’t be
moving individual atoms around. You might
even have trouble moving around M&Ms here.
Junky Delta can be assembled for around $50,
mostly from parts you can get at a home im-
provement store. If you do have access to a 3D

printer, check the end of this chapter for a cou-
ple of other options that might work better!

Figure 13-3 Junky is serviceable and made of woody bits

210 Make: JavaScript Robotics

Building Junky Delta

You can download 3D printer files.

1. First, cut the dowel into six 6” long
pieces and three 1” long pieces using
your saw or a pipe cutter, as shown in
Figure 13-4.

Figure 13-4 Parts for Junky Delta with dowels

pre-cut

2. Next, you’ll want to cut the latex tubing
into twelve 1” long pieces (Figure 13-5).
These will hold your dowels together
and form a universal joint. If you can’t
find latex tubing, something else will
work as long as it’s soft enough to
bend easily and fits snugly over the
dowel. You can size the dowels up or
down as needed too, as long as they
are thick enough to not bend easily.

Figure 13-5 Cutting latex tubing into 1” lengths

3. Get the template PDF file from the Git-
Hub repository, print it out, and affix it
to the hardboard. Now cut out the end
effector and the extra bits from the
board using your saw (see Figure 13-6).
You don’t have to be fancy and cut out
the hexagon—you can make it square
or circular (you can use a large hole
saw) and it will work just as well.

Figure 13-6 Cutting hardboard

4. Using the template as a guide, drill out
the holes indicated by the red circles
with crosses in them using the 5/16”
bit, as shown in Figure 13-7. If you’re as
bad at drilling as me, you’ll want to drill
pilot holes in the center of the pluses
using the smaller bit first.

Figure 13-7 Drilling holes

5. Now pop your bolts through the outer
holes and slip a latex sleeve over each

211Chapter 13: Delta Robots and Kinematics

Building Junky Delta

http://bit.ly/1bQPghE

of them, as shown in Figure 13-8. Make
sure the tubes are snug against the
base of the hardboard and then secure
them with zip ties. Snip off the dan-
gling ends using scissors.

Figure 13-8 Assembling the end effector

6. Now get your jumbo-sized Popsicle
sticks and drill a 5/16” hole in one and a
pair of 1/16” holes in the other side us-
ing the PDF Popsicle template as a
guide. These can be incredible fragile,
so drill pilot holes first and then drill
slowly on top of a piece of scrap wood
or cardboard. Don’t press too hard! See
Figure 13-9.

Figure 13-9 Drilling through Popsicle sticks

7. Now slip a 1” dowel through each 5/16”
hole and cap the ends with latex tub-
ing, as shown in Figure 13-10. The fit
should be snug on the sides, but the
dowel should be able to rotate freely. If
you have a hard time getting the latex
over the dowel, use a little cornstarch
in the end of the tube to reduce fric-
tion.

Figure 13-10 Assembling upper arms

8. Now slip the longer dowels into each
side of the upper arm, making a T
shape, as shown in Figure 13-11.

212 Make: JavaScript Robotics

Building Junky Delta

Figure 13-11 Attaching lower arms

9. Now bend the long arms 90° and slip
them into the tubes of the end effector,
as shown in Figure 13-12.

Figure 13-12 Attaching the end effector

10. As with the end effector, drill out the
holes indicated on the top platform
template (Figure 13-13).

Figure 13-13 Drilling the top platform

11. Now tape three pieces of cardboard to-
gether, and sandwich them between
the servo and the top platform. Then
zip-tie the whole thing to the top plat-
form. This cardboard shim provides a
little bit of clearance to make sure the
top part of the servo arm can rotate
freely. If you have something stronger
than cardboard like a few extra bits of
hardboard or other wood, that’s even
better! Just make sure you have about
1/2” of clearance. Pay attention to the
orientation of the servo motors as indi-
cated on the template. There was a lit-
tle awkward space left over, so I’ve cut
out a carrying handle. This is complete-
ly optional. Figure 13-14 shows the ser-
vos attached.

Figure 13-14 Attaching servo motors

213Chapter 13: Delta Robots and Kinematics

Building Junky Delta

12. Finally, using the small, double-sided
servo horn on the servo, attach the
Popsicle sticks to the servo horns with
the #4 screws. To orient things correct-
ly, make sure the long side of each ser-
vo is parallel to the Popsicle stick. You’ll
need to manually turn the servo all the
way back until it stops with your fin-
gers so that it can go from parallel to
the base to fully vertical. If you can’t ex-
tend the arm, pop the servo horn off,
turn the servo back, and pop the horn
back on until it has the correct range of
motion. Now you’re done assembling
the mechanical parts. Your bot should
look like Figure 13-15 at this point.

Figure 13-15 Attaching the arms to the servo horns

13. The wiring is relatively simple. In Fig-
ure 13-16, I use a breadboard, but it’s
almost overkill because you’re really
only using the power strip. You can
connect the power and ground howev-
er you like, including using small wire

nuts to hold everything together. Con-
nect all of the red wires from the servo
motors to the positive (+) terminal on
your power source. Connect all of the
black wires on the servo to the ground
(-) terminal and then connect these to
the GND pin on your Arduino to create
a common ground. Finally, connect
each signal wire (usually white or yel-
low) to a PWM pin on the Arduino. Here
I used 9, 10, and 11. If you’re not sure
which pins are PWM capable on your
Arduino, check the documentation for
your specific model. That’s all there is
to it! Most of the complexity of a delta
is in the software.

Making It Move
Connect your Arduino via USB, and try out the
code from Example 13-1. Make sure to substi-
tute your correct pin numbers for the servos if
you’ve wired things up differently than in the
wiring diagram. If you followed the wiring dia-
gram precisely, you won’t need to change the
code.

All source code for the examples in this book
can be found on GitHub.

Install Firmata first!

You’ll want to make sure that your
Arduino has the Firmata sketch in-
stalled before attempting to run any
code. See “Arduino” for more details.

Example 13-1 warmup.js (a simple code example to move the bot and make sure everything is working well)

var five = require("johnny-five"),
 temporal = require("temporal"),
 board = new five.Board();

board.on("ready", function() {
 var servo1 = five.Servo({ pin: 9, range: [0,90] }),
 servo2 = five.Servo({ pin: 10, range: [0,90] }),
 servo3 = five.Servo({ pin: 11, range: [0,90] });

214 Make: JavaScript Robotics

Building Junky Delta

https://github.com/rwaldron/javascript-robotics

Figure 13-16 Wiring diagram

 var repeat = function() {
 temporal.queue([
 { delay: 250, task: function() { servo1.to(60); } },
 { delay: 250, task: function() { servo2.to(60); } },
 { delay: 250, task: function() { servo3.to(60); } },
 { delay: 250, task: function() { servo1.to(20); } },
 { delay: 250, task: function() { servo2.to(20); } },
 { delay: 250, task: function() { servo3.to(20); } },
 { delay: 250, task: repeat }
]);
 };
 repeat();
});

Here I am using the temporal npm library (see
the Appendix for how to install npm modules)
to sequentially move each arm. temporal’s
queue function takes a list of objects with a de
lay key and a task key. It will execute each of
the tasks sequentially after the specified delay.
By delaying longer than the amount of time it
takes the servo to complete its movement, you
can ensure that you’re only moving one arm at
a time. The last task in the list is a reference to
the function itself so that you keep repeating
the entire process forever and ever.

If everything worked as it should, when you run
that code, you should see each arm of the delta
move down 60° in sequence, and then move
each arm back up to 20° before starting the se-
quence over again. If one or more of the arms
doesn’t work, check the wiring. Make sure each
motor is connected properly to the batteries
and the correct pins (9, 10, 11) on the Arduino.
If a motor seems stuck or is clicking at you an-
grily, stop the program and check the range of
motion on that arm by moving it back and forth
manually. If it doesn’t seem right, pop the servo

215Chapter 13: Delta Robots and Kinematics

Building Junky Delta

horn off and twist the servo’s hub into a better
position, then try again until everything is mov-
ing smoothly.

If you watch the program run for a while, you’ll
get a sense for how the changing position of
each arm affects the position of the end effec-
tor. Cool! It’s not very useful though. In order to
make your delta robot more useful, you’ll need
to find some way to determine the angles you
need for each arm to put the end effector into
the exact position you’d like it to be. This
sounds like a job for mathematics.

Predictable Positioning Through
Kinematics
Kinematics is a branch of mechanics dealing
with the geometry of motion. In robotics, we
are mostly concerned with mechanical systems
made up of linked rigid bodies and joints, col-
lectively called kinematic chains. For the pur-
pose of this chapter, we don’t have to get much
deeper than that, other than to know that if
you can describe the physical dimensions and
constraints of a kinematic chain, you can pre-
dict the positions of the linked bodies mathe-
matically as you manipulate the positions joints
in a chain. Luckily, Mr. Clavel, the creator of the
delta robot, has already done the hard work for
you, and you need only provide some of physi-
cal constants of your robot to adapt the equa-
tions to your specific design. See Figure 13-17.

Figure 13-17 Delta measurements required for the

kinematic equation

First, you need the measurement of one of the
sides of the top triangle formed by the pivot
points of the three motors. It’s important that
you measure from the pivot points and not the
size of the platform they are attached to. You
can also measure the diagonal distance be-
tween any two adjacent motors (designated by
a dotted green line in the diagram) and double
it. I’ll call that number f. Next, you’ll need the
side length of end effector, measured the same
way—the triangle formed by the pivot points.
I’ll call that number e. Finally, you need the
length of the upper and lower arms. I’ll use rf
for the upper arm, and re for the lower arm.

var e = 80.25,
 f = 163,
 re = 155,
 rf = 128.75;

One of the beautiful things about the design of
delta robots is that they are symmetrical in na-
ture. You can use this symmetry to your advan-
tage and simplify your problem so that you on-
ly have to look at one arm at a time. Let’s take a
look at a side view of your delta (Figure 13-18).

Figure 13-18 Looking at the kinematics problem for a

single arm

The servo motor can only move in two direc-
tions on the Y-Z plane, so I’ll just ignore the X

216 Make: JavaScript Robotics

Building Junky Delta

dimension for the time being. The problem you
are left with is the intersection of two circles:
the first whose center is at the hub of your mo-
tor and has a radius of f (the length of your up-
per arm), and the second whose center is at the
joint where the lower arm connects to the end
effector and whose radius is e (the length of
your lower arm). Where the circles intersect is

where the upper/lower arm joint must be posi-
tioned for your end effector to be positioned
where you want it. There are two intersection
points, and you choose the outermost one so
that your delta doesn’t get too bent out of
shape. The code for this is shown in Exam-
ple 13-2.

Example 13-2 Inverse kinematics: calculating angle theta for a single arm on the Y-Z plane

// Calculates angle theta1 (for YZ-pane)
function delta_calcAngleYZ(x0, y0, z0) {
 var y1 = -0.5 * 0.57735 * f, // f/2 * tan(30 degrees)
 y0 -= 0.5 * 0.57735 * e; // Shift center to edge of effector

 // z = a + b*y
 var a = (x0 * x0 + y0 * y0 + z0 * z0
 + rf * rf - re * re - y1 * y1) / (2.0 * z0),
 b = (y1 - y0) / z0;

 // Discriminant
 var d = -(a + b * y1) * (a + b * y1)
 + rf * (b * b * rf + rf);
 if (d < 0) {
 // Non-existing position. return early with error.
 return [1, 0];
 }

 // Choose outer position of cicle
 var yj = (y1 - a * b - Math.sqrt(d)) / (b * b + 1);
 var zj = a + b * yj;
 var theta = Math.atan(-zj / (y1 - yj)) * 180.0
 / Math.PI + ((yj > y1) ? 180.0 : 0.0);

 return [0, theta]; // Return error, theta
};

That gets the position for one arm. Now to get
to the next one: you just rotate your points 120°
and run it again, and then rotate and run again
for the third arm. None of the arms calculate
the position of the X position directly, but as
you rotate around and calculate Y-Z for each of

the three angles, the end effector is pushed in-
to the correct position and the universal joints
between the end effector allow it to move
smoothly and freely on those planes. Exam-
ple 13-3 shows this code.

Example 13-3 Calling delta_calcAngleYZ three times to position end effector

// Calculate theta for each arm
function inverse(x0, y0, z0) {
 var theta1 = 0,
 theta2 = 0,

217Chapter 13: Delta Robots and Kinematics

Building Junky Delta

 theta3 = 0,
 cos120 = Math.cos(Math.PI * (120/180)),
 sin120 = Math.sin(Math.PI * (120/180)),
 status = delta_calcAngleYZ(x0, y0, z0);

 if (status[0] === 0) {
 theta1 = status[1];
 status = delta_calcAngleYZ(x0 * cos120 + y0 * sin120,
 y0 * cos120 - x0 * sin120, z0, theta2);
 }

 if (status[0] === 0) {
 theta2 = status[1];
 status = delta_calcAngleYZ(x0 * cos120 - y0 * sin120,
 y0 * cos120 + x0 * sin120, z0, theta3);
 theta3 = status[1];
 }

 return [status[0], theta1, theta2, theta3];
};

Once you can calculate angles for all three posi-
tions, you’ll be able to position the end effector

anywhere within your delta’s physical range of
motion. See Example 13-4.

Example 13-4 Function to position the end effector at a given X, Y, and Z position

var board = new five.Board();

board.on("ready", function() {

 // Setup
 var servo1 = five.Servo({
 pin: 9,
 range: [0,90]
 });
 var servo2 = five.Servo({
 pin: 10,
 range: [0,90]
 });
 var servo3 = five.Servo({
 pin: 11,
 range: [0, 90]
 });

 function go(x, y, z, ms) {
 var angles = inverse(x, y, z);
 servo1.to(angles[1], ms);
 servo2.to(angles[2], ms);
 servo3.to(angles[3], ms);
 console.log(angles);
 };

 board.repl.inject({
 go: go
 });

218 Make: JavaScript Robotics

Building Junky Delta

 // Initial position
 go(0,0,-150);

});

In the preceding code, I am defining a go func-
tion that will let you move the end effector
wherever you like. The initial position is set to
X=0, Y=0, Z=-150. The origin is set in the center
of the top platform, but your end effector
doesn’t go that high because of the space that
the motors and folded up arms take up! So
Z=-150 is considered the highest Z position.
Make the number lower to bring the arm down.

You can now control the delta robot from the
REPL! Run the code from GitHub and try typing
the following:

go(0,0,-180);

go(50,0,-160);
go(-50,0,-160);

go(50,50,-160);

Move down

50 mm in the X axis

Go to the other extreme of the X axis

Move X and Y

Now you can bring temporal back into the mix
and draw a simple box, shown in Example 13-5.

If you attach a pen to the end effector, you
could even coax it into drawing that box on a
sheet of paper—just set your Z position cor-
rectly so the pen touches the paper. Congratu-
lations! You’ve made a delta robot that can do
things! What will it do next? That part is up to
you.

How Deep Does This Rabbit Hole
Go?

If you’re looking for an even more in-depth ex-
planation of the math behind this, you might
want to check out this great tutorial by Trossen
Robotics user mzavatsky. Almost all of the other
delta sources cite it, and this chapter is no excep-
tion. Further, if you really like math, see his source
material, Prof. Paul Zsombor-Murray’s “Descriptive
Geometric Kinematic Analysis of Clavel’s Delta Ro-
bot” (PDF). I’d also like to give special thanks to Ja-
son Huggins, whose delta was the first I played
with, and whose JavaScript source code was
adapted for this chapter.

Example 13-5 Drawing a box

function box() {
 temporal.queue([
 { delay: 250, task: function() { go(30, 30, -160, 250); } },
 { delay: 250, task: function() { go(30, -30, -160, 250); } },
 { delay: 250, task: function() { go(-30, -30, -160, 250); } },
 { delay: 250, task: function() { go(-30, 30, -160, 250); } },
 { delay: 250, task: function() { go(30, 30, -160, 250); } }
]);
}

board.repl.inject({

219Chapter 13: Delta Robots and Kinematics

Building Junky Delta

https://github.com/rwaldron/javascript-robotics/tree/master/delta
http://bit.ly/17Qtus9
http://www.cim.mcgill.ca/~paul/clavdelt.pdf
http://www.cim.mcgill.ca/~paul/clavdelt.pdf
http://www.cim.mcgill.ca/~paul/clavdelt.pdf

 box: box
});

More Sophisticated Delta
Options

Junky Delta was designed to be simple and
cheap to put together, but maybe you want a
nicer option? The good news is that if you have
access to a 3D printer, there are a couple of real-
ly nice kits you can print instead. All of the code
and lessons we just reviewed still apply, but
you’ll get additional points for style and conve-
nience!

TapsterBot
TapsterBot, shown in Figure 13-19, is a well-
known, open source (BSD licensed) Delta Robot
designed by Jason Huggins for mobile device
testing. It’s based on a previous design of his
called BitBeam Bot, which was a traditional
belt-driven, Cartesian device. Switching to a
delta design allowed him to improve the speed,
accuracy, and simplicity of the design.

Figure 13-19 Jason Huggins’ TapsterBot sporting an

unapproved color scheme

TapsterBot 1 is great design to start with if you
own a 3D printer. Most of the parts are 3D print-
able, and all that remains to purchase is a slew
of nuts and bolts and a few servo motors. Tap-

sterBot 2 uses magnetic joints and has a few
more exotic parts to track down.

Assembly is fairly straightforward, and Flickr
user abbyraskin has a great step-by-step guide.

Robot Army
The Robot Army delta, shown in Figure 13-20,
was successfully funded as a Kickstarter project
to make a very inexpensive delta robot. During
the kickstarter, they were selling for $100. Why
are they so cheap? Because the team behind
the project is making hundreds of them for an
art installation. It’s also interesting to note that
this is an inverted delta—the base is on the
bottom and the end effector extends upward.
The tool on the end effector is an RGB LED that
can be used for pretty, interactive light displays
and artsy things like on the cover of this book.

Figure 13-20 Robot Army’s Delta Robot is stylish and

fun!

You can buy a kit from them, or you can down-
load and 3D print the parts yourself from their
site. You won’t have the custom electronics, but
a standard Arduino will work just as well. They
have a beautiful, Ikea-style assembly guide pos-
ted on their site.

220 Make: JavaScript Robotics

More Sophisticated Delta Options

https://github.com/hugs/tapsterbot
http://bit.ly/19M8GT6
http://robot-army.com
http://robot-army.com/deltaInstructionsREV_C.pdf

Programming the Official Robot
Army kit

If you have an official Robot Army kit, you’ll need
an FTDI USB cable to interface with the microcon-
troller, which is a custom variant of an Arduino
Pro. You can get one at SparkFun, or just connect
up a regular Arduino instead.

What’s Next?

Now you’ve got the basic knowledge to build
and design a delta robot and make it move to a
desired point on the X, Y, and Z axis. What will
you do next? Here are some ideas:

• Slip a pen or brush into the delta’s
hand and teach it to draw!

• Combine with the OpenCV and create
a pick-and-place to separate M&M’s,

Skittles, and Reese’s Pieces from each
other by color.

• Build a larger version with a mechani-
cal gripper arm and use it to pick and
place kittens (for example)!

• Using inverse kinematics alone with
servos isn’t very accurate, especially
because the servo motors can only
move to certain angles. You can look
into forward kinematics (where you in-
put angles and get an X,Y,Z position)
and compare to see how close you got
and adjust for error correction.

The only limit is your imagination. Treat your
delta robot well and you will have a loyal friend
and lifelong companion. Enjoy!

221Chapter 13: Delta Robots and Kinematics

What’s Next?

http://opencv.org

Meow Shoes

By Suz Hinton

Have you ever wanted to turn your body into a
device to communicate with computers, be-
yond just typing on a keyboard or clicking with
a mouse? I bet you have. Expressing oneself
through human movement is a deeply connec-
tive and fun experience for almost everyone.
Dance and similar art forms can move beyond
just the visual and auditory effects bound to
the movements themselves.

What if you could augment this behavior into
electronic communication? You can certainly
do this with the help of JavaScript, and some
rudimentary sensors placed in an otherwise un-
assuming pair of shoes! Are you ready to create
magic with your feet?

Figure 14-1 The finished Meow Shoes

Bill of Materials

You will need the items listed in Table 14-1.

Table 14-1 List of parts needed for Meow Shoes

Part/item Notes Source Estimated price

Arduino For this project, the Arduino Micro
(headerless version) is
recommended for its tiny size, but
use an Arduino Uno if you’re new

AF 1315 $35
(approximately)

223

14

Part/item Notes Source Estimated price
to this stuff (and skip the
soldering!)

Four large FSR
sensors

Square or round shapes are both
good

AF 1075, SF
SEN-09376

$7.95

Ribbon cable or
hookup wire

Some soldering is required AF 289, SF
PRT-08024, MS
MKEE3

$2.50

Four resistors 10k Ohm SF COM-11508 $1

Soldering iron Any old one will do AF 180 $15–$25

Solder The lead type is easier for
beginners, but you may prefer
lead-free

AF 145 $5.95

Wire strippers These are so handy to have AF 527 $11.95

JST connectors with
wire

You’ll need three male/female
pairs

AF 578 $1.50 per pair

Stanley knife/sharp
scissors

Don’t run with them

Electrical tape For insulating Hardware stores $5

Glue gun/Superglue For, erm, gluing Hardware stores $5–$10

Small piece of velcro For sticking the Arduino to the
shoes

Craft, hobby, or
hardware stores

$5

Coiled microphone
wire

Approx 0.5 m in length eBay is a cheap
place to find this

$12

A micro USB cable The longer the better! http://bit.ly/
19M8KSW

A few dollars

A pair of shoes To sacrifice

A pair of shoe
insoles

Either the fabric or the gel type Drug stores/
pharmacy

$7

3D printer Optional, to print helpful parts

224 Make: JavaScript Robotics

Bill of Materials

http://bit.ly/19M8KSW
http://bit.ly/19M8KSW

Figure 14-2 Parts needed

Parts Explained

Some of these required parts seem a little com-
plicated, so what do they do?

Arduino
An Arduino is an electronic microcontroller
board, with an easy to use development eco-
system. The included bootloader on the chip
makes it very easy to upload programs, or
sketches as they’re called, from a computer
to the board. The Arduino was designed to
allow interaction with other hardware (e.g.,
sensors and mechanical parts). You can use it
to read data from, talk to, and control hard-
ware! It does this by featuring both digital
and analog pins, which can read and write
data to a large range of devices. We’ll be us-
ing the analog pins in the project, to read da-
ta from some pressure sensors.

Force-sensitive resistor (FSR)
A force-sensitive resistor (or FSR for short) is a
type of analog sensor that can measure the
amount of pressure or force being applied to
it. It outputs this resistance value in Ohms.

So how does it work? An FSR is a rather sim-
ple piece of technology when you take it
apart. The sensor consists of three layers: the
active area, the spacer, and the conductive
layer. The active area layer has a conducive

path that snakes its way back and forth along
the surface. This creates some of the current
resistance when force is applied. The conduc-
tive layer is named so for the large pad of
conductive surface material present. Current
will also pass through this area. The spacer
layer simply keeps the two conductive layers
separate from each other when force is not
present. This essentially creates an open cir-
cuit when no force is being applied.

What happens to these layers when force is
applied? The sensor condenses or squashes
the layers together. When current is passed
through the sensor as this is happening, the
amount of resistance created by the top and
bottom layers touching each other (remem-
ber the snake path on the active area?)
changes. If you apply heavy and even force
to the entire sensor area, you’ll see a lower
resistance happen. If you only press on a
small area, or press lightly, you’ll see a higher
resistance. Pretty logical, right? Figure 14-3
shows the layers.

Figure 14-3 Cross section of a force-sensitive resistor

One thing to keep in mind with FSRs—the re-
sistance change is not linear as pressure is
applied. Resistance lowers in a much more
dramatic fashion when applying light pres-
sure, then steadies out a little more from
there as the source of pressure increases. Fig-
ure 14-4 shows the graph of the resistive
change.

225Chapter 14: Meow Shoes

Parts Explained

Figure 14-4 Graph visualizing resistive change as

nonlinear

10K Ohm resistor
A resistor is an electronic component de-
signed to reduce voltage levels in a circuit. It
does this by burning off energy from the sup-
plied current as either light or heat. An Ohm
is the unit of measurement we use to meas-
ure resistance.

The topic of resistors is a very in-depth and
mathematical one (we encourage you to read
up—it’s complex, but good to understand).
To keep things simple in the context of this
particular project, we are simply using resis-
tors to pull down the logical low value read-
ing for our sensors. If the circuit is open (no
force being applied), the analog reading we
will get from our Arduino analog pin will be a
more constant 0, thanks to the pull down be-
havior of our resistor. No force present equal-
ling 0 in our data readings is not only logical,
but this value will be a little more reliable
without the fluctuations in the circuit we’d
normally see affecting the sensor data.

Micro USB cable
We all know what a USB cable is, but how are
we using it in this project? You’d be right if
you assumed it would connect the Arduino
to your computer of choice. The sensor data
will be sent from the Arduino over USB, even-

tually being read from serial into our Java-
Script program via “WebSockets.” Cool!

3D printer
3D printers are relatively easy-to-use ma-
chines. They are used to manufacture plastic,
metal, or ceramic parts. In this project, having
a run-of-the-mill plastic 3D printer is a bonus.
We can print a case for our Arduino to make
it look fancy and professional. This will also
protect some of the fragile wiring and solder-
ing you spent so much time on! Don’t have a
3D printer? Hit up your local hackerspace if
you have one in town. We even hear that UPS
is starting to offer 3D printing as a service. Al-
ternatively, the helpful folks at Shapeways or
3D Hubs will take an uploaded model and
send you the print in a week or so. Neat!

Making the Sensor Inserts

The first task to do is to prepare the force sen-
sors for your shoes!

There are a few skills involved in this section:

• Soldering

• Laying the wiring as flat as possible

• Getting the sensor placement correct

Solder the Sensors to the Wiring
Before you install the sensors in each shoe,
you’ll need to do a little soldering first. Each
sensor will need two wires connected to the
terminals:

1. Take one of the female JST cables, and
cut two of the wires down really short.
Strip the ends of each wire, to prepare
them for soldering, as shown in Fig-
ure 14-5.

226 Make: JavaScript Robotics

Making the Sensor Inserts

http://shapeways.com
http://3dhubs.com

Figure 14-5 Wires cut short

2. Solder the terminals of a sensor to one
pair of wires (Figure 14-6). Then repeat
for the other sensor (Figure 14-7).

Figure 14-6 How each pair of wires should look

Figure 14-7 The final outcome

3. Wrap each individual connection with
electrical tape to help protect the sol-
dered connections, as shown in Fig-
ure 14-8.

Figure 14-8 Electrical tape insulates and cushions

force applied

Install Sensors into the Shoes
OK, now you’re ready to attach the sensors to
the shoes. Each sensor has a sticky backing that
can be peeled off. Use this to stick them to the
footbed of the shoes:

1. Stick the sensor with the longer wire
pair to the footbed, where the ball of
your foot would rest. The wire should
be facing toward the back of the shoe.

2. Stick the sensor with the shorter wire
pair to the footbed, where your heel
would rest.

Tunnel the Wiring out of the Shoe
Once you’re happy with the placement, it’s time
to route the wires out of the shoe:

1. Cut a hole in the back of the shoe right
down the bottom where the sole be-
gins, as shown in Figure 14-9.

227Chapter 14: Meow Shoes

Making the Sensor Inserts

Figure 14-9 The hole above is large enough to fit the

female JST plug

1. Thread the female connector out
through the hole, with the sensors still
inside the shoe.

2. Tuck the connector partly into the shoe
hole and glue in place, as shown in Fig-
ure 14-10.

Figure 14-10 Final assembly of female JST wire within

shoe

Repeat the preceding steps for the other shoe.

Connecting the Shoes

In order for both shoes to talk to the Arduino,
the most practical method is to connect the
two shoes in a way that won’t hamper their use.
You’ll use the coiled, stretchy microphone cord
to allow more natural movement. You’re going
to use male JST connectors this time, so that

the wire just clicks in and out of the shoes to
connect them neatly.

The following directions assume
you have no experience in wire
crimping, which is a better way to
join wires to connectors.

Normally you would disassemble
the JST connectors, remove the
black wires, and crimp the micro-
phone cord wires to the termi-
nals.

If you’re experienced in crimping,
go for it! Otherwise, you’ll be sol-
dering wire-to-wire if you’re less
experienced with this stuff. Every-
thing will still work the same.

Prepare the Coiled Connector Cord
To prepare the coiled connected cord, follow
these steps:

1. Cut the wires short on two male con-
nectors, and strip the ends (see Fig-
ure 14-11).

Figure 14-11 All four wires are cut very short

2. Choose four wire colors to use in the
microphone cord. Cut the others away.
Solder the four wires of each end of the
cord to a male connector. The connec-

228 Make: JavaScript Robotics

Connecting the Shoes

tor cords will need to be cut short and
stripped first.

Make sure you solder with the exact
same wiring order for each connector
end. Figure 14-12 shows this.

Figure 14-12 All four chosen wires soldered, the

others cut away completely

3. Wrap each connection with tape to
help protect the soldered connections.
Then wrap electrical tape around the
whole assembly, sealing it all off neatly
(Figure 14-13).

Figure 14-13 Make it nice and neat, with no exposed

wiring

4. Cut two slits in the right shoe, above
the existing connector hole.

5. Thread a female JST connector cable in
and out, then secure the connector to
the shoe with glue, as shown in Fig-
ure 14-14.

Figure 14-14 Final right shoe assembly

6. Click in each male connector to its fe-
male pairing to join the shoes together
(Figure 14-15).

Figure 14-15 Your shoes should now look

something like this picture

229Chapter 14: Meow Shoes

Connecting the Shoes

Nice! Insert the insoles so that they’re laying
over the sensors as a top layer. This will help
protect them from moisture and stampy feet!

Connect the Shoes to an
Arduino

You shoes need something to talk to, right?
That’s where the Arduino comes in. How are
FSRs connected to an Arduino?

First, let’s look at an example of just one FSR,
shown in the Fritzing diagram (Figure 14-16).

One sensor terminal goes to 5V. The other, to
both ground and an analog pin. In this exam-
ple, A0. The pull-down resister mentioned earli-
er in this project exists between the ground
and the analog pin. What does it look like when
all four sensors are connected? Like a mess! So
let’s look at it when using a breadboard (Fig-
ure 14-17).

Figure 14-16 How to connect one FSR to an Arduino

Figure 14-17 Breadboard diagram of 4 FSRs connected

to an Arduino

Each shoe has a JST connector, ready for the Ar-
duino. Both are on the right shoe, which means
you’ll be mounting the Arduino to it.

Let’s do one shoe at a time, and take it slowly.

Using an Arduino Uno? Just use
the headers and optionally a mini
breadboard instead of soldering
in the following steps. Using an
Arduino Micro? You’ll be solder-
ing. Yay!

Prepare Wiring
Follow these steps to prepare the wiring:

1. Take a male connector cable, and plug
it into one of the right shoe female
ports.

2. Split off the wires slightly, and strip
them.

3. Solder a resistor to the second wire
from the left.

4. Solder a short wire to the other end of
that resistor.

5. Solder another resistor to the fourth
wire from the left.

230 Make: JavaScript Robotics

Connect the Shoes to an Arduino

http://fritzing.org

6. Solder a short wire to the other end of
that resistor.

Arduino Soldering
Next, follow these steps:

1. Solder the resistor arms to the GND pin
on the Arduino.

2. Solder the short wire coming from the
resistor to its own Analog pin, starting
with A0.

3. Solder the remaining wires to the 5V
pin.

One shoe done! Now do the other one in the
same way.

Attach the Arduino to the Right
Shoe
While you’re wearing your (almost finished!)
sensor shoes, you’ll need a safe and secure spot
for your Arduino to hang out. This is where your
Velcro comes in handy. We’re going to attach
the Arduino to the outer side of the right shoe.

If you 3D printed the Arduino Micro case, or
found alternative housing for it (try using the
cardboard box it came in!), place the Arduino in
there first, and close the lid. Otherwise, stick the
Velcro right onto the back of the Arduino Mi-
cro/Uno itself!

1. Peel the backing from one side of the
Velcro (loop and sides both together).

2. Stick the Velcro to the bottom of the
Arduino case/Arduino itself, as shown
in Figure 14-18.

Figure 14-18 Velcro attached to bottom of the case

3. Peel the backing from the other side of
the Velcro, and stick to the outside of
the right shoe, as shown in Fig-
ure 14-19.

Figure 14-19 The Arduino now attached to the side

of the right shoe

Your Meow Shoes are assembled! Let’s get cod-
ing!

Running the Code with
Johnny-Five

The Johnny-Five robotic library has out-of-the-
box support for force-sensitive resistors, so
you’re in luck! Let’s review how to get a simple
test up and running.

Connecting to Johnny-Five
Before you type anything, plug the micro USB
cable into the Arduino at one end, and the

231Chapter 14: Meow Shoes

Running the Code with Johnny-Five

computer you’re running the code on at the
other end. This step is pretty obvious, but I’ve
been burned in the past because the wrong
identical looking USB cable was plugged in in-
stead, doh!

If you haven’t already done so, install Node.js,
followed by the latest version of Johnny-Five
from npm. Be sure you have the latest version of
StandardFirmata running on your Arduino (see
“Arduino”). All source code for the examples in
this book can be found on GitHub. To install
Node.js and Johnny-Five, run the following:

npm install johnny-five;

Once everything’s installed, you should first do
a quick sanity check that the computer and Ar-
duino are getting along fine, and communicat-
ing in the same language so to speak.

The following code simply requires Johnny-
Five, and instantiates your Arduino as a board.
Once the board is all ready to go, you’ll just log
a message to the console/terminal.

For each short example shown
here and in upcoming sections,
you can save the code to a file,
then type node filename.js into
your terminal to run it (be sure to
replace “filename” with the name
of the file you saved the code in-
to).

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 console.log("Meow Shoes say hello!");
});

The preceding code example creates a refer-
ence to the Johnny-Five library as five. It then
creates a new variable board, and instantiates a
new Arduino board with it. That board object
will emit a ready event when Johnny-Five has
successfully connected to the Arduino.

Did that work? Excellent! Onto the next task.

Setting up Sensors
Within your Johnny-Five code, you need to
specify how many sensors you have (four), and
what analog pins they are on. If you can think
back to the assembly of the wiring, you’ll re-
member that you connected your data wires to
A0, A1, A2, and A3.

Only you know which pin you picked for which
sensor, so either inspect the wiring and trace it
back to each sensor to find out, or just guess
and check until you get the following code ref-
erencing each correctly.

The following code will set up and name each
sensor to a descriptive variable for easy refer-
encing later. You’ll need to specify the correct
analog pin for each, and the frequency at which
the data will emit:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 var leftToe = new five.Sensor("A0");
 var leftHeel = new five.Sensor("A1");
 var rightToe = new five.Sensor("A2");
 var rightHeel = new five.Sensor("A3");
});

So what’s happening here? Well, you need a
new variable for each sensor, in order to track
their data output separately. Johnny-Five has a
class called Sensor, which we use when we in-
stantiate a new copy of each FSR (two for each
shoe). We’re naming each variable descriptive
names so things don’t get too confusing!

Logging Output of Sensors
Now that your sensors have been set up, we
gotta get some of that data out! This is pretty
simple. You’ll use the data event that is emitted
every time the computer receives data from the
Arduino via the USB serial connection.

In the following example, we’re setting up a
callback to console log the data value from
each sensor (this allows you to make sure your
wire connections are correctly set up):

232 Make: JavaScript Robotics

Running the Code with Johnny-Five

https://github.com/rwaldron/javascript-robotics

leftToe.on("data", function() {
 console.log("left toe: ", this.value);
});

leftHeel.on("data", function() {
 console.log("left heel: ", this.value);
});

rightToe.on("data", function() {
 console.log("right toe: ", this.value);
});

rightHeel.on("data", function() {
 console.log("right heel: ", this.value);
});

What’s this data event all about? Well, each
time Johnny-Five receives some data over serial
from the analog pins you connected your sen-
sors to, the sensor values are sent in the data
event emission. This event is simply catching
this, and console-logging it out to the terminal.

When you first run this file via Node.js, you
should see lots of logs spilling into your termi-
nal! This is good, as it means that things are
starting to work.

However, be sure to check for the following:

• All four sensor labels are showing up in
your console log.

• All values should read 0 if no pressure
is being applied to the sensors.

Double check your wiring if these sanity checks
are not as expected.

If it’s good to go, put the shoes on and start
pressing each sensor one by one, jumping in
the air, and dancing like you just made some
amazing magic shoes. Look at those values
change!

These values should fall between 0 and 1023.
This will be the range you can play with when
deciding on behaviors from your shoes to code
for. Take a note of what the average value
seems to be when your own body weight is ap-
plied to the shoes. A good ballpark to sanity
check with is that medium pressure normally

returns a value above 650, and heavy pressure
is in the 900 figures, close to the 1023 limit.

Example Behavior
Let’s look at setting up simple behaviors to per-
form actions in your code with.

For example, how would you check to see if
someone wearing these shoes is standing still?
Let’s break this down first by imagining some-
one standing still, with both feet flat to the
ground. Logically (and pretty obviously), both
the toe and heel sensors belonging to a shoe
would be having a consistent pressure applied
to them, right?

Knowing this, you can apply simple condition-
als to test for standing behavior. See the code
loop in Example 14-1 (place it within your
board’s ready callback) which tests for a left
shoe stand.

First, you’re setting up two handy functions in
the preceding example. The isPressed() func-
tion allows you to pass in a sensor data value,
and it will then run a check to see if the value is
high enough to validate a solid press of the
sensor.

The second function, isStanding(), uses the is
Pressed() function declared earlier to test if all
sensors are being pressed simultaneously. If so,
it simply returns true. If not, it will return false.
You can use this function as a boolean value in
your code.

Pretty cool, huh? Now change this code to also
report if you’re standing on your right foot, and
then test for standing on both feet!

You can use similar conditionals to test for
things like heel and toe tapping. This is your
next challenge, once you’ve mastered standing!

What’s Next?

You can do so many things with four simple
pressure sensors. Here are a few things to get

233Chapter 14: Meow Shoes

What’s Next?

Example 14-1 Testing for a left shoe stand

// change this value to suit your weight/pressure needs, as explained above
var pressureThresh = 800;

// this tests if a sensor is currently being pressed hard enough
function isPressed(val) {
 if (val > pressureThresh) {
 return true;
 } else {
 return false;
 }
}

// this tests if both sensors in the left foot are being pressed simultaneously
function isStanding() {
 if (isPressed(leftToe.value) && isPressed(leftHeel.value)) {
 return true;
 } else {
 return false;
 }
}
// main loop, every 25 ms
this.loop(25, function() {
 if (isStanding()) {
 console.log("Standing on your left foot!");
 } else {
 console.log("Not standing");
 }
}); // end loop

you thinking, I’m sure you will think of even
cooler uses that will truly delight!

• Make each tap emit a different meow
sound effect. Your pets and family
might not be all that impressed with
this as the novelty wears off. Take it
from someone who knows.

• Create a music sequencer, with a differ-
ent note coupled to each sensor. I have
included a simple example of this to
get you up and running in the code
repository for this book. Yay!

• Navigate through an RPG game with
your feet.

• Send secret Morse code messages to
your loved ones via the art of interpre-
tive dance.

• Create a painting application that lets
you make art with simple choreogra-
phy.

• Make another pair for a friend and
compete in interactive balancing, run-
ning, and sports matches.

But most of all, enjoy your new Meow Shoes,
and have fun coding!

234 Make: JavaScript Robotics

What’s Next?

Appendix

All of the projects in this book have prerequi-
sites for your development environment and
hardware configuration. For most projects, at a
minimum, you’ll need to install the latest stable
version of Node.js, the Johnny-Five library, and
StandardFirmata firmware on your Arduino.
Projects that require a different setup will make
those requirements clear and provide steps to
get you up and running. If you need help instal-
ling and configuring your software or hardware,
we’ve provided some basic instructions here to
get you started.

Installing Node.js

To use Johnny-Five, you’ll need Node.js v0.10.x
or later. You can find prebuilt installers for Mac
and Windows at http://nodejs.org/download/.
On Linux, you should be able to install it from
your Linux distribution’s package manager (e.g.,
apt-get install node on Debian or Ubuntu).
On Raspberry Pi, we suggest you use the pack-
ages from node-arm. If you need to update
npm, you may do so using npm install -g

npm.

Installing Johnny-Five

You can install Johnny-Five via npm (which
comes with Node.js). In most cases, getting

started is as simple as the following (on Mac or
Linux):

mkdir nodebot && cd nodebot;
npm install johnny-five;

Now open your text editor and create a new file
called blink.js. In that file, type or paste the fol-
lowing:

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
 var led = new five.Led(13);

 led.blink();
});

Make sure the board you’re using (usually an
Arduino, which you must flash as described in
“Arduino”) is plugged into your host machine
(desktop, laptop, or Raspberry Pi). In your termi-
nal, type or paste the following:

node blink.js

The built-in LED on pin 13 should start blinking!

Troubleshooting
If the preceding instructions didn’t work as ex-
pected, make sure that StandardFirmata is in-
stalled on the board (see “Arduino”).

235

A

http://nodejs.org/download/
http://bit.ly/19M8Ny4

Sometimes Windows systems will fail to com-
pile native dependencies, so if you run across
this case, try the following:

npm install johnny-five --msvs_version=2012

More Information
The Johnny-Five Wiki has lots more information
to get you started using the library, including a
complete Getting Started Guide.

Configuring Your Hardware

Depending on which hardware platform you’re
using, you may need to do a little setup. Here
are instructions to get you started on the plat-
forms used by projects in this book.

Arduino
When using Johnny-Five and an Arduino, you’ll
need to be sure that the Firmata firmware is in-
stalled. Though some Arduino boards may
come pre-flashed with a version of the Firmata
firmware, you should make sure you’re running
the latest version. Follow these steps to install
StandardFirmata on your board:

1. Download and install the Arduino IDE.

2. Plug in your Arduino or Arduino com-
patible microcontroller via USB.

3. Open the Arduino IDE, select:
File→Examples→Firmata→StandardFir-
mata.

4. Under the Tools menu, ensure the cor-
rect board type and serial port are se-
lected.

5. Click the Upload button.

If the upload was successful, the board is now
prepared and you can close the Arduino IDE. If
you get an error, be sure the correct Arduino
board type is selected (Tools→Board).

BeagleBone Black
Node should be preinstalled on your Beagle-
Bone Black—however, it may be out of date.
While connected to the Internet, run one of the
following update commands:

Rev C/Debian
sudo apt-get update
sudo apt-get upgrade

Older models/Angstrom
sudo opkg update
sudo opkg upgrade

Raspberry Pi
It is best to start with a clean build of the Rasp-
berry Pi. You can use NOOBS; for help with in-
stallation, try Raspberry Pi’s help section. Be
sure you have backed up any files on your SD
card that you want to keep prior to formatting
the card and installing NOOBS.

1. Download NOOBS from http://
www.rapberrypi.org/downloads/ and
select the NOOBS ZIP download or tor-
rent if you have a torrent client. This
may take a long time to download.

2. Format your SD card before copying
the NOOBS files onto it:

• Visit https://www.sdcard.org/
downloads/formatter_4/ and
download SD Formatter 4.0 for
either Windows or Mac.

• Install the software.

• Insert the SD card into your
computer’s card reader and
note the drive letter assigned
to it (e.g. E:/).

• In SD Formatter, select the
drive letter for your SD card
and format it.

3. When the download has finished, ex-
tract the files from the ZIP.

4. Copy the contents of the folder to your
SD card, and then remove the card

236 Make: JavaScript Robotics

http://bit.ly/1BuTQH7
http://bit.ly/1lKHbJ4
http://bit.ly/IGAqel
http://bit.ly/rasp-dl
http://bit.ly/19M8YJX
http://www.rapberrypi.org/downloads/
http://www.rapberrypi.org/downloads/
https://www.sdcard.org/downloads/formatter_4/
https://www.sdcard.org/downloads/formatter_4/

from your card reader and insert it into
the Raspberry SD holder.

5. Connect your Raspberry Pi to your
monitor or TV, starting with the hub
and then connecting the mouse, the
keyboard, and the WiFi adapter.

6. Switch the monitor/TV to the input
that the Raspberry Pi is connected to.

7. Plug in your USB power lead, and you
should see the NOOBS selection
screen.

8. Select Raspbian—this part can take
about 20 minutes.

When the install is finished, press the Enter key.
Your Raspberry Pi will reboot and the Raspberry
Pi Software Configuration tool will be dis-
played.

Configuring a WiFi adapter

Here is how to configure your WiFi adapter to
connect to a network:

1. Enter the following on the command
line to start the GUI desktop if it
doesn’t start automatically (Raspberry
Pi usually starts the GUI by default):

startx

2. Double-click the WiFi config which
brings up the wpa_gui window.

3. Select the “Manage Networks” tab, click
the scan button, and the Scan results
window will open.

4. Click the scan button and double-click
your network from the list. A new win-
dow will open. In the field labeled PSK,
enter your network password if re-
quired and click the Add button to save
your network. The window will close.

5. Close the window and the wpa_gui
window as well.

6. Double-click LXTermail icon, when the
window loads type:

sudo shutdown -r now

7. The Raspberry Pi will now reboot.

8. Log on using the default username pi
and the password raspberry.

9. Attempt an outside connection:

ping www.cnn.com

10. If the following output is displayed, you
have no network connection, and will
need to start back at step 1:

ping: unknown host www.cnn.com

You have now configured your WiFi adapter to
connect your home network to the Internet,
and you have tested it. At this point, you can
work with your Raspberry Pi headless, meaning
with no keyboard, mouse, or screen connected
so you access the Raspberry Pi via its network
port, WiFi adapter, or the console. Your PC and
Raspberry Pi must be on the same network and
have the same subnet.

Spark WiFi Development Kit
The Spark Core and Spark Photon are open
source, Arduino-compatible, and WiFi-enabled
microcontrollers. If you run into any problems
with installation and configuration, you can
check out Spark’s troubleshooting guide online.

If you haven’t already done so, you’ll need to
claim your Spark device.

Spark provides a mobile application for both
Android and iOS that automates this process,
but you can also do it from the command line
using their Spark CLI tool (see the documenta-
tion for detailed instructions for using the com-
mand-line tool):

1. Plug your Spark into your computer via
USB. Once it is connected, it should
start flashing blue—this means it’s in
“listening mode” and is ready to be set
up. This should always be the case for a

237Appendix A

http://www.spark.io
http://docs.spark.io/troubleshooting
http://docs.spark.io/cli/
http://docs.spark.io/cli/
http://docs.spark.io/cli/

new Spark, but if your Spark has been
used before, you can hold the MODE
button for 3 seconds (or 10 if you want
to erase all previous WiFi connections).

2. Install and run Spark CLI by typing the
following in your terminal:

npm install -g spark-cli
spark setup

3. Follow the prompts and create or log in
to a Spark account.

4. Take note of the access token that
you’re given during this setup. You’ll
need this later!

5. Spark CLI will take you through the
process of setting up your Spark for the
local WiFi network. Enter the security
information when asked. Once the WiFi
credentials are accepted and your
Spark connects, your Spark will begin
“breathing cyan” to indicate this. This is
a slow fading in and out of the light as
opposed to a steady blinking.

6. Once it’s in this stage, press Enter and
your Spark should be successfully
claimed!

The Spark Cloud provides you with two keys
that you’ll need to access your Spark device.

1. You will need your general account Ac-
cess Token as well as the Device ID for
the specific Spark device you are work-
ing with. If you didn’t save it as part of
the setup process earlier, the Access To-
ken is available under settings of the
online Spark.io Editor. The Device ID for
each of your claimed devices is avail-
able in the device list panel.

2. You have the option to give your Spark
a nickname for easier reference. When
authenticating the Spark in your code,
you can specify either the nickname or
the full Device ID.

3. It’s a good idea to access your Spark
Device credentials as properties of pro
cess.env and keep them out of our
source code. Access your credentials as
environment variables by creating a file
in your home directory called .sparkrc
that contains the following:

export SPARK_TOKEN="your spark token"
export SPARK_DEVICE_ID="your device id"

4. Add the following to your .rc file of
choice:

source ~/.sparkrc

To set up the environment vari-
ables on Windows, see Spark’s
documentation on environment
variables.

When working with Johnny-Five, instead of us-
ing the Spark Cloud, you’ll be communicating
with the Spark device locally using a custom
firmware called VoodooSpark. VoodooSpark
mimics the standard Spark firmware API and
provides access to the Spark functionality via a
local TCP connection:

1. With the Spark connected to a WiFi net-
work, open the Spark.io Editor and log
in to the Spark Cloud. Download Voo-
dooSpark, then copy and paste the en-
tire contents of voodoospark.cpp into
the Spark.io Editor window. Click “Veri-
fy” and then “Flash” to load Voodoo-
Spark onto the Spark in exactly the
same way you’d load any other Spark
Application.

2. Alternatively, you can use the Spark CLI
tool, which already has a precompiled
build of VoodooSpark. With the Spark
powered on and connected via USB,
you can run the following command:

spark flash $SPARK_DEVICE_ID voodoo

238 Make: JavaScript Robotics

http://Spark.io
http://bit.ly/1BuWqwK
http://bit.ly/1BuWqwK
http://bit.ly/1BuWqwK
http://Spark.io
http://voodoospark.me
http://voodoospark.me

Android Development

The following instructions are required for
Chapter 6.

Installing Android Studio
You can get the Android Studio from the An-
droid Developer site.

After installing Android Studio, make sure you
have the following SDKs installed:

• Google Play Services

• Google Repository

• Android Wear

Creating an Android Project
First, create a project called VoiceController,
as shown in Figure A-1.

Figure A-1 Create new project

Then, select the SDKs used in this project. Be-
cause you are creating both mobile (phone and
tablet) and wear applications, you will need to
select both SDKs, as shown in Figure A-2.

Figure A-2 Select SDks

Select a Blank Activity for your mobile applica-
tion (Figure A-3).

Figure A-3 Add Blank Activity to Mobile

And create a MainActivity, as shown in Fig-
ure A-4.

239Appendix A

http://bit.ly/19M90Bm
http://bit.ly/19M90Bm

Figure A-4 Create MainActivity

Then add a Blank Wear Activity to your wear ap-
plication, as shown in Figure A-5.

Figure A-5 Add Blank Wear Activity

And finally create a WearMainActivity (Fig-
ure A-6).

Figure A-6 Create WearMainActivity

Installing Volley
Download Volley, then place the JAR in your
VoiceController/app/libs/ folder. In Android Stu-
dio, right-click it and select Add As Library.

240 Make: JavaScript Robotics

http://bit.ly/1BTWibw

Index

Symbols
3D Hubs printing service, 226
3D printers, 226

hiring/borrowing, 226
8x8 LED matrix boards, 133

A
a priori data, 200
accelerometers, 171-171

wiring, 171
Access Token/Access Token Secret

(Twitter), 155
saving as environment

variables, 155
active area (FSR), 225
actuator (delta robot), 210
Adafruit, 147, 163

Neopixels, 163
power guide for, 166

Adafruit mini LED backpacks, 135
MatrixView class and, 144
wire order for, 138

Amazon, sourcing materials from,
147

Analog Input pin, 94
Android browser, 97
Android development, 239
Android projects, creating, 239
Android Studio, 101

installing, 239
Android Wear, 94, 100-108
Ångström, 91
animation class

enqueueing animation
segments, 83-85

joint coordinate system and, 78
Animation.Class, 81-83

array of Servo.Arrays as target,
82

array of servos, targeting, 82
Servo.Array as target, 82
turning, 87

Arduinos, 59, 225
configuring, 236
connecting to, 149
controlling LED matrix with,

133
delta robots and, 214
Firmata version for HT16K33

devices, 140
flashing, wireless modules and,

13
FSRs, connecting, 230-231
Mega, 74
Micro, 230
Motor Shield, 60
motors and, 37
Nano, 136
power pin for, 178
powering servos from, 114

PWM support on, 149
soldering, 231
ultrasonic sensors, connecting,

178
Uno, 18, 230

artificial intelligence, 191
Asimo, 1
Atlas, 1
autopilot (on commercial aircraft),

192
azimuth disk, 113

arm, building, 122
making, 117
positioning, 118
support, building, 119
wiring light for, 123
wiring servo for, 114

B
BatBot project, 191-205

algorithm for, implementing,
201-204

artificial intelligence, 191
autonomy, 200-204
electromagnetic interference,

195
remote control, implementing,

196-200
troubleshooting, 204

battery packs

241

CheerfulJ5 project, 159
for Interactive RGB LED Display,

162
for Spark Cores, 46

BeagleBone Black, 89, 91
configuring, 236
GPIO power output of, 92
Interactive RGB LED Display

and, 161-176
Johnny-Five framework and, 91
LEDScape, 163
powering with USB, 91
Rev C model, 162
web apps on, 143
wiring buttons into, 169

beaglebone-io I/O plugin, 91
wrapper, adding, 169-171

blink method (led), 151
Bluetooth, 192
Board object (Johnny-Five), 150
BOE Bot Robotics Kit, 194
bonescript package (Node.js), 91
BotBoarduino, 74
Bower, 66
breadboard wiring

Arduino servo shield vs., 18
for motor drivers, 45
for NodeBoats, 46-47
for piDuino project, 64
for servos, 54
for SimpleBot project, 5
for wireless projects, 10
FSRs for, 230

C
cable assembly, 136-140

branches, making, 138
troubleshooting, 140

cable ties and cardboard, 4
capacitors, 195
cardboard, 4
Cartesian robots, 208
Cascades, Haar, 192
ceramic capacitors, 46
chassis, printing, 88
CheerfulJ5 project, 147-160

batteries, powering with, 159

code for, 149
extracting colors from tweets,

153
packaging, 159
power for, 157
Spark WiFi Development Kit,

157-159
Spark-IO module and, 158
Twitter Streaming API, 155-157
wiring, 149

CheerLights service, 147, 152-154
CheerLights ThingSpeak channel,

152
Chip Antenna, 43
Chrome, 97
circuit controller, 99
Clavel, Reymond, 208, 216
closed control loop, 201
Cloud9 IDE, 91
CNC machines, 192
color maps, defining, 151
command line, controlling from,

72
commands server, 95-97

EventEmitter pattern and, 99
common anode RGB LEDs, 149,

151
common cathode RGB LEDs, 149,

187
conductive layer (FSR), 225
constraint programming, 20
Consumer Key/Consumer Secret

(Twitter), 155
saving as environment

variables, 155
continuous rotation servos, 18

in BatBot project, 196-198
modding standard servos into,

3
troubleshooting, 6, 9

controller boards, 133
soldering, 135

controllers, 88
crimping wires, practicing, 139

soldering vs., 228
cURL, 62

D
DaVinci surgical robots, 192
Debian, 91
delta robots, 207-221

3D printing parts for, 220
actuator, 210
anatomy of, 209-210
defined, 208
end effector, 209
Junky Delta project, 210-219
kinematics and, 216-219
kits for, 220
lower arm, 209
measuring for kinematics, 216
powering, 214
Robot Army, 220
TapsterBot, 220
universal joint, 209
upper arm, 209
wiring, 214

Descriptive Geometric Kinematic
Analysis of Clavels Delta Robot
(Zsombor-Murray), 219

DFRobot shield, 73
differential drive, 10
Digital Output pin, 94
diode, 133
drilling clean holes, 211
driver IC (to control LED matrices),

133
dualshock-controller module, 198
dynamic walking gait, 85

E
E6000 QuickHold Contact

Adhesive, 36
electromagnetic interference, 195
elevation disk, 122

wiring servos for, 114
enclosures, creating, 137
end effector (delta robots), 209

positioning, 218
Ethernet, connecting BeagleBone

Black, 91
EventEmitter pattern, 99
events, Johnny-Five, 181

242 Index

express generator, 142
routes, replacing, 143

express REST API, 95
Express server, 67

F
Firmata protocol, xi, 236

configuring for wireless
modules, 13

controlling HT16K33 devices,
140

Force Sensitive Resistor (FSR)
connecting to Arduinos,

230-231
soldering, 226

Force-sensitive resistor (FSR), 225
forever module, 166
FTDI Console cables, 61
FTDI USB cable, 221
fully autonomous robots, 191, 192

G
Gaultier, Julian, xi
Getting Started with Arduino kit,

147
gnomon, 109

building, 123
disk, making, 117
positioning, 118
support, building, 119

H
H-Bridge chip, 37, 63
hackerspace, 226
HC-SR04 ultrasonic sensor, 178
heat shrink tubing, 137
Hexapod project, 71-88

assembling, 74-77
command reference, 88
coordinate system for, 78
coxae, installing, 76
femurs, installing, 77
rear legs, controlling, 73
testing safely, 77

tibiae, installing, 77
trimming servos, 78-80
turning, 87
walking with Animation.Class,

85
Homebrew, 14
house lights, controlling, 92
HT16K33 based I2C 8x8 LED

matrix boards, 133
controller board for, 135
controller driver, 134

HTTP client libraries, 104

I
indoor sundial project, 109-129

Arduino, mounting, 114
base walls, building, 118
base, building, 116
code for, 124-128
core structure, building, 113
daylight saving time and, 129
disk support, building, 119
making disks, 117
servos, code for, 115-116
servos, configuring, 115
servos, wiring, 114-116
tick function, 126

Intel Galileo, web apps on, 143
Inter-integrated circuit (I2C), 134

Adafruit mini LED backpacks
and, 135

addresses, 134
Interactive RGB LED Display,

161-176
accelerometers, adding,

171-171
animation, adding, 168
BeagleBone Black board, 162
code for, 163
photoresistors, adding, 171-171
power for, 162
sensors, 163
testing, 167

Internet of Things, 152
inverse kinematics, 217

J
JavaScript

forcing synchronous operation
of, 202

IDE for, 142
sketches, Arduino vs., xi
temporal library, 202, 215

Johnny-Five framework, xi, 59
BeagleBone Black and, 91
Board object, 150
connecting microphone to

relay in, 94-94
controlling motors with, 63
controlling relay circuits with,

93
developing APIs for hardware,

131
initializing, 63
installing, 235
Led.Matrix class, 141
Led.RGB class, 150
listeners, 183
Ping object, 179
sensors, setting up, 232
Servo API, 197
Sonar API, 199
sonar sensors and, 194
Spark-IO module, 44
testing Arduino connection for,

231
testing over WebSockets, 62

joint coordinate system, 78
JSConf 2013, 17
JST connectors, 228
Junky Delta project, 210-219

Arduino, connecting, 214
kinematics and, 216-219
powering, 214
wiring, 214

K
keypress events, 50
Kinect, 88
kinematic chains, 216
kinematics, 216-219

inverse, 217

243Index

L
Lasers Impress Both Enemies &

Relatives, Thank You (LIBERTY)
code for, 185
trigger for, 184
wiring for, 184-185

Lasers Impress Both Enemies and
Relatives, Thank You (LIBERTY),
184-186

Leap Motion Controller, 88
Led class (Johnny-Five), 63
LED Matrix (Adafruit), 133
Led.Matrix class (Johnny-Five), 141

API for, 141
Led.RGB class (Johnny-Five), 150
LEDs, 131-145

matrices, connecting to cable
assembly, 138

matrices, specifying number of,
141

matrix, defined, 133
powering many, 166
preparing matrices, 134
securing, 140
specifying type of, 141
testing, 141

LEDscape, 163
demo code for, 165

Linux, 14
localtunnel service, 64

address, storing, 67
posting to web app, 66

lower arm (delta robots), 209
Lynxmotion, 72

Phoenix 3DOF Hexapod
chassis, 74

M
machine learning, 192
Magician Chassis, 60, 64
magnetic contact switch, 183

wiring, 183
Maker Shed, 147, 163
Mars rovers, 192
MatrixView class, 144
MaxBotix sensor, 199

quirks of, 200
maze solving algorithms, 200
meow shoes project, 223

behaviors, sample, 233-233
code for, 231-234
connecting the shoes, 228
connecting to Arduino, 228
sensor inserts, 226

Messages API (Google Play
Services), 108

micro USB cable, 226
microphone circuit, 90

preamplifier, building, 93-94
testing, 94

microUSB breakout board, 65
momentary push buttons,

187-187
moondial, 128
motor driver, 37

controlling speed with, 37
powering, 47
soldering headers on, 45
STBY pin, 48

motors
controlling with Johnny-Five,

63
troubleshooting, 65

N
Nest thermostat, 192
neural networks, 192
ngrok service, 64
node-serialport module, xi
node-tesseract NPM module, 33
node-tweet-stream module, 155
Node.js

installing, 235
installing on Raspberry Pi, 61

NodeBoats, 35-57
building the hull, 52-53
coding for, 49-51
keypress events for, 50
rudders, adding, 53

NodeConf 2012, 59
NOOBS, 236

O
OCROBOT matrices (AliExpress),

133
wire order for, 138

offset option (servo), 78
open control loops, 201
Open Pixel Control, 163
OpenCV, 69

delta robots and, 221
optical character recognition

(OCR), 33

P
Parrot AR drones, 192
Pedersen, Cam, xi
Phoenix 3DOF Hexapod chassis

(Lynxmotion)
attaching servos, 75
mounting Arduino Mega, 74
mounting electronics on, 74

phoenix.js, 72-74
Animation.Class and, 83-85
centering servos with, 75
joint coordinate system in, 78
servos, adding ranges to, 80
servos, trimming, 78-80

photoresistors, 171-171
wiring, 171

photovoltaic sensors, 185
physical security projects, 177-190

LIBERTY project, 184-186
PoEMS project, 183-184
SAUSAGE project, 181-183
SINBaD project, 186-189
SUSPECT project, 178-181

pick and place machines, 208
piDuino5 project, 59-69

code and dependencies,
downloading, 61

hardware, assembling, 64-66
web app, downloading, 66
wiring breadboard for, 64

Ping object (Johnny-Five), 179
pixel photo booth, 172
Playstation DualShock Controller,

192

244 Index

dualshock-controller module,
198

mapping servo movement to,
199

Playstation Dualshock Controller
troubleshooting, 204

Point-of-Entry Monitoring System
(PoEMS), 183-184

Popsicle sticks, drilling, 212
Primus abstraction layer, 95-97
pulse width modulation (PWM), 19

pins, 47
pulse-width modulation (PWM),

149

R
RaphaelJS, 144
Raspberry Pi, 59

configuring, 236
FTDI Console cables and, 61
installing Node.js, 61
web apps on, 143
WebSockets and, 63
WiFi adapter, configuring, 237

ready callback handler, 63
relay abstraction (Johnny-Five

abstraction), 94
relay circuit, 90

building, 92
controlling, 93
powering, 92

remote controlled robots, 191
remote-controlled (RC) cars, 192
remote-controlled robots, 192
REPL (read-eval-print loop), 72,

198
REPL (Read-Eval-Print-Loop)

using, 151
resistors, 226

electromagnetic interference
and, 195

for RGB LEDs, 149
LEDs and, 133

RGB LEDs, 187
testing, 166
wiring, 164-166

RGB-123 panels, 163

powering, 166
Robot Army delta, 220

S
Safari, 97
SainSmart Uno R3, 194
Samsung Galaxy Gear Live, 89
SCL line on I2C, 134
SDA line on I2C, 134
self-driving car (Google), 192
semi-autonomous robots, 191,

192
algorithm for, implementing,

201-204
closed control loops, 201
maze solving algorithms for,

200
open control loops, 201

sensor abstraction (Johnny-Five
abstraction), 94

sensors, 163
adding to Hexapod, 88
logging output of, 232

serial terminals, faking for wireless
communication, 14

Servo API (Johnny-Five), 197
servo cozy, 113
servo shield, Arduino, 18
Servo.Array object (phoenix.js), 73

array of, targeting with
Animation.Class, 82

targeting with Animation.Class,
82

servos, standard, 18
adding ranges to, 80
aligning/initializing, 75
array of, targeting with

Animation.Class, 82
attaching to Phoenix chassis,

75
centering, 22
centering shaft of, 114
clearance for, 213
controlling, 24-28, 54
converting into CR servos, 3
cozy for, 113
gluing to wood, 20

on boats, 53
range of, finding, 116, 214
trimming, 78-80
troubleshooting, 6, 9, 215
wiring, 53

Shapeways 3D printing service,
226

silicone, 36
simple circuits, 192
Simple Ultrasonic Sensor Project:

Experimental Control Test
(SUSPECT), 178-181
code for, 178-181
wiring for, 178

SimpleBot project, 1-15
breadboard wiring for, 5
drive considerations, 10
making semi-autonomous, 194
materials for, 2
testing, 6
troubleshooting, 6, 9
wireless, 10-15

sketches, Arduino vs. JavaScript, xi
smartphone, interfacing with,

66-67
SMS Augmented Ultrasonic

Sensor Application: General
Experimentation (SAUSAGE),
181-183

Socat, 14
solderable boards, 92, 135

heat damage, avoiding, 136
soldering

Arduinos, 231
crimping wires vs., 228

soldering wires together, 137
Sonar API (Johnny-Five API), 199
sonar sensors, 194

pointing, 198-200
reading, 198-200

spacer layer (FSR), 225
Spark CLI command-line tool, 43

access credentials, storing, 238
installing, 238

Spark Cloud, 158
Spark Core, 35, 43-45

claiming, 237
development kit, 237
identifying in code, 45

245Index

motors and, 37
setting up, 43
testing, 43
troubleshooting, 43
voltage requirements for, 46, 47
VoodooSpark firmware,

installing, 238
wiring, 157

Spark Fun, 147, 163
driver for, 37
Joystick shield, 88

Spark Maker Kit, 148
Spark Photon, 237

claiming, 237
Spark WiFi Development Kit, 147,

157-159
Spark-IO module, 44

CheerfulJ5 project and, 158
Sphero, 57
spooky lights project, 131-145

cable assembly, constructing,
136-140

lights, assembling, 134-140
lights, decorating, 140
user interfacing, adding, 144
web application for, 142-145

Standard Firmata library, 62
state machines, 29-31
state, of robots, 201
static walking gait, 85
Status Indicator Necessary,

Buttons and Diodes (SINBaD),
186-189
code for, 187
wiring, 187-187

STBY pin on motor board, 48
stk_500 sync error, 13
Styrofoam, 194
SublimeText, 142
submarine motor pod, 37-42
SumoBot Jr., 194
SunCalc npm package, 124

T
Tamiya Submarine Motor, 37-42

closing/sealing, 42
components of, 37

connecting to breadboard, 48
drilling holes into, 41
inserting motor, 40
positioning in the hull, 52
soldering and, 39
testing, 39
variants of, 38

TapsterBot, 220
Telnet, 13
temporal library (JavaScript), 202,

215
Temporal module, 55
Tessel, 172
testing

Hexapod project, 77
Interactive RGB LED Display,

167
LEDs, 141
microphone circuit, 94
RGB LEDs, 166
SimpleBot project, 6
Spark Core, 43
Tamiya Submarine Motor, 39
WebSockets, 62
WiFi module, 12

ThingSpeak, 147
Trossen Robotics, 219
troubleshooting

servos, 6, 9
Spark Core, 43

TweetControl App, 152
Twilio API, 181-183

installing, 182
number formatting for, 183
Sandbox, 183

Twitter Application Manager, 155
access credentials, generating,

155
Twitter Developer account, 155
Twitter Streaming API, 147,

155-157
TypeBot project, 17-33

arm anatomy, 19-20
initializing, 28
software, writing, 24-33
wiring, 24

U
uFL Connector, 43
ultrasonic sensor, 178

quirks of, 200
threshold, finding, 179

universal joint (delta robot), 209
building, 211

upper arm (delta robots), 209
UPS, 3D printers and, 226

V
Velcro, 64
Velez, Raquel, 17
Virtual Serial Ports Emulator

(VSPE), 14
virtualjoystick.js library, 68
voice control, 89-108

Android Wear for, 100-108
commands server for, 95-97
mobile application for, 101-108
Web Speech API, 97

Volley HTTP client library, 104
installing, 240

VoodooSpark firmware, 43, 158
installing, 238

W
walking

row gait, 86
run gait, 87
tripod gait, 87
walk gait, 86
wave gait, 86
with Animation.Class, 81-83, 85
without animation class, 81

wall-follower algorithm, 200
waterproof construction, 36

servos and, 57
wires, 42

web apps, troubleshooting, 67
Web Speech API, 33, 97

limitations of, 97
WebSockets

246 Index

establishing connections with,
68

low-latency control with, 63
Primus and, 95-97
testing Johnny-Five framework

with, 62
WebSocketServer, 63
WiFi

connecting BeagleBone Black,
91

usb adapter for, 162
Wii Motion Controller, 88
Williams, Chris, xi
Windows

Telnet client, installing, 13
VSPE for, 14

wireless modules, 10
configuring, 12
connecting over serial, 12
Firmata and, 13
power and, 11
types of, 11

wires
soldering, 39
waterproofing, 42

wiring
accelerometers, 171
buttons into BeagleBone Black,

169
magnetic contact switch, 183
momentary push buttons,

187-187

photovoltaic sensors, 185
RGB LEDs, 164-166
servos, standard, 53
Spark Core, 157

ws package (Node.js), 63
wscat library, 62

X
XBee radios, 192

troubleshooting, 204

Z
Zsombor-Murray, Paul, 219

247Index

About the Authors
Jonathan Beri is a Maker of all sorts, with an affinity for APIs, robots, and obscure JavaScript
frameworks. He currently works at Google as a Developer Advocate, making the lives of developers
easier, one day at a time. As a Developer Advocate, he’s helped launch the Google+ Hangout Apps
Platform, Google+ Sign-In, and the Google Apps Marketplace. He can be found on Google+ as Jon-
athanBeri.

Donovan Buck is an aspiring roboticist and a contributor to Johnny-Five—the open source, Java-
Script, and Arduino programming framework. He is a strong believer in the value of continuing ed-
ucation in computer science. His own CS education began at age 5, ferrying punch cards around
the data center for his dad and swapping out magnetic tapes while perched atop boxes of printer
paper. He can be found on Twitter and GitHub as @dtex.

Kassandra Perch is an Open Web Engineer and Educator at Bocoup. She’s been a JavaScript ad-
dict for her entire career as a programmer, and enjoys JavaScript in browsers, on the server, and of
course on robots! When she’s not trying new robotics platforms, she’s working on crafting, or en-
joying her evenings in Austin, Texas. She can be found on Twitter, GitHub, and most places as @no-
debotanist.

Bryan Hughes is a frontend developer at Rdio and the lead organizer for the NodeBots SF meetup
group. Bryan also created the Raspi-IO library which provides Raspberry Pi support for the Johnny-
Five robotics framework. Bryan received his Ph.D. in Electrical Engineering and Computer Science
from Texas Tech University in 2010. When not coding, he can be found spending time with his
amazing partner and going wine tasting, attempting to become a photographer, or hiking. He can
be found on Twitter at @nebrius and on GitHub as @bryan-m-hughes.

Raquel Vélez has been a core member of the NodeBots movement since 2012. Prior to becoming
a web developer, she was a full-time roboticist, having studied Mechanical Engineering at the Cali-
fornia Institute of Technology and completed some masters work in robotics engineering at the
University of Genoa, Italy. She has worked at a variety of universities and laboratories around the
globe, including the NASA Jet Propulsion Laboratory, the MIT Lincoln Laboratory, and Applied
Minds, Inc. She can be found on Twitter and GitHub as @rockbot.

Lyza Danger Gardner is a dev. Since cofounding Portland, Oregon–based mobile web startup
Cloud Four in 2007, Lyza has tortured and thrilled herself with the intricate ins and outs of the ba-
zillion devices and browsers now accessing the web globally. Lyza is also coauthor of Head First Mo-
bile Web (O’Reilly). She can be found on Twitter and GitHub as @lyzadanger.

Susan Hinton is a JavaScript developer who likes to tinker with hardware. A Maker at heart, she’s
no stranger to minor burns from soldering irons and 3D printers. She’s a regular contributor to the
open source Node.js electronics scene, and enjoys teaching others how to immerse themselves in
the nerdiverse. Suz can be found on Twitter and GitHub as @noopkat.

Rick Waldron is an Open Web Engineer at Bocoup and the creator of Johnny-Five, a JavaScript
framework for hardware programming on the Node.js platform, and is working towards establish-
ing standards for general hardware APIs. Currently supporting Arduino, BeagleBone, Raspberry Pi,
Linino One, Pinoccio, Spark-Core, Light Blue Bean, pcDuino, Intel Galileo and Intel Edison, his work
was recently highlighted at Intel’s IDF2014. As a jQuery Core committer and former board member
of the jQuery Foundation, Rick serves on Ecma TC39 as a representative of jQuery, channeling the

http://www.cloudfour.com
http://shop.oreilly.com/product/0636920018100.do
http://shop.oreilly.com/product/0636920018100.do

project’s vast real-world experience into contributions to the design of the next version of Java-
Script. He can be found on both Twitter and GitHub as @rwaldron.

Sara Gorecki first discovered her love of code through hardware hacking and experimenting with
Johnny-Five. An alum of both Cornell University and the Flatiron school, she’s currently working as
a Node Engineer at Penton Media. In her quest to strengthen her local JavaScript community she
cofounded NYC’s Queens JS meetup. She can be found on Twitter and GitHub as @opheliasdaisies.

Julián Duque is a developer and educator by passion currently working as software engineer at
NodeSource. He organises multiple community events in Colombia like MedellinJS, NodeBots Day
and JSConf Colombia. He loves sharing knowledge and is currently collaborating as evangelist in
the io.js project and teaching programming fundamentals and JavaScript through NodeSchool and
NodeBots events in Colombia and Latin America. He can be found on Twitter at @julian_duque and
on GitHub as @julianduque.

David Resseguie began his programming journey at the age of 5 when his dad bought an Apple
IIe computer. Instead of just playing Stickybear Numbers, he wanted to know how it worked. He’s
enjoyed making and developing things with technology ever since. David is an avid collector of toy
robots and loves the opportunity to combine that interest with software development through
hardware hacking, Internet of Things, and NodeBots. He also has a passion for STEAM education
and enjoys speaking at schools, using robotics to get kids excited about careers in science and
technology. He can be found on Twitter and GitHub as @Resseguie.

Andrew Fisher is a creator of things that combine web tech, physical computing, and lots of data.
He is an interaction researcher and developer, exploring how behaviour influences and is influ-
enced by technology and machines. Andrew is the lead organizer of NodeBots Melbourne and is a
strong evangelist on the use of web technologies with hardware. He can be found on Twitter and
GitHub @ajfisher.

Pawel Szymczykowski is a software engineer at Wedgies and an enthusiastic maker of various
things both physical and code-based. He discovered his passion for both hardware and JavaScript
as a result of the NodeBots movement at JSConf 2013. He came up with a simple open source laser
cut sumo bot kit for the NodeBots Day event in Las Vegas which ended up making appearances at
similar events around the world. You can find it online at sumobotkit.com. He can be found on Twit-
ter @makenai.

Anna Gerber is a core member of NodeBotsAU. She is also a technical project manager with the
ITEE eResearch Group at the University of Queensland, Australia. She can be found on Twitter @an-
nagerber.

Emily Rose is a transhumanist with a passion for queer cyborg artistry. They are currently experi-
menting with ambient intelligence, adaptive automation, and evolving interfaces. Emily is a world-
class speaker who has brought humor and enlightenment to audiences across the globe. Original
NodeBots curator, founder of DanceJS, and one of the most interesting individuals in the known
universe; Emily is an unnatural force of pure unbridled creativity. They can be reached via Twitter or
via GitHub.

https://twitter.com/nexxylove
https://github.com/emilyrose

Colophon
The cover photo of a modified Robot Army Delta Bot is by Pawel Szymczykowski. Special thanks to
Mark and Sarah for letting Pawel borrow it for the photo shoot.

The cover fonts for Make: JavaScript Robotics are URW Typewriter and Guardian Sans. The text font
is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Julián Duque

	Chapter 1. Building Robots with Lo-tech Materials
	Building the SimpleBot
	Bill of Materials
	Build Steps
	Installing Node.js Packages
	Testing the Build with a Basic Program
	Troubleshooting
	A Simple Driving Program
	Troubleshooting

	Cutting the Cord
	Building a Wireless SimpleBot
	Wiring Up
	Controlling the SimpleBot
	Troubleshooting

	What’s Next?

	Chapter 2. TypeBot
	Bill of Materials
	Understanding Your Servomotors

	Anatomy of a Robot Arm
	Arm Layout
	Arm Constraints

	Building the Hardware
	The Base and Shoulder
	The Elbow
	The Wrist
	The Finger
	The Brains

	Writing the Software
	Creating the Project Files
	Controlling the Servos
	Initialization
	Sequencing a Key Press
	Running for the First Time
	Fine-Tuning the Arm

	What’s Next?

	Chapter 3. Getting Started with NodeBoats
	Bill of Materials
	Tools

	The Submarine Motor Pod
	Why Use a Motor Driver?
	Motor Pod Components
	Modifying the Motor
	Testing the Motor
	Finishing the Motor
	Inserting the Motor
	Drilling into the Motor Pod
	Closing the Motor Pod
	Waterproofing Your Wires

	Setting Up Your Spark
	Testing the Spark

	Your First Spark Program
	Soldering the Motor Driver
	Wiring Up Your Boat
	Powering the Motor Driver
	Connecting the Spark and the Motor Driver
	Connecting the Motor

	Controlling Your Motor: The Code
	Adding Keypress Events
	Storing Keypress State

	Floating the Boat
	Steering with Servos
	Programming Servo Control
	Assembling the Rudder

	Setting Sail
	What’s Next?

	Chapter 4. piDuino5 Mobile Robot Platform
	Bill of Materials
	Tools

	Setting Up the Boards and Installing Software
	Installing Node.js on the Raspberry Pi
	Downloading the piDuino5 Code and Dependencies
	Plug in the Arduino
	Test Johnny-Five over WebSockets
	Walk Through app.js
	Initializing Johnny-Five
	Controlling the Hardware
	Low-Latency Control with WebSockets
	Connect from Anywhere

	Assemble the Hardware
	Controlling with a Smartphone
	Downloading the piDuino5 Web App
	Post localtunnel to the Web App
	Try the Web App on a Phone

	Walk Through app.js and index.html
	Storing the localtunnel Address and Frontend
	Serving the UI
	Touchscreen Joystick
	Establishing a Connection
	Sending Commands

	What’s Next?

	Chapter 5. Controlling a Hexapod with Johnny-Five
	Bill of Materials
	Controlling the Robot from the Command Line
	An Introduction to phoenix.js
	Assembling the Robot
	Prepare the Chassis
	Mount the Electronics
	Prepare the Servos
	Installing the coxae
	Installing the Femurs
	Installing the Tibias

	The Coordinate System
	Trim the Servos
	Trim the coxae
	Trim the Femurs
	Trim the Tibias

	Add Ranges to the Servos
	Walking Is Hard!
	Meet the Animation Class
	An Array of Servos as the Target
	A Servo.Array as the Target
	An Array of Servo.Arrays as the Target

	The First Animation Segment
	Walking
	The Row Gait
	The Walk Gait
	The Run Gait

	Turning
	Command Reference
	What’s Next?

	Chapter 6. Building Voice-Controlled NodeBots
	Bill of Materials
	BeagleBone Black

	Building Our Project
	Building a Relay Circuit
	Controlling the Relay Circuit from Johnny-Five

	Building a Microphone Preamplifier Circuit
	Connecting the Microphone to the Relay from Johnny-Five

	Building the Commands Server
	Simple Voice Control Using the Web Speech API
	Integrate the Commands Server with the Relay Circuit
	Advanced Voice Control Using an Android Wearable
	Android Mobile Application
	Android Wear Application

	What’s Next?

	Chapter 7. An Indoor Sundial
	Bill of Materials
	Foam Core Structural Pieces

	Building Our Sundial
	Cutting and Assembling the Core Structure
	Assemble the Mounting Board

	Wiring and Configuring the Servos
	Wiring the Servos
	Configuring the Servos

	Building the Lower Base
	Making the Disks
	Build the Base Walls and Base Disk Support
	Build the Base Walls
	Position the Disks
	Build the Disk Support

	Finish Parts and Construction
	Build the Azimuth Arm
	Construct the Elevation Arc
	Cut a Gnomon
	Wire Up the Sun

	Code to Make It Go
	Understanding sundial.js
	Set Up Some Configuration in sundial.js
	sundial.js Details

	Putting It All Together!
	Making It Go!
	What’s Next?

	Chapter 8. Spooky Lights
	Bill of Materials
	Choosing a Controller Board

	Background
	What’s an LED Matrix?

	Assembling the Lights
	Tools Required
	Preparing the Matrices
	Constructing a Cable Assembly
	Decorating the Lights
	Troubleshooting

	Controlling an LED matrix
	Preparing the Arduino
	Running a Test Program
	Matrix Constructor Options
	Drawing to the Matrix

	Developing a Web Application
	Development Tools
	Using the Express Generator
	Developing an API
	Adding a User Interface
	Extending the Application

	What’s Next?

	Chapter 9. CheerfulJ5
	Bill of Materials
	Wiring the Circuit
	The CheerfulJ5 code
	Connecting to the Arduino
	Controlling an RGB
	Using the Node.js Read-Eval-Print Loop
	Defining the CheerLights Color Map
	Accessing the CheerLights ThingSpeak API
	Using the Twitter Streaming API

	Going Wireless with the Spark WiFi Development Kit
	Adding the Spark to Your Circuit
	Using the Spark-io IO Plugin
	Switching to Battery Power

	Packaging It Up
	What’s Next?

	Chapter 10. Interactive RGB LED Display with BeagleBone Black
	Bill of Materials
	BeagleBone Black
	WiFi USB Adapter (optional)
	External 5V Power Supply (Semi-Optional)
	RGB LEDs
	Sensors
	Miscellaneous

	Getting Ready: Software
	LEDScape
	Wiring Your LEDs

	Wiring Up Your RGB LEDs
	Code Time! Let’s Bring in the JavaScript
	Running a Test Script
	Adding in Johnny-Five/Beaglebone-io
	Adding a Photoresistor
	Changing Colors with an Accelerometer

	What’s Next?

	Chapter 11. Physical Security, JavaScript, and You
	Simple Ultrasonic Sensor Project: Experimental Control Test (SUSPECT)
	Implementation

	SMS Augmented Ultrasonic Sensor Application: General Experimentation (SAUSAGE)
	Implementation

	Point-of-Entry Monitoring System (PoEMS)
	Implementation

	Lasers Impress Both Enemies and Relatives, Thank You (LIBERTY)
	Implementation

	Status Indicator Necessary, Buttons and Diodes (SINBaD)
	Implementation

	What’s Next?

	Chapter 12. Artificial Intelligence: BatBot
	Artificial Intelligence: The Basics
	Remote-Controlled Robots
	Semi-Autonomous Robots
	Autonomous Robots
	BatBot

	Bill of Materials
	Some Notes About the Materials

	Assembly
	Step 1: Remote Control
	Moving the Robot
	Controlling the Robot
	Pointing and Reading from the Sonar

	Step 2: Autonomy
	Implementing the Algorithm

	Troubleshooting
	What’s Next?

	Chapter 13. Delta Robots and Kinematics
	Bill of Materials
	Delta Anatomy
	Building Junky Delta
	Making It Move
	Predictable Positioning Through Kinematics

	More Sophisticated Delta Options
	TapsterBot
	Robot Army

	What’s Next?

	Chapter 14. Meow Shoes
	Bill of Materials
	Parts Explained
	Making the Sensor Inserts
	Solder the Sensors to the Wiring
	Install Sensors into the Shoes
	Tunnel the Wiring out of the Shoe

	Connecting the Shoes
	Prepare the Coiled Connector Cord

	Connect the Shoes to an Arduino
	Prepare Wiring
	Arduino Soldering
	Attach the Arduino to the Right Shoe

	Running the Code with Johnny-Five
	Connecting to Johnny-Five
	Setting up Sensors
	Logging Output of Sensors
	Example Behavior

	What’s Next?

	Appendix A
	Installing Node.js
	Installing Johnny-Five
	Troubleshooting
	More Information

	Configuring Your Hardware
	Arduino
	BeagleBone Black
	Raspberry Pi
	Spark WiFi Development Kit

	Android Development
	Installing Android Studio
	Creating an Android Project
	Installing Volley

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

