t

Making Everyday Objects into Intelligent Machines

Easy Embedded Javascript Programming for
by Gordon Williams

TECHNOLOGY/Programming

Make: Making Things Smart

In a world of all-in-one gadgets, Making Things Smart takes you back to
the basics by showing and shows you how to make your own scanner,
plotter, camera, and more, using a few household items and the Espruino
microcontroller.

This book teaches you to program your Espruino to build a selection of exciting homemade
projects with JavaScript, one of the most popular programming languages on the Internet.
With lots of online support and resources, Espruino brings JavaScript into the world of
smart devices!

As you engage with the projects and instructions in this book you'll also develop your own
skills and knowledge. With that experience you'll be able to bring your ideas to life and start
creating your own smart things.

Using the an Espruino with just a few ordinary tools like scissors, you'’ll learn:

) What a microcontroller is and how to program it

» Coding in JavaScript

» How to make motors using a wine cork

» The techniques for making your own crazy stroboscope
» To build simple robots

» How to make your own low-res scanner!

) The basics for building a working printer

» How to construct a digital camera

» And more!

You don't need amazing skills, tools, or expensive components to make fun devices. Perfect for the
beginning beginner and intermediate maker, Making Things Smart teaches you the concepts
behind everyday objects and helps you get the tools you need, using JavaScript and Espruino, to
make them yourself!

Smart Maker, Smart Making!

US $34.99 CAN $46.99
M a ke .

ISBN: 978-1-6804-5189-4
makezine.com

7816801451894

Making Things Smart

Easy Embedded JavaScript Programming
for Making Everyday Objects
into Intelligent Machines

Gordon F. Williams

LIV MAKERMEDIA

SAN FRANCISCO, CA

Making Things Smart
by Gordon F. Williams

Copyright © 2017 Gordon F. Williams. All rights reserved.
Printed in the United States of America.
Published by Maker Media, Inc., 1700 Montgomery Street, Suite 240, San Francisco, CA 94111.

Maker Media books may be purchased for educational, business, or sales promotional use. Online edi-
tions are also available for most titles (http://oreilly.com/safari). For more information, contact O'Reilly
Media's institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Patrick Di Justo Indexer: WordCo Indexing Services
Production Editor: Melanie Yarbrough Interior Designer: David Futato
Copyeditor: Kim Cofer Cover Designer: Karen Montgomery
Proofreader: Charles Roumeliotis lllustrator: Rebecca Demarest

July 2017: First Edition

Revision History for the First Edition
2017-06-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781680451894 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media
logo is a trademark of Maker Media, Inc. Making Things Smart and related trade dress are trademarks of
Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Maker Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the informa-
tion contained herein.

978-1-680-45189-4
(1]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781680451894

Prefaceooooo.u-.o....00000000000.-..o....00000000000.-..o....ooooix

1

Introduction.....cccceeeeeeceececceccccccccsccsccsccscascnscnsesl

Why Make Things Smart? ...t et e e et e et eneneanns 1
Learning through Makingoouini i e e et e ettt e et eeaes 2
MaKing iN JavaSCript e ettt e 2
Toolsand Materialsvu it 2

PART . Microcontrollers

2.

What Isa Microcontroller?............l.l.................l.l. 9
ARM HIS 0Ty vttt e e e e e e e e e 10

Programming a Microcontroller.ot ittt et et e e eea et 11

Getting Started with Espruin0......cccceieeeeecccccccacceess 15

(CT=] o T 2= Lo | 16
o] 18T o g Y TN g T 17
INStalling SOftWAre . .« ettt e e e e e e e 18
(@] o oYY 11 o Ve S P 20
Updating FIrmwWare . ..o e e e ettt et e e 21
T @ 4 ' T T (3R PP 22

1 TN = 11 o) PP 23

. Getting Started with JavaScript....ccccceeieeeiccccccceenes 27

GEtING REAAY .ottt e e e e e e 27
(@000 0] /0= 0¥ 3P 28
D = Y/ 0T3S 28
Yo 29
VariableS . . 31
Increment and DECreMENTottt ettt e e 32
(@] o) =T £ 33
FUNCHIONS . e e e e et 34
Y1) V2 38
(0] o) =Tt A @14 1=Y o1 - 1o T o PR 39
Bitwise Arithmeticooe i e e 40
B =1 =T 10 1= P 46
<= Lo | 47
BT 0T 1 V@) o 1= = (o] £ PP 48
10 0 o o o L3R 48
(el =] 011 o 17 N 49

PART . Motors

S. What Is an Electric Motor?....cccececececcccccccccccccscsccses 33

Experiment T: Faraday’s MOtOr uuen ettt e e e e e e eeaenes 55
Experiment 2: Motor with Commutator.......covitvr i it eie e eneans 61
Brushless DO IMOTONS . .« ettt ettt ettt et e e e e e e e eeaenens 68
EXperiment 3: STePPer MOtOr ... vttt ettt et et e et i ieieenennennennas 69
Experiment 4: Stepper Motor Controlouvuiiiint it eaneanes 73
Experiment 5: More Stepper Motor Controlovvuiiinii it iiiiie et 77

8. Stroboscope Tachometer.....ccccceeeieeeecccccccsccccacnces 81

FINAiNg @ Fan . ..o e e 81
Experiment 6: Detecting Speadviii i e e e 83

iv

Making Things Smart

EXperiment 7: StrobOSCOPE . .. v vttt e e e e e 87

Experiment 8: Brighter StroboSCope .. .vvv it e e 89

7- John Logie Baird's Tv............I....I..............I....I..91
Experiment 9: Persistence of Visioncoouie it 91

Experiment 10: John Logie Baird's TVcovieiiii it e e i e e ieens 95

PART . Electromechanics

8. Make a Simple Robot.....cccceeeeesssssscccccccsssssssseees 103

Experiment 11: Try Outa ServoO MOtOrvoein it eeens 105
Experiment 12: Make a Simple Robotviiiii e 108
Experiment 13: Following Lightcooiiiiii i 119

G Pen Plotter..ccccecececccececcccccccecccsccccscccscscsscscse 125

EXperiment 14: Pen Plotterouie i et et ettt 125

10. Digital PinholeCamera.............OO...'..............OO.. 143
Experiment 15: Making a Digital Camera........covviiiiiiiii i iii e eiiaeaanns 143

11. Printerooooococcc...ooooo..oo.oo.occc...ooooo..oo.oo'occc...o 161

Experiment 16: Making a Printer.c.ouoniui it e eeens 161

PART IV. Communication

12- wired communication ® 0 0 000 0000 000000000000 OO ONOOEOOEOEOSEPOEOSOEOSOEEOSTPOSOPOOPONODS 183
(G oYl 45T T 183
Experiment 17: Making an OscCilloSCOPe v ittt et ce et eeaeas 186

13. Cutting the Cord: Infrared.....cccccieeeiieeeccccccccccccaess 195

Experiment 18: Making the IRReCEIVEriuiiii i e ce i 195
Experiment 19: Decoding IRSignalsooveiiiii i e cieeens 198
Experiment 20: Using Our Decoded Signaloouiiiiiiinii i 203
Experiment 21: Using Our Remote Control on the Net, with dweet.io.................. 203
Experiment 22: Using Our Remote Control on the Net, with IFTTT 205

Table of Contents v

14.

15.

Cutting the Cord: Radio Sighals...cccceeeceecccsccccccnces 211

Experiment 23: Wiring Up the ReCeIVercviiiii e e enes 212
Experiment 24: Wiring Up a Transmitter........coouiieiiiiiiiiiii i ieiieeeaeene, 214
Experiment 25: Transmitting from ESpruinoooovviii ittt ieaenes 216
Experiment 26: Decoding the Received Data........c..cvviiiiiniiiiiiiiiieiieiennnnn. 218

Connecting with WiFi.....ciieeeeeesesccssseccccccssssssssss 225

Experiment 27: Adding WiFi to YOUr Picoovievni i eeeae 227
Experiment 28: Testing YoOUr Wiring . ..ovvueiiit it ei i eeeinienneennens 231
Experiment 29: Connecting to WiFi.....oooiii i e ees 232
Experiment 30: Sending Datatothelnternet........coovrvii i it ineannn, 234
Experiment 31: Getting Data fromtheInternet............cooiiiiiiiiiiii . 237
Experiment 32: Creating @ Servervutt ittt ettt et et i nenenneanes 241
(@0oY Y o) 1113 YT I o110 e =3 244

Bluetooth Low Energy....ccccceeeescccccccccccscccccscccsces 249

So, How Does Bluetooth Low Energy Work?ovuvniininn it iiinieenenenns 251
How Can We Use Bluetooth LEOurselves?oouininiiii i eeenes 252
Web BIUBtOOth . ..ot e e e e 253
Experiment 33: Using PUCK.jS . ..o v vt et e et e eaeas 254
Experiment 34: Making a Door Opening CoUNter......vvviine i i iieeieieneannnnn. 256
Experiment 35: Advertising Door Openingsvuuereneenenneneeneenenneneenennens 260
Experiment 36: Receiving Door Openings with Eddystone..............coovvvvvinen.. 261

PART V. Putting It All Together

17.

18.

XYPlotter....I.......................................l..... 269
Experiment 37: Makingan XY Table ... 269
Experiment 38: Controllingthe XY Table ..ot 277

Internet-Connected Plotter.....cccccecececcccccccccccccccees 287

Experiment 39: Internet-Connected Plotter......c.covvuiinini it iiiiin e 290

PART VI. Conclusion

vi

Making Things Smart

19- SOWhatNOW?oooo-n---ooooooooooooooo-n---ooooooooooooooo-n303
Appendix A. Parts and MaterialS..cccececeececrcecececcccececacans 305
Appendix B. Common Espruino Commands and Variables........ 321

nppendixc. EsprUino Assemblerttt.......--ooooo..tttt.......o-o 325

Index.ooooo."..0"ln.oooooooooo"..0"nloooooooooo."o.o"nnoo 331

Table of Contents Vii

We humans have endless imaginations. “Making”—whether that’s painting, designing,
building, or programming—can be one of the most satisfying human experiences. Stand-
ing back from a creation and thinking, “I made that,” is one of the best feelings | know.

But today, the things we make don't just need to be inanimate objects. We can bring them
alive by making them smart. Making Things Smart teaches you how to incorporate micro-
controllers into intriguing programmable machines.

Using everyday objects and skills, you'll learn how to make a digital camera, a printer, a
robot, an early TV, and much more. As you go along you'll learn about the components
you're using and the creative history behind them. You'll also learn to code in JavaScript,
the popular programming language used by millions of web developers. Because you'll be
using a language interpreter you'll able to build up your sofware line by line and see the
effect of each bit of code as you add it.

| love making and have done it all my life. | hope this book inspires you to create and learn,
and have fun along the way.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates menu items, new terms, URLs, email addresses, filenames, and file exten-
sions.

[Constant width|
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, data types, statements, and keywords.

(Constant width bold|
Shows commands or other text that should be typed literally by the user.

[Constant width italic]
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

/ This element signifies a tip or general note.

a This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://
github.com/espruino/making-things-smart.

This book is here to help you get your job done. In general, if example code is offered with
this book, you may use it in your programs and documentation. You do not need to con-
tact us for permission unless you're reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from Make: books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this
book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Making Things Smart by Gordon F. Williams
(O'Reilly). Copyright 2017 Gordon F. Williams, 978-1-680-45189-4."

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at bookpermissions@makermedia.com.

O’Reilly Safari

Safari (formerly Safari Books Online) is membership-based train-
‘ - ing and reference platform for enterprise, government, educators,
and individuals.

X Making Things Smart

https://github.com/espruino/making-things-smart
https://github.com/espruino/making-things-smart
mailto:bookpermissions@makermedia.com
http://oreilly.com/safari

Members have access to thousands of books, training videos, Learning Paths, interactive
tutorials, and curated playlists from over 250 publishers, including O'Reilly Media, Harvard
Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press,
Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress,
Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Rid-
ers, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

Make:

1160 Battery Street East, Suite 125

San Francisco, CA 94111

877-306-6253 (in the United States or Canada)
707-639-1355 (international or local)

We have a web page for this book, where we list errata, examples, and any additional infor-
mation. You can access this page at http://bit.ly/making-things-smart.

Make: unites, inspires, informs, and entertains a growing community of resourceful people
who undertake amazing projects in their backyards, basements, and garages. Make: cele-
brates your right to tweak, hack, and bend any technology to your will. The Make: audi-
ence continues to be a growing culture and community that believes in bettering
ourselves, our environment, our educational system—our entire world. This is much more
than an audience, it's a worldwide movement that Make: is leading. We call it the Maker
Movement.

For more information about Make:, visit us online:
Make: magazine: http://makezine.com/magazine
Maker Faire: http://makerfaire.com

Makezine.com: http://makezine.com
Maker Shed: http://makershed.com

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com or visit http.//forum.espruino.com.

Acknowledgments

I'd like to thank the team at Maker Media for giving me a chance with Making Things Smart
—despite it being my first book—and for their patience as | have come to grips with the
process of book writing! I'd also like to thank Brian Jepson and Anna Kaziunas France, who
are no longer at Maker Media but were instrumental in getting me started.

Preface Xi

http://oreilly.com/safari
http://bit.ly/making-things-smart
http://makezine.com/magazine
http://makerfaire.com
http://makezine.com
http://makershed.com
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://forum.espruino.com

My wife Marianne has been amazing—not just for her help with this book and my work in
general, but for giving me the confidence to start working for myself almost 10 years ago,
and for her continued support of my crazy ideas since then!

This book and Espruino in general wouldn’t have existed without the amazing support of
my KickStarter backers. Their initial backing helped make the first Espruino board, and
since then their continued support and enthusiasm has helped Espruino go from strength
to strength. Members of the Espruino forum have been hugely helpful, and more recently
my Patreon supporters have meant | can dedicate more time to working on more exciting
Espruino projects. I'm also hugely grateful for the thoughtful bug reports and improve-
ments that come through GitHub.

| now use open source software almost exclusively, and depend on tools like Linux (Mint),
GCC, Chromium, Eclipse, Atom, Gimp, Inkscape, and LibreOffice. GCC often seems over-
looked, but when | started work on Espruino, many embedded devices didn't have access
to a rock solid, free C compiler.

Laurent Desseignes and Sebastien Marsanne at ST Microelectronics have been hugely sup-
portive with the STM32 Espruino boards, and Michael Dietz and many other developers at
Nordic Semiconductor have provided a huge amount of help during the development of
Puck.js.

Francois Beaufort of Google has gone well out of his way to help with Web Bluetooth and
Physical Web support in Chrome, and David Park of Green Park Software brought Web
Bluetooth to iOS with the WebBLE app. I'd also like to thank Rob Moran, Jonathan Austin,
Hugo Vincent, and Simon Ford at ARM mbed, who have given me invaluable advice as well
as helped to pull some strings to help publicize Espruino and ensure that things like the
micro:bit port of Espruino became a reality.

The Cambridge University Computer Lab has been a great help—not just for my educa-
tion, but for their continued support even after graduation. Stuart Newstead especially has
been a fantastic mentor, and has helped make sure | didn't spend all my time writing code
at the expense of everything else!

I'd also like to thank Tim Hunkin and Rex Garrod, whose “The Secret Life of Machines” TV
series from the 1980s was a huge influence; the printer project in this book bears more
than a passing resemblance to their re-creation of a fax machine.

Finally, | would never be doing this if it wasn't for my parents, Fred and Pat Williams.
Without their help and support (and an endless supply of computer gear and electronic
components) growing up, I'd have never got into software and electronics. | spent my
childhood making and experimenting, and the TV project in particular is directly based on
a device made with my father. | hope that in some way this book helps a few more children
experience the sense of excitement and wonder that | did.

Xi Making Things Smart

Why Make Things Smart?

It's easy to categorize different forms of creativity and think that they don't really overlap.
We differentiate makers in our minds in the way we describe them: artists, computer pro-
grammers, architects, or fashion designers.

These different craftspeople are, however, united by the fact that over the last few years
they have all been incorporating smart devices into their creations. We've seen an explo-
sion of home-automation, wearable technology, and intelligent art installations. Computer
programs are no longer just in our laptops; we have programmable kettles, clothes, cars,
and climate controls.

Even within the sphere of technology, distinctions are drawn between mechanics, elec-
tronics, and software. Each is considered to be a very separate skill, and very few people
combine them. Look online and you'll see projects with beautiful woodworking skills, com-
plex electronics, and ingenious computer software. However, it's rare to see all three
together.

But that distinction isn't helpful for smart things, which need to exist in the real world. In
this book I'll show you how to combine simple hardware, circuits, and sofware to make
intriguing machines using everyday materials and basic components.

Once you've explored the projects in this book, you will be able to start inventing and
using your new skills and expertise when designing smart things, whether that means you
make beautiful moving sculptures, functional data recorders, elegant luminescent hand-
bags, or gadgets to automate your home.

Learning through Making

Learning through Making

The writer George Kneller said that “It seems to be one of the paradoxes of creativity that
in order to think originally, we must familiarize ourselves with the ideas of others”

Let’s face it, you probably already have a better printer, digital camera, and TV than the
ones you'll make with this book. But the chances are that you won't really know how they
work and certainly wouldn't think that they were things you could make for yourself at
home with basic components and everyday materials.

In a world where most people have a phone that acts as a camera, video recorder, music
player, browser, and GPS in one it can be daunting to try to understand what is actually
going on in the technology we use. Making Things Smart takes you back to the basics. As
you make the projects from scratch you'll learn the principles from which much more com-
plex technology derives and gain an understanding of the fundamental building blocks on
which so much of our modern world is built.

As you engage with the projects and instructions in this book you'll also develop your own
skills and knowledge. With that experience you'll be able to bring your ideas to life and
start creating your own smart things.

Making in JavaScript

Making Things Smart teaches you to program your hardware in JavaScript using a language
interpreter called Espruino, which runs on your microcontroller. JavaScript is one of the
most popular programming languages on the internet, with lots of online support and
resources. | developed the Espruino interpreter to bring JavaScript into the world of smart
devices because the ease with which you can change code encourages iterative develop-
ment.

In many books on microcontrollers you'll find full listings of computer code, but Making
Things Smart is different. By programming using Espruino you can build software up line
by line, seeing the effect of each bit of code as you add it. Espruino doesn't just “crash.” If
your code produces an error, you get a helpful message explaining what went wrong and
pointing to where in your code it happened.

Not only is this great for learning, but it's a lot more fun too, and hopefully will give you the
confidence to experiment yourself as you go along. Full listings are still available online if
you just want to try out the finished article!

Tools and Materials

The projects in this book are designed to be made with very simple materials and tools.
Most people will have the following items laying around.

There’s quite a bit of cardboard cutting, so you'll need some relatively heavy-duty scissors.

2 Making Things Smart

https://github.com/espruino/making-things-smart

Tools and Materials

Sometimes you'll need to cut things that won't be possible with scissors, and a craft knife
(of any type) and some kind of surface to cut on are required.

Occasionally you'll need to screw a few things into blocks of wood, or attach servo plates
onto servo motors. Any standard screwdrivers will do.

Chapter 1 3

Tools and Materials

Sometimes you'll need to bend paperclips or wire at sharp angles, and a pair of thin-nose
pliers will make your life a lot easier.

You'll need to be able to cut and strip wire. I'd strongly recommend the T-Stripper from
Ideal (or similar-looking tools) over fancy-looking automatic wire strippers. If you have a

choice, get one that will take 24 AWG wire or thinner (thinner wire has a larger AWG num-
ber).

4 Making Things Smart

Tools and Materials

There are a few nails that need hammering in, so you'll need a hammer. However, a very
light-duty hammer is absolutely fine.

For all projects apart from the last one you won't need a drill, but you might find a hand
drill makes things easier. For the last chapter if you have a drill press (or just a way of mak-
ing straight holes) you'll get better results, though!

Chapter 1 5

Tools and Materials

Finally, you'll need a hot glue gun. Quite a few of the projects use hot glue to fasten things
together as it’s relatively quick to set, sticks well to cardboard, and can be peeled off most
things if you position them wrong or want to reclaim them!

6 Making Things Smart

PART |
Microcontrollers

Most of us interact with tens or even hundreds of microcontrollers every day without even
realizing it.

They're the perfect computer, making our life easier without ever breaking and making it
difficult.

In these chapters we'll look at what they are, and how to get started with them using
Espruino and JavaScript.

Whatlsa | #
Microcontroller? -

A microcontroller is a small, self-contained computer. Your PC, and possibly your phone,
might have many discrete components—RAM, nonvolatile memory like hard disks or SSDs,
oscillators, and power supplies. Most microcontrollers, on the other hand, have everything
they need on one piece of silicon: RAM, flash memory, oscillators, and even voltage regula-
tors (if needed). You can get many microcontrollers to work just by connecting them
straight to a battery of the correct voltage.

The two types of processor are getting increasingly blurred. Microcontrollers can now be
faster than desktop computers were 20 years ago, and the SoC (System on Chip) process-
ors in devices like mobile phones have more and more components integrated inside
them to reduce costs. The real difference is in the intended usage. Microcontrollers are
designed to be embedded into things and to do just one task (often without a display);
normal computers are meant to be more general-purpose.

Most of us have cursed our computers for not doing what we expected, but microcontrol-
lers are computers that work so well and so reliably that much of the time we're not even
aware that they exist. Every day, you probably interact with 100 or more microcontrollers:
in your watch, phone, keyfob, car, wireless credit card, bike lights, and so on. They work
silently in the background, making your life just that little bit easier.

In 2015, Advanced RISC Machines (ARM) licensed a staggering 15 billion ARM cores. That’s
two for every person on the planet. ARM microcontrollers are only one of many different
types of microcontroller available, so the actual number of microcontrollers produced is
even higher. They're literally everywhere.

Microcontrollers come in many shapes and sizes: from as small as a grain of sand, to as
large as a postage stamp. They can come with as few as 16 bytes of RAM, or a million. They
also come in many different architectures (the instructions they execute and how they do
it).

ARM History

Common architectures for microcontrollers are PIC and MIPS (used by Microchip), AVR
(used by Atmel), and ARM (used by ST, Atmel, Nordic, Freescale, Silicon Labs, and many
others). PIC and AVR started life as 8-bit processors. For these, each single instruction oper-
ates on 8-bit values (numbers between 0 and 255). This makes the processors very small
and efficient at simple tasks, but more complex problems such as multiplying a 32-bit
number can end up taking much longer.

The first PIC and AVR microcontrollers shipped with very small amounts of memory, for
instance the AT9058515 (an AVR microcontroller) had 8kB of flash memory and 512 bytes
of RAM. Only being able to use 8-bit numbers to access the RAM wasn't a big problem as
you could easily access one half, and then the other. These processors also used Harvard
architectures, where the RAM and the flash memory are completely separate. It made a lot
of sense as the design could be kept very simple: you just got instructions for the micro-
controller to execute from flash, and then stored data in RAM.

However, as the memory available in microcontrollers has increased (along with the
expectations of programmers who don’t want to worry about whether their data is in flash
or RAM), the processor has to spend significantly more time doing calculations just to
access the correct part of memory. The compromises that made sense for 0.5kB of memory
start to look extremely inefficient in larger systems.

ARM History

The first ARM chip was designed in 1985 by Steve Furber and Sophie Wilson at Acorn Com-
puters in Cambridge, England. At this point Acorn was just starting to ship its BBC Micro
Model B+128, which had (as the name suggests) 128kB of RAM. That is 64kB more memory
than its 16-bit processor could directly address.

The engineers at Acorn were obviously looking forward and knew that they'd be building
computers with even more memory in the next few years. They wanted a way to easily
access more memory efficiently, so they decided to make a 32-bit processor.

Why not a different number of bits?

Pretty much every computer uses multiples of 8
bits, so the obvious choice above 16 bits would
have been 24 bits. However, this would have
meant that memory accesses would have
needed to multiply or (crucially) divide by 3. If
you want to access the 18th byte, that would be
in the 18/ 3 = 6th word.

In binary math (as in normal math), dividing by
most numbers is pretty hard. However, if you're
dividing by your base of arithmetic then it's easy.

For instance, we use base 10, so if you wanted to
divide 3732867532 by 10 it's easy; you just take
the 2 off the end. Dividing by 100 or 1000 is just
as easy as well. If you wanted to divide by 7 it's a
lot more painful!

Dividing works just the same in binary, which is
base 2. If you want to divide 10010101110 by 3
it's hard, but dividing by 2, 4, 8, 16, etc,, is easy:
you just take digits off the end.

10

Making Things Smart

Programming a Microcontroller

For the folks at ARM, the obvious choice was a 32-bit processor, so they could just multiply
and divide by 4 for addresses. For modern computers, where you often have more than
4GB of RAM, they wanted to increase the size again. This time they had to multiply and
divide by 8, so they moved to 64 bits, which will reference enough data to keep us going
for quite a while!

The ARM core was designed from the start to be a 32-bit processor, with each instruction
dealing with numbers between 0 and 4294967295. While this added some complexity, it
wasn't as bad as you might think. The design of each bit of register and arithmetic logic
unit was very modular, so once there was a working design for one bit, it could just be
repeated 32 times.

Having the ability to store and work on 32-bit numbers at once meant that the ARM could
easily have a von Neumann architecture, where both the instructions and data are stored
in the same address space. A single instruction could load data from RAM or ROM, and the
address itself determined which area it was. It made the ARM processor’s instruction set
very simple, and so very easy to write code for.

The ARM core was originally designed for fully fledged computers. It's still used as the pri-
mary processor in a few of them today, as well as almost all mobile phones and tablet com-
puters. However, as microcontrollers have become more powerful, the ARM architecture
has found a home in those as well.

Programming a Microcontroller

Computers read instructions from memory that tell them what to do. To run quickly and
efficiently, these instructions need to be easy for the computer to understand, so a lot of
effort goes into their design. Unfortunately, what is easy for a computer to understand
often isn't easy for a human!

As an example, you might want to add the numbers from 1 to 10 together. The actual
instructions for the ARM (the machine code) might look like this:

e3 a0 50 00
e3 ab 40 01
ea 00 00 01
ed 85 50 04
e2 84 40 01
e3 54 00 0a
da ff ff fb

Obviously this isn't going to be much fun for a human to understand or write. The pro-
cessor is 32 bits, so each line of 4 bytes represents an instruction. If we could write what
each one did it would be a lot easier to understand:

e3 a0l 50 00 mov r5, #0

e3 a0 40 01 mov r4, #1
loopstart:

ea 00 00 01 b loopcheck

ed 85 50 04 add r5, r5, r4

Chapter 2 11

Programming a Microcontroller

e2 84 40 01 add r4, r4, #1
loopcheck:

e3 54 00 0a cmp r4, #10

da ff ff fb ble Tloopstart

This is what we call assembly language. It’s a textual representation of the actual instruc-
tions that the computer executes. Each line (apart from the labels that end with a colon)
represents one instruction. It's covered in more detail in Appendix B where you can try
writing some assembly with Espruino.

Originally, the process of getting from assembly language to machine code was a slow,
manual process, but now there’s some software called an assembler that will convert it
automatically. However, because our microcontroller doesn’t have any software on it yet,
we need to run the assembler on our PC first, get the machine code it creates, and then
send that to the microcontroller.

To be fair, writing assembly code is pretty hard too. It would be better if we could write
code in a language that was better suited to humans. The following code is written in a
programming language called C. It’s called the source code:

int a = 0;

for (int b = 1; b <= 10; b =b + 1)

a=a+b;

Some software called a compiler (just a more complicated version of the assembler) can
run on your PC, and will take this simpler code and convert it into machine code that you
can send to the microcontroller. It’s called cross compilation (because you're using one type
of computer to compile code for another).

Optimizing Compilers

In reality, the assembly code shown here would will even reorder your code and remove parts of
never be generated. Modern compilers usually it that it can deduce will never be executed.
optimize the code you write. For instance, if you
wrote [1+2] then the compiler would just insert
into the code.

To aid with debugging you can often disable
these optimizations, so you can manually step
through every statement in order. That's how |
Going even further, a modern compiler would got the original assembly code (see preceding
realize that the previous loop always gives the code).

same result (55) and would insert that instead. It

This is the way most microcontrollers are programmed, but there’s a problem. The code
shown previously bears no real resemblance to the machine code that is sent to the micro-
controller. If the microcontroller has a problem executing some instruction (let’s say we
want to sum the numbers from 1 to 100000, and the number gets so big it can no longer
fit in 32 bits), we don’t have any obvious way to get back from the machine code to find
the original source code that was at fault.

12 Making Things Smart

Programming a Microcontroller

In most professional tools, the problem is solved. You can connect a special piece of hard-
ware to the microcontroller that will allow you to see exactly what is happening and map it
back to your original code. However, for a lot of people (for instance, those using normal
Arduino boards), the microcontroller is essentially a black box.

Once the source code is compiled and sent to the microcontroller, there is no feedback. The
microcontroller runs your code and does exactly what you told it, but if there is an error
the microcontroller is unable to tell you where that error occurred. If you want to see what
your code is doing, you have to explicitly add code that will tell you what’s going on, either
by changing the voltage on a pin, or by sending characters through an on-chip peripheral
that you can then read back on your computer.

One solution to this is to have some special machine code on your microcontroller that will
read your source code and execute it directly. This is called an interpreter. It isn't as efficient,
because now the microcontroller has to execute the interpreter code as well as your code
whenever it runs. However, the interpreter can check your code as it runs, and can report
any errors when they occur rather than just crashing.

JIT-Just in Time Compilation

Many modern interpreters have something
called JIT compilation. They actually contain a
compiler, and take your source code and compile
it to machine code as it is about to be executed.

This means that once your code is compiled, the
interpreter no longer has to interpret each
instruction and your program can run quickly.
Compilation often takes a while, though, so most

they've discovered that it is being used a lot. If
the code you've written is only called once, then
they will only interpret it rather than compiling.

Google’s V8 interpreter is a notable exception. It
always compiles your code, so is very fast. If you
use your code a lot, it then tries again and
spends even more time trying to find ways to
optimize it to make it run more quickly.

interpreters only choose to compile your code if

Having an interpreter on your microcontroller also means that you don’t need a compiler
installed on your host computer. Pretty much everything you need is now on the micro-
controller itself. The only thing you need on your host computer is a way to send and
receive characters.

That’s how Espruino works: some code that is already on the microcontroller allows it to
execute the JavaScript code that you type, without requiring you to have any special soft-
ware installed on your PC.

Chapter 2 13

Getting Started with | 29
Espruino | «d

Now it's time to get started with some hardware!

For the sake of simplicity we're going to cover just the Espruino Pico, shown in Figure 3-1
(which is very similar to other Espruino boards). It is possible to run the Espruino firmware
on other boards (once you have loaded it on), but we won't cover that here. Check out the

Espruino website for more detailed information on supported boards and installation
instructions.

Quick Reter®

o carpuiset

qeoutt i
$e‘; ‘%‘ R \re(LEDY
B

analogn’

Figure 3-1 The Espruino Pico board and its quick reference card

The Espruino Pico is available from a range of distributors across the world.

15

http://www.espruino.com
http://www.espruino.com/Order

Getting Ready

If you're using Puck.js (a self-contained Bluetooth device that runs
Espruino), you don't have to use USB, so you don't need to follow the first
part of this chapter.

Instead, just head over to http://www.puck-js.com/go and follow the
instructions there.

Getting Ready

When connected to your PC via USB, the Espruino Pico should appear as a standard USB
Virtual COM Port peripheral. Unfortunately, on some platforms there are a few things you
need to do to get this to happen.

Don't fancy typing these links? You'll be able to find them in the Espruino
Quick Start guide.

Mac and Chromebook
There’s nothing to do. You can head straight to plugging the Pico in.

Windows

If you have any version of Windows other than XP (10, 8, 7, Vista), you'll need to download
ST’s Virtual COM Port drivers version 1.4.0.

If you have Windows XP, you'll need version 1.3.1.

Once you have downloaded the file you'll need to:

1. Open the ZIP file.

2. Run the executable inside (there’s no need to extract any other files).
3. Go through the installer’s steps.
4

. Open Windows Explorer and navigate to C:\Program Files (x86)\STMicroelectronics
\Software\Virtual comport driver (or just Program Files on 32-bit systems).

5. Run the executable for your system (amdé64 for 64 bit, or x86 for 32 bit).

Linux (Including Raspberry Pi)

On Linux the Espruino Pico will just work, but by default normal users won't have permis-
sion to access it. To fix this:

1. Download the file 45-espruino.rules.

16 Making Things Smart

http://www.puck-js.com/go
http://s.espruino.com
http://s.espruino.com
http://www.espruino.com/files/stm32_vcp_1.4.0.zip
http://www.espruino.com/files/stm32_vcp_1.3.1.zip
http://bit.ly/2pl85k2

Plugging In

2. Copy it to /etc/udev/rules.d with [sudo cp 45-espruino.rules /etc/udev/rules.d|

3. Run [sudo udevadm control --reload-rules| to reload the udev rules without
having to restart.

4. Type and make sure your user is a member of the group.

5. If not, type [sudo adduser $USER plugdev|and then log out and back in.

Plugging In

For most of the projects in this book you'll want a USB Type A to Type A extension lead
(that’s the one with a male version of the large rectangular plug on one end, and a female
version of the same plug on the other). If you're a user of a modern Mac, you may also need
to get a dongle that will provide you with a standard USB Type A socket.

You can plug the Pico straight into the side of your computer, but you'll then find it harder
to plug other things into the Pico. Having a USB extension lead gives you a little more flexi-
bility.

Other Espruino boards like the Original Espruino and Espruino WiFi use a
Micro USB connector (the one used on the majority of non-high-end
mobile phones as of 2017).

The only trick to plugging the Espruino Pico in is to do it the right way around (shown in
Figure 3-2). You want the gold contacts on the Espruino Pico to be facing the plastic insert
in the USB plug, not the metal shield (otherwise they won't make contact).

If all goes well, you should see the red LED on the Espruino board flash for a fraction of a
second. On Windows it could take several minutes for the board to be recognized as a
communications port, but you can get started installing the Espruino IDE while that hap-
pens.

Chapter 3 17

Installing Software

Figure 3-2 Plugging Espruino into USB—ensure the plastic part of the USB connector is facing
toward the gold USB contacts on the Pico

Installing Software

Espruino should now be available to use with any terminal application (it appears as a nor-
mal communication port); however, to get the best experience with a nice editor and
debugging, it’s best to install the Espruino Web IDE.

/ At the moment, the Web IDE is available as a handy application that can be
installed from inside the Chrome web browser (Figure 3-3). However, Goo-
gle has announced that it will be shutting down the Chrome Web Store at

the end of 2017.

This means the Web IDE will be made available as a separate download.

@ chrome

Figure 3-3 The Chrome web browser’s logo

First, you need to get the Chrome web browser (Figure 3-4).

18 Making Things Smart

http://www.espruino.com/Web+IDE
http://google.com/chrome

Get a fast, free web browser

One browser for your compuer, phone and tablet

Figure 3-4 The Chrome web browser download page

Installing Software

Once it’s installed, open Chrome and head over to the Chrome Web Store (Figure 3-5). Type

into the search box and click the Espruino Web IDE item.

< Espruino Web IDE
Jekokdok 03| Developer Tols

OVERVIEW REVIEWS SUPPORT RELATED

USERS OF THIS APP HAVE ALSO USED

Cloud SWF, Flash Player Chrome Apps & BrowserStack Local
< with Drive Extensions Developer St (165)

AR (2168) Fedetek - (1224)

x
1+ LAUNCHAPP

[

O e

ATerminal and Graphical code Editor
for Espruino Javaseript
Micracontrollers

See NHtp://www. eSpruing.com/gs for
detailed instructions.

PERMISSIONS this app needs:

* Serial port :for communication with the
Espruino board

* Audio : for communication with an
Espruing board via the headphone Jack:
http:/fwww.espruino.com/Headphone

* Webcam : so that teachers can present live

A Website
O Report Abuse

Additional Information
Version: 0620

Updated: 25 July 2016
Size: 134MiB

| anuiaze: Enolish

Advanced REST client
FxxwS: (17516) >

Figure 3-5 The Espruino Web IDE’s entry on the Chrome Web Store

If you can't find it, you can go directly to the app by navigating to http.//

bit.ly/20jgtBlI.

Now just click the wewaru jcon in the top right of the app to install it.

You can now click to launch the Web IDE. It'll also be available on Chrome’s
Home Screen or App Launcher. You should get something like the screen shown in

Figure 3-6.

Chapter 3 19

http://bit.ly/2ojgtBl
http://bit.ly/2ojgtBl

Connecting

ESPRUINO WEE IDE

var on = false;
2v» setInterval(function() {

L ﬁ 3 =1
W Espruino Web IDE o Blrieton;

1°)
This app is designed for
. Please see the and
guide for more information,
tutorials and example projects.

For information on how to use this IDE, see
our

Espruino is . Please support us
by or !

Figure 3-6 The Espruino Web IDE

Connecting

When you first start you'll see a quick onscreen tutorial to guide you through the different
parts of the IDE.

Now to get started! Click the orange icon in the top left of the window, and you should see
a pop-up window showing a list of available ports. One of them should say (see
Figure 3-7).

SELECT A PORT...

q_‘ COM34

Espruino board

Figure 3-7 The Web IDE’s Port Selector showing a connected Espruino board

/ If you don't see anything, check out http://www.espruino.com/Trouble-
shooting for some ideas of what might be wrong and how to fix it.

20 Making Things Smart

http://www.espruino.com/Troubleshooting
http://www.espruino.com/Troubleshooting

Updating Firmware

Now, click the menu item for the Espruino board. After a second or two the menu will dis-
appear and the screen will show on the left. It'll look like Figure 3-8.

ESPRUINO WEB IDE

Connected
3|

L]
a
&

Figure 3-8 The Web IDE once connected to an Espruino board

Updating Firmware

Most likely, when you connect you'll see a yellow warning symbol in the top right of the
window (as in Figure 3-8). This tells you that the firmware on Espruino is out of date.
Espruino’s software gets changes and improvements all the time, so the version that came
on it from the factory will almost certainly be out of date.

To avoid any unwanted problems it’s a really good idea to update. To do this:
1. Click the yellow warning triangle (Figure 3-9). You can also get to the window by

clicking the settings icon in the top right, followed by Flasher on the left of the
Settings menu that pops up.

Chapter 3 21

First Commands

ESPRUINO WEB IDE

SETTINGS

> ABOUT

FLASHER

> GENERAL
» COMMUNICATIONS
This allows you to update the Espruino Firmware that is on your board

BOARD
> Please see the Changelog for a list of the improvements and fixes present in each version of Espruino

> PROJECT NOTE: This will only update devices contain the Espruino USB Bootloader (like the Original Espruino Board

> MINIFICATION To updste other devices please see this page.

> TESTING Normal Firmware Update

> SOUND Just dick the butten below and follow the on-screen instructions.

> FLASHER Flash Firmware

> CONSOLE Advanced Firmware Update

If you know the exact URL of the binary you wish to update (for instance from a cutting-edge build), please enter it below and dick
the button:

Advanced Flash Firmware

Figure 3-9 The Web IDE's menu for updating the firmware on an Espruino device

Now click the Flash Firmware button and follow the instructions. Updating the
firmware should only take about a minute.

. Check that the lights aren’t pulsing on and off on your Espruino board. The pulsing

tells you that the board is still in bootloader mode. If it is, just unplug it and plug it
back in.

Now click the connection icon in the top left again to reconnect to the board, then
choose it from the list.

First Commands

Finally you're ready to go!

1. Click in the big dark area on the lefthand side of the IDE.
This is the Espruino Console. When you type on the left of the IDE you are commu-
nicating directly with the Espruino board.

2. Now type [1+2|then press (Enter].
Espruino will display [=3]. It has interpreted your formula in the board itself and
returned the result.
We now want to type [digitalWrite(LED1,1)|. This will execute the function called
(see Chapter 4) that will put into the on state, turning the red
LED light on. We can save some typing using the autocomplete feature.

3. Just type|[di|then press [Tab].

22 Making Things Smart

The Editor

Espruino will autofill the common characters it knows about (digital) and will
then prompt you with possible options, like [digitalWrite| [digitalRead| and [dig

italPulsel

4. Type @ then press [Tab] again (it's important that |W|is uppercase as JavaScript is
case sensitive).

Espruino will now autofill the rest of [digitalWritel.
5. Now type the rest of the command—|(LED1,1)|—and then press [Enter).
The red LED should now have lit up!

Espruino will write [=undefined| This is because unlike [1+2], the [digitalWrite

function didn't return a value, and functions that don't return a value actually
return the special JavaScript type [undefined|.

What if we want to turn the LED off? We just want to send [8] and not [1]. You can
use the command history to go back and edit the line.

6. Press t],and[digitalWrite(LED1,1)|should now be displayed.

7. Use «] to move the cursor back to just after |1} use (Backspace] to delete it, and type

8. Now press [End| to move the cursor to the end of the line, or use »/. If you don't do
this and then you press (Enter|, you'll end up putting a new line in the middle of
the statement!

9. Now press (Enter] to send the |digitalWrite(LED1,0)|line.
The LED should now be off.

10. Enter [digitalRead(BTN)| to read the state of the button. Espruino should return
because the button isn't pressed.

11. If you press the button on the Pico, and then press +| and [Enter] to rerun the pre-

vious [digitalRead| command, you will get returned.

You've now played around on the lefthand side of the IDE. This is Espruino’s console (some-
times known as a REPL). It's a direct connection to the microcontroller itself. When you
press a key on your keyboard, that key is converted to bytes of data that are sent to the
board, and the board sends data back for each character.

You can get the same effect using any VT100-style terminal application (for example,
screen on Mac or PuTTY on Windows), but the Web IDE is capable of a lot more.

The Editor

On the righthand side of the IDE is the JavaScript editor. It should have come prefilled with
some code like this:

Chapter 3 23

The Editor

var on = false;

setInterval(function() {
on = !on;
LED1.write(on);

}, 500);

This code flashes the red LED on and off. Rather than use [digitalWrite(...)|as we did, it
uses [LED1.write(...)| It’s just another way of doing the same thing (setting the state of a

digital output). |setInterval| calls the function supplied to it every 500 milliseconds, so
twice a second. For more information on what this all means, check out Chapter 4.

The editor displays different words in different colors, to make the text easier to read. It’s
also got some other nice features:

1. Click a word like and press ctrll-|. A pop-up window will appear that
explains what the function actually does.

2. At the end of the code, type and press [ctrl]-Spacebar. Much like autocom-
plete on the lefthand side of the IDE, you'll get a list of functions, this time with
descriptions for each. Delete what you typed, so we can upload the original code!

You can also search, find definitions, and rename variables. Go to Settings (the icon in the
top right), About, and scroll down for more information.

But for now, we just want to get the code working, so click the Upload button (if¥:). If you
hover your mouse over the button, it'll say Send to Espruino. This will upload the code on
the right into Espruino and make the LED flash. It does some important things in the pro-

cess:

« First, it resets Espruino. This is like typing on the lefthand side of the IDE.

« Then, it looks at the code you've written and if you're using any modules with
(we'll do this in Chapter 15) it will automatically download them to the
board.

« It also looks for code that needs compiling or assembling (see Appendix B), and
also adds line numbers for debugging, among other things.

All these features mean that often it’s far better to build your programs on the righthand
side of the IDE (it's a lot easier to load and save your code from there t00).

The lefthand side is most useful for interacting with your program once it has been uploa-
ded, for example, for looking at variables or tweaking functions.

For instance, now that you've uploaded the program on the righthand side, you can look at
how it's working.

1. Type [on| then press [Enter).

This will print the value of the variable [onl. It'll be or|falsel.

24 Making Things Smart

The Editor

2. Press t| and (Enter| to evaluate again, and see if it changes. You may have to
do this a few times, but the state of |on| will correspond to the state of the LED at
the time that you pressed (Enter],

3. Type [changeInterval(1, 200)|. This will change the speed of the first interval cre-

ated by to be 200ms, and the light will flash a bit faster.
4. Now, type and press (Enter],

Espruino will write something that looks a bit like this:

var on = false;

setInterval(function () {
on = !on;
LED1.write(on);

}, 199.99980926513);

It's not exactly your code, but it’s close. Espruino has reconstructed the current state of the
program in a human-readable form, based on its internal data structures. If you make
changes on the lefthand side of the IDE and want to know what they were, this is what
you'll have to do.

Finally, what if we want to save what we've done, so it happens even after we unplug
power and reapply it?

1. Simple. Just type then press [Enter). Espruino will save your code into flash

memory.

2. Click the Connect/Disconnect button in the top left and then unplug Espruino.

3. Now plug Espruino back in. The LED should start flashing!
If you plug Espruino into any source of power, it will now start up and the LED will keep
flashing.
But let’s face it, this is going to get annoying really quickly! Let’s get rid of it:

1. Reconnect the Web IDE.

2. On the lefthand side, type |reset()|. This will completely reset Espruino, stopping
the flashing.

This is only temporary though! If you disconnected, unplugged Espruino, and
plugged it back in, the light would keep flashing.

3. Type again. This will save the current (freshly reset) state back into Esprui-
no’s flash memory, meaning that the next time you plug it in, there’s no annoying
flashing.

Chapter 3 25

The Editor

/ This works in most cases, but occasionally you will be able to get Espruino
into a state where you are unable to type reset()|.

If this happens to you, just follow the steps for re-flashing the Espruino firm-
ware, and everything will be wiped back to factory settings.

On the whole, we'll use the lefthand side of the IDE (the console) a lot in this book, mainly
so you can build up functionality layer by layer, without having to restart your program
each time. However, for more complex projects you'll almost certainly find that it is easier
to start using the righthand side.

And now, let’s delve a bit deeper into JavaScript!

26 Making Things Smart

Getting Started with /
JavaScript | =1

JavaScript is an amazingly powerful language, but it has a few quirks! This chapter will take
you on a quick tour of JavaScript’s features. We'll assume you know a little bit about pro-
gramming (maybe in a different language), and will explore what is different about Java-
Script.

Because JavaScript is an interpreted language, you have to use an interpreter to run the
JavaScript code that you have written. In this chapter and throughout this book we'll be
using the Espruino JavaScript interpreter. However, all of the examples and code in this
chapter will work in the same way using most other JavaScript interpreters, such as the V8
interpreter that’s built into the Google Chrome web browser.

/ ECMAScript 6, known as ES6 or ECMAScript 2015, is a new version of Java-
Script released in 2015. We'll refer to it as ES6.

At the time of writing this book ES6 still doesn’t have full support in all web
browsers (especially on mobile platforms), and not all of its features are
implemented in Espruino. We won't use those features in our examples or
talk about them in detail in this chapter, but a few of the more exciting fea-
tures are mentioned throughout this chapter.

Getting Ready

We'll use Espruino to start coding in JavaScript, so you need to have your board set up as
you had it in the previous chapter:

1. Plug the Espruino board into your computer.

2. Run the Espruino Web IDE.

27

Comments

3. Click Connect in the top left of the screen and select the Espruino board from the
list.

Once connected you'll need to type commands on the lefthand side of the IDE. This is the
Espruino Console, where any commands you type are executed as soon as you have typed
them and pressed Enter],

Comments

In JavaScript, comments can either be short and included between code on one line or can
run to the end of the line. The two different kinds of comments look like this:

some code here /* This is a short comment */ some code here

some code here // This is a comment until the end of the line

We'll use these two kinds of comments throughout this book. The purpose of comments is
simply to help explain the surrounding code, so the interpreter will just ignore them. This
means that if you're copying out the code by hand, rather than loading it off the internet,
there’s no need to copy the comments.

Data Types

When you're writing code, you'll need to define the data that you want to work with.

Undefined

The most basic data type in JavaScript is [undefined|. You'll see this a lot: it basically means
nothing. For example, if you try to access some data that's not there, or if you look at the
result of a function that doesn't return anything, you'll see the output undefined|.

Numbers

Probably the next simplest type of data is a number.

Type into the lefthand side of the Espruino Web IDE and press (Entez].
This will be executed by Espruino and will be displayed.

If you type [12.34|, it will be executed in the same way. It defines a fractional, or floating-
point number.

Strings
Strings are the next kind of data to think about. These are just sequences of characters that
you will need to define if you want to work with text.

Type and press [Enter],
A simple will be displayed, because that’s the value of what we wrote.

28 Making Things Smart

Math

In this example, the simple string starts and ends with a [] character. But a simple string
can also be started and ended with a|'| character.

Remember this, because simple strings will become useful later. Because the second ["] or
['| character ends the string, you have to be careful about using these characters in a string
directly. However, there are ways to work around this.

One option is to use the escape character, |\|. The escape character tells the interpreter that
the next character does not start or end the string. For example, |"Hello \"quoted\" | rep-
resents the characters [Hello "quoted"|.

The other option is to define the string using whichever of the['| or ["] characters you have
not used to start the string. For example, |'Hello "quoted"'|also represents the characters
Hello "quoted"|.

Booleans
Ok, let’s move on to Booleans. A Boolean is a value that only has the value or[falsel.

You can define a Boolean by entering or [false|. Alternatively, you can create a
Boolean by comparing numbers.

For example, type[1 < 2| then press [Enter).
This will return the Boolean [true| because 1 really is smaller than 2. Similarly, if you type [2

< 1|the Boolean returned will be [falsel.
You might be tempted at this point to try typing but this won’t work.

This is because in JavaScript (and many modern programming languages) [=| is used to
assign one value to another and not to compare two values. Instead, if you want to com-
pare two values to see if they are the same you have to use two equals characters, like ==|

So, if you type JavaScript will return the Boolean because 1 is not equal to 2.
Math

So far, we've looked at how to define and compare values. To do anything constructive
with our software, we'll need to be able to perform operations on the values we defined,
and that's where math operators come in.

Math with Numbers
Now we'll try using JavaScript to do some math:

1. Type[1 + 1] then press [Enter).

Espruino will return[2]. Looking good so far.

2. Type[1 / 2| then press [Entez].

Chapter 4 29

Math

Espruino will return 0.5, exactly as we expect. However, many languages don't do
this.

JavaScript treats all numbers as if they are fractional (we call this floating point), rather than
whole numbers, or integers. This means that if you perform an operation that would pro-
duce a floating-point (i.e., fractional) value, that’s what you'll get. So when we divided 1 by
2, JavaScript returned the floating point|0. 5.

In languages like Python, however, will return the answer [@]. This is because (0] is the
correct answer if you do the math in whole numbers (and you ignore the fractional parts
rather than rounding them). In Python if you want to get a floating-point result you have to
make it clear that that is what you want. In this case you'd do that by typing |1 / 2.6/ This
isn't needed in JavaScript.

Math with Strings

Math symbols can also control how different strings relate to each other. For example, type
"Hello" + " World"| then press (Enter].

Espruino will display ["Hello World"| The interpreter has identified two strings, recognized
that they contain text, and concatenated them.

Math with Strings and Numbers
Next, try typing[1 + "2") then press (Entez].

This time Espruino will return["12"}, not 3].

This is because Espruino has recognized the as a string. The has essentially
become a textual representation of a number rather than a number itself. Espruino won't
convert the back to a number because in many cases it is not possible for a string to
be converted into a number (a string could just be text). So instead Espruino converts the
into a string, and adds it to the by displaying the two strings next to each other, as
with ["Hello World"|

However, something a bit different happens if you type [1 - "2"| then press (Entez]. This

returns -1

In this case, JavaScript knows that it can't subtract one string from another, so it tries to
convert|"2"|to a number instead, and succeeds. Having converted to a number, Java-
Script can then subtract it from [1] and return[-1].

But what happens if you try to subtract a string that can’t be converted into a number? Try

typing[1 - "0ops"| then press [Enter].
JavaScript returns |NaN|.
What's that? Well stands for [Not a Number|. JavaScript failed to convert to a

number, so instead it returned [NaN|. Despite its name, JavaScript treats like a number.
This means you can do math with it, although the result will almost always be another |NaN|.

30 Making Things Smart

Variables

The Helpful Language

So, JavaScript sometimes reads a number as a string, and sometimes reads a string as a
number, and it also lets you do math with [NaN|. These are all examples of one of JavaS-
cript’'s most distinctive features: the way it tries to be helpful. If your code is unclear or
ambiguous, then JavaScript will take a best guess at what you mean and proceed on that
basis, rather than alerting you to a problem.

This is one of the reasons why JavaScript has been so successful. You probably visit many
web pages a day, almost all of which use JavaScript. Many of these pages will have bugs in
the underlying JavaScript code, but the JavaScript will ensure that the the code continues
to work as well as possible. As the end user, you won't usually be aware that the bugs are
there at all.

Variables

A variable is a way to store values inside your program, in a named form so that you can
reference them later.

To define a variable in JavaScript, enter [var|, then the name of the variable (without spaces
in it). For example, for a variable called [a}, you would have [var al. This allows you to refer-
ence your variable by name when you need it, just by typingal.

If you want to assign a value to your variable you need to add |=| followed by your instruc-
tions for determining the value of the variable.

ES6

In ES6, there are other keywords called and that are used in a
similar way to variables, but have slightly different effects.

1. For example, to instruct a variable to have the value 4], type [var a = 4], then press
Enter|,

2. Now if you type [a], then press Enter], Espruino will recall the value of [a| and will
display [4].

3. Now try typing [A], then press [Enter).

Espruino will display [Uncaught ReferenceError: "A" is not defined|. This is because the
variable requested (A) could not be found so an exception (an error) was created. Your
code will stop executing at the moment when the exception is created (or “thrown,” in
coding jargon) and Espruino will display the command prompt and report the exception.

So why did this happen? Well, as you may have guessed, JavaScript is case sensitive. When
you define a variable, function, or anything else, the capital and lowercase letters have to

Chapter 4 31

Increment and Decrement

match up each time. We have defined the variable [a] as [4] but have not yet defined the
variable[Al.[a] and [A] can be two different variables with two totally different values!

In JavaScript you can't restrict a variable to only ever be one kind of data. So, if you instruct
your variable to have the value |4| (a number), you can subsequently change that variable’s
value to a string, an array, or even a function (we’'ll come to these shortly).

It is also possible to define a variable without using |var|, for example, by typing [a = 4].
However, this will define a global variable, rather than a local variable. A global variable will

apply across your whole program, whereas a local variable will only apply within a particu-
lar function. This chapter talks about functions later, but it is worth being aware that if you
try to create a variable in a function without using this can lead to a lot of bugs. This is
because there is a risk that this global variable will overwrite a variable used elsewhere in
the program. Always try to use where possible.

We mentioned strings before, and ES6 has >a=5

another way of defining strings called template =5

literals. These start and end with the special >'lWe set a to the number ${a}"
backtick character, °. ="We set a to the number 5"

If you use the sequence In case you we.re'wonder.ing what “expression”
inside a templated literal, the result of executing Means here, this is a coding term that broadly
that expression will be inserted into the string. Means an instruction f?r the interpreter to exe-
Here are a couple of examples: cute. An expression will usually return a value
(for example, the expression returns the
>'0ne plus two is ${1+2}" value).

="0One plus two is 3"

Increment and Decrement

One way of making a variable bigger is to type|a = a + 1. This simply adds 1 to your origi-
nal variable. Similarly, to make a variable smaller you could type[a = a - 1|

However, this means we have to write out our variable twice, which can be problematic if
we have a really long variable name: [our_really_long_variable = our_really_long_vari
able + 1| This duplication can lead to bugs and slow execution.

Instead, JavaScript (like many other languages) has “increment operators,” which appear as
either [+=| or [-=|. These allow you increase or decrease your variable by typing your vari-
able, then the appropriate increment operator, then a number. For example:

. is the same as|a += 1.
. is the same as[a -= 1]

32 Making Things Smart

Objects

This also works for other operators such as [*=}, [/=) [|=| (which we'll come to later), and oth-
ers.

Adding and subtracting just 1 are very common operations, so there are other operators
that help you do this in other ways.

adds one to the variable [a], returning the old value of [al (it works with [a- - | too). This is
often used in loops, which we'll come to later.

>var a=1
=1

>a++

=1

>a++

=2

>a

=3

Just to make things difficult, also adds one to [a] but, unlike [a++|, returns the new
value of[a]. This also works with - -al.

>var a=1
=1

>++a

=2

>++a

=3

>a

=3

When you're not using the result of an increment you can use or
interchangeably, since the only difference is in the value they return, not
the operation they perform.

Objects

In JavaScript, objects are containers that can hold a variety of named variables or “proper-
ties”

1. Forexample, typela = { one : 1, two : 2 }|

In this example, we have used the semicolons to name the property |1/ “one’, and
the property (2| “two.’

You can then access these items using the dot (.) operator.

2. Try typing to read the item named [one|.

This returns 1.

Chapter 4 33

Functions

3. Now we'll try adding a new property into the object. Type[a.three = 3|.

Note that if you try to access a property like [a. four| which we haven't defined yet,
you won't get an error. Instead, Espruino will just return [undefined|.

4. You can also refer to your property indirectly using square brackets. Try typing

[a["one"]|. This will also return the name of your property, [1.

5. Or to make things even more complicated, try typing and then
[a[b]|. This will return [1]. We have given the variable [b] the value [one|, so is

now the same as typing

Functions

Now that we've looked at simple math, let’s call some functions. Functions are named bits
of code that do a particular job and have usually been written beforehand.

parselnt

When doing some simple math, we learned about the difference between a number (or
integer) like 42 and the string “42". The function called can be used to convert
strings into integers. To give, or “pass” data (which we call “arguments”) to a function, put
the arguments into parentheses after the function like this: [parseInt("10")].

This passes the string to the function [parseInt|. The function then transforms the
string into an integer and returns [16]. This means that you can now work with the

string (("10") as though it was an integer (10). For example, you can now do math with the
string. Previously, if you had typed this would have returned ["1010"), but now
you can type [parseInt("10") + 10} and this will return|26].

Functions in Objects (Methods)

We looked at some simple variables earlier, but it is important to be aware that variables
can be much more complex. For example, variables can be objects, functions, or arrays.
Some global variables contain a variety of useful properties and functions.

For instance, JavaScript has an object called [Math|. This object contains a number of arith-
metic properties and functions.

Just as with the object we defined earlier, the (.)) operator allows you to access a property

within it; for example, typing [Math.PI| displays [=3.141592.. .| because the value of pi, or

m, is 3.1415....

Because functions can also be properties of objects, you can also call functions using the
(.) operator.

34 Making Things Smart

Functions

Strictly speaking, a function that appears within an object is called a
method.

Typing [Math.abs(-2)| displays |2| because the function returns the absolute value of
the argument—the number’s distance from zero, in either direction. Using absolute value

has the effect of turning all negative numbers into positive ones.

console.log

One of the most useful functions is [console. log|. This function allows you to display text in
the console area while your program is running, and is very useful for debugging. For

example, can be used to display the value of a variable at any given time dur-
ing execution, which allows you to check whether your program is running as you expect it

to.

>var a = 42;

=42

>console.log("The value of a is
The value of a is 42
=undefined

,a)

While not part of standard JavaScript, Espruino provides the func-

tion. This behaves identically to but is just a little faster to

type!

Defining Functions
Now you know how to call functions, you can make your own:

1. Type|function add(a,b) { return a + b; }|

This creates a function called [add] which needs to be passed two arguments [a|
and [b. When the function is called, the code inside the curly braces ({ }) will be
executed. In this case the code says that we want to the result of adding [al
and b/ together.

2. So now try calling the function using the arguments [1] and [2| by typing
add(1,2)|
This returns the value[3].
Functions can be written with code on multiple lines. As with many other programming

languages, if you do this you should separate statements with semicolons (;)), even if it
isn’'t always mandatory in JavaScript.

Chapter 4 35

Functions

/ A “statement” is just a piece of code. Usually, the word “statement” is used
to describe a piece of code that does something, but doesn’t return a value
(for example, the statement [a=1] defines[a] as[1).

In JavaScript it is possible to define one function inside another. The inner function will be
able to access variables defined in the outer function. An inner function that does this is
called a closure.

For example, if you define the following function:

function outer() {
var hello = "Hello World!";
function inner() {
return hello;

}

return inner;

}
Then type:

var inner = outer();
inner();

This returns |Hello World|

When we call the function this refers to the inner function [function inner()
{ return hello; }|, however this in turn refers to the outer function, which has defined
lhello|as|"Hello World!"|.

This is a bit confusing, but using closures can be very useful as it helps to save memory.
When the function has been executed, all the variables belonging to it (like
and["Hello World!") will be automatically removed from memory.

Inline Functions

In some cases you might want to define a function to be used just once, in which case we
can define it inline, and there’s no need to give it a name.

For example, here we're calling to schedule a function to be called two sec-
onds in the future. We're not calling the function from anywhere else, so there is no need
to give it a name:

setTimeout(function() {
console.log("Hello");
}, 2000);

36 Making Things Smart

Functio

ns

Events and JavaScript

JavaScript itself uses functions heavily because it
is event based. Rather than having your code run
in one big loop, in JavaScript you write functions
that you want to be executed when an event
occurs.

If you're writing a web page and you want some-
thing to happen when the user clicks a button,
you define a function and then configure the
button so that your function is called when it is
pressed. The same is true when you're using
Espruino with real, physical buttons.

Working with events has some huge benefits.
The first benefit is power consumption: if the
JavaScript interpreter has control when your
software is idle, it can put your microcontroller to
sleep and save power.

Another benefit is the ability to multitask. In nor-
mal, procedural Arduino code you might write a
function like this to flash an LED on and off:

void flashLed(int ledPin) {
digitalWrite(ledPin, 1);
delay(1000);
digitalWrite(ledPin, 0);
delay(1000);

}

flashLed(LED1);

However, in Espruino, you could write:

function flashLed(ledPin) {
digitalWrite(ledPin, 1);
setTimeout(function() {
digitalWrite(ledPin, 0);
}, 1000);
}

flashLed(LED1);

Here, we're turning the LED on and then defining
an inline function that will turn the LED off. We
pass that to a built-in function called |setTime
out], which schedules the inline function to be
called in 1 second, which then turns the LED off.

So what is different? The |flashLed| function in

the Arduino code takes a whole 2 seconds to
execute, during which time it’s very difficult to
execute any other code.

However, the Espruino code executes two func-
tions very quickly but 1 second apart, and is
available to execute other functions for the rest
of the time.

If we now wanted to flash two LEDs at the same
time (not one after the other), in Espruino we
could simply write:

flashLed(LED1);
flashLed(LED2);

However, in Arduino you would have to rewrite
the function. If you wanted to flash
one LED and then half a second later start flash-
ing the other, you could easily do that as well
with Espruino, also without having to change the

function:

flashLed(LED1);

setTimeout(function() {
flashLed(LED2);

}, 500);

This can be amazingly powerful, and is made
possible by the use of closures and inline func-
tions as just described.

Chapter 4

37

Arrays

Arrays

Arrays are very similar to objects, except they have the concept of a length. You can create
an array very easily:

1. Type[a = [5,8,3,71]

This creates an array with four items (you can just use to create an empty
array).

You can now access an element in the array (they’re numbered from [0).

2. Type and you'll get [8]; will return [7]. If you type (thereby access-

ing an item that doesn't exist), you'll get returned rather than an error.

You can add items onto the end of the array in two ways:

1. You can just assign an element to the end; type [a[4] = 40,
2. Oryou can use the method; type [a.push(45)|.
3. You can now check the length of the array with [a. length|.
|6/ will be reported, because we just added two more elements.
4. To remove an item from the end of the array, type [a.pop()|.
will be returned, and the length will drop to [5|.

5. To remove an item from the beginning of the array (shifting everything else
along), you can just type |a.shift()|and |5|will be returned.

To put something back onto the beginning, just use |a.unshift("Another ele

ment")|.
6. Arrays also have many useful functions for iterating over them. |Array. forEach|will

call the function in its argument for each element in the array. Try typing the fol-
lowing:

var a = [5,8,3,7];

var sum = 0;

a.forEach(function(x) { sum += x });
console.log(sum);

It will print[23], the sum of all elements in [al.
7. You can use to return a new array made from the return values of the

supplied function when it is called for each array element. Type |a.map(func
tion(x) { return "Hello "+x; 1});!.

38 Making Things Smart

Object Orientation

["Hello 5", "Hello 8", "Hello 3", "Hello 7"]|will be printed. This can be a
really useful tool.

Sometimes you want just one result rather than an array, and in this case you can
use |Array. reduce,

8. Type

a.reduce(function(accum,value) { return accum + value; }, 0);

Espruino will return (as the previous example did, but just with a little less
code).

So what’s happening? Espruino is calling your function repeatedly, passing the
result of the last call into the next. It’s a bit like the following code, but Espruino is
doing everything automatically:

var a = [5,8,3,7];
var sum = 0;
function summer(accum,value) { return accum + value; }

sum = summer(sum, a[0]);
sum = summer(sum, a[1]);
sum = summer(sum, a[2]);
sum = summer(sum, a[3]);

console.log(sum);

In ES6, there is a shorthand way to define inline
functions called an arrow function. This code:

ing code will return a new array with |1| added to
every element:

setTimeout(function() {
console.log("Hello");
}, 2000);

could be rewritten like this:

setTimeout(() => console.log("Hello"),

[1,2,3,4,5,6,7].map(a => 1+a);
Or this will sum all the elements in an array:
[1,2,3,4,5,6,7].reduce((b,c)=>b+c, 0)

Look out for the arrow () in modern ES6 code

2000); to get an idea where functions are defined.

It's really handy to use arrow functions with

and similar—for example, the follow-

Object Orientation

One of the main places JavaScript differs from other languages is that functions are them-
selves objects, and can have properties added or removed.

JavaScript defines a special property called [prototype|. If this is defined, all objects of that

type will search that type’s |prototype| property for properties that don't exist in the main
object.

Chapter 4 39

Bitwise Arithmetic

As an example, ["Hello"| is a [String|, so we can add a function to [String.prototypel.
Within this function, the special variable represents the original object.

1. Enter the following to add a function called that will print a object
to the console:

String.prototype.print = function() {
console.log(this);

b
2. Type ["Hello".print()| and the [String.prototype.print| function will now be

called, and will output [Hellol.
.print()|can now be called on any[String|.

3. We can make a new type of object ourselves. To start, create a function:

function Person(name, age) {
this.name = name;
this.age = age;

}
4. will be our type of object. We can now create objects with:

var alice = new Person("Alice", 42);
var bob = new Person("Robert", 37);

5. You can access properties directly, for example with [bob. age]. If we want to share
some code between them we can add a function to the |prototype|, as we did with

earlier:

Person.prototype.introduce = function() {
console.log("This is "+this.name+", they're "+this.age+" years old");

};

And now, you can run [alice.introduce()|and [This is Alice, they're 42 years old|
will be displayed.

Bitwise Arithmetic

Bitwise math allows you to easily fiddle with the bits that make up numbers—the basic
building blocks of computers. Many developers will never have a need to use bits, but
because we're dealing with hardware you'll probably want to be at least slightly familiar
with them!

In JavaScript, numbers are usually fractional (as we covered earlier), but the bitwise arith-
metic operations convert numbers into 32-bit integers internally, before doing anything
with them.

First, let’s see which bits are in a number:

40 Making Things Smart

Bitwise Arithmetic

1. Type[(100).toString(2)].

This will convert the decimal number 100 to a string representing a base 2 number

(binary):["1100100" .

Why Did We Put 100 in Parentheses?

If you type in JavaScript, the interpreter You could also write [100 .toString(2)] but
will assume that you meant to enter a fractional writing code where the number of blank spaces
number. Instead, you need to put the parenthe- changes what it does is generally considered to
ses around it so that when [.] is encountered, be abad idea.

JavaScript knows it's no longer expecting frac-

tional digits, but a property of the number.

So what does mean? In decimal, the position of each digit represents some power
of 10, so we have 1000s, 100s, 10s, 1s, etc. In binary, the position of each digit is a power of
2. We have (working from the left to the right), 64s, 32s, 16s, 8s, 4s, 2s, 1s. For the binary
number [1100100) we have [1*64 + 1*32 + 0%16 + 0*8 + 1*4 + 0*2 + 0*1 = 100|.

There are, however, much better ways of writing binary numbers down. The first way is to
use as we did previously. If given a seconds argument (the base of a number),

will convert a text string in that base into an integer.

1. Type|parseInt("1100100",2)|and 100 will be displayed.

2. Butin more modern versions of JavaScript, you can write a binary number and just

prefix it with the text|eb. Type and [100] will be displayed again.

Though we're covering binary numbers like part of the ES6 spec, so while they will work
0b1100100| here because they're really use- on Espruino they're not guaranteed to work
ful, binary (eb) and octal (@o)) are actually ©on every web browser.

Chapter 4 41

Bitwise Arithmetic

Hexadecimal

But why stop with binary and decimal? Why used as you'd expect, but then the letters [a
not use some other number systems too? to [f| are used for [10] through to[15].

Hexadecimal (base 16) is very popular in To write a hexadecimal number, you prefix it
computer code, because it lets you get 4 with [ox| (because heXadecimal). For exam-

bits of data into one single digit, and it's ple[6xa|is 10, and [6x16] is 16.
easier to see what a specific bit is set to by

looking at it. To do that the digits (0| to [9] are

3. This brings us to an annoying gotcha in JavaScript. Type and press Enter],

As expected, it writes [999].
4. Type|0123|and press [Enter],

Espruino will write [83—but why? For historical reasons, numbers starting with
are treated as octal (base 8).

Since couldn’t possibly be octal, JavaScript “figures it out” for you, and silently treats
the number as decimal. But is valid octal, so JavaScript decodes it as[1*64 + 2*8 + 3|.

As a result, you should never put a |0 at the front of your nonfractional numbers in Java-
Script (or any programming language), as it's amazingly rare that you ever actually intend
to define an octal number (and if you do you could do so in ES6 with [00123).

Bitwise Operators

So now that we know how to define binary numbers, we can look at doing some bitwise
math. It’s called bitwise because the operations generally act on each bit in a number indi-
vidually (an operation has to carry to the bit on the left if a digit overflows).

The binary and operator, written as (& (and not to be confused with [8&)) does what you'd
expect from the name. Each bit in the output is equal to|1| only if the corresponding bit in
the first argument is [1] and the bit in the second is [1]. If either one of the two bits is a [0,
then the output bit will be [0]

1. Type|(0b1010101010101 & 0b0901111110000).toStr"Lng(Z)‘.

is returned, because the second argument has effectively masked off
the first. So why weren’t more zeros output on the left of the result? Much as when
you write a decimal number, you don'’t generally put any zeros at the front of it if
you don’t have to:

A PPLepefep e

42 Making Things Smart

Bitwise Arithmetic

B 0(0|0|T|1(1|1|1|1{0|0|0O|0O
AandB|olo|olo[1]o]1]o]1|o]0|o]0
2. Now, we can try binary or, written with a pipe symbol () (and again, not to be

confused with [[|).

This also does what you'd expect based on the name. Each bit in the output is
equal to [1| only if the corresponding bit in the first argument is 1| or the bit in the
second is [1]. If both bits are [0}, the result will be [e].

3. Let’s use the same numbers and replace the operator. Type [(0b1010101010101 |
0br0A1111110000) . toString(2)|.

Now, you get ["1011111110101"| because, as expected, everywhere there’s a 1 in
the input (no matter which argument it was in), there’s a 1 in the output:

A |1]o]1]o[1|o]1]o]1]o]1o]|1
B |o]ofo[1]1]1|1|1]1]0|o|o]o

AorB|1lof1|1]|1[1[1]1]1|o[1]0]1

4. Then there’s exclusive or, or xor—written as [~]. It kind of makes sense when you
think about it, but it's still a bit of a confusing name. An output bit is |1| only if one
of the output bits is [1], but it’s so exclusive that if both are [1], the output will
actually be [0]. Type [(6b1010101010101 ~ 0b0001111110000).toString(2)|

You get ["1011010100101"} so what happened? Well, where the righthand argu-
ment’s bits were [0}, the lefthand argument’s bits stayed the same, but where they
were [1], the bits on the lefthand side got flipped. These operators don't give one
argument priority over another, so you could just as easily think of it as working
the other way around too!

A 1|o[1]o|1]o|1]o[1]o]1]o]1
B |o]olo|1[1]1]1]1]1]|0|0]o]0
AxorB|1]o|1[1]o]1]0[1]0|o|1]o]1

5. It's easier to see what happens with different numbers:

>(0b1111111111111 ~ 0b6601111110000).toString(2)
="1110000001111"

Chapter 4 43

Bitwise Arithmetic

>(0b0O0O0OOOOOOEO "~ 0bOOO1111110000).toString(2)
="0001111110000"

6. Finally, there’s one simple operator, the not operator, written as a tilde (~). This
takes just one argument and flips every single bit. You could think of it as an xor
with a 32-bit number full of [1]s.

Type|(~0b0001111110000) . toString(2)|.

You get ["-1111110001"|. So what happened here? For signed numbers (numbers
that can be negative), when the biggest (leftmost) bit of a number gets set (in this
case the 32nd) then the number is treated as negative. It’s as if instead of being
responsible for adding [2431), it subtracts instead. And in this case, JavaScript
sees that the top bit is now |1| and decides to treat the number as being negative
rather than just printing the value of all 32 bits as we wanted.

Why Is There a1 on the Right?

Inverting all the bits of a number has the same So if you take (-4) and flip all the bits you
effect as negating it and then subtracting one. get , which is 3.

Try it out with 4-bit numbers as it's easier to add In order to put the minus sign in what was
up! The leftmost bit will represent [-8|, the sec- printed (“-1111110001"), JavaScript negated the
ond left[4 then 2] then 1]. number, which ended up negating all the bits

000050 1000--8 0001-1 1001--7 00102 2ndsubtractingone.

1010--6 0000-3 1000--5 0000-4 1000--4
0000-5 1000—-3 0000-6 1000—-2 0000—7
1000--1

To get something readable, let’s use & to mask off that pesky top bit. We could write a
binary number with [0| followed by 31 1]s, but that would be really painful.

Instead, we'll use hexadecimal (see the earlier discussion). In hexadecimal the number is

just |0x7FFFFFFF} it's much easier to see what’s happening than if we wrote 2147483647

(the decimal equivalent) while it is more compact than the binary, which is
|0b01111111111111111111111111111111‘!

Type |(0x7FFFFFFF & (~0b0001111110000)).toString(2) |

And now, we get ["1111111111111111111110000001111", showing 31 of our 32 bits as they
actually are, but without the negative sign, which was caused by the top bit.

Bit Shifting
Now, we get onto bit shifting. These are also operations that don't get used a lot in every-
day programming unless you're dealing with hardware!

44 Making Things Smart

Bitwise Arithmetic

Sometimes you may want to move all the bits of a number left or right. Hardware inside (or
connected to) a microcontroller is often trying to be very efficient, and in order to save
memory (or complexity in the hardware) one area of memory may be used to represent
multiple different things.

For instance, in many LCD displays a single 16-bit number (representing a value between 0
and 65535) may be used to represent a color. Five of the bits are used for red, six for green
(because the eye is more sensitive to green), and five for blue. To construct the 16-bit num-
ber you'll need to use bit shifting to shift the bits for each of red, green, and blue into the
right places for that 16-bit number.

In decimal, you can shift digits around by multiplying and dividing. can be shifted

left by one digit by multiplying it by [16], making [12346]. Dividing by [16] will shift it back to
the right. The same is true in binary, but because the number system is base 2, you multi-

ply or divide by [2.

In a computer it is very fast to shift bits around as numbers are already represented in
binary; however, multiplication and especially division take a lot more time. Because of this
there are special operators you can use to perform shifting directly.

The main operators are shift left (represented by [<<)) and shift right (>>)). The first argument
is the number to shift, and the second is the amount of bits.

Shifting by 0 does nothing...

>(0b11110000 << 0).toString(2)
="11110000"

Shifting left moves bits left (filling the gap with 0), which makes the number bigger. For
every one place you shift, the number gets twice as big:

>(0b11110000 << 1).toString(2)
="111100000"

>(0b11110000 << 4).toString(2)
="111100000000"

And shifting right makes the number smaller. Any bits that are shifted off of the right of the
number will disappear, so if you shift so far right that all the bits fall off the end, you get 0:

>(0b11110000 >> 3).toString(2)
="11110"

>(0b11110000 >> 4).toString(2)
="1111"

>(0b11110000 >> 8).toString(2)
="p"

Or do you? It would be nice if when you shifted a negative number right, it got half as big
as well. Remember what we said earlier about the top bit of the number making it nega-
tive? If you were to blindly shift all bits in a negative number right, the [1| in the top bit
would move to the right and the number would stop being negative, and would instead
become a very big positive number.

Chapter 4 45

[f Statements

To get around this, the normal shift right retains the top bit’s value when it shifts right, so
-0b11110000 >> 4]really will be[-0b1111|as you'd expect.

Sometimes you want to treat the number as if it can’t be negative though, and you just
want to shift |0] bits in (like you do when shifting left). To get around this, JavaScript has
[>>>), which is called unsigned shift right.

Unsigned means the number doesn't use the leftmost bit to store the sign (whether it is
negative or not), so the number can only ever be greater than or equal to 0.

For positive numbers it's exactly the same:

>(0b11110000 >>> 3).toString(2)
="11110"

>(0b11110000 >>> 4).toString(2)
="1111"

>(0b11110000 >>> 8).toString(2)
=""

But for negative numbers it’s different:

>(-0b11110000 >>> 3).toString(2)
="111111111111111111111111600010"
>(-0b11110000 >>> 4).toString(2)
="1111111111111111111111110001"
>(-0b11110000 >>> 8).toString(2)
="111111111111111111111111"

Do Other Languages Have >>>?

Often other languages don't have to have a spe- always positive (unsigned). The compiler then
cial shift operator. For instance in C, you have to knows if a number is supposed to be signed or
define the exact type of your numbers and vari- not and it can use the correct operation wher-
ables: how many bits they have, as well as everis used.

whether they can be negative (signed) or are

If Statements

statements in JavaScript work the same way they do in other languages. If the expres-
sion in parentheses evaluates to [true, the code after it will be executed; otherwise, if

there’s an after it, that gets executed if the expression is [false|

1. [if (true) console.log("This is running")|will print[This is running|.

2. [if (false) console.log("This isn't running")/won't print anything.

3. But the following will:

if (false) {
console.log("This isn't running")

46 Making Things Smart

&& and ||

} else {
console.log("This is running")

}

Instead of using the values [true| and [false|, you can use variables directly. For instance,

the number (0] is treated as [false|, and nonzero numbers are treated as (NaN| and
are also treated as [false]).

Confusingly, an empty array ([1) or object ({}) is treated as [true|, while an empty string is

treated as[falsel:

nu,
B

var name =
if (name) {
console.log("I have a name! It's "+name);
}
Often you'll want to be able to check a variable is equal to something; for instance, we can
use the equals operator [==| we covered before:
if (a==42) {
// Do something
}

This also leads us to another tricky problem: typing ["42" == 42 returns [true|. The two

arguments aren’t identical though: one is a string and one is an integer. They just happen
to represent the same value.

If you care about this you can use a special operator. Three equals shows you really

mean it, and checks the value of the variable as well as the type, so |"42" === 42| will
return [falsel.

If you want to do the opposite you can use the not (!)) operator at the start of an expres-
sion. This will negate a boolean value, turning [true| into [false| and vice versa. For

instance, will be true if [a] isn't 3, although in this case you could write
more succinctly (a !== 3|works for checking the type as well).

&& and ||

In many cases you would want to do something if something is true and something else is
true. You can do this with the and (&&) and or (] |)) operators. While these are read out the
same as the bitwise operators covered earlier, they behave slightly differently.

For starters, [8&|and | || work on boolean values, not on each bit. Their behavior is also sub-
tly different to most other programming languages:

- For most languages, (or its equivalent) follows the rule: “If a is true and b is
true, return true, else return false.”

- In JavaScript, means: “If a is true and b is true, return b, else return a"
Similarly, means: “If a is true then return a, else return b”

Chapter 4 47

Ternary Operators

While this behavior turns out to be identical to other languages when you're dealing with
statements, it means that these operators have other uses as well.

For instance, when looking at JavaScript code on the internet, you might see something
like:]a = a || "default_value"|

This means “if a isn't false then use a, else use the default value,” which is a tidy way of
setting defaults where nothing has been specified (although you should be wary of what
happens if[a| is defined as|o}).

Ternary Operators

Ternary operators (a ? b : c)) are very powerful, but can often be hard to understand
when you see them written in code.

Very often, you'll want to use one value in one case, and one value in another.

You might write:

if (a)
value = 1;
else
value = 2;

call_a_function(value);

But using a ternary operator you can just write[call_a_function(a ? 1 : 2);l.

The ternary operator looks at the expression before [?], and if it's [true} it returns the
expression before[:, but if it’s false it returns the expression after it.

Going back to the problem with [a = a || "default_value"], when [a|is set, but is 0] or
[false| we can now use ternary operators to be much more explicit about when [a| should
be used, or when a default value should be used:

a = (a'==undefined) ? a : "default_value";

for Loops

loops are an easy way to loop over things multiple times, and in their basic form
behave just like in C, Java, PHP, and other languages.

A basic for|loop is of the form:

for (initialise ; compare; iterate) {
do_some_work

}
and might look like this:

for (var i1 = 0; 1<2; i1++) {
do_some_work

}

48 Making Things Smart

Exceptions

This will do the following:
1. Set the variable[i|to[0].

Checkif[i < 2| Itis, so carry on.
Run do_sone_work|

Increment [i]. It's now [1]

Check if[i < 2|.Itis, so carry on.
Run do_sone_worK.

Increment [i]. It's now [2]
Checkif[i < 2|.Itisn't, so leave.

There is a second form of loop in JavaScript, and it looks like [for (var 1 1in
array) ...,

This calls the code after with every element’s name in the array. For example, this:

©® N o U W N

var arr = ["ham", "eggs", "cheese"]
for (var 1 in arr) {
console.log(i, arr[i]);

}
will output:

0 ham
1 eggs
2 cheese

Note that|i|isn't set to the array’s contents, but to the index of each item in the array.

There are also [do| and loops in JavaScript, but these aren’t used in this book so we
won't cover them.

There are other ways to iterate if you have an array. For instance, we covered the
method earlier:

var arr = ["ham", "eggs", "cheese"]
arr.forEach(function(value, key) {
console.log(key, value);

s

Exceptions

At some point during these exercises, you might have typed something wrong and got a
message like this:

Uncaught SyntaxError: Got '#' expected EOF

Chapter 4 49

Exceptions

This is an exception. The JavaScript interpreter has found something that it doesn't like,
and stops execution where the problem occurred.

You can force it to stop execution by throwing an exception:

1. Type[throw new Error("Oh No!")|.

You'll see [Uncaught Error: Oh No!|

2. By themselves, exceptions are not very useful, but you can exceptions, so if
your code breaks then you can do something about it by typing the following:

a = '"{"Hello":"World"}';

try {
console.log(JSON.parse(a));

} catch (e) {
console.log("Something went wrong:"+e)

}

In this case, everything will work fine, as [JSON.parse| could execute the JSON-
formatted string [a|.

3. Type|a = "{Hello:"World"}';| (which is badly formatted JSON), press [+] to step
back in history, and call the [try|statement again.

Now [Something went wrong:SyntaxError: Got ID:Hello expected '}'|will be
displayed. You've been able to carry on executing code even though

JSON.parse(a)|threw an exception because of bad data.

And that wraps up the introduction to JavaScript's main features: you're ready to make
some stuff!

50 Making Things Smart

PART Il
Motors

If we want to move things in the real world from our microcontroller, we're going to need a
motor.

In these chapters, we'll learn how different kinds of motors work, and how to make some
ourselves.

What Is an -
Electric Motor? | ~

An electric motor is a device that turns electrical energy into mechanical energy. In 1821,
Michael Faraday demonstrated what was perhaps the first example of an electromagnetic
motor (see Figure 5-1). A wire was dangled into a pool of mercury and placed next to a
permanent magnet. When a voltage was applied between the mercury and the top of the
wire, current flowed. It created a magnetic field, and the end of the wire started orbiting
the magnet.

Figure 5-1 Faraday's electric motor

53

Exceptions

sure to the vapor can cause long-lasting damage to the lungs, brain, and

-Iixa'- Do not try to build this motor. Mercury is extremely toxic, and even expo-
kidneys.

As late as the 20th century, mercury was still handled without adequate
safety precautions, and caused severe health problems for many involved.
The use of mercury in the treatment of animal fur for hats led to Mad Hat-
ter Disease, the basis of the Mad Hatter character in Lewis Carol’s Alice in
Wonderland!

The Earliest Motor

The first electric motor was actually created by “~

Andrew Gordon (a Scottish monk) in the 1740s. Sharp
Unlike most motors today, which are electro-
magnetic, Gordon’s motor was electrostatic (see
Figure 5-2). It used the attraction caused by high
voltages (much like a balloon will stick to the
wall once charged up against a sweater) to turn a

rotor. '\Sharp

With the invention of chemical batteries, electro-
magnetic motors replaced electrostatic motors.
However, electrostatic motors are still extremely
useful at small scales, and the advent of tiny
microelectromechanical systems (MEMS) such as
the accelerometers and gyros in your mobile

phones means that electrostatic motors have —
increased in popularity.

Figure 5-2 An electrostatic motor

Obviously, re-creating Faraday’s mercury-based experiment as it was done is a bad idea
without a lot of ventilation. However, with modern rare-earth magnets and a bit of lateral
thinking, you can reproduce Faraday’s motor easily at home without risking poisoning!

54 Making Things Smart

Experiment 1: Faraday’s Motor

Experiment 1: Faraday’s Motor

You'll need the following (see Figure 5-3):

+ Neodynium disc magnets (with as large a diameter as possible)
« An AA battery

- A 25cm length of single-core wire without insulation

Figure 5-3 The parts you'll need to make a homopolar motor
To re-create Faraday’s motor:

1. Place the disc magnet onto a nonmetallic tabletop. Stacking multiple magnets on
top of each other (as | have done in Figure 5-3) will make your motor a bit easier to
assemble.

2. Place the AA battery with the positive end pointing downward, on top of the mag-
net.

Some AA batteries don’t have a positive end that’s attracted to mag-
nets. You'll need to find one that does!

3. Now, take the length of wire and bend it in two.

4. Fold the two sides out and into a tall M-shape:

Chapter 5 55

56

Experiment 1: Faraday’s Motor

5. Fold the ends inward so that they overlap by around 1cm, making sure that the
height of the M matches the height of the AA battery plus magnet.

6. Now carefully place the tip of the M in the wire over the negative terminal of the
AA battery, making sure the two ends of the wire rest gently against the magnets:

Making Things Smart

Experiment 1: Faraday's Motor

You may need to fiddle a little to make sure you get a good electrical contact while
not applying too much force with the wire, but you should notice the wire wants
to start spinning.

| found that my motor spun so quickly the wire fell off the top of the battery, so |
added a small washer to help keep it in place:

Chapter 5 57

Experiment 1: Faraday's Motor

So how does this work? It uses the Lorentz force. Current flows around the circuit that's
been made: through both sides of the wire, the battery, and the magnet. Fleming’s right-
hand rule says that if you extend the middle finger, index finger, and thumb on your right
hand at right angles to each other (Figure 5-4), each of the three fingers can represent the
direction of current, magnetism, and force (it doesn’t matter which is which).

58 Making Things Smart

Experiment 1: Faraday's Motor

N

Figure 5-4 Fleming’s righthand rule

The current in the vertical section of the wire runs almost parallel to the magnetic field, so
this means that it isn't generating much force. However, current also flows radially outward
from the center of the magnet, and this interacts with the vertical magnetic field and
causes a force that is perpendicular to both the magnetic field and the current, which
pushes the coil of wire around (Figure 5-5).

Chapter 5 59

Experiment 1: Faraday's Motor

Magnetic Field

A

Force

Current

Figure 5-5 How force is generated from the current flowing in the motor

The current does flow in the opposite direction at the top of the piece of wire, but the
magnetic field is much weaker there, and so produces less force in the opposite direction.

Do modern motors work like this? Not quite. Faraday’s motor and the one you just made
are homopolar motors, which means that the magnetic field does not change. While these
motors are very interesting, it has been hard to produce them in a configuration that pro-
duces a lot of power.

To make a motor more powerful, it is much easier to use the attraction between magnets.
If you have two magnets (one fixed, and the other on an axle), the one on the axle will
rotate until its north pole faces the south pole of the other because opposites attract.

However, in order to keep the axle keep rotating, you need to change the magnetic field
on one of the magnets so that instead of attracting, the magnets will start to repel each
other, continuing the rotation until opposite poles are near to each other again.

You can’t do this with a normal magnet, but you can do it very easily with an electromag-
net just by changing the polarity of the voltage applied to it. You just need a way to
change that polarity (see Figure 5-6).

60 Making Things Smart

Experiment 2: Motor with Commutator

/ | ST e N]
/ To continue rotation, we must now /

change the polarity of our rotor, so
it is attracted to the opposite poles

Figure 5-6 Making a motor rotate by changing the polarity of a magnet

You can run your motor off of AC power, which changes polarity at a set rate, but this
means your motor will only run at a fixed speed (and may be hard to get started). If we
have DC power, we're going to need some kind of switch that applies the correct power to
the electromagnet at the correct point in the rotation of the motor.

This is called a commutator, and it’s just a rotating switch (Figure 5-7). Just as a valve in a
steam engine lets steam in and out of a piston at certain points in the cycle, conductive
brushes make contact with metal areas on the commutator, feeding current to the electro-
magnet at the correct times in the cycle to make it rotate.

[=] [=] [=]
7 Q /

i

Figure 5-7 A simple DC motor's commutator

Experiment 2: Motor with Commutator

You can make a simple electric motor with a commutator yourself. You'll need the follow-
ing (see Figure 5-8):

« Two neodynium magnets

« Four large bare metal paperclips

« 1.5minsulated copper wire

+ A block of wood and four screws

« A cork from a bottle of wine (I'm using a fizzy wine cork because it's bigger)

« Two 2-inch nails

« Sellotape

Chapter 5 61

Experiment 2: Motor with Commutator

« A source of DC power: around 6-12v (see Appendix A for ideas)

Figure 5-8 The parts you'll need to make a simple motor
Let’s create the motor:

1. Push the two 2-inch nails into the ends of the cork:

62 Making Things Smart

Experiment 2: Motor with Commutator

2. Wrap the wire around the cork lengthways, leaving around 5cm of wire on each
end (you may need to cut one end to size):

3. Wrap a bit of sellotape around the nail at the end where the ends of the wire are.
This will help to insulate it.

4. Strip both ends of the insulated copper wire, leaving 1 cm of insulation near the
cork:

5. Now fold the exposed metal wire in half and twist it together. This will create the
contacts of the commutator.

Chapter 5 63

Experiment 2: Motor with Commutator

6. Push the twisted bits of metal flat, and wrap a little more sellotape around the very
ends of the looped wire to hold the two loops in place.

7. Now cut the excess sellotape off at the end of the nail, leaving a little ring of bare
metal. This will help to guide the rotor as it is spinning so it doesn’t move to one
side or the other:

8. Next, make a stand for each end of the rotor. Fold two paperclips like this:

&

Bend

<< Kink

_/

Bend

To get this stand:

64 Making Things Smart

Experiment 2: Motor with Commutator

9. Now screw each paperclip into each end of the wooden block, so that you can rest
the rotor into the V shape in each paperclip.

10. Fold the remaining two paperclips so that they look like this:

Chapter 5 65

Experiment 2: Motor with Commutator

11. Add the rotor and screw the two paperclips down to the block of wood next to
each other, so the long length of each paperclip is touching the commutator (you
may have to do a little bending to get everything properly aligned!):

12. The final step is to add the magnets. For this motor, the magnets need to be
placed either side of the rotor, with the north pole on one side and south pole on
the other.

66 Making Things Smart

Experiment 2: Motor with Commutator

In my case, | added two bits of wood to the side of the stand and glued some mag-
nets salvaged from an old hard disk to them (see Appendix A), but even holding
the magnets with your hands will do.

13. Now connect your power source to the two paperclips sticking out of each side of
the motor, and spin the rotor by twisting the end of the nail sticking out of it—if all
is well, it should start to spin! If not, try bending the two paperclips, making sure
they touch the commutator, but with very little force! You may also need to experi-
ment with the positioning of the magnets:

As you might have noticed with your motor, it usually needs pushing to get started. This is
partially because of our slightly iffy homebrew commutator, but is also because if the coil
we made is perfectly facing the permanent magnet, no rotational force will be applied and
so the coil won't be able to rotate at all.

To get around this, most motors use a second electromagnet that is 90 degrees away from
the first one, and they have more contacts on the commutator (Figure 5-9). This means
that there will always be an electromagnet that isn’t facing the permanent magnet, and
the motor will always be able to start rotating without human intervention!

Chapter 5 67

Brushless DC Motors

A | 7 A | A

Figure 5-9 Using a second coil to allow the motor to start from any position

Of course, more coils can be added to make the motor run more smoothly.

You might have noticed when you ran your motor that there were small sparks coming off
the commutator (the same flashes of light you might see if you use a cordless drill and
release the trigger quickly). This is because a commutator works by rubbing one conduc-
tive material against another, and that can cause sparks, and more serious problems, as the
commutators lose contact and regain it. Commutators can wear out if the motor is used for
a long period of time, and you can’t put as much power through the commutator as you
could if the coils were connected directly.

The relatively delicate coils of wire are also spinning around at high speed, when your nice
simple permanent magnet is stationary. It seems like it would be much simpler to spin the
magnet around while keeping the coils stationary.

You can, but now you can't easily use a commutator to change the voltages on the coils
and you're back to square one. What you need is another way to control when and how the
electromagnets turn on without rubbing two bits of metal against each other, and this is
when—finally—you get a chance to use microcontrollers.

Brushless DC Motors

In brushless DC motors, you have coils that don't move, and magnets attached to the rotor
that do. The coils are connected to some electronics that turn them on and off at the cor-
rect times. In the simplest configuration we could just turn the coils on and off in the right
order (Figure 5-10) at a certain frequency and the rotor would be attracted to each in turn,
running at a fixed speed.

68 Making Things Smart

Experiment 3: Stepper Motor

~ 0
/ /4. (ST S| {[] {1 I 1

N
O O

Figure 5-10 How a brushless DC motor rotates by changing the magnetic field on its coils

However, if the motor doesn’t always run at a fixed speed the rotor may not be where the
motor controller expects it to be. In this case the motor controller would turn coils on at
the wrong time, and the motor would stall.

Imagine a modern cordless electric drill with a brushless motor. When running freely, the
manufacturer knows the mass of every component in the drill and can calculate exactly
how fast the motor will be able to start and stop. However, if you then start to drill a hole,
the speed of the motor can vary wildly due to external factors. Without feedback the
motor would stall.

To avoid this, most brushless motors incorporate some kind of rotation sensor. There is
either an external sensor, or some circuitry to check the inductance of undriven coils (as
this changes depending on the rotation of the rotor).

Sensors

The type of the sensor used often impacts how only a sensor that detects when it has made a
well the motor is able to restart. For instance, an complete rotation (not its absolute position). If
electric car may have a very good sensor, allow- you purposefully slow it down and stop it, the
ing it to start moving smoothly regardless of the motor will only be able to restart properly when
force applied to it. The kind of brushless motor there is no force applied to it.

that you'll find in a computer’s cooling fan has

Experiment 3: Stepper Motor

In some cases, there will be a known load attached to a brushless motor, or the motor can
be made powerful enough to overcome the highest expected load. When this is the case,
the motor controller can make a better guess about which coil it should turn on at what
time, and you no longer need the rotation sensor.

We call this a stepper motor, because each time the motor controller changes the coil that
is powered, the motor steps around.

A good example of this is the majority of consumer 3D printers. In 3D printers there is usu-
ally some kind of print head on a gantry that is moved around by motors. The mass of this

Chapter 5 69

Experiment 3: Stepper Motor

gantry (and so how fast it can be accelerated and deaccelerated) is known by the manufac-
turer, and they can program this into the 3D printer.

In early (or home-built) 3D printers, this calibration was often left to the user, and it was
easy to get it wrong as you were balancing making your printer fast with the accuracy of
the motor. If the motor can’t accelerate fast enough and loses just one step, your whole 3D
print will have a step in it where the top half is offset from the bottom half!

You can make a stepper motor yourself with this hardware:

+ 2x neodynium magnets

+ 10cm cellophane tape or masking tape

« 2x paperclips

« 2x small nails

+ A block of wood and two small screws

- A cork from a bottle of wine

« Two iron nails

« 2x 5m lengths of thin single-core insulated wire

+ Four AA batteries in a battery holder
Let’s create the motor:

1. Tape your two neodynium magnets to opposite sides of the cork. Make sure one
has the north pole facing outward, and the other has the south pole facing out (if
you hold a third magnet near the cork, one side of the cork should attract it, and
the other should repel it).

2. Push one of the two small nails into each end of the cork, creating an axle for it to
rotate on. You've now finished your rotor:

70 Making Things Smart

Experiment 3: Stepper Motor

3. Next, make a stand for the rotor. Half-unfold each paperclip, and refold it into a Y
shape, to give the nails of the rotor something to rest in.

4. Fold the other end of each paperclip tighter, and screw each paperclip into each
end of the wooden block, so that you can rest the rotor into the Y of each paper-
clip.

5. Now we'll make the two electromagnets we need. Hammer the two iron nails part-
way into the wooden block, such that their tops are roughly at a 45-degree angle
relative to the rotor:

6. Strip both ends of each piece of the single-core wire (strip slightly more off one
end than the other). Leave 10cm of one end and then start winding it around one
of the nails until you have 10cm left at the other end. Do the same for the other bit
of wire on the other nail.

7. Place the rotor on top of the paperclips:

Chapter 5 71

Experiment 3: Stepper Motor

You may need to re-bend the clips a bit to get everything aligned nicely.

And we're done! Time to test the motor.
To test the motor:

1. Rotate the rotor so that one of the magnets on it is near one of the coils, but not
completely facing it.

2. Take the two wires coming from that coil, and hold them across the battery pack
for a second (put negative on the end that you stripped more off of). You should
see the rotor move slightly. If the magnet moves away from the coil, rotate the
rotor 180 degrees and try again!

3. You should now have one of the magnets facing the coil. Now connect the other
coil across the battery for a second in the same way. The rotor should move 90
degrees so that one of the magnets now faces that coil.

4. Now connect the original coil back up, but this time with positive on the end that
you stripped more off. The rotor should move again, but now the other magnet
will be facing it, and you have managed to rotate the rotor a whole 180 degrees.

5. If you connect the other coil back up (and inverted too) the rotor will rotate to be a
full 270 degrees from where you started, and connecting the original coil back up
in the original pattern will have rotated the rotor a full 360 degrees!

If you could keep repeating this pattern (Coil 1, Coil 2, Coil 1 backwards, Coil 2 backwards,
Coil 1, etc.) quickly enough, you could get the motor spinning.

72 Making Things Smart

Experiment 4: Stepper Motor Control

Don't Want to Do This?

You can buy stepper motors with motor drivers If you want to experiment with stepper motors
very cheaply online, and many Arduino starter but don’t want to make your own, you could buy

kits contain one. a stepper motor and wire it up as follows:
Motor | Espruino
driver | connection
= GND
+ V_OuT
IN1 B1
IN2 A7
IN3 A6
Figure 5-11 A premade stepper motor and driver IN4 A5
attached to an Espruino Pico board

Experiment 4: Stepper Motor Control

Now that you've created the stepper motor from Experiment 3, you can use the microcon-
troller to automatically connect the coils up in the correct pattern quickly enough to spin
the motor.

To make our motor move, we've had to put a lot of power (an amp or two) into our coils.
The little microcontroller is only designed for turning small things on or off, and can supply
only around 20mA (one-fiftieth of an amp!). To make it control our motor we'll need to use
a motor driver IC to amplify the signals from it.

Don't Want to Do This?

In the following experiment, we're using a L293D « Input pins: ground, power, 4x inputs
motor driver IC. If you don't want to use one (or
can't find one), you can get many premade
motor-driver boards online. A board marked as a
“Dual H-Bridge Motor Driver” should be exactly
what you need. It should have:

» Output pins: 4x motor outputs

Chapter 5 73

Experiment 4: Stepper Motor Control

You'll need these electronics:

« A breadboard

+ An Espruino board

« Patch wires for the breadboard

« An L293D motor driver IC

Follow these steps to control the motor:

1.

Assemble the microcontroller board and motor driver as shown:

J\ﬂ AA Battery - oo

.]i Auazzeg vy

This will have Espruino pins [B1] and [A7| connected to the first coil via the motor
driver, and [A6| and [A5| connected to the second.

. Connect the Espruino board to your computer as you did in Chapter 2, start up the

Espruino Web IDE software, and click the Connect button in the top left.

. You can now start to control your motor. As a first step, let's define the pins we're

going to use. Type |[var MTR = [B1,A7,A6,A5]] into the lefthand side of the Web
IDE and press [Enter|, This will create a variable called that is an array contain-
ing our four pins.

. Now type |[digitalWrite(MTR, 0b0000)| This will make sure that all of the four

wires are connected to GND, so all coils are turned off. We're giving [digitalWrite
a binary number as an argument, where each of the four digits after |0b| controls a

pin. The first controls B1|, the second A7, and so on.

. When we wired up our circuit, we wired [B1] and [A7] to the first coil via the motor

driver. This means we could turn our coil on in one direction by raising |B1| while
keeping lowered. We can do this just by feeding the binary number (0b1000

into [digitalWrite| Press t]to show the last command, then use [«| to step back-

74

Making Things Smart

10.

11.

12.

Experiment 4: Stepper Motor Control

wards to the first |0/ character, and change it to a 1. Press [End| (or use the [+] to step
to the end of the line) followed by (Enter]. The rotor should now move!

. Next, it's a good idea to know how to turn the coil off to stop it from getting too

warm! Press [+] twice until the [digitalWrite(MTR, 0b0E0O)| command is shown
again, and press [Enter| to execute it. This will connect all pins to ground again.

. Next we can turn the other coil on. Do this using the same steps as before, but

change the number to [0b0010] instead. This will set[A6/to 1, and[A5|to 0.

. Then we need to turn the original coil on, but backwards. Just as we did manually,

we'll just put positive voltage on the other pin. We used |0b1000| before, but this

time we can use |0b0100|.

. Now, turn the second coil on backwards with |0b8001| The rotor should have rota-

ted 270 degrees now.

To rotate it a full 360 degrees you can call up the previous command. Just press (]
until you get to [digitalWrite(MTR, ©b1000);|and then press [Enter]again.

So altogether we've executed the following commands. You can keep pressing [+]
four times and (Enter], executing each command in turn manually to turn your
stepper motor!

digitalWrite(MTR, 0b1000);
digitalWrite(MTR, 0b0010);
digitalWrite(MTR, 0b0100);
digitalWrite(MTR, 0b0001);

The rotor will be attracted to each coil in turn:
] [l L] [l
ofmE OFE oo =EC
L [l [l [

It would be great if we could get Espruino to do this automatically, but we can't
just execute those commands in sequence because everything would happen too
fast. We need to execute each one with a delay between. To start off, we'll store all
our steps in an array and will make a function called that steps through
them. Copy and paste this into the lefthand side of the Web IDE:

// the 4 steps we're doing

var steps = [0b1000, 0b0O10, 0bO10O, ObOEO1];
// the step we're going to output next

var step = 0;

function doStep() {

Chapter 5

75

Experiment 4: Stepper Motor Control

13.

14.

15.

16.

17.

// output the step from the array
digitalWrite(MTR, steps[step]);
// move on to the next step
step++;
// but if there are no more steps, we must go to the beginning
if (step >= steps.length) step = 0;
}

By itself this won't do anything, but if you now type repeatedly the
motor will turn 90 degrees each time.

To do this automatically we'll use Espruino’s |setInterval|function to call |[doStep

twice a second. It takes a number in milliseconds, so we need to use 500. Type
'setInterval(doStep, 500) and press (Enter]. Your motor should now start spin-
ning!

Now that we've got Espruino calling our function, we can have the board call the
function more often in order to rotate our motor faster. When we typed |setIn
terval| before, it returned the number [1]. This is the number of the interval that
we just created, and we can use it to tell Espruino to change that interval. Type
|changeInterval(1, 400)|. This will change the interval to be called every 400ms
(2.5 times a second), and the motor should rotate a bit faster.

Try slowly decreasing the number you put into [changeInterval|and see how fast
you can get the motor spinning! If you set it too high you might find that the
motor will stop rotating properly and will just start shaking. You'll have to go back
to a much lower speed to get it working again.

You'll probably find that you can get the motor going fastest if you slowly increase
the speed, rather than trying to start at a high speed. This is because the motor
has inertia, so it can’t suddenly change speed. Because the microcontroller doesn’t
know that the motor isn't at the correct speed, it'll start to put the wrong coil on at
the wrong time, and will no longer be able to keep the motor moving.

At some point you'll probably want to stop your motor. To do this, you need to do
two things: you want to stop changing which coils are on by stopping the interval,
but you also want to make sure that you don’t leave one of the coils on. You can
do this by typing two commands back to back: clearInterval();digital
Write(MTR, 0b0O0O);|.

/ [clearInterval()| will clear all active intervals and timeouts. How-
ever, maybe you had multiple motors and only want to stop one! In
this case you can pass in the interval’s number just as you did for
[changeIntervall For instance, you can type |[clearInterval(1)]

instead.

76

Making Things Smart

Experiment 5: More Stepper Motor Control

18. If you want to wrap all of this into a handy bit of code that you can use to control
your motor, you could do something like this:

// our pins

var MTR = [B1,A7,A6,A5];

// the 4 steps we're doing

var steps = [0b1000, 0b0010, 0bO10O, ObOOO1];
// the step we're going to output next

var step = 0;

// the interval we'll be using

var interval;

function start(rpm) {

// just in case!

stop();

// start our interval

interval = setInterval(function() {
// output the step from the array
digitalWrite(MTR, steps[step]);
// move on to the next step
step++;
// but if there are no more steps, we must go to the beginning
if (step >= steps.length) step = 0;

}, 60000/rpm*(steps.length));

/* revs per minute = 60*1000 seconds, but we have to call

this function once for each step to make a complete revolution */

}

function stop() {
// remove interval i1f there was one
if (interval)
clearInterval(interval);
interval = undefined;
// turn off coils
digitalWrite(MTR, 0b000O0O);
}

19. You can enter this code on the lefthand side (or you can paste it into the right-
hand side and click the Upload button), and can then type simple commands to
start the motor. For instance, you can use |start(60)| to start the motor at 60rpm,

then to speed it up, and finally to stop it.
Experiment 5: More Stepper Motor Control

You might have wondered why we conveniently stored as an array. Sometimes
there are better ways of turning the coils on and off to make the motor move:

1. Start the motor turning slowly with |start(30)|.

Chapter 5 77

Experiment 5: More Stepper Motor Control

At the moment we've only ever got one coil on at a time. What would happen if
we always had two coils on? The rotor would then be attracted by both coils and
so would be able to produce more rotational force. However, you don't get this for
free: two coils on means twice as much power is being used!

To make this happen, we can just replace the steps array by typing |steps =
[0b1010, 0bO110, 0bO101, 0b1001];|on the lefthand side of the IDE.

But if instead we want our motor to move more smoothly (or maybe more accu-
rately!) we can use a different step pattern that alternates between turning one
coil or two coils on. In this case, when one coil is on, the magnet on the rotor will
be attracted to that one coil, but if two coils are on then the magnet will be attrac-
ted to a position between the two coils:

[[]

0 0
Efm 90 mmo m<YO
O O O O

[[

O 0
DgEm O¢m Omm OB
O O 0 0

In terms of positioning, it's a bit like having twice as many coils! Try entering the
following:

steps = [0b1000, 0b1010, 0b6O10, 0bO116, 0bO160, 6bO101, 0bOGO1, Ob1601]

There are now twice as many steps, so the motor will only run at half the speed.
However, it will be able to rotate much more smoothly at lower speeds.

Of course there’s no reason why you can’t do this kind of thing to an even greater extent.
You could have one coil on at 100%, while the other was on at only 50%. That would move
the rotor to roughly 1/3 of the way between the two coils. This is called microstepping, but
we won't cover it here.

78

Making Things Smart

Experiment 5: More Stepper Motor Control

/ In this chapter we've controlled a stepper motor from first principles. In
reality, it will probably be easier to use a library of code that somebody else

has made.

Espruino contains a Stepper Motor driver library that can easily be used to
perform normal stepper motor operations.

Chapter 5 79

http://www.espruino.com/StepperMotor

In this chapter we're going to explore what we can do with careful timing when we have
some information about the rotation of an object.

To save us a bit of work, we'll use a premade motor and sensor combination. Probably the
cheapest and most readily available source of these is the computer industry. Since com-
puter fans need to be highly reliable (running 24 hours a day, 7 days a week, for years on
end), brushed motors couldnt easily be used because the brushes would wear out.
Instead, computer fans use brushless motors.

To help with efficiency and to lower noise, it's often useful to run these fans slowly when
the computer doesn't need to dissipate as much heat. To do that reliably, the computer
needs to know how quickly the fan is running. This means that many computer fans have
an extra wire that pulses once per revolution. It allows the computer to detect the speed of
the fan and to then adjust the voltage on the fan to keep it constant, or to produce an
audible warning if the fan is stationary.

Finding a Fan

The easiest way to find a fan is just to buy one. If you search online for you'll find
a huge array of fans to choose from. All you care about is that they’re 12 volt, black, and
have a wire with three or ideally four pins. You'll find that almost any computer parts store
will stock them.

While you could buy a fan, you might have an old desktop computer that is due to be
thrown out. In that case you will almost certainly find a fan inside if you open it. Again,
you're looking for a fan that has three or four wires. Figure 6-1 is an example of a 4-wire fan
from an Intel CPU. Figure 6-2 shows a 3-wire fan from a PC heat sink, and Figure 6-3 shows
the 3- and 4-wire plugs side by side.

8l

Finding a Fan

Figure 6-1 A 4-wire fan from an Intel CPU

Figure 6-2 A 60mm 3-wire fan

82 Making Things Smart

Experiment 6: Detecting Speed

~

Figure 6-3 3- and 4-wire plugs

Experiment 6: Detecting Speed

You'll need the following:

+ A breadboard
« An Espruino board
« 3 patch wires for the breadboard

+ 3 or 4 wire fans (previously described)
Here are the steps to detecting speed:

1. Put the Espruino into the breadboard:

Chapter 6 83

Experiment 6: Detecting Speed

4.
5.

Connect the black wire of the fan to [GND), the red wire to[5V}, and the yellow/white
wire to pin [A8]. If you have a fourth blue wire, connect this to [B7|. Note that these
fans are 12V and we're only running them off of 5V, so they will turn quite slowly,
but that’s good!

. Now plug in the Espruino board, and connect with the Espruino Web IDE. If you

have a 3-wire fan it should start spinning immediately, but a 4-wire fan might not.

. If you have a 4-wire fan, the fourth (blue) wire is the PWM wire. This stands for

Pulse Width Modulation, and it allows the computer to which it is connected to
control the fan’s speed based on how much of the time the signal is on versus how
much it is off. For the moment we want our fan running as fast as possible, so we'll
just turn that pin on by typing |digitalWrite(B7, 1)|.

Next, let’s just store our sensor’s pin in a variable with [var SENSE = A8;|.

The fan's sensor output is what’s called Open Drain. When the fan blades are in a
certain position, the output will be shorted to ground. When the blades are any-
where else in their spin, the output will just be left disconnected. This means that
if we just measure the output, we won't see anything at all. We need to add a pull-
up resistor to pull the voltage on the sense output up to a high level so that we can
detect when the output isn't shorted to GND. We could do this with a resistor, but
handily modern microcontroller chips have resistors built in that can easily be
applied in software. Simply type [pinMode(SENSE, "input_pullup")|to turn on the
internal pullup resistor.

Now, it would be helpful to see what's happening on the pin itself. We could just
display the state on the Espruino board’s LED. To do that, we’'ll want to change the

84

Making Things Smart

10.

11.

12.

Experiment 6: Detecting Speed

state of an LED when the pin changes state. We'll do that using (which
calls the supplied function whenever a pin changes state).

. Just type the following in the lefthand side:

function onChanged(e) {
digitalWrite(LED1, e.state);

}
setWatch(onChanged, SENSE, { edge:"both", repeat:true });

. You should now find that the LED is lit. You might even see it blinking on and off.

Try slowing down the fan with your finger, and you should see the blinking slow
down as well. In fact, if you stop the fan and rotate it yourself, you should see the
points of rotation at which the output is on, and the points at which it’s off.

. By itself that’s not very useful, but we could change our [onChanged| function so

that it was able to measure how many times the fan has rotated per second. Try
the following:

var counter = 0;

function onChanged(e) {
counter++;
digitalWrite(LED1, e.state);

}

. Entering the new code has caused the [onChanged| function to be overwritten. You

don’t have to call |setWatch|again; it's now executing the new code instead. Type
and press [Entez], and the value of the counter should be displayed.

Press [+ and [Enter] again to print the value of again. It should be increas-
ing each time the fan’s sense output changes state.

We can now print the counter’s value and set it to zero every second with the fol-
lowing code. That'll give us an idea what the speed of the fan is:

function onSecond(e) {
console.log(counter);
counter=0;

}
setInterval(onSecond, 1000);

Normally it should be printing a relatively constant value, but if you slow the fan
down with your finger, you should see that the value reported drops off. We could
even use this to output some kind of warning if the fan was running too slowly. Try
the following:

function onSecond(e) {
// light an LED i1f too slow
digitalWrite(LED2, counter < 30);
// output the revs per minute (60 seconds, but rising *and* falling)
console.log(counter * 60 / 2);

Chapter 6

85

Experiment 6: Detecting Speed

counter=0;

}

13. Now, if you slow the fan down, the second (green) LED will light up. Once the fan is
spinning again the LED will go out, but as we're only checking once a second it will
always take a second to react to changes. It would be better if we could work out
the speed using the time between pulses. We can do that by changing the
function so that when it is called, it compares the current time with the
last time it was called and uses that to work out the RPM:

// the last speed we calculated
var rpm;

function onChanged(e) {
if (e.state) {
// when the pin changes state to be high
var timeDiff = e.time - lastPulseTime;
lastPulseTime = e.time;
rpm = 60 / timeDiff;
digitalWrite(LED2, rpm < 900);
}
counter++;
digitalWrite(LED1, e.state);
}

function onSecond(e) {

// only light the LED if it's been a whole second without any move
ment // (we must be stationary!)

if (counter==0) digitalWrite(LED2, 1);

counter=0;

console.log(rpm);

}

We've added an [if (counter==0) ...]|check to the function.
Without this, if you stop the fan from turning, there will be no changes in
the signal from the fan and so our warning light wouldn'’t light up!

So now we've got our fan spinning, and we're able to see exactly how fast the signal is
changing and work out the fan’s RPM.

But is it correct? How can we actually tell?

One way is to use a stroboscope. If we create a short pulse of light when we think the fan
has gone through one rotation, it should illuminate the fan at just that point.

86 Making Things Smart

Experiment 7: Stroboscope

Stroboscopes

A stroboscope is a device that makes an object
that moves in a repetitive way appear to move
slowly or even to be stationary.

It does this by hiding the object when it is every-
where other than where you want to see it. What

Joseph Plateau made the first stroboscope in
1832, using a disc with rotating slits. As each slit
flew past a light source, it lit up a scene for a split
second (much like a zoetrope). In 1917 Etienne
Oehmichen patented the electric stroboscope,
which used an electrically generated flash of

would have been a blur now becomes a (darker)

. L . light to illuminate the subject, rather than a slit.
picture of the object in the correct position.

Experiment 7: Stroboscope

You'll need the following:

« Everything as set up for “Experiment 6: Detecting Speed”
+ A small white sticky label

Follow these steps to use the stroboscope:

1. To make sure you've reset your Espruino board (if you were using it for the last
experiment), type on the lefthand side and press (Enter]. The board will
reset, and the text that was printing once a second will stop.

2. Write your initial on the sticky white label, and put the label on the outer edge of
one of the fan blades, so you can easily see it.

3. Now we want to pulse an LED whenever the signal from the fan changes from a 0

to 1. For this we'll use [setWatch| as we did before, but will set the edge to
rather than [both|. We can also use [digitalPulse| to pulse the onboard LED for a

short period of time. We're using LED2 because the green LED is slightly brighter
than the red one!

var SENSE = AS8;
pinMode(SENSE, "input_pullup");
function onChanged(e) {
digitalPulse(LED2, 1 , 2/*ms*/);
}
setWatch(onChanged, SENSE, { edge:"rising", repeat:true });

The green LED should start flickering on and off.

You'll have to turn off your lights and put your fan very close to the Espruino
board, but you should see something pretty amazing: your moving fan will appear
to have stopped moving! You'll still hear the motor whir, and you'll still feel the

Chapter 6 87

Experiment 7: Stroboscope

breeze from the fan blades, but the image of the fan blades will appear to be sta-
tionary, as in Figure 6-4.

Figure 6-4 The label highlighted by the strobe of the green LED

What is happening? The green LED is flashing at exactly the same time that the fan motor
is completing one revolution. When the scene lights up, you see the blades of the fan in
the exact same spot they were a fraction of a second before. By keeping the flash of light
short, and the rest of the room dark, you'll appear to see the blades in the same spot all the
time, even though they're still spinning.

You may find that you can see two distinct copies of your sticker, 180 degrees out from
each other. This is because the fan’s sensor actually changes state four times per revolution
(high - low - high - low), and it means that our previous RPM measurements were twice as
fast as they should have been!

So what can we do if we just want the sticker to be highlighted once per revolution? We
can count each time the signal changes, and can only pulse the LED when our counter is
odd rather than even.

A fast and simple way to do this on a computer is to take advantage of the fact that it uses
binary arithmetic. As everything works in base 2, the bottom digit (or bit) will be |1]if the
value is odd, and (0] if it is even. All we have to do to get it is to use the binary |& operator:

88 Making Things Smart

Experiment 8: Brighter Stroboscope

var counter = 0;
function onChanged(e) {
counter++;
if (counter&1)
digitalPulse(LED2, 1 , 2/*ms*/);
}
Now, the sticker should only be highlighted once. You might even be able to read your ini-

tial on the fan's spinning label.

Now that we're only flashing the LED once per revolution, it'll be getting really hard to see.
Ideally we'd have something that we could see more easily for our next experiments. Let’s
try and use a brighter light.

Experiment 8: Brighter Stroboscope

You'll need the following:

« Everything as set up for Experiment 7

+ A breadboard

+ An Espruino board

« AP36NFO6L FET (alternatives in Appendix A)
+ An ultra-bright LED and a 100 Ohm resistor

Complete the following steps:

1. Connect everything as shown in the diagram, leaving the fan connected:

Tee

2. Arrange the LED such that it is pointing toward the fan blades.

Chapter 6 89

Experiment 8: Brighter Stroboscope

3. Now, all you need to do is change the pin in your code from to the pin that

the light is on (B6]) and re-upload it. Reset the Espruino with and upload
the following:

var SENSE = A8;
var LIGHT = B6;
var counter = 0;

function onChanged(e) {
counter++;
if (counter&l)
digitalPulse(LIGHT, 1 , 2/*ms*/);
}

digitalWrite(LIGHT, 0);
pinMode(SENSE, "input_pullup");
setWatch(onChanged, SENSE, { edge:"rising", repeat:true });

If you point your LED at the fan, you should now be able to see your sticker high-
lighted much more clearly.

90 Making Things Smart

—
@)
-y
=
—
(@)
i
D
vy
D
=
Q
n
—
<

You might have noticed when you did “Experiment 8: Brighter Stroboscope” that the label
didn’t appear entirely solid. It had some motion blur. This happens because the light didnt
just flash on and off in an instant. It turned on, and turned off two thousandths of a second
later. However, in those thousandths of a second, the fan blade had actually moved a noti-
cable amount.

This is exactly the same reason you get motion blur in a still picture, and we can play with
the phenomenon to produce some really interesting effects!

Experiment 9: Persistence of Vision

You'll need:
« Everything as it was set up for “Experiment 8: Brighter Stroboscope”
Now follow these steps:

1. Upload the following code (this is from “Experiment 8: Brighter Stroboscope”, but

we've just moved the pulse length argument from |digitalPulse|into a variable
called [pulses)):

var SENSE = AS8;
var LIGHT = B6;
var counter = 0;
var pulses = 2;/*ms*/

function onChanged(e) {
counter++;
if (counter&1)
digitalPulse(LIGHT, 1 , pulses);

91

Experiment O: Persistence of Vision

digitalWrite(LIGHT, 0);
pinMode(SENSE, "input_pullup");
setWatch(onChanged, SENSE, { edge:"rising", repeat:true });

/ If you only saw a single sticker in Experiment 7 then you should leave
the [if (counter&1)| line out for this, and for subsequent experi-
ments.

You should now be able to see the dot highlighted by the strobe, exactly as before.

Type [pulses = 0.5|. This will reduce the pulse length to 0.5ms from 2ms, and the
dot should appear a lot sharper, with less blur (but a little more dim). It’s like mak-

ing the shutter speed faster in your camera.

You can go the other way, too. will make your dot into a big long
smear.

You can experiment with different values, but be careful! If you make
the pulse take longer than the fan takes to rotate, more pulses will
keep getting queued up until Espruino becomes unresponsive.

digitalPulse| can do more than just pulse the LED once. If you give it an array as
an argument then you can specify not just the time the output will stay high for,

but how long it will be low for after that, how long it'll be high after that, and so
on.

. Try [pulses = [0.5, 5, 0.5] You should now see two copies of your label,

because there are two pulses separated by 2ms.

Now try [pulses = [0.5, 2, 0.5, 2, 0.5]| You should see three distinct copies
of your label. But now, what happens if you slow the fan down with your finger?
The pulses will get closer together.

If we want to make sure the pulses appear at certain positions we'll want to make
their spacing dependent on the time it took to do a revolution. In Experiment 6 we
worked out how long a pulse from the sensor took by looking at in our
watch function, so let’s add that code here and use it to multiply every value in the

array.

92

Making Things Smart

Experiment 9: Persistence of Vision

5. Type the following code in the Web IDE editor:

var lastPulseTime;

function onChanged(e) {
counter++;
if (counter&l) {
var d = e.time - lastPulseTime;
lastPulseTime = e.time;
var p = pulses.map(function(t) { return t*d; });
digitalPulse(LIGHT, 1 , p);
}
}

/ The preceding code is using the JavaScript array’s function to
multiply every element of the array by the variable [d]. The func-

tion creates a new array by calling the supplied argument supplied
on each element.

For example, is the same as [[fn(arr[0]),

fn(arr[1]), fn(arr[2]), fn(arr[arr.length-l])]l.

Chances are you won't be able to see very much, because we're multiplying the
contents of the array (which should be in milliseconds) by the time
between sensor pulses (which was in seconds). This means that to light up for a

Chapter 7 93

Experiment 9: Persistence of Vision

6.

10.

full revolution we'd need a value of 1000 in our array, but we've got
and [2|.

Try setting the variable to something a bit more simple with [pulses = [5,
50, 5, 50, 5]|

You should now see the three disinct copies of the label that you had before. How-
ever, if you slow down the fan with your finger the pulses will now stay roughly the
same distance apart.

It's even possible to dynamically change the timings to make a simple animation.
We can use a sine wave to move the middle point slowly backward and forward:

function animate() {
var 1 = 50 + 40*Math.sin(getTime());
pulses = [5, 1, 5, 100-1, 5];

}

setInterval(animate,100)

While having a single pulse will make the fan look like it's stopped, we can actually
do better. By pulsing once for each fan blade we can show all the fan blades over-
lapped.

First, we'll want to remove our animation. Type |clearInterval()| to stop it, and
then type |pulses = [5]|to go back to a single pulse.

Next, stop the fan and count how many fan blades it has. The one I'm using here
has nine, but most fans have seven so that’s what I'll use for the examples.

Now, we want to work out what the spacing between pulses should be. We know
we need 1000 for a full revolution, so we just subtract the amount of time we have
to spend pulsing the light once for each fan blade, and then we divide by the
number of fan blades.

We might as well save this information into a variable by typing |var blades = 7;]
and|var t = (1000 - blades*5) / blades;|.

Now we just want to set up the array:

pulses = [5];
for (var i=0;i<blades;i++) pulses.push(t, 5);

Now you should be able to see one fan blade that’s a composite of the other blades.

94

Making Things Smart

Experiment 10: John Logie Baird's TV

Experiment 10: John Logie Baird’s TV

John Logie Baird's TV

In 1884 Paul Julius Gottlieb Nipkow patented the
Nipkow disc. This was a disc with a series of holes
in it, placed in a spiral. As the disc rotates, each
hole scans out one line at a time. If you put a
light behind the disc and turn it on and off at the
right time, you can use the persistence of vision

advanced enough that John Logie Baird was able
to use a Nipkow disc to make both a camera and
television, which was used for a short time by
the British Broadcast Corporation, among others.

In the end, fully electric televisions based on

cathode ray tubes took over. They were quieter,
higher resolution, and more reliable. There’s still
something very intriguing about an entirely
mechanical television system!

of your eye to scan out a complete picture.

While Nipkow never actually made anything
with his patent, in the 1920s technology had

In this experiment we'll make our own mechanical television in the style of John Logie
Baird’s. While we could get a better picture using a proper Nipkow disc (with holes in it),
that would take quite a bit of time and effort. Instead of shining light through holes, we
can use our fan setup from Experiments 8 and 9 and can reflect the light off white labels
instead!

You'll need:

« Everything as it was set up for “Experiment 8: Brighter Stroboscope”
« Small white stickers (or white paint/Wite-Out)
« Peel off the single sticker you'd put on the fan previously.

- Add new stickers near the leading edge of each fan blade, each one a little
bit nearer the middle than the last. You can use white paint or Wite-Out
for this, but it's harder to reposition if you're not happy with it!

Chapter 7 95

Experiment 10: John Logie Baird's TV

+ Add the code we ended up with after “Experiment 9: Persistence of
Vision™:
var SENSE = AS8;

var LIGHT = B6;
var counter = 0;

var blades = 7;

var t = 1000 / blades;

var pulses = [5];

for (var i=0;i<blades;i++) pulses.push(t-5, 5);

var lastPulseTime;

function onChanged(e) {
counter++;
if (counter&l) {
var d = e.time - lastPulseTime;
lastPulseTime = e.time;
var p = pulses.map(function(t) { return t*d; });
digitalPulse(LIGHT, 1, p);
}
}

pinMode(SENSE, "input_pullup");

setWatch(onChanged, SENSE, { edge:"rising", repeat:true });
You should now see a straight line highlighted on the fan (made out of
each of your stickers). This is because, as with “Experiment 9: Persistence
of Vision”, you're seeing the composite of all of the fan blades:

96 Making Things Smart

Experiment 10: John Logie Baird's TV

However, by turning the light on and off for different amounts of time, we
can make different patterns.

« Try the following code, but add or remove lines such that you have
one line per fan blade:

pulses = [

On most fan blades you'll see an assortment of lines, but on one blade you
should see a clear |C|shape:

Chapter 7

97

Experiment 10: John Logie Baird's TV

This works because each array element in contains a list of times
that the LED light should be on and off for. Even elements (array indices
start from 0, so this starts from the first element in the array) represent the
amount of time that the light should be on, and odd elements are times
that the light should be off.

These times are relative, so we multiply them by the time between rota-
tions of the fan. The time between rotations is in seconds and |digital
Pulse| accepts times in milliseconds, so all of the elements in the
array are in thousandths of a rotation of the fan blade.

We calculated [t] as the relative time taken for one fan blade to rotate, so
each line of the image we want to write should add up to [t|. Hence for the
very top of the [C| where we want the light to be on a long time we use [50],
and then we need to turn the light off for to ensure that when we
next turn it on, it's right at the start of the next line.

In the middle we use |5|and for a short pulse of light, and finally at the
end we don't need to make up a complete line so we only supply one
value (50), which is the time we want to turn the light on in order to make
the bottom edge of the [C|.

In fact, by timing the pulses correctly you can output whatever image you
want. Try the following, which will output a square:

var pulses = [
50, t-50,

5, 40, 5, t-50,
5, 40, 5, t-50,
5, 40, 5, t-50,
5, 40, 5, t-50,

98

Making Things Smart

Experiment 10: John Logie Baird's TV

5, 40, 5, t-50,
5075

In fact you can do whatever you want here, as long as each line has an
even number of elements (so the light turns off at the end of each line)
and adds up to [t/.

Manually setting the pulse widths this way is pretty frustrating, so you can
create a function to automate this. For example the following will let you
draw your own images just by passing in an array of strings with [X| or a
space to signify the light being on or off:

function toPulses(img) {
pulses = [];
// We're pulsing high at the start of the image
var lastPixel = true;
// the time the light will be on or off for
var time = 0;
// iterate over the image
for (var y in img) {
var line = img[y];
for (var x in line) {
var pixel = line[x]!=" ";
if (pixel!=lastPixel) {
// if this pixel is different, output the time
pulses.push(time);
time = 0;
lastPixel = pixel;
}
time += 5;

}

Chapter 7 99

Experiment 10: John Logie Baird's TV

// end of line, turn off

if (lastPixel) {
pulses.push(time);
time = 0;
lastPixel = false;

}

time += t - line.length*5;

}
}

toPulses([
"XXXXX"
"X X",
"X X",
"XXXXX"
"X X",
"X X",
TXXXXX" 1) 3

// or...

toPulses([
"XX XX",
"XX XX,

n n
B

"X X" s
"X X " s
"OXXXX "]) ;

And that’s it! You've made your own version of one of the earliest televisions using just an
old fan, a light, and a microcontroller!

Want to experiment more? You could use [setInterval|to call with a series of

different pictures in order to make an animation!

100 Making Things Smart

PART Il

Electromechanics

Making things move!

Now that we've learned a bit about motors, let’s try to use them to do something useful in
the real world.

(

One of the most rewarding ways to start using control systems is to make an autonomous
robot. Even very simple rules can create seemingly intelligent behavior.

While we made our own motor in the last chapter, to get started quickly here we're going
to use a premade servo motor that contains a motor, gearbox, and the drive electronics.
Probably the best source of these is remote-control cars, planes, and helicopters. All of
these models need small, lightweight actuators that can move to a specific location on
demand.

Servo Motors

In Chapter 5, we looked at stepper motors
(which we control by turning electromagnets on
and off in sequence), as well as the PC fan, which
had a sensor that told us when the fan blades
had rotated one revolution. With both of these
motors we had some idea of where they were
and how fast they were moving.

In many cases, however, you need an actuator
that can be rotated to an absolute position.

Servo motors contain a motor connected to a
position sensor and some control electronics.
The control electronics can then turn the motor
clockwise or anticlockwise until it reaches the
desired position. Unlike a stepper motor, if some
external force moves the motor away from the
desired position, the control electronics can
detect this and move the motor back.

RC servo motors generally use a standard brushed motor connected to a gearbox, which is
in turn connected to a potentiometer (Figure 8-1). The potentiometer (or variable resistor)
changes its resistance based on its rotation, and some simple control circuitry compares
the new resistance with the expected resistance and moves the motor accordingly.

103

Experiment 10: John Logie Baird's TV

Output Shaft

Gearing
Potentiometer

Control
Electronics ¢§

Figure 8-1 The component parts of a servo motor

However, because of the way these potentiometers are built, they can only be turned
around a certain amount of times before the internal wiper hits an end stop. The cheap
potentiometers used in most model servo motors can only be rotated around 270 degrees,
so most servo motors are restricted to this or less.

These motors take a digital input in the form of a square wave. Every time the motor’s con-
trol electronics get a square wave, they compare the length of that wave (the amount of
time the signal is high) with the potentiometer’s resistance, and move the motor slightly
clockwise or anticlockwise. A signal length of 1.5 milliseconds (ms) moves the motor so
that the potentiometer is in the middle. A signal length of 1.0ms moves the motor to one
end of its range, and 2.0ms moves it to the other end. RC servo motor controllers are usu-
ally stupid, and it is possible to give the motors pulse lengths outside of the 1-2ms range,
which will cause them to move a bit further, but that could also cause damage to the
motor.

Most servo motors have an output shaft that can only rotate from 0-180 or 0-270 degrees
because of their potentiometer. There is, however, a special kind of motor called a continu-
ous rotation servo. These motors have the potentiometer disconnected, so they can rotate
as many times as is needed (although not to any absolute position). While at first glance
this might seem pointless, it does give us a great source of easily usable motors for robots!

104 Making Things Smart

Experiment 11: Try Out a Servo Motor

Making Do

Don't have or can't find a servo motor? No prob- Just wire the motors up, and instead of using
lem! Just try to find some motors and gearboxes [analogWrite|in the following examples, set one
(perhaps from a premade three-wheeled robot). output high and the other low to make the

You can then use the L293D motor driver or motor move one way, and the opposite to make
motor driver boards mentioned in Chapter 5. it reverse.

Experiment 11: Try Out a Servo Motor

You'll need:
+ An Espruino board
« Breadboard
+ 3 patch wires

« A servo motor (see Appendix A for more information)
Follow these steps to test your servo motor out:

1. First take a look at your servo motor. It should have three wires coming out of it.
They should be either black, red, and white, or in some cases brown, red, and yel-
low. They are connected as follows:

Color 1 Color 2 Connection

Black Brown GND

Red ‘ Red ‘ Power

White ‘Yellow ‘Signal

Chapter 8 105

Experiment 11: Try Out a Servo Motor

Signal
Power
GND

Signal
Power
GND

The remote-control model servo motors we are using here were originally
designed to run off 4x NiCd AA batteries, so they expect a voltage around 4.8v.
Luckily the Espruino boards contain a protection diode which drops the voltage
available to a nearly perfect 4.7v.

Connect the wires up: GND to GND, Power to Espruino’s 5V/VBat pin, and Signal to
any data pin on the Espruino. Let’s use pin [B3|.

. Now plug the Espruino board into your computer, and connect with the Web IDE.

In the lefthand pane, type the following:[digitalPulse(B3, 1, 1.5)|.

This will provide a single 1.5ms pulse to the motor, and for a fraction of a second
the motor will move toward its middle point. If you're doing this on a continuous
rotation servo, it shouldn't move at all because 1.5ms is the midpoint between for-
ward and reverse.

. Press [t] to select the previous command (digitalPulse|) and press [Enter|. Do this

repeatedly and you should find that the motor jerkily moves to the midpoint.

Now try moving the motor to one side, by sending a 1.0ms pulse: |digital
Pulse(B3, 1, 1.0)|

You'll need to use +] and (Enter] again a few times, and you should see the motor
move, and then finally stop at its final position. If you're using a continuous rota-
tion servo, it will keep moving forward all the time.

106

Making Things Smart

Experiment 11: Try Out a Servo Motor

7. Obviously it would be better if we could do this automatically. In Chapter 3 we saw

how we could use |setInterval| to execute code every few milliseconds, and we
can do this here:

// the position of the motor
var pos = 0;

// To be called every so often to tell the servo where to go
function updateServo() {

digitalPulse(B3, 1, E.clip(l.5+pos, 1, 2));
}

// Now make sure we call the function every 50ms

setInterval(updateServo, 50);
The servo should now jump back to its home position (if it’s not continuous rota-
tion), but you can now update the value of the variable to move the servo
around.

8. Try [pos = -0.5|. This will move the servo to one side of its travel, and use [pos =

0.5|to move the servo to the other side.

Note that in the preceding code we've got|E.clip(1.5+pos, 1, 2)| This will make
sure that the pulse width is never more than 2ms or less than 1ms, which will help
to protect your motor from damage.

You can make the motor move slowly between two points by varying over
time. For example, we'll use a sine wave to slowly make the servo motor oscillate.

9. Modify the function by re-entering:

function updateServo() {
pos = Math.sin(getTime()) * 0.5;
digitalPulse(B3, 1, E.clip(l.5+pos, 1, 2));
}

You should now see the servo moving smoothly from one end of travel to the
other. If you've used a continuous rotation servo it will start moving one way and
will then slow down, stop, and start moving in the other direction.

Chapter 8 107

Experiment 12: Make a Simple Robot

Software Versus Hardware

In the preceding code, we're using [digital 50ms = 20 Hz|square wave, set with the correct
Pulse|, which outputs a single pulse using duty cycle:

Espruino’s software-based timer. Espruino also
contfanns hardware timers, -W2ICh c:;n g(lener?teha pos = Math.sin(getTine()) * 0.5;
continuous square wave independently of the B e o Roela . Sses, iy D)

software. analogWrite(B3, len/50, {freq:20})

To do this, you can use |analogWrite|. You need }

to specify a frequency and a duty cycle (the per- However, now you need only call the function
centage of time that the square wave generated when you want the servo to move. The pulses
should be high versus low). will be sent in the background even without
your function being called.

function updateServo() {

To generate the same pulse we're doing with |dig

italPulse| (every 50ms), we need a |1000ms /

Experiment 12: Make a Simple Robot

You'll need the following:

+ An Espruino Pico board
+ A breadboard (with double-sided tape on the rear)
+ 6 patch wires

« 2x 9g size, continuous rotation servo motors (see Appendix A for more informa-
tion)

+ One fizzy wine cork (or two short elastic bands if your servos have a circular head;
lobster bands are perfect—see Appendix A)

.

A USB power pack and Type A extension lead
+ A paperclip

« An elastic band

108 Making Things Smart

Experiment 12: Make a Simple Robot

Follow these steps to make a robot:

1. Firstly, get your two continuous rotation servo motors, and peel the sticky labels
off the side of them (they'll just get in the way).

2. If your servo motors came with a circular plate, push it on and screw it in. Other-
wise use the cross-pattern plate.

3. If you have lobster bands, stretch them over the circular servo head:

Chapter 8 109

Experiment 12: Make a Simple Robot

Later on, these will be used as wheels for our robot:

110 Making Things Smart

Experiment 12: Make a Simple Robot

If you decided to use the champagne cork (or used the cross-pattern servo plate),
carefully cut two thin (4mm) slices of cork off of the expanded end of the cham-
pagne cork. Use hot glue to glue them onto the servo plate.

4. Now, push the Pico into the breadboard with the connector sticking out of one
side as far as possible.

5. Use patch wires to connect power and ground to both servo motors, and connect
the lefthand servo (looking at the breadboard with the Pico at the rear) to pin
and the righthand one to [B4}:

6. Now that the servo motors are connected, let’s test them out! Use the Type-A USB
extension cable to plug the Espruino Pico into your computer, open the Web IDE,
and connect.

7. Copy and paste the following in the lefthand side:

var motors = [0,0];
function updateServos() {
// Left
digitalPulse(B3, 1, E.clip(l.5+motors[0], 1, 2));
// Right
digitalPulse(B4, 1, E.clip(l.5-motors[1], 1, 2));

Chapter 8 11

Experiment 12: Make a Simple Robot

}

setInterval(updateServos, 20);

At the start, nothing will happen because we're sending a signal to the servos that
is telling them to stay in their middle state. You may still hear a slight ticking noise
though!

Are Your Motors Moving?

Sometimes continuous rotation servo motors declaration of the function is
don’t come very well calibrated in the factory. shown, and use the arrow keys to move the cur-
They often have a small adjustment in the bot- sor to the text for the servo that is moving.
tom of the motor that can be moved until the Try changing the value to , press +| to
motor no longer turns. If you have this, put a move to the end of the function, and press
small screwdriver in the bottom of the servo and (enter| to execute.

rotate the adjustment until the servo is no longer
moving. Often you will only have to move the
adjustment by a few degrees.

If this makes things worse, try the opposite:
repeat the same steps and change the value to

[1.55]. Try different values until you find some-
Don’t worry if you don't have an adjustment, you thing that works.

can do it in software! Simply press +| until the

You can now make the motors move by entering commands like [motors = [1,0]] and
motors = [-1,-1]| The first element of the array should move the motor on the
lefthand side of the robot, and the second should move the motor on the right. will
make the robot move to the right (by moving the left motor forward), and will
make the robot move backwards by reversing both motors.

8. Enter|motors = [0,0]|to stop them.

9. Now that the servos are working, it’s time to assemble the rest of the robot.
Unplug the robot from your computer.

10. Place the two servo motors in the rear corners of the breadboard with the wheels
facing out to either side, and mark off the edge with a pen.

11. Get a sharp knife, cut along the sticky-back plastic, and then peel off the smaller
half of the plastic:

112 Making Things Smart

Experiment 12: Make a Simple Robot

12. You can now stick both servo motors in place on the breadboard:

Now all that's needed is something for the third wheel of your robot. Unfortu-
nately, tiny castor wheels are hard to get hold of, so we'll have to make do.

13. Take a paperclip, fold the middle out at 30 degrees, and then bend it into a curve:

Chapter 8 113

Experiment 12: Make a Simple Robot

14. Peel off a small bit of sticky tape and attach the paperclip to the bottom of the
breadboard:

Place a bit of sticky tape over the top to hold it in place:

114 Making Things Smart

Experiment 12: Make a Simple Robot

15. Now, carefully fold up your wiring and tidy it with an elastic band to keep it from
touching the floor. It makes a big difference, as you can see:

Chapter 8 115

Experiment 12: Make a Simple Robot

Now that you've made your robot, it's time to make it do something!

Follow these steps to make your robot do something:

1.
2.

Connect the Espruino Pico to your computer and the Web IDE again.

You can now control the robot in the same way we did for “Experiment 11: Try Out
a Servo Motor”. Type [digitalPulse(B3, 1, 1);| The left motor should now move
a small amount in one direction.

. Try [digitalPulse(B3, 1, 2);| The left motor should now move slightly in the

other direction, and you can type |digitalPulse(B4, 1, 2);|to move the right
motor.

. Entering [digitalPulse(B3, 1, 2);digitalPulse(B4, 1, 1);|should move the

robot forward (or backward) a little. Note that because the motors are opposite
each other we actually have to turn one clockwise and one anticlockwise in order
to move forward.

. Now that we've done that, we can work on making the robot move of its own

accord. Enter the whole block of code in the Web IDE that we used
earlier.

. Now try typing [motors = [1,1];], and then type [motors = [0,0]] to stop. The

robot should have moved forward. If it moves backwards, no problem! Just re-

enter the [updateServos| function, but swap around the [+ and [-] in the

function calls.

It would be nice if we could automatically move forward for a while, and could

then do something else. We can do this using [setTimeout|.

116

Making Things Smart

7.

8.

10.

Experiment 12: Make a Simple Robot

Enter|[motors = [1,1]; setTimeout(function() { motors = [0,0]; }, 500);|.

This will move the robot forward for half a second (500ms) and will then stop it,
but it’s a bit long winded especially if we want to do multiple things.

Instead, we could create a function that would make the robot do what we want.
We will input a list of moves, and the robot will execute them one after the other:

// the names of our movements
var FWD = [1,1];

var BACK = [0,0];

var LEFT = [-1,1];

var RIGHT = [1,-1];

var STOP = [0,0];

function go(moves) {
// take the first command off our array
var move = moves.shift();

if (move) {
// Move the motors
motors = move;
// Call ourselves again in half a second,
// with the remaining list of moves
setTimeout(go, 500, moves);

} else
motors = STOP;

}

You can now try it with [go([FWD,LEFT,FWD,BACK])| and the little robot will move
forward, turn left, move forward, then back again.

You can experiment with a list of commands that’s as long as you want. If you want
the robot not to move for a while, just add the command [STOP|.

Of course during this time you've got the wire connected to your robot all the
time. It would be nice if you could make the robot do things all by itself.

The only input we have available to us at the moment is the button on the Pico
board, so let’s use that.

First, we want to create a watch (enter the following code). This is a function that
will execute whenever an external input changes state. You can change the
command in the middle to whatever you want; the extra options on the end tell
Espruino to call the function each time the button is pressed, but not when it is
released. Debouncing stops the code from being executed twice in quick succes-
sion if the button physically bounces when it is pressed (in this case we only call
our function if the button has stayed pressed for at least 50ms).

Chapter 8

117

Experiment 12: Make a Simple Robot

setWatch(function() {
go([FWD,LEFT,FWD,BACK]);
}, BTN, {repeat:true, edge:"rising", debounce:50});

11. Now you can press the button, and the pattern of moves will be executed.

12. Wait until the robot has stopped moving, and then type into the lefthand
side of the IDE.

Your code is now written onto the Espruino Pico, and can run without a computer.

13. Unplug the Espruino from your computer, attach the USB power pack, and hold it
on top of the robot with an elastic band:

14. Now press the button. The robot will move all by itself!

While this is quite fun, with no real inputs (apart from the button) it’s difficult to do much
with the robot. What we need to do is give it some senses!

Our final code is:

var motors = [0,0];
function updateServos() {
// Left
digitalPulse(B3, 1, E.clip(l.5+motors[0], 1, 2));
// Right
digitalPulse(B4, 1, E.clip(l.5-motors[1], 1, 2));
}

setInterval(updateServos, 20);

// the names of our movements
var FWD = [1,1];

var BACK = [0,0];

var LEFT = [-1,1];

118 Making Things Smart

Experiment 13: Following Light

var RIGHT = [1,-1];
var STOP = [0,0];

function go(moves) {
// take the first command off our array
var move = moves.shift();

if (move) {
// Move the motors
motors = move;
// Call ourselves again in half a second, with the remaining list of moves
setTimeout(go, 500, moves);

} else
motors = STOP;

}

setWatch(function() {
go([FWD,LEFT,FWD,BACK]);
}, BTN, {repeat:true, edge:'"rising", debounce:50});

You can enter this on the righthand side of the IDE and click the Upload button if you want
to.

Experiment 13: Following Light

You'll need:

« The robot from “Experiment 12: Make a Simple Robot”
« 2x light-dependent resistors (LDRs)

+ 2x 10k resistors

« 5 patch wires

+ Aflashlight
Follow these steps:

1. Connect the components to the breadboard as shown, keeping the servo wiring
as it was in “Experiment 12: Make a Simple Robot”:

Chapter 8 119

Experiment 13: Following Light

120 Making Things Smart

Experiment 13: Following Light

This will connect your lefthand LDR to pin [A5} and the righthand one to pin [Aé|.
The two resistors act as pullups, trying to move the voltage nearer the positive
3.3v they are connected to, while the LDRs pull the voltage down toward Ov.

. Now connect the Espruino board to your computer again, and run the following
command on the lefthand side:[analogRead (A5)|.

This will give you a number between 0 and 1, which represents the voltage on pin

AS].

. Take a flashlight and shine it at the lefthand sensor, then run the command again.

You should now have a second number, lower than the first. This is because LDRs
lower their resistance when exposed to light. The lower resistance compared to
the 10k pullup resistor causes the voltage to drop.

. Without the flashlight, check the value from the righthand LDR with |analog
Read(A6) |

If everything is connected well, and one side of the robot isn't facing anything
bright, the value should be about the same.

In order to make the robot move toward the light, we need to take a rough meas-
urement of the values from the sensor when there is no light shining directly on
the sensors.

. Run the following code:

Chapter 8 121

Experiment 13: Following Light

var darkValue = Math.min(analogRead(A5), analogRead(A6));"

This will take the lowest of the two light-sensor readings (corresponding to the
one with the most light), and will save it to the |[darkvalue| variable.

6. Next, we'll use this to move the robot toward light in a really simple way. If the left
sensor has more light (a lower value) than |[darkvalue|, we'll move the right motor
forward, and vice versa.

When the light is to the left, the robot will move in that direction, but if it is
straight ahead, both motors will turn, moving the robot forward!

7. Now enter the following code on the lefthand side of the IDE:

var motors = [0,0];

function updateServos() {
var left = darkValue - analogRead(A5);
if (left < 0) left = 0;

var right = darkValue - analogRead(A6);
if (right < 0) right = 0;

motors[0] = right;

motors[1] = left;

digitalPulse(B3, 1, E.clip(1.5+motors[0], 1, 2));
digitalPulse(B4, 1, E.clip(l.5-motors[1], 1, 2));
}

setInterval(updateServos, 20);

The robot may start moving a little of its own accord!

8. You can now type [save()| plug the robot into the USB power pack, and start
experimenting with it:

9. If you shine a flashlight at the robot now, it should start to move toward the light.
If you turn the light off it'll stop moving, unless it is now facing something brighter
than it was when it was calibrated!

122 Making Things Smart

Experiment 13: Following Light

You can easily extend this code to try different ways of controlling the robot:

« Use simple [if|statements to control in the robot in a more digital way.
« Make the robot avoid light instead of chasing it.

« When the robot first powers on, automatically set |darkvalue|so that the robot can
work in all kinds of different locations.

+ By pointing the light sensors down, you can make your robot move around the
edge of a dark shape. It can even find its was through a maze just by following one
edge of it!

- By carefully positioning the sensors pointing downward you can make the robot
follow a line—but that can be difficult to get working reliably unless you have a
really thick line!

« You can also add other sensors like the HC-SR04 Ultrasonic distance sensor. This
will let your robot move around of its own accord without hitting things!

Chapter 8 123

In Chapter 8, we made our robot using continuous rotation servo motors, but the most
common type of servo motor can only rotate by around 270 degrees. While these motors
can’t be used for robot wheels, their ability to repeatedly move to an absolute position
makes them useful for all kinds of other things. Here we're going to use them to control the
position of a pencil so that we can draw shapes.

Experiment 14: Pen Plotter

You'll need:

.

.

.

A small corkboard (roughly 30cm x 40cm)

3x 9g RC servo motors (not continuous rotation) with their servo plates
One servo motor extension wire

9x patch leads

Breadboard

Espruino Pico

A 47uF, 6v (or higher) capacitor (optional)

An old pencil with soft lead (2B or softer is great—normal HB will work but is very
faint)

Two wooden chopsticks
A hot glue gun
Sticky tape

A 2-inch square of thick noncorrugated cardboard

125

Experiment 14: Pen Plotter

« 1 meter of thin string (kite string is perfect)
Here's how to assemble the pen plotter:

1. First, remove the stickers from the sides of your servos, and pick out the longest
servo plates you can find. These are the plastic adaptors that fit onto the end of
the servo motor’s output shaft:

2. Hold the corkboard in portrait orientation, and glue one servo to each side at the
top, with the output shaft facing toward the front:

126 Making Things Smart

Experiment 14: Pen Plotter

3. With a knife, carefully cut a notch in the end of the chopsticks:

Chapter 9 127

Experiment 14: Pen Plotter

This will help to keep the string on later on!

4. Now we'll assemble the pencil head. Take your pencil and chop it down until it is
very short:

5. Hot-glue the pencil to one side of the front of the servo plates:

128 Making Things Smart

Experiment 14: Pen Plotter

6. Now cut your square of card so that it is just large enough to hold the servo motor,
while having two holes at either side at the top to hold the string.

7. Push the servo plate onto the servo motor and then hot-glue the whole thing onto
the card so the pencil is pointing away from the card:

Chapter 9 129

Experiment 14: Pen Plotter

8. Take the length of string, cut it in two, and tie one piece through each of the two
holes in the card:

9. Now push the servo plates onto each servo, and carefully move the servo motors
from one end of their travel to the other, and then bring them back and leave
them in the middle position. Take the plates off and reposition them so they are
entirely horizontal relative to the corkboard, then screw them on with the small
screw that came with the servo motor.

10. Take the two chopsticks and place them so their ends touch on the middle of the
corkboard, and mark where they meet the edge:

11. Turn the chopsticks around 180 degrees and place them so the marking is in the
middle of each servo motor, and then tape them to each side of the double-ended
servo plate that came with your servo motor:

130 Making Things Smart

Experiment 14: Pen Plotter

12. Finally, tie the two bits of string for the pen assembly onto the end of the chop-
sticks. You should arrange the lengths such that the pen assembly sits in the mid-
dle of the corkboard:

AN

Chapter 9

131

Experiment 14: Pen Plotter

13. Pin a sheet of paper onto the bottom half of the corkboard. Put the pins halfway
down the sheet to avoid the pieces of string.

14. Stand the corkboard at a 45-degree angle. You'll need gravity to help pull the pen-
cil downward and onto the sheet of paper!

Now it’s time to wire your plotter up!

1. Attach the extension wire to the servo with the pencil on it.

2. Wire the nine patch leads, three to each servo. Choose colors that are memorable:
dark for ground, reds for power, and other colors for signals. See “Experiment 11:
Try Out a Servo Motor” for wiring instructions on the servo.

3. Plug the Pico into the breadboard with the connector sticking out one end. This
time put it as high in the breadboard as possible so you have as many sockets usa-
ble underneath it as you can get.

4. If you have a capacitor, put it between the GND and VCC pins on the Pico (GND is
leftmost on the bottom of the board, VCC is the one right next to it). The capacitor
will help to smooth out any bursts of current that are drawn by the servo motors.

5. Now wire all the ground leads to the GND pin near the capacitor, and all the power
leads to the VCC pin.

6. Wire the left servo to pin B3, the right servo to pin B4, and the pen servo to B5. The
circuit should look like this:

Left Right Pen

132 Making Things Smart

Experiment 14: Pen Plotter

Software

1. Now that you're all wired up, plug the Espruino board into your PC, connect the
Web IDE, enter the following on the righthand side of the IDE, and click the Upload
button:

var pos = [0,0,0];
function updateServos() {
digitalPulse(B3, 1, E.clip(1.5+motors[0], 1, 2)); // Left

digitalPulse(B3, 1, 0); // wait for pulse

digitalPulse(B4, 1, E.clip(l.5-motors[1], 1, 2)); // Right
digitalPulse(B4, 1, 0); // wait for pulse

digitalPulse(B5, 1, E.clip(l.5+motors[2], 1, 2)); // Pen

}

setInterval(updateServos, 20);
All the servos should now spring into life and go to their middle positions.

Even though we tried to set the servo motors up to their center position, we won't
have it absolutely correct. Let’s try to calibrate this in software:

2. Enter on the lefthand side of the IDE and press |Entex].

The lefthand servo motor should move. Experiment with different values until you
get it entirely horizontal.

3. Do the same with for the righthand servo until you get that hori-

zontal too.

4. Now try motors[2] = 0.5;|to move the pencil. Experiment with other values until
you find a value that holds the pencil nicely against the paper, and one that holds
it well away from the paper.

5. Now it’s time to modify our code. Enter the following code, with the values you
worked out. If you've forgotten, just type on the lefthand side and
Espruino will print the three values in the array:

var PEN_DOWN = PEN_DOWN_VALUE_HERE; // motors[2] when pen touches paper
var PEN_UP = PEN_UP_VALUE_HERE; // motors[2] when pen is away from paper
var OFFSET_LEFT = 0.1; // offset to make left servo horizontal

var OFFSET_RIGHT = -0.1; // offset to make right servo horizontal

var motors = [0,0,PEN_UP];

function updateServos() {
getNewPosition();
digitalPulse(B3, 1, E.clip(1.5+(motors[0]+0OFFSET_LEFT), 1, 2));
digitalPulse(B3, 1, 0); // wait for pulse
digitalPulse(B4, 1, E.clip(l.5-(motors[1]+OFFSET_RIGHT), 1, 2));
digitalPulse(B4, 1, 0); // wait for pulse
digitalPulse(B5, 1, E.clip(l.5+motors[2], 1, 2)); // Pen

Chapter 9 133

Experiment 14: Pen Plotter

function getNewPosition() {

}

setInterval(updateServos, 20);

6. Upload this code and the servo motors should now jump to their correct positions.

7. We've also added a function called [getNewPosition|. We'll now use this so that we
can draw some shapes. Modify [getNewPosition|as follows, and then click Upload:

var pos = 0;
var size = 0.1;

function getNewPosition() {
// increment pos slowly between 0 and 1
pos += 0.002;
if (pos > 1) pos = 0;
// Work out an angle between @ and 360 degrees, but in radians
var angle = pos * Math.PI * 2;
// Now use sin and cos to move the servos in a circular motion
motors[0] = Math.sin(angle)*size;
motors[1] = Math.cos(angle)*size;

}
The pen should now be moving roughly in a circle, but it’s not touching the paper.

Radians and Degrees

While you might be used to thinking of + 360 degrees = 2*m radians
angles in terms of degrees, computers

s Radians tend to be used because mathe-
almost always use radians internally.

matically they make much more sense for
Radians and degrees behave exactly the many trigonometric functions. For instance,
same, except instead of ranging between 0 for small angles can be approximated
and 360 degrees, radians range between 0 by a straight line in the same way that a

and degrees. small section of a big circle (like the horizon)

. will look straight. If you are using radians,
This means: 'g U 2 .

then for small angles, which

«+ 0 degrees = 0 radians makes a lot more sense than |x*n/180 = sin

+ 90 degrees =11/2 radians ﬂ Eslislstarety s

+ 180 degrees = m radians

8. To make the pen touch the paper and start drawing, type [motors[2]=PEN_DOWN|.

It'll now touch the paper and will start to draw a circle. However, it’s unlikely to be
much of a circle right now. We'll fix that in a bit!

134 Making Things Smart

10.

11.

12.

Experiment 14: Pen Plotter

If it's not making much of a mark, you might want to experiment by sticking some
pennies to the back of the pencil to give it some weight, or possibly using a softer
pencil or even a pen.

Change |var motors = [0,0,PEN_UP];|to|var motors = [0,0,PEN_DOWN];|in your
code, so the next time you upload, the pen will stay down.

As we created a variable called [size|, we can change the size of the circle while
we're drawing it. Type and the pen will suddenly jump to a new location
but will then start to draw another circle of a different radius.

Let's experiment by drawing a square. Rather than use a formula for this, we'll use
statements to execute a different bit of code for each of the four edges of the
square. You can just type this into the lefthand side of the IDE, and the function
(and shape!) will update automatically:

function getNewPosition() {

// increment pos slowly between 0 and 1

pos += 0.002;

if (pos > 1) pos = 0;

// Multiply by 4, for each edge of the square

var sq = pos*4;

// Now set the position for each edge:

if (sq<1) { // top edge
motors[0] = (sq-0.5)*2*size;
motors[1] = -size;

} else if (sq<2) { // right edge
motors[0] = size;
motors[1] = (sq-1.5)*2*size;

} else if (sq<3) { // bottom edge
motors[0] = (2.5-sq)*2*size;
motors[1] = size;

} else { // left edge
motors[0] = -size;
motors[1] = (3.5-sq)*2*size;

}

}

This is moving the left servo motor, then the right, and so on. However, it's not
making a square—in fact, it's more of a wonky diamond!

Now experiment with different sizes, by typing [size=0.05|, [size=0.3| etc.

You'll probably find you end up with something like this:

Chapter 9

135

Experiment 14: Pen Plotter

While for small movements we got a diamond, for larger movements there are more
noticeable curved edges, and as it gets even larger things go seriously wrong and every-
thing gets completely out of shape.

Why is this?

« We've made a plotter very quickly, and sometimes the pencil sticks on the paper
and then moves quickly. As the shape gets bigger, so does the perimeter. As we're
trying to draw it in the same time period we're trying to move the pencil too fast.

« If you look at the chopsticks on the servo motor as you draw a larger shape, you'll
see that as the angle between them and the string gets smaller; every degree’s
rotation of the motor has less effect on the position of the pen. If we had been
able to use a large pulley, we could have avoided this.

+ The servo motors themselves are not entirely linear. They're designed for model
airplanes and cars, and not for accurate movements.

136 Making Things Smart

Experiment 14: Pen Plotter

If everything was taut and the servos were accurate, we could measure everything and
could use a bit of geometry and math to draw perfect squares and shapes. Unfortunately,
our plotter is never going to be that good, but we can improve things a lot with a very
simple bit of code.

What is most obviously wrong with our squares? They're diamonds. To move upward, we
need to move both servos upward at once, but at the moment we're only moving one.
Similarly, to move sideways, we need to move one servo one way, and one the other.

Let’s just tweak our code so it is slightly more readable, by adding || for the left servo and
r|for the right one:

function updateServos() {
getNewPosition();

var x = motors[0];

var y = motors[1];

var 1 = x;

var r = y;

digitalPulse(B3, 1, E.clip(1.5+(l+OFFSET_LEFT), 1, 2)); // Left
digitalPulse(B3, 1, 0); // wait for pulse

digitalPulse(B4, 1, E.clip(1.5-(r+OFFSET_RIGHT), 1, 2)); // Right
digitalPulse(B4, 1, 0); // wait for pulse

digitalPulse(B5, 1, E.clip(1l.5+motors[2], 1, 2)); // Pen

}

Now, it's pretty obvious that when we draw our square’s top edge by changing just
motors[0]|, we're only moving the left servo. If we changed that so we moved both, we
could make the edges of the square much straighter.

1. Replace|updateServos ()| with the following code and re-upload it:

function updateServos() {
getNewPosition();
var x = motors[0];
var y = motors[1];
var L =y + x;
var r =y - Xx;

digitalPulse(B3, 1, E.clip(1.5+(l+OFFSET_LEFT), 1, 2)); // Left
digitalPulse(B3, 1, 0); // wait for pulse
digitalPulse(B4, 1, E.clip(1.5-(r+OFFSET_RIGHT), 1, 2)); // Right
digitalPulse(B4, 1, 0); // wait for pulse
digitalPulse(B5, 1, E.clip(l.5+motors[2], 1, 2)); // Pen

}

Now we're getting something a lot better. While it's not completely straight, the
one thing that stands out is our squares are still rectangles:

Chapter 9 137

Experiment 14: Pen Plotter

3 ‘

On the plotter that | made, the square is 3.5cm wide by 6cm high. So to fix this, we
could just make sure we move less in the |y| axis, by multiplying it by 3.5 and divid-
ing it by 6:

2. Change updateServos()|to the following:

function updateServos() {
getNewPosition();
var x = motors[0];
var y = motors[1];
y=y*3.5/6;
var L =y + Xx;
var r =y - X;

digitalPulse(B3, 1, E.clip(1.5+(l+OFFSET_LEFT), 1, 2)); // Left
digitalPulse(B3, 1, 0); // wait for pulse

digitalPulse(B4, 1, E.clip(1.5-(r+OFFSET_RIGHT), 1, 2)); // Right
digitalPulse(B4, 1, 0); // wait for pulse

digitalPulse(B5, 1, E.clip(l.5+motors[2], 1, 2)); // Pen

}

Yours will almost certainly require different values, but after some fiddling, you
should get something that looks significantly more square:

138 Making Things Smart

Experiment 14: Pen Plotter

So why is the resolution in the x-axis different from the y-axis? While our servos are
cheap and won't be very linear, the main reason is that in the plotter we've assem-
bled, the chopsticks aren't angled perpendicular to the string when the pen is at
the midpoint.

The math gets tricky here but just by looking at the plotter you can see that the
chopsticks are horizontal when the pen is at the midpoint. This means that any
rotation of the chopsticks will result in a lot more vertical movement than horizon-
tal.

Now, with some simple trial and error, you've got a plotter that will plot different
shapes. At the moment it’s really not that exciting, as it only plots the same shape
until you upload more code.

Instead of making just one [getNewPosition| function, let’s make a function called
that sets [getNewPosition| to some code that will move the pencil to a cer-
tain location, and will call a callback function when it’s done.

3. Replace |getNewPosition| with the following and upload again:

function doNothing() {
// do nothing
}

Chapter 9 139

Experiment 14: Pen Plotter

var getNewPosition = doNothing;

function move(x, y, callback) {

// First, get the old positions

var oldx = motors[0];

var oldy = motors[1];

// Now work out the distance using Pythagoras
var dx = oldx-x;

var dy = oldy-y;

var d = Math.sqrt(dx*dx + dy*dy);

// Make sure we move at the right speed, not
// too fast or slow!

var speed = 0.002/d;

// and now have 'pos', our position in the line
var pos = 0;

// Finally, set the getNewPosition function to something
// that will draw a line

getNewPosition = function() {
pos += speed;
if (pos>1) {
// If we've finished, stop and
// call the callback
pos = 1;
getNewPosition = doNothing;
if (callback) callback();
}
// Set the motor positions up by interpolating
// between oldx and x, oldy and y
motors[0] = oldx*(1-pos) + x*pos;
motors[1] = oldy*(1-pos) + y*pos;
b

Now, nothing will happen.

. However, if you type on the lefthand side of the IDE, the pen will

now move to the right.

. Type move(0, 0.2)|, and the pen will move diagonally down.
. Type move(-0.2, 0)} and you should now have a V.
. Type again to go back to the beginning and draw a triangle.

However, our function has a callback, so we can chain calls together. For instance,
the following will draw the triangle and print when it is finished:

move(0.2, 0, function() {

move(0, 0.2, function() {
move(-0.2, 0, function() {
move(0.2, 0, function() {
console.log("Done!");

140

Making Things Smart

Experiment 14: Pen Plotter

s
s
s
i9H

8. We can now rewrite our square-drawing function like this:

function penDown(yes) {
if (yes) motors[2] = PEN_DOWN;
else motors[2] = PEN_UP;

}

function square(x,y,size, callback) {
move(x-size, y-size, function() {
penDown(true);
move(x+size, y-size, function() {
move(x+size, y+size, function() {
move(x-size, y+size, function() {
move(x-size, y-size, function() {
penDown(false);
if (callback) callback();
b
b
b
s
b
}

9. If you now type square(®, 0, 0.1)] you'll draw a square in the same place as the
original. The pen will go down at the start and up at the end.

10. You can put a new square next to it with |square(®.2, 0, 0.1)], or one under-
neath with [square(0, 0.2, 0.1)]

In fact, now that you have a working plotter, you could even use it to draw text. For
instance, |Al would be:

function drawA(callback) {
move(-0.1, 0.1, function() {
penDown(true);
move(0, -0.1, function() {
move(0.1, 0.1, function() {
penDown(false);
move(-0.05, 0, function() {
penDown(true);
move(0.05, 0, function() {
penDown(false);
if (callback) callback();
s
b
s
b

Chapter 9

141

Experiment 14: Pen Plotter

IR
}
What else can you draw? You could change the funcion to draw stick figures, faces,
or could even add one function per letter of the alphabet.

If you have one function per character, you could write text by chaining the func-
tions together in the right other. For instance, to draw [ABC| you could do:

drawA(function() {
drawB(function() {
drawC(function() {
s
b
s

After you've read Chapter 15 (connecting with WiFi), you could even go back and connect
your plotter to the internet!

This is an amazingly simple plotter, and it has some big problems:

Nonlinearity
Using chopsticks means that the angle between the string and each chopstick
changes when the chopsticks move, and so a 1-degree movement at one end of
travel will move the string a different amount compared to a 1-degree movement in
the middle. While you could try to account for this change with math, it would be a
lot easier to use a pulley, which would always move the string the same amount, no
matter where it was!

Accuracy
Cheap servo motors aren’t very accurate. They are unlikely to be able to position the
chopstick accurately to less than 1 degree. To make a much more useful plotter, you
could use stepper motors instead. Stepper motors can rotate multiple times, so in
combination with a small pulley they could provide much more accuracy.

142 Making Things Smart

At the heart of pretty much all current digital cameras is a piece of silicon with millions of
distinct light sensors on it. The camera lens focuses light onto the silicon where each sen-
sor detects the amount of light it receives, and the color of that light. The information from
those millions of sensors is then read into a small computer in the camera, which creates
an image.

While this is probably the best way of making a digital camera, it isn’t the only way. If you
are trying to take a picture of a scene that isn't moving, you can use a single light sensor
that you move to each location in the image.

That's the kind of camera that we're going to make here. We'll skip the lens and will instead
use a small hole at the end of a long tube, allowing the sensor to view only a small area of
the scene at once. We're basically making a one-pixel pinhole camera!

Experiment 15: Making a Digital Camera

You'll need:

+ A cheap, plastic ballpoint pen

« Black masking tape

+ An elastic band

« A block of wood, roughly 7cm x 7cm x 7cm

+ Alight-dependent resistor (LDR), also known as a photoresistor
+ 1 meter of solid core wire

« A 100k Ohm resistor

« 2x servo motors (not continuous rotation)

143

Experiment 15: Making a Digital Camera

+ Breadboard
+ 7 jumper leads
+ An Espruino Pico

« A 47uF 6v (or higher) capacitor (optional)
Follow these steps to assemble the wand:

1. Cut the solid core wire into two equal lengths, and strip 10mm off one end of each
wire:

2. Fold the stripped end of each wire at 90 degrees, and twist it onto each of the
LDR’s wires. If you're happy soldering, you'll probably want to make a solder joint
instead:

144 Making Things Smart

Experiment 15: Making a Digital Camera

3. Now wrap the masking tape twice around one leg of the LDR to insulate it, and
then wrap it around both legs:

4. Take your cheap plastic ballpoint pen, and pull the front off of it:

~

If possible, drill roughly a 2mm-diameter hole in the back end of the pen. If not,

just pull the back out. Be careful: the larger the hole the more blurry your picture
will be!

5. Take your LDR and push it into the open end of the pen’s body, then use masking
tape to hold itin:

Chapter 10 145

Experiment 15: Making a Digital Camera

Wrap the masking tape all the way to the back to ensure that no light will be able
to get to the LDR, except by the hole in the end:

You should now have a wand assembly that will be able to measure the light that
is coming from the direction in which it is pointed.

146 Making Things Smart

Experiment 15: Making a Digital Camera

6. Strip 6mm off the other end of the wires—enough that they’ll fit snugly into a bit
of breadboard.

7. Use a two-ended plate from your servo motor (like you used in Chapter 9) and
place it on the wand, roughly 1/3 of the way away from the sensor. Wrap around
each end with masking tape. Your wand should now look like this:

Follow these steps to assemble the camera:

1. Now you just need to make a base that'll move the wand around. Take your two
servos, and place them together with their output shafts at right angles. Now use
an elastic band (or the masking tape) to wrap them together:

Chapter 10 147

Experiment 15: Making a Digital Camera

2. Use a second servo plate and two screws that came with the servos to secure the
plate to your wooden block at a corner near the top:

148 Making Things Smart

Experiment 15: Making a Digital Camera

3. Now position the servos and wand, so the servo attached to the block of wood
rocks the wand up and down, and the servo attached to the wand moves it side to
side:

4. Finally, place the whole arrangement pointing at a your test scene. Since we're not
making a very good camera, you'll need to use a very simple test picture with bold
black outlines on white:

Chapter 10 149

Experiment 15: Making a Digital Camera

Follow these steps to wire your pinhole camera:

1. Plug the Pico into the breadboard with the connector sticking out one end. This
time put it as high in the breadboard as possible so you have as many sockets usa-
ble underneath it as you can get:

150 Making Things Smart

Experiment 15: Making a Digital Camera

Left/Right

Up/Down

2. If you have a capacitor, put it between GND and VCC pins on the Pico (GND is left-
most on the bottom of the board, VCC is the one right next to it). This will help to
smooth out any surges of current drawn by the servo motors.

3. Now wire all the ground leads to the GND pin near the capacitor, and all the power
leads to the VCC pin.

4. Wire the left/right servo to pin B3 and the up/down servo to pin B4.

5. Now use the remaining jumper lead to connect from the Pico’s GND to an upper
column of the breadboard just to the right of the Pico.

6. Connect the 100k Ohm resistor between this column and the one to the left of it
(pin A5 on the Pico).

We used a 10k for the robot, but this time we're using a 100k resistor because the
amount of light we expect our sensor to get right at the bottom of the black tube
is really small.

7. Connect the two wires from the wand, one to 3.3v on the Pico (third from the left
at the bottom), and one to pin A5.

Now you're ready to go!

Follow these steps to prepare the software:

Chapter 10 151

Experiment 15: Making a Digital Camera

1.

Add the following code on the righthand side of the IDE, and click Upload:

function updateServos() {
var x = 0;
var y = 0;
digitalPulse(B3, 1, E.clip(1.5+x, 1, 2));
digitalPulse(B3, 1, 0); // wait for first pulse to finish
digitalPulse(B4, 1, E.clip(l.5+y, 1, 2));

}

setInterval(updateServos, 20);

This will simply center both your servos.

2. If your wand is now not pointing straight ahead, pull the servos from the wand
and block of wood and reposition them so that the wand is pointing straight
ahead.

Now we can test the light sensor. As we did with the robot, we'll use |analogRead
to read the analog value.

3. Type [analogRead(A5)} and you'll get a reading. If you put something white in front
of the sensor, you should get a much higher reading than if you put something
black.

Unlike with the robot, this time we put the resistor and the light sensor in the
opposite order (the resistor pulling down, with the light sensor pulling up). Now,
this causes the voltage (and so the value from |analogRead) to rise when there is
more light, and fall when there is less.

Our next step is to try to scan the wand left and right, so that we’ll be able to read
in what it sees when pointing in different directions.

4. Modify the code on the righthand side of the IDE to the following:

// How detailed our picture will be
var WIDTH = 48;
var HEIGHT = 48;
var PIXELS = WIDTH*HEIGHT;
// The position in our scan
var px=0, py=0;
function readPixel() {
// not doing anything yet
}
function updateServos() {
readPixel();
/* Bring px and py into the
right range for the servo motors */
152 Making Things Smart

Experiment 15: Making a Digital Camera

var x = ((px/WIDTH) - 0.5) / 3;
var y = ((py/HEIGHT) - 0.5) / 3;

// And move the servos
digitalPulse(B3, 1, E.clip(1.5+x, 1, 2));
digitalPulse(B3, 1, 0);
digitalPulse(B4, 1, E.clip(l.5+y, 1, 2));

/* Move to the next position. Go right */
PX++;
// or if we're at the end of the line,
// go back to the start
if (px>=WIDTH) {
px=0;
py++;
}
if (py>=HEIGHT) {
/* If we got to the end, don't do anything
else. Stop calling updateServos */
clearInterval(scanInterval);
}
}

var scanlnterval = setInterval(updateServos, 20);

When you click Upload now, the wand will sweep slowly from left to right and will
then quickly return to the left where it'll start again. When the wand finally gets to
the end it'll stop.

While the wand is moving, you can check the values of [px| and [py| to see what
pixel Espruino thinks it's scanning. However, at the moment we're not reading any
information from the wand.

The next step is to read each pixel as the wand points at it, and to store that pixel.

5. To do this this, modify by adding the following:

// Our pixel data
var data = new Float32Array(PIXELS);

function readPixel() {
var light = analogRead(A5);
// work out where in the array it should go
var idx = px + (py*WIDTH);
// save the data away
data[idx] = light;
}

Float32Array|allows us to store the pixel data efficiently in memory. If we used a
normal array, we wouldn't be able to fit the whole picture in Espruino’s memory at

once!

Chapter 10 153

Experiment 15: Making a Digital Camera

6.

7.

When you upload now, you won't immediately see anything different, but you can
type to show all the pixels that have been read in as the wand was scanned.
Any pixels not scanned will be set to 6/.

By itself, this isn't very useful; all we have are numbers! What we want to do is
reconstruct the data as an image. Since the values we are reading in don't fill the
full range of our A to D converter, first we'll need to adjust them so that they range
from completely black to completely white so we can see them properly.

To display something in the terminal window is a bit tricky as we don’t have any
graphical output and can only output characters. The easiest way to get some-
thing visible is to rank some characters by their apparent brightness, for
instance, |. : ; *@#—then when they are printed on the screen you'll just about be
able to make out a picture!

Add the following to the end of your program, and upload again:

// Draw our pixels out to the screen
function draw() {
/* We have to use characters to represent
each shade of color, so we're putting some
characters in a string that get progressively
more 'dense' */
var shades = " .:;*@#";
/* Work out the maximum and minimum
values, so we can scale the image
brightness properly */
var min = data[0];
var max = data[0];
data.forEach(function(pixel) {
if (pixel < min) min = pixel;
if (pixel > max) max = pixel;
b
// Now we can print the data out, line by line
var n = 0;
for (var y=0;y<HEIGHT;y++) {
var str = "";
for (var x=0;x<WIDTH;x++) {
var light = (data[n]-min)/(max-min);
var shade = Math.floor(light*shades.length);
str += shades[shade];
n++;
}
console.log(str);
}
}

Now, you can type and a very low-res version of the picture from the cam-
era will be displayed:

154

Making Things Smart

Experiment 15: Making a Digital Camera

ESPRUINO WEB IDE

// save the data way

) data[idx] = 1

function updateServos() {
readPixel();

/7 Bring px and py into the

+xrrrEEE* rx right range for the servo o hotars *+/

e o var x = 1?p /WIDTH) - 0.5) / 3;

. : : I var v - ((bymetem - 6.5 /7%

[EIta e * / And move the servos

" ""'@'" * ngltaLpuLse?'a‘ 1, E;clip(L.5+x, 1, 2));
digitalPulse(B3, 1, 0

digitalPulse(B4, 1, E.clip(l.5+y, 1, 2));

/* Move to the next position. Go right +/

// OF if we're at the end of the line,
o back to the start
% ?pxwaDTH'

pyw

if (ny»HEIGHT) {
If ve got 10 the end, don:t do anything
. st ‘f calling updateservos *
clearinterve (scanInterval);

}

/ Draw our pixels out to the screen
fun(tlun draw(
ave 10 Use characters to represent

£ochshate of cotour o werre putting some
characters in a string that get progressively
more -dense’ +/
var shades = * .:;%@#";
7 Work out the mxinum and mininun
values, so we can scale the image
brightiiess property */
var mm = d alo];

]

= ale];
data fcrEach(funct]on(mxel) £
f (pixel < min) m
IF (pixel 3 max) max = plxel

s

7/ Now we can print the data out, line by line
varn =6

for (var HEIGHT; y++) {

Hopefully you can now see the outline of the picture you have scanned, but it's
not very easy to see. To display a proper image, you can dump the raw data and
then use a web browser on your PC to view it.

8. Add the following code, and then run[getData()}:

function getData() {
var min = data[0];
var max = data[0];
data.forEach(function(pixel) {
if (pixel < min) min = pixel;
if (pixel > max) max = pixel;
b
// Print the data out, line by line

var n = 0;
for (var y=0;y<HEIGHT;y++) {
var str = "";

for (var x=0;x<WIDTH;x++) {
var light = Math.round((data[n]-min)*255/(max-min));
str += light+",
n++;

}

console.log("["+str+"],");

1
}

You'll now get a big list of data. It's been rescaled to a set of numbers between 0
and 255.

Chapter 10 155

Experiment 15: Making a Digital Camera

ESPRUINO WEB IDE

21, 214,206 199,181,174, 168, 164, 163,163, 163,161, 162

. 1,193,185,178,175,170, 167,167, 168, 166, / Draw our pixels out to the screen

76,177,174,174,17 ,170 fumtwn draw()

: VIR L0 107 £ 107 L0 P T Gochtahade of Calour a0 wetreputiing. some
2 203,21 2 f
Sl characters In,a strifg that get progressively

1202,197,180,174, 172, 169, 166,163, 159, 156, g var shades = "' .:;%@#"
,187,173,165,167, 167,164,158, 154,151, v /* Work out the maximum and minimum
,205,187,179,163,157, 159,159,156, 149,143,139, values, 50 we can scale the image

186,212,203, 180,174,157,150, 152, 155, 147,135,130, 126, bflg"t'\ess NBPG'W *

[181,209,200,179,176,157, 148, 150, 154, 141,131,124, 121, 11 Ve { }
8,208,201,180, 177 159 148,155,156,147,136, 127 data. fcrEa(MmMUm(mer ¢
7 f (pixel < min) min = pixel;
It (pixel 5 max) max = pryel)

gE
%5

//'Now we can print the data out, line by line

168,166,163, 161,166, var n = e;
165,165,165, 164,165, <HEIGHT;y++) {

158,158,159,161,162, R

149,148,149, 148,148, Thatalh] omin) / (max-ni

B ,137,131,131,131,132, var shade = Math. round(llght*shades 1eng h);

1152,149,141,141,138,131,132,131,133,13 Lf (shade == shades length) shade ='shades. {ength-1;
,143,138,125,129,125,116,114,112,111,112 str += shades[shade]
1134,127,112,115, 112,97 .90, e

1116,93,79,94,99,51,67, i . } console.log(str);
[145,176,171,146,169,83,74,94,101,83,68,58,51, 3
[139,174,167,147, 186,79, 76,96, 166,92,76,65,54,48

[143,172,167,150,113,79,82 4,105,95,91,81,74,68, 61 v function getnata(; {
[156,185,179,1 94,98 = datalo
Var max = data
. data. furEacn(functmn(mxel) {

£ (pixel < min) min = pixel;
It (pixel 5 max) max = prvel)

//'Print the data out, line by line

1209,205, <HEIGHT;y++) {
1214,267,203,186, 6, 2176,
[198,223,215,207,196,187,184,175,179,179,173,176,174,175
192,218,216, 199,262,199, 5,179,179,181,179,176, 176
[192,218,211,

<WIDTH; x++)
r lig Wath. round((data[n] min)*255/(max-min));
str 4= Lights”,

console.log("["+str+"],")

var scanInterval = setInterval(updateServos,

20);

9. Now open a web browser pointing to http://jsfiddle.net.

10. Type|<canvas width="512" height="512"/5|into the box titled
11. Add the following text into the box titled on the website:

var data = [
// pixel data
1;

var ctx = document.getElementsByTagName("canvas")[0].getContext("2d");
data.forEach(function(row,y) {
row.forEach(function(pixel,x) {
ctx.fillStyle = "rgb("+pixel+","+pixel+","+pixel+")";
ctx.fillRect(x*8, y*8, 8, 8);
b
b

12. Now highlight the numbers that returned in the Web IDE (including the
square brackets), and paste them into the code that you entered in jsfiddle where

the comment|// pixel datalwas.

13. Finally, click Run in the top left. You should now see your image in proper gray-
scale:

156 Making Things Smart

http://jsfiddle.net

Experiment 15: Making a Digital Camera

(& Create anew fiddle - JSF %

© € & https;//jsfiddle.net

<
(c/(ga [>Run 2 Save = Tidy &7

External Resources
AJAX Requests

Legal, Credits and Links

")\ actiTIME

data. forf
Track and manage time ina

better way. Deliver resultson
time and budget. Try for free!

b
i

Fiddle Meta <canvas widtl

Collaborate

="512" height="512"/>

= document.getEl ementsByTagame(" canvas”)

P/ e | e
[0].getContext("2d");

Each(function(row,y) {

row. forEach(function(pixel,x) {
ctx.fillstyle = "1gh("+pixels", "+pixel+", "+pixel+")";
ctx. fillRect(x*8, y*8, 8, 8);

%A =

t @ Settings v © Signin

css ©

You may have noticed that the code we entered didn’t leave any time for the wand
to move back from right to left after each newline, and you can now see the
effects of that in the preceding image. On the far left, there’s a very narrow, back-
wards version of the image, caused by the wand moving quickly from right to left
over the image in order to get back to the start of the newline.

There are two easy ways of fixing this: you could wait until the wand had moved
back to the correct position, or you could make the wand move in a zig-zag, scan-
ning from left to right and then from right to left. The problem with the second
option is that the servo motors don't reach the correct position immediately, caus-
ing the wand to lag behind the position that is in our variables. If we were to scan
in two directions then rather than having the same amount of lag for each line,
alternate lines would be different, causing the image data not to line up:

Chapter 10 157

Experiment 15: Making a Digital Camera

Complete Listing

// How detailed our picture will be
var WIDTH = 48;

var HEIGHT = 48;

var PIXELS = WIDTH*HEIGHT;

// The position in our scan
var px=0, py=0;

// Our pixel data
var data = new Float32Array(PIXELS);

function readPixel() {
var light = analogRead(A5);
// work out where in the array it should go
var idx = px + (py*WIDTH);
// save the data away
data[idx] = light;
}

158 Making Things Smart

function updateServos() {
readPixel();

/* Bring px and py into the

right range for the servo motors */
var x = ((px/WIDTH) - 0.5) / 3;

var y = ((py/HEIGHT) - 0.5) / 3;

// And move the servos
digitalPulse(B3, 1, E.clip(1l.5+x, 1, 2));
digitalPulse(B3, 1, 0);
digitalPulse(B4, 1, E.clip(l.5+y, 1, 2));

/* Move to the next position. Go right */
pX++;
// or if we're at the end of the line,
// go back to the start
if (px>=WIDTH) {
px=0;
py++;
}
if (py>=HEIGHT) {
/* If we got to the end, don't do anything
else. stop calling updateServos */
clearInterval(scanInterval);
}
}

var scanlnterval = setInterval(updateServos, 20);

// Draw our pixels out to the screen
function draw() {
/* We have to use characters to represent
each shade of color, so we're putting some
characters in a string that get progressively
more 'dense' */
var shades = " .:;*@#";
/* Work out the maximum and minimum
values, so we can scale the image
brightness properly */
var min = data[0];
var max = data[0];
data.forEach(function(pixel) {
if (pixel < min) min = pixel;
if (pixel > max) max = pixel;
s
// Now we can print the data out, line by line
var n = 0;
for (var y=0;y<HEIGHT;y++) {
var str = "";
for (var x=0;x<WIDTH;x++) {
var light = (data[n]-min)/(max-min);
var shade = Math.floor(light*shades.length);
str += shades[shade];

Experiment 15: Making a Digital Camera

Chapter 10

159

Experiment 15: Making a Digital Camera

N++;

}

console.log(str);
}
}

function getData() {
var min = data[0];
var max = data[0];
data.forEach(function(pixel) {
if (pixel < min) min = pixel;
if (pixel > max) max = pixel;
s
// Print the data out, line by line
var n = 0;
for (var y=0;y<HEIGHT;y++) {
var str = "";
for (var x=0;x<WIDTH;x++) {
var light = Math.round((data[n]-min)*255/(max-min));
str += light+",";
n++;
}

console.log("["+str+"],");
}
}
So what can you do now? You could experiment with different designs of wand to try to
get a sharper picture. For example, you could use a smaller hole in the end of the wand
(perhaps an actual pinhole), and could use a tube that was matte black on the inside (as
the shiny pen will reflect light coming from other angles).

You could also add the same light sensor to the plotter from Chapter 9, and could try to
scan documents with it! Some early scanners did exactly that (moving a single sensor over
the entire page), although modern scanners tend to use a line of thousands of sensors
(called a linear CCD) that they move down the page, scanning each row of pixels in turn.

160 Making Things Smart

In the first part of this section we made a simple plotter, where we could draw lines by
moving a pen anywhere in two dimensions. However, the printers you use every day don't
do this. They scan a print head down the page. Much as we did with the camera, they
move from side to side and then down the page, covering the area but only applying ink
where needed.

Making your own printer can be quite easy. Here, we're going to use a screw thread to let
us print on some paper with just a motor, position sensor, and one actuator to move the
pen up or down.

Because we've used servo motors for previous projects, we'll use them here. However, you
could use any geared motor, and even a solenoid to control whether the pen touches the
paper or not.

Experiment 16: Making a Printer

You'll need:

+ 35cm, threaded rod, 1 nut, and 1 penny washer to fit it (M6, M8 or similar is per-
fect)

« A sturdy cardboard box, 30cm on one side

» Hot glue

+ A Pringles can or whisky tube

+ A 9g size, continuous rotation servo motor

+ A 9g size RC servo motor (not continuous rotation)

- Afelt-tip pen

16l

Experiment 16: Making a Printer

+ Alight-dependent resistor (LDR)
+ A 10k Ohm resistor

+ Breadboard

+ An Espruino Pico

+ 6 patch wires
Follow these steps to assemble the printer:

1. Cut the top off the cardboard box, and then cut the box in half so you have a
30cm-long shelf about 1.5x as high and deep as the tube is in diameter.
Strengthen it if needed.

2. Cut the cardboard tube so that it is 13cm long. The tube should fit inside the box
twice, with a bit of room left over.

162 Making Things Smart

Experiment 16: Making a Printer

Thy

o

o s
Yoy AL BAreLs pecreATE THE PRACTE

t
Ty O CREATE 1y peprcy MARFIACE

K,
T ek
, "ROAIG quaRreR cask 15 BAF

Yony
an
" 80MTLep a7 e STRENGT™:

“"‘“rm.

pi
Ic
Estgg DISTILLERY

blisheq 1815

48%1101

3. Drill a hole in the center of each end of the tube, just large enough to put the
threaded rod through.

4. Put the threaded rod through the tube, with a nut partway up. If you have a sec-
ond nut, place it on the rod after the tube.

5. Take a small servo plate for the continuous rotation servo, cut the long edges off,
and hot-glue it onto the end of the threaded rod as centrally as you can.

Chapter 11 163

Experiment 16: Making a Printer

6. Cut a large hole in the left and right sides of the cardboard, high enough that the
rod can fit through with the tube on it, leaving around 2cm underneath. The hole
should be a few millimeters larger than the rod.

7. On the right-hand side of the box, hot-glue the penny washer over the hole. This
will be your righthand bearing:

164 Making Things Smart

Experiment 16: Making a Printer

8. On the lefthand side, extend the hole into an offset rectangle so that you can
insert and hot glue the continuous rotation servo motor with its axle where the
hole was:

9. Now you need to make a sled that the pen will be mounted on. Cut a thin, straight
strip of card and hot-glue it to the very edge of the box at the bottom. This will
hold the sled in place.

10. Now to make the sled. Fold a piece of card into an L-shape that fits inside the box
next to the strip of card (with spare room on the left). Cut and hot-glue two trian-
gular bits of card to strengthen it.

Chapter 11

165

Experiment 16: Making a Printer

11. Cut another thin, straight strip of card and hot-glue it to the box on the other side
of the sled, making sure you can still slide the sled easily to the left and right. This
will stop the sled from twisting from side to side.

166 Making Things Smart

Experiment 16: Making a Printer

12. Now place the sled at the end of the box, mark through the hole in your box
(around the washer) with a pen, and cut out the hole.

13. Assemble everything as shown:

Hot-glue the nut onto the sled. This will make the sled move slightly as the drum
with the paper on it rotates.

The nut shown is a nyloc nut, but the locking part has been removed.
Ideally you should use a nonlocking nut.

14. Now it's time to fit the pen to the sled. Take a felt-tip pen and hot-glue it to a servo
plate from the noncontinuous rotation servo, as close to the end as possible.

You may even be able to cut the cap of pen so that it can still fit around the servo
plate.

Chapter 11 167

Experiment 16: Making a Printer

15. Cut a strip of cardboard and fold it into a triangular prism shape as wide and high
as the servo motor. This will hold the motor at a right angle to the sled:

16. Now fit the pen onto the servo motor and glue the servo motor to the cardboard
triangle with the axle sticking out of the side toward the top:

168 Making Things Smart

17.

18.

19.

Experiment 16: Making a Printer

Glue the whole assembly onto the sled, positioned so that the servo motor is able
to move the pen onto and away from the tube.

We're almost there, but as we're using the continuous rotation servo motor, the
Espruino will have no idea where the tube is in its rotation. We need to add a sen-
sor.

Add two wires to the light-dependent resistor (LDR) up as you did for the camera
in Chapter 10.

Cut a hole in the back edge of the cardboard and push the LDR through. Hot-glue
the LDR in, so that it sits about 0.5cm in from the edge of the tube, and 0.5cm
away:

Chapter 11

169

Experiment 16: Making a Printer

20. Wrap white tape (or white stickers) around the edge of the tube where the light
sensor is.

21. Color a big square of the white tape black. This will be detected by the light sensor
so that the printer is able to detect when the tube is rotated by 360 degrees.

22. Now wire the servos and LDR up exactly as you did for the camera in Chapter 10,
except this time wire the continuous rotation servo (for the paper) to [B3], and the
normal servo (for the pen) to B4}

170 Making Things Smart

Experiment 16: Making a Printer

..................
.................
.................
.................

...................

................

................
................

Paper Cylinder

LDR

Pen

Software

This time we're going to control the servo motors a bit differently. We'll use the Espruino
board’s built-in PWM hardware with the command. This will allow us to let
the hardware send pulses while the software is doing other things.

1. First, try [analogWrite(B3, 1.5/20, {freq:50})| This shouldn’t have any effect at
all, but if the tube starts moving then tweak the potentiometer on the back of it to
stop it (as you did for the robot in Chapter 8).

2. Now, try either [analogWrite(B3, 1/20, {freq:50})| or [analogWrite(B3, 2/20,
{freq:50})|and find out which one makes the tube move so that the pen carriage
moves away from the end with the light sensor on it. We'll call this forward.

3. Create three functions on the righthand side of the IDE as follows (and swap the
numbers if needed to ensure that the tube rotates the correct way):

function forward() {
analogWrite(B3, 1/20, {freq:50});
}

function back() {
analogWrite(B3, 2/20, {freq:50});
}

function stop() {

Chapter 11 171

Experiment 16: Making a Printer

digitalWrite(B3, 0);
}

4. The next step is to set up the pen. Remove it from the servo motor and type |ana
logWrite(B4, 1.5/20, {freq:50})|. This will move the motor to its mid position.
Now re-add the pen so it's not pressing onto the paper, and experiment with val-
ues other than (remember to stick with numbers between 1 and 2) to find two
good values for when the pen is on the paper (pen down) and when it's not (pen
up).

5. Create functions using your two values:

function penUp() {

analogWrite(B4, 1.45/20, {freq:50});
}
function penDown() {

analogWrite(B4, 1.55/20, {freq:50});
}

6. Now you can upload your code, and set the motor running by typing |forward()
or|stop()|
The next step is to try to detect each time the marker we colored in moves past. To
do this, we'll keep a variable called |lightAverage|, which is the average amount of
light we're seeing in the light sensor. When the light that’s reflected back drops
suddenly, we'll assume that the black marker has passed underneath the sensor,
and when it rises back up we'll assume that the marker has completely gone
under.

Add the following:
function foundMarker() {
// work out how long it's been since the last marker
var t = getTime();
var d = t - lastMarkerTime;
lastMarkerTime = t;
console.log("Found marker, "+d+" sec");
}
function lightChecker() {
// work out how much light is reflected
// from the paper
var light = analogRead(A5);
if (light < lightAverage-0.05) {
// If the light is significantly less
// than the average, we've found the marker
if (!hasFoundMarker) {
hasFoundMarker = true;
foundMarker();
}
172 Making Things Smart

Experiment 16: Making a Printer

} else if (light > lightAverage-0.03) {
// If it jumps back up, we've passed it
hasFoundMarker = false;

}
// update the average

lightAverage = lightAverage*0.99 + light*0.01;
}

setInterval(lightChecker, 10);

7. Now upload the code again and type |forward()|

If all goes well, a series of lines should output each time the marker passes under-
neath the sensor, like:

Found marker, 0.77991580963 sec
Found marker, 0.77999591827 sec
Found marker, 0.77989006042 sec
Found marker, 0.77994823455 sec
Found marker, 0.76992893218 sec
Found marker, 0.77994823455 sec
Found marker, 0.76997661590 sec

Found marker, 0.77989292144 sec

They should all have roughly the same time period, showing that the tube is rotat-
ing at the same speed and the code for the sensor is working properly.

If not, you might need to modify the preceding code such that the thresholds
(0.05]and [0.03) are different. You can look at the value of [analogRead(A5)| when
the marker is under the light sensor and when it has moved away to get an idea

what you should be using. If the difference in value reported by is
very small, you might need to:

+ Reposition your light sensor to point more directly at the marker
« Make the black area of the marker larger

Now that we've got that working, we can start piecing everything together. To
start, let’s just color in a long column.

8. Add the lines |var pixelInterval;|and|var x = 0, y = 0;]above
and then add to so it looks like this:

function foundMarker() {
// work out how long it's been since the last marker
var t = getTime();
var d = t - lastMarkerTime;
lastMarkerTime = t;
console.log("Found marker,

+d+" sec, line "+y);

if (pixellnterval)
clearTimeout(pixelInterval);

Chapter 11 173

Experiment 16: Making a Printer

11.

// move on to next line
ytt;
x=0;
// Execute for each 'pixel'
pixelInterval = setInterval(function() {
if (x < 2)
penDown();
else
penUp();
X++3
}, d*1000/10); // 10 pixels/line
}

On each line, we'll set x| to 0, and a timer will be started that will divide the rota-
tion into 10 distinct pieces. Each time the timer is called, we'll add 1 to |x| for each
piece.

At the moment we're only putting the pen down if [x]is below 2 (so the first 2 divi-
sions only), which should cause it to draw a column.

. Now wind the tube back to the beginning (either manually, or by typing [back()).
. When you upload and type [forward()|, the pen should be put down and raised

once for every revolution of the tube, slowly building up a picture like this:

g

But this can easily be extended. First, we'll use Espruino’s built-in graphics to give
us a simple image.

Enter the following at the end of the righthand side of the IDE:

174

Making Things Smart

Experiment 16: Making a Printer

var g = Graphics.createArrayBuffer(96,48,1);
g.setFontVector(48);
g.drawString("=P",0,0);

However, it's difficult to make sure that we've positioned the text correctly, and
since it's so difficult to position the paper on the tube we want to make sure that
what we want to draw is correct!

12. Enter this function called [draw]. It's very similar to the code we used in the camera
project earlier:

function draw() {
for (var y=0;y<g.getHeight();y++) {
var s = "|";
for (var x=0;x<g.getWidth();x++)
s += g.getPixel(x,y) ? "#" : " ";
console.log(s+"|");
}
}

13. Now if you upload and type you should see something like this:

>draw()

P i
[———"" F [

R
B ———— i
TR
ISP ERRERRITTEIIITITT s
RRRREBEEORRRREREERREIRRIRIRE priam
RRRBBBEERREERERRRSBREEIR i

=undefined

This shows that our [=P| text is lined up neatly within the [|] characters at either
side, and so should fit on our paper.

14. The next step is to modify [foundMarker| such that it can use |getPixel| too, rather
than just checking as it was previously:

function foundMarker() {
// work out how long it's been since the last marker
var t = getTime();
var d = t - lastMarkerTime;
lastMarkerTime = t;
console.log("Found marker, "+d+" sec, line "+y);

Chapter 11 175

Experiment 16: Making a Printer

if (pixelInterval)
clearTimeout(pixelInterval);

// move on to next line

yt+;

x=0;

// Execute for each 'pixel'’
pixelInterval = setInterval(function() {

[/ s Only the lines below have changed
if (g.getPixel(x,y))
penDown();
else
penUp();
X++;
}, d*1000%0.75/g.getWidth());
[/ e Only the lines above have changed
}

15. If you upload again, (having returned the tube to the start again) and type [for
ward()|, something different will happen this time:

- For the first few rotations, nothing will happen (you can see this because
when we drew the image to the console, the first few lines were blank).

At first, the pen will only go down once, as the top part of the [P|is printed.
« Then the pen will go down twice, as the[P|opens out.

« And then you'll get three presses, as the [=| and the [P|start to be printed.

+ And so on until the end.

The final result should look like this:

176 Making Things Smart

Experiment 16: Making a Printer

/ If the tube rotates unevenly, it will cause the pen to move up and down at
the wrong points, producing the jitter you can see in the complete printed

image. If this happens to you, you can change the function so
that it presses the pen more lightly against the tube.

It's now easy to experiment with different images, by replacing [g.drawString("=P",0,0);]
with your own code. There are lots of interesting functions other than |drawString| that
you can use in Espruino’s graphics library.

Some other interesting changes might be:

- Stop the rotation of the tube when printing has finished (y| is greater than or
equal to|g. getHeight()).

« Use |back()| to move the pen back to the start, and have it stop at the correct
place.

+ Use the data gathered from the camera in the last experiment to print a simple
image captured from the real world.

+ Replace the continuous rotation servo with a stepper motor, allowing you to step
more slowly (without a rotation sensor), and draw more accurately. | didn't do that
in this chapter because you need to be sure that you have a powerful enough
stepper motor to overcome the friction of the pen against the tube.

Chapter 11 177

http://www.espruino.com/Reference#Graphics

Experiment 16: Making a Printer

Complete Listing

function forward() {
analogWrite(B3, 1/20, {freq:50});
}

function back() {
analogWrite(B3, 2/20, {freq:50});
}

function stop() {
digitalWrite(B3, 0);
}

function penUp() {
analogWrite(B4, 1.45/20, {freq:50});
}

function penDown() {
analogWrite(B4, 1.55/20, {freq:50});
}

var lightAverage = analogRead(A5);
var hasFoundMarker = false;

var lastMarkerTime = getTime();
var pixelInterval;

var x = 0, y = 0;

function foundMarker() {
// work out how long it's been since the last marker
var t = getTime();
var d = t - lastMarkerTime;
lastMarkerTime = t;
console.log("Found marker,

+d+" sec, line "+y);
if (pixelInterval)
clearTimeout(pixelInterval);

// move on to next line
Y+t
x=0;
// Execute for each 'pixel’
pixelInterval = setInterval(function() {
if (g.getPixel(x,y))
penDown();
else
penUp();
X++3
}, d*1000%0.75/g.getWidth());
}

function lightChecker() {
// work out how much light is reflected
// from the paper

178 Making Things Smart

Experiment 16: Making a Printer

var light = analogRead(A5);
if (light < lightAverage-0.05) {
// If the light is significantly less
// than the average, we've found the marker.
if (!hasFoundMarker) {
hasFoundMarker = true;
foundMarker();
}
} else if (light > lightAverage-0.03) {
// If it jumps back up, we've passed it
hasFoundMarker = false;
}
// update the average
lightAverage = lightAverage*0.99 + light*0.01;
}

setInterval(lightChecker, 10);

var g = Graphics.createArrayBuffer(96,48,1);
g.setFontVector(48);
g.drawString("=P",0,0);

function draw() {
for (var y=0;y<g.getHeight();y++) {
var s = "|";
for (var x=0;x<g.getWidth();x++)
s += g.getPixel(x,y) ? "#" : " ";
console.log(s+"|");
}
}

Chapter 11 179

PART IV
Communication

The internet is now a massive part of our lives, but smart things are still communicating
with each other all around us without an internet connection.

And often they're doing so in a surprisingly simple way that’s not all that different from the
Morse code that we were using 180 years ago!

So far, we've controlled things with an Espruino board, but apart from the USB connection
to the PC we haven't actually communicated with any other devices.

Suppose we wanted to communicate with another Espruino board, turn a television on
and off, or even connect to the internet. We need some way of turning our data (at the
basic level, made up out of a series of bits) into something that we can transmit, and then
we need a way to reconstruct it.

Perhaps the most obvious example of transmitting data is Morse code. A series of short
and long beeps is used to transmit characters of text over the radio.

For example, if we use . for a short beep, and - for a long beep, the codes for various char-
acters are:

A-|B-.|c-~|D-.|E.
For G [Ho 1. [
K--|L- [M=|N- |0~
P—-|Q—-|R~ [5.. |T-

Us [V (WX -n|Y =]z -

So the signal for SOS (the distress signal that you'll send if your ship is sinking) is ... -

Clocking

However, this gives us an interesting problem. Some Morse code radio operators are better
than others, and so are faster. How do you tell the difference between a slow operator
sending an E character as a single short beep, and an experienced operator sending a T
character as a long beep (but quickly)?

183

Clocking

We'd just have to hope that a message will contain a mix of short and long beeps so that
we can tell which is which, and that the operator never slowed down or sped up. Such
hope might work fine for humans, but it's not good for computers.

Instead, there are two main solutions: have an agreed speed (which we usually call a bit
rate or baud rate), or have a separate signal that tells us when we're sending a new bit of
data (Figure 12-1). This is normally called a clock signal.

1 0 0 1 0 O

Figure 12-1 Clocked data like SPI has a separate wire to determine when data should be read

SPI (the Serial Peripheral Interface) is a standard that’s used internally in a lot of devices. For
instance, the accelerometer in your phone might use it, and even SD cards support it as a
fallback mode (if the faster SDIO standard isn't supported by the device they're plugged
into). SPI has three main wires (plus a ground connection). There is one for transmitting
data, one for receiving data, and one for a clock. The clock tells the slave device when to
read and write its data.

However, infrared remote controls can’t have a clock signal since they're just sending one
wavelength of light from an infrared LED. They also have to transmit short pulses of light at
around 38kHz to help distinguish their signals from ambient noise (for example, a shadow
passing over the TV's IR receiver). To get around this, they send bursts of infrared pulses
that last different amounts of time (see Figure 12-2). While different infrared remote con-
trols vary, they usually send pulses of light for less than 0.8ms to represent a |0| bit, and a
longer series of pulses to represent a |1/ bit.

184 Making Things Smart

Clocking

1 0

Figure 12-2 Infrared remote control signals

0 0 1

If you're going to agree on a fixed transmission speed in advance, you can be more effi-
cient, though. Suppose we have agreed on 1000 baud (1000 bits per second). Once we see
a bit of data appear, we can just check 1/1000th of a second later for the next bit, and
again after that (Figure 12-3). There’s no need to have pulses of varying lengths at all.

1 :0:0:1

Figure 12-3 Unclocked data, always transmitted at an agreed bit rate

0

While Morse code has varying amounts of dots or dashes for different characters (which
was handy for operators, as common characters tended to be shorter), on a computer we
generally assume that we'll be sending compressed data (so every character we send will
be equally likely to turn up). Because of this, it's much easier to just have a fixed word
length—usually 8 bits to correspond with the size of a byte of data.

USB stands for Universal Serial Bus. This is now
the go-to standard for attaching things to devi-
ces.

computer mice, keyboards, and USB drives just
work when you plug them in.

This applies to other types of devices, too. For

At a basic level, USB is just a serial communica-
tions protocol at an agreed speed (which is
negotiated when you first plug a USB device in).
However the standard also defines what data
you send and when, to ensure that things like

instance, Espruino uses USB CDC or Communica-
tions Device Class. Many operating systems (Mac
OS, Linux, Android, and Chrome OS) know about
this and can communicate with Espruino
without any drivers.

Chapter 12

185

Experiment 17: Making an Oscilloscope

So let’s have a go at sending some data from Espruino to our computer without using the
USB connector.

Most computers have a connector for USB, but there are very few other connectors you
can rely on, especially on smaller laptops. About the only other connector all computers
have at the moment is a headphone jack, so maybe we can use that?

First, we're going to make a simple oscilloscope using our computer, so we can see what
signals we're sending from Espruino.

Experiment 17: Making an Oscilloscope

You'll need the following to connect the oscilloscope (see Figure 12-4):

+ An Espruino Pico board
« Breadboard

« A headphone extension lead with a 3.5mm jack plug (try and get one that has a
single cable, one with a circular cross-section rather than a figure of eight)

« 2x 10k Ohm resistors

If your computer doesn’t have a line in jack plug, you'll need to get a special cable that
splits your headphone jack out into a headphone and microphone.

B15 jrm——

B14
B13

Vin
B10

A3

A2

. " Al
Espruino Pico

Al0

B9

B8

3.3v

A8

GND
] \/O UL

r\ﬁe?

RIGHT

oA0T
oA0T

SLEEVE

Figure 12-4 Connecting the oscilloscope up

1. First, put the Espruino board into the breadboard as before, with the USB connec-
tor over to the far left.

186 Making Things Smart

Experiment 17: Making an Oscilloscope

2. Strip back the end of the headphone cable (cutting the headphones off if there
were some on it). It should look like this:

There should be two insulated wires, and some uninsulated shielding (which is the
ground connection), as shown here:

Chapter 12 187

Experiment 17: Making an Oscilloscope

/ If you have all uninsulated wires but they are different colors, each
part of the braid has a very thin coating over it. You'll need to use a
soldering iron and solder to melt through this and tin it so you can

make a connection.

3. Twist the shielding together to stop it from getting tangled:

4. Strip the insulation off one of the insulated wires (leaving a centimeter of it), and
twist the copper inside it together:

188 Making Things Smart

Experiment 17: Making an Oscilloscope

5. Twist the copper from the insulated wire onto one side of one resistor (we'll call it
R1), and twist the copper from the shielding onto the other resistor (resistor R4), as
shown here:

6. Put resistor R1 in the breadboard, with the end that has the twisted wire in a col-
umn just past the end of the Espruino Pico, and with the other end of the resistor
on pin B6 (the third pin in from the end at the bottom).

Chapter 12 189

Experiment 17: Making an Oscilloscope

7. Put resistor R2 in the breadboard, with the twisted wire end in GND (the left end of
the Pico), and the other end in pin B6 with the other resistor. The finished bread-
board should look like this:

You should now have your circuit! Give it a quick check and make sure it’s connected prop-
erly. The only two wires to the Espruino Pico should go to GND and Bé6.

Using the Oscilloscope

1. Open the Chrome web browser.

2. Go to https://espruino.github.io/webaudio-oscilloscope/ and make sure you allow it
to use your microphone when prompted.

The source code for the oscilloscope web page is available at GitHub.
3. Plug the headphone jack into your computer.

4. Open up the Sound Record settings on your computer and make sure the micro-
phone is selected and the volume is set to unamplified. On many computers this

will just be [100%|.
5. Now connect the Espruino to USB, and enter the following code:

var t = 0;
setInterval(function() { Seriall.write(t); },5)

190 Making Things Smart

https://espruino.github.io/webaudio-oscilloscope/
https://github.com/espruino/webaudio-oscilloscope

Experiment 17: Making an Oscilloscope

This will set it transmitting the value (0| at the default bit rate (baud rate) of 9600
baud, 20 times a second.

6. You should now see something like this on the screen:

£ Web Audio Oscillosco. @ x YUY

§ €y | [localhost

Serial data=0

So what’s happening here? Well, we're seeing the signal that the Espruino board’s Serial
Peripheral is creating to send one byte of data, in this case [0]. It's complicated slightly
because our hacky oscillocope’s Line In input contains a capacitor that always tries to
restore the input to zero volts (the middle of the oscilloscope trace). As a result, you only
see blips when the signal changes state, not the current value.

To try to make it clearer, the oscilloscope page shows a blue line at the bottom, which is
what it believes the initial input digital signal is.

You can set |t to different values to send different things. For instance, here we've set |t|to
255)

Chapter 12 191

Experiment 17: Making an Oscilloscope

A\ Web Audio Oscillosco, @ x

L 4 &y | [localhost

Triggered

Serial data = 25¢

And here we've set [t|to [0x55]:

£ Web Audio Oscillosco: @ x

L 4 @ [localhost

Triggered

Serial data = 85

The following diagram shows what'’s actually being sent. When it’s not doing anything, the
wire is in the 1] state. There’s a start bit (which is a 0) to show that something is about to be

192 Making Things Smart

Experiment 17: Making an Oscilloscope

sent, then there are 8 bits of data, and finally there’s a stop bit (which is a 1, and so can't
actually be seen when we're sendding single characters).

000000000

START
STOP
o

OxFF = 255
ob11111111

'_

Y o) 0X55 = 85

= _ - - k= 0001010101

You should be able to see how the diagram matches up with the data that’s being sent,
and how the oscilloscope program is able to work out what the signal is and display it in
the bottom right of the screen.

How does it decode it? In this case, all it does is wait for the signal to go from a 1 to a 0,
indicating a start bit. It then looks at the signal again after a delay of 1.5 bits (1.5 / 9600 =
0.156ms) to get the first bit, and then again 1 bit (1.5 / 9600 = 0.104ms) later to get the
second, and so on, as shown here:

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
= i i i i i i i i
cleoffafefsie|e 5
= b b b= b b b b= B
5] FNENPNPNENEND 2
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
i i i i i i i i If this isn't high, we
Wait for \ have a 'framing error’'
'Start Bit' Sample each bit at the correct time

This code could be extended in order to read multiple characters and do something with
them. In fact, you can use the same ideas to transmit information from your computer
directly to the Espruino. There’s some information on how to do this (and even how to pro-
gram the Espruino with the Web IDE) on the Espruino website.

Chapter 12 193

http://www.espruino.com/Headphone

Cutting the Cord:
Infrared

We've looked at how we can use the computer’s microphone jack to look at the signals
from the Espruino’s serial port, but what if we want to communicate without wires? First,
let's take a look at how we can use a PC’s audio input to receive signals from an infrared
remote control.

Experiment 18: Making the IR Receiver

You'll need:

« An IR receiver (HX1838, VS1838, TSOP348, or TSOP344) and remote control

« A battery or battery back supplying between 3 and 5 volts (a CR2032 watch bat-
tery in a holder is perfect)

- Breadboard

- The headphone extension lead with a 3.5mm jack plug from “Experiment 17: Mak-
ing an Oscilloscope”

« 2x 10k Ohm resistors

Finding an IR Receiver

IR receivers and remote control combinations
can easily be bought in kits from places like eBay
and Amazon. Just search for keywords such as
Arduino IR Remote; however, you can use pretty
much any infrared remote control you might
have lying around. You can also buy just the
receiver seperately (the part number should be

one of HX1838, VS1838, TSOP348, or TSOP344)
or you can even scavenge it from an old bit of
remote control equipment.

You can also buy TSOP322 and TSOP324 parts,
but for these the pins are in a different order.

195

Experiment 18: Making the IR Receiver

1. Connect everything up as shown here:

Vcc “
[DATA
— GND

———
\V = = T
LEFT 5 %
=
RIGHT 5 5

SLEEVE

You can use the same headphone wiring that you used before, now you just need
to connect it to the IR receiver and battery instead of the Espruino board. The con-
nections for the IR receiver are as follows:

\/
(S

MB3IA U0

DATAGND Vce

2. Your finished circuit should look a bit like this:

196 Making Things Smart

Experiment 18: Making the IR Receiver

Once wired up your battery will slowly run down, so be prepared to
unplug the battery when you're finished.

Now you can use the oscilloscope from Chapter 12.

Normally, you should just see random noise on the wire. However, if you aim the
remote control at the receiver and press a button, you should start to see some
pulses appearing. IR remote controls don’t transmit as quickly as the Espruino’s
serial did so they’'ll be more spaced out, but you should occasionally see things
like this:

Chapter 13

197

http://bit.ly/2q8itQK

Experiment 19: Decoding IR Signals

A\ Web Audio Oscillosco, @ X YRy
&y [localhost

Serial data = 240

So what can we do with this? Last time we didn't write any code to run on our computer,
but this time we'll write some JavaScript on a web page that will attempt to decode these
signals.

Experiment 19: Decoding IR Signals

Here are our first steps to write the decoder:

1. Visit https://jsfiddle.net. You can use this to test out JavaScript code quickly and
easily.

2. Inthe area, type the following:

<body>
<pre id="log"></pre>
</body>

3. Inthe|JavaScript|area, type:

var logElement = document.getElementById("log");
console.log = function(s) {
logElement.innerHTML += s+"\n";

}

198 Making Things Smart

https://jsfiddle.net

Experiment 19: Decoding IR Signals

// The threshold for detecting a change to a 1 or a @ in the signal
var THRESH = 0.01;

// Do we think the input is a 1 or a 0?

var currentState = 0;

// How many samples have we been in this state (in samples)?
var timelInState = 0;

// Called when the input changes state
function changedState(newState, timePassed) {
console.log((newState?"Lo":"Hi") + " for "
Passed*1000).toFixed(2));

}

+ (time

function processAudio(e) {
var data = e.inputBuffer.getChannelData(0);
// Now search for changes in value
for (var 1=0;i<data.length;i++) {
// Did it suddenly go high? it's a 1
if (currentState==0 && data[1]>THRESH) {
currentState=1;
changedState(1, timeInState / e.inputBuffer.sampleRate);
timeInState = 0;
}
// Did it suddenly go low? it's a @
if (currentState==1 && data[1]<-THRESH) {
currentState=0;
changedState(0, timeInState / e.inputBuffer.sampleRate)
timeInState = 0;
}
timeInState++;
}
}

function startRecord() {
window.AudioContext = window.AudioContext || window.webkitAudioContext;
if (!window.AudioContext) {
console.log("No window.AudioContext");
return; // no audio available
}
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia;
if (!navigator.getUserMedia) {
console.log("No navigator.getUserMedia");
return; // no audio available

}

var context = new AudioContext();
var userMediaStream;
var inputNode = context.createScriptProcessor (4096, 1/*in*/, 1/*out*/);

Chapter 13 199

Experiment 19: Decoding IR Signals

window.dontGarbageCollectMePlease = inputNode;
inputNode.onaudioprocess = processAudio;

navigator.getUserMedia({
video:false,
audio:{
mandatory:[],
optional:[{ echoCancellation:false },
{ googEchoCancellation: false },
{ googAutoGainControl: false },
{ googNoiseSuppression: false },
{ googHighpassFilter: false }
,{ sampleRate:22050 /* 44100 */ }]
}
}, function(stream) {
var inputStream = context.createMediaStreamSource(stream);
inputStream.connect(inputNode);
inputNode.connect(context.destination);
console.log("Record start successful");
}, function(e) {
console.log('getUserMedia error', e);
b
}

startRecord();

There’'s a lot to this, but the majority of the code makes sure that the

function keeps getting called with blocks of sound data that have
been recorded. itself then attempts to work out whether the signal
is currently a digital 1 or a 0 (this is like the blue line on the oscilloscope web
page), and it then calls the function whenever it thinks the state has

changed. The |changedState| function then just prints out how long it thinks each
pulse was (in milliseconds).

4. Click Run in the top left, and the web browser should display [Record start suc
cessful|in the bottom-right pane.

5. Take your remote control and press a key. You should now see something like this:

Record start successful
Hi for 2561.09

Lo for 8.87
Hi for 4.49
Lo for 4.94
Hi for 0.63
Lo for 0.48
Hi for 0.61
Lo for 0.50
Hi for 0.61
Lo for 0.50
Hi for 0.61

200 Making Things Smart

Experiment 19: Decoding IR Signals

.50
.72
.50
.75
.50
.75
.48
.75

Lo for
Hi for
Lo for
Hi for
Lo for
Hi for
Lo for
Hi for

P OPRPRORFRP, ORrRr OO

/ If you don’t get a list like this one, try changing the value.

Lower values will be more sensitive, and higher will be less.

It'll depend on the type of remote control you have, but you should start to see a
pattern. In this case, there’s the first very long pause (between clicking Run and
pressing a button on the remote control), followed by a long pulse of IR light.
These IR receivers output a |1| when no IR signal is present, and output |6) when the
remote control’s signal is detected.

After the initial long pulse, all of the lines marked |Lo| show times of around 0.5ms,
whereas the lines marked are either around 0.6ms or 1.7ms. This means that
the time between pulses is used to store the data: long pulses will be a[1] and
short will be a || (or vice versa). Your remote control will almost certainly be differ-
ent (as remote controls vary by manufacturer), but should be similar. Either the
time the pulse is on (Lo), or the time it is off (Hi), will vary between being long or
short.

6. So now, we can try to decode it. We'll just change the |changedState|function:

var currentCode =

function gotCode(code) {
console.log("Got code "+code);

}

// Called when the input changes state
function changedState(newState, timePassed) {
if (timePassed > 0.02) {
// Let's assume there was a gap. Handle the last code, and reset it
if (currentCode!="") gotCode(currentCode);
currentCode = "";
}
// Add a bit only when the signal was high (it's now 0)
// since in the last code, 'Hi1' was the signal
// that changed while 'Lo' was constant
if (newState == 0) {
if (timePassed > 0.001) currentCode += "1";
else currentCode += "0";

Chapter 13

201

Experiment 19: Decoding IR Signals

}
}

7. If you use the remote control, you should now get something like:

Got code 1100000000111111111010001001011101
Got code 1111100000111000000010000011611111
Got code 1111100000111000000010000011611111
Got code 1111100000111000001010000001011111
Got code 1111100000111000000110000010011111
Got code 1111100000111000000110000010011111
Got code 11111000001110000000010000111601111
Got code 1111100000111000000001000011101111
Got code 1111100000111000001001000001161111
Got code 1111100000111000001001000001161111
Got code 1111100000111000001001000001101111
Got code 11111000001110000010010000011601111
Got code 1111100000111000000101000010101111
Got code 1111100000111000000101000010101111
Got code 11111000001110000001010000101601111
Got code 1111100000111000001001000001101111

You'll get a different code for each button that you press. If you keep a button
held, you might get the same repeated code; however, on some other remote con-
trols you might just get a short code like [11].

/ Not getting codes of the correct length? Experiment by changing the
value of [THRESH| You may well get an occasional corrupted code
that isn't the correct length (especially if the remote control is some
way away or pointing in the wrong direction), but this is to be

expected.

You might notice that the first time you press a button on the remote, you don't
get anything printed. In fact, when you press a button, you'll be getting the code
for the /ast button reported. This is because is only called when the signal
next changes after a delay. If you just press the button once, the code is recorded,
but since the signal doesn’t change again, it isn’t reported until the next IR signal is
received.

8. To get around this, we need to make sure we call |gotCode| if the signal hasn't
changed after a certain amount of time:

Add the following code right at the end of the function:

if (timelInState > 2000) {
if (currentCode!="") gotCode(currentCode);
currentCode = "";

}

202 Making Things Smart

Experiment 20: Using Our Decoded Signal

Now when you use the remote control, you should get the signal reported correctly as
soon as the button is pressed.

Experiment 20: Using Our Decoded Signal

So now our function |gotCode| is called whenever we receive a code from the remote con-
trol. We can easily copy the values that we printed and do something depending on the
value, like changing something onscreen.

1. Modify the HTML to the following:

<body>
<div id="box" style="width:100px;height:100px"></div>
<pre id="log"s</pre>

</body>

This will add a fixed-size box at the top of the page.

2. Next, we're going to modify |[gotCode| so that it changes the color of the box when
a button is pressed.

Decide on four buttons to use, press them, and copy the code that is reported into
the following code. For instance, I'm using the buttons marked 1 to 4:

function gotCode(code) {

if (code=="11111000001116000000010000011011111")
document.getElementById("box").style.background="red";

if (code=="11111000001110000010100000016011111")
document.getElementById("box").style.background="green";

if (code=="1111100000111000000110000010011111")
document.getElementById("box").style.background="yellow";

if (code=="1111100000111000000001000011101111")
document.getElementById("box").style.background="blue";

console.log("Got code "+code);

}
Now, when you press the buttons on the remote control, you can change the color
of the square on the screen.

You could easily use this functionality to control a game or quiz that was written as a web
page.

Experiment 21: Using Our Remote Control on the Net,
with dweet.io

However, web pages can request new web pages all by themselves, so you could use this
functionality to navigate between pages. You can even request a page that is able to give
information to a web server.

Chapter13 203

Experiment 21: Using Our Remote Control on the Net, with dweet.io

For this example, we'll use dweet.io—an amazingly useful website that allows you to sim-
ply push data, and to then read it back from another place. On the front page of dweet.io
there’'s more information about exactly how to use it, but all we need to do is to request a

certain web page, and that will be enough to store information on dweet.io’s servers.

1. Think of a random name. For this example I'll just use [espruino).

2. Navigate to http://dweet.io/follow/|espruino|in your browser, changing espruino to
the name you came up with.

Most likely, dweet.io will report:
Sorry this thing isn't a thing

3. Now, in another window, navigate to https:/dweet.io/dweet/for/|espruinol?
code=hello (again, changing espruino). This will write the value to the

attribute on dweet.io.

4. Now refresh the http://dweet.io/follow/|espruino| window. It should report
being [hellol:

dweet.io - Share your thi X

4 (e Q [dweet.io/follow/espruino

Play Lock Discover FAQ

espruino

Here's what this thing was up to a few seconds ago _ (TS
Visual Raw

code h e | | 0]

dweet.io is brought to you by Bug Labs, Inc. ©2016. All Rights Reserved. Privacy and Terms hello@dweet.io

W Foliow @dweet_io

Site by BlackTie.co- Attribution License 3.0

5. In the https://dweet.io/dweet/for/|espruino|?code=hello window, change the URL to
https://dweet.io/dweet/for/|espruinol?code=testing and you should see that the

204 Making Things Smart

http://dweet.io

Experiment 22: Using Our Remote Control on the Net, with IFTTT

other window now automatically updates. You can even open the http://dweet.io/
follow/ window on a new device and it will still work.

We can now control this automatically from our IR receiver!

6. Change the gotCode]| function to the following, changing the text in the

URL to the name that you came up with:

// the last code we received
var lastCode;

function gotCode(code) {
console.log("Got code "+code);

// Make sure we only call this when we get a new code
if (lastCode == code || code.length<20) return;
lastCode = code;

// Now send a message to dweet.1io
var oReq = new XMLHttpRequest();
oReq.addEventListener("load", function() {
console.log("Got response: "+this.responseText)
s
oReq.open("POST", "https://dweet.ilo/dweet/for/espruino?code=_"+code);
oReq.send();
}

If you use the remote control now, you should see your http://dweet.io/follow/ win-
dow updating with the code from the remote control!

/ Because dweet.io is a free service, it is rate-limited. You can only send one
update every few seconds. If you press a few keys very quickly you may find
that new keys are getting ignored.

Experiment 22: Using Our Remote Control on the Net,
with IFTTT

dweet.io is a good way to test code, and it's pretty handy if you're able to write more soft-
ware that can read the latest values for your device. However, it doesn’t really integrate
with any other web services.

If you want something that does, you can use If This Then That, a website that lets you cre-
ate a set of the rules of the form If this happens, do that. While IFTTT usually only deals with
other commercial products, they have added a new channel, called the Maker Channel.

Chapter13 205

http://dweet.io/follow/
http://dweet.io/follow/
http://dweet.io/follow/
https://ifttt.com
https://ifttt.com/maker

Experiment 22: Using Our Remote Control on the Net, with IFTTT

This allows you to use it in much the same way as you did with dweet.io, so let’s set it up
such that when you press a specific button on your remote control it will send you an e-

mail.

1. Navigate to https.//ifttt.com and sign up for an account.

2. Now go to https://ifttt.com/maker_webhooks and click Connect. On the next page,

3. Replace the function with the following, and
Ixxx_MY_KEY_HERE_xxx| with the long series of digits shown as your key on the
maker page:

click Documentation and you should see a key value:

&S

Your key is: (il SiEgEenySG

Back to service

To trigger an Event

Make a POST or GET web request to:
https://maker.ifttt.com/trigger/| {event} |/with/key/& L uEme Ao

With an optional JSON body of:

{ "valuel" : " " o'walue2" : " otyalue3d" ;" Y

The data is completely optional, and you can also pass valuel, value2, and value3 as
query parameters or form variahles. This content will be passed on to the Action in your
Recipe.

You can also try it with curl from a command line.

curl -X POST https://maker.ifttt.com/trigger/{event}/with/key/s =& e

// the last code we received
var lastCode;

function gotCode(code) {
console.log("Got code "+code);

// Make sure we only call this when we get a new code

replace

206

Making Things Smart

https://ifttt.com
https://ifttt.com/maker_webhooks

Experiment 22: Using Our Remote Control on the Net, with IFTTT

if (lastCode == code || code.length<20) return;
lastCode = code;

// Now send a message to IFTTT

var oReq = new XMLHttpRequest();

oReq.addEventListener("load", function() {
console.log("Got response: "+this.responseText)

b
oReq.open("POST", "https://maker.ifttt.com/trigger/infrared/with/key/"+
"XXX_MY_KEY_HERE_xxx"+
"?valuel=_"+code);
oReq.send();
}

. Now click on your login name in the top right and click New Applet.
. Click this and then choose Maker Webhooks.

. Select “Receive a web request” and type into the Event Name box, then
click Create Trigger.

/ is the same name that we used in the URL ingotCode]ear-

lier.

. Now click that, choose Email, Send me an email, and then click Create Action.

You should now have something that looks like the following:

Chapter 13 207

Experiment 22: Using Our Remote Control on the Net, with IFTTT

&S

If maker Event
"infrared", then
send me an email
at

o tasi@google

mail.com

by @ 8 o

* Created on May 31 2017

* Never run

This Applet usually
runs within a few
seconds

works with B

8. Click Create Recipe.

9. Now you're ready to go. Just press a button on the remote control, and you should
be sent an email!

HTTP Access Control

JavaScript on web browsers has something
called HTTP access control. This restricts the
type of HTTP accesses that can be made
from a web page to a totally different web
server for security, unless the server opts
out. While dweet.io opts out, unfortunately
IFTTT doesn’t (yet). This means that while

the preceding code works fine (as the initial
HTTP request has been made by the time
the web browser figures out there is a prob-
lem), you will get an error reported in your
web browser’s console each time a HTTP
request is made.

208

Making Things Smart

http://bit.ly/mdn-cors
http://dweet.io

Experiment 22: Using Our Remote Control on the Net, with IFTTT

IFTTT can do much more than send emails. You can send tweets, make notes, add rows to
a spreadsheet on Google Drive, or even control some web-enabled devices such as mains
sockets. Play around and see what you can do!

While we've used JSFiddle here to make it easy for you to change your code quickly, you
can easily host this code on your own website, or you can use services such as GitHub
pages to permanently host your work. Just bear in mind that in the case of IFTTT your API
key may be visible to everyone, meaning that anyone who wants to could trigger your
IFTTT rules!

/ The functionality used here is also supported on Android. If

you have an old mobile phone or tablet, you can set it up in the same way
and use it to relay commands to the internet!

Chapter13 209

https://pages.github.com
https://pages.github.com

Cutting the Cord:
Radio Sighals | =

I

While infrared is nice and simple, there are some real drawbacks. For instance, the low data
rate and the need to have line of sight to the receiver.

The next step is to use proper radio transmission. There are plenty of different types of
radio transmission for data: there’s Bluetooth, Bluetooth Low Energy (sometimes known as
Bluetooth Smart or BLE), Zigbee, WiFi, LoRa, and many others.

While very powerful, most of these systems use complicated radio transceiver chips. How-
ever, there are still some radios that are extremely simple—for example, the kind often
used by cheap wireless sensors or wireless doorbells.

These use simple AM transmitters and receivers (see Figure 14-1) that transmit in the free
radio bands: 315MHz (USA) and 433MHz (European). Much like the infrared remote con-
trols, the protocol used varies depending on the manufacturer. We'll use those for this
experiment, as it gives you the ability to see the signals that are being sent and received.

211

Experiment 23: Wiring Up the Receiver

FS1000A ANT
)

7 ﬂ

vee

Figure 14-1 Common radio transmitter (top) and receiver (bottom) modules

Experiment 23: Wiring Up the Receiver

You'll need:

« A 315Mhz (USA) or 433Mhz (Europe) radio receiver
« Alength of insulated, solid core wire

+ A battery or battery pack supplying between 3 and 5 volts (a CR2032 watch bat-
tery in a holder is perfect)

- Breadboard

« The headphone extension lead with a 3.5mm jack plug from “Experiment 18: Mak-
ing the IR Receiver”

« 2x 10k Ohm resistors

You'll need to create the circuit shown in Figure 14-2. This is almost identical to the circuit
you made for the IR receiver in “Experiment 18: Making the IR Receiver”.

212 Making Things Smart

Experiment 23: Wiring Up the Receiver

+5V ANT

? DATA
RF

N = o
RIGHT 6 6

SLEEVE

Figure 14-2 Connecting the receiver

1. Cut the solid core wire into two lengths for the antenna, depending on which reci-
ever you have:

315MHz ‘23.8 cm

433MHz ’17.3 cm

2. If you have a soldering iron, solder one antenna onto the receiver where it is
marked, otherwise just strip the wire, poke it through, and twist it to hold it on.

3. Connect the wire and two resistors as you did for the headphone oscilloscope in
“Experiment 17: Making an Oscilloscope”.

The finished receiver should look something like this:

Chapter 14 213

Experiment 24: Wiring Up a Transmitter

You can now test it by running the WebAudio oscilloscope that we used before.

As mentioned, the 315Mhz and 433Mhz bands are in use by all kinds of devices. They're
also relatively long range, with even low-power transmitters managing 100m or so. As a
result, you'll find that the band is relatively congested. You might find just looking at the
output of the receiver that it's receiving quite a lot of data just sitting there. This is what |
see when viewing the web page:

[Web Audio Oscillosco, @ > YUy

4 4> | & https://espruino.github.io

If you do have a device that works on the same band (like a wireless remote or doorbell) try
activating it and see if you can detect anything.

Experiment 24: Wiring Up a Transmitter

Now that we've got a receiver, let's wire up a transmitter. We'll be re-creating the circuit in
Figure 14-3.

214 Making Things Smart

https://espruino.github.io/webaudio-oscilloscope/

Experiment 24: Wiring Up a Transmitter

c n < m o — ~ O n
SaZdmm® << MbE—
A3 p——
A2 |—
. . Al f—

Espruino Pico

AQ f—
A10 p—

B9

B8

GND
Vout
3.3v
B3
B4
B5
B6
B7
A8

Figure 14-3 How to wire an Espruino Pico to a radio transmitter

This is nice and easy! You'll need:
« A 315Mhz (USA) or 433Mhz (Europe) radio transmitter
« Alength of insulated, solid core wire
+ Breadboard

+ Three patch wires

+ An Espruino Pico
To wire the transmitter, simply:

1. Add the antenna as you did for the receiver.

2. Put the Pico and the transmitter in the breadboard, and wire them up so it looks as

follows:

+5V ANT
RF TX
DATA

GND

Chapter 14

215

Experiment 25: Transmitting from Espruino

Experiment 25: Transmitting from Espruino

Now we're ready to start sending data directly from Espruino to your computer.

First, we're just going to create a test signal: a long series of pulses. On for 1 millisecond,
and off for 2.

To do this, we can send an array of pulse lengths to the command as we did
for the Baird TV. As before, we need an odd number of elements in the array so that after

all pulses have been sent the transmitter is off. To solve this we'll just create the array with
one element, and then add two elements at a time later on.
1. Enter the following code on the lefthand side of the Web IDE:

var d = [1 /* on */]
for (var 1=0;1<100;1++) d.push(2 /* off */, 1 /* on */);

2. Now we can actually send our test signal:
digitalPulse(B3,1,d)

You should see, for a fraction of a second, something like this:

216 Making Things Smart

Experiment 25: Transmitting from Espruino

[Web Audio Oscillosco: @ x Yy

4 @ & https://espruino.github.io

Triggered

3. So now we can look at sending some data, but we need a way to distinguish it
from all the other signals and radio noise that we're receiving.

We're going to send a long, 5-millisecond pulse at the start. This has the benefit
that it teaches our radio receiver how high the signal strength for a |1| should be.
After this, the radio receiver will start ignoring any radio signals that are signifi-
cantly less than this.

After this, we'll send pulses of differing lengths. Just like with infrared, a long pulse
will be a [1], and a shorter pulse will be a [6. We'll grab the data we want to send
from a string of text.

Each character is 8 bits, so we'll send 8 pulses for each character.

Finally, we'll send a 3-millisecond end pulse to indicate the end of the received
data (otherwise the receiver might accidentally end up reading random radio sig-
nals after the end of our transmission).

Enter the following code on the righthand side of the IDE and click Upload:

function transmit(txt) {
// Ensure we're dealing with a string
txt = txt.toString();
// Work out what to send
// Initial 5ms pulse

Chapter 14 217

Experiment 26: Decoding the Received Data

var d = [5];
// data for each character
for (var 1=0;i<txt.length;i++) {
var ch = txt.charCodeAt(1);
for (var j=0;j<8;j++) {
d.push(1, (ch&128)?1.5:0.5);
ch<<=1;
}
}
// Finally add a 3ms 'finish' pulse
d.push(1,3);
// Send it
digitalPulse(B3,1,d);
}

4. Now type the following on the lefthand side of the IDE:

transmit("Hello")

This will send the text [Hello|. You should see some data flash up on the oscilloscope, but
how do we decode it?

Experiment 26: Decoding the Received Data

We're going to start off with the same audio recording code we had for the infrared
receiver.

1. Open Chrome and go to http://jsfiddle.net.
2. Add the following code under the heading:

<body>
<pre id="log"></pre>
</body>

3. Add the following under the heading:

var logElement = document.getElementById("log");
console.log = function(s) {
logElement.innerHTML += s+"\n";

}

// The threshold for detecting a change to a 1 or a 0 in the signal
var THRESH = 0.01;

// Do we think the input is a 1 or a 0?

var currentState = 0;

// How many samples have we been in this state (in samples)?
var timeInState = 0;

// The data we've received so far
var currentCode;

218 Making Things Smart

http://jsfiddle.net

Experiment 26: Decoding the Received Data

// Called when the input changes state
function changedState(newState, timePassed) {
console.log((newState?"Lo":"Hi") + " for "

Passed*1000).toFixed(2));

}

+ (time

function processAudio(e) {
var data = e.inputBuffer.getChannelData(0);
// Now search for changes in value
for (var 1=0;i<data.length;i++) {
// Did it suddenly go high? it's a 1
if (currentState==0 && data[i1]>THRESH) {
currentState=1;
changedState(1, timeInState / e.inputBuffer.sampleRate);
timeInState = 0;
}
// Did it suddenly go low? it's a @
if (currentState==1 && data[i]<-THRESH) {
currentState=0;
changedState(0, timeInState / e.inputBuffer.sampleRate)
timelInState = 0;
}
timeInState++;
}
}

function startRecord() {
window.AudioContext = window.AudioContext || window.webkitAudioContext;
if (!window.AudioContext) {
console.log("No window.AudioContext");
return; // no audio available
}
navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia ||
navigator.mozGetUserMedia;
if (!navigator.getUserMedia) {
console.log("No navigator.getUserMedia");
return; // no audio available

}

var context = new AudioContext();

var userMediaStream;

var inputNode = context.createScriptProcessor(4096, 1/*in*/, 1/*out*/);
window.dontGarbageCollectMePlease = inputNode;

inputNode.onaudioprocess = processAudio;

navigator.getUserMedia({
video:false,
audio:{
mandatory:[],

Chapter 14

219

Experiment 26: Decoding the Received Data

optional:[{ echoCancellation:false },
{ googEchoCancellation: false },
{ googAutoGainControl: false },
{ googNoiseSuppression: false },
{ googHighpassFilter: false }
,{ sampleRate:22050 /* 44100 */ }]
}
}, function(stream) {
var inputStream = context.createMediaStreamSource(stream);
inputStream.connect(inputNode);
inputNode.connect(context.destination);
console.log("Record start successful");
}, function(e) {
console.log('getUserMedia error', e);
s
}

startRecord();

Don't click Run just yet, because unless you are in a very rural area you're going to
have a huge amount of data printed to the screen, as every single bit of data
received will be output!

4. Instead, replace |changedState| with some code that decodes the sent signal. It

will:

.

Wait until a (roughly) 5ms pulse is found.

Start recording the bits of data is receives (unless theyre obviously the
wrong length).

Call |gotData|with the data received when it gets a 3ms end pulse.
Use[gotData|to reassemble the data into a[String|.

// The data we've received so far, or 'undefined' if we are not
// recetving any data at the moment
var currentCode;

function gotData(data) {
// Print the raw data
console.log(data);
// Reconstruct a String from this
var str = "";
for (var i1=0;i<data.length;i+=8) {
str += String.fromCharCode(parselInt(data.substr(i,8),2));
}
console.log(" " + JSON.stringify(str));

}

// Called when the input changes state
function changedState(newState, timePassed) {

220

Making Things Smart

Experiment 26: Decoding the Received Data

if (newState!=0) return;
var ms = timePassed * 1000; // time in milliseconds
// Check the pulse length
if (ms > 4.5 && ms < 5.5) {
// It's a 5ms 'start' pulse
currentCode = "";
} else if (ms > 2.5 && ms < 3.5) {
// It's a 3ms 'end' pulse
if (currentCode!==undefined && currentCode.length)
gotData(currentCode);
currentCode = undefined;
} else if (ms<2) {
// It's hopefully a data pulse
if (currentCode!==undefined)
currentCode += (ms>1) 2 "1" : "0";
} else {
// unknown pulse size - give up on receiving
currentCode = undefined;
}
}

5. Now click Run.

6. In the Web IDE, press the [+] to reselect [transmit("Hello")| and hit Enter] to send
it again.

You may have to do this more than once, but hopefully eventually you'll receive
the data from the Espruino board inside JSFiddle.

7. As with all radios, there’s no guarantee that your signal won't be interrupted by
something else, or that some other device’s signal won't get interpreted as a legiti-
mate signal by your receiver. It's easy to end up with the wrong data or nothing at
all, so most systems perform some sanity checks on the data received.

For example, a simple test would be to ensure that the data received was a multi-
ple of 8 bits long:

Add the following to the very start of |gotDatal:

// Return if data is not a multiple of 8 bits long
if (data.length & 7) return;

In reality more complex checks are performed, such as Cyclic Redundancy Checks
(CRCs). CRCs produce a number based on the contents of the message, and that
number is sent as well as the message. If it doesn’t match, the message is consid-
ered to be corrupt. For example, with an 8-bit CRC there are 256 possible combina-
tions, so if the CRC matches there is now a less than 0.5% chance that it is wrong.

Sending wasn't desperately useful. What if we wanted to send the cur-
rent temperature of the Espruino board?

Chapter 14 221

Experiment 26: Decoding the Received Data

8.

Enter the following code in the Web IDE, which will send the temperature every 5
seconds. takes the floating-point number, and converts it to a string with
the given number of decimal places. For example: [(27.87103308575) . toFixed(2)

== "27.87"|

setInterval(function() {
transmit(E.getTemperature().toFixed(2));
}, 5000);

After a few seconds you should start to see temperature readings arriving!

You could now put the data you received online using the examples from the previous
chapter. For example, you could change [gotData|in JSFiddle to the following:

function gotData(data) {
// Return if data is not a multiple of 8 bits long
if (data.length & 7) return;
// Print the raw data
console.log(data);
// Reconstruct a String from this
var str = "";
for (var i=0;i<data.length;i+=8) {
str += String.fromCharCode(parselInt(data.substr(i,8),2));
}
console.log(" " 4+ JSON.stringify(str));
// Now send a message to dweet.1io
var oReq = new XMLHttpRequest();
oReq.addEventListener("load", function() {
console.log("Got response: "+this.responseText)
s
oReq.open("POST","https://dweet.10/dweet/for/espruino_tmp?temp="+str);
oReq.send();
}

You can then go to http://dweet.io/follow/espruino_tmp, and if you leave the window open

you

can even see a graph of the current temperature building up over time (as before, you

ought to use your own ID, because if two people use at the same time, both
of their data uploads will be recorded!):

Was the Message Received?

For this experiment, the Espruino board only
transmits data. It can’t ever know if the data it
sent was received or not. Many devices in the
315/433 Mhz bands work like this. They transmit
the same data multiple times, just to make it
more likely that it will arrive.

If both ends can transmit and receive then the
receiver can send a special acknowledgment

message when it gets some data. If the sender
doesn’t get an acknowledgment, it can resend
the data, making it much more likely that it
arrives.

However, in many cases (such as a room temper-
ature monitor), it isn't vital that data is received.
If one message is missed, hopefully there will just
be a new one in a few seconds!

222 Making Things Smart

http://dweet.io/follow/espruino_tmp

Experiment 26: Decoding the Received Data

dweet.io - Share your thi x
§ @ &> [dweetio/follow/espruino_tmp

espruino_tmp

Here's what this thing was up to a few sec 5 ago

Create a Custom Dashboard for this thing with

Visual Raw

temp 28.52

\/V/\/—v\j./—

dweet io is brought to you by Bug Labs, Inc. ©2016. All Rights Reserved. Privacy and Terms
hello@dweet.io

Chapter14 223

The options we've looked at so far have involved having a bridge to connect a device to the
internet. In the infrared and RF modules that bridge has been your PC or an Android
phone.

In many cases that may not be what you want. Often you'll need a device that connects
directly to your WiFi network, without a separate bridge.

To do this, you're going to need something to handle the WiFi connection for you. There
are many different modules around, but at the moment the cheapest, most easily sourcea-
ble modules are based on the ESP8266 (Figure 15-1). The ESP8266 is made by EspresslF. It's
a great little chip that contains quite a powerful microcontroller as well as all the 2.4GHz
radio electronics needed for WiFi communications. The chip itself needs external flash
memory (the little 8-pinned chip by the side) as well as a tuned aerial, so the modules are
by far the easiest way to buy and use the ESP8266.

225

https://espressif.com

Experiment 26: Decoding the Received Data

Figure 15-1 The ESP8266 ESPO1 module

The AT Command Set

While the microcontroller in the ESP8266 can run
any code, by default it comes pre-installed with
an AT command firmware. stands for ATten-
tion. Any commands that need to be sent to the
ESP8266 start with the characters [AT, which
helps to differentiate them from data.

The AT, or Hayes, command set was created back
in 1981 for the Hayes Smartmodem. Variants of it

have since been used in all kinds of devices,
most notably in the modems of most mobile tel-
ephones. Manufacturers tend to add their own
AT commands so there is no guarantee that one
device will work with another’s drivers. The AT
command set merely tells you that the com-
mands will start with AT, not what those com-
mands will be!

While we're showing you how to connect an ESP8266 board to a Pico here (as that’s used
for the other chapters), you can also use an Espruino WiFi board, which has an ESP8266
module pre-installed.

226 Making Things Smart

http://www.espruino.com/WiFi

Experiment 27: Adding WiFi to Your Pico

Espruino WiFi

If you don’t want to have to connect up separate
hardware for WiFi, you can buy an Espruino WiFi
board. This is effectively a more powerful
Espruino Pico with an ESP8266 module pre-
installed.

There’'s more information on the board at the
Espruino website. There will be other notes in
this chapter where instructions differ if you're
using an Espruino WiFi board.

Experiment 27: Adding WiFi to Your Pico

First, you'll need to physically connect the ESP8266 module to the Espruino Pico.

You'll need:

An ESPO1 ESP8266 module
« Breadboard

« Five male-to-female patch wires

+ An Espruino Pico
Wiring is easy, just connect the five wires as shown in Table 15-1.

Table 15-1 ESP8266 to Espruino Pico connections

GND GND
RX B6
X B7
CH_PD 3.3v
VCC 3.3v

Figures 15-2 and 15-3 show where the pins are on the ESPO1 module.

Chapter 15 227

http://www.espruino.com/WiFi

Experiment 27: Adding WiFi to Your Pico

Figure 15-3 A top view of the ESPOI1 module

Figure 15-3 contains the actual pin connections.

Top View

[]

|

™ JO OGND
cH PD JO OD2
RST JO O Do
vce |O ORx

Figure 15-4 The connections of the ESPO1 module

Your finished wiring should look like Figures 15-4 and 15-5.

228 Making Things Smart

Experiment 27: Adding WiFi to Your Pico

=

Figure 15-5 The five wires connected to an ESPO1 module

Figure 15-6 The five wires connected to the Espruino Pico

Try not to use wires that are too long. The ESP8266 can draw a lot of power (over 200mA)
when connecting to a WiFi network, and long wires on the power lines can cause it to be
unreliable.

Making This Tidier
The ESP8266 ESP01 modaule is a bit tricky to mount on breadboard because of the block of
4x2 pins onit.

However, if you have a soldering iron handy then you can just cut the middle four pins off,
and then short the CH_PD pin to 3.3v on the module (Figure 15-6).

Chapter15 229

Experiment 27: Adding WiFi to Your Pico

Figure 15-7 A modified ESPO1 module that only needs four wires connected

You can then place it straight into the breadboard and connect with only four wires, as
shown in Figure 15-7.

Figure 15-8 Using a modified ESPO1 module with an Espruino Pico board

230 Making Things Smart

Experiment 28: Testing Your Wiring

Various suppliers also provide more breadboard-friendly breakout boards for ESP8266

modules.

You can even buy small shims that allow you to attach the ESP8266 module directly to your

Pico, in a nice compact package (Figure 15-8).

Figure 15-9 Using a “shim” to add WiFi to your Espruino Pico in a very compact way

Even though we're connecting an Espruino
board to an ESP8266 module, the ESP8266 mod-
ule used contains a fully programmable micro-
controller all of its own. It is possible to run
Espruino directly on the ESP8266 module
without the need for an Espruino board.

This does work well, but the microcontroller in
the ESP8266 has to give WiFi communications
priority (and doesn’t have the wealth of periph-
erals that Espruino boards have), so life won't be
quite as easy as if you used the ESP8266 and a
separate microcontroller.

Experiment 28: Testing Your Wiring

The next step is to check that your module is connected and working (there’s no need to

do this on the Espruino WiFi board).

1. Enter the following code on the righthand side of the Web IDE and click Upload:

var 1="";

Seriall.on('data', function(d) {l+=d;});

Seriall.setup(115200, { tx: B6, rx :

Seriall.write("AT+GMR\r\n");

B7 1);

setTimeout(function(){console.log(l);},1000);

Chapter 15 231

http://www.espruino.com/ESP8266
http://www.espruino.com/EspruinoESP8266

Experiment 29: Connecting to WiFi

This code simply sends the |AT+GMR| command and returns the response. |AT+GMR| is
a sort of Who are you? command that causes the ESP8266 to print the version of its

software.

After a second, you will hopefully get something a bit like this:

RN Y I I A O P
| _| http://espruino.com

1v85 Copyright 2016 G.Williams
>echo(0);
=undefined
AT+GMR
AT version:0.40.0.0(Aug 8 2015 14:45:58)
SDK version:1.3.0
Ai-Thinker Technology Co.,Ltd.
Build:1.3.0.2 Sep 11 2015 11:48:04
OK
>

If nothing is, or you have an AT version of less than [0.25.0.0|, head over to the
Espruino website for some troubleshooting code to help you out.

Experiment 29: Connecting to WiFi

Now we're ready to connect to WiFi!

1. Copy the following code on the righthand side of the Web IDE, and change
WIFI_NAME|and [WIFI_KEY|to the name and password of your WiFi network:
var WIFI_NAME = "";
var WIFI_KEY = "";
function onConnected() {
console.log("Connected");
}
Seriall.setup(115200, { tx: B6, rx : B7 });
var wifi = require("ESP8266WiFi_0v25").connect(Seriall, function(err) {
if (err) throw err;
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, WIFI_KEY, function(err) {
if (err) {
console.log("Connection error: "+err);
return;
}
onConnected();
s
b
232 Making Things Smart

http://www.espruino.com/ESP8266

Experiment 29: Connecting to WiFi

/ Espruino WiFi

On the Espruino WiFi board, the code you use should look like this:

var WIFI_NAME = "";
var WIFI_KEY = "";

function onConnected() {
console.log("Connected");

}

var wifi = require("EspruinoWiFi");
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, { password : WIFI_KEY }, func
tion(err) {
if (err) {
console.log("Connection error: "+err);
return;
}
onConnected();

19N

It's almost the same, apart from the code that initializes the WiFi at
the beginning.

If all goes well, you'll get something like this:

Connecting to WiFi
Connected

Did you get [Uncaught WiFi connect failed: FAILP If so, recheck your WiFi
details. You might also need to make sure you're well within range (the ESP8266’s
WiFi range isn’t quite as good as your laptop’s).

Now we're ready to connect to the internet.
2. On the lefthand side of the IDE, enter the following:

require("http").get("http://www.pur3.co.uk/hello.txt", function(res) {
res.on('data', print);

i9H

We upload code using the right side of the IDE, but enter individual com-
mands on the left side because we can do things without having to wait for
WiFi to reconnect, which we would have to do if we re-uploaded code.

Chapter15 233

Experiment 30: Sending Data to the Internet

This will request a web page that simply says [Hello World!|. The function is called when a
connection is made, and |res.on('data’, print);| ensures that the function is
called whenever more data is received.

Often we'll want to deal with data as it comes in over WiFi rather than saving it all into one
variable, as it wouldn’t be hard for a web server to send us files that are so big that they
would fill up all our memory!

Experiment 30: Sending Data to the Internet

Now, let’s do something more interesting. In Chapter 14, we used dweet.io to send the
temperature. How would we do the same thing here?

1. Enter the following code on the lefthand side of the IDE (after you've used the
code in the last experiment):

function sendDweet() {
var str = E.getTemperature().toFixed(2);
var url = "http://dweet.ilo/dweet/for/espruino_tmp?temp="+str;
require("http").get(url, function(res) { });

}

setInterval(sendDweet, 10000);

2. If you now go to http://dweet.io/follow/espruino_tmp you should see the tempera-
ture of your Espruino board updating once every 10 seconds! As before, you

should probably change to something else or you'll start seeing
other people’s data!

234 Making Things Smart

http://dweet.io
http://dweet.io/follow/espruino_tmp

Experiment 30: Sending Data to the Internet

dweet.io - Share your thi X
4 @ & [dweet.io/follow/espruino_tmp

Play Lock Discover FAQ

espruino_tmp

Here's what this thing was up to a few seconds ago

Visual Raw

temp

30.99
VL,VWWM_“M_J\,

dweet io is brought to you by Bug Labs, Inc. ©2016. All Rights Reserved. Privacy and Terms hello@dweet.io

W Follow @dwest_io

Site by BlackTie.co - Attribution License 3.0

So that was nice and easy. We did cheat a little to keep this nice and simple,
though. To update the dweet.io service in the correct way, we should really do an
HTTP POST request (not a GET). There are some better examples of how to do this
at the Espruino website.

Why Shouldn't We Use a GET?

When you do an HTTP GET, the web server HTTP POST requests mean that you intend

(and any proxy servers in the way) assume
that you are only trying to retrieve data, not
send it. As a result, if they have a cached
page available that matches the descripton
then they will just give you that cached
page, and will never contact the server. Your
data will be lost.

to send the server some information. They'll
always be passed straight through, ensuring
your data gets there intact.

Finally, we should look at making our code work straight after the Pico is powered
on. So how do we do that?

Chapter 15

235

http://dweet.io
http://www.espruino.com/IoT+Services

Experiment 30: Sending Data to the Internet

3. Well, when the Pico first starts, it calls a function called if it exists. In that
function, we need to make sure we initialize the ESP8266 WiFi and start connect-
ing. We'll just put all our WiFi connection code in there.

4. Next, we only want to start sending data after we're connected, so we put the
setInterval|inside onConnected|.

5. And we're done. The final code looks like this, and should be entered on the right-
hand side of the IDE and then uploaded by clicking the Upload button:

var WIFI_NAME = "";
var WIFI_KEY = "";
var wifi;

function onInit() {
USB.setConsole(true);
Seriall.setup(115200, { tx: B6, rx : B7 });
wifi = require("ESP8266WiFi_0v25").connect(Seriall, function(err) {
if (err) throw err;
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, WIFI_KEY, function(err) {
if (err) throw err;
onConnected();
b
b
}

function onConnected() {
console.log("Connected");
setInterval(sendDweet, 10000);
}

function sendDweet() {
var str = E.getTemperature().toFixed(2);
console.log("Sending "+str);
var url = "http://dweet.io/dweet/for/espruino_tmp?temp="+str;
require("http").get(url, function(res) { });
}

236 Making Things Smart

Experiment 31: Getting Data from the Internet

Espruino WiFi

For the Espruino WiFi board replace the [onI
nit|function with the following:

wifi.connect(WIFI_NAME, { pass
word : WIFI_KEY }, function(err)

{
if (err) {

error: "+err);

return;
function onInit() {
wifi = require("EspruinoWiFi"); onConnected();
console.log("Connecting to 1);
WiFi"); }

You can do this with any of the subsequent
example code in this chapter.

console.log("Connection

1. Finally, upload the code, type on the lefthand side, and you're done.
Espruino will restart, start connecting, and will then automatically start sending

data to dweet.

Experiment 31: Getting Data from the Internet

So now that we've managed to send data to a service on the internet, it would be nice to
be able to get data from the internet and do something based on it.

Probably the simplest way to do this is to request a web page from the internet. We'll use
dweet.io again, but this time in the other direction. As before, you might want to change

the name we've used here (espruino_led]) to something else.

We'll use exactly the same function as before, but will change it so that we request
the page https://dweet.io/get/latest/dweet/for/espruino_led from dweet.io (getting the state

of the device). This is a bit like the follow page http:/dweet.io/follow/
espruino_led, but it's designed to be machine readable (and doesn’t auto-update).

1. First, we need some data. Navigate to http://dweet.io/dweet/for/espruino_led?on=0
in your web browser. This will send some data to dweet.io, setting the value [on| to

Your browser will display something like this:

{

"this":"succeeded",
"by":"dweeting",
"the":"dweet",
"with":{
"thing":"espruino_led",
"created":"2016-06-24T09:22:47.177Z",
"content":{"on":0},
"transaction":"a296e38e-906d-47e3-beb7

-26e41b836393"

Chapter 15 237

http://dweet.io
https://dweet.io/get/latest/dweet/for/espruino_led
http://dweet.io
http://dweet.io/follow/espruino_led
http://dweet.io/follow/espruino_led
http://dweet.io/dweet/for/espruino_led?on=0

Experiment 31: Getting Data from the Internet

}
}
2. Now enter the following code on the righthand side of the Web IDE:
var WIFI_NAME = "";
var WIFI_KEY = "";
var wifi;

function onInit() {
USB.setConsole(true);
Seriall.setup(115200, { tx: B6, rx : B7 });
wifi = require("ESP8266WiF1_0v25").connect(Seriall, function(err) {
if (err) throw err;
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, WIFI_KEY, function(err) {
if (err) throw err;
onConnected();
b
s
}

function onConnected() {
console.log("Connected");
setInterval(getDweet, 10000);
}

function onDweetData(data) {
console.log("DWEET> "+data);

}

function getDweet() {
var url = "http://dweet.io/get/latest/dweet/for/espruino_led";
require("http").get(url, function(res) {
var data = "";
res.on('data', function(d) { data+=d; });
res.on('close', function() {
onDweetData(data);
b
b
}

3. Upload, and type on the lefthand side.

This will retrieve data from dweet.io every 10 seconds as a string. It should look a
bit like this:

DWEET> {"this":"succeeded","by":"getting","the":"dweets","with":
[{"thing":"espruino_led","created":"2016-06-24T709:22:47.177Z","content":

{"on":0}}1}

DWEET> {"this":"succeeded","by":"getting","the":"dweets","with":
[{"thing":"espruino_led","created":"2016-06-24T709:22:47.177Z","content":
"on":0}}1}

238 Making Things Smart

Experiment 31: Getting Data from the Internet

4. Now visit http://dweet.io/dweet/for/espruino_led?on=1, and you should see that the
value of [on|in the result changes the next time a request is made.

The data you're receiving is formatted in JSON. While we could search the string
for the text["on" ;| that’s not a very robust way of handling the data.

Instead, because Espruino uses JavaScript, it has a JSON parser built into it.

5. To parse the data properly we can just change the |onDweetData| function to the
following:

function onDweetData(data) {
var json = JSON.parse(data);
console.log("DWEET> ", json);
}

(You can just enter this on the lefthand side of the IDE, rather than having to
reconnect to WiFi.) The output will now be:

DWEET> {
"this": "succeeded",
"by": "getting",
"the": "dweets",
"with": [
{
"thing": "espruino_led",
"created": "2016-06-24T09:22:47.177Z",
"content": "on": 1}
}
1
}

While this is the same data, Espruino has read the data into the variable [json|.

When prints it, it'’s able to indent everything correctly. If the string
wasn't valid JSON, [JSON. parse| would throw an exception.

Finally, we can decode this data, but we can’t guarantee that we’'ll always get the
right response. We could write something like this that checks that every bit of
data we expect is there:

function onDweetData(data) {
json = JSON.parse(data);
console.log("DWEET> ", json);
if (json && json.this=="succeeded" &&
json.with && json.with[0] &&
json.with[0].content &&
json.with[0].content.on !== undefined) {
var d = json.with[0].content.on;
digitalWrite([LED2,LED1], d);
} else
console.log("Error decoding dweet");

Chapter15 239

http://dweet.io/dweet/for/espruino_led?on=1

Experiment 31: Getting Data from the Internet

But it's much cleaner just to use exceptions.

6. Enter the following code:

function onDweetData(data) {
try {
json = JSON.parse(data);
console.log("DWEET> ", json);
var d = json.with[0].content.on;
digitalWrite([LED2,LED1], d);
} catch (e) {
console.log(e.toString());
}
}

If there is an error in the code, it will be caught and printed, without causing prob-

lems for any of the code that called it.

So now, the red LED should have lit up, because on dweet.io, [on| was set to 1.

7. Go to http://dweet.io/dweet/for/espruino_led?on=2 in your browser.

Within 10 seconds, the LED should have changed to green. You can load the URL
again with different numbers for |on| between 0 and 3 to set a new state for the

LEDs.

&

If you had another Espruino board connected up with WiFi you'd now be
able to use it to control the first board by using the temperature experi-

ment’s code and modifying the URL from http.//dweet.io/dweet/for/
espruino_tmp to http.//dweet.io/dweet/for/espruino_led.

Isn't There a Better Way?

Polling for data (where code repeatedly requests
a web page, looking for new information) is
often used by loT devices. It's nice and easy, but
it isn't very fast. When you change some infor-
mation you have to wait for the device to poll
(check the web page) again before it updates.
There'’s a balance to be struck: if you poll often
then the device will update more quickly, but
you'll use up more data (you might be on a
mobile network, where you have bandwidth lim-
its) and if you have many devices, your servers
may become overwhelmed.

Some servers offer the ability to keep an HTTP
connection open; http://dweet.io/listen/for/

dweets/from/espruino_led on dweet.io, for exam-
ple, uses “chunked” HTTP to send an infinite web
page that gets longer whenever the value
changes state. The URL won't work on your web
browser because the browser expects the web
page to end at some point (and it never does),
but it is possible to handle it with Espruino.

Infinite web pages aren't well supported, but
there is a standard called WebSockets that allows
a computer to open an HTTP connection and
send and receive chunks of data in a well-
defined way. To see how to implement this on
Espruino, check out the Espruino website.

240 Making Things Smart

http://dweet.io/dweet/for/espruino_led?on=2
http://dweet.io/dweet/for/espruino_tmp
http://dweet.io/dweet/for/espruino_tmp
http://dweet.io/dweet/for/espruino_led
http://dweet.io/listen/for/dweets/from/espruino_led
http://dweet.io/listen/for/dweets/from/espruino_led
http://www.espruino.com/ws

Of course, there’s no need to use HTTP (which is
generally meant for web pages) at all. You could

Experiment 32: Creating a Server

router. They won't have an IP address that can be
used to uniquely access them from the internet.

open a plain TCP/IP connection to a server, or
could even use a well-defined protocol such as
MQTT.

However, if you have configured your router to
allow incoming data to be transferred to your
device, or you're only contacting the device on
your local network, you can set your device up as
a server. That means that you can access it
directly, and can contact it only when you want it
to do something.

These methods all require a connection to be
made from the device out to some other server.
The main reason for this is that most computers
on a local network will be behind some kind of

Experiment 32: Creating a Server

As mentioned, sometimes it makes sense not to poll, but to contact the device only when
you want data from it or need to tell it to do something. This is where creating a web server
can come in handy.

First, we'll use the same initialization code as before, but in we'll create a web
server on port 80 (the standard HTTP port) with [require("http").createServer|. When a

web page is requested will be called, which will be responsible for provid-
ing the web page.

1. Enter the following code on the righthand side of the IDE, hit Upload, and then
type on the lefthand side:

var WIFI_NAME = "";
var WIFI_KEY = "";
var wifi;

function onInit() {
USB.setConsole(true);
Seriall.setup(115200, { tx: B6, rx : B7 });
wifi = require("ESP8266WiFi_0v25").connect(Seriall, function(err) {
if (err) throw err;
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, WIFI_KEY, function(err) {
if (err) throw err;
onConnected();
b
H;
}

function onConnected() {
console.log("Connected");
require("http").createServer(onPageRequest).listen(80);
wifi.getIP(function(err,ip) {
console.log("Your IP address is http://"+ip);
b;
}

Chapter 15 241

http://www.espruino.com/MQTT

Experiment 32: Creating a Server

function onPageRequest(req, res) {
console.log("Serving "+req.url);
res.writeHead(200);
res.end("Hello World");

}

After a few seconds you should see something like the following:

Connecting to WiFi
Connected
Your IP address is http://192.168.1.156

2. Go to that web address in your web browser, and you should see a simple web
page served up directly from the Espruino board:

[192.168.1.156

@ € [192.168.1.156 ool =

Hello World

3. Look back at the Web IDE; it'll probably say:

Serving /
Serving /favicon.1ico

This means there have been two requests: one for (the icon for the

website) and one for /|, the main index page.

To do things properly, we should really serve up a not found web page for web
pages we don't understand. After all, Hello World isn't an icon.

4. Change lonPageRequest|to the following:

function onPageRequest(req, res) {

console.log("Serving "+req.url);

var r = url.parse(req.url);

if (r.pathname == "/") {
res.writeHead(200);
res.end("Hello World");

} else {
res.writeHead(404);

242 Making Things Smart

Experiment 32: Creating a Server

res.end("404 - Not Found!");
}
}

/ We're using here because the URL string could contain

extra arguments. For example, when we sent data to dweet.io we
used [2temp=...] In this case we'd still want to serve up the page
for[/} even though[ur1] might be[/2temp. . .]

5. Refresh the page a few times. You'll see that was only requested the
first time. Since the Espruino told the web browser it doesn't exist, the web

browser has stopped trying to request it.

6. If you now go to http://|IP_ADDRESS|/foo, you'll get a [404 - Not Found!| message,
because that page doesn't exist.

If you want to serve up something special for it, you can just add another line to
the [1f| statement.

So now that we know how to serve up pages, let’s create a page to show the cur-
rent temperature.

7. Add and change [onPageRequest]to the following:

var homePage = '<html><body>'+

'<h1>My Espruino</hi1>'+

'Temperature'+
'</body></html>";

function onPageRequest(req, res) {
console.log("Serving "+req.url);

var r = url.parse(req.url, true);

if (r.pathname == "/") {
res.writeHead(200, {"Content-Type": "text/html"});
res.end(homePage);

} else if (r.pathname == "/getTemp") {
res.writeHead(200, {"Content-Type": "text/html"});
res.end('<html><head>'+

'<meta http-equiv="refresh" content="2">"'+
'</head><body>"'+E.getTemperature().toFixed(2)+
'</body></html>");

} else {
res.writeHead(404);
res.end("404 - Not Found!");

Chapter 15

243

Controlling Things

This code doesn't just serve up plain text, it serves up HTML (stored in the |home
Page| variable), with a hyperlink. If you go back to the main IP address in your web
browser you should now see something like this:

[192.168.1.156 »
@ €y [1192.168.1.156

Ly
]|

My Espruino

Temperature

Why Store the Page in a Variable?

In Espruino, it's more efficient to store @ However, we're not putting the Tempera-
@ in a variable. If you store it as a string ture page in a separate variable because it
in a function then it will take up space in has to change all of the time.

that function as part of the code, but when

the function is executed the string will also

be duplicated.

8. Click Temperature, and it will load a web page that automatically refreshes every
two seconds (because of the meta refresh HTML tag), and shows you the current
temperature of Espruino.

Controlling Things

So what if we wanted to control something on our Espruino? The easiest way is to supply

arguments in the URL. The command we used earlier has already decoded
them, so it’s just as easy as checking for the arguments we want.

1. Modify and the [if (r.pathname == "/") {]part of the [if] statement,
50 looks like the following:

244 Making Things Smart

Controlling Things

var homePage = '<html><body>'+
'<h1>My Espruino</hi1>'+
'Temperature
"'+
'LED ON
'+
'LED OFF
"'+
'</body></html>";

function onPageRequest(reqg, res) {
console.log("Serving "+req.url);

var r = url.parse(req.url, true);

if (r.pathname == "/") {

// 1f an argument is given, set the LED state
if (r.query && r.query.led)
digitalWrite(LED1, r.query.led);
// serve up the page
res.writeHead(200, {"Content-Type": "text/html"});
res.end(homePage);

} else if (r.pathname == "/getTemp") {
res.writeHead(200, {"Content-Type": "text/html"});
res.end('<html><head>'+

'<meta http-equiv="refresh" content="2">"+
'</head><body>"'+E.getTemperature().toFixed(2)+
'</body></html>");

} else {
res.writeHead(404);
res.end("404 - Not Found!");

}

}

Request the page again. You should now see the following:

M 192.168.1.156/?led=0 x

-

< @ €y [192.168.1.156/led=0

X,
]|

My Espruino

Temperature
LED ON

LED OFF

Chapter 15 245

Controlling Things

2. Click on LED ON or LED OFF, and the LED will turn on and off!

Finally, we mentioned a few experiments back that if you wanted to change state,
it was much better to use an HTTP POST request, not a GET (which is the default if
you just load a URL). You can do this using forms.

3. Tweak lhomePage|and [onPageRequest|to the following:

var homePage = '<html><body>'+
'<h1>My Espruino</hi1>'+
'Temperature
"'+
'<form action="/?led=1" method="post">"'+
'<input type="submit" value="On"/></form>'+
'<form action="/?1led=0" method="post">'+
'<input type="submit" value="Off"/></form>'+
'</body></html>";

function onPageRequest(reqg, res) {
console.log("Serving "+req.url, req);

var r = url.parse(req.url, true);

if (r.pathname == "/") {

// 1f an argument is given, set the LED state

if (reqg.method=="POST" && r.query && r.query.led)
digitalWrite(LED1, r.query.led);

// serve up the page

res.writeHead(200, {"Content-Type": "text/html"});

res.end(homePage);

} else if (r.pathname == "/getTemp") {
res.writeHead(200, {"Content-Type": "text/html"});
res.end('<html><head>'+

'<meta http-equiv="refresh" content="2">"+
'</head><body>"'+E.getTemperature().toFixed(2)+
'</body></html>");

} else {
res.writeHead(404);
res.end("404 - Not Found!");

}

}

onPageRequest| now checks [req.method| to see if it is a before performing
any actions, and two elements load a specific URL when each button is
pressed:

246 Making Things Smart

Controlling Things

[192.168.1.156/?led=0 x

¢ 0 @& [)192.168.1.156/%ed=0 % =

My Espruino

Temperatu re

‘on |
o

/ You can transfer all kinds of data using forms, but the information is gener-
ally not transferred in the URL, but in the body of the HTTP request, which
makes it slightly more painful to extract. See the Espruino website for more

information.

You can, however, use JavaScript and [XMLHt tpRequest|on the webpage to
POST data back as easily parseable JSON, much as we did in the last chap-
ter.

And that’s it! You're well on your way to creating your own amazing Internet of Things
devices!

Chapter 15 247

http://www.espruino.com/Internet

Controlling Things

Other Connection Types

While we've covered ESP8266 WiFi in this chap- You can even install Espruino on the ESP8266
ter, Espruino also supports other ways of con- WiFi module itself!
necting to the internet.

For instance, you can use Ethernet using a WIZ-
net Ethernet module, or can connect over GSM/
GPRS using SIMCom SIM800 or SIM900 modules.

ES6 Template Literals

Towards the end of this chapter, defining the variable started
looking quite ugly as we added more and more text. Espruino supports
ES6’s Template Literals, which allow you to create multiline strings using
the backtick character instead of normal quotes.

For example, consider:

var homePage = '<html><body>'+
'<h1>My Espruino</h1>'+
'Temperature
"'+
'<form action="/?led=1" method="post">'+
'<input type="submit" value="On"/></form>'+
'<form action="/?1led=0" method="post">'+
'<input type="submit" value="Off"/></form>'+
'</body></html>";

This could just be written as:

var homePage =

*<html><body>

<h1>My Espruino</h1>

Temperature

<form action="/?led=1" method="post">
<input type="submit" value="On"/></form>
<form action="/?1led=0" method="post">
<input type="submit" value="Off"/></form>
</body></html>";

248 Making Things Smart

http://www.espruino.com/WIZnet
http://www.espruino.com/WIZnet
http://www.espruino.com/SIM900
http://www.espruino.com/EspruinoESP8266
http://www.espruino.com/EspruinoESP8266

So far we've looked at all kinds of wireless communication, but we've been missing one
very common type: Bluetooth.

Bluetooth works on the 2.4GHz radio band like WiFi does, but it’s designed for lower power
usage, lower bandwidth, and shorter communication distance than WiFi. Probably the
most common use of Bluetooth is now in wireless headphones and speakers.

However, there is a problem. Bluetooth is more power efficient than WiFi, but it's not that
efficient, and it’s still pretty complicated to implement. It usually requires one microcon-
troller to handle Bluetooth, and another to do everything else (like interacting with the
device’s user).

Bluetooth Low Energy was created to try to fill that gap. It is very power efficient, and is
simple enough that it can be implemented on a microcontroller alongside software that
handles other things such as a device’s user interface.

Probably the most exciting thing about Bluetooth Low Energy is that it is now built into
pretty much every new PC, laptop, tablet, and phone. Unlike the 433Mhz radio we looked
at, you don't need any special hardware to bridge between the wireless device and your
phone or PC.

As you could with the ESP8266 and WiFi you can buy extra boards that can be added to a
microcontroller to give it Bluetooth LE capability. The HM-10 module is a very common
module, or there are many others including the Bluefruit LE series of boards from Adafruit.

249

Controlling Things

Using Normal Bluetooth

If you want to use normal non-low-energy Blue-
tooth with Espruino, you can still do that. The
original Espruino boards have an area where an

Or you can connect a module directly to other
boards such as the Espruino Pico; only four wires
are required.

HC-05, HC-06, or HM-10 Bluetooth module can

be soldered on (Figure 16-1). However, Bluetooth itself supports many differ-

ent standards, and the modules that you can buy
usually only support one, Bluetooth UART. This
allows you to send and receive characters as if
you were connected to the device by a wire (but
unfortunately isn't supported by Apple iOS devi-
ces).

You can check out the Espruino website for more
information.

Figure 16-1 The original Espruino board, with
space for an HC-05 Bluetooth module

However, in this chapter we'll look at Puck.js (Figure 16-2). This is another Espruino device,
but it has Bluetooth Low Energy built in (it doesn't need an add-on board).

Inside, Puck.js contains a chip called the Nordic nRF52832. This is an ARM microcontroller
(like the one in the Espruino Pico), but it also contains a Bluetooth radio as well. Because
everything is contained in one chip it’s very power efficient, and can last for around a year
on the built-in CR2032 battery.

250 Making Things Smart

http://www.espruino.com/Bluetooth
http://puck-js.com

So, How Does Bluetooth Low Energy Work?

Figure 16-2 Puck.js

So, How Does Bluetooth Low Energy Work?

Bluetooth Low Energy has two main modes: the first is called advertising. This is where a
Bluetooth LE device broadcasts information at set intervals. There’s no two-way communi-
cation, it is just the device sending out information to anything within range.

Normally the data that is sent out contains the device’s name and information about the
functionality that can be controlled wirelessly (called services). If you're ever asked to con-
nect to a Bluetooth LE device on your phone, the names of devices you'll see on the screen
are almost certainly the result of the advertising messages sent by the devices.

Advertising can be used in other ways, too. Beacons (common examples are iBeacon,
Eddystone, and AltBeacon) are devices that broadcast a unique ID or URL (web address) to
any device in range. This can be used to help locate you indoors, or can be used to provide
location-specific information: in a museum your phone might provide a link to information
on the exhibit you're standing by.

Chapter 16 251

How Can We Use Bluetooth LE Ourselves?

The second mode is when one device like a phone or PC (referred to in Bluetooth jargon as
a central) connects to another device (the peripheral).

When this happens, the central gets access to a list of characteristics on the peripheral.
Characteristics are just bits of data that can be changed. They can be read, written, or the
central can request to be notified whenever one of them changes.

For example, a Bluetooth Low Energy light bulb might have a characteristic for the bright-
ness of the light bulb, and another for whether the bulb should be on or off. When a cen-
tral connects to the bulb and writes a |@] to the on-off characteristic, it turns the light bulb
off, ora[1/turns it on.

A Bluetooth LE button might have a characteristic called pressed. A central device connect-
ing to it wouldn't be able to write data to the characteristic, but it could read its state, and
could request to be notified when it changed (so it would know as soon as the button was
pressed without having to constantly read the values).

In reality, the services and characteristics don’t have human-readable names, they have
UUIDs (Universally Unique Identifiers). The Bluetooth SIG (the standards body responsible
for Bluetooth) keeps a list of IDs, but you can make your own.

The UUIDs provided by the Bluetooth SIG are 16 bits (so there can only ever be 2’6 = 65536
of them), but when you make your own you need to use 128-bit UUIDs of the form
labcdabcd-abcd-abcd - abed - abcdabedabed|. There are so many possible combinations avail-
able in 128 bits (2'6 = 3.4 * 10A38) that the Bluetooth SIG suggest that you just randomly
choose a number, and the chances of it being taken are so small you don't have to worry.

This may all seem a bit complex, but it does provide a very well-defined interface between
hardware. You can load up an app like nRF Connect or LightBlue LE and list the characteris-
tics of your shiny new Bluetooth LE device to see what it implements. A quick Google
search for the UUIDs may even bring you to a website with some explanation showing you
how to use it!

How Can We Use Bluetooth LE Ourselves?

Nordic (which makes the microcontroller that Puck.js uses) has come up with a service and
some characteristics to handle transmission and reception of streams of data; they call this
Nordic UART (Figure 16-3).

This service has the UUID [6e400001-b5a3-f393-e0a9-e50e24dccadel.

By creating the service and characteristics with the same UUIDs a device can signal to
other apps that it can be communicated with just by sending characters.

There are a load of apps around that will communicate with these UUIDs— two of the bet-
ter ones are Adafruit Bluefruit LE app and nRF UART.

252 Making Things Smart

http://bit.ly/2qWNYL2

Web Bluetooth

39 .4 N 1152

Devices DISCONNECT @

PUCK.JS 5705
BONDED ADVERTISER C8:A8:2E:D3:57:05 x

CONNECTED

NOT BONDED CLIENT SERVER g

Nordic UART Service
UUID: 6e400001-b5a3-f393-e0a9-e50e24dccae
PRIMARY SERVICE

TX Characteristic L
UUID: 6e400003-b5a3-f393-e0a9- o
e50e24dccade

Properties: NOTIFY

Descriptors:

Client Characteristic Configuration 4
UUID: 0x2902

RX Characteristic 4

UUID: 6e400002-b5a3-f393-e0a9-
e50e24dcca%e
Properties: WRITE, WRITE NO RESPONSE

Wireless by Nordic

Figure 16-3 The nRF Connect app showing the Nordic UART service reported by Puck.js

By default Puck.js implements the Nordic UART service shown in Figure 16-3 (you can cus-
tomize the services and characteristics it has). This allows you to program and debug it
completely wirelessly.

Web Bluetooth

Finally we come to Web Bluetooth, a standard for web browsers that allows you to access
Bluetooth Low Energy devices straight from a web page.

Your initial thoughts might be of huge security issues, but Web Bluetooth has been
designed from the ground up to be as secure as possible. Every time a web page wants
access to a Bluetooth device it'll have to ask you with a pop-up window, in the same way a
web page asks to access your webcam.

Web Bluetooth is great news for everyone, especially makers. Before, you'd have had to
make a different app for each device: Android, iOS, Windows, Mac, and maybe even some
other platforms.

Chapter16 253

Experiment 33: Using Puck.js

With Web Bluetooth, you can make one single website (which you can easily keep up-to-
date), and with it you can control your Bluetooth LE devices from any platform!

Experiment 33: Using Puck.js

You'll need:
+ A Puck.js device

First you need to turn your Puck.js on. As it comes it has a small piece of plastic between
the battery and the PCB to stop it from being powered on in transit.

1. Gently peel back the silicone case with your fingers and remove it.
2. Tip the PCB out of the black case.

3. Now use a blunt object to push the battery out of the battery holder from behind:
a ballpoint pen or matchstick is great for this.

4. Remove the piece of plastic. It's clear and circular and can be quite hard to see!
5. Reinsert the battery. The red LED should flash on for just a fraction of a second.

6. Now you need to reassemble it. Put the Puck back in the case with the battery fac-
ing down and the silver Bluetooth module facing up. The text saying [www.puck-
js.com should be resting against the shelf in the case.

When it’s correct, Puck.js will sit flat in the case and there’s a satisfying click sound
when it's pressed.

Now it's time to start controlling it.

7. Go to https://www.puck-js.com/go, where you'll find information about whether
the device you're using supports Web Bluetooth, and how to set it up so that you
can get a working Web IDE.

/ Web Bluetooth Support

When Web Bluetooth rolls out across all browsers, you'll simply be
able to visit https://espruino.com/ide in your browser and start writ-
ing code—exactly as you did with the Chrome-based Web IDE.

Until then you may have to do a little bit of setting up on some plat-
forms. Instructions can be found at the Puck.js website.

8. Now that you've got a working IDE you're ready to go. You can follow the instruc-
tions in Chapter 3 to try controlling it; for instance, after connecting you can just

254 Making Things Smart

https://www.puck-js.com/go
https://espruino.com/ide
https://www.puck-js.com/go

Experiment 33: Using Puck.js

type [LED.set()] to light an LED, or |[E.getTemperature()| to get the current tem-

perature.

Controlling Puck js from an Rpp

Because Puck.js uses the Nordic UART service,
other apps can control it too.

1. On your Android or iOS phone, install
the Adafruit Bluefruit LE app and run it.

2. Tap Connect next to the |Puck.js ABCD

device in the device list (on the left in
i0S).

3. In the pop-up window on Android, tap
UART, or on iOS, tap UART at the bot-
tom of the screen (Figure 16-4).

3V 4 W1106

Choose mode to connect to
Puck.js €782

Info

UART

Pin /0

Controller

Beacon

Neopixel

Figure 16-4 Select the UART
connection method in
Adafruit’s Bluefruit app

Now you'll see a text area where you
can enter commands.

4. Type (note the capitaliza-

tion) and press Send (Figure 16-5). The
red LED should light up!

3V 4 W06

UART O

LED.set()
LED.set()
~undefined
>

CoPY SHARE

1723 4567890

qwerr tyuiop
asdf gh j kI
4 zxcvbnma@

7123, . °

v (e} 0O @&

Figure 16-5 Control Puck.js's
LEDs by sending JavaScript
commands straight to it

5. Type and press Send to

turn it off.

The Adafruit app has other control methods, like
the Control Pad under Controller. But to take
advantage of this you must program Puck.js to
act on the command characters sent by the app.

Chapter16 255

Experiment 34: Making a Door Opening Counter

Experiment 34: Making a Door Opening Counter

For this experiment we're going to use Puck.js's internal magnetometer to measure if a
magnet is close or not, and will then count the number of times a door has been opened
and transmit it wirelessly.

You'll need:

+ A neodynium magnet

« Tack-it, Blu-tack, or other adhesive putty

Here are the steps:

1. First, add some of the adhestive putty to the magnet and stick it in the corner of
the door, farthest from the hinge.

If you can orient the magnet so that the magnetic field is facing vertically you'll get
the best results. On disc magnets this means that the flat surface is parallel to the
ground. Unless you have loosely fitting doors this may be tricky, but don't worry if
not. The magnets are strong and Puck.js's magnetometer is relatively sensitive, so
positioning the magnet flat to the door as shown here will work fine, too:

2. Now use the adhesive putty to attach the Puck.js to the door frame just above the
corner of the door where the magnet is.

256 Making Things Smart

Experiment 34: Making a Door Opening Counter

// door open

>Puck.mag()

={ "x": -1, "y": -1265, "z": -665 }
>Puck.mag()

={ "x": -3, "y": -1262, "z": -665 }
>Puck.mag()

={ "x": -3, "y": -1268, "z": -651 }
// door closed

>Puck.mag()

={ "x": -539, "y": -2031, "z": -1333 }
>Puck.mag()

={ "x": -549, "y": -2066, "z": -1352 }
// door open

>Puck.mag()

={ "x": -3, "y": -1244, "z": -642 }

So now we just need to figure out which is which.

// Magnetism measured when nothing around

var zeroMag = Puck.mag();

// Called when new magnetic field information is found

function onMag(xyz) {
// Work out the distance from zero
var x = Xyz.x - zeroMag.x;
var y = xyz.y - zeroMag.y;
var z = xyz.z - zeroMag.z;

// Work out the magnitude of the field

var d = Math.sqrt(x*x + y*y + z*z);

// Print it and light the light if the door is closed

console.log(d);
LED2.write(d>500);
}

// Set callback when magnetic field info is found

Puck.on('mag', onMag);
// Turn on magnetometer
Puck.magOn();

6. Now try closing the door. The green LED should light up.

You should also see a series of readings output on the console:

3. Connect to Puck.js with the Web IDE, and type [Puck.mag()|. This will return the
magnetometer reading in three dimensions.

4. Try it with the door open and closed. You should see different readings depending
on the two states:

5. Open the door fully, enter the following code on the righthand side of the IDE, and
click Upload:

Chapter 16

257

Experiment 34: Making a Door Opening Counter

29.22327839240
45.61797891182
46.62617290749
1222.32156161952
2571.24269566293
71.58910531638
54.53439281774
54.21254467371
52.92447448959
43.66921112179
47.67598976424

The largest readings are from when the door is closed. If your LED doesn't light up,
you may need to change the value in the preceding code to something
smaller.

/ The preceding code is comparing the magnetometer reading with
the reading taken at the time the code was uploaded. Make sure the
door is always open when you upload code, or Puck.js will get the

wrong zero reading.

Ok, now we can detect when the door is open or closed. Let’s detect when it
changes, and then we can count the number of openings.

7. Change the code to the following by adding [wasDoorOpen|, [doorOpenings| and

door0pened) and by changing onftag:

// Magnetism measured when nothing around
var zeroMag = Puck.mag();

var wasDoorOpen = false;

var doorOpenings = 0;

function doorOpened() {
doorOpenings++;

}

// Called when new magnetic field information is found
function onMag(xyz) {

// Work out the distance from zero

var x = xyz.x - zeroMag.x;

var y = xyz.y - zeroMag.y;

var z = Xyz.z - zeroMag.z;

// Work out the magnitude of the field

var d = Math.sqrt(x*x + y*y + z*z);

// Check door open state

var isDoorOpen = d<500;

if (isDoorOpen != wasDoorOpen) {

if (isDoorOpen) {
doorOpened();

258

Making Things Smart

Experiment 34: Making a Door Opening Counter

// Flash green LED for open
digitalPulse(LED2,1,100);

} else {
// Flash red LED for close
digitalPulse(LED1,1,100);

}

wasDoorOpen = isDoorOpen;

}
}

// Set callback when magnetic field info is found
Puck.on('mag', onMag);

// Turn on magnetometer

Puck.magOn();

8. Upload the code again.

Now, when you close the door the red LED should flash, and when you open it the

green LED will flash. If you type on the console, it will display the

number of times it thinks the door has opened and closed.

/ By default the magnetometer only checks once every 1.5 seconds, so
if you were able to open the door and close it within 1.5 seconds, at
exactly the right time, you might be able to fool the sensor!

You can supply a value to |Puck.magOn(), for example,
Puck.magOn(5)| to increase the sample rate to five times a second,

but this will also decrease battery life!

As is, we can use Puck.js like this. An app or Web Bluetooth page could connect to

Puck.js, enter the characters |doorOpenings| and a newline, and Puck.js would out-
put the number of door openings.

If you upload the following to an HTTPS-capable website like GitHub Pages
(unfortunately JSFiddle won’t work because of its use of frames) and then click on
the big ? on the screen, the web page will report the number of times the door has
opened.

To update the value, you can just click again:

<html>
<head><title>Door Opening reader</title></head>
<body>
<script src="https://www.puck-js.com/puck.js"></script>
<p style="text-align:center"s
Door opened

<span id="result" style="font-size:200px;cursor:pointer"s?

times...
</p>

Chapter16 259

Experiment 35: Advertising Door Openings

<script>
function onClick() {
Puck.eval("doorOpenings", function(result) {
document.getElementById("result").innerHTML = result;
s

}
document.getElementById("result").addEventListener("click", onClick);

</script>
</body>
</html>
However, that's not ideal. It would be much better if Puck.js could just advertise
the information, as then a connection doesn’t have to be maintained, and other
devices could just listen and be notified when it changed.

Experiment 35: Advertising Door Openings

To do this, we just need to use the |[NRF. setAdvertising|function.

1. Change the |doorOpened|function to this:

function doorOpened() {
doorOpenings++;
NRF.setAdvertising({
OxFFFF : [doorOpenings]
bs
}

2. Disconnect the Web IDE (Puck.js can’t advertise while it is connected to another
device).

Now, when the door is opened or closed, Puck.js will advertise a single byte value
representing the number of times the door has been opened to date (so if you
open the door more than 255 times it will roll back around) under the service

UUID [oxFFFF|.
/ The UUID is used here for testing. As previously discussed,

the 16-bit UUIDs are assigned by the Bluetooth SIG, so if you were
creating a device that you were going to sell you should use the cor-
rect UUID for what you plan to advertise, or should use a totally ran-
dom 128-bit UUID.

3. Install the nRF Connect app on your Android or iOS phone (the LightBlue app
works too) and open it up.

You should see a list of devices, of which [Puck. js ABCD|will be one.

4. Tap on the device (but not on the Connect button).

260 Making Things Smart

Experiment 36: Receiving Door Openings with Eddystone

It should open out and show you something like this, where you can see |0xFFFF
and a hex value that represents the number of times the door has been opened:

v 4 0 1442

Devices STOP SCANNING

SCANNER BONDED ADVERTISER

No filter ¢

0 Puck.js 5705
C8:A8:2E:D3:57:05

NOT BONDED A-70dBm <>376 ms

Type: BLE only

Flags: LimitedDiscoverable,
BrEdrNotSupported

Service Data: UUID: OxFFFF Data: 0x08
Complete Local Name: Puck.js 5705
Complete list of 128-bit Service UUIDs:
6e400001-b5a3-f393-e0a9-e50e24dccade

CLONE RAW MORE

If you were willing to write an Android or iOS app that could run in the background on
your phone and listen for the advertising packets from Puck.js, the current solution of set-
ting advertising data would be perfect.

But let’s assume we don't want to or can’'t make an app. What could we do? Well, this is
where beacons come in. We mentioned earlier that beacons could transmit information
like URLs. We could advertise a URL that contained the number of times the door has
opened.

For this, we're going to use Eddystone.

Experiment 36: Receiving Door Openings with Eddystone

1. First, create a web page using HTTPS (maybe via GitHub Pages again) with the fol-
lowing HTML on it.

If you don’t want to create your own page then I've put one online already. It’s at
https://www.espruino.com/dooropen.htmi.

Chapter 16 261

https://www.espruino.com/dooropen.html

Experiment 36: Receiving Door Openings with Eddystone

<html>
<head><title>Door Openings</title></head>
<body>
<p style="text-align:center"s>
Door opened

?

times...
</p>
<script>
if (window.location.hash)
document.getElementById("result").innerHTML = window.loca
tion.hash.substr(1);
</script>
</body>
</html>

This web page is really simple. It displays Door opened ? times, and if you put a [#
followed by some text after the URL, it displays that text.

2. Enter https://www.espruino.com/dooropen.html#42 in your browser’s address bar,
and you should see this:

| Gomden |
=} Door Openings X

e cC 0 | @ Secure | https://www.espruino.com/dooropen.html#42 's'.?|

Door opened

42

times...

So now all we have to do is to get Puck.js to serve up that URL. Unfortunately, we
can't do it directly as the URL is too long, so we need to use a URL shortener like
https://goo.gl to shorten the URL. I've done this already with https://goo.gl/D8sjLK.

3. Now connect to Puck.js again and change|doorOpened|to:

262 Making Things Smart

https://www.espruino.com/dooropen.html#42
https://goo.gl
https://goo.gl/D8sjLK

Experiment 36: Receiving Door Openings with Eddystone

function doorOpened() {
doorOpenings++;
require("ble_eddystone").advertise("goo.gl/D8sjLK#"+doorOpenings);
}

/ On some platforms there can still be problems with the Eddystone
implementation stripping off information after the |#| character. If
this happens to you then you could either use your own short URL, or
could generate a different goo.gl URL for each different value you

want to report.

As this uses a library, you'll have to change the code on the righthand side of the
IDE and re-upload rather than using the lefthand side of the IDE (make sure you do
it with the door open).

4. Now disconnect from the IDE and open and close the door again to force Espruino
to change the advertising.

5. If you look again with the nRF Connect app you should see something like this:

394 01524

Devices STOP SCANNING ~ §

SCANNER BONDED ADVERTISER

@ N/A (Physical Web Beaco
C8:A8:2E:D3:57:05

NOT BONDED A-86dBm <>104ms

Type: BLE only

Complete list of 16-bit Service UUIDs: OXFEAA
Eddystone URL:

Frame type: URL <0x10>

Tx power at Om: -8 dBm

URL: https://goo.gl/D8sjLK#2

Complete list of 128-bit Service UUIDs:
6e400001-b5a3-f393-e0a9-e50e24dcca%e

OPEN CLONE RAW MORE

EST CONNECT ¢
F2:FC:E7:99:04:5F

NOT BONDED

(3] SMP-B13-UK
EO:E5:CF:1D:15:46
NOT BONDED

CONNECT

Chapter1l6 263

Experiment 36: Receiving Door Openings with Eddystone

If you've got your phone set up properly to receive Eddystone, in a minute or two
you should see a notification for the web page:

15:25
Friday, 10 February

15:24

=" Door Openings
» Open www.espruino.com/dooropen.html

‘—-

ﬁ MUTE NOTIFICATION

vodafone UK

6. Click it, and it'll bring you to a web page with the information on the number of
times the door was opened, without an app in sight!

264 Making Things Smart

Experiment 36: Receiving Door Openings with Eddystone

3 4 W 1535

@ https://www.espruino.com K|

Door opened

times...

Puck.js

Puck.js is capable of so much more than this. It can even control other Blue-

tooth LE devices. Check out the Puck.js website for more information.

Chapter 16

265

https://www.espruino.com/Puck.js

PART V

Putting It All Together

We've learned a lot so far, but the things we've made haven't really been able to produce
anything of particularly high quality.

In these chapters we'll use what we've learned to create a machine that we might actually
want to use!

>
=<
3
=
o
=

I

In Chapter 9 we looked at making a plotter using servo motors and chopsticks. While we
could draw simple shapes, we couldn’t draw anything very accurately.

Nearly all plotters actually use Cartesian coordinates. Therefore, one motor is responsible
for moving the pen sideways, and one is responsible for moving it up and down. As most
images are described this way on your computer, it makes it much easier to plot them on
the plotter.

To get more precision, we're going to use off-the-shelf stepper motors this time. These par-
ticular motors are very easy to find; in fact, you may even find them in some consumer
electronics!

Experiment 37: Making an XY Table

Most commercial machines use a toothed belt to make the stepper motors move the pen,
but these can be expensive and hard to find.

Instead, we're going to use a mechanism that is very similar to an Etch-A-Sketch.

In an Etch-A-Sketch, each knob (for the x- and y-axes) is attached to a piece of wire that is
looped around pulleys so that on each side of the Etch-A-Sketch there is some wire that
travels in the same direction.

For instance, for our table the routing of the wire is shown in Figure 17-1. The y (vertical)
axis is shown in red. When the pulley connected to the stepper motor (marked with a [Y) is
moved in a certain direction, the vertical inner pieces of wire on the left and right side will
both move in the same direction.

269

Experiment 37: Making an XY Table

O QO O O

QEBOO O

B

Figure 17-1 The routing of wires around our pulleys for the x- and y-axes (note that each axis ison a
separate set of pulleys, so it can move independently)

A bar can then be attached to these pieces of wire, and the same can be done for the wire
for the x-axis. We can now place a sled where the two bars overlap and can control the
location of the sled in X and Y by moving the stepper motor.

You'll need:

+ 1cm thick square sheet of plywood, at least 30cmx30cm

« Smooth aluminum bar, twice as long as your sheet of plywood is wide (so at least
60cm)

« A 30mmx30mmx30mm cube of solid wood or plastic
+ 10x 40mm pulleys (the ones | used had a 3mm hole in the middle)

« 4x circular nails that will fit inside the pulleys

5 meters of fishing line

2x springs (springs from ballpoint pens will do!)
« 2x small geared stepper motors

« A pen (thin fiber-tipped pens work well as they don’t need a lot of pressure to
work well)

270 Making Things Smart

Follow these steps:

1.

Experiment 37: Making an XY Table

First, you need to draw a line along the top and left sides of your piece of wood,

2cm from the edge.

Then, do the same on the bottom and right sides of the wood. It should look like

this:

o

X

. Drill four holes where the lines you drew cross over (where the red Xs are lined up).

The holes should be slightly smaller than the diameter of your nails so the nails are
guided in when you hammer them in. If you have a drill press, it would be perfect

to use for this.

Now put two pulleys on each one of your four nails, and hammer them into the
holes you made, leaving them slack enough that your pulleys can turn easily:

Chapter 17

271

Experiment 37: Making an XY Table

/ The end of the nail will almost certainly come out of the bottom of
the piece of wood, so be careful you don't nail your wood to the desk!
You can cut the end of the nail off, or you could hammer another bit

of wood onto the bottom and use it as a foot.

We've got the start of our table, so now we need to fit the two stepper motors for
the X and Y axes. This is a little tricky as we want to position the pulleys so that the
inner wire is pushed against the corner pulley while the diagonal wire that goes
between the two corners doesn’t touch it:

O

5. Draw the diagonal lines from the pulleys onto your sheet of wood. You can then
place the pulleys on to the wood so that they are positioned correctly, and can
draw around them.

6. Once that's done, fit the pulleys to your stepper motor.

The pulleys we've used are made of very flexible plastic and it was enough to drill
a 4.5mm hole in the pulley and just push it onto the stepper motors:

272 Making Things Smart

Experiment 37: Making an XY Table

7. Now you need to fit your y-axis stepper motor (the one at the bottom) so that the
pulley is in the position that you drew. You'll need to be careful here as the shaft of
the stepper motor is off-center!

| used a 30mm hole saw for this; however, you could cut a hole out of the wood
however you feel comfortable. The hole doesn’t have to be circular, it just has to fit
the stepper motor while leaving somewhere to screw it down, so a simple slot in
the wood is fine for this.

8. Finally, add the x-axis stepper motor in the same way, but this time you need to
align the pulley on it with the upper pulleys rather than the lower ones.

Chapter 17 273

Experiment 37: Making an XY Table

10.

11.
12.

13.

14.

This means you'll probably want to add a little offcut of wood (or a few washers)
under each side of the motor to step it away from the plate.

Now it's time to route the two sets of wires:

. Route the bottom layer (the y-axis) first. Take a length of fishing wire and loop it

around the pulleys following the direction of the red arrows in the diagram. You
need to loop around the stepper motor twice.

Now that you've got an idea of the length, leave 6 inches of extra wire free and cut
the fishing wire to length.

Tie one end of the fishing line to the spring.

Put the spring where it's placed in the preceding image (this is the longest stretch
of space where it won't bump into anything).

Now route the wire around in the same way as before, and loop it through the
other end of the spring.

Stretch the spring a little, tie the fishing line tight, and trim the excess.

You should now have a working x-axis. If you turn the stepper motor you'll be able
to feel the fishing line moving all the way around. The two innermost stretches of
line opposite each other should be moving the same way.

274

Making Things Smart

Experiment 37: Making an XY Table
15. Add the upper layer of fishing line for the x-axis, following the arrows and lines
shown in red.

Now that we have two working axes, the next step is to create two crossbars to go
between them.

16. Measure between the two lengths of fishing line where shown for the red (Y)
crossbar, add 1cm to the length, and cut the aluminum bar.

17. Cut a small groove in the aluminum bar 0.5mm from each end. Make sure both
grooves are parallel as these will allow the bar to sit down flat on the fishing line.
Do the same for the X crossbar (shown in green).

18. Place the two bits of bar with the grooves over the fishing rod so they are at right
angles to each other.

Chapter 17 275

Experiment 37: Making an XY Table

19.

20.

21.

22,

23.
24.

Now we need to make our sled.

Place the cube of wood/plastic by the side of the two crossbars and mark off the
height of each.

Carefully drill a hole in one side of the cube for each rod, with the second hole per-
pendicular to the first. The holes should be big enough that the rods can move
easily through it, but not so big that they wobble around.

Measure the diameter of your chosen pen and find a drill that will make a hole that
will hold your pen snugly. Drill a hole in the sled at right angles to the other two
holes. Make sure it is in a part of the sled that won't collide with the two holes
you've already drilled.

Now it’s time to assemble the crossbars and sled. It might be tempting to grease
the crossbars to make the sled slide more easily, but I'd advise against this. Normal
grease tends to make it harder for the sled to slide, so if you want to grease the
bars, use only a dry grease like teflon spray.

Rotate the stepper motors so the two springs are in the middle of their available
travel.

Put the crossbars through the sled, and place them back over the fishing line.

Now glue them onto the fishing line. Superglue (cyanoacrylate) works well for this
(especially if you have a kicker spray), but epoxy is good, too:

276

Making Things Smart

Experiment 38: Controlling the XY Table

And finally we have a working XY table. Once the glue is dry, you can turn the Y stepper
motor and the sled will move up and down, and you can turn the X stepper motor to move
the sled left and right.

Experiment 38: Controlling the XY Table

You'll need:

« An Espruino WiFi or Pico board
+ A breadboard
12 male-to-female jumper wires

+ 2x ULN2003 driver boards (these usually come with your stepper motors)
Follow these steps:

1. Push the Espruino board into the breadboard so that the USB connector is as far
over to the left as it will go.

2. Label the two motor driver boards, one as [X| and one as [Y|. These will be for the
two stepper motors.

3. Connect the jumper wires between the breadboard and the motor driver boards
as shown in the following table:

Chapter 17 277

Experiment 38: Controlling the XY Table

Motor Espruino Motor Espruino
driver connection driver connection

Driver X, - Driver, -
Driver X, + |V_OUT DriverY,+ |V_OUT
Driver X, IN1 |B3 Driver Y, IN1 |B10
Driver X, IN2 |B4 Driver Y, IN1 |B13
Driver X, IN3 |B5 Driver Y, IN2 |B14
Driver X, IN4 |A6 Driver Y, IN3 |B15

Once assembled, you should have something that looks like this:

4. Connect the stepper motors to the driver boards, with the |X| stepper going to the
driver board. If your stepper motors and drivers came together there should be
a keyed plug and socket to ensure that you connect them correctly.

5. Plug the Espruino board into your USB port, and connect with the Web IDE.

278 Making Things Smart

Experiment 38: Controlling the XY Table

Now we'll interface to the stepper motors. While we controlled the motors directly

in the first chapter, this time we'll use Espruino’s |StepperMotor| library to make life
easier.

6. Enter the following code on the righthand side of the IDE:

var StepperMotor = require("StepperMotor");

var motorx = new StepperMotor({
pins:[B3,B4,B5,A6]

b

var motory = new StepperMotor({
pins:[B10,B13,B14,B15]

b

7. Click Upload.

Nothing will happen immediately, because while we initialized the steppers we
didn’t tell them to do anything.

8. Type |motorx.moveTo(100)|in the lefthand side and press (Entez].

The sled should now move. This will move to an absolute position, so typing
[motorx.moveTo(100)| again won't do anything.

9. To move the sled back to its original position, type motorx.moveTo(0)|.
10. Try and check if it works with [motory.moveTo(100)|.

You can also move to a position and then move back by chaining commands using
callbacks.

11. Enter the following:

motorx.moveTo(100, 1000, function() {
motory.moveTo(100, 1000, function() {
motorx.moveTo(0, 1000, function() {
motory.moveTo(0, 1000, function() {
console.log("Done!");
b
b
s
b

This will draw a square, by moving 100 steps in X, then Y, then backwards in X and
then backwards in Y again. The in the function call specified that it should
move 100 steps over the course of 1000ms (1 second).

This is moving much more accurately than the plotter we made
before—the stepper motors are more precise, the wires are tigther,
and the movement is linear throughout the whole area.

Chapter 17

279

Experiment 38: Controlling the XY Table

Now what if we want to be able to move diagonally? If we moved just one motor
and then the other then we would end up with two lines at right angles.

To move diagonally we need to start moving both motors at the same time, and
we need to set them so they both finish at the same time.

As we discussed in Chapter 5, there’s a limit to how fast we can move the stepper
motors, so we need to work out the distance we have to travel and from that the
time we need to take to move each of the two motors.

/ Enter the following code on the righthand side of the IDE and upload
again:

function moveTo(x,y,callback) {
// Work out the distance in X and Y
var dx = x - motorx.getPosition();
var dy = y - motory.getPosition();
// Work out the diagonal distance with pythagoras
var d = Math.sqrt(dx*dx + dy*dy);
// Work out how much time we've got to move
var time = d * 1000 / motorx.stepsPerSec;
// Set both motors moving
motorx.moveTo(x, time);
motory.moveTo(y, time, callback);

12. You can now type commands like [moveTo(50, 100)| and |moveTo(-230, 25)|and
the sled will move diagonally to the correct location.

13. Let’s try drawing a simple spiral pattern. Tape some paper down onto the wooden
base, and put your pen in the sled.

14. Enter the following code:

function spiral(r,ang) {
if (ang>=Math.PI*24) return;
moveTo(Math.sin(ang)*r, Math.cos(ang)*r, function() {
spiral(r+0.2, ang+Math.PI/40);
Hs
}
spiral(o,0)

This will start drawing a spiral. You can change the values in the function to
change how the spiral appears, but you should get something like this:

280 Making Things Smart

Experiment 38: Controlling the XY Table

15. You won't be able to see most of the spiral immediately as the pen will be covering
it. To move it out the way, you could unplug the Espruino from USB so the stepper
motors power down, and then you can move the stepper motors’ pulleys by hand.
Either that or you can take the pen out and execute a command like

moveTo(0,500)|to move the sled away from the drawing.

Now that we managed to draw something, let’s try drawing something more inter-
esting. To save us having to wait around for the plotter, we can experiment on the
PC first.

16. Go to https://jsfiddle.net.

17. Inthe area, type:

<canvas id="canv" style="border:1px solid black"s</canvas>

18. Inthe|JavaScript|area, type:

var canvas = document.getElementById("canv");
canvas.width = 500;

canvas.height = 500;

var ctx = canvas.getContext('2d");

var midx = canvas.width/2, midy = canvas.height/2;
var lastPos = [midx,midy];

function moveTo(x,y,callback) {
var pos = [x/4+midx, y/4+midy];
ctx.beginPath();
ctx.moveTo(lastPos[0], lastPos[1]);

Chapter 17 281

https://jsfiddle.net

Experiment 38: Controlling the XY Table

ctx.lineTo(pos[0], pos[1]);

lastPos = pos;

ctx.stroke();

ctx.closePath();

if (callback) setTimeout(callback,1);

function spiral(r,ang) {
if (ang>=Math.PI*24) return;
moveTo(Math.sin(ang)*r, Math.cos(ang)*r, function() {
spiral(r+0.2, ang+Math.PI/40);
s
}

spiral(0,0);

19. Now click Run at the top. You'll see a spiral drawn:

&

You can now experiment with all kinds of different code to get interesting results,

as long as you can make the image you want out of one long line!

You can even output 3D-looking shapes. For instance, try entering the following

code afterthe|// ------------- |comment:

function sinrr(step, once) {
// 'step' is going to keep increasing
// make it 'scan' out in x and y
var x = step % 100;
var y = (step-x) / 100;
if (y>=100) return;
if (y&1) x = 100-x;
// now center the coordinates on 0,0
X -= 50;

282 Making Things Smart

Experiment 38: Controlling the XY Table

y -= 50;

// Work out ‘r' - the radius

// - but add a bit to ‘r° to avoid a divide by 0 below
var r = Math.sqrt(x*x + y*y) + 0.1;

// Make 'z' a fun mathematical formula - (sin r)/r in this case
var z = 100 * Math.sin(-r/2) / r;

// now work out some 3D coordinates

var a = 0.4; // rotation in 'y' axis

var b = 0.5; // rotation in 'x' axis

var rx = Math.cos(a)*x + Math.sin(a)*y;

var ry = Math.cos(a)*y - Math.sin(a)*x;

var rz = Math.cos(b)*z + Math.sin(b)*ry;

ry = Math.cos(b)*ry - Math.sin(b)*z;

// and project into 2D

var px = rx * 2000 / (100-ry);

var py = rz * 2000 / (100-ry);

moveTo(px, py, function() {
if (!once) sinrr(step+1);
Hs
}

sinrr(0);

This renders the formula [sin r / r|, which looks a lot like a water droplet on a
pond:

There’s just one annoying problem. There’s a line drawn from the center of the
screen to the start of the drawing, and that’s exactly what will happen if we try this
on the plotter.

To solve this, I've added a parameter called [once|l. When this is set to [true|, the
Isinrr|function will move the pen to the correct location but will do no more.

20. So let’s draw this pattern on our plotter. Make sure there’s no pen in the plotter.

Chapter1l7 283

Experiment 38: Controlling the XY Table

21. Copy the following code on to the righthand side of the IDE and click Upload:

var StepperMotor = require("StepperMotor");

var motorx = new StepperMotor({
pins:[B3,B4,B5,A6]

s

var motory = new StepperMotor({
pins:[B10,B13,B14,B15]

s

function moveTo(x,y,callback) {
var dx = x - motorx.getPosition();
var dy = y - motory.getPosition();
var d = Math.sqrt(dx*dx + dy*dy);
var time = d * 1000 / motorx.stepsPerSec;
motorx.moveTo(x, time);
motory.moveTo(y, time, callback);

}

function sinrr(step, once) {
// 'step' is going to keep increasing
// make it 'scan' out in x and y
var x = step % 100;
var y = (step-x) / 100;
if (y>=100) return;
if (y&1) x = 100-x;
// now center the coordinates on 0,0
X -= 50;
y -= 50;
// Work out ‘r' - the radius
// - but add a bit to ‘r° to avoid a divide by 0 below
var r = Math.sqrt(x*x + y*y) + 0.1;
// Make 'z' a fun mathematical formula - (sin r)/r in this case
var z = 100 * Math.sin(-r/2) / r;
// now work out some 3D coordinates
var a = 0.4; // rotation in 'y' axis
var b = 0.5; // rotation in 'x' axis
var rx = Math.cos(a)*x + Math.sin(a)*y;
var ry = Math.cos(a)*y - Math.sin(a)*x;
var rz = Math.cos(b)*z + Math.sin(b)*ry;
ry = Math.cos(b)*ry - Math.sin(b)*z;
// and project into 2D
var px = rx * 2000 / (100-ry);
var py = rz * 2000 / (100-ry);

moveTo(px, py, function() {
if (!once) sinrr(step+1);
s
}

sinrr(0, true);

284 Making Things Smart

Experiment 38: Controlling the XY Table

This will move the sled to the correct location for the start of the pattern.

22. Carefully insert your pen, and type in the lefthand side of the IDE. This
will start the drawing, and then it’s just a matter of waiting! After some time, you
should see a plot starting to appear:

So now we've got a working plotter, and we can print mathematical formulae—but that
could get boring quite quickly!

What if we could somehow connect our plotter to the internet so we could get it to draw
images? Well, we can!

Chapter1l7 285

Experiment 38: Controlling the XY Table

What Else Can | Do?

XY plotters are a great base for lots of projects;
for example, many 3D printers consist of an XY
plotter and then a table that moves up and
down in the z-axis.

You could put a drag knife in the pen holder and
use it for cutting shapes out of paper, or you
could put a sharp pin in the pen holder and use
it to scratch designs out on surfaces like copper.

You can also make you own automatic zen gar-
den by fixing a magnet onto the plotter and then
placing it underneath a bed of sand; you can
make a steel ball draw patterns in the sand as it
follows the magnet around!

286 Making Things Smart

Internet-Connected | q ¢
Plotter | =={J

While our plotter is connected by USB, we could send the data we want to output through
the USB port. Unfortunately, we can't easily access the USB port from a web browser, so
we'd have to make an application in a tool like Node.js.

It would be much better if we could use the Espruino to serve up a web page, and to have
that web page handle the rendering, so that’s what we're going to do!

First, we need to think of how we're going to draw our images. There are lots of things we
could do, but one easy method is to scan from side to side with a sine wave much as we
did for the water ripple in Chapter 17, and just to make the amplitiude of the sine wave
larger when the image is darker. This will convert the input image (Figure 18-1) into a line
drawing (Figure 18-2).

Make:

Figure 18-1 Input image

287

Experiment 38: Controlling the XY Table

Use Image: Choose file | make_logo.png

%% &
S
=—a%

Figure 18-2 Output line drawing

If you want to play with this code on https:/jsfiddle.net, all you need to do is add the fol-

low

ing HTML:

Load image <input type="file" id="imagelLoader" name="imagelLoader"/>

<canvas id="canv" style="border:1px solid black"s</canvas>

And the following JavaScript:

// display the canvas

var canvas = document.getElementById("canv");

var imageWidth = 200;

var imageHeight = 100;

canvas.width = 500;

canvas.height = 500;

var ctx = canvas.getContext('2d');

var midx = canvas.width/2, midy = canvas.height/2;
var lastPos;

function moveTo(x,y,callback) {
var pos = [x/4+midx, y/4+midy];
if (lastPos)
ctx.lineTo(pos[0], pos[1]);
else
ctx.moveTo(pos[0], pos[1]);
lastPos = pos;
setTimeout(callback,0);
}

function startDraw() {
lastPos = undefined;
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.beginPath();

}

288

Making Things Smart

https://jsfiddle.net

Experiment 38: Controlling the XY Table

function endDraw() {
ctx.stroke();
ctx.closePath();

}

// Handle loading of the image
var imgData; // the raw RGBA image data
var imagelLoader = document.getElementById('imagelLoader');
imageloader.addEventListener('change', function (e) {
// This is called when you've chosen a file
// First we read the file
var reader = new FileReader();
reader.onload = function(event) {
// Then we load it into an image
var img = new Image();
img.onload = function() {
// we draw that image on to our canvas
ctx.drawImage(img, 0, 0, imageWidth, imageHeight);
// read back the image data into an array
imgData = ctx.getImageData(0®, 0, imageWidth, imageHeight).data;
// and finally we start converting it to a line drawing
startDraw();
scanImage();
}
img.src = event.target.result;
}
reader.readAsDataURL(e.target.files[0]);
}, false);

// Output the image as lines
function scanImage() {
var step = 0;
for (var y=0;y<imageHeight;y++) {
for (var x=0;x<imageWidth;x++) {

// get color from image - work out where (we want to zig-zag)

var imagex = (y&1) ? x : imageWidth-x;

var imagey = y;

// the image is in RGBA format, so we take the average of

// red, green and blue channels

var col = (
imgData[(imagey*imageWidth + imagex)*4] +
imgData[(imagey*imageWidth + imagex)*4 + 1] +
imgData[(imagey*imageWidth + imagex)*4 + 2]) / 3;

// now work out where on the page to draw the line

// and work out what

var px = (imagex - imageWidth/2)*7.5;

var py = (imagey - imageHeight/2)*15 +

Math.sin(step)*(col-255)/15;

step++;

// and move to the location

moveTo(px, py);

Chapter18 289

Experiment 39: Internet-Connected Plotter

endDraw();
}

Click Run and then click Choose File on the web page that appears and select a square
image from your PC.

The web page should now display an image like Figure 18-2. The function in
the preceding code is the one that actually does the conversion.

All it does is scan backward and forward over the image, and makes the amplitude of the
sine wave depend on the brightness of the picture at that point.

Now that we've got some working code, we need to get our plotter to serve up a web
page containing it.

Experiment 39: Internet-Connected Plotter

You'll need:
« An Espruino WiFi, or an Espruino Pico and ESP8266 ESP01 module with patch wires
Follow these steps:

1. If you've got an Espruino Pico, wire it up as shown in Chapter 15. If you have an
Espruino WiFi board you're ready to go!

2. Enter the following code in the righthand side of the Web IDE:

var WIFI_NAME = "";
var WIFI_KEY = "";
var wifi;

// Initialization for Espruino WiFi ONLY
function onInit() {
wifi = require("EspruinoWiFi");
wifi.connect(WIFI_NAME, { password : WIFI_KEY }, function(err) {
if (err) {
console.log("Connection error: "+err);
return;
}
console.log("Connected!");
wifi.getIP(function(err,ip) {
console.log("IP address is http://"+ip.ip);
createServer();
s
s
}

// Initialization for Espruino Pico + ESP8266 ONLY
function onInit() {
Seriall.setup(115200, { tx: B6, rx : B7 });

290 Making Things Smart

Experiment 39: Internet-Connected Plotter

wifi = require("ESP8266WiF1_0v25").connect(Seriall, function(err) {
if (err) throw err;
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, WIFI_KEY, function(err) {
if (err) {
console.log("Connection error: "+err);
return;
}
console.log("Connected!");
wifi.getIP(function(err,ip) {
console.log("IP address is http://"+ip.1ip);
createServer();
s
b
s
}

// Create a web server on Port 80
function createServer() {
var http = require("http");
http.createServer(pageHandler).listen(80);
}

var mainPageContents = "Hello World";

// Called when a page is requested
function pageHandler(reqg, res) {
var info = url.parse(req.url, true);
//print(info);
if (info.path == "/") {
res.writeHead(200);
res.end(mainPageContents);
} else {
console.log("Page "+info.path+" not found");
res.writeHead(404);
res.end("Not found");
}
}

3. Make sure you change [WIFI_NAME| and [WIFI_KEY| to the correct ones for your net-
work, and remove one of the functions depending on whether you're
using Espruino WiFi or Pico.

4. Click Upload, and when it’s finished type on the lefthand side.

If the WiFi module managed to connect you should see something like this:

|| EtEp://espruino.com

Chapter 18 201

Experiment 39: Internet-Connected Plotter

Copyright 2016 G.Williams
>
=undefined
sonInit()
=undefined
Connected!
IP address is http://192.168.1.162
>

5. Now type into the address bar of your web browser. You should
see Hello World|displayed there.

The next step is to change the web page that’s served up to be the code that will
trace the image we want.

Add to your previous code on the righthand side of the IDE until you get the fol-
lowing. The first section of code is identical to what was entered before.

This is a huge section of code as it contains the web page that we had previously
tried in JSFiddle, as well as some code to send data to the Espruino, and the code
for the Espruino itself!

var WIFI_NAME = "";
var WIFI_KEY = "";
var wifi;

// Initialization for Espruino WiFi ONLY
function onInit() {
wifi = require("EspruinoWiFi");
wifi.connect(WIFI_NAME, { password : WIFI_KEY }, function(err) {
if (err) {
console.log("Connection error: "+err);
return;
}
console.log("Connected!");
wifi.getIP(function(err,ip) {
console.log("IP address is http://"+ip.1ip);
createServer();
s
b
}

// Initialization for Espruino Pico + ESP8266 ONLY
function onInit() {
Seriall.setup(115200, { tx: B6, rx : B7 });
wifi = require("ESP8266WiFi_0v25").connect(Seriall, function(err) {
if (err) throw err;
console.log("Connecting to WiFi");
wifi.connect(WIFI_NAME, WIFI_KEY, function(err) {
if (err) {
console.log("Connection error: "+err);
return;

292 Making Things Smart

Experiment 39: Internet-Connected Plotter

}
console.log("Connected!");
wifi.getIP(function(err,ip) {
console.log("IP address is http://"+ip.ip);
createServer();
b
s
s
}

// Create a web server on Port 86
function createServer() {
var http = require("http");
http.createServer(pageHandler).listen(80);
}

// Everything above here is the same

//

/* We're using an ES6 templated string here so
we can store the whole webpage verbatim, otherwise
we'd have to escape every single newline in the string. */

var mainPageContents = “<html>
<head><title>WiFi Plotter</title></head>
<body>

Load image <input type="file" id="imagelLoader" name="imagelLoader"/>

<canvas id="canv" style="border:1px solid black"></canvas>
<script>

// display the canvas

var canvas = document.getElementById("canv");

var imageWidth = 200;

var imageHeight = 100;

canvas.width = 500;

canvas.height = 500;

var ctx = canvas.getContext('2d');

var midx = canvas.width/2, midy = canvas.height/2;

var lastPos;

// list of x,y,x,y points for the plotter

var plotPoints = [];

function sendToEspruino() {
var points = [];
var pointCount = 40; // amount of plot data to send at once
if (pointCount>plotPoints.length)
pointCount = plotPoints.length;
if (pointCount==0) {
console.log("Done!");
return;
}
// Get the data to send

Chapter 18

293

Experiment 39: Internet-Connected Plotter

points = plotPoints.slice(0, pointCount);
// send the data to Espruino
httpRequest = new XMLHttpRequest();
httpRequest.open('POST', 'push?pts='+points.join(","), true);
httpRequest.timeout = 1000; // timeout in milliseconds
httpRequest.onreadystatechange = function(){
if (httpRequest.readyState === XMLHttpRequest.DONE) {
if (httpRequest.status === 200) {
var response = httpRequest.responseText;
console.log("Got response "+response);
if (response=="busy") {
// try again after a delay
setTimeout(function() {
sendToEspruino();
}, 2000);
} else {
// We sent it! Delete these points from our list
plotPoints.splice(0, pointCount);
// Wait a little and carry on with sending
setTimeout(function() {
sendToEspruino();
}, 500);
}
} else {
console.log('There was a problem with the request.');
// Try again after a delay
setTimeout(function() {
sendToEspruino();
}, 2000);
}
}
1
console.log("Sending "+pointCount+" points");
httpRequest.send(null);
}

function moveTo(x,y,callback) {
plotPoints.push(x,y);
var pos = [x/4+midx, y/4+midy];
if (lastPos)
ctx.lineTo(pos[0], pos[1]);
else
ctx.moveTo(pos[0], pos[1]);
lastPos = pos;
setTimeout(callback,0);
}

function startDraw() {
lastPos = undefined;
ctx.clearRect(0,0,canvas.width,canvas.height);
ctx.beginPath();

294

Making Things Smart

Experiment 39: Internet-Connected Plotter

}

function endDraw() {
ctx.stroke();
ctx.closePath();

sendToEspruino();

}

// Handle loading of the image
var imgData; // the raw RGBA image data
var imagelLoader = document.getElementById('imagelLoader');
imageloader.addEventListener('change', function (e) {
// This is called when you've chosen a file
// First we read the file
var reader = new FileReader();
reader.onload = function(event) {
// Then we load it into an image
var img = new Image();
img.onload = function() {
// we draw that image on to our canvas
ctx.drawImage(img, 0, 0, imageWidth, imageHeight);
// read back the image data into an array
imgData = ctx.getImageData(0, O, imageWidth, imageHeight).data;
// and finally we start converting it to a line drawing
startDraw();
scanImage();
}
img.src = event.target.result;
}
reader.readAsDataURL(e.target.files[0]);
}, false);

// Output the image as lines
function scanImage() {
var step = 0;
for (var y=0;y<imageHeight;y++) {
for (var x=0;x<imageWidth;x++) {
// get color from image - work out where (we want to zig-zag)
var imagex = (y&1) ? x : imageWidth-x;
var imagey = y;
// the image is in RGBA format, so we take the average of
// red, green and blue channels
var col = (
imgData[(imagey*imageWidth + imagex)*4] +
imgData[(imagey*imageWidth + imagex)*4 + 1] +
imgData[(imagey*imageWidth + imagex)*4 + 2]) / 3;
// now work out where on the page to draw the line
// and work out what
var px = (imagex - imageWidth/2)*7.5;
var py = (imagey - imageHeight/2)*15 +

Chapter18 295

Experiment 39: Internet-Connected Plotter

Math.sin(step)*(col-255)/15;
step++;
// and move to the location
moveTo(pXx, py);
}
}
endDraw();
}
</script>
</body>";

// Called when a page is requested
function pageHandler(reqg, res) {
var info = url.parse(req.url, true);
if (info.pathname == "/") {
res.writeHead(200);
res.end(mainPageContents);
} else if (info.pathname == "/push") {
// we got
res.writeHead(200);
var accepted = queueMove(info.query.pts.split(","));
res.end(accepted ? "ok" : "busy");
} else {
console.log("Page "+info.path+" not found");
res.writeHead(404);
res.end("Not found");
}
}

// Stepper motor handling

var StepperMotor = require("StepperMotor");

var motorx = new StepperMotor({
pins:[B3,B4,B5,A6]

b

var motory = new StepperMotor({
pins:[B10,B13,B14,B15]

s

function moveTo(x,y,callback) {
var dx = x - motorx.getPosition();
var dy = y - motory.getPosition();
var d = Math.sqrt(dx*dx + dy*dy);
var time = d * 1000 / motorx.stepsPerSec;
motorx.moveTo(x, time);
motory.moveTo(y, time, callback);

}

var busy = false;

var nextPositions = [];

function queueMove(positions) {
if (nextPositions.length>40) {

296 Making Things Smart

Experiment 39: Internet-Connected Plotter

// we already have a lot of positions queued
console.log("Rejected positions");
return false; // don't take any more
} else {
// add something else onto the queue
console.log("Queued "+(positions.length/2)+" positions");
for (var i1=0;i<positions.length;i+=2)
nextPositions.push([positions[i],positions[i+1]]);
}
// not busy moving - start!
if (!busy) {
busy = true;
moveFinished();
}
// return true to show the position was accepted
return true;
}
function moveFinished() {
// we just finished - see if there's anything else
if (nextPositions.length>0) {
// there is - get a new position off our queue
var nextPos = nextPositions.shift();
// go there
moveTo(nextPos[0], nextPos[1], moveFinished);
} else {
// no - we're no longer busy
busy = false;
}
}

6. Now click Upload again and type on the lefthand side of the IDE.

7. You should see an IP address displayed again (usually this is the same as it was
before). Enter the address in the web browser again, and you should see a web
page like this:

Chapter 18 297

Experiment 39: Internet-Connected Plotter

| Eardem | [= [= [52

[WiFi Plotter x \§

€ C(O©192168.1.162 % |

Load image | Choose file | No file chosen

8. If you choose an image to upload, it will immediately be scanned, and drawing will
start! Eventually you should end up with a drawing like this:

298 Making Things Smart

Experiment 39: Internet-Connected Plotter

So What's Happening Here?

Espruino is serving up a web page, much like
JSFiddle did. When you upload an image to the
web page, the JavaScript running on your PC will
convert that to a series of 2D points that make
up a long line. They're saved in a variable called

plotPoints|
Then, the function |sendToEspruino| is called on

your PC, and this requests a web page of the

form where is the first point, is the

second, and so on:

|http://ip.address/push/
pts=x1,y1,x2,y2,x3,y3,x4,y4,...|

The Espruino will then take that information and

add it to a queue called which is

used to call as we used in the last chap-
ter.

Espruino doesn't have enough memory to hold
all the data we're sending it, so if it thinks it has
enough data to keep it busy it'll reply to
the web request, and the web page on the PC
will have to try to send the data again in a few
seconds.

There are other ways of transferring this data, for
example, with a web technology called Web-
Sockets. However, this is nice and easy, uses
what we've already learned, and works well
enough for us!

Chapter 18

299

Experiment 39: Internet-Connected Plotter

What Else Can | Do?

Now that you've got a plotter you can control 3. The website could use the [getUserMe

from the internet you could do all kinds of @ API to use the webcam to take a
things. picture to use as the basis for the plot-
ting.

1. You could modify the

function to create different patterns
based on the source image.

4. You could modify the sled on the plot-
ter to take a servo that could raise and
lower a pen. It could even hold a piece

2. The web page could automatically of cloth and then you could use the
download images from a source like a plotter to draw on a whiteboard, and
photo-sharing website and could plot then erase itself!
those.

300 Making Things Smart

PART VI
Conclusion

Many of the machines in this book have been very basic, requiring very little skill or care
during assembly. While you can get better results from less wobbly machinery, | hope that
if nothing else this book has shown you that you don't need amazing skills, tools, or expen-
sive components to make fun devices.

You've learned how to control motors, use sensors, and then how to use a microcontroller
to combine everything to get the right result from very simple machinery.

But we haven't even covered some of the most exciting parts of microcontroller develop-
ment: adding displays, interesting sensors, and making multiple devices work together.

\ V<Y 4

If you fancy exploring microcontrollers at a very low level, there’s a section on writing
assembly code in Appendix B. Once you're done with this book there’s a wealth of informa-
tion online. There are loads of tutorials on the Espruino website, including a handy search
tool; for instance, try searching for “Humidity” to get a list of sensors with documentation
and libraries for Espruino along with information on where to get them.

If you're interested in learning more about electronics so you can connect more compli-
cated things to Espruino, there are great books like Make: Electronics by Charles Platt or
Making Things Talk by Tom Igoe. If you want to learn how the Espruino JavaScript inter-
preter works, then | wholeheartedly recommend the “dragon book,” Compilers: Principles,
Techniques, and Tools by Aho, Sethi, and Ullman.

There are also some amazing websites, like Instructables and Hackster, that are full of ideas
for all kinds of projects. There are hundreds of great project ideas on YouTube too, or check
out Make: Magazine’s website for some fantastic curated projects and articles.

But most of all, get stuck in and have fun!

303

http://espruino.com
http://www.instructables.com
https://www.hackster.io
http://makezine.com

What follows is a list of parts you'll need for this book, and where to get them. I've grouped
together the parts you'll need for multiple sections first. It’s also worth checking out the
Making Things Smart GitHub page as it contains links to common online sources of some of
the parts listed here.

Common Parts

General

+ Cellophane tape

« Black masking/electrical tape
« Elastic bands

« Paperclips

- Pencils, pens, felt-tip pens

« USB power pack

« USB Type A extension lead

305

https://github.com/espruino/making-things-smart

Common Parts

Espruino Boards

You can get Espruino boards from several different distributors. See the Espruino order
page for an up-to-date list.

Mainly we use a Espruino Pico in this book, but toward the end we also use Espruino WiFi
(or an Espruino Pico and an ESP8266 module) and Puck.js.

Espruino is open source so it has been ported to other boards as well. For most of the
projects here it is possible to use Espruino on those boards, but it's possible you may hit a
few bumps along the way! See the Espruino website for an up-to-date list of supported
boards.

306 Making Things Smart

http://www.espruino.com/Order
http://www.espruino.com/Order
http://www.espruino.com/Other+Boards

Common Parts

Breadboard

Lots of the projects here use breadboard to avoid soldering. Pretty much any hobby elec-
trical store will sell breadboard, or you might find that buying an Electronics Starter Kit

online is a cheap way to get breadboard along with a lot of the other components men-

tioned here.

307

Appendix A

Common Parts

Patch Wires/Jumper Leads

Patch wires are just wires to connect electronic components up with, usually on bread-
board. Normal patch wires are pointy at both ends (we call each end male). While these
can be nice, all you really need is some of the solid core wire that's also on this list.

However, for the final chapter we use male-to-female jumper wires. These have a socket on
one end, and a pin on the other, and are really useful especially if you plan to avoid solder-
ing.

If you bought an electronics or Arduino starter kit then you may well have some, however
you can find them online by searching for|[dupont male femalel.

308 Making Things Smart

Common Parts

You can also get female-to-female leads, which aren't used in this book but are still
extremely useful (and can be combined with the male-to-male leads to make a male-to-
female lead).

Resistors, Capacitors, LEDs, Light-Dependent Resistors

You can buy these components separately (but a few different values of resistor will be
needed for your projects). In most cases it will be cheaper to buy an Electronics Starter Kit.
These can be bought online for around $30 and will contain everything you need, as well
as a few of the extra parts in this appendix!

Neodynium Magnets

These are really strong, compact magnets. You can buy them online from places such as
Amazon or eBay, or electrical stores such as Radio Shack in the US or Maplin in the UK will
stock them.

If the magnets don't need to be circular then you can also find them by dismantling old
computer hard disk drives (you won't find them in modern SSDs though!)

Appendix A 309

Common Parts

Single Core Wire

Single core wire isn't great for wiring that needs to move around, but it is handy for wiring
up breadboards if you don't have any patch wires. A wire with a conductor diameter of
between 0.6mm and 0.8mm (20 to 23 AWG) is perfect, but you want one with insulation on
it as well.

You can get wire from online electrical stores very easily, or can find it in the kind of net-
working cable that's designed for permanent installations.

Wood

For various experiments you'll need:

310 Making Things Smart

Motors Section

+ A block of wood, roughly 10cmx5cmx2cm

« A block of wood, roughly 7cmx7cmx7cm

1cm-thick square sheet of plywood, at least 30cmx30cm

« A30mmx30mmx30mm cube of solid wood or plastic

Like most things in this book, these measurements aren’t exact. If you have any offcuts
lying around or find something in a dumpster, chances are it'll be about right!

Motors Section

General

+ Nails
+ Screws
+ Wine bottle cork
+ White sticky labels
« Aflashlight
A Source of DC Power (Around 6-12v)

For the motors in this section, you'll need a power source that'll provide quite a few amps
of current. There are a few potental options here:

« PP9 9v battery, PJ996 6v battery
+ 4 to 8 AA batteries in a battery holder

+ Model racing car/airplane batteries (make sure you get the correct voltage and be
careful if you have batteries without protection circuitry, as they can easily melt
things if shorted!)

- 9.6v or 12v power tool batteries as long as you can safely connect to them

« Bench power supply
You'll be able to find one or another of these at a local electronics store or online.

L293D Motor Driver IC

You can buy L293D chips online from most electronics retailers. Just make sure you buy
the plastic dual-in-line package with the big pins rather than the surface mount variants
(that won't fitin breadboard).

If you don’t want to do the wiring up you can get many other general-purpose motor driv-
ers, some of which come on a handy board with screw terminals. Search online for |h
bridge motor driver|.

Appendix A 311

Electromechanics Section

Brushless Fan
See Chapter 6 where finding a fan is discussed.

P36NFO6L FET

The P36NFO6L FET is a good general-purpose power transistor that will work well off the
relatively low (3.3v) voltages from the Espruino Pico. You can find them online from many
electronics retailers, but any low voltage FET will work just as well for us.

However, if you have the L293D (or H-bridge) motor driver IC then you can use one chan-
nel of that instead. If you have the control board from a stepper motor that is used in
Chapter 17 (see the following section) then you can use that as well.

You could also use an NPN transistor with a resistor if you have them handy, but wiring
transistors up is out of the scope of this book!

Electromechanics Section

General

« Chopsticks

« Thick noncorrugated cardboard
« Thin string (kite string is perfect)
+ A Pringles can or whisky tube

« A sturdy cardboard box, 30cm on one side

312 Making Things Smart

Electromechanics Section

Servo Motors and Extension Wire

You can buy servo motors from most model shops, however the motors we're using for the
projects in this book are 9g servos (referring to their weight of 9 grams). You may find it
easiest to purchase them online.

These servos are by no means amazing, but they are very cheap, and a great base for
projects. However, if you do decide you need to improve what you've made, you can get
bigger, more expensive servos that can be connected in exactly the same way.

There are a few manufacturers, but Feetech/Fitech and Towerpro appear to be good makes
of 9g servos. Continuous rotation 99 servos are harder to come by, but Fitech make some
with the model number [FS96R], which is easy to find on eBay once you've scrolled past all
the results for Stihl grass trimmers.

Appendix A 313

Electromechanics Section

Finally, servo motor extension wire is needed for the plotter, and you can also get this
online or from a hobby shop. Failing that, if you have bought male-to-female patch wire
(see the previous discussion) then you can use that, as long as you're sure you have kept
the wires in the right order!

Lobster Bands

Any short, wide elastic band will work to give the little robot wheels some grip, but I've
found lobster bands to be perfect. These are the elastic bands that get put on lobsters to
stop them from pinching things after they've been caught.

The easiest and most enjoyable way to get lobster bands is to buy (and then eat) a lobster,
but it's not the cheapest. You could probably ask at a local restaurant, or you can buy a bag
of thousands of lobster bands online for under $10.

314 Making Things Smart

Communication Section

A Small Corkboard (Roughly 30cmx40cm)

You can get corkboards from many stationery shops, or home improvement shops like lkea
can also be a good source.

Threaded Rod and Nut

Threaded rod can usually be bought from DIY/home improvement shops or builders’ mer-
chants.

M6 or M8 thread (6mm or 8mm diameter) is perfect. But don't forget that you'll also want a
nut and some penny (large diameter) washers to go with it!

Communication Section

A Headphone Lead with a 3.5mm Jack Plug

You'll need to be willing to destroy this by removing the headphones from it!

Try to get one that has a single cable (a circular cross-section rather than a figure of 8).

Appendix A 315

Communication Section

IR Receiver (HX1838, VS1838, TSOP348, or TSOP344) and Remote
Control

€A
A\

If you bought an Arduino starter kit you may well find one of these inside, otherwise you
can usually find them by searching online for [arduino infrared kit|.

Failing that, they’re usually inside old consumer electronics as well—so if you have an old
VCR or DVD player that you're throwing out you may be able to rescue the IR receiver from
it!

A 315Mhz (USA) or 433Mhz (Europe) Radio Transmitter/Receiver

You can usually get these online on Amazon or eBay. Just search for [315Mhz| (or [433Mhz)) |rf
receiver|and look for something like this:

316 Making Things Smart

Communication Section

The transmitters are generally square little boards with a large silver component on them.
You can almost always buy transmitters and receivers as a pair, which would be a great
idea for Chapter 14.

Appendix A 317

Putting It All Together

ESP8266 ESPO1

ESP8266s come in many different types of module—ESP12, ESP07, etc. Unless you have
some kind of breakout board you really need the ESP01, as most of the others are difficult

to connect to.

Just searching online for |[ESP8266 ESPO1| will find you loads of suppliers, but sadly this is a

part that you're unlikely to find in a local shop.

Putting It All Together

2x Springs

You just want springs that are designed to be pulled apart, with relatively little force.
Springs from ballpoint pens will work, but if you are able to scavenge proper springs from
something like an old CD-ROM/DVD drive then they'd be perfect!

318 Making Things Smart

Putting It All Together

Smooth Aluminum Bar and 30mmx30mmx30mm Cube of Solid
Wood or Plastic

The bar is to be used for the X and Y crossbars of the plotter. The cube of wood will have
holes drilled in it so that it can slide smoothly over the bar.

For the plotter in this book | used a 5mm diameter aluminum welding rod and a cube of
MDF wood because that’s what | had handy. The rod did have numbers stamped on it, but |
sanded them off.

In reality you could use anything here, even a plastic rod. You just need to be confident
that the rod will be able to slide smoothly through a hole in the cube.

10x40mm Diameter Pulleys

These pulleys can be slightly harder to find, but you should be able to get them in a model
shop. Failing that, you can often find them advertised online as a Plastic Model Pulley, or if
you have access to a 3D printer you could print some yourself.

Appendix A 319

Putting It All Together

The pulleys don't need to be 40mm, but given the relatively low torque of the stepper
motors used | wouldn't advise using a larger diameter.

You also need to find four circular nails that will fit inside the pulleys. The pulleys pictured
here have a 3mm hole, which makes finding nails that fit inside nicely really easy!

5M of Fishing Line
Any kind of thin nylon line should work well. However, fishing line is relatively easy to find,
and can be bought in outdoors shops or even some large supermarkets.

Two Small Geared Stepper Motors
These stepper motors are very common, cheap Chinese motors. Probably the easiest way
to find them is to look on eBay or Amazon. You can either search for or can
search for the part number, which is[28BYJ-48|.

It really helps to get them with the ULN2003 motor driver board as well, as it will have a
connector that fits directly on to the motor. When ordered together they can be purchased
for as little as $3.

320 Making Things Smart

Common Espruino
Commands and Variables

What follows is a quick rundown of the most common Espruino commands. For a full list,
check out the Espruino reference page.

/ Where parameters are surrounded by|[|and|]1|, they’re optional and can be
left out.

print(text) or console.log(text)

This prints the given text or variable to the console. is the standard JavaScript
way of printing, and is provided for convenience. Both commands are identical.

For example, [a="Hello World";print(a)|will write [Hello World|to the console, as would
lprint("Hello World")|.

You can also supply multiple arguments that will all be printed, separated by spaces.

LED1 and LED2

These variables are the pins that are connected to the onboard LEDs. For example, writing
|[digitalWrite(LED1, 1)|will light what is usually the red LED.

BTN1 or BTN

This variable is the pin that is connected to the onboard button. For example, writing |digi
talRead(BTN1) | will return 1 if the button is pressed.

321

http://www.espruino.com/Reference

digitalWrite(pin[s], value)

digitalWrite(pin[s], value)

If the pin state has not previously been set with [pinModel, this sets the GPIO pin to be a
digital output, and then outputs either a 1 (3.3v) or a 0 (Ov) to the pin depending on the
value.

If you supply more than one pin in an array, the value is treated as a binary number. For
example, [digitalWrite([LED1,LED2], 0b10)|will turn|LED1|on and [LED2]off.

This is different from an Arduino in that you don’t have to use on Espruino if you
don't want to.

digitalRead(pin[s])

If the pin state has not previously been set with [pinModel, this sets the GPIO pin to be a
digital input, and then reads the value on the input, returning eithera 1 ora 0.

If you supply more than one pin in an array, the returned value is a binary number. For
example [digitalRead([B3,B4])| will return|2]if B3]is 1 and[B4]is 0.

This is different from an Arduino in that you don't have to use on Espruino if you
don't want to.

Pin.read(), Pin.write(value), Pin.set(), and Pin.reset()

These commands work similarly to [digitalWrite|and [digitalRead| but they are available
on each pin variable. Sometimes it’s just more concise to write [LED1.set()| than [digital

Write(LED1, 1)
analogWrite(pin, value[, options])

can be any floating-point value between 0 and 1.

This writes an analog voltage to the given pin. By default this uses specific peripherals that
aren’t available on all pins (look for |DAC| or in the pin chart for the device you're using).

On devices with a DAC (like the original Espruino board), an actual analog voltage is out-
put on the pin, ranging from 0 to 3.3v depending on [value| On most devices there isn't a
DAC, in which case this will use pulse width modulation of the digital output to output (on

average) an analog value. In this case, can be an object with a element to
specify the frequency (for example, [analogWrite(B3, 0.5, { freq: 100 });).

On some pins there is no DAC or PWM, in which case Espruino can do PWM in software (at

frequencies below 10KHz). For this you have to specify in the object: [analog
Write(LED1, 0.1, { freq: 100, soft:true });].

322 Making Things Smart

analogRead(pin)

analogRead(pin)

This reads an analog value from the given pin. The functionality is only available on some
pins. Look for pins on the pin chart that have next to them.

The value returned is a floating-point value between 0 and 1 (this is different than Arduino,
which returns an integer between 0 and 1023). A value of 1 corresponds to the voltage
that the microcontroller is powered off, which is usually 3.3v. You can check this with the
command [E.getAnalogVRef ()| though.

Be careful: most pins that have analog inputs only accept voltages between 0 and 3.3v (as
opposed to a lot of other pins that will often go up to 5v), so try not to connect the pin to
anything where the voltage might go too high.

digitalPulse(pin, polarity, time[s])

This sends an accurately timed pulse to the given pin. For example, |digitalPulse(LED1,
1, 100)|will turn [LED1|on (because polarity was 1) for 100ms, and will then turn it off.

You can also supply an array. For example, [digitalPulse(LED1, 0, [100,50,25])|will turn
off for 100ms (because polarity was 0), then on for 50ms, then off for 25ms, and
finally will leave it on.

digitalPulse| uses interrupts to send accurate pulses, which means it returns immedi-
ately, even while the pulses are being generated in the background. This can be really

powerful, but it can also trip you up very easily! If you don't want this, call |digital

Pulse(A0,1,0)|immediately afterwards. This will cause |digitalPulse|to return only after

all pulses have been sent.

pinMode(pin, mode)

This sets the mode of the pin (whether it is an input or output).

Common calls are:

.

pinMode(pin, 'input')|setsthe pin to be a normal input.

.

pinMode(pin, 'input_pulldown')|sets the pin to be an input, but with an internal
pull-down resistor (to Ov) enabled.

pinMode(pin, 'input_pullup')|sets the pin to be an input, but with an internal
pull-up resistor (to 3.3v) enabled.

pinMode(pin, 'output')|sets the pin to be a normal output, which will output
either Ov or 3.3v.

pinMode(pin, 'opendrain')] sets the pin to be an output, which will output Ov
when 0 is written, but will leave the output disconnected when 1 is written.

AppendixB 323

reset()

Unlike Arduino you don't have to call this before |digitalWritel/etc. They will automati-
cally set the correct state unless you have explicitly called beforehand.

You can use[getPinMode(pin)|to check the current state of a pin.

reset()

This resets Espruino, removing all code and setting all pins to their default values. It's usu-
ally called by the Web IDE before uploading your code, to ensure that it behaves the same
way each time.

save()

This saves the current state of Espruino to read-only memory, which will then be loaded at
power-on.

Afterwards, Espruino resumes from the saved state (as if you'd called [Lload()| or powered
Espruino on).

/ This doesn't actually save the code you wrote on the righthand side of the
web IDE. The code you wrote was executed as you uploaded it, and the
result is saved. For example, if you wrote var a = E.getTemperature();]
[a] will be set to the temperature of Espruino when you uploaded the code,
rather than when the code was loaded. If you wrote [setTimeout(func
tion() { console.log("Hello");}, 10000/* 10 seconds */);L
uploaded, and then saved nine seconds later, you would find that after
loading was printed only one second after boot. If you want to

actually execute code at startup, check out[onInit]below.

load()

This loads the state of Espruino from read-only memory (that was previously saved with
[save()). It’s a bit like unplugging and replugging the Espruino board.

onlnit()
This is a special function you can write that is called when Espruino starts up after code is
saved with [save()), either when the board is powered on, or after [Load ()| or[save()|.

Calling [E.on('init', function() { ... my code ... });|has the same effect, except
you can call multiple times with different functions to queue up. There can only ever

be one function.

324 Making Things Smart

M

As mentioned in Chapter 2, Espruino’s Web IDE has a built-in assembler.

Assembly language is a textual representation of the actual instructions that the computer
executes. The ARM microcontroller in the Espruino boards executes what is called Thumb
code. This is a special cut-down version of ARM assembly code that is more limited, but
takes up half the code space per instruction (16 bits versus 32 bits).

A very simple Thumb function might look like this:

mov r0, #42

bx 1r
This function consists of two 16-bit instructions (so it is just 4 bytes long). The first instruc-
tion loads register with the number [42], and the second instruction returns from the
function. If you didn't have this, then the microcontroller would just keep executing opera-
tions past the end of the function, which would probably result in a crash!

So How Do We Run This Code?

To use the code, we have to wrap it up in something that looks like valid JavaScript code.
The Web IDE detects any function calls to [E. asm| intercepts them, and replaces them with
the assembled code.

Enter the following on the righthand side of the IDE and click Upload:

var fortytwo = E.asm("int()",
"mov r0, #42",
"bx 1r");

print(fortytwo());
You should now have [42] printed...

325

Registers

But what does all this mean?

On the first line var fortytwo = E.asm("int()",] we're creating a variable called
[fortytwo|, which will hold our function. tells the Web IDE to assemble what
follows, and tells the IDE that the assembler is to be a function that
takes no variables (()]) and returns one integer (int)). While that’s not part of the
assembler, Espruino needs to know so that it can create a valid JavaScript function
that you can call.

"mov r@, #42"|is the first assembler instruction. The bit means [movel. [r0] is

the register we'll move to (more on registers in a bit), [#| means we're going to
specify an actual number (a literal) and |42|is our number.

Finally, stands for [Branch with eXchange, Link Register|. So what does
that mean? Well, when you call a function, the ARM sets [Lr), the Link Register, to
the address it was just about to execute at the time of the call. When you do [bx
1r, it jumps back to the address in [Lr], and keeps executing the function that
called this one where it left off. It’s just like a statement in a JavaScript
function.

Registers

ARM cores have 16 registers that can be used by each instruction; each one of them is 32
wide. While only the last register (r15) has a special function, several other registers are

bits

reserved by convention.

r15(PC)

This is the Program Counter; it is the actual address in memory of the instruction
that’s being loaded at that time. Because the ARM core is made to be simple, but is
pipelined, the Program Counter doesn’t actually point to the instruction that’s being
executed, but to the instruction that’s being loaded. This means that it's actually

pointing two whole instructions ahead of the currently executing function.

r14 (LR)

This is the Link Register; when executing a function, this register contains the address
of the caller. If you want to be able to recurse, you have to manually save this register

onto the stack or it'll just get overwritten.

r13 (SP)

This is the Stack Pointer; it points to the top of the stack. On ARM the stack usually
grows downward in memory, so as more data gets added to the stack the value of SP

gets smaller, and it rises as things are taken off the stack.

326

Making Things Smart

Instructions

r0tor3
These are treated as normal registers, but when calling functions they're used for the
first four arguments (and r0 is used for the return value). Everything else is stored on
the stack.

There are also some hidden registers that get swapped in when you're called from an inter-
rupt, but we won't go into those.

Finally, there are the condition flags. These are just a handful of bits. They aren’t directly
accessible as a register, but they can be used to determine whether an instruction (for
example, a jump) is executed or not. When you execute a command such as (Com-
pare), the condition flags are updated depending on the result:

« Z—is the result zero?

+ N—is the result negative?

C—did the last math operation result in a carry?

« V—did the last math operation result in a overflow?

You can then have a command such as [BZ}, which means: Branch only if the condition flags
say the last result was zero.

Instructions

As we hinted at previously, Thumb assembler is a very cut-down version of ARM assembler.
ARM assembler is a classic RISC instruction set. Each 32-bit instruction is formatted as
shown in Table C-1 (there are some exceptions).

Table C-1 Anaverage ARM instruction

31-28|Condition flags

27-20|Type of operation

19-16 |Register 1

15-12|Register 2

11-0 |Extra data (sometimes
Register 3)

This is really nice. It means that the hardware that decodes the instruction can be really
simple, as the data for Register 1 (for instance) is always in the same place.

Appendix C 327

Instructions

Unfortunately it also means that there’s some wasted space because not all operands
make sense for all kinds of instructions, and on a small embedded microcontroller space is
at a real premium.

So ARM came up with Thumb. You can think of a Thumb microcontroller as being a normal
ARM microcontroller that takes 32-bit instructions with a decoder stuck on the front of it,
which takes the smaller more complicated 16-bit instruction, and turns it into an equiva-
lent 32-bit instruction.

In practice this works out well, but it does mean that some instructions that make perfect
sense in the ARM world just aren’t available on Thumb. For instance, in ARM assembler you
have access to all 16 registers for basically every instruction, but in Thumb you only have
access to 8 registers for most instructions, with only a few capable of accessing the full 16.

Table C-2 is a very brief list of common ARM Thumb instructions. There are plenty more,
and it’s best to search online for one of ARM’s User Guides to get a full list.

Table C-2 Common ARM instructions

I

MOV D, rS SetrD torS

MOV D, #val |Set rD to the literal

ADD 1D, rA, 1B |Set rD to

ADD 1D, rA, #val | Set D to

SUBD, rA, B |SetrDto

SUB D, rA, #val [SetrDto[rA - val|

NOP Don't do anything! A no-op

STRrS, [rK,rB] Store rS in memory at the address made by adding rA to rB

LDR rS, [fA,rB] Load rS from the memory address made by adding rA to rB

PUSH {r17.7.7.r7,lr} Push the given registers onto the stack

POP {r1 .::}7,Ir} Pop the given registers off the stack

B address Start executing from the given address

CMP rA, B Compare registers rA and rB

328 Making Things Smart

Getting More Complex

nsrucion | Deseption = T

BNE address Start executing from the given address, but only if CMP’s arguments
weren't equal (Compare flags !=0)

BEQ address Start executing from the given address, but only if CMP’s arguments
were equal (Compare flags = 0)

BGT address Start executing from the given address, but only if CMP’s left argument
was greater than the right (Compare flags > 0)

BGE address Start executing from the given address, but only if CMP’s left argument
was greater than or equal to the right (Compare flags >= 0)

BLT address Start executing from the given address, but only if CMP’s left argument
was less than the right (Compare flags <= 0)

BLE address Start executing from the given address, but only if CMP’s left argument
was less than or equal to the right (Compare flags <= 0)

Getting More Complex

So now that we have a rough idea what’s happening and what instructions are available,
let’s try to write some assembler that’s a bit more complex.

First, let’s just add two numbers together. As mentioned in “Registers”, the first four argu-
ments are passed in registers [r0| to [r3|, and the return value is put in [r@|. This makes a lot
of functions nice and easy. The first argument is in [r0], the second is in [r1} and we just
want to put the result back in|ro|.

Note that we've changed the first argument of from ["int()"| to ["int(int,int)"].
This tells Espruino that the function now takes two arguments.

var add = E.asm("int(int,int)",
"add ro, ro, ri",
"bx 1r");

print(add(1, 2));

Next, we might want to do some kind of loop, which we can do using (branch if
greater than):

var add = E.asm("int(int,int)",

"loop:", // label of the start of our loop

"add ro, ro, r1", // add r1 to ro

"sub ri, #1", // subtract 1 from ri

"bgt loop", // if r1 was greater than or equal to @
after // 'sub', go back to the beginning
"bx 1r");

AppendixC 329

Getting More Complex

for (var 1=0;1<10;1++)
print(add(o, 1));

This is roughly equivalent to the JavaScript code:

function add(ro, r1) {
do {
r@ =r0 + ri;
rl--;
} while (r1-0);
return r0;

}

Now that you've got loops you've got the basics and are ready to start writing more com-
plex code in assembler. Just remember, you're running code at the lowest level, so if you
make an infinite loop by accident you won't be able to Ctrl-C your way out of it. It’s time to
unplug and re-plug the board to reset it!

330 Making Things Smart

Symbols

&& (and) operators
JavaScript, 47

|| (or) operators
JavaScript, 47

A

Acorn Computers, 10
addition, 329
advertising mode

about, 250

for door openings, 260
aluminum bar, sources for, 319
analogRead(pin), 323
analogWrite(pin, value[, options]), 322
and (&&) operators, 47
and Pin.reset(), 322
app, controlling Puck.js from, 255
ARM (Advanced RISC Machines), 9-11
ARM chip, 10
arrays, 38-39
assembler, 325-330
assembly language, 12, 325
AT command firmware, 226

B

Baird, John Logie, 95
base 16 (hexadecimal), 42
baud rate, 184
binary and operator, 42
bit rate, 184
bit shifting, 44-46
bitwise arithmetic, 40-44
bitwise operators, 42-44
Bluetooth (non-low-energy), 250
Bluetooth Low Energy, 249-265
about, 251
advertising door openings, 260
and Nordic UART, 252
and Web Bluetooth, 253
door opening counter project, 256-260
receiving door openings with Eddystone,
261-265
using Puck.js, 254-255
Bluetooth UART, 250
Booleans, 29
breadboards, sources for, 307
brushed motor, 61
brushless DC motors, 68
BTN1/BTN (variables), 321

331

C

camera, digital pinhole, 143-160
hardware assembly, 144-151
parts list, 143
software preparation, 151-160
capacitors, sources for, 309
characteristics list, 252
Chrome, Web IDE and, 18-19
Chromebook, Espruino Pico connection, 16
clock signal, 184
clocking, 183-185
comments, JavaScript, 28
communication
sources for parts, 315-318
wired (see wired communication)
wireless (see Bluetooth; infrared
communication; radio; WiFi)
commutator
building an electric motor with, 61-68
defined, 61
limitations of, 68
compilers, 12
JIT, 13
optimizing, 12
computer fan, for stroboscope tachometer, 81
console.log(), 35, 321
corkboards, sources for, 315
cross compilation, 12
Cyclic Redundancy Checks (CRCs), 221

D

data types, JavaScript, 28

DC motors, brushless, 68

DC power supplies, sources for, 311

debouncing, 117

decrement operators (JavaScript), 32

degrees, radians vs., 134

digital pinhole camera (see camera, digital
pinhole)

digitalPulse(pin, polarity, time[s]), 323

digitalRead(pin[s]), 322

digitalWrite(pin[s], value), 322

door opening counter

advertising door openings, 260
making, 256-260
receiving door openings with Eddystone,
261-265
dweet.io, remote control on net with, 203-205

E

ECMAScript 6 (see ES6)
Eddystone, receiving door openings with,
261-265
electric motors, 53-79
brushless DC motors, 68
defined, 53
earliest, 54
Faraday’s motor (experiment), 55-61
motor with commutator (experiment), 61-68
origins, 53
sources for, 311
stepper motor (experiment), 69-73
stepper motor control (experiment), 73-78
Electronics Starter Kits, 309
electrostatic motor, 54
ES6, 27
binary and octal numbers, 41
keywords, 31
template literals, 32, 248
ESP8266 ESPO1
about, 225
sources for, 318
Espruino
as web page server, 299
basics, 15-26
commands and variables, 321-324
radio transmission from, 216-218
sources for boards, 306
Espruino assembler, 325-330
basic instructions, 327-329
more complex instructions, 329
registers, 326
running code, 325
Espruino language interpreter, 2
Espruino Pico, 15-26
adding WiFi to, 227-231
connecting to Web IDE, 20

332 Index

first commands, 22
installing software, 18-19
JavaScript editor, 23-26
plugging into PC, 17
preparing for JavaScript, 27
preparing PC for connecting with, 16
updating firmware, 21
Espruino Web IDE (see Web IDE)
Espruino WiFi board
about, 227
code for, 233, 237
events, 37
exceptions, 49
exclusive or (xor) operator, 43
extension wire, sources for, 313

F

fan, for stroboscope tachometer, 81
Faraday, Michael, 53
Faraday’s motor
constructing, 55-61
parts list, 55
FET (P36NF06L), 312
firmware (Espruino Pico), 21
fishing line, sources for, 320
Fleming’s righthand rule, 58
floating point, 30
for loops, 48
functions (JavaScript), 34-37
as objects, 39
console.log, 35
defining, 35
in objects, 34
inline functions, 36
methods, 34
parselnt, 34
Furber, Steve, 10

G

Gordon, Andrew, 54

H

headphone jack, as alternative to USB, 186, 315
headphone leads, sources for, 315
hexadecimal (base 16), 42
homopolar motor, 60

(see also Faraday’s motor)

if statements, 46
IFTTT (If This Then That) Maker Channel, remote
control on net with, 205-209
increment operators (JavaScript), 32
infrared (IR) communication, 195-209
decoding IR signals, 198-203
drawbacks, 211
IR receiver, 195-198
receiver parts sources, 316
using decoded signal, 203
using remote control on net with dweet.io,
203-205
using remote control on net with IFTTT,
205-209
infrared (IR) receiver, 195-198
kits, 195
parts list, 195
parts sources, 316
sources for, 316
inline functions, 36
Internet
getting data from, 237-241
sending data to, 234-237
using remote control on net with dweet.io,
203-205
using remote control on net with IFTTT,
205-209
Internet-connected plotter, 287-299
hardware, 290
software for drawing images, 287-290
software preparation, 290-298
interpreter, 13
IR (see infrared entries)

Index 333

J

JavaScript, 27-50
&& and || operators, 47
arrays, 38-39
bit shifting, 44-46
bitwise arithmetic, 40-44
bitwise operators, 42-44
comments, 28
data types, 28
defining functions, 35
Espruino language interpreter and, 2
events and, 37
exceptions, 49
for loops, 48
functions, 34-37
functions in objects, 34
helpfulness of language, 31
if statements, 46
increment/decrement operators, 32
inline functions, 36
math operators, 29
math with numbers, 29
methods (functions in objects), 34
object orientation, 39
objects, 33
preparing Espruino Pico for, 27
ternary operators, 48
variables, 31
JavaScript editor, 23-26
JIT (just in time) compilation, 13
jitter, 177
jumper leads, sources for, 308

K

Kneller, George, 2

L

L293 motor driver IC, 73, 311
learning resources, 303
LED1/LED2 (variables), 321
LEDs, sources for, 309

light-dependent resistors, sources for, 309
light-following robot project, 119-123
Link Register, 326

Linux, Espruino Pico connection with, 16
load(), 324

lobster bands, sources for, 314

Lorentz force, 58

M

Mac OS, Espruino Pico connection with, 16
magnets, sources for, 309
math operators (JavaScript), 29
with numbers, 29
with strings, 30
with strings and numbers, 30
methods (functions in objects), 34
microcontrollers
ARM chip history, 10
basics, 9-13
defined, 9
programming, 11-13
Morse code, 183
motor driver IC, 73
motors (see electric motors)

N

negation, 44

neodymium magnets, sources for, 309
Nipkow disc, 95

Nipkow, Julius Gottlieb, 95

Nordic nRF52832, 250

Nordic UART, 252

not operator, 44

numbers (data type), 28, 29

o)

objects (JavaScript), 33
functions in, 34
JavaScript functions as, 39
Oehmichen, Etienne, 87
onlnit(), 324

334 Index

Open Drain, 84
operators (JavaScript)
&&and ||, 47
bitwise, 42-44
increment/decrement, 32
ternary, 48
optimizing compilers, 12
or (||) operators, 47
oscilloscope project
hardware assembly, 186-190
parts list, 186
software preparation, 190-193

P

P36NFO6L FET, 312

parselnt function, 34

parts, sources for, 305-320
common parts, 305-311
communications parts, 315-318
electromechanical components, 312-315
motors, 311

patch wires, sources for, 308

pen plotter, 125-142
assembly, 126-132
parts list, 125
problems with, 142
software, 133-142

persistence of vision, 91-94

Pin.read(), 322

Pin.set(), 322

Pin.write(value), 322

pinhole camera (see camera, digital pinhole)

pinMode(pin, mode), 323

Plateau, Joseph, 87

plotter

Internet-connected (see Internet-connected

plotter)

pen (see pen plotter)

sources of parts for, 319

XY (see XY plotter)
polling, 240
power supplies, sources for, 311
power transistors, sources for, 312
print(text), 321

printer, 161-177
hardware assembly, 162-170
parts list, 161
sled assembly, 165-167
software preparation, 171-177
Program Counter, 326
Puck.js, 250
controlling from an app, 255
using, 254-255
pull-up resistor, 84
pulleys, sources for, 319

R

radians, degrees vs., 134
radio, 211-222
decoding received data, 218-222
parts for receivers/transmitters, 316
receiver assembly, 212-214
transmitter assembly, 214
transmitting from Espruino, 216-218
Raspberry Pi, 16
remote control
on net with dweet.io, 203-205
on net with IFTTT, 205-209
reset(), 324
resistors, sources for, 309
righthand rule, 58
RISC instruction set, 327-329
robot project, 103-123
assembling, 109-116
following light, 119-123
parts list, 108
sending commands to, 116-119
servo motor, 103
servo motor test, 105-108
rod, sources for, 315
rotation sensor, 69

S

save(), 324

sensors, for brushless DC motors, 69
Serial Peripheral Interface (SPI), 184
server, WiFi connection, 241-244

Index

335

servo motors, 103 timers, software-based vs. hardware-based, 108

about, 103-105 tools, 2-6
sources for, 313 tutorials, 303
testing, 105-108

single core wire, sources for, 310

source code, 12 U

SPI (Serial Peripheral Interface), 184
springs, sources for, 318
Stack Pointer, 326

start bit, 192
! undefined (data type), 28
statement (defined), 36 unsigned shift right, 46

stepper motor USB
building a, 69-73 about, 185

buying instead of building, 73 Espruino Pico’s appearance as peripheral, 16

UART
Bluetooth UART, 250
Nordic UART, 252

Ej;ti(!:tfloioﬂo USB CDC (Communications Device Class), 185
testing, 72 UUIDs (Universally Unique Identifiers), 252
stepper motor control, 73-78
stop bit, 193 V
strings, 28, 30
stroboscope variables, JavaScript, 31
as basis for TV project, 91 vision, persistence of, 91-94
basic, 87-89
brighter, 89
defined, 87 W
strc;boxope;achometer, 81. -90 watch, 117
a.5|c stroboscope experlmgnt, 87-89 Web Bluetooth, 253, 254
brighter stroboscope experiment, 89 Web IDE

finding a fan for, 81

. . connecting Espruino Pico to, 20
speed detection experiment, 83-87

installation, 18-19
JavaScript editor, 23-26

T web server, for WiFi connection, 241-244
WiFi, 225-248
tachometer (see stroboscope tachometer) adding to Pico, 227-231
television experiment, 91-100 connecting to, 232
in style of John Logie Baird, 95-100 controlling Espruino with, 244-248
persistence of vision experiment, 91-94 creating a server, 241-244
template literals, 32, 248 getting data from Internet, 237-241
ternary operators, 48 modules for, 225
threaded rod, sources for, 315 sending data to Internet, 234-237
3D printers, 69 testing your wiring, 231
Thumb Wilson, Sophie, 10
about, 328 Windows, Espruino Pico connection with, 16
common instructions, 328 wire
sample code, 325 extension, 313

336 Index

single core, 310 X
wired communication, 183-193

clocking and, 183-185 XY plotter, 269-286

Morse code, 183 controlling the table, 277-286

oscilloscope project, 186-193 parts list for controller, 277
wireless communication (see Bluetooth; infrared parts list for table, 270

communication; radio; WiFi) table assembly, 271-277

wood, sources for, 310
word length, 185

Index

337

About the Author

Gordon Williams is an entrepreneur and inventor living near Oxford, UK. He grew up writ-
ing software and playing with electronics as a young child and went on to study Computer
Science at Cambridge University, England.

Gordon worked for a variety of technology companies, specializing in 3D graphics and
compiler design in a variety of languages. He's been working on the Espruino JavaScript
interpreter since 2012, single-handedly developing and launching three successful crowd-
funding campaigns and four different Espruino devices.

Gordon now works full-time developing Espruino, supporting the amazing community of
Espruino users worldwide and attending and speaking at events within the JavaScript,
embedded software, and Maker communities all over the world.

Colophon

The cover images were photographed by Gordon Williams. The cover font is Benton Sans
Bold. The text font is Adobe Myriad Pro; the heading font is Benton Sans Bold; and the
code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Why Make Things Smart?
	Learning through Making
	Making in JavaScript
	Tools and Materials

	Part I. Microcontrollers
	Chapter 2. What Is a Microcontroller?
	ARM History
	Programming a Microcontroller

	Chapter 3. Getting Started with Espruino
	Getting Ready
	Mac and Chromebook
	Windows
	Linux (Including Raspberry Pi)

	Plugging In
	Installing Software
	Connecting
	Updating Firmware
	First Commands
	The Editor

	Chapter 4. Getting Started with JavaScript
	Getting Ready
	Comments
	Data Types
	Undefined
	Numbers
	Strings
	Booleans

	Math
	Math with Numbers
	Math with Strings
	Math with Strings and Numbers
	The Helpful Language

	Variables
	Increment and Decrement
	Objects
	Functions
	parseInt
	Functions in Objects (Methods)
	console.log
	Defining Functions
	Inline Functions

	Arrays
	Object Orientation
	Bitwise Arithmetic
	Bitwise Operators
	Bit Shifting

	If Statements
	&& and ||
	Ternary Operators
	for Loops
	Exceptions

	Part II. Motors
	Chapter 5. What Is an Electric Motor?
	Experiment 1: Faraday’s Motor
	Experiment 2: Motor with Commutator
	Brushless DC Motors
	Experiment 3: Stepper Motor
	Experiment 4: Stepper Motor Control
	Experiment 5: More Stepper Motor Control

	Chapter 6. Stroboscope Tachometer
	Finding a Fan
	Experiment 6: Detecting Speed
	Experiment 7: Stroboscope
	Experiment 8: Brighter Stroboscope

	Chapter 7. John Logie Baird’s TV
	Experiment 9: Persistence of Vision
	Experiment 10: John Logie Baird’s TV

	Part III. Electromechanics
	Chapter 8. Make a Simple Robot
	Experiment 11: Try Out a Servo Motor
	Experiment 12: Make a Simple Robot
	Experiment 13: Following Light

	Chapter 9. Pen Plotter
	Experiment 14: Pen Plotter
	Software

	Chapter 10. Digital Pinhole Camera
	Experiment 15: Making a Digital Camera
	Complete Listing

	Chapter 11. Printer
	Experiment 16: Making a Printer
	Software
	Complete Listing

	Part IV. Communication
	Chapter 12. Wired Communication
	Clocking
	Experiment 17: Making an Oscilloscope
	Using the Oscilloscope

	Chapter 13. Cutting the Cord: Infrared
	Experiment 18: Making the IR Receiver
	Experiment 19: Decoding IR Signals
	Experiment 20: Using Our Decoded Signal
	Experiment 21: Using Our Remote Control on the Net, with dweet.io
	Experiment 22: Using Our Remote Control on the Net, with IFTTT

	Chapter 14. Cutting the Cord: Radio Signals
	Experiment 23: Wiring Up the Receiver
	Experiment 24: Wiring Up a Transmitter
	Experiment 25: Transmitting from Espruino
	Experiment 26: Decoding the Received Data

	Chapter 15. Connecting with WiFi
	Experiment 27: Adding WiFi to Your Pico
	Making This Tidier

	Experiment 28: Testing Your Wiring
	Experiment 29: Connecting to WiFi
	Experiment 30: Sending Data to the Internet
	Experiment 31: Getting Data from the Internet
	Experiment 32: Creating a Server
	Controlling Things

	Chapter 16. Bluetooth Low Energy
	So, How Does Bluetooth Low Energy Work?
	How Can We Use Bluetooth LE Ourselves?
	Web Bluetooth
	Experiment 33: Using Puck.js
	Experiment 34: Making a Door Opening Counter
	Experiment 35: Advertising Door Openings
	Experiment 36: Receiving Door Openings with Eddystone

	Part V. Putting It All Together
	Chapter 17. XY Plotter
	Experiment 37: Making an XY Table
	Experiment 38: Controlling the XY Table

	Chapter 18. Internet-Connected Plotter
	Experiment 39: Internet-Connected Plotter

	Part VI. Conclusion
	Chapter 19. So What Now?
	Appendix A. Parts and Materials
	Common Parts
	General
	Espruino Boards
	Breadboard
	Patch Wires/Jumper Leads
	Resistors, Capacitors, LEDs, Light-Dependent Resistors
	Neodynium Magnets
	Single Core Wire
	Wood

	Motors Section
	General
	A Source of DC Power (Around 6–12v)
	L293D Motor Driver IC
	Brushless Fan
	P36NF06L FET

	Electromechanics Section
	General
	Servo Motors and Extension Wire
	Lobster Bands
	A Small Corkboard (Roughly 30cm×40cm)
	Threaded Rod and Nut

	Communication Section
	A Headphone Lead with a 3.5mm Jack Plug
	IR Receiver (HX1838, VS1838, TSOP348, or TSOP344) and Remote Control
	A 315Mhz (USA) or 433Mhz (Europe) Radio Transmitter/Receiver
	ESP8266 ESP01

	Putting It All Together
	2x Springs
	Smooth Aluminum Bar and 30mm×30mm×30mm Cube of Solid Wood or Plastic
	10×40mm Diameter Pulleys
	5M of Fishing Line
	Two Small Geared Stepper Motors

	Appendix B. Common Espruino Commands and Variables
	print(text) or console.log(text)
	LED1 and LED2
	BTN1 or BTN
	digitalWrite(pin[s], value)
	digitalRead(pin[s])
	Pin.read(), Pin.write(value), Pin.set(), and Pin.reset()
	analogWrite(pin, value[, options])
	analogRead(pin)
	digitalPulse(pin, polarity, time[s])
	pinMode(pin, mode)
	reset()
	save()
	load()
	onInit()

	Appendix C. Espruino Assembler
	So How Do We Run This Code?
	Registers
	Instructions
	Getting More Complex

	Index
	About the Author

