
Build, Program, and Customize 
Your Own Robots! 
The mBot is an educational Arduino robot that helps kids learn 
programming and electronics, alone or in the classroom. The 
mBot allows novices to start by tinkering, and to access higher-
level features or add new components when inspiration strikes, 
without soldering or breadboarding! This flexibility allows 
raw beginners and experienced Makers to work at their own 
comfort level.

Written by educators, this book cuts through much of the 
confusion resulting from the mBot documentation. It also saves you 
time when you’re scaling up your mBots for home and classroom 
use by giving you creative project ideas you can use right away. 

With this book, you’ll learn to:

●● Customize your mBot kit  
with covers and 3D-printed 
parts.

●● Add sensors, and program 
with SCRATCH, to do practical 
and whimsical projects.

●● Create drag-and-drop 
graphical programming using  
a computer or tablet.

●● Integrate your mBot with 
LEGO Technic. (The book’s 
website includes 3D-printing 
and laser-cutting files!)

●● Design elementary data- 
collection feeds, mixed-media 
animatronics, and displays 
that react to the environment 
around you. 

There are a quarter of a million mBots out there, ready to push 
creative kids beyond the preprogrammed car. This book will ignite 
your mBot imagination and help you start thinking about the 
possibilities!

Science/Robotics

m
B

o
t fo

r M
akers

S
C

H
ER

TLE • C
A

R
LE

US $29.99   CAN $39.99

ISBN: 978-1-680-45296-9

makezine.com

 mBot  
for Makers

Conceive, Construct, and 
Code Your Own Robots at 
Home or in the Classroom

RICK SCHERTLE • ANDREW CARLE





CONCEIVE, CONSTRUCT, AND 
CODE YOUR OWN ROBOTS AT 
HOME OR IN THE CLASSROOM

mBot for Makers 

Maker Media, Inc.
San Francisco

Rick Schertle
Andrew Carle



Copyright © 2017 Rick Schertle and Andrew Carle. All rights reserved.

Printed in Canada.

Published by
Maker Media, Inc. 
1700 Montgomery Street, Suite 240 
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (safaribooksonline.com). 
For more information, contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart
Editor: Patrick DiJusto
Copy Editor: Elizabeth Campbell, Happenstance Type-O-Rama
Proofreader: Elizabeth Welch, Happenstance Type-O-Rama
Interior Designer and Compositor: Maureen Forys, Happenstance Type-O-Rama 
Cover Designer: Maureen Forys, Happenstance Type-O-Rama
Indexer: Valerie Perry, Happenstance Type-O-Rama

December 2017: First Edition

Revision History for the First Edition

2017-12-9 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680452969 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, 
Inc. The Maker Media logo is a trademark of Maker Media, Inc. mBot for Makers 
and related trade dress are trademarks of Maker Media, Inc. Many of the designa-
tions used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and Maker Media, 
Inc. was aware of a trademark claim, the designations have been printed in caps 
or initial caps. While the publisher and the author have used good faith efforts to 
ensure that the information and instructions contained in this work are accurate, 
the publisher and the author disclaim all responsibility for errors or omissions, 
including without limitation responsibility for damages resulting from the use of 
or reliance on this work. Use of the information and instructions contained in 
this work is at your own risk. If any code samples or other technology this work 
contains or describes is subject to open source licenses or the intellectual property 
rights of others, it is your responsibility to ensure that your use thereof complies 
with such licenses and/or rights.

978-1-168-045296-9

mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781680452969
http://safaribooksonline.com


Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content 
in both book and video form from the world’s leading authors in technology and 
business. Technology professionals, software developers, web designers, and busi-
ness and creative professionals use Safari Books Online as their primary resource 
for research, problem solving, learning, and certification training. Safari Books 
Online offers a range of plans and pricing for enterprise, government, education, 
and individuals. Members have access to thousands of books, training videos, and 
prepublication manuscripts in one fully searchable database from publishers like 
O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Mic-
rosoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & 
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, 
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, 
and hundreds more. For more information about Safari Books Online, please visit 
us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media, Inc. 
1700 Montgomery Street, Suite 240 
San Francisco, CA 94111

You can send comments and questions to us by email at books@makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community of 
resourceful people who undertake amazing projects in their backyards, basements, 
and garages. Maker Media celebrates your right to tweak, hack, and bend any Tech-
nology to your will. The Maker Media audience continues to be a growing culture 
and community that believes in bettering ourselves, our environment, our educa-
tional system—our entire world. This is much more than an audience, it’s a world-
wide movement that Maker Media is leading. We call it the Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more about the 
company at the following websites:

Maker Media: makermedia.com
Maker Faire: makerfaire.com
Maker Shed: makershed.com
Maker Share: makershare.com

mailto:books@makermedia.com
http://makezine.com
http://makermedia.com
http://makerfaire.com
http://makershed.com
http://makershare.com




v﻿

Contents

	 Acknowledgments	 vii

	 About the Authors	 viii

	 Introduction	 ix

1	 Kit to Classroom	 1

Out-of-the-Box Kit	 1
Installing the Motors and Wheels on the Chassis	 3
Installing the Sensor	 12
Adding the Battery Holder	 15
Installing the mCore and Battery	 16
Wiring the mBot	 19
Communicating with Your mBot	 20
Test the mCore for Correct Connections	 23
Test Your mBot Remote	 23
What to Do with Your mBox Right out of the Box	 25
Projects	 26
To Classroom	 28
Onboard Components	 28
Powering Up Your mBot	 31
Tour of the mCore and Onboard Sensors	 34
Storing Components	 37
Storing Projects	 37
Protecting the mCore	 42
Using a LEGO Technic Frame	 43
Adding a Cover	 51
Making Cables	 53
Updating the mBot	 58
Where We’re Heading from Here	 61



vi GETTING STARTED WITH MBOTS

2	 mBot Software Sensors	 63

Default Program Options 	 63
Makeblock App	 64
Tour of the Project Gallery	 65
Navigating Blocks on a Mobile Device	 68
Balloon Tag	 72
mBlock	 75
Connecting to mBlock	 77
Traffic Light Classroom Volume Meter	 85
Working with Sensors in mBlock	 93
Sensor Recipes	 95
Traffic Light Classroom Volume Meter, Revisited	 103
Upload to Arduino	 106
Independent Traffic Light Classroom Volume Meter	 108
Reinstall the Default Program	 113
Where We’re Heading from Here	 114

3	 Animatronics	 119

Puppet Movement without Sensors	 121
Puppet Movement with Sensors	 144

4	 Measurement Devices	 169

Monitoring Sensors in mBlock	 182
Door Monitor	 194

5	 Robot Navigation	 203

Robot Navigation Using Keyboard Commands	 203
Robotic Game Challenges	 204

6	 Building Big and Small with mCore	 245

Harnessing DC Power	 245
Building Small	 251
Building Big	 274

	 Index	 289



vii﻿

Acknowledgments

Love and gratitude to my daughter, Annika, for making my life a 
whirlwind of discovery and creativity, and to my awesome part-

ner, Jodi Kittle, for helping me find focus and balance in the midst 
of that chaos. Thanks to Shelly Willie, who invited me to Chadwick 
International, which in turn offered the incredible pleasure of daily 
collaboration with Gary Donahue, whose innovative spirit shines 
through in every mBot project. Sylvia Martinez’s and Gary Stager’s 
Constructing Modern Knowledge Press not only connected me to 
the powerful history of children and computers, but also the incred-
ible cohort of Maker-educators whom I’m lucky enough to call col-
leagues and friends, including Josh Burker, Jaymes Dec, Angi Chau, 
Karen Blumberg, and Brian C. Smith.

Andrew

A s in all my life, my wife, Angie, and kids, Kelly and Micah, 
provide constant fun, encouragement, and inspiration. I love 

you guys so much! I’m thankful to my dad, Bill, for allowing me 
to work alongside him as a kid and learn along the way. I so much 
appreciate my staff team and the awesome students and parents at 
Steindorf K–8 STEAM School in San Jose, California, where I teach. 
Starting a new public school has been a wild ride, especially while 
writing a book! Thanks to Andrew for his willingness to share his 
expertise and endure endless questions with a chill attitude. As a 
lifelong Maker, I have been given so many opportunities by Maker 
Media over the past ten years to do what I love doing—Making and 
teaching. Thanks!

Rick



viii

About the Authors

RICK SCHERTLE has taught middle school for over 20 years, and 
now runs the Maker Lab at Steindorf K–8 STEAM School in San 
Jose, California. Rick has been involved in Maker Faire for many 
years. He has written nearly two dozen articles for Make: Magazine, 
including his first article in volume 15 in 2008 on compressed air 
rockets. He also wrote the book Planes, Gliders, and Paper Rockets from 
Maker Media. Rick is the cofounder of AirRocketWorks.com.

ANDREW CARLE has taught in K–12 schools for 15 years. He 
launched the Makers program in 2010 while teaching programming 
and math at Flint Hill School in Northern Virginia. In 2014, he 
moved to Korea to expand Chadwick International’s school-wide 
Making & Design program. He has presented at Maker Faires and 
has with MakerEd.org, National Association of Independent Schools 
(NAIS), Virginia Society for Technology in Education (VSTE), and 
International Society for Technology in Education (ISTE), and has 
been named a Senior FabLearn Fellow for Stanford’s Transformative 
Learning Technologies Lab.



ix﻿

Introduction

The Arduino came to prominence as a tool to help designers, 
artists, and musicians access the power of inexpensive Atmel 

8-bit microcontrollers. The Arduino allowed people with deep skills 
in another discipline to bring their ideas to life. All it took was learn-
ing “a little programming” without having to acquire the full range 
of skills to work with embedded electronics.

That mission has been so successful over the last decade that it 
created a need for a new tool, one that could connect young people 
with minimal skills to the “little programming” world of Arduino.

Over the last five years, there’s been an explosion of kid-friendly 
programming and robotics tools. After working with dozens of dif-
ferent kits and boards, we became deeply impressed with the mBot. 
But as the technology choices multiplied, the tutorials and intro-
ductory materials offered didn’t match the ways we used these plat-
forms in classrooms, Makerspaces, and clubs. We saw the need for 
a book that offered instructions for specific projects, in conjunction 
with advice on using the mBots with large groups in a classroom 
setting. The mBot allows novices to start with idle tinkering on the 
base mBot, and access higher-level features or add new components 
when inspiration strikes. This flexibility is crucial for classrooms or 
cohort groups, since the mBot allows raw beginners and experienced 
tinkerers to work at their comfort level.

Shenzen, China–based Makeblock has emerged as a major player 
in the kid-focused robot kit market. Their mBot is the cheapest and 
most widely available—you can buy them on Amazon and directly 
from their website at www.makeblock.com—with hundreds of thou-
sands of mBots distributed around the world. While the mBot kit 
and the many accessories available for the mBot are well engineered 

http://www.makeblock.com%E2%80%94with


x GETTING STARTED WITH MBOTS

and made from quality materials, there is a lack of technical support 
and documentation. The Makeblock website has an active forum 
and user base, but information is often confusing and hard to find. 
We hope to bridge the divide between a quality product and the 
thousands of users with this first-of-its-kind book. 

Rick and Andrew met during the summer of 2016 as coaches for 
the Design Do Discover (D3) conference at Castilleja School in Palo 
Alto, led by mutual friend Angie Chau. 

Rick was an initial supporter of Makeblock’s mBot Kickstarter 
campaign. He bought five mBots for a neighborhood Makerspace 
he was helping start. Due to the affordability of the platform, several 
years later he purchased 20 more mBots for the new school where he 
would be running the K–8 Maker Lab. Those mBots would become 
a core part of his Maker Lab curriculum. 

Andrew had come to D3 with several deconstructed mBots, and 
was using the mCore controller by itself for a variety of creative uses. 
In South Korea where Andrew taught, he had over a hundred mBot 
kits that were used at nearly every grade level of his K–8 school.

Rick’s desire to learn more about the platform and the ability to 
scale it up for classroom and school use was a perfect match with 
Andrew’s firsthand experience. Facebook Messenger conversations 
began across time zones, and this book is the result of this cross-
Pacific collaboration. We hope this book cuts through much of the 
quirks and confusion resulting from the mBot documentation, saves 
you time when scaling up your mBots for classroom and school use, 
and gives you some creative project ideas to use right away.



Kit to Classroom

R ight out of the box, the mBot has many features appealing to 
kids and adults alike. But the true power comes from the heart 

of the mBot—the Arduino-based mCore microcontroller, and the 
other sensors and actuators in the Makeblock platform. These com-
ponents transform the retail mBot kit from a Christmas morning 
diversion into a classroom powerhouse, and offer plenty of possibil-
ities for anyone who’s “done everything” with the mBot.

OUT-OF-THE-BOX KIT
When people think of mBots, what usually comes to mind is a cute 
little robot with an anodized aluminum body and sturdy compo-
nents. You can buy mBots at all major retailers online and in brick-
and-mortar stores.

The mBot chassis, wheels, motors, controller, and sensors can be 
put together in about half an hour with the screwdriver (included). 
Even young kids can follow along with the clear, IKEA-esque visual 
instructions included in the commercial kit. While that flyer is help-
ful, we’re going to walk through the steps of putting together your 
mBot in a bit more detail. 

1



2 MBOT FOR MAKERS

FIGURE 1-1: The mBot

FIGURE 1-2: The mBot parts right out of the box



3Kit to Classroom

INSTALLING THE MOTORS AND WHEELS 
ON THE CHASSIS
We’ll begin mBot assembly with the sturdy anodized aluminum 
chassis. Gather the following parts and let the building begin!

Parts

Chassis, M3n25 bolt (4)

M3 nuts (4)

Motors (2)

Wheels (2)

M2.2n9 screw

Tires (2)

Quick Primer on Simplified Sizing
In the parts list, you can see part names for bolts and 
screws with seemingly a scramble of letters and num-
bers. Let’s unscramble the meaning.

»» The M in M3x25 stands for metric. Metric screw 
threads were one of the first globally standardized 
parts established by the International Standards 
Organization in 1947.

»» The number to the right of the M is the diameter of 
the threaded part of the bolt.  

»» The number after the n is the length of the bolt 
measured in millimeters

»» The bolt shown in Figures 1-3 and 1-4 is an M4x8. 
It’s 4 mm diameter (Figure  1-3) and 8 mm long 
(Figure 1-4).

»» Metric bolts can use either hex head wrenches or 
Phillips screwdrivers.



4 MBOT FOR MAKERS

FIGURE 1-3: Measuring the diameter of a bolt

FIGURE 1-4: Measuring the length of a bolt



5Kit to Classroom

Variety packs of metric bolts, nuts, and washers (like the one 
shown in Figure 1-5) can be purchased on Amazon for a good price. 
Many of the projects in this book will use these small metric bolts in 
a variety of lengths. Makeblock’s large aluminum beams and build-
ing materials all use M4 bolts. The mBot chassis uses M3 bolts and 
spacers, along with smaller M2.2 bolts to affix the wheels.

FIGURE 1-5: Cornucopia of hardware

Steps

	 1.	 Line up the holes on the geared motor with the holes on the chas-
sis, and insert the M3n25 bolts. Tighten a M3 nut on the end, 
holding it in place while tightening to prevent it from spinning.



6 MBOT FOR MAKERS

	2.	 Repeat with the second motor. The motors are identical, so it 
doesn’t matter which side you install them on.



7Kit to Classroom

	3.	 Feed the motor wires through the top of the chassis.

	4.	 Using an M2.2n9 screw, attach the wheel to the geared motor. It’s 
easy to strip the Phillips head screw by overtightening, so tighten 
the screw only until it’s snug, and then stop!



8 MBOT FOR MAKERS

	5.	 Attach the tires over the wheels.

About the Motors and Wheels 
The mBot’s aluminum frame is designed to fit the geared DC motors 
included in the kit. The design is pretty standard across the robotics 
world, but you may find small inconsistencies in hole spacing or shaft 
depth between third-party motors and the mBot frame. 

Makeblock includes a few replacements for the internal plas-
tic gears with the motor. If you’re opening and building a bunch 
of kits at once, be sure to grab them before kids turn them into 
tiny tops. 

The mCore board only has one power circuit, which pro-
vides regulated 5V power to the microcontroller and the motor 
ports via an onboard H bridge. This means that the M1 and M2 
motor ports are limited to DC motors or pumps that operate at 
5V. Unlike other robot platforms or Arduino boards, the mBot 
can’t connect a second, larger power source that would supply 



9Kit to Classroom

power to just the motor ports. If you need more oomph than the 
included geared motors can provide, Chapter 6, “Building Big 
and Small with mCore,” shows how to expand the mBot using 
external power relays.

In later chapters, we’ll cover how you can add LEGO gears and 
pulleys to your wheel hubs to power all kinds of things with your 
motors.  

About the mBot Chassis 
Makeblock’s first product was a set of anodized aluminum con-
struction materials, which included rectangular beams and open 
and threaded connection points. These beams are still at the core 
of many Makeblock products, including the XY Plotter and 3D 
printers. 



10 MBOT FOR MAKERS

In the early days, Makebock was very clear that their aluminum 
parts were designed to work well with LEGO Technic parts. Holes on 
Makeblock parts are spaced to neatly overlap with the most common 
Technic beams, although the holes are sized slightly smaller. Make-
block holes are sized for 4 mm metric screws. To fit these screws, 
Makeblock holes are just a hair over 4 mm, while Technic holes are 
4.8 mm. This size discrepancy means that although LEGO Technic 



11Kit to Classroom

pins cannot connect a Makeblock beam to LEGO parts, standard 
M4 bolts and nuts can anchor LEGO to Makeblock parts.

Over the years, Makeblock’s product line has expanded, and now 
there are many examples of products on both sides that can’t con-
nect easily. Consequently, Makeblock doesn’t advertise the physical 
compatibility between their hardware and LEGO Technic anymore. 
However, the M4 sizing remains consistent across all sorts of strange 
and specialized parts. The aluminum mBot chassis continues this 
tradition.

The chassis is covered with M4 holes, most often spaced apart to 
fit Technic, to provide multiple anchor points and easy expansion. 
There are a few mounting points on the mBot frame that are smaller 
than M4, notably the two points where the yellow motors attach, and 
the larger holes for the motor axle. When working with the mBot and 
LEGO, you’ll need M4-14 screws or longer. An M4-14 screw will go 
through one Technic beam and the thin aluminum on the circular 
or angled tabs, with room for one nut. Thicker parts will naturally 



12 MBOT FOR MAKERS

require longer screws. When working with mBots and LEGO in the 
classroom, we keep a collection of M4 screws handy, with lengths 
ranging from 15 to 40 in 5 mm increments.

INSTALLING THE SENSORS
Next, we’re going to install the sensors. Let’s get started with the 
parts you’ll need.

Parts

Me Ultrasonic Sensor

Me Line Follower

6P6C RJ25 cables (2)

M4n8 screws (4)

Steps

	 1.	 Flip your mBot chassis upside down. On the front underside of 
the chassis, line up the middle holes on the line-following sensor 
with the roller ball stacked on top.

	2.	 These holes in the chassis are threaded, so you just need to screw 
both M4n8 screws down through the holes in the roller ball.  



13Kit to Classroom

NOTE  The shaft on the screwdriver pulls out and has 
a Phillips tip on one end and a hex tip on the other.  

	3.	 Flip the mBot back over, and line up the holes on the ultrasonic 
sensor with the holes on the front of the mBot above the “smile.” 
Screw these together with two M4n8 screws.



14 MBOT FOR MAKERS

	4.	 Plug the RJ25 cable into the line-following sensor, and feed the 
wire through the opening in the chassis. Plug the other RJ25 
cable into the ultrasonic sensor.  

NOTE  A full assortment of available add-on sensors 
are described in the table at the end of Chapter 2, which 
includes pictures and descriptions of each sensor and 
sample code for testing the various sensors.  



15Kit to Classroom

ADDING THE BATTERY HOLDER

Parts

4 AA battery holder 

Step
Connect the barrel jack on the 4 AA battery holder to the DC power 
jack on the mCore as shown.



16 MBOT FOR MAKERS

INSTALLING THE MCORE AND BATTERY

Parts

mCore board

mBot chassis

M4n25 brass stand-offs (4)

M4n8 screws (4)

5 cm of Velcro

Steps
	 1.	 Screw the brass stand-offs into the four pre-threaded holes on 

the top of the chassis.

	2.	 Lay down a strip of the included Velcro on the back of the chassis.



17Kit to Classroom

	3.	 Attach the other half of the Velcro to the back of the 4 AA battery 
holder. The power cable for the battery pack should point out 
toward the back.



18 MBOT FOR MAKERS

	4.	 Stick the battery pack down onto the chassis, as shown. Now 
run the wires so the ultrasonic sensor cable lies along the right 
side of the mBot (when the back of the mBot is facing you). The 
line-following cable and two motor wires lay along the left side 
of the mBot.

	5.	 Place the mCore down on the brass standoffs, as shown, and 
secure with M4n8 screws.

NOTE  A detailed tour of the mCore board takes place 
in the “Classroom” section later in this chapter.



19Kit to Classroom

WIRING THE MBOT

Parts
Everything is already installed. Just follow these steps to connect 
correctly.



20 MBOT FOR MAKERS

Steps

	 1.	 Looking at the mCore from the top, plug the ultrasonic sensor 
into port 3. 

	2.	 Plug the line-following sensor into port 2.

	3.	 Plug the motors into the two motor jacks on the left side of the 
mCore.  

	4.	 The barrel plug on the battery can be plugged into the round 
power jack on the back of the mCore.  

COMMUNICATING WITH YOUR MBOT

Parts

Bluetooth or 2.4G module



21Kit to Classroom

Both versions of the mBot 
come with an infrared remote 
(IR); however, when buying 
an mBot, you need to specify 
either the 2.4G or Bluetooth 
version. In the accompanying 
image, the Bluetooth module is 
on the right, and the 2.4G (GHz) 
module (with its USB dongle) is 
on the left. Either module plugs 
into the mCore board in the 
wireless module slot on the left 
rear corner.

Makeblock’s advertising 
copy distinguishes these models 
by referring to them as School (2.4 GHz) and Family (Bluetooth), a 
useful if imprecise summary. This confused me when I was buying 
my first mBots.

Let’s take a look at the differences between the two.



22 MBOT FOR MAKERS

Pros and Cons of Bluetooth

»» It’s easy to connect to a Bluetooth-enabled tablet or laptop 
computer. By doing this, you can control and program your 
mBot using Bluetooth.  

»» It’s the best option when working with just one mBot.

»» It takes more work to pair and the process is 
platform-dependent.

Pros and Cons of 2.4G

»» It’s easy to connect to any computer only using a USB 2.4G dongle. 

»» Requires a “classic” USB port or a USB-C adapter to use with 
new Macbooks.

»» This is by far the preferred option when using many mBots 
with a group of kids. Kids can just plug in the dongle, connect, 
and begin programming!

In order to connect the module, just line up the four pins on one 
side and three pins on the other, and insert the Bluetooth or 2.4G 
module into the slots on the mCore—that’s it!



23Kit to Classroom

TEST THE MCORE FOR CORRECT 
CONNECTIONS
Flip the power switch and you’ll hear three tones. The two front 
left and right lights (LED1/2) will flash red/green/blue, then off. A 
red power light in the middle of the circuit board (PWR) stays on, 
along with another red light (very small) on the back of the range 
sensor. Two tiny blue lights on either side of the line-tracking sensor 
should also stay on when your mBot is placed on the table or if you 
put your finger over them. The line-following sensor also has a tiny 
red power light.  

NOTE  If one or more of these lights is not lit, check 
the connections on ports 2 and 3 and check the batteries.

TEST YOUR MBOT REMOTE
Insert a CR2025 battery into the remote, making sure the battery is 
installed with the smooth + side facing toward the remote buttons. 
The remote only has about a four-foot range and requires line of 
sight to the IR receiver on the front of the mCore. There are three 
modes preprogrammed into the mBot or mCore to use with the 
remote: modes A, B, and C.

MODE A: REMOTE MANUAL 

CONTROL 

When you select this mode, 
you’ll hear a low-tone beep, 
and the two LEDs on the 
front of the mCore will turn 
white. In manual control 
mode, the arrows on the 
remote control the direction 
of the robot, and the num-
bers adjust the speed of the 



24 MBOT FOR MAKERS

robot, with 1 being the slowest and 9 the fastest. If any of the but-
tons don’t work, check the motor connections and make sure the 
batteries are good. Try pressing 9 (full power) and try the other 
buttons again using the higher power level. If left and right turn 
in the wrong direction, the motor wires may be reversed. If the 
wheels aren’t turning, check to make sure all wires are plugged 
in and that the battery has a full charge.

Which Is the Left Motor? 
The left motor is the one installed under connectors 1 and 
2. Both motors are the same, but once they’re installed, 
they become left and right. The left motor should be 
connected to the white power plug beside connector 1. 

MODE B: WALL AVOIDANCE/RANGE CHECKER

When you select this mode, you’ll hear a medium beep, and the 
LEDs will turn green. To see it in action, hold the mBot in the 
air and press B. The wheels will turn. As you move your hand in 
front of the range sensor, the wheels will change direction for a 
moment and then return to normal. If this does not occur, the 
range sensor may not be connected. Check to make sure the red 
power light on the back is lit. Ensure that the range sensor is 
connected to port 3 on the mCore, which is the only port that 
will work for the demo program. Make sure it’s snapped all the 
way into the sensor as well. 

MODE C: LINE-FOLLOWING

When you select this mode, you’ll hear a high-tone beep, and 
the LEDs will turn blue. To see how this mode works, open the 
folded sheet with the giant number 8 on it, and place the mBot 
right on top of a black line. Turn the mBot on, and press C. The 
mBot should immediately start following the black line, adjusting 
its wheels to follow the line as it moves. If this does not happen, 



25Kit to Classroom

confirm there are two blue power lights on the tracking sensors. 
Make sure the tracking sensor is plugged into port 2.

WHAT TO DO WITH YOUR MBOT RIGHT OUT 
OF THE BOX
Now it’s time to get creative and artsy with your standard mBot. 
Many materials (craft sticks, cardboard, straws, and so on) can be 
added to the front and rear racks of the mBot frame by either bolting 
them on with M4 bolts and nuts, or using a hot glue gun.  

NOTE  If you’re going to attach things with a hot glue 
gun, put masking tape on the frame first so the glue will 
come off without damaging the frame.  

The following image shows a neat idea for building a rack for the 
front and rear of an mBot.



26 MBOT FOR MAKERS

PROJECTS
Although the mBot is a powerful and programmable robotics plat-
form, there’s a lot to explore using just the mBot’s IR remote. In this 
section, we’ll explore activities you can start the moment you tighten 
the last screw on the mBot chassis. These are great for opening meet-
ings when lots of folks are assembling mBots at once. Nothing moti-
vates you to finish the last of the wiring like the chance to join a 
pick-up game of robot soccer.

In this section, we’ll look at some cool things you can do with the 
basic mBot setup we just finished. 

Here are some activities you can do with just the IR remote 
(included in both the Bluetooth and 2.4G kits):

»» Race around a DIY obstacle course—go ahead and set up some 
cups on the floor, and make ramps, and so on!

»» Run timed races through the obstacle courses.

»» You could create a fancier obstacle course by requiring the use 
of the three preprogrammed modes:

»» First, steer around cones using Mode A.

»» Second, find the black line and begin line-following in 
Mode C.

»» Third, switch to Mode B, obstacle avoidance, to get  
through a maze.

»» Attach a pen or pens to the front or rear of the mBot to turn it 
into a drawing bot.

»» Make parades with multiple mBots using Mode C, the line-
following feature. Chapter 2, “mBot Software Sensors,” has 
more information on how this works, including how to add 
sensors to make them navigate autonomously.

»» Move a load of straws or blocks from point A to B (providing 
different parameters for different age groups) using racks built 
onto the front and back of the mBots. With younger students, 



27Kit to Classroom

if the robot simply moves with a load, this might count as suc-
cess, whereas older students might need to navigate bridges 
or tunnels moving both forward and in reverse. If you’re using 
multiple mBots, teams can be timed for a competition.

»» Create an extension to the mBot that moves some object to 
perform a task; for example, you could add an iPad to create a 
mini telepresence robot, or add floor scrubbers and sweepers.

With mBots that are paired to a computer or tablet using Blue-
tooth, several (or many) mBots could be controlled independently. 
Here are some ideas you can try using the Bluetooth module:

»» Sumo wrestling—Draw a big circle on the ground with tape, 
and the mBots can try to push the other bots out of the ring.

»» BattleBots—Attach a BBQ skewer to the front of the mBot and 
a balloon to the back. The mBots must try to pop each other’s 
balloons. Learn more about this in Chapter 2.

»» Race course—Race head-to-head through an obstacle course 
the kids build.



28 MBOT FOR MAKERS

TO CLASSROOM
During the last six years, there’s been an explosion in boards, kits, 
and tools roughly described as “kid electronics.” In that time, I’ve 
used (almost) all of them in my classroom. Although a few of those 
products became MakerEd workhorses, most failed in serious ways 
when put into the hands of real students in a classroom Makerspace. 
I was looking for a low-floor, high-ceiling open platform that allows 
students to start with their Scratch programming skills and transi-
tion out into “real” Arduino. 

NOTE  Scratch is a free graphical programming lan-
guage developed by the Lifelong Kindergarten Group at 
MIT. With millions of users, it’s a familiar and accessible 
tool for everyone from kids to adults. Scratch can be used 
to program a variety of Arduino-based microcontrollers.

Makeblock’s mCore board is the microcontroller that powers the 
mBot, and it comes as close to the classroom robotics bulls-eye as 
any other product available. Although the board was created and 
released as part of the mBot kit, it’s now available directly from 
Makeblock at a significantly lower price. Even without the chassis 
and motors that ship with the kit, the mCore is a great learning 
platform. 

The mCore board uses an Atmel ATmega328, common across 
many boards of the Arduino Uno generation. Instead of the tradi-
tional Arduino shield layout, many of the digital and analog I/O pins 
are routed into the four phone jack plugs. Several basic components 
are built into the board, including some RGB LEDs, a buzzer (out-
puts), a push button, and a light sensor (inputs).

ONBOARD COMPONENTS
Makeblock electronic components use a 6-pin “phone” plug (known 
as RJ25 or 6P6C). The components and ports are color-coded so that 



29Kit to Classroom

components that require specific features from the AT328 will always 
be matched to the right pins. There is a great chart to illustrate this 
at the following website: http://learn.makeblock.com/makeblock-orion/. 
(See colored square shapes labeled 1–4.)

WHITE

This is the serial port for I2C devices. Many devices in the Ardu-
ino universe use a serial protocol called I2C. Devices with exist-
ing Arduino libraries can be used with the mCore in Arduino 
mode. However, there’s currently no way to access I2C devices 
through the mBlock programming interface.

BLUE

Makeblock refers to components that go in this port as double 
digital, which simply means that the sensor sends or receives data 
over both digital I/O pins. Some of the other Makeblock boards 
have ports without blue, but all four of the mBot ports can be 
used for double digital.

YELLOW

Devices that go here all use a single digital I/O port.

GRAY

This is the hardware serial—none of the four ports on the mCore 
have the gray label, because the RX/TX pins run to the wireless 
module.

BLACK

Components that require analog input ports Arduino pins A0–A3 
belong in this port. Examples include any sensor that reports a vari-
able resistance, like a potentiometer (slide, knob, or analog stick). 
The mBot has black connectors on ports 3 and 4 only. 

RED

While there are no red ports on the mBot, other Makeblock 
products use red for motor ports that tap into a higher voltage 

http://learn.makeblock.com/makeblock-orion/


30 MBOT FOR MAKERS

line (basically, Vin for the Arduino). The mBot does not have a 
secondary power supply on the main board, so it doesn’t need a 
red port. We cover the different ways to use larger motors with 
the mBot in Chapter 6.

On the mCore, all four numbered ports have white, blue, and 
yellow markings. This means they can use any of the digital sensors 
or 12c devices. Only ports 3 and 4 also have black, so the mCore is 
limited to only two simultaneous analog sensors. 

If you’re interested, the specific Arduino pin number that cor-
responds to each plug is silk-screened onto the board behind the 
RJ25 plug.



31Kit to Classroom

POWERING UP YOUR MBOT

There are three plugs that can accept a power source for the mBot: 
USB, the 2.5 mm barrel plug, and the two-pin JST lithium ion battery 
(LIB) connector.



32 MBOT FOR MAKERS

USB is probably the most familiar option with new users. The 
connection on the mBot board uses the hefty USB-B plug, normally 
seen on printers and other large devices. When compared to the USB 
micro or mini used on other Arduino-inspired boards, the USB-B 
plug is downright burly. This weight and stability is a huge benefit 
when working with kids. While USB can obviously be used for data, 
it works just fine as a simple power port. Using a short USB A or B 
cable, you can power an mBot from a standard external USB battery 
for many hours. Note that supplying power to the USB port does 
not activate the board unless you also turn the power switch on. It 
sounds obvious, but that’s different than normal Arduino boards.

The mBot ships with a 4 AA battery holder that uses the 2.5 mm 
barrel plug. This plug is smaller than the standard Arduino 3.5 mm 
barrel plug, possibly to serve as a last-minute reminder that it is not 
safe to power an mBot with a 9V battery. 

The JST connector is a mixed 
blessing for classroom use. Once 
it’s docked, the connection is 
incredibly snug (yay!), to the 
point where kids who attempt to 
unplug the battery will often rip 
wires out of the harness (boo). 
If rechargeable batteries needed 
to be removed and reattached 
on a daily basis, the JST connec-
tor wouldn’t survive a month. 
Thankfully, the mCore includes 
an onboard charging circuit, so that LIBs connected to the JST port 
can charge when the mCore is connected to a power source. You’ll 
need to provide power through the USB port or the barrel plug to 
charge an attached LIB. When charging the LIB over USB, treat it 
like any other rechargeable electronics. While you can charge them 
one at a time off of a computer, it’s best to use a dependable 1–2A 
USB charger. Being able to charge five mBots from a good quality 
USB charger hub is a lifesaver when working with classroom sets.



33Kit to Classroom



34 MBOT FOR MAKERS

TOUR OF THE MCORE AND ONBOARD 
SENSORS
The mCore includes a few basic components on the board itself. 
These don’t constitute a full sensor suite, but they’re components 
that support simple behaviors on the default (car-like) mBot plat-
form. Chapter 2 has a chart with the onboard sensors with MBlock 
Scratch code to test them. 

We’ll go over the components of the board, starting at the bot-
tom right of the mCore board, and moving up.



35Kit to Classroom

There’s a simple push button in the bottom-right corner of the 
board. It’s not fancy, but it’s useful for programs where the mBot 
needs to be put into position before the wheels start turning.

Next to the push button, there’s an infrared receiver and 
transmitter. With the default program loaded on the mCore, 
the receiver is set up to move in response to commands from the 
included IR remote. Every mBot and remote is set up the same 
way, so commands from any remote will affect all mBots in range. 
This is great for semi-synchronized hordes of roaming robots, but 
really frustrating for kids who want to play robot soccer against 
each other.

In the bottom-left corner, there’s a piezo buzzer. Pleasing those 
with an ’80s nostalgia for abstract bloops and squeaks, Makeblock 
distinguishes between their different programs with small tones 
or chirps when the board starts up. This seems cute rather than 
crucial, but losing track of which board holds which program can 
create huge headaches in a classroom setting. Imagine you’re star-
ing at a table full of mBots and knowing that one of them has a 
student-created program loaded. Without a Makeblock program 
loaded, the mCore will fail to connect to any programming envi-
ronment, but will not provide any clear error message. Knowing 
that the boards with the correct program make a distinctive sound 
allows you to check that a table full of mCore boards is ready for 
use in under a minute. Thank you for your service, humble buzzer.

There are two programmable RGB LEDs in the second row. 
These LEDs are mounted in series and use a single signal wire to 
control a tiny (seriously; super tiny!) microcontroller built into the 
plastic housing, which then passes instructions down to the next 
light. There are only two lights in this series on the mCore board 
itself, but the same type of lights are used on the Makeblock LED 
board and longer LED strips. 



36 MBOT FOR MAKERS

The onboard sensors just described in detail are built right into 
the mCore—the brains of the mBot. The add-on sensors listed in 
the table at the end of Chapter 2 are available for purchase individ-
ually and in bundled packs for very reasonable prices. One of the 
strengths of the mBot platform is that the price for standard com-
ponents in Makeblock packaging isn’t astronomically high. Nearly 
all the add-on sensors can be connected to the mCore using RJ25 
(phone jack) cables. For sensors that are not made by Makeblock, 
the RJ25 adaptor is the perfect solution.

Every parent has a story about the surprising amount of damage 
kids can instantly inflict on small electronics. Teachers have even 
more stories, and theirs include mysterious damage or loss to compo-
nents over school breaks, when the school is supposed to be locked. 
When non-educators visit our Makerspace, my colleague, Gary 
Donahue, reminds them how much chaos one kid with a bucket of 
LEGOs can unleash, and asks them to extrapolate that out to 30, 60, 
or 120 kids working with materials in a given day. Even 10 kids with 
LEGOs can thrash your living room, and they’ll transform a carefully 
curated set of LEGOs into a fully homogeneous mess.



37Kit to Classroom

The quiet challenge of a robotics program in a club or school 
setting is making sure kids have access to the same materials on week 
two as they do on week 26, and ensuring that the room can reset 
quickly after each session.

STORING COMPONENTS
There are two basic schools of thought regarding the storage of small 
components in lab or classroom settings: by kit or by kind. 

Kits are great for large homogeneous exercises, where each group 
will tackle roughly the same problem with the same materials. Make-
block sensors and motors are small enough that plastic pencil cases 
make great storage containers. Small kits can also help younger 
kids learn organization and cleanup skills. Even if the parts jumble 
around inside the container, a color-coded inventory on the inside 
lid really helps the end-of-class inventory. 

In other settings, simply grouping the same types of parts into 
accessible bins may work better. On our physical computing carts, 
Makeblock parts are grouped into motors, lights, servos, simple 
sensors, complex sensors (compass and gyro), and external motor 
boards. Louvered bins make it easy to set up a cart for classroom use 
with all the parts we would include in a kit. Although this does make 
it easier to miss an individual piece during clean-up, it also drastically 
reduces the number of components out on student desks at any one 
time. When all the parts are sitting right there on the rack, students 
will (with some encouragement) walk up and grab materials only 
when needed.  

STORING PROJECTS
Nothing kills a robotics project faster than bad storage. As an indi-
vidual, maybe you can claim an entire table for the duration of a 
project. In a club or classroom setting where everything has to be put 
away and ready for another group several times a day, that’s never 
an option. It’s crucial to think about how you’re going to store both 
materials and in-process projects. A great storage solution will both 



38 MBOT FOR MAKERS

minimize the disruption caused by cleaning up the work area, and 
ensure that everything is ready to go next time.

Storing Basic mBot Projects
The mBot comes in a very nice little cardboard box that stacks well 
(see Figure 1-6). For any class or project where students are exclu-
sively programming the basic robot, and not adding structure or sen-
sors, I’m happy to keep using those boxes for project storage. 

When students are programming the mCore boards, there’s little 
incentive to even assign particular robots to groups of kids. For a 
programming project that uses the standard mBot vehicle design, 
different groups of kids can use the same robot all day long. Pro-
grams made using a tablet or sent from mBlock using Bluetooth or 
wireless aren’t actually written to the internal memory on the mCore. 

FIGURE 1-6: The sturdy cardboard box mBots ship in



39Kit to Classroom

Instead, the programming environment on the tablet or computer 
sends instructions over the wireless connection. When you reset the 
mCore, the default program loads up and is ready for the next batch 
of kids. All of the important stuff is stored on the tablet or computer. 
With the addition of a good lithium polymer (LiPo) or LIB, one set 
of mBots can support classes all day long.

Storing the Assembled mBot
Once students are making additions or modifications to the mBot, 
the cardboard box is no longer a good option. Not only is it too 
cramped for kid-made stuff, but when there’s a variety of sensors 
and parts in use, being able to survey those parts at a glance is 
crucial. 



40 MBOT FOR MAKERS

Throughout our Makerspace, we use heavy, broad stacking tubs 
for in-process project storage. Choosing a single, standard bin has 
many quiet and unexpected benefits for classroom organization. 

But it’s not always possible to devote that amount of space to 
individual projects. For years, we had enough rugged LEGO bins to 
use for this purpose, but we eventually outgrew them. The closest 
match we found (because secondhand LEGO bins are staggeringly 
expensive!) are IKEA TROFAST bins, which have a similar footprint 
and low sides. A low, wide bin like this makes it easy to run charging 
cables to each robot, and to easily put parts in and take parts out, 
even when the bins are on shelves.



41Kit to Classroom

NOTE  One way to help each mBot kit serve more kids 
is to use a standard, easily removed frame for attaching 
sensors and actuators. If the additional parts move as 
a unit—sensors clip on, sensors clip off—then kids can 
remove their additions at the end of each session and 
leave a clean mBot for the next group. This only adds 
a few minutes to clean-up procedures and allows one 
set of mBots to serve a whole grade, or even a whole 
school. There are instructions and templates for differ-
ent frames included in the downloadable resources for 
this book.

Storing an mCore with Mixed Materials
Once the cardboard and popsicle sticks come out, and your mBot is 
much bigger and more complex than the standard factory bot, a good 
storage plan is critical. When working with large groups, a visible, 
consistent storage container can define maximum size for a project 
without any explicit instructions. We like durable bins that come in 
a few different heights while keeping a consistent footprint, like the 
IKEA TROFAST line. 

If the mCore boards are going to stay in student bins, students 
must ensure that the USB port stays accessible for charging. Since 
the mCore’s motor and sensor ports are so close to the USB plug, 
students will normally need to keep that area accessible throughout 
the project.

Sensors that use RJ25 plugs and motors can be connected and 
disconnected quickly. If you have long cables, it’s reasonable to ask 
students to build their sensors and motors into a structure that can 
cleanly detach from the mCore board. This arrangement allows 
builders to detach the specialized (and cheaper) parts of their work 
from the (more expensive) mCore at the end of every session. Then 
the mCore units can return to the charging system when the project 
bins return to the shelf. 



42 MBOT FOR MAKERS

PROTECTING THE MCORE
I have a few recurring nightmares around kids and electronics: among 
the worst, baskets of parts dropped down the stairs, and components 
left on the floor and stepped on or crushed beneath casters. LEGO 
has a well-established position at the top of the kid-safe electronics 
pyramid, meaning their electronics are safe from kids. The assem-
bled mBot isn’t quite that stable, but there are many ways you can 
improve its odds of survival.

The most vulnerable part of the mCore board by far is the wire-
less module slot where the Bluetooth or 2.4G serial boards attach. 
When a board is mounted in this slot, it sticks up slightly higher 
than the USB-B plug and, during free-fall, has an instant attraction 
to the floor. 

The best way to protect a component is to reduce or eliminate 
reasons for students to touch it. If you’re considering a frame or case 
for the mCore, work hard to ensure that users clearly understand 
how and where to hold it, and inspect the frame to make sure those 
areas are far away from the weak points.

Starting with the v1.1 mBot kit, Makeblock now provides a 
semitransparent plastic case that mounts directly through the board 
to the brass standoffs. These work well if you are using the standard 
robot with wheels. But many of the projects throughout this book 
use the mCore as a stationary computing platform instead of as a 
robot. In those cases, it makes sense to remove the mCore from the 
robot chassis. Without that bulky aluminum frame, there’s no way 
to attach the v1.1 mBot cover.



43Kit to Classroom

USING A LEGO TECHNIC FRAME
Every workshop or classroom has unique needs, and the best solu-
tion should meet those needs exactly. When working with the stan-
dard vehicle created from the mBot kit, we found the chassis and 
components stable and kid-resilient. The gap between the mCore 
board and the chassis is large enough to fit the 6 AA battery pack 
or a large, rechargeable lithium battery. After a few days of kid use, 
we added a small strip of Velcro between the battery pack and the 
aluminum frame to secure the battery when the kids were carrying 
the robot around. 

The aluminum frame provides excellent stability and protection 
for the mBot, but it’s also bulky. Many projects in our Makerspace 
use the mCore as a physical computing platform that doesn’t need 
to move, or one that needs better ways to connect to LEGO, card-
board, or other craft materials. 
For those projects, it’s a real has-
sle to work with the assembled 
mBot on the aluminum chassis. 
But without the stability pro-
vided by that frame, it was clear 
that the bare mCore would need 
something to hold the battery in 
place and prevent strain on the 
JST plug. 

Driven by that initial need, 
we developed a basic frame from 
LEGO Technic. Much of the 
experimentation and iteration 
came from our colleague Gary 
Donahue at Chadwick Interna-
tional, who was always looking 
for a way to trim just a few more 
LEGO blocks from the design. 
Instead of simply protecting 
the bare mCore board while in 

FIGURE 1-7: This rolling rack 
stores and charges up to 50 
mCore boards off a single wall 
outlet.



44 MBOT FOR MAKERS

use, this frame simplifies the logistical challenges that come from 
large groups of people working with the mCore. This design lifts the 
board off the table, provides connection points for LEGO or Make-
block parts, and preserves access to the USB and sensor ports. When 
you’re working with class sets of mCore, you need to easily charge 
20 or more boards on a cart that can move from room to room, 
while using as few LEGO beams as possible. This frame (shown in 
Figure 1-7) represents our current solution.

Check here for the pieces you’ll need to make the LEGO Technic 
frame: www.airrocketworks.com/instructions/make-Mbots.

The following image shows all the pieces laid out with nylon nuts 
and bolts and hex nuts and bolts. 

The next image shows what the finished frame will look like. This 
frame will make it easier to store and protect your mCore. It will also 
hold the battery underneath.

http://www.airrocketworks.com/instructions/make-Mbots


45Kit to Classroom

Although it’s not mentioned in the mBot materials, the corner 
holes for the brass standoffs are perfectly aligned to LEGO Technic 
spacing. This frame takes advantage of that fact to provide a support 
structure that holds and protects an LIB, maintains easy access to the 
RJ25 and USB ports, and lies flat on a table. 

The first two beams are attached directly under the mCore 
board, aligned with the sensor and battery sides. Using a 15-hole 
LEGO beam, insert an M4 bolt through the corner hole nearest the 
button on the mCore, through hole 4 of the beam, and then close 
with an M4 nut. Repeat that process, putting a bolt through the 
hole nearest the buzzer and hole 12 in the LEGO beam. Then, add a 
second 15-hole LEGO beam using the holes next to the battery port 
and the Reset button on the mCore, as shown in the following image.



46 MBOT FOR MAKERS

Secure underneath with an M4 nut. 



47Kit to Classroom

With the mCore still flipped over, insert a LEGO long pin with 
friction into the ends of the 15-hole beams with the long ends going 
through the beam.

Attach the other 15-hole beams to the LEGO friction pins, as 
shown next.



48 MBOT FOR MAKERS

Now, place a longer M4 bolt through hole 8 in the end beams 
and secure with a nut. Set your battery holder on the bottom of the 
mCore, as shown. This M4 nut also serves as a spacer, to provide 
clearance over the LIB holder. Be sure to check your battery holder’s 
size and add or remove spacers, as necessary.

Now, add a final LEGO 15-hole beam over the bolts and screw 
it down using an M4 nylon or steel nut. This will keep the battery 
holder firmly in place, without compressing the battery cells.



49Kit to Classroom

The following images show what it looks like finished! The photo 
on the right shows the 2.4G USB dongle attached to the battery with 
Velcro so it doesn’t get lost. Also, add two LEGO Technic Cross 
Blocks 1n3 to one side of the frame for hanging many mCore’s on a 
rack. Sweet!



50 MBOT FOR MAKERS

Once you get the Technic frames done, you can easily hang many 
of them from a frame for easy storage (see Figures 1-8 and 1-9).  

FIGURE 1-8: Here is a 
close-up of the mCores 
hanging on the rack.

FIGURE 1-9: Rick’s version of the LEGO Technic frame



51Kit to Classroom

ADDING A COVER
Using the M4 brass standoffs from the mBot frame assembly, you 
can easily add a simple cover. If you have access to a laser cutter, or a 
drill press and patience, you can expose the lights and light sensors, 
and even extra points of connection with a few rows of Technic- 
spaced holes.

Here is a custom, laser-cut cover I designed, made from ⅛g 
acrylic. This cover protects the 2.4G serial or Bluetooth connection 
and has five holes on each side for LEGO connection points or con-
nections with other Makeblock add-on pieces. Laser cut files are 
available at this book’s website: www.airrocketworks.com/instructions/
make-mBots. If you don’t have access to a laser cutter, full-scale files 
are also available in PDF form for hand-cutting.

Storage for the mCore is underneath the batteries. Attach bat-
tery holder to the bottom of the mCore using Velcro with adhesive. 
Install the battery holder so batteries face the smooth-bottomed 
acrylic pieces to avoid the chance of the batteries shorting out 
against the bottom of the mCore. 

http://www.airrocketworks.com/instructions/


52 MBOT FOR MAKERS

While these frames and cases (and the others available on the 
book’s resource page) are useful, they might not meet the specific 
needs of your program. Experiment with the materials you have on 
hand until you develop a cover, frame, or storage system that fits your 
classroom perfectly! (See the cool DIY case in Figure 1-10.) Then 
share it back with us!

FIGURE 1-10: Case made from 32 oz, 4g n 4g Ziplock container by 
“John1” on the Makeblock forums



53Kit to Classroom

MAKING CABLES
Cabling is often at the heart of proprietary control schemes. Every-
one who lived through the digital camera explosion probably has a 
drawer full of USB cables with weird, manufacturer-specific ends. 
In the educational robot sector, cabling is what transforms standard 
servos, motors, and sensors into premium branded components.

Makeblock does use a standard connector on the mBot, but the 
type is not obvious from first inspection. The RJ25 connector looks 
like a standard United States phone plug, but it’s a specific version 
of that standard. Makeblock uses a 6P6C modular jack, meaning that 
it has six contact points connected to six actual wires. 

Making your own cables for this plug requires a crimping tool. 
Most Ethernet crimping tools have ports for the smaller modular 
plug, as well as the larger 8P8C plug used for Category 5 or 6 wire. 
Although you can use twisted pair Ethernet wire for mBot cables, I 
find unwinding the pairs to be a huge hassle. Using flat six-wire cable 
makes the process swift and easy.

Parts

Six-wire cable—often you 
can find this cheaper and 
in reasonable lengths when 
sold as single long phone 
cable, rather than as a 
bulk cable package. One 
100ft phone cable will cre-
ate many classroom-sized 
connections.

6P6C/RJ25 modular plugs— 
make sure these have six-
wire contacts, not 4.

Crimping tool—most label 
the connection we need as 
RJ11/RJ12 or Phone.

It is important to keep the color alignment consistent between 
the two ends of the cable. When inspecting a plug, you should see 
the same color order on the wires going from left to right. With the 
wire shown here, white is on the left-hand side of the plug and blue 
is at the far right. Although these colors may vary by cable manufac-
turer, they need to be consistent between ends of an individual cable.



54 MBOT FOR MAKERS

Working with cable ends is another version of the “my left, your 
right” problem, where changes to the orientation of the parts makes 
relative direction useless. This perfectly useless tiny cable shows that 
plugs put on either end in the same orientation will reverse the order 
of the wires between the two ends. (See Figure 1-11.)

FIGURE 1-11: This is the wrong way to crimp a Makeblock cable!



55Kit to Classroom

The plug on our left will have a left-to-right pin order of white-
black-red-green-yellow-blue. The right-hand plug will have a left-to-
right pin order of blue-yellow-green-red-black-white. Maintaining 
color order will result in wires where the plugs are rotated 180 
degrees from each other—especially noticeable on small cables. (See 
Figure 1-12.)

FIGURE 1-12: This is the correct way to crimp a Makeblock cable. To 
keep wire order the same, the ends must be reversed.

Each time I make a cable, I slide the plastic ends on with the 
metal prongs facing me and recite the colors in order. If the colors 
match at both ends, the cable will be fine.

Now, it’s time to gather the materials and build some cable. 

Steps

	 1.	 First, cut the desired length of cable from the spool and then 
strip about 1 cm of housing from each end. When using modular 
connectors, you do not need to strip the individual wires.



56 MBOT FOR MAKERS

	2.	 With the outer coating stripped, slide the modular jack over the 
exposed, colored wires. Ensure that all six wires slide smoothly 
under the metal prongs of the jack. 



57Kit to Classroom

	3.	 Before you crimp, look directly at the end of the jack. You should 
see the cross section of all six colored wires at the same depth, 
underneath the brass teeth of the plug. If one wire is shorter than 
the others, it will appear further back and less distinct. To save 
yourself some headaches later, remove the plug and re-trim the 
wires so that they’re all flush, then replace the plug and check 
again. Missing the connection on one wire out of six invites a 
world of inconsistent and intermittent errors, depending on 
which wires a particular add-on uses to communicate with the 
mBot. 



58 MBOT FOR MAKERS

	4.	 Place the cable and plug into the crimping tool, then squeeze. It 
doesn’t take much force to drive the metal pins into the colored 
wires. Check one last time to make sure you can see all of the 
metal teeth biting into to each of the six wires. 

UPDATING THE MBOT
Within mBlock, there are two different pieces of software that can 
run on the mCore board and connect to mBlock or the Makeblock 
app. While they both appear in the mBlock Connect menu, the 
labels leave a lot to be desired. One is labeled Update Firmware 
(see Figure  1-13), and the other is Reset Default Program (see 
Figure 1-14).

Despite the different names, these are both Arduino programs for 
the mCore board based on the open source Firmata protocol and the 
StandardFirmata program developed over the last decade. All pro-
grams in this family run on the Arduino hardware and offer two-way 
communication between the physical board and a computer. That task 
eats up much of the limited program memory on the mCore, leaving 
little room for extra mBot-specific functions.  



59Kit to Classroom

FIGURE 1-13: Update Firmware

FIGURE 1-14: Reset Default Program

In mBlock, the Reset Default Program option will upload a ver-
sion of this firmware that includes a line-following program, which 
is a program to avoid obstacles using the distance sensor. It also 
responds to the infrared remote and the onboard buttons. To fit 
those extra commands into the mCore’s program memory, it trims 
out support for more advanced Makeblock sensors. This means that 



60 MBOT FOR MAKERS

if you want to program a robot that uses the Compass sensor or 
long LED strips, you’ll need to replace the Default Program with the 
Update Firmware command.

Table 1-1 lays out the main differences between these two soft-
ware options.

TABLE 1-1: Default Program versus Firmware

FEATURE
MBOT DEFAULT 
PROGRAM MBOT FIRMWARE

Sound on boot Three tones Single chirp

Wired USB 
connection

X X

2.4G serial 
connection

X X

Bluetooth 
connection

X X

IR remote X

Stand-alone obsta-
cle avoidance

X

Stand-alone 
line-following

X

RGB LED strips 15 lights Unlimited

LED matrix X X

Seven-segment 
display

X X

Temperature sensor X X

Joystick input X

Compass sensor X

Three-axis gyro 
sensor

X

Me Flame sensor X

Me Touch sensor X

Humidity sensor X



61Kit to Classroom

For more detail, you can read about both programs in the mBlock 
directory. The IR-supporting version, called Default Program, is in 
the file mbot_factory_firmware.ino and the advanced sensory sup-
porting version is mbot_firmware.ino.

WHERE WE’RE HEADING FROM HERE
When you’re shopping for electronics kits, it’s easy to focus on the 
hardware specs or potential projects to the exclusion of all else. The 
mBot has a great set of features that compare well with any other 
kid-friendly robotics or Arduino system. But the features that bring 
a smile to my face while working in the Makerspace aren’t listed 
at the top of tech sheets. I love the flexible platform and the small 
sensible decisions that went into the design of the mBot and mCore 
as physical objects, ready for oodles of kid abuse with a minimum of 
adult intervention.

In later chapters, we’ll see those same design principles appear 
when we dive deeper into LEGO integration, mixed media pup-
pets, and large- and small-scale projects. But all of those projects 
rely on having programming tools that make the powerful hardware 
accessible to kids of all abilities. Chapter 2 will dive deep into the 
software for both computer and tablet to demonstrate the power of 
the mCore. Also, we’ll survey the many external sensors that can be 
connected to the mCore that will be used in the projects throughout 
the book. From Chapter 3, “Animatronics,” onward, we’ll combine 
programming in Scratch with the joy of using sensors to create every-
thing from whimsical creatures that react to their environment to 
remote untethered data-logging devices to a ping pong ball–flinging 
robot, ready for battle.





mBot Software 
and Sensors

The mBot is built atop several well-established open platforms, 
and benefits from decades of development. While this pedigree 

means the mBot is fantastically capable, simple questions like, “How 
do I control my mBot?” can have frustratingly long answers filled 
with branching paths and “Yes, but . . .” answers. In this chapter 
we’ll cover the entire range of control options for the mBot, from the 
supplied infrared (IR) remote, to wireless control from a computer or 
tablet. We’ll end with fully uploaded, autonomous operation.

DEFAULT PROGRAM OPTIONS 
The mBot arrives out of the box programmed with three different 
modes, controlled by the IR remote. You can tell this program is 
currently loaded because of the distinctive three beeps when you 
flip on the mCore. 

Using the factory-installed program, you can steer the mBot with 
the IR remote’s arrow keys and adjust its speeds with the keypad. 
Pressing the A, B, and C letter keys will shift the mBot between 
several behaviors. These distinct navigation modes make use of the 
Ultrasonic Distance sensor and Line-Following sensor that are part of 
the standard mBot build. The mBot defaults to Mode A, which is the 
simple steering system just described. Pressing B shifts the mBot into 
obstacle-avoidance mode, which uses the distance sensor. Pressing 

2



64 MBOT FOR MAKERS

C moves the mBot into line-following mode, which makes the mBot 
look for and follow a black line underneath it. The mBot retail kit 
includes a simple paper oval, but the sensors will recognize courses 
made from dark-colored masking tapee or electrical tape. You can 
return to manual driving mode by pressing A. The mBot cannot be 
in more than one mode at a time; for example, there’s no way to have 
the mBot follow a line and avoid obstacles at the same time. 

IR remotes are cheap and 
have many drawbacks, quite a 
few of which affect the mBot. 
Infrared requires a line of sight 
between the remote and the 
receiver mounted on the mBot. 
This makes robots heading down 
the hallway away from the driver 
difficult to control. Anyone in an 
environment with many mBots 
will discover that any of them 
will respond to commands from 
any remote. 

In fact, this is one reason 
why we wrote this book. We’ve 
met too many people who con-
fused the limitations of the 
default program and IR remote 
(see Figure 2-1) with the capabilities of the entire platform. Build-
ing original creations with the mBot requires moving beyond the IR 
remote to either a computer or mobile device. 

MAKEBLOCK APP
Makeblock has improved the quality of their mobile offerings over 
the last two years, but not always in the cleanest fashion. Apple and 
Android app stores each have many outdated programs listed, and most 
have very similar names. At the time of writing, the only mobile app 
under active development for both platforms is the Makeblock app.  

FIGURE 2-1: It’s great that the 
mBot offers IR remote control 
out of the box, but it can be a 
frustrating experience.



65mBot Software and Sensors

FIGURE 2-2: If there’s a single robot turned on and close to the 
mobile device, Bluetooth pairing can happen in the background. 
Otherwise, just touch the robot with your mobile device. 

Makeblock (the app) supports several robot products from 
Makeblock (the company) beyond the mBot. When you launch 
Makeblock, it automatically tries to pair your mobile device with 
the closest Bluetooth robot. If several robots are in range, the app 
will ask you to move closer to your chosen robot.

TOUR OF THE PROJECT GALLERY
Once the robot and app are paired, the app reveals a gallery of robot 
configurations. Each icon contains a customized control interface for 
the mBot or other robots from Makeblock’s product line. 

The Project Gallery (see Figure 2-3) shows a line of Official Proj-
ects, each based on a particular mBot configuration. The Playground 
and mBot projects (also shown in Figure 2-3) need only the materials 
provided in the retail mBot kit. Other projects, like the Cat Search-
light and 6-Legged Robot, ask for extra sensors, servos, or metal 
Makeblock parts. These extra requirements display an orange Expand 
label on the top right of each project icon. You can view required 



66 MBOT FOR MAKERS

materials and build instructions for Official Projects by clicking the 
info icon on the top left of the Play screen (shown in Figure 2-4).

FIGURE 2-3: The Makeblock app’s Official Projects expect robots built 
exactly as specified in the linked instructions. Changing any element 
will move the project into the My Projects section.

FIGURE 2-4: In Play mode, some screen elements control the con-
nected robot, like the D-Pad or the Buzz button. Others display live 
data from the mBot sensors.



67mBot Software and Sensors

Touching any picture in the gallery opens a control panel built 
for that configuration. That includes sensor displays, buttons to trig-
ger specific behaviors, and control tools for motors or servos. 

This is like the LEGOs Robot Commander app, which offers 
the same sort of drag-and-drop control schemes for different LEGO 
builds. However, when users move from Play to the Design tab (see 
Figure  2-5), the Makeblock app offers far more control over the 
tools. (See Figure 2-6.)

FIGURE 2-5: In Design mode, touch a screen element to change 
which port a sensor connects to or modify the code for that widget.

To get even more control than the Design tab, you can open 
the code attached to the screen widget and make more fundamental 
changes. Each control element is a front-end, block-based piece of 
code based on Google’s Blockly libraries. The gallery on the left edge 
of Figure 2-7 contains all the blocks necessary to change any controls 
or displays currently on the screen  or create new ones.



68 MBOT FOR MAKERS

FIGURE 2-6: The mBot can get a brightness reading from the onboard 
sensor, shown as the yellow circle, or an external sensor connected 
to port 3 or 4.

FIGURE 2-7: Blocks in Makeblock app’s Begin, Move, and Display 
palettes

NAVIGATING BLOCKS ON A MOBILE DEVICE
The selection of blocks in the Begin palette changes for each type 
of UI element. Single buttons only have “when pressed” and “when 



69mBot Software and Sensors

released” options. The D-Pad controller has a “when pressed” and 
“when released” option for each of the four directions. Numeric dis-
plays and graphs only offer a “when start” option. 

Direction blocks in the Move palette assume the standard mBot 
motor configuration. They also allow direct control over individual 
motors or servos. 

Purple Display blocks (see those shown in Figure 2-7) allow con-
trol over physical LEDs, sounds from the mBot’s speaker, or elements 
on the Makeblock app screen.

FIGURE 2-8: Blocks in Makeblock app’s Event, Detect, Math, and Con-
trol palettes

Event blocks look for input from attached sensors or the mobile 
device. Using these blocks, it’s possible to create a simple system 
that steers the mBot around by tilting the mobile device. This 
is a great opening challenge, but in our experience, kids quickly 
determine that the latency between the Makeblock app and the 
robot makes for a frustrating drive. The Detect palette provides 
specific blocks for most sensors sold by Makeblock. All of these 
are puzzle-piece shaped blocks, which means they connect with 
other blocks in the program and provide the numeric value of the 
given sensor.

Math blocks bundle all the essential arithmetic operators and 
functions. They also control the Makeblock app’s implementation 
of variables. We explore these blocks in some detail in Chapter 4, 
“Measurement Devices.” 



70 MBOT FOR MAKERS

Finally, the Controls palette holds all conditional statements and 
Wait and Repeat loops.

We started with the pre-configured mBot control program 
from the gallery. When we change any screen element in that 
program, the Makeblock app automatically saves it and asks to 
rename the project. Anyone can fiddle around with the pre-built 
robots in the gallery with full confidence that they won’t destroy 
the templates.

FIGURE 2-9: Once renamed and saved, these modified projects will 
appear in the My Projects gallery. 

Recent versions of the Makeblock app added the Playground 
project to the Official Projects gallery. Playground is a slick showcase 
for the mBot’s different possibilities, but you can’t expand or build 
on what’s provided.

The Game Controller screen (shown on the next page) provides 
an analog joystick for precision mBot steering. It also has video 
game–inspired buttons to make the mBot sprint, spin, and shake. 



71mBot Software and Sensors

Exploring the Music panel will reveal the limits of the mCore 
speaker. Clicking the finger icon shown at the top right of the panel 
activates the Draw-a-Path tool (shown on the next page), which 
allows even young children to create an independently moving 
mBot. If you draw a path in the box and hit the Play button, the 
mBot will dash off and follow that course! You will see the mBot’s 
progress along the path shown on the screen. The active zone is 
about a 1 m n 2 m rectangle. Since tables, chairs, and other real-
world obstacles don’t appear on the Draw screen, collisions are 
pretty common. Even so, the Playground Draw-a-Path tool is a fun 
new option in the Makeblock app. It’s found a great home as part 
of Balloon Tag!



72 MBOT FOR MAKERS

BALLOON TAG
Using mobile apps opens up a world of multi-mBot games and activ-
ities that are impossible with the IR remote. One of our favorites is 
the mBot Balloon Tag. This is a flexible activity that’s anchored by the 
sheer chaotic joy of popping someone’s balloon. The materials list is 
self-evident: you need a balloon for each mBot and a sharp thing with 
which to pop the balloon. You can establish a super-serious league 
for this game, with standardized bots and balloons to better focus on 
pilot skill—but that’s not how it works in our classrooms. Our focus 
is more on the design and engineering aspects of the challenge.

Prep
Provide each group with an mBot, several balloons, and a lance of 
some sort. We’ve had success with wooden BBQ skewers, plastic 
straws with thumbtacks, or even sharpened pencils. 

Depending on the age of the students, it’s a good idea to spec-
ify where and how the balloon should be attached to the mBot. In 
its base form, the mBot lacks good mounting points parallel to the 



73mBot Software and Sensors

ground or along its central axis. One way to create these points is by 
adding two right-angle Makeblock brackets and some Makeblock or 
LEGO beams to the rear spurs of the mBot frame.

These create a stable, rigid frame that can support much larger 
structures. Just don’t overload 
the mBot! For light-duty work 
like a balloon mount, cable ties 
can work just as well. You can 
either knot the balloons around 
the cable tie or connect them 
with a loop of string. Such a 
wobbly connection makes the 
inflated balloon a shifting target 
in the game.

IMAGE COURTESY OF @MISTERHAY



74 MBOT FOR MAKERS

Mounting a rigid lance to the mBot is much more difficult. You 
can lash it to the brass standoffs with cable ties, or to the frame 
alongside the battery. This process is full of interesting challenges, 
most of which aren’t obvious to students at first. What angle will 
allow the lance to best reach the balloons? Will the lance shift from 
side to side? Will it extend far enough in front of the mBot to push 
and trap the opponent’s balloon? Investigating these questions will 
lead students to consider outlandish designs. Many of these designs 
will not work because of the restrictions and requirements of the 
materials, and the students will have to start again. This is the heart 
of a powerful iterative design process. Finding answers to these ques-
tions is the core of the activity. 

It’s a good idea to set a short time limit on each joust—giant 
melees are too chaotic. After each game, devote some time to “pit-
work” and redesign.

In large groups, a bracket of balloon duels can take too long. A 
great alternative is to pull the lance off one mBot and make it the 
target, with the other mBots becoming the hunters. Allow the person 
controlling the target to use the Draw-a-Path tool in the Makeblock 
app Playground project. Hunters and prey will take turns moving. The 
extra mobility of the Draw-a-Path tool allows the player controlling 
the target bot to juke around clustered hunters. This can cause some 
significant pileups. This asymmetric version of Balloon Tag, where 
each side is using a different control method, works great where 
there’s a short time frame or a fixed number of turns for both sides. 
It’s also a quick way to test new designs at the end of a group session.

If you have access to materials beyond the retail mBot kit, there 
are even more possibilities. With a servo motor and some clever 
mounting, you can control either the lance or balloon in the Make-
block app control panel while driving. This drastically increases the 
challenge level of building and steering. Classroom tests show sig-
nificantly higher self-popped balloons when servos are used.  

Utilizing the default mBot build that includes a Line Follower 
sensor under the chassis creates some interesting racing variants of 
Balloon Tag. Instead of a grand robot melee, create a small course 
of line-following paths with open spaces in between. Teams start 



75mBot Software and Sensors

with the Line-Following project, but modify it to start with a button 
press and add the driving controls of their choice. Robots jostle and 
fight in the open spaces, but need to locate the line and use the line- 
following mode to travel to the next waypoint. This structure breaks 
up the mad scrum of normal Balloon Tag with high-emotion chase 
segments, as the lead mBots rush to the end of each path with their 
balloons exposed to the crowd.

We call this Balloon Tag to specifically connect to the free-
wheeling dynamic games our kids play at recess. See what new ideas 
emerge from adding a new part, or how altering a rule changes how 
people play. In each case, the new tools will create more complica-
tions, more challenges, and more powerful, student-driven learning.

IMAGE COURTESY OF @ROBOTICS_FUN

MBLOCK
Makeblock’s mBlock is a visual programming environment for Win-
dows, Mac, Linux, and Chromebook computers—if you’re working 
on a device that has a screen and physical keyboard, then there’s a 
version of mBlock for you. It expands on all the capabilities offered 
in the tablet programming apps and provides the most robust tool 
for programming the mBot. 

The mBlock platform is a direct fork of Scratch from MIT Media 
Lab’s Lifelong Kindergarten (LLK) Group, and it inherits Scratch’s 
incredible feature set. It presents robotics commands in a format 
familiar to millions of young people. 



76 MBOT FOR MAKERS

Mitchel Resnick, head of the LLK Group, often describes Scratch 
as having “low floors, high ceilings, and wide walls.” In the program-
ming world, low floors means that everyone can enter, with no back-
ground or prerequisites. 

High ceilings allow users to grow and expand their skills for years 
or decades before hitting something that “just can’t be done.” Wide 
walls implies that the tools should allow as many different types of 
creative expression as possible. Scratch does that—it provides the 
tools to make everything from anime music videos to multiplayer 
platformers. 

High school students often scoff at Scratch and other block-
based languages as “programming for kids.” This reflects their own 
inexperience rather than the potential of block-based programming. 
The mind-blowing projects from Scratch user “griffpatch,” or coming 
out of UC Berkeley’s Beauty and Joy of Computing course, should 
shatter that illusion. This is not the last time you’ll hear us say, “Sim-
ple doesn’t mean easy.” 

The mBlock platform is a natural extension of the house Scratch 
built. It adds an extra room for physical robotics, without disrupting 
the existing floor or ceiling. 

If you’re interested in the non-robotics potential of Scratch, there 
is a great library of books waiting for you. We recommend:

»» Make: Tech DIY: Easy Electronics Projects for Parents and Kids, by Jay-
mes Dec and Ji Sun Lee (Maker Media, 2016)

»» The Invent to Learn Guide to Fun, by Josh Burker (Constructing 
Modern Knowledge Press, 2016)

»» The Big Book of Makerspace Projects: Inspiring Makers to Experiment, 
Create, and Learn, by Colleen Graves and Aaron Graves (McGraw-
Hill Education TAB, 2016)

»» Coding Games in Scratch, by Jon Woodcock (DK Children, 2015)

Although this chapter will teach you how to build functioning 
programs from a blank screen, there are many discrete worlds to 



77mBot Software and Sensors

explore in Scratch. Dive deep in some other areas and see how much 
that exploration adds to your robots!

CONNECTING TO MBLOCK
As of publication, the current version (v3.4.11) of mBlock for Win-
dows, Mac, and Linux computers bundles the Scratch-based block 
environment and the Arduino tools into a single platform-native 
program. There is also a web-based tool, available at http://editor 
.makeblock.com/ide.html, which provides the same toolset within a 
modern browser. Beta versions of mBlock 4.0 suggest that, going for-
ward, Makeblock will abandon the different versions for Windows, 
Mac, and Linux in favor of a downloadable version of the browser- 
based tool. Since the functionality with each of these versions is 
nearly identical, all of the programs or projects in this book should 
work on any future version of mBlock. However, the operating 
system–specific instructions for connection may change over time.

Every time you open mBlock, you’ll need to connect the board 
to the software using one of three possible connections: Bluetooth, 
2.4G wireless serial, or USB. All retail mBlock kits have USB ports 
and one wireless connection. If you bought mCore boards without 
buying the mBot kit, you’ll only have access to USB. The wireless 
modules are for sale from Makeblock, and they’re easy to swap 
between boards. If you’re using both serial and Bluetooth connec-
tions, remember that you identify the Bluetooth boards from a dis-
tance by the copper antenna shown in Figure 2-10.

A Word about Connection Types
On a small scale, there’s not a huge difference between the Blue-
tooth and wireless serial connection. If you’re considering a larger 
scale mBot army where you’ll work primarily or exclusively with 
laptops, we strongly recommend the 2.4G serial adapters. In the 
worst-case scenario, when kids have ignored our color-coded stick-
ers and mixed up mBots and the paired USB dongles, the 2.4G 

http://editor


78 MBOT FOR MAKERS

serial module has a super-clear indicator when this unit’s best 
beloved dongle is plugged in nearby. This means that I can trou-
bleshoot most connection problems from across the room, without 
ever seeing the laptop’s screen. 

Bluetooth may offer maximum flexibility for a single mBot unit, 
but 2.4G serial is the best choice in any environment where students 
will work with multiple mBots and computers.

FIGURE 2-10: In an environment with both wireless serial and Blue-
tooth hardware, the printed squiggle antenna on the Bluetooth board 
helps distinguish between the two tiny boards.



79mBot Software and Sensors

Connecting Bluetooth for Windows
Connecting with Windows is easy. Make sure the Bluetooth module 
is installed on your mCore, turn on the mCore, and launch mBlock. 
Make sure your computer has Bluetooth enabled. Click on the Con-
nect menu, then Bluetooth, then Discover.

When your computer discovers your Makeblock Bluetooth mod-
ule, the following screen will pop up with the specific address of that 
Bluetooth module.



80 MBOT FOR MAKERS

Click that device and you’ll get the confirmation message shown 
in the following image. You are now connected and ready to begin 
programming!

Connecting Bluetooth for macOS
Bluetooth devices need to be paired before software can access 
them. On macOS, that happens in the Bluetooth System Pref-
erences panel. Make sure the Bluetooth module is connected to 
the mCore, and then turn it on. After three beeps, you should 
see a new entry show up in the Bluetooth control panel. This can 
either be a messy MAC address or a well-named Makeblock entry. 
The non-human-readable name should only appear the first time 
you connect to a new Bluetooth module. Click PAIR on the new 
device. 

That entry will quickly flip back to a worrisome “Not connected.” 
Don’t stress!

FIGURE 2-11: When pairing a Bluetooth module for the first time, the 
MAC address appears instead of the Makeblock name.



81mBot Software and Sensors

With this accomplished, return to mBlock and open the Connect 
menu. Despite the existence of a Bluetooth item in that list, you need 
to open the Serial submenu and then choose the new tty.Makeblock 
entry. (Yes, this is a mess.) With a top-level Bluetooth menu that 
stays grayed out and two permanent entries in the Serial menu that 
use the word Bluetooth, the important thing to click is /dev/tty.
Makeblock-ELETSPP. 

When that works, you’ll see a small check mark appear by the  
/dev/tty.Makeblock-ELETSPP entry and the window header will show 
Serial Port Connected.

Connecting 2.4G Wireless Serial
The crucial thing to remember when using the wireless serial con-
nector is that each USB dongle and the small communications board 
that ship together are paired to each other. Don’t throw all of the 
USB dongles in a drawer! Use a bit of Velcro to attach the dongle to 
the mBot frame when not in use. If you’re working in a classroom 
setting, pull out the sharpies and stickers and label them posthaste!

If you power on the mBot when the USB dongle is not attached 
to a nearby computer, a tiny blue LED on the communication board 
blinks. This blue light will glow steady within seconds when the don-
gle is connected. Keep this in mind if you ever have to sort through 
a large pile of mismatched components.



82 MBOT FOR MAKERS

Once the mBot is powered and the USB dongle plugged in, it just 
takes a single click to connect the board to mBlock.

Paired for Life?
Although, in the classroom, we insist that the USB dongles 
and serial boards are paired for life, that’s an exaggeration. 
There’s a button on the serial board that will forcibly pair it 
with a USB dongle in range. If you’re somehow stuck with 
a mismatched set, plug the USB dongle into a computer, 
power on the mBot, and press and hold the tiny button 
shown in the following image. You’ll see the flashing blue 
LED turn glow steadily after a few seconds. However, like 
matching socks in the laundry, when you make a new 
match you’re also creating two other broken pairs.



83mBot Software and Sensors

When the connection is active, the status message in the top bar 
will change.

Connecting USB
Although USB is an incredibly familiar technology, there are two 
points worth noting about the mCore’s USB connection. 

FIGURE 2-12: The mCore uses a USB-B plug, the style often used for 
printers. It’s sturdy and can take a beating.

First, the power switch on the board needs to be on in order 
connect to mBlock over USB, whether a battery is attached or not. 
This goes against safe practices for normal Arduino boards, which 
can receive power from either an external source or USB, but not 
both at once. The mCore board’s design prevents this “two power 
source” problem. If there is a rechargeable battery attached, plug-
ging in the USB cable while the power switch is off will charge the 
lithium battery. 

Second, the mCore board uses a USB-to-serial chip that’s com-
mon to a Chinese-made Arduino clone known as the CH340. This 
chip requires the installation of a specific driver. If you connect the 
USB cable and don’t see a new entry appear in the Connect F Serial 
Port menu, check to see if you are missing this driver. 

The Install Arduino Driver item in the Connect menu will install 
the CH340/CH341 driver for your platform from within mBlock. 



84 MBOT FOR MAKERS

Note that this requires admin access on most computers, so it can 
be tricky to do with student machines. This is only required when 
using a wired USB connection to the mCore.

Keeping the previous two notes in mind, opening a USB connec-
tion is simple. Connect the board to the laptop, make sure the power 
switch is set to ON, and select the proper serial port from the menu. 
On Windows machines, this will be COMx; on Macs it will be in the 
form /dev/wchusbserialXXXX.

So far, we’re using all these as tethered connections, even though 
two are wireless. Tethered simply means that the program logic stays 
on the computer and is sent to the mCore board over this active 

FIGURE 2-13: The wired USB connection is the last item on the serial 
port list.



85mBot Software and Sensors

connection. There’s a constant two-way stream of instructions and 
sensor data between the computer and robot. If this communica-
tion is disrupted while the mBot is battery powered, the robot will 
continue to perform the last chunk of the program sent by mBlock. 
When this disruption happens because the mBot moves out of range 
of the Bluetooth or 2.4G signal, this can cause strange behaviors that 
don’t scream “out of range.” Restore the connection by connecting 
the hardware or bringing the mBot back within range, and restart 
the mBlock program.

TRAFFIC LIGHT CLASSROOM 
VOLUME METER
Traffic light volume meters are a staple of teacher supply catalogs. 
The various LED units make this a very accessible physical project.

There’s a real value to prototyping physical systems using the 
sprites in mBlock. Digital prototyping separates the programming 
logic from construction and wiring, and allows students to focus 
on the behavior. The version presented here uses the computer’s 
microphone to measure volume at first, instead of immediately 
bringing in the mBlock’s Me Sound sensor. In our classrooms, 
first-draft prototypes normally rely on sensors on the computer, 
or even Scratch variables that represent ideal sensor data, instead 
of mBot hardware. 

Note that this requires admin access on most computers, so it can 
be tricky to do with student machines. This is only required when 
using a wired USB connection to the mCore.

Keeping the previous two notes in mind, opening a USB connec-
tion is simple. Connect the board to the laptop, make sure the power 
switch is set to ON, and select the proper serial port from the menu. 
On Windows machines, this will be COMx; on Macs it will be in the 
form /dev/wchusbserialXXXX.

So far, we’re using all these as tethered connections, even though 
two are wireless. Tethered simply means that the program logic stays 
on the computer and is sent to the mCore board over this active 

FIGURE 2-13: The wired USB connection is the last item on the serial 
port list.



86 MBOT FOR MAKERS

Start a new mBlock project 
and delete the default panda 
by right-clicking the icon in the 
Sprites panel and clicking Delete 
or using the scissor tool.

Then, create a new sprite 
using the Paintbrush tool above 
the Sprites panel. Change to 
Vector Mode in the image editor 
(this will move the drawing tools 
to the right edge of the screen) 
and create a simple, filled, gray 
rectangle. Vector mode will allow 
us to easily resize this shape later 
to fit around the green, yellow, 
and red traffic lights.



87mBot Software and Sensors

Next, click the blue arrow to access the details for this sprite. 
Rename the object now, as a way to model best practice for your 
students. Don’t wait until you have a confusing muddle of Sprite 1 
through Sprite 16. Do it now. Now.

 

As an offshoot of Scratch, mBlock has a sizable library of sprites 
and backgrounds, as shown in the next image (although it doesn’t 
look sizable). We’ll use one of these as the basis for our three traffic 
lights. Click on the tiny creature in the New Sprite bar and choose 
Button 1 from the Things group. This works fine for the green light, 
but we’ll need to copy and recolor it for the other two.

First, duplicate the button twice by right-clicking it on the Stage 
or in the Sprites panel. Then, rename all three buttons to show the 
color each one will become.

Select the RedLight in the Sprites panel and then open the Cos-
tumes panel. The Button sprite was already a vector graphic, so all 
we’ll need to do is recolor the gradient using the Vector Bucket. 
Choose two yellowish colors that work for the light and click away. 



88 MBOT FOR MAKERS

Notice that the Button sprite has two shapes that each need to be 
recolored. 

Now it’s time to add code to our project. In mBlock, like in 
Scratch, each Sprite (and the Background!) has a Scripts panel for 
code that controls its behavior and appearance. When you are writing 
code designed to control a mobile mBot, it makes sense to keep all 
of those scripts collected in one Sprite. A project like this is designed 
to use sensor data from the mBot to change what’s displayed on the 

FIGURE 2-14: This block places the green traffic light on the Stage, 
and then constantly measures the sound level. The light is bright 
when the sound is low and dark when the volume rises.



89mBot Software and Sensors

Stage. Therefore it makes sense for each sprite to read data and adjust 
its appearance. Here’s one way that might look for the green light.

The Green Flag block, as it’s commonly known in Scratch cir-
cles, is a basic start-of-program trigger. Every sprite can have its own 
Green Flag block. In fact, an individual sprite could have several. 
Having several start blocks allows a sprite to have parallel routines, 
which can be exceptionally useful. For this first program, however, 
we’ll just use one block.

When the program starts, it’s sensible to reset the position and 
appearance of the sprites. It’s not technically necessary here, since 
these sprites don’t move at any point during our program, but it’s 
another good habit to model for students. Like Scratch, mBlock does 
not have any built-in reset or cleanup. Adding a GoTo block that 
defines where a sprite should start on the Stage means that that click-
ing the GreenFlag to restart the program will also undo any accidental 
clicks that moved the GreenLight Sprite on the Stage the next time 
the program runs. We need a similar block to reset any changes made 
to the appearance of the sprites, including size, costumes, or graphic 
effects like brightness or transparency. Since the program will adjust 
the brightness of the traffic light sprites to indicate that they’re lit, 
we’ll include the ClearGraphicEffects block under the GoTo block to 
ensure that this light starts dark. 

All of the blocks shown in Figure 2-14 execute once, in the order 
displayed, at the start of the program. Everything that follows is 
wrapped in a Forever loop, meaning that they will cycle quickly and 
endlessly. 

Next, we will check sound using the Loudness block from the 
Sensing palette. All of Scratch’s sensing capabilities have been 
passed down to mBlock. Scratch was designed to take advantage of 
the microphones and webcams built into most computers, including 
a simple block to measure ambient noise. It’s great to make use of 
these built-in options when starting out with young programmers. 
By starting out with only software tools, we allow kids to focus on 
the core ideas of their program before introducing wires and other 
physical complications. Then, once the ideas are sound, out come 
the full robots.



90 MBOT FOR MAKERS

An If/Else comparator checks the loudness level against our 
chosen threshold value of 40. The mBlock Loudness sensor returns 
values between 0 and 100, so 40 is on the soft side, but not deathly 
quiet. By measuring and comparing the loudness against a threshold 
value, we can create different behaviors for the light based on the 
sound levels.

Instead of making distinct costumes for the lit and unlit ver-
sions of each light, we’ll use the Brightness control from the Looks 
palette. Scratch’s graphics properties were passed down to mBlock 
and can be used to modify the appearance of a sprite on the Stage 
without changing the costume itself. While novel combinations of 
Warp, Ghost, Pixelate, and the other effect options are key to many 
great “lose a life” animations, they can also render a sprite invisible 
and unrecognizable. Use them wisely. All of these blocks can have 
positive or negative numbers as values, but that won’t always trans-
late into an observable change. 

In Figure 2-15, the program sets the brightness of the GreenLight 
sprite based on the reported value of the sound sensor. If the sound 
level is lower than 40, then the brightness is set to positive 20, or lit. 
If it’s higher than 40, then the classroom is assumed to be too loud, 
and the green light goes dark, with a brightness of –40.

FIGURE 2-15: Say blocks in an mBlock script place a word balloon 
above their sprite.



91mBot Software and Sensors

Dragging a script block to another sprite will copy that block 
to the new sprite. This is a great shortcut, but also an easy way to 
introduce errors. If we copy this script block from the GreenLight to 
the RedLight sprite, it creates two lights that move in sync, instead 
of one light that turns on when the room is loud and another that 
stays lit when it’s quiet. Copy the block, but then open the RedLight 
script panel to make the necessary changes.

The easiest part to adjust is the position of the red light itself. 
Keeping the X coordinates the same ensures that the lights stay ver-
tically aligned. Of course you can change that design if you’re used 
to horizontal traffic lights. 

FIGURE 2-16: Right-clicking on the angled green block will allow you 
to swap between greater than (>), less than (<), or equals.

We also need to change the script so that the sound sensor checks 
for sound levels above the threshold value. In mBlock, each angled 
green operator block can change between checking greater than, less 
than, or equality. When you’re revising a program, changing these 
blocks by right-clicking them can save a lot of time as opposed to 
dragging new blocks out from the palette. 

We can copy and modify the YellowLight script in much the same 
way. The only wrinkle is that the yellow light needs to be a Gold-
ilocks, only turning on when the sound isn’t too soft or too loud. 
Building logical groups of conditions in Scratch requires <AND> and 
<OR> blocks. Like the arithmetic blocks, you can stack these really 



92 MBOT FOR MAKERS

deep. One of the biggest UI hurdles of Scratch variants is that long 
calculations or conditionals can sometimes stretch beyond the width 
of the Scripts window. There’s a small arrow button on the border 
between the Stage and the panels that will minimize the Stage and 
provide some extra width to the Scripts area.

FIGURE 2-17: The green <AND> operator allows us to stack two sensor 
checks in a single <IF> statement to check for values within a given 
range.

With that last script in place, the software prototype is ready for 
testing. Since we’ve used mBlock’s Loudness block instead of the Me 
Sound Sensor, the software prototype is fully functional.

There’s one last helpful block we should add before testing the 
prototype. Although you can click any sensor block and see the cur-
rent value, this is cumbersome for something as dynamic as sound. 
Using a Say block from the Looks palette inside a Forever loop is a 
great way to stick a sensor value up on the screen. This program has 
three different Forever loops running, one inside each light, and the 
Say block works fine in any of them.

So far, this project is fully software-based and uses only compo-
nents that mBlock inherited from Scratch. Many inspired individuals 
in our classes are eager to build from day one and grumble over the 
time spent creating these software prototypes. Fortunately, mBlock 
and mCore make it easy to grow functioning prototypes into a final 
physical version, making the next steps feel like incremental revision 
rather than a blank slate. 



93mBot Software and Sensors

Everyone can benefit from working out mistakes and misconcep-
tions in Scratch’s low-floor environment where everything just works. 
When working with groups of young people, the software prototype 
is a critical part of every project. Once a large group starts work-
ing with materials, managing those parts consumes a large part of 
a mentor’s or teacher’s attention. Once there are cables and batter-
ies strewn over the table, it’s difficult to quickly identify whether a 
problem lies in the hardware or the underlying ideas. Completing a 
software prototype is a proof-of-concept and provides a touchstone 
through the rest of the project.

When a project requires a sensor beyond what’s included in the 
mBlock software sandbox, we often connect just the mCore and 
inputs and model the outputs on the Stage. When particular sensors 
are in short supply, a prototype can use mBlock variables to simulate 
the values expected from the sensor. Limited prototypes don’t guar-
antee that the final project will work, but a design that can’t work in 
software is unlikely to thrive with real parts.

Before we push the traffic light classroom volume meter out of 
the software-only nest, it’s worth looking closely at how the whole 
range of Makeblock sensors interacts with mBlock.

WORKING WITH SENSORS IN MBLOCK
Although there’s a long list of different sensors created for the mBot 
platform when working in mBlock, it helps to think of them as 
belonging to two basic categories.

Digital sensors measure one thing in the world and report back 
a binary value: yes or no, on or off, or 1 or 0. Sometimes these are 
mechanically simple sensors, like a classic push button. In other 
cases, like the passive infrared motion sensor, the hardware is com-
plex but the value reported back is still binary.

In mBlock, blocks that have a binary value are elongated hexa-
gons. Only blocks of this shape can fit in the question spots of con-
ditional loops.



94 MBOT FOR MAKERS

FIGURE 2-18: Green operators or blue sensor blocks  
with six sides report binary values, just True/False or 0/1.

Despite the shape, these blocks can also be placed into the round 
openings in Arithmetic blocks and the ever useful Say blocks. This 
inconsistency is bothersome, but frequently useful. 

FIGURE 2-19: Using a hexagonal block in an arithmetic operator can 
create a particular value when the sensor reports true, and 0 when 
the sensor reports false.

Analog sensors, the other type of sensor, report back their mea-
surement to mBlock as a range of numeric values, normally whole 
numbers (but not always), and normally positive (but not always). 

How these sensors arrive at their values can vary wildly, but at 
the base level they all are reporting information by adjusting the 
voltage on the wire. Most microcontrollers, expecting just a binary 
signal, have a limited ability to read analog signals: the ATmega328 
microcontroller, the heart of the Arduino Uno and the mCore, can 
only read analog signals on ports 3 and 4. Makeblock color-codes 



95mBot Software and Sensors

analog sensors and ports with dark gray (possibly the least useful 
color to apply to black plastic parts!). 

All analog sensor blocks are ovals, meaning that you can use the 
values from them in any place you would write a number or place 
another oval block. 

The last pseudo-category of mBlock sensors bundle multiple 
channels of information together into a single physical package. The 
most familiar for kids is the Me Joystick, which is a standard analog 
thumbstick similar to the ones found on every video game controller 
since the Nintendo 64. In mBlock, the block for the Me Joystick will 
report on only a single value, either the X-axis value or the Y-axis, at a 
time. A single block can never report both values, but you can bundle 
them together into a larger statement as shown in Figure 2-20.

FIGURE 2-20: This single block allows the Me Joystick to  
move a sprite around the Stage.

Other bundled sensors in the Makeblock line include the mBot’s 
line-follower (two digital light sensors) and the Me 3-axis Accelerom-
eter and Gyro Sensor, which reports three different angle readings. 

SENSOR RECIPES
To interact with the real world, an mBlock needs to describe what 
behavior should occur when the program receives the sensor data. 
The traffic light volume meter program shows one basic example—
each component measures the sound sensor constantly and switches 
between two states as a result. 

This is a common stumbling point for new programmers in 
Scratch or mBlock. Often, they can describe the behavior they want 
in very broad terms (“the spaceships, like, shoot all the bugs and they 



96 MBOT FOR MAKERS

go SQUUUISH!!”) but lack the vocabulary and experience to break 
that complex action into smaller components. 

Although students can often describe the behavior they want, it 
takes familiarity with basic programming concepts and the mBlock 
environment to see how blocks might combine to create those 
behaviors. To help bridge that gap, we’ve included a short recipe list 
that catalogs basic ways to tie sensor data to outputs, labeled with 
kid descriptors alongside more technical terms.

Exploring these models should help learners begin to develop an 
understanding of the way imagined behaviors might look in blocks 
or code. Recipes are useful tools to help in transitioning from simply 
observing the sensor value to creating a system that uses the data.

Block-based programming reveals the visual structure of these 
programming concepts—structures that can work with any sensor 
and any output. For clarity, we’ve used the onboard light sensor for 
analog values, the onboard button for digital values, and M1 motor 
for a generic output. When reading through these recipes, think of 
the inputs and outputs as placeholders for any sensor or output you 
want to work with.  

“Wait for the Sensor Reading to Hit a Value 
and Then Do Something,” Also Known as 
Latching Trigger
This is the classic intruder alarm from movies. This loop sets a behav-
ior, and then constantly checks the sensor and compares it against a 
threshold value. Once that threshold is crossed, the behavior changes 
and never changes back.



97mBot Software and Sensors

“Whenever the Sensor Hits a Value, Do 
Something Until I Say Stop,” Also Known as 
Latching Trigger with Reset 

While it sometimes feels like 
the car alarm outside your 
window will never shut up, 
most do include some form 
of a reset button. Building 
on the previous code block, 
this script adds the ability to 
use another sensor to reset 
to the first behavior.

“Constantly, Based on the Value, Do This or 
That,” Also Known as State Check
This is the same sort of check used in the traffic light classroom 
volume meter earlier. This script checks a sensor constantly, and 
changes between behaviors based on the last seen value.

While a digital sensor 
only swaps between two val-
ues, analog sensors generate 
ranges of values and behav-
iors. When you’re looking 
for a program to do “this, 
or that, or that other thing,” 
it’s time to expand the state 
check script. This variation 
of the state monitor uses 
nested If/Else blocks. 



98 MBOT FOR MAKERS

It’s important to note that this script reads the sensor twice. 
Since these readings happen in quick succession, it’s reasonable to 
assume that the light levels haven’t changed drastically, but they can 
generate different values. Furthermore, when mBlock programs are 
running tethered, each sensor reading requires two-way communi
cation between the computer and the mCore board. This communica
tion should take less than 100 milliseconds, but it might take longer, 
and that delay will only grow as the program becomes more complex. 

To avoid these problems, we need some way to store a sensor 
reading and check it several times. In other words, we need a variable.

FIGURE 2-21: You can find the blocks for variables and lists in the 
Data&Blocks palette. Select either the Make a Variable or Make a List 
button.

Variables in mBlock are designed to be approachable and easy to 
track. Once a new variable is created and named (name it well!), it’s 
automatically shown in the corner of the screen. This display can be 
turned off, either by unchecking the small box next to the variable 
name or by using the Hide Variable block. 



99mBot Software and Sensors

There are only a few variable blocks . The block Set VariableName 
does just that—overwriting any current data and leaving the new 
value. The block Change VariableName increments, or decrements 
with a negative number, the current value. Most importantly for our 
current recipe, the oval reporter for VariableName can be used all over 
mBlock, in any round input spot.

Here’s that three-state check from Figure 2-21 rewritten to use a 
variable to store the Light Sensor value.

Now the Light Sensor is read once, at the top of the loop, and the 
value is stored in LightVal. All the checks are made against this stored 
data, rather than reaching out to the sensor itself. The loop is now 
protected from sudden changes in the sensor data, and the commu-
nication time between mBlock and the mCore board is minimized. 

This loop checks the sensor reading against two threshold val-
ues, giving three possible outcomes: low, high, and between. In this 
example, the motor runs forward at full speed if the value in LightVal 
is above 700, runs backward full speed if it’s below 300, and turns off 
for any values between 700 and 300. 

Using the mBlocks <AND> operator, a single <IF> statement can 
check for values between two thresholds. With this technique, we 
can slice a sensor reading into a large number of discrete segments. 
Since the <IF> statements are constructed so that only one can be 
true in a given moment, these are called switch cases.



100 MBOT FOR MAKERS

The performance of switch cases depends entirely on the accuracy 
of the sensor and the threshold values. It’s possible to write a 12-part 
switch case for a light sensor, but unless the ambient light is perfectly 
consistent, you will have to spend a lot of time adjusting the threshold 
values to account for cloudy days or crowded rooms.

Remember that these recipes can be used with any sensor and 
any output behavior. If the goal is to turn on a specific number of 
lights or perform other discrete actions, then switch cases like these 
are a dependable tool. 

“When the Value on the Sensor Grows, Do More 
Stuff,” Also Known as Proportional Control
In the following code, LightVal is tied to the numeric value of the 
light sensor and is used to directly control the speed of the motor. 
This sounds great at first—when the light is dim the motor speed 
will be low, and when the light 
is bright the motor speed will 
be high, right? The reality will 
be a bit underwhelming. When 
there’s a gap between concept 
and execution, it helps to look 
for the assumptions in the 



101mBot Software and Sensors

program. By using the value in LightVal as the motor speed, our 
program assumes that the sensor generates values exactly within the 
motor’s input range.

The Me Light Sensor reports values in a range from approxi-
mately 0 to 1000, where comfortable indoor lighting ranges between 
400 and 600. The M1 motor block can spin in either direction, with 
–255 being full reverse and 255 full speed ahead. Additionally, speeds 
too close to zero don’t generate enough force to turn the gears in the 
yellow mBlock motors. This mismatch in sensor output and motor 
input values explains the dull behavior in the loop above. Directly 
plugging the light sensor values into the motor block will turn it full 
speed forward in most lit rooms. Worse, since the light level is never 
negative, the motor will never spin in reverse.

With a particular sensor, a given output, and a little time, it’s 
easy enough to throw together some arithmetic to squash the sensor 
values into the input’s ideal range. If the light values in our room are 
between 400 and 600, but we want motor speeds between –255 and 
255, we could use subtraction to shift the range.

The act of translating a value from one range to another is called 
mapping, and we can turn this mapping into a custom block.

FIGURE 2-22: If ambient light readings range between 300 and 700, 
subtracting 500 from each reading will generate motor outputs in the 
–200 to 200 range, causing erratic back-and-forth motions.



102 MBOT FOR MAKERS

FIGURE 2-23: Custom blocks in mBlock are tied to particular sprites. 
Here, the panda knows how to use Map, but the polar bear doesn’t.

Custom blocks are powerful tools that can do wonders for the 
readability of mBlock programs. As a general rule, if a particular 
sequence of blocks shows up more than twice in a program, they 
should probably collected as a custom block.

It’s important to note that these custom blocks are not distinct 
functions or programs. They share namespace with, and can perform 
the same actions as, the larger program. Since custom blocks cannot 
be reporters, the best way to save the output of our Map function is 
to create a variable called map_output.

FIGURE 2-24: This custom block re-creates Arduino’s map() function. 
For more information on that function, see https://www.arduino.cc/
en/Reference/Map.

To use this version of Map, we need to know the range of the 
input and the range of the output. Once that’s settled, we can drop 
the sensor block into the first bubble. 

https://www.arduino.cc/


103mBot Software and Sensors

FIGURE 2-25: Place the value you want to shift in the first Map slot, 
followed by the range of that input, then the desired output range.

New programmers frequently use mBlock’s custom block func-
tions to clarify and organize their programs. For mentors or teachers, 
custom blocks are an amazing way to expand mBlock’s toolset. Add-
ing some custom blocks to a program template for a class or sharing 
a sprite bundled with custom blocks is a great way to allow novice 
programmers to develop an understanding of functions like Map 
through meaningful, motivated use.

TRAFFIC LIGHT CLASSROOM VOLUME 
METER, REVISITED
With these new techniques at hand, it’s time to revisit the software 
prototype for our traffic light classroom volume meter.

When we left our software prototype earlier, it used mBlock’s 
Loudness block instead of the Me Sound sensor. As a consequence, 
our threshold values were based on the loudness range from 0 to 100. 
Now that we’re ready to move from software prototype to physical 
creation, it’s time to hook up the Me Sound sensor and check out 
real-world values.

Start by connecting the Me Sound sensor to port 3 of the mCore. 

FIGURE 2-26: The Me Sound Sensor reports analog values and must 
use the mCore’s analog inputs, either port 3 or 4.



104 MBOT FOR MAKERS

When we connect a new sensor, our first test program is always 
a Say block in a Forever loop. This tests the hardware and software 
connections all the way from the sensor to mBlock’s Stage, and shows 
real-world sensor values. With this tiny script running, test out the 
Me Sound Sensor. Scream for a bit. Type on the keyboard, and bang 
on the table. Have everyone in the room hold their breath for 10 
seconds. While the technical sensor values might range from 0 to 
1024, it’s far more valuable to see what values your quiet and your 
loud generate in your particular room. Only the actual data from your 
environment will create useful threshold values for your program. The 
numbers used in the following traffic light examples are tied to the 
classroom and kids who designed these particular traffic lights.

Watching the volume data flicker in a Say block’s word balloon 
is a good reminder that sound levels in a room change rapidly. Vol-
ume measures a constant sequence of momentary noises: a dropped 
book, squeaking chair, or collective breath. As someone prone to 
making loud sneezes, I’d like this traffic light to ignore some momen-
tary volume spikes and respond instead to steady increases over time. 
To do this, we’ll open the door to the world of sampling.

The block in Figure 2-27 shows a very basic way to sample a sensor 
and report back the mean value instead of a single reading. Here, this 
means creating one more variable, named RecentSounds in the exam-
ple, and using it to store 10 sensor readings. Note that RecentSounds 
doesn’t keep 10 distinct readings; it just adds all of the values together. 
Using lists instead of variables, mBlock can store persistent collections 

FIGURE 2-27: Using custom blocks allows us to visually hide the 
complexity of this sampling process outside the main body of our 
traffic light program.



105mBot Software and Sensors

of incoming data, which we explore in Chapter 4. After the readings 
are complete, the average is stored in the familiar SoundLevel block. 
There’s no Forever loop in this block because it’s designed to be used 
as a single command in a larger program.

So far, we’ve focused on monitoring the sound levels in the room 
using the microphone sensor. To turn that passive sensor into a traffic 
light, we’ll need to dive into programmable RGB LEDs. Traffic lights 
in the real world don’t normally use color-changing lights—the top 
is always red, and the bottom is always green. While the mBot can 
power a bunch of fixed-color LEDs, the LED accessories they sell 
are all addressable, meaning that every light in the strip can have a 
unique color. These RGB lights are technically WS2812, similar to 
Adafruit’s original NeoPixels. Makeblock sells several programmable 
RGB LEDs in several different forms, but they all work the same way 
in mBlock and the Makeblock app.

Connect each light board to a different port on the mBlock. Since 
the Me Sound Sensor is currently using port 3, this means connect-
ing a light to ports 1, 2, and 4.



106 MBOT FOR MAKERS

Using a separate block for each light source (either the Me LED 
board or the longer Me LED strips), specify the intensity for the red, 
green, and blue channels with a value between 0 and 255.

There are plenty of fancy tricks available for working with these 
lights in mBlock, but for the traffic light all we need is to have one 
light be the appropriate color and have the other two off. 

This program is human-readable up to a point. When the mBlock 
Scripts panel is filled with these nearly identical blocks, it’s really 
easy to lose track of whether port 2 is supposed to be the green light 
or the yellow light. To make the script easier to parse, we can create 
a custom block—this time to simply isolate the LED blocks into 
meaningful, named groups.

This revised program now combines the screen-based prototype 
with real-world lights, and now students have a great opportunity to 
cross-check behaviors between the two.

UPLOAD TO ARDUINO
All of the projects so far haven’t actually changed the bits written 
into the memory of the mCore. Using the remote control to move 
the mBot around doesn’t change the software. The Makeblock app 
and the programming we’ve done so far in mBlock constantly send 
commands to the mBot, but never rewrite the program stored in 
memory on the board. 

Now, we’ll move from tethered to independent operation of the 
mBot. Using a wired USB connection, we can upload a program 
directly to the mCore that will stay loaded through resets and power 

FIGURE 2-28: Once custom blocks are working, there’s no need to 
keep them visually close to the main program. Banish them to the 
scroll-right hinterlands and declutter your workspace.



107mBot Software and Sensors

cycles. Uploading a program is the only way to create a robot that 
that operates without a computer on hand.

At this point, anyone familiar with “normal” Arduino or micro-
controllers is sighing with exasperation, “Finally!” Uploading code 
to the board to blink an LED is how 99 percent of Arduino tutorials 
start. Tethered programs have provided a ton of features that dis-
appear when uploading code to the mCore. Untethered, there’s no 
interaction between the board and the computer, hence no way to 
use many of the mBlock features derived from Scratch. Every block 
you use will be translated into written Arduino code. When you 
compile and upload an mBlock program, it needs to have a different 
“hat” than a tethered program. (Scratch convention names the curvy, 
top-of-the-script block a hat.)

Using a separate block for each light source (either the Me LED 
board or the longer Me LED strips), specify the intensity for the red, 
green, and blue channels with a value between 0 and 255.

There are plenty of fancy tricks available for working with these 
lights in mBlock, but for the traffic light all we need is to have one 
light be the appropriate color and have the other two off. 

This program is human-readable up to a point. When the mBlock 
Scripts panel is filled with these nearly identical blocks, it’s really 
easy to lose track of whether port 2 is supposed to be the green light 
or the yellow light. To make the script easier to parse, we can create 
a custom block—this time to simply isolate the LED blocks into 
meaningful, named groups.

This revised program now combines the screen-based prototype 
with real-world lights, and now students have a great opportunity to 
cross-check behaviors between the two.

UPLOAD TO ARDUINO
All of the projects so far haven’t actually changed the bits written 
into the memory of the mCore. Using the remote control to move 
the mBot around doesn’t change the software. The Makeblock app 
and the programming we’ve done so far in mBlock constantly send 
commands to the mBot, but never rewrite the program stored in 
memory on the board. 

Now, we’ll move from tethered to independent operation of the 
mBot. Using a wired USB connection, we can upload a program 
directly to the mCore that will stay loaded through resets and power 

FIGURE 2-28: Once custom blocks are working, there’s no need to 
keep them visually close to the main program. Banish them to the 
scroll-right hinterlands and declutter your workspace.



108 MBOT FOR MAKERS

FIGURE 2-29: Only the GreenFlag hat will work when the mBot is 
tethered, and the mBot Program hat has no effect.

These programs create the same behavior, but the script that uses 
the mBot Program hat requires compilation and upload.

In general, only blocks from the Data&Blocks, Control, Opera-
tors, and Robots palettes work in compiled and uploaded programs. 
If any other blocks appear in a script under the mBlock hat, mBlock 
will show you an error message.

FIGURE 2-30: These light blue blocks come from mBlock’s Sensing 
palette and control timing functions inside mBlock. They can’t be 
used in an uploaded program.

INDEPENDENT TRAFFIC LIGHT CLASSROOM 
VOLUME METER
If the volume meter is ever going to be useful in a classroom setting, it 
needs to work like an appliance—flip the power switch and the lights 
start right up. Fortunately, mBlock makes it simple to change an 
interactive program that requires a computer to one that’s uploaded 
to the board and works independently.



109mBot Software and Sensors

FIGURE 2-31: The custom blocks used to control the RGB lights are 
still part of this program, but they are just off-Stage for clarity at the 
moment.

Nothing from the earlier version of the program has been 
removed. We’ve added an extra script under the mBot Program hat 
and removed the two blocks that referred to the sprite’s position on 
the screen. When we compile and upload, only the blocks under the 
mBot Program hat and any custom blocks used in that script will 
translate into Arduino code. This means that the tethered version 
can coexist with the compiled version in one mBlock file. If the green 
flag is clicked while an mBot is connected, the tethered program will 
run. If you want to have the program run without a computer, select 
Arduino mode by right-clicking the mBot Program hat.  You can also 
go to the Edit menu and select it there.



110 MBOT FOR MAKERS

FIGURE 2-32: Choosing Upload to Arduino from the mBot hat context 
menu will switch mBlock to Arduino mode. Choose Small Stage Lay-
out from the Edit menu to switch back.

In Arduino mode, mBlock hides the Stage and sprites in favor 
of a text window that shows a current text version of the script. The 
Scripts and Blocks palettes are still visible, and changes made to 
the block version of the program will automatically update the text 
version. 

 FIGURE 2-33: On the lower-right corner of the screen when you’re 
in Arduino mode, you can see output from the compiler, and data 
that would be sent to the serial monitor in the Arduino serial monitor 
when using traditional Arduino tools. 



111mBot Software and Sensors

Careful reading of the text version can reveal a lot about how 
mBlock translated between blocks and Arduino code. If you look 
closely at the text version on the right of the following image, you’ll 
see that the SetGreenLight custom block has arrived as the Arduino 
function void SetGreenLight().

 

Selecting Upload to Arduino will launch the compiler. The com-
piler will translate the human-readable Arduino program into a hex 
file, and then will upload that hex to the mCore. Error messages 
that appear in the lower-right window during compilation are often 
a weird combination of compiler errors and serial communication 
codes. Troubleshooting that universe of errors is well beyond the 
scope of this book. In practice, most errors that students encounter 
at this stage can be traced back to mBots with disconnected USB 
cables. If this is the first time you’re using a particular computer to 
upload a program, make sure the Arduino drivers are installed. That 
process is covered earlier in this chapter in the overview of wireless, 
Bluetooth, and USB connections.

Once the upload is complete, the traffic light volume meter pro-
gram is now written to the mCore’s stable memory. Turn off the 
board, unplug the USB cable, and build a better traffic light.



112 MBOT FOR MAKERS

Finally! Instead of a versatile robot that can be controlled with 
an IR remote, programmed with a Bluetooth tablet, or issued com-
mands from mBlock, we have a battery-powered traffic light that 
responds to noise. Moving from the flexible tool that could become 
anything to a narrow, single-purpose thing is a huge step for young 
designers. But it shouldn’t be the last step in the design process.

Half-built cardboard prototypes like this often represent the end-
point of student projects. From the perspective of a student follow-
ing a strict feature checklist, this traffic light volume meter is clearly 
“done.” Making any changes will involve undoing something that 
already works, an idea that is anathema to goal-focused learners. 
Without stepping on the learners’ celebration, we insist on reflec-
tion and peer review at these seemingly terminal prototype stages. 
Young Makers need to develop an iterative mindset and an eye for 
improvements, even when it means “redoing” work. One of the best 
ways to force this reflection is to put the prototype in use, and have 
testers deliver honest feedback to the designer.

Simple critiques can prompt significant changes in the design. 
If a user wants a way to adjust the volume levels on his or her own, 
how many systems does that effect? First, it means adding some extra 
form of input to the project, probably some buttons or a potenti-
ometer. As a result, that means using fewer ports for the lights. Is it 
better to use the LED strip, or position the mCore to use the onboard 



113mBot Software and Sensors

LEDs? Which design would be more stable and allow teachers to 
place the light vertically or horizontally? 

The mBot’s expandability, combined with mBlock’s beginner- 
friendly programming syntax, makes it easy to start creating interac-
tive projects like the traffic light. But the challenges of design come 
from refining those initial prototypes into something that meets the 
demands of real-world users and environments. Use the power and 
convenience of these tools as a shortcut to those hard/fun problems.

REINSTALL THE DEFAULT PROGRAM
As hard as it might be to believe, the novelty of this stand-alone 
Ssssh-meter will wear off. When that happens, you’ll need to replace 
the traffic light volume meter program with a program that can com-
municate with mBlock.

Use a USB cable to connect the mCore to the computer and 
connect to mBlock via the serial port. Then select between the two 
confusingly named mCore options: Update Firmware and Reset 
Default Program. 

There is a detailed comparison between these two versions in 
Chapter 1, “From Kit to Classroom,” but the takeaway is that Update 
Firmware is the better choice unless you’re planning on using the IR 
remote. Make your choice, and then wait for the three-tone chime 
(Default Program) or chirp (Update Firmware) when the upload is 
complete.



114 MBOT FOR MAKERS

WHERE WE’RE HEADING FROM HERE
With this wide array of tools, it’s clear that “How do I control my 
mBot?” is the wrong question. Given any task, there’s probably a way 
to accomplish it using the Makeblock app or mBlock, or by using the 
Arduino environment. For an open platform like the mBot, you can 
choose the most focused tool, or the most flexible tool, or just use 
one with which you’re already comfortable. The remaining project 
chapters will each use one specific software tool, mainly for clarity 
in the instructions. We’ll call out any unique features of a particular 
programming environment when we use them. Other than those 
exceptions, you should be able to build all the animatronics and 
data loggers from the following chapters using the Makeblock app, 
mBlock, or the Arduino IDE.

Sensors and Example Code
Onboard sensors are the sensors built right into the 
mCore, the brains of the mBot. Two sensors, the ultra-
sonic sensor and line-follower, are included with the basic 
mBot kit. The add-on sensors are available for purchase 
in bundled packs and individually for very reasonable 
prices. Nearly all the add-on sensors can be connected 
to the mCore using RJ25 (phone jack) cables. For sensors 
that are not made by Makeblock, the RJ25 adapter listed 
here is the perfect solution. The RJ25 adapter allows you 
to connect your own servos and sensors.

SENSOR IMAGE DESCRIPTION

OnBoard button Momentary push 
button on mCore, 
located behind 
port 2



115mBot Software and Sensors

SENSOR IMAGE DESCRIPTION

OnBoard LED x 2 Two programmable 
RGB LEDs, located 
between port 2 
and port 3

OnBoard Light 
sensor

Wide-angle ana-
log light sensor, 
mounted directly 
between the 
onboard RGB lights 

OnBoard buzzer A standard Piezo 
buzzer; the Play 
Tone block allows 
notes from C2 
(==65 Hz) to D8 
(4700 Hz), in half 
to double duration



116 MBOT FOR MAKERS

SENSOR IMAGE DESCRIPTION

OnBoard IR sensor IR receiver and 
transmitter are 
mounted next 
to each other, 
between the 
speaker and the 
button 

Ultrasonic sensor 

(Included with 
mBot kit)

Measures dis-
tance from 3 cm 
to 400 cm and 
can be used for 
obstacle avoidance 
and measuring 
distance

Line Follower 
sensor

(Included with  
mBot kit)

Two LEDs and light 
sensors mounted 
to a single board. 
This sensor is 
calibrated for the 
height of the mBot 
frame. Be sure to 
test when using in 
other situations.

Add-on

Me LED 4x

Four RGB LEDs 
that can be 
adjusted for color 
and brightness



117mBot Software and Sensors

SENSOR IMAGE DESCRIPTION

Add-on 7-segment 
display

Can be used to 
display data such 
as speed, time, 
temperature, dis-
tance, or a score

Add-on Sound 
sensor

Electret micro-
phone. Detects 
loudness of sound 
at close range.

Add-on 
Potentiometer

Can be used to 
adjust speed and 
brightness of 
objects

Add-on PIR Motion 
sensor

Detects motion of 
humans or animals 
in a 6 meter range

Add-on Joystick Used to control 
the direction of 
physical objects or 
video games

Add-on Light 
sensor

Detects the inten-
sity of ambient 
light



118 MBOT FOR MAKERS

SENSOR IMAGE DESCRIPTION

Add-on LED matrix 8n16 aligned LEDs 
to display numbers 
and letters

Add-on RJ25 
Adapter

n/a Converts standard 
RJ25 to six pins to 
use generic servos 
and sensors

Add-on LED Strips WS2812 program-
mable LED. Uses 
an RJ25 adapter to 
connect to mCore.

Add-on Tempera-
ture Sensor

Measure inside 
or outside range 
between –55°C 
and 125°C. Sensor 
is waterproof and 
uses RJ25 adapter 
to connect to 
mCore.



Animatronics

E very kid wants to build a robot. No matter what materials are at 
hand, from cardboard to empty soda bottles to brooms, if a kid 

starts to build, there’s a decent chance that the shape that emerges 
will be named robot. With that type of enthusiasm and access to 
real, powerful components, the perfect robot should emerge spon-
taneously, right?

Using context to create focus is a key to any successful work with 
young or inexperienced roboticists. Left to describe their dream robot, 
most kids will describe some fantastical blend of Baymax, Optimus 
Prime, and Gundam Wing. Vision that expansive can inhibit, rather 
than inspire, when it hits the hard reality of servo motors. 

This group of projects focuses kids’ attention on a “simple” 
branch of robots that move and respond to the environment for 
the benefit and enjoyment of an audience. Kids can think of these 
as interactive tops, preprogrammed puppets, or scaled-down ver-
sions of audio-animatronics developed by Walt Disney Imagineer-
ing. While working on the Mission to Mars ride at Disneyland 
during college, Rick got firsthand experience with Disney’s audio- 
animatronics brilliance. Both vintage and newer Disneyland rides 
include this trademarked Disney technology.

First, we’ll build some puppets that make random movements 
to introduce several different operations, and then move on to more 
advanced creations that actually respond to user input. Each sec-
tion will explain the specific hardware needed for movements and 

3



120 MBOT FOR MAKERS

sensing. Having a handful of custom-made RJ25 cables using the 
instructions in Chapter 1, “Kit to Classroom,” will be very handy for 
these projects.  The short 6g cables that come with the mBots will 
seriously limit your creativity. With cables 1f–3f long, you can really 
accomplish almost anything you dream up. For all the projects in 
this chapter, the box-creature bodies are just a starting point and will 
surely turn into whimsical creatures as kids’ imaginations go wild.

Materials
TOOLS

Hobby knife

Masking tape

Cutting mat

Sharpie

Pencil

Hot glue gun and glue sticks

Scissors

Needle-nose pliers

Ruler

CRAFT SUPPLIES

Boxes of various sizes

Rubber bands, small and 
large

Feathers

Pipe cleaners

Beads

Bling

Paint

Colorful foam sheets

Craft sticks, jumbo and 
regular

Paper or plastic cups

Googly eyes

Colorful construction paper

Large paper clips

ELECTRONICS

mCore (preferably with 
case)

Sensors and motors (see  
list that follows)

RJ25 connection cables 
(You’ll want to use the 

instructions from Chapter 
2 to make your own, since 
you’ll want longer ones than 
are in the kit.)

RJ25 adapter (for using 
generic servos)



121Animatronics

FOR ADDING SENSING AND MOVEMENT

Sensors to trigger (input)

»» Ultrasonic

»» Distance

»» Motion

»» Light 

»» Line-following

»» Sound

»» Touch

Components to react (output)

»» Servos and linkage arms 
(aka, servo horns)

»» LEDs

»» Motors

PUPPET MOVEMENT WITHOUT SENSORS
For the first few projects in this chapter, we’ll build some creations 
that light up, rotate, and spin, but don’t react to user input. Later 
on, we’ll build some things that actually respond to user input using 
specific sensors.  

Project: Random Light-up Eyes Using RGB 
LED Sensor
In this first project we’ll create a basic cardboard box head with cut-
out eyes and an RGB LED inside.  

	 1.	 Select a box that is approx-
imately 5g n 5g n 5g—I  
used an empty tissue box. 
Open the box so you can get 
inside.  

	2.	 Cut some eye holes out with 
a hobby knife and then add 



122 MBOT FOR MAKERS

some tissue paper on the inside to cover the holes and diffuse 
the light.

	3.	 Put masking tape on the bottom part of the LED sensor. (When-
ever you’re going to use hot glue on a sensor, add tape first to 
prevent damage to the electronic parts.)

	4.	 Add hot glue to the tape on the LED sensor and stick it inside 
the box. 



123Animatronics

	5.	 Thread the RJ25 cable out the bottom of the box and attach the 
cable to port 1 on the mCore.



124 MBOT FOR MAKERS

	6.	 Connect the mCore to your computer and open mBlock. Write 
and run the following program:

This will create randomly flashing blue LED eyes that run forever 
after the space bar is pressed. This is just a starting point, so now it’s 
time to get creative by modifying this code to customize the colors 
and blinking patterns.  



125Animatronics

Project: Head Turning Randomly Using 9g Servo 
and RJ25 Adapter
If you are using a lightweight “head” like the tissue box for this proj-
ect, 9g servos will work, with some modifications. If you are moving 
a heavier object, you might need a bigger servo, like a Hitec HS-311, 
which has a higher torque. For $3–$5, you can also purchase micro 
servos with metal gears that are less likely to be stripped by too much 
weight or force.  

Mount and Wire the Servo

	 1.	 First, cut a mount for the servo. If you have access to a laser cutter, 
download the template file from www.airrocketworks.com/instructions/
make-mBots, and use it to cut a mount from acrylic. If you don’t have 
access to a laser cutter, you can also use the full-scale PDF, which 
can be downloaded from the same location, to hand-cut a servo 
mount out of a material of your choice. Slip the servo through the 
mount and attach it using hot glue. 

http://www.airrocketworks.com/instructions/


126 MBOT FOR MAKERS

	2.	 Next, cut a hole about ¾g n 1¼g in the center of the box to fit the 
servo and push the servo up through the hole in the box.  

	3.	 Once you’re sure the servo fits, put tape over the servo mount 
and glue it to the inside of the top of the box.

	4.	 Feed the servo wires out the back of the box and tape the box 
shut. Then, connect the servo to the Makeblock RJ25 adapter. 
The RJ25 adapter allows you to connect two servos to one port 
on the mCore. For this project, let’s attach the servo to slot 1 
using the following guidelines: 

»» Orange or yellow: S1 (signal)

»» Red: VCC (power)

»» Brown or black: GND (ground)



127Animatronics

BUILDING THE SERVO ARM

	 1.	 Mark the center of a large craft stick and drill a ¼g hole.  

	2.	 On a piece of cardboard, trace whatever you are using for your 
creature’s head, and then cut out the shape. I’m using the same 
box I used for the LED eyes project because I’m going to use this 
as my creature’s head. 



128 MBOT FOR MAKERS

	3.	 Hot-glue the craft stick to the piece of cardboard, then drill 
through the hole in the stick again and on through the card-
board. Depending on the size of the box used for the head, you 
may need to trim the craft stick.  



129Animatronics

	4.	 Next, take the largest arm that came with your servo and hot-glue 
it onto the stick, with the side that attaches to the servo facing 
up. You need this to stick really well, so use plenty of glue, but 
not so much that it goes inside the hole.  

We’ll set this aside for now until we have the servo connected to 
the mCore and calibrated.  

WIRING TO THE MCORE

	 1.	 The servo should already be connected to the RJ25 adapter. Now 
connect the RJ25 adapter to port 2 on the mCore using an RJ25 
cable. (It’s connected and programmed for port 2 because you 
may want to use port 1 for the LED eyes.)  



130 MBOT FOR MAKERS

	2.	 Connect your mCore to your computer and write the code shown 
in the following image using mBlock. This will make the servo turn 
from 0 to 180 degrees randomly when the space key is pressed. If 
you want the servo to move for only a set period of time, you can 
swap the Forever control out for Repeat, as shown here.

ATTACH THE HEAD TO THE BODY

	 1.	 Once the mCore is connected and programmed, attach the stick 
and cardboard control arm to the top of the servo and carefully 
screw it in place using the screw supplied with the servo.  



131Animatronics

	2.	 Then, attach the head to the servo platform using tape.  

COMBINING THE LED EYES WITH THE MOVING HEAD

	 1.	 If your LED eyes are still inside the head, you’ll need to route 
the cable out and to the mCore in a way that the cable does not 
interfere with the operation of the moving head.  

	2.	 Now, using one of your custom RJ25 cables that’s at least 2f long 
plug your LED eyes into port 1 of the mCore and combine the 
two programs. Now you’ve got a randomly moving head and 
blinking LED eyes!



132 MBOT FOR MAKERS

Going to the Zoo
The Robot Petting Zoo was born out of the TechHive Stu-
dio at the Lawrence Hall of Science at the University 
of California, Berkeley. The first Robot Petting Zoo was 
a brilliant 12-hour Makeathon for high school students. 
During the first 10 hours, students learned about pro-
gramming, electronics, prototyping, and design while 
they built a robot pet, and then spent the last two hours 
presenting their creations to the public. The Robot Pet-
ting Zoo was the inspiration for some of the following 
projects. Matt Chilbert and Andrew Milne were instru-
mental in the event at TechHive, and Tom Lauwers is the 
president and chief roboticist at BirdBrain Technologies. 
Thanks to these gentlemen for their inspiration!

Project: Opening Mouth Using a 9g Servo and an 
RJ25 Adapter
This puppet in this project is made using a box, one servo, a single- 
sided servo arm, a small craft stick, and a large paper clip to operate 
the mouth flap.  

We’re going to start with a cardboard box and use one of the 
flaps as the mouth. For this example, we’re using a 6g n 6g n 6g box 
from Uline.  

	 1.	 Lay the box flat and, on one end, cut off the two flaps opposite 
of each other.

	2.	 On the side you didn’t cut, tape the four flaps closed with a strip 
of masking tape.



133Animatronics

	3.	 On the other side, tape just one flap down and draw eyes. The 
bottom flap will be our mouth.

	4.	 Grab a 9g servo and select the longest single-sided servo arm. 
We’ll be extending the arm by hot-gluing a craft stick to it. Cut 
the small craft stick down to about 2g, drill a small hole 1¼g from 
the end of the stick, and then glue the servo horn to the stick with 
hot glue.  



134 MBOT FOR MAKERS

	5.	 Press the servo arm and stick extension down onto the servo 
top, and turn it all the way to the left, with the servo oriented 
as shown in the following image. Reposition the stick extension 
(also shown here), then screw the servo arm into place using the 
short self-tapping screw provided with the servo.



135Animatronics

	6.	 Connect the servo to the RJ25 adapter. Refer to the earlier project 
in this chapter, “Head Turning Randomly Using 9g Servo and 
RJ25 Adapter,” for details. Next, plug the servo into slot 1 and 
then mCore port 1.  

	7.	 Program and run the following.



136 MBOT FOR MAKERS

The servo should rotate between the two positions.

	8.	 Using needle-nose pliers bend the jumbo paper clip into the 
shape shown in the following image, with 2½g legs on both sides.  

	9.	 Measure 1g from the front of the box, and mount the servo to the 
inside of the box. Hot-glue it directly to the cardboard to make 
sure it’s flat, as shown in the following image. 



137Animatronics

	10.	Hook the paper clip through the hole in the wooden craft stick, 
then rotate the servo toward the front of the box. Then tape the 
paper clip down to the flap.



138 MBOT FOR MAKERS

	11.	Your mouth should now open and close using your space bar as 
the trigger.

	12.	Once you know your mouth is working correctly, you can remove 
the tape and replace with a generous amount of hot glue.

Project: Rotating Eyes Using a 9g Servo and an 
RJ25 Adapter
For this project, you’ll be using the same box from the previous mov-
ing mouth project along with a cardboard toilet paper tube, servo 
horn, and masking tape.  

	 1.	 Take the tape with the drawn-on eyes off the flap of the box you 
built in the previous project.  

	2.	 Flip the box over, and then cut out the bulk of the flap with a hobby 
knife, leaving a ½g border on three sides of one flap, as shown in 
the following image. This is where you’ll be building your rotating 
eyes. Save the scrap, because we’ll be using it in a future step.



139Animatronics

	3.	 Take a cardboard tube, trace a circle around it on another piece 
of scrap cardboard, and then cut out that circle. 

	4.	 Hot-glue the servo horn to one side of the cardboard circle, with 
the part of the servo horn that attaches to the servo as close to 
the middle as possible.  



140 MBOT FOR MAKERS

	5.	 Now hot-glue the circle onto one end of the cardboard tube.  

	6.	 Measure and make a mark on the upper-inside-left of the box 
2¼g down from the top and 1¼g in from the front. Using a gen-
erous amount, put glue on the bottom of the servo and then glue 
the servo to the side of the box, lining up the bottom-right side 
of the servo with your mark.



141Animatronics

	7.	 Now, flip your box over and tape down the flap opposite the 
moving mouth on each side, as shown here.

	8.	 On one of the scrap pieces of cardboard, measure 1 ½g down on 
both sides and draw a connecting line. Center two quarters on 
the line, draw a line around them, and then cut them out. This is 
where the rotating eyes will line up.  



142 MBOT FOR MAKERS

	9.	 Roll up some tape, as shown in the following image, and attach 
to the box over the rotating tube.

	10.	Write the code on Scratch and then run the program. The eyes 
will rotate between three positions.  

	11.	Using a pencil, draw the numbers 1, 2, and 3 on the tube through 
the openings you cut for the eyes that correspond with the three 
positions. You may need someone to press the 1, 2, and 3 key on 
your keyboard while you’re numbering the three positions.  



143Animatronics

	12.	Remove the cardboard with the eye holes, and draw in three dif-
ferent eye shapes with a Sharpie. Again, you may need to have 
someone hold the 1, 2, and 3 keys on your keyboard while you’re 
drawing in the eyes with the Sharpie. 

We also added a serrated edge to both sides to look like a mouth. 
Have fun customizing your own!



144 MBOT FOR MAKERS

	13.	In Scratch, you can combine the rotating eyes and mouth move-
ment using the following code. 

By pressing the 1, 2, and 3 keys, you’ll move the eyes into the 
different positions. The space bar will open and close the mouth.

PUPPET MOVEMENT WITH SENSORS
The projects so far in this chapter have been preprogrammed for 
random or set movements without sensors. Now we’re going to add 
some interactivity where your creature senses the environment and 
responds according to your program. 

Project: “Feeding” Your Creature Using the 
Light Sensor
With this project, we’ll use a light sensor that senses when your 
creature is “fed” and triggers a couple of motors to spin your crea-
ture’s ears. 

For this project you’ll need two geared motors, a light sensor, 
and an LED. We’ll attach the two motors inside the cardboard box, 
attach wheels on the outside, and then add some whimsical ears 



145Animatronics

to the wheels. Then we’ll affix the light sensor and LED inside the 
“mouth.” When we “feed” the creature a piece of cardboard food, 
the ears will spin! 

	 1.	 Starting with a fresh 6g n 6g n 6g box or similar, tape the back of 
the box closed, and then cut off the side flaps on the other side, 
as shown.

	2.	 Cut a ¾g n 2g hole in the bottom flap.



146 MBOT FOR MAKERS

	3.	 With a 1½g hole saw, cut a hole in the upper corner of each side, 
as shown. I measured 2g from the top and 2g from the side.  

	4.	 If the hole looks messy, you can clean it up with a hobby knife.



147Animatronics

	5.	 It’s easier if you mount the motors to a laser cut motor mount 
first. Laser-cut a mount out of acrylic using the template files 
available at the book’s website. The additional holes in the 
mount are sized so that you can connect the motors to LEGOs 
or other Makeblock accessories.

NOTE  If you don’t have a laser cutter, you can cut 
the mount by hand using a material of your choice, 
such as cardboard, thin wood, or thin sheets of plastic. 
PDF templates are available from the book’s website 
at www.airrocketworks.com/instructions/make-mBots.

	6.	 Put masking tape on the acrylic motor mount so that it’s easy to 
remove later, and then add hot glue on top of the masking tape.

http://www.airrocketworks.com/instructions/make-mBots


148 MBOT FOR MAKERS

	7.	 Position the motor mounts inside the box with the motor hubs 
centered inside the holes. We’ll add the white plastic wheel hubs 
later.  

Now repeat steps 5–7 with a second motor.

	8.	 The moving ears that you’ll be creating will spin around when 
the light between the RGB LED sensor and the Light sensor is 
blocked by a small piece of cardboard that is the creature’s “food.” 



149Animatronics

Once you have the LED sensor and Light sensor positioned, you 
can tape them in place. Then connect the RGB LED to port 1 
of the mCore and the Light sensor to port 3 of the mCore. The 
motors can be connected to M1 and M2.  

	9.	 Code the following in mBlock and send to your mCore. The code 
will turn on the LED, then trigger the motors (M1 and M2) when 
the light going to the light sensor is interrupted.  



150 MBOT FOR MAKERS

	10.	Now we’ll add some fun ears to the wheel hubs using foam sheets. 
Cut the ears out of foam, apply masking tape to the plastic wheel 
hubs, and glue the ears on with hot glue.

Now when you “feed” your creature by passing a cardboard disk 
through the mouth, the ears will spin. The creature will look like the 
one in the following picture. The creature also has an Ultrasonic 
sensor mounted on the front that will be part of the next project. 



151Animatronics

Project: Propeller Spins with Ultrasonic Sensor
For this project, you’ll need the Ultrasonic sensor and one of the 
geared motors. When something or someone approaches your crea-
ture, a propeller on its head starts to spin!

	 1.	 Tape one side of a box closed. Then, drill a 5/16g hole in the top 
center of a box. 



152 MBOT FOR MAKERS

	2.	 Mount the geared motor to a laser-cut, acrylic motor mount and 
cover the motor mount with masking tape. If you don’t have a 
laser cutter, you can cut the motor mount by hand using the 
full-size PDF template. You can make the mount from wood, 
cardboard, or soft plastic sheets.  

	3.	 Print the dowel-to-gear-hub adapter on a 3D printer using the 
template, available on the book’s website: www.airrocketworks 
.com/instructions/make-mBots. Insert a ¼g dowel connector into 
one end of the 3D-printed adapter and the other end onto the 
gear hub of the motor. 

	4.	 Add hot glue to the tape on the motor mount and glue to the top 
of the inside of your box so the 3D-printed adapter sticks out of 
the top.

	5.	 Cut a ¾g n 2g hole in the front of the upper front flap.

	6.	 Cover the Ultrasonic sensor with tape, apply hot glue, and attach 
to the inside of the flap. The tape will protect the sensor from the 
hot glue and allow you to easily remove it later.

http://www.airrocketworks


153Animatronics

	7.	 Mount the Ultrasonic sensor to the front of your box so that the 
“eyes” are exposed.  



154 MBOT FOR MAKERS

	8.	 Connect the Ultrasonic sensor to port 1 and the motor to M1.  

	9.	 Write and run the following code as a starting point. The Ultra-
sonic sensor will sense your movement and trigger the motor. 
You can adjust the distance at which the Ultrasonic sensor begins 
to react. Here it’s set at 20.



155Animatronics

	10.	If you add a Say block in Scratch (in the Looks script) to  
your Ultrasonic sensor, you’ll know it’s working when the 
data input changes in the Panda’s speech bubble. This one is set 
to 400. As you approach your creature, the motor should turn on. 

	11.	 I added a 6g long, ¼g dowel to the 3D-printed adapter and 
attached a propeller printed on card stock to the top. This is 
where you can have fun customizing your creature with whatever 
your imagination can come up with!  



156 MBOT FOR MAKERS

Project: Servo Arm with Paw Reaches Out When 
Motion Sensor Is Triggered
When someone approaches your creature, an arm linked to a servo 
will reach out.  

Sometimes the circular motion of a servo or motor isn’t exactly 
what you need for your creation. That’s where mechanisms come in! 
Hundreds of websites exist to show you how to turn a simple circular 
motion into other motions. While there are quite a few options, the 
one we’re going to focus on here is using a scissor linkage for a hand 
or paw that reaches out.  



157Animatronics

	 1.	 Grab eight large craft sticks and some brads to build the grabber.  

	2.	 Drill 5/32g holes in the ends and middle of each crafts stick. It 
works well if you stack the sticks and drill them all together so 
you get the holes in the same place. Then insert brads, as shown. 
There should be one center hole with no brad.

	3.	 Decide which side of the box you want to attach the linkage to, 
or maybe you want two servos on each side! Cut a ¾g n 1¾g slot 
in the box near the top center, as shown, then glue your servo to 
a laser-cut acrylic servo mount.  



158 MBOT FOR MAKERS

	4.	 Cover the servo mount in masking tape, and then add hot glue 
and tape inside the box with the servo centered.

	5.	 Grab your servo linkage arm. Flip the scissor mechanism over 
and glue the servo linkage arm over the third center hole that 
does not have a brad. You can see pictures of linkage arm in the 
following image.

	6.	 Test-fit the servo horn onto the servo, then on the bottom end 
of the same craft stick as the servo arm, stack up several layers of 
scrap cardboard until the stick is about level with the servo, as 



159Animatronics

shown in the following image. Mark the cardboard through the 
hole so you know where to place a brad.

	7.	 Cut down through the layers of cardboard with your hobby knife.



160 MBOT FOR MAKERS

	8.	 Connect the whole assembly using a brad.

This is how it should look from the side.  



161Animatronics

	9.	 Using Scratch, create the following program, which will allow 
the Motion sensor to trigger the servo. Push your Motion sensor 
through a hole in the front of the box and connect the servo to 
the RJ25 adapter. Next, connect the Motion sensor to port 4 
and the RJ25 adapter to port 1 on the mCore.

	10.	Once you have the mCore programmed and the servo lined  
up, you can permanently attach the servo arm using a screw and 
washer.



162 MBOT FOR MAKERS

	11.	Now attach your claw, hand, or paw to the end of the scissor 
linkage and you’re ready to go!

You can find some additional linkage and mechanism resources 
from the brilliant folk at the Tinkering Studio at http://tinkering 
.exploratorium.edu/cardboard-automata.  

Project: Touch Sensor Triggers 
Scrolling Message
In this project, you’ll make a message display when your creature 
is “petted”! We’ll use the Touch sensor and an 8 n 16 LED Matrix 
display to make this happen.

	 1.	 Gather the components shown in the following image.

http://tinkering


163Animatronics

	2.	 Grab a box, lay it flat, and cut off the two flaps opposite each 
other.



164 MBOT FOR MAKERS

	3.	 Mark a 1½g n 1g hole in the top flap and cut out the rectangle 
with a hobby knife. The LED Matrix will fit here. 

	4.	 In the middle of the bottom flap, cut a 1g wide slit with a hobby 
knife. The Touch sensor will slip in here.  

	5.	 Add masking tape and then hot glue to the back of the LED 
Matrix.



165Animatronics

	6.	 Plug the LED Matrix into port 2 on the mCore and the Touch 
sensor into port 1.  



166 MBOT FOR MAKERS

From the front it should look like the following.

	7.	 Write the following code in mBlock.



167Animatronics

At this point, loading the program onto your mCore requires a bit 
more of an explanation (see the section in Chapter 1 titled, “Updating 
the mBot”). If you turn on your mCore and you hear three tones, 
you have the default program loaded. The default program includes 
all the files for your IR remote, line-following, and Ultrasonic sensor 
programs. These take up a lot of space and do not include the code 
needed to run the Touch sensor. You need to connect your mCore 
to your computer using a USB cable, open mBlock, and connect 
using whatever com port is available by going to the Connect menu, 
and selecting Serial Ports. Once you’re connected, select Upgrade 
Firmware on the Connect menu and it should go through the upload 
process to load the software needed for all the sensors, including the 
Touch sensor. Now, when you boot up your mCore you should just 
hear just one short beep.   



168 MBOT FOR MAKERS

After upgrading the firmware and rebooting your mCore, con-
nect your mCore via 2.4G serial or Bluetooth. Now, when the user 
triggers the Touch sensor by petting your creature, a message will 
appear on the LED Matrix! Each time you touch the Touch sensor, 
the message will start and stop. You have to keep touching the pad 
to see what the entire message says.

The projects in this chapter are just a starting point. Once you 
see how fun it is to set up and program sensors that trigger motors, 
servos, and digital readouts, you’re limited only by your imagination. 
I’ve used a 6g n 6g n 6g box for most of the projects in this chapter, 
but you can use whatever you have available, or what works for your 
particular project. One thing I’ve discovered: when you give kids lots 
of creative supplies like colorful foam sheets, cardboard tubes, boxes 
of various sizes, feathers, pipe cleaners, wood sticks, and other craft 
supplies, their minds and creativity come up with incredible things. 
The mCore and sensors provide the foundation for adding interac-
tivity to any creative endeavor.  



Measurement 
Devices

Computers count really fast. With small embedded computing 
systems like the mBots or an Arduino, anyone can create tools 

to record data about our physical environment. These measurement 
robots will work tirelessly for days at a time, and the data they pro-
vide about the world can offer young people a way to broaden their 
notions about the observable universe. The mBot is too large to be 
worn around a person’s wrist, but the process for designing an envi-
ronmental sensor for the mBot has much in common with develop-
ing technology that goes into wearable commercial tech products 
like smartwatches.

Probes and sensors have been a standard part of science class-
rooms for decades. Vernier manufactures dozens of different sen-
sors designed to monitor everything from pH to turbidity. For more 
exotic measurements, like the composition of gases or liquids, spe-
cialized sensors are available, and are wonderful tools.

There are many specialized sensors available for the Arduino 
platform, and most of them can be used with the mBot. The tech-
niques in this chapter can be generalized for most analog and digital 
Arduino sensors, but they are time consuming. 

Here we’ve attached a Grove soil moisture sensor to the mBot 
using the RJ25 adapter board (see Figure 4-1). Many analog sensors 
operate with the same standard three wires: one for 5 V, one for 

4



170 MBOT FOR MAKERS

ground, and one for sensor data. Grove’s soil moisture sensor uses 
Grove’s standard four-wire cable. Using any third-party sensor of 
this type requires matching the order of those pins on the sensor to 
the order on the RJ25 board. 

FIGURE 4-1: This soil moisture sensor from Grove uses a standardized 
4-wire cable, even though the sensor only needs 3 pins.

With an easy-to-use generic tool like the mBot, the best learn-
ing experiences come from finding ways to use simple sensors to 
measure something specific and personally meaningful. Think of 
the long history of room alarm kits and toys sold since the 1970s. 
In every case, the core tech was something incredibly simple (a light 
sensor, a small button, or a magnetic reed switch) that became com-
pelling when wrapped in the narrative context of adolescent spy fan-
tasies. The goal of this chapter is to model how to think like both an 
engineer and a kid so you can construct the sensors you want out of 
the tools available.

In this example, we’ll build a data-logging device that can operate 
independently for days using the mCore and a basic sensor, in both 
the Makeblock app and the mBlock programming environment. 
While these projects are built around a few common sensors, the 



171Measurement Devices

techniques used to record, analyze, and export the data are con-
sistent and reusable in most situations. The two examples we’re 
building in this chapter were designed and built by elementary stu-
dents who were studying how energy and resources were used in 
their school building. The flexibility of the mCore enables you to 
design and build devices that capture data to investigate your own 
super-specific questions, just like these kids.

The hallways into our building have two sets of doors, but some 
elementary students noticed that they were often both propped 
open. These students wanted to gather data on how often this hap-
pened, how long the doors stood open, and what effect that had on 
the hallway and classrooms.

This is close to the best case scenario for elementary students 
looking for local problems. Rather than focusing on a single question 
or measurement, these students had found a rich and complicated 
subject that could support multiple paths of inquiry. 

Working together, they generated a large collection of measure-
ment questions related to this drafty hallway (see Figure 4-2).

FIGURE 4-2: A student’s brainstorm about what could be “measured” 
in the hallway, and how to use that data



172 MBOT FOR MAKERS

It’s easy to overlook this conceptualization step. It would cer-
tainly be easier and more direct to teach about a particular topic by 
gathering a supply of homogeneous parts and detailed instructions 
that walk everyone through building the same device. When I’ve had 
particular constraints on time or budget, I’ve chosen to run a single 
project with a class. However, I know that having everyone work on 
a single preplanned device causes the excitement retention rate (the 
number of kids who will still be enthusiastic and motivated by the 
end of the project cycle) to drop significantly. 

Given the option, I will always choose to let students look for 
problems in the complexity of our daily lives, which we’ll refer to 
as a problem site in our classroom. This is a much slower start than 
handing out premade kits, but it helps ensure that each kid starts 
wanting to know something specific and personal. What motivates 
kids out of the doldrums that invariably beset them in the middle of 
a project is personal investment in their unique questions.

The other risk of using open, student-directed inquiry with a 
physical computing project is that someone will latch onto a ques-
tion that’s beyond the scope of the hardware and materials on hand. 
Although the Makeblock ecosystem incorporates a huge range of 
sensors and tools, that’s not the whole story. Given a finite set of 
sensors, boards, time, and budget, there are clear limits of what we 
can tackle “in class, this week.” The flexibility of Makeblock makes 
it easier to account for this reality, while still encouraging kids to 
explore the problem site with an open mind. 

Looking over the questions generated from consideration of the 
hallway problem site, creating a temperature monitor was an obvi-
ous project option. Another group decided to investigate the doors 
to see if they could get useful measurements about long they stood 
open. Both projects require some way to store and evaluate sensor 
data over time. Looking at these two problems will showcase two 
different methods for capturing and logging data using the mCore 
and mBlock.

Sensors report some specific bit of information about the world. 
The most basic program for any sensor is to display its output, which 
is recorded as part of a larger data set or used to trigger another 



173Measurement Devices

action. But those tasks are almost impossible without a clear under-
standing of how the sensors report data and respond to changing 
conditions. Creating simple sensor display programs is a crucial step 
toward more elaborate projects and can help you create powerful 
stand-alone learning tools. This first section demonstrates how to 
display sensor readings using either a tablet or computer. The exam-
ples use Makeblock’s thermometer, shown in Figure 4-3, but the 
principles apply to all supported sensors with numeric values.

The Makeblock app is a great tool for quickly creating control 
panels and status displays. Without access to Arduino libraries, tab-
let users are limited to the sensor blocks included in the Makeblock 
app. At the time of writing, this includes most of the sensors sold by 
Makeblock, but that may change as new sensors are released.  

FIGURE 4-3: The Makeblock RJ25 connector board and water-
resistant thermometer



174 MBOT FOR MAKERS

One strength of the Makeblock app is the variety of tools 
provided to display sensor values. For these examples, we’ll use a 
Numeric Display modeled on a common seven-segment LED, and 
the Line Graph. These are the best tools in the Makeblock app for 
providing precise history for a sensor. 

Open the Makeblock app and create a new Makeblock sketch, 
then choose the Line Graph display block from the Custom palette 
(see Figure 4-4).

FIGURE 4-4: Items in the Custom palette start without any blocks.

At the top of the Makeblock app screen, there’s a button that 
allows you to toggle between Design and Play mode. To add ele-
ments or make changes to them, you need to be in Design mode. 
Play mode will activate those elements, along with any scripts under 
a When Start hat. In Scratch parlance, blocks with the swoopy tops 
are called hats, because they must sit at the top of a stack of blocks. 
All hat blocks and the blocks attached to them require some signal to 
activate. Makeblock also has a variety of interactive UI elements that 
trigger specific behaviors when selected. Displaying sensor values 
requires a UI element such as the Line Graph, Analog Meter, and 



175Measurement Devices

Numeric Display, but you can use the Read Sensor block anywhere 
in a Makeblock app program.

For this example, we’re using an mCore with the three-wire 
temperature sensor, connected through the RJ-25 adapter board, as 
shown in Figure 4-5. The temperature sensor is analog, so it needs 
to attach to port 3 or 4. In this example, we’re using port 3 and slot 1. 

FIGURE 4-5: The temperature probe connects to the RJ25 board, 
which bolts securely to the LEGO Technic frame from Chapter 1, “Kit 
to Classroom.”

To model all of these connections inside the Makeblock app, we 
need to add code to our blank Line Graph block. In Design mode, 
select the Line Graph block and choose Code. (See Figure 4-6.)

The block interface for the Makeblock app offers many tools to 
work with, but this example requires only a few. For a more detailed 
discussion of how to program with the Makeblock app UI, revisit 
Chapter 2, “mBot Software and Sensors.” 



176 MBOT FOR MAKERS

FIGURE 4-6: The Context menu that opens the block-based coding 
interface is available only in Design mode.

We’d like the line graph to constantly display the temperature 
reading. In the Detect palette, there’s a Read Common Temperature 
Sensor block. Drag it out, then configure the Port and Slot values to 
port 3 and slot 1. Wrap that orange block inside a purple Display On 
This block from the Display palette. Place that purple block inside a 
pink Repeat Forever block from the Control palette. Finally, attach 
the Repeat Forever underneath the light blue When Start hat. The 
final block is a multicolored monster, as you can see in Figure 4-7, but 
it will grab and graph the thermometer data indefinitely.

Tap the back arrow in the top left of the screen to return to the 
UI design screen. At this point, it’s worth renaming the Line Graph 
block to reflect what it’s actually graphing. Tap the Line Graph block 
and use the orange pencil icon to rename it. 

The line graph and all other display elements will update after 
the Makeblock app is in Play mode. 

If the temperature is stable, the graph will show fluctuations 
within a few degrees Celsius. If you take the probe from your warm 
hand and plunge it into a cup of ice, the graphs will zoom out to 

FIGURE 4-7: When creating custom elements, you can set sensor 
locations directly inside the blocks without using the Port interface.



177Measurement Devices

display the sudden dip in temperature. Scaling keeps major tempera-
ture swings visible for a while, but the detailed values are obscured. 
The variables in the Makeblock app allow programs to track spe-
cific values, even after they scroll off the dynamic line graph. Next, 
we’ll create a variable to capture and display the lowest temperature 
recorded by the sensor.

Blocks that relate to variables in the Makeblock app are Change 
Item By, Set Item To, and Item, and they all appear in the Math 
palette. (See Figure 4-8.)

Once any of those blocks are dragged out of the palette, clicking 
the pulldown after the word Item will show all existing variables and 
allow you to delete or rename them. For experienced programmers, 
it might seem a bit weird that there’s no Create Variable option in 
this menu. In the Makeblock app, new variables are always called 
simply Item. After a variable is renamed to something helpful and 
clear, dragging out another block from the Math palette will create 
another bland Item. In fact, the Makeblock app doesn’t offer any way 
to create a new variable other than renaming! This system attempts 

FIGURE 4-6: The Context menu that opens the block-based coding 
interface is available only in Design mode.

We’d like the line graph to constantly display the temperature 
reading. In the Detect palette, there’s a Read Common Temperature 
Sensor block. Drag it out, then configure the Port and Slot values to 
port 3 and slot 1. Wrap that orange block inside a purple Display On 
This block from the Display palette. Place that purple block inside a 
pink Repeat Forever block from the Control palette. Finally, attach 
the Repeat Forever underneath the light blue When Start hat. The 
final block is a multicolored monster, as you can see in Figure 4-7, but 
it will grab and graph the thermometer data indefinitely.

Tap the back arrow in the top left of the screen to return to the 
UI design screen. At this point, it’s worth renaming the Line Graph 
block to reflect what it’s actually graphing. Tap the Line Graph block 
and use the orange pencil icon to rename it. 

The line graph and all other display elements will update after 
the Makeblock app is in Play mode. 

If the temperature is stable, the graph will show fluctuations 
within a few degrees Celsius. If you take the probe from your warm 
hand and plunge it into a cup of ice, the graphs will zoom out to 

FIGURE 4-7: When creating custom elements, you can set sensor 
locations directly inside the blocks without using the Port interface.



178 MBOT FOR MAKERS

to avoid situations where many anonymous Item variables clutter 
up programs, much like Untitled word processing documents do on 
a desktop. 

FIGURE 4-8: Blocks with the keyword Item live in the Math palette 
and offer access to all variables in the Makeblock app.

It’s important to recognize that these variables are not tied to 
particular UI elements! The Makeblock app’s system of bundling 
code to particular buttons or displays can obscure the fact that all 
the code is part of a single program and runs simultaneously. Vari-
ables can be set, read, and modified across the code blocks of several 
elements, which will help keep the Lowest Temp program visually 
cleaner. 

One of the real hassles of block-based programming is screen 
width. When blocks nest inside each other, it’s easy for important 
information to get pushed off the right side of the screen. Horizontal 
scrolling is a pain! To avoid this, it’s good practice to use a variable to 
store the temperature reading, instead of calling the sensor several 
times in a single loop (see Figure 4-9).



179Measurement Devices

FIGURE 4-9: Saving the temperature reading in a variable makes it 
possible to build another UI with confidence that both will use the 
same data.

This technique transforms a long block like Read Common Tem-
perature Sensor on port 3, slot 1, into one compact variable name 
CurrentTemp. Each time we use a variable instead of a sensor call, 
the program gets more consistent (because the values don’t change 
each time), more responsive (because the program running on the 
tablet doesn’t have to wait to hear from the mBot), and more clear.

Using the Makeblock app, we’ve created a portable thermometer 
that displays of-the-moment data on the screen of a mobile device. 
But if something interesting happens with the temperature while no 
one’s watching the screen, there’s no record of it. To fix this, we’ll 
create a second variable to store the lowest temperature observed by 
the sensor. We’ll also create a new UI element, Numeric Display, that 
will always show the lowest recorded temp from the current session. 
See Figure 4-10.



180 MBOT FOR MAKERS

FIGURE 4-10: To create a new variable in the Makeblock app, drag any 
block that uses the keyword Item onto the stage, and then rename 
the variable.

Although the lowest temperature won’t often change, it needs to 
be constantly checked against the CurrentTemp threshold (see Fig-
ure 4-11). Placing the Wait block before the comparison loop ensures 
that a valid CurrentTemp variable will always be available. 

The blocks in this Numeric Display never set the value of 
CurrentTemp. The Line Graph block is still updating the Cur-
rentTemp value during every loop, and this block can make use 
of that data. It’s worth noting that there’s no strict sequencing 
between the code in the Line Graph block and these blocks. Both 
use a RepeatForever block and will loop independently. Loose 
coupling like this might cause problems with data that changed 
rapidly and non-linearly, like the ambient noise level at a concert. 
Because we are working with something slow and steady like tem-
perature change, though, there’s little measurable difference if the 
LowestTemp loop checks the same CurrentTemp value twice, or 
if the CurrentTemp value updates quickly between loops of the 
LowestTemp check. 

FIGURE 4-11: Why start off by setting the LowestTemp threshold to 99? 
Having a large initial value ensures that on the first loop, CurrentTemp 
will be below LowestTemp and the Do section will execute.



181Measurement Devices

When introducing the Makeblock app, it’s helpful to attach each 
script to the relevant UI element. If the widget isn’t displaying the 
LowestTemp properly, checking the code inside the Numeric Display 
UI element is a good first step (see Figure 4-12). You can quickly 
move between the scripts attached to all elements in a program by 
using the horizontal navigation panel at the top of the screen. How-
ever, blocks from anywhere in a program can change or update each 
individual UI element. In more complex programs, it might be more 
elegant to keep all the scripts in a single location. 

If you use the wide range of sensors available, the Makeblock 
app can become a powerful and versatile data-monitoring station. 
The only hard limits on the Makeblock app as a research tool are the 
range of the Bluetooth connection and insufficient, large-scale data 
storage. Using mBlock, the desktop programming tool, offers ways 
around those specific limitations but presents a very different expe-
rience when working with sensors. In the next section, we’ll re-create 
a similar temperature-logging program within mBlock and highlight 
the data-related tools within the Scratch environment.

FIGURE 4-10: To create a new variable in the Makeblock app, drag any 
block that uses the keyword Item onto the stage, and then rename 
the variable.

Although the lowest temperature won’t often change, it needs to 
be constantly checked against the CurrentTemp threshold (see Fig-
ure 4-11). Placing the Wait block before the comparison loop ensures 
that a valid CurrentTemp variable will always be available. 

The blocks in this Numeric Display never set the value of 
CurrentTemp. The Line Graph block is still updating the Cur-
rentTemp value during every loop, and this block can make use 
of that data. It’s worth noting that there’s no strict sequencing 
between the code in the Line Graph block and these blocks. Both 
use a RepeatForever block and will loop independently. Loose 
coupling like this might cause problems with data that changed 
rapidly and non-linearly, like the ambient noise level at a concert. 
Because we are working with something slow and steady like tem-
perature change, though, there’s little measurable difference if the 
LowestTemp loop checks the same CurrentTemp value twice, or 
if the CurrentTemp value updates quickly between loops of the 
LowestTemp check. 

FIGURE 4-11: Why start off by setting the LowestTemp threshold to 99? 
Having a large initial value ensures that on the first loop, CurrentTemp 
will be below LowestTemp and the Do section will execute.



182 MBOT FOR MAKERS

FIGURE 4-12: By changing the last display block to name the Numeric 
Display instead of the self-referential keyword This, the entire pro-
gram can attach to one element.

MONITORING SENSORS IN MBLOCK
When you’re using the mBlock programming tool on the desktop, 
the easiest way to check the value of a sensor is to use the purple Say 
blocks. It isn’t fancy, but it is still a great way to check that the values 
match your expected sensor behavior. When working with a class 
or large group, we require a Say sensor test as the mandatory first 
step for any program. This little stack of blocks serves as a safeguard 
against common start-of-project problems. If the polar bear can say 
the temperature, like she’s doing in Figure 4-13, then we know that 
the mBot board is powered properly, the serial connection works 
(whether it’s Bluetooth, 2.4G, or USB), all the sensor wires are con-
nected properly, and the displayed data matches expectations.

Creating this simple program replaces a lengthy and dull preflight 
checklist that leads to a properly configured mBlock and a blank 
screen. By using Say blocks to fix low-level issues, we also create an 
interactive tool that helps students experiment with the hardware. 



183Measurement Devices

FIGURE 4-13: The default mBlock panda sprite doesn’t do much in 
our programs except shout sensor values.

Since the mBot’s wireless communication allows us to measure 
the temperature far away from the controlling laptop, it’s import-
ant to display the temperature on the device itself, not just on the 
mBlock stage. We’ll opt for the conventional 7-segment display. Just 
like the Say block, the 7-Segment block will accept any alphabetic or 
numeric value, including variables or mathematical expressions, as 
shown in Figure 4-14. 

In mBlock, you can use variables to track record temperatures, 
although the visual syntax looks different from the Makeblock app. 
Moving between two different block-based tools teaches new pro-
grammers to look for structural similarities underneath syntactic dif-
ferences. Whether you’re working in the Makeblock app, mBlock, 

FIGURE 4-14: Use the green Round block from the Operators palette 
to round the temperature to whole degrees.



184 MBOT FOR MAKERS

Arduino C, or Python, the flow of sensor loops is identical: acquire 
new readings, check against special values, replace if necessary, repeat. In 
mBlock, we can check for high and low temperature thresholds in 
the same loop.

As we did in the Makeblock app program, we’re going to use 
HighTemp and LowTemp variables to keep records of the extremes, 
along with a CurrentTemp variable to store the latest reading from 
the thermometer. Using variables in mBlock means creating them 
in the Data&Blocks palette using the Make A Variable button, then 
using the orange Set Variable To block in the program itself.

This program starts off by setting both the high and low tem-
peratures to the initial reading from the thermometer. This provides 
a reasonable baseline to check against over time. The default value 
in the mBlock Set Variable To block is 0, which isn’t a neutral value 
for temperatures in Celsius, much less Fahrenheit! 

Once the variables are set, we need to establish the main loop of 
the program. As in the Makeblock app program, this loop will run 
continuously once the program starts, and require no interaction 
from the user (see Figure 4-15). 

I recommend that you use an If/Else block in your loop to check 
the first criterion, and then nest another If block in the Else state-
ment. This ensures that no CurrentTemp value replaces both the 

FIGURE 4-15: This version reproduces the behavior of the mobile pro-
gram created with the Makeblock app.



185Measurement Devices

HighTemp and LowTemp records in a single loop. When the pro-
gram starts and HighTemp and LowTemp are assigned the same 
value, those values won’t change until the temperature shifts.

At the beginning of each loop, the value for CurrentTemp is dis-
played on the physical 7-segment display and on the screen with the 
Say block. The on-screen displays for HighTemp and LowTemp are 
controlled by the small checkboxes next to the variable names in 
the Data&Blocks palette, or by using the orange ShowVariable and 
HideVariable blocks in a program.

One of the enduring charms of Scratch is that the general-
purpose tools are strong and flexible enough to make up for the lack 
of built-in functions that provide instant answers to very specific 
challenges. There’s no Line Graph function in mBlock that matches 
the one in the Makeblock app. Instead, there’s the wide-open Pen 
tool that can create everything from mathematical drawings to 3D 
environments and everything in between. There’s no end to the com-
plexity and challenges that can emerge from trying to create graphi-
cal representations of data with the Pen tool. This simple line graph 
is an invitation to experiment and create with this incredible tool, 
shown in Figure 4-16. 

The mBlock Stage area becomes the XY-coordinate grid and sets 
the position of the cursor based on the data from the temperature 
sensors (see Figure 4-17). The value of the horizontal X-coordinate 
needs to steadily increase so that the graph moves steadily to the 

FIGURE 4-16: While the panda sprite is shouting the temperature, the 
small butterfly sprite is drawing the line graph.



186 MBOT FOR MAKERS

right over time. This example uses a five-step “tick” for the graph, 
meaning that the distance between each data point is five steps on 
the Stage. Using fewer horizontal steps in each tick would create a 
slower and denser graph, whereas a larger tick would result in bigger 
movements on the graph over a smaller time interval.

FIGURE 4-17: Scratch chose a center-original coordinate plane to 
better match the way graphing is taught in elementary math classes.

A normal temperature range of a few degrees doesn’t create a 
very dramatic graph. In mBlock, the XY-coordinate grid has a center 
point of (0,0) and has a maximum Y-coordinate value of 180. We can 
adjust the temperature value to display better within that coordinate 
system. This example, shown in Figure 4-18, scales the temperature 
by 3.5, making the vertical distance between degrees more noticeable, 
and then shifts it down by 75 steps so that 0 degrees is in the lower 
half of the stage. These particular constants make sense for an outside 
thermometer reporting in Celsius in certain parts of the world, but 
they would be a bad choice for monitoring the temperature inside 
a refrigerator. Shifting and scaling the graph to make good use of 
the Stage real estate and match the conditions being measured is a 
meaningful design task in and of itself. 



187Measurement Devices

FIGURE 4-18: This program draws a line graph and resets  
when the sprite exits the right side of the Stage.

So far, we’ve been using the mCore to report on momentary 
observation. While we’ve used visual displays and record-keeping 
to broaden the moment of observation, the raw data is ephemeral.

Arduino Uno–derived boards like the mCore are memory-
limited, making it impractical to use a plain board for long-term 
data monitoring. The many data-logging projects that use Arduino-
derived boards must all record data to some form of external mem-
ory, either by a connection to a computer or the addition of SD cards. 
The specialized form factor of the mCore makes it more difficult to 
use one of the many Arduino shields that add SD card storage. But 
since the mBot can use the standard persistent Bluetooth or 2.4G 
serial connections to send back temperature readings to mBlock, the 
hard work of data storage is already done!

So far, the thermometer we’ve built hasn’t needed to store or 
evaluate large amounts of data. It simply took the temperature 
reading from the sensor and sent it to the 7-segment display, and 
checked that value against dynamic thresholds. Tracking all of the 
temperatures over time means that we need to use mBlock’s List 
data structure. 



188 MBOT FOR MAKERS

In mBlock, lists appear as a bundle of variables, with each slot 
capable of holding numbers or words. Like variables, List blocks have 
a special set of blocks that only appear once you’ve created one. (See 
Figure 4-19.)

FIGURE 4-19: List blocks allow programs to read, insert,  
or remove individual items from any position in the list.

Lists start empty, but do not reset or clear unless you use the 
List block named Delete All (see Figure 4-20). This persistence can 
be a useful feature if you’re trying to capture data over a long time, 
but when you’re designing and testing it’s helpful to clear the list 
at the beginning of the program. By default, mBlock displays Lists 
values on the Stage, but the actual data will quickly outstrip those 
tiny windows. 



189Measurement Devices

FIGURE 4-20: Without the opening Delete All block, new items would 
append to TempRecords each time the program ran.

After gathering a large data set, we can export the data and use 
other tools for analysis. This is a simple extension of the previous 
thermometer program that captures each reading in a list called 
TempRecords.

The current program puts a new temperature reading into Temp
Records as fast as mBlock can communicate with the mCore. The 
actual time this takes depends on the method used to tether the 
mCore to the computer. With the 2.4G serial adapter, the list adds 
about 340 entries in 120 seconds. With a wired USB connection, it 
adds over 500 records in the same time. 

For a device that’s monitoring the temperature in a hallway, even 
two readings a second might be overkill. Lists in mBlock don’t have 
a hard size limit, other than the available RAM on the computer, so 
large lists aren’t intrinsically bad. But to a human who might want to 
scan that list, three hundred entries of the same value don’t add much 
to the picture. Using a small timer, we can easily add a 60-second 
delay between each temperature reading (shown in Figure 4-21). This 
ability also creates a powerful proving ground for investigations into 
size, scale, and sampling. These programs aren’t answers to textbook 
problems! They’re designed by humans to answer real questions in 
particular contexts. Given the physical reality of the problem site, 
is there a difference between two million readings taken every 30 
seconds or one million taken every second? The correct answer for a 



190 MBOT FOR MAKERS

drafty school hallway might lead to doom when applied in a high-al-
titude emergency shelter. 

FIGURE 4-21: This adds a new item to TempRecords, and then puts 
the program to sleep for a full minute.

The choice to take a temperature reading every minute is clean, 
but a bit arbitrary. Why not 75 seconds? Why not three minutes? 
One of the powerful abilities you have in tethered mode is creating 
programs that can be modified on the fly.

Writing an adjustable program that uploads to the mCore intro-
duces a number of problems: How do you know the current state of 
the program? What input method adjusts those states? What feed-
back is provided to the user to know they’ve successfully changed 
state? Trying to communicate the changing state of a program 
through a few blinking LEDs can be a nightmare. Tethered mode 
makes the screen, keyboard, and mouse accessible for any mBlock 
program, which allows you to create a clear, intuitive control scheme. 

The first step is to replace 60 seconds, which serves as a threshold 
value for our loop, with a variable (see Figure 4-22). By itself, this 
doesn’t change the behavior of our program.

Since SampleDelay is set to 60, that’s the value check each time 
the program runs through the If statement. Now we can use mBlock’s 
keyboard input functions to control the value of SampleDelay.



191Measurement Devices

FIGURE 4-22: Setting SampleDelay before the loop ensures that the 
program will start with a 60-second delay each time it runs, and that 
value can be adjusted later.

These blocks make use of two different ways that Scratch looks 
for keyboard input. The first is the orange When Key Pressed hat 
from the Control palette (see Figure 4-23). When Key Pressed blocks 
constantly check for the given keyboard input, and then executes 
the blocks underneath once. However, if the signal stays on (like a 
keyboard key being held down) then the blocks will execute many, 
many times. To address this, the program waits for a pressed key to 
be released. This is a simple example of what’s known as debounce—
the process of eliminating stray inputs from physical systems. With 
this extra block in place, we’re assured that each press of the up or 
down arrow will change the SampleDelay value by 5 seconds. Using 
the small checkbox next to the variable name or the ShowVariable 
block will ensure that the current value of SampleDelay stays on the 
mBlock Stage at all times. 



192 MBOT FOR MAKERS

FIGURE 4-23: Using the When Key Pressed hat introduces elements 
that are checked during each cycle without incorporating them into 
our main Forever loop.

Once we’ve collected several hundred temperature readings, 
we need to find something to do with them! Creating data visual-
izations in Scratch-derived languages is a great, open challenge for 
new programmers. There are so many tools and hooks available in 
Scratch and mBlock that it’s possible to create radically different 
graphs or visualizations from the same data. However, since those 
techniques are all grounded in Scratch programming, rather than 
the mBot, they’re slightly outside the scope of this book. The book’s 
website (www.airrocketworks.com/instructions/make-mBots) has a gallery 
of Scratch projects that create data displays from both static lists 
and incoming data streams. These projects can serve as models or 
inspiration, or even as a cautionary tale about what roads to avoid. 

Fortunately, there’s an easier way to get the data from mBlock 
into a spreadsheet using a tool that’s purpose-built for handling giant 
lists of values. To export the values from any list in mBlock, you can 
right-click on the list viewer on the Stage and select Export (see 
Figure 4-24). 

http://www.airrocketworks.com/instructions/make-mBots


193Measurement Devices

FIGURE 4-24: Export generates a list of return-separated values.  
Data in that format can also be imported into mBlock lists.

The list values are exported to a text file with each value on a 
separate line (see Figure 4-25). This format is perfect for copying 
and pasting the values into Google Sheets, Excel, Numbers, or any 
other comparable program.

FIGURE 4-25: Data can also be imported into mBlock lists.  
List exports contain only raw data, so it’s up to the user to  
add labels and context.



194 MBOT FOR MAKERS

Not only does exporting data allow students to use existing tools 
to create simple graphs or calculate central tendencies like mean, 
median, and mode, but it’s the best way to collect data from several 
mBlock programs. If several groups build small measurement devices 
to monitor specific areas of a larger problem site, exporting the data 
to a common document allows students to easily compare their find-
ings. Consider three of these temperature monitors spaced out along 
a hallway. If all of their data is in a single spreadsheet, it’s much easier 
to see how far and fast the momentary drop in temperature from an 
open door travels down the corridor.

DOOR MONITOR
While you can make interesting programming choices to measure 
and record temperature, the hardware didn’t require much thought. 
As we’ve seen in this chapter, getting a basic reading boils down to 
plugging in the thermometer and finding the Read Thermometer 
block. The situation is quite different for more general tasks, like 
trying to track the open/closed status of a door. There’s an abun-
dance of sensors and methods that can perform this task, but none 
of them are called “door sensors,” and mBlock doesn’t come with a 
Door Sensor block. In this next section, we’ll look at how to use a 
variety of tools to track door status, and how to design a program 
largely independent of the particular sensor.

When new roboticists approach a real-world problem like this, 
it’s important to get them to look carefully at the physical details of 
the problem space. As a teacher, I’ve found that repeatedly asking 
basic questions about small observations and actions will eventually 
shift students’ frame of reference down to a scale that robots and 
sensors can measure. It can take several minutes of climbing on a 
stepladder or lying on the floor while fiddling with the actual door 
to arrive at a sufficiently detailed answer to “How does the door open?” 
What makes these questions wonderful for groups of kids is that 
deep, detailed observation reveals that not all doors are the same! 
Differences in the material, frames, weight, and construction of each 
door will push students to generate novel solutions that accommo-
date all that messy, real-world variation.

FIGURE 4-26: Early versions of 
this sensor failed when kinder
garten students would only 
slide the door open far enough 
to squeak through.



195Measurement Devices

For a sliding door, the mBot ultrasonic distance sensor was able 
to face inward and watch for a gap when the door opened. (See 
Figure 4-26.)

The mBot Line Follower sensor 
is placed near the hinged edge of 
the door. Popsicle sticks are used 
to enlarge the visible target of the 
door. The purple sticks shown in 
Figure  4-27 block one of the two 
light sensors on the Line Follower 
until the door is opened. This cre-
ates a unique closed state where the 
two different sensors on the Line 
Follower report different values. 

FIGURE 4-27: This popsicle stick solution 
emerged after students struggled to find a 
sampling rate that would reliably catch the 
door in motion.

Not only does exporting data allow students to use existing tools 
to create simple graphs or calculate central tendencies like mean, 
median, and mode, but it’s the best way to collect data from several 
mBlock programs. If several groups build small measurement devices 
to monitor specific areas of a larger problem site, exporting the data 
to a common document allows students to easily compare their find-
ings. Consider three of these temperature monitors spaced out along 
a hallway. If all of their data is in a single spreadsheet, it’s much easier 
to see how far and fast the momentary drop in temperature from an 
open door travels down the corridor.

DOOR MONITOR
While you can make interesting programming choices to measure 
and record temperature, the hardware didn’t require much thought. 
As we’ve seen in this chapter, getting a basic reading boils down to 
plugging in the thermometer and finding the Read Thermometer 
block. The situation is quite different for more general tasks, like 
trying to track the open/closed status of a door. There’s an abun-
dance of sensors and methods that can perform this task, but none 
of them are called “door sensors,” and mBlock doesn’t come with a 
Door Sensor block. In this next section, we’ll look at how to use a 
variety of tools to track door status, and how to design a program 
largely independent of the particular sensor.

When new roboticists approach a real-world problem like this, 
it’s important to get them to look carefully at the physical details of 
the problem space. As a teacher, I’ve found that repeatedly asking 
basic questions about small observations and actions will eventually 
shift students’ frame of reference down to a scale that robots and 
sensors can measure. It can take several minutes of climbing on a 
stepladder or lying on the floor while fiddling with the actual door 
to arrive at a sufficiently detailed answer to “How does the door open?” 
What makes these questions wonderful for groups of kids is that 
deep, detailed observation reveals that not all doors are the same! 
Differences in the material, frames, weight, and construction of each 
door will push students to generate novel solutions that accommo-
date all that messy, real-world variation.

FIGURE 4-26: Early versions of 
this sensor failed when kinder
garten students would only 
slide the door open far enough 
to squeak through.



196 MBOT FOR MAKERS

These students mimicked common commercial door alarms and 
used a magnetic reed switch attached to the door frame and a mag-
net stuck to the metal door (see Figure 4-28). 

FIGURE 4-28: One group of students latched onto reed switches early 
and searched the campus for a metal door to hold the magnet in place.

Reed switches have a small lever encased in the plastic housing 
that moves in response to strong magnetic fields. Reed switches work 
like any other button would with the mCore. On the RJ25 connector, 
connect one wire to the ground pin and the other to the S1 or S2 pin 
(depending on the port you use). Here, the bare wires from the reed 
switch are soldered to standard 0.1 pitch header pins, which match 
nicely with the JST connectors on the RJ25 board (see Figure 4-29).

FIGURE 4-29: Soldering header pins to the RJ25 board make almost 
any crazy switch idea mBot-compatible.



197Measurement Devices

While most reed switches are sold in packages with two plas-
tic parts, the loose piece without wires just contains a magnet. In 
a classroom environment, this part often disappears and students 
wind up using generic magnets. Our Makerspace tends to use strong, 
rare-earth magnets due to size and storage concerns, but if you have 
access to a shoebox of red and blue horseshoe magnets, they’ll work 
just fine. 

This mess of tinfoil is a student-made button, where the foil-
wrapped popsicle stick bridges the gap between two smaller foil 
pads, each connected to one pin of the RJ25 connector. (See Fig-
ure 4-30.) This is a crude button but gives decent readings using the 
same Limit Switch block as the magnetic reed switch.

FIGURE 4-30: Alligator clips are connected back into the  
RJ25 board with header pins, just like the reed switch.



198 MBOT FOR MAKERS

NOTE  It’s worth mentioning again that these inge-
nious, messy kid-solutions are only viable because we use 
super-long RJ25 cables. If we were using the Makeblock- 
supplied lengths of cable, placing a switch at the top of 
an 8f door frame would mean also mounting the entire 
mCore above kid height. When you use a 12f or 15f cable, 
masking tape can hold lightweight switches and sensor 
boards in precarious spots, while the mCore sits in rel-
ative safety. Long cables, neatly routed along doorjambs 
and floors, allow kid-made sensors to stay in active use 
for days and weeks without being a hazard to normal 
school-day navigation. Don’t overlook the simple trans-
formative power of extra length!

These solutions should not be seen as an exhaustive list of how 
to check a door. Simple problems often spawn complex solutions. 
It can be difficult for teachers and mentors to resist presenting the 
“right” solution, especially when kids are climbing a ladder to build 
something stupendously inefficient. Be strong and stay quiet! No 
matter how outlandish the solution, we can use the Custom Block 
features in mBlock to abstract away the mess.

Our goal with a custom block to check and open the door is that 
you could write a program that uses data from the door sensor without 
knowing anything about the physical construction. Instead of look-
ing at readings from a particular sensor, we’ll create a new variable in 
our program called DoorStatus and assign a status of either Open or 
Closed. Variables in mBlock can store letters or numbers, and can per-
form type-appropriate operations on them. Subtraction doesn’t work 
well on text (or more properly, strings), but mBlock can check for equal-
ity. For strings, equality means an exact character-by-character match. 
There’s no functional difference between using Open/Closed, True/
False, or 0/1 as DoorStatus values, but using Open/Closed makes the 
program far more legible for other humans.



199Measurement Devices

We’ll change the DoorStatus value only from within a custom 
block called CheckDoorState (see Figure 4-31). This way, the main 
program doesn’t need to care whether the door sensor uses a Line 
Follower sensor or a magnetic reed switch. 

FIGURE 4-31: You should be able to drop any of the four Check-
DoorState functions shown in these images into the same program 
and they should function identically.

All of these CheckDoorState blocks work for their particular sen-
sor and physical setup, but the main loop doesn’t need to know any-
thing about those details. Using the CheckDoorState block means 
that the program trusts that, whatever happens inside, the code will 
update the DoorState variable accurately and promptly. 

Using the same techniques from the temperature records pro-
gram, this program tracks how long the door is held open in a list 
called OpenLength. This program uses two light blue blocks to 
monitor time in a program: Timer and Reset Timer from the Sens-
ing palette. In a Scratch program, the timer starts running as soon 
as the program window opens, regardless of whether any program 
blocks are executing. This value will increase constantly until the 
Reset Timer block is triggered, and then it will reset to 0 and start 
counting again (see Figure 4-32). 



200 MBOT FOR MAKERS

FIGURE 4-32: In mBlock, Reset Timer 
serves as the starter’s pistol and 
resets the timer, which is continuously 
running, to 0.

The resulting list records the OpenLengths with the Timer block’s 
default precision of thousandths of a second. (See Figure 4-33.)

FIGURE 4-33: You can see that even 
though the door was closed after 
a second, the timer value is still 
increasing.

Unlike the record of temperatures, which took a reading at fixed 
time intervals, an entry is added to the list only when the door is 



201Measurement Devices

opened and closed. As a result, the number of entries in Open-
Length provides a count of how many times the door was opened. 
In mBlock, you can access that number directly using the Length Of 
List block from the Variables & Blocks palette. 

Knowing that this value will go up every time a new item gets 
added to the list opens up the possibility of calculating averages or 
looking for patterns. it’s a good practice to isolate extra tasks in cus-
tom blocks, as we’ve done with the doorstate. Strive to keep the main 
loop readable and the custom blocks narrowly focused. Using more 
custom blocks in a program, provided they’re well named, reduces 
complexity for both the designer and the user (see Figure 4-34). 

FIGURE 4-34: Well-named custom blocks 
create mBlock programs that are clear and 
human-readable.

Without seeing the scripts contained under these custom blocks, 
a reader can still intuit what should happen. Names alone suggest 
that the custom block CalculateAverageOpenTime will update and 
set the variable AverageOpenTime. When the door is open for lon-
ger than that value, it’s time for FlashAlert. This script could play 



202 MBOT FOR MAKERS

a sound, illuminate a strip of LEDs, direct a robot to pull the door 
closed, or turn on a hose. In some way, the script represented by 
FlashAlert wants to motivate nearby humans to close the door. 

Encourage young programmers who are satisfied with their first 
prototype to add custom blocks to programs in this aspirational 
manner. A new custom block has no scripts attached and will do 
nothing when added to a program. Empty blocks work as placehold-
ers for new features and help the programmer consider when and why 
to perform an action independent of deciding how.

Using the mCore, students were able to gather real data about 
the quiet details of their everyday environment. Quantitative infor-
mation, from machines they designed and built themselves, pushed 
them to find ways to fix the problems they identified. They put 
up reminder signs, cleared gravel that blocked exterior doors, and 
changed traffic patterns in the building. Although these solutions 
were small, they still provided powerful closure for a student-led 
learning experience.



Robot Navigation

Robots can navigate in a variety of ways. Autonomous robots 
navigate using programs that allow them to follow GPS coor-

dinates, or sensors that allow them to navigate in response to their 
environment. Robots can also be operated by the user using remote 
control. We’ll look at several types of robot navigation in this chap-
ter. We’ll also look at two add-on packs for the basic mBot kit, which 
are available for about $25. The mBot add-on Servo Pack and Inter-
active Light & Sound Pack have many additional brackets, studs, M4 
screws and nuts, beams, additional sensors, and RJ25 cables, along 
with a wrench. These items are all handy for many of the projects in 
this chapter. The add-on packs are available through Amazon or on 
the Makeblock website (www.makeblock.com).

ROBOT NAVIGATION USING 
KEYBOARD COMMANDS
Connect your mBot to your laptop or tablet using Bluetooth or 2.4G 
serial wireless and write the code shown in Figure 5-1. With a Blue-
tooth connection, you can now control your mBot from across the 
room using the arrow keys.

5

http://www.makeblock.com


204 MBOT FOR MAKERS

Before we get started, 
though, I’ll share a quick note 
about speed. If the robot is 
moving too fast, drop the bot’s 
peak speed from 255 to 100. 
But remember: resistance in 
the gearing and the weight of 
the wheel combine so that low-
ering the values for speed too 
much may make you unable 
to move an assembled mBot. 
We’ve found that speeds less 
than about 70 aren’t strong 
enough to move the mBot from 
a dead stop, but if you give it a 
small push, it will keep moving 
forward. 

Once you’re able to navigate 
using your arrow keys, you can 
devise all kinds of challenges 
using other mBots. The signals 
to each robot won’t interfere 
with each other, because Blue-
tooth connections are unique to 
each mBot. You can continue to use the code shown in Figure 5-1 
in Scratch, but then add code to trigger actions based on input 
from other sensors. This way you can drive your mBot using the 
up, down, left, and right keys while your bot does other things.

ROBOTIC GAME CHALLENGES
Once you are able to navigate your mBot using the arrow keys, 
you can begin creating your own Battle Bots! A popular game 
is Sumo Bots, where two or more bots battle it out inside a ring 

FIGURE 5.1: This Scratch code 
allows you to control your 
mBot with the up, down, right, 
and left keys on your keyboard.



205Robot Navigation

marked on the floor using tape. The last bot inside the ring wins! 
My students came up with a great design using old CDs to “scoop” 
their opponent out of the ring, as shown in Figure 5-2. We’ll start off 
with a few Sumo Bot defense and attack ideas.

FIGURE 5-2: Here is a creative take on a Sumo Bot challenge from 
some of my middle school students.

CD Scoop
You can add a CD scoop by attaching old CDs onto the front of the 
mBot just off the ground to scoop your opponent out of the arena. 

Parts
Right-angle L brackets (2)

4Mn8 screw and nut (2)

CDs (2)

Scrap wood

I’m trying to move my students beyond using gobs of tape for 
everything, so the following directions show the CDs being sturdily 
attached with drilled holes and screws.



206 MBOT FOR MAKERS

	 1.	 Start off by attaching two right-angle L brackets to the front of 
your mBot using a 4Mn8 screw and nut. 

	2.	 Glue two old CDs together with a hot glue gun, then flip the 
mBot over and, using the holes as a guide, mark the CDs where 
you’ll drill a hole to attach them to the L brackets. 



207Robot Navigation

	3.	 Place a piece of scrap wood under the CDs, and then drill through 
the CDs where you marked the holes. 

	4.	 Now put an M4n8 bolt and nut through the two CDs and tighten 
to hold them securely in place. Now you’re ready to scoop your 
opponent out of the ring! 



208 MBOT FOR MAKERS

Spear-Lowering Servo
A BBQ skewer/lance that can be lowered using a servo can be added 
as an attack mechanism. 

Parts
Bamboo skewer 

Mini zip ties (2)

9g servo and servo holder 

L brackets (2)

4Mn8 nuts and bolts 

9-hole plate

RJ25 Adapter

	 1.	 Begin by attaching the two L brackets to the front of the mBot 
using four 4Mn8 nuts and bolts, as shown in the following 
image. The L brackets, servo, and servo holder are included in 
the add-on Servo Pack. 

	2.	 Next, attach the 9g servo to the laser-cut acrylic bracket using 
the small bolts and nuts that come with the add-on Servo Pack. 
If you’re using your own servo, download and laser-cut the file at 
www.airrocketworks.com/instructions/make-mBots. If you don’t have 

http://www.airrocketworks.com/instructions/make-mBots


209Robot Navigation

a laser cutter, you can print the full-scale PDF and cut by hand 
using cardboard or thin wood.  

	3.	 Remove the M4 screws from the back posts, which holding the 
mCore to your mBot, and replace with the M4n25 brass studs.



210 MBOT FOR MAKERS

	4.	 Now install the 9-hole blue plate to the brass studs with two M4 
bolts, and then attach the RJ25 adapter to the blue plate with two 
M4 bolts and nuts. Plug the servo into slot 2 of the RJ25 adapter, 
and then plug the RJ25 adapter into port 4 on the mCore. 

	5.	 Before you attach the servo to the front of your mBot, you need 
to center it. Connect the mBot to your computer using your pre-
ferred method (Bluetooth or 2.4G wireless serial). Then write 
the code to center the servo, shown in the following image, and 
send it to your mBot. You can use this code with any program to 
center a servo.

 

Now you’re ready to attach the servo arm to your servo using 
a very small Phillips head screwdriver and the tiny self-tapping 
screw that came with the servo. 



211Robot Navigation

	6.	Attach the servo to the right angles mounted on the front 
of the mBot using two M4n8 bolts and nuts.



212 MBOT FOR MAKERS

	7.	 Line up a bamboo barbecue skewer with the servo arm and attach 
with two mini zip ties. 

	8.	 Pull the zip ties very tight, and then clip off the ends of the zip 
ties with wire cutters. 



213Robot Navigation

	9.	 In Scratch, write the code shown in the following image and send 
it to your mBot. 

I had to edit the angles a little bit to get the lance to a 45° angle, and 
then a 90° angle. The spear will lower to a 45° angle when the A key on 
a keyboard is pressed. It will return to the up position when the key is 
released. The spear will lower to a 90° angle when the S key is pressed, 
and then return again to the up position when the key is released. 

Now you’re ready to joust with a cool skewer that can be raised and 
lowered using your computer. Safety is always important, so remember 
to wear your safety glasses when you’re working with sharp things. 



214 MBOT FOR MAKERS

Catapult Ball Launcher
A whole different type of challenge is created using a plastic spoon 
and servo to hold the spoon back and then launch the ball like a 
catapult. This ball launcher could be used to knock down obstacles, 
shoot at targets, or aim for baskets. 

Parts
Ping-pong ball

Plastic spoon

Clear acrylic plate

M4n25 Brass studs (4)

9-hole blue plate

Staple remover

M4n14 bolts and nuts

RJ25 adapter

L bracket

Double-wide 10-hole beam

Figure 5-3 shows all the supplies you’ll need.

FIGURE 5-3: Here are all the supplies you’ll need for a ping-pong ball 
launch rig.



215Robot Navigation

The clear acrylic piece shown in Figure 5-3 was used in Chapter 
1 as a case for the mCore. Here, we’ll be mounting this platform to 
the top of your mCore to support the catapult mechanism and hold 
the electronics. Laser-cut files for the acrylic platform can be down-
loaded at www.airrocketworks.com/instructions/make-mBots, or printed 
out full scale from a PDF as a template for hand-cutting a material 
of your choice. Other key parts include a stiff plastic spoon and a 
standard staple remover. 

	 1.	 Remove the four M4 bolts that are holding on the mCore, replace 
them with the four brass studs, and tighten securely. 

	2.	 Next, mount the acrylic platform onto the top of the brass studs 
using the four M4 bolts. 

http://www.airrocketworks.com/instructions/make-mBots


216 MBOT FOR MAKERS

	3.	 Install the 9-hole blue plate to the back of the plastic platform 
on the second and third holes from the left, as shown in the fol-
lowing image.



217Robot Navigation

	4.	 Mount the servo into the acrylic servo holder that came with the 
add-on Servo Pack following the instructions in the upcoming 
section, “Light-Emitting Head-Shaking Creature.”

	5.	 Next, use M4n14 bolts to bolt it down to the back of the 9-hole 
blue plate.

	6.	 Screw the RJ25 adapter to the L bracket using two M4 bolts 
and nuts. 



218 MBOT FOR MAKERS

	7.	 Using M4 bolts and nuts, attach the L bracket to the rear of the 
acrylic platform in the two holes on the far right. 

	8.	 Cover the double-wide, 10-hole beam with masking tape. We’re 
going to be hot-gluing the staple remover onto this part, so you’ll 
want to protect the metal. Make sure you keep two parallel holes 
on the ends exposed, since this is where you’ll attach it to the 
acrylic plate. It helps if you lay the masking tape on nice and 
smooth.



219Robot Navigation

	9.	 Now add a generous amount of hot glue to one side of the staple 
remover.

	10.	Press the staple remover evenly, glue-side down, on top of the 
tape, lined up with one end of the plate, as shown in the fol-
lowing image. Make sure the holes are exposed, leaving enough 
room for the M4 bolts. 



220 MBOT FOR MAKERS

	11.	Attach the staple remover assembly to the back of the acrylic 
plate with two M4n14 bolts and nuts, lined up as shown in the 
following image. 

	12.	Test-fit the plastic spoon on top of the staple remover. The spoon 
should line up a little off center of the servo arm. The servo arm 
should be able to securely hold the spoon down in the trigger 
position. The servo arm will rotate out of the way, which will 
trigger the spoon catapult arm.



221Robot Navigation

	13.	Once you know where the spoon should be placed (mark the end 
of the spoon with a Sharpie, if needed), add a generous amount 
of hot glue to the top of the staple remover and press and hold 
the spoon in place for 20 seconds. 

	14.	Connect an RJ25 cable to the RJ25 adapter and to port 3 on your 
mCore. 



222 MBOT FOR MAKERS

	15.	Connect the servo to slot 2 on the RJ25 adapter. The nice thing 
about the servos that come with the add-on Servo Pack is that 
they only install in one direction so you always get them plugged 
in correctly. If you’re using a generic servo, follow the directions 
in Chapter 3, “Head Turning Randomly Using 9g Servo and RJ25 
Adapter.” This is what your finished assembly should look like 
with the spoon catapult in the up position.

	16.	Cock the spoon back and rotate the servo arm in place to hold 
it. Place your ping-pong ball in the spoon and now you’re ready 
to launch! 

	17.	Create the code shown in the following image in Scratch. This 
code is really simple, with your space bar being the catapult 
trigger. 



223Robot Navigation

	18.	Next, test your code to make sure the trigger works. You may 
need to modify your code or center the servo (see step 5 in the 
“Spear-Lowering Servo” section for centering directions) to get 
your trigger to work properly. 

Now go set up some targets or create some challenges and 
fire away!

Robot with a 9g Servo Grabber on the Front
For this project, we’ll add an awesome 3D printed grabber mecha-
nism powered by a 9g servo to the front of our mBot. By adding the 
grabber, which is controlled by your laptop, you’ll be able to set up 
all kinds of challenges and even go head to head with other mBots to 
move items around a battle arena or obstacle course.  

Printing and Assembling the Servo Grabber
Hats off to Jon Kepler for coming up with this brilliantly simple 
robotic claw and posting it on Thingiverse. Download it at https://
www.thingiverse.com/thing:18339 and print (printing will take about 
35 minutes). 

PARTS

3D-printed parts (as 
described in previous 
paragraph)

9g micro servo

3x8 mm machine bolt  
and nut

Mini zip ties

Along with these 3D-printed parts, you’ll need a micro servo 
(9g). The one shown in the following image uses metal gears 
but still costs only a couple of bucks. You’ll need the servo link-
age arms that go with the servos, a 3n8 mm machine bolt, and a  

https://www.thingiverse.com/thing:18339
https://www.thingiverse.com/thing:18339


224 MBOT FOR MAKERS

3 mm nut. Once you have all the parts printed and gathered you’re 
ready to go!

	 1.	 Turn the 3D-printed servo box over and push the 3 mm nut into 
the hex-shaped indentation. 



225Robot Navigation

	2.	 With a pair of wire cutters, cut off the arm from the servo horn 
and then smooth out the cut edge with sandpaper. 

	3.	 Place the servo box on top of the 9g servo, with the servo shaft 
positioned over the opening in the servo box. 

	4.	 Attach the right pincer to the shaft of the servo with the screw 
that came with it. Use the piece of the servo horn from step 2 as 
a spacer. 



226 MBOT FOR MAKERS

	5.	 Position the left pincer next to the right one with the gears 
interlaced. 

	6.	 Attach the pincer by pushing the 3 mm bolt through the nut and 
tighten loosely so the pincers can move. They should move in a 
grasping motion. 

The principle behind the servo arms is very simple. One arm is 
directly connected to the shaft of the servo. The other arm is linked 
by gears to the first arm. When the servo shaft turns, the first arm 



227Robot Navigation

rotates and, thanks to the gears, forces the second arm to move in 
the opposite direction, thus bringing the two arms together. Once 
attached to the mBot, the arms may need to be adjusted after you 
get the servo calibrated.

Attaching the Servo Grabber to Your mBot
Next, you’re going to build a bracket to attach your mBot to the 
grabber mechanism. 

PARTS

L brackets

M4 bolts and nuts (6)

9-hole blue plate

Mini zip ties (2)

	 1.	 Screw the aluminum L brackets included with the mBot Servo 
Pack onto the front brackets of the mBot chassis using the M4 
bolts and nuts. 



228 MBOT FOR MAKERS

	2.	 Screw the 9-hole blue plate to the L brackets, as shown in the 
following image. 

	3.	 Attach the servo grabber to the front bracket with a mini zip tie, 
and cinch it tight. 



229Robot Navigation

	4.	 Connect the servo to port 1 on the mCore using the RJ25 adapter. 
I attached the RJ25 adapter to the back of the mBot using some 
M4 screws and nuts. The wires can be neatened up using more 
mini zip ties or twist ties. 

Here is the servo grabber in the closed position holding a piece 
of foam pipe insulation. 

Write the code shown in the following image in Scratch. The 
code on the left controls the mBot using the up, down, left, and right 
arrows. The code on the right opens and closes the grabber claw 
using the space bar.



230 MBOT FOR MAKERS

Light-Emitting Head-Shaking Creature
This project uses the add-on Servo Pack, which includes the follow-
ing (also shown in Figure 5.4).

PARTS

M4 brass studs (4)

M4n8 bolts

M4 nuts

RJ25 cable (2)

Plastic spacers

9g servo with holder

RGB LED sensor

RJ25 adapter

L bracket (2)

Cuttable linkage (4)

M5 + M7 wrench

9-hole blue plate (2)

With the Servo Add-on Pack you can build a dancing cat, a 
head-shaking cat, or a light-emitting cat. For this project, we’ll be 
combining the light-emitting and head-shaking features, which cre-
ates a robot with a lighted LED “head” that can move back and forth 
using a servo.



231Robot Navigation

FIGURE 5.4: The Servo Add-on Pack

	 1.	 Attach the 9-hole blue plate to the top rear of your mCore. 

	2.	 Attach the RJ25 adapter and center the servo, as described in step 
5 of the “Spear-Lowering Servo” section. 



232 MBOT FOR MAKERS

	3.	 Once the servo is connected and centered, attach the L bracket 
to the servo arm using the two self-tapping screws that came with 
the servo. 

	4.	 Attach the LED sensor to the L bracket with two 4Mn8 bolts and 
nuts, as shown in the following image. Make sure the sensor is 
attached in the top holes of the L bracket through the bottom holes 
of the LED sensor so that the sensor can rotate freely on the servo. 



233Robot Navigation

	5.	 Plug the RJ25 cable into the sensor. It should be positioned so 
that it comes out of the top. 



234 MBOT FOR MAKERS

	6.	 Plug the other end of the RJ25 cable into port 3 on the mCore. 

	7.	 Plug a second RJ25 cable into port 4 and plug the other end into 
the RJ25 adapter mounted on the back of the mCore. 



235Robot Navigation

	8.	 Write the following code in Scratch. This will program the LED 
to turn on and off and move the light left and right using A and 
D keys, and re-center with S.

 

Light-Chasing Robot
For the following project, you’ll use the add-on Interactive Light & 
Sound Pack. You’ll be creating a bot that follows a flashlight using 
two Light sensors. The add-on Interactive Light & Sound Pack 
includes the following.



236 MBOT FOR MAKERS

PARTS

M4 nuts and plastic  
spacers

M4n8, M4n14, M4n22 bolts

Light sensor (2)

RGB LED sensor (1)

Sound sensor (1)

RJ25 cable (2)

45° metal plate

Double-wide 10-hole  
beam (2)

Double-wide 2-hole beam

Single-wide 5-hole beam (2)

M5 + M7 wrench

For this project, we’re going to build the light-chasing robot 
using some beams and the two Light sensors. 

	 1.	 Mount the double-wide two-hole beam to each side of the front 
of the chassis with two M4n14 bolts and nuts. 



237Robot Navigation

	2.	 Each channel is threaded inside, so you can screw the Light sen-
sor into the channel using two M4n8 bolts. 



238 MBOT FOR MAKERS

The following image shows both Light sensors mounted to 
the front. 

	3.	 The RJ25 jack should be facing out. As you’re looking at the back 
of the mBot, plug one RJ25 cable into the jack on the right side 
and then into port 4, and then plug another cable into the jack 
on the left side and then into port 3. 

	4.	 Now program the following code into Scratch and send it to  
your mBot. 



239Robot Navigation

You’ll now have an mBot that follows the light from a flashlight, 
whether the light moves straight ahead, right, or left.

Maze-Solving mBot Using Standard Sensors
In Josh Elijah’s Makezine.com article, “Beginner Robotics: Under-
standing How Simple Sensors Work,” he describes the characteris-
tics of true robots well: “For a robot to truly be considered a robot, 
it must be able to sense and affect its environment.” The article 
uses a robot operation called Sense, Think, Act. In a nutshell, this 
means the sensor senses the environment, the microcontroller thinks, 
(makes a decision about what to do), and then it acts (carries out 
the decision).

The next project, brilliantly conceived by Dani Sanz from Spain 
(juegosrobotica.es), illustrates robotic operation excellently. His web-
site is translatable using Google and I’ve translated his Scratch code 
here. Dani’s project shows how globally the mBot platform reaches. 

The Line Follower sensor and Distance sensor that come with 
the mBot kit are the only sensors needed for this maze-solving 
design. These sensors sense the environment, which in this case is a 
maze. The mCore thinks about what to do, and then carries out the 
decision. This feedback loop operates continuously from the time 
the mBot starts the maze until it finishes.

The mBot add-on Servo Pack comes with two L brackets, 
two plates, and plenty of M4 bolts and nuts, and they work well 
for this.

	1.	 Using an L bracket, mount the Line Follower sensor verti-
cally instead of horizontally (which is how it’s used for line-
following). Use one M4 screw and nut to hold the L bracket 
in place, and then add two M4 screws and nuts to secure the 
line sensor.



240 MBOT FOR MAKERS

	2.	 With two M4 screws, attach a 9-hole blue plate to the front right 
side of the mBot, pointing up vertically. Next, add an L bracket to 
the plate, facing out. Now, attach the Distance sensor upside down 
to the bottom of the L bracket facing out on the right-hand side of 
the mBot. Plug the Ultrasonic sensor into port 3 of the mCore.

	3.	 Attach an L bracket to the front right of the mBot chassis using 
M4 screws and nuts. Plug the Line Follower sensor into port 2 
and the Ultrasonic sensor into port 3 of the mCore.



241Robot Navigation

	4.	 Write the following code in Scratch.



242 MBOT FOR MAKERS

The following image shows the variables needed for the program. 

	5.	 Next, create your maze! The maze shown in the following image 
is made out of foam pieces placed on the floor. 

It’s possible to make your maze out of cardboard, foam, or any 
object you have lying around. Start off with a simple maze, and then 
move the walls around and add more to make it more complex. If 
everything is working correctly, the maze pieces shouldn’t need to 
be attached to the floor, because the mBot will never touch the maze 



243Robot Navigation

walls. Kids will have a blast creating mazes for each other to solve 
using their mBots!

While this chapter has looked at many of the standard items 
offered by Makeblock like the add-on packs, the next chapter will 
really delve into how to use the mCore with off-the-shelf compo-
nents like pumps, motors, and LEDs. Chapter 6, “Building Big and 
Small with mCore,” will also dive deeper into the workings of DC 
motors and how to connect standard DC motors to the mCore board 
in a way that works with many projects and many kids.





Building Big and 
Small with mCore

This chapter explores the flexibility of the mBot through the 
frame of dollhouse services—designing simple and complex fea-

tures, considered part of “smart” environments, on a smaller physical 
scale. However, the adaptability of the mCore platform means that 
it’s entirely possible to scale up a clever idea from the dollhouse to 
the real world. On a small scale, we’ll work with water, small LEDs, 
and servos, and then show how to adapt those programs to make use 
of household lamps, fans, and aquarium pumps.

We’ll use the mCore to control several different devices. At the 
electrical level, these devices are mostly two-pole motors—sets of elec-
trified copper coils pushing against magnets. The rotational force 
these components generate can be used to push water or air, or to 
spin a wheel or a propeller.

HARNESSING DC POWER
Brushed motors send currents to copper coils mounted on the spin-
ning shaft, while brushless motors mount the coils on the stationary 
cylinder and spin a shaft covered with magnets. The differences in 
construction and scale can differ for particular applications, but the 

6



246 MBOT FOR MAKERS

key point is that anything driven by a simple DC motor only needs 
a two-wire connection. Current flows through the motor circuit and 
generates spin. Most DC motors are non-polar, meaning that they 
will spin in either direction depending on the direction of electrical 
flow. However, if the DC motor is built into a fan or pump, the larger 
device may be built in a way that requires a particular polarity.

Servos, like the tiny 9g servos used in Chapter 5, “Robot Nav-
igation,” are geared DC motors combined with an encoder that 
reports motor position. The same is true for the LEGO EV3 and 
NXT motors. In each case, the encoders require extra wires to com-
municate their position back to the microcontroller. If you take a 
continuously rotating servo and only hook up the DC motor wires, 
you can use it as a plain DC motor.

Stepper motors consist of several sets of paired coils that each push 
the shaft a small fraction of a rotation (i.e., a step). These require 
more complicated control, normally in the form of a stepper motor 
driver IC, in order to fire each coil in a precise sequence and generate 
smooth rotation. Stepper motors are the backbone of 3D printers 
and laser cutters. Makeblock sells stepper motors and a Me Stepper 
Driver, but they’re designed to work with Makeblock’s larger boards, 
the Me Orion and Me Arguia.

DC motors are classified by a nominal voltage rating, normally 
printed somewhere on the motor body. 

A 5V motor might spin at anywhere between 3V or 9V, but will 
work most efficiently at that 5V target. When the motor spins unen-
cumbered, it draws a minimal amount of current. As the load on the 
motor increases, so does the amount of current it draws. This reaches 
a peak at the stall point, where the motor is under such load that it 
can no longer spin freely. Keeping a motor at the stall point for too 
long can burn it out along with the electronics in the motor con-
trol circuit. The mCore’s design incorporates a small self-resetting 
fuse, which is essentially a tiny circuit breaker, to avoid damage to 
motors or the microcontroller. If any part of a circuit connected to 
the mCore draws more than roughly 1A, the fuse will overheat, trip, 



247Building Big and Small with mCore

and cut power to the entire board. After a few minutes, the fuse will 
cool down and the mCore will power up normally. You should use 
those few minutes of inactivity to look into what caused the excessive 
load on the motors, and try to fix it for the next test.

Connecting Motors with Two Wires (Two-Pole 
Motors)
In theory, the mCore can control anything that uses a low-power DC 
motor, as long as you can connect the device to M1 or M2. But in 
real life, that last step is a doozy. Patching strange cables is a horrific 
time-suck, especially when you’re working with a group of young 
people. In general, the “quicker” the solution, the more hours you’ll 
spend later on fiddly repair.

One of the mCore’s strengths compared with the basic Ardu-
ino is that it drastically reduces the amount of soldering and finicky 
breadboards. Even though breadboards are a time-tested prototyp-
ing tool, they don’t stand up to kid use. In our Makerspace, projects 
are lifted in and out of project buckets daily, and occasionally get 
knocked to the floor. Soldering wires directly to the mCore would 
make more stable connections—provided you never wanted to use 
that board for anything else. No thank you!

The cheapest connector for the mCore’s motor ports is a stan-
dard 0.1g pitch header pin. We used this kind of connection on the 
RJ25 board when making simple switches. The long legs on stacking 
header pins are easier for anyone new to soldering. 

	 1.	 To use header pins, trim a 2-pin section from the headers, and 
then strip both wires coming from the DC motor. 

	2.	 Put a smaller bit of heat-shrink tubing around the first wire, and 
then a larger diameter piece that slides further down and sur-
rounds both wires.



248 MBOT FOR MAKERS

	3.	 Solder the first wire to one leg of the header, and then apply the 
smaller heat-shrink tubing. 

	4.	 Now that you’ve protected the first leg, solder the other wire to 
the adjacent leg.

	5.	 Apply the larger section of heat-shrink tubing, trying to capture 
some of the header pin’s black plastic inside the heat-shrink 
tubing. 



249Building Big and Small with mCore

	6.	 JST connectors have plastic rails to ensure that the plugs only fit 
on one way. These plugs, made of header pins, do not. Most DC 
motors will spin in either direction, so there’s no damage if you 
accidentally plug something in the “wrong way.” Mark the side of 
the header pins so that the positive and negative pins match the 
orientation on the mCore. The black plastic rejects most mark-
ers, but nail polish is visible and durable.

Soldering to header sleeves is good enough for a few motors, but 
represents a huge headache at scale. The connections might be solid 
to start with, but repeated stress can break them. If you need to make 
several connections at once, it’s significantly faster to use a crimping 
tool and the appropriate JST connectors. 

Adding JST ends or header pins to a DC motor works fine for 
connecting to the motor pins on the current mCore. If that’s the 
only board you work with, then you don’t need to worry about any-
thing else. But Makeblock has shown remarkable inconsistency with 
connections across their current products. The Makeblock Ranger 
robot kit doesn’t use the 2-pin JST connectors, and their exter-
nal DC motor board uses a much larger 2-wire connector. In our 
Makerspace, two of the most common non-Makeblock motors in 
use are the LEGO NXT and EV3 motors. The sheer cost of LEGO 



250 MBOT FOR MAKERS

components, and a low-level fear of future plug changes, drove my 
colleague Gary Donahue to find a more flexible connection system.

Gary’s midpoint connectors have pairs of plug and socket con-
nectors on one end with either breadboard pins or screw terminal 
connectors on the other. To make thse, we start by creating a large 
collection of small pigtails with JST plugs (which connect to the 
mCore) soldered to the breadboard pins of the plug.

Then Gary connects the socket end of the midpoint connector to 
the device cable. Since this is a screw terminal connection, it doesn’t 
require soldering and doesn’t permanently modify the motor. Mak-
ing Gary’s midpoint connectors requires a chunk of time, since you 
have to solder a large number pigtail connectors, but connecting a 
new DC device to a screw terminal takes only a moment. 

The joy of Gary’s midpoint connectors comes from the unex-
pected ability to reuse parts. When a student wants to reuse a DC 
motor salvaged from an old toy, Gary’s system allows the kid to 

FIGURE 6-1: Short pigtails connecting mBot Motor pins to the com-
mon connector and long partner cables



251Building Big and Small with mCore

“make the cable” by adding the screw terminal plug and connect 
it to their mBot in a few minutes. These connectors eliminate an 
incredible amount of cable-related hassle in our Makerspace, and 
allow kids to push their mBots in surprising new directions.

For the small-scale projects in this chapter, you can connect the 
extra fans, motors, and pumps any way you like. But if you’re going 
to build two or three projects like this, take a lesson from Gary and 
invest the time in some midpoint connections.

BUILDING SMALL
Although we use the word dollhouse throughout this chapter, we avoid 
that term in classroom settings, because it may seem childish to cer-
tain audiences. In our Makerspaces, we use a variety of figures to 
match the scale of some projects. When kids are building complete 
environments, we’ll look for 1–2g figures, like LEGO mini figs or Play-
mobil figures. When designing clothing or furniture, 12g poseable 
mannequins, bought for around $5 from IKEA, work wonderfully. 

FIGURE 6-2: In class, we refer to anything we’re building for these 
mannequins or another anchor figure as a scale prototype. Image 
courtesy of Chris Willauer.



252 MBOT FOR MAKERS

Working on a fixed scale means that kids can move from idea 
to sketch to prototype quickly, without losing a moment in a long 
hunt for materials. Iteration is fast and cheap when you’re making a 
parade float for 2g figures or sewing a jacket for a 4g torso.

For projects that create responsive environments, we’ve found 
that the best scale-human is the familiar LEGO mini fig. This way, 
an “apartment block” can be a vertical shoebox, single LEGO bricks 
can serve as furniture (see Figure 6-3), and clear tape becomes a 
useful building material. 

Working in small scale lowers the cost (in time and materials) of 
“bad ideas,” and ensures that students can have plenty of chances 
to learn from those productive mistakes. Miniature scale reduces 
the importance of detailed and accurate plans, something students 
struggle with and rarely see the value of. Instead of allowing a long 
time for planning, students can start to build their first prototype 
after only making a quick sketch. To help build planning and sketch-
ing skills, we ask them to make a careful drawing of their finished 
prototype, and then refine that drawing for the next build. Two small 

FIGURE 6-3: A little LEGO work transforms a shoebox into a kitchen. 
Dishes in the sink are a nice touch.



253Building Big and Small with mCore

steps, planning, then analysis, better mimics the Maker mindset, 
where the current work is always an approximation of the ideal.

Fire Management System—Small
With all of the aforementioned in mind, we’re going to use the 
mBot to construct a fire suppression system for our dollhouse. 
We call it that because, without a narrative context, a segment 
of silicon tubing pumping water through a cardboard box doesn’t 
mean anything. Twenty minutes of work, even shoddy work, can 
transform the same hardware into an apartment sprinkler system. 
We tap into every kid’s imagination and diverse crafting skills by 
framing the project as a sprinkler system, instead of an abstract 
challenge of moving water between tubs. Within that framework, 
even simple decoration for the shoebox apartment requires choices 
that refine the scale.

The constraint of this prototype is that it must extinguish a fire 
that occurs on the stove. This constraint encourages builders to 
narrowly focus their work on the functional part of the system. As 
a prototype, this isn’t better or worse than a “spray everywhere” 
sprinkler system, but adding that level of specificity allows stu-
dents to leverage their real-world experience, so that each iter-
ation of the cardboard prototype reflects and comments on that 
understanding.

Working with fire at any scale involves risk. In the small-scale 
shoebox apartment, even a single tealight could, if left unattended, 
result in a real and dangerous fire. In a classroom setting, you should 
limit the number of candles lit at any given moment. It’s far easier to 
keep track of four flames than 40. Lighting and then quickly dousing 
the candle is the capstone of this project, but there’s not much call 
for open flame before that moment. Along with the tealight, we’ll 
explain how to use a wide-band IR LED to test the pump system. 

DC water pumps come in several varieties, but for this project 
we’ve had the most success with submersible pumps. Makeblock 
sells the pump shown on the left in Figure 6-4, which has a nominal 
12V rating, just barely within the mCore’s power range. Unlike the 



254 MBOT FOR MAKERS

submersible pump on the right, the DC motors and electrical con-
nections on Makeblock’s pumps need to be kept dry.

FIGURE 6-4: Makeblock’s 12V pump just barely works on mBot motor 
ports and needs to be kept dry. The black submersible pump is a bet-
ter choice.

In addition to the power concerns, we find dry pumps tricky to 
use in a group setting. Keeping an appropriate distance between the 
microcontroller, the electrical connections on the pump, and the 
flowing water requires a lot of space for each setup. 

It’s easier to find submersible pumps designed to work within the 
power range of the mCore’s 5V motor supply. Searching online for 
“USB water pumps” will help filter out the larger aquarium pumps, 
which are too large for this prototype stage. Small submersible pumps 
are quieter than the external dry pumps, and only require a single 
outflow hose. Best of all, the pumps and the electrical connections 
are designed to be wet! We often have kids build a self-contained 
reservoir for the pump to be used throughout the prototyping stage, 
and that’s what we’ll built next. The parts for the reservoir are shown 
in Figure 6-5.

This example uses a glass jelly jar, but wide-mouth plastic con-
tainers would work just as well. First, punch or drill three holes in 
the lid. Holes for the water to flow through are sized so the plastic 
tubing fits in them snugly (see Figure 6-6). The hole for the electrical 
connector has to be large enough to accommodate the plug.

FIGURE 6-5: Here are the parts for the water reservoir. We’ll make 
three holes in the lid: two for the tube and one for the power cable.



255Building Big and Small with mCore

FIGURE 6-6: If the holes are too large, the tube may flop out of 
the lid when under pressure.

	 1.	 Connect one of the plastic tubes to the outflow nozzle on the 
pump. The return tube doesn’t need to attach to anything (see 
Figure 6-7). 

submersible pump on the right, the DC motors and electrical con-
nections on Makeblock’s pumps need to be kept dry.

FIGURE 6-4: Makeblock’s 12V pump just barely works on mBot motor 
ports and needs to be kept dry. The black submersible pump is a bet-
ter choice.

In addition to the power concerns, we find dry pumps tricky to 
use in a group setting. Keeping an appropriate distance between the 
microcontroller, the electrical connections on the pump, and the 
flowing water requires a lot of space for each setup. 

It’s easier to find submersible pumps designed to work within the 
power range of the mCore’s 5V motor supply. Searching online for 
“USB water pumps” will help filter out the larger aquarium pumps, 
which are too large for this prototype stage. Small submersible pumps 
are quieter than the external dry pumps, and only require a single 
outflow hose. Best of all, the pumps and the electrical connections 
are designed to be wet! We often have kids build a self-contained 
reservoir for the pump to be used throughout the prototyping stage, 
and that’s what we’ll built next. The parts for the reservoir are shown 
in Figure 6-5.

This example uses a glass jelly jar, but wide-mouth plastic con-
tainers would work just as well. First, punch or drill three holes in 
the lid. Holes for the water to flow through are sized so the plastic 
tubing fits in them snugly (see Figure 6-6). The hole for the electrical 
connector has to be large enough to accommodate the plug.

FIGURE 6-5: Here are the parts for the water reservoir. We’ll make 
three holes in the lid: two for the tube and one for the power cable.



256 MBOT FOR MAKERS

FIGURE 6-7: Connect one tube to the submersible pump’s outflow, 
and let the return tube dangle.

	2.	 Place the pump in the reservoir jar and pull out the slack on the 
power cable. If you’re using a metal lid, be careful not to slice open 
the tubing (bad) or power cable (worse!) on a sharp edge.

Now you can fill the jar when the pump is in use and screw the 
lid and connectors in place. This contraption isn’t spillproof, but it 
allows the pump and connectors to move around without soaking 
the work area. Blue tack or other moldable materials can seal the 
area where the tube travels through the lid. The completed reservoir 
is shown in Figure 6-8.

With the pump and water source secured, we will turn our atten-
tion to the flame sensor. Like most Makeblock products, the func-
tional heart of the Me Flame Sensor is an off-the-shelf component 
mounted onto a small board with an RJ25 plug. The following image 
shows the Me Flame Sensor with the telltale RJ25 plug below and a 
similar component with a header pin connection.

FIGURE 6-8: Here is the completed water reservoir with the tubes 
attached and the pump on the bottom. You can use food coloring to 
help you tell from a distance when the water is flowing.



257Building Big and Small with mCore

FIGURE 6-7: Connect one tube to the submersible pump’s outflow, 
and let the return tube dangle.

	2.	 Place the pump in the reservoir jar and pull out the slack on the 
power cable. If you’re using a metal lid, be careful not to slice open 
the tubing (bad) or power cable (worse!) on a sharp edge.

Now you can fill the jar when the pump is in use and screw the 
lid and connectors in place. This contraption isn’t spillproof, but it 
allows the pump and connectors to move around without soaking 
the work area. Blue tack or other moldable materials can seal the 
area where the tube travels through the lid. The completed reservoir 
is shown in Figure 6-8.

With the pump and water source secured, we will turn our atten-
tion to the flame sensor. Like most Makeblock products, the func-
tional heart of the Me Flame Sensor is an off-the-shelf component 
mounted onto a small board with an RJ25 plug. The following image 
shows the Me Flame Sensor with the telltale RJ25 plug below and a 
similar component with a header pin connection.

FIGURE 6-8: Here is the completed water reservoir with the tubes 
attached and the pump on the bottom. You can use food coloring to 
help you tell from a distance when the water is flowing.



258 MBOT FOR MAKERS

In general, what we call flame sensors are light sensors tuned to 
a particular wavelength of the infrared spectrum, normally between 
760 and 1110 nanometers. Flame sensors actually combine an ana-
log sensor, for numeric values, and a digital sensor that just reports 
whether there is fire or no fire. This digital reading also triggers a 
blue LED on the board and is controlled by a built-in threshold value, 
set by the small potentiometer (see Figure 6-9).

In our model, the sprinklers should only respond to an out-of-
control kitchen fire. While an overzealous smoke alarm might be a 
kitchen annoyance, having a sprinkler set with too low a threshold 
makes a kitchen all but unusable. Managing the sensitivity of the 
flame sensor through physical placement and programming is the 
heart of this project. 

There are some obvious concerns when kids are working with 
fire, but this project is a great way to mitigate those risks while enjoy-
ing the benefits. We use small tealights for the kitchen flames in 
these models, which provides more than enough fire to trigger the 
flame sensor. If placed too closely, it can also create enough heat 
to melt plastic tubing, crisp cardboard edges, or ignite stray paper 
scraps. Don’t leave an open flame unattended! 

FIGURE 6-9: Adjust the Me Flame Sensor’s sensitivity by adjusting the 
potentiometer with a small screwdriver.



259Building Big and Small with mCore

Anyone who moves a lit candle in and out of the model apart-
ment risks wax-covered LEGO bricks and fingers. With regular 
attention, none of these problems threatens life or limb, and each 
one brings a useful “reality reminder” into the prototyping process. 
It’s also possible to avoid these candle-related mishaps by using an 
IR LED “throwie” to test the position of the flame sensor.

LED throwies are a staple of classroom Makerspaces. Just place 
a 3V CR2032 battery between the legs of an LED, apply a little 
tape, and you’ve got a small light to stick just about anywhere (see 
Figure 6-10).

It may be the simplest circuit possible, but it delights and fasci-
nates kids everywhere. But, since infrared light is outside the spec-
trum of human vision, it’s harder to know that the light is really on. 
Make sure to place the longer leg of the LED on the smooth positive 
side of the battery and the shorter leg on the dimpled negative side. 
For anyone new to LEDs, it’s helpful to do this with a visible-light 
LED at the same time (see Figure 6-11).

FIGURE 6-10: The top two LEDs use colored plastic to narrow and 
focus the IR light. Wideband LEDs with clear tops (bottom two) are 
better for this project but either would work.



260 MBOT FOR MAKERS

FIGURE 6-11: The wideband IR LED on the left is emitting as much 
light as the red light on the right.

Phone cameras used to provide a great way to check IR LEDs, 
since they capture a wider spectrum than the human eye. Today, the 
primary (rear-facing) camera on most phones uses software filters to 
clean up IR noise. Thankfully for us, that dubious feature hasn’t yet 
migrated to the front-facing camera!

Since the flame sensor is actually an infrared sensor, these LEDs 
will easily impersonate a flame in a cardboard apartment. A large part 
of placing the flame sensor involves checking for ways the decoration 



261Building Big and Small with mCore

and furniture might obstruct the sensor’s view of the stove. While 
this could mean simply moving the sensor, many students will 
choose to adjust the candle or the stove instead. This leads directly 
to wax-covered fingers and other candle-related injuries. Using an IR 
candle instead of an open flame for these steps drastically decreases 
the risk of this project (see Figure 6-12).

FIGURE 6-12: This image shows bends a visible light red LED throwie 
into a more convincing tealight shape.

With our test candle ready to go, it’s time to consider where to 
place the hose and sprinkler valve. This particular section of flexible 
tubing felt too large compared to the furniture, so we placed it on 
top of the cardboard box instead.

	 1.	 Mark the position of the tube on the outside of the box.



262 MBOT FOR MAKERS

	2.	 Place the tube so that it passes over the stove, then cut a small 
slit into the roof. It only needs to be large enough for water to 
drip through.

	3.	 Use tape to attach the tube to the box on either end of the opening.



263Building Big and Small with mCore

Even with the threshold knob dialed down, the flame sensor will 
spot a flame in the small prototype apartment from any spot with 
an unobstructed view. As an additional challenge, consider trying to 
hide the bulk of the sensor outside the box and make an opening for 
just the IR sensor. 

With the sensor placed, it’s time to build the code, shown in Fig-
ure 6-13. The flame sensor has both an analog numeric output and a 
digital on/off output. The mBlock only reports the analog numeric 
value from the flame sensor. Use a Say block to check the sensor val-
ues as you move a lit candle or match in and out of the scene. When 
the sensor can see a flame, the number drops significantly. On the 
Makeblock flame sensor and most others, there’s a small LED on 
the board that lights up when the sensor can see a flame. Keep an 
eye on this blue light while positioning the candle and adjusting the 
threshold knob to determine a useful threshold value.



264 MBOT FOR MAKERS

FIGURE 6-13: This program has many elements in common with the 
traffic light classroom volume meter from Chapter 2, “mBot Software 
and Sensors.”

Our testing showed a flame sensor reading of 100 was well below 
the ambient light levels, but a bit above the direct fire readings. We 
used that for the FlameThreshold value at the top of the program so 
that it’s easy to change, if necessary.

To avoid soaking the kitchen every time there’s a momentary 
flare-up, this code includes a timing loop that checks how long 
there’s been a flame in the kitchen. A single big flambé moment 
shouldn’t trigger the sprinklers. The TimeToSprinkler variable is the 
number of seconds that we’ll wait before turning on the sprinkler.

This program uses custom blocks to turn the sprinkler on and off. 
Since this action only requires one command block, it isn’t saving 
any program length. Instead, it provides clarity in the main program, 
and flexibility if we change how the sprinkler connects to the mCore.



265Building Big and Small with mCore

If the sensor reading is below our FlameThreshold value, the top 
part of the If/Else statement loops and resets the Scratch timer back 
to zero. However, once the sensor value clears the FlameThreshold 
value, the Else clause will execute and the timer will climb steadily. 
If the timer exceeds the TimeToSprinkler value, the pump turns on 
and will keep going until the FlameSensor value drops back below 
the FlameThreshold value.

We’ve used Sound and Say blocks to help track process through-
out the program. When a program uses nested loops, it’s tricky to say 
exactly what’s being checked at a given instant. A drum sound plays 
every time the Else clause executes, providing an audio clue that the 
sensor is reporting a fire and that the timer is running. By adding a 
sound cue to the TurnSensorOn block, we can track any lag between 
the program’s signal to start the pump and when we see water flowing 
in the prototype. 

Now we’re ready to test the system. Before any water starts 
splashing, we’ll test the system as a closed loop (see Figure 6-14). Our 
pump will pull water from the reservoir, move it through the sprin-
kler system, and then back to the jar. This test is a useful practice 

FIGURE 6-14: Here, we are testing the setup with a live flame and a 
sealed tube. Don’t abandon the tealight in the kitchen!



266 MBOT FOR MAKERS

for individuals, but crucial when working with groups. Ask that kids 
demonstrate a working closed loop system before they grab tools and 
poke holes in the tubing. Pierce the tube to add the actual sprinkler 
action when the code is solid. 

This is the time to adjust the values for FlameThreshold and 
TimeToSprinkler. Our example uses about 1f of tubing for the entire 
water path, so water reaches the kitchen less than a second after the 
pump turns on. For systems with longer hoses, such as one that has 
to reach a big bucket of water on the floor, it might be desirable to 
trigger the water a bit earlier.

Once those details are squared away, it’s time to install the 
actual sprinkler! Use a felt-tip pen and put a small mark on the 
hose where it passes over the stove. Lift up the tube and drain the 
water from it. Use a hobby knife, scissors, or a pair of pliers to take 
a small notch out of the tubing (see Figure 6-15). When the tube is 
filled, pressure will force water out of this gap, so a small opening 
will work fine. A small snip is also easier to patch up with hot glue 
and electrical tape.

FIGURE 6-15: There’s no need to remove lots of plastic. Water pres-
sure will force water out of a small opening.



267Building Big and Small with mCore

Replace the end of the hose in the water reservoir. The bulk of 
the hose should now be empty, so it won’t drip into the apartment.

Here’s the moment of truth! Start the mBlock program, then 
place the lit tealight on top of the stove (see Figure 6-16).

FIGURE 6-16: Success! Water from the sprinkler system completely 
douses the runaway fire on our stove.

Even though this cardboard kitchen won’t last forever, we can 
make a few tweaks and test the system again before the box falls 
apart. Experiment with flame placement, with an eye out for spots 
outside of the splash zone that still trigger the sprinkler. Keep explor-
ing ways to keep tiny apartment safe and intact.

Fan for Crowded Room—Small
The fire sensor demonstrates how a small-scale project with a rea-
sonable narrative can support nuanced and complicated builds with 
very few components. It’s also the best way to introduce and foster 
interest in projects that combine data from multiple sensors. Small 
environments are easily to monitor and manipulate, making it pos-
sible to mimic the automation in everyday life. 



268 MBOT FOR MAKERS

This project models common HVAC systems that engage fans 
or AC when the temperature exceeds a threshold, but only when the 
rooms are occupied. Don’t forget to start with building the room—
we can’t overemphasize the value of asking kids to create and invest 
in the design and decor of the environment (see Figure 6-17) before 
they start working with the electronics.

FIGURE 6-17: A few fairies and some LEGO furniture can go a long 
way toward anchoring creativity and enthusiasm. 

Our years of classroom observations suggest that decorating the 
test environment before starting a project inspires students, while 
making a “pretty box” for a functioning prototype feels like busy 
work. 

You can use the same temperature sensor as you used for the 
sensor bots in Chapter 4, “Measurement Devices.” This project 
serves as a natural follow-up to those data-gathering devices, and 
asks designers to use the power of observation to inform how and 
where to mount the thermometer. In a small-scale environment, 
sensors aren’t even close to invisible when taped to a wall. Raising 



269Building Big and Small with mCore

the imagined concerns of the scale-model inhabitants is a powerful 
technique for prompting and encouraging deeper thinking.

Since all small fans are just DC motors with plastic fins, use 
whatever materials you have on hand (three types are shown in 
Figure 6-18). Dollar stores often have handheld fans that use 2 AA 
batteries, which work well hooked up to mCore’s motor ports. Make-
block sells an official version of this kind of fan, but it doesn’t use the 
same connector as the mCore. Small electronics often contain 3V or 
5V square fans, which are easy to attach to flat surfaces with tape. 
The littleBits fan Bit is one of this type, but unless you’re already 
deeply invested in that product, it’s not worth spending $15 on a  
$2 fan.

FIGURE 6-18: A handheld fan from the dollar store, Makeblock’s offi-
cial fan (its connector is shown to its right), and the fan Bit from  
littleBits

Unfortunately, the most common recycled small square fans 
come out of desktop computers and run off 12V. These fans normally 
won’t move on the mCore’s 5V power supply. If you have a large 
supply of these on hand, it might be worth using some of the higher 
voltage power techniques from the “Building Big” section later in 
this chapter to bring those into the mCore universe. 

Whatever fan you choose, it’s important to mount it in the scale 
room in a way that won’t obstruct tiny feet or sever tiny heads. We’ve 
used a square fan and mounted it in the “window,” as you can see 
in Figure 6-19.



270 MBOT FOR MAKERS

FIGURE 6-19: A crowded apartment with a PC fan installed and a 
thermometer high on the adjacent wall

At this point, we can write a simple program to turn on the fan 
when the temperature climbs past a threshold (see Figure 6-20). 
Even though turning the fan on only takes a single block, it’s worth 
defining those commands in custom blocks. 

FIGURE 6-20: This is the State Check code from the sensor projects 
in Chapter 2.

It may require applying cold or hot fingers to move the tem-
perature quickly above and below the threshold. Don’t let the giant 
hands reaching in and out of the room break the narrative illusion 



271Building Big and Small with mCore

completely! Look for ways this simple feedback loop would delight 
or annoy the tiny people relaxing on the couch.  

With these barebones environmental controls in place, it’s time 
to consider how to determine if the room is occupied. Similar to the 
way we determined whether a door was standing open in Chapter 4, 
there’s no single “correct” sensor that will help us answer this ques-
tion. Determining how to use an arbitrary input to decide whether 
people are in a room is a great brainstorming activity, if not an entire 
project. Pull a random sensor out of a hat and see what you can 
improvise!

This example uses the passive infrared (PIR) motion sensor, not 
because it’s best, but as a way to showcase the particular challenges 
associated with binary output. A PIR sensor uses pyroelectric mate-
rials that actually generate electricity when exposed to specific wave-
lengths of light. Unlike the flame sensor, the PIR doesn’t report a 
value relating to infrared light levels, but responds when that light 
value changes significantly. 

In mBlock, the angled frame of the PIR block indicates that the 
sensor’s values will always be either 0 or 1. When the PIR motion 
sensor block reports 0, that indicates that infrared levels have been 
basically stable for the last few milliseconds, which we interpret to 
mean that nothing large or warm is moving nearby. If the infrared 
level changes in that small window of time, the sensor reports a 1. 
The basic shorthand of 0 = still, 1 = movement, works for most situ-
ations, but it’s worth considering the edge cases. A flickering candle 
will confuse a PIR sensor and it will report motion, whereas snakes 
and other cold-blooded reptiles could sneak by undetected—shud-
der. That is yet another reason to be afraid of snakes.

Most people already have an intimate familiarity with PIR-re-
lated frustration from countless restrooms. From finding the right 
position of your hand for automatic sinks, to stingy paper towel dis-
pensers, many public bathrooms are crowded with PIR sensors. One 
strength of this project is that it can put kids in control of the same 
kind of robotic systems they encounter every day. As a general prin-
ciple, humans should be able to build something as sophisticated as 
their own bathroom fixtures.



272 MBOT FOR MAKERS

Since the PIR is a binary sensor, our program should look for 
readings over time rather than a single reported sensor value. The 
amount we’ll accept as “enough” motion in a short time interval 
becomes our timing threshold. The fan should wait for the value to 
fluctuate frequently as an indication that people are actually moving 
in the room. This is essentially the same calculation performed by 
the sensor itself, but on the scale of seconds, not milliseconds. Since 
we’re using the PIR data to turn on a big, slow fan, checking for sev-
eral signs of motion over several seconds will ensure the fan doesn’t 
turn on and off constantly.

Once we’ve seen that period of consistent movement, we need to 
mark the room as occupied and stop checking as frequently. Again, 
as in a bathroom, we accept that people will move around when they 
arrive in a room and sometimes sit for a while. Our code needs to 
allow the imaginary little people to relax on the couch for a reason-
able amount of time without having to wave their tiny arms.

It’s essential that we check and tune the three discrete subsec-
tions shown in Figure 6-21 in isolation before combining them into 
a larger program. When debugging a complicated system, all the 
individual components must perform consistently. Test how much 
motion it takes to trigger the PIR sensor. Run a Say loop with the 
temperature sensor and ensure that the fan actually lowers the room 
temperature. Test all the likely scenarios, and as many strange ones 
as you can imagine. 

Only when the fan, PIR sensor, and temperature sensor behave 
well in all those tests can we check all three together. When a pro-
gram evaluates and compares many different inputs, the order and 
timing of how we check those inputs matters! 

As the complexity of mBlock programs increases, it’s important 
to remember that the goal is functionality, not correctness. Rather 
than worrying about whether a particular solution represents the 
“right way,” keep focused on if it accomplishes your stated goals. 
Robots and programs are tested, not graded. 

Testing throughout the build process not only compartmen-
talizes large tasks, but the tests force us to consider the question, 

FIGURE 6-21: Once they are all combined into a single stack of 
blocks, it’s trickier to find and correct errors.



273Building Big and Small with mCore

“What should happen here?” on increasingly granular levels. That 
mindset helps even when you’re reading unfamiliar programs for the 
first time—something Makerspace and computer science teachers 
do on a daily basis. Working through a small part first, and thinking 
through what should happen at each step, can be very helpful.

We pulled CheckForMotion out as a custom block to isolate the 
choices made in that process. CheckForMotion looks at the data 
from the PIR sensor for three seconds or until it sees five motion 
readings, whichever comes first. The PR_Check value starts at 0 each 
time CheckForMotion runs, and then increases each time the PIR 
sensor reports a 1. At the end of CheckForMotion, the RoomStats 
variable is reset to either Empty or Occupied. 

Reading the details of a program should suggest ways for you 
to extend its functionality or even ways to reshape it around differ-
ent assumptions. Maybe it’s time to add a thermostat sized for tiny 
LEGO hands rather than use a fixed temperature threshold. Instead 
of bouncing between off and full power, maybe the distance between 
the current and ideal temperatures should determine the fan’s inten-
sity. Gary Stager names this improv-like questioning process “...and 

Since the PIR is a binary sensor, our program should look for 
readings over time rather than a single reported sensor value. The 
amount we’ll accept as “enough” motion in a short time interval 
becomes our timing threshold. The fan should wait for the value to 
fluctuate frequently as an indication that people are actually moving 
in the room. This is essentially the same calculation performed by 
the sensor itself, but on the scale of seconds, not milliseconds. Since 
we’re using the PIR data to turn on a big, slow fan, checking for sev-
eral signs of motion over several seconds will ensure the fan doesn’t 
turn on and off constantly.

Once we’ve seen that period of consistent movement, we need to 
mark the room as occupied and stop checking as frequently. Again, 
as in a bathroom, we accept that people will move around when they 
arrive in a room and sometimes sit for a while. Our code needs to 
allow the imaginary little people to relax on the couch for a reason-
able amount of time without having to wave their tiny arms.

It’s essential that we check and tune the three discrete subsec-
tions shown in Figure 6-21 in isolation before combining them into 
a larger program. When debugging a complicated system, all the 
individual components must perform consistently. Test how much 
motion it takes to trigger the PIR sensor. Run a Say loop with the 
temperature sensor and ensure that the fan actually lowers the room 
temperature. Test all the likely scenarios, and as many strange ones 
as you can imagine. 

Only when the fan, PIR sensor, and temperature sensor behave 
well in all those tests can we check all three together. When a pro-
gram evaluates and compares many different inputs, the order and 
timing of how we check those inputs matters! 

As the complexity of mBlock programs increases, it’s important 
to remember that the goal is functionality, not correctness. Rather 
than worrying about whether a particular solution represents the 
“right way,” keep focused on if it accomplishes your stated goals. 
Robots and programs are tested, not graded. 

Testing throughout the build process not only compartmen-
talizes large tasks, but the tests force us to consider the question, 

FIGURE 6-21: Once they are all combined into a single stack of 
blocks, it’s trickier to find and correct errors.



274 MBOT FOR MAKERS

then?” and suggests that it’s a useful filter for finding the unexpected 
corners of complicated tasks. Static adult-centered tasks rarely gen-
erate great “…and then?” responses. On the other hand, one or two 
“…and then?” questions asked of different groups of young people 
could push this basic project in radically different and fascinating 
directions. Great projects can generate enough interesting responses 
to “…and then?” to fill up a whiteboard.

BUILDING BIG
As we’ve seen in previous chapters, the mBot system allows us to cre-
ate on a very large scale. Using serial or Bluetooth for wireless com-
munication means that the mCore board or mBot robot can operate 
far away from the computer or tablet. Uploading the programs to the 
board, along with the use of a large LiPo battery, allows our creations 
to operate independently for hours or days at a time. Cheap custom 
cables make it possible for sensors and motors to spread out along 
the ceiling or windows of even the largest rooms. In many ways, 
we’ve already been “building big” with the mBot.

Now it’s time to cross the final threshold of “big” and work with 
large power loads.

In the section “Connecting Motors with Two Wires (Two-Pole 
Motors),” we demonstrated how to connect any simple DC motor to 
the mCore’s motor output pins, allowing us to control fans, pumps, 
and more. All of those devices were pretty small, and easily powered 
by the mCore’s 5V low-amperage output. This works great for proto-
types, where exploring and refining the idea is more important than 
doing real work. But if we want to soak a real kitchen, we’ll need to 
control devices that require far more power.

Controlling large loads with small voltage signals is a central pil-
lar of the Arduino universe. All microcontrollers operate on either 
3.3V or 5V electricity. Powering a device through a microcontroller 
requires all the power used by that device to flow through the same 
circuit. Controlling larger voltages will require an extra component 
to switch on the bigger power stream in response to signals from the 
microcontroller.



275Building Big and Small with mCore

There’s a whole world of options that will allow you to control 
exactly the device you want with a given input, and there’s no better 
book to start with than Charles Platt’s now classic Make: Electronics: 
Learning Through Discovery, Second Edition (Maker Media, 2015). His 
hands-on walk-through of physical and solid-state relays and tran-
sistors is an essential experience for all Makers. 

In our classrooms, we choose parts that are often overkill for 
the specific applications. When selecting relays or transistors, we 
stock a few parts that can control a wide range of voltages, rather 
than finding the switching circuit that’s just big enough to handle 
a specific task. While there’s surely a more efficient and possibly 
cheaper solution for the systems shown in this chapter, that’s not our 
primary concern. Because we allow young people creative autonomy, 
I’d rather have a dependable and flexible tool ready at hand than go 
digging through a drawer of parts. 

Fire Management System—Large
If you harbored safety concerns when kids were using a candle in 
a cardboard kitchen, the idea of taking that project to life-size may 
be downright terrifying. There are plenty of great, safe, empower-
ing ways to teach young people how to build and control fire, but 
all those lessons are better suited to a camping trip rather than a 
Makerspace.

Instead of scaling up the fire, we’ll focus on scaling up the 
response. We’re going to leave the small pump behind and build a 
garden hose–powered sprinkler.

Water is heavy, and moving a lot of water requires a correspond-
ing amount of power. That’s why most real-world sprinkler systems 
don’t use electric motors to push the water. Fire safety systems rely 
on water pressure and use valves that degrade and open in extreme 
heat. Gardening valves, which start and stop the flow of water with 
solenoid-driven plugs, provide a better model for our project.

In this project, we’ll build a water control system that opens a 
solenoid valve using 12V DC power. Since that much voltage would 
fry our poor little mCore, we’ll need to use an external 12V power 
supply, and a physical relay. Signals from the mCore will tell the relay 



276 MBOT FOR MAKERS

to close or open the larger electric circuit that, in turn, controls the 
valve. 

For big DC projects that don’t require millisecond-speed 
switching, I reach for SparkFun’s Beefcake Relay board, shown in 
Figure 6-22. 

This board can switch up to a 3A load at 28V DC. The actual 
relay could handle up to 20A, but the screw terminals and traces on 
the board aren’t rated for huge current loads. The Beefcake can also 
switch 220V AC loads, meaning that it could handle wall current 
from most countries, but we don’t use the Beefcake for that. Even 
with the precautions we take in our Makerspaces, having wall cur-
rent move through a board with exposed terminals and traces gives 
me the willies. When we need to control something that plugs into 
a wall outlet, we reach for the PowerSwitch Tail, which we’ll use in 
the room-scale fan project later in this chapter.

Figure 6-23 shows the relay used in the Beefcake relay board with 
the black plastic housing removed. Don’t do this! The plastic cowling 
prevents fingers from coming into contact with high voltage. Relays 
use a large copper coil as an electromagnet. When a low-voltage 
current flows through the electromagnet, the electromagnet pulls 

FIGURE 6-22: SparkFun’s Beefcake Relay board



277Building Big and Small with mCore

a switch closed, which will physically complete a high-voltage cir-
cuit. When the current stops flowing through the electromagnet, the 
switch is released, and the high-voltage circuit is broken. 

We’ll control this coil with a signal from the mCore to the side 
labeled Low Voltage. We’ll be using this relay to turn something on, 
which means we’ll use the normally open (NO) pins on the high-
voltage side. Normally closed (NC) operation means that the circuit 
is closed by default and the device is powered, except when the micro-
controller sends a signal. In our sprinkler setup, an NC relay would be 
a particularly wet and unpleasant way to fight household fires.

I was first introduced to the Maker utility of sprinkler valves by 
Joey Hudy’s classic marshmallow cannon project (https://makezine 
.com/projects/extreme-marshmallow-cannon/). Garden use valves con-
sist of a connector between two pipes with a solenoid-controlled 
gate in between. Most are NC, meaning that the plunger blocks 
the flow between the two sides and requires current to open. Auto-
matic garden-sprinkler solenoids are designed to use 24V alternat-
ing current (AC), but can operate for short periods with 12–18V DC 

FIGURE 6-23: The coil is at the heart of the Beefcake relay. Image 
courtesy of SparkFun (https://learn.sparkfun.com/tutorials/beefcake- 
relay-control-hookup-guide). Image is CC BY-SA (https://creative 
commons.org/licenses/by-sa/4.0/).

https://makezine.com/projects/extreme-marshmallow-cannon/
https://makezine.com/projects/extreme-marshmallow-cannon/
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


278 MBOT FOR MAKERS

power. The trade-off when using DC power is that it draws a higher 
current and generates extra heat while the solenoid is powered and 
the valve is open. This can cause problems when the whole package 
is buried beneath the lawn and stands open for half an hour at a 
time, but won’t pose a problem when open only briefly, as it is in 
this project.

While sprinkler parts from Home Depot or salvaged from the 
shed will work fine for this project, we will use a 12V DC solenoid 
valve from SparkFun. Since it’s built for light-duty applications like 
this, it’s a bit cheaper than parts from the garden department. It also 
has a reasonably square bottom and sits nicely on a bench. Garden-
ing valves are designed to be buried in dirt, not sit flat on a work 
surface. 

We’ll use the relay to control power to the solenoid valve. (See 
Figure 6-24.) Only when the relay is engaged and the circuit is closed 
will power flow from the supply into the valve, which will, in turn, 
open the valve to allow water to flow.

Figure  6-25 is what would pass for a planning sketch of the 
sprinkler control circuit in our Makerspaces. When you’re work-
ing with new tools and materials, abstracted circuit drawings can 

FIGURE 6-24: The power circuit between the 12V source, the sprinkler 
valve, and the Beefcake relay board



279Building Big and Small with mCore

pose real challenges. Although the power plug isn’t connected to 
anything and the tiny wires aren’t soldered to the valve, this model 
is more similar to building the actual circuit than a drawing would 
be. Modeling with real parts also makes it easier for a teacher to 
quickly offer feedback.

However, this version is just a model. The “production” build 
needs some larger, longer wires. Thicker wires are better for higher 
current loads, and we need plenty of distance between our replay 
board, the flowing sprinkler head, and the microcontroller.

To keep this type of build flexible, it’s a good idea to build small, 
modular cable connections, as seen in Figure 6-25, discussed at the 
beginning of this chapter. In this project, we used barrel plugs backed 
by screw terminals. These plugs are familiar to kid hands and stand 
up to a lot of stress. 

Although longer wires help, the relay board needs a bit more 
protection. In group or classroom environments, we often package 
the relay boards in disposable plastic food containers, with small 
openings to allow access to the low- and high-voltage connections 
(see Figure 6-26).

FIGURE 6-25: Similar to Gary’s midpoint connectors, but with heavy-
gauge wires for high-current applications like a solenoid



280 MBOT FOR MAKERS

FIGURE 6-26: The power input and the control wires emerge through 
small cuts in the plastic tub.

This isn’t waterproof, but it is splash-resistant. It also pre
sents clear physical instructions to novice users—to control this 
relay, the only parts that are required are the wires sticking out of 
the side.

Now we’re ready to revisit our fire sprinkler code and modify it 
for the new parts. At dollhouse scale, the mCore provided power 
directly to the water pump through the motor ports. Since the relay 
board requires minimal current, we’ll use one of the RJ25 ports to 
send the control signal instead.

All of the blocks in the mBot section of mBlock are built around 
a specific sensor or actuator. Accessing more generic commands, 
like setting a single output to High or Low, requires the Arduino 
extension. Make sure the Arduino option is selected in the Extension 
menu, as shown in Figure 6-27.

Then find the Set Digital Pin Output As block in the Arduino 
section of the Robots palette. (See Figure 6-28.)



281Building Big and Small with mCore

FIGURE 6-27: Small check marks in the Extensions menu indicate 
which blocks appear in the Robots palette.

FIGURE 6-28: Programs in mCore can use blocks from the mBot and 
Arduino extensions simultaneously.



282 MBOT FOR MAKERS

Every RJ25 port on the mCore has wires for two Arduino pins. 
When you’re using the RJ25 breakout board, those two pins are sep-
arated into the two 3-wire connection points. To determine which 
pin number to use in an mBlock program, plug the RJ25 breakout 
board into a port on the mCore, and then look at the labels behind 
the mCore connector. (See Figure 6-29.)

In this code we used pin 9, which comes from port 2 of the mCore, 
and slot 1 on the RJ25 breakout board. Since any of the mCore pins 
would work for this example, why don’t we just use the default val-
ues? This means that the signal wire that’s connected to the Beefcake 
relay board traces back to pin 9 on the Arduino, running through 
port 2 on the mCore to slot 1 on the RJ25 board.

There are a few other alterations to make. The Set Digital Pin blocks 
call replaces the Set Motor blocks in the SprinklerON and Sprinkler-
OFF procedures. Set Digital Pin 9 Output As High replaces Set M1 to 

FIGURE 6-29: Pin names are listed behind each mCore port. When the 
RJ25 board is connected to port 2, slot 1 connects to pin 9 and slot 2 
connects to pin 10.



283Building Big and Small with mCore

255 in SprinklerON, and Set Digital Output as Low replaces Set M1 
to 0 in SprinklerOff. We also removed the Eat sound effect, because 
it’s just hard to hear the computer speaker when you’re testing outside. 
(You can see these changes in the following image.) 

Now we can use this simple code to check the program and 
wiring of our circuit. The SparkFun Beefcake relay board features a 
small LED that indicates when the high-voltage side of the relay is 
engaged. Physical relays also make a distinct and pleasant clicking 
sound as they open and close. These small visual and audio cues are 
useful when testing your relay setup. Test your wiring and relay setup 
before attaching the hoses. 

How you position the sprinkler, hoses, and wires depends more 
on the space getting soaked than the hardware that’s used. Pay atten-
tion to the threading on the valve and any hoses or connectors. Even 
when the connectors are the same size, pipe threading requires an 
adapter for normal garden hoses. Appropriate parts are available at 
most hardware stores.



284 MBOT FOR MAKERS

Figure 6-30 shows the full setup with the plumbing equipment 
and the electronics connected, placed artificially close in order to fit 
in the image. Do not put your electronics this close to the hose and 
valve. When we ran preliminary tests, the exposed mCore sat far 
away from the water and under a towel.

Put a bit more space between the components and let the test 
program run. Look for lag time between when the relay triggers and 
the water flow stops or starts. Once you’ve chosen a time interval 
for the sprinkler that generates enough splash without overloading 
the relay, it’s time to mount the fire sensor and update the dollhouse 
sprinkler program.

Where and how you mount the fire sensor is entirely dependent 
on the sprinkler setup and how you plan to test. However, it’s crucial 
that the flame sensor stays dry! Not only would a wet sensor produce 
unpredictable readings, the flame sensor circuit is part of the mCore. 
Stray drops of water might short circuit the mCore and, in the best 
scenario, trip the fuse and depower the board. Adding a layer of cling 
film over the sensor is a great safety measure—it isn’t waterproof, 
but it does serve as a reasonable barrier against a few errant drops.

FIGURE 6-30: Here’s the mCore and battery, connected to an RJ25 
board, which is connected to the Beefcake relay board, which is 
housed inside a waterproof tub.



285Building Big and Small with mCore

Once the flame sensor is mounted, make sure to test the reading. 
A frustrated kid jumping around with a lit candle trying to trigger the 
sprinkler increases the risk of this project significantly. Thanks to the 
wide angle of the sensor, the example setup will detect a flame in a 
large arc anywhere between 3f and 8f off the ground. 

Now, gather your volunteers, and get ready to test! Figures 6-31 
and 6-32 shows before and after.

FIGURE 6-31: Wait for it…

FIGURE 6-32: It works!



286 MBOT FOR MAKERS

Although this sprinkler setup emerged out of the dollhouse fire 
alarm, it doesn’t have to end there. You now have the ability to pro-
gram arbitrary reasons to soak people! Maybe that traffic light class-
room volume monitor was too passive. Soak the loud ones! Maybe 
balloon jousting should end by drenching the losing team. The pos-
sibilities are endless . . . and soggy.

Fan for Crowded Room—Large
After that mess of relays and hoses, it seems like scaling up the PIR 
temperature fan project should be much easier. The PIR sensor has 
a huge field of view and can easily cover most of a room. Discretely 
hiding a thermometer is easier at human scale than in a cardboard 
box. It seems like scaling up this project is just a matter of adding 
longer cables—until we get to the fan. 

Even 120 mm computer fans don’t move enough air to affect 
the average human-scale room. However, box, desk, and oscillating 
room fans are powered by AC motors, rather than DC. These motors 
plug directly into local wall current (110V in the United States) to 
spin big blades and move a bunch of air.

Wall current is super dangerous—deadly, even! As a rule, our 
Makerspace does not work with mains electricity, aka, what comes out 
of the wall socket. Not only does it have the potential to fry people, 
it would obliterate all of the robots or motors we’ve seen thus far. 
Wall current is not your friend!

Room-sized fans need wall current. Although big relays, like the 
SparkFun Beefcake used in the sprinkler project, can switch 110V 
AC, we don’t use them with kids. Exposed traces and screw terminals 
present only a mild risk of accidental shock, but that’s more than 
we’re willing to accept when we have a classroom of adolescents.

Instead, we turn to the PowerSwitch Tail, shown in Figure 6-33, 
which encases a high-current relay inside a traditional power brick. 

The input wires on the PowerSwitch are fully isolated from the 
relay and the wall voltage circuit. Although I can’t say that this elim-
inates my nervousness at having young kids working with wall cur-
rent, it’s enough to get the project moving. For budget-conscious 
electrical experts, there are much cheaper ways to use the mCore to 

FIGURE 6-33: This PowerSwitch Tail is designed for use with US 110V 
wall current. There’s another version with appropriate plugs for coun-
tries using 220V standards.



287Building Big and Small with mCore

control large fans, toasters, or hair dryers, but I sleep much better 
spending the extra cash on these.

The PowerSwitch Tail connects to the mCore like other relays, 
using the RJ25 expansion board. Since the low-voltage side of the 
PowerSwitch Tail is opto-isolated, meaning there is no physical con-
nection between the high-power and low-power circuits. Instead, 
the bridge between the two circuits is a tiny LED and light sensor, 
not unlike the onboard sensor on the mCore. Because of this setup, 
you only need to connect the signal and ground wires from the RJ25 
board, not the 5V wire. Connect the signal wire to the + Input pin, 
connect the ground wire to the – Input pin, and leave the ground pin 
on the PowerSwitch Tail empty, as shown in Figure 6-34. 

As with the Beefcake, we’ll need to use the Digital Pin block 
from the Arduino extension to switch one particular pin to High or 
Low. A signal LED on the PowerSwitch Tail shows when the relay is 
engaged. Instead of having to hack apart a cable, the PowerSwitch 
Tail sits neatly inline between the room fan and the wall outlet, and 
the mCore can now control any household lamp or fan.

Although this sprinkler setup emerged out of the dollhouse fire 
alarm, it doesn’t have to end there. You now have the ability to pro-
gram arbitrary reasons to soak people! Maybe that traffic light class-
room volume monitor was too passive. Soak the loud ones! Maybe 
balloon jousting should end by drenching the losing team. The pos-
sibilities are endless . . . and soggy.

Fan for Crowded Room—Large
After that mess of relays and hoses, it seems like scaling up the PIR 
temperature fan project should be much easier. The PIR sensor has 
a huge field of view and can easily cover most of a room. Discretely 
hiding a thermometer is easier at human scale than in a cardboard 
box. It seems like scaling up this project is just a matter of adding 
longer cables—until we get to the fan. 

Even 120 mm computer fans don’t move enough air to affect 
the average human-scale room. However, box, desk, and oscillating 
room fans are powered by AC motors, rather than DC. These motors 
plug directly into local wall current (110V in the United States) to 
spin big blades and move a bunch of air.

Wall current is super dangerous—deadly, even! As a rule, our 
Makerspace does not work with mains electricity, aka, what comes out 
of the wall socket. Not only does it have the potential to fry people, 
it would obliterate all of the robots or motors we’ve seen thus far. 
Wall current is not your friend!

Room-sized fans need wall current. Although big relays, like the 
SparkFun Beefcake used in the sprinkler project, can switch 110V 
AC, we don’t use them with kids. Exposed traces and screw terminals 
present only a mild risk of accidental shock, but that’s more than 
we’re willing to accept when we have a classroom of adolescents.

Instead, we turn to the PowerSwitch Tail, shown in Figure 6-33, 
which encases a high-current relay inside a traditional power brick. 

The input wires on the PowerSwitch are fully isolated from the 
relay and the wall voltage circuit. Although I can’t say that this elim-
inates my nervousness at having young kids working with wall cur-
rent, it’s enough to get the project moving. For budget-conscious 
electrical experts, there are much cheaper ways to use the mCore to 

FIGURE 6-33: This PowerSwitch Tail is designed for use with US 110V 
wall current. There’s another version with appropriate plugs for coun-
tries using 220V standards.



288 MBOT FOR MAKERS

FIGURE 6-34: Unlike the Beefcake relay, the PowerSwitch Tail only 
needs the signal and ground wires connected. Cover the loose 5V 
wire from the RJ25 board.

With the PowerSwitch installed, the biggest challenge is repli-
cating the physical setup of the dollhouse room at full scale. This is 
absolutely the time for super-long extension cables. Just like in the 
scale model, it’s important to test as you go to ensure that the airflow 
lowers the temperature on the thermometer. Also, the timers for the 
PIR sensor and the fan will need to be significantly longer. The real 
world is big, and it takes time for stuff to move around!

These projects represent one way you can extend mBot’s capa-
bilities far beyond what arrives in the retail kit—but it’s not the 
only one. The mBot arrived into our elementary and middle school 
classrooms as an accessible, low-floor, programming and robotics 
platform. What’s kept them in use throughout middle and into high 
school is that the full power of the Arduino platform is just under 
the surface. Almost any Arduino project found in an issue of Make: 
will work with an mCore at the heart. 



Index

Numbers
2.4G module, 20–22
2.4G serial connection, 60
2.5 mm barrel plug, 31
5V motors, 246
6P6C modular jack, 28–30, 53

A
AA battery holder, 32
actuators, using frames, 41
add-on sensors. See also sensors

7-segment display, 117
connecting, 114–118. See also 

sensors
Joystick, 117
LED matrix, 118
LED Strips, 118
Light, 117
Me LED 4x, 116
PIR Motion, 117
Potentiometer, 117
RJ25 adapter, 118
Sound, 117
Temperature, 118

aluminum
frame, 8
parts, 10

analog sensors, 94–95, 97. See also 
sensors

<AND> operator, using in 
mBlock, 99

animatronics
craft supplies, 120
electronics, 120
overview, 119–120
sensing and movement, 121
tools, 120

Arduino 
pin numbers, 29–30
uploading to, 106–108, 110–111

AT328, 29

B
Balloon Tag, 72–75
battery and mCore, installing, 16–18
battery holder, 15, 32. See also LIB 

(lithium ion battery) connector
BattleBots, 27
behaviors, setting and resetting, 

96–97
bins, using for storage, 40–41
block length, managing, 178–179
block-based programming

explained, 95–96
screen width, 178–179

blocks, navigating on mobile 
devices, 68–72

Bluetooth, 20–22, 27, 60
bolt, measuring diameter and 

length, 4
brushed and brushless motors, 245. 

See also motors



290 MBOT FOR MAKERS

building big
Fan for Crowded Room, 

286–288
Fire Management System, 

275–286
overview, 274–275

building small
dollhouse terminology, 251
Fan for Crowded Room, 

267–274
Fire Management System, 

253–267
kitchen made from shoebox, 252

C
cables

color alignment, 53
crimping, 54–55
ends, 54
making, 55–58
parts, 53

case, making, 52
Catapult Ball Launcher, 214–223
CD Scoop, 205–207
chassis, motors and wheels, 3–12
CheckDoorState functions, 199
classroom use, 28
compass sensor, 60
components, storing, 37
copying script blocks, 91
cover, adding, 51–52
craft supplies, animatronics, 120
CurrentTemp value, 185
custom blocks

naming, 201
using in mBlock, 102, 104, 107, 111

D
data-logging device, 

conceptualizing, 171–172
DC motors, 8

DC power
harnessing, 245–251
trade-off, 278

default program
versus firmware, 60
options, 63–64

digital I/O port, 29
digital sensors, 93, 97. See also 

sensors
display, 60
dollhouse services, 245, 251
Donahue, Gary, 36
Door Monitor

button, 197
CheckDoorState functions, 199
custom block, 198, 201
Line Follower sensor, 195
opening and closing, 200–201
overview, 194
switches, 196

double digital components, 29

E
electronics, animatronics, 120
Elijah, Josh, 239
equality, checking for, 198
exporting values to spreadsheets, 

192–194
eyes

lighting up, 121–124
rotating, 138–144

F
Fan for Crowded Room—Large, 

286–288
Fan for Crowded Room—Small

CheckForMotion, 273
choosing fans, 269
HVAC modeling, 268
PIR motion sensor, 271–272
State Check code, 270



291INDEX

temperature sensor, 268–269
thermostat, 273–274

Fire Management System—Large
Beefcake Relay board, 276–277
blocks in Robots palette, 281
checking program and wiring, 283
control wires, 280
DC power, 277–278
garden sprinkler solenoids, 

277–278
maintaining flexibility, 279
mounting fire sensor, 284
NC (normally closed) pins, 277
NO (normally open) pins, 277
overview, 275–276
pin names, 282
power input, 280
Set Digital Pin Output, 280–281
setup with plumbing, 284
testing, 285

Fire Management System—Small
building code, 263–267
DC water pumps, 253–257
flame sensor, 256, 258
hose and sprinkler valve, 261–262
IR LED, 260
LED throwies, 259, 261

Firmata protocol, 58
firmware versus default program, 60
Forever loop, 92, 104
frame

making and using, 43–50
using with sensors and 

actuators, 41

G
game challenges

Catapult Ball Launcher, 214–223
CD Scoop, 205–207
Maze-Solving mBot Using 

Standard Sensors, 239–243
overview, 204–205

Robot with 9g Servo Grabber, 
223–239

Spear-Lowering Servo, 208–213
Green Flag block, mBlock, 89
gyro sensor, 60

H
hardware serial component, 29
hat blocks, 174–175
head

attaching to body, 130–131
combining with LED eyes, 131
turning randomly, 125–131

Head Turning Randomly Using 9g 
Servo and RJ25 Adapter, 125–131

HighTemp and LowTemp variables, 
184–185

hot glue gun, using, 25
Hudy, Joey, 277
Humidity sensor, 60

I
I2C devices, serial port, 29
<IF> statement, using in mBlock, 99
If/Else block, using in loops, 184
IKEA TROFAST bins, using for 

storage, 40–41
infrared receiver and transmitter, 

mCore board, 35
installing

mCore and battery, 16–18
motors on chassis, 3–12
sensors, 12–14
wheels on chassis, 3–12

IR remote, 26–27, 60. See also 
remote

J
joystick input, 60
JST connectors, using, 249
JST lithium ion battery connector, 

31–32



292 MBOT FOR MAKERS

K
Kepler, Jon, 223
keyboard commands, 203–204
“kid electronics,” 28

L
laser cut files, 51, 147, 215
Latching Trigger sensor, 96
Latching Trigger with Reset  

sensor, 97
LED eyes, combining with moving 

head, 131
LED matrix, 60. See also  

RGB LEDs
left motor, 24. See also motors
LEGO Technic frame, making and 

using, 43–50
LEGO Technic parts, 10–11
LEGOs, damage done by, 36
LIB (lithium ion battery) connector, 

31. See also battery holder
Light Sensor

reading, 99
using to “feed” creature, 

144–150
Light-Chasing Robot, 235–239
Light-Emitting Head-Shaking 

Creature, 230–235
LightVal, 100
Line Follower sensor

image and description, 116
using with Door Monitor, 195

Line Graph block, adding  
Code, 175

line-following, 60
loops

If/Else block, 184
using in mBlock, 99

Loudness block, 89
LowTemp and HighTemp variables, 

181, 184–185

M
M on parts list, 3
Makeblock app

aluminum parts, 10
Context menu, 176
control panels, 173
custom elements, 177
Design and Play mode, 174
displaying sensor values, 174
displaying variables, 177–178
features, 64–65 
hats, 174–175
Line Graph block, 175
LowestTemp threshold, 181
Math palette, 178
products, 9, 11
scripts and UI elements, 181
setting sensor locations, 177
status displays, 173
temperature probe, 175
variables, 180

Makeblock sketch, creating, 174
mapping values, 101
Math palette, using in Makeblock, 

178
Maze-Solving mBot Using Standard 

Sensors, 239–243
mBlock. See also Scratch graphical 

programming language
<AND> operator, 99
analog sensors, 94
binary values, 93–94
Brightness control, 90
calculations and conditionals, 92
checking for equality, 198
copying script blocks, 91
custom blocks, 102, 104, 107
exporting values to 

spreadsheets, 192–194
Forever loop, 92, 104
Green Flag block, 89



293INDEX

hexagons, 93–94
<IF> statement, 99
IfElse comparator, 90
lists of variables, 188
loops, 99
Loudness block, 89
Map function, 102
Me Joystick, 95
Me Sound Sensor, 103
monitoring sensors, 182–194
panda sprite, 183
programming environment, 

75–77
repositioning red light, 91
Reset Timer, 200
Say block, 104
Say loop, 92
Scripts panel, 88
sensors, 93–95
Stage area, 185
strings, 198
switch cases, 99–100
switching to Arduino mode, 110
traffic light volume meters, 

88–93
variables, 98–99, 198
versions of lights, 90
XY-coordinate grid, 185
YellowLight script, 91

mBlock connections
2.4G wireless serial, 81–83
Bluetooth for macOS, 80–81
Bluetooth for Windows, 79–80
types, 77–78
USB, 83–85
web-based tool, 77

mBlock lists, importing data into, 193
mBot

assembled, 2
communication, 20–22
firmware update, 59

out of box, 25
parts out of box, 2
powering up, 31–33
rack, 25
updating, 58–61
wiring, 19–20

mBot Motor pins, connecting, 250
mBot remote, testing, 23–25
mCore board

and battery installation, 16–18
components, 35
features, 8–9, 28
infrared receiver and 

transmitter, 35
memory limitations, 187
numbered ports, 30
piezo buzzer, 35
protecting, 42
push button, 35
RGB LEDs, 35
sensors, 35–36
storing and charging, 42
storing with mixed materials, 41
strengths, 247
testing connections, 23
uploading to, 106–108
wiring to, 129–130

Me Flame sensor, 60
Me Joystick, 95
Me Light Sensor, 101
Me Sound Sensor, 103
Me Touch sensor, 60
measurement, using sensors, 172–173
metric parts, 2, 5
mobile devices, navigating blocks, 

68–72
Mode A: Remote Manual Control, 

23–24
Mode B: Wall Avoidance/Range 

Checker, 24
Mode C: Line-Following, 24–25



294 MBOT FOR MAKERS

motion sensor, triggering, 156–162
motor ports, 29–30
motors. See also left motor

brushed and brushless, 245
connecting with two wires, 

247–251
connectors, 247
installing on chassis, 3–12
and wheels, 3–12

mounting wire and servo, 125–126
mouth, opening, 132–138

N
navigation. See robot navigation

O
obstacle avoidance, 60
onboard sensors

button, 114
buzzer, 115
components, 28–30
features, 36
IR sensor, 116
LED x 2, 115
Light, 115

Opening Mouth Using 9g Servo and 
RJ25 Adapter, 132–138

P
panda sprite, 183, 185
parts

battery holder, 15
cables, 53
Catapult Ball Launcher, 214–223
CD Scoop, 205
LEGO Technic frame, 44
Light-Chasing Robot, 235–239
Light-Emitting Head-Shaking 

Creature, 230
mBot communication, 20–22
mCore and battery, 16

motors and wheels, 3
Robot with 9g Servo Grabber, 

223
sensors, 12
servo grabber, 223, 227
Spear-Lowering Servo, 208

piezo buzzer, mCore board, 35
PIR motion sensor, Fan for 

Crowded Room, 271–272
programming, block-based, 95–96
Project Gallery, 65–68
projects

“Feeding” Your Creature Using 
Light Sensor, 144–150

Head Turning Randomly Using 
9g Servo and RJ25 Adapter, 
125–131

Opening Mouth Using 9g Servo 
and RJ25 Adapter, 132–138

overview, 26–27
Propeller Spins with Ultrasonic 

Sensor, 151–155
Random Light-up Eyes Using 

RGB LED Sensor, 121–124
Rotating Eyes Using 9g Servo 

and RJ25 Adapter, 138–144
Servo Arm with Paw Reaches 

Out When Motion Sensor Is 
Triggered, 156–162

storing, 37–39
Touch Sensor Triggers Scrolling 

Message, 162–168
Proportional Control sensor, 100–106
puppet movement with sensors

“Feeding” Your Creature Using 
Light Sensor, 144–150

Propeller Spins with Ultrasonic 
Sensor, 151–155

Servo Arm with Paw Reaches 
Out When Motion Sensor Is 
Triggered, 156–162



295INDEX

Touch Sensor Triggers Scrolling 
Message, 162–168

puppet movement without sensors
Head Turning Randomly Using 

9g Servo and RJ25 Adapter, 
125–131

Opening Mouth Using 9g Servo 
and RJ25 Adapter, 132–138

Random Light-up Eyes Using 
RGB LED Sensor, 121–124

Rotating Eyes Using 9g Servo 
and RJ25 Adapter, 138–144

push button, mCore board, 35

R
race course, 27
Random Light-up Eyes Using RGB 

LED Sensor, 121–124
reed switches, using with Door 

Monitor, 196–197
remote, testing, 23–25. See also IR 

remote
Reset Default Program, 59, 113
RGB LEDs, 35, 60, 105–106. See also 

LEDs
RJ25 cables, using with Door 

Monitor, 197
RJ25 connector, 53
RJ25 plug, 28–30
robot navigation, keyboard 

commands, 203–204
Robot Petting Zoo, 132
Robot with 9g Servo Grabber, 223–

239. See also servos
Rotating Eyes Using 9g Servo and 

RJ25 ADapter, 138–144

S
Sanz, Dani, 239
Say block, 104
Say loop, 92

scale prototype, 251
Scratch graphical programming 

language. See also mBlock
advantages, 185
center-original coordinate 

plane, 186
features, 28, 75–76
keyboard input, 191–192
resources, 76

screen width, 178–179
screwdriver, Phillips and hex tips, 13
script blocks, copying, 91
scrolling message, triggering, 

162–168
sensing and movement, 

animatronics, 121
sensor locations, setting, 177
sensor loops, flow of, 183–184
sensor readings, storing and 

checking, 98
sensor recipes

Latching Trigger, 96
Latching Trigger with Reset, 97
Proportional Control, 100–106
State Check, 97–100

sensor values, displaying, 174
sensors. See also add-on sensors; 

analog sensors; digital sensors; 
onboard sensors

features, 36, 60
installing, 12–14
monitoring in mBlock, 182–194
using for measurement, 172–173
using frames, 41
using in mBlock, 93–95

servo and wire, mounting, 125–126
servo arm, building, 127–129
servo grabber

attaching to mBot, 227–229
printing and assembling, 

223–227



296 MBOT FOR MAKERS

servos. See also Robot with 9g Servo 
Grabber

Spear-Lowering Servo, 208–213
Catapult Ball Launcher, 214–223
explained, 246
Spear-Lowering Servo, 

SetGreenLight custom block, 111
sizing, simplifying, 3
sketches, creating in Makeblock, 174
soil moisture sensor, 169–170
sound on boot, 60
Spear-Lowering Servo, 208–213
spreadsheets, exporting values to, 

192–194
StandardFirmata program, 58
State Check sensor, 97–100
stepper motors, 246
storing

assembled mBot, 39–40
and charging mCore board, 42
components, 37
mCore with mixed materials, 41
projects, 37–39

Sumo wrestling, 27
switch cases, using in mBlock, 

99–100

T
Technic frame. See LEGO Technic 

frame
temperature

monitoring in hallway, 189
normal range, 186
SampleDelay, 191
tracking and recording, 183

temperature probe, 175
temperature reading

displaying, 176
saving, 179

temperature readings

adding to TempRecords, 
189–190

collecting, 192
taking, 190

temperature sensor, 60, 268–269
testing

Fire Management System—
Large, 285

mBot remote, 23–25
mCore connections, 23
sensors in mBlock, 104
traffic light volume meters, 92

thermometer, 173, 187
thermostat, Fan for Crowded Room, 

273–274
Thingiverse, 223
Tinkering Studio, 162
tires, attaching over wheels, 8
tools, animatronics, 120
traffic light volume meter

adding code, 88
Brightness control, 90
Button sprite, 87–88
coding, 88–93
copying script blocks, 91
Forever loop, 92
Green Flag block, 89
If/Else comparator, 90
Loudness block, 89
making independent, 108–113
overview, 85
reinstalling default program, 113
repositioning red light, 91
Say loop, 92
Scripts panel, 88
sprites, 85–86
testing prototype, 92
versions of lights, 90
word balloon, 90
YellowLight script, 91



297INDEX

U
UI elements, attaching to scripts, 

181
ultrasonic sensor, 116, 151–155
Update Firmware option, 113
updating mBot, 58–61
USB plug, 31–32. See also wired USB 

connection

V
values, mapping, 101
variables

HighTemp and LowTemp, 184
listing in mBlock, 188
in Makeblock, 98–99, 177–178, 

180
mBlock, 198

Velcro, using with mCore and 
battery, 16–17

W
water-resistant thermometer, 173
websites

laser cut files, 51, 147
LEGO Technic frame, 44
Tinkering Studio, 162

wheels, installing on chassis, 3–12
wire and servo, mounting, 125–126
wired USB connection, 60. See also 

USB plug
wiring mBot, 19–20
word balloon, displaying, 90

X
XY-coordinate grid, displaying in 

mBlock, 185

Y
YellowLight script, 91








	 Contents
	Introduction
	Chapter 1: Kit to Classroom
	Chapter 2: mBot Software and Sensors
	Chapter 3: Animatronics
	Chapter 4: MeasurementDevices
	Chapter 5: Robot Navigation
	Chapter 6: Building Big and Small with mCore
	Index



