_Make:

mBot

for Makers

Conceive,Construct, and
Code Your Own Robots at
Home or in the Classroom

RICK SCHERTLE « ANDREW CARLE

Make:

mBot for Makers

CONCEIVE, CONSTRUCT, AND
CODE YOUR OWN ROBOTS AT
HOME OR IN THE CLASSROOM

Rick Schertle
Andrew Carle

Maker Media, Inc.
San Francisco

Copyright © 2017 Rick Schertle and Andrew Carle. All rights reserved.
Printed in Canada.

Published by

Maker Media, Inc.

1700 Montgomery Street, Suite 240
San Francisco, CA 94111

Maker Media books may be purchased for educational, business, or sales promo-
tional use. Online editions are also available for most titles (safaribooksonline.com).
For more information, contact our corporate/institutional sales department: 800-
998-9938 or corporate@oreilly.com.

Publisher: Roger Stewart

Editor: Patrick DiJusto

Copy Editor: Elizabeth Campbell, Happenstance Type-O-Rama

Proofreader: Elizabeth Welch, Happenstance Type-O-Rama

Interior Designer and Compositor: Maureen Forys, Happenstance Type-O-Rama
Cover Designer: Maureen Forys, Happenstance Type-O-Rama

Indexer: Valerie Perry, Happenstance Type-O-Rama

December 2017: First Edition

Revision History for the First Edition

2017-12-9 First Release

See oreilly.com/catalog/errata.csp?isbn=9781680452969 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media,
Inc. The Maker Media logo is a trademark of Maker Media, Inc. mBot for Makers
and related trade dress are trademarks of Maker Media, Inc. Many of the designa-
tions used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Maker Media,
Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate,
the publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in
this work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

978-1-168-045296-9

mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781680452969
http://safaribooksonline.com

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business. Technology professionals, software developers, web designers, and busi-
ness and creative professionals use Safari Books Online as their primary resource
for research, problem solving, learning, and certification training. Safari Books
Online offers a range of plans and pricing for enterprise, government, education,
and individuals. Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from publishers like
O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Mic-
rosoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley &
Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology,
and hundreds more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions to the publisher:

Maker Media, Inc.
1700 Montgomery Street, Suite 240
San Francisco, CA 94111

You can send comments and questions to us by email at books@ makermedia.com.

Maker Media unites, inspires, informs, and entertains a growing community of
resourceful people who undertake amazing projects in their backyards, basements,
and garages. Maker Media celebrates your right to tweak, hack, and bend any Tech-
nology to your will. The Maker Media audience continues to be a growing culture
and community that believes in bettering ourselves, our environment, our educa-
tional system—our entire world. This is much more than an audience, it’s a world-
wide movement that Maker Media is leading. We call it the Maker Movement.

To learn more about Make: visit us at makezine.com. You can learn more about the
company at the following websites:

Maker Media: makermedia.com
Maker Faire: makerfaire.com
Maker Shed: makershed.com
Maker Share: makershare.com

mailto:books@makermedia.com
http://makezine.com
http://makermedia.com
http://makerfaire.com
http://makershed.com
http://makershare.com

Contents

Acknowledgments
About the Authors

Introduction

Kit to Classroom

Out-of-the-Box Kit

Installing the Motors and Wheels on the Chassis
Installing the Sensor

Adding the Battery Holder

Installing the mCore and Battery

Wiring the mBot

Communicating with Your mBot

Test the mCore for Correct Connections
Test Your mBot Remote

What to Do with Your mBox Right out of the Box
Projects

To Classroom

Onboard Components

Powering Up Your mBot

Tour of the mCore and Onboard Sensors
Storing Components

Storing Projects

Protecting the mCore

Using a LEGO Technic Frame

Adding a Cover

Making Cables

Updating the mBot

Where We’re Heading from Here

vii

viii

12
15
16
19
20
23
23
25
26
28
28
31
34
37
37
42
43
51
53
58
61

2 mBot Software Sensors 63

Default Program Options 63
Makeblock App 64
Tour of the Project Gallery 65
Navigating Blocks on a Mobile Device 68
Balloon Tag 72
mBlock 75
Connecting to mBlock 77
Traffic Light Classroom Volume Meter 85
Working with Sensors in mBlock 93
Sensor Recipes 95
Traffic Light Classroom Volume Meter, Revisited 103
Upload to Arduino 106
Independent Traffic Light Classroom Volume Meter 108
Reinstall the Default Program 113
Where We’re Heading from Here 114
3 Animatronics 119
Puppet Movement without Sensors 121
Puppet Movement with Sensors 144
4 Measurement Devices 169
Monitoring Sensors in mBlock 182
Door Monitor 194
5 Robot Navigation 203
Robot Navigation Using Keyboard Commands 203
Robotic Game Challenges 204
6 Building Big and Small with mCore 245
Harnessing DC Power 245
Building Small 251
Building Big 274
Index 289

vi GETTING STARTED WITH MBOTS

Acknowledgments

L ove and gratitude to my daughter, Annika, for making my life a
whirlwind of discovery and creativity, and to my awesome part-
ner, Jodi Kittle, for helping me find focus and balance in the midst
of that chaos. Thanks to Shelly Willie, who invited me to Chadwick
International, which in turn offered the incredible pleasure of daily
collaboration with Gary Donahue, whose innovative spirit shines
through in every mBot project. Sylvia Martinez’s and Gary Stager’s
Constructing Modern Knowledge Press not only connected me to
the powerful history of children and computers, but also the incred-
ible cohort of Maker-educators whom I’'m lucky enough to call col-
leagues and friends, including Josh Burker, Jaymes Dec, Angi Chau,
Karen Blumberg, and Brian C. Smith.

Andrew

s in all my life, my wife, Angie, and kids, Kelly and Micah,
A provide constant fun, encouragement, and inspiration. I love
you guys so much! I'm thankful to my dad, Bill, for allowing me
to work alongside him as a kid and learn along the way. I so much
appreciate my staff team and the awesome students and parents at
Steindorf K-8 STEAM School in San Jose, California, where I teach.
Starting a new public school has been a wild ride, especially while
writing a book! Thanks to Andrew for his willingness to share his
expertise and endure endless questions with a chill attitude. As a
lifelong Maker, I have been given so many opportunities by Maker
Media over the past ten years to do what I love doing—Making and
teaching. Thanks!

Rick

vii

Vviii

About the Authors

RICK SCHERTLE has taught middle school for over 20 years, and
now runs the Maker Lab at Steindorf K-8 STEAM School in San
Jose, California. Rick has been involved in Maker Faire for many
years. He has written nearly two dozen articles for Make: Magazine,
including his first article in volume 15 in 2008 on compressed air
rockets. He also wrote the book Planes, Gliders, and Paper Rockets from
Maker Media. Rick is the cofounder of AirRocketWorks.com.

ANDREW CARLE has taught in K-12 schools for 15 years. He
launched the Makers program in 2010 while teaching programming
and math at Flint Hill School in Northern Virginia. In 2014, he
moved to Korea to expand Chadwick International’s school-wide
Making & Design program. He has presented at Maker Faires and
has with MakerEd.org, National Association of Independent Schools
(NAIS), Virginia Society for Technology in Education (VSTE), and
International Society for Technology in Education (ISTE), and has
been named a Senior FabLearn Fellow for Stanford’s Transformative
Learning Technologies Lab.

Introduction

he Arduino came to prominence as a tool to help designers,

artists, and musicians access the power of inexpensive Atmel
8-bit microcontrollers. The Arduino allowed people with deep skills
in another discipline to bring their ideas to life. All it took was learn-
ing “a little programming” without having to acquire the full range
of skills to work with embedded electronics.

That mission has been so successful over the last decade that it
created a need for a new tool, one that could connect young people
with minimal skills to the “little programming” world of Arduino.

Over the last five years, there’s been an explosion of kid-friendly
programming and robotics tools. After working with dozens of dif-
ferent kits and boards, we became deeply impressed with the mBot.
But as the technology choices multiplied, the tutorials and intro-
ductory materials offered didn’t match the ways we used these plat-
forms in classrooms, Makerspaces, and clubs. We saw the need for
a book that offered instructions for specific projects, in conjunction
with advice on using the mBots with large groups in a classroom
setting. The mBot allows novices to start with idle tinkering on the
base mBot, and access higher-level features or add new components
when inspiration strikes. This flexibility is crucial for classrooms or
cohort groups, since the mBot allows raw beginners and experienced
tinkerers to work at their comfort level.

Shenzen, China-based Makeblock has emerged as a major player
in the kid-focused robot kit market. Their mBot is the cheapest and
most widely available—you can buy them on Amazon and directly
from their website at www.makeblock.com—with hundreds of thou-
sands of mBots distributed around the world. While the mBot kit
and the many accessories available for the mBot are well engineered

http://www.makeblock.com%E2%80%94with

X

and made from quality materials, there is a lack of technical support
and documentation. The Makeblock website has an active forum
and user base, but information is often confusing and hard to find.
We hope to bridge the divide between a quality product and the
thousands of users with this first-of-its-kind book.

Rick and Andrew met during the summer of 2016 as coaches for
the Design Do Discover (D3) conference at Castilleja School in Palo
Alto, led by mutual friend Angie Chau.

Rick was an initial supporter of Makeblock’s mBot Kickstarter
campaign. He bought five mBots for a neighborhood Makerspace
he was helping start. Due to the affordability of the platform, several
years later he purchased 20 more mBots for the new school where he
would be running the K-8 Maker Lab. Those mBots would become
a core part of his Maker Lab curriculum.

Andrew had come to D3 with several deconstructed mBots, and
was using the mCore controller by itself for a variety of creative uses.
In South Korea where Andrew taught, he had over a hundred mBot
kits that were used at nearly every grade level of his K-8 school.

Rick’s desire to learn more about the platform and the ability to
scale it up for classroom and school use was a perfect match with
Andrew’s firsthand experience. Facebook Messenger conversations
began across time zones, and this book is the result of this cross-
Pacific collaboration. We hope this book cuts through much of the
quirks and confusion resulting from the mBot documentation, saves
you time when scaling up your mBots for classroom and school use,
and gives you some creative project ideas to use right away.

GETTING STARTED WITH MBOTS

Kit to Classroom

ight out of the box, the mBot has many features appealing to

kids and adults alike. But the true power comes from the heart
of the mBot—the Arduino-based mCore microcontroller, and the
other sensors and actuators in the Makeblock platform. These com-
ponents transform the retail mBot kit from a Christmas morning
diversion into a classroom powerhouse, and offer plenty of possibil-
ities for anyone who’s “done everything” with the mBot.

OUT-OF-THE-BOX KIT

When people think of mBots, what usually comes to mind is a cute
little robot with an anodized aluminum body and sturdy compo-
nents. You can buy mBots at all major retailers online and in brick-
and-mortar stores.

The mBot chassis, wheels, motors, controller, and sensors can be
put together in about half an hour with the screwdriver (included).
Even young kids can follow along with the clear, IKEA-esque visual
instructions included in the commercial kit. While that flyer is help-
ful, we’re going to walk through the steps of putting together your
mBot in a bit more detail.

v
)

111
I 7,

.....

FIGURE 1-2: The mBot parts right out of the box

MBOT FOR MAKERS

INSTALLING THE MOTORS AND WHEELS
ON THE CHASSIS

We’ll begin mBot assembly with the sturdy anodized aluminum
chassis. Gather the following parts and let the building begin!

Parts

Chassis, M3x25 bolt (4) Wheels (2)
M3 nuts (4) M2.2x9 screw
Motors (2) Tires (2)

Quick Primer on Simplified Sizing
In the parts list, you can see part names for bolts and

screws with seemingly a scramble of letters and num-
bers. Let’s unscramble the meaning.

) The M in M3x25 stands for metric. Metric screw
threads were one of the first globally standardized
parts established by the International Standards
Organization in 1947.

) The number to the right of the M is the diameter of
the threaded part of the bolt.

) The number after the x is the length of the bolt
measured in millimeters

)») The bolt shown in Figures 1-3 and 1-4 is an M4x8.
It’s 4 mm diameter (Figure 1-3) and 8 mm long
(Figure 1-4).

)») Metric bolts can use either hex head wrenches or
Phillips screwdrivers.

KITTO CILASSROOM

3

4

) s it e il s i v W W W'

Tl | -I“‘I‘

FIGURE 1-3: Measuring the diameter of a bolt

§

FIGURE 1-4: Measuring the length of a bolt

MBOT FOR MAKERS

Variety packs of metric bolts, nuts, and washers (like the one
shown in Figure 1-5) can be purchased on Amazon for a good price.
Many of the projects in this book will use these small metric bolts in
a variety of lengths. Makeblock’s large aluminum beams and build-
ing materials all use M4 bolts. The mBot chassis uses M3 bolts and
spacers, along with smaller M2.2 bolts to affix the wheels.

FIGURE 1-5: Cornucopia of hardware

Steps

1. Line up the holes on the geared motor with the holes on the chas-
sis, and insert the M3x25 bolts. Tighten a M3 nut on the end,
holding it in place while tightening to prevent it from spinning.

KIT TO CILASSROOM

2. Repeat with the second motor. The motors are identical, so it
doesn’t matter which side you install them on.

6 MBOT FOR MAKERS

3. Feed the motor wires through the top of the chassis.

AL |

[T ﬂﬂ.ﬁ

e .".5!

_~I

4. Using an M2.2x9 screw, attach the wheel to the geared motor. It’s
easy to strip the Phillips head screw by overtightening, so tighten
the screw only until it’s snug, and then stop!

KIT TO CILASSROOM

7

5. Attach the tires over the wheels.

X
‘%
Z

>
S
%

About the Motors and Wheels

The mBot’s aluminum frame is designed to fit the geared DC motors

included in the kit. The design is pretty standard across the robotics
world, but you may find small inconsistencies in hole spacing or shaft
depth between third-party motors and the mBot frame.

Makeblock includes a few replacements for the internal plas-
tic gears with the motor. If you’re opening and building a bunch
of kits at once, be sure to grab them before kids turn them into
tiny tops.

The mCore board only has one power circuit, which pro-
vides regulated 5V power to the microcontroller and the motor
ports via an onboard H bridge. This means that the M1 and M2
motor ports are limited to DC motors or pumps that operate at
5V. Unlike other robot platforms or Arduino boards, the mBot
can’t connect a second, larger power source that would supply

MBOT FOR MAKERS

power to just the motor ports. If you need more oomph than the
included geared motors can provide, Chapter 6, “Building Big
and Small with mCore,” shows how to expand the mBot using
external power relays.

In later chapters, we’ll cover how you can add LEGO gears and
pulleys to your wheel hubs to power all kinds of things with your
motors.

About the mBot Chassis

Makeblock’s first product was a set of anodized aluminum con-
struction materials, which included rectangular beams and open
and threaded connection points. These beams are still at the core
of many Makeblock products, including the XY Plotter and 3D
printers.

KIT TO CILASSROOM

10

Seeeoeeeeeeesencs

In the early days, Makebock was very clear that their aluminum
parts were designed to work well with LEGO Technic parts. Holes on
Makeblock parts are spaced to neatly overlap with the most common
Technic beams, although the holes are sized slightly smaller. Make-
block holes are sized for 4 mm metric screws. To fit these screws,
Makeblock holes are just a hair over 4 mm, while Technic holes are
4.8 mm. This size discrepancy means that although LEGO Technic

MBOT FOR MAKERS

pins cannot connect a Makeblock beam to LEGO parts, standard
M4 bolts and nuts can anchor LEGO to Makeblock parts.

Over the years, Makeblock’s product line has expanded, and now
there are many examples of products on both sides that can’t con-
nect easily. Consequently, Makeblock doesn’t advertise the physical
compatibility between their hardware and LEGO Technic anymore.
However, the M4 sizing remains consistent across all sorts of strange
and specialized parts. The aluminum mBot chassis continues this

tradition.

The chassis is covered with M4 holes, most often spaced apart to
fit Technic, to provide multiple anchor points and easy expansion.
There are a few mounting points on the mBot frame that are smaller
than M4, notably the two points where the yellow motors attach, and
the larger holes for the motor axle. When working with the mBot and
LEGO, you’ll need M4-14 screws or longer. An M4-14 screw will go
through one Technic beam and the thin aluminum on the circular
or angled tabs, with room for one nut. Thicker parts will naturally

KIT TO CILASSROOM

1

12

require longer screws. When working with mBots and LEGO in the
classroom, we keep a collection of M4 screws handy, with lengths
ranging from 15 to 40 in 5 mm increments.

INSTALLING THE SENSORS

Next, we’re going to install the sensors. Let’s get started with the
parts you’ll need.

Parts

Me Ultrasonic Sensor 6P6C RJ25 cables (2)
Me Line Follower M4x8 screws (4)
Steps

1. Flip your mBot chassis upside down. On the front underside of
the chassis, line up the middle holes on the line-following sensor
with the roller ball stacked on top.

2. These holes in the chassis are threaded, so you just need to screw
both M4x8 screws down through the holes in the roller ball.

MBOT FOR MAKERS

NOTE The shaft on the screwdriver pulls out and has
a Phillips tip on one end and a hex tip on the other.

3. Flip the mBot back over, and line up the holes on the ultrasonic
sensor with the holes on the front of the mBot above the “smile.”
Screw these together with two M4x8 screws.

» D i
- N {
m
. 4)

akehlic

e . makeb
2bloc

Me Ult‘"asonkl'cc
| Sensor"3Nic

KIT TO CILASSROOM

13

4. Plug the R]25 cable into the line-following sensor, and feed the
wire through the opening in the chassis. Plug the other R]25
cable into the ultrasonic sensor.

NOTE A full assortment of available add-on sensors
are described in the table at the end of Chapter 2, which
includes pictures and descriptions of each sensor and
sample code for testing the various sensors.

14 MBOT FOR MAKERS

ADDING THE BATTERY HOLDER

Parts

4 AA battery holder

Step

Connect the barrel jack on the 4 AA battery holder to the DC power
jack on the mCore as shown.

3TNpow
Ssa'[au'nq

KIT TO CILASSROOM

15

16

INSTALLING THE MCORE AND BATTERY

Parts
mCore board M4x8 screws (4)
mBot chassis 5 cm of Velcro

M4x25 brass stand-offs (4)

Steps

1. Screw the brass stand-offs into the four pre-threaded holes on
the top of the chassis.

- -‘

2. Lay down a strip of the included Velcro on the back of the chassis.

MBOT FOR MAKERS

N
o LAy
LA

R
Ehw

]
/

{

3. Attach the other half of the Velcro to the back of the 4 AA battery
holder. The power cable for the battery pack should point out
toward the back.

KIT TO CILASSROOM

17

4. Stick the battery pack down onto the chassis, as shown. Now
run the wires so the ultrasonic sensor cable lies along the right
side of the mBot (when the back of the mBot is facing you). The
line-following cable and two motor wires lay along the left side
of the mBot.

L Eam
- \ W \ i
Eﬂ“““

- YmETEa
TP EEAREER
!!!=!==!==IMIE!IIII

5. Place the mCore down on the brass standoffs, as shown, and
secure with M4x8 screws.

NOTE A detailed tour of the mCore board takes place
in the “Classroom” section later in this chapter.

18 MBOT FOR MAKERS

WIRING THE MBOT

Parts

Everything is already installed. Just follow these steps to connect
correctly.

KIT TO CILASSROOM

19

20

Steps

1. Looking at the mCore from the top, plug the ultrasonic sensor
into port 3.

2. Plug the line-following sensor into port 2.

3. Plug the motors into the two motor jacks on the left side of the
mCore.

4. The barrel plug on the battery can be plugged into the round

power jack on the back of the mCore.

COMMUNICATING WITH YOUR MBOT

Parts

Bluetooth or 2.4G module

MBOT FOR MAKERS

come with an infrared remote
(IR); however, when buying
an mBot, you need to specify
either the 2.4G or Bluetooth
version. In the accompanying
image, the Bluetooth module is
on the right, and the 2.4G (GHz)
module (with its USB dongle) is
on the left. Either module plugs
into the mCore board in the
wireless module slot on the left
rear corner.

Makeblock’s advertising
copy distinguishes these models

Wireless

Module

by referring to them as School (2.4 GHz) and Family (Bluetooth), a
useful if imprecise summary. This confused me when I was buying

my first mBots.

Let’s take a look at the differences between the two.

KITTO CILASSROOM 21

22

Pros and Cons of Bluetooth

» It’s easy to connect to a Bluetooth-enabled tablet or laptop
computer. By doing this, you can control and program your
mBot using Bluetooth.

» It’s the best option when working with just one mBot.

» It takes more work to pair and the process is
platform-dependent.

Pros and Cons of 2.4G
» It’s easy to connect to any computer only using a USB 2.4G dongle.

» Requires a “classic” USB port or a USB-C adapter to use with
new Macbooks.

» This is by far the preferred option when using many mBots
with a group of kids. Kids can just plug in the dongle, connect,
and begin programming!

In order to connect the module, just line up the four pins on one
side and three pins on the other, and insert the Bluetooth or 2.4G
module into the slots on the mCore—that’s it!

L LA ST\
zEERsR
R

MBOT FOR MAKERS

TEST THE MCORE FOR CORRECT
CONNECTIONS

Flip the power switch and you’ll hear three tones. The two front
left and right lights (LED1/2) will flash red/green/blue, then off. A
red power light in the middle of the circuit board (PWR) stays on,
along with another red light (very small) on the back of the range
sensor. Two tiny blue lights on either side of the line-tracking sensor
should also stay on when your mBot is placed on the table or if you
put your finger over them. The line-following sensor also has a tiny
red power light.

NOTE If one or more of these lights is not lit, check
the connections on ports 2 and 3 and check the batteries.

TEST YOUR MBOT REMOTE

Insert a CR2025 battery into the remote, making sure the battery is
installed with the smooth + side facing toward the remote buttons.
The remote only has about a four-foot range and requires line of
sight to the IR receiver on the front of the mCore. There are three
modes preprogrammed into the mBot or mCore to use with the
remote: modes A, B, and C.

MODE A: REMOTE MANUAL
CONTROL

When you select this mode,
you’ll hear a low-tone beep,
and the two LEDs on the
front of the mCore will turn
white. In manual control
mode, the arrows on the
remote control the direction
of the robot, and the num-
bers adjust the speed of the

KIT TO CILASSROOM

23

24

robot, with 1 being the slowest and 9 the fastest. If any of the but-
tons don’t work, check the motor connections and make sure the
batteries are good. Try pressing 9 (full power) and try the other
buttons again using the higher power level. If left and right turn
in the wrong direction, the motor wires may be reversed. If the
wheels aren’t turning, check to make sure all wires are plugged
in and that the battery has a full charge.

Which Is the Left Motor?

The left motor is the one installed under connectors 1 and
2. Both motors are the same, but once they’re installed,
they become left and right. The left motor should be
connected to the white power plug beside connector 1.

MODE B: WALL AVOIDANCE/RANGE CHECKER

When you select this mode, you’ll hear a medium beep, and the
LEDs will turn green. To see it in action, hold the mBot in the
air and press B. The wheels will turn. As you move your hand in
front of the range sensor, the wheels will change direction for a
moment and then return to normal. If this does not occur, the
range sensor may not be connected. Check to make sure the red
power light on the back is lit. Ensure that the range sensor is
connected to port 3 on the mCore, which is the only port that
will work for the demo program. Make sure it’s snapped all the
way into the sensor as well.

MODE C: LINE-FOLLOWING

When you select this mode, you’ll hear a high-tone beep, and
the LEDs will turn blue. To see how this mode works, open the
folded sheet with the giant number 8 on it, and place the mBot
right on top of a black line. Turn the mBot on, and press C. The
mBot should immediately start following the black line, adjusting
its wheels to follow the line as it moves. If this does not happen,

MBOT FOR MAKERS

confirm there are two blue power lights on the tracking sensors.
Make sure the tracking sensor is plugged into port 2.

WHAT TO DO WITH YOUR MBOT RIGHT OUT
OF THE BOX

Now it’s time to get creative and artsy with your standard mBot.
Many materials (craft sticks, cardboard, straws, and so on) can be
added to the front and rear racks of the mBot frame by either bolting
them on with M4 bolts and nuts, or using a hot glue gun.

NOTE If you’re going to attach things with a hot glue
gun, put masking tape on the frame first so the glue will
come off without damaging the frame.

The following image shows a neat idea for building a rack for the
front and rear of an mBot.

KIT TO CILASSROOM

25

26

PROJECTS

Although the mBot is a powerful and programmable robotics plat-
form, there’s a lot to explore using just the mBot’s IR remote. In this
section, we’ll explore activities you can start the moment you tighten
the last screw on the mBot chassis. These are great for opening meet-
ings when lots of folks are assembling mBots at once. Nothing moti-
vates you to finish the last of the wiring like the chance to join a
pick-up game of robot soccer.

In this section, we’ll look at some cool things you can do with the
basic mBot setup we just finished.

Here are some activities you can do with just the IR remote
(included in both the Bluetooth and 2.4G kits):

» Race around a DIY obstacle course—go ahead and set up some
cups on the floor, and make ramps, and so on!

» Run timed races through the obstacle courses.

» You could create a fancier obstacle course by requiring the use
of the three preprogrammed modes:

» First, steer around cones using Mode A.

» Second, find the black line and begin line-following in
Mode C.

» Third, switch to Mode B, obstacle avoidance, to get
through a maze.

» Attach a pen or pens to the front or rear of the mBot to turn it
into a drawing bot.

» Make parades with multiple mBots using Mode C, the line-
following feature. Chapter 2, “mBot Software Sensors,” has
more information on how this works, including how to add
sensors to make them navigate autonomously.

» Move a load of straws or blocks from point A to B (providing
different parameters for different age groups) using racks built
onto the front and back of the mBots. With younger students,

MBOT FOR MAKERS

if the robot simply moves with a load, this might count as suc-
cess, whereas older students might need to navigate bridges
or tunnels moving both forward and in reverse. If you’re using
multiple mBots, teams can be timed for a competition.

Create an extension to the mBot that moves some object to
perform a task; for example, you could add an iPad to create a
mini telepresence robot, or add floor scrubbers and sweepers.

With mBots that are paired to a computer or tablet using Blue-

tooth, several (or many) mBots could be controlled independently.

Here are some ideas you can try using the Bluetooth module:

»

Sumo wrestling—Draw a big circle on the ground with tape,
and the mBots can try to push the other bots out of the ring.

BattleBots—Attach a BBQ skewer to the front of the mBot and
a balloon to the back. The mBots must try to pop each other’s
balloons. Learn more about this in Chapter 2.

Race course—Race head-to-head through an obstacle course

the kids build.

KIT TO CILASSROOM

27

28

TO CLASSROOM

During the last six years, there’s been an explosion in boards, kits,
and tools roughly described as “kid electronics.” In that time, I've
used (almost) all of them in my classroom. Although a few of those
products became MakerEd workhorses, most failed in serious ways
when put into the hands of real students in a classroom Makerspace.
I was looking for a low-floor, high-ceiling open platform that allows
students to start with their Scratch programming skills and transi-
tion out into “real” Arduino.

NOTE scratch is a free graphical programming lan-
guage developed by the Lifelong Kindergarten Group at
MIT. With millions of users, it’s a familiar and accessible
tool for everyone from kids to adults. Scratch can be used
to program a variety of Arduino-based microcontrollers.

Makeblock’s mCore board is the microcontroller that powers the
mBot, and it comes as close to the classroom robotics bulls-eye as
any other product available. Although the board was created and
released as part of the mBot kit, it’s now available directly from
Makeblock at a significantly lower price. Even without the chassis
and motors that ship with the kit, the mCore is a great learning
platform.

The mCore board uses an Atmel ATmega328, common across
many boards of the Arduino Uno generation. Instead of the tradi-
tional Arduino shield layout, many of the digital and analog I/O pins
are routed into the four phone jack plugs. Several basic components
are built into the board, including some RGB LEDs, a buzzer (out-
puts), a push button, and a light sensor (inputs).

ONBOARD COMPONENTS

Makeblock electronic components use a 6-pin “phone” plug (known
as RJ25 or 6P6C). The components and ports are color-coded so that

MBOT FOR MAKERS

components that require specific features from the AT328 will always
be matched to the right pins. There is a great chart to illustrate this
at the following website: http://learn.makeblock.com/makeblock-orion.
(See colored square shapes labeled 1-4.)

WHITE

This is the serial port for [2C devices. Many devices in the Ardu-
ino universe use a serial protocol called I2C. Devices with exist-
ing Arduino libraries can be used with the mCore in Arduino
mode. However, there’s currently no way to access 12C devices
through the mBlock programming interface.

BLUE

Makeblock refers to components that go in this port as double
digital, which simply means that the sensor sends or receives data
over both digital I/O pins. Some of the other Makeblock boards
have ports without blue, but all four of the mBot ports can be
used for double digital.

YELLOW
Devices that go here all use a single digital I/O port.

GRAY

This is the hardware serial—none of the four ports on the mCore
have the gray label, because the RX/TX pins run to the wireless
module.

BLACK

Components that require analog input ports Arduino pins AO-A3
belong in this port. Examples include any sensor that reports a vari-
able resistance, like a potentiometer (slide, knob, or analog stick).
The mBot has black connectors on ports 3 and 4 only.

RED

While there are no red ports on the mBot, other Makeblock
products use red for motor ports that tap into a higher voltage

KITTO CILASSROOM

29

http://learn.makeblock.com/makeblock-orion/

line (basically, Vin for the Arduino). The mBot does not have a
secondary power supply on the main board, so it doesn’t need a
red port. We cover the different ways to use larger motors with
the mBot in Chapter 6.

On the mCore, all four numbered ports have white, blue, and
yellow markings. This means they can use any of the digital sensors
or 12c devices. Only ports 3 and 4 also have black, so the mCore is
limited to only two simultaneous analog sensors.

If you're interested, the specific Arduino pin number that cor-
responds to each plug is silk-screened onto the board behind the
RJ25 plug.

Wireless
Module

E‘{) »a
ga -

v

I\9~L'EDGi

TV_OY AS N

€V 7V ASOND YOS 125

8
e dEs

30 MBOT FOR MAKERS

POWERING UP YOUR MBOT

3Tnpow =
SSATIATM

There are three plugs that can accept a power source for the mBot:
USB, the 2.5 mm barrel plug, and the two-pin JST lithium ion battery
(LIB) connector.

KIT TO CLASSROOM

31

32

USB is probably the most familiar option with new users. The
connection on the mBot board uses the hefty USB-B plug, normally
seen on printers and other large devices. When compared to the USB
micro or mini used on other Arduino-inspired boards, the USB-B
plug is downright burly. This weight and stability is a huge benefit
when working with kids. While USB can obviously be used for data,
it works just fine as a simple power port. Using a short USB A or B
cable, you can power an mBot from a standard external USB battery
for many hours. Note that supplying power to the USB port does
not activate the board unless you also turn the power switch on. It
sounds obvious, but that’s different than normal Arduino boards.

The mBot ships with a 4 AA battery holder that uses the 2.5 mm
barrel plug. This plug is smaller than the standard Arduino 3.5 mm
barrel plug, possibly to serve as a last-minute reminder that it is not
safe to power an mBot with a 9V battery.

The JST connector is a mixed
blessing for classroom use. Once
it’s docked, the connection is
incredibly snug (yay!), to the
point where kids who attempt to
unplug the battery will often rip
wires out of the harness (boo).
If rechargeable batteries needed
to be removed and reattached
on a daily basis, the JST connec-

tor wouldn’t survive a month.
Thankfully, the mCore includes
an onboard charging circuit, so that LIBs connected to the JST port
can charge when the mCore is connected to a power source. You’ll
need to provide power through the USB port or the barrel plug to
charge an attached LIB. When charging the LIB over USB, treat it
like any other rechargeable electronics. While you can charge them
one at a time off of a computer, it’s best to use a dependable 1-2A
USB charger. Being able to charge five mBots from a good quality
USB charger hub is a lifesaver when working with classroom sets.

MBOT FOR MAKERS

3Tnpow
SSATIATM

FIMEUHI0S

KIT TO CILASSROOM 33

TOUR OF THE MCORE AND ONBOARD
SENSORS

The mCore includes a few basic components on the board itself.
These don’t constitute a full sensor suite, but they’re components
that support simple behaviors on the default (car-like) mBot plat-
form. Chapter 2 has a chart with the onboard sensors with MBlock
Scratch code to test them.

We’ll go over the components of the board, starting at the bot-
tom right of the mCore board, and moving up.

ERETE B

Wireless
Module

A9~L° €24

AS GND X¥ X1

o
3
8.
<)
=
3

TV O¥ AS QN

€V 7V ASONO YOS 125

34 MBOT FOR MAKERS

There’s a simple push button in the bottom-right corner of the
board. It’s not fancy, but it’s useful for programs where the mBot
needs to be put into position before the wheels start turning.

Next to the push button, there’s an infrared receiver and
transmitter. With the default program loaded on the mCore,
the receiver is set up to move in response to commands from the
included IR remote. Every mBot and remote is set up the same
way, so commands from any remote will affect all mBots in range.
This is great for semi-synchronized hordes of roaming robots, but
really frustrating for kids who want to play robot soccer against
each other.

In the bottom-left corner, there’s a piezo buzzer. Pleasing those
with an ’80s nostalgia for abstract bloops and squeaks, Makeblock
distinguishes between their different programs with small tones
or chirps when the board starts up. This seems cute rather than
crucial, but losing track of which board holds which program can
create huge headaches in a classroom setting. Imagine you’re star-
ing at a table full of mBots and knowing that one of them has a
student-created program loaded. Without a Makeblock program
loaded, the mCore will fail to connect to any programming envi-
ronment, but will not provide any clear error message. Knowing
that the boards with the correct program make a distinctive sound
allows you to check that a table full of mCore boards is ready for
use in under a minute. Thank you for your service, humble buzzer.

There are two programmable RGB LEDs in the second row.
These LEDs are mounted in series and use a single signal wire to
control a tiny (seriously; super tiny!) microcontroller built into the
plastic housing, which then passes instructions down to the next
light. There are only two lights in this series on the mCore board
itself, but the same type of lights are used on the Makeblock LED
board and longer LED strips.

KITTO CILASSROOM

35

36

THAR

The onboard sensors just described in detail are built right into
the mCore—the brains of the mBot. The add-on sensors listed in
the table at the end of Chapter 2 are available for purchase individ-
ually and in bundled packs for very reasonable prices. One of the
strengths of the mBot platform is that the price for standard com-
ponents in Makeblock packaging isn’t astronomically high. Nearly
all the add-on sensors can be connected to the mCore using RJ25
(phone jack) cables. For sensors that are not made by Makeblock,
the RJ25 adaptor is the perfect solution.

Every parent has a story about the surprising amount of damage
kids can instantly inflict on small electronics. Teachers have even
more stories, and theirs include mysterious damage or loss to compo-
nents over school breaks, when the school is supposed to be locked.
When non-educators visit our Makerspace, my colleague, Gary
Donahue, reminds them how much chaos one kid with a bucket of
LEGOs can unleash, and asks them to extrapolate that out to 30, 60,
or 120 kids working with materials in a given day. Even 10 kids with
LEGOs can thrash your living room, and they’ll transform a carefully
curated set of LEGOs into a fully homogeneous mess.

MBOT FOR MAKERS

The quiet challenge of a robotics program in a club or school
setting is making sure kids have access to the same materials on week
two as they do on week 26, and ensuring that the room can reset
quickly after each session.

STORING COMPONENTS

There are two basic schools of thought regarding the storage of small
components in lab or classroom settings: by kit or by kind.

Kits are great for large homogeneous exercises, where each group
will tackle roughly the same problem with the same materials. Make-
block sensors and motors are small enough that plastic pencil cases
make great storage containers. Small kits can also help younger
kids learn organization and cleanup skills. Even if the parts jumble
around inside the container, a color-coded inventory on the inside
lid really helps the end-of-class inventory.

In other settings, simply grouping the same types of parts into
accessible bins may work better. On our physical computing carts,
Makeblock parts are grouped into motors, lights, servos, simple
sensors, complex sensors (compass and gyro), and external motor
boards. Louvered bins make it easy to set up a cart for classroom use
with all the parts we would include in a kit. Although this does make
it easier to miss an individual piece during clean-up, it also drastically
reduces the number of components out on student desks at any one
time. When all the parts are sitting right there on the rack, students
will (with some encouragement) walk up and grab materials only
when needed.

STORING PROJECTS

Nothing kills a robotics project faster than bad storage. As an indi-
vidual, maybe you can claim an entire table for the duration of a
project. In a club or classroom setting where everything has to be put
away and ready for another group several times a day, that’s never
an option. It’s crucial to think about how you’re going to store both
materials and in-process projects. A great storage solution will both

KITTO CILASSROOM

37

38

minimize the disruption caused by cleaning up the work area, and
ensure that everything is ready to go next time.

Storing Basic mBot Projects

The mBot comes in a very nice little cardboard box that stacks well
(see Figure 1-6). For any class or project where students are exclu-
sively programming the basic robot, and not adding structure or sen-
sors, I’'m happy to keep using those boxes for project storage.
When students are programming the mCore boards, there’s little
incentive to even assign particular robots to groups of kids. For a
programming project that uses the standard mBot vehicle design,
different groups of kids can use the same robot all day long. Pro-
grams made using a tablet or sent from mBlock using Bluetooth or

wireless aren’t actually written to the internal memory on the mCore.

_—

FIGURE 1-6: The sturdy cardboard box mBots ship in

MBOT FOR MAKERS

Instead, the programming environment on the tablet or computer
sends instructions over the wireless connection. When you reset the
mCore, the default program loads up and is ready for the next batch
of kids. All of the important stuff is stored on the tablet or computer.
With the addition of a good lithium polymer (LiPo) or LIB, one set

of mBots can support classes all day long.

Storing the Assembled mBot

Once students are making additions or modifications to the mBot,
the cardboard box is no longer a good option. Not only is it too
cramped for kid-made stuff, but when there’s a variety of sensors
and parts in use, being able to survey those parts at a glance is
crucial.

KIT TO CILASSROOM

39

40

Throughout our Makerspace, we use heavy, broad stacking tubs
for in-process project storage. Choosing a single, standard bin has
many quiet and unexpected benefits for classroom organization.

But it’s not always possible to devote that amount of space to
individual projects. For years, we had enough rugged LEGO bins to
use for this purpose, but we eventually outgrew them. The closest
match we found (because secondhand LEGO bins are staggeringly
expensive!) are IKEA TROFAST bins, which have a similar footprint
and low sides. A low, wide bin like this makes it easy to run charging
cables to each robot, and to easily put parts in and take parts out,

even when the bins are on shelves.

MBOT FOR MAKERS

NOTE oOne way to help each mBot kit serve more kids
is to use a standard, easily removed frame for attaching
sensors and actuators. If the additional parts move as
a unit—sensors clip on, sensors clip off—then kids can
remove their additions at the end of each session and
leave a clean mBot for the next group. This only adds
a few minutes to clean-up procedures and allows one
set of mBots to serve a whole grade, or even a whole
school. There are instructions and templates for differ-
ent frames included in the downloadable resources for
this book.

Storing an mCore with Mixed Materials

Once the cardboard and popsicle sticks come out, and your mBot is
much bigger and more complex than the standard factory bot, a good
storage plan is critical. When working with large groups, a visible,
consistent storage container can define maximum size for a project
without any explicit instructions. We like durable bins that come in
a few different heights while keeping a consistent footprint, like the
IKEA TROFAST line.

If the mCore boards are going to stay in student bins, students
must ensure that the USB port stays accessible for charging. Since
the mCore’s motor and sensor ports are so close to the USB plug,
students will normally need to keep that area accessible throughout
the project.

Sensors that use RJ25 plugs and motors can be connected and
disconnected quickly. If you have long cables, it’s reasonable to ask
students to build their sensors and motors into a structure that can
cleanly detach from the mCore board. This arrangement allows
builders to detach the specialized (and cheaper) parts of their work
from the (more expensive) mCore at the end of every session. Then
the mCore units can return to the charging system when the project
bins return to the shelf.

KITTO CILASSROOM

41

42

PROTECTING THE MCORE

I have a few recurring nightmares around kids and electronics: among
the worst, baskets of parts dropped down the stairs, and components
left on the floor and stepped on or crushed beneath casters. LEGO
has a well-established position at the top of the kid-safe electronics
pyramid, meaning their electronics are safe from kids. The assem-
bled mBot isn’t quite that stable, but there are many ways you can
improve its odds of survival.

The most vulnerable part of the mCore board by far is the wire-
less module slot where the Bluetooth or 2.4G serial boards attach.
When a board is mounted in this slot, it sticks up slightly higher
than the USB-B plug and, during free-fall, has an instant attraction
to the floor.

The best way to protect a component is to reduce or eliminate
reasons for students to touch it. If you’re considering a frame or case
for the mCore, work hard to ensure that users clearly understand
how and where to hold it, and inspect the frame to make sure those
areas are far away from the weak points.

Starting with the vl.1 mBot kit, Makeblock now provides a
semitransparent plastic case that mounts directly through the board
to the brass standoffs. These work well if you are using the standard
robot with wheels. But many of the projects throughout this book
use the mCore as a stationary computing platform instead of as a
robot. In those cases, it makes sense to remove the mCore from the
robot chassis. Without that bulky aluminum frame, there’s no way
to attach the v1.1 mBot cover.

MBOT FOR MAKERS

USING A LEGO TECHNIC FRAME

Every workshop or classroom has unique needs, and the best solu-
tion should meet those needs exactly. When working with the stan-
dard vehicle created from the mBot kit, we found the chassis and
components stable and kid-resilient. The gap between the mCore
board and the chassis is large enough to fit the 6 AA battery pack
or a large, rechargeable lithium battery. After a few days of kid use,
we added a small strip of Velcro between the battery pack and the
aluminum frame to secure the battery when the kids were carrying
the robot around.

The aluminum frame provides excellent stability and protection
for the mBot, but it’s also bulky. Many projects in our Makerspace
use the mCore as a physical computing platform that doesn’t need
to move, or one that needs better ways to connect to LEGO, card-
board, or other craft materials.
For those projects, it’s a real has-
sle to work with the assembled
mBot on the aluminum chassis.
But without the stability pro-
vided by that frame, it was clear
that the bare mCore would need
something to hold the battery in
place and prevent strain on the
JST plug.

Driven by that initial need,
we developed a basic frame from
LEGO Technic. Much of the
experimentation and iteration
came from our colleague Gary
Donahue at Chadwick Interna-

tional, who was always looking
for a way to trim just a few more
LEGO blocks from the design.

Instead of simply protecting

FIGURE 1-7: This rolling rack
stores and charges up to 50
mCore boards off a single wall
the bare mCore board while in outlet.

KIT TO CILASSROOM

43

44

use, this frame simplifies the logistical challenges that come from
large groups of people working with the mCore. This design lifts the
board off the table, provides connection points for LEGO or Make-
block parts, and preserves access to the USB and sensor ports. When
you’re working with class sets of mCore, you need to easily charge
20 or more boards on a cart that can move from room to room,
while using as few LEGO beams as possible. This frame (shown in
Figure 1-7) represents our current solution.

Check here for the pieces you’ll need to make the LEGO Technic
frame: www.airrocketworks.com/instructions/make-Mbots.

The following image shows all the pieces laid out with nylon nuts

and bolts and hex nuts and bolts.

The next image shows what the finished frame will look like. This
frame will make it easier to store and protect your mCore. It will also
hold the battery underneath.

MBOT FOR MAKERS

http://www.airrocketworks.com/instructions/make-Mbots

Although it’s not mentioned in the mBot materials, the corner

holes for the brass standoffs are perfectly aligned to LEGO Technic
spacing. This frame takes advantage of that fact to provide a support
structure that holds and protects an LIB, maintains easy access to the
RJ25 and USB ports, and lies flat on a table.

The first two beams are attached directly under the mCore
board, aligned with the sensor and battery sides. Using a 15-hole
LEGO beam, insert an M4 bolt through the corner hole nearest the
button on the mCore, through hole 4 of the beam, and then close
with an M4 nut. Repeat that process, putting a bolt through the
hole nearest the buzzer and hole 12 in the LEGO beam. Then, add a
second 15-hole LEGO beam using the holes next to the battery port
and the Reset button on the mCore, as shown in the following image.

KITTO CILASSROOM

45

Secure underneath with an M4 nut.

www.makeblock.cc
eswm

46 MBOT FOR MAKERS

With the mCore still flipped over, insert a LEGO long pin with
friction into the ends of the 15-hole beams with the long ends going

through the beam.

Attach the other 15-hole beams to the LEGO friction pins, as
shown next.

KIT TO CILASSROOM

47

48

Now, place a longer M4 bolt through hole 8 in the end beams
and secure with a nut. Set your battery holder on the bottom of the
mCore, as shown. This M4 nut also serves as a spacer, to provide
clearance over the LIB holder. Be sure to check your battery holder’s

size and add or remove spacers, as necessary.

Now, add a final LEGO 15-hole beam over the bolts and screw
it down using an M4 nylon or steel nut. This will keep the battery
holder firmly in place, without compressing the battery cells.

MBOT FOR MAKERS

The following images show what it looks like finished! The photo
on the right shows the 2.4G USB dongle attached to the battery with
Velcro so it doesn’t get lost. Also, add two LEGO Technic Cross
Blocks 1x3 to one side of the frame for hanging many mCore’s on a
rack. Sweet!

KIT TO CILASSROOM

49

50

Once you get the Technic frames done, you can easily hang many
of them from a frame for easy storage (see Figures 1-8 and 1-9).

FIGURE 1-8: Here is a
close-up of the mCores
hanging on the rack.

FIGURE 1-9: Rick’s version of the LEGO Technic frame

MBOT FOR MAKERS

ADDING A COVER

Using the M4 brass standoffs from the mBot frame assembly, you
can easily add a simple cover. If you have access to a laser cutter, or a
drill press and patience, you can expose the lights and light sensors,
and even extra points of connection with a few rows of Technic-

spaced holes.

Here is a custom, laser-cut cover I designed, made from %"
acrylic. This cover protects the 2.4G serial or Bluetooth connection
and has five holes on each side for LEGO connection points or con-
nections with other Makeblock add-on pieces. Laser cut files are
available at this book’s website: www.airrocketworks.com/instructions/
make-mBots. If you don’t have access to a laser cutter, full-scale files
are also available in PDF form for hand-cutting.

Storage for the mCore is underneath the batteries. Attach bat-
tery holder to the bottom of the mCore using Velcro with adhesive.
Install the battery holder so batteries face the smooth-bottomed
acrylic pieces to avoid the chance of the batteries shorting out
against the bottom of the mCore.

KIT TO CILASSROOM

51

http://www.airrocketworks.com/instructions/

52

While these frames and cases (and the others available on the
book’s resource page) are useful, they might not meet the specific
needs of your program. Experiment with the materials you have on
hand until you develop a cover, frame, or storage system that fits your
classroom perfectly! (See the cool DIY case in Figure 1-10.) Then
share it back with us!

“John1” on the Makeblock forums

MBOT FOR MAKERS

MAKING CABLES

Cabling is often at the heart of proprietary control schemes. Every-
one who lived through the digital camera explosion probably has a
drawer full of USB cables with weird, manufacturer-specific ends.
In the educational robot sector, cabling is what transforms standard
servos, motors, and sensors into premium branded components.

Makeblock does use a standard connector on the mBot, but the
type is not obvious from first inspection. The RJ25 connector looks
like a standard United States phone plug, but it’s a specific version
of that standard. Makeblock uses a 6P6C modular jack, meaning that
it has six contact points connected to six actual wires.

Making your own cables for this plug requires a crimping tool.
Most Ethernet crimping tools have ports for the smaller modular
plug, as well as the larger 8P8C plug used for Category 5 or 6 wire.
Although you can use twisted pair Ethernet wire for mBot cables, 1
find unwinding the pairs to be a huge hassle. Using flat six-wire cable
makes the process swift and easy.

Parts

Six-wire cable—often you
can find this cheaper and
in reasonable lengths when
sold as single long phone
cable, rather than as a
bulk cable package. One

6P6C/RJ25 modular plugs—
make sure these have six-
wire contacts, not 4.

Crimping tool—most label
the connection we need as
RJ11/RJ12 or Phone.

100ft phone cable will cre-
ate many classroom-sized
connections.

It is important to keep the color alignment consistent between
the two ends of the cable. When inspecting a plug, you should see
the same color order on the wires going from left to right. With the
wire shown here, white is on the left-hand side of the plug and blue
is at the far right. Although these colors may vary by cable manufac-
turer, they need to be consistent between ends of an individual cable.

KITTO CILASSROOM

53

54

Working with cable ends is another version of the “my left, your

right” problem, where changes to the orientation of the parts makes
relative direction useless. This perfectly useless tiny cable shows that
plugs put on either end in the same orientation will reverse the order
of the wires between the two ends. (See Figure 1-11.)

FIGURE 1-11: This is the wrong way to crimp a Makeblock cable!

MBOT FOR MAKERS

The plug on our left will have a left-to-right pin order of white-
black-red-green-yellow-blue. The right-hand plug will have a left-to-
right pin order of blue-yellow-green-red-black-white. Maintaining
color order will result in wires where the plugs are rotated 180

degrees from each other—especially noticeable on small cables. (See
Figure 1-12.)

FIGURE 1-12: This is the correct way to crimp a Makeblock cable. To
keep wire order the same, the ends must be reversed.

Each time I make a cable, I slide the plastic ends on with the
metal prongs facing me and recite the colors in order. If the colors
match at both ends, the cable will be fine.

Now, it’s time to gather the materials and build some cable.

Steps

1. First, cut the desired length of cable from the spool and then
strip about 1 cm of housing from each end. When using modular
connectors, you do not need to strip the individual wires.

KIT TO CILASSROOM

55

2. With the outer coating stripped, slide the modular jack over the
exposed, colored wires. Ensure that all six wires slide smoothly
under the metal prongs of the jack.

56 MBOT FOR MAKERS

3. Before you crimp, look directly at the end of the jack. You should
see the cross section of all six colored wires at the same depth,
underneath the brass teeth of the plug. If one wire is shorter than
the others, it will appear further back and less distinct. To save
yourself some headaches later, remove the plug and re-trim the
wires so that they’re all flush, then replace the plug and check
again. Missing the connection on one wire out of six invites a
world of inconsistent and intermittent errors, depending on
which wires a particular add-on uses to communicate with the

mbBot.

KIT TO CILASSROOM

57

58

4. Place the cable and plug into the crimping tool, then squeeze. It
doesn’t take much force to drive the metal pins into the colored
wires. Check one last time to make sure you can see all of the

metal teeth biting into to each of the six wires.

UPDATING THE MBOT

Within mBlock, there are two different pieces of software that can
run on the mCore board and connect to mBlock or the Makeblock
app. While they both appear in the mBlock Connect menu, the
labels leave a lot to be desired. One is labeled Update Firmware
(see Figure 1-13), and the other is Reset Default Program (see
Figure 1-14).

Despite the different names, these are both Arduino programs for
the mCore board based on the open source Firmata protocol and the
StandardFirmata program developed over the last decade. All pro-
grams in this family run on the Arduino hardware and offer two-way
communication between the physical board and a computer. That task
eats up much of the limited program memory on the mCore, leaving
little room for extra mBot-specific functions.

MBOT FOR MAKERS

& mBlock File Edit Boards Extensions _Language _Help W L ~ 5 % 8 Thui03BAM AndrewCale Q =
ene Serial Port > 4.0n Scratoh From the MIT Media Lab{y3.4.10) - Serial Port Connected - Not saved
T s & 3
] Untitied 2.4G Serial X I
Network >
3
Upgrade Firmware <
Reset Default Program > vz
v
View Source [oatastiocks 1
Install Arduino Driver
sl say [IE] for @ secs
=
xi63 yi180 4
oo &/ S| ESTEERD
switch backdrop to XIS
set [T effect 10 @)
ey
set size to @D %
aza
& mbBlock File Edit Boards Extensions _Language _Help W LT ~ 5 oo% @ & Thui0:38AM_Andrew Care Q=
ene Serial Port > 4.0n Scratoh From the MIT Media Lab{y3.4.10) - Serial Port Connected - Not saved
W Unti sorpts. | Costume i & SesE
(=] Untitled 2.4G Serial .] o s
Network >
3
Upgrade Firmware
Reset Default Program » mBot vz
v
View Source i
Install Arduino Driver =
~
=
xi63 yi180 4
oo &/ S| ESTEERD
aza

FIGURE 1-14: Reset Default Program

In mBlock, the Reset Default Program option will upload a ver-
sion of this firmware that includes a line-following program, which
is a program to avoid obstacles using the distance sensor. It also
responds to the infrared remote and the onboard buttons. To fit
those extra commands into the mCore’s program memory, it trims
out support for more advanced Makeblock sensors. This means that

KIT TO CILASSROOM

59

if you want to program a robot that uses the Compass sensor or
long LED strips, you'll need to replace the Default Program with the
Update Firmware command.

Table 1-1 lays out the main differences between these two soft-
ware options.

TABLE 1-1: Default Program versus Firmware

MBOT DEFAULT

FEATURE PROGRAM MBOT FIRMWARE
Sound on boot Three tones Single chirp
Wired USB X X

connection

2.4G serial X X

connection

Bluetooth X X

connection

IR remote X

Stand-alone obsta- X

cle avoidance

Stand-alone X
line-following

RGB LED strips 15 lights Unlimited
LED matrix X X

Seven-segment X X
display

Temperature sensor X

Joystick input

Compass sensor

X | X | X | X

Three-axis gyro
sensor

=

Me Flame sensor

Me Touch sensor

Humidity sensor X

60 MBOT FOR MAKERS

For more detail, you can read about both programs in the mBlock
directory. The IR-supporting version, called Default Program, is in
the file mbot_factory_firmware.ino and the advanced sensory sup-
porting version is mbot_firmware.1ino.

WHERE WE’RE HEADING FROM HERE

When you’re shopping for electronics Kits, it’s easy to focus on the
hardware specs or potential projects to the exclusion of all else. The
mBot has a great set of features that compare well with any other
kid-friendly robotics or Arduino system. But the features that bring
a smile to my face while working in the Makerspace aren’t listed
at the top of tech sheets. I love the flexible platform and the small
sensible decisions that went into the design of the mBot and mCore
as physical objects, ready for oodles of kid abuse with a minimum of
adult intervention.

In later chapters, we’ll see those same design principles appear
when we dive deeper into LEGO integration, mixed media pup-
pets, and large- and small-scale projects. But all of those projects
rely on having programming tools that make the powerful hardware
accessible to kids of all abilities. Chapter 2 will dive deep into the
software for both computer and tablet to demonstrate the power of
the mCore. Also, we’ll survey the many external sensors that can be
connected to the mCore that will be used in the projects throughout
the book. From Chapter 3, “Animatronics,” onward, we’ll combine
programming in Scratch with the joy of using sensors to create every-
thing from whimsical creatures that react to their environment to
remote untethered data-logging devices to a ping pong ball-flinging
robot, ready for battle.

KITTO CILASSROOM

61

mBot Software
and Sensors

he mBot is built atop several well-established open platforms,

and benefits from decades of development. While this pedigree
means the mBot is fantastically capable, simple questions like, “How
do I control my mBot?” can have frustratingly long answers filled
with branching paths and “Yes, but . . .” answers. In this chapter
we’ll cover the entire range of control options for the mBot, from the
supplied infrared (IR) remote, to wireless control from a computer or
tablet. We’ll end with fully uploaded, autonomous operation.

DEFAULT PROGRAM OPTIONS

The mBot arrives out of the box programmed with three different
modes, controlled by the IR remote. You can tell this program is
currently loaded because of the distinctive three beeps when you
flip on the mCore.

Using the factory-installed program, you can steer the mBot with
the IR remote’s arrow keys and adjust its speeds with the keypad.
Pressing the A, B, and C letter keys will shift the mBot between
several behaviors. These distinct navigation modes make use of the
Ultrasonic Distance sensor and Line-Following sensor that are part of
the standard mBot build. The mBot defaults to Mode A, which is the
simple steering system just described. Pressing B shifts the mBot into
obstacle-avoidance mode, which uses the distance sensor. Pressing

64

C moves the mBot into line-following mode, which makes the mBot
look for and follow a black line underneath it. The mBot retail kit
includes a simple paper oval, but the sensors will recognize courses
made from dark-colored masking tapee or electrical tape. You can
return to manual driving mode by pressing A. The mBot cannot be
in more than one mode at a time; for example, there’s no way to have
the mBot follow a line and avoid obstacles at the same time.

IR remotes are cheap and
have many drawbacks, quite a
few of which affect the mBot.
Infrared requires a line of sight
between the remote and the
receiver mounted on the mBot.
This makes robots heading down
the hallway away from the driver
difficult to control. Anyone in an
environment with many mBots
will discover that any of them
will respond to commands from
any remote.

In fact, this is one reason

FIGURE 2-1: It’s great that the
mBot offers IR remote control
met too many people who con- out of the box, but it can be a

fused the limitations of the frustrating experience.

why we wrote this book. We've

default program and IR remote

(see Figure 2-1) with the capabilities of the entire platform. Build-
ing original creations with the mBot requires moving beyond the IR
remote to either a computer or mobile device.

MAKEBLOCK APP

Makeblock has improved the quality of their mobile offerings over
the last two years, but not always in the cleanest fashion. Apple and
Android app stores each have many outdated programs listed, and most
have very similar names. At the time of writing, the only mobile app
under active development for both platforms is the Makeblock app.

MBOT FOR MAKERS

Close to the robot, bluetooth will connect automatically e °

FIGURE 2-2: If there’s a single robot turned on and close to the

mobile device, Bluetooth pairing can happen in the background.
Otherwise, just touch the robot with your mobile device.

Makeblock (the app) supports several robot products from
Makeblock (the company) beyond the mBot. When you launch
Makeblock, it automatically tries to pair your mobile device with
the closest Bluetooth robot. If several robots are in range, the app
will ask you to move closer to your chosen robot.

TOUR OF THE PROJECT GALLERY

Once the robot and app are paired, the app reveals a gallery of robot
configurations. Each icon contains a customized control interface for
the mBot or other robots from Makeblock’s product line.

The Project Gallery (see Figure 2-3) shows a line of Official Proj-
ects, each based on a particular mBot configuration. The Playground
and mBot projects (also shown in Figure 2-3) need only the materials
provided in the retail mBot kit. Other projects, like the Cat Search-
light and 6-Legged Robot, ask for extra sensors, servos, or metal
Makeblock parts. These extra requirements display an orange Expand
label on the top right of each project icon. You can view required

MBOT SOFTWARE AND SENSORS

65

66

materials and build instructions for Official Projects by clicking the
info icon on the top left of the Play screen (shown in Figure 2-4).

Official Proje (--) €-; 9

FIGURE 2-3: The Makeblock app’s Official Projects expect robots built
exactly as specified in the linked instructions. Changing any element
will move the project into the My Projects section.

Manual

BRIGHTNESS

ULTRASONIC

FIGURE 2-4: In Play mode, some screen elements control the con-
nected robot, like the D-Pad or the Buzz button. Others display live
data from the mBot sensors.

MBOT FOR MAKERS

Touching any picture in the gallery opens a control panel built
for that configuration. That includes sensor displays, buttons to trig-
ger specific behaviors, and control tools for motors or servos.

This is like the LEGOs Robot Commander app, which offers
the same sort of drag-and-drop control schemes for different LEGO
builds. However, when users move from Play to the Design tab (see
Figure 2-5), the Makeblock app offers far more control over the
tools. (See Figure 2-6.)

DESIGN

ULTRASONIC

@

SPEAKER @) SERVO Ultrasonic

U

SPRINT

FIGURE 2-5: In Design mode, touch a screen element to change
which port a sensor connects to or modify the code for that widget.

To get even more control than the Design tab, you can open
the code attached to the screen widget and make more fundamental
changes. Each control element is a front-end, block-based piece of
code based on Google’s Blockly libraries. The gallery on the left edge
of Figure 2-7 contains all the blocks necessary to change any controls
or displays currently on the screen or create new ones.

MBOT SOFTWARE AND SENSORS

67

68

Cancel Brightness Confirm

FIGURE 2-6: The mBot can get a brightness reading from the onboard
sensor, shown as the yellow circle, or an external sensor connected
to port 3 or 4.

® (OM : - i atsoeeo 5| Ol : »rocor
Begin Begin Begin
. 3 play note on (273 beat (TELTAD
o P ET——— = [Py et on € b T
Move Move i woe (OO
® setdcmotor [TEKD at speed EL)
= =~ — =
t¢ setLEDonboard left right
Display Display Display
@ set servo motor (IRHED slot KA to degree 1),
® ® ® T
Event Event o stopmoving Event red HEED
green 5
oue 0
Detect Detect Detect
11 tum off LED on board 13
Vet Math Mt 10 set LED (BB at FEEEEED to color
o b 5963
o o
Controls Controls Controls. 1 setLED EIED

FIGURE 2-7: Blocks in Makeblock app’s Begin, Move, and Display
palettes

NAVIGATING BLOCKS ON A MOBILE DEVICE

The selection of blocks in the Begin palette changes for each type
of UI element. Single buttons only have “when pressed” and “when

MBOT FOR MAKERS

released” options. The D-Pad controller has a “when pressed” and
“when released” option for each of the four directions. Numeric dis-
plays and graphs only offer a “when start” option.

Direction blocks in the Move palette assume the standard mBot
motor configuration. They also allow direct control over individual
motors or Servos.

Purple Display blocks (see those shown in Figure 2-7) allow con-
trol over physical LEDs, sounds from the mBot’s speaker, or elements
on the Makeblock app screen.

FIGURE 2-8: Blocks in Makeblock app’s Event, Detect, Math, and Con-
trol palettes

Event blocks look for input from attached sensors or the mobile
device. Using these blocks, it’s possible to create a simple system
that steers the mBot around by tilting the mobile device. This
is a great opening challenge, but in our experience, kids quickly
determine that the latency between the Makeblock app and the
robot makes for a frustrating drive. The Detect palette provides
specific blocks for most sensors sold by Makeblock. All of these
are puzzle-piece shaped blocks, which means they connect with
other blocks in the program and provide the numeric value of the
given sensor.

Math blocks bundle all the essential arithmetic operators and
functions. They also control the Makeblock app’s implementation
of variables. We explore these blocks in some detail in Chapter 4,
“Measurement Devices.”

MBOT SOFTWARE AND SENSORS

69

70

Finally, the Controls palette holds all conditional statements and
Wait and Repeat loops.

We started with the pre-configured mBot control program
from the gallery. When we change any screen element in that
program, the Makeblock app automatically saves it and asks to
rename the project. Anyone can fiddle around with the pre-built
robots in the gallery with full confidence that they won’t destroy
the templates.

Saved into a new control
panel?

class mBot

Don't Save Save

FIGURE 2-9: Once renamed and saved, these modified projects will
appear in the My Projects gallery.

Recent versions of the Makeblock app added the Playground
project to the Official Projects gallery. Playground is a slick showcase
for the mBot’s different possibilities, but you can’t expand or build
on what’s provided.

The Game Controller screen (shown on the next page) provides
an analog joystick for precision mBot steering. It also has video
game-inspired buttons to make the mBot sprint, spin, and shake.

MBOT FOR MAKERS

Exploring the Music panel will reveal the limits of the mCore

speaker. Clicking the finger icon shown at the top right of the panel
activates the Draw-a-Path tool (shown on the next page), which
allows even young children to create an independently moving
mBot. If you draw a path in the box and hit the Play button, the
mBot will dash off and follow that course! You will see the mBot’s
progress along the path shown on the screen. The active zone is
about a 1 m X 2 m rectangle. Since tables, chairs, and other real-
world obstacles don’t appear on the Draw screen, collisions are
pretty common. Even so, the Playground Draw-a-Path tool is a fun
new option in the Makeblock app. It’s found a great home as part
of Balloon Tag!

MBOT SOFTWARE AND SENSORS

71

72

BALLOON TAG

Using mobile apps opens up a world of multi-mBot games and activ-

ities that are impossible with the IR remote. One of our favorites is
the mBot Balloon Tag. This is a flexible activity that’s anchored by the
sheer chaotic joy of popping someone’s balloon. The materials list is
self-evident: you need a balloon for each mBot and a sharp thing with
which to pop the balloon. You can establish a super-serious league
for this game, with standardized bots and balloons to better focus on
pilot skill—but that’s not how it works in our classrooms. Our focus
is more on the design and engineering aspects of the challenge.

Prep

Provide each group with an mBot, several balloons, and a lance of
some sort. We’ve had success with wooden BBQ skewers, plastic
straws with thumbtacks, or even sharpened pencils.

Depending on the age of the students, it’s a good idea to spec-
ify where and how the balloon should be attached to the mBot. In
its base form, the mBot lacks good mounting points parallel to the

MBOT FOR MAKERS

ground or along its central axis. One way to create these points is by
adding two right-angle Makeblock brackets and some Makeblock or
LEGO beams to the rear spurs of the mBot frame.

These create a stable, rigid frame that can support much larger
structures. Just don’t overload
the mBot! For light-duty work
like a balloon mount, cable ties
can work just as well. You can
either knot the balloons around
the cable tie or connect them
with a loop of string. Such a
wobbly connection makes the

inflated balloon a shifting target

U -

in the game.

IMAGE COURTESY OF @MISTERHAY

MBOT SOFTWARE AND SENSORS

73

74

Mounting a rigid lance to the mBot is much more difficult. You
can lash it to the brass standoffs with cable ties, or to the frame
alongside the battery. This process is full of interesting challenges,
most of which aren’t obvious to students at first. What angle will
allow the lance to best reach the balloons? Will the lance shift from
side to side? Will it extend far enough in front of the mBot to push
and trap the opponent’s balloon? Investigating these questions will
lead students to consider outlandish designs. Many of these designs
will not work because of the restrictions and requirements of the
materials, and the students will have to start again. This is the heart
of a powerful iterative design process. Finding answers to these ques-
tions is the core of the activity.

It’s a good idea to set a short time limit on each joust—giant
melees are too chaotic. After each game, devote some time to “pit-
work” and redesign.

In large groups, a bracket of balloon duels can take too long. A
great alternative is to pull the lance off one mBot and make it the
target, with the other mBots becoming the hunters. Allow the person
controlling the target to use the Draw-a-Path tool in the Makeblock
app Playground project. Hunters and prey will take turns moving. The
extra mobility of the Draw-a-Path tool allows the player controlling
the target bot to juke around clustered hunters. This can cause some
significant pileups. This asymmetric version of Balloon Tag, where
each side is using a different control method, works great where
there’s a short time frame or a fixed number of turns for both sides.
It’s also a quick way to test new designs at the end of a group session.

If you have access to materials beyond the retail mBot kit, there
are even more possibilities. With a servo motor and some clever
mounting, you can control either the lance or balloon in the Make-
block app control panel while driving. This drastically increases the
challenge level of building and steering. Classroom tests show sig-
nificantly higher self-popped balloons when servos are used.

Utilizing the default mBot build that includes a Line Follower
sensor under the chassis creates some interesting racing variants of
Balloon Tag. Instead of a grand robot melee, create a small course
of line-following paths with open spaces in between. Teams start

MBOT FOR MAKERS

with the Line-Following project, but modify it to start with a button
press and add the driving controls of their choice. Robots jostle and
fight in the open spaces, but need to locate the line and use the line-
following mode to travel to the next waypoint. This structure breaks
up the mad scrum of normal Balloon Tag with high-emotion chase
segments, as the lead mBots rush to the end of each path with their
balloons exposed to the crowd.

We call this Balloon Tag to specifically connect to the free-
wheeling dynamic games our kids play at recess. See what new ideas
emerge from adding a new part, or how altering a rule changes how
people play. In each case, the new tools will create more complica-
tions, more challenges, and more powerful, student-driven learning.

IMAGE COURTESY OF @ROBOTICS_FUN

MBLOCK

Makeblock’s mBlock is a visual programming environment for Win-
dows, Mac, Linux, and Chromebook computers—if you’re working
on a device that has a screen and physical keyboard, then there’s a
version of mBlock for you. It expands on all the capabilities offered
in the tablet programming apps and provides the most robust tool
for programming the mBot.

The mBlock platform is a direct fork of Scratch from MIT Media
Lab’s Lifelong Kindergarten (LLK) Group, and it inherits Scratch’s
incredible feature set. It presents robotics commands in a format
familiar to millions of young people.

MBOT SOFTWARE AND SENSORS

75

76

Mitchel Resnick, head of the LLK Group, often describes Scratch
as having “low floors, high ceilings, and wide walls.” In the program-
ming world, low floors means that everyone can enter, with no back-
ground or prerequisites.

High ceilings allow users to grow and expand their skills for years
or decades before hitting something that “just can’t be done.” Wide
walls implies that the tools should allow as many different types of
creative expression as possible. Scratch does that—it provides the
tools to make everything from anime music videos to multiplayer
platformers.

High school students often scoff at Scratch and other block-
based languages as “programming for kids.” This reflects their own
inexperience rather than the potential of block-based programming.
The mind-blowing projects from Scratch user “griffpatch,” or coming
out of UC Berkeley’s Beauty and Joy of Computing course, should
shatter that illusion. This is not the last time you’ll hear us say, “Sim-
ple doesn’t mean easy.”

The mBlock platform is a natural extension of the house Scratch
built. It adds an extra room for physical robotics, without disrupting
the existing floor or ceiling.

If you're interested in the non-robotics potential of Scratch, there
is a great library of books waiting for you. We recommend:

» Make: Tech DIY: Easy Electronics Projects for Parents and Kids, by Jay-
mes Dec and Ji Sun Lee (Maker Media, 2016)

» The Invent to Learn Guide to Fun, by Josh Burker (Constructing
Modern Knowledge Press, 2016)

» The Big Book of Makerspace Projects: Inspiring Makers to Experiment,
Create, and Learn, by Colleen Graves and Aaron Graves (McGraw-
Hill Education TAB, 2016)

» Coding Games in Scratch, by Jon Woodcock (DK Children, 2015)

Although this chapter will teach you how to build functioning
programs from a blank screen, there are many discrete worlds to

MBOT FOR MAKERS

explore in Scratch. Dive deep in some other areas and see how much
that exploration adds to your robots!

CONNECTING TO MBLOCK

As of publication, the current version (v3.4.11) of mBlock for Win-
dows, Mac, and Linux computers bundles the Scratch-based block
environment and the Arduino tools into a single platform-native
program. There is also a web-based tool, available at http://editor
.makeblock.com/ide.html, which provides the same toolset within a
modern browser. Beta versions of mBlock 4.0 suggest that, going for-
ward, Makeblock will abandon the different versions for Windows,
Mac, and Linux in favor of a downloadable version of the browser-
based tool. Since the functionality with each of these versions is
nearly identical, all of the programs or projects in this book should
work on any future version of mBlock. However, the operating
system-specific instructions for connection may change over time.

Every time you open mBlock, you’ll need to connect the board
to the software using one of three possible connections: Bluetooth,
2.4G wireless serial, or USB. All retail mBlock kits have USB ports
and one wireless connection. If you bought mCore boards without
buying the mBot kit, you’ll only have access to USB. The wireless
modules are for sale from Makeblock, and they’re easy to swap
between boards. If you’re using both serial and Bluetooth connec-
tions, remember that you identify the Bluetooth boards from a dis-
tance by the copper antenna shown in Figure 2-10.

A Word about Connection Types

On a small scale, there’s not a huge difference between the Blue-
tooth and wireless serial connection. If you’re considering a larger
scale mBot army where you’ll work primarily or exclusively with
laptops, we strongly recommend the 2.4G serial adapters. In the
worst-case scenario, when kids have ignored our color-coded stick-
ers and mixed up mBots and the paired USB dongles, the 2.4G

MBOT SOFTWARE AND SENSORS

77

http://editor

78

FIGURE 2-10: In an environment with both wireless serial and Blue-
tooth hardware, the printed squiggle antenna on the Bluetooth board
helps distinguish between the two tiny boards.

serial module has a super-clear indicator when this unit’s best
beloved dongle is plugged in nearby. This means that I can trou-
bleshoot most connection problems from across the room, without
ever seeing the laptop’s screen.

Bluetooth may offer maximum flexibility for a single mBot unit,
but 2.4G serial is the best choice in any environment where students
will work with multiple mBots and computers.

MBOT FOR MAKERS

Connecting Bluetooth for Windows

Connecting with Windows is easy. Make sure the Bluetooth module
is installed on your mCore, turn on the mCore, and launch mBlock.
Make sure your computer has Bluetooth enabled. Click on the Con-
nect menu, then Bluetooth, then Discover.

‘a mBlock - Based On Scratch From the MIT Media Lab(v3.4.1) - Disconnected - Mot saved

File Edit Connect Boards Extensions Language Help

Serial Port > | =
r | Scripts
Lt ; ‘[®

Bluetooth Discover
I Motion

240G Serial 4 Clear Bluetooth
Looks

MNetwork »

IS-JLln-j
Upgrade Firmware Ipen
Reset Default Program ID313&|3|.
Set FirmWare Mode
View Source '

Install Arduine Driver

When your computer discovers your Makeblock Bluetooth mod-
ule, the following screen will pop up with the specific address of that
Bluetooth module.

=V Hellg
thirlk'
thirlk'

Click The Device From List Te Connect

Makeblock (00:1B:10:10:00:9A)

Cancel

MBOT SOFTWARE AND SENSORS

79

Click that device and you’ll get the confirmation message shown
in the following image. You are now connected and ready to begin
programming!

Bluetooth Connected

Close

Connecting Bluetooth for macOS

Bluetooth devices need to be paired before software can access
them. On macOS, that happens in the Bluetooth System Pref-
erences panel. Make sure the Bluetooth module is connected to
the mCore, and then turn it on. After three beeps, you should
see a new entry show up in the Bluetooth control panel. This can
either be a messy MAC address or a well-named Makeblock entry.
The non-human-readable name should only appear the first time
you connect to a new Bluetooth module. Click PAIR on the new
device.

That entry will quickly flip back to a worrisome “Not connected.”
Don’t stress!

@ <] Blustooth a o e <] Bluetooth Q

© wosnmasw par

nnnnnnnnnnnn

Bluetooth: On Blustooth: On
Turn Bluetooth Off Turn Bluetooth Off
Now discoverable as. Now discoverable as.
“sd15mbp50" “sd15mbp50”

12 Show Bluetooth in menu bar Advance . 2 Show Bluetooth in menu bar Advanced.

FIGURE 2-11: When pairing a Bluetooth module for the first time, the
MAC address appears instead of the Makeblock name.

MBOT FOR MAKERS

With this accomplished, return to mBlock and open the Connect
menu. Despite the existence of a Bluetooth item in that list, you need
to open the Serial submenu and then choose the new tty.Makeblock
entry. (Yes, this is a mess.) With a top-level Bluetooth menu that
stays grayed out and two permanent entries in the Serial menu that
use the word Bluetooth, the important thing to click is /dev/tty.
Makeblock-ELETSPP.

@ mBlock File Edit J[EELag Boards Extensions Language Help

L [! Serial Port 2 /dev/tty.Bluetooth-Incoming-Port |4

B) i /dev/ity.Bluetooth-Modem

(™, Untitled 295 sanel > /devitty.Makeblock-ELETSPP
Network >

I Viatian ™ T EERE
Upgrade Firmware i

Reset Default Program > I
View Source B oo
Install Arduino Driver ———— |

When that works, you’ll see a small check mark appear by the
/dev/tty.Makeblock-ELETSPP entry and the window header will show
Serial Port Connected.

| @ mBlock File Edit Connect Boards Extensions Language Help W 5 05 awi |
‘ [] [) mBlock - Based On Scratch From the MIT Media Lab(v3.4.2) - Serial Port Connected - Not saved ‘

Connecting 2.4G Wireless Serial

The crucial thing to remember when using the wireless serial con-
nector is that each USB dongle and the small communications board
that ship together are paired to each other. Don’t throw all of the
USB dongles in a drawer! Use a bit of Velcro to attach the dongle to
the mBot frame when not in use. If you’re working in a classroom
setting, pull out the sharpies and stickers and label them posthaste!

If you power on the mBot when the USB dongle is not attached
to a nearby computer, a tiny blue LED on the communication board
blinks. This blue light will glow steady within seconds when the don-
gle is connected. Keep this in mind if you ever have to sort through
a large pile of mismatched components.

MBOT SOFTWARE AND SENSORS

81

82

Once the mBot is powered and the USB dongle plugged in, it just
takes a single click to connect the board to mBlock.

@ mBlock File Edit e~ Boards Extensions Language Help

[NN] 1 Serial Port > Based On Scratch Fron
W] Untitled 2.4G Serial 3 cComnect M
| i
st E I Motion
I Sound
I Pen
View Source I Data&Bloct

Install Arduino Driver

T 1

Paired for Life?

Although, in the classroom, we insist that the USB dongles
and serial boards are paired for life, that’s an exaggeration.
There’s a button on the serial board that will forcibly pair it
with a USB dongle in range. If you’re somehow stuck with
a mismatched set, plug the USB dongle into a computer,
power on the mBot, and press and hold the tiny button
shown in the following image. You’ll see the flashing blue
LED turn glow steadily after a few seconds. However, like
matching socks in the laundry, when you make a new
match you’re also creating two other broken pairs.

MBOT FOR MAKERS

When the connection is active, the status message in the top bar
will change.

mBlock - Based On Scratch From the MIT Media Lab({v3.4.2) - 2.4G Serial Connected - Not saved

Connecting USB

Although USB is an incredibly familiar technology, there are two
points worth noting about the mCore’s USB connection.

FIGURE 2-12: The mCore uses a USB-B plug, the style often used for
printers. It’s sturdy and can take a beating.

First, the power switch on the board needs to be on in order
connect to mBlock over USB, whether a battery is attached or not.
This goes against safe practices for normal Arduino boards, which
can receive power from either an external source or USB, but not
both at once. The mCore board’s design prevents this “two power
source” problem. If there is a rechargeable battery attached, plug-
ging in the USB cable while the power switch is off will charge the
lithium battery.

Second, the mCore board uses a USB-to-serial chip that’s com-
mon to a Chinese-made Arduino clone known as the CH340. This
chip requires the installation of a specific driver. If you connect the
USB cable and don’t see a new entry appear in the Connect =* Serial
Port menu, check to see if you are missing this driver.

The Install Arduino Driver item in the Connect menu will install
the CH340/CH341 driver for your platform from within mBlock.

MBOT SOFTWARE AND SENSORS

83

84

Note that this requires admin access on most computers, so it can
be tricky to do with student machines. This is only required when

using a wired USB connection to the mCore.

@ mBlock File Edit lesii- o8 Boards Extensions Language Help

®e0e Serial Port > ased On Scratch From the MIT Media L
[-] Untitled 2.4G Serial » ™ . Scripts Costumes Soun
Network > J] votion J| Even

Conir
I Sound I Sensir
I Pen I Opera

Data&Blocks Rob
View Source Ios o ,

Install ulnn Driver
& & Install CH34x_Install

Welcome to the CH34x_Install Installer

Welcome to CH341 and CH340 usb to serial device driver
installation program.

This program instal the driver to the default directory of the system ,
do not change it.

Also this installation only support CH341 and CH340 .

¢ Introduction

Destination Select

Installation Type
Installation

Summary

Ll

| k-1 |

|

Sta

1 bacl
New bayf
=/ Continue

Keeping the previous two notes in mind, opening a USB connec-
tion is simple. Connect the board to the laptop, make sure the power
switch is set to ON, and select the proper serial port from the menu.
On Windows machines, this will be COMx; on Macs it will be in the
form /dev/wchusbserialXXXX.

So far, we’re using all these as tethered connections, even though
two are wireless. Tethered simply means that the program logic stays
on the computer and is sent to the mCore board over this active

MBOT FOR MAKERS

@ mBlock File Edit m Boards Extensions Language Help
[=N] /dev/tty.Bluetooth-Incoming-Port b
—_—) k /devyity.Bluetooth-Modem
™, Untitled /M 2.4G Serial » | /dev/ttyMakeblock-ELETSPP

Network > | /devitty.Makeblock-ELETSPP-1

an T —
.c ators
)
View Source E
Install Arduino Driver

FIGURE 2-13: The wired USB connection is the last item on the serial
port list.

connection. There’s a constant two-way stream of instructions and
sensor data between the computer and robot. If this communica-
tion is disrupted while the mBot is battery powered, the robot will
continue to perform the last chunk of the program sent by mBlock.
When this disruption happens because the mBot moves out of range
of the Bluetooth or 2.4G signal, this can cause strange behaviors that
don’t scream “out of range.” Restore the connection by connecting
the hardware or bringing the mBot back within range, and restart
the mBlock program.

TRAFFIC LIGHT CLASSROOM
VOLUME METER

Traffic light volume meters are a staple of teacher supply catalogs.
The various LED units make this a very accessible physical project.

There’s a real value to prototyping physical systems using the
sprites in mBlock. Digital prototyping separates the programming
logic from construction and wiring, and allows students to focus
on the behavior. The version presented here uses the computer’s
microphone to measure volume at first, instead of immediately
bringing in the mBlock’s Me Sound sensor. In our classrooms,
first-draft prototypes normally rely on sensors on the computer,
or even Scratch variables that represent ideal sensor data, instead
of mBot hardware.

MBOT SOFTWARE AND SENSORS

85

86

Start a new mBlock project

and delete the default panda LI ~e :ﬁ; .
by right-clicking the icon in the %
Sprites panel and clicking Delete @ IEZ;&%:;-«
or using the scissor tool.

Then, create a new sprite
- -
using the Paintbrush tool above

X140 y:-180 b Hnm

the Sprites panel. Change to PP —
Vector Mode in the image editor @
(this will move the drawing tools info)
to the right edge of the screen) mados o cuplicate |
d . l ﬁll d Mew backdrop: delete
and create a simple, filled, gray 5,44 ————
rectangle. Vector mode will allow b o]
us to easily resize this shape later Bl o=
to fit around the green, yellow,
and red traffic lights.
Scripts Costumes Sounds A
N;w/m EI [TrafficBackground o o Clear | Import ol 204
; [}
I A
i ;
312354 N
|
Q
T
&
XL
| 111 /’ LY Q=Q
. | | 100%
TEH ..= Vector Mode
0 ==.....= Convert to bitmap

MBOT FOR MAKERS

Next, click the blue arrow to access the details for this sprite.
Rename the object now, as a way to model best practice for your
students. Don’t wait until you have a confusing muddle of Sprite 1
through Sprite 16. Do it now. Now.

x: 111 y: -180
Sprites New sprite: @ / U' O]
o | LightBackground
Stage O
1 backdrop : er-
Mew backdrop: ey "3
/e

As an offshoot of Scratch, mBlock has a sizable library of sprites
and backgrounds, as shown in the next image (although it doesn’t
look sizable). We’ll use one of these as the basis for our three traffic
lights. Click on the tiny creature in the New Sprite bar and choose
Button 1 from the Things group. This works fine for the green light,
but we’ll need to copy and recolor it for the other two.

Sprites New sprite: @ /s F o)
Sprite Library

® > > @ &

Fantasy
feople Apple Amowt Amow2 Bananas Baseball Basketball
Things

Transportation

Castle

City
Flying Beachball Bell Bells Buttont Button2 Button3

Holiday

First, duplicate the button twice by right-clicking it on the Stage
or in the Sprites panel. Then, rename all three buttons to show the
color each one will become.

Select the RedLight in the Sprites panel and then open the Cos-
tumes panel. The Button sprite was already a vector graphic, so all
we’ll need to do is recolor the gradient using the Vector Bucket.
Choose two yellowish colors that work for the light and click away.

MBOT SOFTWARE AND SENSORS

87

Notice that the Button sprite has two shapes that each need to be
recolored.

oo 7 e Gl L oqzwk
[;
s

o N
o

O

T

&

w2

Now it’s time to add code to our project. In mBlock, like in
Scratch, each Sprite (and the Background!) has a Scripts panel for
code that controls its behavior and appearance. When you are writing
code designed to control a mobile mBot, it makes sense to keep all
of those scripts collected in one Sprite. A project like this is designed
to use sensor data from the mBot to change what’s displayed on the

when clicked

go to x: @O y: GO

clear graphic effects

18 brightness ¥ {3 to@

18 brightness v [i{a 8]

FIGURE 2-14: This block places the green traffic light on the Stage,
and then constantly measures the sound level. The light is bright
when the sound is low and dark when the volume rises.

MBOT FOR MAKERS

Stage. Therefore it makes sense for each sprite to read data and adjust
its appearance. Here’s one way that might look for the green light.

The Green Flag block, as it’s commonly known in Scratch cir-
cles, is a basic start-of-program trigger. Every sprite can have its own
Green Flag block. In fact, an individual sprite could have several.
Having several start blocks allows a sprite to have parallel routines,
which can be exceptionally useful. For this first program, however,
we’ll just use one block.

When the program starts, it’s sensible to reset the position and
appearance of the sprites. It’s not technically necessary here, since
these sprites don’t move at any point during our program, but it’s
another good habit to model for students. Like Scratch, mBlock does
not have any built-in reset or cleanup. Adding a GoTo block that
defines where a sprite should start on the Stage means that that click-
ing the GreenFlag to restart the program will also undo any accidental
clicks that moved the GreenLight Sprite on the Stage the next time
the program runs. We need a similar block to reset any changes made
to the appearance of the sprites, including size, costumes, or graphic
effects like brightness or transparency. Since the program will adjust
the brightness of the traffic light sprites to indicate that they’re lit,
we’ll include the ClearGraphicEffects block under the GoTo block to
ensure that this light starts dark.

All of the blocks shown in Figure 2-14 execute once, in the order
displayed, at the start of the program. Everything that follows is
wrapped in a Forever loop, meaning that they will cycle quickly and
endlessly.

Next, we will check sound using the Loudness block from the
Sensing palette. All of Scratch’s sensing capabilities have been
passed down to mBlock. Scratch was designed to take advantage of
the microphones and webcams built into most computers, including
a simple block to measure ambient noise. It’s great to make use of
these built-in options when starting out with young programmers.
By starting out with only software tools, we allow kids to focus on
the core ideas of their program before introducing wires and other
physical complications. Then, once the ideas are sound, out come
the full robots.

MBOT SOFTWARE AND SENSORS

89

920

An If/Else comparator checks the loudness level against our
chosen threshold value of 40. The mBlock Loudness sensor returns
values between 0 and 100, so 40 is on the soft side, but not deathly
quiet. By measuring and comparing the loudness against a threshold
value, we can create different behaviors for the light based on the
sound levels.

Instead of making distinct costumes for the lit and unlit ver-
sions of each light, we’ll use the Brightness control from the Looks
palette. Scratch’s graphics properties were passed down to mBlock
and can be used to modify the appearance of a sprite on the Stage
without changing the costume itself. While novel combinations of
Warp, Ghost, Pixelate, and the other effect options are key to many
great “lose a life” animations, they can also render a sprite invisible
and unrecognizable. Use them wisely. All of these blocks can have
positive or negative numbers as values, but that won’t always trans-
late into an observable change.

In Figure 2-15, the program sets the brightness of the GreenLight
sprite based on the reported value of the sound sensor. If the sound
level is lower than 40, then the brightness is set to positive 20, or lit.
If it’s higher than 40, then the classroom is assumed to be too loud,
and the green light goes dark, with a brightness of -40.

®] VolumeTrafficLight @ || st | Costimes

J patzasiocks o5 ol v
touching I ? -
clear graphic effects

say | loudness

‘, S G
set effect to @D

X: 240 y: 180 4

Sprites New sprite: & / &l 03

i ° .
s [caontgn) Ligveac.. vatons. rason - D
sy

FIGURE 2-15: Say blocks in an mBlock script place a word balloon
above their sprite.

MBOT FOR MAKERS

Dragging a script block to another sprite will copy that block
to the new sprite. This is a great shortcut, but also an easy way to
introduce errors. If we copy this script block from the GreenLight to
the RedLight sprite, it creates two lights that move in sync, instead
of one light that turns on when the room is loud and another that
stays lit when it’s quiet. Copy the block, but then open the RedLight
script panel to make the necessary changes.

The easiest part to adjust is the position of the red light itself.
Keeping the X coordinates the same ensures that the lights stay ver-
tically aligned. Of course you can change that design if you’re used
to horizontal traffic lights.

when c_Iicked.

go to x: @Dy @

clear graphic effects

— |
loudness et
[M— delete
| ({18 brightness ¥

add comment

| set brightness

VoA
-_—

FIGURE 2-16: Right-clicking on the angled green block will allow you
to swap between greater than (>), less than (<), or equals.

We also need to change the script so that the sound sensor checks
for sound levels above the threshold value. In mBlock, each angled
green operator block can change between checking greater than, less
than, or equality. When you’re revising a program, changing these
blocks by right-clicking them can save a lot of time as opposed to
dragging new blocks out from the palette.

We can copy and modify the YellowLight script in much the same
way. The only wrinkle is that the yellow light needs to be a Gold-
ilocks, only turning on when the sound isn’t too soft or too loud.
Building logical groups of conditions in Scratch requires <Anp> and
<or> blocks. Like the arithmetic blocks, you can stack these really

MBOT SOFTWARE AND SENSORS

91

92

deep. One of the biggest UI hurdles of Scratch variants is that long
calculations or conditionals can sometimes stretch beyond the width
of the Scripts window. There’s a small arrow button on the border
between the Stage and the panels that will minimize the Stage and
provide some extra width to the Scripts area.

[Scpls | Costumes
W VolumeTrafficLi f @

when

clear graphic effects

 loudness >E and loudness <Y

d/aa .

-
effect to €

@
set effect to @D

J

=5

FIGURE 2-17: The green <AND> operator allows us to stack two sensor
checks in a single <IF> statement to check for values within a given
range.

With that last script in place, the software prototype is ready for
testing. Since we’ve used mBlock’s Loudness block instead of the Me
Sound Sensor, the software prototype is fully functional.

There’s one last helpful block we should add before testing the
prototype. Although you can click any sensor block and see the cur-
rent value, this is cumbersome for something as dynamic as sound.
Using a Say block from the Looks palette inside a Forever loop is a
great way to stick a sensor value up on the screen. This program has
three different Forever loops running, one inside each light, and the
Say block works fine in any of them.

So far, this project is fully software-based and uses only compo-
nents that mBlock inherited from Scratch. Many inspired individuals
in our classes are eager to build from day one and grumble over the
time spent creating these software prototypes. Fortunately, mBlock
and mCore make it easy to grow functioning prototypes into a final
physical version, making the next steps feel like incremental revision
rather than a blank slate.

MBOT FOR MAKERS

Everyone can benefit from working out mistakes and misconcep-
tions in Scratch’s low-floor environment where everything just works.
When working with groups of young people, the software prototype
is a critical part of every project. Once a large group starts work-
ing with materials, managing those parts consumes a large part of
a mentor’s or teacher’s attention. Once there are cables and batter-
ies strewn over the table, it’s difficult to quickly identify whether a
problem lies in the hardware or the underlying ideas. Completing a
software prototype is a proof-of-concept and provides a touchstone
through the rest of the project.

When a project requires a sensor beyond what’s included in the
mBlock software sandbox, we often connect just the mCore and
inputs and model the outputs on the Stage. When particular sensors
are in short supply, a prototype can use mBlock variables to simulate
the values expected from the sensor. Limited prototypes don’t guar-
antee that the final project will work, but a design that can’t work in
software is unlikely to thrive with real parts.

Before we push the traffic light classroom volume meter out of
the software-only nest, it’s worth looking closely at how the whole
range of Makeblock sensors interacts with mBlock.

WORKING WITH SENSORS IN MBLOCK

Although there’s a long list of different sensors created for the mBot
platform when working in mBlock, it helps to think of them as
belonging to two basic categories.

Digital sensors measure one thing in the world and report back
a binary value: yes or no, on or off, or 1 or 0. Sometimes these are
mechanically simple sensors, like a classic push button. In other
cases, like the passive infrared motion sensor, the hardware is com-
plex but the value reported back is still binary.

In mBlock, blocks that have a binary value are elongated hexa-
gons. Only blocks of this shape can fit in the question spots of con-
ditional loops.

MBOT SOFTWARE AND SENSORS

93

94

on board button FIETETE] pir motion sensor GEITM

FIGURE 2-18: Green operators or blue sensor blocks
with six sides report binary values, just True/False or 0/1.

Despite the shape, these blocks can also be placed into the round
openings in Arithmetic blocks and the ever useful Say blocks. This
inconsistency is bothersome, but frequently useful.

say on board button [IERTEd

€1 * pir motion sensor XN

FIGURE 2-19: Using a hexagonal block in an arithmetic operator can
create a particular value when the sensor reports true, and 0 when
the sensor reports false.

Analog sensors, the other type of sensor, report back their mea-
surement to mBlock as a range of numeric values, normally whole
numbers (but not always), and normally positive (but not always).

How these sensors arrive at their values can vary wildly, but at
the base level they all are reporting information by adjusting the
voltage on the wire. Most microcontrollers, expecting just a binary
signal, have a limited ability to read analog signals: the ATmega328
microcontroller, the heart of the Arduino Uno and the mCore, can
only read analog signals on ports 3 and 4. Makeblock color-codes

MBOT FOR MAKERS

analog sensors and ports with dark gray (possibly the least useful
color to apply to black plastic parts!).

All analog sensor blocks are ovals, meaning that you can use the
values from them in any place you would write a number or place
another oval block.

The last pseudo-category of mBlock sensors bundle multiple
channels of information together into a single physical package. The
most familiar for kids is the Me Joystick, which is a standard analog
thumbstick similar to the ones found on every video game controller
since the Nintendo 64. In mBlock, the block for the Me Joystick will
report on only a single value, either the X-axis value or the Y-axis, ata
time. A single block can never report both values, but you can bundle
them together into a larger statement as shown in Figure 2-20.

FIGURE 2-20: This single block allows the Me Joystick to
move a sprite around the Stage.

Other bundled sensors in the Makeblock line include the mBot’s
line-follower (two digital light sensors) and the Me 3-axis Accelerom-
eter and Gyro Sensor, which reports three different angle readings.

SENSOR RECIPES

To interact with the real world, an mBlock needs to describe what
behavior should occur when the program receives the sensor data.
The traffic light volume meter program shows one basic example—
each component measures the sound sensor constantly and switches
between two states as a result.

This is a common stumbling point for new programmers in
Scratch or mBlock. Often, they can describe the behavior they want
invery broad terms (“the spaceships, like, shoot all the bugs and they

MBOT SOFTWARE AND SENSORS

95

96

go SQUUUISH!!”) but lack the vocabulary and experience to break
that complex action into smaller components.

Although students can often describe the behavior they want, it
takes familiarity with basic programming concepts and the mBlock
environment to see how blocks might combine to create those
behaviors. To help bridge that gap, we’ve included a short recipe list
that catalogs basic ways to tie sensor data to outputs, labeled with
kid descriptors alongside more technical terms.

Exploring these models should help learners begin to develop an
understanding of the way imagined behaviors might look in blocks
or code. Recipes are useful tools to help in transitioning from simply
observing the sensor value to creating a system that uses the data.

Block-based programming reveals the visual structure of these
programming concepts—structures that can work with any sensor
and any output. For clarity, we’ve used the onboard light sensor for
analog values, the onboard button for digital values, and M1 motor
for a generic output. When reading through these recipes, think of
the inputs and outputs as placeholders for any sensor or output you
want to work with.

“Wait for the Sensor Reading to Hit a Value
and Then Do Something,” Also Known as
Latching Trigger

This is the classic intruder alarm from movies. This loop sets a behav-
ior, and then constantly checks the sensor and compares it against a
threshold value. Once that threshold is crossed, the behavior changes
and never changes back.

| when clicked
set motor speed

light sensor light sensor on board™) <EX

" set motor P speed (9

]

MBOT FOR MAKERS

“Whenever the Sensor Hits a Value, Do
Something Until | Say Stop,” Also Known as
Latching Trigger with Reset

While it sometimes feels like
the car alarm outside your
window will never shut up,
most do include some form
of a reset button. Building
on the previous code block,
this script adds the ability to
use another sensor to reset
to the first behavior.

when

forever
set motor {JERP speed
sl
[IFLTEELFY ight sensor on board ™ B 600§ (111!

i

clicked

repeat until | on board butron FIFSTTYRY
set motor speed (9

“Constantly, Based on the Value, Do This or
That,” Also Known as State Check

This is the same sort of check used in the traffic light classroom

volume meter earlier. This script checks a sensor constantly, and

changes between behaviors based on the last seen value.

when clicked when

forever forever

it on board button FREIEEEY “then it
set motor {89 speed EFH

else else

set motor (I8 speed (B

While a digital sensor
only swaps between two val-
ues, analog sensors generate
ranges of values and behav-
iors. When you’re looking
for a program to do “this,
or that, or that other thing,”
it’s time to expand the state
check script. This variation
of the state monitor uses
nested If/Else blocks.

clicked

when

light sensor (P EITTew > Ei then
set motor I8P speed

set motor IR speed G

clicked

set motor 389 speed G

forever

if

[ELIETLELIY (ight sensor on board™ JES 70011}

set motor %9 speed

else

: -

(@Y light sensor on board™ IS 30011

set motor speed

set motor speed (9

MBOT SOFTWARE AND SENSORS

97

98

It’s important to note that this script reads the sensor twice.
Since these readings happen in quick succession, it’s reasonable to
assume that the light levels haven’t changed drastically, but they can
generate different values. Furthermore, when mBlock programs are
running tethered, each sensor reading requires two-way communi-
cation between the computer and the mCore board. This communica-
tion should take less than 100 milliseconds, but it might take longer,
and that delay will only grow as the program becomes more complex.

To avoid these problems, we need some way to store a sensor
reading and check it several times. In other words, we need a variable.

mBlock - Based On Scratch From the MIT Media Lab{v3.4.2) - 2.4G S

F . Scripts Costumes Sounds q

Moticn J| Events
LastLightSensor “ I
-—-'l I Looks Control
I Sound I Sensing
I Pen I Operators
fl roboss
Make a Variable
=& LastLightSensor

Sﬂ LastLightSensor ~ tum
change LatLighlSensor x hyo

ELGYRERELILY LastlightSensor ¥
IBEREIELIEY LastLightSensor »

Make a List
X: 240 y: -155 4

New sprite: @ / H’ (o]
FIGURE 2-21: You can find the blocks for variables and lists in the

Data&Blocks palette. Select either the Make a Variable or Make a List
button.

Make a Block

Variables in mBlock are designed to be approachable and easy to
track. Once a new variable is created and named (name it well!), it’s
automatically shown in the corner of the screen. This display can be
turned off, either by unchecking the small box next to the variable
name or by using the Hide Variable block.

MBOT FOR MAKERS

There are only a few variable blocks . The block Set VariableName
does just that—overwriting any current data and leaving the new
value. The block Change VariableName increments, or decrements
with a negative number, the current value. Most importantly for our
current recipe, the oval reporter for VariableName can be used all over
mBlock, in any round input spot.

Here’s that three-state check from Figure 2-21 rewritten to use a
variable to store the Light Sensor value.

Now the Light Sensor is read once, at the top of the loop, and the
value is stored in LightVal. All the checks are made against this stored
data, rather than reaching out to the sensor itself. The loop is now
protected from sudden changes in the sensor data, and the commu-
nication time between mBlock and the mCore board is minimized.

This loop checks the sensor reading against two threshold val-
ues, giving three possible outcomes: low, high, and between. In this
example, the motor runs forward at full speed if the value in LightVal
is above 700, runs backward full speed if it’s below 300, and turns off
for any values between 700 and 300.

Using the mBlocks <AND> operator, a single <1F> statement can
check for values between two thresholds. With this technique, we
can slice a sensor reading into a large number of discrete segments.
Since the <1F> statements are constructed so that only one can be
true in a given moment, these are called switch cases.

MBOT SOFTWARE AND SENSORS

929

100

when clicked

set motor IR speed G

L Lightval ~ REMRIELISEELELTE [ight sensor on board™,
if Lightval > EI0 then
set motor I speed

it Lightval <[] and tightval > then
—— OF%9 speed

it Lightval <[B] and Lightval > . then
set motor IR speed (9

Lightval < [Tl then
set motor I speed

The performance of switch cases depends entirely on the accuracy
of the sensor and the threshold values. It’s possible to write a 12-part
switch case for a light sensor, but unless the ambient light is perfectly
consistent, you will have to spend a lot of time adjusting the threshold
values to account for cloudy days or crowded rooms.

Remember that these recipes can be used with any sensor and
any output behavior. If the goal is to turn on a specific number of
lights or perform other discrete actions, then switch cases like these
are a dependable tool.

“When the Value on the Sensor Grows, Do More
Stuff,” Also Known as Proportional Control

In the following code, LightVal is tied to the numeric value of the
light sensor and is used to directly control the speed of the motor.
This sounds great at first—when the light is dim the motor speed
will be low, and when the light
is bright the motor speed will
be high, right? The reality will il mestonl

set motor {IE89 speed G
be a bit underwhelming. When B Cantvar < 0] 0]

k) 3 i
there’s a gap between concept e

and execution, it helps to look .

=

for the assumptions in the

MBOT FOR MAKERS

program. By using the value in LightVal as the motor speed, our
program assumes that the sensor generates values exactly within the
motor’s input range.

The Me Light Sensor reports values in a range from approxi-
mately 0 to 1000, where comfortable indoor lighting ranges between
400 and 600. The M1 motor block can spin in either direction, with
-255 being full reverse and 255 full speed ahead. Additionally, speeds
too close to zero don’t generate enough force to turn the gears in the
yellow mBlock motors. This mismatch in sensor output and motor
input values explains the dull behavior in the loop above. Directly
plugging the light sensor values into the motor block will turn it full
speed forward in most lit rooms. Worse, since the light level is never
negative, the motor will never spin in reverse.

With a particular sensor, a given output, and a little time, it’s
easy enough to throw together some arithmetic to squash the sensor
values into the input’s ideal range. If the light values in our room are
between 400 and 600, but we want motor speeds between -255 and
255, we could use subtraction to shift the range.

The act of translating a value from one range to another is called
mapping, and we can turn this mapping into a custom block.

when clicked

set motor ([} speed @

P9 Lihtval ~ [0

Eet LightVal ¥ RCMMIT [I@ECIEGTH light sensor on board™
} i
set motor (I8 speed [Lightval - &
FIGURE 2-22: If ambient light readings range between 300 and 700,

subtracting 500 from each reading will generate motor outputs in the
—200 to 200 range, causing erratic back-and-forth motions.

MBOT SOFTWARE AND SENSORS

101

102

Edit Block

Rl input X in_Minkin Maxfout Min L out Max]

v Options
Add number input: =

Add string input: |

Add boolean input: L 4
Add label text: text
B Run without screen refresh

OK Cancel

FIGURE 2-23: Custom blocks in mBlock are tied to particular sprites.
Here, the panda knows how to use Map, but the polar bear doesn’t.

Custom blocks are powerful tools that can do wonders for the
readability of mBlock programs. As a general rule, if a particular
sequence of blocks shows up more than twice in a program, they
should probably collected as a custom block.

It’s important to note that these custom blocks are not distinct
functions or programs. They share namespace with, and can perform
the same actions as, the larger program. Since custom blocks cannot
be reporters, the best way to save the output of our Map function is
to create a variable called map_output.

define Map input | in_Min | in_Max | out_Min | out_Max

L@ map_output ~] input = in_Min | * out Max ~ out Min | / in_Max = in_Min | + out Min

FIGURE 2-24: This custom block re-creates Arduino’s map () function.
For more information on that function, see https:/www.arduino.cc/
en/Reference/Map.

To use this version of Map, we need to know the range of the

input and the range of the output. Once that’s settled, we can drop
the sensor block into the first bubble.

MBOT FOR MAKERS

https://www.arduino.cc/

set motor (I8 speed (&

UM EUIEER PRI lighe sensor on board™ L0 [1000 1 -255 1 255)

set motor (I8 speed
=0

FIGURE 2-25: Place the value you want to shift in the first Map slot,
followed by the range of that input, then the desired output range.

FIGURE 2-26: The Me Sound Sensor reports analog values and must
use the mCore’s analog inputs, either port 3 or 4.

MBOT SOFTWARE AND SENSORS

103

104

When we connect a new sensor, our first test program is always
a Say block in a Forever loop. This tests the hardware and software
connections all the way from the sensor to mBlock’s Stage, and shows
real-world sensor values. With this tiny script running, test out the
Me Sound Sensor. Scream for a bit. Type on the keyboard, and bang
on the table. Have everyone in the room hold their breath for 10
seconds. While the technical sensor values might range from 0 to
1024, it’s far more valuable to see what values your quiet and your
loud generate in your particular room. Only the actual data from your
environment will create useful threshold values for your program. The
numbers used in the following traffic light examples are tied to the
classroom and kids who designed these particular traffic lights.

Watching the volume data flicker in a Say block’s word balloon
is a good reminder that sound levels in a room change rapidly. Vol-
ume measures a constant sequence of momentary noises: a dropped
book, squeaking chair, or collective breath. As someone prone to
making loud sneezes, I’d like this traffic light to ignore some momen-
tary volume spikes and respond instead to steady increases over time.
To do this, we’ll open the door to the world of sampling.

The block in Figure 2-27 shows a very basic way to sample a sensor
and report back the mean value instead of a single reading. Here, this
means creating one more variable, named RecentSounds in the exam-
ple, and using it to store 10 sensor readings. Note that RecentSounds
doesn’t keep 10 distinct readings; it just adds all of the values together.
Using lists instead of variables, mBlock can store persistent collections

Make a List et :;;pleSuundLevel ‘I\

Make a Block >
BN Recentsounds - 19 0]

10

SetYellowLight

meby' sound sensor
|
=

bt : I —— |
set [EIMEEIERd to RecentSounds. X 10]

FIGURE 2-27: Using custom blocks allows us to visually hide the
complexity of this sampling process outside the main body of our
traffic light program.

MBOT FOR MAKERS

of incoming data, which we explore in Chapter 4. After the readings
are complete, the average is stored in the familiar SoundLevel block.
There’s no Forever loop in this block because it’s designed to be used
as a single command in a larger program.

So far, we’ve focused on monitoring the sound levels in the room
using the microphone sensor. To turn that passive sensor into a traffic
light, we’ll need to dive into programmable RGB LEDs. Traffic lights
in the real world don’t normally use color-changing lights—the top
is always red, and the bottom is always green. While the mBot can
power a bunch of fixed-color LEDs, the LED accessories they sell
are all addressable, meaning that every light in the strip can have a
unique color. These RGB lights are technically WS2812, similar to
Adafruit’s original NeoPixels. Makeblock sells several programmable
RGB LEDs in several different forms, but they all work the same way
in mBlock and the Makeblock app.

Connect each light board to a different port on the mBlock. Since
the Me Sound Sensor is currently using port 3, this means connect-

ing a light to ports 1, 2, and 4.

MBOT SOFTWARE AND SENSORS

105

106

Using a separate block for each light source (either the Me LED
board or the longer Me LED strips), specify the intensity for the red,
green, and blue channels with a value between 0 and 255.

set led (31289 €8 red €Y green (9 bive (B9

There are plenty of fancy tricks available for working with these
lights in mBlock, but for the traffic light all we need is to have one
light be the appropriate color and have the other two off.

set led @ red @ green @ blue @
set led @ red @ green @ blue @
set led (ZN289 €9 red green (@9 blue (Y

This program is human-readable up to a point. When the mBlock
Scripts panel is filled with these nearly identical blocks, it’s really
easy to lose track of whether port 2 is supposed to be the green light
or the yellow light. To make the script easier to parse, we can create
a custom block—this time to simply isolate the LED blocks into
meaningful, named groups.

This revised program now combines the screen-based prototype
with real-world lights, and now students have a great opportunity to
cross-check behaviors between the two.

UPLOAD TO ARDUINO

All of the projects so far haven’t actually changed the bits written
into the memory of the mCore. Using the remote control to move
the mBot around doesn’t change the software. The Makeblock app
and the programming we’ve done so far in mBlock constantly send
commands to the mBot, but never rewrite the program stored in
memory on the board.

Now, we’ll move from tethered to independent operation of the
mBot. Using a wired USB connection, we can upload a program
directly to the mCore that will stay loaded through resets and power

MBOT FOR MAKERS

when clicked define SetGreenLight

go back layers set led red (@} green blue {9
go 1o x: @) v: €D set led (ZI1ER €89 red 19 green 9 blue G
— set led (ENER9 €189 red G green @ biue (9
SampleSoundLevel
L (TP then
g define SetYellowLight

_ set led IS8 €18 red & green (P blue 9
SoundLevel ELT] then
i, Souniew! < W G set led CED €D red €D areen € biue G
 SetvellowLight set led CEIE0 €18 red €O green (B blue G0

SetGreenLight

define SetRedLight

set led (Y89 €D red & green €O blue G0
set led (N2 €D red G green (B blue G0
define 5ampleSoundLevel set led (ZZR €M red green @ blue (B

B8 Recemsounas ~ [0]
change [TYETTICERRG by sound sensor (ZHERD
I

set FTEERd 10 RecentSounds / §0)

FIGURE 2-28: Once custom blocks are working, there’s no need to
keep them visually close to the main program. Banish them to the
scroll-right hinterlands and declutter your workspace.

cycles. Uploading a program is the only way to create a robot that
that operates without a computer on hand.

At this point, anyone familiar with “normal” Arduino or micro-
controllers is sighing with exasperation, “Finally!” Uploading code
to the board to blink an LED is how 99 percent of Arduino tutorials
start. Tethered programs have provided a ton of features that dis-
appear when uploading code to the mCore. Untethered, there’s no
interaction between the board and the computer, hence no way to
use many of the mBlock features derived from Scratch. Every block
you use will be translated into written Arduino code. When you
compile and upload an mBlock program, it needs to have a different
“hat” than a tethered program. (Scratch convention names the curvy,
top-of-the-script block a hat.)

MBOT SOFTWARE AND SENSORS

107

108

FIGURE 2-29: Only the GreenFlag hat will work when the mBot is
tethered, and the mBot Program hat has no effect.

These programs create the same behavior, but the script that uses
the mBot Program hat requires compilation and upload.

In general, only blocks from the Data&Blocks, Control, Opera-
tors, and Robots palettes work in compiled and uploaded programs.
If any other blocks appear in a script under the mBlock hat, mBlock
will show you an error message.

unsupported block found, remove them to continue.

OK

FIGURE 2-30: These light blue blocks come from mBlock’s Sensing
palette and control timing functions inside mBlock. They can’t be
used in an uploaded program.

INDEPENDENT TRAFFIC LIGHT CLASSROOM
VOLUME METER

If the volume meter is ever going to be useful in a classroom setting, it
needs to work like an appliance—flip the power switch and the lights
start right up. Fortunately, mBlock makes it simple to change an
interactive program that requires a computer to one that’s uploaded
to the board and works independently.

MBOT FOR MAKERS

mBot Program
forever
SampleSoundLevel
b

if SoundLevel < EXl] ~then
f SetGreenLight
else
if SoundLevel < EGf] ~then
SetYellowLight
else

when clicked

go back €D layers

i SampleSoundLevel
| ==

if . Soundievel <[l then

SetGreenLight

' SetRedLight it SoundLevel <[IT then

SetYellowLight
else
SetRedLight

|——
| wait () secs
] =

(-
wait) secs
define SampleSoundLevel .

B8 Recentsounds [0 0|

repeat €1
.change by sound sensor
‘o g

set TR to RecentSounds / €0

FIGURE 2-31: The custom blocks used to control the RGB lights are
still part of this program, but they are just off-Stage for clarity at the
moment.

Nothing from the earlier version of the program has been
removed. We’ve added an extra script under the mBot Program hat
and removed the two blocks that referred to the sprite’s position on
the screen. When we compile and upload, only the blocks under the
mBot Program hat and any custom blocks used in that script will
translate into Arduino code. This means that the tethered version
can coexist with the compiled version in one mBlock file. If the green
flag is clicked while an mBot is connected, the tethered program will
run. If you want to have the program run without a computer, select
Arduino mode by right-clicking the mBot Program hat. You can also
go to the Edit menu and select it there.

MBOT SOFTWARE AND SENSORS

109

110

upload to_arcluino
duplicate
delete

add comment

@ mBlock File 2508 Connect Boards E

SoundLevel 4@_ then PGPS .4] Undelete

. .SetYeIIqulght | N
ol . Hide stage layout Cosiu
L - []

L] Volun'leTraﬁit‘} + Small stage layout
Turbo mode
Arduino mode

I Pen
P [l Data&Blocks

FIGURE 2-32: Choosing Upload to Arduino from the mBot hat context
menu will switch mBlock to Arduino mode. Choose Small Stage Lay-
out from the Edit menu to switch back.

In Arduino mode, mBlock hides the Stage and sprites in favor
of a text window that shows a current text version of the script. The
Scripts and Blocks palettes are still visible, and changes made to
the block version of the program will automatically update the text

version.
ece mBlock - Based On Scratch From the MIT Meda Lab(v3.4.2) - Serial Port Gonnected - Not saved
senpis & 5K
E Back Upload to Arduino Edit with Arduino IDE
i J conel
i o mBot Program T 2
P— W 7
1 [opecators w72 void SetGreenLight()
Jossaios [e—— set led CHTRD €D re< G0 EEY
S = 7 Color(0,0,255,01;
i 0 soundtere <) then [l >+ ¢ D €0 ¢ G ofES
Lol ° set led G € red G oA 0165(0,0,0,0)

SetGreenLight
T ——
(it soundLevel <[then

CEXETETR at speed @

set motor (W) speed @B

set servo. angle €
Prop— - y—y
set led QIR €D ed @ reen @ bil:

79 rgbled _4.show();
80}

81

Setvellowdight 82 void setup(){
- - 83}

SetRedLight

M
85 void loop(){
8 SempleSoundLevel();
8 if((Soundlevel) < (200)){ 4
- 88 SetGroenLisht();
fgmom 89 jelse(
=) 90 if((SoundLevel) < (400)){
91 SotvellowLight();
92 Yelsel
91

set led strip CIFE) CIED) €M) red €D i
play tone on note (@39 beat CID
show face number: @

)
gl - B
1526514708 > 555709 00 UZ 08 04 UZ 0000 WU 00— 1.
21:26:114.737 < ££55 0d 0a
Eh o Lo BTK> 21:26:15.868 > ££ 55 04 00 01 07 03

define | SamplesoundLevel

show face G x @ y: © characeers 21:26:15.934 > ££ 55 04 00 01 07 03
nange [XETETITS P—— 21126:15.974 < ££ 55 00 02 00 00 0a 43 0d 0a
W snov ume G hour: € Bl min: €D o i sound senzor QI 21:26:16.039 > ££ 55 04 00 01 07 03
=) aam g 00 02 00 00 Oe 43 0d 0a
show drawing G x: @ v: © draw set ETZIR 1o RecentSounds 21:26:16.187 > £ 55 02 00 04
0w dravios GED @ © v Il T) sgesteater > £ 35 02 00]
21:29:13.047 < 56 65 72 73 69 6F 6e 3a 20 30 36 2 30 31 2

set 7-segments display QIR number €14

set light sensor (ZIER led as (29] Texed = :
D [© sy © e || © sy e |

set mini fan IS blow CETNED 90 to x: @D y: € Q=Q [send]
FIGURE 2-33: On the lower-right corner of the screen when you’re

in Arduino mode, you can see output from the compiler, and data
that would be sent to the serial monitor in the Arduino serial monitor
when using traditional Arduino tools.

! 5 I >

MBOT FOR MAKERS

Careful reading of the text version can reveal a lot about how
mBlock translated between blocks and Arduino code. If you look
closely at the text version on the right of the following image, you’ll
see that the SetGreenLight custom block has arrived as the Arduino
function void SetGreenLight().

Back Upload to Arduino Edit with Arduino IDE

57 rgbled 2.show(); ’
58 rgbled_4.setColor(0,0,0,0);
59 rgbled_4.show();

set led @ red @ green €39 blue 9
set led (ZIER €M red (W) green @) blue (B9
set led (I €D red () green @@ blue (B

62 void SetGreenLight()

64 rgbled_l.setColor(0,0,255,0);
65 rgbled_l.show();

66 rgbled_2.setColor (0,0,0,0);
&7 rgbled_2.show();

68 rgbled_4.setColor(0,0,0,0);
69 rgbled_4.show();

7
72 void SetRedLight()
73 ¢

set led e]p red (P green 9 blue (B9
e red @ green @) blue
set led @I €I red green (@9 blue @9

74 rgbled_l.setColor(0,0,0,0);
75 rgbled_l.show();

76 rgbled 2.setColor(0,0,0,0):
77 rgbled_2.show();

78 rgbled_4.setColor(0,255,0,0);
79 rgbled_4.show();

Selecting Upload to Arduino will launch the compiler. The com-
piler will translate the human-readable Arduino program into a hex
file, and then will upload that hex to the mCore. Error messages
that appear in the lower-right window during compilation are often
a weird combination of compiler errors and serial communication
codes. Troubleshooting that universe of errors is well beyond the
scope of this book. In practice, most errors that students encounter
at this stage can be traced back to mBots with disconnected USB
cables. If this is the first time you’re using a particular computer to
upload a program, make sure the Arduino drivers are installed. That
process is covered earlier in this chapter in the overview of wireless,
Bluetooth, and USB connections.

Once the upload is complete, the traffic light volume meter pro-
gram is now written to the mCore’s stable memory. Turn off the
board, unplug the USB cable, and build a better traffic light.

MBOT SOFTWARE AND SENSORS

1

112

Finally! Instead of a versatile robot that can be controlled with

an IR remote, programmed with a Bluetooth tablet, or issued com-
mands from mBlock, we have a battery-powered traffic light that
responds to noise. Moving from the flexible tool that could become
anything to a narrow, single-purpose thing is a huge step for young
designers. But it shouldn’t be the last step in the design process.

Half-built cardboard prototypes like this often represent the end-
point of student projects. From the perspective of a student follow-
ing a strict feature checklist, this traffic light volume meter is clearly
“done.” Making any changes will involve undoing something that
already works, an idea that is anathema to goal-focused learners.
Without stepping on the learners’ celebration, we insist on reflec-
tion and peer review at these seemingly terminal prototype stages.
Young Makers need to develop an iterative mindset and an eye for
improvements, even when it means “redoing” work. One of the best
ways to force this reflection is to put the prototype in use, and have
testers deliver honest feedback to the designer.

Simple critiques can prompt significant changes in the design.
If a user wants a way to adjust the volume levels on his or her own,
how many systems does that effect? First, it means adding some extra
form of input to the project, probably some buttons or a potenti-
ometer. As a result, that means using fewer ports for the lights. Is it
better to use the LED strip, or position the mCore to use the onboard

MBOT FOR MAKERS

LEDs? Which design would be more stable and allow teachers to
place the light vertically or horizontally?

The mBot’s expandability, combined with mBlock’s beginner-
friendly programming syntax, makes it easy to start creating interac-
tive projects like the traffic light. But the challenges of design come
from refining those initial prototypes into something that meets the
demands of real-world users and environments. Use the power and
convenience of these tools as a shortcut to those hard/fun problems.

REINSTALL THE DEFAULT PROGRAM

As hard as it might be to believe, the novelty of this stand-alone
Ssssh-meter will wear off. When that happens, you’ll need to replace
the traffic light volume meter program with a program that can com-
municate with mBlock.

Use a USB cable to connect the mCore to the computer and
connect to mBlock via the serial port. Then select between the two
confusingly named mCore options: Update Firmware and Reset
Default Program.

@ mBlock File Edit m Boards Extensions L

[N] Serial Port >
M VolumeTrafficLightl 2.4G Serial >
; Network >
| Averageloudness [~ |
e Upgrade Firmware
| FempSound BN | Reset Default Program >

View Source

Install Arduino Driver

There is a detailed comparison between these two versions in
Chapter 1, “From Kit to Classroom,” but the takeaway is that Update
Firmware is the better choice unless you’re planning on using the IR
remote. Make your choice, and then wait for the three-tone chime
(Default Program) or chirp (Update Firmware) when the upload is
complete.

MBOT SOFTWARE AND SENSORS

113

14

WHERE WE’RE HEADING FROM HERE

With this wide array of tools, it’s clear that “How do I control my
mBot?” is the wrong question. Given any task, there’s probably a way
to accomplish it using the Makeblock app or mBlock, or by using the
Arduino environment. For an open platform like the mBot, you can
choose the most focused tool, or the most flexible tool, or just use
one with which you’re already comfortable. The remaining project
chapters will each use one specific software tool, mainly for clarity
in the instructions. We’ll call out any unique features of a particular
programming environment when we use them. Other than those
exceptions, you should be able to build all the animatronics and
data loggers from the following chapters using the Makeblock app,
mBlock, or the Arduino IDE.

Sensors and Example Code

Onboard sensors are the sensors built right into the
mCore, the brains of the mBot. Two sensors, the ultra-
sonic sensor and line-follower, are included with the basic
mBot kit. The add-on sensors are available for purchase
in bundled packs and individually for very reasonable
prices. Nearly all the add-on sensors can be connected
to the mCore using RJ25 (phone jack) cables. For sensors
that are not made by Makeblock, the RJ25 adapter listed
here is the perfect solution. The RJ25 adapter allows you
to connect your own servos and sensors.

SENSOR IMAGE DESCRIPTION
OnBoard button Momentary push
onfhoard ixion [ETIREL button on mCore,
pressed .
. located behind
port 2

MBOT FOR MAKERS

SENSOR
OnBoard LED x 2

IMAGE

set led on board red @3 green @ blue €9

DESCRIPTION

Two programmable
RGB LEDs, located
between port 2
and port 3

OnBoard Light
sensor

[LIEELELTY jight sensor on board™,

Wide-angle ana-
log light sensor,
mounted directly
between the
onboard RGB lights

play tone on note (&89 beat (HID

A standard Piezo
buzzer; the Play
Tone block allows
notes from C2
==65 Hz) to D8
(4700 Hz), in half
to double duration

MBOT SOFTWARE AND SENSORS

115

116

SENSOR

IMAGE

OnBoard IR sensor

mBot's message received
I remote pressed

DESCRIPTION

IR receiver and
transmitter are
mounted next
to each other,
between the
speaker and the
button

Ultrasonic sensor

(Included with
mBot kit)

ultrasonic sensor distance

Measures dis-
tance from 3 cm
to 400 cm and

can be used for
obstacle avoidance
and measuring
distance

Line Follower
sensor

(Included with
mBot kit)

ine follower
line follower (2X¥5) (TSI is OIS

Two LEDs and light
sensors mounted
to a single board.
This sensor is
calibrated for the
height of the mBot
frame. Be sure to
test when using in
other situations.

set lod GIEW € red @ green @ blue (D

Four RGB LEDs
that can be
adjusted for color
and brightness

MBOT FOR MAKERS

SENSOR IMAGE DESCRIPTION
Add-on 7-segment Can be used to
display display data such
as speed, time,
temperature, dis-
tance, or a score
Add-on Sound Electret micro-
sensor phone. Detects
loudness of sound
at close range.
Add-on Can be used to
adjust speed and
brightness of
objects
Add-on PIR Motion N oton sersat GIED) Detects motion of
sensor humans or animals
in a 6 meter range
Add-on Joystick Joysick CEIER) €V Used to control
&= the direction of
physical objects or
video games
Add-on nght Detects the inten-
sensor sity of ambient

light sensor (PITEENY

light

MBOT SOFTWARE AND SENSORS

17

118

SENSOR
Add-on LED matrix

="

IMAGE

show face GEEW number: @

show face GHEW x: @ y: © characters:
show time GRS hour: € B min: €D

show drawing QW x: © v: @ draw: N

DESCRIPTION

8x16 aligned LEDs
to display numbers
and letters

Add-on RJ25
Adapter

MRBALY:

Converts standard
RJ25 to six pins to
use generic servos
and sensors

set led strip (IS CXED €I red @ oreen @D biue

WS2812 program-
mable LED. Uses
an RJ25 adapter to
connect to mCore.

Add-on Tempera-
ture Sensor

T T T
"‘l'll.n=.,

temperature %

Measure inside

or outside range
between -55°C
and 125°C. Sensor
is waterproof and
uses RJ25 adapter
to connect to
mCore.

MBOT FOR MAKERS

Animatronics

very kid wants to build a robot. No matter what materials are at

hand, from cardboard to empty soda bottles to brooms, if a kid
starts to build, there’s a decent chance that the shape that emerges
will be named robot. With that type of enthusiasm and access to
real, powerful components, the perfect robot should emerge spon-
taneously, right?

Using context to create focus is a key to any successful work with
young or inexperienced roboticists. Left to describe their dream robot,
most kids will describe some fantastical blend of Baymax, Optimus
Prime, and Gundam Wing. Vision that expansive can inhibit, rather
than inspire, when it hits the hard reality of servo motors.

This group of projects focuses kids’ attention on a “simple”
branch of robots that move and respond to the environment for
the benefit and enjoyment of an audience. Kids can think of these
as interactive tops, preprogrammed puppets, or scaled-down ver-
sions of audio-animatronics developed by Walt Disney Imagineer-
ing. While working on the Mission to Mars ride at Disneyland
during college, Rick got firsthand experience with Disney’s audio-
animatronics brilliance. Both vintage and newer Disneyland rides
include this trademarked Disney technology.

First, we’ll build some puppets that make random movements
to introduce several different operations, and then move on to more
advanced creations that actually respond to user input. Each sec-
tion will explain the specific hardware needed for movements and

sensing. Having a handful of custom-made RJ25 cables using the

instructions in Chapter 1, “Kit to Classroom,” will be very handy for

these projects. The short 6” cables that come with the mBots will

seriously limit your creativity. With cables 1’-3" long, you can really

accomplish almost anything you dream up. For all the projects in

this chapter, the box-creature bodies are just a starting point and will

surely turn into whimsical creatures as kids’ imaginations go wild.

Materials

TOOLS

Hobby knife
Masking tape
Cutting mat
Sharpie
Pencil

CRAFT SUPPLIES
Boxes of various sizes

Rubber bands, small and
large

Feathers
Pipe cleaners
Beads

Bling

Paint

ELECTRONICS

mCore (preferably with
case)

Sensors and motors (see
list that follows)

RJ25 connection cables
(You’ll want to use the

MBOT FOR MAKERS

Hot glue gun and glue sticks
Scissors
Needle-nose pliers

Ruler

Colorful foam sheets

Craft sticks, jumbo and
regular

Paper or plastic cups
Googly eyes

Colorful construction paper
Large paper clips

instructions from Chapter

2 to make your own, since
you’ll want longer ones than
are in the kit.)

RJ25 adapter (for using
generic servos)

FOR ADDING SENSING AND MOVEMENT
Sensors to trigger (input)

» Ultrasonic » Line-following
» Distance » Sound

» Motion » Touch

» Light

Components to react (output)

» Servos and linkage arms » LEDs

(aka, servo horns) > Mot
otors

PUPPET MOVEMENT WITHOUT SENSORS

For the first few projects in this chapter, we’ll build some creations
that light up, rotate, and spin, but don’t react to user input. Later
on, we’ll build some things that actually respond to user input using
specific sensors.

Project: Random Light-up Eyes Using RGB
LED Sensor

In this first project we’ll create a basic cardboard box head with cut-
out eyes and an RGB LED inside.

1. Select a box that is approx-
imately 5”7 x 5”7 x 5"—I
used an empty tissue box.
Open the box so you can get
inside.

2. Cut some eye holes out with
a hobby knife and then add

ANIMATRONICS

121

some tissue paper on the inside to cover the holes and diffuse
the light.

3. Put masking tape on the bottom part of the LED sensor. (When-
ever you're going to use hot glue on a sensor, add tape first to
prevent damage to the electronic parts.)

4. Add hot glue to the tape on the LED sensor and stick it inside
the box.

122 MBOT FOR MAKERS

5. Thread the R]25 cable out the bottom of the box and attach the
cable to port 1 on the mCore.

ANIMATRONICS 123

124

6. Connect the mCore to your computer and open mBlock. Write
and run the following program:

wh kev pressed

emar d @ green @B blue €
k ran domorom '58CS.
IR0 @D red €W green @ blue @9

This will create randomly flashing blue LED eyes that run forever
after the space bar is pressed. This is just a starting point, so now it’s
time to get creative by modifying this code to customize the colors
and blinking patterns.

\VV/\V’
%//\Qg//\i%\\ /4

MBOT FOR MAKERS

Project: Head Turning Randomly Using 9g Servo
and RJ25 Adapter

If you are using a lightweight “head” like the tissue box for this proj-
ect, 9g servos will work, with some modifications. If you are moving
a heavier object, you might need a bigger servo, like a Hitec HS-311,
which has a higher torque. For $3-$5, you can also purchase micro
servos with metal gears that are less likely to be stripped by too much
weight or force.

Mount and Wire the Servo

1. First, cut a mount for the servo. If you have access to a laser cutter,
download the template file from www.airrocketworks.com/instructions/
make-mBots, and use it to cut a mount from acrylic. If you don’t have
access to a laser cutter, you can also use the full-scale PDF, which
can be downloaded from the same location, to hand-cut a servo
mount out of a material of your choice. Slip the servo through the

mount and attach it using hot glue.

ANIMATRONICS

125

http://www.airrocketworks.com/instructions/

126

2. Next, cut a hole about %4” X 14" in the center of the box to fit the

servo and push the servo up through the hole in the box.

3. Once you're sure the servo fits, put tape over the servo mount

and glue it to the inside of the top of the box.

4. Feed the servo wires out the back of the box and tape the box

shut. Then, connect the servo to the Makeblock RJ25 adapter.
The R]25 adapter allows you to connect two servos to one port
on the mCore. For this project, let’s attach the servo to slot 1
using the following guidelines:

» Orange or yellow: S1 (signal)
» Red: VCC (power)
» Brown or black: GND (ground)

MBOT FOR MAKERS

BUILDING THE SERVO ARM

1. Mark the center of a large craft stick and drill a ¥4” hole.

2. On a piece of cardboard, trace whatever you are using for your
creature’s head, and then cut out the shape. 'm using the same
box I used for the LED eyes project because I'm going to use this
as my creature’s head.

ANIMATRONICS

127

3. Hot-glue the craft stick to the piece of cardboard, then drill
through the hole in the stick again and on through the card-
board. Depending on the size of the box used for the head, you
may need to trim the craft stick.

128 MBOT FOR MAKERS

4. Next, take the largest arm that came with your servo and hot-glue
it onto the stick, with the side that attaches to the servo facing
up. You need this to stick really well, so use plenty of glue, but

not so much that it goes inside the hole.

We'll set this aside for now until we have the servo connected to
the mCore and calibrated.

WIRING TO THE MCORE

1. The servo should already be connected to the R]25 adapter. Now
connect the RJ25 adapter to port 2 on the mCore using an RJ25
cable. (It’s connected and programmed for port 2 because you
may want to use port 1 for the LED eyes.)

=

ANIMATRONICS 129

130

2. Connect your mCore to your computer and write the code shown
in the following image using mBlock. This will make the servo turn
from 0 to 180 degrees randomly when the space key is pressed. If
you want the servo to move for only a set period of time, you can

swap the Forever control out for Repeat, as shown here.

when key pressed

. set servo angle pid(random @3 to

pick random (I to @

ATTACH THE HEAD TO THE BODY

1. Once the mCore is connected and programmed, attach the stick
and cardboard control arm to the top of the servo and carefully
screw it in place using the screw supplied with the servo.

MBOT FOR MAKERS

2. Then, attach the head to the servo platform using tape.

COMBINING THE LED EYES WITH THE MOVING HEAD

1. If your LED eyes are still inside the head, you’ll need to route
the cable out and to the mCore in a way that the cable does not
interfere with the operation of the moving head.

2. Now, using one of your custom RJ25 cables that’s at least 2 long
plug your LED eyes into port 1 of the mCore and combine the

two programs. Now you’ve got a randomly moving head and
blinking LED eyes!

ANIMATRONICS 131

132

Going to the Zoo

The Robot Petting Zoo was born out of the TechHive Stu-
dio at the Lawrence Hall of Science at the University
of California, Berkeley. The first Robot Petting Zoo was
a brilliant 12-hour Makeathon for high school students.
During the first 10 hours, students learned about pro-
gramming, electronics, prototyping, and design while
they built a robot pet, and then spent the last two hours
presenting their creations to the public. The Robot Pet-
ting Zoo was the inspiration for some of the following
projects. Matt Chilbert and Andrew Milne were instru-
mental in the event at TechHive, and Tom Lauwers is the
president and chief roboticist at BirdBrain Technologies.
Thanks to these gentlemen for their inspiration!

Project: Opening Mouth Using a 9g Servo and an
RJ25 Adapter

This puppet in this project is made using a box, one servo, a single-
sided servo arm, a small craft stick, and a large paper clip to operate
the mouth flap.
We’re going to start with a cardboard box and use one of the
flaps as the mouth. For this example, we’re using a 6” X 6” X 6” box
from Uline.

1. Lay the box flat and, on one end, cut off the two flaps opposite

of each other.

2. On the side you didn’t cut, tape the four flaps closed with a strip

of masking tape.

MBOT FOR MAKERS

.AA

3. On the other side, tape just one flap down and draw eyes. The
bottom flap will be our mouth.

7

4. Grab a 9g servo and select the longest single-sided servo arm.
We’ll be extending the arm by hot-gluing a craft stick to it. Cut
the small craft stick down to about 2”, drill a small hole 1¥4” from
the end of the stick, and then glue the servo horn to the stick with
hot glue.

ANIMATRONICS

133

5. Press the servo arm and stick extension down onto the servo
top, and turn it all the way to the left, with the servo oriented
as shown in the following image. Reposition the stick extension
(also shown here), then screw the servo arm into place using the
short self-tapping screw provided with the servo.

134 MBOT FOR MAKERS

6. Connect the servo to the R]J25 adapter. Refer to the earlier project
in this chapter, “Head Turning Randomly Using 9g Servo and
RJ25 Adapter,” for details. Next, plug the servo into slot 1 and
then mCore port 1.

LT
LT

7. Program and run the following.

angle €EIW)
Sl R .

: not key EEETERd pressed?
angle €&

ANIMATRONICS

135

The servo should rotate between the two positions.

N e s Y 0 TR R

e\ \)
L:;r.mv.ﬂ . ‘

)

8. Using needle-nose pliers bend the jumbo paper clip into the
shape shown in the following image, with 212" legs on both sides.

— TS T U |
|

[0 [T AL [T
A T
W

————
=

TOOLS FOR WORKING Y

9. Measure 1” from the front of the box, and mount the servo to the
inside of the box. Hot-glue it directly to the cardboard to make
sure it’s flat, as shown in the following image.

136 MBOT FOR MAKERS

10. Hook the paper clip through the hole in the wooden craft stick,
then rotate the servo toward the front of the box. Then tape the
paper clip down to the flap.

ANIMATRONICS

137

11. Your mouth should now open and close using your space bar as
the trigger.

12. Once you know your mouth is working correctly, you can remove
the tape and replace with a generous amount of hot glue.

Project: Rotating Eyes Using a 9g Servo and an
RJ25 Adapter

For this project, you’ll be using the same box from the previous mov-
ing mouth project along with a cardboard toilet paper tube, servo
horn, and masking tape.

1. Take the tape with the drawn-on eyes off the flap of the box you
built in the previous project.

2. Flip the box over, and then cut out the bulk of the flap with a hobby
knife, leaving a 2" border on three sides of one flap, as shown in
the following image. This is where you’ll be building your rotating
eyes. Save the scrap, because we’ll be using it in a future step.

NEEEIS
N

a8

138 MBOT FOR MAKERS

3. Take a cardboard tube, trace a circle around it on another piece
of scrap cardboard, and then cut out that circle.

—

4. Hot-glue the servo horn to one side of the cardboard circle, with
the part of the servo horn that attaches to the servo as close to
the middle as possible.

ANIMATRONICS

139

5. Now hot-glue the circle onto one end of the cardboard tube.

6. Measure and make a mark on the upper-inside-left of the box
2Y4” down from the top and 1%4” in from the front. Using a gen-
erous amount, put glue on the bottom of the servo and then glue
the servo to the side of the box, lining up the bottom-right side
of the servo with your mark.

140 MBOT FOR MAKERS

7. Now, flip your box over and tape down the flap opposite the
moving mouth on each side, as shown here.

8. On one of the scrap pieces of cardboard, measure 1%” down on
both sides and draw a connecting line. Center two quarters on
the line, draw a line around them, and then cut them out. This is

where the rotating eyes will line up.

ANIMATRONICS

141

9. Roll up some tape, as shown in the following image, and attach
to the box over the rotating tube.

10. Write the code on Scratch and then run the program. The eyes
will rotate between three positions.

when key pressed

set servo (e ENZW andle (9

when key pressed

set servo (e ELew anale EN

when [ElM key pressed

set servo W GHEEW angle €N

11. Using a pencil, draw the numbers 1, 2, and 3 on the tube through
the openings you cut for the eyes that correspond with the three
positions. You may need someone to press the 1, 2, and 3 key on
your keyboard while you’re numbering the three positions.

MBOT FOR MAKERS

142

12. Remove the cardboard with the eye holes, and draw in three dif-
ferent eye shapes with a Sharpie. Again, you may need to have
someone hold the 1, 2, and 3 keys on your keyboard while you’re
drawing in the eyes with the Sharpie.

We also added a serrated edge to both sides to look like a mouth.
Have fun customizing your own!

ﬁwﬁ‘

ANIMATRONICS 143

144

13. In Scratch, you can combine the rotating eyes and mouth move-
ment using the following code.

when key pressed
set servo ETS anale (B9

when key pressed

set servo angle €8

when key pressed

set servo angle

when key pressed

set servo angle

not kev space ¥ pressed? J

sef servo EED nole €D

By pressing the 1, 2, and 3 keys, you’ll move the eyes into the
different positions. The space bar will open and close the mouth.

PUPPET MOVEMENT WITH SENSORS

The projects so far in this chapter have been preprogrammed for
random or set movements without sensors. Now we’re going to add
some interactivity where your creature senses the environment and
responds according to your program.

Project: “Feeding” Your Creature Using the
Light Sensor

With this project, we’ll use a light sensor that senses when your
creature is “fed” and triggers a couple of motors to spin your crea-
ture’s ears.

For this project you’ll need two geared motors, a light sensor,
and an LED. We’ll attach the two motors inside the cardboard box,
attach wheels on the outside, and then add some whimsical ears

MBOT FOR MAKERS

to the wheels. Then we’ll affix the light sensor and LED inside the
“mouth.” When we “feed” the creature a piece of cardboard food,
the ears will spin!

1. Starting with a fresh 6” x 6” X 6” box or similar, tape the back of
the box closed, and then cut off the side flaps on the other side,
as shown.

L/
o
77

'~

ANIMATRONICS

145

3. With a 1%2” hole saw, cut a hole in the upper corner of each side,

as shown. I measured 2” from the top and 2” from the side.

146 MBOT FOR MAKERS

5. It’s easier if you mount the motors to a laser cut motor mount
first. Laser-cut a mount out of acrylic using the template files
available at the book’s website. The additional holes in the
mount are sized so that you can connect the motors to LEGOs
or other Makeblock accessories.

NOTE If you don’t have a laser cutter, you can cut
the mount by hand using a material of your choice,
such as cardboard, thin wood, or thin sheets of plastic.
PDF templates are available from the book’s website
at www.airrocketworks.com/instructions/make-mBots.

6. Put masking tape on the acrylic motor mount so that it’s easy to
remove later, and then add hot glue on top of the masking tape.

ANIMATRONICS 147

http://www.airrocketworks.com/instructions/make-mBots

7. Position the motor mounts inside the box with the motor hubs
centered inside the holes. We’ll add the white plastic wheel hubs
later.

Now repeat steps 5-7 with a second motor.

8. The moving ears that you’ll be creating will spin around when
the light between the RGB LED sensor and the Light sensor is
blocked by a small piece of cardboard that is the creature’s “food.”

148 MBOT FOR MAKERS

Once you have the LED sensor and Light sensor positioned, you
can tape them in place. Then connect the RGB LED to port 1
of the mCore and the Light sensor to port 3 of the mCore. The

motors can be connected to M1 and M2.

9. Code the following in mBlock and send to your mCore. The code
will turn on the LED, then trigger the motors (M1 and M2) when
the light going to the light sensor is interrupted.

t motor
motor 5

ANIMATRONICS 149

150

10. Now we’ll add some fun ears to the wheel hubs using foam sheets.
Cut the ears out of foam, apply masking tape to the plastic wheel
hubs, and glue the ears on with hot glue.

Now when you “feed” your creature by passing a cardboard disk

through the mouth, the ears will spin. The creature will look like the
one in the following picture. The creature also has an Ultrasonic
sensor mounted on the front that will be part of the next project.

MBOT FOR MAKERS

Project: Propeller Spins with Ultrasonic Sensor

For this project, you’ll need the Ultrasonic sensor and one of the
geared motors. When something or someone approaches your crea-
ture, a propeller on its head starts to spin!

1. Tape one side of a box closed. Then, drill a %" hole in the top

center of a box.

ANIMATRONICS

151

2. Mount the geared motor to a laser-cut, acrylic motor mount and
cover the motor mount with masking tape. If you don’t have a
laser cutter, you can cut the motor mount by hand using the
full-size PDF template. You can make the mount from wood,
cardboard, or soft plastic sheets.

3. Print the dowel-to-gear-hub adapter on a 3D printer using the
template, available on the book’s website: www.airrocketworks
.com/instructions/make-mBots. Insert a ¥4” dowel connector into
one end of the 3D-printed adapter and the other end onto the
gear hub of the motor.

4. Add hot glue to the tape on the motor mount and glue to the top
of the inside of your box so the 3D-printed adapter sticks out of

the top.

5. Cut a %" x 2” hole in the front of the upper front flap.

6. Cover the Ultrasonic sensor with tape, apply hot glue, and attach
to the inside of the flap. The tape will protect the sensor from the
hot glue and allow you to easily remove it later.

152 MBOT FOR MAKERS

http://www.airrocketworks

7. Mount the Ultrasonic sensor to the front of your box so that the
“eyes” are exposed.

ANIMATRONICS 153

8. Connect the Ultrasonic sensor to port 1 and the motor to M1.

9. Write and run the following code as a starting point. The Ultra-
sonic sensor will sense your movement and trigger the motor.
You can adjust the distance at which the Ultrasonic sensor begins
to react. Here it’s set at 20.

aved =3 a X

mBot ¥

at speed €
set mnturm speed @
s

servo a
set led on bosrd red@
set led red@ green U"“
&l sct led strip red G

4
play tene on note beat (T

oo P L

Shou

154 MBOT FOR MAKERS

10.If you add a Say block in Scratch (in the Looks script) to
your Ultrasonic sensor, you’ll know it’s working when the
data input changes in the Panda’s speech bubble. This one is set
to 400. As you approach your creature, the motor should turn on.

E mBlock - Based On Scratch From the MIT Media Lab(v3.4.1} - Bluetooth Connected - Saw

File Edit Connect Boards Extensions Language Help

(™ E
(M, Ulrasonic-motor o]

X: 240 ¥: 180
Sprites New sprite: k=4 / H’ O]

Pres |

11. I added a 6” long, %4” dowel to the 3D-printed adapter and
attached a propeller printed on card stock to the top. This is
where you can have fun customizing your creature with whatever
your imagination can come up with!

ANIMATRONICS 155

156

Project: Servo Arm with Paw Reaches Out When
Motion Sensor Is Triggered

When someone approaches your creature, an arm linked to a servo
will reach out.

Sometimes the circular motion of a servo or motor isn’t exactly
what you need for your creation. That’s where mechanisms come in!
Hundreds of websites exist to show you how to turn a simple circular
motion into other motions. While there are quite a few options, the
one we’re going to focus on here is using a scissor linkage for a hand
or paw that reaches out.

MBOT FOR MAKERS

1. Grab eight large craft sticks and some brads to build the grabber.

2. Drill %52” holes in the ends and middle of each crafts stick. It
works well if you stack the sticks and drill them all together so
you get the holes in the same place. Then insert brads, as shown.

There should be one center hole with no brad.

3. Decide which side of the box you want to attach the linkage to,
or maybe you want two servos on each side! Cut a %" X 134" slot
in the box near the top center, as shown, then glue your servo to
a laser-cut acrylic servo mount.

ANIMATRONICS 157

4. Cover the servo mount in masking tape, and then add hot glue

and tape inside the box with the servo centered.

5. Grab your servo linkage arm. Flip the scissor mechanism over
and glue the servo linkage arm over the third center hole that
does not have a brad. You can see pictures of linkage arm in the
following image.

6. Test-fit the servo horn onto the servo, then on the bottom end
of the same craft stick as the servo arm, stack up several layers of
scrap cardboard until the stick is about level with the servo, as

158 MBOT FOR MAKERS

shown in the following image. Mark the cardboard through the

hole so you know where to place a brad.

ANIMATRONICS 159

8. Connect the whole assembly using a brad.

This is how it should look from the side.

160 MBOT FOR MAKERS

9. Using Scratch, create the following program, which will allow
the Motion sensor to trigger the servo. Push your Motion sensor
through a hole in the front of the box and connect the servo to
the RJ25 adapter. Next, connect the Motion sensor to port 4
and the RJ25 adapter to port 1 on the mCore.

when clicked

10. Once you have the mCore programmed and the servo lined
up, you can permanently attach the servo arm using a screw and
washer.

ANIMATRONICS

161

162

11. Now attach your claw, hand, or paw to the end of the scissor

linkage and you’re ready to go!

You can find some additional linkage and mechanism resources
from the brilliant folk at the Tinkering Studio at http://tinkering
.exploratorium.edu/cardboard-automata.

Project: Touch Sensor Triggers
Scrolling Message

In this project, you’ll make a message display when your creature
is “petted”! We’ll use the Touch sensor and an 8 x 16 LED Matrix
display to make this happen.

1. Gather the components shown in the following image.

MBOT FOR MAKERS

http://tinkering

. Grab a box, lay it flat, and cut off the two flaps opposite each
other.

ANIMATRONICS 163

164

3. Mark a 14" x 1” hole in the top flap and cut out the rectangle
with a hobby knife. The LED Matrix will fit here.

i e

4. In the middle of the bottom flap, cut a 1” wide slit with a hobby
knife. The Touch sensor will slip in here.

5. Add masking tape and then hot glue to the back of the LED
Matrix.

MBOT FOR MAKERS

. Plug the LED Matrix into port 2 on the mCore and the Touch
sensor into port 1.

ANIMATRONICS 165

166

From the front it should look like the following.

1
[y

S P

 touch sensor (I _then
show face (NeM x: (x y: () characters: BB i Pleasezl
b
change Eid by €9
=

'

MBOT FOR MAKERS

At this point, loading the program onto your mCore requires a bit
more of an explanation (see the section in Chapter 1 titled, “Updating
the mBot”). If you turn on your mCore and you hear three tones,
you have the default program loaded. The default program includes
all the files for your IR remote, line-following, and Ultrasonic sensor
programs. These take up a lot of space and do not include the code
needed to run the Touch sensor. You need to connect your mCore
to your computer using a USB cable, open mBlock, and connect
using whatever com port is available by going to the Connect menu,
and selecting Serial Ports. Once you’re connected, select Upgrade
Firmware on the Connect menu and it should go through the upload
process to load the software needed for all the sensors, including the
Touch sensor. Now, when you boot up your mCore you should just

hear just one short beep.

ANIMATRONICS

167

168

After upgrading the firmware and rebooting your mCore, con-
nect your mCore via 2.4G serial or Bluetooth. Now, when the user
triggers the Touch sensor by petting your creature, a message will
appear on the LED Matrix! Each time you touch the Touch sensor,
the message will start and stop. You have to keep touching the pad
to see what the entire message says.

The projects in this chapter are just a starting point. Once you
see how fun it is to set up and program sensors that trigger motors,
servos, and digital readouts, you’re limited only by your imagination.
I’ve used a 6” X 6” x 6” box for most of the projects in this chapter,
but you can use whatever you have available, or what works for your
particular project. One thing I've discovered: when you give kids lots
of creative supplies like colorful foam sheets, cardboard tubes, boxes
of various sizes, feathers, pipe cleaners, wood sticks, and other craft
supplies, their minds and creativity come up with incredible things.
The mCore and sensors provide the foundation for adding interac-
tivity to any creative endeavor.

MBOT FOR MAKERS

Measurement
Devices

C omputers count really fast. With small embedded computing
systems like the mBots or an Arduino, anyone can create tools
to record data about our physical environment. These measurement
robots will work tirelessly for days at a time, and the data they pro-
vide about the world can offer young people a way to broaden their
notions about the observable universe. The mBot is too large to be
worn around a person’s wrist, but the process for designing an envi-
ronmental sensor for the mBot has much in common with develop-
ing technology that goes into wearable commercial tech products
like smartwatches.

Probes and sensors have been a standard part of science class-
rooms for decades. Vernier manufactures dozens of different sen-
sors designed to monitor everything from pH to turbidity. For more
exotic measurements, like the composition of gases or liquids, spe-
cialized sensors are available, and are wonderful tools.

There are many specialized sensors available for the Arduino
platform, and most of them can be used with the mBot. The tech-
niques in this chapter can be generalized for most analog and digital
Arduino sensors, but they are time consuming.

Here we’ve attached a Grove soil moisture sensor to the mBot
using the RJ25 adapter board (see Figure 4-1). Many analog sensors
operate with the same standard three wires: one for 5 V, one for

170

ground, and one for sensor data. Grove’s soil moisture sensor uses
Grove’s standard four-wire cable. Using any third-party sensor of
this type requires matching the order of those pins on the sensor to
the order on the R]25 board.

FIGURE 4-1: This soil moisture sensor from Grove uses a standardized
4-wire cable, even though the sensor only needs 3 pins.

With an easy-to-use generic tool like the mBot, the best learn-
ing experiences come from finding ways to use simple sensors to
measure something specific and personally meaningful. Think of
the long history of room alarm kits and toys sold since the 1970s.
In every case, the core tech was something incredibly simple (a light
sensor, a small button, or a magnetic reed switch) that became com-
pelling when wrapped in the narrative context of adolescent spy fan-
tasies. The goal of this chapter is to model how to think like both an
engineer and a kid so you can construct the sensors you want out of
the tools available.

In this example, we’ll build a data-logging device that can operate
independently for days using the mCore and a basic sensor, in both
the Makeblock app and the mBlock programming environment.
While these projects are built around a few common sensors, the

MBOT FOR MAKERS

techniques used to record, analyze, and export the data are con-
sistent and reusable in most situations. The two examples we’re
building in this chapter were designed and built by elementary stu-
dents who were studying how energy and resources were used in
their school building. The flexibility of the mCore enables you to
design and build devices that capture data to investigate your own
super-specific questions, just like these kids.

The hallways into our building have two sets of doors, but some
elementary students noticed that they were often both propped
open. These students wanted to gather data on how often this hap-
pened, how long the doors stood open, and what effect that had on
the hallway and classrooms.

This is close to the best case scenario for elementary students
looking for local problems. Rather than focusing on a single question
or measurement, these students had found a rich and complicated
subject that could support multiple paths of inquiry.

Working together, they generated a large collection of measure-
ment questions related to this drafty hallway (see Figure 4-2).

\{J\\o:\‘ ‘f’ivv\c 16)
Gy =t

ﬁ/ 5 \\\'\'g\\g dhe

FIGURE 4-2: A student’s brainstorm about what could be “measured”
in the hallway, and how to use that data

MEASUREMENT DEVICES

171

172

It’s easy to overlook this conceptualization step. It would cer-
tainly be easier and more direct to teach about a particular topic by
gathering a supply of homogeneous parts and detailed instructions
that walk everyone through building the same device. When I’'ve had
particular constraints on time or budget, I've chosen to run a single
project with a class. However, I know that having everyone work on
a single preplanned device causes the excitement retention rate (the
number of kids who will still be enthusiastic and motivated by the
end of the project cycle) to drop significantly.

Given the option, I will always choose to let students look for
problems in the complexity of our daily lives, which we’ll refer to
as a problem site in our classroom. This is a much slower start than
handing out premade Kits, but it helps ensure that each kid starts
wanting to know something specific and personal. What motivates
kids out of the doldrums that invariably beset them in the middle of
a project is personal investment in their unique questions.

The other risk of using open, student-directed inquiry with a
physical computing project is that someone will latch onto a ques-
tion that’s beyond the scope of the hardware and materials on hand.
Although the Makeblock ecosystem incorporates a huge range of
sensors and tools, that’s not the whole story. Given a finite set of
sensors, boards, time, and budget, there are clear limits of what we
can tackle “in class, this week.” The flexibility of Makeblock makes
it easier to account for this reality, while still encouraging kids to
explore the problem site with an open mind.

Looking over the questions generated from consideration of the
hallway problem site, creating a temperature monitor was an obvi-
ous project option. Another group decided to investigate the doors
to see if they could get useful measurements about long they stood
open. Both projects require some way to store and evaluate sensor
data over time. Looking at these two problems will showcase two
different methods for capturing and logging data using the mCore
and mBlock.

Sensors report some specific bit of information about the world.
The most basic program for any sensor is to display its output, which
is recorded as part of a larger data set or used to trigger another

MBOT FOR MAKERS

action. But those tasks are almost impossible without a clear under-
standing of how the sensors report data and respond to changing
conditions. Creating simple sensor display programs is a crucial step
toward more elaborate projects and can help you create powerful
stand-alone learning tools. This first section demonstrates how to
display sensor readings using either a tablet or computer. The exam-
ples use Makeblock’s thermometer, shown in Figure 4-3, but the
principles apply to all supported sensors with numeric values.

The Makeblock app is a great tool for quickly creating control
panels and status displays. Without access to Arduino libraries, tab-
let users are limited to the sensor blocks included in the Makeblock
app. At the time of writing, this includes most of the sensors sold by
Makeblock, but that may change as new sensors are released.

FIGURE 4-3: The Makeblock RJ25 connector board and water-
resistant thermometer

MEASUREMENT DEVICES

173

174

One strength of the Makeblock app is the variety of tools
provided to display sensor values. For these examples, we’ll use a
Numeric Display modeled on a common seven-segment LED, and
the Line Graph. These are the best tools in the Makeblock app for
providing precise history for a sensor.

Open the Makeblock app and create a new Makeblock sketch,
then choose the Line Graph display block from the Custom palette
(see Figure 4-4).

DESIGN m Manual

SLIDER 0
NUMERIC DISPL

e
LILILIL

LINE GRAPH

FIGURE 4-4: Items in the Custom palette start without any blocks.

At the top of the Makeblock app screen, there’s a button that
allows you to toggle between Design and Play mode. To add ele-
ments or make changes to them, you need to be in Design mode.
Play mode will activate those elements, along with any scripts under
a When Start hat. In Scratch parlance, blocks with the swoopy tops
are called hats, because they must sit at the top of a stack of blocks.
All hat blocks and the blocks attached to them require some signal to
activate. Makeblock also has a variety of interactive UI elements that
trigger specific behaviors when selected. Displaying sensor values
requires a Ul element such as the Line Graph, Analog Meter, and

MBOT FOR MAKERS

Numeric Display, but you can use the Read Sensor block anywhere
in a Makeblock app program.

For this example, we’re using an mCore with the three-wire
temperature sensor, connected through the RJ-25 adapter board, as
shown in Figure 4-5. The temperature sensor is analog, so it needs
to attach to port 3 or 4. In this example, we’re using port 3 and slot 1.

FIGURE 4-5: The temperature probe connects to the RJ25 board,
which bolts securely to the LEGO Technic frame from Chapter 1, “Kit
to Classroom.”

To model all of these connections inside the Makeblock app, we
need to add code to our blank Line Graph block. In Design mode,
select the Line Graph block and choose Code. (See Figure 4-6.)

The block interface for the Makeblock app offers many tools to
work with, but this example requires only a few. For a more detailed
discussion of how to program with the Makeblock app UL, revisit
Chapter 2, “mBot Software and Sensors.”

MEASUREMENT DEVICES

175

176

DESIGN

LINE GRAPH

Line Graph
BUTTON

SWITCH

SLIDER 0

o @

NUMERIC DISPL...

LINE GRAPH

FIGURE 4-6: The Context menu that opens the block-based coding
interface is available only in Design mode.

We'd like the line graph to constantly display the temperature
reading. In the Detect palette, there’s a Read Common Temperature
Sensor block. Drag it out, then configure the Port and Slot values to
port 3 and slot 1. Wrap that orange block inside a purple Display On
This block from the Display palette. Place that purple block inside a
pink Repeat Forever block from the Control palette. Finally, attach
the Repeat Forever underneath the light blue When Start hat. The
final block is a multicolored monster, as you can see in Figure 4-7, but
it will grab and graph the thermometer data indefinitely.

Tap the back arrow in the top left of the screen to return to the
UI design screen. At this point, it’s worth renaming the Line Graph
block to reflect what it’s actually graphing. Tap the Line Graph block
and use the orange pencil icon to rename it.

The line graph and all other display elements will update after
the Makeblock app is in Play mode.

If the temperature is stable, the graph will show fluctuations
within a few degrees Celsius. If you take the probe from your warm
hand and plunge it into a cup of ice, the graphs will zoom out to

MBOT FOR MAKERS

H

®

Line Graph-8

@
@
<Q

I

}]

L .

Display

® i@

=z &
2 g
5 8

g
é

0000

FIGURE 4-7: When creating custom elements, you can set sensor
locations directly inside the blocks without using the Port interface.

Controls

display the sudden dip in temperature. Scaling keeps major tempera-
ture swings visible for a while, but the detailed values are obscured.
The variables in the Makeblock app allow programs to track spe-
cific values, even after they scroll off the dynamic line graph. Next,
we’ll create a variable to capture and display the lowest temperature
recorded by the sensor.

Blocks that relate to variables in the Makeblock app are Change
Item By, Set Item To, and Item, and they all appear in the Math
palette. (See Figure 4-8.)

Once any of those blocks are dragged out of the palette, clicking
the pulldown after the word Item will show all existing variables and
allow you to delete or rename them. For experienced programmers,
it might seem a bit weird that there’s no Create Variable option in
this menu. In the Makeblock app, new variables are always called
simply Item. After a variable is renamed to something helpful and
clear, dragging out another block from the Math palette will create
another bland Item. In fact, the Makeblock app doesn’t offer any way
to create a new variable other than renaming! This system attempts

MEASUREMENT DEVICES

177

178

to avoid situations where many anonymous Item variables clutter
up programs, much like Untitled word processing documents do on
a desktop.

@/\
D

sin v
_ine Graph-8
Begin m
Move
L O

:
Display change [E1Ea by port3 1 ‘ T this v |
®
Event ==
i remainder of #
o
ko

Controls random integer from n to m

FIGURE 4-8: Blocks with the keyword Item live in the Math palette
and offer access to all variables in the Makeblock app.

It’s important to recognize that these variables are not tied to
particular Ul elements! The Makeblock app’s system of bundling
code to particular buttons or displays can obscure the fact that all
the code is part of a single program and runs simultaneously. Vari-
ables can be set, read, and modified across the code blocks of several
elements, which will help keep the Lowest Temp program visually
cleaner.

One of the real hassles of block-based programming is screen
width. When blocks nest inside each other, it’s easy for important
information to get pushed off the right side of the screen. Horizontal
scrolling is a pain! To avoid this, it’s good practice to use a variable to
store the temperature reading, instead of calling the sensor several
times in a single loop (see Figure 4-9).

MBOT FOR MAKERS

D=

Line Graph-8

N\
°%

®

repeat forever "" set to port3 1

WEE Currentremp < |10
e

Display

9

- 0000

Controls

FIGURE 4-9: Saving the temperature reading in a variable makes it
possible to build another Ul with confidence that both will use the
same data.

This technique transforms a long block like Read Common Tem-
perature Sensor on port 3, slot 1, into one compact variable name
CurrentTemp. Each time we use a variable instead of a sensor call,
the program gets more consistent (because the values don’t change
each time), more responsive (because the program running on the
tablet doesn’t have to wait to hear from the mBot), and more clear.

Using the Makeblock app, we’ve created a portable thermometer
that displays of-the-moment data on the screen of a mobile device.
But if something interesting happens with the temperature while no
one’s watching the screen, there’s no record of it. To fix this, we’ll
create a second variable to store the lowest temperature observed by
the sensor. We'll also create a new UI element, Numeric Display, that
will always show the lowest recorded temp from the current session.
See Figure 4-10.

MEASUREMENT DEVICES

179

180

Rename all 'item'’ variables to:

LowestTemp

L]

FIGURE 4-10: To create a new variable in the Makeblock app, drag any
block that uses the keyword Item onto the stage, and then rename
the variable.

Although the lowest temperature won’t often change, it needs to
be constantly checked against the CurrentTemp threshold (see Fig-
ure 4-11). Placing the Wait block before the comparison loop ensures
that a valid CurrentTemp variable will always be available.

The blocks in this Numeric Display never set the value of
CurrentTemp. The Line Graph block is still updating the Cur-
rentTemp value during every loop, and this block can make use
of that data. It’s worth noting that there’s no strict sequencing
between the code in the Line Graph block and these blocks. Both
use a RepeatForever block and will loop independently. Loose
coupling like this might cause problems with data that changed
rapidly and non-linearly, like the ambient noise level at a concert.
Because we are working with something slow and steady like tem-
perature change, though, there’s little measurable difference if the
LowestTemp loop checks the same CurrentTemp value twice, or
if the CurrentTemp value updates quickly between loops of the
LowestTemp check.

MBOT FOR MAKERS

[lma

A
a
%

®

Numeric Display-9

@
@

<Q
5

Move
el G s B curenttemp < (-« [LowestTemp -)
@ ([LowestTemp v 1) || CurrentTemp + |

m
g
3
S

\, | T g Em———
LIS LowestTemp « [RCUN this v |
| .

®

o
e
@
-1

9

- 0000

Controls

FIGURE 4-11: Why start off by setting the LowestTemp threshold to 99?
Having a large initial value ensures that on the first loop, CurrentTemp
will be below LowestTemp and the Do section will execute.

When introducing the Makeblock app, it’s helpful to attach each
script to the relevant Ul element. If the widget isn’t displaying the
LowestTemp properly, checking the code inside the Numeric Display
UI element is a good first step (see Figure 4-12). You can quickly
move between the scripts attached to all elements in a program by
using the horizontal navigation panel at the top of the screen. How-
ever, blocks from anywhere in a program can change or update each
individual UI element. In more complex programs, it might be more
elegant to keep all the scripts in a single location.

If you use the wide range of sensors available, the Makeblock
app can become a powerful and versatile data-monitoring station.
The only hard limits on the Makeblock app as a research tool are the
range of the Bluetooth connection and insufficient, large-scale data
storage. Using mBlock, the desktop programming tool, offers ways
around those specific limitations but presents a very different expe-
rience when working with sensors. In the next section, we’ll re-create
a similar temperature-logging program within mBlock and highlight
the data-related tools within the Scratch environment.

MEASUREMENT DEVICES

181

182

[B 3

Line Graph-8

=R{o] *

repeat forever ['Eéi:o j ad commmon temperature sensor (GEEA slot]

; e g
display | Ll this v
L 1

- LowestTemp v {01 (7199 |

' . p—
RS r | CurentTemp + | - [LowestTemp ;|

do &et LowestTemp v il ' CurrentTemp v

" 3 S o3
display | i LowestTemp v | Il Numeric Display-9 v
—

9
é

0000

FIGURE 4-12: By changing the last display block to name the Numeric
Display instead of the self-referential keyword This, the entire pro-
gram can attach to one element.

o
g
2
S
@

MONITORING SENSORS IN MBLOCK

When you’re using the mBlock programming tool on the desktop,
the easiest way to check the value of a sensor is to use the purple Say
blocks. It isn’t fancy, but it is still a great way to check that the values
match your expected sensor behavior. When working with a class
or large group, we require a Say sensor test as the mandatory first
step for any program. This little stack of blocks serves as a safeguard
against common start-of-project problems. If the polar bear can say
the temperature, like she’s doing in Figure 4-13, then we know that
the mBot board is powered properly, the serial connection works
(whether it’s Bluetooth, 2.4G, or USB), all the sensor wires are con-
nected properly, and the displayed data matches expectations.
Creating this simple program replaces a lengthy and dull preflight
checklist that leads to a properly configured mBlock and a blank
screen. By using Say blocks to fix low-level issues, we also create an
interactive tool that helps students experiment with the hardware.

MBOT FOR MAKERS

F . Scripts | Costumes | Sounds - T re An

[Events

Control
[sensing

[Rovots.

FIGURE 4-13: The default mBlock panda sprite doesn’t do much in
our programs except shout sensor values.

Since the mBot’s wireless communication allows us to measure
the temperature far away from the controlling laptop, it’s import-
ant to display the temperature on the device itself, not just on the
mBlock stage. We’ll opt for the conventional 7-segment display. Just
like the Say block, the 7-Segment block will accept any alphabetic or
numeric value, including variables or mathematical expressions, as
shown in Figure 4-14.

In mBlock, you can use variables to track record temperatures,
although the visual syntax looks different from the Makeblock app.
Moving between two different block-based tools teaches new pro-
grammers to look for structural similarities underneath syntactic dif-
ferences. Whether you’re working in the Makeblock app, mBlock,

say (round temperature (R G °C

d
set 7-segments display (TER9 number (round temperature iC
ST

FIGURE 4-14: Use the green Round block from the Operators palette
to round the temperature to whole degrees.

MEASUREMENT DEVICES

183

184

Arduino C, or Python, the flow of sensor loops is identical: acquire
new readings, check against special values, replace if necessary, repeat. In
mBlock, we can check for high and low temperature thresholds in
the same loop.

As we did in the Makeblock app program, we’re going to use
HighTemp and LowTemp variables to keep records of the extremes,
along with a CurrentTemp variable to store the latest reading from
the thermometer. Using variables in mBlock means creating them
in the Data&Blocks palette using the Make A Variable button, then
using the orange Set Variable To block in the program itself.

This program starts off by setting both the high and low tem-
peratures to the initial reading from the thermometer. This provides
a reasonable baseline to check against over time. The default value
in the mBlock Set Variable To block is 0, which isn’t a neutral value
for temperatures in Celsius, much less Fahrenheit!

Once the variables are set, we need to establish the main loop of
the program. As in the Makeblock app program, this loop will run
continuously once the program starts, and require no interaction
from the user (see Figure 4-15).

I recommend that you use an If/Else block in your loop to check
the first criterion, and then nest another If block in the Else state-
ment. This ensures that no CurrentTemp value replaces both the

[otion f cvenss P
[Looks Control when clicked (
(HighTemp 5030 | IEG“”“ ISE'S‘”C set size to @D %)
s Pen Operators - ! x
[Rovots set [MIERITFRd 10 temperature °c <
set CFSCTRd to CurrentTem,
27-"“‘:_) Make a Varizble DL i ~
set [EMIGIRd to CurrentTemp
Ll CurrentTemp - =
=X HighTemp e
@ D set 1o temperature c
5 = =
say | CurrentTemp
3
ser CFRTTM o ’ S -
S o -] By ——————
 chnge ETIIETERd oy © | A Cunerncreme > (righrems SoRen
show variable CIFTICTYR] set CIITTRd 0 CurrentTemp
hide variable S ————]
i ' CurrentTemp < LowTemp _then
X: 240 y: -180 =N P 4
New sprite: ‘& / & 3 | set [EYITETRd to CurrentTemp
Make a List
Make a Block 5 d

FIGURE 4-15: This version reproduces the behavior of the mobile pro-
gram created with the Makeblock app.

MBOT FOR MAKERS

HighTemp and LowTemp records in a single loop. When the pro-
gram starts and HighTemp and LowTemp are assigned the same
value, those values won’t change until the temperature shifts.

At the beginning of each loop, the value for CurrentTemp is dis-
played on the physical 7-segment display and on the screen with the
Say block. The on-screen displays for HighTemp and LowTemp are
controlled by the small checkboxes next to the variable names in
the Data&Blocks palette, or by using the orange ShowVariable and
HideVariable blocks in a program.

One of the enduring charms of Scratch is that the general-
purpose tools are strong and flexible enough to make up for the lack
of built-in functions that provide instant answers to very specific
challenges. There’s no Line Graph function in mBlock that matches
the one in the Makeblock app. Instead, there’s the wide-open Pen
tool that can create everything from mathematical drawings to 3D
environments and everything in between. There’s no end to the com-
plexity and challenges that can emerge from trying to create graphi-
cal representations of data with the Pen tool. This simple line graph
is an invitation to experiment and create with this incredible tool,
shown in Figure 4-16.

The mBlock Stage area becomes the XY-coordinate grid and sets
the position of the cursor based on the data from the temperature
sensors (see Figure 4-17). The value of the horizontal X-coordinate
needs to steadily increase so that the graph moves steadily to the

CurrontTemp [T

X: 240 y: 180

Sprites Newspiie: & / & B -

G/am YT
FIGURE 4-16: While the panda sprite is shouting the temperature, the

small butterfly sprite is drawing the line graph.

MEASUREMENT DEVICES 185

186

right over time. This example uses a five-step “tick” for the graph,
meaning that the distance between each data point is five steps on
the Stage. Using fewer horizontal steps in each tick would create a
slower and denser graph, whereas a larger tick would result in bigger
movements on the graph over a smaller time interval.

vy | {¥:0,¥:180)
{ V¥:0) (%:0,Y:0) { V¥:0)
3 & 4
("
-
] (x:0,¥:-180)

FIGURE 4-17: Scratch chose a center-original coordinate plane to
better match the way graphing is taught in elementary math classes.

A normal temperature range of a few degrees doesn’t create a
very dramatic graph. In mBlock, the XY-coordinate grid has a center
point of (0,0) and has a maximum Y-coordinate value of 180. We can
adjust the temperature value to display better within that coordinate
system. This example, shown in Figure 4-18, scales the temperature
by 3.5, making the vertical distance between degrees more noticeable,
and then shifts it down by 75 steps so that 0 degrees is in the lower
half of the stage. These particular constants make sense for an outside
thermometer reporting in Celsius in certain parts of the world, but
they would be a bad choice for monitoring the temperature inside
a refrigerator. Shifting and scaling the graph to make good use of
the Stage real estate and match the conditions being measured is a
meaningful design task in and of itself.

MBOT FOR MAKERS

when clicked
set size 10 @ %
set pen size to @)

pen down
»

goto x: | x position +@ y: ";'éqmt‘l'arrip ‘€D -D

FIGURE 4-18: This program draws a line graph and resets
when the sprite exits the right side of the Stage.

So far, we’ve been using the mCore to report on momentary
observation. While we’ve used visual displays and record-keeping
to broaden the moment of observation, the raw data is ephemeral.

Arduino Uno-derived boards like the mCore are memory-
limited, making it impractical to use a plain board for long-term
data monitoring. The many data-logging projects that use Arduino-
derived boards must all record data to some form of external mem-
ory, either by a connection to a computer or the addition of SD cards.
The specialized form factor of the mCore makes it more difficult to
use one of the many Arduino shields that add SD card storage. But
since the mBot can use the standard persistent Bluetooth or 2.4G
serial connections to send back temperature readings to mBlock, the
hard work of data storage is already done!

So far, the thermometer we’ve built hasn’t needed to store or
evaluate large amounts of data. It simply took the temperature
reading from the sensor and sent it to the 7-segment display, and
checked that value against dynamic thresholds. Tracking all of the
temperatures over time means that we need to use mBlock’s List
data structure.

MEASUREMENT DEVICES

187

In mBlock, lists appear as a bundle of variables, with each slot
capable of holding numbers or words. Like variables, List blocks have
a special set of blocks that only appear once you’ve created one. (See
Figure 4-19.)

Make a List

=8 TempRecords

ENi 5B thing R TempRecords ™

i

Y 1 Bl TempRecords ~
insert £ 17 I8 TempRecords ~

LI ECICOT 17 Bl TempRecords ~ RUIGE ting

(108 17 I8 TempRecords ™
(LI TG W8 TempRecords ™
TempRecords ~ fesly &1

A GIVBIA] TempRecords ™
IGENISE TempRecords ~

Make a Block

FIGURE 4-19: List blocks allow programs to read, insert,
or remove individual items from any position in the list.

Lists start empty, but do not reset or clear unless you use the
List block named Delete All (see Figure 4-20). This persistence can
be a useful feature if you’re trying to capture data over a long time,
but when you’re designing and testing it’s helpful to clear the list
at the beginning of the program. By default, mBlock displays Lists
values on the Stage, but the actual data will quickly outstrip those
tiny windows.

188 MBOT FOR MAKERS

when clicked

AT o1~ X Temp Records +

say (round temperature CEER) G °C

3

set 7-segments display number (round temperature T

add | round temperature oM '} Ternp Records ™

FIGURE 4-20: Without the opening Delete All block, new items would
append to TempRecords each time the program ran.

After gathering a large data set, we can export the data and use
other tools for analysis. This is a simple extension of the previous
thermometer program that captures each reading in a list called
TempRecords.

The current program puts a new temperature reading into Temp-
Records as fast as mBlock can communicate with the mCore. The
actual time this takes depends on the method used to tether the
mCore to the computer. With the 2.4G serial adapter, the list adds
about 340 entries in 120 seconds. With a wired USB connection, it
adds over 500 records in the same time.

For a device that’s monitoring the temperature in a hallway, even
two readings a second might be overkill. Lists in mBlock don’t have
a hard size limit, other than the available RAM on the computer, so
large lists aren’t intrinsically bad. But to a human who might want to
scan that list, three hundred entries of the same value don’t add much
to the picture. Using a small timer, we can easily add a 60-second
delay between each temperature reading (shown in Figure 4-21). This
ability also creates a powerful proving ground for investigations into
size, scale, and sampling. These programs aren’t answers to textbook
problems! They’re designed by humans to answer real questions in
particular contexts. Given the physical reality of the problem site,
is there a difference between two million readings taken every 30
seconds or one million taken every second? The correct answer for a

MEASUREMENT DEVICES

189

190

drafty school hallway might lead to doom when applied in a high-al-
titude emergency shelter.

| set [T to temperature GER D) "C
h = g

| say | CurrentTemp

FIGURE 4-21: This adds a new item to TempRecords, and then puts
the program to sleep for a full minute.

The choice to take a temperature reading every minute is clean,
but a bit arbitrary. Why not 75 seconds? Why not three minutes?
One of the powerful abilities you have in tethered mode is creating
programs that can be modified on the fly.

Writing an adjustable program that uploads to the mCore intro-
duces a number of problems: How do you know the current state of
the program? What input method adjusts those states? What feed-
back is provided to the user to know they’ve successfully changed
state? Trying to communicate the changing state of a program
through a few blinking LEDs can be a nightmare. Tethered mode
makes the screen, keyboard, and mouse accessible for any mBlock
program, which allows you to create a clear, intuitive control scheme.

The first step is to replace 60 seconds, which serves as a threshold
value for our loop, with a variable (see Figure 4-22). By itself, this
doesn’t change the behavior of our program.

Since SampleDelay is set to 60, that’s the value check each time
the program runs through the If statement. Now we can use mBlock’s
keyboard input functions to control the value of SampleDelay.

MBOT FOR MAKERS

when clicked

TN all~ B3 Temp Records ~
s:l: SampleDelay ~ Rl m

say | round temperature (ZHER G5 °C

3

set 7-segments display (138 number | round temperature °c
13

add | round temperature Kol Y Temp Records ¥

FIGURE 4-22: Setting SampleDelay before the loop ensures that the
program will start with a 60-second delay each time it runs, and that
value can be adjusted later.

These blocks make use of two different ways that Scratch looks
for keyboard input. The first is the orange When Key Pressed hat
from the Control palette (see Figure 4-23). When Key Pressed blocks
constantly check for the given keyboard input, and then executes
the blocks underneath once. However, if the signal stays on (like a
keyboard key being held down) then the blocks will execute many,
many times. To address this, the program waits for a pressed key to
be released. This is a simple example of what’s known as debounce—
the process of eliminating stray inputs from physical systems. With
this extra block in place, we’re assured that each press of the up or
down arrow will change the SampleDelay value by 5 seconds. Using
the small checkbox next to the variable name or the ShowVariable
block will ensure that the current value of SampleDelay stays on the
mBlock Stage at all times.

MEASUREMENT DEVICES

191

192

when key pressed]

wait until not key PEETERd pressed?

when clicked 3
delete ('] Temp Records ~ Lhbuel) SampleDelay ~ 107 e

L GIVRYELEI R SampleDelay ~
ET SampleDelay ~ o) 5 | when key pressed

reset timer wait until not key EETTENAd pressed?

per - (L1} SampleDelay bye
say temperature °C

set 7-segments display number | round temperature 2C

i = -
timer > SampleDelay _then

add temperature G(olR -} Temp Records ~

b

| reset timer

FIGURE 4-23: Using the When Key Pressed hat introduces elements
that are checked during each cycle without incorporating them into
our main Forever loop.

Once we've collected several hundred temperature readings,
we need to find something to do with them! Creating data visual-
izations in Scratch-derived languages is a great, open challenge for
new programmers. There are so many tools and hooks available in
Scratch and mBlock that it’s possible to create radically different
graphs or visualizations from the same data. However, since those
techniques are all grounded in Scratch programming, rather than
the mBot, they’re slightly outside the scope of this book. The book’s
website (www.airrocketworks.com/instructions/make-mBots) has a gallery
of Scratch projects that create data displays from both static lists
and incoming data streams. These projects can serve as models or
inspiration, or even as a cautionary tale about what roads to avoid.

Fortunately, there’s an easier way to get the data from mBlock
into a spreadsheet using a tool that’s purpose-built for handling giant
lists of values. To export the values from any list in mBlock, you can
right-click on the list viewer on the Stage and select Export (see
Figure 4-24).

MBOT FOR MAKERS

http://www.airrocketworks.com/instructions/make-mBots

Temp Records

BENEH®RY

length: 29

| sampleDelay [T |

FIGURE 4-24: Export generates a list of return-separated values.
Data in that format can also be imported into mBlock lists.

The list values are exported to a text file with each value on a
separate line (see Figure 4-25). This format is perfect for copying
and pasting the values into Google Sheets, Excel, Numbers, or any

other comparable program.

mBlock temperatures

File Edit View Insert Format Data Tools Add-ons H
/o AP s % 0 00 123- Ardal - 1
f
A] c D

1 27.125

2 27

3 26.875

4 26.875

5 26.6875

[26.25

7 25.875

8 25.6875

9 25.5625 .l

10 25.375

1 25.25

12 25.0625

13 24,9375

14 24.75

15 24.625

16 245

17 24.375

18 24,1875

FIGURE 4-25: Data can also be imported into mBlock lists.
List exports contain only raw data, so it’s up to the user to

add labels and context.

MEASUREMENT DEVICES

193

194

Not only does exporting data allow students to use existing tools
to create simple graphs or calculate central tendencies like mean,
median, and mode, but it’s the best way to collect data from several
mBlock programs. If several groups build small measurement devices
to monitor specific areas of a larger problem site, exporting the data
to a common document allows students to easily compare their find-
ings. Consider three of these temperature monitors spaced out along
a hallway. If all of their data is in a single spreadsheet, it’s much easier
to see how far and fast the momentary drop in temperature from an
open door travels down the corridor.

DOOR MONITOR

While you can make interesting programming choices to measure
and record temperature, the hardware didn’t require much thought.
As we’ve seen in this chapter, getting a basic reading boils down to
plugging in the thermometer and finding the Read Thermometer
block. The situation is quite different for more general tasks, like
trying to track the open/closed status of a door. There’s an abun-
dance of sensors and methods that can perform this task, but none
of them are called “door sensors,” and mBlock doesn’t come with a
Door Sensor block. In this next section, we’ll look at how to use a
variety of tools to track door status, and how to design a program
largely independent of the particular sensor.

When new roboticists approach a real-world problem like this,
it’s important to get them to look carefully at the physical details of
the problem space. As a teacher, I've found that repeatedly asking
basic questions about small observations and actions will eventually
shift students’ frame of reference down to a scale that robots and
sensors can measure. It can take several minutes of climbing on a
stepladder or lying on the floor while fiddling with the actual door
to arrive at a sufficiently detailed answer to “How does the door open?”
What makes these questions wonderful for groups of kids is that
deep, detailed observation reveals that not all doors are the same!
Differences in the material, frames, weight, and construction of each
door will push students to generate novel solutions that accommo-
date all that messy, real-world variation.

MBOT FOR MAKERS

For a sliding door, the mBot ultrasonic distance sensor was able

to face inward and watch for a gap when the door opened. (See

Figure 4-26.)

The mBot Line Follower sensor
is placed near the hinged edge of
the door. Popsicle sticks are used
to enlarge the visible target of the
door. The purple sticks shown in
Figure 4-27 block one of the two
light sensors on the Line Follower
until the door is opened. This cre-
ates a unique closed state where the
two different sensors on the Line
Follower report different values.

FIGURE 4-26: Early versions of
this sensor failed when kinder-
garten students would only
slide the door open far enough
to squeak through.

FIGURE 4-27: This popsicle stick solution

emerged after students struggled to find a
sampling rate that would reliably catch the
door in motion.

MEASUREMENT DEVICES

195

196

These students mimicked common commercial door alarms and
used a magnetic reed switch attached to the door frame and a mag-
net stuck to the metal door (see Figure 4-28).

FIGURE 4-28: One group of students latched onto reed switches early
and searched the campus for a metal door to hold the magnet in place.

Reed switches have a small lever encased in the plastic housing
that moves in response to strong magnetic fields. Reed switches work
like any other button would with the mCore. On the R]25 connector,
connect one wire to the ground pin and the other to the S1 or S2 pin
(depending on the port you use). Here, the bare wires from the reed
switch are soldered to standard 0.1 pitch header pins, which match
nicely with the JST connectors on the RJ25 board (see Figure 4-29).

FIGURE 4-29: Soldering header pins to the RJ25 board make almost
any crazy switch idea mBot-compatible.

MBOT FOR MAKERS

While most reed switches are sold in packages with two plas-
tic parts, the loose piece without wires just contains a magnet. In
a classroom environment, this part often disappears and students
wind up using generic magnets. Our Makerspace tends to use strong,
rare-earth magnets due to size and storage concerns, but if you have
access to a shoebox of red and blue horseshoe magnets, they’ll work
just fine.

This mess of tinfoil is a student-made button, where the foil-
wrapped popsicle stick bridges the gap between two smaller foil
pads, each connected to one pin of the RJ25 connector. (See Fig-
ure 4-30.) This is a crude button but gives decent readings using the

same Limit Switch block as the magnetic reed switch.

FIGURE 4-30: Alligator clips are connected back into the
RJ25 board with header pins, just like the reed switch.

MEASUREMENT DEVICES 197

198

NOTE It’s worth mentioning again that these inge-
nious, messy kid-solutions are only viable because we use
super-long RJ25 cables. If we were using the Makeblock-
supplied lengths of cable, placing a switch at the top of
an 8 door frame would mean also mounting the entire
mCore above kid height. When you use a 12’ or 15’ cable,
masking tape can hold lightweight switches and sensor
boards in precarious spots, while the mCore sits in rel-
ative safety. Long cables, neatly routed along doorjambs
and floors, allow kid-made sensors to stay in active use
for days and weeks without being a hazard to normal
school-day navigation. Don’t overlook the simple trans-
formative power of extra length!

These solutions should not be seen as an exhaustive list of how
to check a door. Simple problems often spawn complex solutions.
It can be difficult for teachers and mentors to resist presenting the
“right” solution, especially when kids are climbing a ladder to build
something stupendously inefficient. Be strong and stay quiet! No
matter how outlandish the solution, we can use the Custom Block
features in mBlock to abstract away the mess.

Our goal with a custom block to check and open the door is that
you could write a program that uses data from the door sensor without
knowing anything about the physical construction. Instead of look-
ing at readings from a particular sensor, we’ll create a new variable in
our program called DoorStatus and assign a status of either Open or
Closed. Variables in mBlock can store letters or numbers, and can per-
form type-appropriate operations on them. Subtraction doesn’t work
well on text (or more properly, strings), but mBlock can check for equal-
ity. For strings, equality means an exact character-by-character match.
There’s no functional difference between using Open/Closed, True/
False, or 0/1 as DoorStatus values, but using Open/Closed makes the
program far more legible for other humans.

MBOT FOR MAKERS

We’ll change the DoorStatus value only from within a custom
block called CheckDoorState (see Figure 4-31). This way, the main
program doesn’t need to care whether the door sensor uses a Line
Follower sensor or a magnetic reed switch.

define | CheckDoorstate define| CheckDoorstate

= limit switch the
£ oorstate - 119 oren| P8 Doorstae - 1] cLoseD)

B Coorse + [cuosen: B ooorse [ore

define | CheckDoorstate

i) ultrasonic sensor GER distance > EX] then [Nl define CheckDoorState |

wait @) secs [line follower (IR (SIS is (O and line follower GHIED) CEEITS) 's COEED)
if ultrasonic sensor HER distance |> hen ==
. o LR N oo - o
fit Doorstate ~ 0] OPEN else
L = i cLose]
)

P2 Doorstate - 10 CLOSED| e

]

FIGURE 4-31: You should be able to drop any of the four Check-
DoorState functions shown in these images into the same program
and they should function identically.

All of these CheckDoorState blocks work for their particular sen-
sor and physical setup, but the main loop doesn’t need to know any-
thing about those details. Using the CheckDoorState block means
that the program trusts that, whatever happens inside, the code will
update the DoorState variable accurately and promptly.

Using the same techniques from the temperature records pro-
gram, this program tracks how long the door is held open in a list
called OpenLength. This program uses two light blue blocks to
monitor time in a program: Timer and Reset Timer from the Sens-
ing palette. In a Scratch program, the timer starts running as soon
as the program window opens, regardless of whether any program
blocks are executing. This value will increase constantly until the
Reset Timer block is triggered, and then it will reset to 0 and start
counting again (see Figure 4-32).

MEASUREMENT DEVICES

199

200

when clicked

delete € of I iR
forever

f CheckDoorState
b 4

it DoorState = [GIEY then

reset timer
b F

repeat until DoorState = [SIED]
| CheckDoorstate

L[I) Open Length ™

FIGURE 4-32: In mBlock, Reset Timer
serves as the starter’s pistol and
resets the timer, which is continuously
running, to O.

The resulting list records the OpenLengths with the Timer block’s
default precision of thousandths of a second. (See Figure 4-33.)

I

I

o
"]
a8

© @~ @ B
]

B
=]

=
=

a
=
=

DoorState [~ -

FIGURE 4-33: You can see that even
though the door was closed after

a second, the timer value is still
increasing.

Unlike the record of temperatures, which took a reading at fixed
time intervals, an entry is added to the list only when the door is

MBOT FOR MAKERS

opened and closed. As a result, the number of entries in Open-
Length provides a count of how many times the door was opened.
In mBlock, you can access that number directly using the Length Of
List block from the Variables & Blocks palette.

Knowing that this value will go up every time a new item gets
added to the list opens up the possibility of calculating averages or
looking for patterns. it’s a good practice to isolate extra tasks in cus-
tom blocks, as we’ve done with the doorstate. Strive to keep the main
loop readable and the custom blocks narrowly focused. Using more
custom blocks in a program, provided they’re well named, reduces
complexity for both the designer and the user (see Figure 4-34).

when clicked

CheckDoorState

5 timer > AverageOpenTime .._ﬂwn

FlashAlert

A=

e

LGS (U LIBRGY Open Length ~

FIGURE 4-34: Well-named custom blocks
create mBlock programs that are clear and
human-readable.

Without seeing the scripts contained under these custom blocks,
a reader can still intuit what should happen. Names alone suggest
that the custom block CalculateAverageOpenTime will update and
set the variable AverageOpenTime. When the door is open for lon-
ger than that value, it’s time for FlashAlert. This script could play

MEASUREMENT DEVICES 201

202

a sound, illuminate a strip of LEDs, direct a robot to pull the door
closed, or turn on a hose. In some way, the script represented by
FlashAlert wants to motivate nearby humans to close the door.

Encourage young programmers who are satisfied with their first
prototype to add custom blocks to programs in this aspirational
manner. A new custom block has no scripts attached and will do
nothing when added to a program. Empty blocks work as placehold-
ers for new features and help the programmer consider when and why
to perform an action independent of deciding how.

Using the mCore, students were able to gather real data about
the quiet details of their everyday environment. Quantitative infor-
mation, from machines they designed and built themselves, pushed
them to find ways to fix the problems they identified. They put
up reminder signs, cleared gravel that blocked exterior doors, and
changed traffic patterns in the building. Although these solutions
were small, they still provided powerful closure for a student-led
learning experience.

MBOT FOR MAKERS

Robot Navigation

R obots can navigate in a variety of ways. Autonomous robots
navigate using programs that allow them to follow GPS coor-
dinates, or sensors that allow them to navigate in response to their
environment. Robots can also be operated by the user using remote
control. We’ll look at several types of robot navigation in this chap-
ter. We’ll also look at two add-on packs for the basic mBot kit, which
are available for about $25. The mBot add-on Servo Pack and Inter-
active Light & Sound Pack have many additional brackets, studs, M4
screws and nuts, beams, additional sensors, and RJ25 cables, along
with a wrench. These items are all handy for many of the projects in
this chapter. The add-on packs are available through Amazon or on
the Makeblock website (www.makeblock.com).

ROBOT NAVIGATION USING
KEYBOARD COMMANDS

Connect your mBot to your laptop or tablet using Bluetooth or 2.4G
serial wireless and write the code shown in Figure 5-1. With a Blue-
tooth connection, you can now control your mBot from across the
room using the arrow keys.

http://www.makeblock.com

204

Before we get started,
though, I’ll share a quick note
about speed. If the robot is
moving too fast, drop the bot’s
peak speed from 255 to 100.
But remember: resistance in
the gearing and the weight of
the wheel combine so that low-
ering the values for speed too
much may make you unable
to move an assembled mBot.
We’ve found that speeds less
than about 70 aren’t strong
enough to move the mBot from
a dead stop, but if you give it a
small push, it will keep moving
forward.

Once you’re able to navigate
using your arrow keys, you can
devise all kinds of challenges
using other mBots. The signals
to each robot won’t interfere
with each other, because Blue-
tooth connections are unique to

when key pressed
S

when key released
3 ol @

when Pr—
at speed

when key released
ot specd @

when key pressed
ML =t speed €N

when key released
% i@

when key pressed
at speed

when key released
ot specd @

FIGURE 5.1: This Scratch code
allows you to control your
mBot with the up, down, right,
and left keys on your keyboard.

each mBot. You can continue to use the code shown in Figure 5-1

in Scratch, but then add code to trigger actions based on input

from other sensors. This way you can drive your mBot using the

up, down, left, and right keys while your bot does other things.

ROBOTIC GAME CHALLENGES

Once you are able to navigate your mBot using the arrow keys,

you can begin creating your own Battle Bots! A popular game

is Sumo Bots, where two or more bots battle it out inside a ring

MBOT FOR MAKERS

marked on the floor using tape. The last bot inside the ring wins!
My students came up with a great design using old CDs to “scoop”
their opponent out of the ring, as shown in Figure 5-2. We’ll start off
with a few Sumo Bot defense and attack ideas.

FIGURE 5-2: Here is a creative take on a Sumo Bot challenge from
some of my middle school students.

CD Scoop

You can add a CD scoop by attaching old CDs onto the front of the
mBot just off the ground to scoop your opponent out of the arena.

Parts
Right-angle L brackets (2) CDs (2)
4Mx8 screw and nut (2) Scrap wood

I'm trying to move my students beyond using gobs of tape for
everything, so the following directions show the CDs being sturdily
attached with drilled holes and screws.

ROBOT NAVIGATION 205

1. Start off by attaching two right-angle L brackets to the front of
your mBot using a 4Mx8 screw and nut.

2. Glue two old CDs together with a hot glue gun, then flip the
mBot over and, using the holes as a guide, mark the CDs where
you’ll drill a hole to attach them to the L brackets.

AT

e S
M

206 MBOT FOR MAKERS

3. Place a piece of scrap wood under the CDs, and then drill through
the CDs where you marked the holes.

4. Now put an M4x8 bolt and nut through the two CDs and tighten
to hold them securely in place. Now you’re ready to scoop your
opponent out of the ring!

ROBOT NAVIGATION 207

208

Spear-Lowering Servo

A BBQ skewer/lance that can be lowered using a servo can be added
as an attack mechanism.

Parts
Bamboo skewer 4Mx8 nuts and bolts
Mini zip ties (2) 9-hole plate

9¢g servo and servo holder RJ25 Adapter
L brackets (2)

1. Begin by attaching the two L brackets to the front of the mBot
using four 4Mx8 nuts and bolts, as shown in the following

image. The L brackets, servo, and servo holder are included in
the add-on Servo Pack.

2. Next, attach the 9g servo to the laser-cut acrylic bracket using
the small bolts and nuts that come with the add-on Servo Pack.
If you’re using your own servo, download and laser-cut the file at
www.airrocketworks.com/instructions/make-mBots. If you don’t have

MBOT FOR MAKERS

http://www.airrocketworks.com/instructions/make-mBots

a laser cutter, you can print the full-scale PDF and cut by hand

using cardboard or thin wood.

3. Remove the M4 screws from the back posts, which holding the
mCore to your mBot, and replace with the M4x25 brass studs.

ROBOT NAVIGATION 209

4. Now install the 9-hole blue plate to the brass studs with two M4
bolts, and then attach the R]25 adapter to the blue plate with two
M4 bolts and nuts. Plug the servo into slot 2 of the RJ25 adapter,
and then plug the R]25 adapter into port 4 on the mCore.

5. Before you attach the servo to the front of your mBot, you need
to center it. Connect the mBot to your computer using your pre-
ferred method (Bluetooth or 2.4G wireless serial). Then write
the code to center the servo, shown in the following image, and
send it to your mBot. You can use this code with any program to
center a servo.

when clicked

set servo angle €M

Now you’re ready to attach the servo arm to your servo using
a very small Phillips head screwdriver and the tiny self-tapping
screw that came with the servo.

210 MBOT FOR MAKERS

A

#nhlh.&

w \/

9

)

of the mBot using two M4x8 bolts and nuts.

&F

6. Attach the servo to the right angles mounted on the front

211

ROBOT NAVIGATION

7. Line up a bamboo barbecue skewer with the servo arm and attach

with two mini zip ties.

8. Pull the zip ties very tight, and then clip off the ends of the zip
ties with wire cutters.

212 MBOT FOR MAKERS

9. In Scratch, write the code shown in the following image and send
it to your mBot.

when [Eld key pressed

set servo (GIEM €IEW angle €W

when m key released

set servo angle (B

when key pressed

set servo Sl angle

when m key released

set servo angle @

I had to edit the angles a little bit to get the lance to a 45° angle, and
then a 90° angle. The spear will lower to a 45° angle when the A key on
a keyboard is pressed. It will return to the up position when the key is
released. The spear will lower to a 90° angle when the S key is pressed,
and then return again to the up position when the key is released.

Now you’re ready to joust with a cool skewer that can be raised and
lowered using your computer. Safety is always important, so remember
to wear your safety glasses when you’re working with sharp things.

ROBOT NAVIGATION

213

Catapult Ball Launcher

A whole different type of challenge is created using a plastic spoon
and servo to hold the spoon back and then launch the ball like a
catapult. This ball launcher could be used to knock down obstacles,
shoot at targets, or aim for baskets.

Parts

Ping-pong ball Staple remover

Plastic spoon M4x14 bolts and nuts
Clear acrylic plate RJ25 adapter

M4x25 Brass studs (4) L bracket

9-hole blue plate Double-wide 10-hole beam

Figure 5-3 shows all the supplies you’ll need.

[T | --IIlIlulI INEEEREIR
| =lr\ﬂ 4] e
u T %

AN
L]

X
N
||
||

N
||
50 0

FIGURE 5-3: Here are all the supplies you’ll need for a ping-pong ball
launch rig.

214 MBOT FOR MAKERS

The clear acrylic piece shown in Figure 5-3 was used in Chapter
1 as a case for the mCore. Here, we’ll be mounting this platform to
the top of your mCore to support the catapult mechanism and hold
the electronics. Laser-cut files for the acrylic platform can be down-
loaded at www.airrocketworks.com/instructions/make-mBots, or printed
out full scale from a PDF as a template for hand-cutting a material
of your choice. Other key parts include a stiff plastic spoon and a
standard staple remover.

1. Remove the four M4 bolts that are holding on the mCore, replace

them with the four brass studs, and tighten securely.

2. Next, mount the acrylic platform onto the top of the brass studs
using the four M4 bolts.

ROBOT NAVIGATION

215

http://www.airrocketworks.com/instructions/make-mBots

P

QUX

N\

SES

<

S X

3. Install the 9-hole blue plate to the back of the plastic platform

on the second and third holes from the left, as shown in the fol-

lowing image.

T

.@., \

N Me,\j
nanune
ARRRRRNRREREREC o]

S A"

MBOT FOR MAKERS

216

4. Mount the servo into the acrylic servo holder that came with the
add-on Servo Pack following the instructions in the upcoming

section, “Light-Emitting Head-Shaking Creature.”

5. Next, use M4x14 bolts to bolt it down to the back of the 9-hole
blue plate.

6. Screw the RJ25 adapter to the L bracket using two M4 bolts
and nuts.

S—
2

ROBOT NAVIGATION

217

7. Using M4 bolts and nuts, attach the L bracket to the rear of the
acrylic platform in the two holes on the far right.

8. Cover the double-wide, 10-hole beam with masking tape. We’re
going to be hot-gluing the staple remover onto this part, so you’ll
want to protect the metal. Make sure you keep two parallel holes
on the ends exposed, since this is where you’ll attach it to the
acrylic plate. It helps if you lay the masking tape on nice and
smooth.

218 MBOT FOR MAKERS

9. Now add a generous amount of hot glue to one side of the staple

remover.

10. Press the staple remover evenly, glue-side down, on top of the
tape, lined up with one end of the plate, as shown in the fol-
lowing image. Make sure the holes are exposed, leaving enough
room for the M4 bolts.

ROBOT NAVIGATION

219

220

11. Attach the staple remover assembly to the back of the acrylic
plate with two M4x14 bolts and nuts, lined up as shown in the
following image.

12. Test-fit the plastic spoon on top of the staple remover. The spoon
should line up a little off center of the servo arm. The servo arm
should be able to securely hold the spoon down in the trigger
position. The servo arm will rotate out of the way, which will
trigger the spoon catapult arm.

MBOT FOR MAKERS

13. Once you know where the spoon should be placed (mark the end
of the spoon with a Sharpie, if needed), add a generous amount
of hot glue to the top of the staple remover and press and hold
the spoon in place for 20 seconds.

1

g o o s o
|

|
|
|
.
| g

) |

14. Connect an R]25 cable to the RJ25 adapter and to port 3 on your
mCore.

ROBOT NAVIGATION 221

222

15. Connect the servo to slot 2 on the RJ25 adapter. The nice thing
about the servos that come with the add-on Servo Pack is that
they only install in one direction so you always get them plugged
in correctly. If you’re using a generic servo, follow the directions
in Chapter 3, “Head Turning Randomly Using 9g Servo and R]25
Adapter.” This is what your finished assembly should look like
with the spoon catapult in the up position.

16. Cock the spoon back and rotate the servo arm in place to hold
it. Place your ping-pong ball in the spoon and now you’re ready

to launch!

17. Create the code shown in the following image in Scratch. This
code is really simple, with your space bar being the catapult
trigger.

when key pressed

set servo angle @

when key released

set servo angle €W

MBOT FOR MAKERS

18. Next, test your code to make sure the trigger works. You may
need to modify your code or center the servo (see step 5 in the
“Spear-Lowering Servo” section for centering directions) to get
your trigger to work properly.

Now go set up some targets or create some challenges and
fire away!

Robot with a 9g Servo Grabber on the Front

For this project, we’ll add an awesome 3D printed grabber mecha-
nism powered by a 9g servo to the front of our mBot. By adding the
grabber, which is controlled by your laptop, you’ll be able to set up
all kinds of challenges and even go head to head with other mBots to
move items around a battle arena or obstacle course.

Printing and Assembling the Servo Grabber

Hats off to Jon Kepler for coming up with this brilliantly simple
robotic claw and posting it on Thingiverse. Download it at https://
www.thingiverse.com/thing:18339 and print (printing will take about
35 minutes).

PARTS

3D-printed parts (as 3x8 mm machine bolt
described in previous and nut

paragraph) Mini zip ties

9g micro servo

Along with these 3D-printed parts, you’ll need a micro servo
(9g). The one shown in the following image uses metal gears
but still costs only a couple of bucks. You’ll need the servo link-
age arms that go with the servos, a 3x8 mm machine bolt, and a

ROBOT NAVIGATION

223

https://www.thingiverse.com/thing:18339
https://www.thingiverse.com/thing:18339

3 mm nut. Once you have all the parts printed and gathered you’re
ready to go!

1. Turn the 3D-printed servo box over and push the 3 mm nut into
the hex-shaped indentation.

224 MBOT FOR MAKERS

2. With a pair of wire cutters, cut off the arm from the servo horn
and then smooth out the cut edge with sandpaper.

L
mmme

/
¢
§
s

3. Place the servo box on top of the 9g servo, with the servo shaft
positioned over the opening in the servo box.

] 7) Pl |
'zHlllI il W

4. Attach the right pincer to the shaft of the servo with the screw
that came with it. Use the piece of the servo horn from step 2 as
a spacer.

ROBOT NAVIGATION 225

5. Position the left pincer next to the right one with the gears
interlaced.

|
b

=

6. Attach the pincer by pushing the 3 mm bolt through the nut and
tighten loosely so the pincers can move. They should move in a
grasping motion.

T T\

The principle behind the servo arms is very simple. One arm is

directly connected to the shaft of the servo. The other arm is linked
by gears to the first arm. When the servo shaft turns, the first arm

226 MBOT FOR MAKERS

rotates and, thanks to the gears, forces the second arm to move in
the opposite direction, thus bringing the two arms together. Once
attached to the mBot, the arms may need to be adjusted after you
get the servo calibrated.

Attaching the Servo Grabber to Your mBot
Next, you’re going to build a bracket to attach your mBot to the
grabber mechanism.

PARTS
L brackets 9-hole blue plate
M4 bolts and nuts (6) Mini zip ties (2)

1. Screw the aluminum L brackets included with the mBot Servo
Pack onto the front brackets of the mBot chassis using the M4
bolts and nuts.

ROBOT NAVIGATION

227

228

2. Screw the 9-hole blue plate to the L brackets, as shown in the
following image.

3. Attach the servo grabber to the front bracket with a mini zip tie,
and cinch it tight.

MBOT FOR MAKERS

4. Connect the servo to port 1 on the mCore using the R]25 adapter.
I attached the RJ25 adapter to the back of the mBot using some
M4 screws and nuts. The wires can be neatened up using more
mini zip ties or twist ties.

Here is the servo grabber in the closed position holding a piece
of foam pipe insulation.

|4

Write the code shown in the following image in Scratch. The
code on the left controls the mBot using the up, down, left, and right
arrows. The code on the right opens and closes the grabber claw
using the space bar.

ROBOT NAVIGATION

229

when key pressed
ot speed

when key released
at speed G

when key pressed
at speed

when [EIeRd key pressed
set servo angle €8

when key released

set servo angle

when key released
o el G

when key pressed
IRt =t speed

when key released
at specd €D

when key pressed
at specd

Light-Emitting Head-Shaking Creature
This project uses the add-on Servo Pack, which includes the follow-
ing (also shown in Figure 5.4).

PARTS

M4 brass studs (4) RGB LED sensor
M4x8 bolts RJ25 adapter

M4 nuts L bracket (2)

RJ25 cable (2) Cuttable linkage (4)
Plastic spacers M5 + M7 wrench

9¢g servo with holder 9-hole blue plate (2)

With the Servo Add-on Pack you can build a dancing cat, a
head-shaking cat, or a light-emitting cat. For this project, we’ll be
combining the light-emitting and head-shaking features, which cre-
ates a robot with a lighted LED “head” that can move back and forth
using a servo.

230 MBOT FOR MAKERS

IIIIHEEHIHIlnllnlnnﬂlhﬂmnmnnnmnmmmnn|

A N ST L BT L L 0 L
0 L

ISR] [==.. A

ﬂ ..‘z;.;-_,

N3
OhrseE E
T T=1 1 [] =III
--Ea==--l [

FIGURE 5.4: The Servo Add-on Pack

1. Attach the 9-hole blue plate to the top rear of your mCore.

2. Attach the RJ25 adapter and center the servo, as described in step
5 of the “Spear-Lowering Servo” section.

ROBOT NAVIGATION 231

3. Once the servo is connected and centered, attach the L bracket

to the servo arm using the two self-tapping screws that came with
the servo.

4. Attach the LED sensor to the L bracket with two 4Mx8 bolts and
nuts, as shown in the following image. Make sure the sensor is
attached in the top holes of the L bracket through the bottom holes
of the LED sensor so that the sensor can rotate freely on the servo.

232 MBOT FOR MAKERS

. Plug the RJ25 cable into the sensor. It should be positioned so
that it comes out of the top.

ROBOT NAVIGATION 233

6. Plug the other end of the R]25 cable into port 3 on the mCore.

7. Plug a second RJ25 cable into port 4 and plug the other end into
the RJ25 adapter mounted on the back of the mCore.

234 MBOT FOR MAKERS

8. Write the following code in Scratch. This will program the LED
to turn on and off and move the light left and right using A and
D keys, and re-center with S.

when I key pressed

set servo angle €9

set servo angle €EER

when key pressed

set servo angle €W

when key released

set servo angle €&

when [l key pressed

set servo angle B

when Eld key released

set servo angle (9

when key pressed

set led (ren €W red GOR arcen N bluc CIN9

when I key pressed

set led (e €W red €W areen G blue (89

Light-Chasing Robot

For the following project, you’ll use the add-on Interactive Light &
Sound Pack. You'll be creating a bot that follows a flashlight using
two Light sensors. The add-on Interactive Light & Sound Pack
includes the following.

ROBOT NAVIGATION

235

236

PARTS

M4 nuts and plastic 45° metal plate

SRACELS Double-wide 10-hole

M4x8, M4x14, M4x22 bolts beam (2)

Light sensor (2) Double-wide 2-hole beam
RGB LED sensor (1) Single-wide 5-hole beam (2)
Sound sensor (1) M5 + M7 wrench

RJ25 cable (2)

For this project, we’re going to build the light-chasing robot
using some beams and the two Light sensors.

EmnE s

1. Mount the double-wide two-hole beam to each side of the front
of the chassis with two M4x14 bolts and nuts.

MBOT FOR MAKERS

. Each channel is threaded inside, so you can screw the Light sen-
sor into the channel using two M4x8 bolts.

JOSUdS 43T W

@ FEE dosHaEN

D1

" 000
.-) e
\.

ROBOT NAVIGATION 237

The following image shows both Light sensors mounted to
the front.

@

The RJ25 jack should be facing out. As you’re looking at the back
of the mBot, plug one RJ25 cable into the jack on the right side
and then into port 4, and then plug another cable into the jack
on the left side and then into port 3.

4. Now program the following code into Scratch and send it to
your mBot.

mBot Program

| light sensor > light sensor 3

set motor () speed
{3
set m:)t:)r@speed m

L light sensor > light sensor

sex motor QR speed
»
¢ motor QI speed €D

238 MBOT FOR MAKERS

You’ll now have an mBot that follows the light from a flashlight,
whether the light moves straight ahead, right, or left.

Maze-Solving mBot Using Standard Sensors

In Josh Elijah’s Makezine.com article, “Beginner Robotics: Under-
standing How Simple Sensors Work,” he describes the characteris-
tics of true robots well: “For a robot to truly be considered a robot,
it must be able to sense and affect its environment.” The article
uses a robot operation called Sense, Think, Act. In a nutshell, this
means the sensor senses the environment, the microcontroller thinks,
(makes a decision about what to do), and then it acts (carries out
the decision).

The next project, brilliantly conceived by Dani Sanz from Spain
(juegosrobotica.es), illustrates robotic operation excellently. His web-
site is translatable using Google and I've translated his Scratch code
here. Dani’s project shows how globally the mBot platform reaches.

The Line Follower sensor and Distance sensor that come with
the mBot kit are the only sensors needed for this maze-solving
design. These sensors sense the environment, which in this case is a
maze. The mCore thinks about what to do, and then carries out the
decision. This feedback loop operates continuously from the time
the mBot starts the maze until it finishes.

The mBot add-on Servo Pack comes with two L brackets,
two plates, and plenty of M4 bolts and nuts, and they work well
for this.

1. Using an L bracket, mount the Line Follower sensor verti-
cally instead of horizontally (which is how it’s used for line-
following). Use one M4 screw and nut to hold the L bracket
in place, and then add two M4 screws and nuts to secure the
line sensor.

ROBOT NAVIGATION

239

240

Vi .

2. With two M4 screws, attach a 9-hole blue plate to the front right
side of the mBot, pointing up vertically. Next, add an L bracket to
the plate, facing out. Now, attach the Distance sensor upside down

to the bottom of the L bracket facing out on the right-hand side of
the mBot. Plug the Ultrasonic sensor into port 3 of the mCore.

3. Attach an L bracket to the front right of the mBot chassis using
M4 screws and nuts. Plug the Line Follower sensor into port 2
and the Ultrasonic sensor into port 3 of the mCore.

MBOT FOR MAKERS

4. Write the following code in Scratch.

mBot Program
Wait until” on board button P
wait until_on board buzton
forever

set motor Yk sneed@

' et motor QED) speed €Y

set | right * 61 90
(5 left ~ §6F 90
..rep.eal until [] < line follower (G173
set FHCleRd to ultrasonic sensor (ILEM distance
l if ¥ distance <8 then
L right ¥ BT 80
ser left ¥ EGF 150

it < distance and distance <[J then

L right ~ BGE 150
if

it [< distance _then

set (F 200

set led on board (RN red green (i} blue

‘set led on board red @@ green €T blue (B

set motor % speed { right
set motor {4 speed | left

¥

at speed @l

wait @) secs

'm at speed

[set led on board red & green P blue
"<t led on board led right™ 0] green (i} blue

" wait @D secs
=,

ROBOT NAVIGATION 241

The following image shows the variables needed for the program.

(] Scripts | Costumes
W] maze-soling ~ @ H
| distance [|
et B
| mght WD)
X: 240 ¥: 180
Sprites New sprite @' / H'
Make a List
| @ Make a Block

5. Next, create your maze! The maze shown in the following image
is made out of foam pieces placed on the floor.

mBot resuelve laberintos programado con mBlock en Scratch

>I o) 0:20/20:52

It’s possible to make your maze out of cardboard, foam, or any
object you have lying around. Start off with a simple maze, and then
move the walls around and add more to make it more complex. If
everything is working correctly, the maze pieces shouldn’t need to
be attached to the floor, because the mBot will never touch the maze

242 MBOT FOR MAKERS

walls. Kids will have a blast creating mazes for each other to solve
using their mBots!

While this chapter has looked at many of the standard items
offered by Makeblock like the add-on packs, the next chapter will
really delve into how to use the mCore with off-the-shelf compo-
nents like pumps, motors, and LEDs. Chapter 6, “Building Big and
Small with mCore,” will also dive deeper into the workings of DC
motors and how to connect standard DC motors to the mCore board
in a way that works with many projects and many kids.

ROBOT NAVIGATION

243

Building Big and
Small with mCore

his chapter explores the flexibility of the mBot through the

frame of dollhouse services—designing simple and complex fea-
tures, considered part of “smart” environments, on a smaller physical
scale. However, the adaptability of the mCore platform means that
it’s entirely possible to scale up a clever idea from the dollhouse to
the real world. On a small scale, we’ll work with water, small LEDs,
and servos, and then show how to adapt those programs to make use
of household lamps, fans, and aquarium pumps.

We’ll use the mCore to control several different devices. At the
electrical level, these devices are mostly two-pole motors—sets of elec-
trified copper coils pushing against magnets. The rotational force
these components generate can be used to push water or air, or to
spin a wheel or a propeller.

HARNESSING DC POWER

Brushed motors send currents to copper coils mounted on the spin-
ning shaft, while brushless motors mount the coils on the stationary
cylinder and spin a shaft covered with magnets. The differences in
construction and scale can differ for particular applications, but the

246

key point is that anything driven by a simple DC motor only needs
a two-wire connection. Current flows through the motor circuit and
generates spin. Most DC motors are non-polar, meaning that they
will spin in either direction depending on the direction of electrical
flow. However, if the DC motor is built into a fan or pump, the larger
device may be built in a way that requires a particular polarity.

Servos, like the tiny 9g servos used in Chapter 5, “Robot Nav-
igation,” are geared DC motors combined with an encoder that
reports motor position. The same is true for the LEGO EV3 and
NXT motors. In each case, the encoders require extra wires to com-
municate their position back to the microcontroller. If you take a
continuously rotating servo and only hook up the DC motor wires,
you can use it as a plain DC motor.

Stepper motors consist of several sets of paired coils that each push
the shaft a small fraction of a rotation (i.e., a step). These require
more complicated control, normally in the form of a stepper motor
driver IC, in order to fire each coil in a precise sequence and generate
smooth rotation. Stepper motors are the backbone of 3D printers
and laser cutters. Makeblock sells stepper motors and a Me Stepper
Driver, but they’re designed to work with Makeblock’s larger boards,
the Me Orion and Me Arguia.

DC motors are classified by a nominal voltage rating, normally
printed somewhere on the motor body.

A 5V motor might spin at anywhere between 3V or 9V, but will
work most efficiently at that 5V target. When the motor spins unen-
cumbered, it draws a minimal amount of current. As the load on the
motor increases, so does the amount of current it draws. This reaches
a peak at the stall point, where the motor is under such load that it
can no longer spin freely. Keeping a motor at the stall point for too
long can burn it out along with the electronics in the motor con-
trol circuit. The mCore’s design incorporates a small self-resetting
fuse, which is essentially a tiny circuit breaker, to avoid damage to
motors or the microcontroller. If any part of a circuit connected to
the mCore draws more than roughly 1A, the fuse will overheat, trip,

MBOT FOR MAKERS

and cut power to the entire board. After a few minutes, the fuse will
cool down and the mCore will power up normally. You should use
those few minutes of inactivity to look into what caused the excessive
load on the motors, and try to fix it for the next test.

Connecting Motors with Two Wires (Two-Pole
Motors)

In theory, the mCore can control anything that uses a low-power DC
motor, as long as you can connect the device to M1 or M2. But in
real life, that last step is a doozy. Patching strange cables is a horrific
time-suck, especially when you’re working with a group of young
people. In general, the “quicker” the solution, the more hours you’ll
spend later on fiddly repair.

One of the mCore’s strengths compared with the basic Ardu-
ino is that it drastically reduces the amount of soldering and finicky
breadboards. Even though breadboards are a time-tested prototyp-
ing tool, they don’t stand up to kid use. In our Makerspace, projects
are lifted in and out of project buckets daily, and occasionally get
knocked to the floor. Soldering wires directly to the mCore would
make more stable connections—provided you never wanted to use
that board for anything else. No thank you!

The cheapest connector for the mCore’s motor ports is a stan-
dard 0.1” pitch header pin. We used this kind of connection on the
RJ25 board when making simple switches. The long legs on stacking
header pins are easier for anyone new to soldering.

1. To use header pins, trim a 2-pin section from the headers, and
then strip both wires coming from the DC motor.

2. Put a smaller bit of heat-shrink tubing around the first wire, and
then a larger diameter piece that slides further down and sur-
rounds both wires.

BUILDING BIG AND SMAIL WITH MCORE

247

3. Solder the first wire to one leg of the header, and then apply the

smaller heat-shrink tubing.

4. Now that you've protected the first leg, solder the other wire to
the adjacent leg.

5. Apply the larger section of heat-shrink tubing, trying to capture
some of the header pin’s black plastic inside the heat-shrink
tubing.

248 MBOT FOR MAKERS

6. JST connectors have plastic rails to ensure that the plugs only fit
on one way. These plugs, made of header pins, do not. Most DC
motors will spin in either direction, so there’s no damage if you
accidentally plug something in the “wrong way.” Mark the side of
the header pins so that the positive and negative pins match the
orientation on the mCore. The black plastic rejects most mark-
ers, but nail polish is visible and durable.

Soldering to header sleeves is good enough for a few motors, but
represents a huge headache at scale. The connections might be solid
to start with, but repeated stress can break them. If you need to make
several connections at once, it’s significantly faster to use a crimping
tool and the appropriate JST connectors.

Adding JST ends or header pins to a DC motor works fine for
connecting to the motor pins on the current mCore. If that’s the
only board you work with, then you don’t need to worry about any-
thing else. But Makeblock has shown remarkable inconsistency with
connections across their current products. The Makeblock Ranger
robot kit doesn’t use the 2-pin JST connectors, and their exter-
nal DC motor board uses a much larger 2-wire connector. In our
Makerspace, two of the most common non-Makeblock motors in
use are the LEGO NXT and EV3 motors. The sheer cost of LEGO

BUILDING BIG AND SMALL WITH MCORE

249

250

components, and a low-level fear of future plug changes, drove my
colleague Gary Donahue to find a more flexible connection system.

Gary’s midpoint connectors have pairs of plug and socket con-
nectors on one end with either breadboard pins or screw terminal
connectors on the other. To make thse, we start by creating a large
collection of small pigtails with JST plugs (which connect to the
mCore) soldered to the breadboard pins of the plug.

Then Gary connects the socket end of the midpoint connector to
the device cable. Since this is a screw terminal connection, it doesn’t
require soldering and doesn’t permanently modify the motor. Mak-
ing Gary’s midpoint connectors requires a chunk of time, since you
have to solder a large number pigtail connectors, but connecting a
new DC device to a screw terminal takes only a moment.

The joy of Gary’s midpoint connectors comes from the unex-
pected ability to reuse parts. When a student wants to reuse a DC

motor salvaged from an old toy, Gary’s system allows the kid to

£ N ‘._“45 k i a . i) 1)
FIGURE 6-1: Short pigtails connecting mBot Motor pins to the com-
mon connector and long partner cables

MBOT FOR MAKERS

“make the cable” by adding the screw terminal plug and connect
it to their mBot in a few minutes. These connectors eliminate an
incredible amount of cable-related hassle in our Makerspace, and
allow kids to push their mBots in surprising new directions.

For the small-scale projects in this chapter, you can connect the
extra fans, motors, and pumps any way you like. But if you’re going
to build two or three projects like this, take a lesson from Gary and
invest the time in some midpoint connections.

BUILDING SMALL

Although we use the word dollhouse throughout this chapter, we avoid
that term in classroom settings, because it may seem childish to cer-
tain audiences. In our Makerspaces, we use a variety of figures to
match the scale of some projects. When kids are building complete
environments, we’ll look for 1-2” figures, like LEGO mini figs or Play-
mobil figures. When designing clothing or furniture, 12” poseable
mannequins, bought for around $5 from IKEA, work wonderfully.

" V 1!

FIGURE 6-2: In class, we refer to anything we’re building for these
mannequins or another anchor figure as a scale prototype. Image
courtesy of Chris Willauer.

BUILDING BIG AND SMALL WITH MCORE

251

252

Working on a fixed scale means that kids can move from idea
to sketch to prototype quickly, without losing a moment in a long
hunt for materials. Iteration is fast and cheap when you’re making a
parade float for 2” figures or sewing a jacket for a 4” torso.

For projects that create responsive environments, we’ve found
that the best scale-human is the familiar LEGO mini fig. This way,
an “apartment block” can be a vertical shoebox, single LEGO bricks
can serve as furniture (see Figure 6-3), and clear tape becomes a
useful building material.

Working in small scale lowers the cost (in time and materials) of
“bad ideas,” and ensures that students can have plenty of chances
to learn from those productive mistakes. Miniature scale reduces
the importance of detailed and accurate plans, something students
struggle with and rarely see the value of. Instead of allowing a long
time for planning, students can start to build their first prototype
after only making a quick sketch. To help build planning and sketch-
ing skills, we ask them to make a careful drawing of their finished
prototype, and then refine that drawing for the next build. Two small

i’"

—

FIGURE 6-3: A little LEGO work transforms a shoebox into a kitchen.
Dishes in the sink are a nice touch.

MBOT FOR MAKERS

steps, planning, then analysis, better mimics the Maker mindset,
where the current work is always an approximation of the ideal.

Fire Management System—Small

With all of the aforementioned in mind, we’re going to use the
mBot to construct a fire suppression system for our dollhouse.
We call it that because, without a narrative context, a segment
of silicon tubing pumping water through a cardboard box doesn’t
mean anything. Twenty minutes of work, even shoddy work, can
transform the same hardware into an apartment sprinkler system.
We tap into every kid’s imagination and diverse crafting skills by
framing the project as a sprinkler system, instead of an abstract
challenge of moving water between tubs. Within that framework,
even simple decoration for the shoebox apartment requires choices
that refine the scale.

The constraint of this prototype is that it must extinguish a fire
that occurs on the stove. This constraint encourages builders to
narrowly focus their work on the functional part of the system. As
a prototype, this isn’t better or worse than a “spray everywhere”
sprinkler system, but adding that level of specificity allows stu-
dents to leverage their real-world experience, so that each iter-
ation of the cardboard prototype reflects and comments on that
understanding.

Working with fire at any scale involves risk. In the small-scale
shoebox apartment, even a single tealight could, if left unattended,
result in a real and dangerous fire. In a classroom setting, you should
limit the number of candles lit at any given moment. It’s far easier to
keep track of four flames than 40. Lighting and then quickly dousing
the candle is the capstone of this project, but there’s not much call
for open flame before that moment. Along with the tealight, we’ll
explain how to use a wide-band IR LED to test the pump system.

DC water pumps come in several varieties, but for this project
we’ve had the most success with submersible pumps. Makeblock
sells the pump shown on the left in Figure 6-4, which has a nominal
12V rating, just barely within the mCore’s power range. Unlike the

BUILDING BIG AND SMALI WITH MCORE

253

254

submersible pump on the right, the DC motors and electrical con-
nections on Makeblock’s pumps need to be kept dry.

! sku :50200
Il DC12. 0v/370-04py

FIGURE 6-4: Makeblock’s 12V pump just barely works on mBot motor
ports and needs to be kept dry. The black submersible pump is a bet-
ter choice.

In addition to the power concerns, we find dry pumps tricky to
use in a group setting. Keeping an appropriate distance between the
microcontroller, the electrical connections on the pump, and the
flowing water requires a lot of space for each setup.

It’s easier to find submersible pumps designed to work within the
power range of the mCore’s 5V motor supply. Searching online for
“USB water pumps” will help filter out the larger aquarium pumps,
which are too large for this prototype stage. Small submersible pumps
are quieter than the external dry pumps, and only require a single
outflow hose. Best of all, the pumps and the electrical connections
are designed to be wet! We often have kids build a self-contained
reservoir for the pump to be used throughout the prototyping stage,
and that’s what we’ll built next. The parts for the reservoir are shown
in Figure 6-5.

This example uses a glass jelly jar, but wide-mouth plastic con-
tainers would work just as well. First, punch or drill three holes in
the lid. Holes for the water to flow through are sized so the plastic
tubing fits in them snugly (see Figure 6-6). The hole for the electrical
connector has to be large enough to accommodate the plug.

MBOT FOR MAKERS

FIGURE 6-5: Here are the parts for the water reservoir. We’ll make
three holes in the lid: two for the tube and one for the power cable.

FIGURE 6-6: If the holes are too large, the tube may flop out of
the lid when under pressure.

1. Connect one of the plastic tubes to the outflow nozzle on the

pump. The return tube doesn’t need to attach to anything (see
Figure 6-7).

BUILDING BIG AND SMALL WITH MCORE 255

256

iy Vi
FIGURE 6-7: Connect one tube to the submersible pump’s outflow,
and let the return tube dangle.

2. Place the pump in the reservoir jar and pull out the slack on the
power cable. If you’re using a metal lid, be careful not to slice open
the tubing (bad) or power cable (worse!) on a sharp edge.

Now you can fill the jar when the pump is in use and screw the
lid and connectors in place. This contraption isn’t spillproof, but it
allows the pump and connectors to move around without soaking
the work area. Blue tack or other moldable materials can seal the
area where the tube travels through the lid. The completed reservoir
is shown in Figure 6-8.

With the pump and water source secured, we will turn our atten-
tion to the flame sensor. Like most Makeblock products, the func-
tional heart of the Me Flame Sensor is an off-the-shelf component
mounted onto a small board with an R]25 plug. The following image
shows the Me Flame Sensor with the telltale RJ25 plug below and a
similar component with a header pin connection.

MBOT FOR MAKERS

FIGURE 6-8: Here is the completed water reservoir with the tubes
attached and the pump on the bottom. You can use food coloring to
help you tell from a distance when the water is flowing.

BUILDING BIG AND SMALL WITH MCORE

257

258

In general, what we call flame sensors are light sensors tuned to
a particular wavelength of the infrared spectrum, normally between
760 and 1110 nanometers. Flame sensors actually combine an ana-
log sensor, for numeric values, and a digital sensor that just reports
whether there is fire or no fire. This digital reading also triggers a
blue LED on the board and is controlled by a built-in threshold value,
set by the small potentiometer (see Figure 6-9).

In our model, the sprinklers should only respond to an out-of-
control kitchen fire. While an overzealous smoke alarm might be a
kitchen annoyance, having a sprinkler set with too low a threshold
makes a kitchen all but unusable. Managing the sensitivity of the
flame sensor through physical placement and programming is the
heart of this project.

There are some obvious concerns when kids are working with
fire, but this project is a great way to mitigate those risks while enjoy-
ing the benefits. We use small tealights for the kitchen flames in
these models, which provides more than enough fire to trigger the
flame sensor. If placed too closely, it can also create enough heat
to melt plastic tubing, crisp cardboard edges, or ignite stray paper
scraps. Don’t leave an open flame unattended!

FIGURE 6-9: Adjust the Me Flame Sensor’s sensitivity by adjusting the
potentiometer with a small screwdriver.

MBOT FOR MAKERS

Anyone who moves a lit candle in and out of the model apart-
ment risks wax-covered LEGO bricks and fingers. With regular
attention, none of these problems threatens life or limb, and each
one brings a useful “reality reminder” into the prototyping process.
It’s also possible to avoid these candle-related mishaps by using an
IR LED “throwie” to test the position of the flame sensor.

LED throwies are a staple of classroom Makerspaces. Just place
a 3V CR2032 battery between the legs of an LED, apply a little
tape, and you've got a small light to stick just about anywhere (see
Figure 6-10).

It may be the simplest circuit possible, but it delights and fasci-
nates kids everywhere. But, since infrared light is outside the spec-
trum of human vision, it’s harder to know that the light is really on.
Make sure to place the longer leg of the LED on the smooth positive
side of the battery and the shorter leg on the dimpled negative side.
For anyone new to LEDs, it’s helpful to do this with a visible-light
LED at the same time (see Figure 6-11).

FIGURE 6-10: The top two LEDs use colored plastic to narrow and
focus the IR light. Wideband LEDs with clear tops (bottom two) are
better for this project but either would work.

BUILDING BIG AND SMAIL WITH MCORE

259

260

FIGURE 6-11: The wideband IR LED on the left is emitting as much
light as the red light on the right.

Phone cameras used to provide a great way to check IR LEDs,
since they capture a wider spectrum than the human eye. Today, the
primary (rear-facing) camera on most phones uses software filters to
clean up IR noise. Thankfully for us, that dubious feature hasn’t yet
migrated to the front-facing camera!

Since the flame sensor is actually an infrared sensor, these LEDs
will easily impersonate a flame in a cardboard apartment. A large part
of placing the flame sensor involves checking for ways the decoration

MBOT FOR MAKERS

and furniture might obstruct the sensor’s view of the stove. While
this could mean simply moving the sensor, many students will
choose to adjust the candle or the stove instead. This leads directly
to wax-covered fingers and other candle-related injuries. Using an IR
candle instead of an open flame for these steps drastically decreases
the risk of this project (see Figure 6-12).

FIGURE 6-12: This image shows bends a visible light red LED throwie
into a more convincing tealight shape.

With our test candle ready to go, it’s time to consider where to
place the hose and sprinkler valve. This particular section of flexible
tubing felt too large compared to the furniture, so we placed it on
top of the cardboard box instead.

1. Mark the position of the tube on the outside of the box.

BUILDING BIG AND SMALL WITH MCORE

261

2. Place the tube so that it passes over the stove, then cut a small
slit into the roof. It only needs to be large enough for water to
drip through.

3. Use tape to attach the tube to the box on either end of the opening.

262 MBOT FOR MAKERS

Even with the threshold knob dialed down, the flame sensor will
spot a flame in the small prototype apartment from any spot with
an unobstructed view. As an additional challenge, consider trying to
hide the bulk of the sensor outside the box and make an opening for

just the IR sensor.

With the sensor placed, it’s time to build the code, shown in Fig-
ure 6-13. The flame sensor has both an analog numeric output and a
digital on/off output. The mBlock only reports the analog numeric
value from the flame sensor. Use a Say block to check the sensor val-
ues as you move a lit candle or match in and out of the scene. When
the sensor can see a flame, the number drops significantly. On the
Makeblock flame sensor and most others, there’s a small LED on
the board that lights up when the sensor can see a flame. Keep an
eye on this blue light while positioning the candle and adjusting the
threshold knob to determine a useful threshold value.

BUILDING BIG AND SMALL WITH MCORE

263

264

when clicked

C8 FlameThreshold ~ £&4 100)
18 TimeToSprinkler ¥ [0} 3 |

define TurnOffSprinkler

forever
t motor (i d
TurnOffSprinkler set motor ({E speed (9
\

set [ETXSTXIRI 1o Mame sensor GEER)
|

say ' FlameSensor define TurOnSprinkler

it FlameSensor > FlameThreshold :hen. set motor () speed EI)

| reset timer play sound m
else
play drum 89 for beats
g

i timer > TimeToSprinkler then

b

TurnOnSprinkler
|

re-pea't until FlameSensor > FlameThreshold

3

say ' join FlameSensor [0

TurnOffSprinkler

reset timer

FIGURE 6-13: This program has many elements in common with the
traffic light classroom volume meter from Chapter 2, “mBot Software
and Sensors.”

Our testing showed a flame sensor reading of 100 was well below
the ambient light levels, but a bit above the direct fire readings. We
used that for the FlameThreshold value at the top of the program so
that it’s easy to change, if necessary.

To avoid soaking the kitchen every time there’s a momentary
flare-up, this code includes a timing loop that checks how long
there’s been a flame in the kitchen. A single big flambé moment
shouldn’t trigger the sprinklers. The TimeToSprinkler variable is the
number of seconds that we’ll wait before turning on the sprinkler.

This program uses custom blocks to turn the sprinkler on and off.
Since this action only requires one command block, it isn’t saving
any program length. Instead, it provides clarity in the main program,
and flexibility if we change how the sprinkler connects to the mCore.

MBOT FOR MAKERS

If the sensor reading is below our FlameThreshold value, the top
part of the If/Else statement loops and resets the Scratch timer back
to zero. However, once the sensor value clears the FlameThreshold
value, the Else clause will execute and the timer will climb steadily.
If the timer exceeds the TimeToSprinkler value, the pump turns on
and will keep going until the FlameSensor value drops back below
the FlameThreshold value.

We've used Sound and Say blocks to help track process through-
out the program. When a program uses nested loops, it’s tricky to say
exactly what’s being checked at a given instant. A drum sound plays
every time the Else clause executes, providing an audio clue that the
sensor is reporting a fire and that the timer is running. By adding a
sound cue to the TurnSensorOn block, we can track any lag between
the program’s signal to start the pump and when we see water flowing
in the prototype.

Now we’re ready to test the system. Before any water starts
splashing, we’ll test the system as a closed loop (see Figure 6-14). Our
pump will pull water from the reservoir, move it through the sprin-

kler system, and then back to the jar. This test is a useful practice

y‘ /“"
FIGURE 6-14: Here, we are testing the setup with a live flame and a
sealed tube. Don’t abandon the tealight in the kitchen!

BUILDING BIG AND SMALL WITH MCORE

265

266

for individuals, but crucial when working with groups. Ask that kids
demonstrate a working closed loop system before they grab tools and
poke holes in the tubing. Pierce the tube to add the actual sprinkler
action when the code is solid.

This is the time to adjust the values for FlameThreshold and
TimeToSprinkler. Our example uses about 1 of tubing for the entire
water path, so water reaches the kitchen less than a second after the
pump turns on. For systems with longer hoses, such as one that has
to reach a big bucket of water on the floor, it might be desirable to
trigger the water a bit earlier.

Once those details are squared away, it’s time to install the
actual sprinkler! Use a felt-tip pen and put a small mark on the
hose where it passes over the stove. Lift up the tube and drain the
water from it. Use a hobby knife, scissors, or a pair of pliers to take
a small notch out of the tubing (see Figure 6-15). When the tube is
filled, pressure will force water out of this gap, so a small opening
will work fine. A small snip is also easier to patch up with hot glue
and electrical tape.

FIGURE 6-15: There’s no need to remove lots of plastic. Water pres-
sure will force water out of a small opening.

MBOT FOR MAKERS

Replace the end of the hose in the water reservoir. The bulk of
the hose should now be empty, so it won’t drip into the apartment.

Here’s the moment of truth! Start the mBlock program, then
place the lit tealight on top of the stove (see Figure 6-16).

FIGURE 6-16: Success! Water from the sprinkler system completely
douses the runaway fire on our stove.

Even though this cardboard kitchen won’t last forever, we can
make a few tweaks and test the system again before the box falls
apart. Experiment with flame placement, with an eye out for spots
outside of the splash zone that still trigger the sprinkler. Keep explor-
ing ways to keep tiny apartment safe and intact.

Fan for Crowded Room—Small

The fire sensor demonstrates how a small-scale project with a rea-
sonable narrative can support nuanced and complicated builds with
very few components. It’s also the best way to introduce and foster
interest in projects that combine data from multiple sensors. Small
environments are easily to monitor and manipulate, making it pos-
sible to mimic the automation in everyday life.

BUILDING BIG AND SMALL WITH MCORE

267

268

This project models common HVAC systems that engage fans
or AC when the temperature exceeds a threshold, but only when the
rooms are occupied. Don’t forget to start with building the room—
we can’t overemphasize the value of asking kids to create and invest
in the design and decor of the environment (see Figure 6-17) before
they start working with the electronics.

FIGURE 6-17: A few fairies and some LEGO furniture can go a long
way toward anchoring creativity and enthusiasm.

Our years of classroom observations suggest that decorating the
test environment before starting a project inspires students, while
making a “pretty box” for a functioning prototype feels like busy
work.

You can use the same temperature sensor as you used for the
sensor bots in Chapter 4, “Measurement Devices.” This project
serves as a natural follow-up to those data-gathering devices, and
asks designers to use the power of observation to inform how and
where to mount the thermometer. In a small-scale environment,
sensors aren’t even close to invisible when taped to a wall. Raising

MBOT FOR MAKERS

the imagined concerns of the scale-model inhabitants is a powerful
technique for prompting and encouraging deeper thinking.

Since all small fans are just DC motors with plastic fins, use
whatever materials you have on hand (three types are shown in
Figure 6-18). Dollar stores often have handheld fans that use 2 AA
batteries, which work well hooked up to mCore’s motor ports. Make-
block sells an official version of this kind of fan, but it doesn’t use the
same connector as the mCore. Small electronics often contain 3V or
5V square fans, which are easy to attach to flat surfaces with tape.
The littleBits fan Bit is one of this type, but unless you’re already
deeply invested in that product, it’s not worth spending $15 on a
$2 fan.

FIGURE 6-18: A handheld fan from the dollar store, Makeblock’s offi-
cial fan (its connector is shown to its right), and the fan Bit from
littleBits

Unfortunately, the most common recycled small square fans
come out of desktop computers and run off 12V. These fans normally
won’t move on the mCore’s 5V power supply. If you have a large
supply of these on hand, it might be worth using some of the higher
voltage power techniques from the “Building Big” section later in
this chapter to bring those into the mCore universe.

Whatever fan you choose, it’s important to mount it in the scale
room in a way that won’t obstruct tiny feet or sever tiny heads. We’ve
used a square fan and mounted it in the “window,” as you can see
in Figure 6-19.

BUILDING BIG AND SMAIL WITH MCORE

269

270

FIGURE 6-19: A crowded apartment with a PC fan installed and a
thermometer high on the adjacent wall

At this point, we can write a simple program to turn on the fan
when the temperature climbs past a threshold (see Figure 6-20).
Even though turning the fan on only takes a single block, it’s worth
defining those commands in custom blocks.

when clicked
B ey Thechos < o0 define TurnON Fan
farever set motor I8 speed
say temperature (XERs ETN5R9 °C
=t

if temperature ((PIEM G589 °C > Temp Threshold then

TurnON Fan

e define TurnOFF Fan

TumOFF Fan set motor I8P speed (B9

FIGURE 6-20: This is the State Check code from the sensor projects
in Chapter 2.

It may require applying cold or hot fingers to move the tem-

perature quickly above and below the threshold. Don’t let the giant
hands reaching in and out of the room break the narrative illusion

MBOT FOR MAKERS

completely! Look for ways this simple feedback loop would delight
or annoy the tiny people relaxing on the couch.

With these barebones environmental controls in place, it’s time
to consider how to determine if the room is occupied. Similar to the
way we determined whether a door was standing open in Chapter 4,
there’s no single “correct” sensor that will help us answer this ques-
tion. Determining how to use an arbitrary input to decide whether
people are in a room is a great brainstorming activity, if not an entire
project. Pull a random sensor out of a hat and see what you can
improvise!

This example uses the passive infrared (PIR) motion sensor, not
because it’s best, but as a way to showcase the particular challenges
associated with binary output. A PIR sensor uses pyroelectric mate-
rials that actually generate electricity when exposed to specific wave-
lengths of light. Unlike the flame sensor, the PIR doesn’t report a
value relating to infrared light levels, but responds when that light
value changes significantly.

In mBlock, the angled frame of the PIR block indicates that the
sensor’s values will always be either 0 or 1. When the PIR motion
sensor block reports 0, that indicates that infrared levels have been
basically stable for the last few milliseconds, which we interpret to
mean that nothing large or warm is moving nearby. If the infrared
level changes in that small window of time, the sensor reports a 1.
The basic shorthand of 0 = still, 1 = movement, works for most situ-
ations, but it’s worth considering the edge cases. A flickering candle
will confuse a PIR sensor and it will report motion, whereas snakes
and other cold-blooded reptiles could sneak by undetected—shud-
der. That is yet another reason to be afraid of snakes.

Most people already have an intimate familiarity with PIR-re-
lated frustration from countless restrooms. From finding the right
position of your hand for automatic sinks, to stingy paper towel dis-
pensers, many public bathrooms are crowded with PIR sensors. One
strength of this project is that it can put kids in control of the same
kind of robotic systems they encounter every day. As a general prin-
ciple, humans should be able to build something as sophisticated as
their own bathroom fixtures.

BUILDING BIG AND SMALIL WITH MCORE

271

272

Since the PIR is a binary sensor, our program should look for
readings over time rather than a single reported sensor value. The
amount we’ll accept as “enough” motion in a short time interval
becomes our timing threshold. The fan should wait for the value to
fluctuate frequently as an indication that people are actually moving
in the room. This is essentially the same calculation performed by
the sensor itself, but on the scale of seconds, not milliseconds. Since
we’re using the PIR data to turn on a big, slow fan, checking for sev-
eral signs of motion over several seconds will ensure the fan doesn’t
turn on and off constantly.

Once we've seen that period of consistent movement, we need to
mark the room as occupied and stop checking as frequently. Again,
as in a bathroom, we accept that people will move around when they
arrive in a room and sometimes sit for a while. Our code needs to
allow the imaginary little people to relax on the couch for a reason-
able amount of time without having to wave their tiny arms.

It’s essential that we check and tune the three discrete subsec-
tions shown in Figure 6-21 in isolation before combining them into
a larger program. When debugging a complicated system, all the
individual components must perform consistently. Test how much
motion it takes to trigger the PIR sensor. Run a Say loop with the
temperature sensor and ensure that the fan actually lowers the room
temperature. Test all the likely scenarios, and as many strange ones
as you can imagine.

Only when the fan, PIR sensor, and temperature sensor behave
well in all those tests can we check all three together. When a pro-
gram evaluates and compares many different inputs, the order and
timing of how we check those inputs matters!

As the complexity of mBlock programs increases, it’s important
to remember that the goal is functionality, not correctness. Rather
than worrying about whether a particular solution represents the
“right way,” keep focused on if it accomplishes your stated goals.
Robots and programs are tested, not graded.

Testing throughout the build process not only compartmen-
talizes large tasks, but the tests force us to consider the question,

MBOT FOR MAKERS

(i\ﬁ!

when clicked
define CheckForMotion

"

TurnOFF Fan
L8 RoomStatus ~ KLY EMPTY| ELI8 PiR_Check v {50 0 |
Temp Threshold ~ [0 reset timer

repeat until tmer >E] or PR Check >

———

say | join [ETTel temperature (ZNER) ERERY °C [-
y () perature (EER) €T say (Join I pir motion sensor QIR
3 temperature ZIEREINE °C < Temp Threshold N -

i L B it pit motion sensor ENER . = [then

TurnOFF Fan

s N change TR o ©

CheckFarMotion —
 RoomStatus = [EEVE then i PIR_Check > [then
TurnON Fan HEE Roomstatus ~ (]

BB Fan on for 5 seq| else
4 -8 RoomStatus ~ §GN EMPTY|

§ define’ TurnOFF Fan
TurnOFF Fan
1SR define TumON Fan set motor (I8 speed (B
set motor I8 speed

FIGURE 6-21: Once they are all combined into a single stack of
blocks, it’s trickier to find and correct errors.

“What should happen here?” on increasingly granular levels. That
mindset helps even when you’re reading unfamiliar programs for the
first time—something Makerspace and computer science teachers
do on a daily basis. Working through a small part first, and thinking
through what should happen at each step, can be very helpful.

We pulled CheckForMotion out as a custom block to isolate the
choices made in that process. CheckForMotion looks at the data
from the PIR sensor for three seconds or until it sees five motion
readings, whichever comes first. The PR_Check value starts at 0 each
time CheckForMotion runs, and then increases each time the PIR
sensor reports a 1. At the end of CheckForMotion, the RoomStats
variable is reset to either Empty or Occupied.

Reading the details of a program should suggest ways for you
to extend its functionality or even ways to reshape it around differ-
ent assumptions. Maybe it’s time to add a thermostat sized for tiny
LEGO hands rather than use a fixed temperature threshold. Instead
of bouncing between off and full power, maybe the distance between
the current and ideal temperatures should determine the fan’s inten-
sity. Gary Stager names this improv-like questioning process “...and

BUILDING BIG AND SMALL WITH MCORE

273

274

then?” and suggests that it’s a useful filter for finding the unexpected
corners of complicated tasks. Static adult-centered tasks rarely gen-
erate great “..and then?” responses. On the other hand, one or two
“..and then?” questions asked of different groups of young people
could push this basic project in radically different and fascinating
directions. Great projects can generate enough interesting responses
to “...and then?” to fill up a whiteboard.

BUILDING BIG

As we’ve seen in previous chapters, the mBot system allows us to cre-
ate on a very large scale. Using serial or Bluetooth for wireless com-
munication means that the mCore board or mBot robot can operate
far away from the computer or tablet. Uploading the programs to the
board, along with the use of a large LiPo battery, allows our creations
to operate independently for hours or days at a time. Cheap custom
cables make it possible for sensors and motors to spread out along
the ceiling or windows of even the largest rooms. In many ways,
we’ve already been “building big” with the mBot.

Now it’s time to cross the final threshold of “big” and work with
large power loads.

In the section “Connecting Motors with Two Wires (Two-Pole
Motors),” we demonstrated how to connect any simple DC motor to
the mCore’s motor output pins, allowing us to control fans, pumps,
and more. All of those devices were pretty small, and easily powered
by the mCore’s 5V low-amperage output. This works great for proto-
types, where exploring and refining the idea is more important than
doing real work. But if we want to soak a real kitchen, we’ll need to
control devices that require far more power.

Controlling large loads with small voltage signals is a central pil-
lar of the Arduino universe. All microcontrollers operate on either
3.3V or 5V electricity. Powering a device through a microcontroller
requires all the power used by that device to flow through the same
circuit. Controlling larger voltages will require an extra component
to switch on the bigger power stream in response to signals from the
microcontroller.

MBOT FOR MAKERS

There’s a whole world of options that will allow you to control
exactly the device you want with a given input, and there’s no better
book to start with than Charles Platt’s now classic Make: Electronics:
Learning Through Discovery, Second Edition (Maker Media, 2015). His
hands-on walk-through of physical and solid-state relays and tran-
sistors is an essential experience for all Makers.

In our classrooms, we choose parts that are often overkill for
the specific applications. When selecting relays or transistors, we
stock a few parts that can control a wide range of voltages, rather
than finding the switching circuit that’s just big enough to handle
a specific task. While there’s surely a more efficient and possibly
cheaper solution for the systems shown in this chapter, that’s not our
primary concern. Because we allow young people creative autonomy,
I'd rather have a dependable and flexible tool ready at hand than go
digging through a drawer of parts.

Fire Management System—Large

If you harbored safety concerns when kids were using a candle in
a cardboard kitchen, the idea of taking that project to life-size may
be downright terrifying. There are plenty of great, safe, empower-
ing ways to teach young people how to build and control fire, but
all those lessons are better suited to a camping trip rather than a
Makerspace.

Instead of scaling up the fire, we’ll focus on scaling up the
response. We’re going to leave the small pump behind and build a
garden hose-powered sprinkler.

Water is heavy, and moving a lot of water requires a correspond-
ing amount of power. That’s why most real-world sprinkler systems
don’t use electric motors to push the water. Fire safety systems rely
on water pressure and use valves that degrade and open in extreme
heat. Gardening valves, which start and stop the flow of water with
solenoid-driven plugs, provide a better model for our project.

In this project, we’ll build a water control system that opens a
solenoid valve using 12V DC power. Since that much voltage would
fry our poor little mCore, we’ll need to use an external 12V power
supply, and a physical relay. Signals from the mCore will tell the relay

BUILDING BIG AND SMAIL WITH MCORE

275

276

to close or open the larger electric circuit that, in turn, controls the
valve.

For big DC projects that don’t require millisecond-speed
switching, I reach for SparkFun’s Beefcake Relay board, shown in
Figure 6-22.

This board can switch up to a 3A load at 28V DC. The actual
relay could handle up to 20A, but the screw terminals and traces on
the board aren’t rated for huge current loads. The Beefcake can also
switch 220V AC loads, meaning that it could handle wall current
from most countries, but we don’t use the Beefcake for that. Even
with the precautions we take in our Makerspaces, having wall cur-
rent move through a board with exposed terminals and traces gives
me the willies. When we need to control something that plugs into
a wall outlet, we reach for the PowerSwitch Tail, which we’ll use in
the room-scale fan project later in this chapter.

Figure 6-23 shows the relay used in the Beefcake relay board with
the black plastic housing removed. Don’t do this! The plastic cowling
prevents fingers from coming into contact with high voltage. Relays
use a large copper coil as an electromagnet. When a low-voltage
current flows through the electromagnet, the electromagnet pulls

, CAUTION: mis

FIGURE 6-22: SparkFun’s Beefcake Relay board

MBOT FOR MAKERS

a switch closed, which will physically complete a high-voltage cir-
cuit. When the current stops flowing through the electromagnet, the
switch is released, and the high-voltage circuit is broken.

WEe’ll control this coil with a signal from the mCore to the side
labeled Low Voltage. We'll be using this relay to turn something on,
which means we’ll use the normally open (NO) pins on the high-
voltage side. Normally closed (NC) operation means that the circuit
is closed by default and the device is powered, except when the micro-
controller sends a signal. In our sprinkler setup, an NC relay would be
a particularly wet and unpleasant way to fight household fires.

I was first introduced to the Maker utility of sprinkler valves by
Joey Hudy’s classic marshmallow cannon project (https://makezine
.com/projects/extreme-marshmallow-cannon/). Garden use valves con-
sist of a connector between two pipes with a solenoid-controlled
gate in between. Most are NC, meaning that the plunger blocks
the flow between the two sides and requires current to open. Auto-
matic garden-sprinkler solenoids are designed to use 24V alternat-
ing current (AC), but can operate for short periods with 12-18V DC

HIGH | LOW {
UOLTAGEIVOLTAGE P ', ®
7

I 205-121
, CAUTION: Risk OF ELECTRIC SsHock! OfENi1igd @) |

FIGURE 6-23: The coil is at the heart of the Beefcake relay. Image
courtesy of SparkFun (https:/learn.sparkfun.com/tutorials/beefcake-
relay-control-hookup-guide). Image is CC BY-SA (https://creative
commons.org/licenses/by-sa/4.0/).

BUILDING BIG AND SMALL WITH MCORE

277

https://makezine.com/projects/extreme-marshmallow-cannon/
https://makezine.com/projects/extreme-marshmallow-cannon/
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

278

power. The trade-off when using DC power is that it draws a higher
current and generates extra heat while the solenoid is powered and
the valve is open. This can cause problems when the whole package
is buried beneath the lawn and stands open for half an hour at a
time, but won’t pose a problem when open only briefly, as it is in
this project.

While sprinkler parts from Home Depot or salvaged from the
shed will work fine for this project, we will use a 12V DC solenoid
valve from SparkFun. Since it’s built for light-duty applications like
this, it’s a bit cheaper than parts from the garden department. It also
has a reasonably square bottom and sits nicely on a bench. Garden-
ing valves are designed to be buried in dirt, not sit flat on a work
surface.

We’ll use the relay to control power to the solenoid valve. (See
Figure 6-24.) Only when the relay is engaged and the circuit is closed
will power flow from the supply into the valve, which will, in turn,
open the valve to allow water to flow.

Figure 6-25 is what would pass for a planning sketch of the
sprinkler control circuit in our Makerspaces. When you’re work-

ing with new tools and materials, abstracted circuit drawings can

FIGURE 6-24: The power circuit between the 12V source, the sprinkler
valve, and the Beefcake relay board

MBOT FOR MAKERS

pose real challenges. Although the power plug isn’t connected to
anything and the tiny wires aren’t soldered to the valve, this model
is more similar to building the actual circuit than a drawing would
be. Modeling with real parts also makes it easier for a teacher to
quickly offer feedback.

However, this version is just a model. The “production” build
needs some larger, longer wires. Thicker wires are better for higher
current loads, and we need plenty of distance between our replay
board, the flowing sprinkler head, and the microcontroller.

To keep this type of build flexible, it’s a good idea to build small,
modular cable connections, as seen in Figure 6-25, discussed at the
beginning of this chapter. In this project, we used barrel plugs backed
by screw terminals. These plugs are familiar to kid hands and stand
up to a lot of stress.

Although longer wires help, the relay board needs a bit more
protection. In group or classroom environments, we often package
the relay boards in disposable plastic food containers, with small
openings to allow access to the low- and high-voltage connections
(see Figure 6-26).

FIGURE 6-25: Similar to Gary’s midpoint connectors, but with heavy-
gauge wires for high-current applications like a solenoid

BUILDING BIG AND SMALL WITH MCORE

279

280

small cuts in the plastic tub.

This isn’t waterproof, but it is splash-resistant. It also pre-
sents clear physical instructions to novice users—to control this
relay, the only parts that are required are the wires sticking out of
the side.

Now we’re ready to revisit our fire sprinkler code and modify it
for the new parts. At dollhouse scale, the mCore provided power
directly to the water pump through the motor ports. Since the relay
board requires minimal current, we’ll use one of the RJ25 ports to
send the control signal instead.

All of the blocks in the mBot section of mBlock are built around
a specific sensor or actuator. Accessing more generic commands,
like setting a single output to High or Low, requires the Arduino
extension. Make sure the Arduino option is selected in the Extension
menu, as shown in Figure 6-27.

Then find the Set Digital Pin Output As block in the Arduino
section of the Robots palette. (See Figure 6-28.)

MBOT FOR MAKERS

‘ mEBlock File Edit Connect Boards Language Help

| Manage Extensions OHT N
F Serig Restore Extensions
. Clear Cache

M

I L Microsoft Cognitive Service Setting
Smart Servo Tools >

I So
IF'E Arduino/Genuino 101 + UNO Shield
[0al joystick(Arduino Mode Only) .

+ Arduino
Microsoft Cognitive Services B
+ Makeblock
i Smart Servo
Communication

w240 vt 1RN e
FIGURE 6-27: Small check marks in the Extensions menu indicate
which blocks appear in the Robots palette.

Arduino Program
read digital pin €}
read analog pin (&))
read pulse pin E) timeout
set digital pin) output as
set pwm pin @ output as (@
play tone pin) on note beat (ELR

set servo pin) angle as €9

serial write text [

serial available bytes

serial read byte

read ultrasonic sensor trig pin B} echo [in E

FIGURE 6-28: Programs in mCore can use blocks from the mBot and
Arduino extensions simultaneously.

BUILDING BIG AND SMALL WITH MCORE

281

282

Every R]25 port on the mCore has wires for two Arduino pins.
When you’re using the R]25 breakout board, those two pins are sep-
arated into the two 3-wire connection points. To determine which
pin number to use in an mBlock program, plug the R]J25 breakout
board into a port on the mCore, and then look at the labels behind
the mCore connector. (See Figure 6-29.)

In this code we used pin 9, which comes from port 2 of the mCore,
and slot 1 on the R]25 breakout board. Since any of the mCore pins
would work for this example, why don’t we just use the default val-
ues? This means that the signal wire that’s connected to the Beefcake

relay board traces back to pin 9 on the Arduino, running through
port 2 on the mCore to slot 1 on the R]J25 board.

There are a few other alterations to make. The Set Digital Pin blocks
call replaces the Set Motor blocks in the SprinklerON and Sprinkler-
OFF procedures. Set Digital Pin 9 Output As High replaces Set M1 to

FIGURE 6-29: Pin names are listed behind each mCore port. When the
RJ25 board is connected to port 2, slot 1 connects to pin 9 and slot 2
connects to pin 10.

MBOT FOR MAKERS

255 in SprinklerON, and Set Digital Output as Low replaces Set M1
to 0 in SprinklerOff. We also removed the Eat sound effect, because
it’s just hard to hear the computer speaker when you’re testing outside.
(You can see these changes in the following image.)

when clicked

set to
-8 TimeToSprinkler ~ £ define TurnOffSprinkler
e

TurnOffSprinkler

set [PEISTETRd o fame sensor GERED
|

say FlameSensor

ser digital pin €) outpur as

1!” FlameSensor > FlameThreshold m:'n_

reset timer

else define TurnOnSprinkler
play drum €89 for beats
By ——————" set digital pin €) output as (MM
it timer > TimeToSprinkler . then

[TurnOnSprinkler

I!peltllrlﬂf FlameSensor > FlameThreshold

set [ITIESTRd 0 fame sensor GIED
|

say join FlameSensor

TurnOffSprinkler
»

reset timer

1§

Now we can use this simple code to check the program and
wiring of our circuit. The SparkFun Beefcake relay board features a
small LED that indicates when the high-voltage side of the relay is
engaged. Physical relays also make a distinct and pleasant clicking
sound as they open and close. These small visual and audio cues are
useful when testing your relay setup. Test your wiring and relay setup
before attaching the hoses.

How you position the sprinkler, hoses, and wires depends more
on the space getting soaked than the hardware that’s used. Pay atten-
tion to the threading on the valve and any hoses or connectors. Even
when the connectors are the same size, pipe threading requires an
adapter for normal garden hoses. Appropriate parts are available at
most hardware stores.

BUILDING BIG AND SMALL WITH MCORE

283

284

Figure 6-30 shows the full setup with the plumbing equipment
and the electronics connected, placed artificially close in order to fit
in the image. Do not put your electronics this close to the hose and
valve. When we ran preliminary tests, the exposed mCore sat far
away from the water and under a towel.

Put a bit more space between the components and let the test
program run. Look for lag time between when the relay triggers and
the water flow stops or starts. Once you’ve chosen a time interval
for the sprinkler that generates enough splash without overloading
the relay, it’s time to mount the fire sensor and update the dollhouse
sprinkler program.

Where and how you mount the fire sensor is entirely dependent
on the sprinkler setup and how you plan to test. However, it’s crucial
that the flame sensor stays dry! Not only would a wet sensor produce
unpredictable readings, the flame sensor circuit is part of the mCore.
Stray drops of water might short circuit the mCore and, in the best
scenario, trip the fuse and depower the board. Adding a layer of cling
film over the sensor is a great safety measure—it isn’t waterproof,
but it does serve as a reasonable barrier against a few errant drops.

FIGURE 6-30: Here’s the mCore and battery, connected to an RJ25
board, which is connected to the Beefcake relay board, which is
housed inside a waterproof tub.

MBOT FOR MAKERS

Once the flame sensor is mounted, make sure to test the reading.
A frustrated kid jumping around with a lit candle trying to trigger the
sprinkler increases the risk of this project significantly. Thanks to the
wide angle of the sensor, the example setup will detect a flame in a
large arc anywhere between 3" and 8’ off the ground.

Now, gather your volunteers, and get ready to test! Figures 6-31
and 6-32 shows before and after.

FIGURE 6-32: It works!

BUILDING BIG AND SMAIL WITH MCORE

285

286

Although this sprinkler setup emerged out of the dollhouse fire
alarm, it doesn’t have to end there. You now have the ability to pro-
gram arbitrary reasons to soak people! Maybe that traffic light class-
room volume monitor was too passive. Soak the loud ones! Maybe
balloon jousting should end by drenching the losing team. The pos-
sibilities are endless . . . and soggy.

Fan for Crowded Room—Large

After that mess of relays and hoses, it seems like scaling up the PIR
temperature fan project should be much easier. The PIR sensor has
a huge field of view and can easily cover most of a room. Discretely
hiding a thermometer is easier at human scale than in a cardboard
box. It seems like scaling up this project is just a matter of adding
longer cables—until we get to the fan.

Even 120 mm computer fans don’t move enough air to affect
the average human-scale room. However, box, desk, and oscillating
room fans are powered by AC motors, rather than DC. These motors
plug directly into local wall current (110V in the United States) to
spin big blades and move a bunch of air.

Wall current is super dangerous—deadly, even! As a rule, our
Makerspace does not work with mains electricity, aka, what comes out
of the wall socket. Not only does it have the potential to fry people,
it would obliterate all of the robots or motors we’ve seen thus far.
Wall current is not your friend!

Room-sized fans need wall current. Although big relays, like the
SparkFun Beefcake used in the sprinkler project, can switch 110V
AC, we don’t use them with kids. Exposed traces and screw terminals
present only a mild risk of accidental shock, but that’s more than
we’re willing to accept when we have a classroom of adolescents.

Instead, we turn to the PowerSwitch Tail, shown in Figure 6-33,
which encases a high-current relay inside a traditional power brick.

The input wires on the PowerSwitch are fully isolated from the
relay and the wall voltage circuit. Although I can’t say that this elim-
inates my nervousness at having young kids working with wall cur-
rent, it’s enough to get the project moving. For budget-conscious
electrical experts, there are much cheaper ways to use the mCore to

MBOT FOR MAKERS

FIGURE 6-33: This PowerSwitch Tail is designed for use with US 110V
wall current. There’s another version with appropriate plugs for coun-
tries using 220V standards.

control large fans, toasters, or hair dryers, but I sleep much better
spending the extra cash on these.

The PowerSwitch Tail connects to the mCore like other relays,
using the R]25 expansion board. Since the low-voltage side of the
PowerSwitch Tail is opto-isolated, meaning there is no physical con-
nection between the high-power and low-power circuits. Instead,
the bridge between the two circuits is a tiny LED and light sensor,
not unlike the onboard sensor on the mCore. Because of this setup,
you only need to connect the signal and ground wires from the RJ25
board, not the 5V wire. Connect the signal wire to the + Input pin,
connect the ground wire to the - Input pin, and leave the ground pin
on the PowerSwitch Tail empty, as shown in Figure 6-34.

As with the Beefcake, we’ll need to use the Digital Pin block
from the Arduino extension to switch one particular pin to High or
Low. A signal LED on the PowerSwitch Tail shows when the relay is
engaged. Instead of having to hack apart a cable, the PowerSwitch
Tail sits neatly inline between the room fan and the wall outlet, and
the mCore can now control any household lamp or fan.

BUILDING BIG AND SMALL WITH MCORE

287

288

FIGURE 6-34: Unlike the Beefcake relay, the PowerSwitch Tail only
needs the signal and ground wires connected. Cover the loose 5V
wire from the RJ25 board.

With the PowerSwitch installed, the biggest challenge is repli-
cating the physical setup of the dollhouse room at full scale. This is
absolutely the time for super-long extension cables. Just like in the
scale model, it’s important to test as you go to ensure that the airflow
lowers the temperature on the thermometer. Also, the timers for the
PIR sensor and the fan will need to be significantly longer. The real
world is big, and it takes time for stuff to move around!

These projects represent one way you can extend mBot’s capa-
bilities far beyond what arrives in the retail kit—but it’s not the
only one. The mBot arrived into our elementary and middle school
classrooms as an accessible, low-floor, programming and robotics
platform. What’s kept them in use throughout middle and into high
school is that the full power of the Arduino platform is just under
the surface. Almost any Arduino project found in an issue of Make:
will work with an mCore at the heart.

MBOT FOR MAKERS

Index

Numbers

2.4G module, 20-22

2.4QG serial connection, 60

2.5 mm barrel plug, 31

5V motors, 246

6P6C modular jack, 28-30, 53

A

AA battery holder, 32
actuators, using frames, 41
add-on sensors. See also sensors
7-segment display, 117
connecting, 114-118. See also
sensors
Joystick, 117
LED matrix, 118
LED Strips, 118
Light, 117
Me LED 4x, 116
PIR Motion, 117
Potentiometer, 117
RJ25 adapter, 118
Sound, 117
Temperature, 118
aluminum
frame, 8
parts, 10
analog sensors, 94-95, 97. See also
sensors
<AND> operator, using in
mBlock, 99

animatronics
craft supplies, 120
electronics, 120
overview, 119-120
sensing and movement, 121
tools, 120
Arduino
pin numbers, 29-30
uploading to, 106-108, 110-111
AT328,29

B

Balloon Tag, 72-75
battery and mCore, installing, 16-18
battery holder, 15, 32. See also LIB
(lithium ion battery) connector
BattleBots, 27
behaviors, setting and resetting,
96-97
bins, using for storage, 40-41
block length, managing, 178-179
block-based programming
explained, 95-96
screen width, 178-179
blocks, navigating on mobile
devices, 68-72
Bluetooth, 20-22, 27, 60
bolt, measuring diameter and
length, 4
brushed and brushless motors, 245.
See also motors

290

building big
Fan for Crowded Room,
286-288
Fire Management System,
275-286
overview, 274-275
building small
dollhouse terminology, 251
Fan for Crowded Room,
267-274
Fire Management System,
253-267

kitchen made from shoebox, 252

Cc

cables
color alignment, 53
crimping, 54-55
ends, 54
making, 55-58
parts, 53
case, making, 52
Catapult Ball Launcher, 214-223
CD Scoop, 205-207
chassis, motors and wheels, 3-12
CheckDoorState functions, 199
classroom use, 28
compass sensor, 60
components, storing, 37
copying script blocks, 91
cover, adding, 51-52
craft supplies, animatronics, 120
CurrentTemp value, 185
custom blocks
naming, 201

using in mBlock, 102, 104, 107, 111

D

data-logging device,
conceptualizing, 171-172

DC motors, 8

MBOT FOR MAKERS

DC power
harnessing, 245-251
trade-off, 278

default program
versus firmware, 60
options, 63-64

digital I/O port, 29

digital sensors, 93, 97. See also

sensors

display, 60

dollhouse services, 245, 251

Donahue, Gary, 36

Door Monitor
button, 197
CheckDoorState functions, 199
custom block, 198, 201
Line Follower sensor, 195
opening and closing, 200-201
overview, 194
switches, 196

double digital components, 29

E
electronics, animatronics, 120
Elijah, Josh, 239
equality, checking for, 198
exporting values to spreadsheets,
192-194
eyes
lighting up, 121-124
rotating, 138-144

F

Fan for Crowded Room—Large,
286-288

Fan for Crowded Room—Small
CheckForMotion, 273
choosing fans, 269
HVAC modeling, 268
PIR motion sensor, 271-272
State Check code, 270

temperature sensor, 268-269
thermostat, 273-274

Fire Management System—Large
Beefcake Relay board, 276-277
blocks in Robots palette, 281
checking program and wiring, 283
control wires, 280
DC power, 277-278
garden sprinkler solenoids,

277-278

maintaining flexibility, 279
mounting fire sensor, 284
NC (normally closed) pins, 277
NO (normally open) pins, 277
overview, 275-276
pin names, 282
power input, 280
Set Digital Pin Output, 280-281
setup with plumbing, 284
testing, 285

Fire Management System—Small
building code, 263-267
DC water pumps, 253-257
flame sensor, 256, 258
hose and sprinkler valve, 261-262
IR LED, 260
LED throwies, 259, 261

Firmata protocol, 58

firmware versus default program, 60

Forever loop, 92, 104

frame
making and using, 43-50
using with sensors and

actuators, 41

G
game challenges
Catapult Ball Launcher, 214-223
CD Scoop, 205-207
Maze-Solving mBot Using
Standard Sensors, 239-243
overview, 204-205

Robot with 9g Servo Grabber,
223-239
Spear-Lowering Servo, 208-213
Green Flag block, mBlock, 89
gyro sensor, 60

H
hardware serial component, 29
hat blocks, 174-175
head
attaching to body, 130-131
combining with LED eyes, 131
turning randomly, 125-131
Head Turning Randomly Using 9g
Servo and RJ25 Adapter, 125-131
HighTemp and LowTemp variables,
184-185
hot glue gun, using, 25
Hudy, Joey, 277
Humidity sensor, 60

12C devices, serial port, 29
<IF> statement, using in mBlock, 99
If/Else block, using in loops, 184
IKEA TROFAST bins, using for
storage, 40-41
infrared receiver and transmitter,
mCore board, 35
installing
mCore and battery, 16-18
motors on chassis, 3-12
sensors, 12-14
wheels on chassis, 3-12
IR remote, 26-27, 60. See also
remote

J

joystick input, 60

JST connectors, using, 249

JST lithium ion battery connector,
31-32

INDEX

291

292

K

Kepler, Jon, 223

keyboard commands, 203-204
“kid electronics,” 28

L

laser cut files, 51, 147, 215
Latching Trigger sensor, 96
Latching Trigger with Reset
sensor, 97
LED eyes, combining with moving
head, 131
LED matrix, 60. See also
RGB LEDs
left motor, 24. See also motors
LEGO Technic frame, making and
using, 43-50
LEGO Technic parts, 10-11
LEGOs, damage done by, 36
LIB (lithium ion battery) connector,
31. See also battery holder
Light Sensor
reading, 99
using to “feed” creature,
144-150
Light-Chasing Robot, 235-239
Light-Emitting Head-Shaking
Creature, 230-235
LightVal, 100
Line Follower sensor
image and description, 116
using with Door Monitor, 195
Line Graph block, adding
Code, 175
line-following, 60
loops
If/Else block, 184
using in mBlock, 99
Loudness block, 89
LowTemp and HighTemp variables,
181, 184-185

MBOT FOR MAKERS

M

M on parts list, 3
Makeblock app
aluminum parts, 10
Context menu, 176
control panels, 173
custom elements, 177
Design and Play mode, 174
displaying sensor values, 174
displaying variables, 177-178
features, 64-65
hats, 174-175
Line Graph block, 175
LowestTemp threshold, 181
Math palette, 178
products, 9, 11
scripts and Ul elements, 181
setting sensor locations, 177
status displays, 173
temperature probe, 175
variables, 180
Makeblock sketch, creating, 174
mapping values, 101
Math palette, using in Makeblock,
178
Maze-Solving mBot Using Standard
Sensors, 239-243
mBlock. See also Scratch graphical
programming language
<AND-> operator, 99
analog sensors, 94
binary values, 93-94
Brightness control, 90
calculations and conditionals, 92
checking for equality, 198
copying script blocks, 91
custom blocks, 102, 104, 107
exporting values to
spreadsheets, 192-194
Forever loop, 92, 104
Green Flag block, 89

hexagons, 93-94
<IF> statement, 99
IfElse comparator, 90
lists of variables, 188
loops, 99
Loudness block, 89
Map function, 102
Me Joystick, 95
Me Sound Sensor, 103
monitoring sensors, 182-194
panda sprite, 183
programming environment,
75-77
repositioning red light, 91
Reset Timer, 200
Say block, 104
Say loop, 92
Scripts panel, 88
sensors, 93-95
Stage area, 185
strings, 198
switch cases, 99-100
switching to Arduino mode, 110
traffic light volume meters,
88-93
variables, 98-99, 198
versions of lights, 90
XY-coordinate grid, 185
YellowLight script, 91
mBlock connections
2.4G wireless serial, 81-83
Bluetooth for macOS, 80-81
Bluetooth for Windows, 79-80
types, 77-78
USB, 83-85
web-based tool, 77
mBlock lists, importing data into, 193
mBot
assembled, 2
communication, 20-22
firmware update, 59

out of box, 25
parts out of box, 2
powering up, 31-33
rack, 25
updating, 58-61
wiring, 19-20
mBot Motor pins, connecting, 250
mBot remote, testing, 23-25
mCore board
and battery installation, 16-18
components, 35
features, 8-9, 28
infrared receiver and
transmitter, 35
memory limitations, 187
numbered ports, 30
piezo buzzer, 35
protecting, 42
push button, 35
RGB LEDs, 35
sensors, 35-36
storing and charging, 42
storing with mixed materials, 41
strengths, 247
testing connections, 23
uploading to, 106-108
wiring to, 129-130
Me Flame sensor, 60
Me Joystick, 95
Me Light Sensor, 101
Me Sound Sensor, 103
Me Touch sensor, 60
measurement, using sensors, 172-173
metric parts, 2, 5
mobile devices, navigating blocks,
68-72
Mode A: Remote Manual Control,
23-24
Mode B: Wall Avoidance/Range
Checker, 24
Mode C: Line-Following, 24-25

INDEX

293

motion sensor, triggering, 156-162
motor ports, 29-30
motors. See also left motor
brushed and brushless, 245
connecting with two wires,
247-251
connectors, 247
installing on chassis, 3-12
and wheels, 3-12
mounting wire and servo, 125-126
mouth, opening, 132-138

N

navigation. See robot navigation

(o)

obstacle avoidance, 60
onboard sensors
button, 114
buzzer, 115
components, 28-30
features, 36
IR sensor, 116
LED x 2, 115
Light, 115
Opening Mouth Using 9g Servo and
RJ25 Adapter, 132-138

P

panda sprite, 183, 185

parts
battery holder, 15
cables, 53
Catapult Ball Launcher, 214-223
CD Scoop, 205
LEGO Technic frame, 44
Light-Chasing Robot, 235-239
Light-Emitting Head-Shaking

Creature, 230

mBot communication, 20-22
mCore and battery, 16

MBOT FOR MAKERS

motors and wheels, 3
Robot with 9g Servo Grabber,
223
sensors, 12
servo grabber, 223, 227
Spear-Lowering Servo, 208
piezo buzzer, mCore board, 35
PIR motion sensor, Fan for
Crowded Room, 271-272
programming, block-based, 95-96
Project Gallery, 65-68
projects
“Feeding” Your Creature Using
Light Sensor, 144-150
Head Turning Randomly Using
9g Servo and R]25 Adapter,
125-131
Opening Mouth Using 9g Servo
and R]25 Adapter, 132-138
overview, 26-27
Propeller Spins with Ultrasonic
Sensor, 151-155
Random Light-up Eyes Using
RGB LED Sensor, 121-124
Rotating Eyes Using 9g Servo
and RJ25 Adapter, 138-144
Servo Arm with Paw Reaches
Out When Motion Sensor Is
Triggered, 156-162
storing, 37-39
Touch Sensor Triggers Scrolling
Message, 162-168
Proportional Control sensor, 100-106
puppet movement with sensors
“Feeding” Your Creature Using
Light Sensor, 144-150
Propeller Spins with Ultrasonic
Sensor, 151-155
Servo Arm with Paw Reaches
Out When Motion Sensor Is
Triggered, 156-162

Touch Sensor Triggers Scrolling
Message, 162-168
puppet movement without sensors
Head Turning Randomly Using
9g Servo and R]25 Adapter,
125-131
Opening Mouth Using 9g Servo
and R]25 Adapter, 132-138
Random Light-up Eyes Using
RGB LED Sensor, 121-124
Rotating Eyes Using 9g Servo
and RJ25 Adapter, 138-144
push button, mCore board, 35

R

race course, 27

Random Light-up Eyes Using RGB
LED Sensor, 121-124

reed switches, using with Door
Monitor, 196-197

remote, testing, 23-25. See also IR
remote

Reset Default Program, 59, 113

RGB LEDs, 35, 60, 105-106. See also
LEDs

RJ25 cables, using with Door
Monitor, 197

RJ25 connector, 53

RJ25 plug, 28-30

robot navigation, keyboard
commands, 203-204

Robot Petting Zoo, 132

Robot with 9g Servo Grabber, 223-
239. See also servos

Rotating Eyes Using 9g Servo and
RJ25 ADapter, 138-144

S

Sanz, Dani, 239
Say block, 104
Say loop, 92

scale prototype, 251
Scratch graphical programming
language. See also mBlock
advantages, 185
center-original coordinate
plane, 186
features, 28, 75-76
keyboard input, 191-192
resources, 76
screen width, 178-179
screwdriver, Phillips and hex tips, 13
script blocks, copying, 91
scrolling message, triggering,
162-168
sensing and movement,
animatronics, 121
sensor locations, setting, 177
sensor loops, flow of, 183-184
sensor readings, storing and
checking, 98
sensor recipes
Latching Trigger, 96
Latching Trigger with Reset, 97
Proportional Control, 100-106
State Check, 97-100
sensor values, displaying, 174
sensors. See also add-on sensors;
analog sensors; digital sensors;
onboard sensors
features, 36, 60
installing, 12-14
monitoring in mBlock, 182-194
using for measurement, 172-173
using frames, 41
using in mBlock, 93-95
servo and wire, mounting, 125-126
servo arm, building, 127-129
servo grabber
attaching to mBot, 227-229
printing and assembling,
223-227

INDEX

295

296

servos. See also Robot with 9g Servo
Grabber
Spear-Lowering Servo, 208-213
Catapult Ball Launcher, 214-223
explained, 246
Spear-Lowering Servo,
SetGreenLight custom block, 111
sizing, simplifying, 3
sketches, creating in Makeblock, 174
soil moisture sensor, 169-170
sound on boot, 60
Spear-Lowering Servo, 208-213
spreadsheets, exporting values to,
192-194
StandardFirmata program, 58
State Check sensor, 97-100
stepper motors, 246
storing
assembled mBot, 39-40
and charging mCore board, 42
components, 37
mCore with mixed materials, 41
projects, 37-39
Sumo wrestling, 27
switch cases, using in mBlock,
99-100

T
Technic frame. See LEGO Technic
frame
temperature
monitoring in hallway, 189
normal range, 186
SampleDelay, 191
tracking and recording, 183
temperature probe, 175
temperature reading
displaying, 176
saving, 179
temperature readings

MBOT FOR MAKERS

adding to TempRecords,
189-190
collecting, 192
taking, 190
temperature sensor, 60, 268-269
testing
Fire Management System—
Large, 285
mBot remote, 23-25
mCore connections, 23
sensors in mBlock, 104
traffic light volume meters, 92
thermometer, 173, 187
thermostat, Fan for Crowded Room,
273-274
Thingiverse, 223
Tinkering Studio, 162
tires, attaching over wheels, 8
tools, animatronics, 120
traffic light volume meter
adding code, 88
Brightness control, 90
Button sprite, 87-88
coding, 88-93
copying script blocks, 91
Forever loop, 92
Green Flag block, 89
If/Else comparator, 90
Loudness block, 89
making independent, 108-113
overview, 85
reinstalling default program, 113
repositioning red light, 91
Say loop, 92
Scripts panel, 88
sprites, 85-86
testing prototype, 92
versions of lights, 90
word balloon, 90
YellowLight script, 91

U

UI elements, attaching to scripts,
181

ultrasonic sensor, 116, 151-155

Update Firmware option, 113

updating mBot, 58-61

USB plug, 31-32. See also wired USB
connection

\'

values, mapping, 101
variables
HighTemp and LowTemp, 184
listing in mBlock, 188
in Makeblock, 98-99, 177-178,
180
mBlock, 198
Velcro, using with mCore and
battery, 16-17

w

water-resistant thermometer, 173
websites
laser cut files, 51, 147
LEGO Technic frame, 44
Tinkering Studio, 162
wheels, installing on chassis, 3-12
wire and servo, mounting, 125-126
wired USB connection, 60. See also
USB plug
wiring mBot, 19-20
word balloon, displaying, 90

X
XY-coordinate grid, displaying in
mBlock, 185

Y
YellowLight script, 91

INDEX

297

	 Contents
	Introduction
	Chapter 1: Kit to Classroom
	Chapter 2: mBot Software and Sensors
	Chapter 3: Animatronics
	Chapter 4: MeasurementDevices
	Chapter 5: Robot Navigation
	Chapter 6: Building Big and Small with mCore
	Index

