

http://www.Dummies.com
http://www.Dummies.com
http://www.Dummies.com
http://www.dummies.com/cheatsheet/arduinoprojects

Arduino®
Projects

by Brock Craft

Arduino®
Projects

Arduino® Projects For Dummies®

Published by
John Wiley & Sons, Ltd.
The Atrium
Southern Gate
Chichester
West Sussex
PO19 8SQ
England
Email (for orders and customer service enquires): cs-books@wiley.co.uk
Visit our home page on www.wiley.com
Copyright © 2013 John Wiley & Sons, Ltd, Chichester, West Sussex, England
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmit-
ted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence
issued by the Copyright Licensing Agency Ltd., Saffron House, 6-10 Kirby Street, London EC1N 8TS, UK,
without the permission in writing of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester,
West Sussex, PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (44) 1243 770620.
Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Ltd. and/or its affiliates
in the United States and other countries, and may not be used without written permission. Arduino is a
registered trademark of Arduino LLC. Arduino drawings and circuit diagrams used throughout the book
are based on Fritzing Arduino drawings. All other trademarks are the property of their respective owners.
John Wiley & Sons, Ltd. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER, THE AUTHOR, AND ANYONE ELSE
IN PREPARING THIS WORK MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM
ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content
that appears in standard print versions of this book may not be available in other formats. For more infor-
mation about Wiley products, visit us at www.wiley.com.
British Library Cataloguing in Publication Data: A catalogue record for this book is available from the
British Library.
ISBN 978-1-118-55147-9 (paperback); ISBN 978-1-118-55150-9 (ebook); 978-1-118-55151-6 (ebook)
Printed and bound in the UK at Bell & Bain
10 9 8 7 6 5 4 3 2 1

mailto:cs-books@wiley.co.uk
http://www.wiley.com
mailto:permreq@wiley.co.uk
http://www.wiley.com/techsupport
http://www.wiley.com

About the Author
Brock Craft is a Lecturer in the Department of Computing at Goldsmiths,
University of London. He is also a Senior Tutor at the Royal College of Art.
He is a specialist in physical computing, data visualization, and the Internet
of Things. Brock’s background is in the field of human-computer interaction,
and he has over a decade of experience making interactive things that
people can use, explore, and play with. He was a co-director of the design
consultancy Tinker London, along with Alexandra Deschamps-Sonsino and
Massimo Banzi, one of the founders of the Arduino Project. He has taught
hundreds of people to create things with Arduinos.

When he is not teaching and learning, Brock likes to make interactive stuff
and digital art.

Dedication
For Barbara, who has supported me steadfastly on this most incredible
journey, and without whom this book would not have been possible. She has
put at least as much work into this effort as I have. I also dedicate this book
to my mother, Lea Gaydos, who taught me that I can do anything I put my
mind to. I would like to acknowledge and dedicate this book to the memory
of Craig Veal, the best teacher I ever had.

And most especially, this book is for Eleanor, who I hope will grow up to
make everything in her world come alive with creativity.

Author’s Acknowledgments
First and foremost, I’d like to thank Massimo Banzi and the entire Arduino
crew. Their foresight has opened up the joy of programming and electronics
to millions of people and revitalized my own teaching and learning.

Writing this book has been a rewarding and challenging process, which
would not have been possible without the support of my many colleagues
and friends. I’d like to extend special thanks to Alexandra Deschamps-
Sonsino, without whose insight this book wouldn’t have been undertaken.
I’d also like to extend my gratitude to all the members of the TinkerLondon
crew, the extraordinary Nick Weldin, and also to Peter Knight, from whom I
learned so much during our extraordinary work together.

My father’s mechanical acumen is, no doubt, where I got my own, and I thank
him for many rewarding hours of thinking and tinkering together. I also
appreciate the contributions and support of my friends Jason Geistweidt,
James Larsson, Patrick Burkart, and Carl Wiedemann, whose probing
questions inspired me to think a bit harder about my readers. Many of my
students have made useful suggestions too, which were very helpful in
deciding what should go into these pages.

Particular thanks go to my technical editor and TinkerLondon compatriot,
Daniel Soltis, who spent many hours building the projects from scratch
and finding errata. He has made many useful suggestions for improving
both the projects and the code. Daniel’s excellent insights into how people
build projects, along with his edits and tweaks, have been a hugely positive
contribution.

I also extend my gratitude to the team at Wiley, including the patient and
supportive Craig Smith, and to Beth Taylor for her excellent editorial
recommendations.

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.
Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial
Project Editor: Beth Taylor
Executive Commissioning Editor: Craig Smith
Associate Commissioning Editor: Ellie Scott
Copy Editor: Beth Taylor
Technical Editor: Daniel Soltis
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Annie Sullivan
Cover Photo: Brock Craft

Marketing
Associate Marketing Director: Louise Breinholt
Marketing Manager: Lorna Mein

Composition Services
Senior Project Coordinator: Kristie Rees
Layout and Graphics: Jennifer Creasey,

Joyce Haughey
Proofreaders: Debbye Butler, Jessica Kramer,

Linda Seifert
Indexer: BIM Indexing and Proofreading

Services

UK Tech Publishing
Michelle Leete, VP Consumer and Technology Publishing Director
Martin Tribe, Associate Director–Book Content Management
Chris Webb, Associate Publisher

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies
Kathleen Nebenhaus, Vice President and Executive Publisher

Composition Services
Debbie Stailey, Director of Composition Services

http://dummies.custhelp.com

Contents at a Glance
Introduction... 1

Part I: Getting Started with Arduino Projects.................. 7
Chapter 1: Exploring the World of Arduino... 9
Chapter 2: Setting Up Your Workspace and Tools... 19
Chapter 3: Understanding the Basics... 41

Part II: Basic Arduino Projects.................................... 63
Chapter 4: The All-Seeing Eye... 65
Chapter 5: Making a Light Pet... 85
Chapter 6: Making a Scrolling Sign... 107
Chapter 7: Building an Arduino Clock.. 127

Part III: The Interactive Home and Garden................. 153
Chapter 8: Building a Keypad Entry System... 155
Chapter 9: Building an RFID Tag Reader.. 181
Chapter 10: Building an Automated Garden.. 201
Chapter 11 : Building a Tweeting Pet Door.. 221
Chapter 12: Building a Home Sensing Station... 243

Part IV: Advanced Arduino Projects........................... 273
Chapter 13: Building a GPS Data Logger.. 275
Chapter 14: Building a Remote-Controlled Car... 299
Chapter 15: Building an LED Cube.. 323

Part V: The Part of Tens.. 349
Chapter 16: Ten Great Arduino Resources.. 351
Chapter 17: Ten Troubleshooting Tips.. 359

Index... 369

Table of Contents
Introduction.. 1

Why Arduino?.. 1
Foolish Assumptions.. 2
Safety and Arduino Projects.. 2
How This Book Is Organized... 3

Part I: Getting Started with Arduino Projects..................................... 3
Part II: Basic Arduino Projects.. 4
Part III: The Interactive Home and Garden.. 4
Part IV: Advanced Arduino Projects... 5
Part V: Part of Tens... 5

The Companion Website... 6
Icons Used in This Book.. 6

Part I: Getting Started with Arduino Projects................... 7

Chapter 1: Exploring the World of Arduino . . 9
About Arduino.. 10
Discovering Who Uses Arduino.. 11

Arduino in education.. 11
Arduino in the corporate world.. 11
Making and hacking communities.. 12

Understanding Microcontrollers.. 13
Using tiny computers to do useful stuff... 15

Getting Started.. 17

Chapter 2: Setting Up Your Workspace and Tools 19
Preparing to Build.. 19

Setting up your workspace.. 20
Selecting Basic Tools... 22

Selecting and using your multimeter... 24
Selecting and using a power supply... 25
Understanding electricity and safety... 27
Working with breadboards, stripboards and perfboards............... 28

Choosing Your Soldering Iron and Accessories... 30
Selecting Project Boxes and Housings... 32
Choosing Your Arduino or Arduino Kit... 33

Getting to know Arduino shields.. 35

Arduino Projects For Dummies xiv
Setting Up Your Arduino on Your Computer.. 37

Installing the Arduino IDE.. 37
Installing drivers on Windows computers... 38
Connecting your Arduino.. 39
Installing Arduino drivers on Linux.. 40

Chapter 3: Understanding the Basics . 41
Understanding Key Concepts... 41

Connecting your Arduino.. 43
Programming your Arduino using the IDE... 43
Extending your reach with libraries... 48
Powering your Arduino.. 50

Understanding Basic Electronics... 51
Voltage (V)... 52
Current (I).. 52
Resistance (R)... 52
Ohm’s Law... 53
So what?... 53

Identifying Electronic Components.. 54
Reading schematic diagrams.. 54
Reading parts placement diagrams.. 56

Understanding Sensing and Actuating... 57
Reading datasheets.. 57
Understanding and using sensors.. 57
Understanding and using actuators .. 59

Making Projects Work.. 60
Moving from your breadboard to your project box......................... 60
Learning soldering basics.. 61

Part II: Basic Arduino Projects..................................... 63

Chapter 4: The All-Seeing Eye . 65
Selecting Your Parts... 66
Building the Circuit.. 67
Understanding How the Code Works... 69

All in good time... 69
Setting up the code... 72
The main event.. 77
Stepping up and stepping down... 78

Understanding How the Hardware Works... 79
The Potential of a Potentiometer... 80

Chapter 5: Making a Light Pet . 85
Selecting Your Parts... 86
Building the Circuit.. 87

xv Table of Contents

Understanding How the Code Works... 89
Making moods... 89
Cranking out the code.. 90
Blending light.. 94
Fooling your eyes with pulse-width modulation.............................. 96
Testing the code... 99
Upload and go... 99
Tweaking it!.. 100

Understanding How the Hardware Works... 102

Chapter 6: Making a Scrolling Sign . 107
Selecting Your Parts... 107
Building the Circuit.. 109
Understanding How the Code Works... 113

Summoning a sprite.. 114
Animating sprites.. 119
Displaying scrolling text.. 120

Understanding How the Hardware Works... 125
Troubleshooting... 125
Getting creative... 125

Chapter 7: Building an Arduino Clock . 127
It’s About Time!... 127
Selecting and Preparing Your Parts... 128

Assembling your RTC module... 131
Adding and testing your LCD display... 134
Displaying the time... 138
Adding your input buttons and a switch... 141
Adding your alarm.. 149

Part III: The Interactive Home and Garden.................. 153

Chapter 8: Building a Keypad Entry System . 155
Selecting and Preparing Your Parts... 155

Selecting an electric lock mechanism.. 159
Prototyping your keypad and display.. 161
Coding and testing your keypad... 166
Adding and testing your relay... 173

Assembling and Installing Your System.. 176

Chapter 9: Building an RFID Tag Reader . 181
Understanding RFID... 182

About passive RFID... 182
About active RFID... 183
RFID frequencies and protocols.. 184

Arduino Projects For Dummies xvi
Building an ID-Innovations RFID Reader.. 184

Selecting your parts.. 184
Assembling your RFID reader.. 187
Programming your RFID reader.. 192

Testing and Setting Your RFID Reader... 198

Chapter 10: Building an Automated Garden . 201
Creating a Watering System.. 201
Selecting Your Parts... 202
Building Your System... 205

Building your moisture sensor.. 206
Building your reservoir.. 210
Running the water supply.. 212
Building the breadboard circut.. 213

Coding, Calibrating, and Testing.. 215
Defining the setup... 216
Running the main loop... 217
Calibrating the sensor and flow rate.. 218
Adding more valves.. 220

Chapter 11 : Building a Tweeting Pet Door . 221
Selecting Your Parts... 222
Testing Your Circuit... 224
Preparing Your Twitter Account.. 228
Crafting Your Code... 231

Specifying your tweets... 231
Adding libraries for Ethernet and Twitter....................................... 232
Adding your program logic.. 235

Modifying Your Pet Door... 239

Chapter 12: Building a Home Sensing Station 243
Building Your Sensor Probes.. 243

Selecting your parts.. 244
Building and testing your circuit.. 246
Building your sensor probes... 251
Building your sensor shield... 255

Creating a Xively Account... 260
Programming Your Sensing Station... 264

Understanding the code... 264
Understanding the main loop.. 267
Making sense of your sensor readings... 270

xvii Table of Contents

Part IV: Advanced Arduino Projects............................ 273

Chapter 13: Building a GPS Data Logger . . 275
Understanding GPS... 276
Selecting Your Parts... 276
Building Your Project... 279

Assembling and testing the GPS shield.. 279
Programming your data logger... 287
Testing your datalogger... 288
Making the enclosure... 289

Collecting and Plotting GPS Data.. 295
Tracking your path... 296
Plotting your data... 296

Chapter 14: Building a Remote-Controlled Car 299
Selecting and Preparing Your Parts... 299
Building Your Detector and Drive.. 302

Building your circuit on the breadboard... 302
Coding the detector.. 305
Reading your remote control codes... 307
Coding the drive motors.. 308
Testing the drive motors... 312

Building Your Chassis.. 314

Chapter 15: Building an LED Cube . 323
Selecting Your Parts... 324
Building Your Cube.. 326

Assembling the LED matrix... 326
Fabricating the enclosure.. 332

Programming Your Cube... 339
Variable declarations... 340
Setup... 342
The main loop... 343

Using the LED Cube Pattern Designer.. 346

Part V: The Part of Tens... 349

Chapter 16: Ten Great Arduino Resources . 351
Websites.. 351

Arduino.cc and related forums... 352
Fritzing... 352

Arduino Projects For Dummies xviii
Hack-a-day.. 353
Instructables.. 353
Learn.adafruit.com... 354
Make:.. 354
element14... 355
YouTube... 355

Books and eBooks.. 356
Arduino For Dummies... 356
Arduino Cookbook... 356
Making Things Talk... 357

Chapter 17: Ten Troubleshooting Tips . 359
Troubleshooting Your Hardware... 359
Checking Your Connections.. 360
Confirming Your Power Is Correct... 361
Hunting for Odors and Hot Components... 362
Test Your Outputs on External Devices.. 363
Testing Your Digital Pins... 363
Troubleshooting Your Software... 364
Checking Your Syntax.. 364
Using the Serial Monitor.. 364
Checking Your Inputs and Outputs.. 365
Using a Simulator or an Emulator... 365
When All Else Fails. 366

Index.. 369

Introduction

H
ave you heard a lot about Arduinos and wanted to get to know how
they work a little bit better? Maybe you have a friend who’s used an

Arduino to build some crazy project or interactive gizmo. Perhaps you have
an Arduino lying around that you always thought you’d get working but never
had the time to do it. It’s time to blow the dust off!

Maybe you just want some inspiration and fun projects to do in your spare
time or on the weekends. If so, this is exactly the book for you. The projects
here show off some of the amazing capabilities of an Arduino, and they can
all be completed without any prior expertise or experience. It’s also a great
companion to other Arduino books that you may have bought or skimmed
through.

Arduino Projects For Dummies is an inspiring collection of fun and interesting
things you can do with an Arduino. I’ve packed in a wide range of cool ideas
for things you can do. Best of all, I selected them so that after you’ve done a
few of them, you’ll have most of the technical knowledge you’ll need to come
up with your own amazing gadgets, widgets, and interactive stuff. Whether
you are an Arduino newbie or a seasoned pro, these projects are super fun to
build and help you to really get your creative ideas flowing.

Why Arduino?
It’s no secret that Arduino has been making a lot of news lately, especially
among makers, tinkerers, and hobbyists. All kinds of people are getting into
the powerful and interactive things you can do with an Arduino — from
school kids to university researchers, to artists and designers. One thing that
sets apart Arduino from a lot of other platforms is that anyone can write new
programs to use with it and share them online. Even more powerfully, special
code collections called libraries extend the things Arduino can do by allow-
ing you to connect cameras, motors, printers, scanners, remote controls —
you name it. Because anyone can create code for Arduino and share it online,
the community is really growing fast. It’s been instrumental in renewing inter-
est in electronics and new hacker spaces all over the country where people
build cool things, such as autonomous robots, 3D printers, and interactive
artwork.

2 Arduino Projects For Dummies

Foolish Assumptions
I’m assuming in this book that you have an idea of what an Arduino is and
maybe have played around with one a bit. You also may have done some
basic electronics, either in a school physics class or on your own, but you
may not be aware of or remember much about the basic principles of elec-
tronics. That’s no problem, because I’ll go over what you need to know and
explain a bit about how the electronic circuits in this book work, mainly what
you need to know to get the projects going.

I also figure you’ve tried your hand at writing a little code before. But
whether you have written any code at all, I explain how all of the programs
in this book work in fine detail. That way you can learn how to program your
Arduino to do not just the things in this book but the things you want to do.

I’m also assuming you want to get your Arduino to do its thing on its own and
without having to rely on a computer for power or a data connection. So all
of the projects in this book can operate just fine without the need for keeping
your Arduino connected to your desktop or laptop.

Which brings me to another assumption — that you have a computer you
can work on consistently and that you’re pretty familiar with how to operate
it, move and save files, and generally keep your system organized. I’m also
assuming you are familiar with downloading zipped files from the Internet
and extracting them.

Safety and Arduino Projects
When working with electricity, safety is paramount. If you connect something
incorrectly, you can easily fry your hardware or yourself, especially if you do
anything with household power. That’s why none of the projects in this book
are connected directly to the main power. All of the projects use low voltage,
direct current components. It’s simply a safer way to operate.

However, it is still possible to fry something if you aren’t careful. So you
should pay particular attention that you are wiring things up according to the
diagrams provided. There are warning icons in the margins for steps that are
particularly hairy, so keep an eye out for them. And speaking of your eyes,
some of the projects require a little light fabrication, so you should use those
safety goggles. Also, if you do any soldering, you have to be careful about the
hot soldering iron. Make sure you set up your workbench to be a safe and
productive environment.

3 Introduction

How This Book Is Organized
In general, I’ve organized the book with the easier projects toward the begin-
ning and the harder ones toward the end. But if you see a project you really
want to get going on, dive right in.

Check out the table of contents to see what you might want to tackle first,
and if you need to look something up, the index is a handy reference.

The parts in this book are divided into chapters, so you can find what you
need quickly and easily.

Part I: Getting Started with
Arduino Projects
You should check out Part I before you get started, to make sure you are
ready to go and your project building workspace has everything you’ll need
to get your work done. I discuss the basics of setting up your workbench and
getting the right project building supplies and tools in Chapter 2, and I cover
setting up your Arduino on your computer.

	

I also describe the most popular kinds of Arduino boards and suggest which
ones are good for different applications, although all of the projects in the
book can be built with the basic Arduino Uno.

I also cover setting up your Arduino and provide some tips on “packaging up”
your project. A lot of Arduino project guides online neglect the part about
building a good enclosure, so there are some creative tips in this section.

Chapter 3 describes the basics of writing Arduino code and the basics of
physically building your projects. If you know nothing about writing code
for Arduino, you should definitely read this chapter. Pretty much everyone
who has used an Arduino has made an LED blink, and that’s what you do in
Chapter 3, when you set up your Arduino. I also describe the kinds of things
you can do with your Arduino — sensing things in the environment and actu-
ating things. I give an overview of the kinds of electronic components you will
find out there on the market and provide some tips on soldering and building
your projects.

4 Arduino Projects For Dummies

Part II: Basic Arduino Projects
Part II is all about lights and timing. Chapter 4 takes LEDs bit further, describ-
ing how to make lots of LEDs blink in what I call an All-Seeing Eye — think
Battlestar Galactica. Chapter 5 describes how to make LEDs pulsate so you
can create a light pet with a personality. Chapter 6 takes LEDs to a more
functional application – writing with light, in which timing is a key factor.
Chapter 7 rounds things off with another timing application — building an
alarm clock. This is the most advanced project in Part II, so if you are just
getting your feet wet, save it for last.

Part III: The Interactive Home and Garden
Turn to Part III if you are fascinated by sensors and home automation.
People have been automating their homes and apartments since the 1980s,
at least — but with Arduino, you can take things to a whole new level!
Chapter 8 shows you how to build a keypad entry system for your door —
very James Bond. When you’ve completed it, you can extend its capabilities
with the keycard reader in Chapter 9. Only someone with a properly regis-
tered keycard will be able to gain access.

Once you’ve made it easier to come and go, you can build the plant irrigation
system in Chapter 10. That way, when you’ve gone out for a long trip, you can
make sure your houseplant or even a whole indoor garden stays healthy and
happy.

While you are smartening up your home, you can give your pets a new voice
as well. The tweeting pet door in Chapter 11 helps give your dog or cat a
voice online. You’ll be able to tell whenever they are coming and going by
wiring up your pet door to the Internet — with no computer required, once
it’s set up!

The last project in Part III takes this one step further and shows you how to
connect live data feeds from your house to a data tracking system online. In
Chapter 12, you build your own home sensing station that posts regular infor-
mation about temperature and light levels around your house — accessible
from anywhere you can get an Internet connection. You can even embed data
charts into your own website. Once you’ve got a handle on how the code
works, you can hook up just about any sensor to the Internet — whether in
your home, garden, or treehouse.

5 Introduction

Part IV: Advanced Arduino Projects
I’ve saved some of my favorite and trickiest projects for last, in Part IV.
Chapter 13 shows you how to build a GPS data logger. You don’t have to settle
for the GPS in your car or on your phone. You can use it just about anywhere
and log the data to a standard SD data card. There are all kinds of clever uses
for this, including tracking vehicles, packages, pets, and logging your own
explorations in the city or country.

No electronics-related project book would be complete without a remote-
controlled device of some kind. Chapter 14 shows you how to build your own
remote-controlled car out of a few easily found supplies and some potato
chip cans. The clever part is that you use any old remote control around
your house to control the car. By the time you finish this project, you’ll not
only have a pretty cool vehicle, but you’ll also understand the basics of using
servo motors and how to use an Arduino to make just about anything remote
controllable.

Chapter 15 gets back to playing around with light. LED cubes are getting
really popular and if you haven’t seen them already, you will. This chapter
shows you how to make and program your own. There’s also an online tool
for building your own animated lighting patterns. Both the code and the
physical construction are pretty challenging, but the results are really cool.
If, like me, you are mesmerized by blinking lights, you’re gonna love this one.

Part V: The Part of Tens
Every book in the For Dummies series has a “top ten” style list where you can
find further information quickly. This part is where I get to share some of my
favorite Arduino resources and some handy tips and tricks with you.

Chapter 16 describes the best suppliers and Arduino resources for the stuff
you’ll need to build the projects and take things even further. I also get to
brag about my favorite suppliers — and friends — in the Arduino world.
Every projects book should help you out with troubleshooting as much as
possible. Chapter 17 provides tips for solving problems. This can be tricky,
since the problems could arise from your software or your hardware — or
both! I hope that the tips in this chapter will help you figure out why your
project might not be working.

6 Arduino Projects For Dummies

The Companion Website
This book has a companion website that offers some additional projects and
a tool for creating patterns for the LED cube you build in Chapter 15. Go to
www.dummies.com/go/arduinoprojectsfordummies and look on the
Downloads tab. You can also find schematics and full-color parts placement
diagrams here to help you build the projects in this book.

	

Several of the projects require additional code libraries to make them work.
You can find these libraries in a .zip file on the Downloads tab of the compan-
ion website. Later, if updates become available for this book, you can also find
them on the Downloads tab.

Besides this book’s companion website on dummies.com, you can also go to
my personal website at www.brockcraft.com. Everyone I’ve ever met who
tinkers with Arduino is happy to help out other folks in improving their code
and their projects. So, if you have any suggestions for enhancing or improv-
ing these projects, please let me know!

Icons Used in This Book
I can’t highlight the most important passages in this book with my trusty
Sharpie or yellow highlighter, so I’ve used icons to draw your attention to the
important parts.

	

Tips highlight information that can save you time or money or just make
things easier to do. You’ll have a lot more fun if you keep the tips in mind as
you go along, and they can help you with your own projects, too.

	 Building projects can be tricky or hazardous or both. I’ve placed warnings to
highlight areas where it’s easy to make a mistake or fry something or generally
get something messed up. The warnings are there so that you don’t have to
learn the hard way — because I probably already did that for you!

	 Sometimes there are important points that you really need to keep in mind
when you are working on a project or writing code. I’ve use this icon to high-
light these important points. That way, you can easily find them when you are
reviewing a project or building a new one of your own.

	 This is a pretty technical book, but sometimes there are extremely geeky
topics that are either interesting or useful to know. I’ve identified these with
this icon. You can skip this stuff because it’s not essential to know in order to
build the projects, but I’ve included it here in case you want to understand a
little better how things work.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.brockcraft.com

Part I
Getting Started with

Arduino Projects

	 For Dummies can help you get started with lots of subjects. Visit www.dummies.
com/extras/arduinoprojects to learn more and do more with For Dummies.

http://www.dummies.com/extras/arduinoprojects
http://www.dummies.com/extras/arduinoprojects

In this part . . .
	 ✓	 Learn how to set up your Arduino workspace
	 ✓	 Find out about the many different kinds of Arduino boards
	 ✓	 Get to know the basics of Arduino code
	 ✓	 Learn about electronics components and soldering

techniques

Chapter 1

Exploring the World of Arduino
In This Chapter
▶	Discovering Arduino
▶	Understanding who uses Arduino
▶	Understanding microcontrollers
▶	Understanding Arduino capabilities

Y
ou probably wouldn’t have picked up this book if you hadn’t already
heard about the “World of Arduino.” You’re probably already a part of

it. I think of it as being made up of a community of creative people who are
interested in making inanimate stuff do interesting and clever things with
computers, programming, and computational thinking — which is just a fancy
way of saying “writing recipes.”

Computational thinking means considering problems and their potential solu-
tions and trying to determine the best way to get to those solutions. Usually,
it means deciding the best steps to take — and in what order — as well as
keeping track of important decisions along the way, or getting the right infor-
mation you need to make a decision. This could be doing something simple
like baking cookies, in which case you probably don’t need a computer. But
you can use a little bit of computing power to carry out a simple sequence of
steps and decisions to come up with something really creative.

Maybe you want to know when your cat is coming and going from your house.
Perhaps you want to know when your houseplants need a little more water and
then give it to them automatically. Or suppose that you want to be able to open
your front door with a code or card, instead of a physical key. Each of these
involves just a little bit of sensing what’s going on in the real world, combined
with decision making, and then performing some kind of action.

In the case of watering your plants, it’s something a human might be prone to
forgetting or something you just don’t want to pay attention to all the time.
Sounds like the perfect job for a computer. That’s where Arduino comes to
the rescue.

10 Part I: Getting Started with Arduino Projects

About Arduino
The Arduino Uno (see Figure 1-1) is a general purpose microcontroller pro-
gramming and prototyping platform that you can easily program to react to
things going on in the real world. You can also link between the real world
and the virtual world by connecting up your Arduino to the Internet, either
sending data to the Internet or responding to data on the Internet, or both.

You can use it to sense almost anything you can find an electronic sensor for,
including light, temperature, pressure, sound, even smell — if you consider
environmental pollution to be a smell. You can even build your own sensors.
How your Arduino reacts depends on how you program it. You can use its
output capabilities to sound alarms, open doors and windows, activate lights
or motors — the possibilities are almost endless.

Arduino is used for prototyping ideas — getting them half built and then
trying out what works. Prototyping means testing alternatives to come up
with creative solutions to problems (see Figure 1-1). You try out part of a
project to see how your sensors respond and then change how your Arduino
program functions, depending on what works best for you. Although the
projects in this book are like little recipes, they are just a starting point. You
could — and should — use any of them to build much more elaborate ideas
and projects.

	

Figure 1-1:
The general

purpose
Arduino Uno

prototyping
board.

	

11 Chapter 1: Exploring the World of Arduino

Discovering Who Uses Arduino
The Arduino family is used by makers, hackers, designers, artists, architects,
and even professional engineers to quickly and easily try out interactive
design ideas. The Arduino Uno is inexpensive and easy to use, with a big
community of supporters, tinkerers, and developers who are constantly
coming up with new ways to use it and improve it. In the next sections, I go
over a few of the kinds of people and communities that are using Arduinos
every day.

Arduino in education
Arduino provides a really simple way to learn how to program microcon-
trollers to sense and react to events in the real world and even online. Because
it was conceived as a way to support designers and artists — people who are
not typically computer programmers — it is very easy to get started and easy
to use. I have taught hundreds of people — from little kids to retirees — to
get started programming with Arduino. They have gotten simple programs up
and running in as little as a half-hour and built their skills to develop their own
sophisticated projects in a weekend. As you see from the projects in this book,
it doesn’t take long to get your Arduino doing some pretty interesting stuff.
And the more time you put into using it, the more you can get out of it.

Art and design schools use Arduino to design new interactive product pro-
totypes, interactive artwork, performances, and even clothing. High schools
and secondary schools teach core concepts in computer programming.
University students in engineering and computer science departments use
Arduino to create interactive models and prototypes as well as learn sophis-
ticated computer-controlled engineering techniques.

Arduino in the corporate world
A growing community of industry professionals in the corporate world use
Arduinos to make interactive stuff in their work. Design firms use them to
develop interactive product prototypes. Software engineering companies
use them to test software systems that interact with the physical world. Ad
agencies use them to come up with new and creative interactive campaigns.
Arduinos are used to control interactive exhibits and conferences and trade
shows in both the industry and in digital media sectors. They are used as
management-consulting tools to help teams coordinate problem solving and
improve collaboration.

12 Part I: Getting Started with Arduino Projects

Making and hacking communities
In little pockets all over the world, a new community of tinkerers, makers,
and hackers has emerged. Arduino has been a fuel for this creative fire and
continues to be one of the key hardware prototyping platforms that people
create projects with, talk about, and share with one another.

What are they about?
There have been small electronics and hardware clubs since the early days
of the twentieth century, when teenage boys were encouraged to build their
own “cat’s whisker” radios to listen to the new local radio stations that were
popping up all across the United States. Over the decades, a large community
of radio buffs grew, especially among fans of the shortwave radio frequen-
cies. These “ham” radio aficionados set up their own transmitters and spent
long hours listening to the radio waves for new and far-flung transmissions
from friends and strangers. By the 1970s, the stage was set for a whole new
generation of electronics fans who started clubs around not just radios but
also the newly available home computers. Lots of midnight oil was burned
as tinkerers and hobbyists stayed up hacking code and trading ideas on
electronic bulletin board systems. This was the breeding ground for some of
today’s giants, including Apple. Then the Internet exploded onto the scene
and changed everything.

At about the same time Arduino was created in 2005, a small subculture
emerged that was sort of an extension of the computer clubs and do-it-yourself
groups and clubs. Fueled by the Internet, there was sort of a renaissance of
computer clubs and do-it-yourself groups, as it became easier to use computers
and electronics to make interesting interactive stuff. Some people even call it a
“maker movement.” The Arduino fits right in with DIY groups, makers, tinkerers,
and hackers. There are now hundreds of makerspaces (also called hackspaces)
around the world. If you live in a big or medium-size city, there is probably one
near you. Makerspaces are community-operated physical space where people
with common interests (like Arduino!) can meet, get ideas, collaborate, and
share accomplishments. Check for a makerspace in your area. These are the
best places to learn how to build even more cool stuff with your Arduino.

The open source world
The term open source is thrown around a lot these days. If you haven’t come
across it, you will, because the Arduino is one aspect of the open source
world. Open source refers to both a philosophy and a software develop-
ment approach that advocates for complete transparency in all the points
of authorship of software. That lets anyone see how a program is built and
potentially contribute to its development. The open source movement is a
reaction to the tight control that software companies have had over their
products. Their code is intellectual property, and they want to keep control
of it both to prevent others from stealing their ideas and to maintain the
quality of their products. However, the downside is that consumers are

13 Chapter 1: Exploring the World of Arduino

disempowered from making changes and can sometimes be locked in to
buying upgrades they may not want. In principle, anyone with a little know-
how can pitch in and contribute to the software development of open source
projects, because the code is all online and freely downloadable. The Linux
operating system, Google’s Android operating system for mobile phones, and
Mozilla’s Firefox Web Browser are popular examples of open source software.

Thinking about computer hardware as being open source is a relatively new
idea, and Arduino is at the forefront. It was conceived as a tool that anyone
can build and use to do his own prototyping, using the ATmega328 micro-
controller. All the plans to produce your own Arduino are freely available
online, and you can put one together without paying anyone else to do so. In
practice, it’s usually cheaper to buy one, but the principle still holds that the
plans are freely available and redistributable.

Contributing to the Arduino project
In the spirit of collaborative development, people are also invited to contrib-
ute to the development of the Arduino platform and a thriving community
of enthusiasts has contributed to both the hardware development and to
the many software libraries that extend Arduino’s capabilities. If you want
to jump in on the action, all you have to do is join the conversation in the
Arduino developer discussion boards and consider writing some libraries of
your own. If you are really eager, you may even be able to contribute to the
development of the next Arduino board.

Understanding Microcontrollers
The heart of an Arduino is a microcontroller, a little computer that performs
menial decision-making tasks that might be tedious, too fast, too slow, or oth-
erwise irritating for a human to do. You can make it sense events in the real
world and then react to them by doing something. This little guy is perfectly
happy to wait for days until the houseplant dries out and then give it a little
drink. You simply need to tell him what to wait for and what actions to take.
And he’s really very little.

Because it’s a microcontroller, it’s very small, so it doesn’t need much power
and can be put into tiny spaces like a project box. How small are microcon-
trollers? Physically, the one on the Arduino is about as large as they come,
about half the size of a pack of gum, as you can see in Figure 1-2. The micro-
controller is the rectangular integrated circuit (IC) on the blue printed circuit
board (PCB). It’s that size because it’s easy to handle with your fingers, so
you can replace the microcontroller on your Arduino if it croaks for some
reason. But microcontrollers start about this large and go down from there,
all the way to the microscopic level. The main factors that determine their
size are their capabilities and cost. In fact, the actual processor core on your
Arduino chip is much, much smaller than the exterior IC chip itself.

14 Part I: Getting Started with Arduino Projects

	

Figure 1-2:
 The

Arduino’s
brain, an

ATmega328
microcon-

troller.
	

Along with the processor core, which processes the instructions you give it,
the silicon chip has a small memory area for storing your commands, called
program memory and random-access memory (RAM), which is used to keep
track of things while the program is running. It also has input and output
peripherals to handle sending and receiving data, either in the real world or
to other computers, and with the correct code, to the Internet.

Microcontrollers were invented in the early 1970s to do all sorts of everyday
automation tasks for industry. Your Arduino uses the single-chip ATmega328
microcontroller, which is part of the AVR family of products from the chip-
maker Atmel and was originally developed in the mid-1990s.

The best part about microcontrollers is that they are inexpensive, unlike their
big brothers, the microprocessors in your computer, laptop, tablet, or phone.
Microcontrollers are inexpensive because they have limited capabilities (see
Figure 1-2). They are mainly designed to control things or otherwise respond
to sensory input, and are called embedded systems. Bigger computers have
more general capabilities and need more power and therefore, cost more,
and use general purpose microprocessors.

Because they are inexpensive, you can use them for all kinds of small comput-
ing tasks that don’t need a full-size computer, like opening your front door with

15 Chapter 1: Exploring the World of Arduino

a code. The microcontroller on your Arduino costs less than a couple of bucks.
The rest of the cost of an Arduino comes from all the convenient things that
are onboard that help you to send programs to it and interact with the world.

Using tiny computers to do useful stuff
Microcontrollers are the unseen helping hands that are all around us, work-
ing tirelessly all the time to make modern life convenient and pleasant. They
open doors for us (literally), keep us entertained, and can make a pretty
decent cup of coffee. They also ensure that we get from Point A to Point B
safely, being embedded in planes, trains, and yes, automobiles. Here are a
few examples of what we use them for and similar projects in this book. It’s
not an exhaustive list, but it should give you an idea of what microcontrollers
are used for and how ubiquitous they are!

Toys and games
If you walk into a toy store these days, you come across hundreds of devices
that walk, talk, blink, flash, and even respond to how you position their parts
or speak to them. Even very inexpensive interactive toys have embedded
microcontrollers that perform the same functions as an Arduino. They are
usually very tiny and specially designed for mass production and are often
hidden under a dab of epoxy on the printed circuit board (PCB) inside the
toy, as shown in Figure 1-3. In fact, some products may even use a microcon-
troller from the same Atmel family. They are programmed at the factory to
respond to input and actuate lights, sounds, and movements.

Although it’s not interactive, the light pet in Chapter 5 is a simple, prepro-
grammed toy like many you might see in a store. It’s not interactive, but
by the time you finish a few projects in this book, you’ll be able to make it
respond interactively to light, touch, temperature, or other kinds of input.

Home appliances
Your kitchen is almost literally a digital mission control center. A major pro-
portion of the electronic appliances you use to whip up a meal have a micro-
controller in them. The microwave has a timer to control power changes and
timing. The oven has similar capabilities. A coffee machine also has a timing
function and different programs for brewing different cups of java. Advanced
food processors sense the consistency of the food mixture and have safety
shutoffs. All of these capabilities are done with embedded microcontrollers
that sense and respond to the world.

The Arduino Clock in Chapter 7 gives you a taste of what’s possible and
describes how to build a programmable alarm. With a little further research,
you could even hook up its alarm to kick off your own cup of brew!

16 Part I: Getting Started with Arduino Projects

	

Figure 1-3:
A close-up

view of a
toy’s micro-

controller
hidden
under

epoxy.
	

Automated manufacture
If you are building lots of components into a single product, automation
is essential and microcontrollers assist with the process. Whether it’s a
child’s toy car or a real car, microcontrollers embedded into the assembly
line ensure the precise placement of parts, test for errors in manufacture,
adjust the feed of subcomponents, track inventory, and perform other useful
functions. Their core capability of sensing the environment and responding
quickly, and according to a fixed program, ensures that manufactured prod-
ucts are consistently built and product inventories carefully managed.

The radio frequency ID (RFID) reader in Chapter 9 uses the same RFID tech-
nology that many inventory tracking systems use to manage raw materials,
parts, and inventory warehouses.

Field sensing and response
Microcontrollers can be placed into conditions where it is simply impractical
or downright dangerous to place a human. Imagine you want to ensure that
a leak in a gas pipeline doesn’t progress into a full-scale explosion. A micro-
controller embedded in the line can ensure that the supply is switched off

17 Chapter 1: Exploring the World of Arduino

if a pressure leak is detected. Similarly, you wouldn’t want to pay someone
to monitor moisture levels in a greenhouse. A microcontroller can activate
a spray of water at a fixed interval or according to measured environmental
conditions.

The automated plant irrigator in Chapter 10 is a household version of this
very useful capability.

Building automation
You are familiar with building security systems to keep out intruders. Along
with this, many buildings are now using sensors to detect the internal climate
and energy efficiency conditions. Architects now design many modern struc-
tures with a “nervous system” of embedded sensors that can adjust heating
and cooling automatically, in specific zones or individual rooms, and with the
use of energy-efficient heating, cooling, and air handling.

The home sensing project in Chapter 12 is a mini-sized version of a sensor
network that you can build in your own home.

Process control
Microcontrollers are used in industry for things such as assembly line con-
trol and sensing. For example, microcontrollers can test to find out if all bot-
tles in a line have been filled to the correct level. Microcontrollers attached
to sensors can quickly and easily detect problems and either report the fill
problem to a central computer or actuate a system to remove the bottle
from the line. This can be done much faster than any human could do it.
Many product manufacturing processes use microcontrollers because they
are cheap and reliable. Similarly, mixing up the raw materials for batches of
bread, candy, petroleum products, or concrete can be precisely monitored
and controlled with microcontrollers like the one on an Arduino.

Although none of the projects in this book does quite this kind of thing, after
you’ve built a few of them you can figure out how to modify, prototype, and
pick and choose from the features you want to build into a project to control
many different kinds of processes or activities.

Getting Started
If you haven’t already jumped into the middle of the book to check out what
you can do, stop now and take a peek. I wrote this book to get you going
with some cool Arduino projects so that you can make something amazing

18 Part I: Getting Started with Arduino Projects

that nobody has dreamed up yet. I hope these projects inspire you. Poking
around online may provide additional fuel for your creative fire.

Before you get going, though, it’s a good idea to assemble a few tools that
will make your Arduino adventures a bit easier. All the projects in this book
require some basic tools — and an Arduino. If you are going to dive right
in, more power to you. But do take a minute to peruse Chapter 2 to get
together a few of the tools you’ll need. If you have never used an Arduino
before, check out Chapter 3, which covers some of the basics you need to
know before you dive into a project.

So what are you waiting for? Take the plunge and get going!

Chapter 2

Setting Up Your Workspace
and Tools

In This Chapter
▶	Setting up the project building workspace
▶	Choosing the right tools for the job
▶	Selecting your Arduino or Arduino kit
▶	Setting up your Arduino

G
etting your workspace ready is the first step in building your Arduino
project. You can do the first couple of projects in this book just about

anywhere, but for anything a little more involved, you want to create a dedi-
cated work area that has your necessary tools at hand.

In this chapter, I explain how to create a good workspace with the right set
of tools for the projects in this book. The project chapters assume that you
have the basic workspace and tools ready to go, so I only list the parts you
need to build each of the projects. After you get focused on a project, inter-
rupting your work to get some basic tool that you’ve overlooked is a drag.
But if you have most (or all) of the basics of your workspace covered, you
won’t have to stop what you are doing to go get a hand tool or run to the
hardware store. You also learn how to set up your Arduino software and get
your Arduino connected to your computer.

Preparing to Build
You can start working on Arduino projects just about anywhere you can
crack open a computer. I’ve worked on some basic projects at a local coffee
shop — though I did get some stares! However, for the projects in this book,
you want to create a better working environment. Find a good spot where

20 Part I: Getting Started with Arduino Projects

you can work comfortably, see what you are doing, and fine-tune it to be the
perfect laboratory for your creations.

Setting up your workspace
You need a dedicated area where you can build and test your projects —
especially the bigger ones in this book, which can take a few hours. Find a
spot in your house, apartment, shed, garage, studio — wherever you and
your work will be undisturbed. Figure 2-1 shows my work area for building
Arudino projects.

Getting the workspace right
A good Arduino project workspace has the following elements:

	 ✓	A comfortable and dry environment

	 ✓	A solid workbench or desk and comfortable chair

	 ✓	Plenty of power outlets

	 ✓	Enough room for a computer or laptop

	 ✓	A nearby network connection or a place to where you can run a network
cable

	 ✓	Good lighting and ventilation (especially for evacuating soldering fumes)

	 ✓	Shelving and storage for projects you are working on

	 ✓	Small boxes and drawers for organizing parts and tools

The environment (light heat, comfort, and so on) needs to be comfortable to
work in for a long stretch. If it’s too cold or too hot, too noisy, or filled with
distractions, completing your work may take longer. Also, if you’re inter-
rupted, you may struggle to regain your momentum.

	 Make yourself a sort of hideaway where you can stay focused. I like to have
electronic music playing so that my little wall of sound creates a private zone
where I can become engrossed in my work.

Your computer is essential to the project building process, so make sure that
you have room for your desktop or laptop on the workbench. Also you will
want to hunt for references online, look up datasheets, and post questions to
forums, so a reliable Internet connection is vital.

21 Chapter 2: Setting Up Your Workspace and Tools

	

Figure 2-1:
A good

working
environment

and some
basic tools.

	

Fine-tuning your Arduino zone
The easier projects in this book can be completed in an hour or less. But the
more complicated ones will take several hours. Inevitably, something will
probably come up to interrupt you, so you need a place where you can set up
incomplete projects that you can leave and come back to later.

	 Safety is always a factor when working with electrical circuits. Even though
the projects in this book do not work with the full power available from wall
sockets, you should always treat electronic projects as though they could
have potentially dangerous voltages.

If you have little ones roaming around, you should take special precautions to
keep them away. Curious fingers love to yank on dangling cords and wires. If a
child yanks on a dangling cable, she could pull things off your workbench and
onto her head! A hot soldering iron left unattended could cause severe burns.
Not a nice way to introduce anyone to Arduino and electronics.

22 Part I: Getting Started with Arduino Projects

I’ve seen very few hacker workbenches that do not have cans of soda and
snacks littered here and there. However, keeping food and drink separate
from your workbench prevents costly accidents.

	 Empty pizza boxes can hide critical parts, and you can waste time hunting for
things. Accidentally spilled drinks do not do good things to live circuits.

Now that you have the creature comforts taken care of, you need the right
tools for the job.

Selecting Basic Tools
You need some basic tools for fabricating all the projects in this book. They
basically fall into two categories — electronics tools and physical building
and fabrication tools. You can get most or all of these components from elec-
tronics retailers, such as Radio Shack or Maplin (U.K.). Specialty electronics
suppliers on the Internet also stock them and are often cheaper than retail
outlets, so hunt around at DigiKey (U.S./U.K.), NKC Electronics, Rapid (U.K.),
RS (U.S./U.K.), and Farnell (U.S./U.K.). Don’t forget to check eBay and Amazon
for deals, too.

Here’s a list of the basic tools you need, which are described in more detail
later in this chapter:

	 ✓	A multimeter: A multimeter is an essential tool for most Arduino and
electronic projects. You use it to perform basic tests to make sure that
you have good connections in your electrical circuits. You can measure
the characteristics of an electrical circuit and troubleshoot why some-
thing might not be working. A multimeter is also handy for testing and
measuring individual electronic components. You should have one on
hand for testing and troubleshooting your projects.

	 ✓	A breadboard and jumper wires: All the projects in this book involve
wiring up electrical components, LEDs, sensors, or actuators to your
Arduino. This can be as simple as one or two wires, but some of the
projects entail using dozens of connections. A breadboard is a simple
tool to help you easily make all these electrical connections. You need
jumper wires to make connections when you are putting a project
together. Wires come in solid core and stranded versions (which con-
tain many fine wires). Solid core jumper wires are needed for working
with breadboards.

	 ✓	A soldering iron: A breadboard is ideal for temporary connections and
prototyping, but for some connections you want something more perma-
nent. This is where a soldering iron comes in. You use it to make strong,

23 Chapter 2: Setting Up Your Workspace and Tools

permanent connections between components in your electrical circuit.
If you want to mount buttons onto an enclosure for your project, you
probably want to solder wires to the buttons and connect these to your
Arduino. You can even build part of your circuit on a breadboard and
use soldered connections for switches or sensors that are located some
distance away. You can complete all the projects in this book without a
soldering iron, but having one for your workbench is a good idea.

	 ✓	A power supply: The Arduino itself can provide small amounts of power
to light up a few LEDs, but for anything more, you probably need to
have a power supply on hand. In this book, some projects need addi-
tional power supplies, and their exact specifications are provided in the
parts list.

You also need some basic tools for light fabrication. Not all of these are
essential, but you will often find that the one tool you don’t have is the one
you need, so build up a good armory of gear. These tools, shown in Figure 2-2,
are listed in my own order of importance, but your needs might vary:

	 ✓	A selection of precision screwdrivers: Both flathead and cross-head
(“Phillips head”) screwdrivers are essential. You should have several
sizes of both.

	 ✓	“Helping hands”: A small clamp with two alligator clips to hold your
work piece. They often come with an integrated magnifying glass.
Essential, unless you have three arms.

	 ✓	Wire strippers: Use wire strippers for cutting and stripping the insula-
tion off of wires. These come in several different styles. Splurge a little
here — a rule of thumb is to buy something costing in the midrange. Too
cheap, and they will produce poor results and be frustrating to use.

	 ✓	Needle-nose pliers: Pliers work well for holding fine objects. You should
have both small and large ones on hand.

	 ✓	Angled side cutters: Use these for clipping component leads and cutting
wires.

	 ✓	An X-ACTO knife/craft knife: An X-ACTO knife is a key tool for making
fine cuts.

	 ✓	A box cutter/carpet knife with replaceable blades: Use a box cutter to
cut sturdier materials.

	 ✓	A cutting mat: Protects your work surface.

	 ✓	A Sharpie and a pencil: Essential tools for making cutting marks and
permanent marks. I say you don’t have a complete workbench without a
Sharpie!

24 Part I: Getting Started with Arduino Projects

	

Figure 2-2:
Some

essential
light fabri-

cation tools.
	

Selecting and using your multimeter
A multimeter, like the one shown in Figure 2-3, is an essential tool for testing,
measuring, and diagnosing problems in electronic circuits. Older multimeters
used a needle and graduated scales for the display, but modern ones use a
digital, numeric readout. You use a multimeter to measure several basic attri-
butes of your circuit, including:

	 ✓	Continuity: Determines whether you have a good connection between
two points.

	 ✓	Voltage: Measures potential electromotive force in a circuit.

	 ✓	Current: Measures the continuous, uniform flow of electrons through an
unbroken pathway in an electrical circuit.

	 ✓	Resistance: Measures opposition to the flow of current within a circuit.

You can also measure the voltage provided by batteries and power supplies,
and the characteristics of discrete electronic components, such as resistors
and diodes.

As with soldering irons, different multimeters have different features, and
the more expensive ones have advanced features you might not need. Higher

25 Chapter 2: Setting Up Your Workspace and Tools

priced ones also enable you to measure transistors and capacitors and offer
features, such as auto-ranging. Inexpensive meters require you to estimate the
range of measurement and set the dial accordingly. On auto-ranging multimeters,
you don’t have to set the dial to select the range of measurement that you are
reading. Auto-ranging is particularly handy but is usually much more expensive.

	 Probably the most common thing you use a multimeter for is checking conti-
nuity — making sure that the things you think are connected really are con-
nected. You don’t need the Ferarri of multimeters, but you should spend a
little more for one that has an audio signal for continuity. It’s a pain to check
continuity by holding leads on a circuit while you are also looking at the dis-
play. It’s much easier to just poke around and listen for an audio signal.

	

Figure 2-3:
A digital

multimeter
is an

essential
tool for your

Arduino
project

work.
	

Selecting and using a power supply
Some of the projects here require you to provide additional power, sepa-
rately from your Arduino, and you may want to build a project that controls a
motor, solenoid, or other device that has its own power source. You can use
a battery pack or a dedicated power supply — each has a different use.

26 Part I: Getting Started with Arduino Projects

A battery pack is useful for projects requiring a small amount of power for a
relatively short period of time. Battery packs are also essential if you want to
ditch your computer and let the Arduino roam free and untethered, such as
with the robot car in Chapter 14. You can get battery holders of all kinds —
from the small and convenient AAA and AA types to chunky C and D cells. And
of course, you can try specialty and rechargeable batteries. In general, the
larger the battery pack, the longer it lasts. Most cylindrical batteries provide
1.5 volts each, and you need a minimum of 6 volts to supply Arduino projects,
so get a pack that holds at least four cells (1.5 volts each x 4 batteries = 6 volts).

If you need a longer lasting source of power for something that’s permanently
installed somewhere, you should use a fixed power supply that is plugged
into the household power. For example, if you are using lots of motors, they
need to get power from somewhere. This power can come from a wall trans-
former (which I call a “wall wart”) with a high enough current rating to suit
your needs. You can buy dedicated bench-top units that supply variable volt-
age and current and have digital readouts, which are useful for building and
testing projects that will be installed somewhere else later. Bench-top supplies
tend to cost much more, even into the triple digits! If you decide to get one,
a basic power supply that offers 12 to 30 volts DC and 3 to 5 amps should
be sufficient. (See Figure 2-4.) You can get by with a basic one that simply
supplies 7 to 12 volts DC and 500 milliamps (mA) because that’s sufficient to
power an Arduino, with a little extra capacity left over.

	

Figure 2-4:
A bench

power
supply, a
compact

12V trans-
former, and

a wall trans-
former or

“wall wart.”
	

27 Chapter 2: Setting Up Your Workspace and Tools

Regardless of the project you are working on, your power supply should be
rated to provide the correct voltage and amperage for the devices you are
using. You should either use the power supply that was provided with the
thing you are trying to control, or you should choose a power supply that will
match the voltage and exceed the current requirements of the devices you
are operating.

Understanding electricity and safety
In working with electronics, safety is critical. You must take basic precautions
to protect yourself. None of the projects in this book involves connecting
directly to wall power, but you must use precautions anyway and develop
good safety habits. Even though you may only be working with low DC volt-
ages, if you are using components, such as motors and solenoids, which
require a lot of current, you can end up working with enough current to give
you a nasty bite.

Therefore, it’s a good idea to follow some basic safety rules when working
with all electronic projects:

Do’s
	 ✓	Always test with one hand tied behind your back. Well, at least one hand

not on the work piece. If enough stray current flows between both your
hands, and across you heart, it can cause arrhythmia. That’s not likely
at the low DC voltages you are working with here, but it’s best to be safe
and get into the habit.

	 ✓	The integrated circuits on your Arduino and other components are sen-
sitive to wayward voltages, including static electricity. Several thousand
volts of static electricity can build up on you and you might not even
know it, especially on carpeted floors. If it does and you touch your
hardware, you can fry it in an instant. To protect against this, you can
buy an inexpensive anti-static wrist strap, which will guard against unex-
pected sparks by connecting you at all times to ground, which diverts
any electrical charge from building up on your body.

	 ✓	Wear light, comfortable safety glasses. Clipping wires can fly around the
room and hot solder can sometimes spit and splutter — you don’t want
any molten metal heading for your eyes.

Don’ts
	 ✓	Don’t touch metal contacts or leads in a live circuit.

	 ✓	Don’t alter a live circuit. Always disconnect power before removing or
adding components to your Arduino or breadboard.

	 ✓	Don’t work barefoot. Maximize the resistance between you and the floor
by wearing good, rubber soled shoes. A puddle of water is a great con-
ductor and you don’t want to be in one should something go wrong.

28 Part I: Getting Started with Arduino Projects

Working with breadboards,
stripboards, and perfboards
To quickly and easily connect your project circuits, start out by using a
breadboard. A breadboard is a small block of plastic with lots of columns and
rows of holes into which you can insert jumper wires and electronic compo-
nents. All the projects in this book use a breadboard for building and testing.
After you’ve got it working properly, you can either put your Arduino and
your breadboard inside an enclosure or go the more permanent route and
build your circuit on a stripboard or perfboard, which requires a bit of sol-
dering (more about these options later in the chapter).

About breadboards
Underneath the holes of a breadboard, tiny metal strips form springs that
grasp wires, and the legs of components that are inserted into the holes.
Because the springs are metal, if you connect wires or components to the
same springs, they are electrically connected together.

	 Because breadboards use springs to hold the wires, you should always use
solid core wire on them. Stranded wire, which is composed of multiple tiny
wires, gets scrunched by the springs when you try to push them into the holes
on the breadboard. It’s a big pain to use stranded wire, so save yourself the
trouble.

In the main work area on the board, the holes are organized into rows of five
(typically) and grouped into two columns on the breadboard. There is usually
a trough between the two columns of holes, which allows you to insert an
integrated circuit (IC) into the breadboard, such that each of its legs is served
by four adjacent holes.

Many breadboards have columns of holes that run the full length of either
side of the board. These are not electrically connected to the main work area,
and they are often labeled + (positive) and − (negative, or “ground”) and may
be color coded. You use these as rails for power and ground. When you use a
breadboard with your Arduino, you always connect a wire from the Arduino
pin labeled +5 to the positive rail and from the pin labeled GND (“ground”) to
the negative rail. You also want to connect most of your components at some
point or other to power and ground, so you usually need lots of connections
to them.

You should have on hand a large size breadboard with 830 contact points
and a couple of half-size boards with 400 contact points. If you run out of room,
you can connect together two boards by using the notches and fingers on the

29 Chapter 2: Setting Up Your Workspace and Tools

sides of the breadboards. But be warned, there’s no standard for these, so
they usually need to be from the same manufacturer to do so.

About stripboards and perfboards
Stripboards and perfboards are similar to breadboards, in that they supply
lots of holes to connect things together. However, they are designed for
permanent connections that are soldered together.

	 ✓	Stripboards are coated with adhesive strips of conductive copper that
run underneath the holes and components are soldered to the strips of
copper, providing an electrical connection and a strong physical bond.

	 ✓	Perfboards simply have metallic pads that surround each individual
hole, into which you can solder parts, and which you can solder
together to create electrical circuits.

Stripboards and perfboards come in a huge range of sizes and configurations,
so if and when you are ready to go for a more permanent solution, you should
shop around for the size and type you need (see Figure 2-5).

	

Figure 2-5:
Mini and
full-size

breadboards
and a piece

of strip-
board.

	

30 Part I: Getting Started with Arduino Projects

Choosing Your Soldering Iron
and Accessories

Soldering (pronounced “sodd”-ering in the U.S. and “sold”-ering in the U.K.) is
simply melting solder, which has a relatively low meting point (about 700 °F !),
and allowing it to cool, creating a strong, conductive joint. You can join wires
to each other and join wires to components. You can bond wires to circuit
prototyping boards, such as perfboards or stripboards, and also secure com-
ponents in place, while creating a good electrical connection for a more per-
manent, lasting project. You can also simply solder some of the components
(like switches and displays) to wires that lead to your breadboard. That way,
you can mount them in a project box. On some projects in this book, you
want to move buttons or switches from the breadboard to the project enclo-
sure, which means that you need to solder extension wires on them.

Also, you will probably buy project kits to provide additional features to your
Arduino projects. The Arduino clock in Chapter 7 uses a kit that requires you
to solder the parts together onto a printed circuit board (PCB). Selling things
as kits keeps their cost down, but it means that you have to do a little of the
work to solder them together.

You use a soldering iron to heat up both the solder and the components that
are being joined together. When the components are hot enough, the solder
will flow onto them, at which point, you remove the tip of the soldering iron
(and thus, the heat supply). The solder cools rapidly and if done correctly,
forms a reliable bond.

The key soldering tools you need are:

	 ✓	Soldering iron: Your main tool for the job. Irons can be very inexpen-
sive, but the professional ones will set you back hundreds. If you want to
save money, avoid the cheapest ones and aim for one that is at the top
end of low-range options. You need one that supplies at least 30 watts.
Irons come in both fixed and adjustable power output. Having adjustable
power is nice, but probably not essential for most light soldering work.

	 ✓	Solder: This is the main raw material you use to create soldered joints.
There are both leaded and lead-free varieties. Some purists prefer
leaded 60/40 solder (60 percent tin, 40 percent lead), but lead is toxic. So
unless you have a particular need for it, go for the lead-free variety, with
a rosin core. The rosin core melts and helps to clean the surfaces you
are joining. Solder comes in a variety of diameters, but 0.032 diameter is
ideal for most electronics soldering needs.

	 ✓	Extra tips: Tips come in a variety of shapes and sizes. For most electron-
ics work you need a cone-shaped tip rather than a chisel tip. Eventually
through use or abuse, the soldering iron tip will wear out. Different
manufacturers have different tip mounting systems, so you should buy

31 Chapter 2: Setting Up Your Workspace and Tools

a couple of extra tips when you buy your iron to avoid having to hunt for
the right product later.

	 ✓	Soldering stand: A device that holds the wand safely while it’s hot, and
which may have a sponge for cleaning the tip. These are often included
with soldering iron kits.

	 ✓	Regular sponge and brass wire sponge: These sponges are used to
clean the tip of your iron. The tip is cleaned while the iron is hot. The
regular sponge can be any garden variety cellulose kitchen sponge from
the grocery store. The brass wire sponge costs a little more, but it has
the benefit that it doesn’t cool down the tip of the iron when you’re
cleaning it. If you clean regularly, your tip will last longer.

	 ✓	Desoldering tools: You can find both soldering wick and soldering suckers
(see Figure 2-6). The sucker is a spring-loaded pen that you can use to suck
liquefied solder away from your work piece. A desoldering wick is simply
braided flat copper ribbon, which you press against your work while heating
it. Capillary action draws the liquefied solder onto the braid and away from
your work. I tend to prefer wick, which is cheaper and usually more effective.

	 ✓	Tip cleaning paste: This is pretty important to have on hand. Your tip
may develop an oxidation coating, especially if you don’t clean it regu-
larly. Oxidation makes it very difficult to coat the tip and control the
way your solder flows. Cleaning paste can help to remove oxidation and
debris. It’s a good idea to clean the tip with paste every now and then to
ensure a good tip surface.

	

Figure 2-6:
An entry-

level
soldering
iron and

essential
accessories.

	

32 Part I: Getting Started with Arduino Projects

	 Soldering basics are covered in Chapter 3 if you want to have a first try, or
brush up on your skills.

Selecting Project Boxes and Housings
All the projects in this book are built on a breadboard because it’s a fast and
easy way to get going. If you want to protect the project, you can transfer it
to a dedicated enclosure. Although I don’t show this for the simpler projects
in Part II, you may want to transfer them. If so, look around for a housing that
will be suitable for your Arduino and electronics.

Potential project housings are everywhere, and almost anything that can
be used as a small box will do. Some of the most creative and clever proj-
ect enclosures were never intended to be Arduino projects. I’ve seen old
discarded mantelpiece clocks repurposed as temperature and barometric
pressure displays. There is a whole fanatical subculture of people who build
Arduino projects using metals Altoids tins. Do you have Prince Albert in a
can? Well, let him out, and use the can for your Arduino project!

When you go to a store, start to imagine what you could use to hold your
project together. Pretty soon, you will start to see almost everything as a
potential raw material for a project. It’s a bit of a weird habit, but you will
really start to see things in a different way. It’s quirky and cool to geek out on
packaging.

Department stores and “big box” stores, like Target, IKEA, and Costco, sell lots
of home furnishings, knick-knacks, and housewares with an eye for decoration
and design. Small boxes and inexpensive cases can be repurposed as a new
home for your Arduino project and give it a little style. Figure 2-7 shows a little
light from the kids’ section at IKEA. Take out his guts and he makes a perfect
Arduino enclosure.

Thinking outside the box, electronics suppliers usually stock a range of
generic enclosures, in both metal and plastic. When selecting one of these,
make sure you have the correct tools to fabricate your housing. If you are
going to mount switches, buttons, or a display on the project box, you will
need to be able to cut through the material cleanly. It is really difficult to drill
a hole into thick materials and metals without the right saws, drills, and bits,
so make sure to select a housing that you can work with.

33 Chapter 2: Setting Up Your Workspace and Tools

	

Figure 2-7:
A quirky
housing.

	

A final source of project enclosures is one of the new and popular laser cut-
ting or 3D printing services, such as thinginverse, ponoko, pololu, or shape-
ways. You send off your design to them, and they will ship you your finished
custom laser cut or 3D-printed design. Many of these companies also have
templates you can download for boxes and enclosures.

You don’t have to limit yourself to things you can buy. You can make a per-
fectly good project enclosure out of thick cardboard, matt board, or plastic
and a little bit of adhesive.

Choosing Your Arduino or Arduino Kit
The Arduino project has come a very long way in only a few years. It started
out with just a single simple board that offered basic features and did not
have a USB connector. You can now find over a dozen Arduino boards, each
with its own unique characteristics and features. All the projects in this
book were written for the current flagship product, the Arduino Uno. The
current full listing of Arduino products is on the Arduino website (http://
arduino.cc). Select the Arduino that best matches your needs and your
budget.

http://arduino.cc
http://arduino.cc

34 Part I: Getting Started with Arduino Projects

The most important ones to be familiar with, shown in Figure 2-8, are:

	 ✓	Arduino Uno: This is the main workhorse in the Arduino family. All
the projects in this book were built and tested with it. The Uno is based
on the ATmega328 microcontroller and operates at 16MHz. It has 14
digital input/output (I/O) pins and 6 analog input pins. Power can be
provided over the USB connection or DC Barrel connector, or by using
power input pin headers. The onboard power regulator is smart enough
to know which one is being used. It has a handy onboard “utility” LED
connected to digital Pin 13, and a reset button for when things get weird.

		 A key difference of the Uno from all previous boards is that it has a USB
controller chip integrated onboard. This feature makes it much easier to
hit the ground running because you simply plug it into your computer
and the device will be recognized. Previous versions required you to
install software drivers for a USB interface provided by FTDI.

	 ✓	Arduino Mega: The Mega 2560 is the Uno’s big brother. It has all the
basic functionality and is fully compatible, but benefits from a ton of
extra connections — 54 digital IO pins and 16 analog input pins! It also
has more pins that offer pulse-width modulation (PWM), which is useful
for dimming LEDs and controlling motors. It costs a little more, but if
you want to control an army of devices or read in a fistful of sensors,
this Mega is the way to go.

	 ✓	Arduino Leonardo: The Leonardo is similar to the Uno but has more
digital I/Os (20) and analog (12) inputs. Where it really stands apart,
though, is that it has a second serial port. It can also do some nifty tricks
like emulating a keyboard and a mouse. It can be programmed to control
these input devices using the Keyboard and Mouse classes and your
computer will act as if it’s receiving keyboard and mouse input. Nifty!

	 ✓	Arduino Due: The Arduino Due boasts a much beefier processor and is
really a full-fledged computer on a board, similar to a Raspberry Pi or a
BeagleBoard. It has an Atmel SAM3X8E ARM Cortex-M3 CPU that runs at
the brisk pace of 84MHz, and 54 digital ports. It’s more robust than what
you need for anything in this book and uses 3.3V DC onboard rather
than 5V DC, so you should avoid it for the projects here.

	 ✓	Lilypad Arduino: The Lilypad is an Arduino with personality! It’s a
favorite of people who want a little style and designed for sewing into
wearables and textiles and clothing. It has almost the same number of
digital input/output pins as a regular Arduino, but they are arranged in
a circle and the connections can be sewn into clothing with conductive
thread. Running at 8MHz, it’s “fast fashion”!

	 ✓	Arduino Micro: The Micro is super cute and perfect for tight spaces. It
has only the essential requirements — a built-in micro USB connector
and 20 digital input/output pins. It has no pin headers, so you solder
connections directly onto the board itself. You can also solder on head-
ers so that it can be inserted into a breadboard.

35 Chapter 2: Setting Up Your Workspace and Tools

	

Figure 2-8:
The most

popular
Arduino
boards,

currently.
	

You may also come across older boards and want to use them for your project.
Older Arduinos you may encounter are Diecimila, Duemilanove, NG, and
Bluetooth.

	 Be aware that the Arduino IDE has changed a bit as the hardware has evolved
and not all the older boards will work with the most current IDE. Also, some
software libraries that offer extended features are not compatible with some
of the older boards. If you have trouble with a project in this book using one of
the older boards, you may want to try it out with an Arduino Uno instead.

Getting to know Arduino shields
A huge number of products build on the Arduino platform, providing addi-
tional capabilities for sensing and controlling things. The Arduino has pin
headers at the top and bottom of the board that allow you to insert wires
to make easy electric connections for these accessories. The “footprint” of
these headers provides an easy, standardized layout to add circuit boards
to provide these extra features, such as Ethernet, Wi-Fi, wireless radio, GPS,
audio playback, and motor control, to name just a few. These accessory
boards are known in the Arduino community as shields.

36 Part I: Getting Started with Arduino Projects

Arduino shields contain all the necessary electronics for the features they
offer and have pins on the underside that match the input pin headers of the
Arduino. The Ethernet shield in Figure 2-9 allows you connect an Arduino to
your router and the Internet. Because they have the same footprint as the
Arduino, you can simply insert shields on top of the Arduino (or Arduino
Mega) to make a nice little sandwich of coolness.

	 Most shields still provide access to some or all of the Arduino’s digital and
analog pins. However, the additional features that a shield offers require the
use of some of those pins. You have to check the shield’s data sheet to make
sure that the pins you want to use for a project are not also required by your
shield.

In addition to shields, you’ll come across other devices known as break-
out boards. These are mini printed circuit boards that are built around an
integrated circuit with a dedicated function, such as a real time clock (see
Chapter 7), LED controller, or accelerometer. There are literally dozens of
kinds of breakout boards, so named because they “break out” the tiny pins of
the integrated circuit chip, making it easier to physically connect the chip to
breadboards, Arduinos, or other components.

	 Chapters 7, 9, 11, and 13 contain projects that use shields or breakout boards.

	

Figure 2-9:
An Arduino

Ethernet
shield.

	

37 Chapter 2: Setting Up Your Workspace and Tools

Setting Up Your Arduino
on Your Computer

This section is written with the Uno or Mega in mind, but should also work
with Micro, Lilypad, and older boards, such as Duemilanove and Diecimila.
(You need to use a special connector if you are working with a Lilypad.)
If you are installing a different Arduino, you should check for installation
instructions on the official Arduino website (http://arduino.cc). Older
Arduinos have a special chip onboard that handles the USB connection,
made by a company called FTDI. Setting up older Arduinos, such as the
Diecimila, Duemilanove, requires the installation of drivers for this chip.

When you’ve got your supplies ready and have an Arduino to play with, you
need to set it up. You connect it to your computer’s USB port via a USB A-to-B
cable, which provides both power to run the board and a communication
channel to send and receive programs and data. The communication chan-
nel is referred to as a serial port, and you can also use this to monitor activity
while you are running a program. Some of the tiny specialty Arduino boards,
such as the Mini ProMini and Lilypad, do not have an onboard USB connec-
tor. If you have one of these, you will need to use a special connector to attach
the board to your computer. The suppliers of these boards usually offer suit-
able connectors for them, as well.

Installing the Arduino IDE
You write code for your Arduino projects with specially designed programming
software called an Integrated Development Environment (IDE). The Arduino
IDE (see Figure 2-10) also prepares the code for the microcontroller on your
Arduino, and when you’re ready to run it, handles uploading it to the board.

To install the development environment, follow these steps:

	 1.	 Download Arduino IDE from the official Arduino website (http://
arduino.cc).

		 Because the software is open-source, it’s free. Make sure to choose the
correct version for your computer operating system: Windows PC, Mac,
or Linux.

		 It’s a good idea to check the Arduino website regularly because the software
is updated frequently as improvements are made by the development team.

	 2.	 Double-click on the archive to extract the compressed files.

	 3.	 Move the extracted files to the right location on your computer.

		 On a Mac, the extracted archive will yield an Arduino icon, which
you can drag into your Applications folder and you are finished. On a

http://arduino.cc

38 Part I: Getting Started with Arduino Projects

Windows computer, you will end up with a folder that contains several
subfolders. You can place this into any convenient location, but most
people drag it into Program Files.

		 On Windows machines, you need to install some drivers to connect to
your board.

Figure 2-10:
The Arduino

Integrated
Development
Environment

(IDE).
	

Installing drivers on Windows computers
On Windows 7, Vista, and XP, you need to tell the operating system about
your new Arduino and provide it with the correct software drivers so that it
can use the board. Complete the following steps:

	 1.	 After you plug in your board, Windows will detect the new hardware
and begin the driver installation process.

		 The process will fail after a few moments, but don’t worry. This just
happens.

	 2.	 Click on the Start Menu and then open the Control Panel.

39 Chapter 2: Setting Up Your Workspace and Tools

	 3.	 In the Control Panel, click System and Security in the upper-left corner.

		 (On Windows XP, you may need to select Classic View to see the System
icon.)

	 4.	 Under the System heading (or system icon on XP), open the Device
Manager.

		 Look for your newly connected Arduino under Ports (COM & LPT). You
should see an open port named Arduino UNO (COMxx). If you don’t,
the computer has not detected that your Arduino was connected.
Disconnect and reconnect it.

	 5.	 Right-click on the Arduino UNO (COMxx) port and select Update Driver.

		 Doing this launches the Hardware Update Wizard. Do not connect to
Windows Update to search for software. Click the Next button.

	 6.	 Select the Install from a Specific Location option, and then click the
Browse button to locate the folders that you just extracted from the
zip archive.

	 7.	 Finally, navigate to and select the driver file for the Arduino Uno,
which is called ArduinoUNO.inf.

		 It’s located in the Drivers folder (not the FTDI USB Drivers folder).

		 At this point, Windows will complete the installation for you. If every-
thing goes smoothly, you should be ready to attach your board.

	 Connecting your Arduino
Now you’re ready to fire up the Arduino and get going with building a project.

	 Make sure that your board is on a non-conductive surface. The connection
points on the bottom of the board are exposed, so if your board happens to
be resting on a metal laptop or other metal surface, these could be short-
circuited, which at best could cause your board to function erratically and at
worst, fry the microcontroller.

When you connect your board, the LED labeled ON (or PWR on earlier boards)
should turn green and stay on continuously. You’ll also notice that the LED
labeled “L” flickers briefly, as the microcontroller starts up. Then it should
flash on and off regularly at half-second intervals. It’s running a demo pro-
gram (the Blink program) that was loaded at the factory.

	 If you are building a big project, you can have multiple Arduinos on multiple
USB ports; however, they won’t be able to communicate with each other
directly through their USB connections.

40 Part I: Getting Started with Arduino Projects

Installing Arduino drivers on Linux
Ubuntu, Fedora, Debian, openSUSE — Linux comes in many different flavors
and distributions! Because of this, there is some variation in the installation
procedure for different Linux distributions. Generally, Linux users are used to
tweaking things at an advanced level, so I’m assuming that if you are running
Linux already, you are comfortable with tweaking your system a bit. You should
hunt around on the forums for installation instructions for your particular
distribution and shell because detailed instructions for each one would take
up more space than I have to write!

Now that you’ve hopefully got your Arduino installed and the little LED is
flashing, you are ready to begin any of the projects in this book. You can skip
over to what interests you and dive right in. However, if you’re a complete
beginner to programming, I encourage you take a peek at Chapter 3 first.
That will help you become familiar with the IDE and the basics of the Arduino
programming language.

Chapter 3

Understanding the Basics
In This Chapter
▶	Understanding key Arduino concepts
▶	Reviewing basic electronics and components
▶	Understanding sensors and actuators
▶	Learning soldering basics

Y
ou’ve probably already connected your Arduino and tried out some of
the example sketches that come with it, but you might not know about

all the useful features in the Arduino programming environment. Also, there
are a few things to keep in mind when connecting your Arduino to electronic
circuits and putting everything into a protective enclosure.

This chapter covers how to get started with Arduino and the basic programming
concepts you use to make your project work. Because you are working with
electricity, you need to know some of the basics of how electronic circuits
work. I also describe how to identify electronic components and how to read
the circuit diagrams you find in each chapter.

Building your project sometimes requires a little light soldering. If you haven’t
done any soldering before, these projects are easy enough to give you a good
start. After you hone your skills, you can tackle bigger projects or even add
external components. I cover the basic technique here.

Understanding Key Concepts
You need to know a few basic concepts to get your Arduino running, write
programs, and upload your programs to your Arduino. As I mention in
Chapter 2, you use the Arduino integrated development environment (IDE),
so that you can write code in a simplified language that is easy to read and
understand.

42 Part I: Getting Started with Arduino Projects

When you send your code to your Arduino, the IDE converts it to the native
machine code that your microcontroller understands, but which most
humans have difficulty making sense of. This process is called compiling
the code, and your IDE has a compiler built into it called “avrdude” (AVR
Downloader/UploaDEr). If there are any basic problems compiling your code,
like a missing letter or character, your compiler lets you know so that you
don’t upload code that simply won’t work.

Figure 3-1 shows the Arduino IDE. You can see several controls above the
programming window. Clicking the check mark makes the compiler verify
that your code will run correctly. The right-pointing arrow sends your code
to your board. The page icon creates a new Arduino file. The up arrow opens
an existing sketch, and the down arrow saves the current sketch.

	

Figure 3-1:
The Arduino

integrated
development
environment

(IDE).
	

Below these controls is a blank, white area where you write and edit your
code. Underneath the editing window is a reporting window with a black
background. If your compiler wants to tell you anything, it’ll be reported
here. Status messages are displayed in white text. Errors are shown in
orange.

The IDE also identifies the equipment and the communication port that
Arduino is connected to. The IDE in Figure 3-1 is connected to an Arduino
Uno (which uses an ATmega328 CPU), and it’s on a communication port
called tty.usbserial-A900euub on a Mac or Linux machine. On a Windows
machine, this would show a COM port and its number.

43 Chapter 3: Understanding the Basics

Connecting your Arduino
You connect your Arduino to your computer with a USB cable, as described
in Chapter 2. This provides both power from the USB port to run your
Arduino and a communication channel, called a serial port, so that you can
send and receive data from your Arduino.

Understanding your power supply
Your Arduino has a power supply on board that is smart enough to know
whether it is connected to a USB port on a computer or to a battery or exter-
nal power supply. It draws power from the USB port when you are connected.
When you want to run it without a computer, you simply connect a 7 to 12
volt DC power supply to the barrel connector. You can use a battery or a
power transformer.

	 You can also use the Arduino’s power input pins to supply power. These are
below the POWER label on your board. You insert power wires into the Vin
and GND pins to supply 7 to 12 volts DC operating power to your Arduino. You
can input higher voltages up to about 20 volts — though your power regulator
on board might grow pretty hot, so it’s not recommended. Also, you must be
extremely careful not to connect things incorrectly because these pins bypass
the Arduino’s components that protect the Arduino from reverse voltage and
short circuits.

Communicating with your Arduino
You use the serial port for programming, and you can also get your Arduino
to report data to other programs on your computer or even to the Internet.
The serial port is also handy for debugging when programs aren’t operating
correctly.

To the right of your IDE control menu is a magnifying glass icon. Clicking this
icon opens a window that displays the serial communication channel that your
Arduino is using. You can program your Arduino sketch to print statements
to this window, which is useful for displaying data from sensors and for
debugging problems with your code.

Programming your Arduino using the IDE
Arduino programs are referred to as sketches because you can quickly edit
them and play around with how the software and the hardware work. The
whole idea behind Arduino is that you can sketch out interactive project
ideas, gradually arriving at a solution, as you try out ideas, keeping some, dis-
carding others, and refining your work.

44 Part I: Getting Started with Arduino Projects

Like any design activity, working with Arduino is an iterative process.
Although the projects in this book are complete and working, you should
definitely take them further. Consider them as one instantiation of a final idea
that you can refine and make your own. To do that, you need to know how
Arduino code works.

Understanding Arduino code
All Arduino sketches have a standardized code structure. This keeps the
code easy to read and modify later. The compiler doesn’t care what order
you put these things in, but by convention, people tend to structure their
Arduino code in the following order:

	 1.	 Comments: You describe what the code does.

	 2.	 Libraries: You specify which libraries you want to use in your code. All
libraries must be in your Arduino libraries folder or your compiler will
complain.

	 3.	 Variable declarations: You specify what variables you are going to use
in your code and what their initial values are. You learn more about the
different kinds of variables you can use, as you build the projects in this
book.

	 4.	 Setup: You define how your Arduino will be used and set up any pins
and communications you will be using. This section is indicated by the
instruction setup(){ and it is always concluded with a closing curly
bracket:}. Code in your setup is executed first and one time only.

	 5.	 Loop: You place the main instructions for your code. The loop is executed
after setup and for as long as your Arduino is powered up. Any code
between the curly brackets {} is processed sequentially and then repeated
forever. The loop is processed as fast as the Arduino can go — around
16 million calculations per second.

	 6.	 User-defined functions: You create your own reusable functions that
describe how to do something useful. If you need to repeat an operation
or calculation many times as your Arduino is running, I recommend that
you create a function to do this. This modular way of coding makes it
easy to make a change to how your code works.

Setup and Loop are actually special functions. You can spot functions in
Arduino code because they are followed by parentheses, which may contain
parameters. Setup() and Loop() don’t have any parameters, so you will see
these functions preceded by the word void. The code that is executed by a
function is always contained within curly brackets {}.

	 After you’ve sent code to an Arduino you can’t get it back off again. You will
never be able to read off the code that has already been uploaded, so make
sure to keep your sketches organized. I even tape the name of the sketch to
my Arduino, so I can remember what I loaded onto it last.

45 Chapter 3: Understanding the Basics

Each chapter in this book has code that you upload to your Arduino to make
your project work. I provide a code listing and explain how it works in detail
so that you understand how it works and learn how to enhance the projects
and create your own new Arduino programs along the way. What follows is
an example of this, using the most basic Arduino sketch, called Blink.

Understanding the Blink sketch
All programming languages have what’s known as a “Hello World!” program,
which demonstrates that the program code is up and running properly. The
Arduino has one, and it’s called “Blink” because it blinks an LED that is con-
nected to Pin 13 on your board.

	 Because using an LED as an indicator is such a handy thing to do, the Arduino
team put an LED right onto the board itself, labeled L. It’s just to the right of
the pin labeled AREF, and it should be blinking regularly if you have connected
your Arduino for the first time and it has power. That’s because it is running a
LED Blink sketch that was programmed onto the CPU at the factory.

To see how it works, load the Blink sketch into the Arduino IDE. From the
application menus, choose File➪Examples➪Basics➪Blink to load the demo
sketch. You see the code shown in Figure 3-2. The first section contains com-
ments that describe what the code does. Giving a summary of what your
sketch does at the top of your code is a good idea.

	

Figure 3-2:
The Blink
program

loaded into
the Arduino

IDE.
	

46 Part I: Getting Started with Arduino Projects

You can create comments in your code by adding /* to a line, writing your
comments on several lines, and finishing with */. The compiler ignores any
comments between these symbols. If you just want to add a comment on a
single line, start it out with //:

/*
 Blink
 Turns on an LED for one second, then off for one second, repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:

The next section creates a variable. It is an integer variable, which is simply a
whole number, and it is assigned the value 13, using the = (equal) sign.

int led = 13;

The setup() function tells your Arduino how it should be set up. This code
tells it to use digital Pin 13 to output electricity, using a function called
pinMode(). The flow of electricity on this pin is what turns the LED on and
off because the LED on your board is connected to this pin. The parameters
of pinMode() are which pin is being set (in this case, using the variable led,
which was just defined as Pin 13), and whether it is used for input or output —
in this case, OUTPUT. If you look at your Arduino board, you see a pin labeled
“13” in the area labeled DIGITAL. The code controls the output on that pin.

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

Note that the setup() function is terminated with a closing curly bracket.
Then the loop function specifies what will happen while your Arduino is
running.

Two functions are in the next section of code. The first function allows electricity
to be controlled on a digital pin: digitalWrite(). You indicate which pin
to write to (Pin 13 again) and whether it is high or low. If it is HIGH, 5 volts
of electricity to the pin is turned on, making 5 volts available to any compo-
nents connected to the pin. If it is low, the electricity to that pin is turned off.

47 Chapter 3: Understanding the Basics

The second function is delay(), which causes your Arduino to stop execut-
ing code for the duration specified in milliseconds. This code sets a delay of
1000 milliseconds, or one second:

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

When your Arduino executes this section of code, it first turns on power to
an LED (the one on Pin 13). It then waits for one second before turning the
power to that same pin off. Finally, it waits another second before repeating
the process indefinitely.

Uploading your code
After getting to know how the code works for each project, you upload it to
your board. Now, if you haven’t already done so, try out this code on your
Arduino. Do the following steps:

	 1.	 Tell your IDE which Arduino board you are using. From the Ide menu,
choose Tools➪Board and then choose the board you are using.

		 The Arduino Uno used for all the projects in this book is at the top of
the list.

	 2.	 Tell the IDE to which serial port your Arduino is connected and
choose Tools➪Serial Port.

		 If you are using Windows, it will most likely be the COM port with the
highest number in the list. You may need to try uploading to a couple of
different COM ports before you find the correct one that your computer
has assigned to your board. If you are using a Mac or Linux, the serial
port will be something like this: /dev/tty.usbserial-A800euub and will
likely be either the topmost or bottom entry in your list.

	 3.	 When you have selected your board and port, click the upload button
(the right arrow).

		 You should see two LEDs labeled TX and RX flashing on your Arduino
for a moment.

		 If all is well, your code will begin running automatically as soon as this
process is finished.

	 You only need to do Steps 1 and 2 the first time you connect an Arduino to your
computer. The IDE remembers your selections until you connect another board.

48 Part I: Getting Started with Arduino Projects

When you get an Arduino Uno from the factory, it is already preloaded with
the Blink program. For this reason, you might not see any change to the LED
if you upload the Blink program. Try changing the —delay values to see
what effect this has on the behavior of the LED.

Debugging
One of the tricky parts of building Arduino projects is figuring out what’s
going on when something’s not working correctly. That’s because problems
can crop up either in the hardware, in the software, or in both! Correcting
them sometimes means you have to check both. So, when troubleshooting,
always do the following:

	 1.	 Check your connections.

		 Make sure your hardware is wired up properly. Each chapter has both
an electrical schematic diagram and a parts placement diagram to help
you make sure you’ve built your project correctly. Even one wire out of
place can cause unexpected or confusing results.

	 2.	 Check your software.

		 If there’s a fundamental problem, your IDE’s compiler will let you know
by highlighting in orange the offending line. It also displays an orange
message at the bottom of your code window. The message may at first
be confusing or hard to understand. But if you read carefully and look
on forums online, you can usually figure out what went wrong.

		 Some other common problems are misspellings and letters of the wrong
case, uploading to a board that isn’t connected or is not ready, uploading
to a board of the wrong type, or trying to upload to a board that is not
connected to the serial port that you are using for your IDE.

	 Chapter 17 has ten troubleshooting tips to help you diagnose and correct the
most common Arduino problems.

Extending your reach with libraries
One of the best things about Arduino is that if you want to use it to do some-
thing new or control a display or a motor or other device, someone has prob-
ably already thought about doing just that and made it easier for you. Instead
of writing the code to control devices yourself, you can often find code written
by others and packaged up as code libraries. There are many popular libraries,
and you can often find reference to them in the Arduino forums.

49 Chapter 3: Understanding the Basics

Understanding libraries
By including code libraries in the code you write for your project, you can
extend what your Arduino can do. After you install a library, you access its
code from the Sketch➪Import Library menu in the Arduino IDE to add the
code library to your own code.

Some libraries are so useful that they’ve been included with the Arduino IDE.
These include:

	 ✓	EEPROM for writing to the onboard memory that is preserved when
your Arduino is switched off

	 ✓	Ethernet for communicating on Local Area Networks and the Internet

	 ✓	Firmata for communicating with applications on your computer

	 ✓	LiquidCrystal for writing to liquid crystal displays (LCDs)

	 ✓	SD for reading from and writing to SD memory cards

	 ✓	Servo for controlling servo motors

	 ✓	SPI for using the Serial Peripheral Interface bus, a special communication
standard

	 ✓	SoftwareSerial for creating additional serial communications channels
beyond the one that is built in to your Arduino

	 ✓	Stepper for controlling stepper motors

	 ✓	WiFi for communicating via Wi-Fi networks

	 ✓	Wire for using the Two-Wire interface and I2C protocols to connect to
devices or sensors

Some libraries are written by coders and shared with the community. These
do an amazing variety of things and range from LED controllers to card readers
to cameras and other specialty device controllers. The list is huge.

If it’s a popular library, you can often download it from the Arduino website.
More obscure libraries can be found on a library author’s website, a code-
sharing website, such as github or Google Code, or sometimes from the web-
sites of Arduino specialty suppliers. Both Adafruit Industries and SparkFun
supply code libraries for use with their specialized Arduino products.

Installing libraries
When you want to add a non-standard library to your project, you need to
first download it, usually as a zipped archive. You then extract the Zip file by
double-clicking on it. Doing this usually produces a folder bearing the name
of the library. Inside the folder will likely be files ending in .h and .cpp,

50 Part I: Getting Started with Arduino Projects

which contain the code of the library itself. You may also see an Examples
folder, which contains some example sketches demonstrating how to use the
library. If you do not see the .h and .cpp files inside this folder, there’s a
problem and your library won’t work.

You need to place this folder and its contents where the Arduino IDE can find
it — and where you place libraries depends on your operating system:

	 ✓	If you are using Windows, this is usually in the folder: My Documents\
Arduino\libraries

	 ✓	If you are using a Mac, this is usually in the folder: Documents/Arduino/
libraries

	 ✓	If you are using Linux, its location will be similar to a Mac.

	 The .h and .cpp files must be inside a folder bearing the name of the library.
They can’t simply be copied into your Arduino directory or the library won’t
work.

You use code libraries to extend your Arduino’s basic capabilities in
Chapters 7, 8, 11, 13, and 14.

Powering your Arduino
For long-term applications, you need a constant DC power supply. You can
get this from your computer via USB, but most likely you’ll want to power up
your Arduino whether or not there’s a computer connected. If so, you need
a power transformer to convert from common household alternating current
(AC) to the direct current (DC) that your Arduino is expecting or a battery.

Selecting a power transformer
These power transformers (which I call wall warts) come in a huge variety of
sizes and costs, but you really only need to keep an eye on two things — the
voltage supplied and the current supplied. You can use a power transformer
to supply anywhere from 6 to 20 volts to your Arduino, but the recommended
range is 7 to 12 volts. Supplying more than 12 volts may cause the onboard
voltage regulator to overheat.

If you are using that same transformer to power up other components that
your Arduino is using, you need to make sure the voltages are matched. For
example, a motor requiring 12 volts can use the same power supply as your
Arduino, because both can use a 12-volt power supply. However, if you were

51 Chapter 3: Understanding the Basics

to use, for example, a 24-volt transformer to power a motor, you would need
to step down that voltage for your Arduino using another transformer or a
voltage regulator.

You also need to pay attention to the amperage supplied by your trans-
former. The minimum requirement is about 250mA, but if you are connecting
lots of LEDs, sensors, or other devices to your digital pins, you may need
more current.

	 The best rule of thumb is to select a transformer that is matched to your
Arduino’s voltage requirement and exceeds your project’s current requirement.

Selecting a battery power supply
If you want to go untethered, you need a battery power supply. Again you
need to pay attention to both the voltage and amperage supplied by your
battery. For an Arduino, you’ll need a battery that can supply 7 to 12 volts,
though you can be outside of these boundaries by a bit, because the onboard
voltage regulator will condition the power so that your Arduino can use it.

The amperage supplied by a battery is measured in milliamp hours (mAh).
The higher the rating, the longer your battery will last. However, the mAh
rating doesn’t exactly tell you how long your battery will last, because the
current supplied will vary as your battery is depleted. Your Arduino needs
about 250 milliamps (mA) to operate, and any additional components will
increase the requirement.

Figuring out how long a battery will last is difficult to determine precisely.
Battery design is a tradeoff between cost, performance life, and size. Battery
depletion is a function of how much power the Arduino and any other com-
ponents are using. Depletion is affected by other factors, too, including the
number of external devices, variations in how your sensors operate, and
ambient temperature. The best way to know is to perform some tests.

	 For a given voltage, the larger the battery, the longer its life.

Understanding Basic Electronics
Working with an Arduino means working with both software and hardware.
If you are working with hardware, you’ll be using electricity to either sense
something or actuate something, or both. So understanding some of the
basics of electrical circuits is a good idea.

52 Part I: Getting Started with Arduino Projects

Voltage (V)
Voltage (symbol: V) is a measure of potential energy to do work in a circuit —
specifically to push around electrons. Because voltage is a measure of poten-
tial to move electrons from one point to another, its potential is measured
as a reference between two points. Imagine you are dropping a ball to the
ground. The ball will land harder if it is dropped from a higher point. The
amount of energy released is related to where it is dropped from and where
it lands. The potential for electron flow is expressed similarly, between its
origin point and where the electron flow ends up. Thus voltage (or volts) is
often expressed as a “drop” between two points in a circuit. A measurement
of voltage at a particular point of a circuit is a way of expressing how much
potential there is to move electrons around from that point to another point.

Current (I)
Current (symbol: I) is a measure of the flow of electrons through an electrical
circuit. Electric current is composed of individual electrons flowing through
a conductor by moving along and pushing on the electrons ahead. This is
similar to water flowing through a pipe. Another analogy is marbles in a tube
that push each other along. These analogies don’t hold for all cases, but in
general, they provide a good model for how current flows in a circuit. The
amount of flow is the same everywhere in the circuit. If you could observe
the electrons flowing in the wire of a circuit, you would see the same quantity
at any point in the circuit. Current is measured in amperes (or amps), which
is equivalent to 6,250,000,000,000,000,000 electrons passing by a given point
per second. You will often see current expressed in milliamperes (mA).

Resistance (R)
Resistance (symbol: R) is a measure of the opposition to the flow of electrons
in a circuit. It depends on a number of factors, including the medium — usu-
ally wire, its cross-sectional area, and its temperature. The resistance limits
the flow of current in a circuit with a given amount of voltage supplied by the
battery or power supply. The opposition to electron flow generates friction,
similar to the way mechanical friction occurs and generates heat. If a lot of
current is opposed by a resistor, it may get warm or even too hot to touch.
This heat can be seen as inefficiency of a circuit. Resistance is measured in
ohms, which is expressed with the Greek letter omega: Ω.

53 Chapter 3: Understanding the Basics

Ohm’s Law
Voltage, current, and resistance are all interrelated in electrical circuits. The
relationship between the movement of current in a circuit and the available
voltage was first described by Georg Simon Ohm and is expressed by the
simple algebraic equation, voltage equals current times resistance: V=IR. Using
basic algebra, you can manipulate this equation into two variations, solving
for I and for R: I=V/R and R=V/I.

So what?
Most of us would like to avoid math and just get on with building cool proj-
ects. The projects in this book have all been tested to work at the voltages
and currents specified. The electronic parts you use in these projects are all
engineered to use a certain voltage and current. However, you may want to
use different components than those specified here, or you might also want
to add components to make your projects even cooler.

If so, you need to make sure the voltages and current ratings for the parts
you want to use are matched to those in your project. You don’t want to end
up frying your project or your Arduino or burning down the house. Always
make sure additional components operate at the voltage of your project and
they do not require more current than your project can supply. Some compo-
nents will take as much current as you can give them. You need to use resis-
tors to limit the current that encounters them.

For example, suppose you have an LED that you want to light up with a digital
pin that requires a maximum of 30mA of current. Digital pins provide an output
voltage of 5V. To provide no more than 30mA of current, you can calculate
the value of the resistor you’d need to use in that circuit, using Ohm’s Law:

Resistance = Voltage/Current (in Amps).

So the resistance in ohms equals 5 volts divided by 30 milliamps, which is
0.03 amps: 5/0.03=166. You’d need roughly 166 ohms of resistance to pro-
tect that LED from using too much current. In practice, people tend to use a
greater value of resistance by 10 percent or 20 percent just to be on the safe
side, and because resistors come in fixed values. So, a 180Ω or 200Ω resistor
would provide the right amount of current limiting without reducing current
flow so much that the LED fails to light up.

54 Part I: Getting Started with Arduino Projects

	 If you are adding additional components or electronic parts to your project,
make sure you have used appropriate resistors so that you don’t overdrive
your components. Otherwise you may end up damaging the components or
your Arduino.

	 If you want to take your electronics knowledge even further, you might want
to check out Electronics For Dummies (by Gordon McComb and Earl Boysen)
and Electronics Projects For Dummies (by Earl Boysen and Nancy C. Muir).
They can give you a great start on understanding the fundamentals of how the
circuits in this book work.

Identifying Electronic Components
To build the projects in this book, you connect your components according
to schematic diagrams and parts placement diagrams. The former shows how
things are connected in electronic circuits. The latter indicates how you place
the parts into a breadboard so that the electrical connections indicated by
the schematic are accomplished.

	 Details about how breadboards work and the different kinds available are in
Chapter 2.

You can construct the projects by referring to the parts placement diagrams,
but the schematics provide a second way of confirming that you’ve built your
circuits correctly.

Reading schematic diagrams
As you work on the projects in this book, you can refer to diagrams that
show you how to connect your Arduino and the electronic components. A
basic schematic is an abstract representation of the parts that are connected
in your circuit and the wires that join them. This schematic makes it easier
to see how electricity is supposed to flow in the circuit and helps you to diag-
nose problems. It also helps you make sure you’ve got everything connected
and haven’t overlooked anything.

Check out the simple diagram in Figure 3-3. It shows an LED connected to an
Arduino. The schematic representation of the Arduino has all its input and
output pins organized for the sake of clarity, rather than showing physical
positions of the pins on the Arduino. The LED is connected to Pin 13, and
the Arduino ground pin is labeled GND. The breadboard used to connect the
parts is not shown. The breadboard merely provides the physical connec-
tions shown by the wires in the schematic diagram.

55 Chapter 3: Understanding the Basics

	

Figure 3-3:
A simple

schematic
diagram of
an Arduino

and an LED.
	

To build the projects, you need to be able to identify a variety of parts in a
schematic diagram. Figure 3-4 shows a summary of the parts you encounter
and the symbols used to identify them.

	

Figure 3-4:
Symbols for
the compo-

nents you
use in this

book.
	

ResistorArduino Ceramic
Capacitor

Electrolytic
Capacitor

Transistor Relay

Light Dependent Resistor Light Emitting Diode (LED) Switch

Battery or Power Source Solenoid Servo Motor Temperature Sensor

56 Part I: Getting Started with Arduino Projects

Reading parts placement diagrams
A lot of the work you do involves connecting your parts according to the
schematic diagram. But to do this easily while you are getting a project going,
you use a breadboard. You can simply connect parts on the breadboard with-
out having to fire up your soldering iron. After you’re satisfied the circuit is
working on the breadboard, you can transfer it to a soldered circuit board.

The project chapters contain parts placement diagrams like the one in Figure 3-5
that show you how to put your components onto your breadboard. These have
all been tested so that if you put your components in exactly the same holes,
your project should work according to the electrical schematic diagram. You may
choose to use different holes on your breadboard if you are using a different
breadboard than the ones shown. In this case, you can refer to the schematic
to make sure you’ve connected your parts properly.

	

Figure 3-5:
A parts

placement
diagram of
an Arduino
and an LED

on a
breadboard.

	

57 Chapter 3: Understanding the Basics

Understanding Sensing and Actuating
You use your Arduino to do two main things: sense what’s going on in the
world and then respond to what’s going on by moving or changing some-
thing, or actuating.

You can use a variety of sensors and actuators to build some of the projects
in this book. Although you won’t be using all the components in the list below,
it’s good to know about all the varieties of things you can sense and the many
different ways you can actuate things.

Reading datasheets
If you are hunting for a sensor or actuator for a specific problem, you’ll want
to take a look at its datasheet. Supplied by the manufacturer, a product’s
datasheet tells you exactly what it can and can’t do.

	 You can find datasheets for sensors and actuators on the suppliers’ websites,
or often you can locate them simply by doing a web search using the sensor’s
part number and the term datasheet.

Understanding and using sensors
Humans are pretty good general-purpose sensors. We can detect a wide range
of sights, smells, and textures, but discerning something very precisely — an
exact wavelength of light or a precise temperature — can be difficult. And
some things we simply can’t detect — like the presence of carbon monoxide.
Electronic sensors can break down the five familiar senses that we humans
are capable of: sight, sound, touch/vibration, smell, and to some extent, taste.

But electronic devices can be dramatically more sensitive. Electronic sensors
are often tuned either to be good sensors for very precise quantities of things
or are good for detecting things within a certain range. The myriad sensors
and their capabilities can fill a catalog of hundreds of pages, so it’s impos-
sible to describe even a good chunk of what you’ll find on the market.

In the following sections, I detail some of the sensors you use in this book,
with a couple of extras you might find also interesting.

58 Part I: Getting Started with Arduino Projects

Seeing
These sensors detect light in either a general level of brightness, or on spe-
cific wavelengths. There are color sensors that will tell you the wavelengths
they detect, sensors that detect luminous intensity, and Light-Dependent
Resistors (LDRs) that respond to light levels more generally. Digital cameras
are essentially complex light sensors, and you can find camera shields that
you can use with your Arduino to take pictures. You use LDRs in Chapter 12
and an infrared light detector for the remote-controlled car in Chapter 14.

Vibration/Touch
With smartphones and tablets everywhere, we’ve become really used to
interacting with touch-sensitive displays. But you can also think of the
humble switch as a kind of touch sensor. Other sensors can detect bending
and vibration. A piezoelectric sensor element can be used to detect vibra-
tions. I place temperature sensors in this category, too. You use temperature
sensors in Chapter 12 and switches in Chapters 7 and 8.

Hearing
The simplest kind of a hearing sensor is a microphone, which uses a thin
membrane to detect vibrations in the air. You can connect a microphone to
an Arduino to analyze low-frequency vibrations within the audio range. And
although you can’t use an Arduino Uno to record high-quality audio, you can
record sounds nearing the quality of a recordable greeting card or child’s
toy. Detecting specific radio frequencies is also equivalent to hearing — just
way above the range of human abilities. This is well within the capability of
an Arduino if you use specialized hardware, such as a Radio Frequency ID
(RFID) reader. The Radio Frequency ID (RFID) sensor in Chapter 9 is one of
these kinds of sensors.

Smelling
Smell involves detecting sometimes-minute traces of molecules that float on
currents of air. Common examples are smoke detectors or breath analyzers
for detecting alcohol levels. There aren’t any projects in this book that use
this kind of sensor, but that shouldn’t stop you from exploring what they can
do. Why not connect a CO2 sensor to your home sensing station in Chapter 12?
With a little hacking and ingenuity, you could connect a commercial breath
analyzer to your remote-controlled car in Chapter 14, taking safe driving to
an absurd new level!

Tasting
In industry, highly specialized sensors are used to detect the chemicals in a
variety of compounds by heating them up and detecting their molecular

59 Chapter 3: Understanding the Basics

composition. This may be a bit of a stretch, but to my mind, moisture detec-
tion is also a sort of electronic equivalent of tasting. In Chapter 10, you build
a moisture sensor from scratch to “taste” the humidity of soil so you can
sense when to water houseplants.

Understanding and using actuators
When you want objects to do things, you need an actuator. Actuators emit
light and sound, heat things up, cool them down, move them quickly, move
them slowly, and move them precisely. Here’s a rundown on the kinds of
actuation and actuators you encounter in this book.

Visible indication
The simplest actuator is a visible indicator. This can be a simple incandes-
cent lamp or more likely an LED. LEDs come in all shapes, sizes, and colors.
You can find them in single-unit packages, and LEDs indicate letters and
numbers in seven-segment displays and matrix displays. You use LEDs in
several projects in this book. In Chapter 6, you use a matrix of them to create
a scrolling sign like a stock market ticker or the signage on the front of a city
bus. Chapter 15 describes how to combine them into an animated, program-
mable LED cube.

Audible indication
Another simple indicator is an audio actuator — a speaker or buzzer. These
simply use electrical currents to cause vibrations in the air. Generating all but
the most basic sounds with your Arduino requires additional components. If
you want to play recorded sounds, you need to use special add-ons such as the
Wave Shield from Adafruit Industries. But simple audio is possible. The alarm
clock in Chapter 7 uses a piezoelectric sounder to really wake you up. You can
add one to any project where you need an audible indication.

Movement
Many different devices turn electrical potential into movement. The most
basic is a motor. Motors convert the current in an electric field to movement
through the attraction and repulsion of magnetic fields. Specialized motors,
such as servo motors and stepper motors, can be programmed to move things
to precise positions. You use servo motors in Chapter 14 to drive a remote-
controlled car.

Solenoids are special electromagnetic cylinders that can push or pull a
piston. They relay a magnetic field to create attractive and repulsive linear
force. You use a solenoid connected to a valve to turn on and off the flow of
water to a houseplant in Chapter 10.

60 Part I: Getting Started with Arduino Projects

Relays are devices that rely on electromagnetic current to flip a switch.
Inside relays a small metal contact is moved to close the gap between two
wires, thereby allowing electricity to flow in a circuit. You use a relay in
Chapter 8 to activate a door locking mechanism.

Making Projects Work
Most of the projects in this book use a breadboard, the perfect tool for proto-
typing electronic circuits and projects. Your breadboard makes it super easy
to wire up electronic parts to your Arduino so that you can use sensors and
actuators in your projects. The whole purpose of a breadboard is to make
it easy to build things, try out circuits, make mistakes, and change your
plans quickly and easily without having to break out the soldering iron. For
prototyping ideas, the breadboard is probably your most important tool. But
sometimes, you want to make things a little more permanent. That’s when
you want to consider two things: soldering your components together and
putting everything into an enclosure.

Moving from your breadboard
to your project box
You prototype and build most of the projects in this book on a breadboard.
But when and if you want to make one of them more permanent, you can
easily do so by transferring your circuit to a piece of stripboard or making
your own Arduino shield. If you want to try this out, the home sensing
station in Chapter 12 is a good place to start because it shows you how to
start your project on a breadboard and then move it to a piece of stripboard.
After you’ve done it once, you’ll be able to do it with all the other projects
pretty easily.

You can also make a printed circuit board. I used the software program
Fritzing to lay out all the circuits and diagrams for this book, and it also has
the capability to create custom printed circuit boards (PCBs). You can use
the artwork to fabricate your own, or you can send the design off to a PCB
manufacturer, who will etch, drill, and silkscreen artwork onto your board
for you. Although this used to be very expensive and really only practical for
hundreds of copies, new services are now offering one-off boards, and the
prices for this are really coming down. This topic is a bit out of the scope of
this book, but there are plenty of resources online if you want to investigate
how to do it.

61 Chapter 3: Understanding the Basics

To make your project more permanent, you also need to consider what kind
of enclosure to put it into. Chapter 2 contains a guide to the kinds of enclosures
you can use and some of the important considerations when choosing one.

Learning soldering basics
You can build all these projects on a breadboard, which is easy to use and
change if you make a mistake. After you are satisfied with the results, you can
connect the components more permanently using a perfboard or stripboard
and by soldering them together.

You solder parts with a soldering iron, the tip of which heats up to a few
hundred degrees — hot enough to melt the metal solder you use to join your
components. The molten solder pools around the hot metal components and
cools quite quickly when the heat from the soldering iron is removed. The
result is an electrically conductive, strong joint that is permanent until you
apply heat from a soldering iron again.

When you are first trying your hand at soldering, it’s a good idea to practice
on some throwaway stuff that you won’t mind messing up. Practice makes
perfect, as the saying goes. It takes a while to get the hang of how long it
takes to heat up the solder, how to flow it onto components, and how to
make a good solder joint. You can use a piece of stripboard to do a few test
connections, without worrying about damaging things on your project.

You can practice soldering on resistors because they are cheap and easy to
work with and it doesn’t matter if you overheat them — you can just throw
them away after you’re finished practicing. If you have any electronics board
lying around, you can practice your desoldering skills too, by using a desolder-
ing wick mentioned in Chapter 2. Try to remove parts from the boards. You
quickly see why it’s a good idea to get your soldering skills up to speed —
taking things off of a circuit board is a lot harder than soldering things on!

Figure 3-6 shows an example of soldering a component to a perfboard. When
you are soldering, you apply the iron to the components and then flow the
solder into the heated area. You need to ensure that the components are hot
enough for the solder to adhere to them. You don’t heat the solder and drip it
onto the parts. Once you’ve heated the components, some solder will liquefy
around the components and coat them. When they are coated, remove the
solder and the iron and allow the parts to cool. The result should be a strong
connection that you can’t pull apart.

62 Part I: Getting Started with Arduino Projects

	

Figure 3-6:
Soldering

components
to a perf-
board or

stripboard.
	

Here are some soldering tips to keep in mind:

	 ✓	Make sure your parts and surfaces are clean. In particular, make sure
you clean your soldering iron tip with a damp sponge.

	 ✓	Coat the tip of your iron with a little solder — just enough to make it shiny.
This is called tinning and will make it easier to solder your connections.

	 ✓	Don’t overheat parts. You should only heat the components long enough
to make a good connection. If you apply too much heat, some sensitive
components could be damaged.

	 ✓	Safety first. Make sure you are not soldering over your hands or another
part of your body. If the solder drops off of your work you could be
burned. Also, wear safety goggles; burning solder can sometimes spit
and fly in unexpected directions.

	 ✓	Be careful not to breathe the soldering fumes. Although solder containing
lead (which is a neurotoxin) has been banned in many places, the
fumes are not very nice. Make sure you are working in a well-ventilated
area.

Part II
Basic Arduino Projects

	

Learn how to add keyboard input to the all-seeing eye project from Chapter 2 at
www.dummies.com/extras/arduinoprojects.

In this part . . .
	 ✓	 Find out the basics of programming your Arduino
	 ✓	 Program and control LEDs
	 ✓	 Create and program a scrolling sign
	 ✓	 Find out about keeping time with an Arduino
	 ✓	 Display text on an LCD

Chapter 4

The All-Seeing Eye
In This Chapter
▶	Powering and controlling LEDs
▶	Using arrays and loops
▶	Counting time
▶	Using a potentiometer to control speed

I
f you’ve never made an Arduino project before, this is a good place to
start. In this chapter, I go over the basic steps in building any Arduino

project, writing the code, and spicing things up a bit once it’s all working.

If you’re reading this book, you likely have a soft spot for science fiction, like
me. This project was inspired by long hours of reruns from 1980s science fic-
tion on TV. I’m thinking of Battlestar Galactica — with its Cylon Warriors, and
Knight Rider with KITT, the advanced car with a personality. For me, KITT
was the star of the show, not David Hasselhoff! Both the Cylons and KITT had
one thing in common — what passed for “eyes” more or less consisted of a
horizontal band of lights that cycled back and forth — an electronic all-seeing
eye. In this project, you build just that, using a series of light emitting diodes
(LEDs). You can also change the behavior of the lights to emulate a cinema
marquee or bouncing ball.

Along the way, you become familiar with several key Arduino concepts,
including counting time, storing and retrieving lots of data values, and adding
a dial to control the speed of your all-seeing eye. These are used in several of
the other projects in this book and will be useful for your own projects.

	 If you haven’t connected your Arduino yet, flip over to Chapter 2, which walks
you through setting it up. It also covers the Arduino integrated development
environment (IDE) where you write your programs. Review Chapter 3 if you
need a refresher of the basics that are common to all Arduino code, the code
structure, and an explanation of how your code gets processed by the com-
piler so that it will work when it is loaded onto your Arduino.

66 Part II: Basic Arduino Projects

Selecting Your Parts
Start by getting together the parts you need to create the eye, as shown in
Figure 4-1. This one is pretty simple. First, make sure that you have the fol-
lowing parts:

	 ✓	Your Arduino Uno

	 ✓	A breadboard

	 ✓	Ten LEDs of the same kind and color. I’m using red LEDs, just like the
Cylons and KITT.

	 ✓	Ten 250 or 270 ohm resistors

	 ✓	4.7K ohm linear potentiometer

	 ✓	Jumper wires of various lengths

	 When you are looking for parts, you don’t have to get exactly the resistor values
shown here. Arduino kits tend to have resistors ranging from 220 to 470 ohms,
which will work fine. You may also use larger values, but they may reduce the
flow of current so much that your LED will be dim or won’t light up at all.

	

Figure 4-1:
Gather the

parts you
need for
your all-

seeing eye.
	

67 Chapter 4: The All-Seeing Eye

Building the Circuit
After you have the parts ready, start by connecting each of the components
to the breadboard. There are 20 components, and it’s easier to connect the
Arduino last. After the other components are all in place, you connect the
negative, also called the “ground” side of the circuit, to your Arduino, and
finally connect the positive side of the circuit to each LED.

Follow these steps to build it, referring to Figure 4-2:

	 1.	 Insert the ten 250 ohm resistors into the breadboard.

		 If you have a slightly higher resistance like 270 ohms, that’s okay. One
leg of each resistor should be on either side of the gutter in the center of

Parts of an LED
LEDs, LEDs everywhere! You see them all over
the place, and they are now starting to become
bright enough to be used in place of traditional
lighting. But what makes an LED tick? Light
emitting diodes are based on a special mate-
rial called a semiconductor that only permits
electric current to flow in one direction. Such
a component is called a diode. All LEDs con-
tain a bit of semiconductive material that forms
the diode. This diode is surrounded by a tiny
concave shield that focuses the light. The light
is further focused by the epoxy lens that also
provides protective encapsulation of the parts.
All kinds of lenses are available to control the
light they generate. Besides the electrical
characteristics, the key things to be aware of
when you are selecting an LED are brightness
and viewing angle. The brightness, usually
measured in microcandelas (mcd), can range
from a few thousand to 25,000 or more mcd.
The viewing angle refers to how broadly LED
light is cast and can be as little as a few
degrees — to 180 degrees. The longer leg is
the anode and connects to a positive power
supply (+). The shorter leg is the cathode and
connects to the negative (-) or ground power
supply connection. The epoxy enclosure has
a flat side that corresponds to the cathode.

So if you ever are uncertain about which
leg is which — or if the legs have been cut
short — you can refer to this diagram.

Epoxy Lens

Semiconductor (diode)
Sheild

Cathode (–)

Anode (+)

68 Part II: Basic Arduino Projects

your breadboard. Remember, no electricity flows across this gutter, so
you can put both legs in the same row without connecting them electri-
cally. Don’t worry about whether the color bands face the same way —
resistors work the same way in both directions.

	 2.	 Insert the LEDs. Connect the long leg (called the anode) of your LEDs
to the same row as a resistor and put the short leg into the adjacent
row.

		 Unlike resistors, LEDs only work in one direction — they have a “polarity” —
and the positive, longer leg must always be connected to the +5 volt side
of your circuit. That will be coming from the digital pins on your Arduino.

		 Power will only flow in one direction to light up the LED — from the
anode to the cathode.

	 3.	 Use a jumper wire to connect the negative leg of each LED to one of
the long columns of holes on the side of your breadboard, to make a
ground rail.

		 The negative leg of all your LEDs is going to the GND pin on your
Arduino.

		 The holes in each long column are all electrically connected. You could
use either of these columns, but by convention, people use the column
with a blue or black stripe next to it as the ground rail, and the other as
a power rail. Some breadboards don’t have a colored stripe at all, but it
doesn’t matter. The color coding is just to help you keep track of which
is which.

	 4.	 Use a jumper wire to connect one of the unused holes on your ground
rail to the GND pin on the Arduino.

	 5.	 Connect the positive side of the circuit.

		 You’ll be sending power to each of your LEDs by turning its digital pin
on or off. Starting with Pin 4, connect the anode of each LED to one digi-
tal pin on your Arduino. Figure 4-2 shows what your breadboard should
look like after you have completed the circuit.

You have now established an electrical connection that will allow electric-
ity to flow from individual digital pins (4–13) through individual LEDs, and
then to ground. You should be able to trace an imaginary pathway from Pin
4 through a resistor, across one LED and your ground rail, to the GND pin on
the Arduino. The same goes for the other pins. Each LED has its own sepa-
rate route, but the ground rail is shared by all of them.

	

On the resistors, the color bands indicate their resistance in ohms.

69 Chapter 4: The All-Seeing Eye

Check the illustration to make sure you’ve done it correctly. Don’t worry
about the potentiometer now. You add it later.

	

Figure 4-2:
Parts

placement
for the eye.

	

Understanding How the Code Works
Now that you’ve wired up, you can enter the code.

Flowcharts are useful for understanding what happens each step of the way,
when the Arduino is processing your code. The flowchart in Figure 4-3 shows
the series of events and decisions in this program.

All in good time
The Arduino’s internal system clock plays a key role in this project. The
Arduino keeps track of the time that has elapsed since your program started
running in milliseconds. You can use this for all sorts of useful things,
including building clocks and timing events. Here, it’s used to create a delay
between the lighting of each LED, just a little. You increase or decrease that
delay to change the speed that the light emitted moves left and right.

70 Part II: Basic Arduino Projects

You use a delay to adjust how long each LED is lit up. You step from each
LED to the next one, turning off the previous LED and turning on the next
one, pausing at each LED for the amount of the delay. When you get to the
end of the line of LEDs, you switch directions and continue the process.

	

All the code used in this book can be copied from the Downloads tab of the
companion website at www.dummies.com/go/arduinoprojectsfor
dummies — unless you need to practice your typing!

	

Figure 4-3:
Sequence of

operations
in the code.

	

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

71 Chapter 4: The All-Seeing Eye

To get a sense of what is going on, enter the following code into a new sketch.
You can also download the code from the book’s companion website at www.
dummies.com/go/arduinoprojectsfordummies.

// Chapter 4: The All-Seeing Eye
// Sequentially lights up a series of LEDs
// A variable to set a delay time between each LED
int delayTime = 40;

// A variable to store which LED we are currently working on
int currentLED = 4;

// A variable to store the direction of travel
int dir = 1;

// A variable to store the last time we changed something
long timeChanged = 0;

// An array to hold the value for each LED pin
byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

void setup() {
 // Set all pins for OUTPUT
 for (int i=0; i<10; i++) {
 pinMode(ledPin[i], OUTPUT);
 }

 // Record the time once the setup has completed
 timeChanged = millis();
}

void loop() {
 // Check whether it has been long enough
 if ((millis() - timeChanged) > delayTime) {

 //turn off all of the LEDs
 for (int i=0; i<10; i++) {
 digitalWrite(ledPin[i], LOW);
 }

 // Light the current LED
 digitalWrite(ledPin[currentLED], HIGH);

 // Increase the direction value (up or down)
 currentLED = currentLED + dir;

 // If we are at the end of a row, change direction
 if (currentLED == 9) {
 dir = -1;
 }
 if (currentLED == 0) {
 dir = 1;

72 Part II: Basic Arduino Projects

 }
 // store the current time as the time we last changed LEDs
 timeChanged = millis();

 }

}

Setting up the code
At the beginning of the code, there are some comments describing what the
code does. In a line of code, anything after a slash (/) will be ignored by the
program compiler. Comments are a good place to describe what the code
does so that you or others can tell what’s going on. This is surprisingly useful
months later, when you’ve forgotten the details of how a particular chunk of
code works but want to reuse some parts of it for another project.

The code starts out by creating several variables, which are simply places in
memory to store and recall values. Each variable has a meaningful name that
makes it easy for humans to write and read the code.

Because there are many different kinds of variables, you have to tell the
Arduino what kind you are using. The first one is an integer variable — which
just stores a regular, whole number from -32,768 to 32,767. It’s going to be
called delayTime, because that’s what it’s used to store — the time in mil-
liseconds that the Arduino waits before lighting up the next LED:

int delayTime = 40;

int is a keyword that creates the integer variable. All keywords are automati-
cally highlighted in orange by the Arduino IDE, and you can’t use them for
anything else, or it will cause an error.

Next is the name of the variable, delayTime. Variable names are case sensi-
tive, so make sure you always type the name correctly. In the second half of
the variable name, the letter “T” is capitalized to make it easier to read the
name. This is commonly used by programmers and is known as “camel case”
because the capital letters create “humps” in the variable name!

The equal sign means that the following value will be stored in the memory
location designated by delayTime. It might be easier to think about the equal
sign meaning “assign the value of” rather than “equals.” The value you’re assign-
ing to delayTime is 40. Later, the code determines whether 40 milliseconds
have passed, to check whether it’s time to light up the next LED. Assigning a
variable a value when you create it is often called initializing the variable.

73 Chapter 4: The All-Seeing Eye

Next, you need to keep track of which LED is being lit up, and this is done
with a sensibly named variable called currentLED. This stores the pin
number of the current LED that you are dealing with. It’s set to 4, because it’s
a good habit to initialize variables with a value of some kind, and the LED on
Pin 4 is the first one that lights up.

int currentLED = 4;

Another integer variable controls the direction of the lights:

int dir = 1;

A clever trick increments currentLED up, until Pin 13 is reached, and then
goes back down again. As you can see, dir is initialized to a value of 1. After
the Arduino lights up its first LED on Pin 4, currentLED has a value of 4.
Adding dir to currentLED will change its value to 5, so the next time
around the program loop, the next LED will be illuminated, and so on through
to Pin 13. After the program has reached Pin 13, you will change the value
of dir –1 and continue to add it to the value of currentLED, making it 12.
Each time you add dir to currentLED, it will decrement the value of
currentLED by 1. This will continue down to Pin 4, and the whole cycle will
start all over again. Nifty, huh? The details of how this works come a little bit
later in the chapter.

Elegance, economy, simplicity
There are many methods to increment up and
down a line of LEDs. For example, you could
write code that uses a loop to count from 4
to 13, followed by another loop to count from
13 to 4, and so on. This would have the same
effect, but would use two loops instead of one.
Whether to use one approach or the other is a
question of elegance and economy of memory.
Many discussion forums have been filled to the
brim with debates about how and whether to
make code more elegant and compact, and the
merits of both. Often, it’s a question of style.

But with microcontrollers, the available RAM is
at a premium. If you can write something a little

more efficient and a little bit shorter, it’s usu-
ally a good idea to do so. For example, the data
type “byte” can store a number from 0 to 255,
whereas the data type int can store a number
from -32,768 to 32,767. A byte variable uses only
one byte of RAM, but an int variable uses two
bytes of RAM. This may not seem like much, but
when your programs get larger, memory space
can become tight. So it makes sense to choose
the right kind of variable for the data you want
to store. With long programs that are running
short on memory, you will figure out all kinds of
clever ways to economize on every last byte!

74 Part II: Basic Arduino Projects

Next, you have an integer to keep track of the last time a change was made.
This is used to determine whether it is time to move on to the next LED. It’s
initialized to 0:

long timeChanged = 0;

	

The variable type long is similar to int, but it can store values from
–2,147,483,648 to 2,147,483,647. Because the value of changeTime increases
by 1000 every second, an int would reach its maximum value after 32,767
seconds, and the timer would stop working properly.

The last item is a new data type, an array. Arrays are extremely handy
because they can be used to store many variables. In this program, you use
the array to store the pin number for each of the ten digital pins connected to
your LEDs. Arrays have to have a name, and the name of this array of bytes is
ledPin.

Each value stored in an array has an address, called the index. You can
request the value that has been stored at that address, or can store a value in
that address. You can think of an array like a wall of sequentially numbered
cubbyholes in which you put chunks of data. Each cubbyhole is called an
array element. To access the contents of an element in an array, all you need
to know is its index number.

In addition to the name ledPin, you also need to tell the compiler what kind
of data you are going to be putting in this array. This array will be used to
store bytes:

byte ledPin[] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

You’ve initialized this array with ten elements in the curly brackets, which
are the pin numbers that correspond to the digital pins on the Arduino. So
the compiler can count how many elements there are.

	

In some cases you will want to create an array without initializing any ele-
ments in it. In this case, you just specify how many elements there are, in the
square brackets: byte ledPin[10];

An array index starts at zero. So, the first value in this array, 4, is at index 0.
To access the value of one of the elements of an array, you simply refer to its
index in the square brackets: ledPin[0] has a value of 4. ledPin[1] has a
value of 5, and so on.

To use the value of one of the elements of your array, you specify which one
you want to use, like this:

75 Chapter 4: The All-Seeing Eye

i = ledPin[3];

ledPin[3] has a value of 7, so your program would assign the value 7 to a
variable named i.

With all the variables specified, it’s time to move on to setting up the
initial conditions that your code will start with, which is done in the setup()
function:

void setup() {
 // Set all pins for OUTPUT
 for (int i=0; i<10; i++) {
 pinMode(ledPin[i], OUTPUT);
 }

 // Set up the current timeChanged
 timeChanged = millis();
}

As you might remember, functions are chunks of code that execute every-
thing between two curly brackets. All Arduino programs must have a
setup() function and a loop() function. Everything in the setup() func-
tion is executed once, before the main loop starts. Everything in the loop()
function is executed as long as the Arduino is running.

The compiler needs to know which digital pins are going to be used and what
they are going to be used for — either sending a signal or receiving a signal.
This is done with the built-in function pinMode(). If you were going to set up
a single digital pin, say 13, for digital output (as in the Blink program exam-
ple), you would simply specify which pin number, and output, like this:

pinMode(13, OUTPUT);

However, there are ten pins to set up. You could simply write this statement
ten times, using a different pin number each time, but there is a shorter way
to do it by using a technique called a for loop. In programming, you encounter
many situations in which you need to do something repeatedly, and a for
loop is one of the most common ways of doing so.

A for loop needs three things: an initialization variable to count with, a
test condition to see how far it has counted, and an amount to increment by.
These parameters set up the conditions the loop is to be executed with and
are specified within parentheses. The loop continues to execute the code
within the curly brackets and to increment until the test condition is no
longer true.

76 Part II: Basic Arduino Projects

Here, you are creating a variable that is only used for this loop (called a local
variable). It’s an integer to increment with and for brevity, is called i, and set
at a value of 0:

for (int i=0; i<10; i++) {
 pinMode(ledPin[i], OUTPUT);
 }

You’ve initialized the integer i to 0 with: int i=0. The semicolon indicates
that you’ve finished setting up the integer variable and now the loop needs to
know how high to count. The test condition is specified next:

i<10;

Every time the loop iterates through the code between the curly brackets, it
tests whether the condition is true: “Is i less than 10?” The < is called a com-
parison operator.

If the comparison is true, the loop increments the value of i by 1:

i++

You don’t need a semicolon after this statement. If the comparison is false,
because i becomes 10 or more, the loop quits and the Arduino goes to the
next code in the program.

You’re using this loop to count up from 0 to 9. Each time the loop increments,
you are setting up a digital pin to be used for output, using a value from the
array ledPin[]. Which value you use is specified by the number of the array
index, which is the integer i that is used by the for loop to count with:

pinMode(ledPin[i], OUTPUT);

When i is 0, the value of 4 is retrieved from the ledPin[] array. When i is 1,
the value 5 is retrieved, and so on.

Using a loop is perhaps a little more complicated than explicitly writing out
all ten pinMode() declarations, but it saves on memory. This is a bit of code
that people often cut and paste from project to project, modifying the param-
eters as needed.

The last part of setup() is making a note of the current time in millisec-
onds, which you’ll use to determine whether it’s time to light up the next
LED. The current time is retrieved from the CPU with the built-in function
millis(). This value is then saved to the integer timeChanged (even
though nothing has been changed yet!).

77 Chapter 4: The All-Seeing Eye

The main event
The show really begins in the main loop() function. Everything is contin-
gent upon one question: “Has 40 milliseconds passed since the last time we
checked?” This question is expressed as a special statement called an if state-
ment. An if statement is a type of control structure that tests whether a ques-
tion is true and if so, executes the code in the curly brackets. As you can see,
the entire code of the program is contained within the curly brackets of the
if statement:

if ((millis() - timeChanged) > delayTime) {
}

As with loops, the question is tested within the parentheses.

Here, you are using the millis() function to obtain the amount of time (in
milliseconds) that has elapsed since the program started running.

if ((millis() - timeChanged) > delayTime) {

By subtracting the current time from timeChanged, you obtain a value, and
if that value is greater than the value of delayTime (which you initialized
to 40), then the code is executed that changes which LED is illuminated.
No matter how long the Arduino has been running, and how high a number
millis() becomes, the test will evaluate whether the last time an LED was
changed was more than 40 milliseconds prior to the current time. Every time
an LED changes, the value of timeChanged is updated, ready for the next
test. The effect of this is to create a “heartbeat” in which the test will be true
every 40ms, and the LED changing code will then be executed. Let’s see how
that works.

Comparison operators
There are lots of comparisons you can test,
such as:

	✓	 == is equal to

	✓	 != is not equal to

	✓	 < is less than

	✓	 <= is less than or equal to

	✓	 > is greater than

	✓	 >= is greater than or equal to

Pay close attention to the first comparison ==. A
single = sign is used to assign a value. A double
== sign is used to make a comparison. Using a
single = for a double == is a common error made
by beginners. Luckily, the compiler usually tells
you if you’ve made this kind of goof.

78 Part II: Basic Arduino Projects

Stepping up and stepping down
The LED changing code starts by turning off any LEDs that might have been
on from the previous iteration of the loop:

//turn off all of the LEDs
 for (int i=0; i<10; i++) {
 digitalWrite(ledPin[i], LOW);
 }

Here you are using a for loop again, this time with the digitalWrite()
function, which is used to change the voltage on digital pins. HIGH applies 5
volts to the pin and LOW applies 0 volts. For example, to write Pin 13 to LOW
(as you may recall from the Blink program code) you’d use this statement:

digitalWrite(13, LOW);

But in this case, you are using the index of the loop also as the index of the
ledPin[] array, just as you did with the pinMode() function, in setup().

Now that the LEDs are all off, you can turn on the next one:

digitalWrite(ledPin[currentLED], HIGH);

In setup(), you initialized currentLED to be 4, so the first time around,
the Arduino will raise the voltage on Pin 4 to HIGH, and the LED will go on.
Hooray! There are just a few more things to take care of now.

First, use that clever trick with the variable dir, to increment up (or down)
to the next LED, by adding either +1 or -1 to the value for currentLED:

currentLED = currentLED + dir;

Next, you need to check whether you’ve reached either end of the row of
LEDs and if so, change the sign of dir. Note that in this if statement, you are
testing whether one value is equal to another, so you use two equal signs to
perform this evaluation:

 if (currentLED == 9) {
 dir = -1;
 }
 if (currentLED == 0) {
 dir = 1;
 }

With that bit of housekeeping out of the way, there’s one final thing to do,
and that’s to make a note of the time this change was made:

79 Chapter 4: The All-Seeing Eye

timeChanged = millis();

The program is now ready to test again whether 40ms has passed, and the
whole cycle starts all over again at the beginning of loop().

Understanding How the Hardware Works
From an electronic point of view, this project is pretty simple. You are
merely using the Arduino to provide a voltage from its digital pins to light
up each of the LEDs, in turn. You are only lighting up one LED at a time, and
they all share the same pathway to ground. The schematic for this project
is shown in Figure 4-4.

	

Figure 4-4:
Schematic

diagram
of the all-

seeing eye.
	

The main consideration is providing the right amount of current to your
LEDs. The resistors are there to prevent too much current from flowing
from the digital pins to the LEDs, which could harm the LEDs, the Arduino,
or both. For most garden-variety 5 millimeter LEDs, the operating current is
somewhere between 15 and 30 milliamps.

80 Part II: Basic Arduino Projects

To determine the right resistors to use, you use Ohm’s Law. The digital pins
put out 5 volts. So you simply divide 5 volts by the amount of current the
LEDs are rated at. The ones I used are rated at 20 milliamps. A milliamp is
one thousandth of an amp. So to get an amp value of 20mA, move the decimal
place over three places to the left, for 0.02 amps:

5 volts / 0.02 amps = 250 ohms.

The result is 250 ohms. If you don’t have a 250 ohm resistor handy, use
one with a slightly higher value, such as 270 ohms. You can safely use even
higher values, but the higher the value, the dimmer your LEDs will be,
because less current will flow through them.

The Potential of a Potentiometer
Now that your eye sees all, it’s time to perk things up a bit. The simplest
thing to do is to change the variable delayTime to a larger or smaller value.
The smaller the value, the faster your LEDs will change. Setting the value to
20 will make them go twice as fast. Eventually, it will change so fast that you
won’t be able to perceive the back-and-forth effect. The LEDs will just appear
to be constantly on, though a bit dimmer.

You can tweak the numbers in the code to see this effect. However, it’s a drag
to have to change the value, upload the code, test the result, and then tweak
the value again. It would be much easier to simply add a dial to the project,
so that you can quickly change the speed of the LEDs. Is there an easier way
to do this? Of course there is!

Up until this point, you’ve been using the Arduino to control output, using the
digital pins, using the digitalWrite() function. As you might expect, the
digital pins can also sense input. However, because they are digital pins, they
can only be used for digital input and output — that is to say, 1 or 0, on or off,
+5 volts or 0 volts.

To continuously change the speed of the LEDs until you get it to where
you want it, you need a way for the Arduino to sense a continuous change
between a HIGH value and a LOW value — an analog input. There are six pins
for just this purpose on the lower right of the board, labeled ANALOG 0-5.
You can use them to read a voltage that’s somewhere between 0 and 5 volts.

You do this with a function called analogRead(), specifying the pin you
want to read in the parentheses. For example, to read Pin 0, you’d do this:

analogRead(0);

81 Chapter 4: The All-Seeing Eye

When you use this function in your code, you will get back a numerical
value that corresponds to the voltage that the Arduino detects on that pin.
A voltage value of merely 0 to 5 wouldn’t be very helpful, so the Arduino is
designed to return a value within a more precise range, from 0 to 1023. You
then use this number in your code to change how the code behaves.

In this case, you want to change the speed of the delay between each change
of LED by modifying the value of delayTime. I added this to the end of the
code, just before the last line of code that ends the main loop():

delayTime = analogRead(0);
delay(5);
}

All you need now is a way to provide a voltage between 0 and 5 volts to
analog Pin 0. This is where the potentiometer comes in.

	 There is a proportional relationship between voltage and resistance. The
greater the resistance at a given point in a circuit, the less voltage can be mea-
sured after it. Varying the proportion of resistance in a circuit will therefore
vary the measureable voltage.

A potentiometer is simply a variable resistor. It has three connection points,
or legs. Inside, there is a resistive material between the left and right legs.
The center leg is connected to the dial and an internal wiper that traces along
the resistive material. Rotating the dial changes the position of the wiper. If
a voltage is placed across the left and right legs, the center leg will provide a
variable voltage, because the resistance of the center leg depends on where
it is positioned. It is the variable voltage of the center leg that is provided to
analog Pin 0.

The 5V pin in the POWER section of the Arduino supplies the source volt-
age to the left leg of the potentiometer. Any circuit has to have a continuous
path from power supply to ground, which is why the right leg is connected to
ground. The center leg is connected to Pin 0, where the Arduino will read the
variable voltage with the analogRead(0) function.

	

Make sure to disconnect the USB connection before you add or remove any
components!

Add the potentiometer and jumper wires to your breadboard. Figure 4-5
shows how a potentiometer is connected, and Figure 4-6 shows the entire cir-
cuit with LEDs and potentiometer. The spacing of the holes, or pitch, of most
breadboards is typically 0.1” (2.54 mm). Depending on the spacing or thick-
ness of its legs, you might not be able to insert the potentiometer directly
into the breadboard. If your legs won’t fit, you can use alligator clips to con-
nect the potentiometer to wires leading to your Arduino and breadboard, or
solder wires to your potentiometer. Soldering tips are in Chapter 3.

82 Part II: Basic Arduino Projects

	

Figure 4-5:
Using a

potentiome-
ter to create
the simplest
analog input

circuit.
	

Now that you have all your components connected, attach your USB cable
to power up the Arduino. If you haven’t uploaded the modified code to your
Arduino board, do so now. If everything is working correctly, you should
be able to change the speed of the LEDs by turning the potentiometer. If
it doesn’t seem to be working, disconnect the power and check all your
connections.

You can play around with different resistor values and potentiometers to get
a sense of the relationship of the resistance in the input circuit to the speed
of the all-seeing eye. You can also get slider potentiometers that you might
see on a mixing board.

83 Chapter 4: The All-Seeing Eye

	

Figure 4-6:
Adding

a poten-
tiometer

to control
speed.

	

Now that you can control the speed of the eye, you can try some other ideas.
See if you can create other effects, like colliding two lights from opposite
ends, or creating a bouncing effect. After understanding some of the basics of
building the circuit and programming, you can tackle a lot of different visual
effects. The eye’s the limit, you might say!

84 Part II: Basic Arduino Projects

Chapter 5

Making a Light Pet
In This Chapter
▶	Gathering parts
▶	Building the circuit for your light pet
▶	Understanding how the code works
▶	Fading LEDs with pulse-width modulation (PWM)

L
ight can certainly be warm and emotional. As light changes or shifts, you
may find that it takes on a personality all its own. Perhaps you never

thought of light as a pet, but by using a little creativity, and the information
in this chapter, you can create one. You can build a critter with colors and
moods. The light pet cycles through a random series of colors by mixing red,
green, and blue light from LEDs. You can make just about any color by vary-
ing the combinations of the brightness of these three LEDs.

In this chapter, I detail how to get together the necessary parts. I explain how
to wire up the parts, build the circuit, and check that you have connected
everything properly. After you upload the code to the Arduino, you can
tweak it to give your pet a fun personality. The final step is putting it all into
an appealing enclosure.

My version of this project is a pet I’ve named Lux. I chose this name because
it is the international standard (SI) unit of measurement of illuminance. Also,
it sounds kind of cute. All pets have their moods, and Lux is no different. To
make it seem more like a real pet, it occasionally purrs by slowly pulsating.
Lux also randomly goes into a happy mood, indicated by a green glow, and a
sad mood, indicated by a red glow. What’s cool is that when you understand
how the code for Lux works, it’s easy to change it to create new moods for
your own light pet.

86 Part II: Basic Arduino Projects

Selecting Your Parts
The first step of the project is getting the parts you need to build your light pet.
If you have not set up your workspace or Arduino yet, check out Chapter 2 for
more details on how to connect Arduino to your computer and how to use the
Arduino integrated development environment (IDE) to upload programs.

Getting together parts for your light pet is pretty simple. As shown in Figure
5-1, you need the following:

	 ✓	Your Arduino

	 ✓	A breadboard

	 ✓	Three 5mm super bright LEDs (one red, one green, one blue)

	 ✓	Three 250 ohm resistors

	 ✓	Jumper wires of various lengths

	 ✓	A 7 to 12 volt DC power supply

	 ✓	An enclosure — something translucent to put it in

	

Figure 5-1:
All the parts
you need for
the light pet.
Get creative

with your
enclosure!

	

87 Chapter 5: Making a Light Pet

The enclosure you choose is important, because it gives your project some
personality and hides all the innards. The enclosure could be anything that’s
frosted and allows light to glow through. Perhaps something as simple as a
small plastic box, a food container, or an origami cube? Use your imagination,
because the enclosure is what gives your pet some style.

Create your own enclosure or hunt for something that’s large enough to put
the Arduino and breadboard inside. If the enclosure you want to use is too
small, you can house these separately and solder longer wires to your LEDs.
After you start thinking about general consumer products this way, you may
start seeing potential enclosures whenever you go shopping!

Building the Circuit
Make sure that the power supply is turned off when you are building your
circuit. Safety is important, and you could damage your Arduino, your com-
puter, or yourself if you are working on circuits that are powered up! So make
sure your Arduino is not connected to your computer or plugged in to the
power supply.

When you are sure that it’s not powered up, start out by connecting the
Arduino to your breadboard. Use your jumper wires to do the following:

	 1.	 Connect a jumper wire to the pin labeled GND that is in the row of
digital pins at the top of your Arduino.

		 You can also use the Arduino pin(s) labeled GND, in the POWER pins area
on the bottom of the Arduino. The Arduino Uno has two of them, so you
can use either one.

	 2.	 Connect the other side of the jumper wire to the first hole in one of
the long columns on the side of your breadboard.

		 This wire is your ground rail, which provides a shared connection for
many components to connect to ground. On some breadboards, the
rails on the side are color-coded. By convention, people use the black
(sometimes blue) column for their ground rail and red for the power
rail. (For clarity, the breadboard is shown rotated 90 degrees, so the
columns are running left to right and the rows are running top to
bottom. See Figure 5-2.)

88 Part II: Basic Arduino Projects

	

Figure 5-2:
Parts place-
ment on the
breadboard.

	

Next, you add the resistors and the LEDs to the circuit. Follow these steps:

	 1.	 Connect the three resistors to the breadboard.

		 Each of the legs of the resistors should be in a different row on the bread-
board, as shown in the Figure 5-2. Arrange the resistors neatly. None of
the legs should be connected to any other holes in the same row.

	 2.	 Insert the three LEDs so that the long leg is in the same row as the
other side of each resistor and the short leg is in an unused row of
holes.

	 3.	 Use some short jumper wires to connect the leg of each resistor that
is not connected to the LED to the Arduino digital Pins 9, 10, and 11,
respectively.

	 4.	 Use some short jumper wires to connect the short leg of each LED to
the ground rail you made in Step 2.

You have now established an electrical connection that allows current to
flow from Pin 9 through one of the resistors, through the red LED, and to the
ground rail. You should be able to trace an imaginary pathway from Pin 9

89 Chapter 5: Making a Light Pet

continuously to the GND pin on the Arduino. The same applies for Pin 10 and
Pin 11.

	

The long leg of the LED is called the anode, and the short leg is the cathode.
Power only flows through in one direction to light up the LED: from the anode
to the cathode.

Review Figure 5-2 to make sure that you’ve done it correctly. Pay particular
attention to the orientation of the LEDs. If you’ve got one backward, it won’t
light up. Fortunately, it won’t be damaged, but it’s good to get it right before
powering up.

Now that you’ve built the circuit, you can enter the code, take a look at how
it works, and then upload it.

Understanding How the Code Works
The code directly defines your light pet’s behavior, so it’s important to under-
stand the decisions that are made in the code and the resulting behavior.

	

I find it handy to make flowcharts when I’m trying to decide how code will
work and to map out what happens when certain events occur. The flowchart
in Figure 5-3 explains the sequence of decisions that the light pet will make.

Making moods
For Lux, selecting its (his?) mood is the first decision. There are four moods
to choose from: purring, happy, sad, or regular light blending mood, which
he does most of the time. To select a mood, the Arduino picks a random
number from 0 to 20. If the number is 0, that’s purring mood, in which Lux
will slowly fade the current color on and off 10 times. If the number is 1,
that’s happiness. Lux will glow green for 10 seconds and then start all over
again. If the number picked is 2, that’s sadness. Lux will glow red for 10 sec-
onds and then return to normal. If the number is anything over 2, then that’s
the normal mood in which Lux slowly shifts and blends his three colors.

As you can see in Figure 5-3, 85 percent of selections will be the normal mood.
Lux will only do something special now and then. You could change this behav-
ior by changing any of these values, as I describe later in this chapter.

90 Part II: Basic Arduino Projects

	

Figure 5-3:
The

sequence
of steps

that Lux will
execute.

	

Cranking out the code
You can enter the code that sets up the Arduino to run the light pet and con-
trol the light pet’s normal behavior — gently blending colors. Later, you can
add the extra functions to control its moods. Start by entering the following
code into a new sketch. You can also download the sketch from the book’s
website, www.dummies.com/go/arduinoprojectsfordummies, or cut
and paste it into your sketch from the website.

// The Light Pet - A Color Changing Mood Light
// Randomly selects and fades through colors of three LEDs

// Set which pins will use each color
const int redLED = 9;
const int greenLED = 10;
const int blueLED = 11;

www.dummies.com/go/arduinoprojectsfordummies

91 Chapter 5: Making a Light Pet

// Assign variables for the LEDs
int redValue = 0; // the current value of brightness
int newRedValue = 0; // the new value of brightness

int blueValue = 0;
int newBlueValue = 0;

int greenValue = 0;
int newGreenValue = 0;

// Assign “utility” variables for the random number, and the fading speed
int randomValue = 0;
int fadeSpeed = 50;

// Setup the three LED pins for OUTPUT
void setup(){
 pinMode(redLED, OUTPUT);
 pinMode(blueLED, OUTPUT);
 pinMode(greenLED, OUTPUT);
}

// The main loop of the program
void loop() {
 mood = random(20); // pick a number from 0-19 to set the mood of the pet
 if (mood > 2){ // if the number picked was anything higher than 2, run the

color blending function
 blendColors();
 }
}

Take a moment to look at what’s going on here.

At the beginning are some variable declarations. The three integer variables
hold the numbers for the pins that Arduino will turn on and off to control the
LEDs (Pins 9, 10, and 11).

The integers are named, sensibly, after the color of each LED:

const int redLED = 9;
const int greenLED = 10;
const int blueLED = 11;

These integers are constants, which means that they keep the same value
throughout the whole program. Using constants saves on the limited memory
available for your program. Although it’s not vital for the light pet, which is a
small program, it’s a good idea to get into the habit of using constants, if you
won’t be changing a variable’s value while your code runs. In this case, you’ll

92 Part II: Basic Arduino Projects

always be using Pins 9, 10, and 11 for the red, green, and blue LEDs, so you can
use a constant.

Next, the code creates more variables for each of the LEDs. To mix the colors
at different levels of brightness, you’ll be changing each LED successively
from its current value of brightness to a new level. The first variable is red-
Value, which holds the brightness value the red LED is currently at. It’s good
practice to assign a value to newly created variables, so this is set to 0, but
will be changed as soon as the program runs.

The variable newRedValue holds the new brightness value that the LED will
change to. This new value is set to 0, but once the program starts running, it
will be chosen randomly to be somewhere between completely off (a value of
0) and full brightness (a value of 255):

int redValue = 0; // the current value of brightness
int newRedValue = 0; // the new level of brightness

Finally, there are two utility variables that control how the program operates.
The behavior of the light pet is that it will shift colors slowly. Every time the
program loops, each LED will change to a new level of brightness. The first
variable is randomValue. As the name implies, the code will use this variable
to hold a random value, which is chosen later, in the main loop. The second
variable is fadeSpeed. You use this later to control how quickly the lights
fade:

int randomValue = 0;
int fadeSpeed = 50;

Moving on, the setup code defines the how the Arduino uses its digital pins.
Here, you are declaring which three digital pins are used and that they are
used for output. Because you specified above that redLED is a variable
with a value of 9, the first statement sets up Pin 9 for output. BlueLED and
greenLED do the same thing for Pins 10 and 11, respectively:

 pinMode(redLED, OUTPUT);
 pinMode(blueLED, OUTPUT);
 pinMode(greenLED, OUTPUT);

Now take a look at the main body of the code, which is in the main loop. It’s
pretty simple. Two things are going on here: generating a random number
and then blending colors if that number is over 2 but below 20:

void loop() {
 mood = random(20);
 if (mood > 2){
 blendColors();
 }
}

93 Chapter 5: Making a Light Pet

The important part is assigning the variable “mood” a random number that
will be used to change the colors of the lights. Do this by using the random()
function, which will choose a random number between 0 and whatever you
put within the parentheses, not including that number. So in this code, you
are telling the Arduino to pick a random number between 0 and 19. You can
also use a range between two numbers, in which case the first number sets
the lower limit and the second number the upper limit, not inclusive of the
upper limit. For example random (5,10) will choose a number from 5 to 9.

	 The equal sign tells the Arduino to assign to the variable mood the value that
was chosen by the random() function. It doesn’t really mean “equals” but
more precisely “assign to.” If you want to evaluate whether two things are
equal, you need to use a double equal sign ==.

The next statement is an if statement that tests whether the value for mood
that was just chosen is greater than 2, which it will be most of the time. If it is
greater, then the blendColors() function is executed. Later, you deal with
what happens if the number is 2 or less, but first let’s take a look at blending
colors, which is what your pet will be doing most of the time.

The blendColors() function is a user-defined function that changes the
brightness of each of the LEDs. Your Arduino comes with many predefined
functions you already know about, such as setup(), loop(), and random().
But you can also create your own functions to organize your code and make it
easier to change.

The description of what your function does is located in its own section of
the code, after the main loop. So, you don’t include these functions within
the main loop — you only call them from the main loop. You can see in this
code that once the blendColors() function is executed, the main loop is
finished, and the Arduino will start back at the top of the loop by choosing
the next random number.

Defining your code’s functions
You might notice something interesting about
the way this code is organized. Often, within
the main loop you would put all the instructions
that you want the Arduino to do between the
loop function’s two curly brackets. However,
if you have a lot of different things going on in
your code, this can get a bit hard to read. It’s
a good idea to modularize your code, so that

discrete sequences of events are self con-
tained as their own functions. This makes it
easier to read and change your code. It also
means that in more complicated programs, in
which a function is executed many times in dif-
ferent places, you only have to modify the func-
tion once to change its behavior in all parts of
the code where that function is executed.

94 Part II: Basic Arduino Projects

Blending light
Now that you’ve specified the main loop, you’re ready to add what that user-
defined function does. It’s a lot of code, but it just does two things. It chooses
a new brightness level and changes an LED to that level — and it does this for
each LED. Take a moment to enter or cut and paste the following code into
your sketch:

void blendColors(){
newRedValue= random(255); // Pick a random value for the red LED

 if (redValue < newRedValue){
 for (int x=redValue; x<newRedValue; x++) {
 analogWrite(redLED, x);
 delay(fadeSpeed);
 }
 }
 else {
 for (int x=redValue; x>newRedValue; x--) {
 analogWrite(redLED, x);
 delay(fadeSpeed);
 }
 }
 redValue=newRedValue;

 // set the value for the green LED
 newGreenValue= random(255);
 if (greenValue < newGreenValue){
 for (int x=greenValue; x<newGreenValue; x++) {
 analogWrite(greenLED, x);
 delay(fadeSpeed);
 }
 }
 else {
 for (int x=greenValue; x>newGreenValue; x--) {
 analogWrite(greenLED, x);
 delay(fadeSpeed);
 }
 }
 greenValue=newGreenValue;

 // set the value for the blue LED
 newBlueValue= random(255);
 if (blueValue < newBlueValue){
 for (int x=blueValue; x<newBlueValue; x++) {
 analogWrite(blueLED, x);
 delay(fadeSpeed);
 }
 }

95 Chapter 5: Making a Light Pet

 else {
 for (int x=blueValue; x>newBlueValue; x--) {
 analogWrite(blueLED, x);
 delay(fadeSpeed);
 }
 }
 blueValue=newBlueValue;
}

Here’s how this user-defined function works. You create a user-defined func-
tion by giving it a name, in this case, blendColors. The word void means
that the function is just going to do what’s specified within the curly brackets
and that’s all it will do. It returns no data, so it’s void. Then you place some
useful things to do within the two curly brackets:

void blendColors(){

 something useful gets done here!

}

It is often convenient to write a function that will take some data, do something
to it, and then send the result back to the main loop. But blendColors()
does not need any specific input and will not be returning any data back to the
rest of the program — it’s just changing the brightness of the LEDs. The empty
parentheses () mean that this function will not be expecting to receive any
data to do something with. Using blendColors() just changes each LED to a
new level of brightness.

The first useful thing blendColors() does is choose a random value to set
the new level of brightness to, and assign this to the variable newRedValue.
This is the same method you used earlier to choose a random mood:

newRedValue = random(255);

You don’t want the brightness to simply jump to this new value. You want
to fade from the current value, through all the intervening values until you
arrive at the newRedValue(). To do this, you need to know whether the new
number is higher or lower than the current one. So the code tests whether
the random value is higher or lower than the current value, by using an if
statement:

if (redValue < newRedValue){
 for (int x=redValue; x<newRedValue; x++) {
 analogWrite(redLED, x);
 delay(fadeSpeed);
 }

96 Part II: Basic Arduino Projects

} else {
 for (int x=redValue; x>newRedValue; x--) {
 analogWrite(redLED, x);
 delay(fadeSpeed);
}

If the test is true, and redValue is lower than newRedValue, then the code
within the first set of curly braces gets executed. Otherwise (indicated by
else), the test is false, and the code that comes after the word else is
executed.

Now for the tricky part. The dimming is accomplished within a for loop,
which you might recognize from Chapter 4, and a special method called
analogWrite(). The for loop starts by assigning the current redValue to
the local variable x:

 for (int x=redValue; x<newRedValue; x++) {
 analogWrite(redLED, x);
 delay(fadeSpeed);
 }

As long as x is less than newRedValue, each cycle of the loop increases
the value of x by 1 (x++) until it reaches the newRedValue. You are simply
increasing the value of x between the current redValue and the newRed-
Value. You’ll use this increasing value of x to set the level of brightness on
your LED. The level is set with the analogWrite() method.

Fooling your eyes with pulse-width
modulation
You change the brightness of each of the three LEDs with a technique called
pulse-width modulation (PWM). Chapter 4 describes how to simply turn LEDs
on and off, and if you’ve tried out the Blink example, you can see that it’s
pretty straightforward. What’s trickier is getting the Arduino to make light
fade in and out. LEDs are digital devices with only two possible states. By its
nature, an LED can only be either fully on or fully off — there’s no in between.
But you can simulate fading an LED by fooling your eyes. You do this by
rapidly turning the LED on and off so fast that it appears to be fading. This is
done with pulse-width modulation.

97 Chapter 5: Making a Light Pet

	

Figure 5-4:
Using

pulse-width
modulation
to change

how long a
digital pin

is on or off.
The verti-

cal lines
represent

regular time
intervals,

usually 700
cycles per

second.
	

98 Part II: Basic Arduino Projects

Normally to turn an LED on or off, you would use the digitalWrite() func-
tion using one of the digital pins (0–13). However, the speed at which you can
do this is limited, especially if you are controlling many digital pins. Also, if
the processor has to take care of other operations, it can’t also keep switch-
ing LEDs on and off really fast, which will cause the LEDs to jitter rather than
fade smoothly. PWM is a special feature of the processor that solves this
problem. You are using Pins 9, 10, and 11 for a good reason — they are three
of the six pins available for pulse-width modulation.

You use PWM to generate analog output from a digital pin. PWM changes the
proportion of time that a digital pin remains on or off, whether it’s at 5 volts
or 0 volts. This proportion of time is called the duty cycle. By varying the
duration of the duty cycle, or modulating it, you can vary the duration that
the digital pulse is on or off, which is called the pulse width. A 50 percent duty
cycle means that the digital pin is powered at 5 volts for half the time, and so
on. A 100 percent duty cycle means the digital pin is always on.

To use PWM, you use the analogWrite() method on a digital pin. It’s called
analogWrite() because the digital pins are being used to simulate continu-
ously changing (that is to say, analog) values, although you are still only ever
turning the LED on or off. Using analogWrite, you specify which pin is to
be turned on and the duty cycle (0%–100%), using a value from 0 to 255. This
can be a bit confusing.

For example, to turn on Pin 3 for a 50% duty cycle you would use:

analogWrite(3,127);

That’s because 127 is 255/2, or 50%. A duty cycle of 80% would require a
value of 204 (which is 255*.80). To fade each of the three LEDs on the light
pet, you use PWM to change the duty cycle of its digital pin. Setting the red
LED’s digital pin to a 100% duty cycle means it will be at full brightness and at
a 0% duty cycle, it will be off.

A bit confusingly again, the apparent brightness of the LED does not match
the strictly linear output of PWM. Your eyes do not perceive brightness in a
linear manner. In fact, your eyes perceive different colors with varying levels
of sensitivity. So a 50% duty cycle doesn’t appear to be “half as bright” as
100%, but for this project, it’s not a big problem. You just want the brightness
of the colors to appear to change in relation to one another.

The Arduino UNO processor architecture limits the number of PWM pins
to six. On an Arduino UNO, Pins 3, 5, 6, 9, 10, and 11 can handle PWM. The
Arduino Mega has 15 PWM pins, if you need more of them. Now that you
understand when to use PWM, you can see how this is done in the code.
See Figure 5-4.

99 Chapter 5: Making a Light Pet

In this code, you use analogWrite to change the value of each of the LEDs.
The value x comes from the for loop that the analogWrite function is
embedded in:

 for (int x=redValue; x<newRedValue; x++) {
analogWrite(redLED, x);

 delay(fadeSpeed);
 }

The last thing that’s going on here is the delay() function. This is used
to control how fast the for loop is executed. You change the speed of the
fading by changing the value of the variable fadeSpeed, which you set at the
beginning of the program to 30 milliseconds. Each time the loop cycles, the
processor waits 30 milliseconds. That way you can actually see the fading
effect. Without this delay, the fading would occur, but it would happen too
quickly to be seen.

Okay, that was a lot to get through. Now you can see the fruits of your labors!

Testing the code
After you get this code into the Arduino IDE, make sure to test it out by click-
ing on the compile button. The compiler tells you if your code has any errors
and displays the results in the status window at the bottom of the Arduino
IDE. It highlights the problem at the first place in your code that it encoun-
ters trouble.

At first, it can be a little confusing to understand what the compiler is tell-
ing you. The most common problems are forgotten (or extra) semicolons or
curly brackets. If you have trouble immediately identifying the problem, a
quick search of the Arduino forums usually solves the problem.

	

Save time and find typos in your code by compiling it first, before uploading.

Upload and go
Time to hit the launch button! If the compiler is happy, connect your Arduino
to your computer with a USB cable, click the upload, and watch for the flick-
ering TX and RX lights on your Arduino. After they stop, your three LEDs
should light up with different levels of brightness and should slowly shift
their intensities. Your light pet has come to life!

Hang out with it for a while. Get to know how it shifts and changes. Next, you
can add a little personality by defining some behaviors through functions in
your code.

100 Part II: Basic Arduino Projects

Tweaking it!
After you are satisfied with the gently blending colors, you can make your pet
come to life by adding moods. You do this by creating a variable for the dura-
tion of the mood and a user-defined function for each new mood. Adding new
functions is pretty simple. They follow the same format as the blendColors()
function. First, add your global variable for the duration of the mood:

// Assign variables to select the mood and the time to wait in a mood
int mood = 0;
const int moodTime = 10000; // time to wait in milliseconds, 10000 = 10 seconds

All that remains is to specify when the mood should occur, back in the main
loop.

// The main loop of the program
void loop() {
 mood = random(20); // pick a number from 0-20 to set the mood of the pet
 if (mood == 0){ // if the number picked was 0, run the purr function
 purr();
 }
 if (mood == 1){ // if the number picked was 1, run the happy function
 happy();
 }
 if (mood == 2){ // if the number picked was 2, run the sad function
 sad();
 }
 if (mood > 2){ // if the number picked was anything higher than 2,

 // run the color blending function
 blendColors();
 }
}

Depending on which random number was assigned to mood, the program
executes a different function. If the random number is 0, the purr() function
is executed. If the random number is 1, the happy() function is executed. If
the random number is 2, the sad() function is executed. Note that the test
to see whether two values are equivalent is accomplished by using two equal
signs — not one!

Now you can add the functions that change the lights depending on the
mood. Add these at the end of the program, after the blendColors() func-
tion. They use the same techniques as the blendColors() function. The
purr() function is unique. It has two for loops — an inner loop to control
the fading of colors with PWM and an outer loop to make this happen ten
times.

101 Chapter 5: Making a Light Pet

The purr() function changes the duty cycle of all the LEDs, from 0 to 255
and back again. The outer loop uses the count variable to keep track of how
many times this happens. Want a happier, more purr-fect pet? Just increase
the number of counts. The delay(10) function slows things down just
slightly, so you can see the fading occur:

void purr(){
 for (int count=0;count<10;count++){
 for(int x=0;x<255;x++){
 analogWrite(redLED, x);
 analogWrite(greenLED, x);
 analogWrite(blueLED, x);
 delay(10);
 }
 for(int x=255;x>0;x--){
 analogWrite(redLED, x);
 analogWrite(greenLED, x);
 analogWrite(blueLED, x);
 delay(10);
 }
 }
}

Finally, you describe the last two moods, happy() and sad(). By now, it
should be pretty clear how these are working. Both use PWM to fade the
LEDs from their current level to a new level. For happy(), the green LED is
brought up from its current level, greenValue, to full brightness — a duty
cycle of 100%, while the other two LEDs are brought to a 0% duty cycle. The
sad() does the same thing, but makes the red LED brightest.

The pet then waits in this mood for the moodTime you set at the top of the
code, which was 10000 milliseconds, or 10 seconds. There’s one last loop at
the end of each function that fades to black, before the function is finished
and everything starts all over again in the main program loop:

void happy(){
 for(int x=greenValue;x<255;x++){
 analogWrite(greenLED, x);
 delay(fadeSpeed);
 }
 for(int x=redValue;x>0;x--){
 analogWrite(redLED, x);
 delay(fadeSpeed);
 }
 for(int x=blueValue;x>0;x--){
 analogWrite(blueLED, x);
 delay(fadeSpeed);
 }
 delay(moodTime); // sets how long the pet will wait in this mood

102 Part II: Basic Arduino Projects

 for(int x=255;x>0;x--){ // fade to black
 analogWrite(greenLED, x);
 delay(fadeSpeed);
 }
}

 // the sad function turns on only the red LED for the mood time
void sad(){
 for(int x=redValue;x<255;x++){
 analogWrite(redLED, x);
 delay(fadeSpeed);
 }
 for(int x=greenValue;x>0;x--){
 analogWrite(greenLED, x);
 delay(fadeSpeed);
 }
 for(int x=blueValue;x>0;x--){
 analogWrite(blueLED, x);
 delay(fadeSpeed);
 }
 delay(moodTime); // sets how long the pet will wait in this mood
 for(int x=255;x>0;x--){ // fade to black

 analogWrite(redLED, x);
 delay(fadeSpeed);
 }
}

Notice that you’re using the fadeSpeed variable again to make the transition
gradual.

Try using different values for these variables to alter your pet’s moods. Get
creative! You’ll quickly find that you want to give your pet a personality all
its own.

Understanding How the
Hardware Works

Now that your code is in the Arduino, and hopefully you have seen some
new moods and colors, it’s a good idea to review what’s going on with the
hardware from an electronic perspective. That way, when you take on more
advanced projects, it will be clearer what’s going on. Putting all this into the
enclosure keeps everything nice and neat, and gives your pet an identity.

103 Chapter 5: Making a Light Pet

You don’t have worry too much about getting exactly the same LEDs as
those in the parts list. But ideally, use super bright LEDs. LED brightness is
measured in microcandelas (mcd). Choose LEDs with high mcd values. The
higher they are, the brighter they are and the brighter your pet glows.

The schematic in Figure 5-5 shows the light frequency of each LED in nano-
meters. Very often, you’ll find these ratings on the datasheet for LEDs, along
with other specifications. The main thing to pay attention to is the maximum
forward current rating of the LEDs, which is measured in milliamps (mA). If
you don’t know the maximum, you can look for a datasheet for most electronic
parts on the Internet. For garden-variety LEDs, it’s usually 20mA or less.

The resistors limit the amount of current that is flowing from each of the
Arduino digital pins to ground. Because the digital pins provide output at 5
volts, you can work out what resistors are needed using Ohm’s Law, which
states that the voltage in a circuit is equal to the current times the resistance
(or V=I*R):

5 volts / 0.02 amps = 250 ohms.

	

Figure 5-5:
Schematic
diagram of

the light pet.
	

Divide 5 volts by the maximum amount of current the LEDs are rated at, which
is 20 milliamps. A milliamp is one thousandth of an amp, so to get a milliamp
value of 20mA, move the decimal place over three places to the left: 0.020
amps. The result is 250 ohms. If you don’t have a 250 ohm resistor handy,

104 Part II: Basic Arduino Projects

use one with a slightly higher value, like 270 ohms. The higher the value, the
dimmer your LEDs will be, because less current will flow through them.

Of course, you don’t have to use three individual LEDs to blend colors. There
are three-color LEDs for exactly this purpose that incorporate red, green, and
blue LEDs within a single package with four wires — three anodes and one
cathode. This package is often referred to as a common cathode design because
the LEDs share the cathode, which is connected to ground in your circuit.

Once you’ve put all of your parts onto a breadboard and programmed your
Arduino, you can get rid of the computer altogether! Disconnect your USB
cable and connect the power transformer to the Arduino. Your Arduino
should start running the code in just a moment or two.

Once you are satisfied with it, hide the Arduino and breadboard inside your
light pet’s enclosure. For Lux, I used the little space alien toy from IKEA (see
Figure 5-6). This guy has some pretty nice electronics inside already, includ-
ing an LED, microcontroller, and a switch, which I’ve saved for another day.
The enclosure is made of translucent, stretchy rubber, and even has a con-
venient little hole in the back for a power adaptor. Squeezing the hardware
inside was a little tricky, so I used longer wires to connect the Arduino to the
breadboard, and folded the breadboard onto the back of the Arduino, like a
little sandwich.

	

Figure 5-6:
You can use
existing toys
or products

for your
enclosure.

	

105 Chapter 5: Making a Light Pet

If your enclosure is not big enough, brush up on your soldering skills in
Chapter 3, and solder long wires to your three LEDs. That way you can hide
the Arduino and breadboard out of sight.

All that remains is to find a nice cozy place for your pet to keep you
company!

106 Part II: Basic Arduino Projects

Chapter 6

Making a Scrolling Sign
In This Chapter
▶	Selecting your parts
▶	Building the circuit
▶	Understanding how the scrolling text code works
▶	Understanding how the hardware works

B
ecause the cost of LEDs is really negligible and their range of colors and
brightness have increased, LED signs have become gigantic. It’s pretty

much impossible to walk out your door and not be accosted by animated
signs these days. We’re surrounded by them, even in small towns. The ani-
mated LED signs in New York’s Times Square and London’s Piccadilly Circus
use millions of LEDs. With an Arduino, and only a few components, you can
easily create and send a message of your own.

This chapter gives you a project in which you will build an 8 x 8 LED matrix of
64 LEDs on your Arduino. You create a custom image on the display by using
a sprite. You can create custom fonts and custom characters with sprites.
You then discover how to swap out different sprites to create animations and
change their speed. When you’ve mastered control of sprites, you can then
string together a sequence of them to spell out the characters of any message
you like.

Selecting Parts
This project is light on parts, but has a lot of wires. Before you start, get hold
of these items, shown in Figure 6-1:

	 ✓	Your Arduino

	 ✓	A breadboard

108 Part II: Basic Arduino Projects

	 ✓	An 8 x 8 LED matrix display with a common cathode (such as Jameco
2132349, BetLux BL-M23B881UHR-11, or Sure LE-MM103, available from
Oomlout.com), or similar.

	 ✓	Eight 1K ohm resistors

	 ✓	Thirty-two jumper wires

	 ✓	Pin headers, stackable headers (such as SparkFun PRT-09280), or ribbon
cable (optional)

You won’t be building a million-LED display, but you will need 64 of them.
Laying out that many LEDs in a tiny space can be tricky, and that’s why man-
ufacturers have created LED matrix displays. These are single blocks of plas-
tic that have all the LEDs and lenses encased inside. Having 64 LEDs means
having 128 pins — one for each LED’s power supply and ground. Having 128
pins is a bit impractical, so to reduce the number of pins in an LED matrix,
they usually share either the pin that’s connected to ground (a common
cathode) or the pin that’s connected to the power source (a common anode).
The matrix used in this project is a common cathode display.

	

Figure 6-1:
Parts

needed for
the scrolling

sign.
	

109 Chapter 6: Making a Scrolling Sign

	 You can also use an LED matrix with the same pinouts but using a common
anode (such as the SparkFun COM-00681 or NKC Electronics COM-0018). If you
do, you will need to change the code so that it is driving them in the opposite
way, with power applied to the columns by driving them HIGH, and the rows
connected to ground by driving them LOW.

You’ll be providing a supply voltage from the digital pins on your Arduino.
The resistors are used to limit current through your LEDs and are calculated
to provide less than the maximum forward current that is allowed. According
to the datasheet, that’s 20 milliamps. Using 1K ohm resistors provides a
substantial leeway, and you could use smaller resistors, ones down to about
150 ohms, if need be. The lower the value of the resistors, the brighter your
matrix will be because more current will flow to the LEDs to light them up.

The pin headers and ribbon cable are optional. The pin headers are merely
a way of extending your matrix above the breadboard a little bit, thereby
making it easier to fit your wires into the holes. If you’d like to place the
matrix some distance away from the breadboard and Arduino, you just need
to extend the 24 wires from your Arduino to the display. Connecting 24 indi-
vidual extension wires would be a big mess, so using ribbon cable is a tidy
way to make all the connections. If you do this, you need to solder pin head-
ers onto each of the wires of the ribbon cable, so that you can fit them into
your breadboard and Arduino.

Building the Circuit
This project uses an LED matrix with a common cathode. Figure 6-2 shows the
display and how the pins are connected, its pinouts. The Sure LE-MM103 matrix
is a two-color display with both red and green LEDs. Each of the dots on the
front of the matrix actually has two LEDs behind it. You can choose one or the
other because there aren’t enough output pins on an Arduino Uno to do both
colors. Because this project uses only the red LEDs, Figure 6-2 only shows the
LED matrix pin numbers you need to use for the red LEDs.

	

If you use the Jameco display, there are only red LEDs, so there are fewer pins
on the bottom.

Take a closer look at Figure 6-2. There are a lot of pin numbers here. Notice
that the Arduino Pins 2 through 9 are indicated on the left. Each of these is
connected to your Arduino’s digital outputs through a 1K ohm resistor. In each
of the rows, all the cathodes of the LEDs are connected to the same digital
output. This is why the display is referred to as a common cathode display.

110 Part II: Basic Arduino Projects

	

Figure 6-2:
LED matrix

display and
schematic.

Only the pin
numbers for
the red LEDs

are shown.
	

Each of the columns is also connected to your Arduino digital output pins.
The top row of labels (10 through A3) indicates which Arduino pin each of
the columns is connected to. The Display Pin Number tells you which of the
pins on the back side of the matrix is connected to each LED (only the pin
numbers for red LEDs are shown).

Your code will be turning on and off individual LEDs by providing current to
the columns and providing a path to ground on the rows. For example, set-
ting Arduino digital output in number 2 to LOW and output Pin 10 to HIGH
provides a pathway for electricity to flow through the LED and it would light
up. If you set the pins the other way around, however, the LED would not
light up.

There are two LEDs for each of the 64 positions on your matrix. In this proj-
ect, your code goes through each of the red LEDs at each position to light it
or turn it off. When you wire up columns on a two-color LED matrix, you con-
nect the red LED pins (for example, 23, 20, 17, 14, 2, 5, 8, and 11). In the illus-
trations, I show how to connect the red ones. If you prefer, you can connect
to the green LEDs (for example, 24, 21, 18, 15, 1, 4, 7, and 10).

	

If you want to use both colors of LED, you could use an Arduino Mega, which
has 54 digital I/O pins, but you’d need to modify the code accordingly.

Pay close attention to the difference between the Arduino pin number, the
LED matrix row and column numbers, and the LED matrix pin numbers. If
you are using a different LED matrix than the example, then you need to iden-
tify which LED pin corresponds to a labeled row or column, and then con-
nect that LED pin (not the LED pin number in the diagram) to the indicated
Arduino pin number.

Looking on the underside of the matrix, notice that the pins are in two
columns. Each of the LEDs is connected to a pin for its anode and a shared

111 Chapter 6: Making a Scrolling Sign

pin for the cathode. Look closely and you may see that Pin 1 is labeled at the
lower-right side of the display, underneath the clear resin. If your matrix isn’t
labeled, check your data sheet to identify which is Pin 1.

Table 6-1 shows how the pins on the bottom of the Sure LE-MM103 display
are connected to the LEDs on the top.

Table 6-1	 Pinouts of the Sure LE-MM103 Matrix LED
LED Matrix Pin Connection LED Matrix Pin Connection
1 Column 5 (-)

Green
13 Row 4 (+) Red &

Green
2 Column 5 (-) Red 14 Column 4 (-) Red
3 Row 5 (+) Red &

Green
15 Column 4

4 Column 6 (-)
Green

16 Row 3 (+) Red &
Green

5 Column 6 (-) Red 17 Column 3 (-) Red
6 Row 6 (+) Red &

Green
18 Column 3 (-)

Green
7 Column 7 (-)

Green
19 Row 2 (+) Red &

Green
8 Column 7 (-) Red 20 Column 2 (-) Red
9 Row 7 (+) Red &

Green
21 Column 2 (-)

Green
10 Column 8 (-)

Green
22 Row 1 (+) Red &

Green
11 Column 8 (-) Red 23 Column 1 (-) Red
12 Row 8 (+) Red &

Green
24 Column 1 (-)

Green

There is no standard pinout for LED matrix displays. You might find that on
your display (even if it’s a common cathode display), the pins do not match
the one in this project, in which case the code will not work. Refer to the data
sheet for your matrix to determine which pins to connect. If you don’t have the
datasheet, a PDF of it should be available from the website of your supplier.

	

Often you can find your product’s datasheet simply by using the term “data-
sheet” and the part number in your search.

112 Part II: Basic Arduino Projects

You might find that the matrix display doesn’t quite fit onto your bread-
board. In that case, you can use stackable headers that have holes on one end
and pins on the other. You simply insert your display into the holes. If you
don’t have any stackable headers, you can solder longer pin headers onto the
matrix, as shown in Figure 6-3. Or perhaps you’d like to separate the matrix
and the breadboard. You can solder ribbon cable to the pins so that you can
tuck the Arduino out of sight.

	

If you are using the specific matrix display in the example, follow the layout in
Figure 6-4. Otherwise, refer to your datasheet to figure out which LED pins to
connect to which Arduino pins.

Follow the layout in Figure 6-4 to connect your Arduino pins to your resis-
tors and LED matrix. It’s good to be very detail oriented at this stage and to
double-check your connections! You’re not likely to damage anything if you
wire it up incorrectly, but the matrix won’t display correctly if you get some-
thing wrong.

	

Figure 6-3:
LED Matrix

Display with
extension

pin headers
soldered on.

	

113 Chapter 6: Making a Scrolling Sign

	

Figure 6-4:
The bread-

board layout
for your

scrolling
sign.

	

Understanding How the Code Works
Your matrix is now wired up and ready to go, but what will you display? Each
LED is essentially a pixel of the display. You can create static drawings or
icons using the pixels of your matrix. You can also create animations, which
are merely static images displayed rapidly. There are two ways that people
tend to display things on matrices, as an algorithm or as a bitmap.

This first involves mathematically calculating which LEDs to light up and
then turning them on. This is the approach that’s used for things like peak
level audio meters, or bouncing balls. If you built the All-Seeing Eye project in
Chapter 4, you used an algorithm to calculate which LED to illuminate. You
could use the same principle for your LED matrix.

The second way of doing this is to store a map of all the LEDs that specifies
which ones are on or off. Because each LED can be only on or off, its condi-
tion can be stored as a bit, a 1, or 0. Hence the term bitmap, which you’ve no
doubt heard before. When you want to display something, you look up its
bitmap in memory and then send it to the LED matrix, which you could think
of as a sort of tiny screen.

114 Part II: Basic Arduino Projects

By cycling through the bitmaps stored in memory, you can create anima-
tions, and that’s what you’ll do to create your scrolling text, using bitmaps
of the letters of the alphabet. But first, you need to write the code to create a
bitmap and display it on the matrix.

Summoning a sprite
No, you’re not summoning up a supernatural legendary creature — you’re
just painting with light! In computer graphics, sprites are bitmaps that store
predefined images that can be integrated into a larger scene. Although that’s
not exactly what’s going on with your LED matrix, people often refer to bit-
maps as sprites.

To display something interesting on the LED matrix, you will probably want
to draw some characters and icons. You store these as bitmaps as an array of
values, 1 to turn an LED on, and 0 to turn an LED off. Figure 6-5 shows a sprite
displayed on the LED matrix.

	

Figure 6-5:
Displaying a
sprite on the

matrix.
	

115 Chapter 6: Making a Scrolling Sign

Enter the code to create your sprite. This example creates a smiley face:

/*
 * Chapter 6: Making a Scrolling Sign (a Sprite)
 * Adapted from Oomlout.com http://www.tinyurl.com/yhwxv6h
 * Displays a smiley face
 */

// Arduino Pin Definitions
int rowPin[] = {2,3,4,5,6,7,8,9}; //An Array defining which Arduino pin

each row is attached to
 //(The rows are common anode (driven

HIGH))
int colPin[] = {17,16,15,14,13,12,11,10}; //An Array defining which pin each

column is attached to
 //(The columns are common cathode

(driven LOW))
byte smile[] = { //The array used to hold a bitmap of

the display
 B00111100,
 B01000010,
 B10100101,
 B10000001,
 B10100101,
 B10011001,
 B01000010,
 B00111100};

void setup()
{
 for(int i = 0; i <8; i++){ //Set the Arduino pins to be OUTPUTs
 pinMode(rowPin[i], OUTPUT); //These refer to the Arduino pins in the arrays
 pinMode(colPin[i], OUTPUT);
 }
}

void loop()
{
 displaySprite(); // display the Sprite
}

void displaySprite(){
 for(int count = 0; count < 8; count ++){ //A utility counter
 for(int i = 0; i < 8; i++){
 digitalWrite(rowPin[i], LOW); //Turn off all row pins
 }
 for(int i = 0; i < 8; i++){ //Activate only the Arduino pin

of the column to light up
 if(i == count){
 digitalWrite(colPin[i], LOW);

116 Part II: Basic Arduino Projects

 }
 else{
 digitalWrite(colPin[i], HIGH); //Turns all the other rows off
 }
 }
 for(int row = 0; row < 8; row++){ //Iterate through each pixel in

the current column
 int bit = (smile[count] >> row) & 1; //Use a bit shift in the smile[]

array to do a bitwise comparison
 //And assign the result of the

comparison to the bit
 if(bit == 1){ //If the bitwise comparison is 1,
 digitalWrite(rowPin[row], HIGH); //Then light up the LED
 }
 }
 }
}

Getting the LEDs to light up requires supplying them with power and a con-
nection to ground for the current to flow. Therefore, you have to specify
which rows and columns are being used for each LED and select the appro-
priate row and column in the code. The pins used for the rows and columns
are defined in the two integer arrays at the top of the code:

int rowPin[] = { 2, 3, 4, 5, 6, 7, 8, 9};
int colPin[] = {17,16,15,14,13,12,11,10};

	

The Arduino Uno does not have digital pins labeled 14 through 17. To get the
extra four pins you need, you can use the analog 0 through 3 pins as digital
outputs.

The two key parts of this code are the data, stored as a bitmap, and the
function that displays it. It’s also important to specify which pins are used
for supplying voltage to the LEDs and which pins are used for providing a
path to ground. On this display, the rows are connected to the LED anodes,
so you supply them with power by driving them HIGH, and the columns are
connected to ground by driving them LOW. The number sequences are in
reverse order because of the way that they are addressed in the display-
sprite() function.

Here’s where the fun begins. The bitmap is simply an array of data which
encodes a 1 or a 0 value for every LED. Because each value is a bit, and there
are 8 bits in a byte, you can store the entire smiley face in 8 bytes. That’s
64 bits — one for each pixel that corresponds to a single LED. I’ve made the
“1’s” boldface in the following code, so it’s easier to see the smiley face:

117 Chapter 6: Making a Scrolling Sign

byte smile[] = {
 B00111100,
 B01000010,
 B10100101,
 B10000001,
 B10100101,
 B10011001,
 B01000010,
 B00111100};

This code creates an array of the type byte, with the name “data.” The values
for each of the eight bytes in this byte array are stored within the curly brack-
ets. The capital letter “B” indicates that this data is stored in binary format.
However, putting each byte on a separate line makes it easier to read. The
following would also work, but is harder to read:

byte smile[] = {B00111100, B01000010, B10100101,
B10000001, B10100101, B10011001, B01000010,
B00111100};

Having defined all the variables, the setup() function uses the integer
arrays you just created to set all the LED pins for output using a simple
for loop.

Now for the main attraction! Displaying the smiley is accomplished in the
displaySprite() function, which is the only thing that is done in the main
loop() of the program. It’s good to organize your code this way, writing a
separate user-defined function to display the sprite, because you may want
to add other functions later.

If you examine the code closely, you see that only one LED is lit up at a time.
(That’s how you can get away with using only eight resistors.).You are never
driving more than one LED, but it is happening so fast that the LEDs appear
to be continuously illuminated.

To do this rapid-fire illumination, the displaySprite() function is com-
posed of four loops that set the pins to turn off and which single pin to turn
on, like this:

	 1.	 The first loop is a counter called “count” to keep track of where you
are from 0 to 7. This utility counter keeps track of which byte of the
smile[] array you are on.

		

Array numbering starts from zero, so the numbers from zero through
seven keep track of eight iterations of the loop.

118 Part II: Basic Arduino Projects

	 2.	 The second loop goes through each of the row pins and sets them LOW.
Setting them LOW turns off the supply voltage for all eight of the LEDs in
each ROW. Because the supply voltage to all the pins is turned off, any-
thing that might have been turned on previously is turned off, which will
be important for making animations later.

	 3.	 Now, the next loop sets the LED anodes of the column you are working on
to LOW. However, you set all the other columns to HIGH, which means
no power will flow through them. This isolates the current row to be the
only one that can actually be active.

	 4.	 The final loop lights up the LED you are working on. Starting with the
first LED in this current column, at ROW 0, compare it to the data in
the bitmap (smile[count]). If the data at that point is 1, then set the
current row to HIGH.

The trickiest part of this is the last loop, where the smile[] array is used to
determine whether to light up the current LED. This is done with two opera-
tions, a bit shift and a bitwise comparison. Here’s how:

int bit = (smile[count] >> row) & 1;

A temporary integer variable called bit is created to store the results of
these operations. The >> is a bit shift operation, which selects which of the
eight bits in the current byte are being compared, starting with bit 0 (ROW
0) and continuing through (ROW 7). The byte is shifted to the right by the
number of bits that corresponds to the current ROW.

	 A bitwise comparison is simply a way of comparing 1’s and 0’s. In this compar-
ison, you are checking whether the byte in your data is a 1 and if it is, lighting
up an LED. This is done with a bitwise “and” comparison using the ampersand
(&). If your data bit is a 1, it will match the test data bit that is a 1, with the
resulting value of 1. You can do four bitwise comparisons: AND, OR, NOT, and
exclusive or XOR. Using bitwise AND will ensure that a value of 1 is returned
only when the data bit in your bitmap is also a 1.

For example, imagine that you are examining the very first byte of data
(which confusingly, starts at 0), smile[0]. This first byte of the smiley face
is B00111100, which corresponds to the first row of the display. The first
bit is a 0. This is compared to the value of 1 using a bitwise comparison to
the value 1. If the bit stored in the bitmap were 1, the test would be true
and the LED could be lit. Because it is 0, though, the test is false and the
LED is not lit. In the next iteration, the byte is shifted to the right, meaning
the next value in the byte can be examined. It is also a 0. This bit shift is
continued for each of the eight bits in the byte, and each time the bitwise
comparison is made, so the LED can be lit, if necessary. This is done in the
next operation:

119 Chapter 6: Making a Scrolling Sign

 if(bit == 1){ //If the bitwise comparison is 1,
 digitalWrite(rowPin[row], HIGH); //Then light up the LED
 }

Remember, the “is equal to” comparison requires a double equal sign. If the
comparison is true, the Arduino pin for the current row can be set to HIGH.
Because the column was already set LOW earlier, the selected LED will light
up. Remember, you are only ever lighting up one LED at a time. It will be
turned off during the next iteration.

Animating sprites
Now that you’ve displayed a single image, you can try swapping between two
images. You will add another bitmap to the data and modify the display-
Sprite function to switch between them. Add the following code after the
smile[] array and before the setup() loop:

byte frown[] = {
 B00111100,
 B01000010,
 B10100101,
 B10000001,
 B10011001,
 B10111101,
 B01000010,
 B00111100};

This creates a second array of bytes to store a bitmap of a frown. Now you
can add the code that determines which bitmap to show and how long to dis-
play it:

void loop()
{
 displaySprite(smile, 1000); // display the Smile for 1 second
 displaySprite(frown, 1000); // display the Frown for 1 second
}

The loop function now contains two requests to displaySprite(), which
use two parameters, the byte to display, and the duration to display it. The
function is modified to accept these parameters:

void displaySprite(byte * data, unsigned long duration){
 unsigned long start = millis();
 while (start+duration>millis()){
...
}
}

120 Part II: Basic Arduino Projects

Make sure that you’ve also changed the name of the array that you are using
for the bitmap:

 int bit = (data[count] >> row) & 1;

After you’ve entered the code, try it out and watch the frown turn upside
down! Now, you’ve got the basics down to do a scrolling sign display.

	

Make sure to add the closing curly bracket for the while loop at the end of this
function or the function won’t work and the compiler will complain!

The displaySprite() function now takes two parameters. The first is the
byte of data to display, which corresponds to the byte in the data array con-
taining the bitmap. The second parameter is the duration to display it:

void displaySprite(byte * data, unsigned long duration){

	 The asterisk is a pointer, a dereference operator in the C programming lan-
guage, which is the native language that the ATmega328 processor runs. It’s
outside the scope of this book to explain pointers in depth, and they are actu-
ally one of the more challenging programming topics. What’s important here
is that this parameter enables you to easily specify the current bitmap to the
displaySprite() function. The unsigned long is an integer value that
cannot be negative, but which is an extended size variable for storing larger
numbers. It is commonly used to store time in milliseconds.

The length of time to display a sprite is handled in the next two lines of code.
The first line takes a time stamp in milliseconds of the current system time
and saves it in a variable called start:

unsigned long start = millis();

Next, a while loop keeps track of how long to keep executing the display-
Sprite() function. It adds the value of start and duration and compares
this to the current time. If the current time is a larger value, the function stops
and the program returns to the main loop. For example, if the duration speci-
fied was 80 (milliseconds) and the start time was 2000, the while loop will
continue operating until the current system time exceeds 2080 milliseconds.

Displaying scrolling text
With the key elements built, all you need to do is put the pieces together,
define bitmaps for the characters, and add the scrolling feature. You can
think of the scrolling text as a sequence of frames of animation. All 64 LEDs
of each letter, whether on or off, are loaded to memory and then sent to the
animation frame. Then, in memory, the bitmap of the character is moved
one pixel to the left. At the same time, the next character is moved into view

121 Chapter 6: Making a Scrolling Sign

in memory and if necessary, any visible pixels are lit up on the display. The
frame is cleared and is ready for the next iteration. Only one whole character
can be displayed at a time, and as the letters scroll by, the necessary parts of
two characters are shown.

	

The following code is very lengthy, so you might want to download the code
for this chapter from the book’s companion website at www.dummies.com/
go/arduinoprojectsfordummies and copy it into your Arduino sketch.
This sketch is called: APFD_Chapter6_Text_Scrolling.

Creating the variables
When you are drawing scrolling text on the display, you use several more vari-
ables. You need to keep track of the message to be displayed, which letter you
are currently displaying, which LEDs are lit to create each character, and so on.

To accomplish this, you create several variables, as shown in Table 6-2:

Table 6-2	 Global Variables Needed for the Scrolling Text
Purpose Variable Type and Name
char message[] Stores the message text to be displayed
int index Stores the current letter to be displayed
int offset Stores the number of LED columns that the letters

are to be offset (this allows the scrolling to occur)
const int _A[] through _Z[] Stores the bitmaps of all the characters
const int letters[] Stores the bitmaps of all the letters in one array
const int A through Z Stores the position of each letter in the array of all

the letters
byte data[] Stores the bitmaps of the characters while they are

being displayed
powers[] Stores the powers of 2, providing an easy way to

determine which LED to light

First, you need a number of global variables to store the message and control
which letter is being displayed and where it is on the matrix in the current
frame. Because it is sliding into and out of view, often only part of the letter
will be displayed. So, you also need a variable to store the position of the
character in the matrix, its offset:

char message[] = “HELLO WORLD”
int index = 0;
int offset = 0;
...

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

122 Part II: Basic Arduino Projects

Following these variables, you create an integer variable for each letter of the
alphabet to be displayed:

const int A = 0; const int B = 1; const int C = 2;

... through to letter Z and including some punctuation

The number corresponds to the position of each character in an array called
letters[] that holds all the characters of the message that needs to be
displayed. Each character is, itself, an array of the bytes that make up the bit-
mapped characters:

You also create an array of bytes called data[] to hold the bitmaps while
they are being processed. However, the data will be loaded into this array, as
needed, depending on the message to be displayed, so the array is initialized
with values of 0:

byte data[] = {0,0,0,0,0,0,0,0};

The next part of the code adds all the characters of the alphabet as bitmaps,
plus a few extra symbols, like punctuation, space, and a checkerboard. Each
character’s bitmap is specified and stored as an integer array. This is where
the code gets really long, because each pixel of each letter has to be defined.
But you can also get creative here. Ever longed to be a font designer? Here’s
your chance! You could even put the smiley faces in. The following code
shows the bitmaps for letters A and B:

const int _A[] = {B0001000,
 B0010100,
 B0100010,
 B1000001,
 B1111111,
 B1000001,
 B1000001,
 B0000000};

const int _B[] = {B1111110,
 B0100001,
 B0100001,
 B0111110,

 B0100001,
 B0100001,
 B1111110,
 B0000000};
...

To keep the code short, only capital letters are used (though you could add
them with plenty of room to spare on the Arduino). When the message is

123 Chapter 6: Making a Scrolling Sign

stored, any lowercase characters are capitalized and unknown characters are
rendered as a checkerboard pattern.

The last bit of setup is creating the array to hold all the bitmap characters.
This will be used to look up each of the bitmaps, when the message to be
displayed is stored in the variable message[]:

const int * letters[] = {_A,_B,_C,_D,_E,_F,_G,_H,_I,_J,_K,_L,_M,_N,_O,_P,_Q,_R,
_S,_T,_U,_V,_W,_X,_Y,_Z,_COL,_DASH,_BRA2,__, _FULL, _CHECK, _B2,
_TEMP, _LINE, _SMILE, _DOT, _COLDOT};

Finally, a utility variable is used to hold the powers of 2. This is used for bit
shifting, when the sprite for the current frame is loaded into the data[]
array.

const int powers[] = {1,2,4,8,16,32,64,128};

Loading and displaying the letters
The main loop does only two things. It loads the current frame as a sprite and
then it displays that frame. To load the sprite, you use the loadSprite()
function:

void loadSprite(){
 int currentChar = getChar(message[index]);
 int nextChar = getChar(message[index+1]);

 for(int row=0; row < 8; row++){ //iterate through each row
 data[row] = 0; //reset the row we’re working on
 for(int column=0; column < 8; column++){ //iterate through each column
 data[row] = data[row] + ((powers[column] & (letters[currentChar][row] <<

offset))); //loads the current character (offset)
 data[row] = data[row] + (powers[column] & (letters[nextChar][row] >>

(8-offset))); //loads the next character (offset)
 }
 }
 offset++; //increment the offset by one row
 if(offset==8){offset = 0; index++; if(index==sizeof(message)-2){index=0;}}

//if offset is 8 load the next character pair for the next time
through

}

The loadSprite function puts the appropriate pixels to display into the
current frame working with two characters at a time. The whole message is
stored in the message[] array and so the index can be used to look up the
current character and the next one in the message (index+1). When these
two characters are loaded, they are processed in the same way as the smiley
faces. The row and column for loops iterate through each pixel and load
them into the data[] array for the current row.

124 Part II: Basic Arduino Projects

The key part of this code is the bit shifting operation, using <<, which selects
the appropriate pixel to display by looking up the power of two for the cur-
rent column to be displayed from the character’s bitmap. The powers[]
array simply provides a convenient way to set the next position of the bytes
to start at for painting its LEDs:

data[row] = data[row] + ((powers[column] & (letters[currentChar][row] <<
offset)))

Finally, the offset of the characters is incremented and if 8 pixels have been
offset, it’s time to start over from 0, since the next character is ready to be
loaded.

With the current frame of the sprite loaded, it’s time to display it. This uses
the same displaySprite() function that you’ve already used. The only
change that needs to be made is to use the data[] array, instead of the
smiley[] array from the first code:

int bit = (data[column] >> row) & 1;

You can set the speed of the scrolling text when you use the displaySprite
function, by changing the duration parameter of displaySprite(), as you
did with the smileys. When you run the code, you should see the text char-
acters you have stored in the message[] char array. In the example you
can download from the book’s companion website (www.dummies.com/go/
arduinoprojectsfordummies), the code says HELLO WORLD! Figure 6-6
shows what the letter A looks like.

	

Figure 6-6:
Displaying

scrolling
text.

	

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

125 Chapter 6: Making a Scrolling Sign

Understanding How the Hardware Works
From an electronics perspective, the project is pretty simple. The resistors
are determined by the maximum forward current that’s allowed by any given
LED. For the Sure LE-MM103, the maximum current that should flow through
an LED is 20mA. Because only one LED is lit, you could use a fairly low resistor
of about 180 ohms to give a forward voltage of 1.8 volts. However, erring on the
conservative side, and because I tend to have a lot of them lying around, I used
1K ohm resistors. The brightness is not substantially lower on my display.
Check your datasheet to be sure you use the right resistor for your matrix.

Troubleshooting
It’s really important to check your connections, and I almost can’t emphasize
this enough. If one of the rows or columns doesn’t light up or if you appear to
be getting funny lines on the matrix, you have probably got one of the wires
connected incorrectly. Go back and double-check all your connections. Even
a seasoned tinkerer can get flummoxed by a crossed wire and spend a long
time sorting it out. If you simply can’t track down the problem, it’s not out
of the question to just pull out all the wires and start over from scratch. I’ve
done this on many occasions and finally hammered out pesky problems.

On the other hand, you might be seeing that a single LED doesn’t light up or
that one row is noticeably dimmer or brighter than all of the others. If you’ve
checked all your connections and can’t identify the problem, you might have
a bad connection inside the unit or, more likely, a burned out LED. It doesn’t
happen very often, but on occasion you will get a faulty unit from the manufac-
turer. In this case, the only way to fix the problem is to get another display.

Getting creative
Now that your sign is working, you can try out a few ideas. Play around with
the direction of the scrolling by altering the index variable or sequence in
which the Arduino pins are used in the colPins[] array. If you have a
bi-color display, try wiring it up turning on both LEDs to mix the red and
green into a yellow color. You’ll need more wires to connect the additional
columns of LEDs.

You can also try your hand at using shift registers to light up your matrix
display. A shift register is an integrated circuit that can be used to reduce the
number of Arduino pins that are needed to drive LEDs. With a MAX7221, you
can reduce it down to three pins!

126 Part II: Basic Arduino Projects

Chapter 7

Building an Arduino Clock
In This Chapter
▶	Using a real-time clock module
▶	Using a 16 x 2 LCD display
▶	Programming your clock
▶	Adding an alarm switch and piezoelectric sounder

E
veryone seems to be running short on time. You can’t make more time,
but by building this project you can at least keep track of time and set

an alarm with a pitch and duration of your choice.

The Arduino is at the heart of this project, but its right-hand man is a Real
Time Clock (RTC) module. After you have an idea of how the RTC works, you
can add timekeeping to other projects where it’s important, such as putting
a timestamp onto data that you collect. When you are finished with this proj-
ect, you will have a working clock that keeps time reasonably accurately. You
can set an alarm and program your own messages to display. You also find
out how to use an RTC module, how to display text on a 16 x 2 LCD display,
and how to accept user input with buttons and switches.

This project is built in stages. You add hardware, and then you add some
code to test that it works, and then more hardware, and so on, until the
clock is finished. This way, you can easily spot problems as you go, rather
than connecting everything all at once and having to troubleshoot the entire
clock, if something’s not working.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

It’s About Time!
If you want to keep accurate time on an Arduino project, you need a real-time
clock of some kind. The Arduino can keep track of time very accurately by
using the millis() function, but only since the last time it was powered up.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

128 Part II: Basic Arduino Projects

If you lose power to the Arduino, the millis() function gets reset to zero —
not very handy if you are trying to log real time precisely.

What you need is an additional way to keep time, while consuming only a
little power. A real-time clock is just that. It’s more or less a wristwatch. It has
a tiny button battery for power, so it works even if there’s a power outage
and your Arduino shuts down. When the power comes back, your clock will
still be ticking away. Because it’s very efficient, the RTC battery lasts for
several years.

Although the RTC is your timekeeper, you use the Arduino to handle the
display of the time and responding to inputs and outputs as you change its
settings. The main features for your clock are

	 ✓	Keeping track of the time of day

	 ✓	Displaying the time

	 ✓	Setting an alarm and sounding it

	 This project uses a lot of wiring, so checking your progress along the way is
important. You put it together in four stages:

	 1.	 Assemble the RTC module and set the current time.

	 2.	 Add the LCD display and make sure it works.

	 3.	 Add buttons and a switch for programming the alarm.

	 4.	 Add the alarm sounder module.

First, you need to get everything together.

Selecting and Preparing Your Parts
Figure 7-1 shows the parts you need for this project. In this project, you build
it on a breadboard, but you may want to move it to a suitable housing after
you’ve got it working. In that case, make sure your housing can accommodate
your breadboard or consider moving the circuit to a stripboard when you’ve
finished building it. Here are the parts you need:

	 ✓	An Arduino

	 ✓	A full-size breadboard or two half-size ones that are connected

	 ✓	Adafruit Industries Real Time Clock DS1307 Breakout Board

129 Chapter 7: Building an Arduino Clock

	 ✓	An HD44780 standard parallel 16 x 2 LCD Display (such as Adafruit ID:
181, Jameco 2118598, or the 16 x 2 display from oomlout.co.uk)

	 ✓	A 10K ohm potentiometer to control contrast (included with the dis-
plays from Adafruit and Oomlout)

	 ✓	Two momentary pushbutton switches (widely available, such as Jameco
2076148 or from oomlout.co.uk)

	 ✓	A single-pole dual throw (SPDT) or double-pole double-throw (DPDT)
slide switch with ON-NONE-ON positions (such as Jameco 1915801 or
Farnell 1813681 or 1437711)

	 ✓	A piezoelectric sounder (such as Jameco 1956776 or Maplin N16CL)

	 ✓	Four 220-ohm resistors

	 ✓	A suitable housing, if you want to package it up nicely

	

Figure 7-1:
The parts

you need for
this project.

	

Many RTC modules are on the market in a variety of physical packages. In
terms of its ease of use, one of the best is the RTC DS1307 Breakout Board
module from Adafruit Industries. Figure 7-2 shows an enlarged view of the
parts in this kit. It is based on the Dallas Semiconductor DS1307 Integrated

130 Part II: Basic Arduino Projects

Circuit (IC), which is an inexpensive and rugged real-time clock. It’s on
the low-end cost-wise, so it may lose or gain a small amount of time over
extended periods. More precise products are available, but they are much
more expensive. You could skip getting the kit, purchase the various parts
necessary to use the DS1307 and build it yourself, but the breakout board kit
contains all the parts and the printed circuit board makes it very simple to
connect the components correctly.

	 A breakout board is any printed circuit board that makes it easy to physi-
cally access all the pins on an integrated circuit or other device for prototyp-
ing, building, and testing. In a sense, the Arduino is a breakout board for the
ATmega328 Microcontroller IC.

The Adafruit Industries RTC Breakout Board module comes as a kit with a
small number of parts, so you need to do a little soldering to reap its benefits.
But a little soldering is always rewarding! This kit is inexpensive and readily
available, and has excellent online assembly instructions and documentation.
As a bonus, the battery is included! The best part about using an RTC with a
battery backup is that you never have to see the flashing 12:00 if the power
goes out!

	

Figure 7-2:
Inside the

Adafruit
Industries

RTC DS1307
Breakout
Board kit.

	

131 Chapter 7: Building an Arduino Clock

With the RTC breakout board at the heart of your clock, you need to be able
to display the time, as well. Although there are dozens of ways to do this, one
of the simplest is using a 16 x 2 LCD display. These are inexpensive and easy
to control. There are Arduino code libraries for LCD displays, which make it
easy to update text on the screen. Another benefit of using a 16 x 2 LCD dis-
play is that you can add some text on the screen to make your clock a little
more verbose and interesting than the standard, 7-segment display you find
on most clocks out there.

	 The term “16 x 2” refers to the number of characters on a 16 x 2 display. These
LCD displays can display two lines of text, composed of 16 characters each.

You need the following two switches:

	 ✓	The momentary pushbutton switches are for incrementing the hours
and minutes of the alarm time. The parts listed are suitable for easily
inserting into a breadboard, but you may want to use different switches
if you are going to place this clock into a separate housing.

	 	 ✓	The slide switch is used to control three states: time display mode,
alarm set mode, and alarm armed mode. This means the switch must
have three positions, so make sure to get one that is: ON-NONE-ON and
not simply a two-position, ON-ON switch.

For the alarm, you need a piezoelectric sounder. These come with or without
a plastic housing. You should get one that is enclosed already, because the
enclosures are designed to amplify the sound of the piezo element. If yours is
not enclosed you can mount it on a hard surface (such as the inside of your
enclosure), but it’s better to get one that is designed to be clearly audible in
the first place.

Assembling your RTC module
Assembling the RTC module is fairly simple, if you have some experience
soldering. If not, it’s a good opportunity to practice your skills. After the kit
is assembled, you add the battery and connect it to your Arduino. Then, you
set the time on the clock IC with an Arduino sketch just for this purpose.

Nine parts are in the kit:

	 ✓	Real–time clock PCB

	 ✓	Dallas Semiconductor Real Time Clock Chip (DS1307)

	 ✓	Crystal (32.768 KHz)

	 ✓	Two resistors (2.2K ohm)

132 Part II: Basic Arduino Projects

	 ✓	Capacitor (100 nF)

	 ✓	Header (male 5 pin)

	 ✓	Battery (CR1220)

	 ✓	Battery holder

The RTC module has excellent assembly documentation and photographs
online, and you can solder it fairly quickly. The printed circuit board (PCB)
of the kit is labeled with the locations where all the components should be
placed. Refer to Figure 7-2 and solder them in the following order:

	 1.	 Solder a little bead of solder onto the battery solder pad, so that there
is be good contact between the button cell and the pad on the PCB.

	 2.	 Solder the resistors (R1 and R2) in place.

		 The orientation of the leads does not matter.

	 3.	 Add the capacitor (C1) and the crystal (Q1).

		 Again, the orientation of the leads does not matter.

 	 4.	 Add the DS1307 Integrated Circuit (IC).

		 Make sure that the little notch in the IC is pointing downward, and
matches the printed outline on the PCB. If you solder it on the wrong
way, it won’t work at all, and it is a big pain to remove it!

	 5.	 Solder the chrome battery holder in position.

	 6.	 Insert the male pin headers into a breadboard and place the RTC
module on top of them to make it easier to solder them in place.

		 The pin headers should be on the underside of the board, so that the short
ends of the pins are just sticking up through the printed side of the PCB.

Now that you have completed soldering, you can insert the battery, with the
positive side facing up. Make sure you have a battery in the RTC or it won’t
work correctly and you won’t be able to program it.

With the battery inserted, it’s time to wire up the RTC to your Arduino so
that you can program it with the correct time. Refer to Figure 7-3 to make the
following connections:

	 1.	 Create a ground rail and a power rail on your breadboard by connect-
ing your Arduino’s +5V and GND pins to the long columns of pins on
the sides of the breadboard.

	 2.	 Connect the ground pin (GND) to your ground rail.

	 3.	 Connect the 5v pin on your RTC to +5V power rail.

	 4.	 Connect the pin labeled SDA to Analog Pin 4.

	 5.	 Connect the pin labeled SCL to Analog Pin 5.

133 Chapter 7: Building an Arduino Clock

The last pin is labeled SQW and can be used to get a square wave from the
RTC chip. It’s not used on the clock, so you can ignore it.

After the module is connected, it’s time to program it with the correct time.
This is done with an Arduino library called RTClib, provided by Adafruit
Industries, for the kit. You can download the library from the Downloads tab
on this book’s companion website (www.wiley.com/go/arduinoprojects
fordummies) or from Adafruit Industries’ website.

	 Arduino libraries are bundles of code that contain related procedures. See
Chapter 3 for details on how to install and use libraries.

After you have installed the RTC library, notice that there is a new item called
RTClib in your Examples menu. Load the one called Examples➪RTClib➪
ds1307. This sketch conveniently sets the time on your RTC module.

The important part of this code is in setup():

 RTC.adjust(DateTime(__DATE__, __TIME__));

	

Figure 7-3:
Wiring up

the RTC
module.

	

134 Part II: Basic Arduino Projects

In this line, the RTC.adjust() function requests the system time from your
computer at the time the program is compiled, just before it is sent to your
Arduino. This is what sets the time on your RTC module. If you ever want to
change the time of your RTC module (say for example, after Daylight Saving
Time, or if the module drifts a bit too much), you need to remove the battery
for three seconds, replace it, and then rerun this sketch.

If you haven’t already done so, upload this code to your Arduino and click the
Serial Monitor button in your Arduino IDE. You should see something like
the output in Figure 7-4. Make sure your serial monitor is set to 57600 baud
in the lower-right corner. Otherwise, you’ll just see gibberish!

	

Figure 7-4:
Program-
ming the
RTC time

and check-
ing it with
the Serial
Monitor.

	

You can also arbitrarily set the time of the RTC module. This is a little trick-
ier, because the time is set to UNIX system time, which is simply the number
of seconds since midnight on January 1, 1970. For example, the following
code sets the time to February 27, 2012, at 8:50 p.m.:

 RTC.adjust(DateTime(1330375800));

	 There’s a convenient website for looking up UNIX time, should you need it:
www.onlineconversion.com/unix_time.htm.

After you’ve set the RTC with your system time, you are ready to get the dis-
play wired up and fired up.

Adding and testing your LCD display
Now that you’ve programmed and tested the beating heart of your Arduino
clock, you need a way to display the time without using the serial monitor.
This is where the LCD display comes in.

135 Chapter 7: Building an Arduino Clock

This one is fairly inexpensive and it uses the very common Hitachi HD44780
driver. These LCD modules are easily recognized because they have 16 pins
in a single row and use what’s known as a parallel interface. Because of this,
the Arduino uses several digital pins to make the display work. This pro-
cess is somewhat complicated, but luckily, there is an Arduino library for it
already that makes it very easy to send text to the screen without worrying
about the low-level commands that would otherwise be needed.

You use 4-bit mode to display text, which needs only seven Arduino digital pins
to control the display. You also need power for the LCD itself, and for the back-
light. Finally, you control the contrast of the display by using the potentiometer.

Connect the following:

	 1.	 Add your LCD display and potentiometer to your breadboard roughly
in the positions shown in Figure 7-5.

	 2.	 Connect the power and ground pins on your LCD, which are Pins 15
and 16, respectively.

	 3.	 Connect the ground and power for your LCD’s backlight, which are
Pins 1 and 2, respectively.

	 4.	 Connect the control pins for your LCD to the digital pins on your
Arduino, as shown in the following table.

16 x 2 LCD Display Pin Arduino Digital Pin
1 (to GND rail on breadboard)
2 (to +5V rail on breadboard)
3 2
4 3
5 4
6 5
7 (no connection)
8 (no connection)
9 (no connection)
10 (no connection)
11 11
12 (to GND rail on breadboard)
13 12
14 (to potentiometer middle pin)
15 (to +5V rail on breadboard)
16 (to GND rail on breadboard)

	 5.	 Now connect the potentiometer, which controls the display’s contrast.

		 The center pin of the potentiometer should go to Pin 14 of the LCD
display and the other two pins of the potentiometer are connected to
power and ground, in any order.

136 Part II: Basic Arduino Projects

	

Figure 7-5:
Parts place-

ment for
adding the
16 x 2 LCD

display.
	

Now that you have connected your LCD, it’s time to make it do something
interesting! First you need to upload some code to make sure that the LCD is
working properly. This code is the first part of your alarm clock sketch. You
build upon it to add all the other functions for your clock.

	 You can copy the code for the clock all at once from the companion website
(www.dummies.com/go/arduinoprojectsfordummies), but I’d recommend
adding it in sections, as described here. That makes it easy to troubleshoot
problems and test the clock in stages, as you build it.

Enter the following code into the IDE, or download it from the companion
website and upload it to your Arduino:

137 Chapter 7: Building an Arduino Clock

// Chapter 7: Arduino Alarm Clock
// An alarm clock that uses the Adafruit Industries DS1307 RTC Breakout board
// and a 16 x 2 Parallel LCD Display

#include <Wire.h> // I2C Wire Library for communicating with the DS1307 RTC
#include “RTClib.h” // Date and time functions for the DS1307 RTC connected
#include <LiquidCrystal.h> // Display functions for the LCD Display

RTC_DS1307 rtc; // Create a realtime clock called rtc
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Create an LCD called lcd

void setup () {
 Wire.begin(); // Enables the communication for the LCD
 rtc.begin(); // Enables the RTC
 lcd.begin(16, 2); // Enables the LCD
 lcd.print(“ It’s Alive!”); // Print a message, centered, to the LCD to

confirm it’s working
 delay(500); // Wait a moment so we can read it
 lcd.clear(); // Clear the LCD

}

void loop(){
}

When this code is uploaded, you should see the message “It’s Alive!” dis-
played for a half-second on the LCD. If you don’t see anything, or if the dis-
play has garbled characters, you’ve connected something incorrectly. Go
back to the wiring table (shown earlier, in Step 4) and Figure 7-5.

The first three lines of this code include the libraries that are be used for
your clock. The first includes the I2C library that enables communication
with the RTC module. I2C, pronounced “eye-squared cee” or “eye-two-cee,”
is a communication link (also called a bus) for talking between integrated
circuits — in this case your Arduino and the Dallas DS1307 chip. It’s also useful
for communicating with lots of other accessories, such as GPS modules. The
useful thing about I2C is that it only requires two pins, plus power and ground.
This library makes communication pretty easy with most I2C devices.

The next library is the RTCLib. It’s a version of a library written by JeeLab
and modified by Adafruit Industries for communicating with the RTC module.
It’s used for getting the time from the RTC module and uses the I2C library to
negotiate that communication.

The last library is the LCD display library, which handles the parallel commu-
nication with your display. Unlike the RTC library that you added manually,
it’s included as a standard library in the Arduino software distribution.

138 Part II: Basic Arduino Projects

After including the libraries, the code creates two objects: a clock object called
rtc and a LiquidCrystal object called lcd. This object has parameters that
determine which digital pins the Arduino uses to communicate with the LCD.

After creating those objects, the setup() function gets things going. The I2C,
RTCLib, and the lcd all have to be enabled, which is done by the begin()
function for each one. The lcd.begin() function takes two parameters, the
number of columns and the number of rows, which on your display are 16
and 2. After this has been set, you can write messages to the screen simply
by using the lcd.print() function:

lcd.print(“ It’s Alive!”);

The two spaces at the beginning of this text center the 11-character message
within the 16-character space on the top line. You normally control the posi-
tion of text with the setCursor() function, but it’s not needed here — one
less instruction to put into setup(). After a brief delay so that you can see
that it has been printed to the screen, the lcd.clear() function wipes all the
text, ready to go for the main loop().

	 If you haven’t been able to get the test message to print, check your connec-
tions. Make sure you have all the pins in the right locations and that you’ve
provided power and ground connections for both the LCD and its backlight.
They are separately powered.

Displaying the time
Now that you’ve got something on the display, it’s time to read the time from
the RTC module and display it. Later, you add buttons to program the alarm,
and a switch to change between Time Display, Alarm Set, and Alarm Armed
modes.

There are really only two things you can display with this clock: either the
current time or the time you want the alarm to go off. Rather than including
the code for both in the main loop(), it makes sense to put the display
procedure in its own function so that it is modular and easy to modify.

Add the following code to the variable declarations section at the top of your
code (new code is in boldface):

RTC_DS1307 rtc; // Create a realtime clock called rtc
LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Create an LCD called lcd

DateTime now;

This creates a DateTime object called now. The DateTime object is part of
the RTC library and is the only way to get the time out of the RTC module,

139 Chapter 7: Building an Arduino Clock

though it has a lot of options and can provide hours, minutes, seconds, and
the year, month, and day.

Next, add the code in your main loop that reads the current time from the
RTC module, and add a function to update the display with the current time:

void loop(){

now = rtc.now(); // Get the current time

// Refresh the display
 updateDisplay();
}

The now DateTime object stores the current time taken from the rtc.now()
function to display the time and to check whether it’s time to trigger the alarm.

To keep the code modular, updating the display is done in its own function,
outside the main loop. After closing the main loop, add the updateDisplay()
function by entering the following code:

void updateDisplay(){

 int h = now.hour(); // Get the hours right now and store them in an
integer called h

 int m = now.minute(); // Get the minutes right now and store them in an
integer called m

 int s = now.second(); // Get the seconds right now and store them in an
integer called s

 lcd.setCursor(0, 0); // Set the cursor at the column zero, upper row...
 lcd.print(“ The time is: “); // ...with spaces to clear characters from

setting alarm.
 lcd.setCursor(4, 1); // Move the cursor to column four, lower row
 if (h<10){ // Add a zero, if necessary, as above
 lcd.print(0);
 }
 lcd.print(h); // Display the current hour
 lcd.setCursor(6, 1); // Move to the next column
 lcd.print(“:”); // And print the colon
 lcd.setCursor(7, 1); // Move to the next column
 if (m<10){ // Add a zero, if necessary, as above
 lcd.print(0);
 }
 lcd.print(m); // Display the current minute
 lcd.setCursor(9, 1); // Move to the next column
 lcd.print(“:”); // And print the colon
 lcd.setCursor(10, 1); // Move to the next column
 if (s<10){ // Add a zero, if necessary, as above
 lcd.print(0);
 }
 lcd.print(s); // Display the current second
 }

140 Part II: Basic Arduino Projects

Send this code to your Arduino and see what happens. If all is well and your
code compiles correctly, you should be in business! The display should
show a time that matches the one on your computer (having been set with
the DS1307 sketch that you sent earlier). Congratulations! You’ve just built a
basic clock!

In the code, the current time is requested from the now object and placed
into three integer variables used only in the updateDisplay function.
These variables have a local scope, meaning they only can be used within
updateDisplay(), and the rest of the program doesn’t know anything
about them — which explains why they are not declared at the beginning of
your code. You request time minutes, hours, and seconds separately with
now.hours(), now.minutes(), and now.seconds(). Assigning each of
these separately to its own integer variable (h, m, and s) is much easier than
requesting the current time all at once using rtc.now(); and then separat-
ing out (called parsing) the hours, minutes, and seconds.

Having parsed the time into three variables, the main thing going on in
updateDisplay() is positioning the cursor on the LCD and printing the
relevant text. Positioning the cursor is done with lcd.setCursor(), which
takes two parameters: column number and line number. Setting the cursor
only puts it in the correct position. You then have to tell the display what
to print. The numbering starts at zero, so the upper-leftmost character is in
column 0 and row 0. The cursor is positioned at the top left of the screen and
the first line of text is printed with lcd.print(“The time is:”).

There are two space characters before and after the text. These write over
any text that’s already on the screen — which is not an issue now, but it would
become a problem later, when you display the Alarm Set mode. The characters
printed from that mode need to be erased. Writing spaces overwrites any other
text that might be already on the screen from Alarm Set mode.

You could use instead the lcd.clear() function, which clears all the
text on the whole screen. However, your clock is constantly refreshing the
display, so clearing the LCD every time the updateDisplay() function
executes can introduce just a bit of noticeable flicker. A simpler approach
(which uses one less instruction) is just to write the space characters over
what might have been already on the display.

Next, the cursor is moved four spaces to the right and on the second row, so
that the time is centered on the screen:

lcd.setCursor(4,1);

141 Chapter 7: Building an Arduino Clock

One tricky bit about using integers to get the hours, minutes, and seconds,
is that they do not have a leading zero for values below 10. You need to add
those in manually, both to make the clock look right (for example, 01:05)
and to keep the hours minutes and seconds in the same place on the screen.
Otherwise, they’d jump around and would be hard to read. It would be con-
fusing. For example, without leading zeros, 5 minutes after 1 a.m. would be
displayed: 1:5.

	 Some would argue that you could also use the char data type since the rtc.
now() method returns chars, but this makes it more complicated to logically
compare the current time to the alarm time. It’s much simpler to use ints.

Adding the leading zeros is accomplished in the same way for hours, minutes,
and seconds (I’m just discussing hours, for the sake of brevity):

if (h<10){ // Add a zero, if necessary, as above
 lcd.print(0);
 }
 lcd.print(h); // Display the current hour

The conditional if statement tests whether the current time is less than 10,
and if so, the print() statement prints a zero. After this, the LCD automati-
cally advances to the next column position, so when you print the current
hour (1 through 9), stored in the integer variable h, it will have a leading zero.
The same goes for minutes and seconds. You must also advance the cursor
to the correct position for the leading zero for minutes and seconds. You
insert a colon between them with the lcd.print(“:”); statement.

You’ve now got the basic information you need to display the time and
move the cursor around a bit. You can also easily change the text. Perhaps
it should be in French or Klingon? With the time displayed, you can now get
down to building the input and output hardware to handle the alarm.

Adding your input buttons and a switch
First, add one of the pushbutton switches and one of the resistors, which
you use as an input to increment the alarm hours. Refer to Figure 7-6 to make
sure you have made the right connections. The pushbutton works by allow-
ing +5V to be applied to Pin 7 when it’s pressed. When current flows through
the switch, it encounters the resistor, and instead takes the easier pathway
to ground through Pin 7 (there are connections to ground internally, within
the ATmega328 microcontroller IC). Reading Pin 7 with the digitalRead()
function returns a value of HIGH (+5V).

142 Part II: Basic Arduino Projects

	

Figure 7-6:
Parts place-
ment for the
alarm hours
pushbutton.

	

When it’s not pressed, Pin 7 is connected through the resistor to GND, via the
ground rail. Reading Pin 7 with the digitalRead() function returns a value
of LOW (0V).

Now add the second pushbutton switch and resistor, which increments the
minutes. It should be connected to digital Pin 8.

Finally, add the slide switch, which has three positions, and two resistors. You
can see from Figure 7-7 that the electrical connections for the slide switch are
very similar to the two pushbutton switches. But because it’s a slider, it stays
in the position that you put it in. In the left position, it keeps +5V on digital Pin
10. In the right position, it keeps +5V on digital Pin 10. In the center, it makes no
connection, and both of the digital pins are connected only to the ground rail.

Reading these pins, you can determine whether the clock is Alarm Set Mode
(Pin 6 is HIGH), Alarm Armed Mode (Pin 10 is HIGH), or simply in Display
Time mode (no connection; Pin 6 and Pin 10 are LOW).

143 Chapter 7: Building an Arduino Clock

	

Figure 7-7:
Parts place-

ment for
the input

buttons and
slide switch.

	

Now add the code necessary to read and respond to the hardware. You need
a few variables to store the system state and keep track of when to trigger
the alarm. In the variable declaration section, add the following code:

...
DateTime now;

boolean displayAlarmSet = false; // Whether we are in the show time mode or
show alarm set mode

boolean alarm = false; // Whether the alarm is currently happening
boolean armed = false; // Whether the alarm is armed or not

int alarmHrs = 12; // You can set the alarm time in code, here
int alarmMins = 00;

The variable displayAlarmSet allows you to switch between showing the
clock time or showing the alarm time, that you use in the updateDisplay()

144 Part II: Basic Arduino Projects

function, a bit later. You can use the slide switch to change the value of this
variable.

The “alarm” variable keeps track of whether or not the alarm is currently
happening, so that you can sound the piezoelectric sounder, if necessary.

You also need to keep track of when to trigger the alarm. This is done with
two integers, alarmHrs and alarmMins. If you want to set the alarm time
from within the software and not from the buttons, you can set that by
changing the starting value of these variables. I’ve set it to 12 hours and 00
minutes to start.

Counting the two pushbuttons, and the two states that can be set by the slide
switch (Time Display mode or Alarm Display mode), you have four inputs. So,
you need four digital pins to read them. You use them for input, so they need
to be enabled in the setup() part of your code. You’ll also use the piezo
sounder for output, later, but it can be added now, so add the following code:

// User input to set alarm time
const int alarmSetPin=6; // Used to change to alarm set mode
const int incrementAlarmHrsPin=7; // Used to increment the alarm hours in alarm

set mode
const int incrementAlarmMinsPin=8; // Used to increment the alarm minutes in

alarm set mode
const int piezoPin = 9; // Used for the piezoelectric sounder
const int alarmArmedPin=10; // Use to enable the alarm to go off
...
setup(){
...
 lcd.clear();

 // Set several pins for input and output
 pinMode(alarmSetPin, INPUT);
 pinMode(incrementAlarmHrsPin, INPUT);
 pinMode(incrementAlarmMinsPin, INPUT);
 pinMode(alarmArmedPin, INPUT);
 pinMode(piezoPin, OUTPUT);

Note, the ellipses (...) indicate the code you added earlier — no need to
repeat that here. There are five new integers, which handle the input pins.
These don’t change throughout the program so they are integer constants.
You connected the slide switch to Pin 6 and Pin 10 to handle either setting
the alarm or arming it to go off. You connected the pushbutton switches to
Pin 7 and Pin 8. Each one separately controls incrementing the hours and
minutes. You can only increment upward. Otherwise, you either need addi-
tional buttons to decrement hours and minutes or a way to switch between
incrementing and decrementing, which would be unnecessarily complicated.
Finally, these pins are all used for input, so they have to be explicitly set to
be used for INPUT with the pinMode() function. Later in this chapter, you

145 Chapter 7: Building an Arduino Clock

connect the piezoelectric sounder to Pin 9, so it is also included here, and set
to OUTPUT.

Checking, setting, and displaying the alarm
Next, you can add the main loop() code that is running on the clock. It
checks the time, whether to sound the alarm, and refreshes the display (the
new code is shown in boldface):

void loop(){

now = rtc.now(); // Get the current time
int alarmArmed=digitalRead(alarmArmedPin);

if (alarmArmed==HIGH){
 armed=true;
 } else {
 armed=false;
 }

 // Determine whether to sound the alarm or not
if(armed){ // If the alarm is armed and...
 if (!alarm){ // If we are not currently sounding the alarm
 checkAlarm(); // Check to see if it is the time it should be triggered
 }
 else {
 soundAlarm(); // Otherwise, we should be sounding the alarm, so do it.
 }
}

// Check whether we are in Alarm Set mode
 int setMode = digitalRead(alarmSetPin); // Read the pin that the switch is on
 if (setMode==HIGH){ // If the pin is high
 displayAlarmSet=true; // Set displayAlarmSet true. It’s used by

updateDisplay to switch between showing alarm or current time
 setAlarm(); // Go read the switches to set the alarm
 }
 else { // If we aren’t in set mode
 displayAlarmSet=false; // We are not in set mode, so make sure the flag is

correct
 }

 // Refresh the display
 updateDisplay();
}

There’s a lot going on here!

After the rtc.now() function (which you added previously) gets the current time,
you use the local variable alarmArmed to hold the value of the alarmArmedPin,
and then use the conditional if statement: if (alarmArmed==HIGH) to eval-
uate whether it’s HIGH. If so, that’s because the slide switch is in the activated

146 Part II: Basic Arduino Projects

position, and is allowing +5V to be present on Pin 10 of the Arduino. In that
case, the boolean variable armed is TRUE; otherwise, it’s FALSE. This vari-
able determines whether to sound the alarm when the alarm time is reached.
You probably don’t want to do that once a day, every day!

Next, there’s a nested loop, which determines whether to sound the alarm.
The conditional if statement checks this condition by evaluating whether
the clock is in armed mode:

if(armed){

This is a bit of coding shorthand. It could also be written:

if(armed==TRUE){

and it would work the same way.

If the alarm is armed and the alarm is not currently already being played,
then it’s time to check whether it should be played, using the checkAlarm()
function. This is tested by the !alarm condition. The ! indicates a logical
“not.” On the other hand, if you are currently in the alarm state, then it’s
time to sound it, using the soundAlarm function, which you add to the code
later, when the piezoelectric sounder hardware is added. The checkAlarm()
function just compares the current time to the alarm time. At the bottom of
your code, add the following function:

void checkAlarm(){
 if(alarmHrs==now.hour() && alarmMins==now.minute() && now.second()==0){ // If

the alarm time is now, and it’s zero seconds
 alarm=true; // set the alarm flag to be true. The next time the main loop

executes, the alarm will be activated
 }
}

This function uses the global integer variables you created at the beginning
of your code to hold the alarm time: alarmHrs and alarmMins. You obtain
the current hour and minute using now.hour() and now.minute(), and
test whether they are both the same value as alarmHrs and alarmMinutes,
using the logical AND operator: &&. You only want to check this the second
that the alarm time is reached, so you use the && operation to test this, too.
Without checking this, the boolean variable alarm would be set to true for
an entire minute, even if you were to cancel the alarm, with the result that you
wouldn’t be able to turn off the alarm for a whole minute! That’s all you need
for the checkAlarm() function. You’ll add the soundAlarm() function later.

Next, you test to see whether the user is setting the alarm. You use the local
variable setMode to read and store the alarmSetPin(Pin 6). You are

147 Chapter 7: Building an Arduino Clock

keeping track of this with the boolean variable displayAlarmSet. It is true
when the slide switch position allows +5V to be present on Arduino Pin 6.
If the slide switch is in Alarm Set Mode, then you read the buttons using the
setAlarm() function. Therefore, the buttons are only read if the slide switch
is in the proper position, which prevents accidentally changing the alarm time.
You also update the display accordingly with the updateDisplay() function,
not showing the current time, but rather showing the alarm time. I go over how
you do this in a moment, but first you need to add the setAlarm() function,
so that you can read and respond to the button presses and store the alarm
time, accordingly.

At the bottom of your code, add the following:

void setAlarm(){
 int hrs=digitalRead(incrementAlarmHrsPin);
 int mins=digitalRead(incrementAlarmMinsPin);

 if (hrs==HIGH){ // If the hours switch is pressed
 alarmHrs+=1; // Increment the hours upward
 delay(200); // Wait a moment between incrementing the numbers
 if(alarmHrs>23){ // if the hour is over 23, set it back to 0
 alarmHrs=0;
 }
 }
 if (mins==HIGH){ // If the minutes switch is pressed
 alarmMins+=1; // Increment the minutes upward
 delay(200); // Wait a moment between incrementing the numbers
 if(alarmMins>59){ // if the minute is over 59, set it back to 0
 alarmMins=0;
 }
 }
}

In this function, you use two local integer variables, hrs and mins, to read
and store the value on the digital pins that are connected to the pushbutton
switches. If the hours button is being pressed, then hrs has the value HIGH.
You update the alarmHrs variable by adding 1 hour: alarmHrs+=1. You need
to pause for a moment so that the user won’t increment upward too fast. The
delay(200) statement waits for 200 milliseconds — just enough time for the
user to increment quickly and stop accurately. There are only 24 hours in a
day, so the last if statement resets the alarmHrs to zero if it exceeds 23
hours. Next, you follow the same process for detecting and incrementing the
alarm minutes.

Now you need to be able to see what you’re doing. To update the display
with the Alarm Set time, add the following code (in boldface) to the very
beginning of the updateDisplay() function you created earlier:

148 Part II: Basic Arduino Projects

void updateDisplay(){

 if(displayAlarmSet){ // If we are in alarm set mode, DISPLAY ALARM SET TEXT
 lcd.setCursor(0, 0); // Set the cursor at the column zero, upper row
 lcd.print(“Set alarm time: “);
 lcd.setCursor(4, 1); // Move the cursor to column four, lower row
 lcd.print(“ “); // Write over digits of the time previously displayed
 lcd.setCursor(5, 1); // Move to the next column so the time will be

centered
 if (alarmHrs<10){ // Integers of 0-9 are only one digit. If so...
 lcd.print(0); // ... add a zero in front of it
 }
 lcd.print(alarmHrs); // Print the current alarm hour
 lcd.setCursor(7, 1); // Move to the next column
 lcd.print(“:”); // And print the colon
 lcd.setCursor(8, 1); // Move to the next column
 if (alarmMins<10){ // Integers of 0-9 are only one digit. If so...
 lcd.print(0); // ... add a zero in front of it
 }
 lcd.print(alarmMins); // Print the current alarm minutes
 lcd.setCursor(10, 1); // Move to the next column
 lcd.print(“ “); // Write spaces over the digits of time that was

previously displayed
 }
 else {

 int h = now.hour(); // Get the hours right now and store them in an
integer called h

 int m = now.minute(); // Get the minutes right now and store them in an
integer called m

 int s = now.second(); // Get the seconds right now and store them in an
integer called s

 lcd.setCursor(0, 0); // Set the cursor at the column zero, upper row...
 if(armed){
 lcd.print(“* The time is: “);
 }
 lcd.print(“ The time is: “); // ...with spaces to clear characters from

setting alarm
 lcd.setCursor(4, 1); // Move the cursor to column four, lower row

 if (h<10){ // Add a zero, if necessary, as above
 lcd.print(0);
 }
 lcd.print(h); // Display the current hour
 lcd.setCursor(6, 1); // Move to the next column
 lcd.print(“:”); // And print the colon
 lcd.setCursor(7, 1); // Move to the next column
 if (m<10){ // Add a zero, if necessary, as above
 lcd.print(0);

149 Chapter 7: Building an Arduino Clock

 }
 lcd.print(m); // Display the current minute
 lcd.setCursor(9, 1); // Move to the next column
 lcd.print(“:”); // And print the colon
 lcd.setCursor(10, 1); // Move to the next column
 if (s<10){ // Add a zero, if necessary, as above
 lcd.print(0);
 }
 lcd.print(s); // Display the current second
 }

}

Here, you are simply updating the display with the current hours and minutes
of the alarm set time. The first conditional if statement evaluates whether you
are in Set Alarm mode. If so, you will show the alarm time. If not, the Arduino
will jump to the else statement. You’ve already created the code that happens
after the else { statement — it’s what’s normally displaying the current time.

Showing the alarm time is essentially the same process as showing the time,
simply positioning the cursor and printing text to the display. The difference
is what the text says: “Set alarm time: ” (with a trailing space) and the alarm
hours and minutes, separated by a colon. Note that you are also handling
whether a leading zero needs to be added, as you did earlier.

One final modification needs to be made to updateDisplay(). You need to
indicate somehow that the alarm is armed, if the armed variable is TRUE. A
simple solution is to just add an asterisk when the current time is displayed.
Right where you left off, modify the remaining updateDisplay() code:

 lcd.setCursor(0, 0);
 if(armed){
 lcd.print(“* The time is: “);
 }

 else lcd.print(“ The time is: “);

Now there’s only one thing left to do: Play it!

Adding your alarm
This is the easiest hardware modification. You only need to attach the piezo-
electric sounder, as shown in Figure 7-8. With that added, you simply create
a function to play the alarm. Add the following code to the bottom of your
Arduino sketch:

150 Part II: Basic Arduino Projects

void soundAlarm() {
 float alarmFrequency=1400; // The value for the alarm tone in Hz
 float period = (1.0 / alarmFrequency) * 1000000;
 long beepDuration=250000; // the time in microseconds (0.25 seconds)
 long elapsedTime = 0;

 while (elapsedTime < beepDuration) {
 digitalWrite(piezoPin,HIGH);
 delayMicroseconds(period / 2);
 digitalWrite(piezoPin, LOW);
 delayMicroseconds(period / 2);
 elapsedTime += (period);
 }
 digitalWrite(piezoPin, LOW);
 delayMicroseconds(beepDuration);

 // Listen for either button to be pressed and if so, turn off the alarm
 int hrs=digitalRead(incrementAlarmHrsPin);
 int mins=digitalRead(incrementAlarmMinsPin);

 if (hrs==HIGH || mins==HIGH){
 alarm=false;
 }
}

This code uses the standard formula to obtain the period of a frequency; the
period is the duration of a single cycle in a repeating event and is the recipro-
cal of the frequency. You specify the frequency of your alarm tone in Hertz
(Hz) and assign it to the float variable alarmFrequency.

Your alarm will alternate between playing a tone at this frequency (I’ve
chosen 1440 Hz).

Two long integers, beepDuration and elapsedTime, store the elapsed time
the tone has been playing and the duration that you want it to play. The while
loop uses these to limit the time the note is played to 0.25 seconds (beep
duration).

With the period calculated, you use this value to rapidly write HIGH and LOW
values to the piezoPin. One cycle includes both on and off times, so the
amount of time to write the pin HIGH and LOW is half the total period. This is
written to the digital pins using:

digitalWrite(piezoPin,HIGH);
delayMicroseconds(period / 2);

digitalWrite(piezoPin,LOW);
delayMicroseconds(period / 2);

151 Chapter 7: Building an Arduino Clock

	

Figure 7-8:
Adding the
piezoelec-

tric sounder.
	

The delayMicroseconds() function is the shortest amount of time you
can delay the Arduino, and is needed for generating a tone. After the tone has
been played, the following two lines create silence for the same duration, 0.25
seconds, by holding the piezoPin LOW:

digitalWrite(piezoPin, LOW);
delayMicroseconds(beepDuration);

The very last thing to do is provide a way to silence the alarm, if you press
either of the buttons. The local integers, hrs and mins, store the value of the
buttons used to program the alarm. If the hours button or the minutes button
goes HIGH because the button was pressed, the alarm condition is set to
false. The vertical bars | | indicate a logical OR evaluation:

152 Part II: Basic Arduino Projects

int hrs=digitalRead(incrementAlarmHrsPin);
 int mins=digitalRead(incrementAlarmMinsPin);

 if (hrs==HIGH || mins==HIGH){
 alarm=false;
 }
}

Whew. That was a lot of code; but now the clock is ready to have its trial
run. In the code, set the alarm time to be something in the next minute or so;
then send the code to the Arduino. Make sure the slide switch is in the armed
position and that your asterisk is displayed. Pretty soon, you should have
your rewarding alarm.

If you have any trouble, check your connections. I’ve also included a schematic
diagram to help you track down any problems, as shown in Figure 7-9. Then
check your code to make sure it’s correct. If all else fails, check the trouble-
shooting tips in Chapter 17.

Beep! Beep!! Beep!!! It’s time to pat yourself on the back for building a fully
functional alarm clock from scratch!

	

Figure 7-9:
Schematic
diagram of

the Arduino
clock.

	

GND

5V

SDA
DS1307

RTC
BreakoutSCL

SQW

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

LCD

VSS

VCC

V0

RS

R/W

E

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

LED+

LED-

Arduino

Real Time Clock

LCD1

LCD: Set Contrast

SW: Set Minutes

SW: Set Hours

Arm Alarm

Set Alarm

Piezo Speaker

R4
220Ω

R2
220Ω

R3
220Ω

R5
220Ω

Part III
The Interactive Home

and Garden

	

Find out how to add the RFID reader to your keypad entry system from Chapter 8 at
www.dummies.com/extras/arduinoprojects.

In this part . . .
	 ✓	 Find out about using sensors and home automation
	 ✓	 Build an automatic plant watering system
	 ✓	 Program your Arduino to take temperature and light

readings
	 ✓	 Build a homemade Arduino shield
	 ✓	 Discover how to post data from your Arduino to the

Internet
	 ✓	 Program your Arduino to send tweets

Chapter 8

Building a Keypad Entry System
In This Chapter
▶	Reading a numeric keypad
▶	Using an LED display IC
▶	Actuating a relay
▶	Using character arrays

N
o self-respecting mastermind would leave his fortress unsecured
against intruders. The project steps in this chapter guide you through

building a keypad entry system that unlocks a door when you enter the cor-
rect code into a standard 10-digit keypad. The system also displays the code
on a seven-segment LED display while you are entering it, and when you’ve
keyed in the correct code a welcome message is displayed.

The project uses a four-digit (“quad”), seven-segment display — the kind you’ve
seen in every spy movie since the 1960s and a widely available standard
keypad with a telephone-style layout. The door is secured with an electric
locking mechanism that is activated once you type in the correct code.

You can buy systems like this from specialty lock and security suppliers,
but it’s more fun to build it yourself and pick up a few Arduino skills along
the way. You can also modify the system to accept input from the RFID card
reader (see Chapter 9).

Selecting and Preparing Your Parts
Figure 8-1 shows the parts you need for this project.

You create a prototype on a breadboard to make sure that everything works
properly and then put it into a suitable enclosure after you’ve got it working.
When you transfer it to your enclosure, you might want to rebuild the circuit

156 Part III: The Interactive Home and Garden

on a piece of stripboard, in which case you need a small piece of that, too.
There are a lot of wires in this project, so you might also want to pick up
some ribbon cable to make all those connections. Here’s what you need:

	 ✓	An Arduino

	 ✓	A numeric keypad (SparkFun COM-08653 or Rapid 78-0305)

	 ✓	A quad, common cathode, seven-segment LCD display (Lite-ON LTC-
4727JR from Digi-Key 160-1551-5ND, or HDSP-B09G from Farnell 1003341)

	 ✓	A Max 7219 or 7221 8-digit LED display driver

	 ✓	Two capacitors: a 10µF (microfarad) electrolytic capacitor and a .01 µF
ceramic disc capacitor

	 ✓	Two resistors: 2.2kΩ and 33kΩ. These may be different depending on
your LED module and type of relay.

	 ✓	A 5V DC miniature relay (such as Hamlin HE721A0510, from Jameco
#1860109, or Farnell #9561757)

	 ✓	A 2N2222 or similar NPN transistor

	 ✓	A 1N4001 or similar diode

	 ✓	A strip of pin headers

	 ✓	An electric door locking mechanism, 12V DC. There are several types
(see below) to choose from, such as an electric door strike (item #5192
from SmartHome.com or GAE Series Electric Strike from online
securityproducts.co.uk)

	 ✓	A two-conductor, low-voltage wire (18-22 AWG) to run power from your
transformer to your project box and door locking mechanism

	 ✓	A suitable enclosure to package it up nicely (such as Serpac A27BK,
Jameco #373456, or Farnell #775538). Minimum dimensions of approxi-
mately 15 x 8 x 4 cm (6 x 3 x 1.5 inches).

	 ✓	A small piece of stripboard (optional)

	 ✓	Some short lengths of ribbon cable (optional)

	 ✓	Wire mounting clips

	 ✓	A hot glue gun and some glue sticks

	 ✓	A measuring tape

	 ✓	Small hand tools to make holes in the enclosure and to install the door
locking mechanism into your doorjamb

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

157 Chapter 8: Building a Keypad Entry System

	

Figure 8-1:
The parts

you need for
this project.

	

As with the other projects, this one is built with an Arduino Uno. But there’s
nothing unusual about the code, so you should be able to run it on any
Arduino.

The keypad contains conductive traces on the printed circuit board inside.
Pressing a button closes a switch that connects two of these traces — one
for the row and one for the column underneath that button. Each row and
column is connected to an output pin on the keypad, and you connect those
output pins to your Arduino’s digital pins. When you press a button, the con-
nection between a row and a column is made. You detect this connection by
reading the state of your Arduino’s digital pins.

Manufacturers assign different keypad output pins to the rows and columns.
Two of the commonly available keypads are listed previously and are used
in the sample code. You can see how they are laid out in Figure 8-2. If your
keypad is different, you’ll need to test it or read the keypad’s datasheet to
determine how to connect your keypad’s output pins to your Arduino’s digital
pins. I show you how to test your keypad later in the chapter.

158 Part III: The Interactive Home and Garden

	

Figure 8-2:
Pin con-

nections for
the matrix

keypad.
	

The power supply should be rated at 12V DC. Most electronic lock mechanisms
are available in 12V DC models and this is an acceptable input for your Arduino.
Also, make sure your transformer will supply enough current to handle the
needs of both your Arduino and your electronic lock. Your Arduino can oper-
ate at a bare minimum of 250mA, but it is safer to estimate it at 500mA. The
spec sheet of your lock mechanism should say how much current is required
to operate it. If not, you can use your multimeter to measure the current flow-
ing through the coil of your lock, while it is activated. The GAE electronic
door strike in the parts list operates at 12V DC at 400mA. Combined with the
Arduino, that’s a current requirement of 950mA. You should exceed this by
a small margin, so that means your power supply must provide a minimum
output of 1.0A. You can use one with a higher rating, but not a lower rating.

The display is a four-digit, seven-segment display of the type that you’ve seen
just about everywhere. Using a quad display is a bit simpler than using four
individual seven-segment displays because they are all packaged up into a
single housing. It has shared cathodes to reduce the number of pins needed
to drive it. The cathodes and anodes for the digits and the colon/decimal
points (on the Lite-On display) are connected to just a few pins on the back
of the unit. Again, different manufacturers use different pinouts. The datasheet
shows which pins are connected to each segment. You can use a different
module than the ones listed here, but make sure you are using a common cath-
ode (CC) display, which the code in this chapter is designed for. A common
anode (CA) display won’t work.

	 There are also seven-segment displays that you can address directly over the
serial interface on your Arduino. This makes connecting it up and writing to
the display a lot simpler (SparkFun COM-11442, for example), but they do cost
a bit more. The code in this chapter won’t work with one of these modules, but
once you understand the code, it is pretty easy for you to modify it to do so.

The display is driven by the Maxim 7219 or 7221 display driver (72xx, for
short). This integrated circuit (or IC) makes it very easy to control up to eight

159 Chapter 8: Building a Keypad Entry System

digits. It handles addressing each segment, storing the state of each digit,
and even controlling the brightness through pulse-width modulation (PWM).
Conveniently, you send commands using the Serial Peripheral Interface (SPI)
Arduino library. The chip requires only one resistor to set the LED current and
two capacitors, which keep power fluctuations from harming it. Best of all, it
only uses three Arduino digital pins.

The lock mechanism is controlled by a relay. Turning on the relay allows
power to flow from the power supply to the electric door lock. The switching
transistor, resistor, and diode control the relay. The transistor is a 2n2222
general purpose NPN switching transistor. The 2.2KΩ resistor used with it
prevents too much current flowing to the base of the transistor.

	 The diode prevents blowback, or back voltage, a phenomenon that occurs when
power to the relay coil is switched off and its magnetic field breaks down. You
don’t want stray current flowing back through to your microcontroller.

Selecting an electric lock mechanism
Carefully consider the door you plan to use for the project. You need to
modify your door or the doorjamb to accept an electric lock mechanism,
which may require some light carpentry skills and tools, if you have to cut
the door or jamb to fit your lock mechanism. There are several different
types of doorjambs you can use, and you need to choose the one that is
right for your door and door frame. The most common types of electric door
locking mechanisms are electric door strikes, magnetic locks, and drop bolt
locks. You can choose any of these for the project. You should choose one
that will be easiest for you to install. Electric door strikes are generally easi-
est to work with and use an internal relay to actuate a pin that allows the
strike plate to swing open. The inside of one is shown in Figure 8-3. Also keep
in mind that you need to run a power supply to your door, so you may need
some extra wire for this.

Electrically activated door locking mechanisms come in two modes:

	 ✓	Fail safe: Fail safe systems will not leave the door locked if the power
goes out. That way if there’s a fire or other safety situation, you can still
get out the door. It fails safely, so the occupants can escape.

	 ✓	Fail secure: Fail secure systems work the opposite way. If there’s a
power outage, they remain locked. That means they require no power to
stay locked either. The benefit of using a fail secure system is that you
do not have to have any power to keep the door in a locked state. But
if you choose a fail secure locking mechanism, you need to make sure
that there is a way to open the door in case of an emergency, such as a
manually activated latch bolt.

160 Part III: The Interactive Home and Garden

	

Figure 8-3:
Inside an

electronic
door strike.

	

I used an electric door strike for this project because it was easiest to
install. The door strike is the metal plate fitted into the doorjamb, which
has a ramped surface to receive the door latch. The electric strike has a
relay mechanism inside. When power is applied to the relay, the strike plate
releases and allows the door latch to pass freely. My door has a spring bolt
latch. You can turn the bolt on the inside of the door to move the latch,
but the latch slides back into place automatically. This means that it fails
securely, but can be opened in case of an emergency or power outage.

	 Electric lock mechanisms come in both DC and AC voltage ratings. Choose a
12 volt DC (or selectable 12/24V DC) device. That way, you can use the same
power supply for your Arduino.

You also need some wire to run from the enclosure for your keypad to the
electric door mechanism and optionally some ribbon cable, if you plan to
transfer your circuit from the breadboard to stripboard. Standard low power
18-24 gauge wire should be sufficient because this is a low power system.
You can even use solid core telephone wire or an old Ethernet cable if you
have them lying around. The connection to the door strike should only
require a few inches of wire, enough to pass through the wall and up to your
door strike. You shouldn’t need much, because the keypad assembly will be
mounted not too far from your door frame.

161 Chapter 8: Building a Keypad Entry System

The nearest wall socket will determine the length of your power supply lead.
Measure the distance from your door to the nearest power outlet to estimate
the length of wire you need.

	 Make sure to add plenty of extra wire so that you can mount it near the door
frame and baseboards with wire mounting clips.

You’ll definitely need to put this project into a housing so that all the com-
ponents are protected. You should choose an enclosure that will be large
enough to fit your keypad, display, the Arduino, and either a small bread-
board or a section of stripboard for the MAX72xx IC. Specifying exactly the
enclosure you’ll need for your system can be difficult. You need to consider
what kind of finish you want (wood, metal, or plastic?) and whether you have
the tools to cut the square openings for the LED display, keypad, and through
holes for the wires. A power drill and a small saw, such as a jeweler’s saw or
coping saw, should be sufficient for you to make the necessary openings. The
minimum practical internal dimensions to fit the display, keypad, Arduino,
and relay circuit are approximately 15 x 8 x 4 cm (6 x 3 x 1.5 inches).

You also may need a hot glue gun and glue sticks, and probably a small
hammer and chisel to install your locking mechanism into the door frame.

Prototyping your keypad and display
This project has a lot of connections, so it’s a good idea to prototype it first
using a breadboard. After you’ve built and tested your prototype, you can
then install the breadboard into an enclosure or transfer the circuit to a more
permanent substrate, such as a stripboard.

Figure 8-4 shows the electrical schematic for your system’s components.

	

Figure 8-4:
Schematic
diagram of
the keypad

entry
system.

	

162 Part III: The Interactive Home and Garden

You need to solder pin headers onto your keypad so that you can insert it
into your breadboard for testing, as shown in Figure 8-5. Later, this will make
it easier to connect a ribbon cable either by soldering it to the pins or with
a header socket that is soldered to the ribbon cable. After the pins are sol-
dered on, you can start assembling your breadboard.

The parts layout on your breadboard diagram is shown in Figure 8-6, which
shows the connections for the Rapid Keypad and Avago LED display. If you
are using different parts, your connections will probably be slightly different.
Add components to your breadboard as follows:

	 1.	 Add your keypad.

	 2.	 Insert your quad LED display on the left side of the breadboard.

	 3.	 Add the 7219 display driver to your breadboard.

	 4.	 Connect your keypad to the digital pins of your Arduino, making sure
the keypad pins for rows and columns correspond to the correct digi-
tal pins on your Arduino.

	 5.	 Double-check your connections.

		 It’s easy to make a mistake.

	

Figure 8-5:
Soldering

pins to your
keypad.

	

163 Chapter 8: Building a Keypad Entry System

	

Figure 8-6:
Parts layout
using Rapid

Keypad
730604

and Avago
HDSP-B09G

LED.
	

	 It’s always worthwhile to check your datasheet to be sure of your connec-
tions. Sometimes there may be extra pins on the unit that are not connected
to anything. It depends on the manufacturer. Table 8-1 shows how to connect
your Arduino to two of the more commonly available keypad units. If you are
using a different unit, you can test its connectors to determine how to connect
it to your Arduino. Instructions for doing this are detailed in the “Identifying
pins on your keypad” sidebar, a little later in this chapter.

	 At the time of writing, the datasheet for the Rapid Keypad part #78-0305 shows
the wrong pinouts.

Table 8-1	 Connecting Your Keypad to the Arduino
Arduino Digital Pin SparkFun/Rapid Keypad Pin Keypad Row/Column
2 7 Row 1
3 6 Row 2

(continued)

164 Part III: The Interactive Home and Garden

Table 8-1 (continued)
Arduino Digital Pin SparkFun/Rapid Keypad Pin Keypad Row/Column
4 5 Column 2
5 4 Row 3
6 3 Column 0
7 2 Row 0
8 1 Column 1

Now connect the Max 72xx Driver IC to your Arduino by connecting jumper
wires, as shown in Table 8-2. Pretty simple, because you are using the SPI
library to communicate with the IC, and it only needs three connections!

Table 8-2	 Connecting Your Max 72xx to the Arduino
Arduino Digital Pin Max 72xx Pin
10 1
11 12
13 13

Add your capacitors to the breadboard. As shown in Figure 8-6, the .01 µF
capacitor straddles the IC. To be most effective at preventing electrical noise
from disturbing the IC, it needs to be as close as possible to output Pins 9
and 19. Straddling the IC is an easy way to do this. The 10 microfarad electro-
lytic capacitor simply needs to be placed across the ground and power rails,
as shown in Figure 8-6.

	 The 10 µF is “polarized,” meaning it operates correctly in only one direction.
Make sure that the negative leg is connected to the negative power rail on
your breadboard. You identify the negative side by a “–” printed down the
side of the capacitor. The leg on that side is the negative leg.

	 You may be tempted to omit the two capacitors, especially if you don’t have
them lying around your workbench. Don’t! This can lead to erratic behavior
and even permanent damage. They prevent noise on the power input and
should be placed as close as possible to the V+ and Ground pins of the IC.

165 Chapter 8: Building a Keypad Entry System

Next, add your resistor between Pins 18 and 19 of the Max 72XX Driver IC. This
is used to limit current through each LED segment. The maximum current
rating for your display determines the value of the resistor value, which limits
how much current flows through the LED. The 72xx datasheet has a table that
specifies the resistor values that should be used for your LED display. The
HDSP-B09G has a maximum of 25mA per segment at a forward voltage of 2.2V.
Checking the table, this would indicate a resistor value of somewhere between
17KΩ and 28KΩ, but it’s good to have a bit of a safety margin, so I’ve specified
a 33KΩ resistor. This works for both the Lite-On and Avago displays, but you
might need a different value if you are using a different display. Using a lower
value could reduce the life of your LED or your driver IC.

Now connect your Max 72xx to your quad LED display. The way you connect
your LED display to your Max 72xx will depend on the layout of its pins. The
schematic diagram in Figure 8-4 doesn’t show both displays. The pinouts for
the quad LED vary by manufacturer, so in the diagram they aren’t labeled by
pin number. Table 8-3 lists the connections for the two seven-segment quad
displays in the parts list. Refer to Figure 8-6 to see the breadboard placement
for the Avago display.

Identifying pins on your keypad
If you have a keypad from a different manufac-
turer, you can easily test which pins are assigned
to its rows and columns using your multimeter. If
you find it difficult to juggle the test probes and
your keypad and pen, attach some alligator clips
to your probes and use them to clamp onto the
pins. Do the following steps:

	 1.	 Make a keypad diagram like the one in
Figure 8-2, but with no numbers.

	 2.	 Set your multimeter to test for continuity.

	 3.	 Starting at the left and proceeding to the
right side of the keypad, connect your
probes to Pins 1 and 2 of your keypad.
These are the leftmost two pins and may or
may not be labeled with numbers.

	 4.	 Press every button on the pad until you
detect continuity.

	 5.	 Make a note of the row and column of the
key that you just detected. For example,

if you are connected to Pins 1 and 3 and
your meter reacts when you press number
7, write a 1, for Pin 1 under COL0 and a 3
next to ROW2.

	 6.	 If you didn’t detect anything, that’s fine; it
just means that the two pins are either both
columns or both rows (and so will never be
connected). Move your probe from Pin 2 to
Pin 3 and repeat Steps 4 and 5.

	 7.	 Continue this way until you have reached
the end with the second meter probe.

	 8.	 Now start moving the first meter probe
toward the end to meet the second probe
and keep testing.

	 9.	 Eventually you will have documented all the
connections and you can set the correct
pins for the rowPins and colPins
variables.

166 Part III: The Interactive Home and Garden

Table 8-3	 Pin Connections to the MAX72xx
	 for Popular LCD Displays
MAX 7219/7221 Lite-On LTC-4727JR Avago HDSP-B09G
1
2 1 12
3
4
5
6 6 8
7 8 6
8
9
10
11 2 9
12
13
14 14 11
15 11 10
16 16 7
17 15 5
18
19
20 13 4
21 5 1
22 7 2
23 3 3
24

Coding and testing your keypad
At this point, you have everything but your relay and door strike assembled.
Now that you’ve got the keypad and display components in place on your
breadboard, it’s time to load up the code to your Arduino. In your IDE, open
the code for this chapter from the Downloads tab of the companion website
(www.dummies.com/go/arduinoprojectsfordummies). Take a moment
to look at the code to understand how it works, and then upload it to your
board.

http://www.dummies.com/go/arduinoprojectsfordummies

167 Chapter 8: Building a Keypad Entry System

Declaring your variables
In the first section, before setup, you declare variables for the keypad and
display.

const int numberOfDigits = 4; // The number of digits in the 7-segment display
const int numRows = 4; // Number of rows in the keypad
const int numCols = 3; // Number of columns in the keypad
const int debounceTime = 20; // Number of milliseconds for switch to become

stable
const int doorOpenTime = 5000; // How long you want the door strike to remain

open

const int strikePin = 9; // The pin that actuates the relay for the door
strike

const int slaveSelect = 10; // Pin used to enable the slave pin on the MAX72xx

char code[4]= {‘1’,’2’,’3’,’4’}; // Set your code here
char codeBuffer[4]; // Stores the code that currently is being entered

boolean DEBUG=true; // Set to true to print status messages to the serial port
int keypressCount=0; // Counts how many times a key has been pressed

// The keyMap defines the character returned when its key is pressed
const char keyMap[numRows][numCols] = {
 { ‘1’, ‘2’, ‘3’ },
 { ‘4’, ‘5’, ‘6’ },
 { ‘7’, ‘8’, ‘9’ },
 { ‘*’, ‘0’, ‘#’ }
};

const int rowPins[numRows] = { 7, 4, 2, 5 }; // Keypad Rows 0 through 3
const int colPins[numCols] = { 6, 8 ,3 }; // Keypad Columns 0 through 2

The numberOfDigits variable sets your LED driver IC with the proper
number of digits. numRows and NumCols store the number of rows and col-
umns on your keypad, 4 and 3, respectively. You use these to look up which
key is being pressed. The debounceTime (20 milliseconds) ensures that the
key being pressed is accurately detected. You set the amount of time the
door will be held open with the doorOpenTime variable. Play around with
this until you get it set to your liking.

The strikePin variable defines which digital pin will be activated when
the correct code is entered. This applies power to the relay, which closes
to actuate your door lock mechanism. I use an electronic door strike in the
project, so I call this “strikePin.” You might want to use a different name if
you are using a different kind of mechanism, such as a magnetic door lock or
a drop bolt lock.

168 Part III: The Interactive Home and Garden

slaveSelect defines a digital pin that you use to indicate you are sending
data. The slave select (or “chip select”) pin (SS) is a command pin on your IC
that connects the external pins to the internal circuitry.

	 In applications with several LED drivers that are all connected to your input
wires, you want to be able to select whether or not a specific driver IC is
enabled. The IC only responds to commands when its slave select mode pin
is activated, which allows you to differentiate between this driver and other
ones you might be using.

You are only using a single IC in this project, but you still need to let the chip
know when you are going to send it data, and that’s what the SS pin does.

Two char variables are used for handling access code. The first one,
code[], stores the access code digits. You can set this to be whatever you
like. The second char, codeBuffer[], stores (or “buffers”) the keys that
have been pressed. When these two match, presto! The Arduino activates
strikePin. There’s no way to set the code from the keypad — you have to
do it programmatically. But after you understand how the code works, you
could easily create a secret key sequence that would allow you to store a new
access code directly from the keypad.

This program has a handy little debug feature built in. That’s what the next
variable is for: a boolean called DEBUG. Recall that boolean variables can only
be true or false. By setting this to true, you can use a conditional if state-
ment to execute certain lines of code that won’t be executed if you set it to
false. For example, in this code, you print a lot of variables on the serial
port to test that your keypad is working properly. But after your system is
installed on your door, you don’t need to print anything. Rather than delet-
ing all those Serial.println() statements, you can simply go back to the
DEBUG variable and set it to false. When the statement evaluates to false
in your code, nothing within the condition’s curly brackets will be executed.

The keypressCount stores how many digits have been pressed so far.
When the fourth is pressed, the real action happens.

The char variable keyMap[][] is a two-dimensional array. A two-dimensional
array is simply an array of arrays. Imagine a menu for an Italian restaurant.
You might have a dozen menu items to choose from: breadsticks, soup, pizza,
lasagna, salad, red wine, and so on. You could store these as simply a single
array, but you could also organize them by type: starters {breadsticks, soup},
main courses {pizza, lasagna, pasta}, drinks {water, red wine, white wine}.
This way you can refer to items either individually or as collections. A single
dimension array, as with your code[] array, stores elements (individual data
items) like this:

Int anArray[] = { 0,1,2,3 };

169 Chapter 8: Building a Keypad Entry System

A two-dimensional array stores elements like this:

Int anArray[][] = { {0,1,2,3}, {3,2,3,0}, {4,3,8,1},
{2,3,4,5} };

When you read from a two-dimensional array, the first value in the square
brackets specifies which element you wish to read; the second value in
brackets specifies the element within the element you specified. In working
with arrays, the numbering system starts from zero. So, for example, in the
two-dimensional array above, anArray[2][0] is holding the value 4.

The keyMap is simply used to store which digits are on the keypad. It’s liter-
ally a map of the keys.

	 Consider this. The Arduino doesn’t know what number is in each position of
the keypad. It can’t read the number 1 that’s printed on the key in the upper
left, which could just as easily be labeled “platypus” — the Arduino doesn’t
have a clue until you specify it.

When a key is pressed, you use the keyMap to identify which number is at
that location, so you can compare it to your predetermined code.

The final two variables are arrays that store which of your Arduino’s digital
pins the rows and columns of your keypad are connected to. This is the code
that implements what is shown in Table 8-2.

Defining the setup
In the setup() section of your code, you prepare the Arduino to run this
sketch.

Now you set up the Max Display Driver chip. The sendCommand() function
toward the bottom of your code is used to make it a bit easier to send instruc-
tions to the chip using the SPI interface. Every time you send an instruction,
you have to set the SlaveSelect pin to LOW, send the byte corresponding to
the command you want to issue to the chip, send the byte with the value for
the command, and then set SlaveSelect back to HIGH. You don’t want to
have to do these steps every time you talk to the Max chip, so the sendCom-
mand() function packages these up nicely:

void sendCommand(int command, unsigned char value)
{
 digitalWrite(slaveSelect,LOW);
 SPI.transfer(command)
 SPI.transfer(value);
 digitalWrite(slaveSelect,HIGH);
}

170 Part III: The Interactive Home and Garden

You merely send the command code you want and its value. For example,
command 10 is for brightness. The following sets it to 8 (out of 15):

sendCommand(10, 8);

You set the chip to normal mode (ready to display something), turn off its
test feature, set the brightness at medium, and tell it how many digits there
are on your display (4). Then you set the chip to decode mode. This means it
will automatically decode the byte sent to it and light up the corresponding
segments of the LEDs: 0-9, the characters H, E, L, P, a dash, and a blank space.
(If you wanted only to light up individual segments, you’d set it to no-decode
mode.)

You now set up the pin controlling your relay that powers the door mechanism.
It’s set to output.

You also need to set up the pins that are used for reading the keypad. You
use a special technique, which I explain in the next code section, that takes
advantage of “pull-up resistors” that are on your Arduino. These resistors are
on the ATmega328 chip itself and can be set to hold a pin HIGH. Later, if it
goes LOW for some reason (a keypress), your Arduino can respond appropri-
ately. You are setting all the rows to be used for input and writing these pins
HIGH, which activates the pull-up resistors. You’ll use all the columns for
output. You set these pins HIGH for now, but will change this later on.

The last thing is to clear the display. Sometimes when powering up the
system (and especially when uploading code), stray characters appear on the
display. The clearDisplay() function at the bottom of your code sets all
the digits to be blank:

void clearDisplay(){
 sendCommand(1, ‘_’);
 sendCommand(2, ‘_’);
 sendCommand(3, ‘_’);
 sendCommand(4, ‘_’);
}

Running the main loop
There are only a few things the code does to operate your entry system. The
main loop operates as follows:

	 1.	 Listen for a key.

	 2.	 If a key has been pressed, send it to the LED display.

	 3.	 Increment the number of key presses by one.

171 Chapter 8: Building a Keypad Entry System

	 4.	 Enter it into the code buffer in the next available position.

	 5.	 Determine whether four digits have been entered.

		 If so, check whether the code is valid.

	 6.	 If the code is valid, open the door and reset everything for the next
time around.

The main thing you need to do is check whether a key has been pressed. The
first statement creates a local char variable called key to store the charac-
ter that is sent back from a function named getKey(), which I discuss in a
moment. Remember the keyMap? That’s where this number ultimately comes
from.

The char value from key is also assigned to the codeBuffer[] array, which
you use to test whether the code is valid. It is added to the position stored by
keypressCount, which is incremented upward every time a new character
is detected. Remember, array numbering starts from zero, so the “zero-th”
character is the first keypress detected. So codeBuffer[0] contains the
first key pressed on the keypad, codeBuffer[1] contains the second key
pressed, and so on.

The next conditional if statement executes only when a key has been
pressed, at which point Steps 2 through 6 from the preceding list are pro-
cessed. If a key hasn’t been pressed, the program just waits for that to
happen. When it does, the sendCommand function executes:

sendCommand(keypressCount+1, key);

The sendCommand takes two parameters: which seven-segment module number
to change, and what to change it to. You use keypressCount not only to
keep track of the number of times keys have been pressed so far, but also to
tell which seven-segment digit to light up. However, keypressCount starts
at zero because the code[] and the buffer[] char arrays start their num-
bering at zero, and you want to store those values in the right place. But the
Max chip starts numbering digits from 1. Therefore, to use keypressCount
to light up the correct seven-segment digit, you have to add one (+1) to its
value.

The next statement implements that handy debugging feature I mention ear-
lier. If you have set the DEBUG boolean to true, the code will print out all
your variables to the serial port.

Next, you increment the keypressCount by one and then test to see if four
digits have been pressed. If so, it’s showtime. The delay(500) statement
gives you a half-second to see the last access code digit entered because the
display will change depending on whether the right access code was entered.
This test is done with a little bit of native C language code:

172 Part III: The Interactive Home and Garden

if (memcmp(codeBuffer, code,4)==0) {
 if(DEBUG){Serial.println(“MATCH!”);}
 unlock();
 }

The function memcmp() compares two items in memory and takes as its
parameters the two items and their expected lengths. In this case, you are
comparing the codeBuffer array and the code stored at the beginning of
the program. Both have a length of four bytes. If they are exactly the same,
the memcmp() function returns a zero and that is exactly what you are look-
ing for in the conditional statement. If they are the same (and DEBUG is true),
MATCH! is printed to the serial port and the unlock() function is executed.
If the memory comparison fails, then the function does not return a “0,”
meaning the wrong code was entered.

In either case, you want to clear the display, ready for the next time around.
So you call the clearDisplay() function. Another native C language
instruction does a little memory housekeeping:

memset(codeBuffer, 0, 4);

This clears out the codeBuffer explicitly by setting it to 0. Its length is 4,
which is the second parameter. Some might argue that this instruction is not
necessary, but it’s good practice to explicitly manage memory rather than
leave things to chance.

Lastly, because this was the fourth keypress and there are only four digits to
evaluate, the keypressCount needs to be reset to zero so you are ready for
the next iteration.

Specifying your user-defined functions
The final part of the code contains four functions that handle identifying the
key pressed, sending commands to the Max chip, clearing the display, and
activating the door mechanism.

The truly clever part of this code is how the keypress is determined. It
uses code by Michael Margolis in his indispensable reference book Arduino
Cookbook (published by O’Reilly Media). Recall that the digital pins for the
rows were pulled up HIGH during setup(). This means that reading those pins
will always evaluate to HIGH, unless something else is pulling them low — like
a keypress connecting them to a LOW column pin. The getKey function goes
through each of the digital pins connected to the column pins of your keypad
and sets the pin for LOW. It then checks to see if any row pins are now also LOW.
The pull-up resistors you used in setup() keep the row pins HIGH — unless
a key has been pressed, connecting it to a LOW column pin! There’s a short
delay of 20ms to make sure that the key was actually pressed (debouncing).

173 Chapter 8: Building a Keypad Entry System

The while statement only operates while a condition exists, in this case
when one of the row pins has become LOW due to a keypress. At this
moment, the keyMap is consulted to find the corresponding number for that
row and column, and this is stored in the variable key. Next, you do a little
housekeeping, setting all the column pins back to HIGH, for the next time
around. Finally, the value for key is returned to the part of the program that
requested it. Whew!

The only thing remaining is to unlock the door to your fortress/castle/
laboratory. If you haven’t already done so, add the last part of your code at
the end. In the unlock() function, the four sendCommand() instructions
print the message “HI” to the display. It’s nice to receive a warm welcome —
if only a brief one. Then the action happens. The strikePin is written HIGH,
which will provide power to the transistor controlling the relay (which you
add in the next section). When it activates, power is allowed to pass to your
unlocking mechanism for the duration specified by doorOpenTime. Then you
set strikePin to LOW to keep out any nefarious intruders, spies, and miscreants.

If you haven’t already done so, upload the code and cross your fingers. When
you press a key, you should see its number displayed in your LED module.
Open the serial monitor in the Arduino IDE and observe what happens when
you press a key. If everything is connected correctly, you should see the
keys identified and the codeBuffer[] gradually being filled with the values
you have entered. If you don’t see the digits lighting up on your LED module,
check your connections again. If you don’t see the correct values on your
serial monitor, make certain that there is not an error in your code and that
the values for rowPins and colPins are correct. After you’ve confirmed this
is all working, you can move on, to add the relay and door opening module. If
it’s not working, you won’t be able to test the relay and door mechanism.

To prepare your Arduino for its working life as a security guard, set DEBUG to
false and upload the code one last time. Remove the USB connection from
your Arduino because you won’t need it anymore. Power will be supplied
from your power transformer.

Adding and testing your relay
You now need to add the relay that controls the door mechanism and the
power supply. You use the same power supply to operate your Arduino,
because it won’t be getting power from the USB connection anymore. Follow
the breadboard layout in Figure 8-6 to make the connections. Don’t plug your
power transformer into the wall until you are ready to power up and test the
system.

174 Part III: The Interactive Home and Garden

Connecting your power supply
You set up the breadboard with two power rails: a 12V DC rail on top for your
Arduino and door lock, and a 5V DC rail on the bottom, which supplies the
Max 72xx. First, connect the output lead of the 12V DC power transformer to
the top two columns of your breadboard. You probably need to cut and strip
the output wire from your transformer to do this. You solder the wires to pin
headers to make it easy to connect them into your breadboard.

	 Use your multimeter to test the transformer’s output wires, identifying the
positive and negative connections. Don’t rely on the diagram on the trans-
former or markings on the wires. If you get the polarity of the connections
wrong, you could fry your Arduino.

You can now supply the power for your Arduino, using the Vin and GND
headers at the bottom of the board, instead of the USB port or the black
“barrel connector” on the left side. Use a jumper wire to connect the 12V
power rail to the Vin pin and connect the ground rail to GND.

The last step is to create a common ground between the two power rails. Use
a jumper wire to connect the negative column of the 12V DC rail to the nega-
tive column of the 5V DC rail.

Connecting your transistor and relay
You also need to supply power to operate the 5V relay. Use a jumper wire to
connect from the 5V header on your Arduino to the bottom power rail. As
shown in Figure 8-6, the relay simply controls whether the door mechanism
receives power and when it does, the lock is released. The door locking
mechanism needs about 400mA to operate, which is ten times the amount of
current your Arduino’s digital pins can provide. Switching power is one of the
basic and common tasks that electronic circuits do, so there are many ways
to control power. This project uses an Arduino digital pin to apply power to a
transistor (itself a solid-state switch) that actuates your relay.

Figure 8-7 shows a transistor like the one in your parts list. The transistor has
three pins — an emitter, a base, and a collector, labeled E, B, and C. Current
will flow between the collector and emitter when current from a digital pin is
applied at the base of the transistor.

The current from the collector is what actuates your relay, closing its con-
tacts together and allowing power from your power supply to activate the
door locking mechanism. In effect, you have a digital switch (the Arduino
pin) that controls a digital switch (the transistor), which in turn controls an
electro-mechanical switch that activates the door mechanism!

175 Chapter 8: Building a Keypad Entry System

	

Figure 8-7:
Connections

on your
2N2222

transistor.
	

It is also possible to use a power switching transistor to control the door lock
directly (doing away with the relay entirely), but the 2N2222 transistor is
cheaper and easy to find. Plus, there are a lot of applications where relay con-
trol is handy, especially if you want to electrically isolate the circuit being con-
trolled from your Arduino (to control household electricity, for example). You
could easily adapt this part of the project to other applications.

Add your relay, diode, and transistor to the breadboard, as shown in Figure 8-6.
Make sure the transistor is in the right orientation. The emitter should be
connected to ground. Add the 2.2kΩ resistor as shown. It prevents too much
current from flowing to the transistor’s base. Connect the collector to your
relay and connect Pin 9 of your Arduino to your transistor’s base.

Now take a moment to double-check all your connections, paying close atten-
tion to the positive and negative polarity of the wires. It’s a pain, but you
don’t want to power things up incorrectly because you might end up dam-
aging your hardware. After checking your connections, plug in your power
supply.

After your Arduino boots up, you’re ready to roll. Enter your code into the
keypad to test the relay. You’ll probably hear a faint click as the relay coil is
energized. Add jumper wires to the relay’s output pins and connect your mul-
timeter’s probes to them. When you enter the right code, the meter should
show a connection.

The final step is to connect the two leads of your door mechanism to the
ground rail and the output of your relay. Do that and enter your access code
again. If everything’s working properly, you should be rewarded by a satisfy-
ing “click” as your Arduino does its magic and opens the lock.

176 Part III: The Interactive Home and Garden

Assembling and Installing Your System
The parts placement diagram in this chapter (see Figure 8-1) shows a full-size
breadboard, which makes prototyping easy. But when you put it onto the
enclosure, you might want to transfer the circuit to a half-size breadboard
that takes up less space and accommodates the Max72xx driver, transistor,
and relay circuit, as shown in Figure 8-8. The LED display and the keypad are
mounted to the front faceplate of your enclosure, so you won’t need extra
room for them on the breadboard. Alternatively, you can transfer the circuit to
a piece of stripboard and solder the components together for a more rugged
finished project.

Whether you will keep the project on a breadboard or transfer it to a stripboard
or perfboard, ribbon cable makes it easy to attach all the connections to the
IC, and your enclosure won’t end up as a rat’s nest of wires. If you are using
a breadboard, attach pin headers to the ribbon cable to ensure a stable con-
nection, as shown in Figure 8-9. If you are using stripboard, you can solder
your ribbon cable directly to the board. A dab of hot glue applied at the point
the ribbon cable meets the stripboard will relieve some of the strain on the
soldered connections so that you don’t damage them during installation.

	

Figure 8-8:
Installing

the control
assembly

into an
enclosure.

	

177 Chapter 8: Building a Keypad Entry System

	

Figure 8-9:
Using ribbon

cables to
make wiring

neater.
	

You can also use the glue to hold your display, Arduino keypad, and circuit
board. For a really professional finish, use an enclosure that has internal
bosses (the small plastic pillars into which you can fix a screw) onto which
you can bolt your Arduino, stripboard, and keypad. However, choosing the
right one for your components can be tricky, and these enclosures can be
expensive. I find a bit of hot glue goes a long way.

If you use a stripboard to mount your LED Driver IC, the copper strips on
the underside will electrically connect all the pins of your LED Driver IC
together, which you do not want to do. To avoid this, use an X-ACTO knife or
a stripboard trace cutting tool (Rapid #34-0600) to cut the traces, as shown in
Figure 8-10. A 3mm drill bit will also do the job.

You run power leads from the wall to your enclosure and from your enclosure
to the door strike or other lock actuating mechanism, as shown in Figure 8-11.
You need to drill a small hole through the interior wall to the exterior wall.
How you do this will depend greatly upon the circumstances of the door you
are securing. Is it an interior door or an exterior door? Do you need to drill
through brick or masonry? Your particular circumstances will determine how
you mount the enclosure and run the wire.

178 Part III: The Interactive Home and Garden

	

Figure 8-10:
Soldering
your IC to

stripboard.
Remember

to cut the
strip traces

under
your IC.

	

	

Figure 8-11:
Running the
power leads

for your
control box

and door
mechanism.

	

179 Chapter 8: Building a Keypad Entry System

The power leads pass through holes in your enclosure, and you need to
secure them to make sure they won’t pull out or put stress onto your internal
components. You can either use cable strain relief glands, or you can create a
sort of strain relief by affixing a wire tie (zip tie) to the cables on the inside of
the enclosure, as shown in Figure 8-12. That way they won’t be easily pulled
out. A dab of hot glue on the interior will keep the cable from moving around.

	

Figure 8-12:
Securing

the cables
with a strain

relief.
	

The only remaining task is to install the door locking mechanism itself, which
in my project is an electronic door strike. You will likely need to use some
light woodworking tools to shave off additional wood from your doorjamb to
accommodate the electronic strike. Remove the existing strike plate to reveal
the bare jamb underneath. Mark the profile of the strike plate onto the wood
and use a small chisel and hammer to carefully tap out the excess wood to
accommodate your strike plate, as shown in Figure 8-13. You need to ensure
that you have enough room in the door frame to secure it.

180 Part III: The Interactive Home and Garden

	

Figure 8-13:
Installing
the door

strike.
	

The final task is to screw the strike plate into the jamb and test the fit. Make
sure the door latch travels freely into the strike plate. On most models, you
can adjust the depth of the strike plate assembly to match your door latch.

Now, shut the door for the final test, and for good measure, lock yourself on
the outside!

Chapter 9

Building an RFID Tag Reader
In This Chapter
▶	Understanding RFID
▶	Building your own RFID shield
▶	Programming an RFID reader
▶	Connecting your shield to other projects with a relay

I
f you’re reading this book, you’ve probably heard of radio frequency ID
(RFID) tags and know that they are used for tracking things like packages

and small inanimate objects. They can also identify animate objects, such as
pets, cattle, and even people! In addition to things like inventory control and
security, RFID also serves as a quick and easy mechanism for handling small
secure payments and other simple transactions.

You can easily get your Arduino to read RFID tags and act upon the unique ID
that is encoded on them. In this chapter, you find out about a few of the dif-
ferent kinds of RFID systems and how they work. You use an Arduino to con-
trol an RFID reader module and respond to the information it spits out when
a tag is brought near the reader. With this knowledge, you can add RFID to
just about anything, including other projects in this book, such as the keypad
entry system in Chapter 8.

You can find many different kinds of RFID readers. The one you need to use is
based on your project’s requirements and how much you want to spend. I’ve
selected one of the most common and relatively inexpensive ones, which can
read things like RFID key fobs. It operates at the 125 KHz frequency. With the
easy-to-build relay circuit, you can control just about anything else, from the
door opener in Chapter 8, to a toaster, and beyond!

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

182 Part III: The Interactive Home and Garden

Understanding RFID
RFID is a radio frequency system, as its name indicates. In that sense, it’s
similar to other kinds of radio frequency systems, such as FM radio, but oper-
ates within a different frequency range. Unlike broadcast systems, with RFID,
radio signals are exchanged between two objects, a reader module and a tag.
It’s a bidirectional communication, and is typically within a relatively short
range compared to broadcast systems. The acronym “RFID” can refer to
either the reader or the tag, or both. The range of an RFID system depends on
the particular RFID frequency standard that’s used. This depends on the size
of the antenna and the strength of the signal.

The reader sends the radio signal. Each RFID tag holds a unique ID code that
is returned back to the reader when they exchange the right sequence of
commands. Other kinds of information can also be stored on RFID tags, and
some systems support both reading from and writing to tags, which means
you can do simple transactions like handling fares for busses and subways.

The tag is an electronic circuit that is usually embedded within some kind of
practical physical package, depending on the particular application. Figure 9-1
shows some examples. For security access, the circuit is embedded into plastic
cards the same size as credit cards, which are easy to carry around in wallets
and purses. Other examples include key fobs and self-adhesive labels. The
variety is almost endless. Thinner and cheaper systems are used for inven-
tory control. More expensive and bulkier systems are used for things such
as shipping container tracking and electronic toll road systems, including
SpeedPass or E-ZPass.

There are several different RFID frequencies, which are used by the two cate-
gories of systems, passive RFID and active RFID. The system described in this
chapter is passive, as is the one in the bonus chapter online.

About passive RFID
Passive RFID tags operate at relatively short distances only, anywhere from a
few inches to a few feet. They are called passive because they do not provide
their own power and can only send their information when they enter the
electromagnetic field of a reader. Entering the field energizes the tiny radio
transceiver circuit through a tiny antenna within the passive tag, so that it
can receive signals from the reader and respond to them. Because the field is
relatively weak, and the power induced into the tag is very low, the operating
range of these tags is short. Usually they must be within a few inches of the
reader or at most, a few feet. Passive systems are generally relatively cheaper

183 Chapter 9: Building an RFID Tag Reader

than active systems. The passive tags themselves are usually made to be
as inexpensive as possible so that they can be produced and sold in mass
quantities and are, more or less, losable because they are cheap. However,
long range readers that can detect tags up to three or four feet away can cost
thousands. The systems in this chapter are short range (only a few inches at
most) and cost under $50.

	

Figure 9-1:
Examples of

RFID tags.
	

	 Passive RFID systems shouldn’t be confused with electromagnetic article sur-
veillance (EAS) systems that are used to make sure expensive items in shops
aren’t stolen. These are acousto-magnetic, microwave, or in some cases, radio
frequency systems and don’t contain any kind of identification mechanism.

About active RFID
Active RFID systems have a powered reader and a powered tag. When the
tag gets a message from the reader, it responds with its encoded informa-
tion. These systems cost more and are more accurate and faster. They also
can read tags much farther away than passive systems. You need all these
features if you are deducting money from someone’s account as she flies by
at 30 miles per hour. However, the higher cost means it’s impractical to use
such systems for simpler applications, such as entry systems.

184 Part III: The Interactive Home and Garden

RFID frequencies and protocols
Passive systems operate at both low and high frequencies. Two common
ones that I describe in this chapter are the low frequency 125 kilohertz (kHz)
band and the high frequency 13.56 megahertz (MHz) band. The high fre-
quency system is faster to read and write to. It also has a greater range, but
does cost slightly more.

In addition to having different frequencies, there are several different com-
munication protocols — the conversation rules that are used between the
reader and the tag — that govern how they speak to each other. These stan-
dards are set by the International Standards Organization (ISO) and different
manufacturers implement different ISO standards in their products.

The reader I use in this chapter is the 125KHz ID-Innovations reader chip and
tag system that uses the EM4001 protocol. This reader is easy to use and
inexpensive. Its antenna is self-contained within the chip.

The high frequency system is the 13.56MHz Philips MiFare/MiFare UltraLight
system using the ISO 14443 standard, which costs a bit more. This system is
used by many transit systems, so you should be able to read a transit pass
with this one. SparkFun sells a really handy Arduino prototyping shield for
this one, based on the SonMicro SM130 reader. It has an external antenna
that is included on the shield. You just solder your reader into it and start
scanning. It even has a little prototyping area, so you can add additional com-
ponents, such as the relay.

	

Not all readers and tags operate at the same frequency or protocol. When
shopping for an RFID system, make sure to match the RFID reader and tag
type; otherwise, your system won’t work at all.

Building an ID-Innovations RFID Reader
This project uses the ID-Innovations ID-20 chip, which is super easy to work
with because it has its own internal antenna. You can build this on a bread-
board and then transfer it to a homemade perfboard Arduino shield if you
want to put it into a more permanent enclosure.

Selecting your parts
The parts you need to build the reader are shown in Figure 9-2. This list only
includes the parts for the reader, but you also need a tag or tags to read. You
can choose from literally hundreds of RFID tags. The key fob 125kHz RFID tag
shown in Figure 9-1 would work just fine.

185 Chapter 9: Building an RFID Tag Reader

	

Figure 9-2:
The parts

you need for
your RFID

reader.
	

You use the relay so that you can switch on and off some other device. It’s
optional, but pretty cool to be able to control things with an RFID tag, so I’m
showing you how to do that with this project. You need

	 ✓	An Arduino

	 ✓	A full size or mini breadboard

	 ✓	An ID Innovations 12, or ID Innovations 20 RFID Module (SparkFun
SEN-08628/ Cool Components #000155)

	 ✓	A SparkFun SEN-08243 breakout board (SparkFun SEN-08423 / Cool
Components #000108)

	 ✓	Eleven long pin headers

	 ✓	An LED

	 ✓	A 220Ω resistor

	 ✓	An assortment of several jumper wires

	 ✓	A miniature Dual In-Line (DIL) reed relay (such as Jameco #138431 or
Rapid #60-2400)

	 ✓	A 125kHz RFID tag, such as the key fob tag shown in Figure 9-1 (Cool
Components #000648). SparkFun sells a plain white credit card style tag,
too (SparkFun #COM-08310).

ID Innovations makes a range of several 125kHz RFID readers, of which the
ID-12 and ID-20 models contain their own built-in antenna and are advertised

186 Part III: The Interactive Home and Garden

to read tags 12cm and 16cm away, respectively. However, to get this kind of
range you have to build a tuning capacitor circuit.

	 Fine-tuning to get optimum range is best done with an oscilloscope, which is
not a piece of gear most people have. But I’ve found that you can get away
without a tuning circuit and still read tags within several centimeters, so the
tuning circuit is not described in this book. If you want to go for the gold,
the tuning circuit is described in the ID Innovations datasheets for the series.

The LED is used as an indicator, so that you can see when a tag has been
read. The 220Ω resistor is used to limit the current going to the LED.

The SparkFun breakout board allows you to work with your reader on a
breadboard, and it fits any of the ID Innovations readers (even though it’s
labeled ID-12). Their pins have a 2mm pitch, so they do not fit into a regular
breadboard, which has holes spaced at 0.1" (2.54mm), so you have to use the
breakout board for any prototyping. In fact, even if you aren’t planning to use
a breadboard, the breakout board is handy because the 2mm pins are really
pretty inconveniently close together to work with. The breakout board also
is registered to fit into the RFID reader in only the correct orientation. One
of the pins on the reader is missing, and the breakout board aligns with this
missing pin, as shown in Figure 9-3.

	

Figure 9-3:
The

SparkFun
breakout
board is
keyed to
fit the ID

Innovations
readers.

	

To go along with the SparkFun breakout board, you also need some pin
headers, in either regular or long variety. I’d strongly suggest long headers,

187 Chapter 9: Building an RFID Tag Reader

since on a breadboard the reader overlaps the jumper wires, making it dif-
ficult to see the connections and (more importantly, depending on the type
of jumper wires you use) putting strain on the wires themselves, which can
make for bad connections and cause the sensor not to work.

It doesn’t come with them. You connect the pins to your breakout board so
that you can insert it into your breadboard. You could also simply solder
wires directly to the breakout board if you are going to put your reader some
distance away from your Arduino.

The relay is an extremely convenient little guy called a reed relay, and it’s
in a dual in-line (DIL) package, so it fits perfectly onto your breadboard. The
relay has an internal coil resistance, which means you can connect it directly
to an Arduino digital pin and operate it. You could control any of the other
projects in this book with it, too.

	 This reed relay can only switch up to 100V DC and 1A or less. Don’t connect
it to an AC electricity circuit, such as a household appliance would use. If you
want to do that, you need to connect a bigger relay to this one or use a power
transistor instead.

Assembling your RFID reader
After you have all the parts, you are ready to assemble the reader. You first
build the breakout board and then connect it to your RFID reader. Then you
add the reader assembly to your breadboard and complete it with the addi-
tional components.

Adapting your reader to your breadboard
Do the following steps to build your breakout board:

	 1.	 Snap off a group of five pin headers and a group of six pin headers,
which will go into the holes on your SparkFun breakout board.

	 2.	 Insert the pins into your breadboard so that they can accommodate
the breakout board, as shown in Figure 9-3.

		 This is so that you can hold the pins steady while you solder them to the
breakout board. It’s a really convenient technique to use for soldering
pins, when you can do it! See Figure 9-4.

188 Part III: The Interactive Home and Garden

	

Figure 9-4:
Holding your

pins with a
breadboard.

	

	 3.	 Add your board to the top of the pins, with the SparkFun logo facing
up. You need to make sure the pins are pointing the right way or you
won’t be able to add your RFID reader!

		

Make sure that you solder the pins to the breakout board with the
SparkFun logo facing up!

	 4.	 Carefully solder the two rows of pins in place, as shown in Figure 9-5.

	 5.	 Remove your breakout board from the breadboard.

		 Gently slip your finished breakout board-with-pins assembly onto the
RFID reader, as shown in Figure 9-6. It will only fit on the reader in the
correct orientation.

	 	 Pay special attention to make sure that your breakout board is snug and
parallel with the reader, or it won’t sit flat on your breadboard and will
look funny.

189 Chapter 9: Building an RFID Tag Reader

	

Figure 9-5:
Soldering

your pins on
the break-
out board

with the
SparkFun

logo
facing up!

	

	

Figure 9-6:
Fitting your

breakout
board to the

reader.
	

190 Part III: The Interactive Home and Garden

	 6.	 Carefully solder the breakout board to your reader.

	 You should work carefully, but quickly when soldering any integrated circuit
(IC). The pins are rated to withstand a certain amount of heat during solder-
ing, but lingering too long on one could damage your reader. If you’re working
slowly, it’s a good idea to take a break for a few moments between pins so
the heat doesn’t build up during the process. Don’t rush. Carefully solder the
breakout board to your reader, as shown in Figure 9-7. The RFID reader IC isn’t
going anywhere!

	

Figure 9-7:
Soldering
your pins

on the RFID
reader.

	

Building your circuit
Now that your reader assembly is ready, you can complete the rest of the cir-
cuit. The schematic diagram in Figure 9-8 shows how the reader is connected.
It’s a fairly simple connection, requiring only four wires to the Arduino! The
rest of the connections go to the LED and relay.

The parts layout diagram in Figure 9-9 shows how to connect everything on
your breadboard. Note that two wires trail off to the top. Here is where you
could connect something to the relay so that you can switch it on and off.
The relay circuit is optional, of course. To start out, you may only want an
indicator LED. You can always add the relay later.

191 Chapter 9: Building an RFID Tag Reader

	

Figure 9-8:
Schematic
diagram of

the RFID
reader.

	

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

ID12

LED

ANT

ANT

CP

Future

Reset

D1

D0

+/-
GND

+5V

1

7

9

13

14

6-

2+

8

D31A*

RFID1

Arduino1

DIP-Relay1
D31A*LED1

Green (555nm)
R1
220Ω

	

Figure 9-9:
Parts layout

on your
breadboard.

	

192 Part III: The Interactive Home and Garden

Programming your RFID reader
After you’ve built the circuit on your breadboard, you can send your code
(download it from the companion website at www.dummies.com/go/
arduinoprojectsfordummies). But to get it to work right, take a look at it
before uploading. You need to set it up with the correct RFID tag ID before it
will work with your LED and relay. Most RFID tags do not come with any indi-
cation of what their unique ID is. Fortunately, you can use the serial monitor
to figure out what ID is encoded on your tag.

Take a look at the code to see how you do this before you upload your code
to your Arduino and test your reader.

Variable declarations
You start with four variables:

const int relayPin = 11;
const int ledPin = 12;
const int RFIDResetPin = 13;
const int relayOntime = 5000;

These four integer constants hold the values that don’t change in your pro-
gram (and are hence “constant”). You’re using three digital pins on the
Arduino for this project. Two control output to the LED and the relay, respec-
tively. The third is a reset pin. The reader doesn’t automatically reset itself
to be able to read the next tag, so you have to tell it specifically that you
are ready to do that by sending a reset signal on this pin. You simply toggle
it HIGH and LOW. The last constant sets how long you want to operate the
relay, once a tag is detected.

Next, you add several char arrays that store the ID numbers:

char tag1[13] = “3B00DDBF9FB6”; // Your scanned tag ID goes here
char tag2[13] = “010203AABBCC”; // these are example Iag IDs only
char tag3[13] = “020304BBCCDD”; // these are example Iag IDs only
// etc. for more tags
....

I’ve shown three tags here, as an example, but you can add many more, lim-
ited only by the memory on your Arduino. The tags consist of 13 bytes of
data consisting of 12 values, plus an end-of-line character (which char arrays
usually have as the last character).

	

The IDs are stored as hexadecimal numbers, not the regular decimal numbers
from 0–9. Hex numbers include the values for 10–15 as the letters A through

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

193 Chapter 9: Building an RFID Tag Reader

F. So, each single digit in the ID represents a number from 0–15 (in decimal
terms).

Note that these IDs are just examples. You need to replace them with your
own, which you probably don’t know yet. That’s why the code includes a
way to show your tag IDs. However, you can’t leave them out altogether. You
need to have at least one char array because the main code expects there to
be one to which to compare any new tag. So leave these in place, even if you
don’t know your ID yet. You can substitute the correct value(s) for your tag
later.

Setup
Now you are ready to set up your Arduino running environment for reading
tags. Take a look at the next part of the code. It should seem pretty familiar if
you’ve done any of the other projects in this book already:

void setup(){
 Serial.begin(9600);
 pinMode(RFIDResetPin, OUTPUT);
 pinMode(ledPin, OUTPUT);
 pinMode(relayPin, OUTPUT);
 digitalWrite(RFIDResetPin, HIGH);

 Serial.println(“Ready.”);
}

The first line sets up a serial port for communication with your computer at
9600 bps (over the USB port). Both your computer and the RFID reader com-
municate with your Arduino using the serial communication protocol. Your
Arduino’s serial port is connected to your USB connection, and the same port
is shared with digital Pins 0 and 1. Pin 1 is used to transmit information, and
Pin 0 is used to receive information. This is why they are labeled TX and RX.
You connected your reader to Pin 0 so that your Arduino can also receive
information from the reader on the RX pin. Because you are sharing the serial
connection with both your computer and the RFID reader, you need to use
the same speed for both your Arduino and the tag reader, which expects to
be using 9600.

The three pinMode instructions set your toggle pin (to reset the reader), the
LED pin, and the relay pin for output. The Ready statement provides confir-
mation everything went okay.

The main loop
Now you’re ready to get on with things. Check out this code for the main
loop:

194 Part III: The Interactive Home and Garden

void loop(){

 Serial.println(“Looking for a tag...”);
 char tagString[13];
 int index = 0;
 boolean reading = false;

 while(Serial.available()){
 int readByte = Serial.read();
 if(readByte == 2) reading = true;
 if(readByte == 3) reading = false;
 if(reading && readByte != 2 && readByte != 10 && readByte != 13){
 tagString[index] = readByte;
 index ++;
 }
 }
 checkTag(tagString);
 clearTag(tagString);
 resetReader();
}

You want to know that everything is proceeding according to plan, and the
“Looking for a tag...” message provides confirmation of this, for every cycle of
the loop. You then create a char array called tagString[] that holds the 13
bytes of anything that the reader detects and reports to the serial port. You
will write each individual byte to this array, one position at a time. To keep
track of which byte you are writing in the array, you create the int variable
called index. Every time you write another byte, you will increase it by one.
The boolean reading keeps track of whether you’ve been advised there is a
new tag to process.

Next is a while statement. As long as the condition in parentheses is met,
that there is a valid connection from the serial port, and it is receiving data,
everything inside its curly brackets is executed. First, you create a local vari-
able to store the next byte that is being read from the serial port with the
Serial.read() command. The tag reader sends a value of 2 first, if it has a
tag ID to report. Otherwise, you’ll read a 3. Depending on which it is, you set
the boolean value reading to true (if the value is 2) or false (if it’s 3).

This is where the real action is:

 if(reading && readByte != 2 && readByte != 10 && readByte != 13){
 tagString[index] = readByte;
 index ++;
 }

195 Chapter 9: Building an RFID Tag Reader

The two ampersands && are a logical AND, and the != is a logical NOT EQUAL
TO comparison. This line says that if there is a reading (because the boolean
variable reading has been set to true), AND the byte read is not 2, AND also
is not 10, AND also is not 13, then do what’s in the curly brackets. The values
2, 10, and 13 mean beginning, end, and linefeed, respectively. If the byte is not
one of those, then it must be the tag data you’re seeking. So, in the next line,
you store the value of readByte in the array tagstring[] at the position
index. You are keeping track of this index position for each character you
read in. The last step is to bump up the index by 1 so that the next stored
value will be at the next place in the array.

	 Remember that array numbering starts from 0, so the first byte is index 0,
the second is index 1, and so on through 11 bytes. After you go through all 12
bytes of the ID, each of the bytes you read has its own numbered position in
the tagString[] array and you can compare it to your list of valid ID tags.

There are three final steps in the main loop that are done with three user-
defined functions. The main loop is then closed with its ending curly bracket.

User-defined functions
There are six user-defined functions, some of which are called within other
functions. It may seem a bit complicated to branch from one function to the
next this way, but it keeps each of your code’s operations modular and self-
contained, and is good coding practice. You should try to keep your functions
as modular as possible, so that if you need to change how a particular func-
tion works, you only have to change it in one place, and every time that func-
tion is needed it will behave the same way.

The checkTag() function checks whatever is in the tagString[] array
(whether or not it’s a valid tag), against the list of valid tags. This function
accepts a char array as its input. This is specified within the parentheses,
where you are defining what the function should expect to receive so that it
can evaluate it. In this case, that’s a char array. In the main loop when you
checkTag(tagString), you are passing the char array called tagString
to this function, so that it can evaluate whatever is in tagString:

void checkTag(char tag[]){

 if(strlen(tag) == 0) return;

 if(compareTag(tag, tag1)){
 lightLED();
 triggerRelay();
 }
 else if(compareTag(tag, tag2)){
 lightLED();

196 Part III: The Interactive Home and Garden

 }
 else if(compareTag(tag, tag3)){
 lightLED();
 } else {
 Serial.println(“New tag found: “);
 Serial.println(tag);
 delay(5000);
 }
}

If the length of the string is zero, there’s nothing in it. This is not likely to
happen, but it’s good to be on the safe side. You test this condition with
the strlen() function. The value of (tag) is whatever char array was just
passed to this function. There are two == signs because this test is a logical
IS EQUAL TO evaluation. The return means to drop out of this function alto-
gether if there is nothing in the array.

The next if statement tests whether the data passed to this function
matches one of your stored tags. It uses another user-defined function called
compareTag(), which takes two char arrays as inputs. It works by compar-
ing two arrays: the one you just read in, and the one stored at the top of your
program called tag1. I get to the details of how it does this later in this chapter.

If the comparison is valid, you’ve got a known tag. So you execute the light
LED() and triggerRelay() functions listed in the next code segment.

You then repeat this test for each tag in your variable declarations at the top
of the program, tag2, tag3, and so on. You can add any number of tags that
you want to check for in the else if test for each one.

If none of those tags checks out, then this must be a new and unrecognized
tag. In that case, it’s handy to know what its ID number is, so you print this to
the serial monitor with the Serial.prinln statements. The delay provides
five seconds, so you can write it down.

So, let’s take a look at how compareTag() works. It is a boolean function,
so it just returns a value of TRUE or FALSE, no matter what comparison you
ask it to do:

boolean compareTag(char one[], char two[]){

 if(strlen(one) == 0) return false;
 for(int i = 0; i < 12; i++){
 if(one[i] != two[i]) return false;
 }
 Serial.println(“Valid tag found!”);
 return true;
}

197 Chapter 9: Building an RFID Tag Reader

This function takes two char arrays as input (the one you just read and any of
the ones in your list of valid tags), and if there is a match it returns the value
TRUE to the part of the program that called it (the checkTag() function). If
the length of the string is zero, there’s nothing in it, in which case the func-
tion returns a value of FALSE. Again, just to be on the safe side.

Otherwise, the for loop goes through each character of the two arrays
and compares them. If any one of these characters is not equal to the other
one, then the tags do not match, and the comparison is returned as FALSE.
However, if you go through all the characters successfully, then the two
arrays match and the function returns a value of TRUE. The good news is
reported to the serial monitor. And that, friends, is how you compare the two
ID numbers.

The lightLED() function turns on the digital pin for the led (ledPin), waits
for a quarter of a second (250 milliseconds), and then turns it off. That way
you will know a valid tag was read, even when your Arduino is no longer con-
nected to a computer:

void lightLED(){
 digitalWrite(ledPin, HIGH);
 delay(250);
 digitalWrite(ledPin, LOW);
}

The triggerRelay() function works the same way but using the relayPin,
and it holds the relay open for the duration specified by relayOnTime in your
variable declarations:

void triggerRelay(){
 digitalWrite(relayPin, HIGH); // Turn on the ledPin
 delay(relayOntime); // Wait a moment
 digitalWrite(relayPin, LOW); // Turn off the ledPin
}

Then, you clear the tagString[] array so that the next reading can be
taken, using the clearTag() function. It uses a for loop to go through each
index position of the array that was passed to (which is always tagString),
and sets the value of each position to zero:

void clearTag(char one[]){
 // Clear the tag reading char array by filling it with ASCII 0
 // If not null, it could indicate another tag read
 for(int i = 0; i < strlen(one); i++){
 one[i] = 0;
 }
}

With this function, you’ve effectively erased the tag you just read from memory.

198 Part III: The Interactive Home and Garden

Finally, your resetReader() function tells it to get ready for another read-
ing by toggling the reset pin LOW and then HIGH. The delay ensures this was
properly achieved, but is probably not really necessary:

void resetReader(){
 // Toggle the reset pin so the RFID reader will read again
 digitalWrite(RFIDResetPin, LOW);
 digitalWrite(RFIDResetPin, HIGH);
 delay(150);
}

Testing and Setting Your RFID Reader
Now that you’ve built your reader and you understand the code, the first
thing you need to do is test your code and read the code from your RFID
tag(s). Remember that the wire connected to digital Pin 0 is also connected
to your USB serial port. If you try to send code to your Arduino with this
wire attached, it will cause errors, because both your tag reader and your
USB connection will be writing to the same serial port. You don’t want your
reader to be sending stray data on that connection while you are uploading
your sketch to your Arduino.

	

To avoid problems uploading your code, always disconnect the wire on Pin 0
before uploading your code and then reconnect it after you’ve confirmed the
transfer.

If you forget this, it won’t damage anything, but you probably will get orange
error messages and have to restart your Arduino or your Arduino IDE, or
both!

So, disconnect that wire and then upload your program. Then reconnect
the wire and click on the serial monitor in your Arduino IDE. Scan your tag
over the ID Innovations reader, as shown in Figure 9-10. I’m holding my hand
about three to five centimeters above the reader.

Because you probably won’t have this tag listed in your code yet, something
like Figure 9-11 should appear. The new tag ID is printed to the screen in
hexadecimal numbers. Write down this number so you can add it as a valid
tag in your variable declarations later. Also, you should get any other tags
you want to track and do the same.

199 Chapter 9: Building an RFID Tag Reader

	

Figure 9-10:
Scanning

an unknown
tag.

	

	

Figure 9-11:
Getting the
value of an

unknown
tag in

the serial
monitor.

	

After you’ve completed scanning all the tags you want to track, edit the
tag[] arrays:

char tag1[13] = “0123456789AB”;

200 Part III: The Interactive Home and Garden

Change the numbers in the quotation marks to be the hexadecimal value of
your tag. There should only be 12 digits. Occasionally, you may see a stray
number at the very end, but ignore that if it occurs. Keep going until you’ve
added new arrays for every tag ID you want to track.

	

Make sure to also update the checkTag() function at the end of your code,
so that it checks the same number of tags you’ve stored at the beginning of
your program.

Now, disconnect your tag reader from Pin 0, upload your new code, and
check whether it works. You should see something similar to Figure 9-12.
Your LED should also turn on for a moment, and your relay will activate. To
be sure, you can connect your multimeter to its wires to see whether they’ve
been connected.

	

Figure 9-12:
Reading a

valid tag
successfully.

	

Now you’re ready to start tagging, scanning, opening, closing, and activating.
If you’re like me, you won’t hesitate to start tagging . . . and bragging!

Chapter 10

Building an Automated Garden
In This Chapter
▶	Building a moisture sensor probe
▶	Using power transistors
▶	Actuating a solenoid valve
▶	Building an irrigation system

H
ow many plants do you have to kill before you decide you need a help-
ing hand? I went through three or four before guilt took over. When my

wife’s new miniature olive tree bit the dust, my creative tinkering hat went
on. An Arduino is perfect for patiently — really patiently — waiting for some-
thing to happen and then responding quickly and reliably.

I whipped up this system to prevent more plants from going to the great com-
post heap in the sky. Even though my wife and I see the tree every day, we
sometimes forget to water it. But my trusty Arduino is keeping the new olive
tree happy.

Having your Arduino stand in for you as a plant minder can also be handy
if you are going on an extended trip and won’t be around to make sure your
plants don’t get too parched.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

Creating a Watering System
In this project, you build a system to automatically water a houseplant when
the soil in its pot becomes dry. To monitor your plant’s hydration, you use
inexpensive and readily available materials to whip up a simple homemade
sensor that measures soil moisture (also known as soil moisture tension).
This sensor is inserted into the soil of the thirsty plant. You calibrate this
sensor to tell your Arduino when to water it.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

202 Part III: The Interactive Home and Garden

The water comes from a homemade reservoir made from a 2-liter soft drink
bottle that you mount above your plant. You run a water supply tube from
the bottle to your plant. You program your Arduino so that when your sensor
detects that the soil is too dry, it opens an electronic solenoid valve that is
inline with the supply tube.

The 2-liter supply should be enough to keep your plant going for a long time,
and you can refill the reservoir every week or so, depending on how thirsty
your plant is. You can extend this system easily to monitor multiple plants
and water them independently.

Selecting Your Parts
Figure 10-1 shows the parts you need for this project. Aside from the elec-
tronic components, most of these are readily available at hardware stores
and home centers.

Your Arduino can control up to six plant irrigators independently. The parts
listed here are enough to build one sensor and one mechanism. If you want to
water more plants (up to six), you should get all the extra accessory parts for
the sensors and the watering reservoir.

Your exact requirements depend on how many plants you are monitor-
ing and whether you want to use a single 2-liter reservoir. Here’s what you
should get:

	 ✓	An Arduino

	 ✓	A thirsty plant

	 ✓	A 9–12V DC, 1 amp power transformer for your Arduino

	 ✓	A length of 2-conductor, low voltage wire (22–24 AWG) to run power
from your transformer to your project box and solenoid valve (not
shown)

	 ✓	A very small plant pot filled with rice

	 ✓	A small enclosure for your Arduino

For each sensor, you need:

	 ✓	A 10kΩ resistor

	 ✓	A length of two-conductor, low voltage wire (not shown)

	 ✓	A very short length of 15mm (5⁄8 in.) outside diameter (OD) clear vinyl
tube (not shown)

203 Chapter 10: Building an Automated Garden

	 ✓	Two 50mm (2-in.) galvanized finishing nails

	 ✓	About 50g (1⁄8 cup) measure of plaster of Paris (calcium sulfate hemihy-
drate) such as DAP Brand plaster of Paris or Herculite 2 (Formula brand)
(not shown)

	 ✓	Adhesive tape

For each irrigator and reservoir:

	 ✓	A TIP120/TIP121 power transistor

	 ✓	A 1N4001 or similar diode

	 ✓	Two pin headers

	 ✓	A 12V DC 2-port water/air solenoid valve, such as SMC part number
VDW21-6G-2-M5-Q (such as RS#701-3233). See Figure 10-2.

	 ✓	Two male parallel threaded elbow connectors, M5x6mm. See Figure 10-2.

	 ✓	About a meter (3 ft.) of 6mm (1⁄4-in.) outside diameter (OD) flexible nylon
tube (such as Newark # 95M4630 or RS #386-6190)

	 ✓	A 2-liter beverage bottle and a small to medium plant pot to use as a
stand for it (not shown)

	

Figure 10-1:
Some of the

key parts
you may

need for this
project.

	

204 Part III: The Interactive Home and Garden

It doesn’t matter which Arduino you use for this project. I used an Arduino
Uno. Any thirsty plant will do, but ideally one that has a fearsome thirst to
satisfy.

The power supply should be rated at 9–12V DC. It needs to supply the needs
of both your Arduino and your solenoid valve(s). Your Arduino needs 500mA
to operate, and each solenoid will need about 300mA. Combined with the
Arduino, that’s a current requirement of 800mA. You will only ever actuate
one valve at a time, so that means your power supply needs to provide a
minimum output of 800mA. It’s okay to use one with a higher rating, but if
you use a lower rating, there won’t be enough power to operate everything
and your Arduino may reset when the valve activates.

The two-conductor wires can be used for both your sensors and powering
your valves. The kind with a “figure 8” profile is easy to cut and work with.
You should estimate running one wire pair from each sensor to the Arduino
and a second wire pair to power your solenoid(s). Adding all these distances
determines the length of wire you need for your whole system.

You need to buy the correct quantity of parts for the number of sensors
and irrigators that you want to build. For the sensor(s), the only electronic
component you need is a 10kΩ resistor (and the wire). You need the larger
vinyl hose, the galvanized nails, plaster of Paris, and adhesive tape to build
the sensor itself. Make sure to get galvanized nails because the protective
zinc coating prevents them from rusting. They’ll be embedded in moist soil,
so this is sure to happen if you use ordinary nails. You use the rice and the
small plant pot to help you build the sensors. Afterward, you can eat the rice
as a tasty snack.

The solenoid valve (see Figure 10-2) does the work of controlling the flow of
water from the reservoir to your plant. It has an electromagnetic coil inside
that opens a tiny valve mechanism when powered up. They are used for a
huge number of industrial applications for controlling fluids or compressed
air. A familiar example is the fountain beverage dispenser, which controls the
flow of syrup and carbonated water into your soft drink cup when you (or a
bartender) press the button. They are fast, quiet, and relatively inexpensive
and come in a huge number of types, styles, and options. Make sure that
there are two ports (for water in and water out) and that they are the right
size for your supply tube. The valve in this project has M5 size threads, and
you use threaded elbow adaptors to attach your water supply line to the
valve. One side of the adaptor has threads that match the valve and the other
has a push-fitting (6mm) into which you simply insert your water line. The
other consideration for the valve is its electrical rating. The valve in the parts
list from RS components is rated for 24V DC but will operate at 12V DC. If you
have difficulty obtaining this exact valve, any one will do, as long as its power
requirement matches your power supply and its ports match your supply
lines.

205 Chapter 10: Building an Automated Garden

	

Figure 10-2:
A solenoid
valve and

supply line
adaptors.

	

Each solenoid valve and water reservoir requires its own set of electronic
parts. The discrete components, such as the transistor, diode, and resistors,
control the power for each solenoid valve. Each connection requires a pair
of pin headers so that you can connect the power wire to your Arduino.
The number of valves is up to you, but you need at least one for each water
reservoir. You could also build a single, larger reservoir with multiple sole-
noid valves attached to it and likewise, you could attach multiple plants to a
single sensing/irrigation system. It’s up to you and your plants to determine
what’s best. You also need flexible nylon/plastic tubing that runs from your
reservoir(s) to your plant(s). You can buy this from the suppliers listed earlier,
but you may be able to get both this and the larger tubing for the sensors from
a well-stocked pet supply store. These parts are often used for fish tanks.

In addition to the usual, small hand tools that are part of your workbench
setup (listed in Chapter 2), you will also need a small hand drill and 6mm
(1⁄4-in.) general purpose drill bit, or some other way of drilling a neat hole into
the cap of the 2-liter bottle.

Building Your System
To build the system, you need to construct your sensors, fabricate and assem-
ble the reservoir and valve assembly, and run the supply line(s). When you’ve
got the system working and tested, you can set up the code and calibrate it.

206 Part III: The Interactive Home and Garden

Building your moisture sensor
The moisture sensor is simply a block of gypsum with two galvanized nails
in it. When the soil is dry, the block is dry and there is infinite resistance
between the two nails (or probes, if you want to sound technical). When the
soil is wet, some of the moisture penetrates into the block and between the
two nails, allowing electrons to pass between the probes. You measure this
electron flow by using an analog pin on your Arduino. The more water, the
lower the resistance. When the soil is completely wet, there will be little or
zero resistance. You use the range of values measured on your analog pin to
determine whether or not it’s time to water the plant.

	 You wouldn’t want to use this system to measure a precise value for soil mois-
ture because after the plaster gets moist, its resistance drops very low. This
is not good for measuring gradual changes in soil moisture (say for plotting a
graph), but it’s fine for simply determining when to water your plant.

To build the probes, you attach wires to your nails and insert them into a
mold made from the vinyl tube. If you are going to build several probes, it’s a
good idea to do them all at once. That way, you only have to mix the plaster
once. Make at least a couple of them, so that you have a spare. Plug in your
soldering iron and fire up your hot glue gun. If you have a low power solder-
ing iron (under 35 watts) you might not be able to heat the nails hot enough
for solder to stick to them. In that case, skip the soldering (Steps 1 and 2) and
wrap your wires around the nail heads after your plaster has set.

Do the following steps:

	 1.	 Strip and twist the ends of a piece of your two-conductor wires long
enough to reach from your plant to where the Arduino will be sitting.

	 2.	 Coat the wire ends with a small amount of solder.

		 This is called tinning the wire.

	 3.	 One at a time, clamp each nail in your helping hands and apply a lot
of heat to the head of the nail with your soldering iron, gradually
adding a little bit of solder until it sticks.

		 This step may take 20 to 30 seconds and the nail will get pretty hot.
Refer to Figure 10-3.

	 4.	 When the solder is molten on the tip of your nail, add your wire, melt-
ing everything together, and hold it there a couple of moments, until
the solder hardens.

207 Chapter 10: Building an Automated Garden

	 5.	 When the nails cool, hold them about 5mm (1⁄4-in.) apart and apply
some hot glue to the space between them.

		 Doing this prevents them from touching each other when you add them
to the plaster mold.

	

Figure 10-3:
Soldering

wires to
your probe.

	

To prepare your mold, follow these:

	 1.	 Cut a small section of the large vinyl tube, about 2cm (a half-in.)
longer than your nails, as shown in Figure 10-4.

	 2.	 Make a vertical slice in your tube so that it will be easy to remove
from the hardened plaster.

	 3.	 Place a piece of tape on the bottom of the tube to prevent plaster
escaping from the bottom of the tube.

		 The tape also holds its sides together.

	 4.	 Gently press the tube into the pot of rice, which holds it upright while
the plaster sets, as shown in Figure 10-5.

	

Figure 10-4:
Cutting your

vinyl tube
mold.

	

208 Part III: The Interactive Home and Garden

	

Figure 10-5:
Applying

tape to your
mold.

	

	 5.	 Use a disposable stick and a paper cup to mix your plaster at a ratio of
two parts of plaster to one part of water.

		 Fifty grams (1⁄8 cup) of plaster will make enough for two probes. Mix it
until it’s nice and smooth. Wait for a minute or two so the plaster starts
to set a bit. It should be the consistency of thin pudding.

	 6.	 Carefully fill the vinyl tube(s) with the plaster, leaving about 5mm
(1⁄4-in.) at the top, since some plaster will be forced up the tube when
you put in the nails, as shown in Figure 10-6.

	 7.	 Insert the nails into the plaster and hold them there for a minute or
two while it thickens.

		 Make sure they are vertically centered in the tube and they don’t touch
the sides. You can use a small block of wood to hold the wire in place
while the plaster sets, or rest the wire on the side of the plant pot.

	 8.	 After an hour, remove the probe and peel off the vinyl tube, as shown
in Figure 10-7. It can be discarded or saved to make more probes.

	

Figure 10-6:
Filling the
mold with

plaster.
	

209 Chapter 10: Building an Automated Garden

	 9.	 If you are using the twist-on method to attach your wires, strip about
an inch of insulation off the wires and gently wrap each wire around
one nail head, as shown in Figure 10-8.

	 10.	 Apply a neat coating of hot glue to the top of your probe. Refer to
Figure 10-9.

		 This protects it from getting wet on top and provides strain relief for the
wire.

	

Figure 10-7:
Removing

your probe
from the

mold.
	

	

Figure 10-8:
Using the

wire wrap
method.

	

210 Part III: The Interactive Home and Garden

	

Figure 10-9:
Finishing

your probe
with hot

glue.
	

The plaster needs time to set fully so it will be completely hard and dry. You
need to ensure that it’s dry before you calibrate the probe to your Arduino.
Set aside the probe(s) to dry for a good 24 hours. This is a good time to get
on with building the reservoir and writing the code.

Building your reservoir
The water reservoir is cheap and simple to make. The only tricky part is drill-
ing into the cap. You need to use a small hand drill or a power drill to do this.
I use a 6mm wood drill bit, which goes through the plastic pretty easily. You
could more easily bore a hole into the side of the bottle, but the bottle walls
are very thin, so your hose won’t be very secure. To build the reservoir, com-
plete the following steps:

	 1.	 Drill a hole into the bottle cap, as shown in Figure 10-10.

		 Drill slowly so that the downward pressure from your drill will prevent
the cap from spinning or flying across the room.

	 2.	 Insert one end of the plastic tubing into the cap so that a short amount
protrudes on the interior side of the cap, as shown in Figure 10-11.

		 This should form a snug fit.

211 Chapter 10: Building an Automated Garden

	 3.	 On the underside of the cap, apply a small mountain of hot glue
heaped up on the sides of the tube.

		 Be careful not to get any glue into the threads of the cap, or the very
bottom flange where the cap makes a seal. Otherwise, it will leak!

	 4.	 Apply a similar amount of glue on the outside and hold the tube
firmly until the glue cools.

	 5.	 Poke a small hole into the bottom of the bottle, which will allow air to
get inside when it is inverted.

		 Otherwise, the gravity feed won’t work very well because a vacuum will
build up in the top half of the bottle.

	 6.	 Cut a hole in the bottom of your medium plastic plant pot, which acts
as a support for your two-liter bottle. See Figure 10-12.

	 7.	 If needed, cut a hole out of the side of your pot so that the tube can
pass through.

When you’ve finished fabrication, install your reservoir onto your base to
check the fit, as shown in Figure 10-12. For the ultimate test, fill the bottle
with water, covering the small hole in the bottom. Screw on your supply line
assembly and invert it to check for leaks.

	

Figure 10-10:
Drilling a

hole for your
supply line.

	

212 Part III: The Interactive Home and Garden

	

Figure 10-11:
Inserting the

supply line.
	

	

Figure 10-12:
Fitting the
reservoir
onto the

base.
	

Running the water supply
Determine exactly where you want to place the irrigation system. For the
gravity feed system to work, your water supply reservoir needs to be ele-
vated above the plant that you want to water. You may need to place it on a
small box or shelf to achieve the correct height.

You need to determine a suitable location for your solenoid valve. It doesn’t
matter too much where you put it, so long as you can mount it to a stable
surface. You also need to make sure that your control wires are long enough

213 Chapter 10: Building an Automated Garden

to reach your Arduino. I mounted mine to the Arduino enclosure itself, so I
used the existing wires on the valve.

You can now measure the correct distance for your supply lines. Cut the
tubing to the desired length to reach the place where your valve is located
and from there to the bottom of your plant pot. Make sure to run the output
line to the bottom of your plant pot — that’s where the roots are located!

Building the breadboard circuit
This project has a very simple schematic, shown in Figure 10-13. It consists of
a voltage divider circuit that is connected to your Arduino’s analog pin and
an actuator circuit connected to a digital pin, which switches the power to
your solenoid valve on and off.

	

Figure 10-13:
Schematic

of the irriga-
tion system.

	

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND

+12V

Arduino1

R1
10kΩ

Moisture Sensor

Solenoid Valve

Q1
TIP120

D1
1N4001

214 Part III: The Interactive Home and Garden

The parts placement diagram in Figure 10-14 shows the setup for 1 sensor
and 1 solenoid valve, but you can extend it to accommodate up to 6 sensors
on an Arduino Uno — and if you are feeling really ambitious, up to 15 on an
Arduino Mega!

When you’ve completed the wiring and testing, you can build this project on
a half-size breadboard and fit everything into your enclosure, as shown in
Figure 10-15. I’ve made an “Arduino sandwich” by stacking the breadboard
underneath the Arduino inside the enclosure. You need to drill a couple of
small holes for your power supply line and your sensor leads, so make sure
to get an enclosure you can cut into easily with the tools at your disposal. A
small 7.5 x 10 x 5cm (3" x 4" x 2") ABS plastic or wood enclosure should be
sufficient to fit both the breadboard and your Arduino.

	

Figure 10-14:
Parts place-
ment on the
breadboard.

	

215 Chapter 10: Building an Automated Garden

	

Figure 10-15:
Putting

everything
into an

enclosure.
	

Coding, Calibrating, and Testing
The code for this project is pretty short and sweet. Now that you’ve got the
components in place on your breadboard, check out this code, so you know
how it works. Then, set your values as explained below and upload them to
your Arduino.

In the first section, you declare your variables:

int sensorPin = A0;
int valvePin = 9;

const int dryThreshold = 900;
const long sampleInterval = 6000000;
const int irrigationTime = 5000;

boolean DEBUG=true;

The sensor is connected to analog Pin 0, and appropriately named. The valve
is connected to digital Pin 9. If you have more than one valve or more than
one sensor, you can simply add additional variables to handle them.

216 Part III: The Interactive Home and Garden

The integer value dryThreshold specifies the point of dryness at which you
want your Arduino to take action. When the value from A0 is higher than this
value, the irrigation is triggered.

The sampleInterval variable is used to delay the time between readings.
There’s no need to constantly check the analog port because timing isn’t
very critical. Evaporation is a slow process, so your probe dries out over
hours or days.

You use irrigationTime to specify in milliseconds how long the water will
be allowed to flow. You determine this value during testing and calibration.

I usually include a Boolean variable called DEBUG in my code. In most circum-
stances, the only way to see what’s going on your Arduino (such as values
of variables or readings) is to print statements to the serial port using the
Serial.println() command. But you don’t need to do this after you’ve
perfected your code. No need to be clogging up the serial port (or even using
it at all) once the bugs are worked out. If you place all of your debugging
statements within a conditional if statement that is contingent on DEBUG
being true, you can ensure they are executed only when you are debugging.
You simply change the debug value to false when you are done testing. This
is a matter of style really, but it can be very handy if you are building a proj-
ect that uses the serial port for communication, in which you want to be able
to debug the code as well.

Defining the setup
In the setup() section of your code, you prepare the Arduino to run the
system.

void setup(){
 if(DEBUG){Serial.begin(9600);}

 pinMode(sensorPin, INPUT);
 pinMode(valvePin, OUTPUT);
 digitalWrite(valvePin, LOW);
}

The if statement checks whether you have set the DEBUG Boolean to be true
and if so, activates the serial port.

You then use the pinMode function to tell the Arduino to use the sensorPin
for input and the valvePin for output.

217 Chapter 10: Building an Automated Garden

Make sure that the valve is closed when you fire up the sketch, so you do
that with the last line in setup, using digitalWrite() to set valvePin to
LOW explicitly.

Running the main loop
You only need your Arduino to check the sensor and, if the soil is too dry,
release the floodgate(s). The main loop operates as follows:

	 1.	 Take a reading from Analog Pin 0.

	 2.	 Compare this reading to the threshold value.

	 3.	 If the reading value is higher than the dryness threshold, activate the
digital pin for the solenoid valve.

	 4.	 Wait for a few seconds.

	 5.	 Close the valve.

	 6.	 Wait until the next sample time and then start at the beginning.

Here’s the code:

void loop() {

 int sensorValue = analogRead(sensorPin);

 if(DEBUG){
 Serial.print(“Sensor value: “);
 Serial.println(sensorValue);
 }

 if (sensorValue>dryThreshold){
 digitalWrite(valvePin, HIGH); // Open the water valve
 delay(irrigationTime); // Keep it open for the irrigation time
 digitalWrite(valvePin, LOW); // Close the valve
 }
 delay(sampleInterval); // wait until the next time to take a reading
}

You use the local integer variable sensorValue to store a reading from the
variable sensorPin, which you initialized as analog Pin 0.

The next statement checks whether you have set the DEBUG Boolean to be
true and if so, prints out the reading taken to the serial port.

218 Part III: The Interactive Home and Garden

The conditional if statement then tests whether the reading taken
from Analog Pin 0 is lower or higher than the dryness level specified by
dryThreshold. If is higher, then the valve is opened by applying a voltage to
the valvePin. This causes the transistor to switch the valve on, and water
can flow. The duration of flow was set by irrigationTime. After this time
has elapsed, the valve is closed by writing valvePin to a LOW condition.

The last statement tells the Arduino to wait for the sampleInterval duration,
after which the next reading needs to be taken and the process starts all over.

Calibrating the sensor and flow rate
Now that your code is up and running, tweak it for your specific plant(s). You
need to determine the range of values your sensor will obtain and the flow
rate of your irrigation unit.

When you’ve added the preceding code, set the sampleInterval variable
to something short, say 100 milliseconds, so that you can watch your sensor’s
output and upload it to the board.

When the code starts, open your serial monitor and take note of the readings.
If your probe is bone dry, the sensor value should be at or near 1023, indicat-
ing infinite resistance. If it is something else, or something very low, you have
a problem with your wiring or your probe. It should be very dry. Try another
probe (remember the spare you made?) and see whether you have the same
problem. If you do, check your connections and test again.

Now, grab a short glass of water and dunk your sensor in it. Make sure that
there’s no chance that the leads on the top of the sensor are exposed to the
water, or you’ll have a short circuit and nothing will be measured.

Now observe the readings reported from your probe, which should be gradu-
ally declining. Recall that the values measured on analog pins range from 0
to 1023. This range corresponds to the value of the voltage present on a pin,
from 0 to 5 volts. If there is more resistance due to drier soil, there is less cur-
rent flow and consequently, a low-measured voltage due to the relatively high
resistance of dry soil. This value could be over 1000. If there is less resistance
between your probes, more current will flow between them. Therefore, the
measured voltage will be higher. A high-measured voltage means the soil is
very wet and conducting electricity well. In this case, the value is not likely to
go to zero, but will be in the low hundreds. In my tests, the sensors started at
1023 and declined over about two minutes to 110 or thereabouts.

219 Chapter 10: Building an Automated Garden

Now that you’ve observed your sensor in action, remove it from the water
and allow it to dry out. Depending on your ambient atmospheric conditions,
your probe should dry out fully in a few hours and your readings should be
back up to 1023.

Meanwhile, fill up your reservoir (making sure to cover the air vent in the
bottom with your finger), screw in the cap, and hold your finger over the
end of the tube. Now water your plant manually and count how many sec-
onds it takes to give it a good soak. Make a note of that number and set the
irrigationTime variable to be that number in milliseconds. My plant takes
about 7 seconds to water, so that’s 7000 milliseconds.

	 With a bit of testing, you can write the code differently, so that the flow shuts
off after the sensorPin detects a wet condition, but it takes several seconds
for the sensor to report this, so there is a danger you could overfill your plant
pot while you are still waiting for your sensor to report that it’s wet. To be on
the safe side, I simply set a fixed value.

With everything tested and calibrated, you can set your Arduino free from
the computer. Install the enclosure near your plant and plug in the power.
Make sure to place the probe deep into the soil so that the moisture measure-
ment will be taken from close to the roots (see Figure 10-16). But don’t bury it
entirely; otherwise you might get a short circuit from water touching the leads
on the tops of the nails.

	

Figure 10-16:
The

irrigation
system in
its jungle

home — our
kitchen

window!
	

220 Part III: The Interactive Home and Garden

Adding more valves
If you are irrigating more than one plant, you can do it without adding addi-
tional power supplies. You can power all your solenoids from a single supply,
so long as you do them sequentially. You probably don’t need to water all
the plants at once, so you can actuate the valves one at a time. This means
that you don’t have to use a bigger power supply. If you tried to power them
all at once, your Arduino would have an undercurrent condition and nothing
would happen.

Now sit back, relax, and enjoy the grow!

Chapter 11

Building a Tweeting Pet Door
In This Chapter
▶	Using Hall-effect sensors
▶	Attaching an Ethernet shield to your Arduino
▶	Using the Twitter library
▶	Sending a tweet

W
ith everyone sending tweets these days, it only makes sense that
your pet should be able to do the same! This project provides a

(somewhat) credible excuse to create a Twitter account for your pet and has
the practical benefit that you can see when your pet is in or out, even when
you’re not at home. I have an indoor/outdoor cat, who comes and goes as he
pleases. Living in the city, we sort of want to be sure that he is safe and know
what he is up to at any given time. What better way than to use the Internet
to provide a data feed of his comings and goings?

In this project, you modify your pet door with sensors that detect when a
magnet passes by them. A magnet mounted to the pet door flap triggers
these sensors when your cat or dog (or badger) is entering or leaving. Your
Arduino uses this signal to select a random message and sends this directly
to Twitter as a tweet. You won’t need to leave a computer connected to your
Arduino — everything is self-contained onboard. Also, many examples on
the Internet use an intermediary server to log in to Twitter and post your
tweet. If the server goes down, you can’t send tweets. The great thing about
this project is that your Arduino communicates directly with Twitter, with no
need to rely on an intermediary server.

After you finish this project, you’ll be able to detect when your pet enters or
leaves the house using Hall-effect sensors. You learn how to connect your
Arduino to your home network and the Internet, which can be useful for
other Internet-related projects of your own design.

222 Part III: The Interactive Home and Garden

Selecting Your Parts
The tweeting pet door detects your pet using a magnet and two magnetic
sensors, called Hall-effect sensors. When the door swings inward or out-
ward, the magnetic field alters the flow of electrons inside the sensors and
varies an output voltage. You measure this voltage to detect when the door
has been moved.

Figure 11-1 shows the parts you need for this project (except the pet door).
I built it using a breadboard first, but then moved it to its own housing near
the router, which is under the sofa.

Here’s what you need to start the project:

	 ✓	An Arduino Uno

	 ✓	An Arduino Ethernet shield (many suppliers carry these, including
sparkfun.com, shop.arduino.cc, coolcomponents.co.uk, and
oomlout.co.uk)

	 ✓	A pet door, available from your local pet supply center or online (not
shown)

	 ✓	A linear Hall-effect sensor, such as Allegro A1324 (Digikey 620-1432-ND,
RS Online 680-7507), in a single in-line package (SIP)

	 ✓	Several feet of 4-conductor wire, 22 AWG or similar (Radio Shack, Maplin)

	 ✓	Four pin headers

	 ✓	A small (3-5mm), strong magnet, such as a neodymium magnet (try
eBay)

	 ✓	A short Ethernet cable (not shown)

	 ✓	A 7-12V DC power adaptor for your Arduino

	 ✓	A suitable housing, if you want to keep the dust off of your Arduino and
Ethernet shield (SparkFun PRT-09682, Farnell 1848692)

	 ✓	Two small pieces of wood block or discarded plastic (2cm cubes), such
as a LEGO block (not shown)

	 ✓	Pet treats! (not shown)

Of course, you need some tools for the project — your wire stripper and side
cutters, hot glue gun and glue, and your “helping hands” clamp. I’m assuming
that you are working with an Arduino Uno, Ethernet shield, and the latest
version of the IDE. The current versions of the hardware and IDE are the
most reliable.

223 Chapter 11: Building a Tweeting Pet Door

	

Figure 11-1:
The parts

you need for
this project.

	

If you don’t already have a pet door, it’s a bit easier to do this project because
you can attach the sensors before you mount the door. But this project can be
retrofitted onto any pet door you might already have.

The two Hall-effect sensors measure the strength of a magnetic field and give
an output that depends upon the product you are using. You can find many
types of Hall-effect sensors, and they can provide digital or analog output.
You can find some that are latching, which means that they stay locked in the
last magnetic polarity reading taken (north or south) until they are unlocked
by a magnetic field in the opposite direction. You should not get a latching
sensor, because of the way you’ll be mounting the triggering magnets. I chose
linear Hall-effect sensors because they can be used without any additional
components like resistors or capacitors, making it very easy to build.

If you’re like me, the pet door is far away from your router. You need sev-
eral feet of wire to run between the sensors mounted to your door and the
Arduino. You use two sensors, each with its own output signal, and you need
to supply power and ground. That’s a total of four conductors you need in
the cable. Because it’s a low power circuit, you could use spare telephone
cable or Ethernet network cable that you might have handy. Otherwise, any
inexpensive, small gauge (22 AWG or higher) 4-conductor cable will do nicely.

224 Part III: The Interactive Home and Garden

You need a small (3-5mm), strong magnet to trigger the Hall-effect sensors. I
suggest you get a neodymium magnet, one of those nickel-plated, extremely
strong magnets you may have seen before. They are widely available and
inexpensive. I usually get mine on eBay. You mount the sensors and the
magnet to the side of your pet door. Use hot glue to provide a firm grip. It
has the side benefit of being waterproof, so you don’t have to worry about
moisture ruining your sensors. I always say “hot glue is man’s best friend”
(besides your pet, of course!).

Because there are no buttons to press or other interactions with the Arduino
itself, you can hide it behind the sofa where nobody will see it. So the hous-
ing doesn’t have to be snazzy. But you might want to put your Arduino and
shield into a housing to keep the dust off. You could simply use a small card-
board box or mini Pringles canister.

The pet treats are to lure him or her through the door for testing and final
launch!

	

The lines of magnetic flux must be perpendicular to the plate in the Hall-effect
sensor. You will test your neodymium magnet to determine its correct
orientation.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

Testing Your Circuit
Before you jump into mounting everything on the pet door and running
sensor wires, start by wiring up your circuit on a breadboard to get the
threshold values. Follow the parts placement diagram in Figure 11-2.

First, stack the Ethernet shield on top of your Arduino. The pins on the
bottom of the shield fit into the matching pin headers on your Arduino. It
should slide into the pin headers smoothly but securely. Be careful not to
bend any of the shield’s pins when you’re seating it. The pin sockets on your
Ethernet shield are now directly connected to your Arduino below it. Next
add your two Hall-effect sensors to the Analog0 and Analog1 pins of your
Arduino and connect the power, ground, and signal leads.

	 Make sure that you place your Hall-effect sensors in the correct orientation.
The beveled side printed with text is the front of the sensor. Make sure to
connect your +5 volt supply to the leftmost pin, as viewed from the front.
Otherwise, the sensor will get very hot and will most likely be permanently
damaged! If you are using one that’s not in the parts list, make sure to check
its datasheet for the correct pinouts.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

225 Chapter 11: Building a Tweeting Pet Door

	

Figure 11-2:
Parts place-
ment for the
test circuit.

	

The A1324 sensors provide a linear output and require 5V, provided by your
Arduino. When no magnetic field is detected, they provide an output volt-
age of one-half the input voltage, or about 2.5V. When the north pole of your
magnet gets close to the sensor, the voltage increases to around 5V. When
the south pole of the magnet gets close, the voltage drops to near zero. You
use this property to detect when your cat or dog moves the pet flap.

The first step is to test your setup to get the threshold values that you are
receiving from the Hall-effect sensors. By doing this, you can make sure that
your sensors work correctly before you install them. Use the following code
to test your sensors:

/* Chapter 11
 Sketch to test Hall effect sensors for a tweeting pet door
 */

const int entryPin = A0; // Define the input pin for entry sensor
const int exitPin = A1; // Define the input pin for the exit sensor
int entryValue = 0; // Define variable to store the entry value
int exitValue = 0; // Define variable to store the exit value

226 Part III: The Interactive Home and Garden

void setup() {
 Serial.begin(9600); // Open a serial connection to display the data
 pinMode(entryPin, INPUT);
 pinMode(exitPin, INPUT);
}

void loop() {
 entryValue = analogRead(entryPin); // Read the value from entry sensor
 exitValue = analogRead(exitPin); // Read the value from exit sensor
 Serial.print(“Sensor values: “);
 Serial.print(entryValue); // Print the entry sensor value
 Serial.print(“, “);
 Serial.println(exitValue); // Print the exit
 delay(1000); // Wait a moment, so we can read what’s been printed
}

This code is pretty simple. First, you define two variables for the entry and
exit pins. Their value is not going to change, so they are defined as integer
constants. You then declare two integers to read the values from the Hall-
effect sensors. The signal pin of each sensor outputs a voltage that is sent to
the Analog0 and Analog1 pins.

	

The ATmega328 contains an onboard 6-channel analog-to-digital (A/D) con-
verter, with 10-bit resolution (1024 values), which means the effective voltage
resolution is about 0.004 volts.

The Arduino reads the voltage on the analog input pins and converts this to
a numerical value from 0–1023. The input voltage to the Hall-effect sensors
is at a constant 5V and they are designed so that when no magnetic field is
detected, they output about 2.5V. When the south pole passes nearby, the
input voltage drops low, and the Arduino assigns a numerical value closer to
zero. When the north pole passes nearby, the value rises toward 1023. You
use this change of value to determine when to send a tweet. Now test your
setup to read the output values and make sure everything works correctly, as
shown in Figure 11-3.

Click on the Serial Monitor button on in the Arduino IDE (the magnifying
glass at the upper right), which will open up the output monitor so that you
can see the printed values. Pass the magnet in front of each sensor and the
values should change from the mid-500s to either near zero or near 1023,
proportional to how close your magnet gets to the sensor. I had a stack of
magnets that I stuck on the end of a drill bit to make them easier to hold. The
effective range of the sensors is fairly small — about a centimeter for a really
significant reading. Look for the side of the magnet that makes the output
value drop toward zero, as shown in Figure 11-4, which shows what happens
when you pass the magnet close to the exit sensor. It won’t get to zero, since
a small voltage still remains present on the analog pin. Mark that side of the
magnet “S” with a Sharpie so that you won’t forget which side is south. You’ll

227 Chapter 11: Building a Tweeting Pet Door

mount the south facing pole on the pet flap so that it faces the sensor and
passes close to it. You could also choose the north pole, but you’d have to
change your code accordingly.

	

You don’t have to get values that are at (or even close to) 0 or 1023. You
just need to be able to detect a significant difference higher or lower when a
magnet passes near the sensor.

	

Figure 11-3:
Testing your

sensors.
	

	

Figure 11-4:
Checking

readings on
the serial
monitor.

	

228 Part III: The Interactive Home and Garden

Preparing Your Twitter Account
After you’ve tested that your sensors are working, it’s time to set up the pet
door on your pet’s Twitter account. You permit your Arduino program to use
Twitter by using tools on the special Developer’s area on the Twitter website.
Lots of people are developing custom apps and features using Twitter all the
time, so Twitter has set up special tools for them (for us!) to use, and ways
for apps to use Twitter with an Application Programming Interface (API). You
need to sign in to the Developer’s area with your pet’s Twitter account to
access these features, as described here.

Your pet door has to have a way to authenticate to Twitter so that only it can
send tweets. Twitter uses a secure authentication scheme called the Open
Standard for Authentication (OAuth), which requires credentials so that you
can allow your Arduino to use your pet’s account. It can seem a bit compli-
cated, but you don’t have to be a security expert to use it. You are effectively
delegating access to the Arduino to read or write tweets on your pet’s behalf.
The actual process is a bit complicated and uses encryption so that pass-
words aren’t flying around the Internet unprotected. But put simply, it’s like
letting the Arduino borrow your pet’s password whenever it needs to tweet.

The credentials you need are

	 ✓	A consumer key

	 ✓	A consumer secret

	 ✓	An access token

	 ✓	An access token secret

Fortunately, you can get all four in one click — after your account is ready.
Do the following to prepare your account and request them (see Figures 11-5
and 11-6):

	 1.	 Of course, your pet probably already has a Twitter account — but if
not, go to twitter.com and set one up, and while you are at it, why not
upload a profile photo too?

	 2.	 Navigate to http://dev.twitter.com and sign in with your pet’s
account.

	 3.	 Hover over the profile picture in the upper right, and select My
Applications from the options that appear on the menu.

	 4.	 Click the Create New Application button.

	 5.	 In the Name field, create a name for the app.

		 My cat Muon’s is called MyPetDoor. Don’t use any spaces in the name.

229 Chapter 11: Building a Tweeting Pet Door

	

Figure 11-5:
Creating

an applica-
tion on the

Twitter
Developer’s

site.
	

	 6.	 Write a brief description in the next field.

	 	 “A tweeting pet door” will do.

	 7.	 Put a link to your/your pet’s website.

		 Most developers would specify the home page of their app here, so they
can provide updates and support to users. But your pet doesn’t need to
provide user support, so what you put here is not critical. But you can’t
leave this blank and anything you put here must begin with “http://.”

	 8.	 Select the Yes I Agree check box and read the Rules of the Road if you
have an extra hour or two.

	 	 Here’s a summary: “Be nice.”

	 9.	 Enter the “Captcha” test phrases, which are there to ensure you are a
real person and not a nefarious robot computer program (a “bot”).

	 10.	 Click Create Your Twitter Application.

If all goes well, you should see the new Details page for your application, as
shown in Figure 11-6. Hooray!

230 Part III: The Interactive Home and Garden

	

Figure 11-6:
Creating

an access
token

and key.
	

Now all you need to do is to request the Access Token and Access Secret key,
so that your app can send tweets:

	 1.	 At the bottom of the page, click on the Create My Access Token button.

	 	 A green notice at the top of the screen lets you know you’ve done this
successfully.

	 2.	 Click on the Settings tab and scroll down to the Application Type fields
to begin the process of granting permission for the app to write tweets.
There, you select the Read and Write radio button. At the bottom of this
page, click the Update This Application’s Twitter Settings button.

	 	 A green notice at the top of the screen lets you know you’ve done this
successfully.

	 3.	 To confirm the new settings, go back to the Details tab and make sure
the Access level now reads Read and Write.

	 4.	 Go to the bottom of the details page labeled Your Access Token and
click on Recreate My Access Token.

	 	 The access level in that bottom section should then update to reflect a
Read and Write status. Now you’ve generated the needed authentication
key, secrets, and token.

231 Chapter 11: Building a Tweeting Pet Door

	 5.	 Click on the OAuth tool tab to view these.

		 Keep this window open or cut and paste them somewhere, because you
need them for your code. Make sure to keep them where they’ll be safe.
You don’t want stray cats hijacking your pet’s Twitter account!

Crafting Your Code
Now you add to your sensor testing code to create your tweets, enable your
network connection, and set up your Arduino to post to Twitter. You start
by modifying your test code to select randomly from a list of clever tweets
for your pet. You then test this with your sensor setup. Finally, you must add
some Arduino libraries to test your tweeting capability before you mount
everything in the pet door.

Specifying your tweets
Start by modifying your code to add some tweets for when your pet enters
or leaves. Add the following code to the section where you declare variables,
before setup() (shown in bold):

...
unsigned long timestamp;
boolean entering = false;
char* entryMessage = “I’m baaaack!”;
char* exitMessage = “I’m outta here!”;

const int entryPin = A0; // the number of the pushbutton pin
const int exitPin = A1; // the number of the pushbutton pin
int entryValue = 0; // Define variable to store the entry value
int exitValue = 0; // Define variable to store the exit value

void setup(){
...

The first unsigned long variable timestamp is used to get the time from
Twitter in the main loop. You add this to the beginning of a tweet to create a
unique message each time a tweet is posted.

	 The Twitter API requires that every tweet is unique so that zombies, bots, and
malicious programs don’t overload Twitter with useless junk. This means that
you have to make each tweet a little bit different. The easiest way to do this is
to add a unique count to each one with this counter.

The program sends different tweets, depending on whether your creature
is coming or going. The tweets are stored in two variables of the data type

232 Part III: The Interactive Home and Garden

char*, called entryMessage and exitMessage. The fun part is in writing
messages for your pet to tweet. Our cat is a bit cantankerous, so I’ve created
messages to reflect his character. Here’s where you can get really creative.
Just make sure that your tweets are less than 140 characters!

Adding libraries for Ethernet and Twitter
Next, at the very beginning of the code, you add libraries to extend the capa-
bilities of your Arduino to support your network connection using Twitter.

To enable Twitter, you need to add the Twitter library. This was developed
by Markku Rossi, and you need to download it from the book’s companion
website, www.dummies.com/go/arduinoprojectsfordummies. Follow
these steps to install the Twitter library:

	 1.	 Download the Twitter library and save it somewhere convenient, like
the desktop.

	 2.	 Quit the Arduino IDE if you are running it.

	 3.	 Extract the zipped files, which will leave you with a folder called
/Chapter_11 containing three subfolders named Twitter, Time, and Sha.

	 	 The Twitter library uses Time to get the current time and Sha to perform
encryption functions.

	 4.	 Drag or copy these three folders into your Arduino libraries folder.

	 	 On Windows machines, this will likely be called “My Documents\Arduino\
libraries.” On Macs, it will likely be called “Documents/Arduino/libraries.”
(On Linux, it will be the “libraries” folder in your sketchbook.) If the
“libraries” folder does not exist, create it.

	 5.	 Now restart the Arduino IDE. Make sure that the new libraries appear
in the Sketch➪Import Library menu item of the software.

	 	 If they do, you’ve installed the library correctly.

You add the Twitter features to your sketch by calling these libraries at the
very beginning, and then you set up your Arduino’s Ethernet shield by using
the Ethernet library, which enables your network connection. If you are using
the latest Arduino IDE, the Ethernet library is included, and all you need
to do is add code to the beginning of your sketch. You also need the Serial
Peripheral Interface (SPI) library to exchange data with the shield, which
again, should be included already for you.

Now, add the following code to the beginning of your sketch (new code in
bold):

233 Chapter 11: Building a Tweeting Pet Door

#include <Ethernet.h>
#include <SPI.h>
#include <EEPROM.h>
#include <sha1.h>
#include <Time.h>
#include <Twitter.h>

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };
EthernetClient client;

IPAddress twitter_ip(199, 59, 149, 232);
uint16_t twitter_port = 80;

char buffer[512];
const static char consumer_key[] PROGMEM = “*****YOUR CONSUMER KEY*****”;
const static char consumer_secret[] PROGMEM = “*****YOUR CONSUMER SECRET*****”;

Twitter twitter(buffer, sizeof(buffer));

unsigned long timestamp;
...

The libraries are included in your sketch by adding the #include command.
You’re no doubt familiar with IP addresses, but underneath that, at the hard-
ware level, you also have what’s called a Media Access Control address (MAC
address). The variable mac[] is an unsigned integer array containing the 6
bytes of your MAC address.

	 All network devices are supposed to have a unique MAC address and your
MAC address was burned on the shield at the factory. It is printed on the
sticker on the underside of your shield. You can use the number on the
sticker, but in fact, it doesn’t matter and you can simply use the MAC address
in the code listed here.

	 If you know that you are using a static IP address on your network, you can add
that to the code after your MAC address. This is needed only if you are not
able to use dynamic host configuration prototcol (DHCP) on your network. To
use a static IP address, add the following, substituting the IP address you wish
to use for the IP address in parentheses:

IPAddress ip(192,168,1,43); // the IP address may be different on your network

Next, you use the Ethernet Library’s EthernetClient object to create an
Ethernet client called “client.” This allows you to send and receive messages
with your Ethernet shield.

234 Part III: The Interactive Home and Garden

The IP address of Twitter is specified in the IPAddress variable. This is
Twitter’s current IP address and is not likely to change. You could also use
Domain Name Service (DNS) to find (or “resolve”) Twitter’s IP address, but
this would use up more memory on your Arduino, so I’ve opted to keep
things short and simple. You also must specify a TCP port of 80, stored in the
twitter_port variable.

Now, the important step is specifying the values you got from the Twitter
Developer’s site, shown in Figure 11-6. This is how your Arduino will authen-
ticate with Twitter to send tweets on your pet’s account. In the code above,
do the following:

	 ✓	Replace *****YOUR CONSUMER KEY***** with the long string of
digits listed next to the Consumer Key field in the OAuth Tool tab of
your account.

	 ✓	Replace ******YOUR CONSUMER SECRET****** with the long string
of digits listed next to the Consumer Secret field in the OAuth Tool tab
of your account.

The last two variables are a character array called buffer that holds the
message text and a Twitter object called Twitter, which provides connectiv-
ity and tweeting functions.

In setup(), you now need to enable the Ethernet connection for your shield.
Unless you opted to use a static IP address, this sketch uses DHCP, which is
a way for your router to hand out an IP address automatically. Most home
routers are set up to do this because it makes it easier for you to add new
network devices like printers, set-top boxes, tables, and mobile phones to
your network. Add the bold code to setup():

void setup(){
 Serial.begin(9600);
 Serial.println(“Attempting to get an IP address using DHCP:”);
 if (!Ethernet.begin(mac)) {
 Serial.println(“Failed to get an IP address using DHCP, trying the static

IP”);
 Ethernet.begin(mac, ip);
}

This code sends messages to the serial monitor so that you can make sure
you are connecting to the Ethernet network. The last two lines are only
needed if you can use a static IP address on your network and configured
your code to do so.

235 Chapter 11: Building a Tweeting Pet Door

Finally, add the code that specifies the last details that Twitter needs to
authenticate your Arduino to use your pet’s account at the end of the
setup() section of your code:

void setup(){
 Serial.begin(9600);

 Serial.println(“Attempting to get an IP address using DHCP:”);
 if (!Ethernet.begin(mac)) {
 Serial.println(“Failed to get an IP address using DHCP, trying the static

IP”);
 Ethernet.begin(mac, ip);

twitter.set_twitter_endpoint(PSTR(“api.twitter.com”),
 PSTR(“/1/statuses/update.json”),
 twitter_ip, twitter_port, false);
 twitter.set_client_id(consumer_key, consumer_secret);

#if 0
 // Read OAuth account identification from EEPROM.
 twitter.set_account_id(256, 384);
#else
 // Set OAuth account identification from program memory.
 twitter.set_account_id(PSTR(“******YOUR ACCESS TOKEN******”),
 PSTR(“******YOUR ACCESS TOKEN SECRET******”));
#endif
}

In the preceding code, the function twitter.set_client_id uses the
values you defined at the beginning of the program, so you should leave
those as is. You now have to add the access token and secret that were pro-
vided to you by Twitter:

	 ✓	Replace *****YOUR ACCESS TOKEN***** with the long string of
digits listed next to the Access Token field in the OAuth Tool tab of your
account.

	 ✓	Replace ******YOUR ACCESS TOKEN SECRET****** with the long
string of digits listed next to the Access Token Secret field in the OAuth
Tool tab of your account.

Adding your program logic
In the final part of crafting the code, you link the part of your code that
detects the magnet to the part of the code that tweets. Replace the testing
code in your main loop with the following:

236 Part III: The Interactive Home and Garden

void loop(){
 entryValue = analogRead(entryPin);

 Serial.println(entryValue); // Uncomment this line to monitor the readings

 if (entryValue < 50){
 entering=true;
 sendTweet();
 }

 exitValue = analogRead(exitPin);
 if (exitValue < 50){
 entering=false;
 sendTweet();
 }
 delay(10);
}

void sendTweet(){
 if (twitter.is_ready()) {
 char tweet[140];
 timestamp = twitter.get_time();

 if(entering){
 sprintf(tweet, “%02d:%02d:%02d: %s”, hour(timestamp), minute(timestamp),

second(timestamp), entryMessage);
 } else {
 sprintf(tweet, “%02d:%02d:%02d: %s”, hour(timestamp), minute(timestamp),

second(timestamp), exitMessage);
 }

 Serial.println(tweet);
 Serial.print(“Posting to Twitter: “);
 if (twitter.post_status(tweet)){
 Serial.println(“Status updated”);
 }
 else{
 Serial.println(“Update failed”);
 }
 }
 delay(10000); // wait 10 seconds to avoid double triggering

}

This is where the action happens. As with the code you wrote to test your Hall-
effect sensors, the main loop() tests whether the magnet has been detected

237 Chapter 11: Building a Tweeting Pet Door

on either the entry pin or the exit pin, using the conditional if statement. I
used the value of 50 or lower here, but your magnet might produce slightly
different values, so you should adjust accordingly. Use a value that is signifi-
cantly lower than the middle value shown when no magnet was present during
your testing. If the magnet is detected by either sensor, the Boolean variable
entering is set to either true or false, and the sendTweet() function is
called.

The sendTweet() function selects which tweet to send and forwards it to
Twitter. Before sending the tweet, it has to be put together. You use a tem-
porary char array called tweet to store the contents of your message, which
consists of a message number and the message text. Each tweet also has to
be unique, or else Twitter will reject it as a duplicate message. You do this
by getting the time from Twitter, using the twitter.get_time() function
and assigning the results to the variable timestamp. This produces a value in
UNIX time, which you convert to hours, minutes, and seconds when the tweet
is assembled. This timestamp is placed at the beginning of each message,
thereby ensuring that each tweet is unique.

The conditional if statement test selects whether to send entry or exit mes-
sages by checking the value of the variable entering. Both entry and exit
tweets are assembled in the same way using the special C function sprintf().
Take a closer look at this function, in the case of the entryMessage:

sprintf(tweet, “%02d:%02d:%02d: %s”, hour(timestamp), minute(timestamp),
second(timestamp), entryMessage);

The sprintf() function concatenates the timestamp and the message text
together into the tweet char array, which is the first item in parentheses.
Next is the message itself, in quotation marks. The message is built up from
the results of converting UNIX time from the timestamp variable into hours,
minutes, and seconds, using the hour(timestamp), minute(timestamp),
and second(timestamp) functions that follow the quotation marks. The
results of these conversions are placed in sequential order within the quota-
tion marks. The characters %02d specify that the hours, minutes, and sec-
onds are decimal values and have two decimal places. The colons are simply
printed out as normal text. Lastly, %s is where the entryMessage string is
added. That’s the text you are tweeting. The exitMessage is built up the
same way.

The resulting tweet is printed to the serial monitor so you can easily debug it,
along with the timestamp and status messages from Twitter.

The code initiates a Twitter communication using the twitter.is_ready()
function. When this is true, Twitter is ready to receive your tweet.

238 Part III: The Interactive Home and Garden

The twitter.post_status() function actually sends the tweet you
stored in the temporary variable tweet. The status response from Twitter is
returned to the serial monitor, as shown in Figure 11-7, so that you can see
whether or not the tweet worked and if it didn’t, the reason that it didn’t. The
delay() instruction at the end of this function ensures that 10 seconds pass
before the door can be checked again. This prevents false triggering if your
pet is a bit uncertain about whether he’s coming or going!

	 To prevent a flood of activity, Twitter limits you from communicating with the
Twitter API to no more than 350 times an hour. If your pet is tweeting more
than that, you’ve got problems. However, during testing you might want to be
careful that you don’t exceed this limit, which could be easy to do if you forget
a line of code, such as the delay() instruction.

Now that you’ve entered all the code, you should test your setup before
installing the sensors in your pet door. It’s much easier to troubleshoot from
your workbench than it is once the door is installed! Connect your Arduino
to your router with the Ethernet cable. Leave the Arduino connected to your
computer via the USB cable so that you can monitor the communication on
the serial monitor and test that passing a magnet near the sensors sends a
tweet. Use the neodymium magnet to send a tweet or two and confirm that
everything is working properly.

After you are satisfied that it is working correctly, you can disconnect the
USB cable and provide the power to the Arduino from the power adaptor.

	

Figure 11-7:
Sending a
tweet, and
the status
message

returned by
Twitter.

	

239 Chapter 11: Building a Tweeting Pet Door

Modifying Your Pet Door
With the code written and tested, you can prepare the door and move your
circuit off of the breadboard. First, tape the sensors temporarily into position
on the pet door frame to help you estimate how long your signaling wire will
need to be, as in Figure 11-8. The entry sensor should be placed on the inside
of the frame and the exit sensor on the outside.

Deciding exactly where to put the sensors and the magnet requires a bit
of finesse. You need to mount them in a position that guarantees that the
magnet passes in front of the sensors so that it can reliably detect your pet’s
movement of the door. Make sure to place both sensors at the same height,
so that the passing magnet can trigger either one. You shouldn’t mount them
too close to the top, or the door won’t swing enough to trigger both sen-
sors. You might need to do a trial run with your pet to see how far the door
swings. This is where those treats come in handy!

	

Figure 11-8:
Taping your

sensors in
place to

estimate the
signaling

wire length.
	

240 Part III: The Interactive Home and Garden

After you’ve estimated the location of your sensors, loosely run the cable
from the location where your pet door is (or will be) mounted to your
Arduino and router. Make sure to leave enough extra cable so that you can
attach it to baseboards and door frames. Now cut the cable to the right
length, but leave a little extra just in case. You can always just coil up any
remaining wire later.

Your wire has four conductors. Power and ground are shared between the
two Hall-effect sensors. The third and fourth conductors are for the signals
from the sensors.

You need to solder the extension wire onto both of your sensors. At the
Arduino end, use your wire strippers to remove some of the insulation and
then solder pin headers to the four wires. Figure 11-9 shows how these will
be connected to your Arduino and the pet door.

Make sure to keep track of the color of the insulation so that you will know
which wires you used for power, ground, the entry sensor, and the exit
sensor. While you’ve got the soldering iron fired up, solder the sensors to the
other end of the signaling cable at the pet door. Use your helping hands to
hold the sensors firmly so that you can make a good solder joint.

In the diagram, the lines that cross each other are only connected at two
points, on the pet door frame near the sensors, and are indicated by the
small, solid dots signifying the junction points. You should solder these wires
together to create a reliable electrical connection.

	

Figure 11-9:
Connecting

your sen-
sors and
signaling

wire to the
Arduino.

	

241 Chapter 11: Building a Tweeting Pet Door

	 When you are soldering the wires to the sensors, be careful not to heat the
parts for a long time. If it takes more than a couple of seconds, you could over-
heat the sensor and it could be damaged.

With the sensors now soldered to the signaling wire, it is a good idea to test
the setup once again, just to make sure the circuit is still working. You then
mount your sensors to the door and if necessary, mount the pet door.

	 1.	 Attach the sensors to the pet door with hot glue.

		 You may need a bit of plastic, wood or other material (like a LEGO
block) to support the sensor, so that you can mount it to the surface of
the door. I found a bit of discarded plastic and glued the sensor to it.

	 2.	 Carefully coat the sensor with a layer of hot glue, which will protect it
from moisture.

	 3.	 Glue the plastic block to the pet door frame, as in Figure 11-10.

		 The design of your door will determine exactly how you mount the
sensor, but make sure that the path of travel is clear so it can swing freely.

	

Figure 11-10:
Mounting
your sen-
sors and

magnets.
	

242 Part III: The Interactive Home and Garden

	 4.	 The last step is to mount the magnet to the door itself.

		 Swing the door partway until it is in front of one of the sensors. Make
sure that the south facing pole that you marked earlier points toward
the sensors. Use a dab of glue to attach the magnet to the door. When
you’re done, it should look like Figure 11-10.

Now you can sit back, relax, and enjoy the tweets!

Chapter 12

Building a Home Sensing Station
In This Chapter
▶	Building custom temperature and light sensors
▶	Building a homemade Arduino shield
▶	Programming your sensing station
▶	Posting your sensor data to the Internet

L
ots of people have been using their Arduinos to wire things up to the
Internet, so much so that folks are starting to talk about an “Internet-of-

Things.” There are Internet-enabled lamps, weather stations, and even whole
buildings that are wired up to post their data online. Your Arduino has a
pretty powerful little microcontroller on board, and it can easily handle the
tasks of collecting environmental data and sending it to the Internet.

In this chapter, you create a home sensing station that collects light and
temperature data and posts it online. Your sensor station uses an Arduino
Ethernet shield so that after your station is built, you don’t have to leave a
computer running. It just talks directly to the Internet over your home router.
You also find out how to build temperature and light sensor probes and a
homemade Arduino shield to connect them to your Arduino. I describe how
to use Xively, an Internet-of-Things data service, to store your data and create
cool charts. You can share your data with anyone, browse through other data
feeds, and get a web page that automatically displays charts of your data.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

Building Your Sensor Probes
Your sensor station uses two temperature probes (one for inside and one for
outside) and a light sensor. After you get the hang of it, you can add more
analog sensors. I’m even thinking of adding one to my refrigerator! You could
also add other kinds of sensors, such as a relative humidity or a nitrogen
dioxide sensor to gauge air quality.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

244 Part III: The Interactive Home and Garden

Selecting your parts
To get started with the project, first wrangle all the parts you need, as shown
in Figure 12-1.

	 ✓	An Arduino Uno

	 ✓	An Arduino Ethernet shield

	 ✓	An Ethernet cable

	 ✓	A 12V DC power transformer for your Arduino (not pictured)

	 ✓	A length of multicore wire, with a minimum of three conductors (choose
from a wide variety at Radio Shack or Maplin)

	 ✓	An enclosure, such as Newark #13T9276 or Farnell #1848692 (as shown
later in Figure 12-15)

	 ✓	Two TMP36 temperature sensors (Jameco #278387 or Farnell #1438760)

	 ✓	One light-dependent resistor (LDR)

	 ✓	A 10kΩ resistor

	 ✓	A drinking straw (McDonald’s!)

	 ✓	A small piece of stripboard (10 x 20 holes) (Radio Shack or Maplin)

	 ✓	Six single row PCB pin headers (Jameco #103393 or Rapid #22-0520)

	 ✓	A breadboard for prototyping (optional)

	

Figure 12-1:
The parts

you need for
your home

sensing
station.

	

245 Chapter 12: Building a Home Sensing Station

	 I recommend using a relatively new Arduino Uno and Arduino Ethernet shield.
The design of both products has changed slightly over the years, and I haven’t
tested this system with older hardware. I’ve found the newer Ethernet shields
are also more reliable than the older ones. You need a 12V DC power supply
for your Arduino because after you’ve programmed it, you no longer need to
connect it to a computer.

	 If you have a hub or a router that has Power over Ethernet (POE), you can
build this project without using an Arduino power supply. The whole shebang
can draw its power directly from the Ethernet shield. POE is still not common
yet, but more manufacturers are incorporating it into Ethernet hubs and routers,
so it’s a good idea to check yours to see if you can take advantage of POE.

You run your sensor cables to your Arduino, and your Arduino’s Ethernet
cable to your router. So the length of these cables is determined by exactly
where you want to place your sensors and your Arduino. I recommend
getting a shorter Ethernet cable (because it’s cheaper) and placing your
Arduino near the router, where there’s also likely to be power.

	 Check to make sure your router has a spare Ethernet connection available and
that a power socket is available for your Arduino’s power transformer.

Get multicore cable (that’s just cable that has several wires inside) for your
sensor. It comes in both stranded and solid core varieties. Either will do, but
stranded is more flexible and is easier to route along walls and corners. You
need at least three wires (also referred to as conductors) inside the cable, but
it doesn’t have to be heavy gauge — 22 to 24 AWG is fine. You don’t need to
go overboard for this stuff. Inexpensive telephone extension cable works fine
and is cheap. Just make sure that you get enough to run all your sensors from
where they will be situated to your Arduino.

You can use any enclosure for this project. Any small box is suitable. If you’re
willing to spring for it, Newark and Farnell offer a custom-made Arduino
enclosure that has room for an Ethernet shield, too (shown in Figure 12-16,
later in this chapter). It’s a perfect enclosure for this project.

You use TMP36 temperature sensors to detect the ambient temperature.
These come in a tiny cylindrical black plastic package called TO-92 and have
three legs. These sensors measure temperature by determining the voltage
drop across an internal diode, which changes by a fixed amount, as tempera-
ture fluctuates. They are cheap, very reliable, and can be used to measure in
either Celsius or Fahrenheit. Because they rely on your Arduino for power,
TMP36 sensors can be subject to slight variations in accuracy depending on
the amount of power your Arduino and Ethernet shield are using. But for the
price, they are hard to beat.

You use a Light Dependent Resistor (LDR) and 10kΩ resistor to detect
changes in ambient light level. The LDR has a chemical deposited on its sur-
face that changes its resistance, depending on how much light falls on it. Like

246 Part III: The Interactive Home and Garden

the TMP36 sensors, the LDR draws power from your Arduino, so the value it
outputs is proportional to the ambient light but may be affected slightly by
your Arduino’s power consumption. The LDR doesn’t provide light measure-
ments in standard units, such as microcandelas or lumens. Sensors that do
this are available, but much more expensive. So this project outputs values
that range from 0 to 100 (dark to bright) instead. This is what you really want
to know most of the time, anyway. But if you have access to one, you could
use a light meter to calibrate these values to precisely measured lumens – or
splurge for a more sophisticated sensor.

You use a drinking straw as a waterproof capsule for your sensors, hot gluing
them inside. The straws from McDonald’s are nice and fat, so there’s plenty
of room for your sensors to slide in. Go grab yourself a chocolate shake
before you get started and save the straw for your sensors! A glue gun should
be part of your workbench toolset, but if you don’t have one, you’ll need one
for this project. They are pretty cheap and easy to buy at any hobby or craft
store.

Your stripboard is the platform for your homemade Arduino sensor shield.
They don’t come in a 10 x 20-hole size, so you need to get a bigger one and
cut it down to size. This is pretty easy to do with a utility knife and straight-
edge. You can score it a few times along the holes and then snap it apart. You
solder the six pin headers to it so that you can slot it right into the Ethernet
shield’s header sockets and solder your sensor cables directly to the strip-
board. You build your probes first and then your sensor shield. After that,
you solder your sensors to the shield and plug it into to your Arduino for
testing.

Building and testing your circuit
Before you build the shield, it’s best to use a breadboard for testing the cir-
cuit and then move it to the stripboard after you know it works. The circuit
diagram and breadboard layout are shown in Figures 12-2 and 12-3. Stack
the Ethernet shield on top of the Arduino at this point. Later, after testing
on the breadboard, you will connect to the headers on the shield, not on the
Arduino directly. For the sake of clarity, the shield is not illustrated in the
diagram or schematic.

Create a ground rail and a power rail on your breadboard by connecting the
5V and GND outputs to the column of pins on its side. Add your two tempera-
ture sensors and your light sensor, as shown in Figure 12-3.

Make sure you don’t connect your sensors to analog Pins 0 and 1. These are
used for the SD card slot on the Ethernet shield. Although you aren’t using
that for this project, it’s best to keep the sensor signals connected only to
your Arduino inputs and not to any other parts of the hardware.

247 Chapter 12: Building a Home Sensing Station

	

Figure 12-2:
Sensor sta-
tion circuit

diagram.
	

Make sure you use the resistor for your LDR. The LDR provides a resistance
in relationship to the amount of light falling on it. This part of the circuit is
a voltage divider because the ratio between the LDR and the fixed resistor
provides a variable voltage that you measure on analog Pin 2. I tested this cir-
cuit in full sunlight as well as in total darkness and found that a 10kΩ resistor
provides a good range of readings from about 10 to just over 1000. You can
perform your own tests with the code below and determine whether 10kΩ is
about right on your setup. The center legs of the TMP36 sensors provide the
signals for analog Pins 3 and 4.

After you’ve built the circuit on your breadboard, enter the following sensor
test code in the Arduino IDE:

const int lightSensorPin=2;
const int tempPin1=3;
const int tempPin2=4;

void setup() {
 Serial.begin(9600);
}

void loop() {
 float lightLevel = map(analogRead(lightSensorPin),0,1023,0,100);

 float temperature1 = ((getVoltage(tempPin1) -.5) * 100L);
 float temperature2 = ((getVoltage(tempPin2) -.5) * 100L);

 Serial.print(“Temp 1 (‘C): “);

248 Part III: The Interactive Home and Garden

 Serial.print(temperature1);
 Serial.print(“, Temp 2 (‘C): “);
 Serial.print(temperature2);
 Serial.print(“, Light (V): “);
 Serial.println(lightLevel);
 delay(250);
}

float getVoltage(int pin){
return (analogRead(pin) * .004882814);
}

Before you upload this to your board, take a moment to understand how the
code works. Your variable declarations for the three analog input pins that
you use for your sensors come first. They are integer constants because their
values won’t change during the execution of the program.

	

Figure 12-3:
Example

breadboard
layout.

	

249 Chapter 12: Building a Home Sensing Station

Setup() only needs to prepare the serial port. Your analog pins are used for
input by default, so you don’t have to explicitly set them to INPUT. The main
loop simply takes readings from the three analog pins, converts them to a
useful numerical value, and prints them to the screen.

Doing your light-level conversion
As I mentioned earlier, the light level isn’t calibrated to lumens or micro-
candelas. It’s just set to a value between 0 and 100 to give an idea of how
bright or dark it is. I think a scale from 0 to 100 makes it easy to get a sense
of brightness or darkness; over time, you’ll be able to tell how bright some-
thing is just by checking out the scale. A voltage reading from analog Pin 2 is
stored as a float, lightLevel:

float lightLevel = map(analogRead(lightSensorPin),0,1023,0,100);

The value provided by an analog pin ranges from 0 to 1023, in increments of
about 5 millivolts. However, the map() function converts this to 0–100 for
you. Its first parameter is the numerical value on the analog pin. The second
two parameters specify the expected range of that value (0–1023), and the
last two parameters specify that you convert any value taken in that range to
a value from 0 to 100.

	 You can use the map() function in a lot of situations where you want to con-
vert from one range of values to another, so it’s a good idea to get familiar
with how to use it.

Doing your temperature conversion
Your temperature sensors provide a value in millivolts (mV) proportional to
the ambient temperature detected:

float temperature1 = ((getVoltage(tempPin1) -.5) * 100L);

This conversion first obtains the voltage on the analog pin using the
getVoltage() function at the very end of the sketch. You specify in paren-
theses which pin you want to get the voltage from. You convert the voltage to
Celsius by subtracting a 500mV offset and then multiplying the result by 100.
The “L” tells the Arduino to use a 32-bit integer to calculate the value. The
result in degrees Celsius is stored in the float temperature1.

	 Although the Imperial units are quaint, and I have a gut feeling for them, I’ve
been using the metric system for a long time now. If you want the satisfying
shock of being able to take temperature readings that top 100 degrees, replace
the temperature code with the conversion to Fahrenheit:

float temperature1 = (((getVoltage(tempPin1) -.5) * 100L) *9.0/5.0) + 32.0;

Next, you print the stored values for temperature and light to the serial moni-
tor, so you can verify the sensors are working correctly.

250 Part III: The Interactive Home and Garden

The getVoltage() function takes an integer as input. The integer “pin” is
a local variable that stores the number of the analog pin you want to read.
When you call this function, you pass it that number (which is stored in the
tempPin1 or tempPin2 variable). It then reads the pin specified and obtains
a value from 0–1023, multiplying this by .004882814 to convert it to a volt-
age. The number .004882814 is used because the numbers 0 to 1023 actually
represent voltage values between 0 and 5V, in increments of about 5mV. The
result is then passed back to the part of the program where you called the
function.

Now try out the code on your Arduino. Upload it and then open your serial
monitor. The output should look like Figure 12-4.

	

Figure 12-4:
The output
from your

sensor test.
	

Calibrating your light-level mapping
Examine the values you get for your light level by covering the LDR with your
hand and taking it away. You should make a note of the values you get when
the sensor is completely covered and when it is a bright day in the place
where the sensor will be situated. Your values will range from near zero
(dark) to anywhere up to (or nearly) 1023.

Replace the values in your code so that these numbers are the range of
values for your light-level conversion. Suppose you got the values of 5 when
the sensor is completely covered and 980 in bright sunlight. You would
change your light conversion mapping as follows:

float lightLevel = map(analogRead(lightSensorPin),5,980,0,100);

This converts the values you are likely to get for the light level to a standard
range between 0 and 100.

After you are satisfied that the code is working correctly, you can build your
sensor probes and your sensor shield. Later, you create your Xively account
and upload code for your three sensors. If your output doesn’t seem right,
first check your connections and then verify that your code is correct before
going further. You need to make sure this circuit works before you make your
sensors and shield.

251 Chapter 12: Building a Home Sensing Station

Save this sketch; you need it when you write your code to post to Xively.

Building your sensor probes
You build three sensor probes for this project, so you can save time by
making all of them at once. For each temperature sensor you build, you
solder three wires in your multicore cable to the TMP36 sensor and then
enclose it in a short piece of drinking straw for protection. The light sensor is
almost the same, but uses only two wires.

	 Before you get started, measure out enough sensor cable to reach from where
you want to place each of the sensors to where you want your Arduino situ-
ated. You need to get these lengths approximately correct before you start
cutting the wire and soldering.

To fabricate your probes, do the following steps:

	 1.	 Cut the cable for your temperature probes to length.

	 2.	 Strip about 2cm (1") of the outer insulation off the cable and then strip
three of the internal wires.

		 You can cut off any additional wires because you need only three con-
ductors for each temperature sensor: power, ground, and signal. If your
cable has red, black, and yellow insulation, use those wires so that you
don’t get confused when you build your shield. The insulation color is
arbitrary, really. Just keep track of which is which.

	 3.	 Use your soldering iron to tin the wires with a little bit of solder so
they adhere well to the sensors.

		 It can be tricky to solder wires directly to your sensor’s legs, especially
without four hands. One method is to melt a little extra blob of solder
onto your sensor wire. When you solder it to the sensor, this blob will
flow onto the sensor’s legs so that you have a strong bond. You can
always go back and add a little extra. When the joint is cold, inspect it to
make sure it’s good and then tug gently on the wire to test its strength.

	 4.	 Splay the legs of your TMP36 and solder your three wires to its legs,
as shown in Figure 12-5. With the flat face of the sensor toward you,
the order to solder, from left to right, is: positive wire, signal wire,
negative wire.

	 5.	 Solder the second temperature sensor the same way.

	 6.	 For the light sensor, solder only two wires to your LDR, one for power
and one for signal, as shown in Figure 12-6.

		 I used red and yellow.

252 Part III: The Interactive Home and Garden

	

Figure 12-5:
Soldering
your tem-
perature

sensor.
	

	

Figure 12-6:
Soldering
your light-

level sensor.
	

253 Chapter 12: Building a Home Sensing Station

	 7.	 For each of your three probes, cut a 5cm (2") piece from your drinking
straw.

		 Each sensor straw should be long enough to cover your sensor and any
exposed wires.

	 8.	 For each sensor, use a dab of hot glue to keep the legs from touching,
as shown in Figure 12-7.

		 Don’t put too much glue on, or the sensors won’t fit inside the straws.
Wait for the glue to cool completely.

	 9.	 After the glue cools, test that each sensor fits snugly into its straw, as
shown in Figure 12-8. But make sure the leads don’t touch each other
or you’ll have a short circuit.

		 The hot glue should prevent this from happening.

	 10.	 Slip your sensors into the straws so that the sensor is near the end of
the straw. Apply a bit of hot glue to the end of each sensor, as shown
in Figure 12-9.

		 Make sure not to put too much glue on the light sensor.

	

Figure 12-7:
Keeping the

legs in
position
with hot

glue.
	

254 Part III: The Interactive Home and Garden

	

Figure 12-8:
Testing the

fit of your
sensors.

	

	

Figure 12-9:
Sealing the
tops of your

temperature
and light
sensors.

	

	 11.	 Before the glue cools, draw each sensor back inside the straw just a
little bit, creating a concave depression in the surface of the glue.

		 This reveals any air gaps. You want to make sure the seal is watertight.
Add a little glue if necessary, and wait for it to cool.

	 12.	 Turn the sensor over, and apply glue to the area where the cable
enters the straw, again making sure you have a watertight seal, as
shown in Figure 12-10.

255 Chapter 12: Building a Home Sensing Station

	

Figure 12-10:
Finishing up

your sen-
sors for a

watertight
seal.

	

Building your sensor shield
The sensor shield provides a tidy way to connect your probes to your
Arduino and makes it easy to remove them should you need to. The shield
performs a similar function to a breadboard, giving you multiple connections
to power and ground, but it’s a more permanent and reliable solution. You
can expand it with up to two more sensors on an Arduino Uno.

	 After you’ve built this shield, you can adopt the same technique for other
Arduino projects.

To create your sensor shield, do the following steps:

	 1.	 Use your Arduino to hold your pin headers steady while you solder
them your stripboard.

		 If your pin headers are attached to one another, split them into groups
of two, two, and three.

256 Part III: The Interactive Home and Garden

	 2.	 Insert the pins into the header sockets on your Arduino, as shown in
Figure 12-11.

		 Two pins go into digital Pins 6 and 7. Two pins go into headers for +5V
and GND. Three pins go into the analog 2, 3, and 4 header sockets.

	

Figure 12-11:
Using your
Arduino to
hold your

pin headers
securely for

soldering.
	

	 3.	 Carefully place the stripboard onto your pin headers, with the copper
strips facing upward.

		 Make sure you don’t get it crooked.

	

		 The pin headers on digital Pins 7 and 8 will not be connected to your
sensor circuit. They are merely there to give your sensor shield physical
stability.

	 4.	 Carefully solder the pins to the copper strips, as shown in Figure 12-12,
making sure that you don’t create a solder bridge between any of the
strips of copper.

		 You don’t want the strips to be electrically connected to each other.

	 5.	 Remove the board from your Arduino and inspect the pins to make
sure the connections are good.

		 The leftmost two pins form your power and ground rails. The rightmost
three pins are analog inputs. The other two are not connected to the cir-
cuit you’re building.

257 Chapter 12: Building a Home Sensing Station

	

Figure 12-12:
Soldering

your pins in
place.

	

	 6.	 Now add your 10kΩ resistor to the stripboard.

		 One edge of the board now has five pins soldered to it. With those pins
at the top, insert the legs of your resistor through the non-copper side
of the stripboard. The legs should be in the second and eighth copper
strips, as shown in Figure 12-13. It doesn’t really matter what row you
place the resistor in. Any row will do, but you need to leave room for
your sensor wires.

	 7.	 Bend the resistor’s legs slightly to hold it in place. Then, flip the board
over and solder your resistor onto the copper strips, as shown in
Figure 12-13.

	

Figure 12-13:
Adding the
resistor to

your sensor
shield.

	

258 Part III: The Interactive Home and Garden

	 8.	 Now connect your light sensor to the stripboard. Strip off about 5mm
(1⁄4") of insulation from your sensor cable and feed one of its two wires
into the leftmost column of holes, which is your power rail. Feed the
other wire into the same column as the right side of your resistor,
which is connected to the pin that goes into the analog 2 input on
your Arduino.

		 It should look like the top cable in Figure 12-14.

	 9.	 Flip the board over and solder your cable onto the copper strips on
the back.

	 10.	 Connect your temperature sensor cables below your light sensor
cable, as shown in Figure 12-14.

		 Strip and feed the wires through the holes and solder the 5V power
supply wires to your leftmost power rail.

	 11.	 Solder your ground wires to the next column of holes, which is your
ground rail.

	 12.	 Solder the signal wires to the columns for analog Pins 3 and 4, respec-
tively. Check Figure 12-14 to make sure that you’ve soldered your con-
nections correctly.

	

Figure 12-14:
Soldering

the sensor
cables to

your sensor
shield.

	

259 Chapter 12: Building a Home Sensing Station

	 13.	 Insert your sensor shield back into the headers on your Arduino.

		 Make sure that your analog pins align with the holes for your analog
inputs 2, 3, and 4, as shown in Figure 12-15.

	 You don’t want to get this wrong, so double-check that you are inserting your
sensor shield correctly!

	

Figure 12-15:
Inserting
your sen-
sor shield
onto your
Arduino.
Double-

check your
pins!

	

When you’ve finished building and installing your shield, you can put your
sensor station into an enclosure. The specialty one shown in Figure 12-16 not
only accommodates the cables, but it also has a special knockout plate for
an Ethernet shield. This alone makes it worth the ten bucks or so it costs.
Secure your sensor cables into the enclosure with cable ties or even hot glue.
A bit of duct tape will do, if all else fails.

With the build complete, test your sensor shield by using the sensor code.
When you are satisfied that it’s working as well as it was on the breadboard,
you can create an account on Xively to post your data to the Internet.

260 Part III: The Interactive Home and Garden

	

Figure 12-16:
Installing

your sens-
ing station

into an
enclosure.

	

Creating a Xively Account
It is certainly possible to set up your own website to receive data from your
Arduino and display it in real time, but that takes a good deal of know-how,
effort, and patience. So, why do all that work when someone else has done
the tedious stuff for you? You can use a free service provided by Xively.com
(an “Internet-of-Things” company) to do all the backend work of collecting
data for you. You can even build charts and graphs of your data feeds that
you can share with friends or embed into your own website. And the price
couldn’t be better!

On Xively, you set up devices and assign one or more channels to your device.
You set up your Arduino as a device and assign each of your sensors a chan-
nel. That, in turn, displays them on your Xively device’s webpage, or feed.
You manage them using your Xively Workbench.

To set up your Arduino to post data to Xively, you need a Xively developer
account. Xively then provides you with a Feed ID for your account and an
Application Programming Interface (API) key for your device (your Arduino).
Your API key allows you to post your home sensing data and provides a bit of
security so only you have access to your data feed.

261 Chapter 12: Building a Home Sensing Station

To set it all up, follow these steps:

	 1.	 Open your web browser to Xively.com and click the Get Started
button to create a Xively user account and activate it.

		 You will receive an account activation link by e-mail. When you activate,
you’ll see a Test Drive tutorial page; you can ignore it for now. You can
go through the tutorial later to learn how Xively works in greater detail.

	 2.	 To connect your Arduino, click the Develop button at the top of the
page. On the Development Devices page, click the Add Device button,
as shown in Figure 12-17.

	

Figure 12-17:
Adding a
device in

your Xively
Developer

Workbench.
	

	 3.	 Type a descriptive name for your home sensing station.

	 4.	 Select whether you want your data to be public or private.

		 When a device is private, the device and its data are accessible only to
you (and those to whom you grant access); the information is not listed
in Xively’s online public directory. When a device is public, all data
about and created by it can be copied, shared, and modified by anyone,
including for commercial purposes.

	 5.	 Click the Add Device button at the bottom of the page.

		 After you add your Arduino, you are taken to the Xively Workbench.
This is where you manage your device and its channels. At the top of
the page, you are provided with a Feed ID and API key, as shown in
Figure 12-18.

262 Part III: The Interactive Home and Garden

	

Figure 12-18:
Setting up
your data
channels.
Take note

of your Feed
ID and API

key.
	

	 6.	 Click the Add Channel button to create a light level channel for your
device.

	 7.	 Configure the ID of your channel, as shown in Figure 12-19.

		 The first sensor is for light level, so type the word light into the ID field.

	 8.	 Configure the characteristics of your channel.

		 You can add tags if you want, but they are optional. Leave the Units field
blank. Because you are measuring light levels on an arbitrary scale from
0 to 100, type of 100 into the Symbol field.

	 9.	 Click the Save Channel button.

	 10.	 Repeat Steps 6 through 9 to add two more channels for temperature to
your device, called temp1 and temp2.

		 In this project, I use the Celsius scale. But you can use Fahrenheit if you
change the code, as I described earlier in this chapter. In the Units field
type Celsius (or Fahrenheit). In the Symbol field, type C (or F).

		

	 The channel names are used in your code. Make sure you use the exact
channel names you use here. If you use different ones, you will have to
modify your code to match them, or your sensor data won’t be posted
to Xively.

263 Chapter 12: Building a Home Sensing Station

	

Figure 12-19:
Configuring
your device

on Xively.
	

	 11.	 Note your Feed ID and API key.

		 Your Arduino’s Feed ID and API key are shown in the lower-right corner
of the page (refer to Figure 12-19). You need these for your code. The
API is very long, so you should cut and paste it into a blank document
or directly into your code. After you start posting data, you’ll be able to
access graphs at the Feed URL shown at the top-right of the page.

	 12.	 To get ready for coding, open the example code for Chapter 12 from
this book’s companion website, copy the code, paste it into a new
Arduino sketch, and save the sketch.

		 Get the example code from this book’s companion website (www.
dummies.com/go/arduinoprojectsfordummies). You modify it in
the next section. You should now have a newly enabled Xively account
with three channels but no data. These will be updated with data auto-
matically when you send your data the first time.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

264 Part III: The Interactive Home and Garden

Programming Your Sensing Station
When you set up your Arduino as a device on Xively, the Feed ID for your
account and your device’s API key are assigned automatically. You program
your Arduino to use your unique feed’s API key every time it updates your
feed with new data. You modify the example code for this chapter to post
data using the unique Feed ID and API key assigned by Xively.

To program your Arduino to post data to Xively, you need to obtain two
code libraries: one for connecting to Xively and the other for using Hypertext
Transport Protocol (called HttpClient), which allows your Arduino to send
data via the web. The code libraries for Xively and HttpClient are included on
the companion website with the code examples for all the projects at www.
dummies.com/go/arduinoprojectsfordummies. Install the libraries
into the Arduino Libraries folder for your operating system. If you are unsure
about how to do this, it’s explained in Chapter 3.

	 The Xively and HttpClient code libraries are updated regularly. You can also
get them from their code repository on a service called github, where devel-
opers store the latest versions. The github URLs for the two libraries are also
provided in the code comments.

Understanding the code
With the libraries installed, you tweak the example code to communicate
with your feed and device. The listing that follows shows how you alter the
example code:

#include <SPI.h>
#include <Ethernet.h>
#include <HttpClient.h>
#include <Xively.h>

#define API_KEY “***** YOUR API KEY GOES HERE *****”
#define FEED_ID ***** YOUR FEED ID GOES HERE *****

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

const int lightSensorPin=2;
const int tempPin1=3;

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

265 Chapter 12: Building a Home Sensing Station

const int tempPin2=4;

unsigned long lastConnectionTime = 0
const unsigned long connectionInterval = 15000

char sensorId1[] = “light”;
char sensorId2[] = “temp1”;
char sensorId3[] = “temp2”;

// Create three datastreams for the feed
XivelyDatastream datastreams[] = {
 XivelyDatastream(sensorId1, strlen(sensorId1), DATASTREAM_FLOAT),
 XivelyDatastream(sensorId2, strlen(sensorId2), DATASTREAM_FLOAT),
 XivelyDatastream(sensorId3, strlen(sensorId3), DATASTREAM_FLOAT),
};

// Wrap the 3 datastreams into one feed
XivelyFeed feed(FEED_ID, datastreams, 3);

// Create the ethernet client and Xively client
EthernetClient client;
XivelyClient xivelyclient(client);

void setup() {
 Serial.begin(9600);
 Serial.println(“Initializing network”);
 while (Ethernet.begin(mac) != 1) {
 Serial.println(“Error getting IP address via DHCP, trying again...”);
 delay(15000);
 }
 Serial.println(“Network initialized”);
 Serial.println(“Ready.”);
}

The important things to note in the preceding code are your FEED_ID and
your API_KEY. You need to replace these with the ones assigned by Xively to
your account and device, respectively. Cut and paste them into your code to
make sure they are identical. Your Arduino uses them every time you upload
data to your data feed to authenticate to the Xively servers.

Above those are the four libraries you include in the sketch. In addition to
Xively and HttpClient, you also are using SPI and Ethernet, which provide
communication to your Ethernet shield and specify how it operates.

266 Part III: The Interactive Home and Garden

Every device connected to an Ethernet network has what’s called a Media
Access Control (MAC) address. You’ve no doubt heard of IP addresses. MAC
addresses sit “below” IP addresses, at the hardware level. Each piece of
Ethernet hardware on a network has to have a unique address. Normally, these
are burned onto the board at the manufacturer, but you can assign your own,
as I show in this code. Newer Ethernet shields have a label on the bottom with
a MAC address. You can put that number here, or simply ignore it.

	 As long as every MAC address is unique on your network, it won’t pose a prob-
lem. But if you have two Ethernet shields running this code on your network,
you will need to set different MAC addresses for them.

After the MAC address, the example sketch uses the three integers for the
three analog pins from your test sketch:

const int lightSensorPin=2;
const int tempPin1=3;
const int tempPin2=4;

Next, the code declares two long integers to store the time in milliseconds,
and the time you last posted data to Xively. You use these to set an update
interval. The code specifies 15,000 milliseconds (15 seconds). If you want to
update at a different interval, change it here.

Your sensors have their own IDs, which correspond to the channels you cre-
ated on Xively:

char sensorId1[] = “light”;
char sensorId2[] = “temp1”;
char sensorId3[] = “temp2”;

	 Make sure the names in the quotation marks are identical to the names you
created for the three channels of your device.

The channels are updated by a Xively data stream object called
datastreams, which is an array containing the three sensors. These three
char variables uniquely identify each data stream used in your Xively
account’s feed, which correspond to the three channels you set up when you
created your device:

XivelyDatastream datastreams[] = {
 XivelyDatastream(sensorId1, strlen(sensorId1), DATASTREAM_FLOAT),
 XivelyDatastream(sensorId2, strlen(sensorId2), DATASTREAM_FLOAT),
 XivelyDatastream(sensorId3, strlen(sensorId3), DATASTREAM_FLOAT),
};

267 Chapter 12: Building a Home Sensing Station

Each data stream consists of its sensorID, which you created earlier, a vari-
able to specify the length of the data being sent, and a float variable that
contains the data itself (you can also use other kinds of variables). These
values are added when your readings are posted to Xively. You could create
many more streams here, limited only by your Arduino’s memory.

	 Each data stream corresponds to the channels you set up for your Xively
devices, so you need a data stream for each channel.

You wrap these three streams together to send them to your feed. The FEED_
ID comes from the variable declaration at the top of the code that Xively cre-
ated for you. The last value in the parentheses (3) specifies how many data
streams you have:

XivelyFeed feed(FEED_ID, datastreams, 3);

The next lines create an Ethernet client and a Xively client for your Arduino
to use to send data. The setup() section creates a serial port so that you
can display what’s going on for testing and debugging. It also establishes the
Ethernet connection on your network, using an automatically assigned IP
address. If you want to use a static IP address, you can do that, too. Chapter
11 describes how to use a static IP address with your Ethernet shield.

Understanding the main loop
In the main loop(), readings are posted to Xively with the sendData()
function, which follows the main loop(). There’s also a getData() function
that verifies what was posted to Xively and prints it to the serial monitor. The
getData() function is not essential, but it’s good for debugging or live moni-
toring. Later, you use the getVoltage() function from your test sketch.

First, you use your three temperature sensors and the sendData() and
getData() functions so that you can send three sensor readings. Remember
to change the values in the map() function of your lightLevel reading
(shown in bold) to correspond to the values you obtained from testing your
sensors, as described in the previous section.

void loop() {
 if (millis() - lastConnectionTime > connectionInterval) {

 float lightLevel = map(analogRead(lightSensorPin),0,1023,0,100);
 sendData(0, lightLevel);

268 Part III: The Interactive Home and Garden

 getData(0);

 float temperature1 = ((getVoltage(tempPin1) -.5) * 100L);
 sendData(1, temperature1);
 getData(1);

 float temperature2 = ((getVoltage(tempPin2) -.5) * 100L);
 sendData(2, temperature2);
 getData(2);

 Serial.println(“Waiting for next reading”);
 Serial.println(“========================”);

 lastConnectionTime = millis();
 }
}

In this code, you use the same method to get the sensor readings you used
in the test sketch and employ the sendData() and getData() function calls
to send the values to Xively. The sendData() function sends the values to
each channel and the getData() function allows you to read back the data
from Xively, to make sure your code is working properly.

The sendData function takes a parameter for which sensor to send and also
the value to send. Recall that your sensor values are stored in a data stream
array called datastreams[]. Each sensor has a position in that array, start-
ing with the light sensor, which is at position 0. This number is the first value
you put into the sendData() function call, followed by the lightLevel
reading just taken. The getData() function contains the same number, 0,
which refers to the light sensor:

 sendData(0, lightLevel);
 getData(0);

You use the same code to take the temperature readings that you used in
your test sketch. Because the positions for the temperature data streams in
the datastreams[] array are 1 and 2, you use those numbers for the send-
Data() and getData() function calls:

 sendData(1, temperature1);
 getData(1);

Take a moment to understand how the sendData() and getData() func-
tions work. The sendData() function accepts two values, one for the posi-
tion of the sensor in the datastreams[] array, and a second for the reading

269 Chapter 12: Building a Home Sensing Station

just taken. The local integer variable streamIndexNumber contains the
number you used in the sendData() function call:

void sendData(int streamIndexNumber, float sensorValue) {
 datastreams[streamIndexNumber].setFloat(sensorValue);

 Serial.print(“Sensor value is: “);
 Serial.println(datastreams[streamIndexNumber].getFloat());

 Serial.println(“Uploading to Xively”);
 int ret = xivelyclient.put(feed, API_KEY);
}

The next line actually stores the value of the reading just taken into the
datastreams[] array at the position that was specified by your function
call (0, 1, or 2, depending on which sensor was read), and sets the reading’s
value as a float:

datastreams[streamIndexNumber].setFloat(sensorValue);

The value is then printed to the serial monitor. The last line in the function
finally sends the data to Xively, using a function from the Xively library,
xivelyclient.put(). This is where your API key is needed. It’s used to
verify that you are allowed to post data to the feed. Don’t share the key with
others, or they’ll be able to post to and read from your feed, too.

The getData() function allows you to read back what you’ve posted (or
read data from other feeds, if you have the API key). It takes an integer as
input, and that integer specifies the position of the data stream (that is, the
channel) in the feed that contains your sensor data:

void getData(int stream) {
 Serial.println(“Reading the data back from Xively”);

 int request = xivelyclient.get(feed, API_KEY);

 if (request > 0) {
 Serial.print(“Datastream: “);
 Serial.println(feed[stream]);

 Serial.print(“Sensor value: “);
 Serial.println(feed[stream].getFloat());
 Serial.println(“========================”);
 }
}

270 Part III: The Interactive Home and Garden

This function uses another built-in function from the Xively library, xively
client.get(), which gets your Xively feed using your FEED_ID and your
API_KEY. In the printed output, you specify exactly which stream from your
feed you want to print:

 Serial.println(feed[stream]);

The stream you are printing is one of the three you’ve been posting from
your datastreams[] array.

Finally, you simply use the getVoltage() function from your test sketch
and — voilà! — your code is complete.

Making sense of your sensor readings
Now take it for a test drive. Upload the code to your Arduino and turn on
your serial monitor. You should see something similar to the output shown in
Figure 12-20.

	

Figure 12-20:
Monitoring
your Xively
feed posts

in the serial
monitor.

	

To see what it looks like on Xively, go to your feed’s URL on Xively. You can
find your feed’s URL in the upper-right corner of your Xively Developer’s
Workbench. My feed is at: https://xively.com/feeds/1424780519.
Simply replace the number at the end with your FEED_ID.

271 Chapter 12: Building a Home Sensing Station

The reporting screen should look somewhat like mine, shown in Figure 12-21.
You can use the gear widget to alter how your graphs look and to get custom
embedded code that you can paste into your website, blog, or Twitter. If
you are sharing tweets with your Facebook account, you can post them on
Facebook, too.

You will likely agree that using an Arduino and Xively to post your sensor
data to the Internet makes a lot of sense!

	

Figure 12-21:
Displaying
your sen-

sor data on
Xively.

	

272 Part III: The Interactive Home and Garden

Part IV
Advanced Arduino Projects

	

Visit www.dummies.com/extras/arduinoprojects to learn how to use the
LED cube pattern generator to create sequences of animation frames and play them back.

In this part . . .
	 ✓	 Learn about GPS and Arduino
	 ✓	 Build a GPS data logger
	 ✓	 Build a programmable LED cube
	 ✓	 Decode remote controls lying around your house
	 ✓	 Learn to program servo motors

Chapter 13

Building a GPS Data Logger
In This Chapter
▶	Understanding GPS
▶	Building a GPS data logger shield
▶	Collecting data with your data logger
▶	Plotting your course using online maps and Google Earth

Y
ou’ve no doubt used the Global Positioning System (GPS) either in your
car or on your phone. GPS is everywhere — literally over our heads, all

the time. Designed for the United States military to aid with defense systems,
GPS uses a constellation of satellites to provide precise location information
to any receiver that can receive and decode the GPS signal. This task was
challenging, as you can imagine. GPSs in the early days were as big as a small
suitcase. But these days, you can get a GPS receiver on a wristwatch!

Only trouble is, many of the consumer products out there don’t give you the
flexibility to do whatever you want with the GPS data. That’s where Arduino
comes to the rescue! In this project, you can use an Arduino and a GPS shield
kit to build a battery-powered GPS receiver that logs data to a mini SD card
for several hours. You program your Arduino to collect the data, and you can
then use it however you wish. Track your bicycle trips, hiking excursions,
or walking tours. You could even stick the logger in a car to build up a log of
driving habits and destinations. Ever have trouble remembering what parts
of a city you explored while on vacation? Not anymore. Because you store
the data in a standard format, you can make a plot of your trail, using tools
online or applications, such as Google Earth.

Building the GPS data logger shield itself is easy and takes under an hour. If
you haven’t tried soldering before, this project is a good one to start with
because it is pretty easy to do and you won’t be at much risk of damaging
things if you have trouble getting the hang of it. You then test your data
logger to make sure it is working properly. It will take another hour or so to
get everything into your enclosure. Finally, you go out and collect some GPS
data. You can then plot the map online, get the data converted for use with
software, such as Google Earth, and even download an image file if you need
one.

276 Part IV: Advanced Arduino Projects

Understanding GPS
The Global Positioning System is a constellation of 32 satellites that are whiz-
zing around about 20,200km (12,600 miles) above your head. They orbit once
every 12 hours and are arranged so that at least 6 satellites are always visible
from anywhere on earth. Each satellite sends signals that include its exact
position and the time when its message was sent. With this information from
a minimum of 3 satellites, a GPS receiver can calculate your position based
upon the transit time of the messages.

Because GPS relies on signals from several satellites, it can take time for
your GPS receiver to “get a fix.” GPS relies on line-of-sight, meaning signals
from the satellites will be blocked by tall structures. If only two are visible
from your location, it won’t be possible to calculate your latitude, longitude,
and altitude until at least one more satellite pops into view. When you first
build and test your project, it can take a while to get a fix, so it’s a good idea
to place your receiver (or optional antenna) where it can get a good unob-
structed view of the heavens above.

Selecting Your Parts
First, get together the parts and tools you need to build the data logger. You
put everything into an enclosure, so you will need to do a little bit of light
drilling for the power switch and the optional external antenna, if you choose
to use one.

You need the following parts, shown in Figure 13-1:

	 ✓	An Arduino Uno

	 ✓	An Adafruit Industries Ultimate GPS logger shield

	 ✓	A micro SD or micro SDHC card

	 ✓	A 9V DC battery and snap connector

	 ✓	A single-pole, single throw (SPST) rocker switch, such as Jameco
#316451 or Maplin # N19CL

	 ✓	An enclosure, such as Jameco #2134926 or Farnell #1848692, or a trans-
lucent one from Maplin, #N07GC

	 ✓	A scrap of pine wood or wooden strips about 1cm (1⁄4") thick and cut to
the same width as your enclosure (optional)

	 ✓	Three or four short pan head screws, about 1cm (1⁄4") long. You can also
use pan head wood screws (#6 screws should do).

277 Chapter 13: Building a GPS Data Logger

	 ✓	A 3-5V external magnetic mount GPS antenna, available from Adafruit or
Jameco #2153297 (optional)

	 ✓	An SMA to uFL/u.FL/IPX/IPEX RF “pigtail” adapter cable (optional) from
Adafruit or other online sellers

	 ✓	An adaptor to read the micro SD card, using your computer or laptop

You need to build this project with an Arduino Uno, Arduino Duemilanove,
or Diecimila. You can also use an Arduino Leonardo or a Mega, but they need
some modifications to the code to work correctly that I don’t cover here. If
you plan to use one of the latter, you should check out the Adafruit website
that has detailed instructions for using other Arduinos.

The workhorse of this project is the Adafruit Ultimate GPS Logger Shield. It
contains all the key components needed to get and record GPS data, includ-
ing the GPS receiver, and an SD card slot. It also has a prototyping area in
case you want to add additional features to your data logger. Getting a GPS
module to work can be kind of tricky because you need some additional
components to be able to connect it to an Arduino. The cool thing about this
shield is that all these components are already connected, tested, and ready
to go, so you can focus on building the project and not on troubleshooting
why your GPS receiver isn’t working.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

	

Figure 13-1:
The parts

you need for
this project.

	

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

278 Part IV: Advanced Arduino Projects

You can find a micro SD or SDHC card just about anywhere these days. I
picked one up from the supermarket for about five bucks. You are only
recording text data to it, so you don’t need a big one. Go for cheap. Even with
a 2GB card, at one reading per second, you’ll be able to store millions of posi-
tions before you run out of room on it. And your battery will die long before
that. You need to make sure you have a micro SD card reader so that you can
copy the data from the card to your computer or laptop. You can get a micro
SD to USB adaptor for about five bucks on Amazon or eBay.

To take your data logger into the wild, without your computer or laptop, you
need to keep it powered up and you need a way to turn it on and off. This
means a battery power supply and power switch. To get everything into a
portable, small enclosure, use a standard 9V DC battery and 9V battery snap
connector. You power the Arduino directly from the clip, which you solder
onto the GPS shield. My tests conclude that a standard rectangular 9V battery
lasted about five and a half hours. Because battery life is directly related to the
chemical action of the battery materials, larger batteries will yield longer life. If
you decide you want longer staying power, you can replace the 9V battery with
a 9V battery pack that holds six AA cells, using the same style snap connector.
These will substantially extend how much data you can collect.

To switch it on and off, I used a slimline rocker switch that gives the project
a nice professional finish and is very inexpensive. The tricky part of using
square-shaped rocker switches is that you need to bore a square hole in your
enclosure. You can also use simple toggle switches that use a single, round
bore hole, but these will stick out from the side of the box and could be
easily switched off accidentally.

You need a small plastic enclosure to protect your project. An ABS plastic
one is fine and is easy to cut into for the power switch and antenna. Jameco
and Farnell offer a made-for-Arduino custom enclosure that works well, but
you won’t be able to see the status lights and you need an antenna. I found
a translucent blue one from Maplin, which means I can also see the status
lights on the shield. If you use a clear box, you might be able to get away
without using an antenna at all, but you’ll have to try it out to be sure. A
metal box blocks the signal, so get the antenna if you are using one.

You need to hold your Arduino firmly in the box, but project enclosures
rarely have the right internal supports (called “bosses”) for your Arduino.
Instead of screwing your Arduino into the plastic, you glue the short strips
of wood into your project enclosure so that you can attach your Arduino to
it with three or four pan head or #6 wood screws. The length of the screws
should be about the same as the thickness of the wood strips, or slightly
longer, as your Arduino will not sit completely flush against the wood.

279 Chapter 13: Building a GPS Data Logger

	 If you are using an enclosure specially designed for Arduinos, you won’t need
the strips of wood or the screws.

GPS requires an unobstructed, line-of-sight view to the satellites that provide
the tracking signal. Your GPS shield has an integrated antenna onboard.
However, its sensitivity is limited. A plastic enclosure shouldn’t interfere
with the antenna, but using an external antenna provides greater sensitivity,
although it will draw a little more power. Many GPS extension antennas are
out there, and the magnetically mountable ones can be easily slapped onto
the top of a car or a bicycle frame. If your antenna has an SMA connector and
is made for GPS, it should work.

	 The antenna connector on the shield is a tiny little u.FL connector, which
keeps the shield compact. However, most GPS antennas use a co-axial “sub-
miniature version A” (SMA) connecter, which is threaded. So, to connect the
GPS antenna to the shield, you also need a short “pigtail” SMA to u.FL adapter.

	 The u.FL connector is known by several industry names, including IPX, IPEX,
and UMCC, but they are all the same design. You can easily find a pigtail adap-
tor for one of these connectors on eBay or Amazon and Adafruit also sells
them.

If you are using a plastic enclosure like the one in the parts list, you need a
couple of tools for cutting the holes in the enclosure for the power switch
and the antenna. You need either a hand drill or a power drill and approxi-
mately 7mm (1⁄4") drill bit for your switch. If you are using a square toggle
switch, you’ll need to square up the holes with a fine hand file.

Building Your Project
Building your project is done in three steps. First, you assemble the GPS
shield and test to make sure it’s working correctly. You then program and
upload code to enable the data logger. Finally, you check to make sure you
are logging data to your SD card. This project is really simple, so there’s no
wiring schematic, and you don’t need to prototype it on breadboard.

Assembling and testing the GPS shield
Putting the shield together is really easy. All you have to do is attach the pin
headers and insert a battery. What could be simpler? First, fire up your sol-
dering iron and make sure that it’s ready to go. Then do the following steps
to put it together:

280 Part IV: Advanced Arduino Projects

	 1.	 Separate the strip of pin headers included with your shield into
groups that match your Arduino’s header sockets.

		 It’s a good idea to use a pair of needle nose pliers to snap off the
required number, as shown in Figure 13-2. That way, you can be sure
that you’ve got the right number of pins in each segment and they break
off cleanly. You also won’t inadvertently snap the strip where you don’t
intend.

		 Make sure that you count carefully. The Arduino header sockets do not
all have the same number of holes!

	 2.	 You use your Arduino as a support for your pin headers while
you solder them onto the shield. Insert the pin headers into your
Arduino’s header sockets, as in Figure 13-3.

	 3.	 Seat your GPS shield onto the pin headers.

		 You may need to wiggle things around a bit in order to get the shield in
place. Make sure all the pins extend through the top of your shield and
that there are no missing pins, as shown in Figure 13-4.

	

Figure 13-2:
Snapping

off the right
number of

pin headers.
	

281 Chapter 13: Building a GPS Data Logger

	

Figure 13-3:
Using your
Arduino as
a soldering

support.
	

	

Figure 13-4:
Placing your

shield into
position for

soldering.
	

282 Part IV: Advanced Arduino Projects

	 4.	 Now use your soldering iron to solder each of the pins to your shield.

		 If you are right handed, start at the left side (and start at the right if you
are left handed). That way you will be able to see your work as you go
along. Refer to Figure 13-5.

After you’ve soldered the shield to your pins, you’re almost ready to perform
your maiden voyage — a test to make sure your GPS shield is working.

Your shield has two operating modes: direct connection and software serial,
which are selected by a tiny switch on the shield, shown in Figure 13-6. In
the direct connection mode, your Arduino doesn’t run any code. Instead, it
acts as an intermediary to your shield, so that you can communicate directly
with the GPS module’s serial interface. You use Arduino IDE serial monitor to
send and receive commands directly to the GPS module on your shield. This
is useful for testing the GPS unit, and for sending configuration commands if
you want to change how it operates. When you are satisfied with the tests,
you can put the GPS shield into software serial mode.

	 Your Arduino has one serial port, which it uses to communicate with your
computer. It’s physically connected both to your USB port and digital Pins 0
and 1. However, when you want your Arduino to control your GPS module,
you also need a second serial port to connect to it and send commands.
That’s where the software serial port comes in. Software Serial is a library
that allows your Arduino to use additional pins for serial communication. It’s
the only way you can send and receive serial data to other devices while you
also monitor your Arduino with your computer. The soft serial switch lets you
switch between the two.

	

Figure 13-5:
Soldering

your shield
to your pin

headers.
	

283 Chapter 13: Building a GPS Data Logger

	

Figure 13-6:
Switching

communica-
tion modes

on your
Arduino.

	

	 Because of the digital pin layout, direct connection using this switch only
works on the Arduino Uno, Duemilanove, Diecimila, Arduino compatible, or
Arduino Mega.

To use direct connection mode for testing the GPS module, you first upload
a “blank” sketch onto your Arduino. Open your Arduino IDE and type the fol-
lowing into a new sketch:

void setup() {}
void loop() {}

Save this sketch with a name you’ll remember, such as “blank.” Switch your
shield to “Soft Serial” mode so that you can send this code to your Arduino.
Then, connect your USB cable and upload the blank sketch.

Now that the code is loaded, you can test your GPS module and monitor its
output directly from the GPS chip. Flip the switch on your shield to Direct,
as shown in Figure 13-7. This connects your USB serial connection directly
to the GPS module. Later, when you are ready to use your shield for data log-
ging, you will switch it back to the “Soft Serial” setting.

	 If you have uploaded your blank sketch code, the red “FIX” LED should be
flashing once per second. If not, you may need to cycle the power. Unplug
your USB cable, make sure that you have set your switch to “Direct,” and then
plug it back in. If the red LED still isn’t flashing, you might have a problem with
your soldering or your board.

284 Part IV: Advanced Arduino Projects

	

Figure 13-7:
Switching

to Direct
Connection

mode to test
the GPS
module.

	

Open your Arduino IDE and click on Serial Monitor, making sure it is set to
9600 baud in its drop-down menu. You should see output similar to that in
Figure 13-8. If you do, your module is working correctly, though it hasn’t
picked up any satellites yet. Nonetheless, it still sends data so you know it’s
working.

	

Figure 13-8:
Viewing out-

put directly
from your

GPS module.
	

285 Chapter 13: Building a GPS Data Logger

This text is pretty hard to interpret unless you know what the GPS module
is saying. It uses the National Marine Electronics Association (NMEA) format
and outputs data for four different GPS data standards, each on a separate
line and preceded by a “$” sign. The one you are interested in is the Global
Positioning Recommended Minimum sentence ($GPRMC). This line gives you
the following information, as shown in Figure 13-9:

	 ✓	The NMEA sentence format used

	 ✓	Time in Greenwich Mean Time (GMT)

	 ✓	A satellite “fix” code: Active (A) or Invalid/Void (V)

	 ✓	The longitude in decimal degrees

	 ✓	 The longitude hemisphere, north (N) or south (S)

	 ✓	The latitude in decimal degrees

	 ✓	The latitude hemisphere, east (E) or west (W)

	 The latitude, longitude, and hemispheres contain nothing if there is no fix —
so you will just see commas with no data until you go outdoors to get a fix!

	 ✓	The speed of travel over land (in knots).

	 ✓	The “azimuth” or direction of travel. An azimuth is just a “compass”
direction, which is a horizontal angle around the horizon, measured in
degrees (0–360). 0 is north, 90 is east, 180 is south, and 270, west.

	 ✓	The Coordinated Universal Time (UTC) date, starting from Week 1 in
“GPS time” (which started in January 1980). This is updated when your
GPS receives the correct current GMT from satellites — but it hasn’t
seen one yet.

	 ✓	A checksum, preceded by an asterisk, which tests the raw data for trans-
mission errors.

When you can see this information, you know the GPS unit is alive and well.
You’re now ready to hunt for satellites!

If you are using a laptop, you can go outside to check whether you can get a
fix from the GPS satellites. If you are using a desktop and the optional exten-
sion cable and pigtail adaptor, you might be able to get a signal by sticking
the antenna out of a nearby window. Attach the antenna as described at the
end of this chapter to make sure your module is working before you build the
enclosure.

286 Part IV: Advanced Arduino Projects

	

Figure 13-9:
Interpreting
raw NMEA

data from
your GPS

module.
	

Time (GMT)
12:35:19.799

$GPRMC,123519.799,V, , , , , 0.00,0.00,050180, , ,N*4C6A

Status code
Void

No
GPS �x

No
Speed

No Tracking
Angle

Date
05 Mar 1980

Checksum

GPS Recommended
Minimum Sentence ‘C’

No Magnetic
Variation (North)

Be patient! It can take a while to get a fix from the GPS satellites. In the best
case, you’ll get a fix in about a minute. However, you may have to wait 10 or
15 minutes or even longer, depending on the situation overhead. But after
you do get a fix, you’ll receive updated tracking data every second. Your GPS
module will also start reporting the position data to your serial monitor.

	 The red LED labeled “FIX” on your shield will flash once every second until
you get a fix. Afterward, it will flash once every 15 seconds as long as it has a
fix. If it loses the fix, it will revert to flashing once per second.

If you are able to take your GPS module outside or if you have are using the
optional long antenna, you may be able to get a fix while you are connected
directly to the GPS module. Your status code will change to “A” and you will
receive latitude and longitude information.

	 The GPS logger shield has an onboard Real Time Clock (RTC). The button bat-
tery is to keep this powered up when you aren’t using it. However, your GPS
module gets the time for the satellites. So you don’t need this unless you write
code to support it. If you do insert your button battery, your GPS module
might stop operating after about 20 seconds unless you’ve set up the RTC. So
keep it out during testing.

287 Chapter 13: Building a GPS Data Logger

Programming your data logger
Now that you’ve communicated directly with your GPS module, you can
upload code to log data to your SD module.

	 You need to switch the GPS module back to Soft Serial if you aren’t commu-
nicating directly to the GPS module. All the code you’ll upload to the board
requires Soft Serial.

The code for this project is on the companion website for the book, www.
dummies.com/go/arduinoprojectsfordummies, and is in a zipped file
containing the files you need:

	 ✓	The data logging sketch that runs on your Arduino, called shield_sdlog.

	 ✓	A library that interfaces with the GPS module, called Adafruit_GPS.

	 ✓	A library that writes data to the SD card, called SD.

	 ✓	The library that allows you to create “virtual” serial ports, called
Software Serial.

	 Software Serial is a “core library,” so it is part of the Arduino IDE 1.0 installa-
tion. If you are using an older version of the IDE, you should update it.

You can hunt for these yourself online or on github, the code sharing web-
site (see: https://github.com/adafruit/Adafruit-GPS-Library).
But to make things easier, these are all in the Zip file for Chapter 13, on this
book’s website. You should download the Zip file now and extract the files to
your system.

	 To make things easier, I’ve renamed the Adafruit library on the compan-
ion website to Adafruit_GPS. The Adafruit library on github extracts to
Adafruit-GPS-Library-master and you’ll need to rename it for the code
to work properly. Refer to the instructions on installing libraries in Chapter 3.

After you’ve downloaded the files, fire up the Arduino IDE. If it’s already
running, you need to restart it so that the new libraries will appear in your
Application menus. Now, navigate through the menus and select File➪
Examples➪Adafruit_GPS➪shieldlog_sd. It’s not necessary to go into the
gory details of how each of the code lines work. But you should focus your
attention on the following lines:

// see if the card is present and can be initialized:
 if (!SD.begin(chipSelect, 11, 12, 13)) {
 //if (!SD.begin(chipSelect)) { // if you’re using an UNO, you can use

this line instead
 Serial.println(“Card init. failed!”);
 error(2);
 }

288 Part IV: Advanced Arduino Projects

This project uses an Arduino Uno, so you need to add two forward slashes
to comment out the first line and then remove the comment from the second
line beginning if (!SD.begin. Otherwise you will get an error.

The rest of the code handles the following things:

	 ✓	It creates the variable GPSECHO, which you should leave set to true while
you are testing your module. It sends all that data to the serial port so you
can see what’s happening. Later, you can turn it off, if you wish.

	 ✓	It creates the variable LOG_FIXONLY, which makes sure that entries are
only recorded to your SD card if your GPS module has a fix. Leave this
“false” until you are finished testing.

	 ✓	It makes sure that you are able to write a fresh file to the SD card, and
sequentially numbering new files.

	 ✓	It establishes communication with the GPS module and kick-starts it.

	 ✓	It writes the data received from your GPS module onto the SD card,
inside the newly created file.

A new file with a two-digit sequence number is created whenever you power
up your module. Take a moment to look through the code before uploading it
to your Arduino.

	 If you plan to try out any of the other example sketches included in the
Adafruit library (which I highly recommend), be sure to change the lines refer-
ring to Software Serial at the top of the sketch so that you are using Pins 7, 8
and not Pins 2, 3. Otherwise you won’t see any output in the serial monitor.

Testing your data logger
After you’ve made the changes to your code, connect your USB cable to your
USB port, select the correct serial port for your Arduino from the Arduino
IDE, and upload your code. You don’t need to remove the GPS shield before
you upload your code. Make sure the switch is set to Soft Serial.

When uploading is finished, enable the serial monitor in your IDE. Make sure
your baud rate is now set to 115200, or you will see gibberish on the serial
monitor.

If you are indoors, you should see output very much like what you saw when
you were directly connected to the GPS module during testing. If you happen
to be outdoors, or you have used the GPS extension antenna and placed it
outside a window, you may just start to see some GPS data after a while.

Figure 13-10 shows a diagram of the output from your GPS module when you
are receiving data. You should see output similar to this in the serial monitor.

289 Chapter 13: Building a GPS Data Logger

It’s much the same as your earlier test, but now it has information in the pre-
viously blank fields.

	 Remember, it can take anywhere from a minute to 15 minutes before you see
any GPS data.

Once you are happy that you’ve got it working properly, make two final
changes to the code:

	 1.	 Set the GPSECHO variable to false.

		 You don’t need to echo data to the serial monitor when you are logging
data and not connected to a computer.

	 2.	 Set LOG_FIXONLY to true.

		 You are only logging data when you have a fix on GPS satellites.

When you’ve edited these values, you can disconnect your data logger from
your computer.

Make sure that the switch on top of the GPS shield is set to Soft Serial. Now you
are ready to build your enclosure and secure the module inside its new home!

Making the enclosure
Assembling and programming the shield was the easy part. Making the enclo-
sure is just about as easy. All you need to do is provide holes for the switch
and the antenna connector, solder the power switch, and solder the snap
connector for your battery onto the shield.

	

Figure 13-10:
Receiving
GPS data
from your

GPS module.
	

290 Part IV: Advanced Arduino Projects

You need your hot glue gun for this part, so plug it in and allow it to warm up
while you do the following steps, referring to Figures 13-11 through 13-14:

	 1.	 Use your drill bit to bore out the hole for the rocker switch.

		 It may be easier to bore two adjacent holes and then remove the material
between them.

	 2.	 If you are using the optional antenna, bore a hole for it using the
same bit.

		 I placed mine next to the hole for the rocker switch, as shown in
Figure 13-11.

	 3.	 Use a small file to make the hole for the power switch nice and
square. See Figure 13-12.

		 I did not drill a hole for the USB connector because I wanted a tightly
enclosed box. You might find it easier to bore a hole for your USB con-
nector if you plan on frequently programming your GPS module. I’ve
found it’s more likely that I just “set it and forget it,” so I didn’t bother to
create a hole in the enclosure for my USB connector.

	 4.	 Insert your power switch into the enclosure.

	

Figure 13-11:
Drilling

holes for
your power
switch and

antenna.
	

291 Chapter 13: Building a GPS Data Logger

	

Figure 13-12:
Filing the

hole for
your rocker

switch.
	

	 5.	 If you are using an external antenna, insert your antenna pigtail
adapter into the enclosure.

		 Be sure to use the washers provided, with the serrated washer on the
inside of the enclosure and the lock washer and retaining nut on the out-
side of the enclosure, as shown in Figure 13-13.

	 6.	 Now insert your scraps of pine into your enclosure to estimate where
you want to place your Arduino.

		 You need to leave enough room for the 9V battery and to make sure
your power switch won’t touch your Arduino.

	 7.	 Use your hot glue gun to apply glue to the wood and press it firmly
into the bottom of the enclosure. See Figure 13-14.

	

Figure 13-13:
Mounting

your power
switch and

pigtail SMA
antenna
adapter.

	

292 Part IV: Advanced Arduino Projects

	

Figure 13-14:
Positioning

your
Arduino and

gluing your
wood on the

enclosure.
	

	 8.	 Test the position of your Arduino and GPS shield “sandwich” on the
wood inside your enclosure, making sure that it doesn’t touch the con-
tacts of your power switch.

Adding the power supply
The power supply is simply your 9V battery connected to the switch. The
positive lead is connected to one side of the rocker switch. The other side
is connected to the Vin pin on your GPS shield, which is connected to your
Arduino’s power input pin (through a pin header on the shield). The negative
lead goes straight to your ground pin. Do the following steps, as shown in
Figures 13-15 and 13-16:

	 1.	 Solder the red, positive wire from your 9 volt battery clip to one side
of the switch. It doesn’t matter which side. (The battery clip should
not be connected to any battery.)

	 2.	 Solder a jumper wire or other spare piece of wire to the other side of
your switch. If you have a red one, that’s even better.

	 3.	 Separate your GPS shield from your Arduino and use three or four of
your wood screws to secure your Arduino to the wood, as shown in
Figure 13-15.

	 4.	 Insert your mini SD card into the shield, as in Figure 13-16.

		 Be careful when you insert it. The spring inside has a tendency to make
the card fly out of your hands if you don’t hold it steady. Don’t insert the
small button battery until you are finished testing.

	 5.	 Now insert your GPS shield back onto your Arduino, taking care to
make sure you’ve slotted it into the right holes.

293 Chapter 13: Building a GPS Data Logger

	

Figure 13-15:
Soldering

the power
switch con-

nections
and install-

ing your
Arduino.

	

	

Figure 13-16:
Installing
your mini
SD card

and battery
(after

testing).
	

	 6.	 If you are using an external antenna, insert the u.FL connector into
the socket on your GPS shield, as shown in Figure 13-17.

		 It’s a tiny little socket located just below your mini SD card slot. The
u.FL connector is not made for heavy use. Instead, it’s optimized for
size. After you’ve connected your pigtail adapter to it, you should leave
it in place and try to avoid connecting and disconnecting it repeatedly. To
keep the cable out of the way, I routed the cable underneath, between
the shield and the Arduino.

294 Part IV: Advanced Arduino Projects

	

Figure 13-17:
Connecting
the optional

external
antenna
adapter.

	

	 7.	 Now, solder the red power wire from your power switch to the input
power pin labeled Vin, as shown in Figure 13-18.

	 8.	 Carefully solder your black ground connection from your battery con-
nector (still not connected to any battery) to the input labeled GND
on your shield, which is connected directly to the GND input on your
Arduino.

		 Actually, there are two holes labeled GND. You can use either one of
them, but I find the hole that is farther away from the Vin pin is easier to
solder.

	 9.	 Make sure your power switch is turned off and attach your battery, as
shown in Figure 13-19.

	 10.	 Screw the lid back onto your enclosure.

	 11.	 Attach the optional external GPS antenna.

	 12.	 Turn the power switch on.

295 Chapter 13: Building a GPS Data Logger

	

Figure 13-18:
Soldering

your power
input wire.

	

	

Figure 13-19:
Connecting

your battery
and external

antenna.
	

Collecting and Plotting GPS Data
Now you are ready to go out into the wild and start collecting routing data. If
you’re using it, you can slap the external antenna onto your car or bicycle or
any other ferrous metal surface. The steel panels of a car work great. I snaked
my antenna through the sunroof and hit the road.

296 Part IV: Advanced Arduino Projects

Tracking your path
	 Before you set off on your data logging adventure, make sure that the “FIX”

LED is blinking once every 15 seconds. If it is blinking once per second it has
not yet acquired the signal of at least three satellites and so won’t write data
to your SD card.

If you are using a single 9V battery, you can expect about three to five hours
of tracking time. If you switch off the receiver during your journey, the code
will automatically create a new log file. It automatically increments the num-
bers on the suffix of the filename. When you’ve got your data collected, you
can switch off the unit and remove the SD card.

Plotting your data
Depending on how long you were tracking, your log file will contain a long
list of GPRMC sentences, with each reading on a separate line. You should
see text like that in Figure 13-10, but with geographic coordinates that match
your own trek.

If your log file looks similar to this, you are ready to plot the data as a map.
There are several ways to do this, but the raw GPRMC sentence is not in a
format that can be easily read by most mapping websites and software. If you
want to plot the coordinates using a tool like Google Earth, you will need to
convert your raw data into the .kml format. You can do that and a whole lot
more using Adam Schneider’s excellent gpsvisualizer.com website.

To plot your map, do the following steps, as shown in Figure 13-20:

	 1.	 Open your web browser and navigate to gpsvisualizer.com.

	 2.	 In the box labeled Get Started Now, click the Choose File button and
locate your data file on your computer.

	 3.	 Choose an output format from the drop-down menu.

		 The default is Google Maps. If you want to get an image file you can
download, you should select the image file output format that you want
from the menu. Depending on the size of your file, it will take a few
moments to process the data. You should soon see output like that in
Figure 13-20.

	 4.	 You can select the link at the top of the page to download an HTML
file that contains a link to Google Maps, which will draw the map
for you.

297 Chapter 13: Building a GPS Data Logger

	

Figure 13-20:
Plotting

your data on
gpsvisualizer.

com.
	

If you would like to explore the map in Google Earth, which also allows you to
save an image file, you can also select the output as a .kml file on the main
landing page for gpsvisualizer.com.

The text files generated by your data logger are pretty small. The 5½-hour
log file I generated in Figure 13-20 contains 24,380 lines of text, but only
takes up 1.7MB of space on the card. So even with a small 2GB card, you can
leave your data files on the SD card and keep on adding more for a long time.
However, it is a good idea to occasionally copy them to your local system for
safekeeping.

Now head out there and get tracking ’til you drop!

298 Part IV: Advanced Arduino Projects

Chapter 14

Building a Remote-Controlled Car
In This Chapter
▶	Decoding a remote control
▶	Using servo motors
▶	Programming steering commands
▶	Building a three-wheeled chassis

Y
ou can buy remote-controlled car kits in hobby shops, but building your
own is much more fun — and it’s easy to do with an Arduino and a little

ingenuity. In this project, you create a fully drivable remote-controlled (RC)
car by using an ordinary household remote control, an Arduino, and servo
motors. You use your Arduino to decode the signals coming from any of your
remotes and then use the decoded signal to tell your car to move forward,
backward, and turn.

One cool thing about this project is that after you figure out how to use any
old remote control with your Arduino, you can transfer this capability to just
about any other project that you want to add a remote control to!

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

Selecting and Preparing Your Parts
The parts you need are shown in Figure 14-1. You should get together the fol-
lowing components to build your car, which will take about five hours from
starting gun to finish line:

	 ✓	An Arduino

	 ✓	A remote control

	 ✓	TSOP2438 or TSOP4838 Infrared Receiver Module (Vishay
Semiconductor) (Mouser Electronics 782-TSOP2438, and RS Components
#708-5070). Alternatively, use a PNA4602 module.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

300 Part IV: Advanced Arduino Projects

	 ✓	Two continuous-rotation servo motors (such as GoTeck GS-3360BB,
Futaba 900-00008, Jameco #283039, or the Arduino Servo Module, Rapid
#73-4464)

	 ✓	A battery holder for six AA batteries and a 9V battery clip

	 ✓	Six AA batteries

	 ✓	Eight pin headers

	 ✓	A breadboard

For the chassis:

	 ✓	Two cylindrical cans of Pringles brand potato chips

	 ✓	Two rubber bands about 8cm (3-4 inches)

	 ✓	A piece of scrap plywood or balsa wood, at least 11 x 17cm (4 x 7 inches)

	 ✓	A ball caster kit (Tamiya Brand — or Jameco #358336 or Cool
Components #000984)

	 ✓	Mounting hardware or hot glue

	 ✓	Self-adhesive hook-and-loop fastener (optional)

	

Figure 14-1:
The parts

you need for
this project.

	

301 Chapter 14: Building a Remote-Controlled Car

You can use any Arduino for this project. An Arduino Uno is shown in the
figures.

The awesome thing about this project is that you can use pretty much any
remote control you have in your house. You don’t have to use the Toshiba
remote shown in Figure 14-1. We have six of them, and we only use two, so
I grabbed a spare one. You should select a remote that has arrows in the
directions that you want to drive: left, right, forward, reverse, and — the
all-important — stop! I got one of our old television remotes because it has a
circular input pad, with a button in the center, which is a good place for the
“brakes.” It is possible that during testing, your remote will not be detectable.
You might need to try a different one if you can’t detect it during your testing.

The key component of this system is the Infrared (IR) Receiver module,
a Vishay Electronics TSOP2438, which operates on the 38KHz carrier fre-
quency. Other frequencies are used as well, but you need to detect 38KHz,
one that is most common to household remote controls. The component
works by sensing the infrared light patterns emitted by your remote and
translating them into digital output signals your Arduino can read using a
special IR library.

	 Only infrared light can be detected by the sensor — its epoxy case acts as a
filter on other light frequencies. However, ambient light has infrared signa-
tures, too. For example, a fireplace is a great source of heat and is also in the
infrared spectrum. So this component is designed to ignore such stray noise.

Servo motors come in two flavors: 180 degree sweeping motion, or continu-
ous rotation. Because you are using these motors for propulsion, you must
get continuously rotating servos, such as the ones listed. The servos operate
at 5V DC and can be somewhat power hungry. They also come with an acces-
sory kit that contains mounting plates and armatures and an assortment of
screws for mounting them. You need an additional angle bracket if you want
to mount the servos using this hardware. You can also simply mount them to
your car with hot glue.

You use a 9V battery pack for the project. You could use a single, rectangu-
lar 9V cell, but it won’t last very long. The servo motors are pretty power
hungry. You should get a 9V battery pack that holds six AA cells. They offer
a nice balance between lifespan and weight. The heavier C or D cells last
longer, but they may be too heavy for your car to move easily. Look for a bat-
tery holder that has a snap connector like those used for 9V batteries. This
makes it easier to detach your battery pack from your car when it’s time to
reload. Figure 14-1 appears to show a pack containing two cells, but that’s
because the other four batteries are underneath the top two.

You need eight pin headers. The longer ones are easier to work with. You use
two for your battery pack, and the other six to connect your servos to the

302 Part IV: Advanced Arduino Projects

breadboard. Pin headers usually come in long strips, so just break off a short
section of two pins and two short sections of three pins each.

For the chassis, you can use any small piece of wood you might have lying
around. The styling of the chassis is up to you, but the frame itself is carry-
ing the weight of the components and the more weight you have, the more
durable your design needs to be. A piece of scrap plywood should do nicely.
You can also use plastic, balsa wood, or even cardboard, as long as it’s large
enough to support all your components and the material is not too heavy.

Probably the tastiest part of the project is the two cans of Pringles, which
you use as the car’s wheels — sadly, not the fuel. You can use almost any
kind of rigid disc as a wheel, but Pringles (in addition to being edible) are
easy to get, cheap, and the cans have a metal base. You need two wheels, so
that’s two cans. You can use small or large cans, since you are only using the
metal base. I’d recommend large cans (more chips to eat!). You also need two
rubber bands that can fit snugly around the cans without distorting them.
Without them, your wheels won’t get very good traction.

	

If you want to get fancy, you can buy a huge variety of remote-controlled car
wheels at hobby shops or online. Just make sure that you can easily attach
them to the shaft of your servo motors.

You also need a hammer and a small nail to attach the wheels to your servos,
and a hot glue gun, if you wish to glue the servos to your chassis instead of
mounting them with bolts. The benefit of hot gluing your servos to your chas-
sis is that it’s quick and easy. The drawback is that you will have to rip them
off if you ever want to reuse them for another project. You can use a small
section of self-adhesive hook-and-loop fastener (commonly called Velcro) to
affix your battery pack.

Building Your Detector and Drive
The most important step comes at the beginning. Eat one of the cans of
Pringles! You’ll need to empty the cans before you build the car. After that’s
out of the way, you can proceed with getting your remote control to talk to
your Arduino. After you decode your remote control, you can test your servo
motors and program them to drive your car.

Building your circuit on the breadboard
The schematic in Figure 14-2 shows the circuit diagram of the car. The design
is simple because both the IR sensor and the servos can be controlled with-
out any additional components.

303 Chapter 14: Building a Remote-Controlled Car

	

Figure 14-2:
Schematic
diagram of
the RC car.

	

Follow the parts placement diagram in Figure 14-3 to hook up the detector
and motors to your Arduino. The infrared receiver module is inserted into
the breadboard, facing upward so that it can see the signals emitted by your
remote control.

During final assembly, you attach the breadboard directly to your car’s chas-
sis, so if you want a clean look, keep the wiring tidy.

The IR receiver module only requires connections for power, ground, and
the signal output. It detects infrared signals that are sent from the front of
your remote control. There is an infrared LED on your remote control (it may
be behind a little plastic window) that sends out coded pulses of infrared
light that correspond to each button. Because the light pulses are infrared,
your eyes can’t detect them. The infrared receiver module can though, and it
decodes these infrared pulses into digital high (+5V) and low (0V) voltages,
which are sent to the module’s output pin.

	 To test whether your remote is working, you can point it to a digital camera or
some smartphone cameras, which can see the pulses. This is especially useful
if you are using a remote control that has been separated from the appliance
that it was originally paired with.

304 Part IV: Advanced Arduino Projects

Connect the IR receiver module, as shown in Figure 14-3, with the output con-
nection going to digital Pin 2. Make sure that the dome of the IR receiver is
pointing upward or it may not be able to detect your remote when you send
commands.

Using the pin headers makes it easy to attach and remove your servos. Use
the pin header strips with three pins each to connect the servo motors to
your breadboard. Connect the signal wires to digital Pins 9 and 10. In fact,
as long as your code specifies the correct pins, you can use any pins labeled
with a tilde “~” because those pins can output pulse-width modulation (PWM).
You use PWM to control the movement of the servo motors.

	

Your Arduino employs pulse-width modulation to generate smoothly changing
output, which approximates an analog signal. I describe pulse-width modula-
tion in more detail in Chapter 5.

You add the battery pack later. Right now, you need to connect your Arduino
to your computer so that you can use the serial port to display the pulses
that are decoded by the IR receiver.

	

Figure 14-3:
Parts place-
ment on the
breadboard.

	

305 Chapter 14: Building a Remote-Controlled Car

Coding the detector
After you’ve placed the components, you need to test your remote control so
that you know the values that it spits out for different buttons. Take a look at
the following code to make sure it makes sense to you, and then upload it so
you can test your remote control.

#include <IRremote.h>

const int irReceivePin = 2; // pin connected to IR detector output
IRrecv irrecv(irReceivePin); // create the IR library
decode_results results; // IR results are stored here

void setup()
{
 Serial.begin(9600);
 irrecv.enableIRIn(); // Start the IR receiver
}

void loop() {
 if(irrecv.decode(&results))
 {
 showReceivedData();
 irrecv.resume(); // Receive the next value
 }
 delay(250);
}

void showReceivedData()
{
 if (results.decode_type == UNKNOWN)
 {
 Serial.println(“-Could not decode message”);
 }
 else
 {
 if (results.decode_type == NEC) {
 Serial.print(“- decoded NEC: “);
 }
 else if (results.decode_type == SONY) {
 Serial.print(“- decoded SONY: “);
 }
 else if (results.decode_type == RC5) {
 Serial.print(“- decoded RC5: “);
 }
 else if (results.decode_type == RC6) {
 Serial.print(“- decoded RC6: “);
 }
 Serial.print(“Value = “);
 Serial.println(results.value, DEC); // Print the results as a decimal value
 }
}

306 Part IV: Advanced Arduino Projects

The first line imports the Infrared Receiver library. This library is an excel-
lent resource that was written by Ken Shirriff. The library decodes the raw
data pulses that your IR receiver is sending to Pin 2. Download a Zip file of
the library from this book’s companion website, www.dummies.com/go/
arduinoprojectsfordummies, or from https://github.com/shirr-
iff/Arduino-IRremote, where the latest version of the libraries is hosted.
To install, do the following:

	 1.	 Extract the zipped archive.

	 2.	 Rename the directory, which will be named something similar to
“shirriff-Arduino-IRremote-xxx” to IRremote.

	 3.	 Move the IRremote directory to your Arduino libraries folder.

		 On a Mac, this is typically just Documents/Arduino/libraries/
libraryname/libraryname.cpp, and on Windows My Documents/
Arduino/libraries/ libraryname/libraryname.cpp.

	 4.	 Restart the Arduino IDE.

		 You should see some example sketches under the menu: File➪
Examples➪IRRemote.

If you aren’t sure how to install libraries to the libraries folder on your system,
refer to Chapter 3, which has general instructions on what you need to do.

This library handles four of the most common types of remote control sig-
nals: NEC, SONY, RC5, and RC6. Different manufacturers use different encod-
ing protocols, but your remote is probably using one of these standards.
There is also support for other kinds of remote control in the library, but you
have to go digging around in the library code files to enable them.

The first variable, irReceivePin, stores the pin number your IR module is
connected to. Then you create an IR receiver object called irrecv, which
takes as a parameter the variable that specifies to which pin (Pin 2) the
module is connected.

The data that is decoded by the library is presented within a special
decode_results object called results.

After specifying these variables, you use setup() to open a serial
communication channel, so you can report the decoded key codes. You
then enable the input by using a function of the irrecv object called
irrecv.enableIRIn().

The main loop() decodes the results and displays them. The irrecv
object you created has a decode() function, which knows whether there
are decoded values. The if statement tests whether there are results to

307 Chapter 14: Building a Remote-Controlled Car

look at and if so, executes the showReceivedData() function. After that,
the irrecv.resume() function prepares the module to get the next button
pressed. The delay in the loop is to provide you time to read the results on
the output window.

If there is no delay, the button presses will spew out of the Arduino very
quickly. This would not normally pose a problem. However, when you hold
down a button or press the same one many times, some remote controls
send a “repeated key” result instead of simply repeating the last button you
pressed.

The showReceivedData() function does the work of displaying the key
code for the button you pressed. The value of the last key press is stored
within a results class that knows about the different types of remote con-
trol protocols. The if statement tests whether the decoded results are of
a known protocol type and if not, reports an error. Otherwise, the further
series of if statements tests to determine which type of result was received
and prints this to the serial monitor. The last statement prints the actual
value that was decoded:

 Serial.println(results.value, DEC);

You can output several different data formats, so DEC specifies that you want
to get it as a regular old decimal number.

Reading your remote control codes
To check your remote, open the serial monitor in your Arduino IDE and press
a few buttons on your remote control. You should see something similar to
Figure 14-4. This is the result of pressing the numbers 0–9 on my Toshiba
LCD TV remote control.

	

Figure 14-4:
Example
output of

remote con-
trol codes.

	

308 Part IV: Advanced Arduino Projects

After you’ve got some readings on your monitor, press the buttons you want
to use to control your car. You need forward, reverse, left, right, and the
all-important STOP, which is essential for avoiding collisions. I added one
last button (a red one), for “Turbo!” mode, which really pours on a bunch
of speed. Choose a good button for Turbo mode. Make a note of the codes
that your remote generated, because you need these for the next part of the
sketch.

Coding the drive motors
When you’ve got the six codes, you just need to associate them with actions
to drive your motors. Add the next part of the Arduino sketch so that you can
test your motors.

Before setup(), add the following code (new code in bold):

#include <Servo.h>

#include <IRremote.h>
IRrecv irrecv(irReceivePin);
decode_results results;

const int rightMotorPin = 9;
const int leftMotorPin = 10;

Servo rightServo;
Servo leftServo;

int rightSpeed=90;
int leftSpeed=90;

long keyCode=0;

The first instruction adds a Servo control library, one of the standard ones
that’s included with your Arduino IDE. The Servo library contains all the
instructions needed to send pulses to your servo motors by using PWM. You
don’t want to have to write these yourself (which truly would be akin to rein-
venting the wheel!). It’s customary to put all the libraries at the top of your
code. That way, you can refer to them later when you create objects that use
their capabilities.

You next create two integer constant variables to keep track of the pins you’ve
got your servos attached to and assign these the values of the digital pins
you used, 9 and 10. Two slightly cryptic lines each create a Servo object, one
called rightServo and one called leftServo. You can now send instruc-
tions to the servo objects, and they’ll respond to them.

309 Chapter 14: Building a Remote-Controlled Car

The main instruction you’re sending is the direction the objects should turn.
Continuous rotation servo motors take values from 0–180 degrees, and the
center point, 90, means stationary. Sending a value below 90 rotates the shaft
left, and above 90 rotates right. The farther from 90 you go, the faster the
rotation speed, up to the limits of the servos’ capabilities.

You need to store the value that you are sending to your servos, so the vari-
ables leftSpeed and rightSpeed take care of this. You increment and dec-
rement these values to turn your servos. Setting them to start at 90 means
your car will remain stationary when you start it up.

The last long integer variable, keyCode, stores the decoded value that you
will obtain from the IR library. You use this value to determine which rotation
rules to apply to your servos.

If you find that one of your servo motors is turning consistently too slowly,
you can increase the value by which its speed is incremented. Just make sure
that you use whole numbers only. You use PWM for the motors and PWM
values can only be whole numbers from 0 to 255.

Now add the following code to your setup() (new code in bold):

void setup()
{
 Serial.begin(9600);
 irrecv.enableIRIn(); // Start the IR receiver

 leftServo.attach(9);
 rightServo.attach(10);

 pinMode(rightMotorPin, OUTPUT);
 pinMode(leftMotorPin, OUTPUT);

}

As you might deduce, you have to “attach” your servos so that you can address
them from your Arduino. You then specify that the rightMotorPin and left-
MotorPin will be used for OUTPUT because those are the pins you are using to
send PWM control signals to your servos.

Now, you can assign your button codes to the movement of your motors. Add
the following to the main loop:

310 Part IV: Advanced Arduino Projects

void loop() {
 if(irrecv.decode(&results))
 {
 showReceivedData();

 keyCode=results.value;
 if(keyCode != -1)
 {
 switch (keyCode){
 case 50174055: // Replace this code with the one from your remote!
 Serial.println(“Forward”);
 leftSpeed-=1; // Opposite values propel the wheels forward
 rightSpeed+=1;
 break;

 case 50182215: // Replace this code with the one from your remote!
 Serial.println(“Backward”);
 leftSpeed-=1; // Opposite values propel the wheels backward
 rightSpeed+=1;
 break;

 case 50168955: // Replace this code with the one from your remote!
 Serial.println(“Stop”);
 leftSpeed=90; // A value of 90 stops the servos from turning
 rightSpeed=90;
 break;

 case 50152125: // Replace this code with the one from your remote!
 Serial.println(“Turn Left”); // Wheels move in opposite directions
 leftSpeed-=1;
 rightSpeed-=1;
 break;

 case 50135805: // Replace this code with the one from your remote!
 Serial.println(“Turn Right”); // Wheels move in opposite directions
 leftSpeed+=1;
 rightSpeed+=1;
 break;

 case 50139885: // Replace this code with the one from your remote!
 Serial.println(“TURBO!!”); // need to move left servo to go right
 leftSpeed=leftSpeed-50;
 rightSpeed=rightSpeed+50;
 break;

 }
 }
}
 delay(250);
}

311 Chapter 14: Building a Remote-Controlled Car

In this code, the first thing that happens is the decoded results.value is
assigned to the integer keyCode. If the value is not -1, that means there is some-
thing to act on — a button has been pressed. This is tested by the next if state-
ment. If a button has been pressed, you check to see whether it is one of the
buttons you chose to control movement, using a switch...case statement.

The switch...case conditional structure is used to test a variable among a
number of possible situations. The variable keyCode is the test variable and
its value is passed to the switch function, which determines which case is
applicable. These cases are defined within the curly brackets. You can have
as many cases as you want (limited by memory). Only the one that matches
your criterion will be performed.

The first case is moving the car forward:

 switch (keyCode){
 case 50174055: // Replace this code with the one from your remote!
 Serial.println(“Forward”);
 leftSpeed-=1;
 rightSpeed+=1;
 break;

My Toshiba remote control sends an infrared signal for the value “50174055”
whenever the up arrow is pressed. That’s the case I want to test against.
The switch statement looks at the value of keyCode, and in the case that it
matches the number 50174055, executes everything after the colon until the
statement break. At this point, no more test cases are evaluated, and the
Arduino skips to the last curly bracket that ends the switch() statement.
Anything else within the statement will be ignored.

If the forward button is pressed, you need to turn the servos in the appropri-
ate direction for the way they are mounted on the chassis. However, when
you mount the servos to the chassis, they will be facing away from each
other, and thus, pointed in opposite directions. So, the left servo has to turn
counterclockwise to propel the car forward and the right servo has to turn
clockwise to propel the car forward. That is, the speed for both servos has to
change at the same rate, but in opposite directions. To go forward, leftS-
peed is decreased by 1 and rightSpeed is increased by 1, and to go back-
ward, just the opposite. You do this in the case statement:

 case 50182215: // Replace this code with the one from your remote!
 Serial.println(“Backward”);
 leftSpeed+=1; // Opposite values propel the wheels backward
 rightSpeed-=1;
 break;

312 Part IV: Advanced Arduino Projects

The third case in the switch...case structure is when the car stops. Both the
speed values are set to 90, which the servo interprets as stationary.

The next two statements handle turning — this baby can turn on a dime!
That’s because the wheels move in opposite directions. To go left, the left
servo speed is decreased, turning it counterclockwise. The right servo has
to turn clockwise. If both servos were facing the same way, this would mean
that its rightSpeed variable has to be increased. However, because the
right servo is mounted in the opposite orientation to the left servo, its speed
variable also has to be decreased. It’s a bit counterintuitive, but it works. And
when you want to turn right, you just do the opposite, increasing the speed
variable for both wheels.

The last case statement is for Turbo! mode. It adds forward (or negative)
speed in an increment of 50, rather than 1.

	

Make sure to change the key codes to match the ones you decoded for your
remote.

Now that you have the speed variables under control, you need to send the
values to the servos. You do this with a function that updates the motors.
Add an instruction to call this function at the end of your main program loop:

 Void loop(){

 ...

 updateMotors();
 delay(10);
}

You also can change the delay timer to 10 milliseconds. You don’t need the
longer 250ms delay any more. You can also delete the showReceivedData
function if you want, because you won’t be needing it any more.

Now define the updateMotors() function at the very bottom of your code:

void updateMotors(){
 leftServo.write(leftSpeed);
 rightServo.write(rightSpeed);
}

Testing the drive motors
After you’ve checked your code, upload it to the breadboard test bed and
check out the action. You should be able to point your remote in the general
direction of your breadboard and get the motors turning. You may even be
able to detect infrared light bounced off of the ceiling or adjacent walls. Try it.

313 Chapter 14: Building a Remote-Controlled Car

When your code is running, you may notice that your motors are turning
slightly, even when they are supposed to be stationary. This is probably due
to a slight calibration problem. There is a tiny hole on the top of your servo
motor, underneath which is a tiny potentiometer you use to fine-tune the
servo. To calibrate your motors, insert a small screwdriver into this hole
until you feel it click into the potentiometer’s head. Adjust left and right and
the motor will turn. Do this until you get a feel for the range of movement.
Then, center the potentiometer so that the servo shaft does not move. You
may hear a slight clicking sound, after you’ve got it centered, but this is
normal. I think of it as the sound of the engines idling!

Test that all your remote control commands are accurately detected and
that your servos are turning correctly. Servos are power hungry. If you test
the motors in “Turbo!” mode, there’s a chance you might draw too much
current from your USB port all at once, in which case your Arduino will be
disconnected from your USB port. You’ll have to reboot it to start the sketch
running again. If this happens, you won’t be able to test drive in Turbo mode
until you connect your battery pack.

The final test is solo operation. You need to connect your AA battery pack —
the power plant — to your system. Fire up your soldering iron and grab the
remaining two pin headers. Clamp these into your helping hands and tin the
pins by applying a bit of solder to them. Then tin the leads of your battery
connector and solder them to the pin headers, as shown in Figure 14-5.

	

You should do this quickly and precisely. If you heat the pins too long, the
plastic that holds them will melt and you’ll need to start all over.

	

Figure 14-5:
Soldering
pin head-

ers to your
power
leads.

	

314 Part IV: Advanced Arduino Projects

Take time to let the pins cool down between tinning them and attaching the
power leads.

After you’ve soldered them together you are ready to test. Disconnect your
Arduino from your computer. Next, plug in your battery pack to the Vin and
GND connections on your Arduino’s power headers.

	

It’s very important to make sure you get the polarity right! Do not insert the
power leads into the wrong headers and do not insert them backward. If you
do, you could damage your Arduino permanently.

When the power is connected, you should be able to do the computer-free
operational test, as shown in Figure 14-6. After you’ve finished building the
brains and the power plant, you can move on to assembling the car’s frame,
or chassis.

	

Figure 14-6:
Testing

your sys-
tem before
assembly.

	

Building Your Chassis
Now lay your Arduino, breadboard, and battery pack on the scrap wood to
judge their size. Then mark the outside dimensions and cut the wood to size.

Because your car is using three-point suspension, with a ball caster serving
as the front wheel, you want to make sure you have balanced all your com-
ponents and the weight is distributed evenly. So, mark the centerline of the

315 Chapter 14: Building a Remote-Controlled Car

wooden platform, as shown in Figure 14-7. Next, close to the one end, mark
the centerline for the servo motor axles. There should be enough room to
mount the servos to your chassis. If you are using screws or bolts, make sure
that they are positioned on the platform so that the axles of the servos will
be on the same axis. You also need to be sure that they are parallel to one
another. If your wheels are not parallel, your motors will be working against
one another and your car will be hard to control.

If you want to bolt your Arduino to the chassis (instead of using tape or hot
glue), take a moment to mark bore holes on the top end of your chassis, at
the back. Use your Arduino as a template and use the holes in the corners of
your Arduino’s PCB.

	

Figure 14-7:
Marking

your
centerline.

	

Now assemble and mount the ball caster kit, as shown in Figure 14-8. Use the
enclosed instructions as a guide and brush up on your Japanese! The ball
caster has a clever way of setting the height. There are several shafts stick-
ing out of the plastic base. Depending on which way you orient the plate that
holds the ball bearing in place, you can get a final height of either 25mm or
35mm. Because the Pringles can wheels are pretty high, use the 35mm set-
ting. The kit comes with a bunch of extra mounting screws. You can either
use these to mount the bearing to your chassis, or you can use hot glue,
which is not as reliable, but is easier. Mount your ball caster on the center-
line, as shown in Figure 14-9.

	

Figure 14-8:
Assembling
and setting

the ball
caster.

	

316 Part IV: Advanced Arduino Projects

	

Figure 14-9:
Mounting

the ball
caster.

	

Next, prepare the wheels. If you haven’t already done so, eat the second can
of Pringles. Save the plastic lid!

Then mark a line about 1cm (1⁄2 inch) up from the bottom of the can. This is
easy to do if you set your Sharpie on a book about that thickness and hold it
so that it is touching the side of the can. Then simply rotate the can to make
a consistent mark around its circumference. Using this line as a guide, care-
fully cut off the bottom of both cans using a sharp hobby knife, as shown in
Figure 14-10.

With the wheels removed, use a hobby knife to bore a small hole in the plas-
tic lid at the tiny dimple in the exact center. It should be big enough to fit
your pen through. Then, use the lid as a template to mark a guide mark on
the metal discs from the bottom of the can, as shown in Figure 14-11.

Now grab your hammer and nail. Also, locate the mounting screw that
secures the header plates onto your servo. This should be in the accessory
pack that came with your servos. The shaft plate mounting screw is usually
the single black one and not the shiny silver ones that are used for mounting
your servo motor.

	

The nail should be the same thickness as the plate mounting screw but no
thicker than its head. Otherwise the wheel won’t stay on!

317 Chapter 14: Building a Remote-Controlled Car

	

Figure 14-10:
Slicing

off your
wheels.

	

Use your hammer and the nail to punch a hole in the center of the metal disc,
as shown in Figure 14-11. Do this on a surface that you don’t mind nailing into
a bit. When you’ve punched a hole, carefully fold the metal burrs outward a
bit. Then use your hammer to tap them so that they are flush with the metal
surface.

	

Watch out for those burrs — they are sharp. This thing has drawn blood — I
can tell you!

	

Figure 14-11:
Marking

the center
of your

wheels.
	

318 Part IV: Advanced Arduino Projects

Now that you have a hole for the axle shaft, fit the rubber bands around the
circumference of your wheels and attach one of the servo header plates in
your accessory kit to each of the shafts of your servos. They should fit snugly
but are removable if you ever need to do any tire service.

Thread the shaft mounting screw through your wheel and screw it securely
onto the drive shaft of the servo, as shown in Figure 14-12.

	

Figure 14-12:
Mounting

your wheels
to the servo

motors.
	

Next you attach the servo motors to your chassis. (First, unplug the power
from your Arduino.) Use the axle center line you made earlier as a guide for
the placement of your motors, as shown in Figure 14-13.

	 Remember, the motors are mounted in opposite orientations! The left motor is
mounted on the right side of the undercarriage and the right motor is on the
opposite side. You can use hot glue to affix them, or use mounting hardware,
as shown in Figure 14-13. If you use the mounting hardware, you’ll need to
bore additional holes into your chassis to attach the motors.

When you’ve finished, your car should look more or less like the one in
Figure 14-14. There is a slight downward incline toward the front. This is to
improve aerodynamic stability, of course! Note the carefully placed “DIY”
sticker from my Arduino kit, which is subtly masking a hole in the chassis —

319 Chapter 14: Building a Remote-Controlled Car

and improving the coolness factor at the same time. You can mount some
spoilers later (should you choose to make any), but for now, it’s time to add
the rest of your parts and get motoring.

	

Figure 14-13:
Attaching

your servo
motors to

the chassis.
	

	

Figure 14-14:
Checking

your
chassis.

	

320 Part IV: Advanced Arduino Projects

The final step before road testing is assembling everything. Your breadboard
probably has a patch of adhesive foam tape on the bottom. Peel off the pro-
tective film and affix it to the center of your car’s chassis. Mount the Arduino
over the wheels, as shown in Figure 14-15. It’s also okay to use tape or even a
couple of dabs of hot glue.

	

Figure 14-15:
Attaching

your control
and power

plant.
	

Next, run the servo control wires around the back end of the vehicle. It’s a
good idea to tie them down with some extra wire ties so that they don’t get
entangled in the wheels. You can mount the battery pack on the front of the
vehicle with a bit of self adhesive hook-and-loop fastener (or even a bit of
duct tape, for a truly homebrew approach).

Congratulations, your masterpiece is ready for road testing! I prefer a stripped
down design, as shown in Figure 14-16. Just the basics and nothing fancy. But
you can add just about anything to spruce up the frame as long as it’s not too
heavy or out of balance.

321 Chapter 14: Building a Remote-Controlled Car

	

Figure 14-16:
Ready for

road testing.
	

Put on your driving gloves and goggles. Grab your remote control and plug
the power connection from your battery pack into the Arduino power head-
ers, making sure to get the polarity right. Set your car on a suitable, smooth
surface and put the pedal to the metal. Stamp on the “Turbo!” button to
release your inner Formula 1 champion.

If you’re lucky, you can get an action shot that’s suitable for the automobile
hall of fame!

322 Part IV: Advanced Arduino Projects

Chapter 15

Building an LED Cube
In This Chapter
▶	Building a 3 x 3 x 3 LED cube
▶	Writing LED cube patterns
▶	Programming the LED cube commands
▶	Building your enclosure

I
f you haven’t seen one already, you will soon! LED cubes are getting really
popular, and it’s easy to build a simple one with an Arduino Uno. This

project shows you how to create a 3 x 3 x 3 LED cube with just a few inex-
pensive parts. It’s easy and fun to build and you can get really creative with
the patterns it displays. In the process, you get to brush up on your solder-
ing skills. After you understand how it works, you can expand to 4 x 4 x 4 or
larger cubes with an Arduino Mega.

Building it is only half the fun. If you’re like me, you’ll get really absorbed in
designing animated patterns for your cube. The companion website for the book,
www.dummies.com/go/arduinoprojectsfordummies, has an LED cube
pattern generator, which will help you to try out different animation sequences
and will also generate the code you need automagically.

You can expect to spend about five hours building your first cube project.
Getting your soldering technique down is pretty easy, once you get going,
and there are other ways to speed up your assembly process. After you get it
built and tested, you’ll definitely want to spend some time playing around with
programming the patterns, which can be a lot of fun, and even compulsive!

The LED cube is made of three layers of nine LEDs. But, like the scrolling sign
in Chapter 6, only one of the LEDs is ever lit at a time. You just switch the
LEDs on and off so quickly that the persistence of vision (POV) effect means
that you perceive many LEDs to be lit up at once.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

324 Part IV: Advanced Arduino Projects

Selecting Your Parts
To get the ball rolling, pull together your parts and get your tools ready, as
shown in Figure 15-1. The parts you need are

	 ✓	An Arduino

	 ✓	Twenty-seven 5mm LEDs of the same color and specification

	 ✓	Three resistors (not shown) with a value between 220 ohms – 270 ohms

	 ✓	A 9V DC battery and battery clip

	 ✓	A single-pole, single-throw (SPST) rocker switch, such as Jameco #316451
or Maplin # N19CL

	 ✓	A small piece of stripboard or perfboard

	 ✓	Thirteen jumper wires

	 ✓	A small scrap of foam core board or corrugated cardboard

	 ✓	An enclosure sized about 80 x 12 x 40 mm (3" x 4.5" x 1.5"), such as
Jameco #675489 or Maplin# LH14

	

Figure 15-1:
The parts

you need for
this project.

	

325 Chapter 15: Building an LED Cube

This project can be easily built by using any Arduino, but I used an Uno. If
you want to expand the project to make a bigger cube, or to make the LEDs
to fade in and out using pulse-width modulation (PWM), you need to use a
board that accommodates more PWM outputs, such as an Arduino Mega.

Your LEDs should all be of the same size, color, and specification. Or perhaps
you want to get creative and use different colors. Of course, you can use
whatever you like, but you should at least make sure that the power require-
ments are the same so that your cube operates correctly, and the LEDs light
up consistently. If you use LEDs with different specifications, individual LEDs
will stand out from their neighbors, which is visually distracting, especially
during animations. You use three resistors to control current flow to the
LEDs. 250 to 270 ohm resistors are fine. You can use higher values but your
LEDs will be dimmer.

Because your cube doesn’t need to be connected to a computer to work, you
need a battery power supply and way to turn it on and off. Because you’re
powering both the Arduino and the Cube matrix and you need to fit it into a
small enclosure, get a standard 9V DC battery and 9V battery clip. You power
the Arduino directly from the clip, so get two pin headers. That way, you can
plug the clip directly into your power headers.

To switch it on and off, I found a very nice looking slimline rocker switch that
gives the project a nice professional finish and is very inexpensive. The main
challenge to using rocker switches is that you need to bore a square hole in
your enclosure. You can also use simple toggle switches that use a single,
round bore hole.

You need a small piece of stripboard or perfboard, to which you mount
the LED cube assembly for stability. If you use stripboard, you’ll have to
sever the copper traces so that the LED columns aren’t shorted together.
Perfboard only has metal plating around each individual hole, which elimi-
nates this problem. Both will work fine, but I tend to have lots of stripboard
lying around, so that’s what’s shown in the figures.

Unlike most of the projects in the book, this one doesn’t use a breadboard.
The project requires 13 jumper wires. Twelve of these connect to your
Arduino’s output pins. One wire connects the power switch to the Vin pin on
your Arduino.

To lay out your LEDs into a cube, you need a jig that can hold them securely
while you solder the LEDs together. You can bore holes in wood, but I’ve found
it’s just as easy to use a piece of foam core (also called “foam board”) or a
piece of heavy corrugated cardboard. This will be sufficient, unless you plan
to make a lot of cubes, in which case it’s worth it to make a more durable jig
from a piece of wood.

326 Part IV: Advanced Arduino Projects

If you are using an ABS plastic enclosure like the one in the parts list, you
will need a few tools for cutting the holes in the enclosure that accommodate
the LED leads and the power switch. You need either a hand drill or a power
drill. You need two bits: a small 1mm (1⁄16") bit for the LED leads and a large
bit about 7mm (1⁄4") for your switch. If you are using a square toggle switch,
you’ll need to square up the holes with a fine hand file.

After you get your parts together, you can get right down to building the proj-
ect and then upload code to start the light show.

Building Your Cube
Building your cube is done in three steps. First you prepare each layer of
the cube. Then, you modify your enclosure to accommodate the cube and
Arduino. Finally you add your power supply to the project so the LED cube
can go roaming around without a computer.

Assembling the LED matrix
The cube matrix is built out of three layers of 9 LEDs, for a total of 27 LEDs. The
layers are identical, which makes it easy to build them. You solder together each
of the layers separately and then you assemble the layers like a little LED cube
layer cake. After your cube is assembled, you solder it to your stripboard.

The positive “+” leg (or anode) of each LED on a given layer has a connection
to one of the digital outputs of your Arduino, which provides power. On each
layer, all the negative “–” (or cathode) legs are connected together and only
one ground pin is used for the whole layer. A total of three ground wires, one
for each layer, are connected to the digital pins of your Arduino.

	 Only a single LED lights up at a time. You just cycle through them so quickly it
looks like lots of them are on simultaneously.

You control which LED is lit by turning on one of the nine pins on a layer —
the “active” layer — and then connecting that layer to ground. Meanwhile,
the other inactive layers are not connected to ground, so the corresponding
LEDs in those columns remain unlit.

Prepare your soldering jig
To get started with the first layer, you need to prepare your soldering jig,
which is made from your foam core, cardboard, or wood. You need to bore
a grid of nine holes into this material. Mark off a 3-x-3 grid of dots on your
material with a ruler and pen. The dots should be spaced 25mm (1") apart.

327 Chapter 15: Building an LED Cube

It’s important to measure carefully to make sure they are very precise and
squared with each other. Otherwise, the layers won’t match up when you
stack the layers together.

If you are using foam core, cut X-shaped crosses that are centered on the
marking dots. Then at the center of the X-cuts carefully press the lens of an
LED into the foam to make holes, as shown in Figure 15-2. If you are using a
harder material, you’ll need to drill them out. Your LED should stay vertical,
snugly in the hole, and shouldn’t fall to the side. If the LED is loose, it will be
difficult to solder, so start over if the holes don’t provide a good fit.

You need to test each of your layers as you build them. Arduino to the
rescue! Open up the Arduino IDE and load up the “Blink” sketch on your Uno.
Pin 13 should be blinking once per second. Get long jumper wires to use as
test leads. Insert one into the Pin 13 and the other into GND. You’ll use these
probes to make sure that all your LEDs are working as you build.

	

Figure 15-2:
Making your

soldering
jig.

	

Lay out and solder your layer
The cathode “–” leg of each LED is connected to its neighbor so that an entire
layer of cathodes forms an “S” shape. Fire up your soldering iron so that you
can join the cathodes. To build your layers, perform the following steps, as
shown in Figures 15-3 and 15-4:

328 Part IV: Advanced Arduino Projects

	 1.	 Bend the shorter, cathode (–) leg of eight of the nine LEDs so that each
is flat against the bottom of its exterior resin base, perpendicular to
the longer anode (+) leg. Make the “V” for victory sign with your index
and middle finger, line up your middle finger with the longer anode (+)
leg and your index finger with the shorter cathode (–) leg, and then
fold your index finger forward.

		 That’s the way to bend your LEDs’ legs (see Figure 15-3). It doesn’t
matter whether you use your right or left hand, as long as you use the
same hand for the entire project.

	 2.	 Place the LEDs into the jig to form an “S” shape out of the bent cathode
legs, with the anode leg just touching the anode of its neighbor.

	 3.	 Use a small bead of solder to make a firm connection between the tip
of one cathode leg and the folded cathode leg of the next LED in the
series.

	 4.	 Keep going until you get to the end of the S shape.

		 Don’t bend the two legs of the last LED. You’ll deal with those when you
stack the layers.

	 5.	 While the layer is still in the jig, connect the ground jumper of your
test probes to one of the horizontal cathode legs. Use an alligator clip
from your “helping hands” to hold it in place.

	 6.	 Now touch the other probe that’s connected to Pin 13 to each of the
LED anode legs that is sticking up, as shown in Figure 15-4.

		 It should blink once per second. If it doesn’t, check that all your solder
joints are good and try again.

	 7.	 After testing, set aside the layer and do the next one until you have
three layers. Leave the last layer in the jig so you can start building
the cube.

	

Figure 15-3:
Laying out
LEDs and

bending
your cath-

ode legs.
	

329 Chapter 15: Building an LED Cube

	

Figure 15-4:
Soldering
your cube

layers.
	

Assembling your cube
When you’ve completed three layers, you’re ready to assemble the cube!
Hold one of the completed layers close to the one in the jig, matching up the
corners. But don’t align the “S” shapes. Instead, rotate the layer in your hand
by 90 degrees so that the two layers are not matched up. Doing this pro-
vides more structural stability to your cube when all its layers are soldered
together. Also, you need to make sure that the two LEDs that have both
anode and cathode legs pointing up are not aligned on top of one another.
Refer to the connection diagrams in Figure 15-5. Do the following steps:

	

Figure 15-5:
Connection
diagram for

your LEDs
(viewed
from the

side).
	

330 Part IV: Advanced Arduino Projects

	 1.	 Align the corner LEDs of the two layers.

	 2.	 Using your needle nose pliers, make a small bend at the very tip of the
anode (+) leg of the LED in the corner of the jig so that it can touch
the anode leg of the corner LED in the layer in your hand.

	 3.	 Now, carefully solder the two anodes together.

		 This is the point when it’s good to have about five limbs! Use your “help-
ing hands” or an alligator clip to hold things together while you make
the solder joint, as shown in Figure 15-6. Try to work quickly so that you
don’t overheat the LEDs.

	 4.	 Now, move to the next LED in the series and repeat this operation.

	 5.	 Continue until you’ve soldered together all the anodes of the LEDs in
the two layers.

	 Make sure that you don’t solder the cathode leg of the last LED in your cathode
layer to an anode on the adjacent layer!

When you’ve connected the two layers, each LED on the top layer should
have its anode leg soldered to the anode leg of the LED on the layer under-
neath it. The last LED in the series of each layer should have both its legs
pointing down, and nothing connected to the cathode leg (and they are in dif-
ferent corners).

	

Figure 15-6:
Soldering

your anode
columns
together.

	

331 Chapter 15: Building an LED Cube

Now repeat the operation above to add your third layer. Make sure to rotate
the layer again by 90 degrees so that the adjacent “S” shapes of the two
layers are not aligned and the terminating LEDs with both legs sticking up are
not on top of each other. The top and the bottom “S” shapes will be in the
same orientation (refer to Figure 15-5).

After you’ve soldered all three layers of your LED layer cake together, you
should have nine vertical columns of three connected anodes. You will also
have a single LED at the corner of each layer with an unconnected cathode.
You will solder a “flying lead” to this cathode so that you can connect each
of the three layers to the Analog pins of your Arduino. You’ll connect them to
ground in your code.

Now test your LED cube to make sure that everything is working. Repeat the
test procedure you did for the individual layers. This time, you should be
able to light an LED by connecting its layer to ground and touching your posi-
tive probe to any anode in its column. For example, in Figure 15-7, the ground
lead is connected to the topmost plane. You can light any LED in that plane
by touching the connected anode wires of any column of LEDs. Because only
the topmost plane is connected to ground, only a single LED lights up.

	

Figure 15-7:
Testing

your cube
assembly.

	

332 Part IV: Advanced Arduino Projects

	 You use the same principle to create the animations on your LED cube but
instead of manually connecting the power, your Arduino does it programmati-
cally — and very fast!

After you test your cube and make sure every LED is working, take a moment
to gently align all the LEDs and straighten up your cube. LEDs always get
slightly bent out of shape during soldering.

Fabricating the enclosure
With you cube complete, you can fabricate the enclosure. The enclosure pro-
vides stability for your LEDs and hides the inner workings so you can bask in
undistracted glowing glory. You need to drill holes in the right place for your
cathodes and anodes and a separate hole for your power switch. You then
connect your LEDs to your stripboard (or perfboard if you are using that
instead) inside the enclosure, which provides stability and makes soldering
your jumper wires easier. Do the following steps, referring to Figures 15-8
through 15-13:

	 1.	 Set your LED cube on your stripboard and mark it so that there is a
bit of extra room all the way around the LED grid but not so big that it
won’t fit into your enclosure.

	 2.	 Cut your stripboard to size.

		 You can use a hobby knife to do this. Score several times along the holes
in the stripboard and you’ll be able to cleanly snap it in two.

	 3.	 Carefully slip the leads of your LEDs through the copper side of the
board so that you can mark the top side of your stripboard.

		 On three corners of your stripboard, you mark two adjacent holes, as
shown in Figure 15-8. One hole accommodates the anode and the other
hole is for a connection to each cathode layer.

	 4.	 Now use the stripboard as a drill hole marking template. Tape it onto
the outside of your enclosure and use a hobby knife to lightly score
guide marks into the surface of the plastic box, one for each anode
and three for the cathodes.

	 5.	 Check that you have marked 12 bore holes — 9 anodes and 3 cathodes.

333 Chapter 15: Building an LED Cube

	

Figure 15-8:
Marking
your drill

holes on the
stripboard.

	

	 6.	 Measure and mark the position for your power switch.

		 I put it on what’s usually considered the top half of the enclosure
because it’s a bit easier to do, and mounted the LED cube on the bottom
cover. Mounting the cube on the bottom of the box is a little easier to
do, but you might not like the look of the screws — it’s up to you.

	 7.	 Now use your small drill bit to bore out the grid of holes you marked.

		 You can do this on a desktop if you use an old catalog to protect its sur-
face, as shown in Figure 15-9.

	

Figure 15-9:
Using your
stripboard

as a
template.

	

334 Part IV: Advanced Arduino Projects

	 8.	 Use your large drill bit to bore out the hole for the rocker switch, as
shown in Figure 15-10.

		 You might find it is easier to bore two adjacent holes and then remove
the material between them. Use a small file to make the hole nice and
square. After you’ve finished, you should have an excellent looking
power switch for your cube. Test the fit, as shown in Figure 15-11.

	

Figure 15-10:
Drilling the

hole for
your power

switch.
	

	

Figure 15-11:
Testing

the fit of
the power

switch.
	

335 Chapter 15: Building an LED Cube

	 9.	 Now carefully feed the LED anodes and cathodes through the surface
of your enclosure and through the stripboard.

		 This part is a little fiddly and you might find it easier to start at one
corner of your cube, feeding in a single row and then working your way
across the leads. Persevere! It can be done!

	 10.	 Finally, flip over the assembly and tape the stripboard in place.
Gently slide the cube so that the LED legs are square with reference to
the enclosure’s surface.

	 11.	 Use your soldering iron to solder the 12 anode leads onto the stripboard.

	 12.	 Sever the copper strips that are connecting the rows of LEDs. You can
use a hobby knife to do this, or a small drill bit that is just wider than
the copper strips. Bore six shallow holes to break the copper traces —
but not all the way through the board.

		 You can see these in Figure 15-12.

	

Figure 15-12:
Soldering

your anode
connections
and jumper
wires to the
stripboard.

	

Making the final connections
Each of your LED layers is connected through a resistor to an analog pin.
Rather than being used for input, as is usually the case, the three analog pins
provide a pathway to ground. Each of your LED layers is connected to one
analog pin. But the cathodes for each layer are on the last LED for that layer.

To make the connection, you feed a “flying lead” up through the cathode hole
you bored in your enclosure and solder it to the cathode leg of the LED in
each of the three corners of your cube (refer to Figure 15-5).

	 1.	 Create a “flying lead” for each LED layer. Feed a small length of wire
through each of the cathode holes and solder the end to the free cath-
ode of each LED layer. Wire with black insulation is best because it
won’t distract from the LEDs.

336 Part IV: Advanced Arduino Projects

		 You may have to ream this hole to be slightly larger so that it accommo-
dates the insulation.

	 2.	 Solder the other end of each flying lead to your perfboard, on a row
that is not connected to any of the other anode leads.

	 3.	 For each flying lead, solder one leg of a 220 ohm resistor to the hole
next to the flying lead and on the same strip of copper.

	 4.	 Solder the other leg or the resistor to an adjacent, unused row.

		 You use a jumper wire to connect the second leg of the resistor to the
analog pins of your Arduino, providing a pathway to ground.

	 5.	 To create the three connections to the analog pins, solder a jumper
wire to your perfboard strip in a hole adjacent to each resistor.

		 This is a bit of an unusual way to solder wires to a stripboard. Usually
you feed wires through the stripboard hole on the opposite side.
Soldering the connections this way means that the stripboard remains
flush against the enclosure. Figure 15-12 shows how this looks for Steps
5 and 6.

	 6.	 Now grab nine of your jumper wires and solder them onto the sections
of strip connected to each of the anode legs in the stripboard.

	 7.	 The final step is to warm up your hot glue gun and place a couple dol-
lops of hot glue onto the sides of your board to keep it securely con-
nected to the enclosure.

		 Set it aside to cool while you work on the power switch.

Testing your connections
After you have soldered all the jumper wires, you should test your cube to
make sure there are no bad connections. Connect your ground wire probe
from your Arduino to one of the three cathode leads. Figure 15-13 shows the
wire ground connected to the middle layer and the positive wire connected
to one of the anode jumper wires. Now, systematically go through each of the
anode wires and make sure that they are working and make a note of which
jumper wire goes to each of the nine columns.

If an LED fails to light up, you’ve got a broken connection in either its anode
or its cathode. If the other LEDs in the same column fail to light up as well,
the problem is with the anode connection for that column. If the other LEDs
in the layer won’t light up, your problem is with the cathode connection. The
schematic diagram for the cube is shown in Figure 15-14.

337 Chapter 15: Building an LED Cube

	

Figure 15-13:
Testing

the entire
cube circuit

assembly.
	

	

Figure 15-14:
Schematic

diagram
of the LED

cube.
	

Front Columns

Middle Columns

Back Columns

Top Plane

Middle Plane

Bottom Plane

N/C

IO REF

SCL

SDA

RST

AREF

A0

A1

A2

A3

A4

A5

3V3 5V Vin

Analog Input

D11

D10

D9

D8

D7

D6

D5

D4

D3 PWM

TX

RX

PWM

PWM

PWM

PWM

PWM

D2

D1

D13

D12

D0

Di
gi

ta
l I

np
ut

/O
ut

pu
t

Power

Arduino

GND
LED23

LED4

LED22

LED5

LED3

LED24

LED27

LED21

LED1

LED25

LED2

LED26

LED6 LED16

LED13

LED11

LED14

LED12

LED15

LED10

LED20LED7

LED17

LED19

LED18LED9

LED8

9V DC

Power Switch

R1
220Ω

R3
220Ω

R2
220Ω

338 Part IV: Advanced Arduino Projects

If two or more LEDs light up when you make a connection, you have a solder
“bridge” connecting them. Check all your joints going to that column and
layer to make sure there aren’t any fat blobs of solder making unwanted con-
nections. After you’ve tested everything, move on to the power supply and
switch.

Adding the power supply
The power supply is simply your 9V battery connected to the switch. The
positive lead is connected to one side of the rocker switch. The other side is
connected to the Vin pin on your Arduino. The negative lead goes straight to
your ground pin. Do the following steps, as shown in Figure 15-15:

	 1.	 Solder the red, positive wire from your 9 volt battery clip to one side
of the switch.

		 It doesn’t matter which side.

	 2.	 Solder one of your jumper wires to the other side of your switch.

		 If you have a red one, that’s even better.

	 3.	 Get your pin headers and solder the black negative lead to one (or
both) of them.

		 You use two pin headers because there are two adjacent GND connec-
tions on your Arduino and using two pins gives a more secure physical
connection.

Set the battery aside until later so you can program your animation patterns.
Figure 15-16 shows what your project will look like after you’ve installed
everything into the enclosure.

	

Figure 15-15:
Soldering

the power
switch con-

nections.
	

339 Chapter 15: Building an LED Cube

	

Figure 15-16:
Putting

everything
into your

enclosure.
	

Connecting your Arduino
Now connect your Arduino to the cube. Plug in the nine anode jumper wire
connections to your digital pins, as shown in Figure 15-5. Connect the three
cathode connections to analog Pins 0, 1, and 2.

	 In your program, you use the analog input pins as connections to ground,
rather than as analog inputs.

Now plug in your Arduino to the USB connection and get down to tweaking
the code.

Programming Your Cube
The code for this project is on the companion website for the book, www.
dummies.com/go/arduinoprojectsfordummies. You should download
it now so that you can send it to your Arduino after you understand how the
code works. This program is long because it contains several example anima-
tions to get you started.

	 It’s easy to make an error manually typing in the patterns, so the companion
website also has a pattern generation tool, described in the next section.

340 Part IV: Advanced Arduino Projects

Just as with movie animations, the dancing patterns on your LED cube are
created as sequences of frames and displayed rapidly in sequence to give the
illusion of movement. That means you have to define whether an LED is on or
off for each frame of the animation, represented by a 1 or a 0. Your code then
reads these sequences of bits and “paints” the pattern for each frame onto
the entire cube. Unlike movie animations, however, you can set the display
duration for each frame independently, in increments of 100 milliseconds.

It’s actually slightly more complicated than that, because for each frame,
only one LED is lit at any given moment. Imagine you have the top nine LEDs
lit up in a single animation frame. Your code determines that the top nine
LEDs should be lit up for that frame and then lights each one in order, one at
a time. Because this is done in microseconds, it appears that the entire top
plane is illuminated simultaneously.

	 You only have 2,048 bytes of working memory, called static random access
memory (SRAM), which is used for storing and manipulating variables when
your program is running. To save on this running memory space, the pattern
is defined by a table of individual bits (“on” or “off”) you store in a single large
array in an extra room on your Arduino that is normally used to store the pro-
gram itself, the flash memory. This array is read from there when the program
is running, instead of from SRAM.

Take a moment to understand how the code works before you hook up your
Arduino.

Variable declarations
Here’s the first part of the code your Arduino will run, which contains all the
program variables and defines the animation sequence(s). The code listing
for the pattern data is truncated, because it is too long to put in this book,
but you can refer to it in your IDE.

Understanding the pattern structure
#include <avr/pgmspace.h>

prog_uchar PROGMEM patternData[] = {
 // Blink all LEDs on and off
 B111, B111, B111, B111, B111, B111, B111, B111, B111, 10,
 B000, B000, B000, B000, B000, B000, B000, B000, B000, 10,

. . .
};

341 Chapter 15: Building an LED Cube

The first part of the code contains includes a library called avr/pgmspace.h
that allows you to get the animation pattern from program memory space.
This comes with the standard Arduino software distribution.

After this, the patternData[] array is the next huge chunk of code (only
part of which is shown above), and it defines each frame of your animation
sequence. It is an array of unsigned char values (unsigned means they are
not negative) stored in program memory, as indicated by the prog_uchar
PROGMEM prefix. Each grouping of bytes contains the values for your LEDs.
The first 9 bytes are the on or off states of your 27 LEDs for a frame. The lines
of data are laid out in rows of frames, consisting of 10 values. This is easier to
read, but you’ll notice there’s a comma after every line, because this data table
is really just one long list of numbers.

The tenth byte stores the duration that you want to display this frame, in incre-
ments of 100ms. So a value of 10 displays the frame for 1 second. The first
frame sequence turns on all the LEDs for one second:

 B111, B111, B111, B111, B111, B111, B111, B111, B111, 10,

Here’s how the sequence of bits relates to the LEDs on your cube (the “map-
ping”). The binary values are preceded by the letter B. Take a look at this
hypothetical line:

 Top Plane, | Middle Plane, | Bottom Plane, ms
Front, Mid, Back, | Front, Mid, Back, | Front, Mid, Back,
 B111, B000, B000, | B010, B010, B010, | B111, B111, B111, 10,

The first value, B111, lights up the top three LEDs on the front row of your
cube. The top three LEDs in the middle and back rows are off, as indicated by
the three zeros, one for each LED in the row. From this pattern, you can see
the middle plane values would illuminate a line of LEDs in the middle of each
row, extending from the front of the cube to the rear of the cube. The Bottom
Plane is entirely lit up — all the LEDs are on. The final value is the duration:
10 times 100ms, or 1 second.

Defining your variables
Now take a look at the rest of the variables:

const int cubeSize=3; // the dimensions of the cube, in LEDs
const int planeSize=9; // the number of LEDs on each plane of the cube
const int planeDisplayTime=1000; // time each plane is displayed in microseconds
const int updateSpeed=100; // multiplies displayTime to get milliseconds

byte patternBuffer[planeSize]; // Stores the current pattern from patternData
int patternIndex; // Keeps track of the data value containing the duration

342 Part IV: Advanced Arduino Projects

int patternBufferIndex; // Counts where we are while painting the display
byte displayTime; // Multiplied by 100ms to set the frame duration
unsigned long endTime; // Tracks when we are finished with the frame

int plane; // Loop counter for painting the cube
int ledrow; // Counts LED rows in the refresh loop
int ledcol; // Counts LEDs columns in the refresh loop
int ledpin; // Counts LEDs in the refresh loop

int LEDPin[] = {2,3,4,5,6,7,8,9,10};
int PlanePin[] = {14,15,16};

The first four const inst variables define the size of the cube in LEDs (33, which
is 3 cubed, or 27), and the size of each plane. You could increase this to four
or more if you were to build a larger cube — but then you’d need a larger
Arduino! The planeDisplayTime controls the refresh rate that each frame
is painted at in millionths of a second. The updateSpeed variable controls
how long each frame is displayed. You multiply this by the last value on each
line of your data table to determine how long each frame is displayed. If you
change the value for update speed, it will affect all the frames of your whole
animation sequence.

The byte variable called patternBuffer[] is a temporary array that holds
the data values of the frames that you read from program memory when the
program is running. The patternIndex integer is used to keep track of the
elements of the array when loading from program memory so that you know
which one contains the duration in milliseconds. The patternBuffer
Index is merely a counter used when you are painting the display. The
byte displayTime is a temporary variable that stores the time each frame
is displayed when you read it from program memory. The endTime value is
a counter used to determine if you are finished painting the frame.

The next four integers are used as utility counters while the display is being
painted.

The last two arrays store the pins you are using for the cube. The LEDPin[]
array stores the anode connections and the PlanePin[] array stores the
cathode connections. You turn these pins on and off when you are refreshing
the display. Pins 14, 15, and 16 are merely the Arduino’s analog input pins
labeled A0, A1, and A2.

Setup
Setup is very simple. It consists of two for loops to initialize the pins using the
pinMode command. The pins are all set for OUTPUT. Because you are storing

343 Chapter 15: Building an LED Cube

the pin numbers in two arrays, you need two for loops to iterate through
them, setting each pin’s mode, in turn.

The main loop
The main loop is where the action happens. You are only getting the data
you need to work with for each frame, one frame at a time. But the program
memory space contains all the frames. You use the patternIndex to keep
track of where you are, and to start, you set the patternIndex to 0. You
then load up the temporary buffer with the data for a single frame from
program memory (nine values plus the duration). Then you execute a do...
while loop to paint this frame for the entire main loop of the program. You
continue in this loop for as long as there is data in displayTime — the last
value of each frame. When you reach the end of the pattern, there won’t be
any more frames, so the displayTime will be null. Then the loop quits and
the main loop starts it up all over again.

Here’s how it works:

patternIndex = 0;
do {
 memcpy_P(patternBuffer, patternData+patternIndex, planeSize);
 patternIndex += planeSize;
 displayTime = pgm_read_byte_near(patternData + patternIndex++);
 endTime = millis() + displayTime * updateSpeed;

 while (millis() < endTime) {
 patternBufferIndex = 0;

 // Loop over the planes of the cube
 for (int plane=0; plane<cubeSize; plane++) {
 // Turn the previous plane off
 if (plane==0) {
 digitalWrite(PlanePin[cubeSize-1], HIGH);
 }
 else {
 digitalWrite(PlanePin[plane-1], HIGH);
 }

 // Prepare the digital pins to light up LEDs
 ledpin = 0;
 for (ledrow=0; ledrow<cubeSize; ledrow++) {
 for (ledcol=0; ledcol<cubeSize; ledcol++) {
 digitalWrite(LEDPin[ledpin++], patternBuffer[patternBufferIndex] &

(1 << ledcol));
 }
 patternBufferIndex++;

344 Part IV: Advanced Arduino Projects

 }

 // Turn on the current plane
 digitalWrite(PlanePin[plane], LOW);
 // delay planeDisplayTime us
 delayMicroseconds(planeDisplayTime);
 }
 } // End of the while loop
 }
 while (displayTime > 0
}

Loading the frame
First, you start at the patternIndex of 0 and load the first nine values of the
pattern from program memory space into the temporary buffer so you can
work with it. You get the first nine values because planeSize is 9. This is
the data for your first animation frame.

	 Array indexing starts from zero, so you will get the values of array elements
0 to 8.

You use a special C programming language instruction memcp_P to copy the
data from program memory into the variable patternBuffer[]. The data is
coming from the patternData that you just copied from program memory
and you are getting nine values, because planeSize is 9.

Next, you increment the patternIndex by the planeSize (9), so that you
will be able to load the next frame of data after you paint this one.

You use another C command, pgm_read_byte_near(), to read the value
just after the values for the LEDs, which contains the duration you want to
display this frame.

The last step before painting the display is to set the endTime for this frame.
This is the current number of milliseconds on the Arduino’s internal timer,
which you get using the millis() function, plus the displayTime in
milliseconds, multiplied by the update speed.

Painting the frame
Now you use the patternBuffer to update your LEDs. As long as the clock
has not run out on the endTime, you display the frame. You use two nested
for loops to iterate over the three planes of the cube, setting all the pins to
HIGH, which prevents electricity from flowing through the planes, turning off
all the LEDs on the whole cube.

345 Chapter 15: Building an LED Cube

Then, you iterate over the LEDs for the data you loaded into the pattern
buffer. You use ledpin as an array index counter to get the values from the
arrays that contain the locations of the connections to your digital pins. That
way you can specify whether or not to light up an LED.

Two nested for loops turn your LEDPin on or off. The first loop keeps track
of which row you are on and the inner loop keeps track of which column you
are in in that row. Then, you turn the LED on or off in a clever way:

digitalWrite(LEDPin[ledpin++], patternBuffer[patternBufferIndex] & (1<<ledcol)
);

Recall that the digitalWrite(pin, value) function takes two param-
eters, the pin and whether to write it HIGH (1) or LOW (0). The pin to turn
on is specified as the one from the LEDPin array you are currently working
on. The LEDPin specifies which of the three LEDs you are working on. The
“++” increments this index variable so that you grab the next element of the
LEDPin array in the next iteration of the for loop so you can do the next LED.

The value to write is taken from the patternBuffer array, using bit shift-
ing. The binary values in the ledcol variable are shifted left by the value
of ledcol, indicated by 1 << ledcol, which has the effect of skipping
through the batches of columns to find the value for the next LED column.
The “&” is a bitwise AND. If both patternBuffer and the new value coming
in from ledcol are 1, the resulting output is HIGH and the LED is turned on;
otherwise the output is LOW.

	 Even though you might have written an LED pin HIGH, it won’t light up yet.
There’s no pathway to ground, because the analog pins are all still HIGH.

The next time you render a frame, you need to jump ahead to get the next
27 binary values for your LEDs from the patternBuffer. You increment
patternBufferIndex to do this.

Now you activate the current plane by setting its cathode pin to LOW, allow-
ing electricity to pass from the activated anode pin through the cathode pin
to ground. The LED lights up and you can move to the next one. The delay
Microseconds() function provides a very slight delay. If you don’t have this
instruction, the code will execute so quickly that the LEDs will all appear to
be on and the animation effect won’t work.

The very last line of code keeps advancing this process until the patternData
is consumed. After this, the do...while loop ends and the main loop() just
starts the whole animation sequence all over again.

346 Part IV: Advanced Arduino Projects

Figure 15-17 shows what your LED cube will look like when you’ve finished
building it and have uploaded code to animate the LEDs.

Editing your patterns
You can edit any of the animation sequences by changing the values in pat-
ternData[]. There are several sample animations to get you started. You
change the patterns and then upload the code to your Arduino to see the
effect of the animation. Of course, you need to have the Arduino connected
to your USB port to make changes, so you need to test out all your ideas
before you detach the umbilical and go to battery power.

	

Figure 15-17:
What your
LED cube

will look like
when it’s

built.
	

Using the LED Cube Pattern Designer
Obviously, tweaking each of the individual bits of data is pretty tedious, espe-
cially when you want to test out your creative animation ideas. It’s very hard
to imagine what an animation will look like unless you “took the red pill” and
your brain is able to see the raw code of the matrix! Having a visual interface
makes things a little easier.

347 Chapter 15: Building an LED Cube

The companion website for this book has a browser-based LED cube pattern
designer to help you out with making your own designs. Go to www.dummies.
com/go.arduinoprojectsfordummies and look for the pattern designer
in Chapter 15, as shown in Figure 15-18.

You can use the website to create sequences of animation frames and play
them back. You click on the grey boxes to turn them orange, which means
the corresponding LED will be illuminated in that frame. You can preview the
results in an isometric preview window on the right.

When you are happy with your frame, set its duration and click the Apply
button. Click on the Insert button to the lower right to create a new frame
and determine which of its LEDs are turned on. Keep going until you’ve cre-
ated your animation sequence. When you’re ready to preview the animation,
click the Play button. The animation will be played at approximately the
same speed as you’ll see it when it’s uploaded to your cube.

When you are satisfied with the animation, click on the Get Code button.
You can cut and paste the results in the textbox directly into your Arduino
sketch! What could be easier? Then upload your code and enjoy the three-
dimensional show!

	

Figure 15-18:
The LED

Cube
pattern

designer
site.

	

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

348 Part IV: Advanced Arduino Projects

Part V
The Part of Tens

	

Enjoy an additional Arduino Projects For Dummies Part of Tens chapter about online
learning resources for Arduino and electronics in general at www.dummies.com/
extras/arduinoprojects.

In this part . . .
	 ✓	 Find out about the best forums, tutorials, and other resources

for Arduino
	 ✓	 Discover the top 10 troubleshooting techniques

Chapter 16

Ten Great Arduino Resources
In This Chapter
▶	Finding the learning resources you need online
▶	Discovering the best Arduino communities
▶	Supplying the key books in your Arduino library

I
f you’ve made it this far, you are undoubtedly an Arduino aficionado.
That’s why this chapter describes some great resources for learning

about the Arduino platform.

The Arduino world has come a long way in less than a decade. There are
dozens of online learning resources and many suppliers of all things Arduino,
shields, and related products. Most of them have tutorials, datasheets, or
video demos that you can learn from, which may inspire your own projects.
There are several online forums where you can chat with others who are cre-
ating Arduino projects and even the technical gurus who create code librar-
ies, such as the ones used in this book.

There are a lot of great Arduino resources out there and it was pretty hard
to narrow them down to just the best ten. Actually, I couldn’t quite do it. So
there are ten plus one. It never hurts to get a little bit of extra help.

	 You can download schematics and full-color parts placement diagrams from
the companion website (www.dummies.com/go/arduinoprojectsfor
dummies).

Websites
The Internet is obviously the best source of current information, and a great
place to find ideas and troubleshoot problems. I’ve pulled together a list of
my favorites sites here.

http://www.dummies.com/go/arduinoprojectsfordummies
http://www.dummies.com/go/arduinoprojectsfordummies

352 Part V: The Part of Tens

Arduino.cc and related forums
www.arduino.cc

The first stopping point for all things Arduino is undoubtedly, the official
website, which is the home of the Arduino project and has the key resources
you need to support your projects and further explorations. The latest news
and developments are featured on the main page, which is a handy at-a-
glance news ticker for what’s going on lately. For a more personal take, and
some behind-the-scenes opinions and interviews, check out the blog of the
Arduino team.

Probably the handiest resource on an everyday basis is the Reference page,
which contains a comprehensive list of all the Arduino commands, their
syntax, and examples of use. The Learning area features major topics and
concepts with numerous practical examples, and lists details about the
many Arduino libraries for things like Communication, Motor Control, and
Ethernet.

But just as handy is the online community, the Arduino Playground. If you
ever are stumped by a particularly intransigent problem, or haven’t been
able to find any help, the community in the forums is always willing to lend a
hand, especially for newbies and people who are not especially technical. It’s
okay to learn here! Best of all, there’s often no waiting for a solution — you’ll
probably find that your question has already been asked — and answered.

Fritzing
www.fritzing.org

Fritzing is a free, open-source, and easy-to-use electronics design automa-
tion (EDA) software package created at the University of Applied Sciences,
Potsdam. You can use Fritzing to lay out your project designs and it will
automatically generate the schematics. You can also place virtual parts into
a breadboard, generate resulting circuit diagrams, and even create the neces-
sary files to order custom-made printed circuit boards. Another nice feature
is its capability to export .jpg and .png files of your projects. All the parts
layouts in this book were created with Fritzing.

Fritzing has been closely linked to the Arduino project from the beginning,
so it’s got lots of support for Arduino projects. There is a “parts bin” contain-
ing all the types of Arduino boards from the Mini, to the Uno, to the Mega,
and beyond. Also, many of the products from companies like Adafruit and
Parallax are in the parts library, so you can easily create your own projects

353 Chapter 16: Ten Great Arduino Resources

using parts and kits such as 16x2 LCD displays and the Real Time Clock
breakout board.

Download the software for Mac, Windows, or Linux on the Fritzing website.

Hack-a-day
www.hackaday.com

On the Internet, it’s hard to suggest that anything is the “grand-daddy” of
anything, but I think Hack-a-day is a strong contender in terms of hacking
projects. They’ve been making daily posts for years now, with literally hun-
dreds of amazing and clever hacks, which usually have links to pictures,
videos, and the source code. There’s a whole section called Arduino Hacks
that showcases a huge variety of cool Arduino projects. This is a real source
of inspiration and if you’re looking for something to do over a long weekend,
this is a great place to go for inspiration.

Also, a large proportion of the posts on Hack-a-day showcase the projects
of some serious experts in the subject area. These often link Arduino to
broader hacking topics such as mobile platforms like iOS and Android, physi-
cal prototyping/3D printing, or electronics in general, to name a few. You’d
be hard-pressed not to learn some new techniques from simply browsing
through the posts. It’s a great resource for connecting with people with very
advanced skills in a wide range of hacking interests and abilities.

Instructables
www.Instructables.com

Instructables is sort of the Wikipedia of tutorials. It has a large library of
user-contributed step-by-step projects and how-to guides. This means that
the variety is huge — as diverse as the interests of its contributors. There’s
a large trove of Arduino projects on the site and most of them are well docu-
mented and explained. You can browse through them step-by-step online,
or for a small premium membership fee, you can download .pdf files of the
projects.

On the downside, because it errs on the side of inclusiveness and a light
editorial touch, you’ll not infrequently come across projects that are thin
on explanation. Also, because the photographs are all home-brewed, it’s
not uncommon to find shots that are blurry, poorly lit, or otherwise difficult

354 Part V: The Part of Tens

to make out. Even with these minor complaints, the site is a pretty useful
resource, and I often find myself trawling through it for ideas or solutions to
problems.

Learn.adafruit.com
www.learn.adafruit.com

This is the home of Adafruit Industries’ huge collection of how-tos and
instructions about its products and projects, most of which are Arduino
related. Adafruit has the homey mom-and-pop, you-can-do-it attitude that
makes you feel warm and snuggly about prototyping with Arduino and
electronics. Yes, warm and snuggly about electronics!

The best thing about Adafruit is the careful explanation and clear guidance
provided. The photography is exceptionally good and the descriptions are
clear, easy to understand, and focused on getting you up to speed very
quickly. After reading a few of the tutorials, you’ll be inspired to try some
new projects yourself and push your boundaries. You’ll be pretty convinced
there’s not a topic or concept you can’t quickly get up to speed with.

On top of that, many of the tutorials are about Adafruit Industries’ excep-
tional products, several of which I use in this book. Honestly, sometimes
you just want to crow about something because it’s great. Adafruit’s stuff is
consistently excellent, and comes with probably the best product guides out
there in the Arduino supplier community.

Make:
www.makezine.com

Make: magazine and its companion websites have been at the forefront
of the making/hacking “movement” (if you can call it that) and they have
always been strong supporters of the Arduino initiative. There’s a special
Arduino section on the Make: website, which has plenty of project examples,
in case you are hungry for more. Other topics, such as 3D printing, robots,
and Raspberry Pi, have their own specialty areas, too, which makes sense,
because some of the best projects are those that arise from cross-pollinating
diverse subjects.

355 Chapter 16: Ten Great Arduino Resources

Make: also hosts regular MakerFaire events, which are hugely popular and a
great place to meet fellow enthusiasts and witness exotic, robotic, and neu-
rotic concoctions that exhibitors and speakers have been working on. If you
have a chance to attend a MakerFaire near you, don’t miss out!

element14
www.element14.com

element14 is an online resource and community for engineers that focuses on
electronics geared toward professionals and electronics hobbyists alike. It’s
an initiative of the electronics equipment supplier Farnell (which also owns
Newark). Because microcontrollers are based on silicon, the 14th element
in the periodic table, it’s an appropriate name! In addition to a number of
subject interest communities, there’s a special subgroup called the Arduino
group that has hundreds of members and an active discussion area.

Perhaps the best offering from element14 for Arduino enthusiasts is a series
of detailed video tutorials on useful topics. There are several Arduino project
videos on topics such as Arduino-based robots and remote controls. Aside
from the Arduino-specific videos, there are also a number of more general-
interest tutorials related to electronics and prototyping, as well as a video
area called element14 TV.

YouTube
www.youtube.com

Sounds unlikely maybe, but YouTube is a great resource for building Arduino
projects. There are more than 100,000 videos listed and the number is grow-
ing all the time. I often browse the videos when I’m looking for inspiration or
trying to figure out how to solve a particularly tricky problem.

Don’t miss out on the Arduino tutorials from element14, which are all here on
YouTube and cover topics like wireless communication, electrical engineer-
ing, motors and transducers, and serial communication, to name a few.

You can also get familiar with some of the Arduino team members, includ-
ing Massimo Banzi and Tom Igoe, by watching their presentations and TED
Talks. There’s even a documentary of the Arduino project.

356 Part V: The Part of Tens

Books and eBooks
Books are another great resource, and are often better than the Internet,
because they’ve been carefully composed and edited to provide the informa-
tion and help you need — like this one! I have stocked my lab with a few key
texts that are dog-eared from constant use.

Arduino For Dummies
If you haven’t already cracked it open, it’s worth getting a copy of the com-
panion book to this one, Arduino For Dummies by John Nussey (John Wiley
& Sons, Inc.). It’s a very straightforward, but in-depth guide to the Arduino
platform and goes into much more detail about the Arduino itself than I had
space for in this book. If you want to get to grips with the basics a bit more
thoroughly, it’s a great place to start.

There are several useful and fun projects to help you get familiar with key
topic areas, such as installing your Arduino, the basics of electronics, solder-
ing, using sensors, and also connecting your Arduino to other programs like
Processing, and for music, MAX/MSP.

Of course, the best plan would be to have both books in your arsenal!

The Arduino Cookbook
This book by Michael Margolis is exactly what its title suggests. It’s especially
useful because it gives short, simple examples to specific problems. Want to
connect to a servo motor? There’s a recipe for that. Want to drive shift regis-
ters? There’s one for that, too. There are even clear examples of how to use
Arduino’s built-in EEPROM or build your own custom Arduino libraries.

Unlike in this book, all the recipes contain just the basics that you need to
enhance your own Arduino projects. There are no pictures, but plenty of
diagrams, and the explanations are simple and easy to understand. It’s one of
the most used books in my collection. I can’t recommend this book enough!

357 Chapter 16: Ten Great Arduino Resources

Making Things Talk
This book, now in its second edition, is by Tom Igoe, one of the founding
members of the Arduino project, and a teacher at NYU’s acclaimed Interactive
Telecommunications Program. It gives clear explanations of interactive proj-
ects in Tom’s accessible and amusing style, and has tons of color photos and
illustrations.

Because it was written early in the development of Arduino, the first edition
describes interactive projects as they might be built using a number of differ-
ent microprocessor platforms — not just Arduino. This is very useful for get-
ting an idea of the broader spectrum of microcontrollers. However, the second
edition takes a more focused approach and all its projects use Arduino. If you
are focused on Arduino, you should hunt for the second edition.

The great thing about Making Things Talk is that it is both project based and
theory grounded. After trying out a few of the projects in it, you won’t be able
to get away with not learning something about the underlying theories on
which the projects are based. The topics are wide ranging and very practical,
including electronics, networking and communication protocols, sensing and
detection, and wireless communications. It’s essential reading for anyone who
wants to know both how to build a project, and why it works the way it does.

358 Part V: The Part of Tens

Chapter 17

Ten Troubleshooting Tips
In This Chapter
▶	Figuring out what to do when you are having trouble
▶	Troubleshooting your hardware
▶	Troubleshooting your software

S
ometimes things just don’t go according to plan. It happens. And even if
you’ve followed the instructions in this book pretty carefully, your proj-

ect may not be working quite right.

Figuring out what’s wrong with an Arduino project is a bit different. With
electronics-only projects, you just have to focus on the hardware. With
software-only projects, you just need to go over your code. But with Arduino
projects, you could have a problem either in the hardware or the software.
Therefore, you may have to check both, to see what’s going wrong.

Fortunately, there are a few simple things to try out when your project is
just not working, is broken, or is working, but not quite according to plan. I
almost always start out with my hardware and if that doesn’t sort it out, take
a look at the code to see if there’s some kind of problem with it. Sometimes
you can tell whether to look at the software or hardware first because of the
kind of behavior you’re seeing (or not seeing) in your project.

Here’s what to do when you are having trouble.

Troubleshooting Your Hardware
There are at least five things (and probably more) that you should do to
make sure your hardware is working properly. I’ve listed these in the order of
importance — the order I try to do them, anyway. The first order of business
though, is to disconnect the power if your circuit is still running. You don’t
want stray currents flowing around your project while you are testing for bad

360 Part V: The Part of Tens

connections. Always troubleshoot the hardware with your circuit powered
down. Then, check the following five things.

Checking Your Connections
I was a network administrator for a long time, which means I connected a
lot of computers to a lot of other computers. The most frequent cause of
problems in my work was things simply being disconnected. So my first rule
of thumb was to check my connections — and the same goes for Arduino
projects. Look for wires that have come loose, pin headers that aren’t pushed
in, and things that have come detached from where they should be. If things
have come out from where they should be, double-check that you are recon-
necting them properly. More than one time, I’ve reinserted a connection into
the wrong hole on my breadboard, which just means more troubleshooting
when it fails to work again! If you have any soldered joints, test those, too.
You might have had a “cold” joint, which means the junction is brittle and
conducts poorly. Gently wiggle or tug on the connections to make sure that
they are solidly joined. Hunt for cloudy-looking solder connections or dirty
or oily joints. You may need to resolder them. Finally, use a multimeter to
test the continuity of suspected problem wires. It could be that a connection
you’ve assumed is good is actually not connected at all.

You’ve checked for disconnected wires (or “opens”), now check for short-
circuits. This is anywhere wires are touching or connected that they shouldn’t
be. They are called short circuits because the unintended connection pro-
vides a pathway for electricity to flow where you don’t want it to, usually
to ground. Electricity, like water, follows the path of least resistance, and a
shorter circuit often offers just that. Look for wires with missing insulation
that might be touching. Double-check your breadboard to ensure that your
wires are not placed in the wrong column or row, providing a short circuit
to ground. Also, make sure that the legs of your components aren’t touching
each other.

	 If you power up your Arduino (either from your USB connection or a battery)
and the power LED doesn’t light up, disconnect it immediately. You should
definitely look for short circuits, in which the power rail is connected directly
to ground. Your board has a protective polyfuse, a solid-state fuse that auto-
matically resets itself to prevent short circuits from blowing your microcon-
troller, but it won’t protect you against all such “ground fault” errors.

If you have soldered connections, make sure that there aren’t any blobs of
solder and that adjacent connections aren’t, in fact, soldered together. This
is known as a solder bridge. If you have one, use a desoldering wick or a
desoldering tool to remove the excess solder. Then try again and solder a

361 Chapter 17: Ten Troubleshooting Tips

better connection. This is particularly difficult to do if you’ve got a problem
with an integrated circuit (IC), because you don’t want to overheat it. When
desoldering ICs, transistors, or other sensitive parts, make sure that you
don’t apply the heat too long, or you could burn up a component simply by
overheating it. Most components can handle a couple hundred degrees for 3
to 5 seconds or so, but not more than that. My rule of thumb is that if it’s too
hot to touch, it’s getting too hot!

Confirming Your Power Is Correct
First, make sure that you have enough power and then make sure it’s get-
ting to the right place. Double-check your resistor values and ensure that
you didn’t substitute any values that are dramatically different from the one
specified. For example, if you use a 100KΩ resistor to reduce the current flow-
ing to an LED instead of a 1KΩ resistor, your LED probably won’t light up at
all. Similarly, if you are expecting a part to be working and it isn’t, you may be
supplying either too little or too much power to it.

If you are powering external components from your Arduino but they don’t
seem to be working, try powering them completely independently from your
Arduino by using a battery or external power supply. If the component is still
not working, it may be broken. Also, if you are supplying power from the 5V
power supply pin on the bottom of your Arduino, make sure that you haven’t
mistakenly inserted your wire into the adjacent 3.3V power supply (see
Figure 17-1). If you do, the device won’t be getting enough power to operate.
Conversely, if you’ve powered a 3.3V device from the 5V rail, you’ve over-
driven it, and it might already be too late for that part. Remember that 3.3V
devices can be very sensitive to being overdriven.

	

Figure 17-1:
Avoid

making an
incorrect

connection
in the power

area.
	

362 Part V: The Part of Tens

Another problem in the same area could be that you have connected one
of your ground wires to the Vin pin. The Vin pin is connected to the center
post of the power input “barrel” connector on the lower left of your Arduino.
The opposite case is that you connected a wire that was supposed to supply
power to the Vin into one of the two GND pins. The polyfuse should protect
you against problems, but you want to avoid this.

Make sure that you are using a common ground. Especially when you are
controlling devices by switching power to a transistor, it is often the case
that your transistor’s ground rail needs to be shared with the ground rail of
the device you are controlling. Double-check your schematic to determine if
this is the case and confirm you’ve built the circuit correctly.

We all make mistakes, even on a good day. I have fried more than my fair
share of components. I started to feel kind of bad when I went through a
handful of infrared LEDs on one project, so I started a little LED graveyard
(see Figure 17-2). I keep it on my workbench as a reminder to always check
my connections before applying power!

	

Figure 17-2:
My LED

graveyard.
RIP, LED.

	

Hunting for Odors and Hot Components
It sounds funny, but if you are having trouble with your components, you
might have overdriven them without knowing it. You should especially sus-
pect this if your components are getting too hot to touch and if you start to
notice any unusual odors. If something is burning, there is a big problem.
Disconnect the power and start from the top to try to diagnose your con-
nections. Sniff your circuits closely, and you might detect a melted plastic

363 Chapter 17: Ten Troubleshooting Tips

smell. That’s usually a pretty bad sign, and the component is probably fried.
Unfortunately, if you are getting to this stage, it’s probably already too late
and the damage is done. If you see smoke . . . there was probably fire. You
should check your connections and replace that component for sure.

You might have already fried either the component in question or your
Arduino, but you can at least replace the croaked component and try again.
Even the ATmega328 microprocessor can be popped out and replaced. Just
make sure that you figure out why something got fried before you replace it
and fire up the power again!

Test Your Outputs on External Devices
Are you seeing what you’d expect to see? If not, you should check your digi-
tal outputs, both on your Arduino and external devices. If you are expecting
+5V coming from an external device such as a sensor that you are using for
digital input, use your multimeter to check that you are actually getting that
voltage from your sensor. If not, your Arduino won’t necessarily be able to
read this signal as a digital HIGH input. If you are expecting to read an analog
value as input and there is no voltage coming from the device, your Arduino
won’t give expected readings from the analog inputs. Again, use a multimeter
to see exactly what values you are getting from the input device.

Also, make sure that if you are using a device that is supplying a digital
output that it is going to a digital pin. If your sensor is supplying an analog
output, make sure it’s going to an analog input pin.

Testing Your Digital Pins
Check your pin(s) on your Arduino, too. If you have run too much current
over it, you’ve overdriven the pin, and then it may have stopped operating.
The maximum current is 40mA. It will withstand more than that for a short
amount of time, but exceeding the maximum rating is never a good idea. If
you suspect a pin is dead, you can check it to be sure. Connect a 220Ω resis-
tor to an LED. Connect the short pin of the LED to ground and put the long
pin into the suspected digital pin. Run the Blink sketch on your Arduino,
substituting the pin in question for Pin 13. For example, if you think Pin 7 is
dead, change the code so that ledPin = 7 and send this to your Arduino.
If it doesn’t blink, then you know that pin has gone to the great big bucket in
the sky.

364 Part V: The Part of Tens

Troubleshooting Your Software
After making sure that your hardware is not the source of the problem, it’s
time to check your software. Sometimes what might have seemed like a hard-
ware problem is actually due to an error in your code. I’ve listed the things
you should check, with the important ones up front.

Checking Your Syntax
Back in the dinosaur times when I was learning to program, the message I
saw on my green computer screen most often was ?_SYNTAX ERROR. This
slightly cryptic message usually meant there was a character out of place in
my code, a missing space, or some other kind of typo. Your Arduino IDE has
the equivalent in the console at the bottom of the window. When there’s a
problem, the window border changes to orange and the error message is dis-
played in white. Sometimes the error message can be a bit hard to interpret.
But take the time to actually read the error and really try to understand what
it’s saying.

The compiler’s trying to point you in the right direction! If there’s an error
in your code, it will usually highlight the line where the error occurred. The
most common problem is a missing semicolon at the end of a line. Probably
the second most common problem is a missing curly bracket, which yields
the message expected declaration before ‘}’ token or something
similar. Don’t worry about what a token is; just hunt for the missing bracket.
The little number on the lower left of your IDE window will say what line the
problem is on.

Your compiler is not a perfect debugger, though, so it sometimes may direct
you to a problem in one area that is arising due to a typo or error in another
section. Follow the trail from where the problem is identified and trace it
back to the part of the program that may have led you to this point. You’ll
probably be able to fix the trouble there.

Using the Serial Monitor
Because your Arduino doesn’t have its own screen, you can’t really inspect
what’s happening with your hardware. Therefore, you just need to use your
computer as your Arduino’s screen and output anything you want to inspect to
the serial monitor on your computer. Use Serial.println() statements at

365 Chapter 17: Ten Troubleshooting Tips

key points in your code to output the contents of variables to the serial moni-
tor. You may need to also add a delay() statement to provide a moment,
so you can read the value(s). Otherwise the numbers may fly right by on the
monitor.

Your serial port is the only channel of communication between your computer
and your Arduino. Your serial port runs on your USB cable, but it is also acces-
sible on digital Pins 0 and 1. For this reason, you can’t use the serial monitor to
send and receive data from your computer at the same time as you are using
digital Pins 0 or 1 for data interchange with a shield or other device.

Only one project in this book does that — the RFID card reader uses your
Arduino’s serial input pin (Pin 0, labeled ‘RX’) to get data from the RFID card
reader. Therefore, you have to disconnect it from your serial port when you
are sending software to your Arduino.

Checking Your Inputs and Outputs
Make sure that in your code, you have specified the input mode of your digi-
tal pins in the setup() section. They should be either set to pinMode(pin,
INPUT) or pinMode(pin, OUTPUT). (Analog pins do not have to be
declared if you are using them as analog inputs.) Also, if you are reading data
from an external sensor, make sure it’s one that provides the kind of signal you
are expecting. For example, some Hall-effect sensors provide either a +5V or
0V digital output. If you are reading from the analog pins, this won’t work as
expected. Similarly, if you are trying to read a device that has a variable voltage
output and it’s connected to a digital pin, you may not get the expected behav-
ior from the device. Connect it to an analog input pin instead.

Using a Simulator or an Emulator
If you are using Windows or Linux, you can use a “simulator” to operate a
virtual Arduino on your computer. Sadly, I don’t know of any Mac Arduino
emulators . . . yet! Simulators are software applications that essentially pre-
tend to be an Arduino, behaving exactly the way your hardware ATmega328
chip does, but running as a software program on your computer. You simply
run the emulator and program it with the code that you would normally send
to your Arduino.

The cool part is that you can see all the inputs and outputs, and can control
the signal going to any of the analog or digital pins with virtual sliders and

366 Part V: The Part of Tens

switches. The virtual Arduino shows exactly what a real Arduino would do, if
you change the inputs and outputs. You can also inspect the contents of
memory and trace what values variables have at any given time. Diagnosing
memory problems can be especially difficult on microcontrollers unless
you can inspect them in real time or use an emulator. Your chip is a sort of
“black box” really, and emulators are a good way of opening it up to reveal its
contents.

There are both Arduino simulators that mimic the behavior of the Arduino
and emulators for the AVR chip family, which are technical tools aimed at
engineers. The terms are often used interchangeably. Here are a few sources
for both:

Arduino simulators
Try the following simulators:

	 ✓	Simulator for Arduino in free and Pro versions (virtronics.com.au
or www.arduino.com.au/)

	 ✓	Arduino Simulator iPhone App ($8.49)

	 ✓	Emulino (free) (https://github.com/ghewgill/emulino)

	 ✓	Simuino (free) (http://code.google.com/p/simuino/)

AVR emulators
Here are some emulators you can use:

	 ✓	AVR Studio 4, 5, or 6 (www.atmel.com/microsite/atmel_studio6/)

	 ✓	Virtual Breadboard ($29.00) (www.virtualbreadboard.com/)

	 ✓	Emulare (http://emulare.sourceforge.net/)

	 ✓	SimAVR (http://gitorious.org/simavr)

When All Else Fails . . .
Read the manual! Actually, you can’t really do that, because there is no
manual for your Arduino. About the closest thing is the Arduino website
(http://arduino.cc). The best thing about the site is the huge collection
of discussion forums there. The forums are searchable using the search box
in the upper-right corner. Believe me, if you are encountering a problem,
someone has probably already been there! Choose your search terms care-
fully and you’ll undoubtedly turn up your problem exactly or something very
similar to it.

http://www.arduino.com.au/
http://code.google.com/p/simuino/

367 Chapter 17: Ten Troubleshooting Tips

Adafruit, Sparkfun, and element14 also have Arduino forums where people
post discussions. Those communities are filled with people like you and me
who just want to get their Arduinos to do cool stuff. They are almost always
helpful and supportive. Don’t be afraid to out yourself as a newbie. You might
actually get a faster answer.

Use your favorite search engine to hunt for other people who might have
had the same trouble and above all, be persistent. Just when you think it’s
getting really tough to figure out your problem, you might just have that
breakthrough you’ve been waiting for.

Hang in there, and keep on hacking!

368 Part V: The Part of Tens

Index
• Symbols and
Numerics •
!alarm condition, 146
& (ampersand), logical AND

comparisons, 195
* (asterisk), as dereference operator, 120
{ } (curly brackets)

code executed by function, 44
control structures, 77

... (ellipses), indicating earlier code, 144
== (equal to) comparison operator, 77, 119
= (equals sign)
== comparison operator versus, 77
assigning value to variable, 72, 93
logical IS EQUAL TO comparison, 196

> (greater than) comparison operator, 77
>= (greater than or equal to) comparison

operator, 77
0 (leading zeros), 141
< (less than) comparison operator, 76–77
<= (less than or equal to) comparison

operator, 77
! (not equal to) comparison operator, 77
W (ohms), 52, 79, 103–104
() (parentheses)

empty, 95
functions in code, 44

+ (positive power supplies)
building circuit for all-seeing eye project,

67, 69
in LEDs, 67

; (semicolon), for integer variables, 76
[] (square brackets), specifying elements

in array, 74–75
2n222 transistors, 174–175
3D-printed project enclosures, 33
4-bit mode, 135
16x2 displays, 131, 135–136

72xx display drivers (Maxim), 158–159,
164–166

125KHz ID-Innovations reader chip, 184
730604 Keypad (Rapid), 162–163

• A •
access keys, Twitter, 230–231, 234–235
active RFID (radio frequency ID) tags,

183–184
actuators, 57–60
Adafruit Industries

Learn.adafruit.com, 354
RTC DS1307 Breakout Board module,

129–130
Ultimate GPS Logger Shield, 277

Adafruit library, 287
Alarm Armed Mode, clock project, 142
!alarm condition, 146
Alarm Set Mode, clock project, 142, 147, 149
alarmArmed variable, 145–146
alarmFrequency variable, 150
alarmHrs variable, 144, 147
alarmMins variable, 144
alarms, clock project, 131, 145–152
algorithms, for LED matrix displays, 113
Allegro A1324 sensors, 225–226
alligator clips, 23
all-seeing eye project

building circuit, 67–69
code, 69–79
hardware, 79–80
overview, 65
potentiometer, 80–83
selecting parts, 66–67

amperage, 51
ampersand (&), logical AND

comparison, 195
amps (amperes), 52
analog input, 80–82

370 Arduino Projects For Dummies

analog pins, 80, 249–250
analogRead() function, 80–81
analogWrite() method, 96, 98
AND comparisons, 118, 195
angled side cutters, 23
animated signs. See scrolling sign project
animating sprites, 119–120
animation patterns, LEDs, 340–341, 346–347
anodes

building circuit for all-seeing eye project,
67–68

common, 108–109
LED cube project, 328–331, 335
in LEDs, 67
power flow, 89

antennas, GPS extension
assembling enclosure for GPS data logger,

290–291
connecting adapter, 293–295
sensitivity, 279
testing signal, 285–286

API (Application Programming Interface)
keys, 260–265, 269–270

Apple iPhone, Arduino Simulator App, 366
Apple Mac

installing Arduino IDE, 37–38
storing Examples folder, 50

appliances, microcontrollers in, 15
applications, creating on Twitter

Developer’s site, 228–229
Arduino

choosing boards and kits, 33–35
communities, 12–13
connecting, 39, 43
in corporate world, 11
difference between pin numbers on LED

matrix and, 110–111
in education, 11
general discussion, 10
microcontrollers, 13–15
overview, 9
programming with IDE, 43–48

The Arduino Cookbook (Margolis), 356
Arduino Due, 34–35
Arduino For Dummies (Nussey), 356

Arduino IDE (Integrated Development
Environment)

compiler, 41–42
controls, 42
installing, 37–38
programming Arduino with, 43–48

Arduino Leonardo, 34–35
Arduino Lilypad, 34–35
Arduino Mega, 34–35
Arduino Micro, 34–35
Arduino Playground, 352
Arduino projects website, 6
Arduino shields, 35–36
Arduino simulators, 366
Arduino Uno, 10, 34–35
Arduino.cc, 352, 366–367
array elements, 74, 117
array index counters, 345
arrays

code for all-seeing eye project, 74
two-dimensional, 168–169

assembly lines, 17
asterisk (*), dereference operator, 120
ATmega328 microcontroller, 14, 226
audio indicators, 59
automated garden project

building, 205–215
coding, calibrating, and testing, 215–220
overview, 201
selecting parts, 202–205
watering system, 201–202

automation, 16–17
Avago HDSP-B09G LED display, 162–163, 165
AVR emulators, 366
avr/pgmspace.h library, 341
azimuths, 285

• B •
back voltage, 159
ball casters, RC car project, 315–316
batteries

GPS data logger, 278, 292–296
LED cube, 325, 338–339
RC car, 301, 313–314

371371 Index

requirements for projects, 26
selecting, 51

battery packs, 25–26
beepDuration integer, 150
begin() function, 138
bench power supplies, 26
binary values, illuminating LEDs in

cube, 341
bit shifts

general discussion, 118
loading letters for scrolling sign

project, 124
painting animation frames, 345
utility variable, 123

bitmaps
LED matrix displays, 113–114, 119–120
scrolling signs, 122–123

bitwise comparisons, 118
blendColors() function, 93, 95, 100–101
blending light, light pet project, 94–96
Blink sketch, 45–48
blowback, 159
books, Arduino, 356–357
boolean variables, 168
bosses, in enclosures, 177
box cutters, 23
boxes, project. See enclosures
brackets

curly, 44, 77
square, 74–75

brass wire sponges, 31
breadboards

adapting RFID reader to, 187–190
automated garden project, 213–215
building circuit for scrolling sign project,

112–113
Arduino, 87–88
connecting potentiometer, 81–82
general discussion, 22, 28–29
home sensing station project, 244, 246–247
keypad entry system, 161–162, 176
moving project to project box from, 60–61
parts placement diagrams, 56
permanent projects versus, 60
RC car project, 302–304

breakout boards, 36, 129–130, 185–186

brightness levels, of LEDs
general discussion, 67
light pet project, 94–96
PWM, 98

building automation, 17
building tools, 23–24
byte arrays, 116–117
byte data[] variable, 121

• C •
cables, for home sensing station project,

245–246, 258–259
capacitors, 164
car project, remote-controlled

building chassis, 314–321
building circuit on breadboard, 302–304
coding detectors, 305–307
coding drive motors, 308–312
overview, 299
parts, 299–302
reading remote control codes, 307–308
testing drive motors, 312–314

carpet knives, 23
case sensitivity, for variables, 72
cathodes

assembling layers in LED cube project,
328–331

building circuit for all-seeing eye
project, 68

common, 104, 108
keypad entry system project, 158
in LEDs, 67
power flow, 89

centering time on screen, clock
project, 140

char arrays, 192, 195
char message[] variable, 121
chassis, RC car project, 302, 314–321
checkAlarm() function, 146
checkTag() function, 195, 200
circuits

all-seeing eye project, 67–69
analog input, 82
automated garden project, 213–215
current flow, 52

372 Arduino Projects For Dummies

circuits (continued)
home sensing station project, 246–250
light pet project, 87–89
RC car project, 302–304
RFID reader project, 190–191
scrolling sign project, 109–113
tweeting pet door project, 224–227

clamps, 23
cleaning paste, for soldering iron tips, 31
clearDisplay() function, 170, 172
clearTag() function, 197
clock project

assembling RTC module, 131–134
code, displaying time, 138–141
code, input buttons and switch, 141–149
code, test message, 136–138
LCD display, 134–138
overview, 127
selecting parts, 128–131
timing, 127–128

clocks, for all-seeing eye project, 69–71
code

all-seeing eye project, 69–79
automated garden project, 215–218
Blink sketch, 45–48
clock project, displaying time, 138–141
clock project, input buttons and switch,

141–149
clock project, test message, 136–138
defining functions, 93
home sensing station project, 264–270
keypad entry system project, 166–173
LED cube project, 339–346
light pet project, blending light, 94–96
light pet project, general discussion,

90–93
light pet project, moods, 89–90, 100–102
light pet project, overview, 89
light pet project, PWM, 96–99
light pet project, testing, 99
light pet project, uploading, 99
modularizing, 93
RC car project, detectors, 305–307
RC car project, drive motors, 308–312
remote controls, 307–308

RFID reader project, 192–198
scrolling sign project, displaying scrolling

text, 120–124
scrolling sign project, overview, 113–114
scrolling sign project, sprites, 114–120
structure, 44–45
tweeting pet door project, 225–226,

231–238
uploading, 47–48

code libraries. See libraries
code[] variable, 168
codeBuffer[] array, 171
codebuffer[] variable, 168
color sensors, 58
columns

connecting to rows, keypad entry system
project, 157

specifying for LED, 116
COM ports, 42, 47
comments, in code, 44, 46, 72
common anode designs, 108–109
common cathode designs, 104, 108
common ground, between power rails, 174
communication ports, 42, 47
communities, Arduino, 12–13
compareTag() function, 196–197
comparison operators, 77
compilers

Arduino IDE, 41–42
testing code for light pet project, 99
troubleshooting syntax, 364

computational thinking, 9
computers, setting up Arduino, 37–40
conditions, for loop, 75
conductive traces, 157
conductors, for tweeting pet door

project, 240
connections

clock project, 141–142
debugging, 48
keypad entry system, keypad and display,

162–164
keypad entry system, power supply, 174
keypad entry system, transistor and

relay, 174–176

373373 Index

LED cube project, 328–331, 335–338
pinouts of Sure LE-MM103 matrix, 111
troubleshooting, 125, 360–361
tweeting pet door project, 223
wiring RTC module to Arduino, 132–133

const inst variables, 342
const int _A[] through _Z[]

variable, 121
const int A through Z variable, 121
const int letters[] variable, 121
constants, 91–92, 192
consumer secrets, Twitter, 230–231,

234–235
contact points, 28–29
continuity, measuring with multimeter,

24–25
control structures, 77
cores, processor, 13–14
counters

array index, 345
for displaySprite() function, 117
specifying tweets, 231–232

.cpp files, 49–50
craft knives, 23
cube project. See LED cube project
curly brackets ({ })

code executed by function, 44
control structures, 77

current (I)
general discussion, 24, 52
matching to parts used in project, 53
Ohm’s Law, 53
power transformers, 50–51
providing right amount for LEDs, 79
transistor in keypad entry system,

174–175
currentLED variable, 72–73
cutters, 23
cutting mats, 23

• D •
Dallas Semiconductor DS1307 Integrated

Circuit, 129–130, 132
data feeds, Xively, 260

data streams, Xively, 267–268
data[] array, 122
datasheets, 57
datastreams[] array, 268–270
DEBUG variable

automated garden project, 216–217
keypad entry system project, 168, 171

debugging, 48
decode mode, Max Display Driver chip, 170
decode_results object, 306
dedicated power supplies, 25–26
delay() function

Blink sketch, 47
PWM, 99
Twitter status for tweeting pet door

project, 238
delayMicroseconds() function, 151, 345
delays, all-seeing eye project, 69
delayTime variable, 72, 80–81
desoldering, 31, 61
detectors, RC car project, 305–307
Developer’s area, Twitter website, 228–229
DHCP (Dynamic Host Configuration

Protocol), 234
diagrams, 54–56
digital outputs, testing on external

device, 363
digital pins

all-seeing eye project, 69
clock project, 135, 144–145, 150–151
keypad entry system, 165, 170
light pet project, 92
pinMode() function, specifying number

and output with, 75
for power supply or ground, 116
PWM, 97–98
RFID reader project, 187–190, 192
scrolling sign project, 110, 112–113
setting with code, 46
testing, 363
tracking which LED is lit up with variable,

72–73
voltage, changing, 78

digitalRead() function, 141–142
digitalWrite() function, 46, 78

374 Arduino Projects For Dummies

DIL (dual in-line) packages, 187
diodes, 67
dir variable, 73, 78
direct connection mode, GPS shields,

282–284
discrete components, solenoid valves, 205
Display Pin Numbers, 110
Display Time Mode, clock project, 142
displayAlarmSet variable, 143, 147
displays

clock project, 131
keypad entry system project, 158,

161–166
displaySprite() function, 117,

119–120, 124
displayTime variable, 343
doors, considerations for keypad entry

systems, 159–160, 177
drive motors, RC car project, 308–314
drivers, 38–40, 135
dryThreshold variable, 216, 218
DS1307 Integrated Circuit (Dallas

Semiconductor), 132
dual in-line (DIL) packages, 187
Due, Arduino, 34–35
duty cycles, 98, 101
Dynamic Host Configuration Protocol

(DHCP), 234

• E •
eBooks, Arduino, 356–357
economy, of memory, 73
EEPROM library, 49
elapsedTime integer, 150
electric door strikes, 159–160
electric lock mechanisms, keypad entry

system project, 159–161
electrical projects, safety precautions for,

21, 27, 39
electron flow, 52
electronic components, 54–55
electronics, 51–54
electronics tools, 22–23
elegance, of memory, 73
element14.com, 355

ellipses (...), indicating earlier code, 144
EM4001 protocol, 184
embedded systems, 14
emulators, 365–366
enclosures

automated garden, 214–215
choosing, 32–33
GPS data logger, 278–279, 289–295
home sensing station, 245, 259–260
keypad entry system, 161, 176–178
LED cube, 332–339
light pet, 86–87, 104–105
moving project from breadboard to,

60–61
tweeting pet door, 224

entryMessage variable, 232–233, 237
environments, for workspaces, 20–22
epoxy lenses, 67
equal to (==) comparison operator, 77, 119
equals sign (=)
== comparison operator versus, 77
assigning value to variable, 72, 93
logical IS EQUAL TO comparison, 196

Ethernet library, 49, 232–235
Ethernet shields

general discussion, 36
MAC addresses, 266
tweeting pet door project, 224, 234

EthernetClient object, 233
Exacto knives, 23
Examples folder, 50
exclamation points (!), logical NOT EQUAL

TO comparison, 195
exitMessage variable, 232–233, 237
eye project. See all-seeing eye project
eye protection, 27

• F •
fabrication tools, 23–24
fadeSpeed variable, 92, 102
fading LEDs, with PWM, 94–96
Fahrenheit temperature readings, home

sensing station project, 249, 262
fail safe systems, electric lock

mechanisms, 159

375375 Index

fail secure systems, electric lock
mechanisms, 159

Feed IDs, Xively, 260–265, 267
field sensing, 16–17
Firmata library, 49
flash memory, 340
flow rate, automated garden project,

218–219
flowcharts, 69–70, 89–90
flying leads, 335–336
foam core, soldering jig for LED cube,

326–327
for loops

general discussion, 75–76
LED cube project, 342–343
light pet project, 96, 100–101
PWM, 98–99

forward voltage, 165
4-bit mode, 135
frames, animation

LED cube project, 340–341, 344–346
scrolling text, 120
sequences, 347

frequencies
determining periods, 150
RFID, 184

Fritzing, 352–353
functions, user-defined

general discussion, 44, 93
keypad entry system, 172–173
RFID reader project, 195–198

• G •
games, microcontrollers in, 15
garden project, automated

building, 205–215
coding, calibrating, and testing, 215–220
overview, 201
selecting parts, 202–205
watering system, 201–202

general purpose microprocessors, 14
getData() function, 267–269
getVoltage() function, 247–250, 267–270

github, 287
Global Positioning Recommended

Minimum Sentence (GPRMC), 285, 296
global variables, for scrolling text, 121
GND pins. See ground power supply

connections
Google Earth, 297
Google Maps, 296–297
GPRMC (Global Positioning Recommended

Minimum Sentence), 285, 296
GPS (Global Positioning System) data

logger project
assembling and testing shield, 279–286
collecting and plotting data, 295–297
enclosure, 289–295
general discussion, 276
overview, 275
programming logger, 287–288
receiving data, 288–289
selecting parts, 276–279
testing, 288–289
tracking time, 296

GPSECHO variable, 288–289
gpsvisualizer.com, 296–297
greater than (>) comparison operator, 77
greater than or equal to (>=) comparison

operator, 77
ground power supply connections

building circuit for all-seeing eye
project, 68

connecting components with
breadboard, 28

in LEDs, 67
specifying pins for, 116
troubleshooting, 362

ground rails, connecting Arduino to
breadboards, 87–88

• H •
.h files, 49–50
Hack-a-day, 353
Hall-effect sensors, 222–227
happy() function, 100–101

376 Arduino Projects For Dummies

hardware
all-seeing eye project, 79–80
clock project, 143
debugging, 48
light pet project, 102–105
scrolling sign project, 125
troubleshooting, 359–360

HDSP-B09G LED display (Avago),
162–163, 165

hearing sensors, 58
helping hands, 23
hexadecimal numbers, 192–193
high pins, 46
Hitachi HD44780 driver, 135
home sensing station project

building and testing circuit, 246–251
overview, 243
programming station, 264–271
selecting parts, 244–246
sensor probes, 243, 251–255
sensor shield, 255–260
Xively account, 260–263

housings, for projects. See enclosures
HTTP (Hypertext Transport Protocol), 264
HttpClient code library, 264

• I •
I. See current
I2C library, 137
ICs (integrated circuits)

Dallas Semiconductor DS1307,
129–130, 132

keypad entry system, 177–178
microcontroller, 13–14
RTC module, 132
soldering, 190

IDE (Integrated Development
Environment), Arduino

compiler, 41–42
controls, 42
installing, 37–38
programming Arduino with, 43–48

ID-Innovations RFID reader. See RFID tag
reader project

IDs, for RFID tags, 192–196, 198–200

if statements
clock project, 141
evaluating alarmArmed pin, 145–146
general discussion, 77
keypad entry system project, 171
light pet project, 93
testing whether random value is higher

or lower than current value, 95–96
Igoe, Tom, 357
IKEA, 32–33, 104
increments, 75–76
indexes, 74, 76
indicators, 59
Infrared (IR) Receiver modules, 301,

303–304
Infrared Receiver library, 306
initializing variables, 72, 75–76
input, analog, 80
input modes, 365
input pins, 43
input wires, GPS data logger project,

294–295
Instructables.com, 353–354
int index variable, 121
int keyword, 72
int offset variable, 121
integer variables

all-seeing eye project, 72–73
Blink sketch, 46
clock project, 141
light pet project, 91–92
scrolling sign project, 122

integrated circuits. See ICs
Integrated Development Environment,

Arduino. See IDE, Arduino
IP addresses, 233–234
iPhone, Apple, 366
IR (Infrared) Receiver modules, 301,

303–304
irrecv object, 306–307
irrigationTime variable, 216, 218–219
irrigators, automated garden project,

202–204
IS EQUAL TO comparisons, 196–197
ISO (International Standards

Organization), 184

377377 Index

• J •
jigs, LED cube project, 326–327
jumper wires

connecting Arduino to breadboard, 87–88
connecting potentiometer to breadboard,

81–82
general discussion, 22
soldering to stripboard, 335

• K •
“key” variable, 171
keyCode variable, 309, 311
keyMap[] [] variable, 168–169
keypad entry system project

adding and testing relay, 173–176
assembling and installing, 176–180
coding and testing keypad, 166–173
electric lock mechanism, 159–161
overview, 155
prototyping keypad and display, 161–166
selecting and preparing parts, 155–159

keypressCount variable, 168, 171
keypresses, determining, 172–173
keywords, code for all-seeing eye

project, 72
kitchen appliances, microcontrollers in, 15
kits, for projects, 30
knives, Exacto, 23

• L •
laser cut project enclosures, 33
latching sensors, 223
layers, LED cube project, 327–329
LCD display library, 137
LCD displays, clock project, 131, 134–138
lcd Liquid Crystal object, 138
lcd.begin() function, 138
lcd.clear() function, 138
lcd.print() function, 138, 140
lcd.setCursor() function, 140
LDRs (Light Dependent Resistors),

245–247, 250–251

leading zeros (0), 141
Learn.adafruit.com, 354
LED cube project

assembling LED matrix, 326–332
fabricating enclosure, 332–339
overview, 323
pattern designer, 346–347
programming, 339–346
selecting parts, 324–326

LED matrix displays
building circuit for scrolling sign project,

112–113
difference between pin numbers on

Arduino and, 110–111
displaying sprite, 114
general discussion, 108–109
pinouts of Sure LE-MM103, 111
stackable headers, 112

ledPin array, 74
LEDPin array, 345
LEDpin[] array, 342
LEDs (light emitting diodes). See also

all-seeing eye project; scrolling sign
project

animation patterns, 340–341
Blink sketch, 45–48
connection indicators, 39
keypad entry system, 162–163, 165
LED cube project, 325
light frequency, 103
light pet project, 88, 91–92, 94–96
mA, 103
mcd values, 103
nanometers, 103
parts of, 67
rapid-fire illumination, 117
RFID reader project, 185–186
three-color, 104
troubleshooting, 125
visible indicators, 59

leftSpeed variable, 309, 311
legs

assembling layers for LED cube project,
328–331

potentiometer, 81
lenses, 67

378 Arduino Projects For Dummies

Leonardo, Arduino, 34–35
less than (<) comparison operator, 76–77
less than or equal to (<=) comparison

operator, 77
letters, for scrolling sign project, 123–124
letters[] array, 122
libraries

Adafruit, 287
avr/pgmspace.h, 341
for clock project, 137–138
code structure, 44
Ethernet, 232–235
general discussion, 49
HttpClient code, 263
I2C, 137
Infrared Receiver, 306
installing, 49–50
LCD display, 137
overview, 48
RTClib, 133
RTCLib, 137
Soft Serial, 287
Twitter, 232–235

light, blending, 94–96
Light Dependent Resistors (LDRs),

245–247, 250–251
light emitting diodes. See all-seeing eye

project; LEDs; scrolling sign project
light frequency, 103
light levels, for home sensing station

project, 245, 249–250, 262
light pet project

building circuit, 87–89
code, blending light, 94–96
code, general discussion, 90–93
code, moods, 89–90, 100–102
code, overview, 89
code, PWM, 96–99
code, testing, 99
code, uploading, 99
hardware, 102–105
overview, 85
selecting parts, 86–87

light sensors, 58
lightLED() function, 196–197

Lilypad Arduino, 34–35
Linux, 40, 50
LiquidCrystal library, 49
live circuits, 27
loadSprite() function, 123
local scope, 140
lock mechanisms, keypad entry system

project, 159–161, 179–180
LOG_FIXONLY variable, 288–289
logical AND comparison, 195
long integers, home sensing station

project, 266
long keyword, 74
loop() function

all-seeing eye project, 77
clock project, 145–149
scrolling sign project, 119–120

loops
automated garden project, 217–218
code structure, 44
displaySprite() function, 117–118
elegance and economy of memory, 73
home sensing station project, 267–270
keypad entry system project, 170–172
LED cube project, 343–346
RFID reader project, 193–195

low pins, 46
Lux. See light pet project

• M •
mA (milliamps), 51–52, 103
MAC (Media Access Control) addresses,

233, 266
Mac, Apple

installing Arduino IDE, 37–38
storing Examples folder, 50

mac variable, 233
magnetic sensors, 222–227, 235–237
magnets, tweeting pet door project

assembling door, 241–242
choosing pole to mount on pet flap,

226–227
to trigger Hall-effect sensors, 224

379379 Index

magnifying glass icon, 43
main body of code

all-seeing eye project, 77
automated garden project, 217–218
clock project, 145–149
home sensing station project, 264–270
keypad entry system project, 170–172
LED cube project, 343–346
light pet project, 92–93
RFID reader project, 193–195

main loop() function, 267
Make: magazine, 354–355
Making Things Talk (Igoe), 357
manufacturing, microcontrollers in, 16
map() function, 249
maps, plotting GPS data, 296–297
Margolis, Michael, 356
mats, cutting, 23
Max Display Driver chip, 169–170
Maxim 72xx display drivers, 158–159,

164–166
mcds (microcandelas), 103
Media Access Control (MAC) addresses,

233, 266
Mega, Arduino, 34–35
memcmp() function, 171
memcp_P command, 344
memory, 14, 73, 340
Micro, Arduino, 34–35
micro SD cards, 278, 292–293, 297
microcontrollers, 13–17
microphones, 58
microprocessors, 14
Microsoft Windows

installing Arduino IDE, 37–38
installing drivers, 38–39
simulators and emulators, 365–366
storing Examples folder, 50

milliamps (mA), 51–52, 103
millis() function, 76–77
modularizing code, 93
molds, for automated garden project,

207–210

moods, for light pet project, 89–90, 100–102
motors

calibrating for RC car project, 313
as movement actuators, 59
servo, 301, 308–309, 311, 318–320

movement actuators, 59–60
multicore cable, 245
multimeters, 22, 24–25, 165

• N •
nanometers, 103
needlenose pliers, 23
negative power supplies (-). See ground

power supply connections
negative rails, 28
newredValue variable, 92, 95–96
NMEA (National Marine Electronics

Association) format, 285–286
NOT EQUAL TO comparisons, 77, 195
now DateTime object, 138–139
now.hours() function, 140
now.minutes() function, 140
now.seconds() function, 140
Nussey, John, 356

• O •
OAuth (Open Standard for Authentication),

228
offsets, 121, 124
Ohm, George Simon, 53
ohms (W), 52, 79, 103–104
Ohm's Law, 53, 79, 103–104
125KHz ID-Innovations reader chip, 184
open source software, 12–13
output modes, 365
output voltage, 225–227
overdriving components, 54, 362–363

380 Arduino Projects For Dummies

• P •
parallel interfaces, 135
parameters

animating sprites with
displaySprite() function, 120

code structure, 44
for loops, 75

parentheses (())
empty, 95
functions in code, 44

parsing, 140
parts placement diagrams

automated garden project, 214
home sensing station project, 246–247
overview, 54
RC car project, 303–304
reading, 56
RFID reader project, 190–191
tweeting pet door project, 224–225, 240

passive RFID (radio frequency ID) tags,
182–183

paste, for cleaning soldering iron tips, 31
patternBuffer array, 344–345
patternData[] array, 341
patternIndex variable, 343–344
patterns, animation, 340–341, 346–347
PCBs (printed circuit boards)

breakout, 36
locating microcontroller, 13–14
moving project from breadboard to

project box, 60
RTC module, 132

pencils, 23
perfboards, 28–29, 61–62, 325
periods of frequencies, 150
pets. See light pet project; tweeting pet

door project
pgm_read_byte_near() command, 344
Philips MiFare/MiFare UltraLight

system, 184
piezoelectric sounders, 131, 149–152
Pin 0, uploading code, 198, 200
pin headers

definition, 35-36
GPS data logger project, 280–282

home sensing station, 255–256
RC car project, 302, 304
RFID reader project, 187
scrolling sign project, 109
soldering onto matrix, 112

pin numbers, difference between Arduino
and LED matrix, 110–111

pinMode() function
automated garden project, 216
Blink sketch, 46
LED cube project, 342–343
specifying pin number and output, 75

pinouts
keypad entry system project, 158
scrolling sign project, 109–110
Sure LE-MM103 matrix, 111

pins, analog, 80, 246–250. See also digital
pins; pin headers

pitch, of breadboards, 81
pixels, of LED matrix displays, 113
PlanePIN array, 342
planeSize variable, 344
plants, watering. See automated garden

project
plaster molds, for automated garden

project, 207–210
pliers, needlenose, 23
plotting data, GPS data logger project,

296–297
POE (Power over Ethernet), 245
pointers, in C programming language, 120
polarized capacitors, 164
positive power supplies (+), 67, 69
positive rails, 28
potential energy, 52
potentiometers

all-seeing eye project, 80–83
clock project, 135

power input pins, 43
power leads, 177–179
power rails, 174
power supplies

automated garden project, 204
batteries, 51
connecting Arduino, 43

381381 Index

connecting components with
breadboard, 28

general discussion, 23
GPS data logger project, 278, 292–295
keypad entry system project, 158, 174
LED cube project, 325, 338–339
overview, 50
RC car project, 301, 313–314
selection and uses for, 25–27
specifying pins for, 116
transformer, 50–51
troubleshooting, 361–362

power transformers, 26, 50–51
powers[] variable, 121, 124
Pringles cans, 302
printed circuit boards. See PCBs
probes, automated garden project,

206–209, 218
probes, home sensing station project

building and testing circuit, 246–251
constructing, 251–255
overview, 243
selecting parts, 244–246
sensor shield, 255–260

process control, microcontrollers in, 17
processor cores, 13–14
program memory, 14
programming

Arduino, 43–48
GPS data logger project, 287–288
home sensing station, 264–271
LED cube project, 339–346

project boxes. See enclosures
project kits, 30
project website, 6
projects, permanent, 60–62
protocols, 184
prototyping, 10
prototyping shield (SparkFun), 184
pull-up resistors, 170
pulse widths, 98
purr() function, 100–101
pushbutton switches, 131, 141–143
PWM (pulse-width modulation)

general discussion, 304
light pet project, 96–99, 101

• Q •
quad displays, keypad entry system

project, 158

• R •
R (resistance), 24, 52–53, 81
radio frequency ID tag reader project.

See RFID tag reader project
radio frequency sensors, 58
rails, 28, 87–88, 174
RAM (random-access memory), 14
random() function, 93
randomValue variable, 92
Rapid 730604 Keypad, 162–163
RC (remote-controlled) car project

building chassis, 314–321
building circuit on breadboard, 302–304
coding detectors, 305–307
coding drive motors, 308–312
overview, 299
parts, 299–302
reading remote control codes, 307–308
testing drive motors, 312–314

readers, RFID, 182–183, 187–190, 198–200
Real Time Clock (RTC) modules,

127–134, 286
real-time clocks. See clock project
red LEDs, 109–110
redValue variable, 92, 95–96
relays

lock mechanism, 159, 173–176
as movement actuators, 59–60
RFID reader project, 187

remote controls, for RC car project, 301,
303, 306–311

remote-controlled (RC) car project
building chassis, 314–321
building circuit on breadboard, 302–304
coding detectors, 305–307
coding drive motors, 308–312
overview, 299
parts, 299–302
reading remote control codes, 307–308
testing drive motors, 312–314

382 Arduino Projects For Dummies

reservoirs, automated garden project,
202–203, 210–212, 219

resetReader() function, 197
resistance (R), 24, 52–53, 81
resistors

all-seeing eye project, 66–67
clock project, 141–142
determining resistance of, 69
home sensing station project, 247,

257–258
keypad entry system, 165
light pet project, 88, 103–104
matching resistance to parts used in

project, 53
potentiometer, 81
providing right amount of current for

LEDs, 79
pull-up, 170
RFID reader project, 185–186
scrolling sign project, 109, 112–113, 125

responses, from field sensing, 16–17
RFID (radio frequency ID) tag reader

project
assembling, 187–191
general discussion, 182–184
overview, 181, 184
programming, 192–198
selecting parts, 184–187
testing and setting reader, 198–200

ribbon cables, 109, 176–177
rightSpeed variable, 309, 311
rocker switches, 278, 290–291
routers, 245
rows

connecting to columns, keypad entry
system project, 157

isolating single active, 118
specifying for LED, 116

RTC (Real Time Clock) modules,
127–134, 286

rtc clock object, 138
RTC DS1307 Breakout Board module

(Adafruit Industries), 129–130
RTC.adjust() function, 134
RTClib library, 133
RTCLib library, 137

• S •
sad() function, 100–101
safety glasses, 27
safety precautions

general discussion, 2–3, 21, 27
light pet project, 87
soldering, 62

sampleInterval variable, 216, 218
satellites, GPS, 276, 285–286
schematic diagrams

all-seeing eye project, 79
automated garden project, 213
clock project, 152
keypad entry system project, 161
LED cube project, 336–337
light pet project, 103
RC car project, 302–303
reading, 54–55
RFID reader project, 190–191

Schneider, Adam, 296
screwdrivers, 23
scrolling sign project

building circuit, 109–113
code, displaying scrolling text, 120–124
code, overview, 113–114
code, sprites, 114–120
hardware, 125
overview, 107
selecting parts, 107–109

SD cards, 278, 292–293, 297
SD library, 49
seeing sensors, 58
semicolon (:), for integer variables, 76
sendCommand() function, 169–170, 171
sendData() function, 267–268
sendTweet() function, 237
sensor shields, 246, 255–260
sensorID variable, 265–267
sensorPin variable, 217, 219
sensors. See also home sensing station

project
automated garden project, 215, 218–219
building automation, 17
datasheets, 57
general discussion, 10

383383 Index

Hall-effect, 222–227
hearing, 58
overview, 57
positioning, for tweeting pet door project,

239–241
seeing, 58
smelling, 58
soil moisture, 201–204, 206–210
tasting, 58–59
vibration and touch, 58

sensorValue variable, 217
serial communication channel, 43
serial interfaces, GPS modules, 282, 284
serial monitors

checking time on RTC module, 134
troubleshooting with, 364–365

serial ports
choosing correct, 47
general discussion, 43
RFID reader project, 193
setting up Arduino on computer, 37

Serial.read() command, 194
Servo libraries, 49, 308
servo motors, 301, 308–309, 311, 318–320
setAlarm() function, 147
setMode variable, 146–147
setup() function

all-seeing eye project, 75–76
automated garden project, 216–217
Blink sketch, 46
clock project, 138
general discussion, 44
home sensing station project, 249
keypad entry system, 169–170
programming RTC module with correct

time, 133–134
tweeting pet door project, 234–235

Setup sections, code structure, 44
730604 Keypad (Rapid), 162–163
72xx display drivers (Maxim), 158–159,

164–166
Sharpies, 23
shields

general discussion, 35–36
GPS, 279–286
in LEDs, 67
sensor, 246, 255–260

Shirriff, Ken, 306
short-circuits, 360
showReceivedData() function, 307
side cutters, angled, 23
signs, scrolling. See scrolling sign project
SimAVR, 366
Simulator for Arduino, 366
simulators, 365–366
Simulino, 366
16x2 displays, 131
sketches

all-seeing eye project, 70–71
Blink, 45–48
general discussion, 43
light pet project, 90–91

slaveSelect variable, 168
slide switches, 131, 142–143
smell sensors, 58
smile[] array, 115–119
Soft Serial library, 287
soft serial switches, 282–283
software, troubleshooting, 48, 364
software serial mode, GPS shields, 282–283
SoftwareSerial library, 49
soil moisture sensors, 201–204, 206–210
solder, choosing, 30
solder bridges, 360–361
soldering

adapting RFID reader to breadboard,
187–190

automated garden project, 206–207
basic techniques, 61–62
GPS data logger, 292–294
GPS shield, 279–286
home sensing station project, 251–258
keypad entry system, 162
LED cube project, 326–329, 336, 338
RC car project, 313–314
RTC module, 132
tweeting pet door project, 240–241

soldering irons, 22–23, 30–32, 61–62
solenoids

automated garden project, 204–205,
212–213, 220

as movement actuators, 59
solid core wires, for breadboards, 28
spaces, overwriting text, 140

384 Arduino Projects For Dummies

SparkFun
breakout board, 185–186
prototyping shield, 184

SPI library, 49
sponges, for cleaning soldering

iron tips, 31
springs, in breadboards, 28
sprintf() function, 237
sprites, 107, 114–120, 123
square brackets ([]), specifying elements

in array, 74–75
SRAM (static random access memory), 340
SS pin, 168
stackable headers, 112
stands, for soldering irons, 31
start variable, 120
static electricity, 27
static IP addresses, 233–234
Stepper library, 49
strain relief, 179
straws, for home sensing station project,

246, 251–255
strikePin variable, 167
stripboards

general discussion, 28–29
home sensing station project, 246
keypad entry system, 176–177
LED cube project, 325, 332–333, 336

strlen() function, 195
suckers, soldering, 31
supply lines, automated garden project,

211–213
Sure LE-MM103 matrix, 109, 111
switch...case statements, 311–312
switches

clock project, 131, 141–143
LED cube project, 325, 333–334
rocker, 278, 290–291
soft serial, 282–283

symbols, for electronic components, 55
syntax, troubleshooting, 364

• T •
tag[] arrays, 199–200
tags, RFID, 182–185

tagString[] array, 194–197
taste sensors, 58–59
techniques

basic electronics, 51–54
connecting Arduino, 43
electronic components, 54–56
key concepts, 41–42
libraries, 48–50
making projects permanent, 60–62
overview, 41
power supplies, 50–51
programming Arduino with IDE, 43–48
sensing and actuating, 57–60
soldering, 61–62

test messages, for clock project, 136–138
3D-printed project enclosures, 33
time, displaying with clock project,

138–141
timeChanged integer, 74, 76–77
timestamps, for tweeting pet door

project, 237
timing

all-seeing eye project, 69–71
clock project, 127–128
PWM, 97–98

tinning, 62
tips, for soldering irons, 30–31, 62
TMP36 temperature sensors

assembling probes for home sensing
station, 251–255

general discussion, 245–246
temperature conversion, 249–251

tools
assembling enclosure for GPS data

logger, 279
for automated garden project, 205
basic, 21–24
electronics, 22–23
for keypad entry system project, 161
LED cube project, 326
RC car project, 302

touch sensors, 58
toxicity, 62
toys, microcontrollers in, 15–16
transformers, 26, 50–51
transistors, 174–176
triggerRelay() function, 196–197

385385 Index

troubleshooting
Arduino website, 366–367
connections, 360–361
digital pins, 363
general discussion, 48
hardware, 359–360
hot components, 362–363
inputs, 365
odors, 362–363
outputs, 365
overview, 359
power supply, 361–362
scrolling sign project, 125
with Serial Monitor, 364–365
with simulator or emulator, 365–366
software, 364
syntax, 364
testing outputs on external devices, 363
tweeting pet door project, 238

troughs, on breadboards, 28
TSOP2438 module (Vishay

Electronics), 301
tuning circuits, 186
tweeting pet door project

code, 231–238
Hall-effect sensors, 222–224
modifying door, 239–242
overview, 221
selecting parts, 222–224
testing circuit, 224–227
Twitter account, 228–231

tweets
linking code which detects to code that

tweets, 235–237
specifying, 231–232, 237–238

Twitter
account, 228–231
library, 232–235

twitter.get_time() function, 237
twitter.is_ready() function, 237
twitter.post_status() function, 238
2n222 transistors, 174–175
two-dimensional arrays, 168–169

• U •
U.FL connectors, 279, 293–294
Ultimate GPS Logger Shield (Adafruit), 277

UNIX time, 134
unlock() function, 173
Uno, Arduino, 34–35
updateDisplay function, 139–140, 149
updateMotors() function, 312
USB connectors

assembling and testing GPS shield,
282–283, 290

connecting Arduino, 43
setting up Arduino on computer, 37

USB controller chips, on Arduino Uno, 34
user-defined functions

code structure, 44
keypad entry system project, 172–173
RFID reader project, 195–198

utility variables
bit shifts, 123
code for light pet project, 92

• V •
V. See voltage
valvePin variable, 216, 218
valves, for automated garden project,

204–205, 215, 220
variable declarations

all-seeing eye project, 72
automated garden project, 215
Blink sketch, 46
code structure, 44
elegance and economy of memory, 73
keypad entry system project, 167–168
LED cube project, 340–342
light pet project, 91–92
RFID reader project, 192–193
for scrolling text, 121–123

vibration sensors, 58
viewing angles, of LEDs, 67
Vin pin, 362
Virtual Breadboard, 366
Vishay Electronics TSOP2438 module, 301
visible indicators, 59
void, in user-defined functions, 44, 95
voltage (V)

Allegro A1324 sensors, 225–227
automated garden project, 218
batteries, 51
changing for digital pins, 78

386 Arduino Projects For Dummies

voltage (continued)
for electric lock mechanisms, 160
general discussion, 24, 52
light pet project, 103–104
matching to parts used in project, 53
Ohm’s Law, 53
power transformers, 50–51
relationship between resistance and, 81
sensing analog input, 80–81
temperature conversion in home sensing

station, 249–251
turning off, 118

voltage dividers, 248

• W •
wall transformers, 26
water supplies, automated garden project,

212–213
watering systems, 201–202
websites, Arduino resources, 6, 351–355
wheels, RC car project, 302, 310–311,

316–318
while loops, 120, 194
wicks, desoldering, 31
WiFi library, 49
Windows, Microsoft

installing Arduino IDE, 37–38
installing drivers, 38–39
simulators and emulators, 365–366
storing Examples folder, 50

Wire library, 49
wire strippers, 23
wires

automated garden project, 204
for breadboards, 28
for electric lock mechanisms, 160–161
general discussion, 22

home sensing station project, 244
LED cube project, 336
troubleshooting connections, 360
tweeting pet door project, 223, 239–241
uploading code, 198

wire-wrap method, attaching probes for
soil moisture sensors, 206, 209

workspaces
Arduino, setting up on computer, 37–40
Arduino boards and kits, choosing, 33–35
Arduino shields, 35–36
basic tools, 21–24
breadboards, 28–29
multimeters, 24–25
overview, 19
perfboards, 28–29
power supplies, 25–27
project boxes and housings, 32–33
safety precautions for electrical

projects, 27
setting up, 20–22
soldering iron and accessories, 30–32
stripboards, 28–29

• X •
Xively.com

account, 260–263
code library, 264
monitoring sensor readings, 267–271

• Y •
YouTube, 355

• Z •
zeros (0), leading, 141

http://www.Dummies.com/go/mobile
http://www.Dummies.com/go/iphone/apps

	About the Author
	Contents at a Glance
	Table of Contents
	Introduction
	Why Arduino?
	Foolish Assumptions
	Safety and Arduino Projects
	How This Book Is Organized
	The Companion Website
	Icons Used in This Book

	Part I: Getting Started with Arduino Projects
	Chapter 1: Exploring the World of Arduino
	About Arduino
	Discovering Who Uses Arduino
	Understanding Microcontrollers
	Getting Started

	Chapter 2: Setting Up Your Workspace and Tools
	Preparing to Build
	Selecting Basic Tools
	Choosing Your Soldering Iron and Accessories
	Selecting Project Boxes and Housings
	Choosing Your Arduino or Arduino Kit
	Setting Up Your Arduino on Your Computer

	Chapter 3: Understanding the Basics
	Understanding Key Concepts
	Understanding Basic Electronics
	Identifying Electronic Components
	Understanding Sensing and Actuating
	Making Projects Work

	Part II: Basic Arduino Projects
	Chapter 4: The All-Seeing Eye
	Selecting Your Parts
	Building the Circuit
	Understanding How the Code Works
	Understanding How the Hardware Works
	The Potential of a Potentiometer

	Chapter 5: Making a Light Pet
	Selecting Your Parts
	Building the Circuit
	Understanding How the Code Works
	Understanding How the Hardware Works

	Chapter 6: Making a Scrolling Sign
	Selecting Parts
	Building the Circuit
	Understanding How the Code Works
	Understanding How the Hardware Works

	Chapter 7: Building an Arduino Clock
	It’s About Time!
	Selecting and Preparing Your Parts

	Part III: The Interactive Home and Garden
	Chapter 8: Building a Keypad Entry System
	Selecting and Preparing Your Parts
	Assembling and Installing Your System

	Chapter 9: Building an RFID Tag Reader
	Understanding RFID
	Building an ID-Innovations RFID Reader
	Testing and Setting Your RFID Reader

	Chapter 10: Building an Automated Garden
	Creating a Watering System
	Selecting Your Parts
	Building Your System
	Coding, Calibrating, and Testing

	Chapter 11: Building a Tweeting Pet Door
	Selecting Your Parts
	Testing Your Circuit
	Preparing Your Twitter Account
	Crafting Your Code
	Modifying Your Pet Door

	Chapter 12: Building a Home Sensing Station
	Building Your Sensor Probes
	Creating a Xively Account
	Programming Your Sensing Station

	Part IV: Advanced Arduino Projects
	Chapter 13: Building a GPS Data Logger
	Understanding GPS
	Selecting Your Parts
	Building Your Project
	Collecting and Plotting GPS Data

	Chapter 14: Building a Remote-Controlled Car
	Selecting and Preparing Your Parts
	Building Your Detector and Drive
	Building Your Chassis

	Chapter 15: Building an LED Cube
	Selecting Your Parts
	Building Your Cube
	Programming Your Cube
	Using the LED Cube Pattern Designer

	Part V: The Part of Tens
	Chapter 16: Ten Great Arduino Resources
	Websites
	Books and eBooks

	Chapter 17: Ten Troubleshooting Tips
	Troubleshooting Your Hardware
	Checking Your Connections
	Confirming Your Power Is Correct
	Hunting for Odors and Hot Components
	Test Your Outputs on External Devices
	Testing Your Digital Pins
	Troubleshooting Your Software
	Checking Your Syntax
	Using the Serial Monitor
	Checking Your Inputs and Outputs
	Using a Simulator or an Emulator
	When All Else Fails ...

	Index

Arduino
Projects

i}

