ARDUINO

Tools and Techniques for Programming Wizardry

James A. Langhridge

—— g a
— :
\
o . =
e N —
»
. y
°
,A' a

P

-

- o0
‘ e;’-:i e I

WILEY

Arduino™ Sketches

™

Tools and Techniques for Programming
Wizardry

James A. Langbridge

WILEY

Arduino™ Sketches: Tools and Techniques for Programming Wizardry

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-91960-6
ISBN: 978-1-118-91962-0 (ebk)
ISBN: 978-1-118-91969-9 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be
created or extended by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make. Further, readers
should be aware that Internet websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http: //booksupport .wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2014948616

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
Arduino is a trademark of Arduino, LLC. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

To my loving girlfriend, Anne-Laure, who once again put up with entire evenings and
weekends spent on my PC. This is the second time I've done that to her, but she put
up with me anyway and kept on smiling (most of the time). I still don’t know how.

To my wonderful daughter, Eléna: | have to admit, I’'m addicted to your laugh and
smile, something you did every time | showed you the projects | was working on.
Again you found a way of telling me when | needed to stop and spend more time
playing with you (by unplugging and randomly rewiring my breadboard projects),
but coming back home at the end of a long and difficult day to see you smiling and
jumping into my arms gave me more energy than you can imagine.

About the Author

James A. Langbridge does not like talking about himself in the third person,
but he will try anyway. James was born in Singapore and followed his parents
to several countries before settling down in Nantes, France, where he lives with
his partner and their daughter.

James is an embedded systems consultant and has worked for more than 15
years on industrial, military, mobile telephony, and aviation security systems.
He works primarily on low-level development, creating bootloaders or opti-
mizing routines in assembly, making the most of small processors. When not
on contract, James trains engineers on embedded systems, or he makes new
gizmos, much to the dismay of his partner.

James wrote his first computer program at age 6 and has never stopped tin-
kering since. He began using Apple IIs, ZX80s and ZX81s, and then moved to
BBC Micros and the Amiga before finally having no other option but to use PCs.

vii

About the Technical Editor

Scott Fitzgerald is an artist and educator working with technology and its rela-
tionship to people, approaching digital tools from a human-centric perspective.
His work has been featured in numerous books and publications such as The
New York Times and IDN Magazine. He has edited several books on Arduino
and communication technologies, is the author of the book that accompanies
the Arduino Starter Kit, and is responsible for documentation of the Arduino
platform at http://arduino.cc. Scott is currently an assistant arts professor and
head of the interactive media program at New York University Abu Dhabi. He
enjoys tormenting his cat and partner with early morning work sessions.

http://arduino.cc

Project Editor
Christina Haviland

Technical Proofreader
Ying Chin

Production Editor
Rebecca Anderson

Copy Editor
San Dee Phillips

Manager of Content Development
and Assembly
Mary Beth Wakefield

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology and
Strategy Director
Barry Pruett

Credits

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Patrick Redmond

Proofreader
Sarah Kaikini, Word One New York

Indexer
Johnna VanHoose Dinse

Cover Designer
Michael E. Trent/Wiley

Cover Image
© iStock.com/johnbloor

Xi

Acknowledgments

Writing a book is a huge project. When I was at school, I used to shudder at the
thought of writing 1,000 words for an essay, and I was alone to do it. This book
is, of course, much longer, and I enjoyed every minute of it, thanks to the team
of professionals who helped me every step of the way. Take a quick look at the
people involved in this project, and you will soon see what I'm talking about.

I can’t thank everyone involved personally; there are just too many people,
but there are a few names that I will never forget. My thanks go out to Christina
Haviland, my project editor. When I knew that I would be working with her
again, I was thrilled. She actually managed to put up with me for the entire
duration and didn’t even shout at me when I was late, despite the fact that some
of the chapters were very, very late. I was also thrilled to know that I'd be work-
ing with San Dee Phillips, my copy editor. The job they did transforming raw
data coming out of my brain into something readable is outstanding. Then there
is Scott Fitzgerald, my technical editor, who made sure that I didn’t make any
mistakes. Believe me, nothing slipped by, and despite all the grumbling I did
when I received the corrections, thank you! This wouldn't have been possible
without you.

I would also like to thank Atmel for their time and effort, for the engineers
I was in contact with to get more information, and to Tom Vu who kept on
encouraging me along the way and sending me new evaluation boards to play
with. My thanks also go out to Silicon Labs for its excellent UV sensor that is
presented in this book and for the time it spent helping me. Thanks to Materiel
net who managed to get me a new computer, camera, and components in record
time when mine broke, allowing me to get the job done. Your coffee mug is still
on my desk!

Xiii

Xiv

Acknowledgments

Of course, this book would not have been possible without the amazing
people at Arduino. I don’t know if they know just how much they have changed
the world of makers. Your boards have brought back the joy I had in creating
gizmos and contraptions.

This has been a huge adventure, and I've met a lot of amazing people along
the way. Thank you to every one of you—for your time, your suggestions, and
your encouraging messages.

Introduction
Partl
Chapter 1
Chapter 2
Chapter 3
Part 2
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

Contents at Glance

Introduction to Arduino
Introduction to Arduino
Programming for the Arduino
Electronics Basics
Standard Libraries

The Arduino Language
Serial Communication
EEPROM

SPI

Wire

Ethernet

WiFi

LiquidCrystal

SD

TFT

Servo

Stepper

Firmata

XXiX

25
45
63
65
81

101

17

133

149

169

191

207

225

241

253

261

XV

Contents at Glance

Chapter 17
Partlll

Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
PartIV

Chapter 24
Chapter 25
Chapter 26

Index

GSM

Device Specific Libraries
Audio

Scheduler

USBHost

Esplora

Robot

Bridge

User Libraries and Shields
Importing Third-Party Libraries
Creating Your Own Shield

Creating Your Own Library

271
289
291
305
321
335
345
361
375
377
391
405
429

Introduction
Partl
Chapter 1

Introduction to Arduino

Introduction to Arduino

Atmel AVR

The Arduino Project

The ATmega Series
The ATmega Series
The ATtiny Series
Other Series

The Different Arduinos
Arduino Uno
Arduino Leonardo
Arduino Ethernet
Arduino Mega 2560
Arduino Mini
Arduino Micro
Arduino Due
LilyPad Arduino
Arduino Pro
Arduino Robot
Arduino Esplora
Arduino Yan
Arduino Tre
Arduino Zero
Your Own Arduino?

Shields
What Is a Shield?
The Different Shields

Contents

XXiX

O O 00000 JUlW =

_ =
o O

11
11
13
13
13
14
16
16
18
18
19
19
20
20
20
21

xvii

Xviii

Contents

Chapter 2

Chapter 3

Arduino Motor Shield

Arduino Wireless SD Shield

Arduino Ethernet Shield

Arduino WiFi Shield

Arduino GSM Shield

Your Own Shield
What Can You Do with an Arduino?
What You Will Need for This Book
Summary

Programming for the Arduino
Installing Your Environment
Downloading the Software
Running the Software
Using Your Own IDE
Your First Program
Understanding Your First Sketch
Programming Basics
Variables and Data Types
Control Structures
if Statement
switch Case
while Loop
for Loop
Functions
Libraries
Summary

Electronics Basics
Electronics 101
Voltage, Amperage, and Resistance
Voltage
Amperage
Resistance
Ohm’s Law
The Basic Components
Resistors
Different Resistor Values
Identifying Resistor Values
Using Resistors
Capacitors
Using Capacitors
Diodes
Different Types of Diodes
Using Diodes
Light-Emitting Diodes
Using LEDs
Transistors

21
21
21
22
22
22
22
23
24

25
26
27
28
29
29
33
36
36
38
38
39
40
41
42
42
42

45
46
46
47
48
48
49
49
50
50
50
52
53
54
54
54
55
55
55
56

Contents

Xix

Using Transistors 56
Breadboards 56
Inputs and Outputs 57
Connecting a Light-Emitting Diode 58

Calculation 58

Software 59

Hardware 60

What Now? 61

Summary 61

Partll Standard Libraries 63
Chapter4 The Arduino Language 65
I/0 Functions 65

Digital 1/O 65

pinMode() 66

digitalRead() 66

digitalWrite() 67

Analog I/0O 67
analogRead() 68
analogWrite() 68

Generating Audio Tones 69
tone() 69
noTone() 69

Reading Pulses 69

pulseln() 70

Time Functions 70
delay() 70
delayMicroseconds() 71
millis() 71
micros() 71

Mathematical Functions 72
min() 72
max() 72
constrain() 73
abs() 73
map() 73
pow() 74
sqrt() 74
random() 74

Trigonometry 75
sin() 76
cos() 76
tan() 76
Constants 76

Interrupts 76

XX

Contents

Chapter 5

Chapter 6

Chapter 7

attachInterrupt()
detachInterrupt()
nolnterrupts()
interrupts()
Summary

Serial Communication
Introducing Serial Communication
UART Communications
Baud Rate
Data Bits
Parity
Stop Bits
Debugging and Output
Starting a Serial Connection
Writing Data
Sending Text
Sending Data
Reading Data
Starting Communications
Is Data Waiting?
Reading a Byte
Reading Multiple Bytes
Taking a Peek
Parsing Data
Cleaning Up
Example Program
SoftwareSerial
Summary

EEPROM
Introducing EEPROM
The Different Memories on Arduino
The EEPROM Library
Reading and Writing Bytes
Reading and Writing Bits
Reading and Writing Strings
Reading and Writing Other Values
Example Program
Preparing EEPROM Storage
Adding Nonvolatile Memory
Summary

SPI

Introducting SPI

SPI Bus
Comparison to RS-232
Configuration
Communications

77
78
78
78
79

81
82
84
84
85
85
86
86
87
88
88
90
91
91
91
92
92
93
93
94
95
98
99

101
101
103
104
104
105
107
108
110
113
114
115

117
118
118
119
119
120

Contents

Chapter 8

Chapter9

Arduino SPI
SPI Library
SPI on the Arduino Due
Example Program
Hardware
Sketch
Exercises
Summary

Wire
Introducing Wire
Connecting I’)C
I?C Protocol
Address
Communication
Communicating
Master Communications
Sending Information
Requesting Information
Slave Communications
Receiving Information
Sending Information
Example Program
Exercises
Traps and Pitfalls
Voltage Difference
Bus Speed
Shields with I>)C
Summary

Ethernet
Introduction
Ethernet
Ethernet Cables
Switches and Hubs
PoE
TCP/IP
MAC Address
IP Address
DNS
Port
Ethernet on Arduino
Importing the Ethernet Library
Starting Ethernet
Arduino as a Client
Sending and Receiving Data
Connecting to a Web Server

120
121
123
125
126
128
131
132

133
134
135
135
136
137
138
139
139
140
141
141
142
142
146
147
147
147
148
148

149
149
150
151
151
152
152
153
153
153
153
154
154
155
157
158
159

xxii Contents

Chapter 10

Chapter 11

Chapter 12

Example Program
Arduino as a Server
Serving Web Pages
Example Program
Sketch
Summary
WiFi
Introduction
The WiFi Protocol
Topology
Network Parameters
Channels
Encryption
SSID
RSSI
Arduino WiFi
Importing the Library
Initialization
Status
Scanning Networks
Connecting and Configuring
Wireless Client
Wireless Server
Example Application
Hardware
Sketch
Exercises
Summary

LiquidCrystal
Introduction
LiquidCrystal Library
Writing Text
Cursor Commands
Text Orientation
Scrolling
Custom Text
Example Program
Hardware
Software
Exercises
Summary

SD

Introduction

SD Cards
Capacity
Speed

161
163
164
165
165
167

169
170
171
171
172
172
172
173
173
173
174
174
175
176
177
178
179
179
181
182
189
190

191
192
194
195
196
197
197
198
199
200
201
205
205

207
208
211
212
213

Contents

xxiii

Chapter 13

Chapter 14

Chapter 15

Using SD Cards with Arduino
Accepted SD Cards
Limitations

The SD Library
Importing the Library
Connecting a Card
Opening and Closing Files
Reading and Writing Files

Reading Files
Writing Files
Folder Operations
Card Operations
Advanced Usage
Example Program and Sketch
Summary

TFT
Introduction
Technologies
TFT Library
Initialization
Screen Preparation
Text Operations
Basic Graphics
Coloring
Graphic Images
Example Application
Hardware
Sketch
Exercises
Summary

Servo
Introduction to Servo Motors
Controlling Servo Motors
Connecting a Servo Motor
Moving Servo Motors
Disconnecting
Precision and Safety
Example Application
Schematic
Sketch
Exercises
Summary

Stepper
Introducing Motors
Controlling a Stepper Motor

213
214
214
215
215
215
216
217
217
218
218
219
220
220
224

225
226
227
228
228
229
230
231
232
232
233
234
234
239
239

24
242
243
243
244
245
246
246
248
249
250
251

253
254
254

XXiv

Contents

Chapter 16

Chapter 17

Part il
Chapter 18

Hardware

Unipolar Versus Bipolar Stepper Motors

The Stepper Library
Example Project
Hardware
Sketch
Summary

Firmata

Introducing Firmata

Firmata Library
Sending Messages
Receiving Messages
Callbacks
SysEx

Example Program

Summary

GSM
Introducing GSM
Mobile Data Network
GSM
GPRS
EDGE
3G
4 G and the Future
Modems
Arduino and GSM
Arduino GSM Library
GSM Class
SMS Class
VoiceCall Class
GPRS
Modem
Example Application
Summary

Device-Specific Libraries

Audio

Introducing Audio

Digital Sound Files

Music on the Arduino

Arduino Due
Digital to Analog Converters
Digital Audio to Analog
Creating Digital Audio
Storing Digital Audio
Playing Digital Audio

255
255
256
257
257
258
260

261
262
262
263
263
264
266
268
269

271
272
272
273
274
274
274
275
275
276
276
278
279
281
282
284
285
288

289

291
292
292
294
294
295
295
296
296
296

Contents

XXV

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Example Program
Hardware
Sketch
Exercise

Summary

Scheduler
Introducing Scheduling
Arduino Multitasking
Scheduler
Cooperative Multitasking
Noncooperative Functions
Example Program
Hardware
Sketch
Exercises
Summary

USBHost

Introducing USBHost

USB Protocol

USB Devices
Keyboards
Mice
Hubs

Arduino Due

USBHost Library
Keyboards
Mice

Example Program
Hardware
Source Code

Summary

Esplora
Introducing Esplora
The Arduino Esplora Library
RGB LED
Sensors
Buttons
Buzzer
TinkerKit
LCD Module

Example Program and Exercises

Summary

Robot
Introducing Robot Library
Arduino Robot

298
298
300
303
304

305
306
307
308
309
311
313
314
316
319
319

321
322
323
324
324
325
325
325
327
327
329
330
331
332
334

335
336
337
337
338
339
340
341
342
342
344

345
346
348

XXVi

Contents

Chapter 23

Part IV
Chapter 24

Chapter 25

Robot Library
Control Board
Robotic Controls
Sensor Reading
Personalizing Your Robot
LCD Screen
Music
Motor Board
Example Program and Exercises
Summary

Bridge
Introducing Bridge Library
Bridge

Process

FilelO

YunServer

YunClient
Example Application

Hardware

Sketch

Exercises
Summary

User Libraries and Shields

Importing Third-Party Libraries
Libraries

Finding Libraries

Importing a Library

Using an External Library
Example Application
Exercises
Summary

Creating Your Own Shield
Creating a Shield
The Idea
The Required Hardware
The Required Software
Your First Shield
Step 1: The Breadboard
Step 2: The Schematic
Step 3: The PCB
Summary

349
350
350
351
353
354
356
357
358
360

361
362
363
364
366
367
368
369
369
370
373
373

375

377
378
378
379
381
384
389
389

391
391
392
392
393
394
395
398
402
404

Contents

XXVii

Chapter 26 Creating Your Own Library
Libraries
Library Basics
Simple Libraries
Advanced Libraries
Adding Comments
Adding Examples
Read Me
Coding Style
Use CamelCase
Use English Words
Don’t Use External Libraries
Use Standard Names
Distributing Your Library
Closed Source Libraries
Example Library
The Library
Examples
README
Finishing Touches
Summary

Index

405
405
406
406
410
413
415
415
416
416
416
417
417
417
417
418
418
424
427
428
428

429

Introduction

Arduinos have opened up a new world to us. Both makers and professionals
use Arduino-based systems to create wonderful and complex devices to help
to create fascinating gizmos. From the simplest device that turns on a light
when you press a button to advanced 3-D printers, you can use Arduinos in
just about every application.

To power all this, Arduinos use sketches—software programs that you
design to complete your device. They communicate with the outside world
and are logic behind your projects. To assist you, the Arduino environment has
libraries—software that you can add as required, depending on your applica-
tion or the hardware that you add. Each library is explained in this book with
examples for each library.

This book introduces you to Arduino sketches, the software routines that
you can use and the different libraries available for the different Arduinos that
you will encounter.

The Arduino can be your canvas, and your sketch can be your digital
masterpiece.

Overview of the Book and Technology

This book covers everything you need to start using Arduinos. It presents the
most common Arduinos on the market today, explains how to get your soft-
ware up and running, and how to program the Arduino, but most important, it
explains the Arduino programming languages and the different libraries that
you can add to your designs to provide extra functionality. It also gives a primer
in electronics to help you in the numerous examples throughout the book.

XXix

Introduction

How This Book Is Organized

This book is designed to give as much information as possible to someone who
is starting Arduino programming. It is separated into four parts.

Part I, “Introduction to Arduino,” (Chapters 1-3) gives an overview of
Arduinos—where they came from and why they are here to stay. It gives a
primer on electronics and C programming, and also goes into the Arduino
Language, the common elements that you will use for every project.

Part II, “Standard Libraries,” (Chapters 4-17) is dedicated to the libraries
available for every Arduino, that is, the different software components you can
include to add functionality and hardware support. Each library is presented
in its own chapter, and an example is provided for each library to help you
understand its use.

Part III, “Device-Specific Libraries,” (Chapters 18-23) is dedicated to librar-
ies that are specific to different Arduinos; software you can add to a particular
Arduino to access hardware or perform specific tasks. Again, each library is
presented in its own chapter, and examples are provided.

Part IV, “User Libraries and Shields,” (Chapters 24-26) is all about going
even further with your Arduino; it explains how to import user libraries and
how to design and distribute your own libraries. It also shows how to create your
own shield, an electronic board that you can add to your Arduino to provide
even more functionality.

Who Should Read This Book

This book is primarily for makers—people with ideas on how to create amazing
applications or automate everyday tasks—and also for developers who want to
get into the amazing world of Arduino programming,.

Tools You Need

Each chapter has an example, and the exact components needed for that chapter
are listed at the beginning of the chapter. To follow every example in this book,
you need the following hardware:

m Computer

m USB cable and micro-USB cable

m 5-V power supply

Introduction

m Breadboard with connector cables
m Several Arduinos:
m 2 x Arduino Uno
m Arduino Due
m Arduino Mega 2560
m Arduino Esplora
m Arduino Robot
m Arduino
m SainSmart LCD Shield
m SainSmart Ethernet Shield
m [M35 Temperature Sensor
m SD card
m Arduino GSM Shield
m Adafruit ST7735 TFT breakout board
m Adafruit MAX31855 breakout board
m Type-K thermocouple wire
m Adafruit SI1145 UV Sensor board
m SainSmart Wi-Fi shield
m DHT11 Humidity sensor
m HC-SR04 ultrasonic distance sensor
m HYX-S0009 or equivalent servo motor
m [293D
m 5-V bipolar stepper motor
m Red, green, and blue LEDs
m 10-kilohm resistors

m 47-kilohm resistors

What’s on the Website

The source code for the samples is available for download from the Wiley website

at www.wiley.com/go/arduinosketches.

http://www.wiley.com/go/arduinosketches

XXXii

Introduction

Summary

Arduino development is a fascinating subject, one that opens up a whole new
world of possibilities. Arduinos are perfectly suited for learning about embedded
development, but also for automating everyday tasks or even making amazing
gizmos and contraptions. Throughout this book, you'll find numerous examples
about how to create simple devices, providing a hardware schematic to get you
started, as well as the sketch to get you up and running.

To get the most out of your sketches, each library is introduced and the dif-
ferent functions are explained. Examples are provided for every library, going
through the code line by line so you understand what the sketch does. My hope
is that this book will serve as a reference for your new projects. Have fun!

In This Part

Chapter 1: Introduction to Arduino
Chapter 2: Programming for the Arduino
Chapter 3: Electronics Basics

Introduction to Arduino

Electronics enthusiasts have always been present. For decades, they have been
creating interesting devices and products. Amateur radio enthusiasts typically
made their own radio sets using schematics found in magazines or simply from
their own design. How many of us built a radio system to discover electronics,
only to be hooked? With a few dollars” worth of components, you could create
your own radio and listen to glorious long-wave transmissions on a small low-
quality speaker, and yet it was better than what could be bought in the shops
because it was homemade. If you wanted better sound, you could buy a better
speaker. More volume? There were kits for that, too. Audiophiles built their own
amplifiers and accessories depending on their needs. Electronics shops proposed
books for all levels, from beginner to expert. Kits were also available using the
simplest of components all the way to entire computer systems. It was a time
in which you could build just about anything, and everything. You could, quite
literally, walk into an electronics shop, buy a DIY computer, and spend a few
hours soldering memory chips onto a printed circuit board. That’s how I started.

In the 1990s, things changed slightly. Most hobbyists had a PC on their desk
and could use them to create schematics, simulate parts of a system, and even
print circuit board with transparent layouts, making the entire process much
easier. However, something was missing. Almost all the devices that could be
made were not programmable. Microprocessors were available but were either
too expensive or too complicated. At the time, the 68000 microprocessor was
one of the most reliable components available and was relatively cheap but

Part | = Introduction to Arduino

complex. The microprocessor by itself was useless; it had to be hooked up to
external memory. To run a program on every boot, it had to also have read-only
memory. If you wanted interrupts, again, you had to add a chip into the design.
The end result was complicated and out of the reach of some enthusiasts. To do
without this complexity, enthusiasts that wanted programmable devices tended
to use what was already on their desk: a personal computer.

Most PCs at the time used the ISA bus, as shown in Figure 1-1. ISA was a
simple bus that allowed components to be added to the processor and general
computer system. It was a simple system that allowed users to insert add-on cards
into their computer, and it was extremely easy to use. It wasn’t hard to create
a circuit board that could be plugged into an ISA slot, and complete prototyp-
ing boards existed, enabling enthusiasts and engineers to test a solution before
making their own board. Some of these boards even included breadboards, a
simple system allowing users to place their components and wires without the
need to solder. This sparked a small revolution, and many enthusiasts turned
to this type of board to do what previously could not be done: create program-
mable systems. An ISA board could have digital inputs and outputs, analog
inputs and outputs, radios, communication devices—just about anything was
possible. All this would be controlled by the computer’s CPU, using simple
programming languages such as C or Pascal. My ISA card kept my student
apartment nice and warm by reading data from a thermometer and turning
on electric heaters, acting like a thermostat. It also served as an alarm clock,
programmed depending on my classes the next day. Although I did manage
to miss a few morning classes, in all fairness it was usually my fault; the ISA
card worked perfectly on a tight budget.

Figure 1-1: ISA prototyping board

Computers became faster, and systems evolved. The industry changed, and
so did the expansion ports. Just as enthusiasts became experts on the ISA bus,
the industry invented a new system: the VESA Local Bus (VLB). The VLB bus

Chapter 1 = Introduction to Arduino

was an extension to ISA, only adding a second connector for memory-mapped
I/O and Direct Memory Access (DMA), but it announced a change. Computers
were indeed getting faster, and some computer bus systems couldn’t keep up.
Even VLB couldn'’t keep up, and after only a year, PCI became the reference.
The PCI bus is an advanced bus but requires components and logic to identify
itself. It suddenly became increasingly difficult to create homemade boards.
Some users decided to use other industry-standard ports, such as the parallel
port or RS-232, but most stopped creating such systems. Those that did continue
mainly used analog systems or nonprogrammable digital systems. Instead of
having a programmable microcontroller, the system was designed using logic
gates. For example, a bulb could turn on if both inputs A and B were true, or
if input C was false. These tasks became more and more complicated as the
number of inputs increased.

Analog systems, such as radios and amplifiers, did not have a form of pro-
gramming. They were designed with a specific task in mind. Configuration
was analog; with a small screwdriver, the designer could “tweak” values with
potentiometers, variable resistances. It wasn’t possible to program the device to
multiply an input signal by a specific value; instead, potentiometers were added
to counter the effect of tolerances in the components. Designs therefore added
an additional phase, calibration. Specific input signals were fed into devices,
and a specific output was expected.

Processors did exist that could be used, and some projects did use them, but
integrating a processor into a design generally meant that several components
needed to be used. Memory chips, I/O controllers, or bus controllers had to be
used, even after a decade of technological advancements, and circuits became
more and more complicated. Even when designs worked, programming them
proved to be a challenge. Most programming was done via EEPROM devices,
short for Electronically Erasable Programmable Read-Only Memory. These
devices could contain a computer program and could be programmed using
an external programmer attached to a computer. They were called erasable
read-only because the contents could indeed be wiped and replaced, but doing
so required removal of the circuit and subjecting it to ultra-violet light for 20
minutes. One small error in a program could often take 30 minutes or more
to correct.

Atmel AVR

Atmel is an American semi-conductor company, founded in 1984, and the name
Atmel is an acronym for Advanced Technology for Memory and Logic. Right
from the start, Atmel designed memory chips that used less power than com-
peting designs, but it soon decided to create programmable devices. In 1994,
Atmel entered the microprocessor market, creating an extremely fast 8051-based

Part | = Introduction to Arduino

microcontroller. In 1995, Atmel was one of the first companies to license the
ARM architecture, giving it access to advanced processor technology.

Atmel didn’t use only ARM technology, it also created its own processor, the
AVR, in 1996 (see Figure 1-2). What does AVR stand for? Well, that is one of the
many mysteries of Atmel. Designed by Alf-Egil Bogen and Vegard Wollan, some
say it stands for Alf and Vegard’s RISC processor. We will never know, and at the
time, people were not interested in understanding the name, but rather getting
their hands on this advanced piece of technology. Today, more and more people
are curious as to the origin of this curious processor, Atmel continues to tease
the public with videos of the inventors explaining the name, only to have the
big reveal scrambled by mobile telephone interference.

Figure 1-2: Atmel AVR Microprocessor

Previously, programming the read-only memory of a device required some
tedious tasks, like subjecting the chip to UV light, or complicated erase techniques.
This all changed with Atmel’s 8-bit AVR. The AVR was the first microcontroller
family to use on-chip flash memory for program storage. It also included Random
Access Memory (RAM) directly on the chip, essentially containing everything
needed to run a microcontroller on a single chip. Suddenly, all the complicated
design could be replaced with a single component. Even better, programming
the chip could be done in minutes, using minimal hardware. Some Atmel
designs allowed users to plug the microcontroller directly into a USB port and
to program it using Atmel’s software. From compilation to program execution
took less than a minute.

Several learning platforms existed: Parallax’s BASIC Stamp and PIC devices
were in use, but Atmel’s AVR made its appearance and added another alternative
for electronics enthusiasts. Previously, on digital systems, the logic was defined
before creating the board. Inputs and outputs were connected to logic gates,
and the functionality was designed into the product. Now, with the AVR series,
enthusiasts and engineers had a new possibility. Instead of designing functionality
electronically, systems could be designed to interact with the outside world using

Chapter 1 = Introduction to Arduino

computer programming. This simplified electronics; instead of using multiple
logic gates, everything was connected directly to the microcontroller, which could
then be programmed to react to events from the outside world. Programs could be
flashed and re-flashed, and devices could be programmed and re-programmed,
opening the gates to a whole new world of electronics. In theory, a device could
be made that would adapt to almost every situation possible. The technology
existed; all that was left was for someone to create the device.

The Arduino Project

The Arduino project started in 2005, and was a project for the students at the Interaction
Design Institute Ivrea in Ivrea, Italy. Students were taught to use a BASIC Stamp, a
small microcontroller device programmable in PBASIC (a variation of the BASIC
programming language), but the price for this device (almost $75) was considered
to be too expensive for students, not only on acquisition, but also to replace dam-
aged units.

Arduino started as a project for design students, targeted as a replacement
for the BASIC Stamp. The Atmel 8-bit AVR was chosen for its simplicity and
low price, and had the extra advantage of requiring few external components.
It also has an impressive amount of inputs and outputs, making it a perfect
choice for future designs.

Students and teachers worked together on a new design, one that used the
Atmel AVR and that could easily accept external cards. When the original
design was completed, researchers worked to make the design lighter, less
expensive and easily usable by students, enthusiasts, and engineers. The first
Arduino board was born. Improvements on the Arduino’s original design,
such as replacing the DB-9 serial connector with USB, has helped expand the
platform’s appeal.

There are two sides to every Arduino. There is, of course, the hardware, but
this is only part of an Arduino project. Every Atmel microcontroller used for
Arduino comes with a specific firmware, a small program embedded on every
device that looks for a program to run or helps install a program using a serial
device.

The final design was released as open source and was designed and sold
by Arduino. Releasing Arduino as an Open Source Hardware project was an
interesting move. Because it was open source, it attracted more and more users
to look into their projects. Because the Arduino already had an excellent input/
output design, users began to create boards that could be added to the original
Arduino. When Arduino designed a new board, it kept the original input/output
layout, enabling existing add-ons to be used with new designs.

Originally designed for education, the Arduino project became famous with
electronics enthusiasts, and its boards were sold by more and more distributors.

Part | = Introduction to Arduino

Arduino not only created the hardware—an embedded device that does not
have corresponding software and support programs might still be difficult to
use—but also spent a lot of time developing its own language and Integrated
Development Environment (IDE). The end result is a nice IDE that can work on
Windows, MacOS, and Linux and converts the Arduino language (a high level
variant of C/C++) to AVR code. The Arduino development environment hides
away all the complications linked to embedded systems and mixing software—
such as setting up an environment, linkers, pesky command lines—and lets the
developer program using simple C language functions through the Arduino
Programming Language.

The ATmega Series

Atmel has placed its AVR design into different groups, depending on various
factors. There are numerous AVR microcontrollers, and knowing which one to
use is essential for projects. Some ATmega devices have more memory, or more
digital and analog inputs and outputs, or have a specific package size.

The ATmega Series

The Atmel megaAVR is the muscle of the AVR series. They are designed for
applications requiring large amounts of code, with flash memory ranging from
4 k all the way to 512 k, enough for the most demanding of programs. Atmel
megaAVR devices come in various sizes, ranging from 28 pins all the way to 100
pins. These devices have an impressive amount of embedded systems: analog
to digital converters, multiple serial modes, and watchdog timers, to name but
a few. They also have a large amount of digital input and output lines, making
them ideal for devices that communicate with numerous components.

There are close to 100 ATmega devices, ranging in flash memory size and
package size, and some models have advanced features such as internal LCD
Controllers, CAN controllers, USB controllers, and Lightning controllers. ATmega
chips are found in almost every Arduino board produced.

You can find more information on the ATmega series on Atmel’s website at:

http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx.

The ATtiny Series

The Atmel tinyAVR series has small-package devices designed for applications
that require performance and power efficiency. These devices live up to their
name “tiny”; the smallest tinyAVR is 1.5 mm by 1.4 mm. The word “tiny” is only
a reference to their size. Their power is comparable to the larger AVRs; they have
multiple I/O pins that can be easily configured and a Universal Serial Interface
that can be configured as SPI, UART, or TWL. They can also be powered with as

http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

Chapter 1 = Introduction to Arduino

little as 0.7 V, making them highly energy-efficient. They can be used in single-
chip solutions or in glue logic and distributed intelligence in larger systems.

There are more than 30 ATtiny devices, and they come with between 0.5 k and
16 k of flash memory, and range from 6-pin packages to 32-pin packages. You
can find more information on the ATtiny series on Atmel’s website at: http://
www.atmel .com/products/microcontrollers/avr/tinyavr.aspx.

While the ATtiny series are powerful devices given their size, no Arduino
uses this device as its microcontroller.

Other Series

Atmel also has different AVR series: The XMEGA series deliver real-time per-
formance, with added encryption using AES and DES modules, and includes
an interesting technology, the XMEGA Custom Logic, reducing the need for
external electronics.

Atmel also produces a 32-bit version of its AVR microcontroller: the UC3.
Supporting fixed-point DSP, a DMA controller, Atmel’s famous Peripheral Event
System and advanced power management, the UC3 is a formidable microcon-
troller. You can find more information on Atmel’s AVR website at: http://www

.atmel.com/products/microcontrollers/avr/default.aspx.

The Different Arduinos

The original Arduino was designed for one specific task, and it fit that task
perfectly. With the success of the original Arduino board, the company decided
to create more designs, some of them for very specific tasks. Also, because the
original Arduino design was open source, several companies and individuals
have developed their own Arduino-compatible boards, or have followed in
the open source tradition, and have proposed their modifications to Arduino.
Arduino has begun a certification program to ensure compatibility with boards
that use different processors, with the Intel Galileo being the first to receive such
a certification. Anyone is free to make their own Arduino-based derivative, but
the name and logo of Arduino are trademarked. As such, you'll find a number
of boards with names ending in “uino”, implying compatibility.

m Beware of counterfeits! Some companies propose Arduino boards
that are cheaper than the original Arduino series, but these boards tend to have less
reliable hardware. Arduino boards are cheap but still use good quality electronic
components, whereas counterfeit boards may well use components that will not last
as long. Paying a few extra dollars for a board helps Arduino finance more research to
create new Arduino boards and software, and ensures a better user experience. You
can read more about how to spot counterfeit boards at: http: //arduino.cc/en/

Products/Counterfeit.

http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://arduino.cc/en/Products/Counterfeit
http://arduino.cc/en/Products/Counterfeit

10

Part | = Introduction to Arduino

Arduino made the board design open source, but it still produces its own
boards. These boards are known as official boards. Other companies also make
Arduino-compatible boards.

Arduino Uno

The Arduino Uno is the “standard” Arduino board and the most readily available.
It is powered by an Atmel ATmega328, with a total of 32 KB of flash memory,
2 KB of SRAM, and 1 KB of EEPROM memory. With a total of 14 digital I/O pins
and 6 analog I/O pins, this is a very capable device, able to run most programs.
An on-board ATmegal6u2 chip manages serial communication. It is one of the
least expensive boards and the most used. When starting a new project, if you
do not know what Arduino to use, start with the Uno, as shown in Figure 1-3.

sptnzosegron i
g% DIGITAL (PWM~)] r

SMD EDITION

ICSP

Figure 1-3: The Arduino Uno

Arduino Leonardo

The Arduino Leonardo is slightly different to the Uno. Based on the ATmega32u4,
this microcontroller has enhanced USB capabilities and therefore does not require
a dedicated microchip for USB serial communication like the Uno. One advan-
tage to this is cost; one less microchip means a cheaper solution. It also means
that a developer can use the microcontroller as a native USB device, increasing
flexibility in the communication with a computer. The Leonardo can effectively
emulate a keyboard and mouse via USB HID, as shown in Figure 1-4.

Chapter 1 = Introduction to Arduino

11

NOnNYTMANSNS
() ! VN
DIGITAL (PWM~) £ &

N % LEONARDO

“ARDUINO -

\ e
s = ¢« R
i
o
PR)
- L

(e l! r‘a-

- -
- s
s -
- -
-— g
-— -
- ey
- py
- -
— -
= —

o X

WWW . ARDUINO. CC

MADE IN ITALY

Figure 1-4: The Arduino Leonardo

Arduino Ethernet

The Arduino Ethernet, based on the ATmega328 found in the Uno, can connect to
an Ethernet network, a functionality needed in a number of projects. Physically,
the Arduino Ethernet has the same 14-digital inputs/outputs as the Arduino
Uno, with the exception that 4 are used to control the Ethernet module and on-
board micro-SD card reader, limiting the amount of pins available.

It is interesting to note that the Arduino Ethernet has an optional POE mod-
ule, short for Power Over Ethernet. This option enables the Arduino Ethernet
to be powered directly from an Ethernet connection, without the need for an
external power source provided that there is a POE supply on the other end of
the Ethernet cable. Without POE, the Arduino must be powered by an external
source

Another difference from other Arduino boards is the lack of a USB connector.
Because most of the space is taken up with an Ethernet connector, this device
instead supports a 6-pin serial programming header and is compatible with
numerous programming devices (including a device from Arduino, the USB-
Serial adapter). The Arduino Ethernet is shown in Figure 1-5.

Arduino Mega 2560

The Arduino Mega 2560 is only slightly larger than the Arduino Uno, but it has
more input and output pins. It has a total of 54 digital I/O pins and 16 analog

12

Part | = Introduction to Arduino

inputs. It also has a large amount of flash memory: 256 KB, capable of storing
larger programs than the Uno. It also has generous SRAM and EEPROM: 8 KB
and 4 KB, respectively. It also has 4 hardware UART ports, making it an ideal
platform for communicating with multiple devices serially.

Figure 1-5: The Arduino Ethernet

Arduino Mega boards are used when large amount of inputs and outputs
are required. It is shown in Figure 1-6.

o
TRl
. .l'nv.,lll 1
;

Figure 1-6: The Arduino Mega 2560

Chapter 1 = Introduction to Arduino

13

Arduino Mini

The Arduino Mini is a tiny device, useful for applications where space is reduced
to the absolute minimum (see Figure 1-7). It has 14 digital I/O pins and 4 analog
input pins. (Four more are available but are not broken out.) The device has the
strict minimum: it does not have a USB connector; it has no power regulator;
and it has no headers. Programming is done via an external USB or R5232 to
TTL serial adapter. It is shown in Figure 1-7.

Figure 1-7: The Arduino Mini

Arduino Micro

The Arduino Micro lives up to its name; it is one of the smallest Arduino boards
available. Despite its small size, it still has a large amount of input and output
pins; it has 20 digital input/output pins, of which 7 can be used as PWM outputs.
It also has 12 analog inputs.

The Micro is not designed to have shields but it does have an interesting layout,
as shown in Figure 1-8. It can be placed directly onto a breadboard.

Arduino Due

The Arduino Due differs from all other Arduino designs in that it is not
based on an AVR, but rather uses a microcontroller based on an ARM
Cortex-M3, the Atmel SAM3X8E. This advanced microcontroller is clocked

14

Part | = Introduction to Arduino

at 84 MHz and is a full 32-bit device. It has a large amount of digital and
analog I/O: 54 digital pins (12 of which can be used as PWM) and 12 analog
inputs. The board has 4 UARTSs, an SPI header, a Twin-Wire Interface, and
even includes a JTAG header.

Figure 1-8: The Arduino Micro

The Arduino Due has more strict power supply requirements, and the micro-
controller itself is powered under 3.3 V. Be careful not to apply 5 V to any of the
pins: otherwise, you will damage the board. When choosing a shield for the
Due, make sure the shield supports 3.3 V. You can identify if a shield is Due
compatible by making sure it conforms to the Arduino R3 layout.

The Arduino Due is an incredibly powerful Arduino. The Due has 512 KB of
flash memory and a total of 96 KB of SRAM. It can handle the largest programs
at a fast speed. If you have a lot of calculations to perform, this is the Arduino
that you need (Figure 1-9).

LilyPad Arduino

The LilyPad Arduino is an interesting device. It strays from the typical Arduino
build because it is not rectangular, but round. Secondly, it does not support
shields. What it is designed for, however, is to be a small device that is perfect
for wearable computing, or e-fabric. The round shape means that connectors
are evenly distributed, and its small scale (2 inches in diameter) makes it perfect
for wearable devices. This device is easily hidden, and multiple manufacturers
have designed devices especially for the LilyPad: Wearable LEDs, light sensors,
even battery supply boxes that can be sewn into fabric.

Chapter 1 = Introduction to Arduino

15

To make the LilyPad as small and as light as possible, some sacrifices were
made. The LilyPad does not have a voltage regulator, so it is vitally important to
deliver at least 2.7 volts, but more important, no more than 5.5 volts; otherwise,
the LilyPad will be destroyed (see Figure 1-10).

Figure 1-10: The LilyPad Arduino

16

Part | = Introduction to Arduino

Arduino Pro

The Arduino Pro exists in two versions, based either on the ATmegal68 or
the ATmega328. The 168 version operates at 3.3 V with an 8 MHz clock, and
the 328 version runs on 5 V at 16 MHz. Both versions have 14 digital inputs/
outputs and 6 analog inputs. It has a JST battery power connector, a power
switch to select between power modes, and space reserved for a power jack,
if needed. It does not have a USB connector but instead uses a FTDI cable for
programming,.

The Arduino Pro is different from most other Arduinos in that while it is
a prototyping board it is designed to be embedded in projects. It does not
come with headers—indeed, it does not have any headers at all, as shown in
Figure 1-11. All the digital and analog inputs and outputs are placed at the
exterior of the board, retaining shield layout, ready to be soldered to wire or
connectors if necessary. Instead of being used for prototyping, the Arduino
Pro is aimed at semipermanent installation in finished products. The Arduino
Pro was not designed by Arduino but was designed and is manufactured by
SparkFun Electronics.

Arduino Robot

The Arduino Robot is, simply put, an Arduino on wheels. There are two Arduino
boards on the Robot—one controls the on-board motors, and the other contains
sensors. The Control board controls the Motor board and gives it instructions
on how to operate.

The Control board is powered by an ATmega32u4, with 32 KB of flash, 2.5 KB
of SRAM, and 1 KB of EEPROM. It also has an external I2C EEPROM device,
providing more storage. It has a compass, a speaker, three LEDs, a five-button
key pad, and an LCD screen. It also has three solder points for external 12C
devices. It also has I/O capability, with five digital I/Os, six PWMSs, and four
analog inputs. There is space for eight analog inputs (for distance sensors,
ultrasound sensors, or other sensors) and six digital I/O pins for other devices
(four of which can be used for analog input).

The Motor board is a fully independent board, powered by an ATmega32u4,
the same microcontroller as on the Control board. The Motor board contains
two wheels powered independently, five IR sensors, and I12C and SPI ports. It
also contains the power supply; it is powered by four rechargeable AA batter-
ies, and contains a jack port to recharge the on-board batteries. The board can
also be powered by an on-board USB connector, but in this configuration, for
safety reasons, the motors are disabled (Figure 1-12).

Chapter 1 = Introduction to Arduino 17

Arduino Pro g
. 8MHz WWu.ardulino.cc @

—
B 16MHz @0
=3TX-0 @ 20MHz o I
e RX -1

©0)
w5230 Sparkfun.com ©9)|
| (5| ! ISP
w8 GND

A AHH H
w=s GND

70000
)
.°.°0fo?a°

A g »
- S |\ \\\\,“—*\"‘y
- AY

Vllll”‘M

v
9,0 0 0°"a"0

.
he? 3
A

Figure 1-12: The Arduino Robot

18

Part | = Introduction to Arduino

Arduino Esplora

The Arduino Esplora is a strange device. Where most Arduinos are designed
to sit on a table or be placed under fabric, the Esplora is designed to be held
in your hand. Based on an ATmega32u4, it is not shield compatible and does
not have any solder points for inputs and outputs. Instead, it looks and feels
like a game pad; it has thumb inputs in the form of four digital switches, one
analog joystick, and a linear potentiometer. For more feedback, the Esplora has
a buzzer and an RGB LED. It also features more advanced devices; it has an
on-board microphone, a temperature sensor, a connector for an LCD screen,
and a three-axis accelerometer.

The Esplora has 32 KB of flash; 4 KB are used by the bootloader. It has 2.5 KB
of SRAM, and 1 KB of EEPROM. It is a capable device, and it makes up for its
lack of connectors with four TinkerKit connectors: two inputs and two outputs,
as shown in Figure 1-13.

Figure 1-13: The Arduino Esplora

Arduino Yun

The Arduino Ytn is based on an ATmega32u4, but it also has an Atheros AR9331
on the same board. The Atheros processor has a complete Linux distribution,
based on OpenWRT, famous for Linux-based wireless routers.

The Arduino Ytn has built-in Ethernet and WiFi, and also has a micro-SD slot.
The Yin is different from other Arduinos and shields in that it has advanced
network functionality; the Arduino can send commands to OpenWRT and

Chapter 1 = Introduction to Arduino

19

then continue processing its sketch (Figure 1-14). The two processors work
independently, the Bridge library facilitates communication between the two
processors.

Figure 1-14: The Arduino Yun

Arduino Tre

The not-yet-released Arduino Tre promises to be a phenomenal beast. Up until
now, the fastest Arduino was the Arduino Due, based on an ARM-compatible
microcontroller. The Tre, created by Arduino and BeagleBoard, combines the
power of a full computer with the flexible input and output of an Arduino.

The Tre has a Cortex-A8 class processor, the Sitara AM335X processor, run-
ning at 1 GHz. This processor has access to 512 MB of RAM and has an HDMI
port capable of displaying Full HD (1920 x 1080). All this power is interfaced
by an Atmel ATmega32u4 using the Arduino programming environment that
enthusiasts have come to love.

Arduino Zero

The Arduino Zero is a brand new Arduino using Atmel’s SAM D21 micro-
controller. It has 256 KB of flash memory, 32 KB of RAM, and runs at 48 MHz.
The Arduino Zero is designed to handle future requirements from the Maker
community, by creating a design that is powerful, robust, and flexible enough
to be used in robotics and wearable projects, as well as the IoT. It is also the first
design to have an advanced debugger interface.

20

Part | = Introduction to Arduino

Your Own Arduino?

Arduino has always created open-source designs, and all the boards listed
previously have schematic files available directly from the Arduino website,
under a Creative Commons Attribution Share-Alike license. Put simply, this
means that you are free to study the Arduino schematics to make your own or
to make modifications either for personal use or professional use on the condi-
tion that you give credit to Arduino for the original design and release your
own design under the same license.

With the exception of the Arduino Due, all Arduino boards are based on the
Atmel AVR. These chips can be bought from electronic distributors with the
Arduino firmware pre-installed, or if you have the proper tools, you can buy
blank chips and load the firmware yourself.

Shields

An Arduino by itself is a capable device and already includes numerous input
and outputs, but its power only starts there. Because Arduino designs are open
source, numerous companies have developed shields, printed circuit boards
that are placed on top of the Arduino board that connect to the Arduino’s pins.
There shields add functionality by using different inputs and outputs, either
digital I/O or through serial communication.

What Is a Shield?

A shield is a printed circuit board that can be placed on the top of most Arduino
boards. It connects to the Arduino’s processor through male header pins. Adding
a shield to an Arduino does not necessarily expand the possibilities of an Arduino,
but most do.

For most prototyping projects, you connect wires to the Arduino’s headers
and connect them to a breadboard. This is easy enough for a lot of applications,
like outputting data to two or three LEDs. For more complex applications, a
breadboard isn’t practical due to the complexity of the wiring, or the size of the
components. Micro-SD card readers are extremely small and cannot be placed
onto a breadboard. Soldering wires to a micro-SD reader isn't particularly easy,
so your choices are limited. Writing data to a micro-SD card is something that
can happen a lot, so it’s fortunate several companies have developed shields
with a micro-SD reader. If your application requires data logging, all you have
to do is to connect the shield to the top of the Arduino, add a few lines of code,
and you are ready to go. It is that simple.

As said previously, not all shields add functionality. Some shields exist to
help prototyping— allowing you to solder components onto the shield—without

Chapter 1 = Introduction to Arduino

21

having to make your own PCB. Prototyping on a breadboard is an excellent
way to test that your design works, but after the design is proven, it is time to
make a better board. For example, if you were creating a doorbell application, it
would be complicated to hide a breadboard behind the ringer. Instead, you could
solder those components onto a prototyping board, saving space and making
your design much more resistant to shock or tampering. The added advantage
of this type of board is that you do not need to create your own printed circuit
board or do any complicated routing.

The Different Shields

Shields exist for a wide variety of applications: storage on SD cards, network
connectivity by Ethernet or WiFi robotics control, enabling displays like LCD
and TFT screens, to name but a few.

Most shields can be stacked, so you are not limited to using only one at a time.
However, some shields may require input and outputs that will subsequently
be unavailable to other designs. Be careful when you choose your shields!

Arduino Motor Shield

When using motors, special care has to be taken. When turned off, motors can
induce voltage spikes, and components need to be added to a design account
for this possibility. Also, typically, USB power is insufficient for motors. The
Arduino Motor Shield takes care of this and enables the programmer indepen-
dent control of two DC motors, or one stepper motor. This shield can either be
powered from the Arduino or rely on an external power supply.

Arduino Wireless SD Shield

The Wireless SD shield is designed for an Xbee module but works with any
radio modem with the same footprint. The on-board micro-SD slot allows the
shield to act as a data logger. It also has a small prototyping area for adding
components.

Arduino Ethernet Shield

The Arduino Ethernet shield does exactly as the name implies; it adds
Ethernet connectivity through a W5100 controller, supporting up to four
simultaneous socket connections. This module also includes a micro-SD
slot for data-logging.

The Arduino Ethernet Shield has an optional POE module. On a POE
network, the module (and the parent Arduino) can be powered directly over
Ethernet.

22

Part | = Introduction to Arduino

Arduino WiFi Shield

The Arduino WiFi Shield includes an HDG104 Wireless LAN controller, enabling
an Arduino to access 802.11b/g networks. It can connect to open and encrypted
networks. This module also includes a micro-SD slot for data-logging.

Arduino GSM Shield

The Arduino GSM shield connects to the Internet through a GPRS network, at
a maximum of 85.6 KBps. It also has voice capabilities; by adding an external
microphone and speaker circuit, it can make and receive voice calls. It can also
send and receive SMS messages. The modem, an M10 by Quectel, is configured
using AT commands, handled in software by the GSM library.

The Arduino GSM Shield comes with a Bluevia SIM card; which allows
for machine-to-machine roaming data connections in blocks of 10 or 20
megabytes. However, the GSM shield will work with a SIM card from a dif-
ferent provider.

Your Own Shield

In some cases, you will want to make your own electronics. For prototyping, a
breadboard is sufficient, but when you need something more robust and more
professional, it is time to make your own shield. There are several software
options to assist you, but one of the best is the Fritzing application. In Fritzing,
you can create breadboard designs, translate them into electronic schematics,
and generate a shield layout directly. Fritzing also has its own shield creation
system; just upload your schematic to its website and receive a professionally
built shield.

What Can You Do with an Arduino?

This is one of the most commonly asked questions, but the answer is both simple
and complicated. Put simply, you can do almost anything you can imagine. The
most difficult part of any Arduino project is identifying a need. Maybe you
have an aquarium at home and would like to control the lighting in a specific
way? Maybe you would like to add a parking assist device onto your car. Some
people just want to add some automation to their house, opening and closing
motorized shades at the push of a button. Some people come up with even
more amazing and fun projects: a remote-controlled lawn mower, even a chess
playing robot. The possibilities are almost unlimited. There are a few things
that an Arduino cannot do, but that list is becoming shorter every time a new
Arduino-compatible board is released.

Chapter 1 = Introduction to Arduino

23

Arduino is an excellent way to learn about software development and elec-
tronics because it is a low-cost, robust device that is easy to program.

Some people use Arduino for hobbyist electronics, with projects ranging
from the simple to the incredibly absurd. I know of one person who has entirely
automated his house using 10 Arduino Megas, each room communicating with
the others to better estimate electrical consumption, heating, and personal
comfort.

Arduino is also used professionally because the components are low-cost
and highly reliable and have the added flexibility of being open source. When
an initial design is completed, developers can make a board much smaller to
be included in toys, small embedded systems, and even industrial machines.
Several 3-D printers are based on Arduino for their ease of use and reliability.

What You Will Need for This Book

Each chapter has a list of elements required to complete. However, when creat-
ing an Arduino project, a few items are required every time. Following is a list:

m A power supply—The Arduino Uno accepts an input voltage of 6 to 20 V,
with 7 to 12 V being recommended. Any standard AC-to-DC center-positive
adapter should work fine, preferably one that can supply up to or over 1
amp of current.

m Multimeter—Almost any model. You do not need to buy the most expen-
sive, far from it, but it should test DC voltage, DC amperage and continu-
ity, with optional resistance calculation, and AC voltage and amperage if
you plan to interface your Arduino to main’s power.

m Breadboard—The size depends on your project. Consider a medium-sized
board; if it is too small you might not fit all your components (or it might
be too cramped, possibly creating short circuits), and large breadboards
can cost more and require more space. (I use 680-point breadboards for
most of my examples and projects.)

m Resistors—A common element of every project. There are numerous
values, but there are some values that will be used more often. There are
kits on the market that propose 10 of every value, or you can go with the
most common, the choice is yours. To start out, ten 220-ohm, ten 1-kilohm,
and ten 10-kilohm resistors should suffice.

m LEDs—A great way of knowing the output of a pin. Coupled with a resis-
tor, it can instantly show the state of your project.

m Other electronic components—Sometimes it is handy to have a small
collection of capacitors, switches, and diodes on hand. Each example in
this book has a complete list of the required components.

24

Part | = Introduction to Arduino

Summary

This chapter briefly talked about some of what an Arduino can do, but there
is no way of knowing exactly what everyone will do with it. As I said, your
only limitation will be your imagination, and I would love to hear about
what you have done with an Arduino! You can contact me on my website at
http://packetfury.net.Ilook forward to hearing about your projects!

In the next chapter, you will learn more about programming an Arduino,
including how to install the Arduino IDE, how to connect an Arduino to your
computer, and uploading your first sketch.

http://packetfury.net

Programming for the Arduino

The Arduino is an embedded system, that is to say it has the minimum amount
of hardware to get the job done. That does not mean that it is by any means a
weak system; there is no point in having a PCI bus if it will never be used—it
will only take up space, energy, and increase the overall cost of the device.
Arduinos are lightweight—and inexpensive—and make excellent embedded
systems. Just like all embedded systems, programming is done on a host com-
puter, not the Arduino itself.

Programming an embedded system, and indeed programming any sort
of system, is the art of writing text that can be understood by a human, and
translating it into a binary file that can be understood by a processor. For this,
some tools are required. The data written by humans is called source code, and
because most source code is in text format, sometimes a simple text editor is
enough. Most people go with an Integrated Development Environment (IDE), an
augmented text editor with add-ons designed for developers. These add-ons can
range from text auto-completion to debugging and often include tools to handle
different types of source files, which contain source code. Some projects might
use only one file, but large projects can sometimes have hundreds of files, if not
thousands. After the source code is written, a compiler must be used, which
reads in the source code and creates one or more binary files. These binary files
are later uploaded onto the Arduino and run by the microcontroller.

25

26

Part | = Introduction to Arduino

Arduino developed all the tools required to get straight to work. With a
different embedded system, you may have to make a choice of an IDE, install
a compiler, and sometimes even a flasher, and spend precious hours setting
up the system. With Arduino, this isn’t the case; everything is delivered in a
simple package and contains everything needed, from writing your programs
to flashing the final binary file.

An Arduino program is known as a sketch. There are several definitions of
the word sketch such as a brief literary composition or a brief musical composi-
tion. Whatever your preference, an Arduino sketch is like a work of art; you,
the artist, gather and assemble elements to create your masterpiece. Google X
engineer Jeremy Blum, author of the book Exploring Arduino (Wiley, 2013), said,

I believe that creative engineering is indistinguishable from fine artwork.

The Arduino will be your canvas; you are on your way to making something
amazing using sketches and electronics. Your only limitation will be your
imagination.

Installing Your Environment

The first thing that you need to do is to install the Arduino IDE. The Arduino
IDE is a fully integrated piece of software written in Java. Java can run on mul-
tiple platforms, and the IDE is available for Windows, Mac OS X, and Linux.
You can get the Arduino IDE free of charge at the Arduino website:

http://arduino.cc/en/main/software

On this page, you will most likely have several options. The latest stable ver-
sion will always be listed first. Next, any beta versions available will be listed.
Beta versions are test versions that might not be up to the quality of a finished
version but that add functionality; it will be up to you to decide if you want
to use it. Beta versions sometimes support more hardware, and if you use the
latest Arduino boards, you might not have a choice.

Also listed on the site are nightly builds and builds for specific hardware.
Nightly builds are installers that are generated every night that contain the
latest updates but may in some rare cases also have bugs. Specific builds are
builds created for a single board in mind. At the time of writing, there is an
IDE available for the Intel Galileo, an Arduino compatible board designed and
manufactured by Intel that does not use the same compiler.

http://arduino.cc/en/main/software

Chapter 2 = Programming for the Arduino

27

Downloading the Software

Time to get to work! You have to download the software, so find the latest ver-
sion and download it. Figure 2-1 shows what the Arduino site looks like on my
development computer.

[9] b Arduino - Software - Mozl lz Firefox [ORORES]
File Edit View History Bookmarks Tools Help

Arduino - Software

v @ [Ev arduino o @

e @ arduino.cc/en/Main/Software

The open-source Arduino environment makes it easy to write code and upload it to the i/o board. It runs on Windows,
Mac 0S X, and Linux. The environment is written in Java and based on Processing, avr-gcc, and other open source

software.

THE ARDUINO SOFTWARE IS PROVIDED TO YOU "AS IS," AND WE MAKE NO EXPRESS OR IMPLIED
WARRANTIES WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, OR TINFRINGEMENT. WE EXPRESSLY DISCLAIM ANY LTABILITY WHATSOEVER

ARDUINO
Download the Arduino Software

FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR SPECTAL DAMAGES, INCLUDING,

@ P ‘ @ Arduino - Software - Mozilla Firefox ‘ - 24 (D))) ‘2 03:59/pPM| (“
Figure 2-1: The Arduino download page

Windows users have a choice between an installer and an archive. For the
installer, simply download the installer, double-click it, and follow the instruc-
tions. For more information on installing, please see the Arduino website on
installing: http://arduino.cc/en/Guide/HomePage.

Mac OS X and Linux users have to download an archive. Simply unpack the
archive using your normal tool, and double-click the Arduino icon inside the newly
created folder. Everything required is inside this folder.

If you have an operating system that is not listed, or if you are curious about
the source code, a source code bundle is also available. You could compile the
source code yourself.

http://arduino.cc/en/Guide/HomePage

28

Part | = Introduction to Arduino

Some Linux distributions might bundle the Arduino IDE directly; oth-
ers might require external repositories. Refer to your distribution’s forums
or look at Arduino’s Playground website, a community edited wiki, at:
http://playground.arduino.cc.

Running the Software

Once you have downloaded and installed the software, open the application.
If everything went well, you should have a window that looks like the one in
Figure 2-2.

- sketch_jan29b | Arduine 1.05
File Edit Sketch Tools Help

(3
S

sketch_jan29b

e)i

E e skekch_jan29b | Arduine 1.0.5

Figure 2-2: Empty sketch

This is the Arduino IDE, where you will design your sketches. The main
window is the sketch editor, which is where you write your code. At the bottom
is the status window; you receive information on compilation, uploads, or code
errors. In the bottom right of the screen is the device information panel, which
shows the device that you are using, as well as the serial port it is connected to.

The sketch editor isn't just a simple text editor; the editor colors and formats
text depending on what you write. Comments are greyed out, data types are
written in color, and so on. This provides a nice, easy way to read and write
source code.

http://playground.arduino.cc

Chapter 2 = Programming for the Arduino

29

Using Your Own IDE

The Arduino IDE is a capable environment, but some people may want to use
their own IDE, either for preference or simply because they are used to another
environment. The Arduino community has worked hard on porting the tools to
other programs, and you can find a complete list on the Arduino Playground.
Eclipse, CodeBlocks, Kdevelop, and the command line are just a few of the
environments proposed. Although this book concentrates on the Arduino IDE,
check out other IDEs. For more information see http://playground.arduino
.cc/Main/DevelopmentTools.

Your First Program

It’s time to dive in! By default, Arduinos come with a default sketch called
Blink. This sketch will blink the on-board LED connected to pin 13, available
on most Arduinos. Just plug a USB cable into your computer and your Arduino,
and after a few seconds you will see the LED blink, telling you that everything
went well. Arduinos are all about getting things done, and what better way
to show you just how easy they are than to run your first program. Your first
sketch will look like Listing 2-1:

Listing 2-1: Your first sketch

/*
Blink

Turns on an LED on for one second, then off for one second, repeat

This example code is in the public domain.

*/

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pin as an output.
pinMode (1led, OUTPUT) ;

}

// the loop routine runs over and over again forever:
void loop() ({

digitalWrite (led, HIGH) ; // turn the LED on (HIGH is the level)
delay (200) ; // wait for 0.2 seconds
digitalWrite (led, LOW) ; // turn the LED off by making the LOW

delay (200) ; // wait for 0.2 seconds

}

http://playground.arduino.cc/Main/DevelopmentTools
http://playground.arduino.cc/Main/DevelopmentTools

30

Part | = Introduction to Arduino

If this source code doesn’t make much sense to you, don't worry; everything
will be explained a little later. Seasoned C developers might have a few ques-
tions, which will also be answered later.

The previous sketch is an entire program. You can either type it in or use the
Arduino IDE directly; this code listing is actually an example from the Arduino
IDE. To open it, go to File = Examples => 01.Basics = Blink, and a new window
will open with the code. This sketch has comments, text zones where the user
can write about what he is intending to do, indicated by // at the beginning of
the line. Have a quick read through, and try to see what the program is doing.

When you are ready, it is time to upload your first program! Uploading means
installing the binary code onto the Arduino board. Make sure your Arduino
board is connected to your development computer via USB. For this example,
use an Arduino Uno or Arduino Mega. This code can run on all the Arduinos,
so feel free to use whichever you have. To upload the program, a few simple
steps must first be completed. The IDE needs to know what type of board is
connected. First, go into the menu; Tools = Board, and select your board. As
you can see, there are a lot of different boards to choose from. Select the entry
that corresponds to your board; in this example, have an Arduino Mega 2560,
as illustrated in Figure 2-3.

Y @ &
“ _J Arduin Uno W@
File Edit Sketch Tools Help
. Arduino Duemilanove w/ ATmega328

Auto Format Cerl+T
Archive Sketeh _ Arduino Diecimila or Duemilanove w/ ATmega168
Blink
o Fix Encoding & Reload . Arduino Nano w/ ATmega328 ~
Eblrgl; o an | Serial Moniter CerlShife+M |) Arduing Nano wj ATmega1 68
Board >

This exanple) \.® Arduino Mega 2560 or Mega ADK. b
"y Serial Port: > ‘
_ Arduino Mega (ATmega1280)
44 Pin 13 has | Programmer >
44 give 1t 2 nfBurn Bookloader
int led = 13;

_ Arduino Leonardo

_ Arduine Esplora

7/ the setup routine runs once when you press r_ arduino Micro
wold setup() {
/7 initialize the digital pin as an output. | () Arduino Miniw/ ATmega328
pinMode {led, OUTPLT};
./ Arduino Mini w/ ATmegal68

/7 the loop routine runs ower and over again fg_J Arduine Ethernet
void Toop{) {
digitalWrite{led, HIGH); // turn the LED or_J Arduino Fio

delay{1600); A4 walt for a secd ‘
digitallirite{led, LOW): ## turn the LED of _J Arduino BT w/ ATmega328
delay(1080); A walt for a secd

__J Arduino BT w/ ATmega168
. LilyPad Arduino USB
_ LilyPad Arduino w/ ATmega328

_ LilyPad Arduino w/ ATmega 68

) Arduine Pre or Pro Mini (SV, 16 MHz) w/ ATmega328

_ Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmegal 68

) Arduino Pro or Pro Mini (3.3V, B MHz) wf ATmega328
__J Arduine Pro or Pro Mini (3.3V, 8 MHz) wf ATmagal 68
) Arduino NG or older w/ ATmegal 68

_ Arduino NG or older w/ ATmega8

_ Arduino Rebok Control

P Blink | Arduino 1.0.5

Figure 2-3: Arduino IDE with the Arduino Mega 2560 selected

Chapter 2 = Programming for the Arduino

31

Next, the IDE needs to know how the board is connected to your computer.
Using the Tools => Serial Port menu, you can select the proper connection. On a
Windows machine, the board will appear as a COM port. On a Mac, the Arduino
connection will start with “/dev/tty.usbmodem.” My development machine is a
Linux system, and in this case the Arduino is connected to /dev/ttyacmo. On
some systems, there might be several serial ports listed. Figure 2-4 illustrates
me selecting my port.

& b Blink | Arduino 1.0.5
File Edit Sketch Tools Help

(«
(e
(=

Auto Format Cerl+T

Archive Sketch
Blink

Fix Encoding & Reload

s
Blink Serial Monitor Ctrl+shift+na
Turns on an | or one second. repeatedly.

Board
This example
wy Serial Port >V fdevfttyacMo

/7 Pin 13 hag | Fregrammer ? lhoards,

/7 qive 1t 2 nfgurn Bootloader
int led = 13;

/7 the setup routine runs once when you press reset:
void setup() {
4/ initialize the digital pin as an output.
pintode {led, OUTPUT):

/¢ the loop routine runs over and over agsin forever:

void Toop{} {
digitalWrite{led, HIGH}; // turn the LED on (HIGH is the voltage level)
delay ({16080} ; /f wait for a second
digitalWrite(led, LOW); JF turn the LED off by making the woltage LOW
delay (1860) ; /f wait for a second

E @ew |[E arduino-1.0.5 - Dolphin @ sketch_jan30a | Arduino 1.0.5 & Blink | Arduina 1.0.5 3 o qg)

Figure 2-4: Arduino IDE with the Arduino Mega 2560 serial port selected

That'’s it—as far as configuration goes. You have to do this only once; the
Arduino IDE remembers your preferences and keeps them for the next time.
You will need to change your settings if you change boards or plug the board
into a different USB port.

Next, you may optionally verify the source code. The verification stage actually
compiles the source code; the compiler will warn you if anything goes wrong. If
there is a problem, the IDE shows a message at the bottom of the screen, indicat-
ing a line number and the cause of the problem. For this example, the compiler
shouldn’t complain, and it will compile your application. To compile, you must
click the Verify button (the check mark) in the top left of the IDE or go into the
menu Sketch &> Verify/Compile. There is also a keyboard shortcut: Ctrl+R.

32

Part | = Introduction to Arduino

There is now one final step: you must upload the program onto your Arduino.
Simply click the Upload button next to the Verify button, or go to the menu item
File ©» Upload. Again, a keyboard shortcut is available: Ctrl+U, as shown in
Figure 2-5. The upload process also re-verifies the source code before uploading.

w Blink | Arduino 1.0.5 o @ ®
File Edit Sketch Tools Help

Blink

*
Blink
Turns on an LED on for one second, then off for one second, repeatedly.

)>

This example code is in the public domain.
*

47 Pin 13 has an LED connected on most Arduino boards.
/4 give 1t a name:
int led = 13;

/¢ the setup routine runs once when you press reset:
woid setup(} {
/¢ initialize the digital pin as an output.
pinMode{led, OLTPUT);

/f the Toop routine runs ower and ower again forever:

woid Toop() {
digitalwrite{led, HIGH}; /¥ turn the LED on (HIGH is the voltage lewel)
delay(1000); 4 wait for a gecond
digitalWrite{led, LOW}; /7 turn the LED off by making the voltage LOW
delay {1008}, /4 wait for a second

E @ww (© Blink| Arduine 1.0.5

Figure 2-5: Successful upload

The Arduino IDE now attempts to contact the Arduino board and transfer
the program into the microcontroller’s flash memory. A message at the bottom
should soon display the text “Done Uploading”. Now look at your Arduino
board. Next to the USB connector, a small LED should be blinking; the same one
used to verify that your Arduino was working in the beginning of the chapter.
This time, it should be blinking two to three times per second. Congratulations!
You have now successfully uploaded your first Arduino program!

The program has now been written into flash memory, but what does that
mean? Like a program on a computer, it has been “installed” into the nonvolatile
memory and will be executed every time you turn on the Arduino, so try that
right now. Unplug your Arduino from the USB port, wait a few seconds, and
then plug it back in. The Arduino will be powered again from the USB port,
and after a few seconds, the LED will start to flash. Your program is running,.

Chapter 2 = Programming for the Arduino

33

Although it may appear that the Arduino has simply run your program, it
hasn’t done only that. Arduinos contain something called a bootloader, a small
program that is run every time the device starts. This is only one of the strong
points of the Arduino system; the bootloader is always available to allow the
programmer to reflash a program. Even if you accidentally flash a program that
continuously crashes, you will always be able to reflash your Arduino, provided
the bootloader is present.

m If you need more program space, you can delete the bootloader and
place your own application at the start of the processor’s instruction sequence. Doing

this has the advantage of freeing the space used by the bootloader and using it for
your own application. The bootloader is a small program, about 2 kilobytes in size.
If you delete the bootloader, you can still reflash your Arduino, but more specialized
equipment will be required.

Understanding Your First Sketch

Now that your sketch works and you have seen the results, it is time to have a
closer look at the source code. This is presented step by step. The first part gives
some interesting information:

/*
Blink
Turns on an LED on for one second, then off for one second repeatedly

This example code is in the public domain.

*/

Everything placed between the text /* and */ is considered to be a comment,
a portion of source code that is ignored by the compiler. Everything within
these markers will be ignored, so it is the best place to write natural language
text about what the program does, or is doing. It is common to start a source
code file with a comment, explaining what the application does. Just by looking
at these few lines, you already have an idea about what the program will do.

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

This, again, explains what will happen using comments. Just like the /* and
=/ markers, when the compiler encounters the marker //, it will ignore every-
thing else after that marker but only for that line. On the first line, the compiler
encounters a comment marker and ignores the text. It then attempts to read in

34

Part | = Introduction to Arduino

the second line but again encounters a comment and ignores that, too. On the
third line, there is no comment; this is a real line of code.

It starts with the keyword int, short for integer. This is a variable declaration;
it tells the compiler to reserve space for a variable, a named container that can
change its contents. Because the variable was declared as an integer, it can hold
only whole numbers between -32,768 and 32,767. This variable is named led. The
compiler will assign the value 13 to the variable. Finally, the line is finished with
a semicolon. In C, a semicolon marks the end of an instruction.

Now for the next part:

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pin as an output.
pinMode (led, OUTPUT) ;

}

The first line is a comment. It explains what the next portion of the code will do.

The next line is interesting. The keyword void means an empty data type.
The second word, setup, declares the name of a function. Because of the paren-
theses and curly brackets, you know that this is not a variable but a function.
Functions are portions of code that can be called inside a program; instead of
writing the same code dozens of times, it is possible to write it only once and
have the program call this function as required. It is also a way of separating
code for special needs.

Inside the parentheses, you would list any parameters for the function: these
are variables that can be passed to the function. Because there is nothing inside
the parentheses of setup (), there are no parameters. The function therefore does
not need any data to run. Because the function was declared as void, it will not
return any data either. When this function is called, it will do its job and then
return without any data. But what exactly does it do?

Everything included in the curly brackets is part of the function—in this case,
a single line of code. When the setup function is called, it executes one instruc-
tion, pinMode () . This instruction is not preceded with a data type, meaning that
it is not a variable declaration, and it is not a function declaration. Because it
has parentheses, it is a function, and unlike setup it requires two parameters:
led and ouTpuUT. All the standard functions will be listed in Chapter 4, but just
to give you an idea, pinMode () is a function that tells the microcontroller how
a particular pin will be used. Before using a pin, the microcontroller needs to
know how it will be used; in this case, it will be sent as an output. The microcon-
troller can therefore set the output of a pin as H1GH or Low and will not attempt
to read the status of the pin. The pin in question, identified as led, was defined
earlier in the code; it is pin number 13.

Chapter 2 = Programming for the Arduino

35

Now for the final section of code.

// the loop routine runs over and over again forever:
void loop() {

digitalWrite (led, HIGH) ; // turn the LED on (HIGH voltage level)
delay (200) ; // wait for a second

digitalWrite (led, LOW) ; // turn the LED off, LOWvoltage

delay (200) ; // wait for a second

}

Again, the code starts with a comment, giving you an idea of what this por-
tion of code will do. This is a function declaration for a function called 1oop ().
It does not require any parameters to run.

Inside of loop, you'll see the function digitalwrite (). As you might have
guessed from the name of the function, it performs a write action on a pin in
digital format. It sets the pin status to a logical 1 (HIGH) or a logical 0 (LOW).
The first time the function is called in this sketch, it sets the pin to a logical 1.

The code then calls the delay () function with an argument of 1000. The delay
function tells the microcontroller to wait for a specified number of milliseconds
before proceeding to the next instruction. In this case, it tells the microcontroller
to wait for 1 second before proceeding. So, the program turns on a pin and then
waits for 1 second. The rest of the code is similar; a digitalWrite is performed,
this time setting the pin to a logical 0 (LOW), and then waits for another second.

For those of you used to developing applications in C, you might have noticed
that the Arduino code does not have a main () function. In C, the main () func-
tion is used as an entry point; that is to say, it is the function that is called when
the program starts. This is true for systems programming, where an operating
system takes care of initializing everything required by the program, but this
is not the case on embedded systems.

The Arduino requires that two functions be present; setup () and loop (). These
two functions must be present, even if they are empty, but they rarely will be.

The setup () function is called when a sketch starts and is used to initialize
variables, pin modes, and other components for your sketch. It is good practice
to keep initialization code away from the work code, making things clearer. It
also has the advantage of making your program more robust. Although it is
perfectly possible to set up a pin as required just before performing an action,
it is best to have everything completely set up before starting your program.
Looking into the setup () function can tell you immediately if you have cor-
rectly set up a pin, instead of looking through long lines of code in the work
section. In this example, setup () contained a command to change the status
of a pin, setting it to output.

36

Part | = Introduction to Arduino

The 100p () function does exactly what its name implies; it loops continu-
ously, as long as power is applied to the Arduino. In the example, 1oop () set
the output of a pin HIGH, waited for 1 second, set the output of the same pin
to LOW, and then waited for another second. After this was done, the function
ran again. This is also the reason why configuration should not be done inside
the 1oop () function; the same code will be run over and over again. If you had
put any configuration here, variables could have been overwritten, and setting
pin configurations might have slowed down the application.

These two functions are required for any sketch, though you are free to add
your own functions as required.

Programming Basics

As said previously, programming is the art of writing something that is read-
able by humans and that can be converted to be understood by computers. The
problem is that computers, despite what people try to tell you, aren’t intelligent
at all. They need to be told exactly what to do, and require exact instructions.
Source code has to be laid out in a precise way.

Variables and Data Types

In your sketches, most of the time you will want to store data and perform some
type of calculation. Counting the number of times a button is pushed, storing
the voltage on an analog pin, or performing a complex mathematical calcula-
tion with vectors: require data to be calculated and stored. This data is saved
in a variable, a memory location that can be changed as required. By declaring
a variable, you are asking the compiler to allocate a specific amount of memory,
depending on the data type.

There are different types of data, and you must first tell the compiler exactly
what sort of data you want to store. If you define a variable as capable of holding
integers, you cannot use the same variable to store floating-point data, or even
a string of text. The different data types are listed in Table 2-1.

Table 2-1: Different Data Types

DATA TYPE CONTENTS

void No data type

boolean True or false

char One character, stored as an ASCIl number (‘A’, ‘B, 'C'...)
unsigned Decimal numbers, from 0 to 255

char

Chapter 2 = Programming for the Arduino

37

DATA TYPE CONTENTS

byte Decimal numbers, from 0 to 255

int Decimal numbers, from -32,768 to 32,767

(Arduino Due, from -2,147,483,648 to 2,147,483,647)

unsigned Decimal numbers, from 0 to 65,535
int
(Arduino Due, from 0 to 4,294,967,295)

word Decimal numbers, from 0 to 65,535

long Decimal numbers, from -2,147,483,648 to 2,147,483,647
unsigned Decimal numbers, from 0 to 4,294,967,295

long

short Decimal numbers, -32,768 to 32,767

float Floating point numbers, from -3.4028235 x 1038 3.4028235 x 1038
double Floating point numbers

string An array of char

String Advanced arrays of char

array A collection of variables

Also noteworthy, the Arduino Due is a relatively new device that uses a
32-bit microcontroller instead of the 8-bit AVR found in other Arduino boards.
Therefore, some of the data types are different to other Arduinos. Integers are
coded to 32-bits, meaning they can handle much larger numbers. Also, the
data type double is coded to 8 bytes on the Arduino Due and 4 bytes on other
Arduinos. Therefore, a double has more precision on an Arduino Due.

When declaring a variable, it is important to first specify the data type and
then the variable name. Optionally, you may assign a value by using the equal
sign. Finally, finish with a semicolon. The following are legal declarations:

long data;
char usertext;
int pin number = 42;

You are free to use just about any variable name, but don’t use names that are
too vague. In the previous example, usertext hints that the variable contains
some text that comes from an external source. The variable pin_number suggests
that this is the pin ID for input or output operations, but data? The definition
is too vast; does it contain text? Numbers? Later in your sketch, you might start
wondering what this variable contains, and you might even confuse it with
another variable with unpredictable results.

Data types work on variables but also on functions. This is described later
in the “Functions” section.

38

Part | = Introduction to Arduino

Control Structures

The power of microprocessors and microcontrollers is their ability to process
data. They follow instructions, and can also execute conditional instruction
depending on data. Does the variable contain a number greater or equal than
427 If so, execute this portion of code. Otherwise, execute another portion. These
instructions come in the form of conditional statements like if, for, and while.

if Statement

The if statement is the simplest of branching statements and is used to detect
if an expression is equal to a result. It is used as follows:

if (expression)

{
}

statement;

Multiple instructions can be used inside an if statement, by placing multiple
instructions inside curly brackets:

if (expression)

{

statement;
another statement;

}

It is also possible to execute two sets of instructions using an if .. else state-
ment. You can think of it as doing one thing i f the result is equal to something,
else performs another action.

if (expression)

{
}

else

{

do_this;

do_that;

}

It is also possible to mix several ifs using else:

if (expression)

{

do_this;

}

else if (expression)

{

do_that;

}

Chapter 2 = Programming for the Arduino

39

The expression is used to check the veracity of a statement. For example,
you can check to see if a variable is equal to a certain value, less than a value,
greater than a value, and so on. It is also possible to detect other value types;
for example, if a boolean value is true or false.

int myval = 42;
if (myval == 42){

run_this; // myval equals 42; this function will be executed
}else({

run_that; //This one will not

if (myval < 50){
run_another function; //This will be run, since 42 is less than 50

}

Note that in this example, the myval variable is set to the value 42 with a
single equals sign (=), but the value is evaluated with a double equals (==). In
C, a single equal sign always sets the value of a variable (or at least tries to).
Two equal signs makes an evaluation. Watch out when writing if structures;
a single equal sign will force a value into a variable, and the results might not
be quite what you expect!

switch Case

The if statement is easy to use and works well in situations in which you need
to check a variable against one value, possibly two. What would happen if you
need to check against multiple variables? What about a robot that needs to
detect how close an obstacle is? In this case, you might use an if statement; if
the obstacle is less than 3 inches away, then stop the motors. Some situations
are not as simple. Imagine a keypad connected to an Arduino with some stick-
ers on the keypad detailing instructions for the user. If the user presses button
one, then the Arduino will turn on the lights. If the user presses button two,
then the blinds open. If the user presses button three, some music turns on,
and so on. With if statements, this would rapidly get out of hand and would
be difficult to read:

if (button == 1) {
turn_on_ lights() ;

if (button == 2){
if (blinds_up == false) {
raise blinds() ;
blinds up = true;

}

if (button == 3)

40

Part | = Introduction to Arduino

A more elegant way of writing this is through the switch/case statement.
Just like the if statement, switch/case controls the flow of the program by
allowing different sections to be executed depending on a condition. A switch
statement checks the value of a variable, and executes different case statements
depending on the value.

switch (button)

{

case 1:
turn_on_ lights();
break;

case 2:
if (blinds up == false)

{
raise blinds () ;

blinds_up = true;

}

break;
case 3:

Notice the break instruction; it is typically used at the end of each case and
tells the compiler to stop running instructions. Without the break statement, the
Arduino would continue to execute the case instructions, even when another
case should be used. This can actually be used to your advantage. Imagine that
in this application, pushing buttons 4, ¢, and s actually do the same thing. You
can write the following:

switch (button)

{

case 4:

case 6:

case 8:
//code to be run
break;

while Loop

The while loop is the most basic loop in C; it will loop over the same code while
a condition is satisfied. As long as the condition is true, while continues to
execute the same code, checking the condition at the end of the loop.

while (button == false)

{

button = check status(pin4);

}

Chapter 2 = Programming for the Arduino

M

In this example, the function check_status runs until it returns true. When
that happens, the variable but ton becomes true, and the while loop will be bro-
ken. It might be within a few milliseconds, or the system might wait indefinitely.

for Loop

In cases in which you need a portion of code to loop an exact number of times,
the for loop is used. It is similar to while, only it is written differently. The for
loop keeps track of the number of times it has run.

for (expressionl; expression2; expression3)

instructions;
instructions;

}

This might look complicated, but don’t worry; it is simple. It requires three
expressions:

m expressionl is the initializer; it will initialize a variable.

m expression2 is the conditional expression; as long as this condition is
true, the loop keeps on executing.

m expression3 is the modifier; when a loop is completed, this action is
performed.

For example:

for (int i = 0; 1 < 10; i++)
{

myfunc (i) ;

}

In this example, a variable is defined with the name i. The variable is set to
zero, and each time the function myfunc is run, i is increased by one. Finally,
when i reaches 10, the loop stops before running myfunc. This saves you from
writing out all the commands one by one like this:

myfunc (0) ;
myfunc (1) ;

myfunc (8) ;
myfunc (9) ;

\[o Al The name i is often used for a temporary variable in for () loops. Itis short-
hand for “index.”

42

Part | = Introduction to Arduino

Functions

A function is a portion of code that can be called, with parameters if required,
and returns data if required. If you write a long list of repeating statements in
code, or if you have created code that needs to be called several times, it may
be useful to create a function.

The main program is running and then calls a function, called addTwo (),
with two parameters: 12 and 30. The function is run and data is returned. The
program then returns to where it was.

A function requires a data type, even if it does not return any data. If no data
is to be returned, then the data type void must be used. The contents of the
function are contained within curly brackets. In the addTwo () function shown
above, it returned an int datatype, indicated when it was first declared.

Libraries

The Arduino programming environment comes with a standard library, a
library of functions that are included in every sketch. However, the Arduino is
also an embedded system, so the standard library contains the strict minimum.
By default, it can handle basic mathematical operations, and set pins to digital
or analog input and output, but it cannot write data to an SD card, connect
to WiFi, or use a TFT screen. These devices that are not standard on Arduino
boards. Of course, an Arduino can use these devices when they are available,
but to use these devices, a library for the specific device must be imported into a
sketch. Otherwise, there is no point in having the extra functionality that could
potentially take up space on a device where space is critical.

Adding a library to your sketch adds more functionality and allows you, the
programmer, to use new functions. For example, by importing the EEPROM
library, you can access the internal EEPROM by using two new functions: read ()
and write (). The standard library will be presented in Chapter 4, and different
libraries are presented throughout the book.

(AP R AR A4 Chapter 6 explains EEPROM technology and the EEPROM

library.

Summary

This chapter showed you how to create your first Arduino sketch and walked you
through it step by step. Arduino has developed all the tools required for you to get
started programming, and they are delivered in a simple package that contains
everything you need, from writing your programs to flashing the final binary file.

Chapter 2 = Programming for the Arduino

43

An Arduino program is known as a sketch, which is like a work of art. You,
the artist, gather and assemble elements to create your masterpiece, and the
Arduino is your canvas.

In Chapter 3, you will see some of the most common electronic components,
and how to choose their values. Each will be presented, and I will explain how
to use them in your sketches.

Electronics Basics

You can have a lot of fun with an Arduino, but without some electronics, you
won't get far. Without adding a single electronic component, you could program
an Arduino Robot to run around racetracks, or program a games controller
with an Arduino Esplora, but how about an Arduino Uno? Of course, you can
add shields to add some functionality, but the real fun comes when you add
your own electronics. This chapter shows you how to add your own electronics
components onto an Arduino. No, don’t run away! It is easy, I promise.

Electronics is often shrouded in mystery, conjuring images of highly complex
and advanced components requiring weeks of calculating, just to choose the
right one. Although some components are indeed incredibly advanced, and
although some electronic circuits do indeed require weeks of work, this tends
to be true in advanced fields, not basic electronics. At the end of this chapter,
you will understand some basic electronic components, and you will be able to
create your own electronic circuit.

Electronics is fun, but should be taken seriously. In this chapter, you will see
a few warnings for particular components. Some components can’t handle high
voltage; others may be damaged or destroyed if handled incorrectly. Throughout
this book, there are numerous electronic examples, but none of them use high
voltage, AC voltage, or any other dangerous factors. Still, be careful! You will
not hurt yourself with the 5 volts used in the examples, but a short circuit will
damage any components in the circuit.

45

46

Part | = Introduction to Arduino

Electronics 101

Everyone is exposed to electronics in one way or another. You can find elec-
tronics inside your television, your computer, your washing machine, and just
about any device in your house. The electronic boards inside a television are
miniaturized, and look extremely complicated, but every electronic design fol-
lows simple laws of physics.

Electricity is the flow of electrons through a conductor. A conductor enables
the flow of electricity, and an insulator does not. A resistor restricts the flow of
electrical energy.

So, how do electronics relate to electricity? Electronics involve the use of
components to manipulate electricity. This manipulation can be used to pro-
cess information and build logical systems, among other things. For example,
your home computer is filled with electronic components. It processes things
like input from the keyboard, and by manipulating electricity it renders the
characters you type on screen. When discussing circuits, it’s good to keep in
mind that there are two different types of supplying power. Alternating cur-
rent (AC) is the type of electricity that comes from a wall socket. It’s good for
traveling over long distances (like from the power station to your home). In an
AC circuit, the direction of electricity switches back and forth rapidly (60 times
a second in North America, 50 times a second in most of the rest of the world)
Direct current (DC) is the type of electricity for circuits you'll be building in the
examples in this book. It’s best suited for small electrical components like the
ones you'll be using. In a DC circuit, electricity flows in one direction. In most
devices in your home, like your personal computer or television, AC from the
wall is converted to DC for use by the device.

Voltage, Amperage, and Resistance

Electrons are charged particles that naturally move from a location of higher
potential energy to a location of lower potential energy. As the electrons move
through a circuit, they can be harnessed to activate electronic devices to do
work. Light bulbs, your television set, your coffee machine—all these devices
function by harnessing the movement of electrons.

N[Ol lA Acircuitis a closed loop that has a power supply and something to use the
power (called a load). A power supply connected to itself without a load is called a
short circuit, which can cause wires to melt or power supplies to catch fire.

When describing electricity, three measurements are used: voltage, amper-
age, and resistance.

Chapter 3 = Electronics Basics

47

m Voltage is the difference in electronic charge between two points.
m Amperage is the rate at which electrons flow past a point in a circuit.

m Resistance is the amount a component resists the flow of electrical energy.

Voltage

Voltage is defined as the amount of potential energy between two points in a
circuit. In all circuits, the direction of the flow of electrons is determined by a
location with higher potential electronic energy, and a point with lower potential
energy. All available voltage will be used in a circuit.

It is possible to increase the amount of voltage in a circuit by placing power
sources in series. For example, one AA battery typically has 1.5 volts of potential
energy between the two ends. To have a potential energy of three volts, you can
place two AA batteries end to end (so the “+” end of one touches the “-” end of
the other). In this way, you would add the voltage of both batteries to create a
power supply of three volts.

All electrical devices, have a voltage rating. The voltage rating describes the
ideal voltage for that device. It also describes the type of circuit it is designed to
be used with. In most cases, all the AC power sockets in your house provide the
same voltage. Appliances and devices that are designed to plug into the wall are
all rated for this sort of voltage. The power supply for the device will typically
step-down the AC voltage to a DC voltage that is appropriate for the device. For
example, my DVD player plugs into the wall, but the components inside run on
12 V DC. However, if you bought a device in the United States, flew across the
Atlantic and tried to plug it into a socket in the United Kingdom, you may have
an unpleasant surprise. Household electricity in the United States is 110V AC,
and in Europe it is approximately 230V AC, depending on the country. Because
all available voltage is used in a circuit, a device that is rated for 110 V will be
overloaded trying to use the excess voltage in a 230 V socket and be damaged
as a result. Some devices (like many laptop chargers) can automatically adapt
between voltages, but many electronic devices cannot.

The Atmel ATmega328 microcontroller, found on the Arduino Uno, is an elec-
tronic device that can function between 1.8 V DC and 5.5 V DC. This describes
the component’s tolerance; it can function with a voltage between the two values.
Typically, most devices connected to an Arduino won't work with voltages at
the lower end of the range. To simplify design, the Arduino Uno has a voltage
regulator: a device that accepts a wide range of input voltage from a power
supply and provides a steady output voltage. In the case of the Arduino Uno,
the input voltage can range between 6 V DC and 20 V DV and supplies a steady
5V DC to the ATmega328 and any external components. Five volts is a common
voltage for hobbyist electronics and some professional electronics. Some sensors

48

Part | = Introduction to Arduino

and components use 3.3 V DC for power. The Uno has a separate regulator to
power devices that require this voltage.

Providing too much or too little voltage to a component may damage it or
destroy it.

Amperage

Amperage describes the amount of current in a circuit, which is the rate at which
electric charge flows past a point in a circuit. It is measured in Amperes, or
Amps. You'll be using components that use fractions of an amp in the projects
in this book. It's common to use the analogy of water flowing through a pipe
to illustrate the concept of electricity in a circuit. In this analogy, if voltage is
the pressure forcing water through the pipe, amperage would be the amount
of water flowing past a specific point in the pipe. The faster the water, the more
current. Contrary to voltage, with amperage it is better to provide more than
is required by the system because the system uses only the amount it needs.
To illustrate how current is used, imagine a simple circuit with a battery and
alamp. The lamp is the load in the circuit, and the battery is the power supply.
The lamp runs off of 5 V DC and 20 milliamps (0.02 amps). The battery can
supply up to one amp of current at 5V DC. All the voltage will be used up, but
the lamp will only use the amount of current it needs to turn on. Unlike extra
voltage in a circuit, surplus amperage doesn’t get used. If too little amperage is
available, components will not work as expected: lights will dim, microcontrollers
will reset, and all sorts of problems can result. Typically it’s a good idea to use a
power supply that provides at least two times the amperage your circuit needs.

Resistance

Resistance describes the ability for something to resist the flow of electrical
energy. Materials with very high resistance are often used as insulators, like
rubber and plastics. It’s often necessary to regulate the flow of electrical energy
through a circuit by increasing or decreasing resistance. For example, most
LEDs used as indicators in hobbyist projects use less than the 5 V DC that the
Arduino supplies. Placing a resistive element in series with the Arduino and
the LED will decrease the voltage so the LED will function properly.

The practical unit of resistance is called the Ohm and is represented by the
Greek letter omega (()). A resistance of 1 ohm is considered to be extremely weak,
while a resistance of 1 million ohms is considered to be an effective insulator.
Even if it’s not stated in the documentation, all components have some resistance,
even wires for carrying electricity.

Chapter 3 = Electronics Basics

49

Ohm’s Law

One of the most frequently used formulas in electronics is Ohm’s law, which
states that the current that flows through a conductor between two points
is directly proportional to the potential difference between the two points.
Figure 3-1 depicts Ohm’s Law.

|
—>
o———

-1 1 DR

o—
Figure 3-1: Ohm’s Law

In this Ohm’s Law formula, I is the flow of current, V is the potential differ-
ence, and R is the resistance of the conductor in ohms. For example, imagine a
50 Q resistor placed on the ends of a 1.5 V AA battery. In this case, the formula
would appear as shown in Figure 3-2.

|
—> Izl
R
1.5V 500 |15
50
é | = 30 mA

Figure 3-2: Ohm'’s Law example

I is unknown. However, both V and R are known, so I can be calculated. V
is the voltage of the battery (1.5 volts) and R is the resistive value of the resis-
tor (50). Knowing these two values, you can now calculate the current flowing
inside the resistor—0.03 amps, or 30 milliamps.

The Basic Components

Looking at a circuit board, you might be afraid of all the different components
on the board, all the different types.... How can you possibly understand all
that? In truth, there are relatively few electronic components, and most are

50

Part | = Introduction to Arduino

extremely simple to understand. There are a few complicated components, but
they are rarely used and are mostly used in specific situations. The examples
used in this book use only common components, ones that are readily available
at most electronics shops, and their use is explained here.

Resistors

Resistors are electronic components designed to restrict the flow of electrical
energy. There are different resistor values associated with varying resistors.

Different Resistor Values

Manufacturers cannot make every value of resistor possible, instead there is a
standard range of values. The Electronic Industries Association (EIA) standard
resistor values dictate the values of most resistors. Resistors use the follow-
ing numbers: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82, in any power of 10.
For example, you can easily find a 10 Q) resistor, or a 220 () resistor, or even a
4.7 kQ resistor, but you will have great difficulty finding a 920 () resistor; the
closest you will easily find is 820 (or 1000 Q). How would it be possible to obtain
a resistor with a value of 920 ()? Putting resistors in series, that is to say one after
the other, adds their values, so an 820 Q) resistor with a 100 Q resistor combined
is the same as a 920 () resistor, as illustrated in Figure 3-3. Examples in this book
do not use resistors in series, instead standard values will be used. Resistors have
various tolerances, typically deviating from 5% to 10% from their stated value.

o
R
- |:|R=R1+R2
R
o |

Figure 3-3: Resistors in series

Putting resistors in parallel, that is to say one next to the other, has a differ-
ent effect on the value of the total resistance, as shown in Figure 3-4. Again,
this configuration will not be used in the examples in this book and is here for
reference only.

Identifying Resistor Values

Resistors come in several shapes and sizes, but the ones that you will want to
use for your examples are quite common, and can be identified as % watt. This

Chapter 3 = Electronics Basics

51

type of resistor has long legs to fit easily into a breadboard for rapid prototyping
of circuits. Other kinds of resistors include surface-mounted resistors, available
if you need to save space and are working on a printed circuit board, but they
can be difficult to solder. The most common resistors look like the component
shown in Figure 3-5.

o o——
Ry xR
= R=_12"72
|::| |::| |::| Ri+ Ry
Ri | R
o o——

Figure 3-4: Resistors in parallel

Resistor
4
Vi
LED

Figure 3-5: A common axial 10% tolerance resistor

Note the bands of color on the resistor; resistors are too small to put any
readable text on and are color-coded to indicate their value. Typically, you'll
find resistors with 4 stripes on them, though versions with 5 or 6 bands exist
as well. Table 3-1 lists the color code.

Table 3-1: Resistor Color Code

COLOR DIGIT 1 DIGIT 2 MULTIPLIER TOLERANCE
Black 0 0 x 10°
Brown 1 1 x 10
Red 2 2 x 102
Orange 3 3 x 103
Yellow 4 4 x 10*
Green 5 5 x 10°
Blue 6 6 x 108

Continues

52

Part | = Introduction to Arduino

Table 3-1 (continued)

COLOR DIGIT 1 DIGIT 2 MULTIPLIER TOLERANCE
Violet 7 7 x 107

Gray 8 8 x 108

White 9 9 x 10°

Gold +5%

Silver +10%

The first two bands indicate the value in ohms, the third band is a multiplier
for scaling, and the fourth indicates how far the actual value may deviate from
the stated value. A resistor with red, violet, orange, and gold stripes has a value
of 2.7 KQ; 2, 7 10°, and 10-percent tolerance. A 100 () resistor is brown, black,
brown, and silver; 1, 0, 10", 10 percent.

\[ol§3 Color-blind people might be starting to worry here; don’t. Whatever your
color vision problems, | can assure you, you will be able to identify resistor values. |
have acute achromatopsia, meaning that | see more or less in black and white. All col-
ors are difficult for me to see. This was a problem during my studies, where teachers
didn’t know how to react, but today, this is never a problem for me. A simple ohmme-
ter or multimeter can quickly tell you the value of a resistor.

Using Resistors

The current and voltage can be regulated in an electronic circuit by resistors.
Imagine an electronic circuit powered by a 5 V DC power supply. You want
to add a Light Emitting Diode (LED) to show that the circuit is powered, in
this case a red LED. This LED has a voltage drop of 1.7 V. A voltage drop means
that the voltage of the circuit will be reduced by that amount. Therefore, if you
were to place an LED directly between the +5 V and 0 V it would be damaged
(remember, all voltage gets used up in a circuit). There must be a component to
reduce the voltage across the LED, a resistor is the ideal candidate. The schematic
of this circuit is shown in Figure 3-6.

Because you want 1.7 V across the LED, and because the circuit is powered
by 5 volts, that means there should be a voltage drop of 3.3 volts across the
resistor. Also, the LED is rated for 20 milliamps of current, but for this project
15 milliamps should be enough. Therefore, to have 15 milliamps flow through
the LED, you will have to use a 220 Q) resistor. Another example is shown at the
end of this chapter.

Chapter 3 = Electronics Basics

53

Figure 3-6: A resistor used to power an LED

Capacitors

Where resistors are designed to resist electric current, capacitors are designed
to store small amounts of electric energy.

Capacitors are composed of two parallel sheets of conductor separated by a
thin nonconductor, which could be made from a number of materials, such as
paper, mica, ceramic, plastic, and sometimes even air. When connected to electric
potential, electrons are attracted into the capacitor and released when the outside
voltage drops. A capacitor is, essentially, a small (and weak) rechargeable battery.

Capacitors come in many shapes and sizes and can be some of the smallest
components available to the biggest, capable of dwarfing entire battery packs.
Have you ever taken apart an electronic device and seen large, cylindrical com-
ponents, normally in blue or black plastic? Chances are those are electrolytic
capacitors, and you probably have not seen the biggest available.

m Some capacitors can be connected any way in a circuit; others must
be placed in a certain way. Electrolytic capacitors especially have a polarity, and this
must be respected. Failure to correctly polarize electrolytic capacitors can result in
catastrophic failure; the component will leak or explode, potentially damaging the
rest of your circuit. Don’t try this at home!

54

Part | = Introduction to Arduino

The unit of capacitance is the farad (F). Most capacitors are in the microfarad
range, but they can be as small as 1 picofarad (107? F) and as large as 10* F in
supercapacitors.

Using Capacitors

If capacitors can store energy, how can this be used? First, capacitors can be
used to regulate power lines, helping to filter out slight drops in power. Power
lines are thought to be stable, but this is not always the case. Especially in motor
systems, the power levels in power lines can vary. When motors start, they draw
a lot of current, making the voltage temporarily drop. Adding capacitors onto
the power supply helps filter out those drops and stabilizes the power for other
components. These are described as decoupling capacitors.

m Some capacitors can hold a large charge, and that charge is still there
when you remove the power. Be careful when using these devices. Examples in this

book are limited to 12V, which do not pose a threat, but larger devices like computer
monitors and televisions can contain capacitors that store massive amounts of energy.
Be careful!

One other use for capacitors, and one that is the most used on homemade
electronics, is to help with one of the most basic components: buttons. A but-
ton is a simple mechanical device that will either make an electrical contact
or break it. The problem is that these devices are not perfect, and pushing a
button to make a contact often results in “bounces,” or unwanted spikes, when
the metal inside the switch bounces on the contacts. By using a capacitor, the
bounces can be filtered out.

Diodes

A diode is a small component that allows electricity to flow in only one direc-
tion. A perfect diode would not have any voltage drop and would not allow
any electricity to flow in the opposite direction, but we don't live in a perfect
world. Diodes do in fact have a voltage drop depending on the type of diode
you use. A silicon diode like the 1N4148 have a voltage drop of approximately
0.65 V. Germanium diodes have a voltage drop of about 0.3 V.

Also, diodes have something called a breakdown voltage, the reverse voltage at
which a diode conducts in reverse and most often breaks the component. The
1N4148 has a breakdown voltage of at least 100 volts, something that you will
not encounter in the examples in this book, but it is useful to know.

Different Types of Diodes

There are many types of diodes. This book presents only the most common
diode. Other types of diodes exist; Zener diodes have a specific breakdown

Chapter 3 = Electronics Basics

55

voltage, and the breakdown state does not destroy the component. Schottky
diodes have a low forward voltage drop. Tunnel diodes are extremely interest-
ing because they use quantum tunneling and are used for advanced circuits.

There are also many other common diodes, ones that could deserve their
own section. Laser diodes are special types of diodes that create laser lights;
you can find these components in consumer electronics like CD players and Blu-
ray recorders. Light-emitting diodes (LEDs) work in the same way, producing
visible and nonvisible light and are presented in the next section.

Using Diodes

Diodes are used primarily to protect circuits either by avoiding a reverse-voltage
or avoiding voltage spikes.

Electric motors can use large amounts of energy to make the motor spin.
When there is an interruption of current flow inside the component motor, this
can lead to a sharp rise in voltage across the device circuit. If the voltage drawn
is beyond what the circuit is designed to handle, it may damage or destroy it.

Light-Emitting Diodes

Light-emitting diodes are exactly what their name implies; diodes, electronic
components that let current flow in one direction only and that emit light. LEDs
are used as indicators in home electronics, and have started to replace tradi-
tional incandescent light bulbs in home and industrial lighting. They are far
more robust than light bulbs; they use less energy and exist in many different
colors, shapes, and sizes.

Most LEDs emit a single-color with typical colors being red, orange, green,
blue, and white. Dual-color LEDs also exist that can be either one of two colors
or a mix between two colors, and finally, RGB LEDs exist that can take on almost
any color by varying the red, green, and blue components.

LEDs also exist that emit nonvisible light: ultra-violet and infrared. Laser
diodes are special types of light-emitting diodes, capable of creating laser light
in various wavelengths and powers.

Using LEDs

Using LEDs is remarkably similar to their parent family: diodes. However, the
difference is in their power consumption. Care must be taken not to supply too
much current to an LED; otherwise it is possible to damage or even destroy the
component.

LEDs have a larger voltage drop than their diode counterparts. Most common
red LEDs have a voltage drop between 1.8 V-2 'V, yellow LEDs 2.0 V, green LEDs
2.2V, and blue LEDs can have up to a 3.4 V voltage drop. Typical maximum cur-
rent for LEDs is around 20 mA for all LEDs, though blue versions can draw 30

56

Part | = Introduction to Arduino

mA. Your electronics distributor will have more information about the specific
model you are using, so consult their documentation.

Transistors

Transistors are largely responsible for the proliferation of digital technologies, as
well as many of the advances in computing power and size. A transistor is like
a tiny switch but is solid state, meaning that there are no moving parts to wear
out and can turn on and off much faster than any mechanical device. There are
several sorts of transistors, but this tutorial talks only about the most common
type in hobbyist electronics: the bipolar transistor.

Using Transistors

Although there are dozens of uses for transistors, examples in this book cover
only one possible use: a switch.

Imagine an Arduino system powered by 5 volts. This system is designed to
turn on and off an electric motor, one that needs to be powered by a 12-volt
power supply. The motor also requires more current than the Arduino can sup-
ply. How can the Arduino possibly power a 12-volt motor using only a 5-volt
output? The answer is, of course, by using a transistor as a switch.

A bipolar transistor has three leads. The Collector is connected to the positive
side of the circuit, and the Emitter is connected to the negative side of the circuit,
or the ground. Electrons will flow from the Collector to the Emitter, depending
on the voltage at the Base. By supplying a relatively low voltage to the transistor’s
base, current can flow through the transistor into the collector and out of the
emitter. In short, the transistor conducts current through the collector-emitter
path only when a voltage is applied to the base. When no base voltage is present,
the switch is off. When base voltage is present, the switch is on.

Breadboards

Electronics is fun; there is a joy in assembling components to do a required task;
and it is hugely satisfying. When finished, some electronics are akin to digital
art, in their function and in their implementation. Some circuit boards are a work
of art in their own right, because of placing LEDs at strategic places, and cutting
out the board to be the right shape. Have a closer look at your Arduino; notice
the pictures printed onto the board, the picture of Italy, and imagine the time
that was taken to make this board its current shape. It did take a lot of time, but
that is also what frightens some people; do you really have to make one of these
boards every time you make a design? Printed circuit boards like the Arduino
and shields can either be made at home using some specialized equipment and

Chapter 3 = Electronics Basics

57

chemicals, or fabricated professionally. Luckily, when prototyping, you don't
need to do all that; there is a much simpler alternative: the breadboard.

Use of the term breadboard in this discussion may surprise you; normally it
is a flat, wooden board designed to cut bread (or other foods). In the early days
of amateur radio, amateurs would nail bare copper wire onto a wooden board
(more often than not a breadboard which was readily available), and solder
components onto the wires. Because components were much bigger in those
days, some components (tubes especially) could actually be screwed onto the
breadboard. Amateurs had created an easy prototyping device from an item
readily available at any supermarket.

Modern breadboards are sometimes called solderless breadboards, implying that
they can be reused. They exist in all sizes, from the smallest boards, designed
to hold a single component, all the way to huge prototyping boards, designed
to include an entire single board computer. Breadboards are normally classed
by their number of connection points, the number of holes on the board that can
accept wires and components.

Typical breadboards have two areas called strips. The terminal strip is the
main part of any breadboard and is designed to hold components and wires.
There is normally a notch in the middle, marking a separation between con-
nectors, but it is also designed to allow air to flow beneath components helping
them cool down.

The terminal strip is normally numbered: numbers horizontally and letters
vertically. What is important to know is that a single number is connected to all
the letters; A0, BO, CO, DO, and EQ are all connected electronically. A component
pin placed in EO connects to a wire connected to A0 but does not connect to a
wire placed in Al.

The bus strip is located along the side of the terminal, and serves as a power
rail. Normally, two rows are available: one for the supply voltage and one for
the ground.

The holes are not placed at random; their spacing is exactly 0.17, or 2.54 mm,
accommodating many electronic components, and all Dual In-Line Package
(DIP) chips. Most of the AVR chips exist in DIP format, making it possible to
build an Arduino directly on a breadboard.

Inputs and Outputs

The Arduino’s digital pins can be configured to be inputs or outputs to either
write information or to read it.

There are two types of inputs on Arduino boards, digital and analog. On
the digital pins, the Arduino “reads” either a logical zero (0 volts), or a logical 1
(equivalent to the power supply of the Arduino itself). Most Arduinos are pow-
ered by 5 volts, but a few are powered by 3.3 volts. If using a 3.3 voltboard like
the Due, don’t put 5 V on an input pin; you could damage the microcontroller.

58

Part | = Introduction to Arduino

Note that in digital mode, there is a reasonable amount of tolerance; an input
of up to 2 volts is still considered to be a logical zero.

On the analog pins, things are different. An analog signal has an infinite
number of steps between zero volts and the power supply of the Arduino. In
practice, it is not possible to sample an infinite amount of values, and the Arduino
uses something called an Analog Digital Converter (ADC) to change the analog
signal to a discrete number of steps. The Arduino’s ADC has a resolution of 10-bits,
which means there are 1,024 values that can be recognized on an analog input.

Connecting a Light-Emitting Diode

In this chapter, you have learned about basic electronic components, so now put
that to the test. In this example, you control an LED placed on a breadboard,
connected to an Arduino. The Arduino will be programmed to fade the LED.
In this example, I will use an Arduino Uno and also a blue LED. Check the
information about the LED you're using to determine the voltage and current
requirements. The LED I'm using has a forward voltage of 3.4 V and pulls
30 mA of current.

Calculation

LEDs must be used with resistors, so the first thing that has to be done is to
calculate the resistor that will be used. The Arduino Uno outputs 5 V DV, and
the LED has a forward voltage of 3.4 volts; therefore, the resistor will have a
potential difference of 1.6 volts. It will also let 30 mA of current pass. Because
we know the amperage and voltage of the circuit, we can figure out the neces-
sary resistance. My calculation is shown in Figure 3-7.

R=Y
|
R= 16
0.020
R=80Q

Figure 3-7: Calculating the resistor

Even though the LED is rated at an absolute maximum of 30 mA, you should
try and aim for less than 30 mA of current. A safe bet would be to let 20 mA of
current through the LED; that still makes it nice and bright and will not dam-
age the component. For the time being, let’s assume you want to let 30 mA of

Chapter 3 = Electronics Basics

59

current pass through the LED, in which case the circuit would require a 53 ()
resistor. This is not a standard resistor value. The closest standard resistor value
below 53 ohms is 47 ohms. If you do the math, you'll see that a 47-ohm resistor
would allow 34 mA of current through the LED, above its rated tolerance. If
you re-do the calculations aiming for 20 mA, the new result is 80). The closest
standard value is 82 (), which is close to the target. Therefore, for this example,
the schematic will use an 82 () resistor.

Software

It’s time to code the application. This sketch illustrates a common beginner’s
task with the Arduino, fading an LED. Listing 3-1 presents the source code.

Listing 3-1: Fade

int led = 9; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many steps to fade the LED each loop

// the setup routine runs once when you press reset or power the board:
void setup() {

// declare pin 9 to be an output:

pinMode (led, OUTPUT) ;

}

// the loop routine runs over and over again forever:
void loop() {

// set the brightness of pin 9:

analogWrite (led, brightness) ;

// change the brightness for next time through the loop:
brightness = brightness + fadeAmount;

// reverse the direction of the fading when the LED is fully bright
// or fully off
if (brightness == 0 || brightness == 255) {

fadeAmount = -fadeAmount ;

}

// wait for 30 milliseconds to see the dimming effect
delay (30) ;

The 1ed variable is the pin the LED is connected to. You're using pin 9 because
it is one of the PWM pins. That is, it is one of the pins you can call analogurite ()
on. In the setup () function, the pin is set to become an output. Then, the 1o0op ()
function adds the value stored in fadeAmount to the variable brightness, looks to
see if the value should be inverted, and then waits for 30 milliseconds. Because
this function is looped, it constantly updates the output pin value, ranging from

60

Part | = Introduction to Arduino

0 to 255, before returning back to zero. This will have the effect of starting with
the LED completely off and then slowly increasing brightness to full before
fading back to off.

Hardware

The code is done; the next thing to do is to actually create the circuit. This is
only a prototype, so you will be using a breadboard. It is one of the simplest
circuits you can build: two wires, one resistor, and one LED. The LED will be
powered by the Arduino board.

First things first—the breadboard view. My view is shown in Figure 3-8.

...
ooo

Made with [} Fritzing.org

Figure 3-8: LED output (Image made with Fritzing)

After you re-create this circuit, you are now ready to upload your sketch
to the Arduino, wait a few seconds, and look at an LED fading beautifully.
Congratulations; you have just created your first hardware design! You now
know how to create a sketch, and you know how to create an electronic circuit.
The following chapters explain the different libraries in detail with example
sketches and circuits to help you along your way.

Chapter 3 = Electronics Basics

61

What Now?

Now, it is all up to you. You might want to make this a permanent application
in your house. Breadboards are good for prototyping, but a more permanent
solution would require either creating a printed circuit board or maybe even
an Arduino shield. A printed circuit board could be placed anywhere, and
with enough wires, could even be placed far from the Arduino. You could put
this outside in the garden as a night light, for example. Shields require being
connected to the Arduino and therefore are not as easy to place outside. With a
shield and an enclosure, you could make a night-light for a young child or even
add a decoration in the living room. It is easy to add a few additional LEDs to
this design to light up a cupboard or to illuminate a decoration. You can even
make a small holiday display or welcome sign.

Summary

Welcome to the amazing world of Arduino! This chapter has given you a brief
overview of electronics, enough to get you started with the projects contained
in this book.

The following chapters explain some of the libraries that can be added to
projects to give you an insight to what can be done. In Chapter 4 you will be
using the standard library, which has the basic building blocks that you will see
and use in every sketch. I will go through the different functions and explain
how each one works.

In This Part

Chapter 4: The Arduino Language
Chapter 5: Serial Communication
Chapter 6: EEPROM

Chapter 7: SPI

Chapter 8: Wire

Chapter 9: Ethernet

Chapter 10: WiFi

Chapter 11: LiquidCrystal
Chapter 12: SD

Chapter 13: TFT

Chapter 14: Servo

Chapter 15: Stepper

Chapter 16: Firmata

Chapter 17: GSM

The Arduino Language

Functionality can be added to Arduino programs using libraries, but every
Arduino project invariably starts with one library; the Arduino Language. The
Arduino Language contains everything required for basic programs, allowing
access to input and output pins, mathematical functions, and control structures.
This chapter lists those functions and gives an explanation of each one. You can
also consult the Arduino reference page at http://arduino.cc/en/Reference/.

I/0 Functions

An Arduino is a powerful system, but its power comes from interacting with the
real world. To do this, the Arduino must use Input and Output, shortened to I/O.
Pins can be defined as either being an input or output; it is up to you to decide.

Digital I/0

Digital I/O is defined as using a digital signal to communicate; a logical 1 or
logical 0. In Arduino, 1 is defined as having a “high” voltage; normally at or
close to the system voltage. 0 is defined as having a “low” voltage, typically 0.
A system powered by 5 volts will usually have 5 volts for a logical 1 and 0 volt
for a logical 0. A system powered by 3.3 V will usually have 3.3 V and 0.

65

http://arduino.cc/en/Reference

66

Part Il = Standard Libraries

Examples of digital inputs are switches, like push buttons or contact switches.
They are either on or off; there are no values in between.

pinMode()

Before using a pin as a digital input or output, you must first configure the pin,
which is done with pinMode (). pinMode () uses two parameters: pin and mode.

pinMode (pin, mode)

The pin parameter is simply the digital pin number you want to set. The mode
parameter is one of three constants: INPUT, OUTPUT, or INPUT PULLUP. The INPUT
and ouTpUT constants set the pin to be a digital input or output, respectively.
The InPUT_PULLUP constant sets the selected pin to become a digital input but
also connects an internal resistor to keep the input level at a logical one if there
is no input value.

By default, all digital pins are configured as INpUT, but it’s considered best
practice to explicitly declare the pinMode ().

INPUT

Pins configured as INPUT can read voltage applied to them. It takes only a small
amount of current to change an INPUT pin’s state. The drawback to this is that
pins configured as INPUT with nothing connected to them are more likely to
change state due to electronic interference like static discharges. It is useful to
use a pull-down resistor (going to ground) when connecting a switch to a pin
configured as 1npUT. Ten kilohm is a good resistor value for this.

INPUT pins are good at reading logical inputs but cannot be used to input,
or sink, any current. For example, you cannot use an INPUT pin to sink current
from an LED.

OUPUT

Pins configured as ouTpuT are capable of delivering power to circuits, up to
40 mA. This is more than enough to power an LED but is not enough to power
motors. Output pins cannot read sensors. Connecting output pins directly to 5
volts or 0 volts can damage the pin.

INPUT_PULLUP

Pins configured as INPUT_PULLUP are configured as output, but with an internal
pull-up resistor connected. On most Arduino boards this internal resistor is at
least 20 kilohms. This has the effect of setting the input value to HIGH if it is
pulled to ground, and LOW if voltage is applied.

digitalRead()

In order to read the state of a digital pin, you must use digitalRead ():

result = digitalRead (pin) ;

Chapter 4 = The Arduino Language

67

The pin parameter is the pin number you want to read from. This function
returns either H1GH or Low, depending on the input.

digitalWrite()

To write the state of a pin that was declared as an ouTpUT, use the digitalwrite ()
function:

digitalWrite (pin, wvalue);

The pin parameter is the pin number you want to write to, and the value is
the logical level you want to write; HIGH or Low.

Analog I/0

Analog is different than digital. Digital signals are one of two states; either true
(a logical one), or false (a logical zero). Digital states are not designed to have
any other value.

Analog is different in that it has a potentially infinite amount of values between
two points. Analog is all around us. A light bulb is normally either on or off,
but consider the sun. At nighttime, there is no light, and in daytime, midday,
on a sunny day with no clouds, you would think that you have the maximum
amount of sunlight. And during sunrise? You can see the amount of sunlight
change visibly within a few minutes. During a cloudy day? There is light but
not as much as during a clear day. This is no longer digital; it isn't on or off. The
sun is analog; there are an infinite amount of possibilities.

Imagine a cruise ship. At the front of most large ships, there is a scale, a water
line. It is used for several reasons, but to simplify, this marker serves to determine
if a ship has been overloaded. Overloaded, a ship is at risk of sinking. The water
line, technically called the Plimsoll Line, is where the water meets the hull. You
can imagine that this line varies between two values: the minimum and the
maximum. For this example, imagine between 20 feet and 40 feet. Right now, the
ship you are watching is loading passengers, excited to sail to the Mediterranean.
Slowly, the Plimsoll line rises: 30 feet, 31 feet, 32 feet.... And it stops at 33 feet.
With a maximum Plimsoll line of 40 feet, this ship is safe to sail, but what is
the exact value? 33 feet? Exactly? Probably not. It might be 33 feet and 1 inch,
or maybe 33 feet and 3/8 of an inch? The point is, it doesn’t matter. Humans
aren’t good with an infinite amount of values, and a docker looking at the ship
will fill in the registry with 33 feet; he won't need absolute precision. It doesn’t
matter if a little bit is lost in the process.

Microcontrollers work in the same way. Microcontrollers are digital, but
many can read analog values, including Arduinos. The device used to read
analog is called an ADC, short for Analog to Digital Converter. The ADC cannot
handle infinite values. It has a resolution. The Arduino divides the range into

68

Part Il = Standard Libraries

different equally sized portions. A 10-bit device can distinguish 2'° different
values—or a total of 1,024 different values. If used on a range between 0 and 5
volts; an input of 0 volts would result in a decimal 0; an input of 5 volts would
give the maximum of 1,023. Something in between, such as 2.5 V would yield
a value of 512. A 10-bit ADC can sense differences of 5 volts divided by the
resolution, or 1,024. This device can therefore have an accuracy of 5 / 1,024, or
roughly 0.005 volts.

analogRead()
To read a value from an analog pin, you call analogread ().

int analogRead (pin)

analogRead () reads the voltage value on a pin and returns the value as an
int. The pin argument denotes the analog pin you want to read from. When
referring to an analog pin, call them as A0, Al, A2,...A6.

This function takes approximately 100 microseconds to perform. In theory,
you could sample a pin up to 10,000 times a second. However, it’s best to let
the ADC “settle” for a few milliseconds between reads for more accurate data
acquisition.

analogWrite()

analogWrite () isused to write an analog output on a digital pin. Wait, analog?
On a digital pin? Well, yes, sort of. It's not a true analog value that’s being written.

Arduinos use something called Pulse-width modulation, PWM for short. PWM
is digital but can be used for some analog devices. It uses a simple technique to
“emulate” an analog output. It relies on two things: a pulse width and a duty
cycle. It is a way of simulating any value within a range by rapidly switching
between 0 volts and 5 volts.

The pulse width (also called a period) is a short duration of time in which the
duty cycle will operate. The duty cycle describes the amount of time that the
output will be at a logical one in the given period. Depending on the Arduino
you're using, the period can range from 490 Hz to 980 Hz. A duty cycle of 50
percent means that during 50 percent of the pulse width, the output will be at
a logical one, and the remaining 50 percent of the pulse width, the duty cycle
will be at a logical 0. A duty cycle of 0 percent means that the output will always
be p, and a duty cycle of 100 percent means that the output will always be 1.

PWM is an excellent method for controlling motors and dimming LEDs; it
worked well in the previous chapter. However, some components do not like
receiving pulses and want a stable output. For example, another Arduino read-
ing an analog input would read in alternating values of 5 V and 0 V instead of
a true analog signal. In this case, adding a capacitor to the circuit will “filter”
the output.

Chapter 4 = The Arduino Language

69

Generating Audio Tones

Although most Arduinos are incapable of playing back advanced audio without
additional electronics, they can play musical notes and tones natively.

Audio, or sound in general, is simply a vibration that propagates as waves of
pressure. To generate sound, speakers and buzzers vibrate at certain frequen-
cies to create sound.

Audio tones generated by Arduinos are variable frequencies, which can range
from just a few Hertz up to 20 kHz, around the limits of human audition.

tone()

tone () is used mainly to generate audio tones on devices like buzzers. Although
designed to generate audible tones, it is not limited to audio. This function
generates a square wave, a signal that alternates instantly between two values,
typically the maximum voltage and zero. It generates signals with a fixed 50
percent duty cycle, from frequencies as low as 31 Hz to 80 kHz (humans can
typically hear up to 20 kHz). tone () accepts unsigned integers as a parameter.

This function requires either two or three parameters, depending on your use.

tone (pin, frequency)
tone (pin, frequency, duration)

The pin parameter is the pin number on which to produce a tone. The fre-
quency parameter is the frequency to generate in hertz, passed as an unsigned
int. Finally, the optional duration parameter is the duration of the tone in mil-
liseconds, passed as an unsigned long. If this parameter is not specified, the
tone will be generated indefinitely, or until the program tells the tone genera-
tion to stop.

noTone()

noTone () stops the square wave generation of tone () on the specified pin. If
no tone is generated, this function has no effect. This function must be called
before generating another tone on the same pin.

Reading Pulses

Arduinos can be told to react to pulses received on digital pins, reading serial
data when data becomes available, or to call specific functions when a signal
is received. However, in some cases, it is not the change in the signal that is
important, but the time the signal stays at a logical state.

Imagine a sensor attached to your door. You want to know if the door was
opened, and you want to know exactly how long the door was opened for. By
adding a reed switch to your door, you can have a logical 1 (HIGH) if the door

70

Part Il = Standard Libraries

is closed, and a logical 0 (LOW) if the door is opened. How long was the door
opened for? The Arduino can tell you.

pulseln()

pulseIn () will tell you the length of a pulse. It requires a pin as a parameter and
the type of pulse to read. When programmed, the Arduino waits for a signal
on the selected pin. For example, you can tell the Arduino to wait for a pin to
go HIGH. When it does, it starts a counter. When the signal returns to LOW, it
stops the counter, and returns the number of microseconds. If no signal change
is received within a set time, the function gives up and returns 0.

unsigned long length pulseIn(pin, value)
unsigned long length pulselIn(pin, value, time-out)

The pin parameter is the pin number to listen on, as an int value. The value
parameter is the type of signal to wait for: either H1GH or Low. The optional
timeout parameter tells the Arduino how long to wait for a signal. It is an
unsigned longand represents the amount of microseconds to wait. If omitted,
it waits for 1 second before timing out.

pulseIn() is accurate within 10 microseconds when the time-out is up to
3 minutes long. Pulses longer than 3 minutes may be calculated inaccurately.
Also, responding to interrupts can give inaccurate results because the internal
timers are not updated during interrupt handling.

Time Functions

Timing is important in electronics projects. Electronics are not instantaneous,
and most sensor components require some time before they can be accessed. A
typical one-wire humidity sensor requires 100 ms of time between the command
to acquire a reading and returning the result. Querying the component before
it has had adequate time to complete its task could result in malformed data or
cause the component to send a previous result. In either case, your sketch might
not work as intended. Fortunately, Arduinos can patiently wait for a specified
amount of time, by calling delay ().

Another time function on Arduinos is the ability to get the time that the
current sketch has been running. When an Arduino is powered on (or reset),
two counters begins counting: the number of microseconds that the system has
been running and the number of milliseconds.

delay()

delay () tells the microcontroller to wait for a specified number of milliseconds
before resuming the sketch. This can be used to tell the microcontroller to wait

Chapter 4 = The Arduino Language

71

for a specified period of time before reading a sensor, or slowing down a loop
that is running too fast.

delayMicroseconds()

delayMicrosecond () is similar to delay (), but instead of waiting for a specified
number of milliseconds, it waits for a specific number of microseconds.

This function is accurate to a certain point; values above 16,383 produce
inaccurate results. If you need an accurate delay above 16,000 microseconds
(or 16 milliseconds), use a mix of delay () and delayMicroseconds (), like in
the following snippet of code, where the Arduino is asked to wait for 22.5 mil-
liseconds, or a total of 25,500 microseconds.

delay(25); // waits for 25 milliseconds
delayMicroseconds (500) waits for 500 microseconds

millis()

millis () returns the number of milliseconds that the sketch has been running,
returning the number as an unsigned long. This can be used to check how long
the current sketch has been running, but it can also be used to calculate how
long a function takes to run, by comparing the number of milliseconds before
and afterward.

unsigned long timeBefore;
unsigned long timeAfter;

timeBefore = millis(); //Get the time before running a function
alLongFunction(); //Run a function that could take some time
timeAfter = millis(); //And now get the time after running the function

This data is stored in a counter that will overflow (go beyond the data capac-
ity and return to zero) after approximately 50 days.

micros()

micros () is almost identical to the millis () function, except it returns the
number of microseconds in an unsigned long. The counter overflows far more
quickly than mi1lis (); roughly every 70 minutes.

unsigned long time;

void setup () {
Serial.begin (9600) ;

1

void loop () {
Serial.print (“Time: “);

72

Part Il = Standard Libraries

time = micros() ;

//prints time since program started

Serial.println(time) ;

// wait a second so as not to send massive amounts of data
delay (1000) ;

}

This function has a minimum number of microseconds that can be correctly
evaluated. On Arduinos with a clock speed of 16 MHz, the resolution is 4 micro-
seconds. On 8 MHz models, the resolution is 8 microseconds.

Mathematical Functions

The Arduino is a capable calculator, and the Arduino language has a large
amount of mathematical functions to help you calculate. They can be used
for simple calculations, to quickly analyze the voltage of one pin compared to
another, or more advanced functions, to help robots move around and calculate
the best path available.

min()
min () returns the smaller of two numbers.

result = min(x, y)

The two values can be of any numerical data type, returning the same data
type as the parameter. This is used both as a way of knowing the smaller of
two values and also to constrain data range; by using min (), you can make sure
that an input value never goes over a certain value.

int sensorData = 100;

min (sensorData, 255); // Returns 100 (sensorData is smaller)
min (sensorData, 100); // Returns 100

min (sensorData, 64); //Returns 64

max()
max () is similar to min (), except it returns the higher of two values.

result = max(x, y)

max () can take any numerical data type and can be used to obtain a minimum
value for sensor data.

int sensorData = 100;
max (sensorData, 255); // Returns 255
max (sensorData, 100); // Returns 100 (both values are the same)

Chapter 4 = The Arduino Language

73

max (sensorData, 64); //Returns 100 (sensorData is larger)

constrain()

constrain() is like combining parts of max () and min () at the same time; it
constrains data values to a set range.

value = constrain(data, min, max)

Imagine a light sensor, reading the ambient light inside your living room,
letting you turn the lights on or off. Values may vary between dark (you can still
vaguely see your way around), and bright (comfortable to see, but not blinding).
For a light sensor that gives values between 0 and 1,023, you could set the con-
strain levels to values between 40 and 127. Values below 40 are considered too
dark to have a reliable reading, and values over 127 are too bright. What if a ray
of sunlight hits the sensor? It would still be bright enough to see comfortably,
but the sensor may return the maximum value: 255. Or what would happen if
somebody covered the light sensor, for example, a cat and their incredible sense
of disturbing scientific experiments by sleeping on your equipment? With no
light at all, the sensor might return 0, and if you ever divide a value by your
sensor reading, you could cause an error (because computers can't divide by 0).
The following code will make sure you receive the sensor data, but constrained
between values of 40 and 127 if the original sensor data was out of those bounds.

sensorValue = constrain (sensorData, 40, 127);

abs()

abs () returns the absolute value of a number, for example, the non-negative value
of the number, without regard to its sign. The absolute value of 2 and -2 is 2.

value = abs(x);

This function is implemented in such a way that only values should be cal-
culated, not the results from mathematical operations or functions.

abs (i++); // Do not do this, the result might not be what you expected

i++; // First calculate
abs(i); // Then use the result

map()

map () remaps a number in one range set to another. It takes a number, a theo-
retical boundary, and remaps that number as if it were in another boundary.

map (value, fromLow, fromHigh, toLow, toHigh) ;

74

Part Il = Standard Libraries

This function takes a value called value in a range between fromLow and
fromHigh, and remaps that value to a new range set by toLow and toHigh.

The clearest way to explain map () is with an example. Imagine a sensor, con-
nected to an analog pin. It outputs numbers from 0 to 1,023. How would you
convert this to a percentage? The map () function could do this in a single line.

result = map (sensorData, 0, 1023, 0, 100);

Mapping can also be used to invert value ranges:

result = map(sensorData, 1, 50, 50, 1);

pow()
pow () raises a number to the power of x.

double result = pow(float base, float exponent) ;

The base number and exponent are calculated as f1oat, allowing for fractional
exponents. The result of this calculation is returned as a double.

sqrt()
sqrt () calculates the square root of a number.

double result = sgrt(x);

The number x can be of any numerical data type, and the result is expressed
as a double.

random()

Arduinos are capable of generating pseudo-random numbers using the ran-
dom () function:

result = random(max) ;
result = random(min, max) ;

This function takes one or two parameters specifying the range for the ran-
dom number to be chosen. If the min parameter is omitted, the result will be a
number between zero and max, otherwise the number will be between min and
max. The result is returned as a long.

Computers cannot generate purely random numbers, and instead use com-
plex algorithms. While the output may indeed seem random, it is actually a
sequence that is extremely long but always the same. To prevent your Arduino

Chapter 4 = The Arduino Language

75

from always starting at the beginning, you can use the randomseed () function
to select where in that sequence to start:

randomSeed (seed) ;

The seed parameter is a 1ong and can be any value you choose (either a fixed
number or the amount of milliseconds that your sketch has been running).

Trigonometry

Trigonometry is a branch of mathematics that studies relationships between
lengths and angles of triangles. Although some students might hate trigonom-
etry at school, complaining that they will never need to calculate the side of a
triangle in everyday life, the truth is that trigonometry is used in a great number
of things we interact with every day. It is used in electronics, architecture, civil
engineering, and a large number of fields.

Consider the triangle shown in Figure 4-1.

A
a C

Figure 4-1: Right triangle

This triangle has three angles, called A, B, and C, and three sides, called 4, b,
and c. If the angle C is a right angle, that is, 90 degrees, you can calculate all the
values with a little additional information. When dealing with right triangles,
you can compute A, B, C, a, b, and c if you have the values for one side and one
angle, or two of the sides.

Why would this be used? There are several reasons why you would want
to use trigonometry with an Arduino. For example, the Arduino Robot could
calculate a path around an obstacle if the angle and the distance are known. You
could create a clock application on an LCD screen. Because you know the angle
of the line (the hour), and the length of a line (a fixed value), you can apply the
previous formula to draw the hour hand on-screen. In robotics, trigonometry
is used extensively to know where the end of an arm will be based on calcula-
tions for every segment of the arm.

76

Part Il = Standard Libraries

Trigonometry calculations on the Arduino are accomplished with sin (),
cos(), and tan().

sin()

sin () calculates the sine of an angle in radians. The result is returned as a
double between -1 and 1.

result = sin(angle);

Here, the angle parameter is a f£1oat, the angle in radians, and the function
returns a double; the sine of the angle.

cos()

cos () calculates the cosine of an angle in radians. The result is returned as a
double between -1 and 1.

result = cos(angle) ;

Once again, this function takes a single parameter, a f1loat, the angle in
radians, and returns a double.

tan()

tan() calculates the tangent of an angle in radians. The result is returned as
a double.

result = cos(angle) ;

Constants

The functions used to calculate the sine, cosine, and tangent all require the angle
to be expressed in radians, which isn’t always what you have. Converting degrees
to radians and back again is a simple mathematical formula, but the Arduino
goes one step further, proposing two constants; DEG_TO_RAD, and RAD_TO_DEG:

deg = rad * RAD_TO DEG;
rad = deg * DEG_TO_RAD;

Arduino also has another constant; p1, which of course is the familiar con-
stant for m.

Interrupts

Interrupts are a way to respond immediately to external signals without having
to spend a lot of time looking for changes.

Chapter 4 = The Arduino Language

77

Imagine you are at home, and you are waiting for an important parcel. This
parcel will be delivered to your letter box without requiring a signature. The
chances are that the postman will not knock on your door. You want to get
your hands on it as soon as possible, so you go outside to look at the letter box
frequently. It isn’t there, so you wait for 10 minutes or so before having another
look. You have to decide when to stop working (if you can actually work at all)
before looking again, choosing a time that suits you. In computer terms, this
continual checking for an event is known as polling.

Interrupts are different. A few days later, you wait for another parcel; only this
time the parcel requires a signature, so the delivery man knocks on your door.
This gives you a little more freedom. Because you don't have to waste time by
looking inside the letter box every few minutes, you can get some work done.
The delivery man will knock on your door to let you know that he has arrived,
and at that time you can stop working for a few minutes to get your parcel. The
downside to this is that you have to react quickly; if the delivery man does not
get an answer quickly, he will go away. This situation is analogous to an interrupt.

Interrupts are a technique to let the processor continue working while waiting
for an external event. It might not occur at all, in which case the main program
continues, but if an external signal is received, the computer interrupts the main
program and executes another routine, known as an Interrupt Service Routine, or
ISR. ISRs are designed to be fast, and you should spend as little time as possible
inside an ISR. When servicing an interrupt, some functions will not continue to
work; delay () and millis () will not increment in interrupt context.

All Arduinos have interrupts; most use interrupts internally for serial commu-
nication or for timing counters. Some Arduinos have more user-programmable
interrupts. Table 4-1 shows which interrupts are available on which pins for
different models.

Table 4-1: Interrupt Pins on Arduinos

BOARD INT.0 INT.1 INT.2 INT.3 I\ INT.5
Uno 2 3

Ethernet 2 3

Leonardo 3 2 0 1 7

Mega2560 2 3 21 20 19 18

The Arduino Due is different. It has highly advanced interrupt handling and
can effectively be programmed to interrupt on every digital pin.

attachinterrupt()
This function specifies which routine to call when a specified interrupt is received.

attachInterrupt (interrupt, ISR, mode)

78

Part Il = Standard Libraries

This function attaches a function to the interrupt number interrupt, depending
on the status of the pin. The mode specifies the pin state to trigger the interrupt.
Valid states are Low, CHANGE, RISING, FALLING, Or HIGH. ISR names the function
you want to run. The ISR can be any function you write, but it cannot have
parameters and cannot return information.

The Arduino Due has a slightly different prototype, as shown here:

attachInterrupt (pin, ISR, mode) // Arduino Due only!

detachinterrupt()

This function detaches a previously attached interrupt handler from attachin-
terrupt (). Interrupts on this ID will now be ignored. All other interrupts remain
in place. It requires the interrupt ID to function.

detachInterrupt (interrupt) ;

This function is again slightly different for the Arduino Due; the Due requires
the pin number to be specified, not the interrupt ID.

detachInterrupt (pin); // Arduino Due only!

nolnterrupts()

noInterrupts () temporarily disables interrupt handling. This is useful when
you are in an interrupt handler and do not want to be disturbed by other inter-
rupts. It does have a down side; some system functions require interrupts,
mainly communication. Do not disable all interrupts just because your code
does not require user-made interrupt handlers. Disable interrupts only when
there is timing-critical code being performed.

// Normal code
nolnterrupts() ;

// Time critical code
interrupts() ;

// Normal code

interrupts()

interrupts () re-enables all interrupts. You do not need to reconfigure inter-
rupt handlers; all interrupts will be reconfigured as they were before calling
noInterrupts ().

Chapter 4 = The Arduino Language

79

Summary

In this chapter you have seen the Arduino Language, a set of instructions and
functions that are used on every Arduino and are available for every sketch.
In the next chapter, you will see the functions used to communicate with the
outside world through serial communications.

Serial Communication

After reading this chapter, you will be familiar with the following functions:

if (Serial)
available ()
begin ()

end ()

find ()
findUntil ()
parseFloat ()
parselnt ()
peek ()
print ()
println ()
read ()
readBytes ()
readBytesUntil ()
setTime-out ()

write ()

81

82

Part Il = Standard Libraries

The following hardware is required to complete the activities and examples
presented in this chapter:

m Arduino Uno
m USB Cable

The code download for this chapter is found at http://www.wiley.com/go/
arduinosketches on the Download Code tab. The code is in the Chapter 5 folder
and the filename is chapters. ino.

Introducing Serial Communication

The original IBM PC, introduced in 1981, came with two serial ports, physical
connectors allowing the computer to connect to devices or another computer
via the RS-232 protocol. For most people, this was the beginning of the serial
port, but in reality, it started much earlier. Early computers had serial ports, and
they have even been used on mainframes. They have been in use almost since
the beginning of microprocessor-based computers.

The word serial comes from the way data is transmitted; serial devices send
bits one at a time on a single wire. This is something that you have seen before;
itis like a telephone call. Both users pick up the telephone and a single wire con-
nects them together. Both users can talk at the same time (even if it is considered
polite to listen while the other person talks), and words are sent one at a time.
Both sides are free to start talking when they want, and also free to stop talking.

While serial devices send bits on a single wire, parallel devices send multiple
bits on multiple wires. Although parallel communications can be faster than
serial, they were often more expensive, requiring more wires. There are also
speed limitations due to physical limitations of conductive wiring. Figure 5-1
shows the difference between serial and parallel communications.

A new standard was born: RS-232. RS-232 serial ports were a standard feature
on computers allowing users to connect mice, modems, and other peripherals
using a common connector. These connectors allowed computers to talk with
peripherals, and even talk with other computers. Software was designed to send
data between computers on serial links, but while RS-232 was fast enough for
devices like mice and modems, it became too slow to handle large amounts of
data.

The original serial ports have been removed from most modern computers
in favor of a new standard: USB. USB is short for Universal Serial Bus, and even
that, however advanced it may be, still uses the same principle: sending data
through a serial line. USB does not use RS-232, instead it uses new techniques
to send data serially. It can, however, connect to RS-232 hardware using a spe-
cial converter, which is required when a computer does not have RS-232 but

http://www.wiley.com/go

Chapter 5 = Serial Communication 83

needs to connect to an RS-232 compatible device. Luckily, Arduinos use USB
communications, so an adapter is not required.

Serial
—_
Parallel
- N
_
o /

Figure 5-1: Serial versus parallel

Serial ports are extremely simple. This simplicity is one reason why they are
used so often. Data is sent on one wire, the transmit wire (TX), and received on
another, the receive wire (RX). On the other side of the cable, it is connected to
another computer with a TX pin and an RX pin. Inside the cable itself, the TX
and RX wires are inverted. The TX pin on one side is connected to the RX pin
on the other side. This is illustrated in Figure 5-2.

X X

RX RX

Figure 5-2: Transmit and receive wires

With all the technological advances made over the years, you could ask the
question: Why do systems still use RS-232? There are several reasons. First, it
is a proven technology in that it has been used reliably for decades. Second,
there are a large amount of cheap electronic components that communicate via
RS-232. They are easy to use, requiring only a few lines of code to implement.
Third there is the cable distance. Although not necessarily a big advantage for

84

Part Il = Standard Libraries

some systems, RS-232 low-capacitance cables can be 1,000 feet long, although
most cables limit the distance to 50 feet.

Arduinos use serial ports for communicating with computers and other
devices. The USB port of an Arduino is used for serial communication with a
computer, with the added advantage that USB can also be used to power the
device. USB also has the advantage of auto-configuring most of the parameters.
Some Arduinos have other hardware serial ports, enabling communication
with up to four other devices. The USB communication is sent to Arduino pins
0 and 1, meaning that those pins are reserved if your device must communicate
with a computer.

UART Communications

A Universal Asynchronous Receiver/Transmitter (UART) is a piece of hardware
that translates from serial and parallel forms. This is what is used to commu-
nicate on a serial interface. Data is sent to the UART device in parallel format,
for example, a byte. The UART takes the byte and sends the data 1 bit at a time,
adding any required information and line handling. On the receiving end,
another UART device decodes the data and returns it to parallel form.

The native UART controller on all Arduinos has a buffer of 64 bytes, mean-
ing the Arduino can receive up to 64 characters while busy with other tasks.

For UARTSs to communicate, they must be configured in the same way. This
information consists of the following:

m Baud rate
m Data bits
m Parity

m Stop bits

Baud Rate

Originally, the baud rate was the amount of times that a signal could be changed
per second. Now, it commonly refers to the speed at which information can be
transmitted. If you want to send a logical one several times in a row, you do
not need to change the signal. The receiving device looks at the input line once
every few microseconds or nanoseconds and samples the level. If your sender
transmits a series of 1s every millisecond, the receiving device looks at the input
line every millisecond. The receiver reads the value and then waits for a mil-
lisecond before the next reading. During this time, the sending device has the
time to change the logical level (if needed) before the receiver re-samples the data.

It is important that both devices share the same baud rate. If one device
is sending faster or slower than another device, the communications will be

Chapter 5 = Serial Communication

85

misinterpreted. If your serial terminal is showing lots of strange characters, then
there is a chance that the baud rate is not the same between the two devices.
A baud rate of 1,000 baud is synonymous to a bit rate of 1,000 bits per second.
However, that does not mean that 1,000 bits of data are sent. The data is encap-
sulated, placed inside other bits that help the computer identify the data being
sent. RS-232 allows asynchronous communications, meaning that the commu-
nications line does not require a clock signal, and communications can begin
and stop at any time instead of requiring a constant flow. RS-232 needs some
way of telling the receiver that they are about to send data and that they have
finished sending a packet. For this reason, RS-232 connections almost always
have a start bit, 8 data bits, and a stop bit for a total of 10 bits. Some parameters
allow for an extra parity bit, or two stop bits, for a total of 12 bits, while only
transmitting 8 bits of data. An example data packet is illustrated in Figure 5-3.

<Start>< Data >< Parity>< Stop >

1 bit 5-9 bits 0-1 bits 1-2 bits
Figure 5-3: A serial packet containing data

Various baud rates exist; most are either multiples of the original baud rate,
75 baud, or multiples of crystal oscillators. Most UART devices are capable of
multiple speeds: 300, 1,200, 2,400, 4,800, 9,600, 19,200, 38,400, 57,600, and 115,200
are the most common. Some chips can go even faster. Other devices have non-
standard speeds; you need to find a speed supported by both the sender and the
receiver. In embedded systems, 9,600, 19,200, and 115,200 are common values.

Data Bits

The number of data bits in each packet can be between 5 and 9 bits. Often this
data is used to represent a character or symbol. Five data bits are typically used
for Baudot code, a character table predating ASCII that gave baud its name. Seven
data bits are used for pure ASCII characters. Most modern systems use 8 bits
because that corresponds to 1 byte. Do not try to speed up data throughput by
lowering the amount of data bits, even if you are sending only ASCIL. It is best
to remain compatible with as many devices as possible and to use 8 data bits,
unless the other equipment does not let you use the default 8 bits.

Parity

Parity is used as error detection, attempting to detect transmission errors. A par-
ity bit can be added to make the number of 1s in a packet even or odd. Receiving
equipment can detect transmission errors and request the sending equipment to
re-send data if the data has unexpected information. This was mainly used on

86

Part Il = Standard Libraries

older equipment because modern signaling technology no longer needs parity
checking, but it is still available if needed.

Stop Bits

Stop bits are automatically sent at the end of every packet. They allow the receiv-
ing hardware to detect the end of a character and to resynchronize with the
incoming stream. Modern electronic devices usually use 1 stop bit, but older
systems can use 1 1/2 or 2 bits.

Debugging and Output

Systems developers have a wide variety of debugging techniques to help them.
Programs can be run and “frozen,” allowing the developer to look inside the
program and see what is happening. You can run a program line by line, watch-
ing variables change during a program. In some cases, you can even rewrite
lines of code before they are executed, without having to restart your program.

Embedded systems offer an alternative, a physical port that connects directly
to the processor that allows a hardware debugger to take control. Again, pro-
grams can be run step by step; variables can be examined and modified; and
advanced debugging techniques can be used. All this comes at a cost; some
debuggers can cost tens of thousands of dollars.

Arduinos forgo these complex and costly implementations for less expensive
alternatives. The most common tool used for this purpose is the serial port.

Debugging with a serial port can be effective. It is possible to add a single
line to a program, printing out information and simple statements:

Debug: We are about to enter the function connectServer ()
Debug: Connected!

Debug: Leaving connectServer ()

Debug: Connecting to a client...

Debug: Connected with status 2! (should be 1)

This is an example of a debug output. First, you can tell that the function con-
nectserver () was called and that the program also cleanly exited the function.
Don't laugh; this is still in use on lots of development projects!

The last line is where things get interesting. You can use the serial output to
display values as shown here. If you can’t use a debugger to look at a variable’s
content, then print it out. In a single line, the developer knows that a return
value was not what he expected it to be, and now he has a good idea of where
to look for the problem.

Chapter 5 = Serial Communication

87

Serial connections depend on correct parameters. If the speed parameter
is wrong, the receiving UART device will receive garbled data. You will not get small
portions of cleartext with a few wrong characters; the entire text will be unreadable. If
your terminal is showing corrupted data, check your settings.

Starting a Serial Connection

All Arduinos have at least one serial port to communicate with a PC called
Serial. Some boards have several UART devices. The Arduino Mega, for example,
has three additional UART controllers called seriall, Serial2, and Serial3.

The Arduino Leonardo’s microcontroller has a built-in USB communication
device, separating USB and Serial communication. On the Leonardo, the serial
class refers to the virtual serial driver, not the serial device on pins 0 and 1.
These pins are connected to seriali.

To do anything with a serial port, you must use the functions available to
the serial class.

To begin using a UART device, you must first do some basic configuration. You
need to set at least one parameter; the baud rate, or speed. Optionally, you can
set the data bits, parity, and stop bits if required. Arduinos, by default, require
you to set the speed and set 8N1 as a default configuration. To do this, you use
the begin function of the serial object.

Serial.begin (speed) ;
Serial.begin (speed, config);

For Arduino Megas, you can also use the other serial objects (note that these
are not connected to the USB port through the 16U2):

Seriall.begin (speed) ;
Seriall.begin (speed, config);
Serial2.begin (speed) ;
Serial2.begin(speed, config);
Serial3.begin (speed) ;
(

Serial3.begin (speed, config);

The speed parameter is a long and indicates the baud rate. To communicate
with a PC, use one of the following: 300, 600, 1,200, 2,400, 4,800, 9,600, 14,400,
19,200, 28,800, 38,400, 57,600, or 115,200. Typically, 9,600 is an appropriate speed
for communicating debug information. You are free to use just about any speed
you want as long as both devices are operating at the same speed. For example,
some Bluetooth devices can send serial data at speeds much faster than 115,200,

88

Part Il = Standard Libraries

in the order of one megabaud (one million baud). Be aware of what the device
or computer is expecting.

Serial configuration is normally done in setup () because devices tend to not
change the speed at which they communicate over time.

void setup ()

{

Serial.begin(9600); // Opens the serial port, sets data
// rate to 9600 baud}
void loop() {}

For the Arduino Leonardo, you can detect if the USB serial communications
channel is open. The serial class can return true or false, depending on the
communication state.

if (Serial) // Check to see if the channel is open

If you have a number of statements in your setup () that you want to send serially,
itis useful to wait until the Leonardo’s serial port has initialized before proceeding.

while (!Serial){ // while there is no serial connection
;; // do nothing

}

This works on the Leonardo, Micro, Esplora, and other 32U4-based boards.
On all other boards, this function always returns true, even if the device is not
connected to USB.

Writing Data

Now that you have established a connection, your Arduino can send data to
a receiving device. For debugging, you will probably send ASCII a standard
used to transmit text using the English alphabet and some punctuation, and
use a terminal emulator for receiving messages. The Arduino IDE integrates a
terminal emulator to easily access messages and debugging data. Terminal edi-
tors are used to ASCII but will get confused if receiving a non-ASCII character.
If a terminal emulator receives a non-ASCII character, for example, something
formatted as a raw byte, it will probably produce an unintelligible mess.

Sending Text

To send ASCII data, use print (). This function sends data to the serial device
as human-readable ASCII format. The data to be printed can be in any format.
It can print a single ASCII character or a complete string.

Serial.print ("Hello, world"); // Output an entire string
Serial.print('!'); // Output a single character

Chapter 5 = Serial Communication

89

It can also print number formats by converting those to ASCII.

Serial.print (42); // Outputs the ASCII string "42" to the serial port
Serial.print (1.2345); // Outputs "1.23"

By default, numbers are displayed in decimal and rounded to two decimal
places. You can change both of these. To print a specific amount of decimal places,
just specify the number of digits after the floating-point number to be displayed:

Serial.print (1.2345, 0); // Prints "1"
Serial.print (1.2345, 1); // Prints "1.2"
Serial.print (1.2345, 4); // Prints "1.2345"

To display numbers in different formats, you need to specify the numerical
type constant after the number. There are four possibilities: BIN for binary, bec
for decimal, HEx for hexadecimal, and ocT for octal.

Serial.print (42, BIN); // Prints 0010 1010
Serial.print (42, DEC); // Prints 42
(42,
(42,

Serial.print (42, HEX); // Prints 2A

Serial.print (42, OCT); // Prints 52

print () prints data but does not append any special characters to the end of
the text. In ASCII, there are a number of these reserved characters. These are
escaped with a backslash (\). For example, how would you print a quote that
has to reside in another quote?

Serial.print (""He said "Captain", I said "what""); // Compiler error

As far as the compiler understands this line, the text starts at the first quotation
mark, and ends at the second, so what is all this noise afterward? The compiler
won't understand and will ask you to correct the problem. To show that this is
a special character, you must first escape it.

Serial.print (""He said \"Captain\", I said \"what\"");
//reference intact!

You need to escape characters like quotation marks, backslashes, and single
quotes.

There are also other special ASCII characters to be aware of. Consider the
following code:

Serial.print ("Imagination is more important than knowledge.");
Serial.print ("Albert Einstein");

At first glance, everything looks good. However, computers are extremely
good at doing exactly what you ask for, and nothing more. The result might not
quite be what you expect when viewed in a terminal:

Imagination is more important than knowledge.Albert Einstein

20

Part Il = Standard Libraries

Those lines of text were put on different lines; why didn’t the second text start
on the next line? Well, the compiler wasn't told to do this. To manually insert a
new line, you must use the \n character, for a new line.

Serial.print ("Imagination is more important than knowledge.\n") ;
Serial.print ("Albert Einstein");

Now things look better. The text now appears like this:

Imagination is more important than knowledge.
Albert Einstein

That’s more like it. Now this quotation is readable. Of course, inserting the
new line escape sequence is going to get boring, especially if some are forgot-
ten. Luckily, there is a function that can do this for you. The print1n function
automatically adds a new line and a return at the end of the text.

Serial.println("Imagination is more important than knowledge.");
Serial.println("Albert Einstein");

With citations, the author is frequently added on the bottom of the text, but
with an indentation. This too can be added by the tabulation sequence: \t .

Serial.println("Imagination is more important than knowledge.");
Serial.print ("\tAlbert Einstein");

Tabulation can be important for data output, as shown in more detail in the
chapter example.

Sending Data

Not all data can be sent as easily as ASCIL If you are trying to output the result
of a sensor, it sometimes isn’t practical to convert that data to an int and send
it as text. It takes up more time and is just as easy to send that data as a byte
onto the serial line. Because the default serial connection can send 8 bits of data
per packet, you can send a byte in a single data packet. This is exactly what is
done when flashing an Arduino; the Arduino IDE doesn’t convert your sketch
to ASCII before sending the data; it sends the data 1 complete byte at a time.

Luckily, sending data is just as easy as sending text and can be accomplished
with the write () function. This function accepts either a single byte or a string
to send. It can also accept a buffer as a parameter and a second parameter to
indicate the length of the buffer.

Serial.write (byte) ;
Serial.write(string) ;
Serial.write (buffer, 1len);

Chapter 5 = Serial Communication

91

Reading Data

It isn’t all about sending data through a serial connection; Arduinos can also
receive data. Receiving data can be used for many projects; computers can send
data, for example, to control the brightness of an LED. Some wireless devices
like Bluetooth also use serial ports to transmit data; maybe your telephone can
send data to unlock a door or to open a window. Arduinos can also talk to each
other over a serial connection, for example, a master Arduino telling a slave
Arduino to turn on the lights in the room it controls.

When the UART device receives data, it stores it in an internal buffer. This
buffer normally holds 64 characters; any more, and data will be lost. Don't
worry; in practice, 64 is more than enough because interrupts can be put in
place to tell the microcontroller to retrieve information from this buffer before
too much data arrives.

Starting Communications

The first part of any communications is to initiate the connection. Each side
must open up a serial port before being able to send and receive data. For the
Arduino to initialize a serial communication, you must use the begin () function:

Serial .begin(speed) ;
Serial.begin(speed, config);

This function requires one or two parameters; the speed parameter is the
baud rate for the serial communication. It must be the same on both devices,
otherwise they will not be able to communicate. It is expressed as an int, and
is the exact speed to use. By default, the Arduino IDE will use 9,600, but you
are free to choose a different value, so long as both the Arduino serial monitor
and the Arduino itself use the same speed.

Is Data Waiting?

You can check the number of bytes in the serial buffer by calling available ().
This can also let you know if there is any valid data waiting to be read.

int bytes = Serial.available() ;

There are two ways people typically use available (). One way is to return
the result to know the amount of bytes waiting to be read.

int inBytes = Serial.available() ;

92

Part Il = Standard Libraries

You can also evaluate if there are a certain number of bytes with an if ()
statement:

if (Serial.available() > 0)

{

// Read in serial data

}

Trying to read the serial buffer if no data is available can waste time in your
sketch. To avoid a sketch freezing while waiting for data, you can change the
duration of the serial time-out, as explained here.

Reading a Byte

You can read a byte from the data buffer using the read () function. This function
takes 1 byte from the UART buffer and returns it to the program. This function
does not return a byte, instead, it returns an int. There is a good reason for
this. What would happen if the buffer were empty? Would the function return
0? That might be the byte waiting for the user in the buffer; there is no way of
telling. Instead, the read () function returns an int. The return values are in the
range of 0 to 255, or -1 if no data is available. This function returns immediately
and does not wait for data to arrive.

Reading Multiple Bytes

Reading in a single byte at a time can be tedious; fortunately there are other
ways of getting data from a serial connection.

readBytes () reads multiple bytes from a serial port and places them into
a buffer.

Serial.readBytes (buffer, length);

You must specify the amount of bytes to read, in which case the function
stops when all the data has been received. There is also another reason why this
function might stop; asking this function for more characters than is available
could cause the Arduino to momentarily stall while waiting for data that may
never arrive. To avoid this, there is a time-out for waiting to read serial data. The
time-out is set by setTime-out () . It takes one parameter: a long that contains
the number of milliseconds to wait for all the data to arrive. By default, serial
ports time out after 1 second.

Serial.setTime-out (time) ;

You can now retrieve multiple bytes and time out if no data is available.
However, the Arduino still has one trick left. Imagine working with a protocol
that allows your computer to send messages to an Arduino: turn on the lights

Chapter 5 = Serial Communication

93

in the bedroom, turn off the TV, and other such instructions. These instruc-
tions are sent in small packets, and each packet ends with an exclamation mark.
There is a function available that reads in serial data and stops either when
all the data is read in, when there is a time-out, or when a special character is
received. This function is called readBytesuntil () and accepts one argument:
the character to wait for.

Serial.readBytesUntil (character, buffer, length);

Both readbytes () and readBytesUntil () return a byte of data: the amount
of characters read from the serial port. This will be zero if no data was received
because a time-out occurred, less than the expected length if some data was
received and a time-out occurred while waiting for the full packet, or the same
expected length if all the requested data were available. In the case of read-
BytesUntil (), non-zero values may also indicate that the terminator character
was detected.

Taking a Peek

There is a way to get hold of the first byte of data from the UART buffer without
modifying the buffer. There are several reasons why this might be useful to you.
When you know that data has arrived, what does it contain? Is this ASCII data
that needs to be put in a string? Or is this binary data that needs to be put in
another buffer? Would it help to know what the first character is? Well, you can.
Just like those who cheat when it is their birthday, there is a way to peek at data
without changing anything. This will return the first byte from the buffer, but
it will not remove the byte from the buffer. Again, it returns an int; it returns
the first byte of data if it is available; otherwise it returns —1.

data = Serial.peek();

From here, you can read one or several bytes using the functions listed pre-
viously, and the first byte of data read with peek () will still be in the buffer.

Parsing Data

You have the data, but what do you do with it? Everything received is either
ASCII text or binary data. If it is binary data, then your program must analyze
the data and extract the data. ASCII, however, is received as text. This is great
if you want to know the user’s name, but what if you ask him for his age? What
if the serial port receives an instruction to turn on an LED at a specific light
setting? It might be text that represents an int or £loat, but how do you extract
that data? The answer is simple: You parse it.

94

Part Il = Standard Libraries

parselnt () and parseFloat () scan through text and extract the first int or
float encountered. Any preceding text that is not a number is ignored. Parsing
stops when the first non-numerical character is found after a numerical char-
acter, as shown in Figure 5-4.

Ll fadm] Jef7] fyfefafrfs] [o]t]d]
VASAVAY)
Search
Number
Keep
Letter
X Stop

Figure 5-4: Finding numbers in a string

parselnt () would ignore the first letters and extract the number 37. The data
before the number and the number itself will be removed from the buffer. The
rest of the data remains intact.

You can run the parseInt () function repeatedly, which can be helpful if data
is sent to the Arduino as comma-separated values (CSV). If sending a series of
three numbers (127,255, 64), parseInt () can be called three times to extract
three numbers. For example, if you want to set the values of an RGB LED.

int red = Serial.parseInt(); // Will read 127

int green = Serial.parselnt(); // Will read 255

int blue = Serial.parseInt(); // Will read 64
Cleaning Up

The final part of any phone call is to hang up, and it is the same with serial
connections. If your application requires you to terminate a serial connection,
it can be done by calling end ().

Serial.end()

Input from the USB serial connection is sent to pins 0 and 1, meaning that those
pins cannot be used for anything else when a serial connection is established.
After calling serial.end (), any pins associated with that serial connection can
be used for general input and output. If you need to restart a serial connection,
call begin () again with the desired baud.

Chapter 5 = Serial Communication

95

Example Program

For this example, you use an Arduino Uno. It connects via USB to your develop-
ment PC and is powered via USB. No power supply is needed, and there will
not be any components connected this time.

This program demonstrates the principles of a serial connection. The Arduino
welcomes the user, asks for her name, and then presents itself. It asks for the
user’s age and then gives the age. Finally, it prints out a few ASCII characters
using tabs.

Listing 5-1: Serial Connection (Filename: Chapter5.ino)

1 char myName[] = {"Arduino"};

2 char userName [64] ;

3 char userAge[32];

4 int age;

5 int i;

6

7 void setup ()

8

9 // Configure the serial port:

10 Serial.begin(9600) ;

11

12 // Welcome the user

13 Serial.println("Hello! What is your name?");
14

15 //Wait for a few seconds, then read the serial buffer
16 delay (10000) ;

17 Serial.readBytes (userName, 64) ;

18

19 //Say hello to the user

20 Serial.print ("Hello, ");

21 Serial.print (userName) ;

22 Serial.print (". My name is ");

23 Serial.print (myName) ;

24 Serial.print ("\n") ;

25

26 //Ask for user's age

27 Serial.print ("How old are you, ");
28 Serial.print (userName) ;

29 Serial.println("?");

30

31 //Wait for a few seconds, then read the serial buffer
32 delay (10000) ;

33 age = Serial.parselnt();

34

Continues

96

Part Il = Standard Libraries

Listing 5-1 (continued)

35 //Print out the user's age
36 Serial.print ("Oh, you are ");
37 Serial.print (age) ;

38 Serial.println("?");
39 Serial.print ("I am ");
40 Serial.print (millis()) ;

41 Serial.println(" microseconds old. Well, my sketch is.");
42

43 //Now print out the alphabet

44 Serial.println ("I know my alphabet! Let me show you!");
45 Serial.println("Letter\tDec\tHex\t") ;

46 for (i = '"A'; 1 <= 'Z'; 1i++)
a7 {

48 Serial.write (i) ;

49 Serial.print ('\t');

50 Serial.print (i) ;

51 Serial.print ('\t');

52 Serial.print (i, HEX) ;

53 Serial.print ('\t"');

54 Serial.print ('\n');

55 }

56 }

57

58 void loop ()

59 {

60 // put your main code here, to run repeatedly:
61 }

Lines 1 to 5 declare the global variables in the program. The myName variable is
declared and initialized with the name "Arduino"; the others are only declared.

On line 7, setup () is declared. Because the code runs only once, all the code
in this example is placed in setup (). Even though there’s nothing happening
in loop (), it still needs to be there.

On line 10, the serial device is initialized. The default serial port, serial, con-
nects to pins 0 and onle. On an Arduino Uno, these are connected to the USB
port. The speed is set to 9,600 baud, and no other parameters are set; therefore
the device defaults to 8 data bits, no parity, and 1 stop bit. On line 13, the Arduino
greets the user through printin (). The program waits for 10 seconds and reads
the serial buffer with readBytes (). The data will be put into the userName vari-
able and read up to the size of the buffer, 64 bytes. hope your name isn’t longer
than 64 characters! Because it probably isn’t, the function will read the bytes
in your name and then wait for 1 second to see if there are up to 64 characters.
After this, it returns what data it has.

On line 19, the sketch greets the user again, this time with her name. This is
done by printing some default text and then printing a variable, the user’s name.

Chapter 5 = Serial Communication

97

Again, it prints out some default text and then prints another variable, its own
name. Finally, it prints out the new line character. These four lines of code are
printed on a single line of text.

On line 27, the sketch again asks the user a question, and on line 32, it waits
for another 10 seconds for the user to enter some text. On line 33, the sketch
calls parseInt (), emptying the buffer looking for numbers. The result is stored
in the age variable.

On line 36, the sketch again talks to the user, first confirming her age, and
then on line 40 calls millis (). This function returns the number of milliseconds
that the sketch has been running.

At line 43, the sketch prints out a formatted table, using tabs. The sketch tells
the user that it knows its ABCs, and demonstrates its mastery of the alphabet.
The first column will be the letter, the second will be the decimal value, and
the third will be the hexadecimal value.

Line 46 is a loop that iterates through letters A to Z. These are chars and can
be printed as such. In ASCI], capital letters are associated with values from
65 to 90. write () sends these as bytes. The Arduino’s serial monitor interprets
these as the ASCII equivalent. If print () had been used, the decimal number
would have been printed, as on line 50. On line 52, the sketch again prints the
value but this time using hexadecimal notation.

The result of the sketch looks like this:

Hello! What is your name?
> Elena
Hello, Elena. My name is Arduino

How old are you, Elena-?

> I am 8 years old.

Oh, you are 8?

I am 21001 microseconds old. Well, my sketch is.
I know my alphabet! Let me show you!

Letter Dec Hex
A 65 41
B 66 42
c 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D

98

Part Il = Standard Libraries

N 78 4E
O 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
\Y% 86 56
W 87 57
X 88 58
Y 89 59
Z 90 5A

To run this sketch, simply upload it from the Arduino IDE. By pressing
Ctrl+Shift+M, or by going to Tools => Serial monitor menu item, you can access
the serial monitor that enables you to read the serial data and to input values.
Try this out and have fun with it.

This sketch is not perfect, there are a few flaws that were left in. For example,
when reading from the serial port, the sketch first waits 10 seconds. This is not
a particularly desirable interaction; the user doesn’t know how long they have,
and they may not react in time. How would you change the sketch so that it
waits until data is available? The available () function might be useful. You
could also try to accomplish the same with peek ().

Secondly, the sketch does not check for any problems; it might not receive a
name, or it might not receive a correct age. This is also left as an exercise; try to
correct this, and re-ask the question if the sketch does not receive a good answer.

How could you add additional columns to display octal values? What about
binary?

SoftwareSerial

When no more serial ports are physically available, the SoftwareSerial library
can use software to emulate serial communications on other digital pins without
the need for a UART. This allows you to have multiple serial ports on a device
that would not normally allow it. Because transmission is handled by software
and not hardware, only one SoftwareSerial port can receive data at any time.
Also, speed is limited to 115,200 baud.

This introduces the concept of libraries. A library is software that can be added
as required. It provides functionality and is often not something that you would
need every time. If your sketch does not require a library, there is nothing else
to do. If your sketch does require a library, you must first import it, that is to
say tell the Arduino IDE that your sketch requires the functionality provided
by a library. To see the list of libraries available, look at the Arduino IDE in the

Chapter 5 = Serial Communication

929

Sketch > Import Library menu. There, you will see a list of available libraries.
Clicking on one of these will automatically import the library.

Before you can use a software serial implementation, you must first import the
library and create an instance of the softwareserial class called an object. When
instantiating the object, it requires two parameters: the pin used for receiving
data and the pin used to send data. Just like the Serial class, you typically call
begin () in setup (). The methods used by SoftwareSerial are just like those used
with Serial, so print (), println(), available (), and the rest work the same.

#include <SoftwareSerial.h>

#define rxPin 10

#define txPin 11

// set up a new software serial port instance
SoftwareSerial mySerial = SoftwareSerial (rxPin, txPin);

void setup ()

{
mySerial.begin(4800) ;
mySerial.println("Hello, world!");

}

The SoftwareSerial object has its own internal buffer of 64 characters. If it
receives any more characters, it will overflow. To check the overflow status of
the buffer, the call overflow() function can be used:

bool result = mySerial.overflow() ;

This function checks the internal overflow flag and automatically resets it.
Subsequent calls to this function will report no overflow, unless more data has
been received, causing another overflow.

SoftwareSerial requires a pin that supports change interrupts, which, depend-
ing on your model, is not available on all pins. The Mega2560 can use pins 10
through 15, 50 to 53, and A8 to A15 for RX. On the Leonardo, pins 8 through 11
and 14 to 16 can be used. The transmit pin does not require interrupt support,
so any digital pin can be used. For more information about interrupt pins on
your Arduino, check Arduino’s website for your specific board.

Summary

In this chapter you have seen how to open and close serial communications,
allowing you to connect to your Arduino and how to exchange information.
In the next chapter you will see how to store long-term data on your Arduino
using the EEPROM library.

EEPROM

This chapter discusses the read () and write () functions of the EEPROM library.
The hardware needed to run the examples in this chapter are an Arduino Uno
and a USB cable.

You can find the code downloads for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 6
download and the filename is chapteré6. ino.

Introducing EEPROM

Life would be boring if you had to reinstall software every time you turned
off your computer. In the beginning, that is almost exactly what happened. A
computer was turned on, and if a floppy disk was not inserted, the computer
did not know what to do and just waited. It had no idea of who used it or what
programs were available. Ironically, little has changed; instead of a floppy disk,
we have hard drives, storing many times more data, but it still relies on the
same principle.

Computers typically have two types of memory: volatile and nonvolatile.
Volatile memory contains data as long as it is powered. When the power is
removed, all the data is lost. This is how RAM works on your home computer.
It uses a memory module called DDR. Actually; DDR memory is even more

101

http://www.wiley.com

102

Part Il = Standard Libraries

volatile than you might at first think; it needs to be refreshed frequently to keep
the data in place. This might sound like poor engineering, but the truth is that
Dynamic RAM (DRAM) is extremely fast, dense, and relatively cheap, allowing
for inexpensive memory chips that work very well.

Volatile memory is used to store variables and data. The actual program is
placed in nonvolatile memory and uses volatile memory to operate. Your alarm
clock might have this function. You can set an alarm, but if the power is cut,
you have to reprogram the alarm clock; otherwise, you won't wake up on time.

Nonvolatile memory is memory that retains data when power is removed. The
first implementation of nonvolatile memory was an implementation of volatile
memory with a small cell battery. When that battery ran out, the data would be
lost. One solution to this was EPROM memory, as shown in Figure 6-1.

Figure 6-1: EPROM memory chip

Electrically Programmable Read Only Memory (EPROM) is a special memory
that retains its data even when power has been removed. Early versions of
EPROM required specialized equipment to be programmed. True ROM chips
existed well before the arrival of EPROM, but EPROM added something that
ROM chips did not have; they could be erased and reprogrammed.

Reprogramming the first EPROM chips was not something particularly easy
to accomplish; these devices had a quartz “window” on the top of the chip. By
placing the chip under ultraviolet light, the device could be erased within 20
minutes. When fully erased, the device could be reprogrammed.

Although such devices did work well, they were not always practical. They
could store programs or nonvolatile variables, but devices became more intelligent

Chapter 6 = EEPROM

103

and required an increasing number of parameters. How would you feel if your
multimedia player couldn’t change its name, IP address, or basic configuration?
Something had to be done.

Electrically Erasable Programmable Read Only Memory (EEPROM) is a new
generation of EPROM devices. EPROMs had to be removed from their circuit to
be programmed or erased; however, EEPROM can be erased and reprogrammed
in-circuit. Not only can they be reprogrammed, but also the erase and repro-
gram sequence can be applied to specific memory portions. In short, EEPROM
devices can be modified byte by byte, providing an excellent method of storing
long-term variables. Data retention for EEPROM devices is normally guaranteed
for 10 to 20 years, but that is only a minimum. The real figure is normally much
higher. Most EPROM devices were also guaranteed for 10 to 20 years, and a lot
of systems built in the 70s are still working fine.

EEPROM does suffer from one flaw; writing data damages the device, ever
so slightly. Don’t panic! That doesn’t mean that the device will stop working
minutes after turning it on. Most EEPROM devices support at least 100,000
writes to the same byte, often much more. Writing data once a day to the same
memory location will give a lifetime of at least 273 years. Remember; EEPROM
is used for configuration data—data that does not often change, for example,
serial numbers or IP addresses. Are you actually going to change your IP address
100,000 times?

EEPROMs are slower than other types of memory due to their technol-
ogy. EEPROM cannot be written to directly; the memory must first be erased
before bits can be written, and it is this erase phase that damages the device
ever so slightly.

The Different Memories on Arduino

Arduinos have three different memory technologies: RAM, Flash, and EEPROM.
The RAM on Arduinos is exactly like the volatile memory on your computer;
itis used to store variables, and the contents are lost when the power is removed.
The Flash memory is used for the sketch itself, as well as a small bootloader.
This is the memory that is used when you upload a sketch. Previous contents
are erased and replaced. Flash memory supports at least 10,000 write cycles.
The EEPROM memory is a slightly different memory technology, support-
ing more write cycles. EEPROM memory on ATmega microcontrollers support
at least 100,000 writes and can be read and written to byte by byte. This is the
memory that will contain long-term settings and is not overwritten by each
flash. Updating your sketch won't overwrite your variables.
The EEPROM size varies for each microcontroller. The ATmega8 and ATmegal68
found in early versions of the Arduino both have 512 bytes of EEPROM, and

104

Part Il = Standard Libraries

the ATmega328 in the Uno has 1,024 bytes. The ATmegal280 and ATmega2560
used in the different versions of the Arduino Mega both have 4 KB of EEPROM.

The EEPROM Library

The EEPROM library is a collection of routines that can access the internal
EEPROM memory, reading and writing bytes. The EEPROM library can be
imported by manually writing the include statement:

#include <EEPROM.h>
Optionally, you can add the EEPROM library using the Arduino IDE. Go to

the Sketch menu item; select the Import Library submenu, and select EEPROM.
This automatically includes the library, as shown in Figure 6-2.

) sketch | Arduino 1:1.0.5+dfsg2-2 ¥ & &
File Edit Skektch Tools Help

Verify / Compile Cerl+R
P/ & Add Library...
Show Sketch Folder Cekrl+k
sketch EEPROM

Add File..,
Esplora ~

Import Library...
B 2 Ethernet

Firmaka

G5
LiquidCryskal
Robot_Contral
Robot_Mokor

5D

Servo

SoftwareSerial

<[

SPI

Stepper

TFT
WIiFi
1

Wire

Arduing Uno on

Figure 6-2: Importing the EEPROM library

Reading and Writing Bytes

The entire EEPROM library consists of two functions: read () and write ().
These two functions can read and write bytes from specific memory locations.

The read () function reads data from a specified address adr, expressed as
an int, and returns data as a byte.

EEPROM.read (adr) ;

Chapter 6 - EEPROM 105

The write () function writes a byte contained in data to a specific address
adr. This function does not return any values.

EEPROM.write (adr, data);

The Arduino compiler automatically sets the correct start memory location. It
doesn’t matter if you use an Uno, Mega2560, or Mini; the compiler “translates”
the correct address. Reading at memory location 0 read from the first byte of
EEPROM.

Consider the following program:

byte value;
void setup ()

{

}

// initialize serial and wait for port to open:
Serial.begin(9600) ;
while (!Serial) ({
// wait for serial port to connect. Needed for Leonardo only
}
value = EEPROM.read(0);
Serial.print ("Value at position 0:");
Serial.print (value, DEC) ;
Serial.println() ;

void loop () {}

In this program, the Arduino reads the first byte of EEPROM memory and
displays it over the serial interface. Yes, it is that simple. Writing a byte into
memory is just as straightforward:

void setup ()

{
}

EEPROM.write (0, value);

void loop() {}

Writing a byte erases the byte in memory before rewriting, and this takes some
time. Each write takes approximately 3.3 ms for each byte. Writing the entire
contents of a 512-byte EEPROM device takes a little more than 1 1/2 seconds.

Reading and Writing Bits

Bits are used when using true/false values. In some applications there will be
relatively few (or sometimes none at all), and in others, you will use boolean
variables extensively. An Arduino cannot write individual bits to EEPROM,; to
store bits, they must first be stored in a byte. There are two possibilities.

106

Part Il = Standard Libraries

If you have a single bit to store, the easiest way is just to code it as a byte, even
if you use 1 out of 8 bits.

If you have several bits to store, you might want to try storing them all in
1 byte to save space, for example, a notification LED that the user can program
as he wants. If this is an RGB LED, the user can choose a mix of any primary
colors for notification. This can be coded into 3 bits; 1 for red, 1 for green, and
1 for blue. A logical 1 means the color is present, and a logical 0 means the color
is not present.

You can define this as follows:

// primary colors

#define BLUE 4 // 100
#define GREEN 2 // 010
#define RED 1 // ool

Did you note that RED was defined as 1, and has the number 001 next to it?
Arduinos, like all computer systems, store data as binary—a collection of ones and
zeros. It is critical to understand binary when performing bitwise calculations.

Binary is a base-two system; that is to say that each digit can take one of two
possible values—O or 1. The rightmost figure corresponds to 2°, the number to
its left corresponds to 2!, the next one to 22, and so on. In this example, I have
used three specific values: 1, 2, and 4. I did not use 3 since in binary, 3 is written
as 011, and I wanted each color to be assigned to a bit.

There are five more bits that could be coded into this byte. Each bit could
indicate another behavior; maybe the LED should blink? Or maybe a warning
beep? You can make this decision.

Also, another important part of bitwise calculations is AND and or. In binary
logic, a result is TRUE if one value AnD the second value are both TRUE. TRUE and
TRUE would result in TRUE, but TRUE and FALSE would result in FALSE. A result
is TRUE if one value or another value is TRUE. 1 or 1 is TRUE, as is 1 or 0, but
0 or 0 is FALSE.

Let’s imagine you want a cyan light to be lit up if something occurs. Cyanisa
mix of green and blue. In English, you would say that you want green and blue,
but in computer logic, you would say that you want GREEN or BLUE. A logical
OR is true if one of the two values being compared is true. In this case, GREEN
(010) is compared to BLUE (100), and the answer becomes 110.

So, the result, called cvan, is 110, but now that you have encoded that, how
can you get the data out of it? This time, you will be using a logical anp. A
logical AnD is true if the both the values being compared are true. So, cYAN AND
BLUE? CYAN has a value of 110, and the value of BLUE is 100. The leftmost bit is
1 in both, so that will return as a 1. The second bit is 1 in cyan and 0 in BLUE.
It returns 0. The third bit is 0 in both values; it also returns 0. The result is 100.
You can now say that BLUE is present in cyan because the result was not zero.

Chapter 6 = EEPROM

107

Now, time to try that again with rReD. The value of cyan is 110, and reD is 001.
The first two bits are 1 in cyan and 0 in ReD. They return 0. The third bit is 0 in
cyaN and 1 in rRED. The logical anp process returns 000. There is no RED in cYaN
because cyAN AND RED returns 0.

To read boolean data, read the byte containing the data from EEPROM and
then perform a logical AND with the reference value. To create boolean data, you
must take an empty variable (initialized as 0) and then perform logical or opera-
tions with reference values. What happens if you want to update an existing
value? You already know how to set a bit, using a logical or, but to clear a bit,
you must use a logical NOT AND. NOT inverts a status; if it was previously TRUE,
it will become FALSE. By inverting the reference, you keep every bit that is set
except the one you want to clear. To toggle a bit, simply use the logical xor to
invert its status. xor, short for Exclusive or, will be true if and only if one of the
inputs is TRUE; if they are both TRUE, then the result will be FALSE.

Figure 6-3 shows a table of logical operators, showing the effect of each.

A B A|B A&B AMB ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0
OR AND XOR NOT

Figure 6-3: Logical operators

Following is a short example of how to perform bitwise operations. A bitwise
OR is performed using the | symbol:

value |= RED; // Bitwise OR. Sets the BLUE bit
To perform a bitwise AnD, use the & symbol:
vavalue &= ~GREEN; // Bitwise AND. Clears the RED bit (AND NOT RED)

And finally, to perform an exclusive or, use the * symbol:

value *= BLUE; // Bitwise XOR. Toggles the GREEN bit

Reading and Writing Strings

Strings are generally an array of char values and as such can be easily stored
and recalled. In Arduino, it’s possible to use a char array as a string, or you
can use the String data type for more robust data manipulation, at the cost of
program size. With character arrays, you can recall the entire allocated memory
and print it out as required.

108

Part Il = Standard Libraries

Suppose you need to store a string, defined as such:

char myString[20];

You can also set a string to a specific value when you declare it. Note that
while this array can contain up to 20 elements, not all of them have data.

char myString[20] = "Hello, world!";
You can store information in EEPROM like this:

int i;
for (i = 0; 1 < sizeof (myString); i++)

{

EEPROM.write (i, myString[i]) ;

}

This routine will write the contents of the string to EEPROM memory, one
byte at a time. Even if the string is only 5 bytes long, it will store the contents
of the entire array. That is, if you declare a char array of 20 elements and only
have valid data in the first 5 bytes, you'll still be writing 20 bytes to EEPROM.
You could make a more optimized routine that automatically stops when it
receives a null character: the end of a C string, but because this routine writes
to EEPROM memory that is not often (if ever) changed, there is no point to over-
complexifying the program. Reading a string is just as easy:

int 1i;

for (i = 0; 1 < sizeof (myString); i++)

{

myString[i] = EEPROM.read (i) ;

}

Again, the operation is the same; it will take 1 byte from EEPROM and place
it into the string, and repeat for each byte in the string.

Reading and Writing Other Values

If the EEPROM can only read and write bytes, how can you save the contents
of an integer or a floating point number? At first it might seem impossible, but
remember that in computers, everything is just 1s and 0s. Even a floating-point
number is written in memory as binary, it just occupies a larger number of bytes.
Just like with strings, it is possible to write just about anything in EEPROM
memory, by reading and writing 1 byte at a time.

Before beginning, you must know exactly what sort of data you need to read
and write. For example, on all Arduinos except the Due, an int is written as
2 bytes. By using techniques known as shifts and masks, it is possible to “extract”
bytes of data. Shifting takes a binary number and “shifts” data to the left or to

Chapter 6 = EEPROM

109

the right by a certain number of bits. Masking makes it possible to perform bit-
wise operations on a portion of a binary number. Take the following example:

void EEPROMWriteInt (int address, int wvalue)

{

byte lowByte = ((value >> 0) & OxFF);
// Now shift the binary number 8 bits to the right
byte highByte = ((value >> 8) & OxFF);

EEPROM.write (address, lowByte);
EEPROM.write (address + 1, highByte);

}

In this example, an int is to be saved into EEPROM. It contains two bytes:
the low byte and the high byte. The terminology “low” and “high” bytes is
used when a number is stored on several bytes; the low byte contains the least
significant part of the number, and the high byte contains the most significant
part of the number. First, the lowest byte is extracted. It simply takes the num-
ber and performs a bitwise AND with 0xFF. The ox in front of the letters tells the
Arduino IDE that this is a hexadecimal number. Just like binary, hexadecimal is
another way of printing a number. Instead of using only two values per figure,
hexadecimal uses 16. 0xFF is the hexadecimal representation of 255, the largest
number that a byte can hold. Then, the same value is shifted right 8 bits, and
again, an aND is performed. This is an elegant solution that can work for integers
but will not work for more complex numbers, like a floating-point. You cannot
perform shifts with a floating-point, more advanced techniques are required.

Several users have requested EEPROM functions to write any sort of data, one
possible solution is available in the Arduino Playground and is called EEPROM
Write Anything. If you want to write anything to EEPROM, look at this example
from the playground—but be forewarned, it uses advanced programming
techniques that are not covered in this book:

http://playground.arduino.cc/Code/EEPROMWriteAnything

Here is an extract of this code:

template <class T> int EEPROM writeAnything(int ee, const T& value)

{

const byte* p = (const byte*) (const void*)&value;
unsigned int 1i;
for (i = 0; i < sizeof(value); i++)
EEPROM.write (ee++, *p++);
return i;

}

Again, this code requires specific information: the exact size of the value to
save. Be careful when using int values; again, on the Arduino Due, they are a
different size than other Arduino boards.

http://playground.arduino.cc/Code/EEPROMWriteAnything

110

Part Il = Standard Libraries

Where possible, try to use byte-size values, but as you can see, it is possible
to store just about anything in EEPROM.

Example Program

In the previous chapter, you created a program that would greet the user, ask
for his name and age, and write some data to a serial port. However, when the
Arduino was unplugged, it forgot everything; the next time it was powered
on, it would ask for the same information. We’ll build on that same program
but now store the responses in EEPROM. The Arduino should first check its
EEPROM memory. If no information is found, it will ask the user some questions
and then store that information into nonvolatile memory. If the information is
found, it will tell the user what information it has and then delete the contents
of its memory. It is now clear that an Arduino knows its ABCs, so I removed
that portion of code from the example. The program is shown in Listing 6-1.

Listing 6-1: Example program (code filename: Chapter6 . ino)

#include <EEPROM.h>

1

2

3 #define EEPROM_DATAPOS 0
4 #define EEPROM AGEPOS 1

5 #define EEPROM_ NAMEPOS 2
6 #define EEPROM_CONTROL 42
7

8

9

1

char myName[] = {"Arduino"};
char userName [64] ;
0 char userAge[32];
11 unsigned char age;

12 int 1i;

13 byte myValue = 0;

14

15 void setup()

16 {

17 // Configure the serial port:

18 Serial.begin(9600) ;

19

20 // Does the EEPROM have any information?
21 myValue = EEPROM.read(EEPROM_DATAPOS);
22

23 if (myValue == 42)

24 {

25 // Get the user's name

26 for (i = 0; 1 < sizeof (userName); i++)
27 {

28 userName [i] = EEPROM.read (EEPROM NAMEPOS + 1i);
29 }

30

Chapter 6 = EEPROM

111

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

}

// Get the user's age
age = EEPROM.read (EEPROM_AGEPOS) ;

// Print out what we know of the user
Serial.println ("I know you!");
Serial.print ("Your name is ");
Serial.print (userName) ;
Serial.print (" and you are ");
Serial.print (age) ;

Serial.println(" years old.");

// Write zero back to the control number
EEPROM.write(EEPROMﬁDATAPOS, 0) ;

else

{

// Welcome the user
Serial.println("Hello! What is your name?");

// Wait until serial data is available
while(!Serial.available())

// Wait for all the data to arrive
delay (200) ;

// Read in serial data, one byte at a time
Serial.readBytes (userName, Serial.available());

// Say hello to the user
Serial.print ("Hello, ");
Serial.print (userName) ;
Serial.print (". My name is ");
Serial.print (myName) ;
Serial.println("\n") ;

// Save the user's name to EEPROM

for (i = 0; i < sizeof (userName); i++)
EEPROM.write (EEPROM_NAMEPOS + i, userName[i]) ;

// Ask for user's age
Serial.print ("How old are you, ");
Serial.print (userName) ;
Serial.println("?");

// Wait until serial data is available
while (!Serial.available())

// Wait for all the data to arrive
delay (200) ;

age = Serial.parselnt();

Continues

112

Part Il = Standard Libraries

Listing 6-1 (continued)

81

82 // Print out the user's age

83 Serial.print ("Oh, you are ");

84 Serial.print (age) ;

85 Serial.println("?");

86 Serial.print ("I am ");

87 Serial.print (millis()) ;

88 Serial.println(" microseconds old. Well, my sketch is.");
89

90 // Now save this to EEPROM memory

91 EEPROM.write (EEPROM_AGEPOS , age) ;

92

93 // Since we have all the information we need, and it has been
94 //saved, write a control number to EEPROM

95 EEPROM.write (EEPROM_DATAPOS, EEPROM_CONTROL) ;
96 }

97

98 }

99

100 void loop ()

101

102 // put your main code here, to run repeatedly:
103 }

So, what has changed? Well, the most visible change is that the code con-
cerning Arduino’s ABC recital has been removed. This example concentrates
on something else.

On line 11, the user’s age is now stored in an unsigned char. Originally
this was stored in an int, but this presents a problem for EEPROM memory.
Remember that in Chapter 4 you saw that int values stored from -32768 to 32767.
You won't need all those numbers; humans don't (yet) live that long, and in any
case, negative numbers aren’t necessary. The problem isn't the range; it is the
size of the container. On most Arduinos, an int is coded on 2 bytes (in the Due
it occupies 4 bytes). If you release your program as open source, you will have
no way of knowing which Arduino will be used. In addition, an int for an age
is a bad idea; it isn’t optimal. An unsigned char is always 1 byte and can handle
numbers from 0 all the way to 255. This will be easier to write to an EEPROM.

On line 21, the sketch reads data from the EEPROM. The exact location is
defined by EeproM_DaTAPOS. Of course, the function could have been called
directly with the number 0 (and this is exactly what the compiler is going to
do), but adding a #define makes the code more readable and also allows the
developer to change memory location without worrying about forgetting a call.
This makes everything neater. This sketch shows the persistence of nonvolatile
memory, and as such, it has to have a way of ignoring any data stored. To do
this, a “control” byte is allocated. The Arduino reads a value in the EEPROM. If it
receives the number 42, it presumes that the EEPROM contains valid information

Chapter 6 = EEPROM

113

and attempts to read that data. If the Arduino reads any other number, it asks
the user for information, writes that data to EEPROM, and then writes the
control byte.

Assuming that no valid EEPROM data has been found, the sketch is close to
what was already present in the previous chapter. On lines 50 and 76, the serial
call has been changed. At the end of the previous example, I asked you to try
and find a better way of listening for serial communication. This is one way of
waiting for serial data. What did you find?

On line 91, the sketch saves the contents of the variable age to EEPROM using
a single function call: EEPROM.write (). However, on line 65, the string userName
is saved 1 byte at a time. The entire string memory is written to EEPROM, but
you could tweak the code to write only what is needed. What would you write?

This brings the question: How do you organize memory? It is up to you,
the engineer and creator, to decide how the memory will be partitioned. This
example used position 0 as the control byte, position 1 as the age, and 20 bytes
from position 2 onward as a string containing your name. Don’t hesitate to use
a spreadsheet or some paper notes to map out your memory, to know what will
go where. An example is shown in Figure 6-4.

AGEPOS
0 l 7 8 15
PATAPOS L] USERNAME
| POSTCODE | TELEPHONE
TELEPHONE (cont.) %

Figure 6-4: Memory organization

Keep in mind that #define statements are easier to change rather than looking
through your code if you need to change something.

Preparing EEPROM Storage

One of the problems encountered with EEPROM memory happens the first
time a sketch is run. This sketch assumes that if a certain number is present
in the first block, then the rest of the information is valid. When running this
sketch on another system, you do not know what EEPROM contains. If you are
unlucky, the first byte will already contain the control number you're looking
for, but the rest of the data may not contain a valid age, or a valid name. This
could simply result in garbled text, but in another application, it might lead to

114

Part Il = Standard Libraries

significant problems. Imagine a small sensor that connects to the Internet to
upload temperature readings to a server. If the IP address is stored in EEPROM,
and that memory location does not contain valid data, then your application
will attempt to upload data to a server that does not belong to you.

To prevent this, some designers add a reset button to their project. By adding
a few lines to your sketch, you can erase EEPROM data in the case of a first-
time power on, or if the Arduino board were changed. Some applications use
the control number for error checking, adding several numbers throughout
EEPROM memory for more reliability. Or, you could use a second sketch, one
that you upload that sets EEPROM data exactly as you want, before reflashing
the final sketch. There are several solutions available; it all depends on what
solution is the best for you and your application. Don’t trust EEPROM contents
on a new system; take the time necessary to prepare the nonvolatile memory.

Adding Nonvolatile Memory

Arduinos have limited EEPROM memory that is sufficient for most programs,
but in some cases you might need to add EEPROM memory. Numerous EEPROM
components exist, for example the Atmel AT24C01A that adds 1 KB of memory,
or the AT24C16A that adds 16 KB of memory. However, these components are
connected to the I2C bus (explained in Chapter 8) and cannot be addressed by
the EEPROM library. The EEPROM library can handle only the internal EEPROM,
not external. If you want more external memory, it must be addressed by the
bus that it uses.

If you require large amounts of nonvolatile memory, other solutions exist.
Arduino shields exist that can accept SD or micro-SD cards. At the time of writ-
ing, micro-SD cards have capacities up to 128 gigabytes, more than enough for
most logging applications.

SD cards are based on flash memory, and as such, also inherit flash memory’s
weakness: write cycles. However, most SD cards have an internal controller
that implements something called wear leveling, a technique used to limit the
amount of write cycles to a specific place in memory. This greatly increases the
life expectancy of the flash memory, allowing for normal filesystem use, even
when files are frequently updated. If you need nonvolatile memory that is often
changed, consider using an SD-card shield. SD-card operation is explained in
Chapter 12.

Chapter 6 = EEPROM

115

Summary

In this chapter, you have seen how to read and write data to and from an
Arduino’s internal EEPROM memory. In the next chapter, I will explain SPI
communications, another form of serial communication used to talk to sensors
and exchange information.

SPI

This chapter discusses the following functions of the SPI library:

-

W setBitOrder ()
m setDataMode ()
|

setClockDivider ()

m transfer ()
The hardware needed to use these functions includes:

m Arduino Due
m Adafruit MAX31855 breakout board
m Type-K thermocouple wire, from Adafruit Industries
You can find the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 7
folder and the filename is Chapter7.ino.

http://www.wiley.com

118

Part Il = Standard Libraries

Introducting SPI

Serial data connections have been the backbone for computer communication
systems for decades. Reliable and sufficiently fast for most devices, they have
been used to communicate with modems, IC programmers, and computer-to-
computer communications for most of computing’s history. They use few wires
compared to other communications systems and are generally robust—qualities
that are useful for embedded systems and peripherals.

Serial communications are also used deep inside embedded systems where
space is critical. Instead of connecting a device to a 32-bit data bus, a simple
temperature sensor can, instead, be connected to the microcontroller via just a
few wires. It makes design simpler, cheaper, and more efficient.

Although serial connections have a lot of advantages, they also have disad-
vantages. Having a modem and a programmer requires a computer with two
serial ports; a serial port cannot (easily) handle multiple devices. One serial
port, one device. This is the same for microcontrollers and microprocessors;
most devices have at least one serial port, but it is difficult to find a device with
more than three RS-232 serial ports. Also, more ports mean more software—and
more tasks used to check the serial buffers. Also, a modem might be used for
long periods of time, but a chip programmer will be used for just a minute or
two, tying up a serial port for a single task that is rarely run.

SPI Bus

To allow multiple devices to be used on a single serial port, the SPI bus was
created. SPI is short for Serial Peripheral Interface and is indeed an interface to
devices, using a synchronous serial line capable of full-duplex communication
(meaning that both devices can send and receive at the same time).

SPI is a master/slave protocol; one master communicates with one or more
slaves. Communication is made with only one slave at a time; to communicate
with another slave, the master must first stop communicating with the first slave.
Slaves cannot “talk” on the network without being instructed to by the master.

To connect and talk to a slave, a master requires at least four wires. The “Master
Out-Slave In” (MOSI) and “Master In-Slave Out” (MISO) wires are used for data
communication; SCLK is a serial clock that regulates the speed of the commu-
nication; and SS (short for Slave Select) is used to select the peripheral. It’s not
uncommon to see SS referred to as CS (for Chip Select) in some documentation.

SS is a wire that “selects” a slave on a logical zero. The MOSI, MISO, and
SCLK wires are connected to every device on the SPI bus, and devices listen
only to the master and communicate if their SS wire is set to active low. This
allows for several slaves to be connected to a master on the same network. A
typical SPI bus is shown in Figure 7-1.

Chapter 7 = SPI

119

-

SCLK @ SCLK
MOS| L MOSE
ISC & MISS
5 5
E e —
553 Y

Slave #1

SP1 Master

Slave #2

Slave #3

Figure 7-1: An SPI network using several slaves

Comparison to RS-232

SPI is also simpler in design compared to RS-232 communications; RS-232
uses two wires (Tx and Rx), but it requires a set clock speed on both sides of
communication. The clock on both devices connected via RS-232 need to be in
agreement, preventing configuration problems or desynchronization. SPI masters
generate their own clock signal and send that signal to every device. SPI devices
are therefore normally simpler to design, cheaper to fabricate, and easier to use.

Another difference between SPI and RS-232 is the way data is sent. RS-232
was designed for long distance communications; SPI is not. It does not need to
handle signal noise like RS-232 and therefore does not require checksum bits.
This has one major advantage; where RS-232 communications have to send 7-bit
or 8-bit data, SPI can select any length it wants. Some devices send 8-bit data,
some send 16-bits, even devices using nonstandard lengths like 12-bits can be
found on the market.

Configuration

Although SPI does not require explicit configuration like RS-232 devices, it does
require a form of configuration. The clock signal is a digital signal, oscillating
between a logical one and a logical zero. Some devices will be active on a rising
edge (as the clock goes from low to high), and some will be active on a falling
edge (as the clock goes from high to low). Also, the clock can be configured to
be active low or active high.

120

Part Il = Standard Libraries

Also, because SPI are serial devices, bits are sent one at a time. Because of this,
you have to know if the device is expecting the most-significant bit first or the
least-significant bit first. Data is normally shifted out with the most significant
bit first.

One last configuration is the clock speed. The clock is generated by the mas-
ter, and as such, it is the master that defines the speed of the bus. Most compo-
nents have a maximum speed configuration; creating a clock signal above this
frequency results in corrupted data.

Communications

SPl is a master/slave protocol, and as such, the master initiates communication
with a slave. To do this, it pulls the slave’s SS pin low (while maintaining any
other SS wires high). This tells the slave that it is being addressed.

To communicate, the slave requires a clock signal, which will be generated by
the master. Each clock pulse results in a bit of data being transmitted; however,
some sensors (like the DHT-11 used later in this book) require a small timeframe
in which the conversion will be made. If this is required, the master must not
initiate the clock until the slave has had time to complete the conversion.

When the clock signal is generated, both the master and slave are free to com-
municate at the same time. In reality both devices do communicate at the same
time; the master transmits on the MOSI line, and the slave listens to that line.
At the same time, the slave transmits on the MISO line, and the master listens
to that line. Both happen at the same time, but some devices do not require
meaningful data to be received; a slave device that transmits only data receive
data from the master but it ignores all information sent to it.

When the master finishes, either sending the data it requires or retrieving
data, it normally stops the clock signal and deselects the slave.

Arduino SPI

The SPI bus on the Arduino is an exception compared to most other ports. On
select Arduinos, the SPI bus is present as a dedicated header—the ICSP header,
as shown in Figure 7-2.

The ISCP header has several uses, including bypassing the Arduino boot-
loader to program the microcontroller directly, (ISCP is short for In-Circuit
Serial Programming), but this is out of the scope of this book.

The ISCP port also normally exposes the SPI bus, depending on models.
The Arduino Uno, the reference model of the Arduino family, uses pin 11 and
ICSP-4 for the SPI MOSI signal. These pins are duplicates; they are electrically

Chapter 7 = SPI 121

connected. On the Arduino Leonardo, the MOSI pin is available only on the
ICSP header and cannot be output to any digital pins.

Figure 7-2: The ICSP header on an Arduino Uno

If you move on to designing your own shields, use the ICSP headers. Arduino
shields that use SPI cannot function on the Arduino Leonardo if they do not
use the ICSP header, and SPI is used for numerous connections (including
SD-card readers).

The ICSP header does not include any SS lines; only the MISO, MOSI, and
SCLK lines are exposed, together with power and ground connectors. Because
the Slave Select pin is not used to transfer data, but used only to tell a slave
that it will be addressed, any digital output pin can be used as a Slave Select.
This way, you can have an extremely large amount of slaves on your system;
however, remember that only one slave can be selected at any time; it is up to
you to drive all the outputs high when not talking to a slave.

Arduinos also have the possibility of becoming an SPI slave, and as such,
AVR-based Arduinos have an input SS pin. The Arduino SPI library can be
only a master, and as such, this pin must be configured as an output. Failure to
do so might make the Arduino believe that it is a slave and render the library
inoperative. On most Arduinos, this is pin 10, and on the Arduino Mega2560,
it is pin 53.

SPI Library

The Arduino SPI library is a powerful library designed to handle SPI commu-
nications simply and effectively. Most Arduino boards utilize the SPI library in
the exact same way, but there are notable differences if you're using an Arduino

122

Part Il = Standard Libraries

Due. Before discussing these extended methods, let’s review the standard func-
tions of the library.

To use the library, you must first import it. In the Arduino IDE, either go to
the menu, Sketch > Import Library = SPI, or add the library manually:

#include <SPI.h>
To initialize the SPI subsystem, you must first use begin ().

SPI.begin() ;

This function automatically sets the SCLK, MOSI, and SS pins to output,
pulling SCLK, MOSI LOW, and SS HIGH. It also sets the MISO pin as an input.

To stop the SPI subsystem, call end ():
SPI.end() ;

Ending the SPI subsystem frees up the I/O lines, letting you use them for
other uses.

To configure the SPI bus, three functions are available: setBitorder (), set-
DataMode (), and setClockDivider ().

setBitOrder () controls the way in which bits are sent on a serial line: the
least-significant bit (LSB) first or the most significant bit (MSB) first. This func-
tion takes one parameter: a constant, either LSBFIRST Or MSBFIRST.

SPI.setBitOrder (order) ;

setDataMode () sets the clock polarity and phase. It takes a single parameter,
the “mode,” for the SPI clock to use.

SPI.setDataMode (mode) ;

The mode parameter is one of four constants: SPT_MODEO, SPI_MODE1, SPI_MODE2,
and sp1_MoDE3. The difference between these four modes is listed in Table 7-1.

Table 7-1: The Different SPI Clock Modes

MODE CPOL CPHA EFFECT

SPI_MODEO 0 0 Clock base zero, capture on rising, propaga-
tion on falling

SPI_MODE1 0 1 Clock base zero, capture on falling, propa-
gation on rising

SPI_MODE2 1 0 Clock base one, capture on falling, propaga-
tion on rising

SPI_MODE3 1 1 Clock base one, capture on rising, propaga-
tion on falling

Chapter 7 = SPI

123

CPOL is short for Clock Polarity and tells the device if the clock is active on
a logical 1 or a logical 0. CPHA is short for Clock Phase and tells the device if
data should be captured on a rising edge (going from 0 to 1) or a falling edge
(going from 1 to 0).

Finally, the clock divider function, setClockpivider (), is used to set the
clock frequency in relation to the system clock.

SPI.setClockDivider (divider) ;

For AVR-based systems like the Arduino Uno, the divider parameter is a
numerical value: 2, 4, 8, 16, 32, 64, or 128. These values are available as constants:

SPI_CLOCK_DIV2
SPI_CLOCK DIV4

SPI CLOCK DIV8

-
-
-
= SPI_CLOCK DIV16
m SPT CLOCK DIV32
m SPI CLOCK DIV64
-

SPI_CLOCK_DIV128
By default, AVR systems using a system clock of 16 MHz use a divider of 4,
SPI_CLOCK_DIV4, resulting in an SPI bus frequency of 4 MHz.

V[AN The Arduino Due has more advanced SPI features that are explained in the
section “SPIl on the Arduino Due.”

To send and receive data on the SPI bus, use transfer ().

result = SPI.transfer(val) ;

This function takes a byte as a parameter, the byte to send on the SPI bus. It
returns a byte, the byte of data received on the SPI bus. transfer () sends and

receives only a single byte per call; to receive more data, call this function as
many times as needed.

SPI on the Arduino Due

The Arduino Due is not an AVR device but uses Atmel’s SAM3X8E: a micro-
controller based on ARM’s Cortex-ME design. It is a more powerful device and
has advanced SPI functionality.

The SPI library is almost the same on AVR devices and ARM-powered devices,
but changes slightly. When calling an SPI function, you must also add the SS
pin that will be used.

124 Partll = Standard Libraries

\[ol N3 The Extended SPI library for the Due is only available on Arduino 1.5 and
greater.

Most SPI devices are compatible, but as you have seen previously, there are
different modes, and sometimes you will have two SPI devices on your system
that use different modes. This can complicate designs greatly, forcing you to
reconfigure the SPI controller each time you change peripherals. The Arduino
Due has a way around this.

The Arduino Due can use pins 4, 10, and 52 as slave select. These pins must
be specified on each call, including the setup with sp1.begin():

void setup ()
// Initialize the bus for a device on pin 4
SPI.begin(4) ;
// Initialize the bus for a device on pin 10
SPI.begin(10) ;
// Initialize the bus for a device on pin 52
SPI.begin(52) ;

begin () is written in a different way:

SPI.begin(slaveSelectPin) ;

It takes one parameter, the slave select pin, to use. So why is this required?
This becomes obvious when configuring the SPI bus:

// Set clock divider on pin 4 to 21
SPI.setClockDivider (4, 21);

// Set clock divider on pin 10 to 42
SPI.setClockDivider (10, 42);

// Set clock divider on pin 52 to 84
SPI.setClockDivider (52, 84) ;

Each SS pin can have its own clock frequency, and the Arduino automatically
changes the clock frequency when talking to a particular slave. This also applies
to any configuration made:

// Set mode on pin 4 to MODEO

SPI.setDataMode (4, SPI_MODEO) ;
// Set mode on pin 10 to MODE2
SPI.setDataMode (10, SPI_MODE2) ;

The SPI system now automatically changes modes when talking to a particular
slave. To initiate communications, use transfer (), specifying the pin:

result = SPI.transfer(slaveSelectPin, val);
result = SPI.transfer (slaveSelectPin, val, transferMode) ;

Chapter 7 = SPI

125

Again, it takes a byte, val, and sends it on the SPI bus. It returns result as a
byte. However, you must also indicate the slaveselectpPin. This function has
an optional parameter, transferMode. Because the extended SPI library requires
you to specify the slave select pin, the library will change the outputs of the
slave select pin. By specifying the SS pin, this output is pulled low to access the
selected slave. By default, when a byte has been sent, the extended SPI library
will then output a logical one to the SS pin, deselecting the slave. To avoid this,
use the transferMode parameter. This parameter is one of two possible values,
as shown in Table 7-2.

Table 7-2: The Transfer Modes Available on the Arduino Due

TRANSFER

MODE RESULT

SPI_CONTINUE The SS pin is not driven high; it remains low. The slave is still selected.
SPI_LAST Specifies that this is the last byte to send/receive. The SS pin is driven

high; the slave is deselected.

By default, sp1_rasT is used. Please be aware that some SPI devices automati-
cally send data when they are selected; deselecting and reselecting the slave
after every byte can result in unexpected data.

To stop the SPI interface for a particular pin, use end ():

SPI.end(slaveSelectPin) ;

This terminates the SPI interface for this particular slave select pin, freeing
the pin for other uses, but keeps the SPI interface active if other slave select pins
were configured.

Example Program

For this application, you create a digital thermometer using a thermocouple. A
thermocouple is a temperature measuring device created by the contact of two
different conductors: differences in temperature from different points creates
voltage. The voltage generated is extremely small (often a few microvolts per
degree Celsius) so they are often coupled with amplifiers.

The major advantage to thermocouples is their price—just a few dollars per
cable. Their downside is their accuracy; they can sometimes be off by a few
degrees (type K typically has a +/-2° C to +/-6° C accuracy), but their tempera-
ture range more than makes up for this. A typical thermocouple can work with
temperatures between —200° C and +1000° C (-238° F to +1800° F). Although it
is not likely that such a device would be used in medical applications, they are
frequently used in the industry to monitor temperatures in ovens. To illustrate

126

Part Il = Standard Libraries

the temperatures that thermocouples can support, copper becomes liquid at
1084° C (1983° F) and gold becomes liquid at 1063° C (1946° F). They can there-
fore be placed in almost every oven, fire or barbecue. If ever you want to create
a smokehouse to make smoked salmon, a thermocouple is an excellent way to
keep track of the temperature directly inside the fire and on the racks.

Thermocouples do not report a temperature; rather, they report a temperature
difference between their hot junction (the tip) and the cold junction (the other
end of the thermocouple that is connected to the printed circuit board). To use
a thermocouple effectively, it is important to know the temperature on the cold
junction, and integrated drivers do this automatically.

The MAX31855 is a thermocouple driver, capable of working with a variety
of thermocouples. It has good accuracy, fast conversion, and excellent range.
(This device, coupled with a type K thermocouple, can register up to +1350° C
(+2462° F). Different thermocouples exist, using different metals and handling
different temperature ranges. A thermocouple driver must be connected to
the correct thermocouple to function. To communicate this data with another
device, the MAX31855 uses the SPI bus and is a read-only device. It outputs the
thermocouple temperature, reference junction temperature, and fault indicators.
The MAX31855 can warn when a thermocouple short occurs, or when the con-
nection is broken, making it excellent for industrial applications.

The MAX31855 is only available in a surface-mounted format (SO-8), but
Adafruit has created a small, reliable breakout board for this component. The
MAX31855 itself can support only 3.3 V power, but Adafruit have added volt-
age shifting onto its breakout board, allowing this component to be used by
both AVR (which typically operate at 5 V) and the Cortex-M (running at 3.3 V)
based Arduinos.

Hardware

For this example, you use an Arduino Due. The Due is a powerful device, pow-
ered by 3.3 V and with advanced SPI functionality. You also use an Adafruit
MAX31855 breakout board and thermocouple. This board has two connectors:
One is placed on the breadboard and the thermocouple connects to one. It
requires some soldering; the connectors are packaged with the card but not
connected, but it is easy to do and requires only a few minutes.

The Arduino Due has three slave select pins available; for this example, you
use the digital pin 10. The layout is shown in the Figure 7-3.

The layout is extremely simple; the breakout board is connected to the Arduino
Due’s 3.3 V power and also to the ground. The driver’s SS pin is connected to
digital pin 10; this is the slave select pin and will be pulled low when the Arduino
Due requests information from the MAX31855. The SPI clock on pin 21 is con-
nected to the breakout board’s clock connector. To read information from the

Chapter 7 = SPI

127

breakout board, the MISQO, pin 74, is connected to the breakout board’s data pin
(Iabeled DO). What about the Arduino Due’s MOSI, Master Out-Slave In? The
MAX31855 is a read-only device, and as such, does not require any data from
the master. To simplify the design, this pin was voluntarily omitted. So how
does the MAX31855 know when to send information? This device automati-
cally prepares to send data when its slave select pin is driven low. Temperature
conversions and fault detection are done continuously when the MAX31855 is
not selected, and as soon as the MAX31855 is selected via slave select (as soon
as SS is driven low), the conversion process stops, and it begins to transmit data.

fritzing

Figure 7-3: Hardware layout image created with Fritzing

The K-type thermocouple is connected to the breakout board, but be care-
ful of the polarity. The Adafruit thermocouple cable and breakout board come
with complete documentation on how to connect. Only the tip should be used
to sense the temperature. If the cable is too long, do not put more than neces-
sary inside the device you want to get a temperature reading from. Leave the
rest of the cable outside.

128

Part Il = Standard Libraries

There are several versions of the MAX31855 chip: one per cable type. The chip
on Adafruit’s breakout board can use only K-type thermocouples. Connect the
wire to the breakout board, being careful to use the correct polarity (red and
yellow wires).

Sketch

Now that the hardware is connected, it is time to deal with the software. This
sketch communicates with the MAX31855 through the SPI bus. The datasheets
explain how the data transmits. The MAX31855 sends 32-bits of data (unless
stopped by the slave select pin), corresponding to several pieces of information.
The transmission is shown in Table 7-3.

Table 7-3: MAX31855 Data Output

BIT NAME FUNCTION
D[31:18] 14-bit thermocouple tempera- Contains signed 14-bit thermocouple
ture data temperature
D17 Reserved Always reads as 0
D16 Fault Reads as 1 if a fault is detected, otherwise 0
D[15:4] 12-bit internal temperature Contains signed 12-bit cold junction
data temperature
D3 Reserved Always reads as 0
D2 SCV Fault Reads 1 if the thermocouple is shorted to
VCC
D1 SCG Fault Reads 1 if the thermocouple is shorted to
ground
DO OC Fault Reads 1 if the thermocouple is not
connected

The data is delivered in a 32-bit package, but there is something interesting
about the layout. It can be seen as two 16-bit values: bits D31 to D16 and D15
to DO. The first 16-bits contains everything that is essential: the temperature
detected on the thermocouple and a fault bit. If there is a fault, or if the user
wants to know the cold-junction temperature, then the second 16-bit value can
be read, but otherwise, it is not required.

Time to write the sketch as follows in Listing 7-1:

Listing 7-1: Digital Thermometer Sketch (filename: Chapter7.ino)

1 #include <SPI.h>

3 const int slaveSelectPin = 10;

Chapter 7 = SPI

129

o I o Ul

(o)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

void setup ()

{

Serial.begin(9600) ;

// Initialize the bus for a device on pin 10
SPI.begin(slaveSelectPin) ;

void loop ()

{

// Read in 4 bytes of data
byte datal = SPI.transfer (slaveSelectPin,

7

, SPI_CONTINUE
, SPI_CONTINUE
, SPI_CONTINUE) ;

, SPI_LAST); // Stop

)
byte data2 = SPI.transfer(slaveSelectPin,) ;
byte data3 = SPI.transfer(slaveSelectPin,

(

byte data4 = SPI.transfer(slaveSelectPin,

// Create two 16-bit variables
word templ = word(datal, data2);
word temp2 = word(data3, data4);

// Is the reading negative?
bool neg = false;
if (templ & 0x8000)

{

neg = true;

// Is the MAX31855 reporting an error?
if (templ & 0x1)

{
Serial.println ("Thermocouple error!");
if (temp2 & 0x1)
Serial.println("Open circuit");
if (temp2 & 0x2)
Serial.println("VCC Short") ;
if (temp2 & 0x4)
Serial.println ("GND short") ;
}

// Keep only the bits that interest us
templ &= O0x7FFC;

// Shift the data
templ >>= 2;

// Create a celcius variable, the value of the thermocouple temp
double celsius = templ;

// The thermocouple returns values in 0.25 degrees celsius

continues

130

Part Il = Standard Libraries

Listing 7-1: (continued)

54 celsius *= 0.25;

55 if (neg == true)

56 celsius *= -1;

57

58 // Now print out the data
59 Serial.print ("Temperature: ") ;
60 Serial.print (celsius) ;

61 Serial.println() ;

62

63 // Sleep for two seconds
64 delay (2000) ;

65 }

On the first line, the SPI library is imported. Because this is an Arduino Due,
version 1.5 or later of the Arduino software must be used. On line 3, a constant is
declared, naming the pin that will be used by the Slave Select. The sketch needs
this information. Because you will be using the extended library, the Arduino
will activate the slave select pin; you won't have to.

On line 5, setup () is declared. The serial output is configured on line 7, and
on line 10, the SPI subsystem is initialized for the one slave select pin declared
as a constant earlier: slaveSelectPin.

On line 13, 100p () is declared. This will contain all the SPI routines and print
the temperature. On line 16, an SPI read function is called. By calling an SPI read
with the slaveselectpin variable, the Arduino Due automatically pulls the slave
select pin low. For the MAX31855, this has the effect of initiating communication;
the MAX31855 will wait for a valid clock to write 32 bits of data to the master.
By using the sp1_coNTINUE variable, the slave select pin is maintained low.
Because you want to read 32 bits of data, and because the transfer () function
sends and receives 8 bits, this must be done four times. The first three are called
with the spT_CONTINUE parameter, but the fourth is called with the sp1_rasT
parameter on line 19, indicating that this is the last transfer, and the Arduino
should pull the slave select pin high. This is all done automatically.

The four calls have been made by sending the value zero. Because the MAX31855
is not connected to the MOSI pin, you can send any data you want; it will simply
be ignored.

The data is now contained in four bytes. The first temperature reading is 14-bits,
so it is now contained in 2 bytes, but how can that be used? The creators of the
MAX31855 have put a lot of thought into the data output, and the data can be
separated into two 16-bit values, or two “words.” To create a word from 2 bytes,
you can use word (). This function takes 2 variables in the form of 2 bytes, and
concatenates them into a word, a 16-bit value. This is done on line 22 and 23.

On line 26, a boolean is declared. According to the datasheet, bit 31 corre-
sponds to the sign of the temperature. This will be read now; the data will be

Chapter 7 = SPI

131

transformed later. On line 27, a logical AND is made, comparing the value to
0x8000; which is the bitmask, used to access a specific byte in the data (refer to
the discussion of “Reading and Writing Bits” in Chapter 6 for more information
on bitmasks). If the value is true, then the first bit is equal to one, meaning that
the temperature reading is negative, and the neg variable is updated.

Bit number 16 corresponds to a fault condition; if it is true, then the MAX31855
is reporting an error and a bitwise comparison is made on the second 16-bit
value where bits 0, 1, and 2 correspond to specific faults.

On line 45, a bitmask is created. The first 16 bits of data correspond to the
temperature, but you will not need all that information. By creating a bitmask,
you can filter out bits that do not interest you. In this case, the first bit, the sign,
isn’t required; it has already been placed in a variable. The last two are also of
no interest and are discarded. The data is still not usable in its current state; the
last 2 bits have been discarded and are equal to zero, but now the data has to be
“shifted”; pushing the bits right until they are aligned as required.

On line 51, a new variable is created, a double. On the Due, this type of vari-
able can contain floating point values with 64 bits of precision. Because the
MAX31855 returns values in increments of 0.25 degrees, using a double or a
float ensures that the decimal values are kept. First, the shifted 16-bit value is
copied into this variable, and then it is multiplied by 0.25; it now contains the
correct temperature in degrees Celsius.

Finally, the temperature might be negative. This is checked on line 55; if the
neg variable is true, then the value returned was negative, and so the tempera-
ture is multiplied by 1.

On line 59, this temperature is written to the serial port, and the Arduino is
told to wait for 2 seconds. The MAX31855 continues to monitor the temperature
and continues to convert that temperature. When sp1.transfer () is next called
through 1oop (), the MAX31855 communicates the temperature to the Arduino
without the need for waiting.

Exercises

This sketch displays the temperature in degrees Celsius but not in Fahrenheit.
Try to add a function to convert between Celsius and Fahrenheit. The conver-
sion is a simple mathematical formula; multiply the temperature in Celsius by
1.8, and then add 32.

The MAX31855 is designed so that the first 16 bits correspond to the tempera-
ture with an additional fault bit. The last 16 bits are not normally required for
normal operations; how would you modify the sketch to read the next 16 bits
only if a fault is detected.

132

Part Il = Standard Libraries

This sketch is designed to work with an Arduino Due, but you can modify it
to be used on an Arduino Uno. Try to make this work on an Arduino Uno by
using standard SPI commands.

Summary

In this chapter, you have seen how to communicate with sensors using the
SPI bus, and you have created your first sensor board. In the next chapter, you
will see another serial communications protocol commonly used on Arduino
projects: the I°C protocol.

This chapter discusses the following functions:

begin ()
beginTransmission ()
write ()
endTransmission ()
read ()

available ()
requestFrom()
onReceive ()

onRequest ()

The hardware needed to use the examples in this chapter includes:

Arduino Uno x 2
Arduino Due
Silicon Labs Sensor EXP board

You can find the code downloads for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 8
folder and individually named according to the code filenames noted through-
out this chapter.

133

http://www.wiley.com

134

Part Il = Standard Libraries

Introducing Wire

Connection wires I?C, short for Inter-IC bus, is a serial bus designed to enable
access to numerous devices. The Arduino’s hardware serial bus can connect
only to one device at a time, and SPI (see Chapter 7) can talk to three devices.
In 1982, Philips created the I2C standard, capable of addressing hundreds of
devices, using only two wires. It was first used to connect peripherals together
in a television set, but since then, I?C has been used in cars, computer systems,
and hobbyist electronics, to name a few. It is an easy and inexpensive way to
interconnect dozens (if not hundreds) of devices on a same network.

Originally, only a few I’C devices existed, but today there are hundreds of
devices. Temperature sensors, pressure sensors, accelerometers, displays, and
even EEPROM memory can all be accessed by I°C, using simple reads and writes.
An EEPOM device controlled by I°C is illustrated in Figure 8-1.

Figure 8-1: 12C EEPROM integrated circuit

IC is based on a master slave system; the master addresses slaves and requests
information. The slave then replies and remains silent until again asked to com-
municate by the master. The original I°C specification allowed communications

Chapter 8 = Wire

135

up to 100 kHz but numerous specifications existed. The newest in 2012 allows
for 5 MHz clock speeds.

Another name for I?C is the Two Wire Interface (shortened to TWI). This is
where the Wire library gets its name.

Connecting I1>C

I’C requires two data wires, as well as a common ground. The two wires are
called SDA (for Serial Data), and SCL (for Serial Clock). All devices in the I>C
network are connected to these two wires. Both SDA and SCL lines are open
drain, meaning that the devices can force their value low but cannot provide
power, which will be provided directly from the main power line. For I°C to
work, these two lines must be equipped with pull-up resistors, as shown in
Figure 8-2. The values are not critical, and values range widely; 4.7 kilohm resis-
tors are common. Arduinos have internal pull-up resistors that are automatically
activated on both the SDA and SCL lines when the I’C connection is initialized.
This is illustrated in Figure 8-2.

+5V

o H] lA lB lc

SDA
Figure 8-2: Pull-up resistors to SDA and SCL lines

Connecting multiple I°C devices is extremely easy; there is no notion of chip
select, chip activate, or any other mechanism. All SDA pins are connected
together, and all SCL pins are also connected together. The I’C protocol defines
which circuit is to respond.

I2C Protocol

I2C is a master/slave network; the master initiates the communication, and the
slave responds. Each I2C slave has a specific address, and the master must send
this address to the network for a slave to answer. The I?C protocol has several

136

Part Il = Standard Libraries

specifications, so care must be taken when choosing devices, as there is a lot of
confusion concerning addressing.

Address

The original I?C protocol specified 7-bit addressing and was later extended to
allow 10-bit addressing. Some vendors talk about 8-bit addressing, but techni-
cally, this does not exist. Here’s why.

I’C can send and receive data only in multiples of 8 bits—8 bits, 16 bits, and
so on. In 7-bit addressing, addresses are (of course) 7 bits long, and the last bit is
used to select a read or a write, for a total of 8 bits. In 10-bit addressing, things
are a little more complicated. There is still the R/W bit, but the first 5 bits are
sent as 11110, an address that is reserved in 7-bit addressing and is used only
to tell the system that another byte will follow with the address complement.
Figure 8-3 shows both 7-bit and 10-bit addressing.

A6 | A5 | A4 | A3 | A2 | A1 | AD |R/W| 7 hits

1111 (1]0/[A9]|A8 |RW A7 | A6 | A5 | A4 | A3 | A2 | A1 | AD | 10 bits

Figure 8-3: 7-bit and 10-bit addressing methods

Some vendors give 8-bit addresses for devices, but again, technically, they
do not exist. Vendors will give two values for 8-bit devices, both a read and a
write address. The first 7 bits will be the same, but the last bit will be 1 for a read
operation or 0 for a write operation. An example of this is shown in Figure 8-4.

Write Address: 0x90 Read Address: 0x91

i 0 0 1 0 0 0 O i 0 0 1 0 0 0 1
i 0 0 1 0 0 O

Figure 8-4: 8-bit addresses

When the master contacts a slave on the I?C network, it sends two vital pieces
of information; the address of the slave, and whether it is a read or write opera-
tion. When this information is received by the slaves, each slave compares the
address to its own. If a device has this address, it will send an acknowledge
signal (referred to as ACK), indicating that it is present on the network and that
the master can now issue instructions.

Chapter 8 = Wire

137

I’C devices tend to be small with few pins. (Most devices have the bare mini-
mum.) Therefore, it is rarely possible to configure your own addresses for these
devices. Most devices therefore have addresses that are specified by the manu-
facturer. On an ordinary computer network, it is easy to have dozens of the same
type of computer with a user settable IP address unique to each machine. On an
I2C network, this isn’t possible; two identical sensors will use the same address.
To allow developers to have several sensors in the same network, some devices
allow you to change the address depending on input pins. By connecting one
or several pins to either +5 V or 0 V, you can set part of the address (usually
the lower bits). You might therefore have several temperature sensors, using
addresses 0x90, 0x91, and 0x92, as shown in Figure 8-5.

+5V +5V
son | A0 B A0 B A0
soL —| tmrsa A | imrsa (A | imrsa A
A2 A2 A2
0x90 = 0x91 = 0x92 =

Figure 8-5: Configuring different addresses

Communication

I’C works on the master/slave scheme; a master either requests information from
a slave or gives information to a slave. The master is responsible for initiating
contact before releasing the bus so that a slave may communicate. Slaves can-
not “talk” without permission; a slave cannot warn the system of an action; the
master must poll for this information. This is the big difference between I*C
and standard serial communication; it is not full duplex, meaning that devices
cannot send data and receive data at the same time. Only one master is on an
I>C network (except for some specific configurations).

To talk to devices, I>C uses a system of registers. A register is a small memory
location on each device that can store data; it can be read or written to (some-
times both) depending on the type of data that is contained. For example, a
temperature sensor has a register that contains the current temperature. When a
master asks for information, it does not ask directly for the temperature; instead,
it asks for the contents of a register. A temperature sensor will, of course, have
a temperature register but might contain a configuration register (Celsius or
Fahrenheit), a warning register (when this temperature is reached, an external

138

Part Il = Standard Libraries

interrupt occurs), and possibly others with different specialized functions. To
read or write this data, you need to know several details:

m The slave address
m The register number
m [f it is a read or write operation

m The length of the data to be received

It is important to know exactly how much data is to be sent and received.
Each I’C device is different and will function in a different way. Devices that
have only one writable register might accept a single byte of data directly and
will place that byte into the register. Other devices with several writable regis-
ters might require you to send the register number, followed by the contents,
or maybe send the contents of all the registers in multiple writes. I°C describes
a way to send data and receive data, but for your own implementation, it is up
to you what you need.

All Arduinos have a pair of I’C pins. The Arduino Due has two separate
I2C buses, SDA and SCL, as well as SDA1 and SCL1. The pins reserved for I2C
operations are listed in Table 8-1.

Table 8-1: I°C Pins on Different Arduino Boards

BOARD SDA SCL

Uno A4 A5

Ethernet A4 A5

Mega2560 20 21

Leonardo 2 3

Due 20 21
Communicating

To communicate on the I?C bus, the Wire library must first be initialized. As
with all Arduino libraries, you must import the Wire library. This is done by
either adding the library from the Arduino IDE (Sketch => Import Library =
Wire) or by manually typing in the sketch.

#include <Wire.h>

To declare the Arduino as an I>C device, call wire.begin (). If the Arduino
is used as a slave, you must specify an address.

Wire.begin (address); // configures the Arduino as an I2C slave

Chapter 8 = Wire

139

Masters do not have an address because they are free to start communica-
tions whenever they want and automatically receive all responses. To declare
the Arduino as a master, call the wire.begin () command, without an address
parameter.

Wire.begin(); // configure the Arduino as an I2C master

Master Communications

On most projects, the Arduino is configured as an I2C master, sending mes-
sages to slaves and listening to the responses. To create an I°C message, you
must follow several steps:

1. Begin the transmission.
2. Write the data.

3. End the transmission.

This creates a custom I°C message to a specific slave. When a slave answers,
there is no encapsulation, and a write can be performed without beginning or
ending a transmission. Data requests are also encapsulated but are made by a
single function.

Sending Information

The I*C protocol specifies that master communication must be done in a single
transmission. To avoid breaks in the message, the message is first constructed
and completed before being sent.

To start sending data, the sketch must first begin a transmission structure by
using Wire.beginTransmission (). It takes one parameter, the destination address.

Wire.beginTransmission (address) ;

The sketch is then required to queue data, using wire.write () . This function
can be called in three different ways. It can be called with a byte as the param-
eter to be appended to the queue. A string can be specified, in which case each
byte of the string will be appended. An array can be specified with a second
parameter, the length of data to send. wire.write () will return the amount of
bytes appended to the message, but it’s not necessary to read this.

Wire.write(value); // append a byte

Wire.write(string); // append a string

Wire.write (data, length); // append an array with a specified number
of bytes

number =Wire.write(string); // store the number of bytes appended in
a variable

140

Part Il = Standard Libraries

Wire.endTransmission () specifies the end of the message, and sends it. This
function takes an optional parameter, the bus release parameter. If TRUE, a stop
message is sent, and the I°C bus is freed. If FALSE, a restart message is sent; the
I’C bus is not released, and the master can continue issuing orders. By default,
the bus is always freed.

Wire.endTransmission(); // send the message
Wire.endTransmission (stop); // send the message and close the connection

Wire.endTransmission () returns a status byte. Table 8-2 shows a list of
return values.

Table 8-2: Transmit Error Codes

RETURN CODE RESULT

0 Success

1 Data too long to fit in the transmit buffer
2 Receives a NACK on transmit of address
3 Receives a NACK on transmit of data

4 Unknown error

Requesting Information

When requesting information, the master performs a read operation, specify-
ing the destination and the number of bytes the slave should send. The entire
message is created using a single function: wire.requestFrom() . This function
takes two parameters and an optional third. First, the destination has to be
specified—which slave is to receive this message and send data? Second, how
much data is the master requesting? This is specified as the number of bytes.
Finally, an optional parameter specifies if the bus should be released.

Wire.requestFrom(address, quantity);
Wire.requestFrom(address, quantity, stop);

Wire.requestFrom() creates a message and immediately sends it on the I°C
bus. Now that the request has been sent, the master can wait for a message
using Wire.read () .

data = Wire.read(); // store the information in a variable

Wire.read () returns a single byte from the input buffer. For multibyte mes-
sages, this function must be called for each byte. Requesting a certain amount

Chapter 8 = Wire

141

of bytes does not mean that the slave will send that amount of data; it could be
less. To see if any data is available in the buffer, call wire.available ().

number = Wire.available() ;

Wire.available () looks at the buffer and returns the amount of bytes remain-
ing. It can be used with wire.read () to create a routine that does not block if
data is not available.

while (Wire.available()) // Repeat as long as there is data waiting

{

char ¢ = Wire.read(); // Read in one byte
Serial.print(c); // Print the byte

}

Slave Communications

Most people expect the Arduino to be an I*C master, controlling the network.
In some cases, it can be useful to have an Arduino as an I*C slave, especially
when several Arduinos are to be used. Arduinos also have a major advantage
over other I°C devices; you can specify any address you see fit. You can have
a total of 128 Arduino slaves on an I?C network, which should be more than
enough to fully automate your house.

You do not know when an I’C master will send or request information, and
a sketch cannot be told to hold indefinitely while waiting for information. To
allow a sketch to continue while waiting for an I>C request, the Wire library
allows you to create callbacks, functions that are called when an event occurs.
The I°C callbacks are wire.onReceive () (When the Arduino receives informa-
tion) and wire.onRequest () (When the Arduino is requested for information).

Receiving Information

Wire.onReceive () is called when a master sends information to a slave. To
create this callback, you must create a function. The name can be anything you
choose, but it must accept one parameter, an int (the number of bytes received
from the master).

void receiveData (int byteCount)

{

// Put your code here

}

Wire.onReceive (receiveData); // Create the callback

142

Part Il = Standard Libraries

When the Arduino slave receives an I°C communication, the Wire library
calls this function with the number of bytes received. To receive individual
bytes, call wire.read ().

data = Wire.read();

Just as when communicating as a master device, wire.read() reads 1 byte
from the I°C buffer and returns that data. Similarly, to know the amount of
remaining bytes in the I?’C buffer, call wire.available ().

number = Wire.available() ;
It is, of course, possible to mix the two functions together.

while (Wire.available())

{
data = Wire.read();
// Do something with data

}

Sending Information

When a slave Arduino is asked for information, the Wire library calls the function
previously registered by wire.onRequest (). Again, the name of the function can
be anything you want, but this one takes no parameters and returns nothing.

void sendData (void)

{

// Put your code here

}

Wire.onRequest (sendData); // Create the callback

You must then provide the data required by the master, using wire.write (),
explained previously.

Example Program

For this example program, you use two Arduinos: one acts as an I°C master,
and the second acts as an I*C slave. Both connect together using the I°C bus.
Because Arduinos have internal pull-up resistors, the resulting schematic is
extremely simple. The SDA pins of both devices are connected together, and
the SCL pins are also connected together. There is one last, important stage:
Both grounds are also connected—yes, three wires between the two devices. I
said that I*C is a two-wire solution, and it is. It was designed to be used inside
a single device, where the power supply and ground is normally identical. It

Chapter 8 = Wire

143

can also be used for inter-device communication, like in this project, but in that
case, the grounds must be connected.

The slave Arduino will turn on and off the on-board LED according to mes-
sages from the master. The master can send “0” to turn the LED off and “1” to
turn the LED on. It can also request a byte of data from the slave; this data will
be the current state of the LED. The master will also turn its LED on and off, so
you should see a perfectly synchronized pair of LEDs.

Time to start, so start with the slave. The code is simple as shown in Listing 8-1.

Listing 8-1: The Slave (filename: Chapter8bSlave.ino).

1 #include <Wire.h>

2

3 #define SLAVE ADDRESS 0x08

4 int data = 0;

5 int state = 0;

6

7 void setup ()

8

9 pinMode (13, OUTPUT); // Internal LED
10 Serial.begin(9600) ;

11 Wire.begin (SLAVE ADDRESS); // Initialize as I2C slave
12

13 // Register I2C callbacks

14 Wire.onReceive (receiveData) ;

15 Wire.onRequest (sendData) ;

16 |}

17

18 wvoid loop ()

19 |

20 // Nothing to do

21 delay (100) ;

22}

23

24 // Callback for data reception

25 wvoid receiveData (int byteCount)

26 {

27 while (Wire.available())

28 {

29 data = Wire.read();

30 Serial.print ("Data received: ");
31 Serial.println(data) ;

32

33 if (data == 1)

34 {

35 digitalWrite (13, HIGH); // Turn the LED on
36 state = 1;

37 }

38 else

continues

144

Part Il = Standard Libraries

Listing 8-1: (continued)

39 {

40 digitalWrite (13, LOW); // Turn the LED off
41 state = 0;

42 }

43 }

a4}

45

46 // Callback for sending data

47 void sendData ()

48
49 Wire.write(state); // Send the LED state
50 }

On line one, the Wire library is imported. On line 3, a value is declared, sLAvVE
apDRESS. This is the slave I*)C address, and it will be needed later by the master.

On line 7, setup () is defined. This function contains everything the sketch
needs to function correctly. Pin 13 is set as a digital output because this is the
pin that has an on-board LED. Serial communication is started, in case you want
to debug anything. On line 11, the I°C subsystem is initialized, and because an
address is specified (SLAVE_ADDRESS), this board will be an I°C slave. To be an
effective I°C slave, the sketch requires at least one of two callbacks to be present;
either when receiving or sending data. In this case, both are used.

On line 14, a callback is created to be called when data is received. This callback
registers the function receivebata (), declared on line 25. The second callback
is used when the slave is asked to provide data. It registers the function send-
Data (), which is declared on line 25.

Nothing happens in 1oop () . This sketch responds only to I?C messages, and
when the buffer is empty, it is not expected to do any work, so 1oop () is empty.

On line 25, receiveData () is declared. Thanks to the callback, this function
is called every time data is received on the I°C bus destined for this Arduino. It
requires one parameter, the number of bytes received as the parameter byte-
count. Due to the nature of this project, only 1 byte will be received at a time,
so each byte received is immediately handled. On other projects, this can be
used to detect the type of transmission.

On line 27, the sketch runs a while loop and continues to iterate so long as
data is available in the buffer. The byte is read into the data variable by wire
.read () on line 29. Finally, the LED is turned on if the byte received was equal
to 1 and turned off otherwise.

There is a second function, called sendpata (), defined on line 47. This func-
tion is simple; when a data request is received, it sends out 1 byte, the state of
the LED. Because this is an answer, there is no need to create a message; the
sketch is free to send a byte directly to the master, as ordered.

Now that the slave is programmed, it is time to create the master sketch. The
code is shown in Listing 8-2.

Chapter 8 = Wire

145

Listing 8-2: Master Sketch (filename: Chapter8bMaster.ino).

1 #include <Wire.h>

2

3 #define SLAVE ADDRESS 0x08
4 int data = 0;
5

6

7

8

int state = 0;

void setup ()

{
9 pinMode (13, OUTPUT); // Internal LED
10 Serial.begin(9600) ;
11 Wire.begin(); // Initialize as I2C master
12}
13
14 wvoid loop ()
15 {
16 Wire.beginTransmission (SLAVE_ADDRESS); // Prepare message to slave
17 Wire.write(1l); // Send one byte, LED ON
18 Wire.endTransmission(); // End message, transmit
19 digitalWrite (13, HIGH); // Turn the LED on
20
21 delay(10); // Give the slave time to react
22 printLight (); // What is the slave's status?
23
24 delay (1000) ;
25
26 Wire.beginTransmission (SLAVE ADDRESS); // Prepare message to slave
27 Wire.write(0); // Send one byte, LED OFF
28 Wire.endTransmission(); // End message, transmit
29 digitalWrite (13, LOW); // Turn the LED off
30
31 delay (10); // Give the slave time to react
32 printLight () ; // What is the slave's status?
33
34 delay (200) ;
35 |}
36
37 wvoid printLight ()
38
39 Wire.requestFrom(SLAVE ADDRESS, 1); // Request 1 byte from slave
40
41 data = Wire.read(); // Receive a byte af data
42 switch (data)
43 {
44 case 0:
45 Serial.println("LED is OFF");
46 break;
47 case 1:

continues

146

Part Il = Standard Libraries

Listing 8-2: (continued)

48 Serial.println("LED is ON") ;

49 break;

50 default:

51 Serial.println ("Unknown status detected");
52 break;

53 }

54}

This sketch starts the same as the slave sketch; the Wire library is imported,
and the address of the slave is defined. setup () is almost identical, except on
line 11, begin () does not take an address parameter because this is the master.

Unlike the slave sketch, the master sketch uses 1oop (). It is designed to tell
the slave to turn on its LED, wait for a few milliseconds, and then tell the slave
to turn off its LED. After each transmission, it requests a byte of information to
know the current state of the LED.

On line 16, the sketch begins creating a message. Wire.beginTransmission ()
requires one parameter, the destination address, which in this case is the slave
Arduino. A message is created in a buffer but not sent. The Arduino auto-
matically formats the message as required. On line 17, a byte is added to the
message—a simple value: 1. According to the project specifications, sending a
1 to the slave turns on the LED. The instruction is added, but the message is
not complete. Another step is required: Wire.endTransmission (). On line 18,
that is exactly what is done. By using default settings, the message is sent and
the I°C bus is freed.

To illustrate what is going on, the master also turns its LED on and off. This
is what is done on line 19. On line 22, printLight () is called. This function is
declared on line 37. It requests a byte from the slave, and prints the result in
readable format.

To request data from a slave, wire.requestFrom() is called. This is done on
line 39. The first parameter is the address; in this case, the slave. The second
parameter is the number of bytes to return—in this case: a single byte. When
the order is sent, the sketch waits for a read () operation to complete, on line
41. That data is then fed into a switch statement, and the data is printed to the
serial line.

When the sketch finishes turning the slave’s LED on, the entire process is
repeated with an order to turn the LED off.

Exercises

This sketch can control one LED by sending 1 byte, telling the slave to either
turn the LED on or off. By sending 2 bytes, you could tell the slave to turn on one
of several LEDs. Try to modify this sketch to turn on several LEDs. Remember

Chapter 8 = Wire

147

that the I?C protocol can send bytes and request bytes. It is up to you to decide
how to inform the slave of your intentions. What solution did you come up with?

Traps and Pitfalls

The I°C protocol is rather complex, and as such, problems can arise. They are
normally easily fixed, and most electronic components use the standard I°C
revision, simplifying usage.

Voltage Difference

Most Arduinos are powered by 5 volts, but some I?C circuits can be powered by
3.3V, sometimes even lower. If you need to use 3.3-V devices (like the example
in this chapter), then you have three choices. You could use a 3.3-V device like
the Arduino Due. This was the solution chosen for this chapter. You could also
use a level shifter, an electronic component that can convert a 3.3-V signal to a
5-V signal. The third option is to use a 5-V device anyway, but there are risks.

The I°C is an open drain bus, meaning that power is not supplied by the
components, but rather by the power lines themselves using pull-up resistors.
The Arduino’s I’C pins have internal pull-up resistors that are automatically
activated, pulling the line to 5 V. If you include external pull-up resistors to
a 3.3-V power rail (like the one supplied by an Arduino), then the end result
will be a voltage level slightly above 3.3 V. Most devices can handle up to 3.6 V
without a problem.

The input voltage is also a problem. The Atmel AVR specifications say that an
I’C input is considered high when it reaches and surpasses 0.7 times the power
voltage. For a 5-volt system, this means the signal must reach 3.5 volts. With two
external pull-up resistors to a 3.3-V rail, this is achieved, but there is little margin
for error. It could work, and in practically all cases, it does, but be aware of the
technical implications. I have never heard of either an I°C device or an Arduino
being damaged by this technique, but if you are making a long-term project
or a professional board, you might want to consider using other techniques.

Bus Speed

Numerous bus frequencies exist for I’C; the original bus speed was 100 kHz, but
additions allowed 400 kHz, 1 MHz, 3.4 MHz, and 5 MHz speeds. Components
using the Ultra Fast Mode transfer speed (5 MHz) are rare and heavily specialized.

148

Part Il = Standard Libraries

Most standard components use the 100 kHz bus speed. Be aware that you can-
not mix bus speeds; all components use the same bus speed as defined by the
master. Arduinos are programmed to use a 100 kHz clock speed. It is possible
to change this speed, but it involves editing the source code of the Arduino
programming environment, which is out of the scope of this book. For stan-
dard Arduino applications, the bus is limited to 100 kHz, which is sufficient
for most sensors.

Shields with I>C

Some shields require the presence of I°’C, but this is a problem for some boards. If
you use an Arduino Uno, the I2C pins are A4 and A5. However, on the Arduino
Mega 2560, I’C is on pins 20 and 21, so shields requiring I°C that work on the
Uno will not work on the Mega 2560. Be careful if using a shield with I°C.

Summary

In this chapter, you have seen how to connect I?C devices, and how to com-
municate with them. You have also seen how the Arduino can become an I’C
master, and how to configure it to become an I°C slave.

In the next chapter, you will consider the Ethernet protocol and how it is used
to network computers together. I will show you how to connect your Arduino
to a local network, how to configure the board, and how to communicate both
as a client and as a server.

Ethernet

This chapter discusses the begin () function. The hardware required to run the
examples in this chapter includes:

m Arduino Uno
m Arduino Ethernet Shield
m Light Dependent Resistor

You can find the code download for this chapter at http://www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 9
folder and the filenames are:

B Chapter9client.ino

M Chapter9server.ino

Introduction

The first personal computers were not connected to each other; they were stand-
alone devices, designed to calculate input from a user and to output the result
of calculations to the same user. When files needed to be transferred from one
machine to another, floppy disks were used.

149

http://www.wiley.com

150

Part Il = Standard Libraries

The advances made in computer science also meant that files became bigger;
because computers had more memory and could do faster calculations, the results
could also be bigger. Soon, disks became too small to exchange information.
Precious time was lost when data was to be retrieved; a desktop computer
simply could not store all the information it required, and when modifications
were made to a file on one computer, other computers would not be aware of
changes. It became obvious that this had to change and that computers had to
talk between themselves.

Serial communication had been used before computers existed and was an
early means of connecting two computers. However, its speed made this type of
link impractical. In addition, it could connect only two computers to each other.
Engineers designed some interesting ways to connect three or four computers
together using serial links, but the technology simply could not link computers
the way they are today.

Again, it was a military need that boosted the industry. In the late 1950s, one
of the first uses of networked computers was with military radar. Soon after-
ward, the aviation sector took over, and two airline-booking mainframes were
connected. The question remained, how many computers would need to be
connected? Dozens? Hundreds? Thousands, maybe? At the time, nobody could
have imagined the impact of what they were working on and could certainly not
have dreamed of the Internet. In 1969, three universities and a research center
were linked together using 50-kilobit network lines. Research notes could be
shared, and messages could be sent from researcher to researcher.

More and more companies and institutions saw the need to connect their offices
and centers, and thousands upon thousands of machines were being networked
into small, independent networks. With the need for more and more computers
on the same network, the original networking designs could not keep up with
the rise in traffic. Networking architectures became a system administrator’s
nightmare; in some cases, adding a computer onto a network forced all the
other devices to disconnect before attempting to reconnect. Something needed
to be done, both in making networks larger and allowing them to connect over
greater distances. In 1973, the Ethernet standard was proposed in Xerox PARC.
It was commercially introduced in 1980 and standardized in 1983. The original
version proposed a high-speed throughput—10 megabits, or ten million bits
of data per second. This speed was later increased to 100 megabits and then
1 gigabit—the highest speed available in home networks. Ethernet supports
speeds up to 100 gigabits per second.

Ethernet

Ethernet describes the physical connection between two or more computers;
the electronic signaling between devices, and the physical format of the cables.

Chapter 9 = Ethernet

151

Several other network technologies have been used in computing, such as token
ring and ARCNET, but Ethernet remains the dominant system in place today.

Ethernet Cables

Ethernet describes both twisted cable and fiber optic cables, but for most home
and office use, you will find only a twisted pair cable, a cable where the two ele-
ments are twisted around each other to cancel out electromagnetic interference.
The cable comes in several categories, but the physical connectors are the same
as shown in Figure 9-1.

Figure 9-1: Ethernet cables

The advantage to Ethernet cables is their flexibility. Both ends have the same
connector, and either end can connect to any device. Cables come in many different
lengths—from the shortest (used to connect switches together) to the longest (used
sometimes to connect two buildings together to form a network).

Category 6 cables are used on gigabit networks or networks that can send
one thousand million bits of data per second. They have strong electromagnetic
shielding, making them heavier and harder to bend than the previous Category
5 and 5e cables, and they are more expensive. Category 5e can be used on gigabit
networks, but they have a lower signaling speed and are more susceptible to
electromagnetic interference. Arduino Ethernet interfaces normally operate at
10- or 100-megabit speeds, so Category 5e cables are sufficient.

Switches and Hubs

A standard Ethernet cable can be used to connect two computers together,
but to connect more than two computers, you must use a special device.

152

Part Il = Standard Libraries

Hubs are relatively old technology and are used to connect multiple computers
and devices together. An eight-port hub could connect eight computers, or even
be used to connect to more hubs, allowing large networks of devices. Hubs were
cheap but had a downside; they took packets, small pieces of information that
are assembled together to form a larger message, and forwarded them to every
device in the network, even to those that were not supposed to receive this
information. All computers on a network therefore filtered all incoming traffic,
and multiple communications could not happen at the same time. To avoid this,
switches were developed.

A switch is a network device that receives packets of data and can inspect
that packet to know where it is supposed to go. When it has that information, it
sends that packet to the correct port—and only to that port. All other devices on
the switch are free to communicate during this time. Today, it is becoming hard
to find hubs, but switches are readily available. On the back of your modem,
you probably have some RJ45 connectors for Ethernet cables; the chances are,
that is a switch.

PoE

Power over Ethernet, or PoE, is a way of powering remote devices directly by
the Ethernet cable.

Power is transmitted over a twisted pair, and as such, cables using PoE are not
normally gigabit-capable. There are exceptions, but they are currently expensive.

Arduinos are not normally PoE devices and cannot be used with a PoE-
powered cable, unless an optional module is supplied. The Arduino Ethernet
has an option to allow PoE, allowing the Arduino to be powered directly from
the cable. This means that your Arduino does not need to be powered by a bat-
tery, USB, or through the barrel jack connector, but it does require the Arduino
to be powered by a PoE-capable switch or injector. Imagine a network cable
running through your garden, powering an Arduino sensor in a place where
you do not have mains power.

TCP/IP

Ethernet is a physical means of connecting computers together in small or large
networks, but to allow programs to talk to each other, an application layer is
required. The most commonly used is TCP/IP.

The TCP/IP protocol is relatively complex, but for most day-to-day usage, it is
easy to understand. Each device has an address, and data is sent to that address.

Chapter 9 = Ethernet

153

MAC Address

The MAC address is the hardware address of the network connector. Each
device has its own specific address, and in theory, no two devices should have
the same MAC address.

IP Address

This address is defined by the user or by the network administrator. It is the
address used to identify a network device, both for sending information and for
receiving. It is possible to have devices that use the same address, and indeed,
this happens every day. Your modem probably has a local address like 192.168.0.1,
and your neighbor might have this address, too.

IP addresses are made out of 4 bytes. Normally, the first 3 bytes are the net-
work, and the fourth is the machine on that network. The network 192.168.0.XXX
is an “internal” network, one that is shielded from the Internet. You can add
any devices.

DNS

Humans are good at remembering text but not so good at remembering num-
bers. When you want to connect to Wiley’s Internet site to get more information
about new books, you can enter http://www.wiley.com into your browser. This
address, however, does not name a machine; machines can be contacted only
by their IP address. You can almost certainly remember the text www.wiley
.com, but could you remember 208.215.179.146? Probably not. To counter this,
DNS was invented. DNS, short for Domain Name Service, is a large database
that translates human readable domain names (like www.wiley.com) into the
more difficult IP address system. All the code presented in this book is available
on Wiley’s website, and to download the code, you need to enter Wiley’s web
address into your browser. Your browser might not know Wiley’s IP address,
and if it doesn't, it will send a request to a DNS server. The DNS request will
say, “Hey, could you please tell me the address of www.wiley.com?” The DNS
server will respond with either the IP address of the request, or an error message
if it does not exist. Your browser can then contact Wiley’s server.

Port

To connect to a server (a machine that will provide a service), a client (some-
thing that requires this service) requires two things: the address of the server

http://www.wiley.com
http://www.wiley
http://www.wiley.com
http://www.wiley.com?%E2%80%9D

154

Part Il = Standard Libraries

(or a domain name that will later be converted to an IP address) and a port. It
is not something physical; it is represented only in software.

Imagine you want to create a web server. You install the required software, and
your computer is connected to the Internet. You are now ready to go. Computers
can now connect to your server and view your web pages. Now imagine you
want to create an FTP server on the same computer as the web server. How
can you do that? How can the server understand what the client wants? This
is where ports come in.

A server program creates a port, and a client connects to that port. Some ports
are standard; others are created randomly. A web server will always be opened
on port 80, and your Internet browser will automatically attempt to connect to
port 80 when you add an Internet address beginning with http. When using
secure HTTP, the browser connects to port 443. It is also possible to tell the
browser to which port you want to connect by specifying the port; just add a
colon and the port number at the end.

Port numbers range from 1 to 65535. Port numbers 1024 and below are reserved,
and most computers require administrative rights to open a low port. High
ports, from 1025 upward, can be opened with non-administrator programs.
When playing a multiplayer game, the server almost certainly uses a high port,
and clients know which port to connect to. (For example, Minecraft uses port
25565 by default.)

Ethernet on Arduino

Most Arduinos do not come with Ethernet support. The Arduino Ethernet is an
exception; it remains close to the Arduino Uno design and has an Ethernet port
with optional PoE support. The Arduino Yun also has an Ethernet connector,
but the Arduino Yun is two machines in one. An Arduino “talks” to an Atheros
processor, running a Linux distribution that handles network connectivity. The
Arduino Tre has a similar interface; an Arduino “talks” to a Cortex-A8 micro-
processor that has an Ethernet connector. This chapter covers only Arduino
boards with an Ethernet chip addressed directly by an Arduino-compatible
microcontroller: the Arduino Ethernet and any Arduino with an Ethernet shield.

Importing the Ethernet Library

To import the Ethernet library, you can use the Arduino IDE. Go to Sketch =
Import Library = Ethernet. Doing so imports a relatively large amount of libraries:

#include <EthernetClient.h>
#include <EthernetServer.h>
#include <Dhcp.h>

Chapter 9 = Ethernet 155

#include
#include
#include
#include

<Ethernet.h>
<Dns.h>
<EthernetUdp.h>
<util.h>

Depending on your application, you may not need all these libraries. Some
projects might not use an Ethernet server or might not require DNS, but it is
best to start off with all the libraries and remove them later if required.

Starting Ethernet

Like many libraries, the Ethernet library is initialized with begin (). This func-
tion can be called in different ways, depending on your needs:

Ethernet
Ethernet
Ethernet
Ethernet
Ethernet

.begin (mac) ;
.begin(mac, ip);

(

(
.begin(mac, ip, dns);
.begin(mac, ip, dns, gateway) ;
(

.begin(mac, ip, dns, gateway, subnet);

In all cases, begin () requires a MAC address. The MAC address is either
supplied on a sticker attached to the Arduino or Ethernet shield, or you have
to invent your own.

m Do not use the same MAC address for multiple devices. These
numbers are designed to be unique, and two identical MAC addresses on the same
network will result in both devices having connectivity problems. Switches have
an internal MAC table, and when it receives a packet, it updates the table. Packets
will then be forwarded to this host until the switch receives a packet from the other
device. On most switches, this will cause intermittent reachability, and on some

advanced switches, one device will be deactivated and cannot connect.

The MAC address is typically represented as an array of six hexadecimal bytes:

// The MAC address for this shield:
byte mac[] = { 0xDE, OxAD, OxBE, OxEF, OxFE, OxED };

For projects where multiple devices will be used or sold, consider placing the
MAC address in EEPROM. (EEPROM is presented in Chapter 6.)

If begin () is not supplied an IP address, it issues a DHCP request to configure
itself automatically. begin () returns an int; 1 if the DHCP server was contacted
and DHCP information was received. Otherwise, it returns 0. All other uses of
begin () require an IP address, and do not return anything. To use this func-
tionality, you must import “Dhcp.h” and make sure your router can assign IP
addresses through DHCP.

156

Part Il = Standard Libraries

The IP address is supplied in the form of an array of bytes:

// The IP address for this shield:
byte ip[] = { 192, 168, 0, 10 };

This IP address will be used on the local network. The pns and gateway
parameters are optional; if omitted, they default to the same IP address with
the last octet set to one. The subnet parameter is also optional; if omitted, it
defaults to 255.255.255.0.

When the IP address has been obtained by DHCP, you can retrieve the IP
address from the Ethernet controller via localIp ().

Ethernet.localIP(); // Retrieve the IP address
If no parameters are specified, the IP address is returned as a string.
Serial.println (Ethernet.localIP()) ;

It is, however, possible to obtain the IP address in byte format, by specifying
a byte to read.

Serial.print ("My IP address: ");

for (byte thisByte = 0; thisByte < 4; thisByte++)
// print the value of each byte of the IP address:
Serial.print (Ethernet.localIP() [thisByte], DEC) ;
Serial.print(".");

}

Serial.println() ;

DHCP leases are only available for a certain time; to maintain a DHCP lease,
you must specifically request a renewal. On most servers, this will re-issue
the same IP address, but on some systems this might result in a change of IP
address. To renew a DHCP lease, call Ethernet .maintain ().

result = Ethernet.maintain() ;

maintain () returns a byte, depending on the DHCP answer. Table 9-1 lists
the values returned by this function.

Table 9-1: maintain() return codes

RESULT DESCRIPTION

0 Nothing happened

1 Renew failed

Renew success

2
3 Rebind fail
4

Rebind success

Chapter 9 = Ethernet

157

In the previous connection example, the IP address was defined as an array
of bytes:

byte ip[] = { 192, 168, 0, 10 };

It is possible to use the 1paddress class to simplify writing a list of IP Addresses.
The IP Address class takes four parameters; the four parts of an IP address.

// The DNS server IP

IPAddress dns (192, 168, 0, 1);

// The Router's address (the gateway)
IPAddress gateway (192, 168, 0, 1);

// The IP subnet

IPAddress subnet (255, 255, 255, 0);
// The Arduino's IP address
IPAddress ip (192, 168, 0, 10);

Ethernet.begin(mac, ip, dns, gateway, subnet);

Arduino as a Client

The Arduino is an excellent Ethernet client; it can reliably initiate connections to
servers, send data from sensors, and receive data from the server. When using
the Arduino as a client, you must use the EthernetClient object.

EthernetClient client;

A client connects to a server. The term “server” designates any network con-
nected device that a client connects to fetch or upload information. On a home
network, this can be just about anything. Most home modems have an internal
web server that allows you to configure it and to look at statistics. Your com-
puter might have a server application installed (either a web server or an FTP
server), and even if your PC is a client to the modem, it can still be a server for
other devices.

A server is therefore just about anything—a computer, a network device, even
another Arduino. A client is also just about anything, even a piece of hardware
that requires the service provided by a server. The client must connect to the
server, and in Arduino you make a connection with connect (). To connect to
a server, you need one of these two things: either the IP address of the server
or the domain name and the port.

result = client.connect (ip, port);
result = client.connect (dns, port);

The ip parameter is either an array of 4 bytes or an IPAddress object. The port
parameter is an int and is the port on the server to which you want to connect.

158

Part Il = Standard Libraries

The dns parameter is a string and is the domain name to connect to. It is auto-
matically converted to an IP address via a DNS query.

connect () returns a boolean: true if the connection is made, otherwise it
returns false.

It is possible to check the status of a connection calling client.connected().

result = client.connected() ;

This function does not take any parameters and returns true if the client is
still connected and false if it is no longer connected. Note that if data is still
waiting to be read, then this function returns true, even if the connection has
been severed.

To disconnect from a server, use stop ().

client.stop() ;

This function takes no parameters and does not return any data. It simply
severs the network connection.

Sending and Receiving Data

Sending and receiving data is done through a stream; data can either be written
in binary format or in text format. To send text data, use print () and print1n().

client.print (data) ;
client.print (data, BASE);
client.println() ;
client.println(data) ;
client.println(data, BASE);

The difference between print () and println() is that println() adds a
new line character to the end of the string. The data parameter is the string or
data to print, and the optional BAsE argument is the numerical system to use.
The data parameter is either a string or an array of char.

To write binary data, use write ().

client.write(val) ;
client.write(buf, 1len);

The val parameter is a byte to send over the TCP/IP link. The buf parameter
is an array of bytes, and the 1en parameter specifies the number of bytes to send.
To read from the network socket, use read ().

data = client.read() ;

This function does not take any parameters and returns the next byte in the
stream, or —1 if no data is available. To check if data is waiting to be read, use

available ().

result = client.available();

Chapter 9 = Ethernet

159

This function does not take any parameters and returns the number of bytes
waiting in the buffer.

This allows an Arduino to connect to a server and to exchange stream infor-
mation, but how exactly is that useful for your application? Almost all protocols
rely on an exchange of stream information, including HTTP, FTDP, and other
common protocols.

Connecting to a Web Server

Web servers also stream data. Each connection is made to port 80 of the web
server and can be done in plaintext. After all, before graphical interfaces, all
the web was viewed as simple text.

To help as an example, I have uploaded a file to my web server called hel-
loarduino.html. It is located at the following address:

http://packetfury.net/helloarduino.html

If you open this in a web browser, you will be greeted by a simple sentence:
Hello, Arduino! To understand how an Arduino, and indeed any web browser
works, try to connect to the web server using telnet, a protocol used to connect
to a server using a text-oriented message. This utility is standard on Linux and
Mac OS systems, and can be run by opening a terminal and entering telnet
<IP> <ports>asacommand. Ip is the IP address of the server you want to con-
nect to, and port is the port of the service you want to connect to. For a web
browser, this will be 80. For a Windows machine, a download is required. PuTTY
is a very nice, free application that lets you connect to services. It is available at
http://www.putty.org.

telnet packetfury.net 80

This program creates a connection to the specified host on the specified port.
Here, you connect to packetfury.net on port 80. Normally, a web server listens
to connections on port 80. You should be greeted with something that looks
like this:

jlangbridge@desknux:~/Downloads$ telnet packetfury.net 80
Trying 195.144.11.40...

Connected to packetfury.net.

Escape character is '"]'.

After a short time, you will get another message:

HTTP/1.0 408 Request Time-out
Cache-Control: no-cache
Connection: close
Content-Type: text/html

http://packetfury.net/helloarduino.html
http://www.putty.org

160

Part Il = Standard Libraries

<html><body><h1>408 Request Time-out</hl>

Your browser didn't send a complete request in time.
</body></html>

Connection closed by foreign host.

Web servers expect a request fairly quickly after creating a connection. It
keeps the number of connections low, but also web browsers are supposed to
be fast and connect only when the user has specified an address. You still have
a few seconds to send a message, though.

To get a web page, you must inform the web server that you want to GeT a
document. Afterward, specify the document name. Then, specify the protocol;
in this case use HTTP/1. 1. Finally, specify the host. Remember, some web serv-
ers host multiple websites. For example, you want to GeT the webpage called
helloarduino.html from my website. You first tell the server that this is a GET
request, then specify the web page itself, followed by the protocol. On a second
line, you specify which web server you want the page from. The formatted http
request looks like this:

GET helloarduino.html HTTP/1.1
Host: packetfury.net

To do this, open up a telnet application. Telnet requires two things: the server
to connect to and a port. The server is packetfury.net, the name of the website.
The port is 80. Enter the request text:

GET helloarduino.html HTTP/1.1
Host: packetfury.net

Remember, you have little time in which to do this. You might want to copy
the text first and then paste it into your telnet client. Validate your request by
pressing enter twice. The web server requires a blank line to run a request. If
everything goes well, you should be greeted with the following:

HTTP/1.1 200 OK

Date: Mon, 28 Apr 2014 15:02:17 GMT

Server: Apache/2.2.24

Last-Modified: Mon, 28 Apr 2014 14:46:54 GMT
ETag: «6181d54-10-4£f81b62f60b9%b»
Accept-Ranges: bytes

Content-Length: 16

Vary: Accept-Encoding

Content-Type: text/html

Hello, Arduino!

Now that you know how to fetch a webpage, you can also write a sketch for
your Arduino to fetch information directly from a web page. You can, of course,
create your own web server on your local network. You don’t even need any

Chapter 9 = Ethernet

161

complicated software; although you can create a real web server, you can also
get great results from Python scripts. Your Python script could then inform
Arduinos of the temperature that you want for your living room or when to
turn on the automatic sprinkler system.

Example Program

Now that you have fetched a web page from a web server, it is time to tell the
Arduino to do the same thing. The sketch will look like Listing 9-1.

Listing 9-1: Fetching (filename: Chapter9client.ino)

1 #include <SPI.h>

2 #include <Ethernet.h>

3

4 // If your Arduino has a MAC address, use that instead

5 byte mac[] = { 0xDE, OxAD, OxBE, OxEF, OxFE, OxED };

6 char server[] = "www.packetfury.net"; // name of server

7

8 // Set a static IP address to use if the DHCP fails to assign
9 IPAddress 1ip(192,168,0,42);

10

11 // Initialize the Ethernet client library

12 EthernetClient client;

13

14 void setup()

15 {

16 // Open serial communications and wait for port to open:
17 Serial.begin(9600) ;

18

19 // Start the Ethernet connection:

20 if (Ethernet.begin(mac) == 0)

21 {

22 Serial.println("Failed to configure Ethernet using DHCP") ;
23 // Can't get an IP, so use another one

24 Ethernet.begin (mac, ip);

25 }

26 // Give the Ethernet shield some time to initialize:
27 delay (2000) ;
28 Serial.println("Connecting...");

29

30 // Are we connected?

31 if (client.connect (server, 80))

32 {

33 Serial.println("Connected") ;

34 // Make a HTTP request:

35 client.println("GET helloarduino.html HTTP/1.1");
36 client.println("Host: www.packetfury.net");

37 client.println() ;

38 }

Continues

http://www.packetfury.net
http://www.packetfury.net

162

Part Il = Standard Libraries

Listing 9-1 (continued)

39 else

40 {

41 // Warn if the connection wasn't made
42 Serial.println("Connection failed") ;
43 }

44 }

45

46 void loop ()

a7 |

48 // Check for incoming bytes

49 if (client.available())

50 {

51 char ¢ = client.read() ;
52 Serial.print(c);

53 }

54

55 // If the server disconnected, then stop the client:
56 if (!client.connected())

57 {

58 Serial.println() ;

59 Serial.println("Disconnecting.") ;
60 client.stop() ;

61

62 // Now sleep until a reset

63 while (true) ;

64 }

65 }

This sketch requires two libraries, SPI and Ethernet, and they are imported on
lines 1 and 2. On line 5, a MAC address is created. All Ethernet devices have a
MAC address, and they should be unique. If your Arduino has a MAC address
sticker, please use that value instead. On line 6, the server name is defined;
this is the server that you will be connecting to. The Arduino will attempt to
talk to a DHCP sever to get network information automatically. If this fails,
the sketch will tell the Arduino to use a default IP address; this is specified on
line 9. Please adjust as required.

The EthernetClient object is declared on line 12. Since this Arduino will
connect to a server, it will be a client, and as such requires initializing the
EthernetClient object; the resulting object is called client.

The setup () function is declared on line 14. Like the previous sketches, it
starts by initializing a serial communications channel so that you can connect
and see what is going on. This is also how the contents of the web page will be
displayed. On line 20, the sketch calls Ethernet’s begin () function. The result
is used to tell if the Arduino has received a message from the DHCP server or
not. If it has, a message is printed to the serial channel; if it hasn't, the Arduino
will attempt to use the default address. This is done on line 24.

Chapter 9 = Ethernet

163

Once the network configuration has been made, the next step is to connect
to the server. This is done on line 31 using the connect () function. Once again,
the result is used to see if the Arduino has connected or not. If it has, then on
line 35 the sketch sends three lines to the web server. First, a GET instruction.
Second, the server name. Finally, an empty line to inform the web server that
there is nothing else you want to send. It should reply. If the connection wasn’t
made, an error message is printed on the serial port.

The 1oop () function is declared on line 46. First it detects to see if any bytes
are waiting in the buffer using the available () command. If there is data
waiting, then each byte is read from the buffer and printed to the serial port.
This is done on lines 51 and 52. On line 56, the sketch checks to see if it is still
connected to the server; once the server responds with a web page, it is free to
terminate the connection before serving another client. If the server has indeed
terminated the connection, a message is printed to the serial port and the sketch
sleeps until a reset is performed.

Arduino as a Server

You can use the Arduino as a network client, but it is also a capable network
server. Instead of connecting to a server, it becomes a server, waiting for clients
to connect before sending or receiving information.

To use your Arduino as an Ethernet server, you must initialize the
EthernetServer(ﬂjeCt

EthernetServer server = EthernetServer (port) ;

It takes one parameter: the port to listen for incoming connections. Web servers
connect to port 80 and telnet on port 23. Remember, ports below 1024 are reserved
for specific applications, and ports above are free to be used. If you create your
own protocol, use one of the high ports.

To listen for a client, you must create an EthernetClient object.

EthernetClient client;

This function is nonblocking, that is to say, if a client is not available, the object
will still be created and the rest of the sketch will continue to run. To verify if
a client has actually connected, test the client object. If a client has connected,
it will return true.

if (client == true)

{

// Client has connected, send data

}

164

Part Il = Standard Libraries

From here, it is possible to send and receive data using the client () object.
The server is only responsible for opening a port and accepting connections on
that port; data will be read from and written to the client object.

Servers spend most of their time waiting for connections and responding to
connections before waiting for another connection. As such, they are usually
in loop () waiting for a connection before acting. When an exchange has com-
pleted, close the connection using the stop () function.

client.stop() ;

To wait for connections, send data, and then close the connection, you can
use code that looks like this:

void loop ()

{
EthernetClient client = server.available() ;

if (client == true)

{

// Client has connected, send data
client.println("Hello, client!");
client.stop() ;

}
}

Serving Web Pages

Web servers are the most visible ways of connecting to an Arduino over a net-
work to get data and also great fun! They can be seen on computers, tablets,
and mobile telephones and can easily be tweaked to produce some visually
stunning interfaces.

When a web browser connects to a web server, it expects some specific infor-
mation. It not only just receives a web page, but also some headers that you do
not normally see. The server informs the web browser if the page is accessible
(remember those 404-error messages you see from time to time?), the sort of data
that is to be sent, and the connection status after the data has been delivered.
Additional headers can be added if needed.

A typical exchange might look like this:

HTTP/1.1 200 OK
Content-Type: text/html
Connection: close

The 200 return code means that the page was found and is available. The
content type of this page is HTML, sent as text data. Finally, the connection will
be closed after the page has been sent. If the web browser wants another page,

Chapter 9 = Ethernet

165

it must reconnect. To tell the browser that the content is about to be sent, the
server sends a blank line, and then sends the HTML data.

Example Program

For this program, you use an Arduino Uno with an Ethernet shield. This is a
continuation of the previous chapter and still uses the light sensor. You can
now read light conditions in real time by connecting to your Arduino from a
web browser.

When a connection is made, the Arduino first reads the analog value on A3
before displaying that value in HTML.

Sketch
Now it’s time to write the sketch, as shown in Listing 9-2.

Listing 9-2: Server Sketch (filename: Chapter9server. ino)

#include <SPI.h>
#include <Ethernet.h>

// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:

byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxXFE, OXED };

IPAddress ip(192,168,0,177);

W I o0 Ul W N R

o)

int lightPin = A3;

=
o

11 //Initialize the Ethernet server to listen for connections on port 80
12 EthernetServer server (80) ;

13

14 void setup() {

15 // Open serial communications

16 Serial.begin (9600) ;

17

18 // start the Ethernet connection and the server:
19 Ethernet.begin (mac, ip);

20 server.begin () ;

21 Serial.print ("Server up on ");

22 Serial.println(Ethernet.localIP()) ;

23}

24

25 wvoid loop() {

26 // Listen for incoming clients

27 EthernetClient client = server.available() ;
28

29 if (client)

30 {

Continues

166 Partll = Standard Libraries

Listing 9-2 (continued)

31 Serial.println("New connection") ;

32 // An HTTP request ends with a blank line, wait until the
request has finished

33 boolean currentLineIsBlank = true;

34 while (client.connected())

35 {

36 if (client.available())

37 {

38 char ¢ = client.read() ;

39 Serial.write(c) ;

40 // if you've gotten to the end of the line (received a newline

41 // character) and the line is blank, the HTTP request has ended,

42 // so you can send a reply

43 if (¢ == '\n' && currentLineIsBlank) {

44 // send a standard http response header

45 client.println ("HTTP/1.1 200 OK") ;

46 client.println("Content-Type: text/html") ;

47 client.println("Connection: close");

48 client.println("Refresh: 5");

49 client.println() ;

50 client.println("<!DOCTYPE HTML>") ;

51 client.println("<htmls>");

52

53 // Get a light level reading

54 int light = analogRead(lightPin) ;

55

56 // Send this data as a web page

57 client.print ("Current light level is ");

58 client.print (light) ;

59 client.println("
");

60

61 client.println("</html>");

62 break;

63 }

64 if (¢ == "\n") {

65 // you're starting a new line

66 currentLineIsBlank = true;

67 }

68 else if (c !'= '"\r') {

69 // you've gotten a character on the current line

70 currentLineIsBlank = false;

71 }

72 }

73 }

74 // Wait a second for the client to receive data

75 delay (1) ;

76

77 // Close the connection

78 client.stop() ;

79

Chapter 9 = Ethernet

167

80 Serial.println("Client disonnected");
81 }

82 }

Summary

In this chapter, you have seen how Ethernet works as well as the difference
between a server and a client. You have seen how to connect to a web server
from an Arduino, as well as how to become a server for other devices to con-
nect and retrieve data.

In Chapter 10 you will see how the Arduino can connect wirelessly using
Wi-Fi technology. You will also see the differences between Ethernets, and how
to create a wireless client and server.

This chapter discusses the following functions of the WiFi library:

The hardware needed to use these functions includes:

m SainSmart WiFi shield

begin ()
macAddress ()
BSSID ()

RSSI()
scanNetworks ()
SSID()
encryptionType ()
disconnect ()
config()
setDNS ()
WiFiClient ()

WiFiServer ()

Arduino Uno

169

170

Part Il = Standard Libraries

m DHT11 humidity and temperature sensor
m Breadboard
m Wires

m 10 kilohm resistor

You can find the code download for this chapter at http://www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 10
folder and the filename is chapter10.ino.

N[Ol 3 The Wireless technology name is Wi-Fi with a hyphen, but in the Arduino

library, where it is unable to use hyphens, it is called WiFi. For this chapter, Wi-Fi refers
to the technology, and WiFi to the Arduino library capable of using WiFi cards.

Introduction

All aspects of computers have evolved at an incredible rate. A high-end com-
puter from 10 years ago is, by today’s standard, easily surpassed by a mobile
telephone. Processors, memory, and storage have all increased, and component
size has drastically decreased. Mobile computers used to be rare; today, laptop
computers are seen just about everywhere, as are tablets, smartphones, and even
smart watches. The need for mobility has been driving the industry for years,
but the need for data even more so.

Early networks were slow, complicated, cabled systems. Today, Ethernet
technology can be found in almost every house. On the back of most Internet
modems is a small Ethernet switch, providing four or more “ports”; connect-
ing a computer is as simple as plugging an Ethernet cable in the ports. To add
another computer, just plug in another cable in the next open port. This is perfect
for households, and the same technology also powers huge companies with
thousands of computers, including the Internet. Networks have become fast and
reliable, but until recently, the need for physical wiring conflicted with mobility.

Mobile users had data on the go. Commercial teams could have documents
on their computer with them, and engineers could have development tools and
diagnostics with them. However, to get access to the Internet, or even to transfer
documents, they had to plug in their laptop to the company’s network. Most
meeting rooms had an Ethernet switch with a few cables, just in case anyone
needed quick access. Mobile devices would never be truly mobile until they got
rid of the cables tethering them to the desk, and so Wi-Fi was born.

http://www.wiley.com

Chapter 10 = WiFi

171

The WiFi Protocol

Wi-Fi standard devices use a wireless local area network (LAN). The technology
is managed by the Wi-Fi Alliance, a group of some of the leading companies in
wireless and networking products that did not actually create the technology
itself.

In 1985, the U.S. Federal Communication Commission opened up part of the
wireless spectrum for unlicensed use. The original wireless protocol was called
WaveLAN, developed by NCR for cashier systems. The radio portion was hid-
den from operating systems, and to the drivers, WaveLAN cards were talking
together via wired systems, making installation and use extremely easy.

Its successor, 802.11, was created in 1997. It had a data-rate of either 1 or 2
megabits per second and a communications distance of 60 feet. Interoperability
problems were detected, notably because the Institute of Electrical and Electronics
Engineers (IEEE for short) creates standards but does not test them for certifi-
cation. The original 802.11 was not widely embraced, but a new version was:
802.11b. With the birth of 802.11b came the Wireless Ethernet Compatibility
Alliance (WECA), which proposed rigorous certification programs. All devices
sold with a Wi-Fi logo were compatible, and consumers loved the technology.
WECA later changed its name to the Wi-Fi Alliance.

802.11b gave much faster data rates: 1, 2, 5.5, and 11 megabits per second.
Although these speeds were good for browsing the web, they were not fast
enough for video streaming or heavy data transfer. 802.11g proposed data rates
of up to 55 Mbit/s, while retaining 802.11b compatibility. (When talking to an
802.11b device, the speed would be at a maximum of 11 Mbit/s). Newer versions
provide even faster data rates; 802.11n can go as fast as 150 Mbit/s; 802.11ac can
go up to 866.7 Mbit/s; and 802.11ad can transfer data at a staggering 6.75 Gbit/s.

Topology

Wi-Fi works with several network topologies, but there are two main types that
are used: ad-hoc and infrastructure.

Ad-hoc mode is an unmanaged, decentralized mode. Wireless peers are free to
connect to other peers, and the network is managed by all the peers. Wireless
devices maintain network connectivity by forwarding packets to other devices
when needed. All network peers have an equal status, and the network is only
as reliable as the parameters of the hosts (transmit power, interference, and
link-length). Ad-hoc networks are often closed networks; peers cannot always
communicate outside the network.

172

Part Il = Standard Libraries

Infrastructure mode is a managed mode. This topology requires one or several
devices to “manage” the network, allowing peers to connect to it (or refuse con-
nection depending on the security settings). Peers do not communicate between
themselves; instead they send their packets to the network management devices:
typically access points. Infrastructure access points often serve as access points
to other networks: typically a wired network or a connection to the Internet.
Multiple access points can be on a wired network, allowing for several zones,
or “hot spots” where peers can connect wirelessly.

Network Parameters

For a network to function, several parameters are required. Imagine an apart-
ment block—several neighbors are within close range. Each family has an
Internet connection, and each family also wants access to wireless for their
laptops, tablets, and mobile phones. Each family also wants their devices to be
private. Instead of creating one large wireless network, each family wants its
own small wireless network. It also wants it to work securely and efficiently,
while allowing neighbors access to their wireless networks.

Channels

Wi-Fi works with two base frequencies: 2.4 GHz and 5 GHz. However, in prac-
tice, there are several frequencies; the 2.4-GHz band operates from 2.412 GHz
all the way to 2.484 GHz. This spectrum is separated into different frequen-
cies, or channels. If all wireless devices used exactly the same frequency, that
frequency would soon become saturated as small networks started competing
with other networks. Also, Wi-Fi is not the only wireless technology to use
the 2.4 GHz band. For example, Bluetooth also uses these frequencies. To help,
Wi-Fi uses channels.

A channel is a specific frequency used by one particular wireless network.
Channels work in the same way as your television; information is received
wirelessly and picked up through the TV antenna. By selecting a particular
channel, you decide to listen to one particular frequency in the range, therefore
excluding all other channels. When you finish watching a program, you can
switch to another channel, receiving the information on one channel at a time.
Wi-Fi channels work almost the same way except that channels can overlap each
other. Each wireless controller (an Internet modem or access point) is configured
to use a particular channel. Some analyze the network before initializing and
automatically choose a free channel.

Encryption

Although most people don’t think much about it, Wi-Fi presents a problem. You
might be at home, shopping on your favorite Internet site. After you choose the

Chapter 10 = WiFi

173

articles you want, you go to pay, entering in your debit card details. Wireless
information can, theoretically, be seen by anyone. Just like a regular conversation,
if the person is close enough to hear, then he can get access to that information.
To avoid this, infrastructure wireless communications are normally encrypted.
Anyone can listen in to your conversation with your favorite Internet site but
will not be able to understand because that conversation is encrypted with a
special key that others do not know.

There are two forms of encryption: WEP and WPA2. WEP (short for Wireless
Equivalent Privacy) is an early form of wireless encryption. Today, the standard is
outdated, and Wi-Fi networks are encouraged to use the newer WPA2 encryption.

WPA2 (short for Wi-Fi Protected Access 2) is a solution to the weaknesses
found in WEP and is a stronger version of the previous WPA encryption. It
enables strong 256-bit AES encryption, using either 64 hexadecimal characters
or 8 to 63 printable ASCII characters as a passkey. Again, several versions exist,
but two main versions are used: WPA2 Personal and WPA2 Enterprise. WPA2
Personal requires a passkey and is perfect for home or small office environ-
ments. WPA2 Enterprise requires a specialized server and protects against
more advanced attacks.

Not only does the encryption secure communications, it also secures the
network. A wireless device that does not have the password cannot connect.

SSID

The network SSID, short for Service Set ID, is essentially the “network name,”
as it is known. This is the name that displays when you refresh your wireless
network list, and is the name that devices attempt to connect to. SSIDs are
sometimes hidden but are always present. A hidden SSID works in exactly the
same way, only the name is not broadcast to devices; devices can still attempt
to connect to a hidden SSID.

RSSI

RSSI is short for Received Signal Strength Indication and is an indication of
signal strength. The units are arbitrary; some devices report signal strength as
a percentage, others as a unit called dBm, or decibels per milliwatt of power.
Reading this value gives an indication of signal strength and not distance
because signal strength can be altered by physical obstructions (like walls) or
electromagnetic interference.

Arduino WiFi

The Arduino WiFi library is designed to work with a large amount of network
controllers through a simple system. The WiFi library “talks” to the Wi-Fi shield

174

Part Il = Standard Libraries

through the SPI bus, and communication is normally handled with a small
microcontroller, “translating” messages on the SPI bus to the network controller.

Several vendors manufacture Wi-Fi shields, and there is also an official Arduino
shield. Each board has its strong points: external antenna connectors, ultra-low
power, and bridging possibilities. It all depends on your project. This chapter
talks about standard connections without any external components or antennae.

The WiFi library can connect to a variety of Wi-Fi standards: typically B,
G, and N networks. It can handle both WEP and WPA-2 Personal encryption
but cannot connect to a WPA-2 Enterprise network. Also, it cannot connect to
hidden SSIDs.

The WiFi library uses the SPI bus and requires the SPI pins to be free. It uses
pins 11, 12, and 13 on the Arduino Uno, and 50, 51, and 52 for the Arduino Mega.
Pin 10 is used as a Slave Select pin, and pin 7 is used as a digital handshake;
these pins should not be used by the rest of the sketch.

The WiFi library methods are similar to those in the Ethernet library, and
many of the functions are identical—only changed slightly to handle wireless
networks and the subtle differences they face.

(@ O TR N[Ethernetis presented in Chapter 9.

Importing the Library

To use the WiFi library, it must first be imported, which you can do in the Arduino
IDE (menu Sketch &> Add Library = WiFi) or by adding the library manually:

#include <WiFi.h>

You need to import other libraries, depending on your project:

#include <WiFiServer.h>
#include <WiFiClient.h>
#include <WiFiUdp.h>

The wiriserver.h header file is used if the Arduino is to be a server. If a client
connection is going to be made, the wiriclient.hheader file should be used. The
WiFivudp.h library should be imported if UDP communications are to be used.

Initialization

To initialize the WiFi subsystem, you must use begin (). It can take several
parameters, depending on your configuration. To start the WiFi subsystem
without any parameters (network SSID, password), just call begin():

WiFi.begin() ;

Chapter 10 = WiFi

175

To connect to an open SSID (one that does not require a password), use only
the ssid parameter:

WiFi.begin (ssid) ;

To connect to a WPA-2 Personal protected network, specify the SSID and the
password:

WiFi.begin(ssid, password) ;

To connect to a WEP protected network, another parameter is required. WEP
protected networks can have up to four keys, and you must specify which one
to use:

WiFi.begin(ssid, keyIndex, key);

Both keys and SSIDs can be written as an array of chars:

char ssid[] = "yourNetworkSSID";
char password[] = "MySuperSecretPassword";
Status

Of course, initialization presumes that a WiFi shield is present and correctly
connected, which might not always be the case. To test for a WiFi shield, use
the status () function:

result = WiFi.status();
This function takes no parameters and returns one of several constants, as

shown in Table 10-1.

Table 10-1: Status Update Return Codes

CONSTANT MEANING

WL_IDLE_STATUS The WiFi shield is idle, without any instructions.

WL_NO_SSID AVAIL There are no networks to connect to.

WL_SCAN_ An initial SSID scan has been completed, and the WiFi shield
COMPLETED knows about available SSIDs.

WL_CONNECTED The WiFi shield has successfully connected to an SSID.
WL_CONNECT _ The WiFi shield was unable to connect; either the encryption key
FAILED is wrong, or the connection was refused by the access point.
WL_CONNECTION_ The WiFi shield was previously connected, but that connection
LOST has been lost (either out of range, or interference).

Continues

176

Part Il = Standard Libraries

Table 10-1 (continued)

CONSTANT MEANING

WL_DISCONNECTED The WiFi shield has successfully disconnected from a network.

WL_NO_SHIELD The Arduino cannot find a WiFi shield connected to the board.

Unlike Ethernet shields, WiFi shields have a fixed MAC address. To know
the MAC address of the WiFi shield, use macaddress () . This function does
not return any data but requires a parameter: a 6-byte array in which the MAC
address will be placed.

byte mac[6];
WiFi.macAddress (mac); //Retrieve the MAC address, place it in mac

To retrieve the MAC address for the access point you are connected to, use
BSSID():

WiFi.BSSID (bssid) ;

Just like the macaddress () function, this function does not return any data
but requires a data container as a parameter: a 6-byte array in which the MAC
address will be placed.

To retrieve the RSSI, the signal quality indicator, use the rss1 () function:

long result = WiFi.RSSI();

RSSI, short for Received Signal Strength Indication, is a measurement of
power in received radio signals. It is an indicator that generally goes from —100
to 0; the closer to 0, the stronger the reception. It cannot be used to estimate the
range of a wireless device since interference can come not only from range, but
also from electronic equipment or walls.

Scanning Networks

Due to the mobile nature of wireless, it can be helpful to scan the wireless
networks around you to know which to connect to. An Arduino in a car might
automatically connect to a home network when it’s in range to send diagnostic
information on your car but might also be configured to connect to another
network, for example, a friend’s house. In this case, the Arduino needs to peri-
odically scan the available wireless networks until it finds one it recognizes.
Wireless scanning on computers is frequent; open your wireless configuration
panel to see a list of available networks.
To initiate a scan, use scanNetworks () :

result = WiFi.scanNetworks () ;

Chapter 10 = WiFi

177

This function takes no parameters and returns an int—the number of wire-
less networks detected. A scan can take a few seconds to complete, but when
done, the results are stored on the wireless chip, ready for interrogation. The
chip stores several pieces of information: the SSID name, the signal strength,
and the encryption type.

To retrieve the SSID of a network, use sSiD():

result = WiFi.SSID (num) ;

It takes one parameter: the number of a network scanned with the scannet -
works () function. It returns a string: the name of the SSID.

To know the RSSI of a station broadcasting, use rssI () specifying the net-
work number:

result = WiFi.RSSI (num) ;

Exactly like rss1 () used to learn the RSSI of the current network, this function
returns a long, the value in dBm, short for Decibel-milliwatts. Typical values
range from —80 to 0; the higher the number, the better the reception.

Wireless networks also broadcast their security, specifically the encryption
method required to connect (if any). To know the encryption of a network, use
encryptionType (), specifying the network number:

result = WiFi.encryptionType (num) ;
This function returns a constant: the type of encryption detected. Table 10-2

lists the values.

Table 10-2: Possible Encryption Types

VALUE MEANING

ENC_TYPE_WEP WEP encryption

ENC_TYPE_ TKIP WPA encryption

ENC_TYPE CCMP WPA2 encryption

ENC_TYPE_NONE No encryption, open network
ENC_TYPE_ AUTO Multiple encryption methods possible

Connecting and Configuring

To connect to a wireless network, use begin (), explained previously in the
“Initialization” section. To disconnect from a network, use disconnect ():

WiFi.disconnect () ;

178

Part Il = Standard Libraries

This function does not take any parameters and does not return any
information. It immediately disconnects from the current network.

By default, the WiFi shield uses DHCP to obtain an IP address and network
settings. When begin () is called, DHCP negotiations begin after connecting to
the network. While some wireless networks provide DHCP, others do not and
require manual configuration. To perform manual configuration, use config ().
This function can be called in four ways:

WiFi.config(ip) ;

(
WiFi.config(ip, dns);
WiFi.config(ip, dns, gateway) ;
(

WiFi.config(ip, dns, gateway, subnet);

In its most basic form, config() requires one parameter: the IP address to
use, expressed as an array of 4 bytes, or optionally, using an 1pPAddress object.
This object takes 4 bytes; the 4 bytes of an IP Address:

IPAddress ip(192.168.0.10);

To translate human-readable text into I addresses, a Domain Name Server
must be specified as the dns parameter, again, as an array of 4 bytes, or 1pAddress.
For packets to leave the current network to another network, a gateway IP must
be specified with gateway. Finally, to change subnet, you must specify the sub-
net IP (by default: 255.255.255.0).

Calling config () before begin () forces the WiFi shield to use the settings
specified. Calling config () after begin() again forces the WiFi shield to use
the settings that were specified, but the begin () function will attempt to contact
a DHCP server beforehand, resulting in a possible IP change.

The downside to this is that to use a specific DNS, you must specify the IP
address. Some computers prefer to use an external DNS. (For example, Google
allows users to use their DNS instead of their Internet provider’s DNS.) To
remedy this, the setDNs () function can be used.

WiFi.setDNS (dns_serverl) ;
WiFi.setDNS (dns_serverl, dns_server2) ;

This function requires either one or two DNS server addresses. It returns
no data and immediately sets the DNS server values without changing the IP
address.

Wireless Client

Just like with the Ethernet library, the WiFi library has its own client class.
Remember, a client is a device that connects to a server on a specified port. A
server is always on listening for client connections.

Before connecting to a server, the client must first create a client object; for
the WiFi library, this is called wirFiclient.

Chapter 10 = WiFi

179

// Initialize the client library
WiFiClient client;

This library is almost identical to the Ethernet library, though certain techni-
cal aspects are different to handle wireless connectivity. To create a socket to a
server, you must use connect (), just like with the Ethernet library:

result = client.connect (server, port);

The function takes two parameters: port is an int and indicates the port to
which you want to connect. The server parameter is either an 1paddress (or
an array of 4 bytes), or a string containing the server name. It returns a bool-
ean: true if the connection was accepted, and false if the connection failed.

Wireless Server

Wireless devices can also be servers, waiting for clients to connect before answer-
ing to requests. Again, the WiFi library has its own specialized object: wiriserver:

WiFiServer server (port) ;

The port parameter is the port that you want to open, expressed as an int.
When the port is opened, the server waits for incoming connections with begin ():

server.begin(); // Wait for clients to connect

Example Application

I'm terrible with plants. Taking care of most kinds isn’t that complicated; I just
need to keep the dirt moist, keep them out of direct sunlight (but still enough
sunlight) and change the dirt from time to time. Just keeping the dirt moist
seems to be too much for me, and this is where technology can help.

The DHT11 is a popular temperature and humidity sensor; it is inexpensive,
reliable, and fairly easy to use. It comes with a plastic cover offering protection
from most environments, and as long as you don't put water directly onto it, it
can live happily with your houseplants. It is illustrated in Figure 10-1.

The DHT11 does have something unique. Previous chapters talked about serial
communications, some of them requiring more wires than others, but some (I?C
especially) requiring only two wires to function. This component is different; it
requires only one. There is one wire used to send and to receive data, in addition
to a power and ground. Although it might sound complicated to use a single
wire for both data reception and emission, it is actually fairly straightforward.
The downside to this component is that you can make only one reading every
2 seconds, but that is more than enough for a houseplant, even mine.

180

Part Il = Standard Libraries

Figure 10-1: The DHT11

This application uses an Arduino Uno and a SainSmart wireless shield.
A DHT11 sensor will be connected to the board, allowing the user to get an
accurate reading. Because I'm terrible with plants, I probably won’t check the
reading frequently, so this device must communicate with the outside world
to send alerts. It will monitor the humidity of the dirt and send e-mails when
the humidity level drops below a certain level. For this, it must be connected
to the Internet. Because I don’t have a wired access point nearby, I'll be using
a wireless network.

This project requires a certain number of services to be put in place. First, it
requires a DHCP server on the current network. Most Internet modems have their
own DHCP server, so it should be compatible with most wireless access points.
Secondly, it requires access to an SMTP server, a server used to send e-mail.
Most Internet providers give you access to an e-mail server, but they may refuse
e-mail that does not come from their network. Your Internet provider or e-mail
service provider can give you information on how to access its mail servers.

The DHT11 is an interesting component in that it uses only one wire for
communication. The Arduino is able to switch between input and output, so
that isn’t a problem.

Chapter 10 = WiFi

181

The DHT11 communication protocol is slightly complicated. The data pin
is normally at a logical high. To read from the DHT11, the Arduino must pull
this data line down to zero for more than 18 milliseconds (ms) before returning
it to a logical high for 40 ps. As a response, the DHT11 pulls the data line low
for 54 ps and then pulls it high for 80 us. This is an acknowledgment; it tells
the Arduino that the request has been received and that data will follow. The
DHT11 then sends 5 bytes for a total of 40 bits.

The timing of the data is the complicated part. The difference between a 1
and a zero is the amount of time that the data line remains high; 24 ps means
a zero, and 70 pus means a 1, as shown in Figure 10-2.

+5V
Bit 1
0
54 ps 24 ps
+5V
Bit 0
0
54 ps 70 ps

Figure 10-2: DHT11 sending a logical zero and a logical 1

At the end of the communication, the DHT11 pulls the data line back to a
logical high.

Hardware

The hardware configuration is fairly straightforward. For this, you need an
Arduino Uno. The WiFi shield is socketed on top of the Arduino. The DHT11
will be connected to +5 V and ground, and the data pin will be connected to
digital pin 10. There is also a 10-kilohm pull-up resistor on the data line. Digital
output 13 will also be used to turn on and off the internal LED for status indi-
cation. If the LED is on, then there is a problem with the board. The setup is
shown in Figure 10-3.

182 Partll = Standard Libraries

fritzing

Figure 10-3: Hardware schematic (Image created with Fritzing)

Sketch

Time to get to work! Now that the hardware is complete, it is time to write the
sketch. The sketch will look like that shown in Listing 10-1.

Listing 10-1: Wireless Sensor Sketch (filename: Chapter10.ino)

1 #include <WiFi.h>

2 #include <WiFiClient.h>

3

4 const int DHTPin=10;

5 const int LEDPin=13;

6

7 const int MINHumidity=25;

8

9 char ssid[] = "yourNetwork"; // Your network SSID (name)
10 char pass[] = "secretPassword"; // Your network WPA2 password
11 char server[] = "smtp.yourdomain.com"; // Your SMTP server

=
N

Chapter 10

WiFi

183

13
14
15
16
17
18
19
20
21
22
23
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

boolean firstEmail = true;
int status = WL_IDLE_STATUS;
WiFiClient client; // Set up the wireless client

void setup ()

{

Serial.begin(9600) ;

Serial.println("Plant monitor") ;

// Configure the LED pin, set as output, high
pinMode (LEDPin, OUTPUT) ;
digitalWrite (LEDPin, HIGH) ;

// Is there a WiFi shield installed?

if (WiFi.status() == WL_NO_SHIELD) {
Serial.println("ERR: WiFi shield not found") ;
// No point continuing with the sketch
while (true) ;

// Attempt to connect to the WiFi network
while (status != WL _CONNECTED) {
Serial.print ("Attempting to connect to WPA SSID: ");
Serial.println(ssid) ;
// Connect to WPA/WPA2 network:
status = WiFi.begin(ssid, pass);

// Wait 10 seconds for connection:
delay (10000) ;

// If we got here, then the connection is good. Set LED pin low
and display information on serial

digitalWrite (LEDPin, LOW) ;

Serial.println("Connected!") ;

void loop ()

{
// Get a humidity reading
int val = getDhtllHumidity () ;

// Print it out to the serial port
Serial.print ("Current humidity: ");
Serial.print (val) ;
Serial.println("");

Continues

184 Partll = Standard Libraries

Listing 10-1 continued

61 if (val < MinHumidity)

62 {

63 // Below minimum humidity. Warn!
64 Serial.println("Plant is thirsty!");
65 sendEmail () ;

66 firstEmail = false;

67 }

68 else

69 {

70 // All OK

71 Serial.println ("Humidity OK") ;
72 firstEmail = true;

73 }

74

75 // Wait for half an hour

76 delay (1800000) ;

77}

78

79

80 int getDhtllHumidity ()

81 |

82 byte datale6] = {0};

83

84 // Set up variables

85 byte mask = 128;

86 byte idx = 0;

87

88 // Request a sample from the DHT11
89 pinMode (DHTPin, OUTPUT) ;

90 digitalWrite (DHTPin, LOW) ;

91 delay (20) ;

92 digitalWrite (DHTPin, HIGH) ;

93 delayMicroseconds (40) ;

94 pinMode (DHTPin, INPUT) ;

95

96 // Will we get an ACK?

97 unsigned int loopCnt = 255;

98 while (digitalRead (DHTPin) == LOW)
99 {

100 if (--loopCnt == 0) return NAN;
101 }

102

103 loopCnt = 255;

104 while (digitalRead (DHTPin) == HIGH)
105 {

106 if (--loopCnt == 0) return NAN;
107 }

108

109 // Acknowledged, read in 40 bits
110 for (unsigned int 1 = 0; 1 < 40; 1i++)

Chapter 10

WiFi

185

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

{

// Pin will go low. Wait until it goes high
loopCnt = 255;
while (digitalRead (DHTPin) == LOW)

{

if (--loopCnt == 0) return NAN;

// What is the current time?

unsigned long t = micros() ;

// Pin will go high. Calculate how long it is high.
loopCnt = 255;
while (digitalRead (DHTPin) == HIGH)

{

if (--loopCnt == 0) return NAN;

// Is this a logical one, or a logical zero?
if ((micros() - t) > 40) datal[idx] |= mask;
mask >>= 1;
if (mask == 0) // next byte?
{

mask = 128;

idx++;

// Get the data, and return it
float f = datal0];
return (int)f;

boolean sendEmail ()

{

// Attempt to connect
if (!client.connect (server, 25))
return false;

// Change this to your IP
client.write("helo 1.2.3.4\r\n");

// change to your email address (sender)
client.write ("MAIL From: <plant@yourdomain.coms>\r\n") ;

// change to recipient address
client.write ("RCPT To: <you@yourdomain.coms>\r\n");

Continues

186

Part Il = Standard Libraries

Listing 10-1 continued

161 client.write ("DATA\r\n") ;
162
163 // change to recipient address

164 client.write("To: You <you@yourdomain.com>\r\n") ;

165

166 // change to your address

167 client.write ("From: Plant <plant@yourdomain.coms>\r\n");
168

169 client.write ("Subject: I need water!\r\n");

170

171 if (firstEmail == true) // First email

172 {

173 client.write("I'm thirsty!\r\n");

174 }

175 else

176 {

177 int i = random(4) ;

178 if (i == 0)

179 client.write("You don't love me any more, do you?\r\n");
180 if (1 == 1)

181 client.write("All I know is pain...\r\n");

182 if (i == 2)

183 client.write ("I would have watered you by now...\r\n");
184 if (1 == 3)

185 client.write ("My suffering will soon be over...\r\n");
186 }

187

188 client.write(".\r\n") ;

189

190 client.write ("QUIT\r\n") ;
191 client.stop();

192

193 return true;

194 }

This sketch has four functions: the setup () and loop () that are present in
every sketch and two others, getDht11Humidity () and sendEmail ().

At the start, the sketch includes two libraries: wiFi.hand wiFiclient.h. On
lines 4 and 5, two pins are defined: the pin connected to the DHT11 data pin and
the pin connected to an LED. On line 7, another pin is defined: MINguMIDITY. This
is the value that will be used as a warning level for the sensor; if the humidity
falls below this level (expressed as relative humidity), the user will be warned.

On lines 9, 10, and 11, three variables are defined as char arrays. These need
to be changed depending on your network setup; they are the SSID the Arduino
will connect to, the password to use, and the SMTP server that will be used to
send e-mails.

On line 13 is a variable: thirsty. This is a boolean: true if the plant needs
water, and false if the dirt has enough humidity. Finally, you have an int named
status. This is the status of the wireless connection and will be used later.

Chapter 10 = WiFi

187

setup () is declared on line 19. setup () needs to do several things: configure
the serial port for debug messages (line 21), set the LED pin correctly and turn
the LED on (line 26), test to see if a WiFi shield is connected (line 30) and attempt
to connect to a wireless network (line 37). It loops until the sketch connects to
the designated network. When it does, the LED is turned off, and a message is
sent to the serial port.

loop () is declared on line 53 and does one simple task. It gets a humidity
reading from the DHT11 (on line 56), prints out the data to the serial port (line
59), and then calculates if the sensor reading is less than the minimum humid-
ity level. If it has, then the plant is thirsty, and the user is warned. It sends out
a message to the serial connection on line 58 and then calls a function: sendE-
mail (). Finally, the variable thirsty is set to true. If the minimum humidity
level has not been reached, the plant is probably happy as it is, and the thirsty
variable is set to false, telling the sketch that all is well. Finally, a delay () tells
the Arduino to wait for one-half an hour before taking another reading.

setup () and loop (), required by all Arduino sketches, have been written, but
two more are required; one of them reads in data from the DHT11 and reports
the humidity level, and the second one sends an e-mail. The first function is
getDht11Humidity (). This function is responsible for initiating communications
with the DHT11, requesting data, receiving that data, and parsing part of it. It’s
a complicated function, but don’t worry; it isn’t that hard.

First off, there needs to be some variables to manipulate and hold data from
the sensor, an array named data, and two bytes named mask and idx. To request
a sample from the DHT11, the data line must be pulled low for at least 18 mil-
liseconds and then set high. This is done on line 89 by setting the pin as an
ouTpUT. It is pulled Low; then a delay () function waits for 20 ms before setting
the pin H1GH again. The sketch waits for 40 microseconds and then switches the
DHT pin to 1npuT. The DHT11 can now transmit data.

First, the DHT confirms that it has received an order by replying with an
ACK. According to the datasheet, when the DHT11 is ordered to send data,
it first responds by first driving the data pin low for 80 uS, and then high for
80 pS. It then again pulls the data pin low, ready to send data. This is its way of
acknowledging the order, and informing the microcontroller that it will soon
send data. The sketch waits until the line is set HIGH, and then it waits again
until the line is pulled LOW. This is done on lines 98 and 104. Both portions of
the sketch have a time-out; if 255 cycles have passed, the sketch reports a time
out. The 255 cycles correspond to more than 80 ps, so if the time out occurs,
there was indeed a problem; the ACK wasn't sent.

Online 110, a for loop is created. When the DHT11 has finished acknowledg-
ing reception, it will send 40 bits of data. This loop repeats 40 times once for
each of the 40 bits the DHT11 should send. First, the pin is set LOW. Remember,
the DHT11 sends and receives on a single wire. Previously, the Arduino had
control of the wire, but when the signal was sent, it also signaled the DHT11

188

Part Il = Standard Libraries

that it will be responsible for setting the state of the digital pin. To allow it to
do this, the pin must be set LOW, and now becomes an input.

The state of the input is read on line 114; as long as the pin is low, this por-
tion of the code repeats (unless a time-out occurs). When the line is set HIGH
by the DHT11, this is where the work starts. First, the current system clock
time is stored in a variable. This is the amount of microseconds the system has
been powered on. A while () loop is created on line 125 and repeats as long as
the pin is at a logical one, or HIGH. When the DHT sets the pin LOW, another
time reading is made, and the difference between the two is calculated. If the
data line was high for 24 ps, it was a logical zero. If the line was high for 70 ps,
it was a logical one. The Arduino can't tell exactly when the pulse started and
when it stopped, but it can guess closely. The easiest thing to do is to split the
values: say, 40 us. If the pulse were calculated as lasting more than 40 us, the
DHT11 sent a logical one; otherwise, it sent a logical zero. This is done on line
131. Afterward, the value is masked into the data buffer. Each bit is masked on
each byte, incrementing the bit until the byte is complete and then moving on
to the next byte.

So what is this NAN that is returned if something goes wrong? NAN is
short for Not A Number, and is a good way of returning an error message for
functions that expect numerical returns. If the function returns something that
is not a number, that means there was an error reading one of the return bits.

The DHT11 sends the relative humidity value as a byte, an int is created from
the first byte sent to be returned to the main program This int will contain the
relative humidity, directly in percent.

Now, all that is left to do is to create a function to write e-mails. The function
is declared on line 144. On line 149, the WiFi client attempts to connect to an
e-mail server, on port 25. It uses an if statement, but checks for the result of
a function, and not a variable. The exclamation mark in front of the function
means NOT; it will execute the contents of the if statement if the result of the
function is NOT TRUE. If the connection is refused, the function returns false.

Despite what might be thought of the complexity of e-mails, the SMTP pro-
tocol is extremely simple. The user must first authenticate, tell the server who
he is, who he wants to contact, and then send the data. That’s it! Almost... Some
servers will require authentication, this will be explained below.

This function has all the lines necessary for communication with an SMTP
server. You must specify your own “from e-mail”, the “to e-mail”, and a few
other parameters. Remember the firstEmail variable? This is where it is used.
If firstEmail is true, the sketch is sending its first email, so a nice e-mail
should be sent. This is done on line 173. If the firstEmail variable is false, this
isn’t the first time an e-mail has been sent to the user, and he probably needs a
gentle reminder. On line 177, a random number is generated, and then one of

Chapter 10 = WiFi

189

four messages are used. The user was warned, wasn't he? Well, in that case, the
plant has the right to insist a little more by sending some different messages.

Finally, the client sends a message informing the SMTP server that it has sent
all the data required and then quits. The client.stop () function makes sure
that the Arduino disconnects from the SMTP server. The function then returns
true, informing the sketch that everything went well.

Exercises

The sendEmail () function sends all the required information to an SMTP server,
but SMTP servers also send information, including information that could be
useful in case of a disconnection (wrong e-mail, server full, and so on). Have a
look at the SMTP documentation, or a few examples of how SMTP servers work,
and add some functions to verify the data sent by the server. Many examples
are on the Internet, including some examples using Telnet with SMTP, which
might be a good place to start. An example of SMTP exchanges is available at
http://packetfury.net/index.php/en/Arduino/tutorials/251-smtp.

When placing a WiFi shield on the Uno, the internal LED is probably hidden.
Try adding an external LED to the device to show that an error has occurred,
and a second external LED to indicate the plant needs water.

While some SMTP servers will not require authentication, there are more and
more servers that do. This adds one additional step. A login requires three ele-
ments: the user login, the password (of course), but also a step to tell the server
what type of authentication you are requesting. The most common authentica-
tion is LOGIN. The server will request a simple login and password. To request
a LOGIN authentication, you must send a new line:

auth login
The server will respond with a strange line, something like this:
334 VXNlcm5hbWUé

So what is this? This is an encoded word, written in Base64. This is a way
of including special characters like accents and non-Latin letters in ASCIL You
must first convert your login and password to Base64, using one of the numer-
ous web pages available. You can find a Base64 encoder at http://packetfury
.net/index.php/en/Arduino/250-base64 .php.

The exchange with the server will look like this:

Client: auth login
Server: 334 VXNlcm5hbWU6
Client: <logins>

http://packetfury.net/index.php/en/Arduino/tutorials/251-smtp
http://packetfury

190

Part Il = Standard Libraries

Server: 334 UGFzc3dvcmQé
Client: <passwords>

In your sketch, add some form of authentication, maybe like this:

client.write("auth login") ;
client.write("<Base64 login>") ;
client.write("<Base64 passwords") ;

Summary

In this chapter, you have seen how to install and use Arduino’s WiFi board, how
to scan for wireless networks, and how to connect to a wireless network. I have
shown how to read from a sensor using a single wire, and how to connect to an
SMTP server to send an e-mail. In the next chapter, you will see more about SD
cards: what they are, how they can be used, and how to read and write data to
and from these devices using an Arduino.

LiquidCrystal

This chapter discusses the following functions of the LiquidCrystal library:
W LiquidCrystal ()

begin ()

print ()

write ()

clear ()

home ()

setCursor ()

cursor ()

-

-

-

-

-

-

-

= noCursor ()
= blink ()

M noBlink ()

B rightToLeft ()

m leftToRight ()

MW scrollDisplayLeft ()
W scrollDisplayRight ()
-

autoscroll ()

191

192

Part Il = Standard Libraries

= noAutoscroll ()
B createChar ()
The hardware needed to use the examples in this chapter includes:
m Arduino Mega 2560
m SainSmart LCD Shield

m HC-SR04 ultrasonic distance sensor

You can find the code download for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 11
download folder and is named Chapter 11.ino.

Introduction

For computers to be effective, they require two things: a way to input data and a
way to output data. Data output can be in several forms; sometimes, it is invisible,
communicating with other devices, such as safety systems in transportation.
They are busy keeping you safe, but you will never see them. Other forms are
slightly more visible: devices designed to turn on other devices, such as a timer
designed to turn on a coffee machine at a particular time. They have the capac-
ity to interact with the outside world but can be difficult to see.

Of all the human senses, sight is probably the most powerful. The best way
for a computer to communicate data to the user is visually. Lights are often used
for small quantities of data; a small light on your television set can tell you if it
is receiving information from a remote control, and the amount of devices that
tell you if they are powered with a simple red light is staggering. When more
data needs to be displayed, other methods need to be used.

One of the most frequently used methods of displaying data is the liquid
crystal display. Liquid crystal displays (or LCDs for short) can be found in digital
watches, calculators, agendas, and vending machines, and the same technology
is used for computer screens. They get their name from the thin film of liquid
crystal contained inside the screen, wedged between two conductive plates.
When in their natural state, the crystals inside the liquid are twisted, and light
can pass through. When the crystals are subjected to an electrical current, they
untwist, blocking the light. This makes the portion of the screen black.

LCD technology is fast and reliable, and uses little energy. Solar powered
calculators allowed the user to make calculations with a minimal amount of
light, and the solar panel was more than sufficient to power the processor and
the LCD screen.

The earliest LCD screens were used to display numbers, typically for pocket
calculators or wristwatches. To simplify the design, a format was created, one
that allows the display of all numbers from 0 to 9. When decimal points were

http://www.wiley.com

Chapter 11 = LiquidCrystal

193

added, it became the perfect screen for calculators. An example is shown in
Figure 11-1.

| SR
HEWLETT-PACKARD

Figure 11-1: LCD screen of a calculator, displaying numbers

Although this works great for numbers, it doesn’t work as well for letters. Some
letters can be approximated, and some words can be guessed. Hands up; how
many of you used calculators to write words? For example, entering 77345993
on a calculator and turning it upside down for EGGSHELL? I did.

To allow letters to be printed, the previous system was modified, adding
more segments. This did indeed work, even if it increased the complexity of
the LCD screen and the electronics needed to control it. It still wasn't perfect,
and some letters were slightly difficult to read: for example, the letter V. Also,
it did not allow for uppercase and lowercase letters to coexist; only uppercase
letters were displayed and not every lowercase letter could be easily displayed.
An example is shown in Figure 11-2.

Figure 11-2: LCD screen showing text

194

Part Il = Standard Libraries

Electronics became smaller and smaller, while still becoming more and more
powerful. New production techniques allowed LCD screens to become more
and more advanced, and a new generation was born.

Modern LCD screens can display numbers and letters: both uppercase and
lowercase. Much like the fonts on a computer screen, text and numbers can be
written using a matrix of dots. By creating a simple matrix of 5 x 7 points, every
single letter in the Latin alphabet can be displayed, and this even works on other
alphabets. The downside to this is the complexity of the electronics involved
to create connections for a matrix of 5 by 7 squares for every letter required,
but most displays come with an integrated controller making the task much
easier. Just tell the display what you want to print, and the controller does all
the hard work for you.

This type of LCD screen does not talk about resolution. A typical desktop or
laptop screen talks about a resolution in pixels, but these screens talk about the
number of letters; 16 x 2 means 16 letters on two lines. It does not talk about
resolution because this isn't how these screens work; they are composed of sev-
eral small 5 x 7 screens, but with space between each segment. It isn’t possible
to display graphics on this type of screen.

LiquidCrystal Library

The Arduino LiquidCrystal library has been designed specifically for one con-
troller: the Hitachi HD44780. Numerous boards exist with this controller, and
it is so popular that other controllers also have HD44780 compatibility.

Before using the library, it must first be imported. To import the library, go into
the Arduino IDE, and select the menu Sketch = Import Library => LiquidCrystal.
Alternatively, you can manually add the header file into your sketch:

#include <LiquidCrystal.h>

To use the LiquidCrystal library, you must first create a named Liquidcrystal
object. Numerous parameters are required, and values depend on the device
that you will be using.

LiquidCrystal lcd(rs, enable, d4, d5, de, d4d7);

rs, rw, enable, d4, d5, de6, d4d7);

rs, enable, d0, di1, 42, d3, d4, d5, de6, d7);
s

, rw, enable, d0, dl, d2, d3, d4, d5, de,

LiquidCrystal lcd ,

(
(
LiquidCrystal lcd(
(

LiquidCrystal lcd(r a7) ;

The rs parameter is short for Register Select and indicates the pin that is con-
nected to the LCD’s RS input. The enable parameter allows selection of the LCD
device and indicates the pin that is connected to the LCD’s ENABLE connector.

Chapter 11 = LiquidCrystal

195

The r/w parameter is an optional parameter used to indicate if the Arduino is
reading from or writing to the LCD screen. Some applications will write only
to the LCD screen, in which case the R/W pin can be omitted. Otherwise, it
must be connected to the LCD’s R/W pin.

The remaining parameters are the data pins. Two options are available: either
selecting four data pins or eight. This means that data sent to or received from
the LCD controller is either in 4-bit mode or 8-bit. Originally, all data was writ-
ten in 8 bits, but 4-bit mode allows programmers to send two 4-bit messages to
be interpreted as an 8-bit message. This allows the designer to save four digital
I/0O pins when designing devices.

There are several misunderstandings about the difference between 4-bit
mode and 8-bit mode. One of them is about speed. It is indeed “faster” to send a
single 8-bit message instead of two 4-bit messages, but with more than 90 percent
of alphanumeric LCD screens, speed is not an issue. They have a relatively low refresh
rate, meaning that it is possible to send an entire 2 x 16 message to the LCD screen
before it has time to refresh the screen, even when using 4-bit mode.

When the LiquidCrystal object has been correctly created, it is necessary to
initialize it. This is achieved with begin ().

lcd.begin(cols, rows) ;

This function requires two parameters: the amount of columns and rows
that the LCD device supports. Typical LCD screens are 2 x 16, but numerous
models exist, and it isn’t possible to ask every device what size they are. This
information must be given.

Writing Text

The main function of an alphanumeric LCD screen is, of course, to display text.
Because these screens have a built-in microcontroller, they perform almost
exactly like serial terminals. When you send ASCII text to the controller, it prints
those characters to the LCD screen. Just like a serial console on your computer,
it continues to display those characters until you send more text than can be
displayed, or until you send it an instruction.

To write text directly to the LCD screen, use print ().

result = lcd.print (data);
result = lcd.print (data, BASE) ;

The data variable is of any data type; typically this would be a chain of
characters, but it can also be numerical data. If it is numerical data, it will be

196

Part Il = Standard Libraries

printed as decimal by default, but this can be configured using the optional
BASE parameter by selecting one of BIN, DEC, ocT, or HEX. This function returns
a byte, the number of bytes written to the LCD device.

To print a single character, use write ().

result = lcd.write(data) ;

The data parameter is a character that will be printed to the LCD. This func-
tion returns a byte; the number of bytes written to the LCD device (in this case,
either 1 if successful, or 0 if there was an error).

To clear the screen, call clear().

lcd.clear () ;

This function takes no parameters and does not return any information. It
sends a command to the LCD microcontroller to erase any text on the screen
and to return the cursor to the top-left corner.

Cursor Commands

Cursor functions work similarly to the cursor on a spreadsheet; you may set
the cursor to be at any position, and the text you enter will be printed at that
position. By default, the cursor is set at the top-left side of the screen when ini-
tializing and will be updated to be placed at the end of any text that you write.
When adding text to the display (by using multiple print () calls, for example),
it will be added to the end of the line. So, for example:

lcd.print ("Hello, ");
lcd.print ("world!") ;

These two lines will result in printing a single line: “Hello, world!” This is
useful when calling print () several times if displaying numerical values:

lcd.print ("Temperature: ");
lcd.print ("temp, DEC") ;

However, you can return the cursor to the top-left of the screen using home () :
lcd.home(); // Returns the cursor to row 0, column 0
You can also place the cursor precisely where you want using the setcursor ():

lcd.setCursor (col, row) ;

By default, the cursor itself is invisible. To make it visible (as an underscore
at the position where the next character will be printed), use cursor ():

lcd.cursor () ;

Chapter 11 = LiquidCrystal 197

To disable the cursor again, use nocCursor ():
lcd.noCursor () ;

These two functions do not take any parameters and do not return any data.
To display a blinking cursor, use blink ():

led.blink () ;
To hide the blinking cursor, use noBlink ().
lcd.noBlink () ;

Using cursor () or blink () may produce unexpected results; the exact results
depend on the screen’s manufacturer. Consult your documentation.

Text Orientation

Text can be oriented both left to right and right to left. By default, LCD alpha-
numerical displays are configured to be left to right. On startup, the cursor is
placed at the far left, and each character makes the cursor move one step to the
right. To configure the LCD screen to be in right-to-left configuration, use this
function:

lcd.rightToLeft () ;

This function takes no parameters and returns no data. To change the orien-
tation back to left to right, use the following function:

lcd.leftToRight () ;

Neither function affects previously written text, and the cursor’s position is
not updated.

Scrolling

LCD displays are used on numerous devices; they are cheap and reliable. You
see them often on cash registers in supermarkets; an LCD device can tell you
what item the cashier has just scanned and the cost of the item. At the end, it
gives you the grand total to double-check with your calculations. Assuming that
you want to print the total and that you need room for two decimal places, a
decimal point, a dollar sign, and the remaining room for digits, then a standard
16 x 2 LCD device can be used for some expensive shopping. Sixteen characters
are more than enough to display prices but become far too small if you want
to place your company name or even some text. “Thanks for shopping with
us; have a nice day!” is far too large for a 16 x 2 LCD screen, even on two lines.

198

Part Il = Standard Libraries

So how can you print all that? The answer lies with scrolling, pushing existing
characters out of the way for new text.

Text can be scrolled in two directions: left and right. The following functions
shift both the text and the cursor by one space, either left or right:

lcd.scrollDisplayLeft () ;
lcd.scrollDisplayRight () ;

Automatic scrolling enables a simpler approach; text is automatically shifted
when a character is printed to the screen. Automatic shifting can be done in both
left-to-right or right-to-left configurations and depends on the current position.

To enable autoscroll, call autoscroll ():

lcd.autoscroll () ;

From here on, subsequent writes to the screen will result in previous char-
acters to be automatically shifted. To disable autoscroll, use noautoscroll ():

lcd.noAutoscroll () ;

Note that the cursor is also autoscrolled; this has the effect of always writing
new characters to the same position.

Custom Text

Alphanumeric LCD screens are widely used, and it is not possible to imagine
every use case before production. Although most simply display the time or
short text, some require more advanced use. Imagine a home wireless telephone;
the LCD screen is designed to print simple text, phone numbers, and why not
a menu system to configure the telephone, but the constructor also wanted to
add some information: the current battery level. It would be possible to display
the battery level as a percentage or simply to ignore the battery if it is more than
25 percent charged, but maybe you would like to create your own character,
something that resembles a battery. Maybe an elevator in a high rise building
has an intelligent system. If you want to go to floor 42, the elevator will tell you
to use a particular elevator. For example: Floor 42, —. The arrow will indicate
that you should use the elevator on the right. It is more visual than writing text
and might even be more economical to use such a solution because a smaller
screen can be used. LCD screens already have a large amount of characters
prerecorded, but there is still room for eight custom characters.

To create custom characters, an array of binary data must be created. This
data is arranged in eight lines of 5-bit binary data, like so:

byte smiley[8] = {

B000OO,
B10001,

Chapter 11 = LiquidCrystal

199

B00000,
B00100,
B00100,
B00000,
B10001,
B01110,

}i
Now, to attribute that data to a character, use createChar ():

lcd.createChar (num, data) ;

The num variable is the number of the character; slots 0 to 7 are available.
The data parameter is the data structure you created previously. For example:

lcd.createChar (0, smiley);
Finally, to use the custom character, use write () specifying the byte to use:

lcd.write (byte (num)) ;

Example Program

For this example, you build a distance sensor: a small device that displays the
distance of the closest object to the device. Distance sensors are found in daily
life; for example, they are used on building sites to know the distance between
two walls or by real estate agents to calculate the size of a room. They are also
used by robots to detect obstacles and used by cars in exactly the same way to
help you reverse into a tight parking space.

There are several ways to achieve this, but they all rely on the same principle:
bouncing waves. By emitting a certain frequency, the device calculates the time
taken to receive a “copy” of that wave. Imagine yourself in a large open space:
a stadium or in the mountains. When you shout, you wait for a small period
of time before hearing your echo. Sound has traveled from your mouth and
propagates. When it hits a solid surface, it reflects and is dispersed in different
directions. Some of that sound returns to you, and your ears hear the sound.
By calculating the time it took to hear your echo and factoring in the speed
of sound, you can get a rough estimate of the distance. However, this doesn’t
work for small distances; the speed of sound is so fast that it is impossible for
a human to calculate the distances inside a house, but for electronics, it isn’t a
problem. The HC-SR04 is one device that can do this.

The HC-SR04 is an ultrasonic distance sensor, as illustrated in Figure 11-3.
Ultrasonic distance sensors are easily recognizable by their shape. When placed
on a robot, it looks like two “eyes,” and in a way, they are. One “eye” is an
ultrasonic speaker, and the second is an ultrasonic microphone. Ultrasound

200

Part Il = Standard Libraries

waves are created, and the device calculates the time taken for those waves to
return to the device. This results in surprisingly accurate results and is good
for distances up to four meters away.

Figure 11-3: HC-SR04 Ultrasonic Sensor

The sensor has four pins: one for the power, one for the ground, one to issue a
pulse, and the final pin to read the distance. The result is not in a binary format;
this pin will not output text or data in a serial fashion. Instead, the pulse length
is proportional to the time taken to receive a result. Fortunately, the Arduino
can handle this with a single command.

To allow the user to read the data easily, an LCD screen will be used. This
setup could easily be used with a serial device, but that doesn’t make sense. The
serial port displays text and so does an alphanumeric LCD screen. Only LCD
screens are significantly more user-friendly.

This example uses a SainSmart LCD Keypad shield. This shield contains
a 16 x 2 LCD screen with a nice blue backlight. It contains all the electronics
necessary to use an LCD screen: power, the backlight control, all connected to
the Arduino on digital pins. It uses four data pins, and therefore will use 4-bit
commands. The example is not specific to this shield, but if you use a different
screen, make sure your code and wiring reflects the necessary changes.

Hardware

The SainSmart LCD Keypad shield is a fairly large device. A normal 16 x 2
LCD screen is about as long as an Arduino Uno, and this shield covers the Uno
completely, making it difficult to add additional peripherals. For this reason,
the Arduino Mega2560 was chosen. It is longer than the Uno, and even with the
shield present, there are still a large amount of I/O pins available. The HC-SR04
ultrasonic distance sensor is a small device, and by chance, is exactly as wide as

Chapter 11 = LiquidCrystal

201

the extended digital outputs of the Arduino Mega2560. To create a self-contained
device, the sensor will be placed directly into the header pins, bypassing the
need for a breadboard. Let me explain.

By reading the datasheet of the HC-SR04, available at http://packetfury
.net/attachments/HCSR04b.pdf, you can find the requirements for power-
ing the sensor: one pin for power and one ground connection. The maximum
current used by the sensor is 15 mA. The maximum power delivered by the
Arduino’s I/O pins can’t exceed 40 mA. That is more than double, a comfort-
able safety margin. The pin connected to the sensor’s VCC sets as output and
sets HIGH. The pin connected to the sensor’s ground also is an output but sets
Low. Just as LED lights can be powered by an I/O pin pulled #1GH, the sensor
will be powered by these pins. Similarly, the ground can be an I/O pin pulled
Low. The sensor will be sufficiently powered by the board, but remember that
this is a prototype and designed for simplicity. It is possible to do what you are
about to do, but if you end up creating your own shield with an LCD screen
and ultrasonic distance sensor built in, it is good practice to route the shield so
that the sensor is powered by the main power, not powered by the Arduino.

m Don’t connect the sensor just yet! The reason for this is explained
later in this chapter when | talk about the sketch.

Software

The sketch is shown in Listing 11-1.

Listing 11-1: Sketch (filename: Chapter 11.ino)

1 #include <LiquidCrystal.h>

2

3 const int vccPin=40;

4 const int gndPin=34;

5 const int trigPin=38;

6 const int echoPin=36;

7

8 // Initialize the library with the numbers of the interface pins
9 LiquidCrystal 1lcd(8, 9, 4, 5, 6, 7);

10

11 wvoid setup()

12 {

13 Serial.begin (9600) ;

14

15 // Set up the LCD's number of columns and rows
16 lcd.begin(le, 2);

17

18 // Configure the pins

19 pinMode (trigPin, OUTPUT) ;

Continues

http://packetfury

202

Partll

Standard Libraries

Listing 11-1: (continued)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

pinMode (echoPin, INPUT) ;
pinMode (vccPin, OUTPUT) ;
pinMode (gndPin, OUTPUT) ;

// Trigger set to low
digitalWrite (trigPin, LOW) ;

// VCC and GND
digitalWrite (vccPin, HIGH) ;
digitalWrite (gndPin, LOW) ;

// Prepare LCD screen text
lcd.print ("Distance") ;

void loop ()

{

long duration, distance;

digitalWrite (trigPin, HIGH) ;
delayMicroseconds (10) ;
digitalWrite (trigPin, LOW) ;

duration = pulselIn(echoPin, HIGH);
distance = duration / 58;

// Set the cursor to column 0, line 1 (beginning of second line)
lcd.setCursor (0, 1);

if (distance >= 400 || distance <= 0)
// Inform the user that we are out of range
lcd.print ("Out of range") ;

}

else
{
// Tell the user what distance has been detected
lcd.print (distance) ;
lcd.print (" cm "); // Extra space overwrites any text

// Wait for half a second before repeating
delay (500) ;

From the start, on line 1, the LCD library is imported. Afterward, four pins

are defined as constants: vccPin, gndPin, trigPin, and echoPin. These pins
correspond to the pins found on the HC-SR04 sensor board. The vccpin and the

Chapter 11 = LiquidCrystal

203

gndPin are the power pins, and trigPin and echoPin are the data pins. Later,
trigPin will be an output, and echopin will be an input.

Online 9, the LCD display is configured, creating an 1cd device. This function
uses six parameters, which tell the sketch that it will use four data lines and
does not use the optional read/write parameter. It is called using six integers:
8,9,4,5,6,and 7. The first value corresponds to the RS pin. On the SainSmart
LCD Keypad shield, RS is pin 8. The second value is the enable pin, and this is
wired to pin 9. Finally, 4, 5, 6, and 7 are the data pins. As with the rs and enable
pins, these are hardwired on the shield.

Online 11, setup () is declared. On line 13, the serial port is initialized. It isn't
used in this example, but it is ready in case you need to start debugging your
application. The LCD device is already activated, but the sketch knows only what
pins the LCD device is connected to. It still doesn’t know how many lines and
columns the device has. This is done on line 16 with begin () ; it has 16 columns
and two lines. On lines 19 to 24, the four pins for the sensor are configured. One
pin, echopin, will be configured as INPUT, and the three others will be ouTpuT.
On line 25, the trigger pin is set Low. On line 28, the vccpin is set HIGH; it will
now supply 5 V. On line 29, the gndpin is set Low; it is now a ground connection.
Finally, on line 32, some text is sent to the LCD device: one word—"Distance.”
This is printed at the default cursor position: (0,0), located at the top-left corner
of the screen. This text will be present at all times, and the text on the second
line will be updated in loop ().

On line 35, 1o0p () is declared. This is where all the sensor reading and text
writing takes place. It starts by declaring two variables: duration and distance.
The HC-SR04 requires a pulse on the trigpin pin of at least 10 microseconds.
To do this, the sketch first sets trigpin HIGH, waits for 10 microseconds using
delayMicroseconds (), and then sets trigPin to a logical Low.

After receiving a pulse, the HC-SR04 starts working. It emits a number of
ultrasonic bursts and listens to the results. After the distance has been calcu-
lated, the result is returned via the pulsePin, a variable length pulse. So how
can the Arduino know how long the pulse is? The answer is simple: pulseIn().
This function was presented in Chapter 4. Put simply, it waits for a pulse to
appear on the designated pin. It waits for the logic level to change and then
starts counting. When the logic level changes back to its original setting, it stops
counting and returns the length of the pulse in microseconds. This is done on
line 53, placing the result into a variable: duration. On line 54, a small calcula-
tion is made; the variable duration is divided by 58. This value comes from the
sensor’s documentation. Divide the number by 58 to get a result in centimeters
and by 148 to get the result in inches. Now that you have the distance, it is time
to print the results.

The results will be printed on the second line of the LCD screen, so the
coordinates must be set. This is done on line 47; the position is set to column 0,

204

Part Il = Standard Libraries

line 1. Remember, most numbers start with 0, so this is actually on the first
column on the second line. The HC-SR04 can give results up to 4 meters away;
values greater than that will be ignored. A quick check is done on line 49 with
an if () statement. If the result is greater than 400 centimeters or if the result is
negative, the sketch writes “Out of range” if the distance value is out of range.
If it is not out of range, the value is printed. This is done in two steps: first, the
decimal value is displayed. Afterward, some text is displayed with a leading
space and several spaces after the text. Why? Because if the previous text were
“Out of range,” the end of that text would still be visible. Writing text on a line
does not automatically delete all the text at the end of the line. Just like using
the insert function in a word processor, each keypress deletes one character and
inserts the character you want in that text, but it does not delete text afterward.
To make sure that no trailing text is displayed, several spaces are included.
The last thing that happens is waiting for one-half a second before repeating
the process. This is done on line 62. Figure 11-4 shows the finished product.

Figure 11-4: The finished product

Itis vitally important to double-check the Arduino before connecting com-
ponents. It is tempting to connect the sensor before uploading the sketch to the
Arduino, but what would happen if the previous sketch used the I/0 pins for some-
thing else? In the worst case, the VCC and GND pins could be inverted, essentially
reversing the polarity of the component, damaging or destroying it. | have a dozen
Arduino boards at home, and it is impossible to remember exactly which board has
which sketch. Remember to upload the proper code of your Arduino before connect-
ing external devices.

Chapter 11 = LiquidCrystal

205

Exercises

This sketch gives surprisingly accurate results with inexpensive hardware, but
a few quick tricks might make this sketch even better. It is currently written for
the metric system, using centimeters. You could change the output to meters
when the distance value is more than 100. For people using the imperial system,
the sketch can be modified to print the data in inches, not in centimeters.

One good way of changing between inches and centimeters would be to
use something that the SainSmart LCD Keypad shield already has: a keypad.
Look at the documentation; the keypad is an analog device connected to
pin 20. When the keypad is pressed, the voltage on a0 changes, and that is how
the sketch knows that a button has been pressed. Try to create something that
would change the output when one of the buttons is pressed. analogread ()
would be useful here for reading the results of keypresses.

Summary

In this chapter, you have seen not only how to connect liquid crystal displays,
but you have learned how to create special characters for your device, and how
to display data onto the screen. In the next chapter, I will show you the SD
library, how it talks to SD cards, and how it can be used to read and write data
to a card. You will see a data logging application that will allow you to write
thousands of samples to a card, and how to read them back.

SD

This chapter discusses the following functions of the SD library:

begin ()
open ()
exists ()
close ()
read ()
peek ()
position ()
seek ()
size()
available ()
print ()
println ()
write ()
mkdir ()
rmdir ()
flush()

isFolder ()

207

208

Part Il = Standard Libraries

The hardware needed to run the examples in this chapter includes:
m Arduino Uno
m Ethernet shield (Arduino, SainSmart, or similar board)
m Micro-SD Card

You can find the code download for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 12
download folder and the filename is Chapteri2.ino.

Introduction

The hunger for storage has increased exponentially. Early computers did not
have hard drives; the operating system and applications were stored on a floppy
disk. The first commercially available floppy disk was an 8-inch disk, which
became available in 1971. It could store an enormous 175 KB of data. In 1976, the
standard became 5 % inch (ironically known as the minifloppy). The original
model could store 87.5 KB, but newer models could store more than 1 megabyte.
The large slots on your desktop computer that house a DVD drive or Blu-ray
drive are that size because of floppy disks; the size of the minifloppy disk drive
became standard.

As technology advanced, so did the storage capacity of disks, and 5 %-inch
disks were considered too big; the computer industry turned to 3 %2-inch flop-
pies, known as micro-floppies. Early models could store 360 KB, but later models
could either be single density (720 KB) or double density (1.44 MB). Those are
the disks that powered the computer industry, storing and exchanging data.
Operating systems were sold on floppies, and the first thing that users were
told to do was to copy this floppy and keep the original safe. A single floppy
disk was more than enough to hold an operating system and a few programs.
Figure 12-1 shows examples of three different types of early floppy disks.

Figure 12-1: Floppy disks

http://www.wiley.com

Chapter 12 = SD

209

Technology continued to advance, and more and more files were created
digitally. Businesses could find themselves submerged with floppies, and data
retrieval could be extremely slow because a lot of time was taken finding the
right floppy. Also, floppy disks were not the most reliable medium possible.
(Older readers might remember the infamous Abort, Retry, Ignore message.)
The solution came, and it was called the hard drive.

A hard drive is, essentially, a floppy disk that cannot be removed. Original
models could hold just a few megabytes, but it didn’t take long to increase stor-
age space—from 20 megabytes to 40, 120, 340, 540.... The gigabyte barrier was
broken in the early 1990s. However, this was not the end of floppies, far from it.
Operating systems and programs were still sold on floppies, and backups used
floppy disks. However, another problem was noticed.

With the advance into the digital era, everything ended up on a computer—
letters, books, photos, images, and music. It was easy to add a few hard drives
onto a computer until internal space ran out, but the industry’s main problem
was data exchange; the ability of transferring data from one computer to another.
A simple Word document could be just a few kilobytes in size, but add a few
images or photos, and it could become bigger than a floppy disk, the only medium
used to transfer data from one location to another. The Internet wasn’t available
everywhere and most certainly not at the speeds required to transfer megabytes
of data. We would have to wait a few years for high-speed devices like USB. I
can remember receiving parcels containing dozens of floppy disks containing
programs. (Windows 3.1 came on 7 floppy disks; Windows NT 3.1 came on 22.)

CD drives offered a solution, the medium is capable of storing 650 to 700
MB of data. Applications could be shipped on a single CD, and the increase
in size meant that applications became more and more multimedia-oriented.
Microsoft Encarta was a revolution for its time—an entire encyclopedia on a
CD. However, it wasn’t the most effective data transfer device possible, being a
write-once read-many media. After a CD was “burned,” it couldn’t be erased.
Different techniques were used, including the possibility to rewrite CD media,
but a new technology put a stop to all that.

The Universal Serial Bus (USB) is an extension for PCs and mobile devices.
Developed in the mid-1990s, the final USB 1 specification was released in January
1996. Until USB, shopping for peripherals was a nightmare. A printer would use
a parallel port, but so would a scanner and a Zip drive. A mouse might use a
serial port, but so would a modem and a programmer. Expansion ports were
sold, adding serial ports, parallel ports, PS/2 ports, and so on. USB revolutionized
all this—printers, scanners, mice, modems, even some floppy drives. All these
peripherals could use USB, and it was embraced by the industry. However, the
industry was about to try something else. In the year 2000, the first USB flash
drive was created, as shown in Figure 12-2.

210

Part Il = Standard Libraries

Figure 12-2: USB flash drives

The first commercial product could hold 8 MB of data, more than five times
that of a floppy disk. It was solid and robust, and could survive spending days
in a pocket, falling off desks, or being subjected to temperature differences. It
had a high transfer speed compared to floppy disks (1 MB/second) and was
better than floppies in almost all fields.

In 2000, USB 1.1 was surpassed by USB 2.0, adding higher transfer speeds.
USB 2.0 could transfer up to 35 MB/s; huge files could finally be transferred
quickly and efficiently. A second generation flash disk used USB 2.0, which was
significantly faster than USB 1.1—approximately 20 times faster.

Speed increased and so did storage capacity. Every so often, capacities doubled.
Sixteen-megabyte versions were soon available, replaced by 32 megabytes, and
so on. Fourteen years later, terabyte-sized flash drives are available. Despite their
huge growth and advances, flash drives have remained relatively unchanged.
They rely on a small controller and flash memory.

Flash memory is different from floppies and hard drives. Floppy disks have
a thin, flexible disk of magnetic storage plastic, encased in a rigid plastic case.
A motor inside the disk drive turns the disk, and heads are placed above the
surface of the disk. To fetch data, the heads are placed at a specific location and
the motor turns the disk. The heads read the data stored on the disk, but the

Chapter 12 = SD

211

heads must wait for the disk to rotate to the right position to do so. Hard drives
function in the same way, only the motor is included inside the drive.

Both floppies and hard drives are susceptible to damage; for example, a hard
drive falling from your pocket might destroy the device. Flash memory works
differently. Unlike floppies and hard drives, flash memory has no moving parts,
and is therefore much more resilient to shocks and impacts. It requires very
little energy to function, and some forms of flash memory have read and write
speeds far greater than the fastest hard drive available.

USB flash drives still aren’t the answer to our needs. We can now easily
transfer data from one computer to another, but mobile devices are becoming
more and more present. Mobile telephones, digital cameras, camcorders, and
mp3 players all require storage. Early devices had a fixed amount of storage,
and although it might have been more than enough for some, for others the
storage wasn't close to being enough. My first digital camera had 16 megabytes
of memory, more than enough for a quick photo shoot, but not enough for my
holidays. Users wanted choice, so companies turned back to a format that had
existed for as long as USB itself. Multiple mobile memory storage devices were
created, but the most dominant format is the SD card.

SD Cards

SD, short for Secure Digital, is an evolution over the previous MultiMediaCard
standard. The SD Card Association manages the format, specifications, and evo-
lutions, and uses a trademarked logo to enforce compatibility. If your device has
the same logo as the one on your SD card, you know that they will be compatible.

Physically, SD cards are available in three formats: standard size, mini, and
micro (see Figure 12-3). Today, most devices use either the standard size format
(for larger devices, like cameras, camcorders, and personal computers) or the
micro-size format (for smaller devices, such as e-book readers, telephones, and
mp3 players).

SD cards are not only used for data storage, but also for data transfer. You
can transfer photos from your camera either with a USB cable or directly by
taking out the card and connecting it to your PC. Some desktop computers have
an SD-card reader, as do many laptops. For micro-SD cards, you have several
choices. There are USB readers that can read several types of cards or USB
keys that can accept a micro-SD card and be used as a regular USB flash drive.
Adapters also exist to convert a micro-SD card into a standard full-size SD card.

212

Part Il = Standard Libraries

SAMSUNG

¥ Lock

| micros.s
| Adapter

Figure 12-3: SD cards, micro-SD cards, and SD-card readers

Capacity

SD cards have gone through numerous changes to their specification since their
release in 1999. The original SD specification allowed cards with capacities up
to 2 gigabytes. When the 2 gigabyte barrier became a problem, SD-HC was
introduced. Short for SD High Capacity, it specified a way of storing up to 32
gigabytes of data. It does not simply integrate more space; the protocol had to be
changed to allow for higher capacity. Again, the size barrier became a problem,
and SD-XC (for eXtended Capacity) was born. The standard insists that newer
formats accept older cards, but the opposite is not true; some SD-compatible
devices will not accept SD-HC cards, even if they can fit physically.

The card capacity is only one factor. To use a card’s capacity, the system nor-
mally needs to use a filesystem. A filesystem is a way of preparing the space on
a physical storage medium (SD-card, floppy, or hard drive) to allow files and
folders to be stored in a hierarchal way. SD cards can be used to transfer data
between devices and operating systems with different specifications. From this
variety of formats, FAT has emerged as the most common filesystem.

Chapter 12 = SD

213

FAT, short for File Allocation Table, has been used since the early days of PCs.
It has undergone several changes over the years. The original FAT specification,
FATS, is no longer in use. FAT16 uses 16 bits to define sector entries (a method
of storing file information) and is limited to 2 gigabyte partitions. FAT32 was
released after this, and storage space was theoretically increased to 2 terabytes;
although in practice, few systems used it beyond 32 gigabytes. Newer systems
use the exFAT filesystem, a new but incompatible filesystem that allows huge
storage capacity; in theory, up to 64 zettabytes. For comparison, in 2013, the
entire World Wide Web was estimated at 4 zettabytes.

FAT32 has been surpassed technically by several filesystems, including exFAT
and NTES, but still remains in use for its simplicity. NTFS adds several interesting
features such as journaling, linking, and quotas; features that are not required
by a digital camera. The code required to interact with a FAT32 filesystem is
extremely small, making it ideal for embedded systems.

Speed

There is also another factor to consider when choosing SD cards: their speed.
The SD Speed Class Rating is a simple way of understanding the minimum
speed of a card. Visible by either a letter C with a number inside, it shows the
number of guaranteed megabytes-per-second transfer speed. A Class 2 card
(A C with the number 2 inside) guarantees that the write transfer speed will
not drop below 2 megabytes per second. A Class 10 will not drop below 10
megabytes per second. The newer speed category is shown by the letter U, and
to date, two categories exist. UHS-1 (a U with the number 1 inside) guarantees
read/write performance of 10 megabytes a second, and UHS-3 (a U with the
number 3 inside) is guaranteed for 30 megabytes read /write per second. Please
note that these figures are stated only as a minimum; some Class 2 cards are
more than capable of being branded as a Class-6 or higher but have not gone
through certification.

Using SD Cards with Arduino

Arduinos cannot natively use SD cards; they need a shield or a breakout board
to provide an SD slot. Fortunately, several shields exist with SD capacity. Most
Ethernet and wireless shields provide micro-SD slots, and numerous vendors
provide datalogging shields—a shield with a micro-SD slot and space to add your
own sensor components, as shown in Figure 12-4.

214

Part Il = Standard Libraries

"ilml-gMN-lxwd\oc N VO In
tscLspa & § o o QY R 2

ol y
" xily DIGITAL (PWM~ SPI*)
h -

: TXHIEN % ETHERNET
R | oo SHIELD
; o ON e

G [il

WWW. ARDﬂINP .cc

P 000C
C X N -

Figure 12-4: A SainSmart Ethernet shield with a micro-SD slot

Accepted SD Cards

The Arduino SD library can work with SD and SD-HC cards, all the way up
to 32 gigabytes. This limitation is mainly due to the filesystem; Arduinos can
use FAT16 and FAT32 filesystems but cannot use the newer, proprietary exFAT.
SD-XC cards are normally formatted with exFAT, but some people have reported
using SD-XC cards formatted to FAT-32.

An Arduino can work with any speed classes of SD-cards, but data throughput
will be limited when writing with an Arduino. You may want to buy a faster
card if you transfer data to and from a PC.

Limitations

Back in the days of Windows 3.11, filenames were harder to deal with. They
were written in the 8.3 notation; filenames could consist of only 8 letters, and
the extension (the text after the dot), could consist of only three letters. The
tilesystem did not differentiate between uppercase and lowercase letters for the
system; everything was written in uppercase letters. Files were seen as WIN
.COM, AUTOEXEC.BAT, and RECIPES.TXT. If you wanted to name a video
of your family on holidays on a tropical island, swimming in a crystal clear
sea, you had to be very creative. An extension to FAT allowed the use of LEN,

Chapter 12 = SD

215

short for Long File Names, but it is only an extension; it is not part of the FAT
specification. There is a reason why your camera names your photos IMG_xxxx.
JPG; it is probably limited to the 8.3 file-naming system. Arduinos also can
use only 8.3 filenames. This isn’t a problem for cameras where filenames are
just numbers, and it is rarely a problem for Arduinos where files are normally
configuration, or data-logging.

Communications to and from the SD card are done via SPL. The SS pin (SPI
Slave Select) must be left untouched. The SD library will not work if the SS pin
is not configured as an output.

Numerous shields exist and do not always use the same pin to initialize the
SD card. The chip select pin can change from one design to another; consult
the shield documentation to know which pin to use when initializing the SD
card reader.

The SD Library

The Arduino language has an SD library built in. This library depends on three
other internal libraries that handle card and filesystem-specific functions, but
abstraction makes the library extremely easy to use. It is possible to use the other
libraries, which is explained briefly in the “Advanced Usage” section.

Importing the Library

To be able to use the SD library, you must first import it. This can be done either
automatically in the Arduino IDE by going to the Sketch &> Import Library =
SD menu item, or manually with this:

#include <SD.h>

Arduinos communicate with SD card controllers using the SPI protocol. Thus,
you must also import that library:

#include <SPI.h>

Connecting a Card
As with many Arduino libraries, to initialize the library, you must call sp.begin ().

result = SD.begin() ;
result = SD.begin(csPin) ;

SD.begin () returns true if a card is detected and the library initialized;
otherwise, it returns false. The optional cspin argument is used to configure

216 Part Il = Standard Libraries

which slave select pin should be used if your application does not use the default
hardware SS pin. Most shields will use the default hardware pin.

// See if the card is present and can be initialized:
if (!SD.begin(chipSelectPin))
Serial.println("Could not initialize SD card.");
// End the sketch gracefully
return;

}

Serial.println("SD Card initialized.");

Opening and Closing Files

The SD library can create, update, and delete files on a FAT16/32 filesystem. The
SD library (and indeed most programming environments) does not differentiate
between creating a file and opening a file. The system is told to open a file. If
the files exists, it will be opened. If it does not exist, an entry is created, and a
new blank file is opened. To open a file, call sD.open ().

file = SD.open(filepath) ;
file = SD.open(filepath, mode) ;

The filepath parameter, expressed as an array of char, is the name of the
file to use or to create. If the file does not exist, it will be created, but this func-
tion will not create folders. To specify a folder, use the slash (/) character.
The mode parameter can be one of two constants: FILE_READ Or FILE_WRITE.
The FILE_READ constant tells the sketch to open the file as read only. This is
the default setting if the mode parameter is omitted. The FILE_WRITE constant
opens the file in read/write mode. sb.open () returns a File object, something
that describes and points to a file. It is used as a reference to read, update, or
close files. To open a file, you must first create a File object, and then use that
object on subsequent file actions:

File myFile;
myFile = SD.open("data.dat", FILE_WRITE) ;

It is also possible to check beforehand if a file exists. To do this, use sp.exists ().
result = SD.exists (filename) ;

This function tests to see if a filename exists and returns true if it exists or
false if it does not exist.

After you perform any read or write operations, you must close the file. This
is done using close () from the File class.

file.close() ;

Chapter 12 = SD

217

The File object is created when opening the file. This function takes no
parameters and does not return any data.

File myFile;

myFile = SD.open("data.dat", FILE_WRITE) ;

// Perform any read or write operations here
myFile.close() ;

Reading and Writing Files

Reading files is done with a pointer to a file position. By default, when a file is
opened, this pointer is set to the beginning of the file (byte 0). As each byte is
read in, the pointer increments, until it reaches the end of the file. You can set
the position of the pointer to any location inside the file.

Writing files is done by either appending data to the end of the file, no matter
where the pointer is located, or writing data at the file pointer location.

When reading and writing to a file, you will be using the File class, which
inherits from Stream, just like Serial does.

Reading Files
To read a byte from a file, use the read () function of the File class.

data = file.read();

This function returns 1 byte at a time (or -1 if no data is available) and auto-
matically updates the pointer. If you do not want the pointer to be updated,
you can call peek ().

data = file.peek();

Its use is exactly the same as read (), returning 1 byte, but the pointer is not
updated. Several calls to peek () returns the same byte. To know the value of
the pointer (to know which byte is the next to be read), use position().

result = file.position() ;

This function does not take any parameters and returns an unsigned long
indicating the current position within the file. It is also possible to set the posi-
tion with seek ().

result = file.seek(position);

This function attempts to set the file pointer to the value of position, defined
as an unsigned long. To know the size of the current open file, use size (). It
returns the file size in bytes as an unsigned long.

data = file.size();

218

Part Il = Standard Libraries

To know if there are any more bytes available for reading, use available ().
number = file.available() ;

This function returns the remaining bytes inside a file, as an int.

Writing Files

Three functions are used to write data to a file. print () and println() are used
in the same way as the Serial functions of the same name and write () places
bytes at the pointer position in the file.

print () and println() canbe used to write formatted data: text and decimal
numbers, as well as binary, hexadecimal, and octal representations using the
optional base parameter. By specifying BIN as the base parameter, print will
write binary notation. Using ocT and HEX, print will write octal and hexadecimal
respectively. The difference between print () and println() is that printin()
automatically adds a new line character at the end. Both of these functions
ignore the file pointer and append data to the end of the file.

file.print (data) ;
file.print (data, base);
file.println(data) ;
file.println(data, base);

The write () function is different. It can write data directly inside a file but
will not insert data; it will overwrite any data present if not at the end of the file.

file.write(data) ;
file.write (buffer, len);

The data parameter can be a byte, a char, or a string. The buffer param-
eter is a byte, array of char, or a string, and the len parameter indicates the
number of bytes to be used.

write (), print (), and println() also return the number of bytes written to
the buffer, but reading this is optional.

Folder Operations

If no directory is specified, all operations are performed on the root folder of the
SD card. It is, however, possible to create folders and work inside those folders.

Folders are used in the UNIX fashion; paths are separated by forward slashes
(/), for example, folder/file.txt. All folders are named from the root folder; you
cannot "cd" into a folder without first specifying the root folder(s).

Chapter 12 = SD

219

Folders and files are handled differently. When creating a file, you must “open”
the file, and the Arduino will create the file if it does not exist. This does not
work for folders; you must first create the folder before creating the file.

To create a folder, use mkdir ().

result = SD.mkdir (folder) ;

This function returns true if the folder was created, or false if the operation
did not succeed. It takes a string as a parameter and is the folder to be created
(complete with forward slashes). It can also create intermediate folders if required:

SD.mkdir ("/data/sensors/temperature"); //Will create all folders
To remove a folder, use rmdir ().
result = SD.rmdir (folder) ;

This deletes the folder from the filesystem but only on the condition that it
is empty. The function returns true if the folder were deleted, or false if it did
not complete the operation.

Folders are, in fact, special files. They can be opened with open (), but to know
if a “file” is a regular file or a directory, you can use the isDirectory () function.

result = file.isDirectory() ;

This function takes no parameters and returns a boolean; true if the file is a
folder, and false if the file is a regular file.

Card Operations

Data is buffered; that is to say that when the sketch is told to save data, that
data is not necessarily written to the SD card immediately. Because SD cards
have an embedded controller, write operations can be queued and the actual
write can be performed a few seconds later. When the SD embedded controller
receives multiple write operations, later write operations are often delayed until
the card has finished current operations. To force all data to be written to a file,
use flush().

flush(file) ;

This operation is also called automatically when a file is closed with close ().

220

Part Il = Standard Libraries

Advanced Usage

The SD library actually makes use of three internal libraries: Sd2Card, SdVolume,
and SdFile. All the functions present in the SD library are wrapper functions
that call different functions in these three libraries. The SD library follows the
Arduino philosophy, making it easy to do advanced functions. However, you can
still use these three libraries if you need access to even more advanced functions.

Sd2Card card;
SdVolume volume;
SdFile root;

There are numerous functions, and these functions are mainly out of the
scope of this book, but there are a few that may be of interest.

To get information about the card size, you can get data about the geometry of
the SD card—that is, the number of clusters and the number of blocks per cluster.

unsigned long volumesize = volume.blocksPerCluster () ;
volumesize *= volume.clusterCount () ;
volumesize *= 512;

On SD cards, blocks are always 512 bytes. You can get the amount of blocks per
cluster, and the amount of clusters on the card, giving you the card size, in bytes.

More utility functions are listed in the example program: CardInfo. It is avail-
able in the Arduino IDE: Files = Examples &> SD > CardInfo.

Example Program and Sketch

For this application, you build a data-logging application. The aim is to under-
stand how sunlight evolves during a day. For this, you will require several
components, but the sensor in this application is a light dependent resistor, or
LDR for short. An LDR will have variable resistance depending on the amount
of sunlight (or artificial light) it receives. The circuit for this example will require
a pull-down resistor in order to create a circuit known as a voltage divider. This
is illustrated in Figure 12-5. The voltage at Vin is always 5 volts, and depending
on the resistance of the LDR, the voltage at Vout will be somewhere between
the maximum of 5 volts and the minimum of 0 volts, depending on the light
being received.

When there is no light, the resistance or the LDR will be high, and the refer-
ence voltage will be closer to zero. When there is a lot of sunlight, the resistance
will be weak, and the reference voltage will be closer to 5 volts. This reference
is read by an ADC on the Arduino’s A3 pin. The ADC will compare the voltage
on the pin to the 5 Volts the Arduino runs off. It will return a value between 0
and 1023, and depending on the component you use, it is possible to calculate
the Lux value of visible light.

Chapter 12 = SD

221

5V o—

T

——o

Je

0Vo——-

Figure 12-5: An LDRin a voltage divider setup

Knowing the present amount of light is not very useful; it would be better if
the data could be logged so that you can see the evolution of light levels dur-
ing the day. For that, data will have to be logged. You could use the built-in
EEPROM, but EEPROM storage is limited, and getting data back onto your PC
could be complicated. SD cards have much larger capacity and can easily be
removed from the Arduino and read on any computer. Also, using an SD card
has another benefit; the resulting file can be formatted into a specific file type. For
this application, you can create a CSV file (short for Comma Separated Values).
This file can be imported directly into any spreadsheet application, allowing
you to use the data to create graphs.

The schematic will be simple; only a few components are required for this
operation, but this application does require a shield with SD capability. The
schematic is listed in Figure 12-6.

oooooooooo

Figure 12-6: Project schematic (Image created with Fritzing)

.....
.....

ooooo

.....
.....

fritzing

222 Partll = Standard Libraries

As with most shields, the I/O lines remain accessible. You can plug in the
cables straight on the Ethernet shield, and they will work in exactly the same way.
Use the code in Listing 12-1 to write the sketch.

Listing 12-1: Sketch (filename: Chapterl2.ino)

ww 3 o0 U1k W N

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

#include <SD.h>
#include <SPI.h>
const int chipSelect = 4; // Change this as required

int light;
int lightPin = A3;
unsigned int iteration = 1;

void setup()

{

Serial.begin(9600) ;

Serial.print ("Initializing SD card...");
// Chip Select pin needs to be set to output for the SD library
pinMode (10, OUTPUT) ;

// Attempt to initialize SD library

if (!SD.begin(chipSelect)) ({
Serial.println("Card failed, or not present");
// don't do anything more:
return;

}

Serial.println("Card initialized.");

void loop ()

{
// Get a light level reading
light = analogRead(lightPin) ;

// Open the SD data file
File dataFile = SD.open("light.txt", FILE_WRITE);

// Has the file been opened?

if (dataFile)

{
// Create a formatted string
String dataString = "";
dataString += String(iteration) ;
dataString += ",";
dataString += String(light) ;
dataString += ",";

Chapter 12 = SD

223

45 // Print data to the serial port, and to the file
46 Serial.println(dataString) ;

47 dataFile.println(dataString) ;
48

49 // Close the file

50 dataFile.close() ;

51 }

52

53 // Increase the iteration number
54 iteration++;

55

56 // Sleep for one minute
57 delay (60 * 1000) ;
58 }

The sketch begins by importing the SD library and the SPI library. Three
variables and one constant are defined. The chipselect constant should refer
to the pin that acts as the CS pin for the SD card on your board. On the Ethernet
board specified at the beginning of this chapter, the SD card is connected to pin
4. Refer to the documentation of your shield if youre unsure. This is the pin
that will be used to talk to the SD card. The 1ight variable will hold the sensor
value from the LDR. The 1ightPin is the pin on which these readings will take
place. Finally, the iteration variable will show the number of readings; it will
be used to format your data in a spreadsheet.

setup () begins with configuring the serial port for debugging, something you
are probably used to by now. On line 14, a status message is sent serially from
the Arduino, telling the user that the SD card is about to be initialized. The SD
card initialization is done on line 19, but before that, on line 16, the Arduino’s
default Chip Select pin (digital pin 10) is set as an output. This is required for
the SD library to work, even if the pin is not connected to your card. The SD
library will fail without this.

The SD card is initialized on line 19, by using the pin previously defined in the
chipselect constant. If the SD card fails to initialize, but your card is correctly
formatted in FAT32, check to see if you are using the right pin number for your
board. If the initialization fails, the sketch will inform the user; otherwise a
message will be printed to the serial port informing that everything went well.

loop () starts on line 27. First, the sketch reads the value on the 1ightpin and
stores it in the 1ight variable. When this data has been read in, it is time to open
the SD file. This is done on line 33; the sketch calls the file called 1ight . txt.
If this file exists, it will be opened; otherwise, the file will be created. Because
the sketch uses the FILE_WRITE parameter, it will be opened for reading and
writing. The sketch then checks if the file has been opened on line 36. If it is
open, a string is created, and populated with data: the iteration variable and
the 1ight variable, separated by a comma. On line 46, this string is printed to
the serial port, and then, using sp. printin(), appended to the data file. After
this has been done, the file is closed, and all the data is flushed to the SD card.

224

Part Il = Standard Libraries

Why is the file closed after every write? It is good practice to close a file when
it is not needed, and it forces data to be flushed to the SD card. On embedded
systems, you do not know when the user may unplug the system. Leaving a
file open could potentially mean that data is left unwritten and therefore lost.
Closing the file ensures that data is written as soon as possible, and the SD card
is left in a clean state.

The result of this sketch creates a text file that can be imported into a spread-
sheet, like Excel or LibreOffice Calc. The results of a sunrise in my city are shown
in Figure 12-7. The ambient light level is already at 200 due to street lights, but
something happened at the 16-minute mark—the visible light suddenly dropped
down considerably, but only for a minute. This was probably the sensor being
blocked—probably by my cat—but it shows that surprises can happen!

Light level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 12-7: Example data output

Summary

In this chapter, you have seen how to connect an SD card to your Arduino using
different methods, and how to initialize the card. I have shown how to read
and write data to the card, and how that data can be used later to give visual
results. In the next chapter, I will show you how to make an even more visual
impact using TFT screens.

TFT

This chapter discusses the following functions of the TFT library:

TFT ()
begin ()
width ()
height ()
background ()
text ()
setTextSize ()
point ()

line ()
rect ()
circle()
stroke ()
£i11 ()
noStroke ()
noFill ()

loadImage ()

225

226

Part Il = Standard Libraries

W isValid()
= image ()
The hardware needed to use the example in this chapter includes:
m Arduino Uno
m [M35 Temperature sensor

m Adafruit ST7735 TFT breakout board (available at http: //www.adafruit
. com/product/358)

m Micro-SD card

m Breadboard

m Connection cables
m]0-kilohm resistor

m Light Dependent Resistor

You can find the code download for this chapter at http://www.wiley
.com/go/arduinosketches on the Download Code tab. The code is in the
Chapter 13 download folder and the filename is chapter13. ino.

Introduction

Computer enthusiasts love their hardware, and one of the most loved (and most
feared) devices is the humble monitor. When you talk about a monitor, some
people immediately think about a previous technology, known as CRT.

Cathode Ray Tubes (CRT for short) was the technology used by televisions
and monitors for decades. Put simply, it is an electron canon; a device at one end
blasts out electrons onto a fluorescent screen. Large magnets divert the electron
beam to hit specific places on the screen, causing the screen to light up at distinct
points. Of course, electrons are highly susceptible to atmospheric impurities,
and even air, so the gun and the screen were encased inside a large glass shell
in a vacuum. To avoid becoming too fragile, the glass was often thick, and to
block most X-ray radiation, the glass used often was lead glass. Devices could
be made fairly small but were often deep. (In extreme cases, CRTs were as deep
as they were wide, but most were about one-half as deep as they were wide.)
They have been used as televisions, of course, but also on oscilloscopes, data
output, signaling, aircraft cockpits, and even as memory devices.

CRT screens could produce beautiful images but at a cost. The bigger they
were, the heavier they got. A 27-inch CRT TV could weigh more than 100 lbs
(40 kg). One of the largest and heaviest was a 40-inch screen that weighed in

http://www.adafruit
http://www.wiley

Chapter 13 = TFT

227

at 750 Ibs (340 kg). If you wanted a big screen, you made sure you had friends
available to help you install it.

The arrival of LCD screens changed home theater technology at a speed
that has rarely been seen. LCD seems to have many advantages over CRT; it
is relatively cheap, lightweight, robust, and easier to recycle. Screens could
suddenly become bigger, but ironically, they could also become smaller. Large
CRT screens were impractical for their size, but similarly, who could honestly
imagine a mobile telephone with a CRT screen? Old mobile computers did have
CRT screens though. They weren't the clamshell shape that you can see today;
rather, they were like large bricks. The keyboard came off the top, and on one
side was a CRT screen with floppy drives on the other. LCD screens not only
made mobile telephones possible, but also changed the way mobile computers
are used.

Technologies

Many screen technologies have been introduced since the introduction of LCD
displays, each generation addressing problems and inconveniences of the pre-
vious technology.

One of the first changes was the introduction of passive matrix addressing.
This technology allowed a single pixel to be changed by addressing its x-and
y-coordinates, and pixels retained their state until ordered to change. This
technology was reliable but offered slow refresh rates and became impractical
as the screen resolution increased.

Dual Scan, known as DSTN (short for dual-scan supertwist nematic), gave
faster screen refresh rates but at the cost of sharpness and brightness. DSTN
screens were uncomfortable for watching films; there was visible noise and
smears on these screens. I can remember taking a long-haul flight where a
new multimedia system was installed on every seat but using DSTN screens.
(Previously, flying was like going to a cinema, one large screen for a single
cabin.) The lack of screen comfort actually made me stop watching a film and
prefer reading in-flight magazines.

TFT, short for Thin Film Transistor, is another technology for displays.
Originally, it was much more expensive compared to DSTN panels, but pro-
duction costs were reduced as demand increased. TFT allows for crystal clear
text and graphics, with superb colors. TFT panels are used in almost all mobile
devices and nonportable equipment such as televisions and computer monitors.

The ST7735 is an integrated circuit that can drive small-sized TFT displays
(128 x 160 pixels in size). An Arduino or other device can communicate with the
ST7735 which will talk to the screen. Because the driver has on-board memory

228

Part Il = Standard Libraries

for storing a video buffer, once it sends commands to the chip, the Arduino’s
memory is free for sketches and variables.
ST7735-based LCD screens are available from a large number of manufactur-
ers. SainSmart, Adafruit, and Arduino sell LCD screens based on this device.
The controller can handle a large number of colors, up to 252,000 discrete
values (though the library isn’t capable of accessing all of them).

TFT Library

Arduino has its own TFT library capable of controlling small-factor TFT screens.
The TFT library is based on the hard work from Adafruit Industries. Adafruit
originally sold a board containing a TFT screen—the ST7735—and created two
libraries to accompany that device: one for the ST7735 and a graphical library
common to all its LCD TFT devices. The Arduino TFT library is based on the
ST7735 library and the Adafruit GFX library. The primary difference between
the Arduino and Adafruit libraries has to do with the way drawing commands
are called. The Arduino TFT library tries to emulate the processing program-
ming language for its commands. It “talks” via the SPI bus and is simple to use.

(L R R AN IS SPlis presented in Chapter 7.

Initialization

To use the TFT library, you must first import it and the SPI library. As it relies
on SPI for communication, it is imperative. This can be done automatically by
importing the library from the Arduino IDE (go to the menu Sketch > Import
Library = TFT), or import the library manually:

#include <TFT.h>

Next, the TFT object needs to be initialized. For this, it requires some infor-
mation: the different pins used to communicate with the controller. It requires
at least three pins: CS, DC, and RESET. The DC pin is for Data/Command and
tells the controller if the information being sent is data or a command. CS is
for Chip Select and is used by the SPI bus. The last pin is the RESET pin and it
resets the TFT screen if necessary. This can also be placed onto the Arduino’s
reset pin. The TFT object is initialized as follows:

#define TFT_CS 10
#define TFT _DC 9
#define TFT_RESET 8

TFT screen = TFT(TFT CS, TFT DC, TFT RESET);

Chapter 13 = TFT

229

The ST7735 is an SPI device, and as such, it uses the SPI MOSI, MISO, and
CLK pins. These are already present on fixed pins on the Arduino, so it is not
necessary to define them. If necessary, you can use software SPI, in which case,
you need to define the MOSI and CLK pins. While hardware SP1 is significantly
faster for drawing objects on the screen, sometimes you may have to use those
pins for other reasons. (MISO is not required for this controller.) Using software
SPI, you would be declare pins as follows:

#define TFT SCLK 4
#define TFT MOSI 5
#define TFT CS 10
#define TFT_DC 9
#define TFT_RESET 8

TFT screen = TFT(CS, DC, MOSI, SCLK, RESET);

\[e AN The Arduino Esplora has a socket that is designed specifically for TFT screens.
As such, it uses fixed pins and is not initialized in the same way. For more information
on the Esplora, and how to use a TFT screen with the Esplora, see Chapter 21.

The last thing you need to do is to begin the TFT subsystem; to do this, use
the begin () function:

screen.begin() ;

This function does not take any parameters and does not return any data.

Screen Preparation

For most graphics to work, it is essential to know the screen’s size, that is, its
resolution. The resolution is the number of pixels wide and the number of pixels
high. Not all screens are the same size, both in terms of physical screen size
and pixels. It is not always possible to know the physical screen size, but you
can ask the library the screen’s resolution. There are two functions for this: one
that returns the screen height and one that reports the screen width. For this,
use width () and height ().

int scrwidth = screen.width() ;
int scrheight = screen.height();

Neither of these functions take any parameters, and both return int val-
ues—the size in pixels.

Before using the screen, it is often necessary to clear the screen of any text and
graphics. Performing a screen wipe is good practice when initializing an LCD
screen. It might be a cold boot (where the system was powered off before use) in

230

Part Il = Standard Libraries

which case the screen is probably blank, or a warm boot (where the system was
reset but was already powered) in which case there may be text and graphics on
the screen. To clear the screen of any graphics, use the background () function:

screen.background (red, green, blue);

This function requires three parameters: the red, green, and blue components
of the color to be used. The red, green, and blue parameters are int variables
and contain 8-bit color levels (from 0 to 255). The screen does not display colors
with full 8-bit colors per channel. The red and blue values are scaled to 5 bits
(32 steps each), while the green is scaled to 6 bits (64 steps). The advantage of
scaling these values in the library means that the Arduino can read in graphics
data with 8-bit components without the need to modify them.

Text Operations

The Arduino TFT library has support for text operations enabling you to write
text directly onto the screen without having to do any complicated calculations.
Writing text is as simple as specifying the text and the coordinates. The TFT
library does the rest.

To write text to the screen, use text ().

screen.text (text, xPos, yPos);

The text parameter is the text to be written on the screen as a char array. The
xPos and yPos coordinates are integers and correspond to the top-left corner
of the text.

Computer screens use an x,jy coordinate system, but unlike coordinates that
you see in mathematics, computer screens use a slightly different way. The ori-
gin or coordinate 0,0 is the top-left corner of a screen. The x-value increases the
further to the right it goes, and the y-value increases the further down it goes.
This is illustrated in Figure 13-1.

0 » Max X

Y
Max ¥

Figure 13-1: Computer screen coordinate system

Chapter 13 = TFT

231

Unlike in serial consoles, text written to the TFT screen does not wrap auto-
matically. That is to say, if the length of the text written to the screen is wider
than the screen’s width, it is not automatically put onto the next line. You must
be sure not to write too much data. Text written outside the screen is ignored.

Text can be printed in several sizes; for this, use setTextSize():

screen.setTextSize (size) ;

The size parameter is an int between 1 and 5. It corresponds to the height
of the text in pixels divided by 10: text size 1 is 10-pixels high, text size 2 is
20-pixels high, and so on. The size can go up to 5 for text that is 50-pixels high.
By default, text size is set to 1. This function does not change any text already
present on the screen but sets the size for all future calls to the text () function.

Basic Graphics

The Arduino TFT library also has functions for graphical operations: drawing
lines, circles, and dots. It is with these simple tools that you can create advanced
graphics, graphs, and interfaces.

The most basic of all drawing functions is the point. This simply places one
pixel at the specified coordinates:

screen.point (xPos, yPos) ;

The xPos and ypos parameters are int values and represent the location of
the pixel to be drawn on screen.

The next drawing function is the line, which connects a pair of coordinates
to each other. It is called like this:

screen.line (xStart, yStart, xEnd, yEnd);

The xstart and yStart parameters are int values and specify the start coor-
dinates. The xEnd and yEnd parameters are also int values and specify the end
coordinates. A solid line is drawn between these two points.

You can create a rectangle with four lines, but Arduino offers a way to do
this automatically using rect ().

screen.rect (xStart, yStart, width, height);

Just like 1ine (), this function takes a pair of coordinates as int values that
corresponds to the top-left corner of a rectangle. The width and height param-
eters correspond to the width and height of the rectangle, in pixels. The lines
will be drawn parallel to the screen edges. All four angles will be right angles.

To draw circles, use circle():

screen.circle (xPos, yPos, radius);

232

Part Il = Standard Libraries

The xpos and yPos parameters are int values and specify the center of the
circle. The radius parameter, also an int, is the radius of the circle to print, in
pixels.

Coloring

All the graphical functions take coordinates and parameters to define their size
and shape but do not take parameters for color. This is done through different
functions. The philosophy is this: you tell the controller what color you want
to use, and all subsequent drawing will use that color.

Color functions aren’t used only for lines but also for any filled spaces. A rect-
angle can have one color for the lines defining its boundary, while the interior
of the rectangle could be a different color. By specifying a fill color, anything
present inside the rectangle would be erased by a solid color. The color can be
any RGB value. It’s also possible to declare no color, in which case the color is
“transparent”; where any existing pixels are left untouched.

This is accomplished using two functions: stroke () and £111 () . To define
the color of points and lines, use stroke ():

screen.stroke (red, green, blue);

This function takes three int values; 8-bit values for the red, green, and blue
components. Again, these values are scaled down to what the TFT screen is
capable of displaying. When this function is called, no previous drawings are
modified; only future calls to drawing elements will be affected. This function
works only on points, lines, and outline graphics for circles and rectangles. To
specify how to fill a circle or rectangle, use £i11():

screen.fill (red, green, blue);

Again, it takes three int values: the red, green, and blue components expressed
as 8-bit values.
To set the outline color as transparent, use the nostroke () function:

screen.noStroke () ;
To set the fill color as transparent, use the norill () function:

screen.noFill () ;

Graphic Images

If you were creating a weather station with graphic icons on an LCD screen,
it would be possible to create a basic geometric image representing the Sun.
Lightning would be a little more difficult to render and clouds are quite com-
plicated. It is much easier to use a ready-made image file to load and display
on the screen. The TFT library can do this off of an SD card.

Chapter 13 = TFT

233

Most modules and shields that use the ST7735 controller also have an SD-card
slot that can read micro-SD cards. They are an excellent way to store large amounts
of data like images. Because SD-card controllers use SPI and the ST7735 device
is also an SPI device, it is easy to combine the two; they both share the MOSI/
MISO/CLK lines. All that is needed is another slave select pin.

([O R[S SPIis explained in more detail in Chapter 7. SD card

usage is explained in Chapter 12.

To load an image directly from an SD card, use loadImage ():

PImage image = screen.loadImage (name) ;

The name parameter is the filename to be loaded from an SD card. This
function returns a PImage object. A PImage object is the base class used to draw
bitmap images onto a TFT screen. It contains the image data and can be used
to write an image to a specific place on the screen. When this object has been
loaded, you can retrieve information about it. You can use two functions to get
the image width and height, and another function verifies the validity of the data.

width = image.width() ;
height = image.height () ;

These two functions are called on the pImage object, and both functions return
an int, corresponding to the width and height of the image in pixels.
To verify that the pImage object is valid, use isvalid():

result = image.isValid() ;

This function, called on the pImage object, returns a boolean; true if the image
is valid and false if there is a problem.
To display an image at specific coordinates, use image ():

screen.image (image, xPos, yPos);

The image parameter is the PImage object created when using the 1oadIm-
age () function. The xpos and ypPos parameters are the coordinates where the
top-left corner of the image will be displayed.

Example Application

In the previous chapter, you created a system capable of data logging the level
of sunlight. It is time to take that example a little further and to create a visual
data logger application. Just how much light is there outside? And what is the
temperature? Now you can put that together visually on a TFT screen.

234

Part Il = Standard Libraries

The temperature will be a real-time readout, but the light levels will be over
a period of time shown as a graph. To make things look nice, a background
image will display. The graph displays from left to right, and when the graph
reaches the far right side, the screen refreshes, and the graphs starts over again.

Hardware

The screen used in this example is the Adafruit ST7735 breakout board. Adafruit
sells an LCD screen by itself, but this is not what you want. A screen without
any additional hardware may be great for creating your own device after a pro-
totype has been made, but to create this sketch, you need the ST7735 breakout
board, a more complete version that is hosted on its own PCB, with pins that
can be placed onto a breadboard. As an added bonus: the breakout board also
has a micro-SD slot, which will come in handy for this project.

The breakout board must be hooked up to the SPI bus. It has two chip select
pins: one for the embedded SD-card controller, and one for the TFT screen itself.
The SD-card reader is also an SPI device, and therefore it will share the SPI bus
with the ST7735, but it needs its own chip select pin. The device also has a Lite
pin, allowing the Arduino to turn on the TFT backlight.

To get a temperature reading, use an LM35 temperature sensor connected to
A0, and to get a light level reading, use a photo-resistor on Al.

The assembly is shown in Figure 13-2. The SPI MISO and MOSI pins are
connected to the TFT breakout board’s SPI pins, as well as the clock line. The
backlight pin is connected to the 5-volt rail, turning the TFT’s backlight on
as soon as it is powered. The SD—controller chip select is connected to the
Arduino’s D4 pin, and the TFT chip select is connected to D10. There are two
remaining pins—D/C, combined with the SPI pins, will be used to tell the TFT
screen if this is a command or data, and the Reset pin is also used to reset the
TFT screen if required.

Sketch

Now comes the fun part; it is time to put everything together. The sketch that
you will be using to start off with is shown in Listing 13-1.

Listing 13-1: TFT Sketch (filename: Chapterl3. ino)

// Required headers
#include <SD.h>
#include <TFT.h>
#include <SPI.h>

// Pin definitions
#define TFT_CS 10
#define SD_CS 4

o J o0 Ul kW N

Chapter 13 = TFT

235

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

#define DC 9
#define RST 8

int lightPos = 0;
int currentTemp = 1;

PImage backgroundIMG;

// Create an instance of the TFT library
TFT screen = TFT(TFT_CS, DC, RST);

// Char array for printing text on the screen
char tempPrintout [10];

void setup ()

{
// Initialize the screen
screen.begin() ;

// TFT screen will first be used to output error messages
screen.stroke (255, 255, 255);
screen.background (0, 0, 0); // Erase the screen

// Initialize the SD card

if (!SD.begin(SD_CS))

{
screen.text ("Exrror: Can't init SD card", 0, 0);
return;

// Load and print a background image
backgroundIMG = screen.loadImage ("bg.bmp") ;
if (!backgroundIMG.isValid())

{

screen.text ("Error: Can't open background image", 0, 0);
return;

// Now that the image is validated, display it
screen. image (backgroundIMG, 0, 0);

// Set the font size to 50 pixels high
screen.setTextSize (5) ;

void loop ()

{

// Get a light reading
int lightLevel = map(analogRead(Al), 0, 1023, 0, 64);

Continues

236

Part Il = Standard Libraries

Listing 13-1 continued

60 // Have we reached the edge of the screen?
61 if (lightPos == 160)

62 {

63 screen. image (backgroundIMG, 0, 0);

64 screen.stroke (0, 0, 255);

65 screen.fi11(0, 0, 255);

66 screen.rect (100, 0, 60, 50);

67 lightPos = 0;

68 }

69

70 // Set up line color, and draw a line
71 screen.stroke (127, 255, 255);

72 screen.line (lightPos, screen.height() - lightLevel,
73 lightPos, screen.height());

74 lightPos++;

75 // Get the temperature

76 int tempReading = analogRead (A2) ;

77 int tempC = tempReading / 9.31;

78

79 // Has the temperature reading changed?
80 if (tempC != currentTemp)

81 {

82 // Need to erase previous text

83 screen.stroke (0, 0, 255);

84 screen.fil1 (0, 0, 255);

85 screen.rect (100, 0, 60, 50);

86

87 // Set the font color

88 screen.stroke (255, 255, 255);

89

90 // Convert the reading to a char array, and print it
91 String tempVal = String(tempC) ;

92 tempVal.toCharArray (tempPrintout, 4);
93 screen.text (tempPrintout, 120, 5);

94

95 // Update the temperature

96 currentTemp = tempC;

97 }

98

99 // Wait for a moment

100 delay (2000) ;

101 }

On the first few lines of the sketch, you import the libraries that will be
required for this project: the TFT library for the LCD screen, the SD library for
the SD card reader, and the SPI library, which is required for communication
by the other libraries.

On the following lines, some pin declarations are made; these are the pins
that will be used for the TFT screen. RST is the reset pin that will be used to

Chapter 13 = TFT

237

reset the TFT screen when the TFT subsystem is ready, or as required by the
sketch. DC is used as an extension to SPI to tell the TFT screen if the incoming
message is either data, or an instruction. Also, the chip select pins for both the
TFT screen and the SD card reader.

® shadafruit! @

X -)
rxmm Arduin

fritzing
Figure 13-2: Project assembly (Image created with Fritzing)

On lines 12 and 13, two int variables are declared: 1ightPos and currentTemp.
These two variables contain the graph position and the current temperature,
respectively.

On line 15, a PImage object is created, called background. This is where the
sketch loads an image into memory and allows you to display a background
image on the screen.

On line 18, a TFT object, named screen, is created. It is instantiated with
three arguments, the three pins used to control the screen. The SPI wires are
not specified because they are on fixed pins. Because they cannot be changed,
there is no need to specify them.

238

Part Il = Standard Libraries

On line 21, another variable is created, a char array called tempprintout. This
will be used to store the temperature that will be printed out on the screen.

On line 23, setup () is declared. There are a lot of things to configure in this
sketch, so setup () will have a lot of work to do. First, communication with the
screen is started on line 26. In this example, the TFT screen is used for debug
messages, so it must be set up to display any status messages before proceed-
ing. On line 29, stroke () is called, informing the TFT screen of the color that
should be used for future drawing events, including text messages. To make
sure that any text is readable, background () is called, setting the screen to black.

On line 33, the sketch attempts to initialize the SD library. In case of failure,
text () is called with a message at coordinates 0,0. This results in some text
being displayed on the top-left corner of the screen. If the SD library did start,
the next step is to load an image. The sketch looks for a file called bg.bmp in the
root directory of the SD card. If it finds the image, it places it into the PImage
object backgroundIMG. The sketch then tests the contents of backgroundIime for
a valid graphics file. If the contents are not valid, a text error message displays
on the TFT screen. If the contents are valid, then the background image displays
on the screen starting at coordinates 0,0, the top-left corner. Finally, text size is
set to 5; 50 pixels high.

loop () is declared on line 54. This function begins by reading in the light level
the voltage on pin A3. The analog-to-digital converter returns values varying
from 0 to 1023, but the sketch would like a different value. Ideally, these values
should not exceed 64. The screen is 128 pixels high, and the graph takes up the
lower portion of the screen, so 64 is an excellent maximum. The ideal function
to do this is map () . Next, the sketch needs to print a new line on the graphs, but
before doing that, there is one question that needs answering; has the graph
reached the edge of the screen? This is checked in the if () statement on line
61. If the graph has reached the edge of the screen, several things need to be
done. First, the background image is refreshed, erasing anything present on the
screen. Next, both the stroke and fill graphics are set to blue. Then, a rectangle
is printed, where the temperature is supposed to go. Finally, the 1ightpos vari-
able is set to 0, the left side of the screen.

On line 72, a line is drawn on the screen. The first set of arguments are the
x and y starting coordinates of the line, and the second set of coordinates is
screen and y-end coordinates of the line. height () and the value from the light
sensor are used to determine the length of the line on the y-axis.

Now that the light level has been calculated and drawn on screen, it is time
to look at the temperature. The analog value of the LM35 is read in, and a
small conversion is made to transform the value into a temperature in Celsius.
Now the sketch checks if the temperature has changed. Erasing a portion of
the screen and printing a new number can cause a visible flicker. Because the
temperature shouldn’t vary that much, a simple system has been put in place to

Chapter 13 = TFT

239

print the temperature when a change is detected. The comparison is made on
line 80, using an if () statement. If the temperature has changed since the last
reading, in lines 85 through 88 a background color is declared, the stroke color
is changed, and a portion of the screen is erased. Before the text is displayed,
the color is changed back to white.

Text must be supplied as a char array, but it is often much easier to print
text into a string. On line 91 a string object called tempval is created, stor-
ing the temperature as a string. The next line converts the string into a char
array, storing it into the temppPrintout. This array is printed on the TFT screen
at coordinates that match up with the rectangle you drew earlier.

Finally, the sketch is told to wait for 2 seconds before repeating.

Exercises

The temperature display is visible on the screen, but it could do with being a
little prettier—or maybe even more colorful. Modify the sketch to change either
the foreground or the background of the text according to the temperature; 15
degrees could be a cool blue and 35 a bright red.

Summary

In this chapter, you have seen what a TFT screen is, how it can be used for
your projects, and how an Arduino communicates with it. You have seen how
to initialize the screen, how to print text and pictures to the screen, as well as
basic graphics in black and white and in color. In the next chapter, I will talk
about servo motors and how to control them using an Arduino with just a few
lines of code.

Servo

This chapter discusses the following functions of servo motors:

attach()

attached ()

write ()
writeMicroseconds ()
read ()

detach ()

The hardware needed to run the examples in this chapter includes:

Arduino Uno
USB Cable
Breadboard
LM35

HYX-S0009 or equivalent servo motor

You can find the code download for this chapter at http://www
.wiley.com/go/arduinosketches on the Download Code tab. The code is in
the Chapter 14 download folder and the filename is Chapter14.ino.

241

http://www

242

Part Il = Standard Libraries

Introduction to Servo Motors

Most motors are simple devices that turn on their axle when current is supplied.
When a motor turns, the user generally has no idea about the angle or speed;
to get this information, sensors are required. Servo motors differ by knowing
exactly the angle that they are at and adjusting their position as required. Most
servo motors cannot turn 360 degrees; instead, they are often limited to a range.
Most servo motors have 180 degrees of rotation, as shown in Figure 14-1.

A 90°

M
/

A<

N :

Figure 14-1: Servo motor movement

To know the exact position, servo motors can use a wide variety of techniques.
Most use a potentiometer, using electrical resistance to understand how far the
arm has turned, while more advanced systems use a coded optical wheel to get
precise information.

Servo motors were originally designed in the dark times of war. They were
used in radar and anti-aircraft artillery during World War II. Radar requires
the angle of the emitter and receiver to be known because the position of the
aircraft needs to be calculated and displayed on a screen. Anti-aircraft artillery
needs to be placed at a precise angle depending on the results of the calculation,
and servo motors could place heavy loads at the right angle much faster than
humans and with more reliability.

Although it might seem strange to have a motor that does not make complete
turns, servo motors have a wide range of uses. They are used in industrial systems
to open and close valves; they are still used on radar or tracking equipment to
point a device in the right direction with a high level of precision; and robots
use servo motors to keep arms at a precise angle, while providing enough force
to keep the arm in place with a high load. Hobbyists making remote controlled
vehicles are familiar with servo motors because they are used to control steering.
When the front wheels of a car turn left or right, this is a servo-motor acting,
keeping the direction in place despite resistive force.

Chapter 14 = Servo

243

A servo motor is a motor assembly with additional sensors and logic. In short,
an embedded microcontroller reads the angle of the output shaft, and controls
a small motor.

Controlling Servo Motors

Most motors require only two wires: one for the power and one for the ground.
Stepper motors are slightly different, having several wires to move a motor by
a specific number of degrees, but still have no embedded intelligence. (Stepper
motors are explained in Chapter 15.) Servo motors are different; most require
three wires. One wire is for power, one is for the ground connection, and the
third one is for sending orders to the servo motor.

Servo motors use pulse width modulation (PWM) to receive instructions. Pulse
width modulation uses short and precise pulses of digital signals to transmit
information. PWM was first presented in Chapter 4.

A servo expects a pulse every 20 milliseconds. The length of the pulse instructs
the servo motor to move to a specific angle. The PWM signals vary between
a %2 and 2 % milliseconds. A % millisecond pulse instructs the servo motor
to move to its minimum position, and a 2 % millisecond pulse tells the Servo
motor to move to its maximum position. A 1 %4 millisecond pulse will move to
the central position.

The question is, “How exactly can this be done in an Arduino?” The PWM
interface on an Arduino does not have the same timings as servo motor controls,
and it is easy to make a mistake and make a pulse longer than 2 milliseconds.
Fortunately, the Arduino abstraction layer makes this extremely easy, requiring
only a few instructions.

Most boards allow up to 12 Servo motors to be connected at any one time,
with the exception of the Arduino Mega, which can control up to 48 motors.
However, this comes at a small price. Using the Servo library automatically
disables PWM operations on pins 9 and 10. Again, the Arduino Mega is
an exception and can happily use up to 12 Servo motors without interfer-
ence. Any more than 12 servo motors results in PWM being disabled on
pins 11 and 12.

V[AN In Arduino 0016 and earlier, only two servos were supported, on pins 9 and 10.

Connecting a Servo Motor

Servo motors typically have three wires. The power wire, usually red, is con-
nected to the power rail. The ground wire, usually black or brown, is connected
to the ground rail. The third wire, usually yellow or orange, is the signal wire

244

Part Il = Standard Libraries

and is connected directly to a digital pin on the Arduino. The Arduino can
normally directly supply power to a servo motor, but when using several servo
motors, you need to separate the Arduino power supply to the servo power
supply to avoid brown outs. Servo motors, even if they do not always act like
typical motors, still have a small motor inside and can draw large amounts of
current, far more than what the ATmega can deliver.

Before using servo motors, you must import the Servo library. You can do
this either by importing the library through the Arduino IDE menu (Sketch =
Import Library = servo) or by manually typing:

#include <Servo.h>

In your software, you must first create a new servo object before issuing
instructions. You must create one object per servo motor (or group of servo
motors) to control.

Servo frontWheels;
Servo rearWheels;

To tell the Arduino which pins the servo motors are connected to, call attach (),
specifying the pin, and optionally, specifying the minimum and maximum
pulse size.

servo.attach (pin)
servo.attach(pin, min, max)

By default, Arduino uses 544 microseconds as the minimum pulse length
(equivalent to 0 degrees) and 2,400 microseconds as the maximum pulse width
(equivalent to 180 degrees). If your servo motor has different settings for a maxi-
mum and minimum pulse, you can change the values in attach () by specifying
the durations in microseconds. For example, a servo motor that uses a 1 mil-
lisecond minimum and 2 millisecond maximum can be configured like this:

servo.attach(pin, 1000, 2000) ;

From then on, the Arduino automatically calculates the length of the pulse
according to the wanted angle but will not issue commands until a function
specifically orders the servo motor to move.

Moving Servo Motors

Telling a servo motor to move to a specific angle is easily accomplished using
write (). The Arduino will do all the necessary calculations; determining the
length of the pulse to generate and sending the pulse on time:

servo.write (angle) ;

Chapter 14 = Servo

245

The angle parameter is an integer number, from 0 to 180, and represents the
angle in degrees.

If you require precision, you can specify the length of the pulse by using
the writeMicroseconds () function. This eliminates the need for calculation
by the Arduino and specifies the exact pulse length, an integer, expressed in
microseconds:

servo.writeMicroseconds (microseconds) ;

It does not matter what the original position was, the servo motor automati-
cally adjusts its position. The Arduino does not need to calculate this either;
all the intelligence is embedded inside the motor assembly. It does, however,
keep the last angle that it was instructed to use, and this value can be fetched
with read ():

int angle = servo.read()

Remember that servo motors can receive only instructions and not return
information. The value returned by read () is the value inside the Arduino.
When connecting a servo motor, there is no way to know what position it was
in initially. It can be helpful to set a servo motor to a default position before
starting your application. (For example, a remote-controlled car should prob-
ably have the wheels turn so that they are at 90 degrees; without adjusting the
steering, the owner would expect the car to go straight and not at an angle.)

Servo motors and other physical objects take time to get to where you want
them to be, so it’s considered good practice to give your motor a bit of time to
get where it wants to go. Some motors move faster than others, if you're unsure
of how much time you’ll need, it’s best to check your motor’s documentation.

Disconnecting

If required, servo motors can be disconnected inside sketches. To disconnect a
servo, use detach ():

servo.detach ()

Subsequent calls to attached () return false, and no more signals will be
sent until the sketch calls attach () again.

Servo motors can be attached, detached, and re-attached in software. Sometimes
a sketch needs to know the status of the devices connected at that time. To see
if a servo motor is connected, you can use attached ():

result = servo.attached() ;

This function returns 1 (or true) if a servo motor has been declared as attached,
and 0 (or false) otherwise. Note that this won't tell you if your motor is physi-
cally attached or not, just that it is connected in software.

246

Part Il = Standard Libraries

Precision and Safety

Controlling multiple servo motors can be rather processor-intensive, and this
can sometimes affect precision if you have a large amount of servos controlled
by one Arduino. In extreme cases, slight angular distortion may be visible on
servo motors with the lowest angular value. This is often in the range of 1 to
2 degrees.

There are situations in which using servo motors can be a safety issue. If
used with robotics, one of the most basic rules of robotics is to never get in the
way of a robotic arm. Imagine a robotic arm powered by servo motors that is
to place an object in the user’s hand. The movement must be precise and not go
above or below a certain ang]le.

Using the Servo library does not stop interrupts. You can still respond to
interrupts, and timing functions such as millis () still work, but remember
that the end of a servo motor pulse can be lengthened by the time it takes to
execute an interrupt handler. If your interrupt handler takes 200 microseconds
to complete and is called close to the end of a servo’s pulse, in the worst case,
the pulse sent to the servo motor can be lengthened by 200 microseconds, mean-
ing that the resulting angle is not what you expected. It will be corrected the
next time a pulse is sent, and the servo motor will move to the correct angle. In
most applications, this will not be a problem, but just keep this in mind if your
application has an absolute limit that must not be exceeded.

Example Application

Servo motors can be used for a variety of projects, from remote controlled cars
to robotics. To keep things simple, this section uses a servo motor to create a
retro-style thermometer. In the digital age, you might sometimes forget what
these devices used to look like. Mercury thermometers are usually long glass
objects, with a straight line, but some thermometers are round, and have a hand
similar to clocks. A servo motor can be used to move the hand, controlled by an
Arduino that gets a temperature reading from an external component, perfect
for indoor or outdoor temperature readings.

This example uses an LM35. The LM35 is an inexpensive and readily avail-
able precision temperature sensor calibrated in Celsius, and illustrated in
Figure 14-2. It can be used to sense temperatures between —55° C and +150° C
by adding a resistor and a reference voltage, but without any additional resistor,
it can sense temperatures between 0° C and 100° C. The LM35 outputs 10 mV
for each degree, from 0 V for 0° C to 1,000 mV (or 1 V) for 100° C.

Chapter 14 = Servo

247

Figure 14-2: An LM35

However, the Arduino’s analog-to-digital converters are normally calibrated

from 0 to 5 volts, but the LM35 will never output 5 volts. To compare analog
values, the Arduino will compare the input to something called a reference—a
voltage. Generated inside the microcontroller, this reference is normally set to
the same voltage as the Arduino’s power. The reference voltage can be changed
so instead of sampling values between 0 and 5 volts, the Arduino can be told
to sample between 0 and 1.1 volts. You do this by calling analogreference
(INTERNAL) . This will give more precision for this application, but it comes at
a price. If using the INTERNAL constant, this sketch will not run correctly on an
Arduino Megga; it will require changing. When this example is complete, it will
be up to you, the designer, to choose if you want to sample on 5 V and keep
compatibility or to use a different sample range and only use specific boards.

By using a reference of 1.1 V, the 10-bit ADC will have a sampling precision
of 1.1 divided by 1,024, or 1.07 mV. The LM35 outputs 10 mV per degree, so 10
divided by 1.07 is approximately 9.31. So, a change of 9.31 in the analog reading
equals 1 degree. To get a reading in Celsius, simply get the return value and
divide by 9.31.

The sketch can now retrieve temperatures between 0 and 100 degrees Celsius,
but this range is too large. If your internal thermometer is showing 100 degrees,
your house might be on fire, and you shouldn’t be looking at your thermometer.
If the outside reading is 100 degrees, something is wrong. In both cases, there is
no use in displaying the temperature, so everything above 50 will be ignored.

Finally, the last part will be to convert a temperature into the servo motor
movement. For this example, the servo motor will be mounted so that the 0-180
degrees line is parallel to the floor. Ninety degrees will be straight up. The tem-
perature hand will move only between 45 degrees and 135 degrees.

This brings a question: How should the temperature be converted to an angle?
This sounds like a lot of complicated calculation; 0 degrees Celsius is 45 degrees

248

Part Il = Standard Libraries

for the Servo motor, and 50 degrees Celsius will be an angle of 135 degrees. The
truth is, there is no need to make any calculations; the Arduino will do that for
you using map (), explained in Chapter 4. As a reminder, map () works like this:

result = map(value, fromLow, fromHigh, toLow, toHigh) ;

This function maps a number from one range to another, and that is exactly
what is in this example: two ranges. Temperature values vary from 0 to 50, and
angles vary from 45 to 135. Therefore, with a single function, the Arduino will
automatically calculate the output to the stepper motor, converting a tempera-
ture range to an angle range.

Schematic

This application uses an Arduino Uno. The LM35 will be connected to analog
pin 0, and the servo will be connected to digital pin 9. The wiring that should
be used is shown in Figure 14-3.

ooo
ooo

...
...
...
...

oo
oo

fritzing

Figure 14-3: Temperature sensor application schematic (Image created with Fritzing)

Chapter 14 = Servo 249

Sketch

Time to write the sketch, as shown in Listing 14-1.

Listing 14-1: Sketch (filename: Chapterl4.ino)

1 #include <Servo.h>

2

3 float tempC;

4 int angleC;

5 int reading;

6 int tempPin = AO;

7 int servoPin = 9;

8

9 Servo thServo;

10

11 void setup()

12 {

13 analogReference (INTERNAL) ;
14 Serial.begin(9600) ;

15 thServo.attach (servoPin) ;
16 thServo.write (90) ;

17 delay (1000) ;

18 |}

19

20 wvoid loop ()

21 |

22 reading = analogRead (tempPin) ;
23 tempC = reading / 9.31;

24 angleC = map(tempC, 0, 50, 135, 45);
25 Serial.print (tempC) ;

26 Serial.print (" Celsius, ");
27 Serial.print (angleC) ;

28 Serial.println (" degrees");
29 thServo.write (angleC) ;

30 delay (500) ;

31}

The work starts right from line 1. On the first line of the sketch, the Servo
library is imported. On lines 3 to 7, variables are defined. The temperature is
defined as a floating-point number, and all other variables are defined as integers.

On line 9, a servo object is created, called thservo, short for thermometer
Servo. This is the instance on which instructions will be called.

On line 11, the setup function is created. In this function, three things will
be done. First, the reference voltage is set to INTERNAL, meaning the analog-to-
digital converter will compare against a 1.1 V reference, not 5 volts as it would
normally. This works for all analog inputs, and therefore, no pin is specified.

250

Part Il = Standard Libraries

Second, a serial interface is created for debugging. Finally, the sketch is told to
attach a servo motor on pin 9 (servoprin), and a default value is written. Ninety
degrees is specified, moving the arm to a default position in the middle of the
reading. The sketch is given 1 second to move, which is more than enough time.

On line 20, the 1oop () function is defined. First, the sketch reads the voltage
from AQ, comparing it to 1.1 V. The result, returned as an integer, is stored in
reading. Next, the variable reading is divided by 9.31 (calculated previously),
and the result is stored in a floating-point number, called tempc. Next, the angle
must be calculated. This is done through map (), by first indicating the values
that are expected for the temperature (0 to 50) and next, the values expected as
an angle (135 to 45). The numbers are inverted because this servo motor turns
counterclockwise, and the lowest temperature is expected to be on the left.

On lines 25 to 28, data is printed to the serial port. This is used as debug
information and can be omitted in a final version.

Finally, on line 29, the angle is written to the servo pin, and the sketch waits
for one-half a second before repeating.

Congratulations, you have just created a retro thermometer!

Exercises

This sketch is fully functional but requires some tweaking to be optimal. For
example, the servo motor movement may sometimes be a little erratic. Now
look at the serial output to have a better idea:

22.34 Celsius, 86 degrees
22.77 Celsius, 86 degrees
23.20 Celsius, 88 degrees

So, the difference between 22.77 and 22.34 degrees Celsius does not result in
a movement, but the difference between 22.77 and 23.20 degrees Celsius results
in a 2-degree movement? This is the result of the map () function, and because
it “translates” a 50-unit range to a 90-unit range, it will lose a little precision. If
you need more precision, you will have to look at another way of controlling
the servo motor. Try using writeMicroseconds () for greater accuracy.

Also, there is one requirement that was not put into place. Temperatures above
50 degrees Celsius should be ignored, but they aren’t. map () specifies values
between 0 and 50, and will “map” them to values between 45 and 135, but this
does not mean that values are limited. If the input value is outside of the input
range, it will also be outside of the output range. Try to limit input or output
values, using min () and max (), or even better, use constrain ().

What solution did you come up with?

Chapter 14 = Servo

251

Summary

In this chapter, you have seen what a servo motor is and how it differs from
typical motors. You have seen how it is controlled, and how to position it as
required. In the next chapter, you will see another type of motor—the stepper
motor—the functions used to control it, and an example application to put it
all together.

This chapter discusses the following functions of the Stepper library:

W Stepper ()
W setSpeed ()

m|m step ()
The hardware needed to use these functions includes:

m Arduino Uno

m 1 x L293D

m] x 5-V bipolar stepper motor

m Breadboard

m Cables

You can find the code downloads for this chapter at http://www.wiley

.com/go/arduinosketches on the Download Code tab. The code is in the Chapter
15 download and the filename is Chapteris. ino.

253

http://www.wiley

254

Partll = Standard Libraries

Introducing Motors

Electric motors generally work by creating electromagnetic fields from coils,
forcing magnets on an axle to move, therefore driving the axle. By generating
electromagnetic fields, a motor turns continuously until current is removed.

Servo motors (presented in Chapter 14) function a little differently, but even if
their usage is different, a servo motor is still controlled by an ordinary electric
motor managed by a small microcontroller to ensure the servo motor can move
to a precise position.

Stepper motors are different. They have several coils inside, and the
internal axle is “toothed.” When applying current to one of the coils, the
closest “tooth” is attracted to the coil, and the axle moves by a few degrees.
Current is then removed from the coil and sent through another coil, again
attracting a tooth and moving the axle by a few degrees. By repeating this
operation, a stepper motor can be controlled to turn continuously in either
direction, but this is not normally a stepper motor’s main function. Stepper
motors can have precise movement and as such can drive gears with equal
precision.

Imagine a printer. Paper is fed into the printer, and the printer begins to print
one line. A print head moves across the paper and deposits ink in precise loca-
tions according to the image that was sent to it. When the print head arrives
at the far edge of the paper, the paper is fed into the printer, and the printer
heads returns in the opposite direction, continuously printing until the end of
the page. Feeding paper into the printer is extremely precise; too much paper
and white lines appear on the sheet. Too little, and the resulting image will be
squashed. The movement has to be precise and feed exactly the right amount
of paper. Chances are, the motor feeding the paper into the printer is a step-
per motor. Also, because the printer head requires precise positioning, there
is a good chance that the belt used to attach the printer head assembly is also
controlled by a stepper motor.

Stepper motors have several characteristics, but the most important one is
the angle per “step.” This can vary greatly in the different models, but ranges
of between 2-5 degrees are common.

Controlling a Stepper Motor

Stepper motors are different from standard electrical motors, and as such, can
be difficult to control. They require both software and hardware to be used.
Fortunately, the hardware isn’t difficult to use, and the Arduino software library
is even easier.

Chapter 15 = Stepper

255

Hardware

Stepper motors come in different sizes, and more important, different power
ranges. It is common to find 12-V models, but this can be complicated for 5-V
systems. Also, stepper motors tend to require higher current than what a micro-
controller can provide. For most applications, a microcontroller cannot control
a stepper motor directly; it must be interfaced with additional hardware. An
H-Bridge is one type of component that can help use a stepper.

An H-bridge is an electronic component (or configuration of transistors)
designed initially to control electric motors, as shown in Figure 15-1.

A

| |
Cw

Figure 15-1: An H-bridge driver

By activating A and D, current can flow from the 12-volt rail, through a
motor’s electromagnet, to ground. This turns the motor in one direction. When
activating B and C, the current flows in the opposite direction, and therefore
the motor also turns in the opposite direction. This configuration also has the
added bonus of allowing the motor to turn freely, by deactivating all inputs, or
even to brake the motor by activating C and D.

Because an H-bridge controls one electromagnet and because stepper motors
are composed of two or more electromagnet coils driven in sequence, a dual
H-bridge can be used to drive a stepper motor. This is achieved by turning on
specific coils and giving the motor enough time to align to that coil before turning
it off and turning on another coil. By doing this, you can have a motor turn in
a precise fashion, a few degrees at a time. The downside is that stepper motors
are not as fast as classic motors, but they were not designed for speed. It is still
possible to vary the motor speed by changing the frequency of the inputs, and
stepper motors can still achieve relatively fast rotation speeds.

Unipolar Versus Bipolar Stepper Motors

Unipolar stepper motors have coils with a center tap, an electrical connection in
the middle of the coil. This makes current switching easier; instead of inverting

256

Partll = Standard Libraries

current, the center tap can be used as a grounding point for the current, and
one pole or the other can be powered, therefore effectively inverting polarity
without the need for complicated electronics. The center taps are often joined
together, so these motors often have five leads.

Bipolar motors do not have a center tap; instead, the hardware must be used to
invert current. As this inversion is easily achieved with an H-bridge, managing
this is no longer a major factor. Bipolar motors do present a major advantage;
because they have simplified coils, they can often achieve more torque for the
same weight.

[\ (oMl H-bridge drivers are commonly used for both unipolar and bipolar stepper

motors, therefore no longer requiring the center tap, maximizing the torque of unipo-
lar motors.

The Stepper Library

The Arduino IDE has built-in support for stepper motors through the Stepper
library. To import the Stepper library, either add the library automatically via
the Sketch => Import Library => Stepper menu item, or manually:

#include <Stepper.h>
To begin using a stepper motor, you must create a new instance of the Stepper class.

Stepper (steps, pinl, pin2);
Stepper (steps, pinl, pin2, pin3, pin4);

The steps parameter is an int which indicates the number of steps that your
motor must make to complete one revolution. Some motors only document
the number of degrees per step; in that case, divide that number by 360 to
get the number of steps. The pin1 and pin2 parameters are digital output pins
used for two lead stepper motors. The pin3 and pin4 parameters are used for
motors with four leads. This is done like so:

Stepper myStepperMotor = Stepper(84, 5, 6, 7, 8);

Stepper motors turn by performing single steps, and to increase the speed
of the motor, you must change the frequency at which steps are performed. To
do this, use setsSpeed():

Stepper.setSpeed (rpm) ;

This function does not return any data and configures the output sequence
to make the motor turn at the specified speed in revolutions per minute. The

Chapter 15 = Stepper

257

rpm parameter is a long. The final function is used to instruct the motor to
move by a specific amount of steps:

Stepper.step (steps) ;

This function does not return any data and requires one parameter: steps.
The steps parameter is an int and indicates the number of steps to perform.
Depending on the wiring, positive values will cause the motor to turn in one
direction, and negative values will make the motor turn the opposite direc-
tion. This function does not return until the task is complete, and depending
on the amount of steps to perform, this can take a long time. During this
time, the sketch cannot continue to perform other actions.

Example Project

In this project, you create another thermometer, one that varies slightly from
the servo motor example in the previous example. An LM35 temperature
sensor will connect to A0. The stepper motor will connect to digital pins 8,
9,10, and 11 through a double H-bridge. This project is different from the
previous because it will not show the exact temperature, but a variation.
A stepper motor can maintain its position and provide force to keep the
angle correctly positioned. A stepper motor cannot know its exact position;
an order is given to move a certain number of steps in one direction or
another, but it cannot know if the motor shaft has turned correctly. Maybe
there was too much force involved, and the motor couldn’t overpower the
force. The advantage to this is that stepper motors can be repositioned; you
can force the hand into a certain position and then let the motor reposition
itself as required. This thermometer will not show the exact temperature,
but a variation. The user can reposition the hand into a central position at
any time, and by looking at the thermometer moments later, he will know
if it is getting colder or warmer.

Hardware

This project uses an Arduino Uno for the control part of the project and an LM35
temperature sensor like in the servo example. It also uses an H-bridge control-
ler and a 5-V stepper motor. Most H-bridges can use higher power motors, but
with a less powerful motor the user can change the position of the motor by
hand. An illustration of the circuit is shown in Figure 15-2.

258

Partll = Standard Libraries

To Stepper

fritzing
Figure 15-2: Project schematic (Image created with Fritzing)

Stepper motors often have different connections, depending on the make and
model. See the documentation that came with your motor to see how to connect it.

Sketch

The sketch is the easy part of the project; this sketch simply reads the temperature
and updates the position of the motor depending on temperature differences.
The sketch is shown in Listing 15-1.

Listing 15-1: Stepper thermometer (filename: Chapterl5. ino)

#include <Stepper.hs>

1

2

3 // Set this to the number of steps your motor needs to make one turn
4 #define STEPS 100
5
6
7

// Stepper motor is connected to pins 8 to 11
Stepper stepper (STEPS, 8, 9, 10, 11);

Chapter 15 = Stepper

259

// the previous reading from the analog input

10 int previous = 0;

11

12 void setup()

13 {

14 // Set a low stepper speed

15 stepper.setSpeed(10) ;

16

17 // Make a single temperature reading
18 previous = analogRead(0) ;

19 }

20

21 wvoid loop ()

22 |

23 // Get the sensor value

24 int val = analogRead(0) ;

25

26 // Move the stepper motor depending on the result
27 stepper.step(val - previous);
28

29 // Remember the previous value
30 previous = val;

31

32 delay (5000) ;

33}

The stepper.h file is required for any projects that use the stepper library,
and this is included on line one of the sketch. On line 4, the amount of steps
required to make a complete revolution is defined. Change this according to
the stepper motor you have. On line 7, the Stepper instance is created using the
amount of steps defined in sTEPs and using digital lines 8 through 11.

setup () defined on line 12 does two things. First, it sets up the speed of the
stepper motor to 10 rpm. This is a relatively slow speed, but the motor doesn’t
need to turn quickly. Secondly, it takes a reading from the temperature sensor
to use as a reference value. The value is stored in previous, a variable defined
on line 10.

On line 21, 1oop () is declared. In 1oop (), you'll first read the value of the
analog pin into a variable called val and then change the stepper motor’s
position by the difference between previous and val. Finally, the contents of
previous are replaced by the contents of val, and the sketch waits for 5 seconds
before looping.

260

Partll = Standard Libraries

Summary

In this chapter, you have seen what a stepper motor is, how and where it is
used, and how to control one with an Arduino. The example has given you an
idea of how easy it is to use a stepper motor, and how you can use them in your
own applications. In the next chapter, you will see the Firmata library, a control
library that lets you read and write Arduino pins directly from a computer.

Firmata

This chapter discusses the following functions of the Firmata library:

begin ()
sendAnalog ()
sendDigitalPorts ()
sendDigital ()
sendString ()
available ()
processInput ()
attach()

detach ()

The hardware needed to use the example in this chapter includes:

Arduino Uno
Computer
USB cable
Breadboard
4.7-kQ) resistor
LED

261

262

Part Il = Standard Libraries

Introducing Firmata

Arduinos are used in a wide variety of projects, from the most simple to some
extremely complex devices. In most cases, their exact use is known; you know
beforehand that digital pin 3 will be used to light an LED, and that analog input 4
will read the value of a light sensor. For some projects, you may not know what
is connected, but you will still need to set pins as input or output, depending
on the situation. Imagine a laboratory setup, one where you can study how new
components work before deciding to use them in your projects. You could write
a quick sketch each time to see how a component works, but this isn't always
the best solution and certainly not the easiest. One way to easily set up your
laboratory is to use Firmata.

Firmata is a protocol that communicates between computers and microcon-
trollers to easily access the Arduino hardware from software on a host machine.
It uses standard serial commands and as such can be used on several different
Arduino models. Messages are sent serially to and from the host computer,
indicating pin status or requesting a pin to change state.

Firmata Library

To use the Firmata library, you must first import it. You can import the Firmata
library from the Arduino IDE automatically, by going to the Sketch = Import
Library = Firmata menu entry. Alternatively, you can write the lines manually:

#include <Firmata.h>
#include <Boards.h>

The Firmata protocol has several revisions, and if two devices use different
revisions, that can lead to errors. To prevent this, you can specify which protocol
revision to use with setFirmwareversion ():

setFirmwareVersion (major, minor) ;

The major and minor parameters are bytes, which specify the revision to use.
For most Arduino applications, this is set to major version 0 and minor version 1.

To begin using the Firmata library, you must first call begin ():

Firmata.begin() ;
Firmata.begin (speed) ;

This function opens a serial connection. By default, the speed is set to 57600
baud, but this can be changed by the optional speed parameter.

Chapter 16 = Firmata

263

Sending Messages

The status of pins is sent as messages to and from the software on the host
machine. Messages can be addressed to digital and analog pins. To send the
status of an analog pin, use sendanalog():

Firmata.sendAnalog (byte pin, int value) ;

The pin parameter is the analog pin you are requesting information about.
The value parameter is the value read from the pin. This function does not read
the pin value directly; you must explicitly read the value first:

analogValue = analogRead (pin) ;
Firmata.sendAnalog(pin, analogValue) ;

Digital pins are sent differently. Because serial connections are slow, relative
to the speed of a microprocessor, something had to be done to speed up the
transfer. Digital pins are either on or off, 1 or 0. To send the maximum amount
of information in the minimum packet size, multiple pins are sent in a single
message.

Firmata.sendDigitalPorts (pin, firstPort, secondPort) ;

Up to eight pins can be sent in the pin parameter, sent as a byte. The pins
must be sent in order; when starting at pin 6, it must be followed by pin 7, pin
8, and so on. To set the first pin, use the firstport parameter sent as a byte. To
set the number of pins sent, use the secondport parameter. The pin data will
be sent to the computer, specifying that the data received is the data of the pins
from firstPort to secondPort.

This works well when sending a range of pin data but is not efficient if you
want to send the status of a single pin or if the pins are not linear. You can also
send the data of a single pin using sendbigitalport ():

Firmata.sendDigital (pin, value);

This function sends the status of the pin and sends the pin input as value.
To send a string to the host computer, use sendstring ():
Firmata.SendString(string) ;

This sends the String string to the host computer.

Receiving Messages

Receiving messages on an Arduino is the same as working with other types of
serial information; first, you must wait until you have received data and then

264

Part Il = Standard Libraries

process that data. Data is received directly on the serial port. To see if data is
waiting, use available():

result = Firmata.available() ;

This function does not take any parameters and returns true if one or more
bytes are waiting to be processed. To process data, use processInput () :

Firmata.processInput () ;
Typically, you would use both functions together:

while (Firmata.available())

{

Firmata.processInput () ;

}

The Firmata library hides all the complicated parts of receiving data, including
the data storage and processing. The library automatically decodes messages and
enables you to perform actions on the data received using a system of callbacks.

Callbacks

Firmata works by using a system of callbacks, routines that are called when a
specific action is performed, or in this case, when a specific message is received.
Callbacks are highly customizable, and you can write a callback to perform almost
any action you want simply by creating a function. Callbacks are put in place
using an attach function; in the case of the Firmata library, it is called attach ():

Firmata.attach(messagetype, function);

Table 16-1 lists the messagetype parameter, which is one of the constants. The
function parameter is the callback function that you have written.

Table 16-1: Callback Constants

CONSTANT USE

ANALOG_MESSAGE Analog value of a single pin

DIGITAL MESSAGE Digital value of a digital port

REPORT_ANALOG Enables or disables the reporting of an analog pin
REPORT_DIGITAL Enables or disables the reporting of a digital port
SET_PIN_MODE Change the mode of the selected pin (input, output, and so on)
FIRMATA_STRING Used for receiving text messages

SYSEX_START Used for sending generic messages

SYSTEM_RESET Used to reset firmware to default state

Chapter 16 = Firmata 265

A callback requires a certain number of parameters to be defined, which is
extremely specific as to the datatypes to use. The system restart callback does
not require any parameters:

void systemResetCallback (void) ;

To receive strings, the stringCallback function requires one parameter:

void stringCallback (char *datastring) ;

SysEx messages require more information and have three parameters:
void sysexCallback (byte pin, byte count, byte *array);
Finally, all other callbacks use a generic format:

void genericCallback (byte pin, int value) ;

Callbacks must have different names. If you use both digital and analog
pins, you will have two functions: one for handling digital data and the other
for analog input. For example, code will allow you to receive both digital and
analog instructions:

void analogWriteCallback (byte pin, int value)

{

// Code goes here

}

void digitalWriteCallback (byte pin, int wvalue)

{

// Code goes here

}

Firmata.attach (ANALOG MESSAGE, analogWriteCallback) ;
Firmata.attach (DIGITAL MESSAGE, digitalWriteCallback) ;

A note on handling digital data: Analog data is sent one pin at a time, but this
is not the case with digital pins. As seen previously, digital pin data is sent in
groups of 8. This is known as a port. Port 1 will send the data of pins 1 to 8, and
port 2 will send the data of pins 9 to 16, and so on. It is up to you to control if
the pins should be written. To write all pins from a specified port, use this code:

void digitalWriteCallback (byte port, int value)

{
byte 1i;
byte pinvalue;

if (port < TOTAL_PORTS)

{

for (i=0; 1<8; i++)

{

266

Part Il = Standard Libraries

pinvalue = (byte) value & (1 << 1i);
digitalWrite(i + (port*8), currentPinValue) ;

}
}
}

To set a pin input or output, the mode parameter corresponds directly to the
Arduino pinMode () constants. However, the trick is to know what pin corre-
sponds to what sort of input/output. To do this, you can use some predefined
data for each board. The Boards . h file details how many digital and analog pins
a board has. For example, the Arduino Mega has the following line defined in
the source code:

#define TOTAL PINS 70 // 54 digital + 16 analog

To know if a pin is digital, use I1s_PIN DIGITAL() and IS_PIN_ANALOG ().
To convert a pin to a digital or analog equivalent, use PIN_TO DIGITAL() and
PIN_TO_ANALOG (). You can use the following code to set the state of a digital pin:

void setPinModeCallback (byte pin, int mode)

{

if (IS PIN DIGITAL (pin))

{

pinMode (PIN_TO DIGITAL (pin), mode) ;

}
}

To remove a callback, use detach():
Firmata.detach (callback) ;

The callback parameter is one of the constants used to attach a callback
(refer to Table 16-1).

SysEx

One of the messages that the Firmata protocol can exchange is called SysEx.
Short for System Excusive, SysEx was originally used in synthesizers using
the MIDI protocol to include custom commands. When writing a protocol, it is
almost impossible to imagine every scenario, and to make sure that the MIDI
protocol could handle just about everything, SysEx was developed. The idea was
to exchange information and change settings that could not be accessed by other
means. In extreme cases, memory was transferred (partitions or instruments,
for example). In the Firmata protocol, it allows users to exchange information
such as I°C bus data and the servo motor configuration.

Chapter 16 = Firmata 267

To receive SysEx data, you must first create a SysEx callback, as explained in
the “Callbacks” section.
An example callback might look like this:

void sysexCallback (byte command, byte argc, byte *argv)

{

// Code goes here

}

The SysEx instruction identifier is sent as a byte, called command. The Arduino
Firmata library defines a series of constants to describe a received message; as
listed in Table 16-2.

Table 16-2: SysEx Constants

CONSTANT FUNCTION

RESERVED_COMMAND Reserved chip-specific instructions.
ANALOG_MAPPING Ask for analog to pin number mapping.
QUERY

ANALOG_MAPPING Reply with mapping data.

RESPONSE

CAPABILITY_ QUERY Ask for supported modes of all pins.

CAPABILITY RESPONSE Reply with capability data.

PIN_STATE_QUERY Ask for a pin’s current mode and value.
PIN_STATE_RESPONSE Reply with pin mode and value.
EXTENDED_ANALOG Analog write to any pin, including PWM and servo.
SERVO_CONFIG Set servo parameters (angle, pulse, and such).
STRING_DATA Send a string message.

SHIFT DATA 34-bit shift out data.

I2C_REQUEST Request I’C data.

I2C REPLY Respond with I°C data.

I2C _CONFIG I2C parameters.

REPORT_FIRMWARE Report version number of Firmata firmware.
SAMPLING_INTERVAL Set sampling interval.

SYSEX NON_REALTIME MIDI reserved.

SYSEX REALTIME MIDI reserved.

These constants are kept up to date at the Firmata website at http: //firmata
.org/wiki/V2.2ProtocolDetails.

http://firmata

268

Part Il = Standard Libraries

Example Program

The beauty of Firmata is that it can adapt to so many situations. It is, of course,
up to you to choose which pins will be used. If you want to expose only some
pins, for example, to allow Firmata to control them, you can choose to enable
just those relevant to your project. The sketch might receive Firmata instructions
to update pins, but ultimately it is up to you, the developer, to decide if you
should allow these instructions on all pins. Maybe you do not want a Firmata
program to be able to modify certain pins. If a pressure sensor is connected to
two pins, you do not want Firmata to change the pins to output and potentially
damage the component.

The Arduino IDE has an excellent sketch that lets you begin working with
Firmata: the StandardFirmata program. To access this program, go to Files =
Examples = Firmata > StandardFirmata, and upload the sketch to your board.
However, uploading the sketch to your Arduino is only one-half the project;
you also need a Firmata program on your computer. Several programs exist,
and one is available on the Firmata website at http: //www. firmata.org/wiki/
Main_Page#Firmata Test_ Program.

Download the version for your system (Windows, Mac OS, and Linux binaries
are available), and run the program. You need to know which serial port your
Arduino is connected to. After this is done, you are presented with the Firmata
screen, where the status of every pin is presented. This works by sending data
to the Arduino as quickly as possible; the faster the data transfer, the more
responsive the output will be. The Arduino also sends data to the computer,
using a clever sampling rate technique, which is described next.

Using this system, you can instruct your Arduino to perform advanced features
such as turning LEDs on and off without the need to write a sketch or reading
input lines without knowing in advance what will be connected (if anything).
However, this has its limitations. As explained previously, if you require a device
to be present on specific pins, you might want to edit the Standard Firmata
sketch to not poll or update those pins. It is up to you, the programmer, to know
which pins you want to expose and to create or modify a sketch to make sure
that only the pins that are usable can be accessed by Firmata.

The Standard Firmata sketch is complicated and is one of the larger sketches
that you will see on an Arduino, but it is well structured and can be used as the
basis for your own sketches. By looking at setup (), you can see this:

Firmata.setFirmwareVersion (FIRMATA MAJOR VERSION,
FIRMATA MINOR_VERSION) ;

Firmata.attach (ANALOG MESSAGE, analogWriteCallback) ;
DIGITAL_ MESSAGE, digitalWriteCallback) ;
REPORT_ANALOG, reportAnalogCallback) ;
Firmata.attach (REPORT DIGITAL, reportDigitalCallback) ;

Firmata.attach
Firmata.attach

(
(
(
(

http://www.firmata.org/wiki

Chapter 16 = Firmata

269

Firmata.attach(SET PIN MODE, setPinModeCallback) ;
Firmata.attach (START SYSEX, sysexCallback);
Firmata.attach (SYSTEM RESET, systemResetCallback) ;

The first line sets the Firmata version, something that the Firmata applica-
tion checks. It is defined using two constants: FIRMATA_MAJOR_REVISION and
FIRMATA MINOR_REVISION. These constants are set by the Arduino Firmata library.
Next, a series of callbacks are defined; all seven possible callbacks are present
in this sketch. This sketch can therefore react to every sort of Firmata message,
or at least call a specific function when the message is received. It is then up to
you to fill in the callbacks using the Standard Firmata sketch as an example.

In 1oop () the sketch receives and processes messages from the computer:

while (Firmata.available())
Firmata.processInput () ;

One of the variables in the program is samplingInterval. This defines the
rate at which Firmata polls the pins. The sketch then has a clever technique to
make sure that the wanted sampling rate is maintained. Following is the code
that is used:

currentMillis = millis () ;
if (currentMillis - previousMillis > samplingInterval)

{
previousMillis += samplingInterval;

// Code goes here

}

The variables currentMillis and previousMillis are each defined as an
unsigned long. Each time Arduino enters loop (), the millis () function will
be called, returning the number of milliseconds that the sketch has been run-
ning for. This value is then placed inside the variable currentmillis. Then,
a comparison is made between currentMillis minus previousMillis and
the samplingInterval. If the value of currentMillis minus previousMillis
is larger than samplingInterval, previousMillis is increased by the value
contained in samplingInterval, and the sketch is free to send all the pin data.

Summary

In this chapter, I have shown you the Firmata library and how it interacts with
an Arduino. You have seen the different messages and the callbacks used to react
to them. In the next chapter, you see how to use the Arduino GSM shield and
connect to mobile data networks, transfer data to and from servers, and create
your own wireless server. You also see how to place and receive telephone calls.

GSM

This chapter discusses the following functions of the GSM library:

GSMAccess.begin ()
GSMAccess.shutdown ()
GSM_SMS.beginsMs ()

GSM_SMS.print ()

GSM_SMS . endsSMS ()
GSM_SMS.available ()
GSM_SMS.remoteNumber ()
GSM_SMS.read ()

GSM_SMS.peek ()

GSM_SMS.flush()
GSMVoiceCall.voiceCall ()
GSMVoiceCall.getVoiceCallStatus ()
GSMVoiceCall.answerCall ()
GSMVoiceCall.hangCall ()
GSMVoiceCall.retrieveCallingNumber ()
GPRS.attachGPRS ()
GSMClient.connect ()

GSMServer.ready ()

W GSMModem.begin ()

GSMModem.getIMET ()

271

272

Part Il = Standard Libraries

The hardware needed to use these functions includes
m Arduino Uno
m Arduino GSM Shield
m Active SIM card

m] x Reed switch

You can find the code download for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 17
folder and the filename is cChapter17.ino.

Introducing GSM

One of the many things that defines the human race is our capacity to communi-
cate. Throughout our inventions, we have developed ways to express ourselves,
and to talk to more and more people, further and further away. Try to imagine
life without a mobile phone, or any sort of telephone. How do you tell someone
something? There are still options available to you; you could write a letter (a
real letter, not an e-mail, one with pen and paper). It would take a day or two to
arrive, and the recipient would read it when he arrived home (or at the office).
You could also leave the house to see the person, either by going to her house,
business, or a common meeting place (the town square, or even a restaurant).
Neither of these options are as fast as dialing them up.

Of course, things do change. When writing this book, I am constantly in contact
with my publisher and editor. I pick up my mobile phone, and call a number,
and a few seconds later, another telephone rings, separated by a wide distance.
I'am in Europe, and they are in the United States. No matter where I am, either
at home in France, or on a business trip to England, Brazil, or Singapore, people
can get ahold of me. The international telephone network connects millions
upon millions of people together, at distances that span the entire world, but
the ability to place telephone calls is only one aspect of this network.

Mobile Data Network

Long gone are the days when a mobile telephone was used only for placing
phone calls. Today, even the most basic of phones can receive network data as
either text or multimedia messages. More advanced phones can receive e-mails,
browse websites, or even stream high-quality videos through advanced data
networks. We can be almost anywhere and still receive Facebook requests and
spam messages. Times have indeed changed.

http://www.wiley.com

Chapter 17 =« GSM

273

Although this may appear to be simple, it is extremely complicated to achieve.
Data is sent through multiple channels, and simply walking around outside can
be complicated for the mobile telephone network, as users regularly disconnect
from one tower while connecting to a new tower. This is all handled transpar-
ently by the telephone and the telephone network, resulting in what appears to
be a seamless network. The truth is, at any one moment, a telephone, or device
in a mobile network, may not send and receive data.

GSM

The first generation of mobile communications, known as 1 G, was a simple
technology that allowed full-duplex voice communication (full-duplex meaning
that you could talk and listen at the same time). A simple system, it worked
extremely well for people that needed to be on the move and connected continu-
ously. Most 1 G telephones were car phones; relatively large devices that ran
on a car’s battery, but allowed users to do what the telephones were designed
for—talking.

The 1 G network was entirely analog, but was only called 1 G when a new
technology was needed; it was then known as the second generation, or 2 G and
replaced 1 G.

In 1981, the European Conference of Postal and Telecommunications
Administration (known as CEPT) created a new committee, the Groupe Spéciale
Mobile, based in Paris. The GSM name would later be known as Global System
for Mobile Communication, and its logo would become the de facto standard
in almost all countries.

GSM changed quite a few technical aspects; all communications were now
digital instead of analog. By using digital technology, communications could be
compressed, using less bandwidth, allowing more users access to the network.
Because mobile devices were becoming truly mobile and smaller, phone’s radio
emission strength was reduced, requiring more and more cells to allow com-
munications. Cell towers were now cheap to produce, so this wasn't a problem,
as was the cost to pay for safe devices that could be placed in a pocket and
used all day.

One of the changes that the GSM specification proposed was something that
is still in use: a SIM card. A SIM card contains a unique serial number, operator
network information, subscriber information, temporary network information,
and two passcodes for the user: the PIN and PUK. By using a SIM card, users
can choose their mobile operator, and mobile operators can sometimes “lock”
mobile phones to their network.

The original GSM specification did not include data transfer but was rapidly
modified to allow SMS messages, just one such method that uses digital data.
SMS, short for Short Message System, is a technique to send 160 characters to

274

Part Il = Standard Libraries

cell towers or to telephones. Although most people think of SMS messages as
“I will be 20 minutes late,” they are also an efficient way of warning people in
case of an emergency, and for publicity, taxi reservations, payment systems,
or even for proprietary inter-application communication. The number of SMS
messages range in the billions per year, and although their use is slowly declin-
ing in favor of other messaging systems, in 2013, an estimated 145 billion SMS
messages were sent.

SMS is not the only data transfer technique used by the GSM network; two
other major systems exist.

GPRS

GPRS, short for General Packet Radio Service, is a packet-based data exchange
technique. Although most GSM connections were circuit-switched (meaning
that a connection was established and then terminated when the connection
was cut), GPRS introduced a packet-switching technique, allowing operators to
charge clients by the quantity of data used, and not the time spent transferring
data. GPRS is an extension to the GPS 2 G technology, and as such, is often known
as 2.5 G. This technology allows theoretical speeds of up to 50 Kbit/s, but true
throughput is often limited at 40 Kbit/s.

EDGE

EDGE, short for Enhanced Data rates for GSM Evolution, is an enhancement
over the previous GPRS data connection method. With a theoretical max speed
of 250 Kbit/s, this norm was soon called 2.75 G by mobile telephone owners. It is
still used today as a fallback when other high-speed networks are not available.

3G

The third generation of mobile networks is a large change from the previous 2
G, and is not compatible with the older systems, but remains a fallback technol-
ogy for current telephones. 3 G allows for higher data speeds than previous
standards, ranging from 2 Mbit/s all the way to 28 Mbit/s.

The 3 G standard was created by the International Telecommunication Union,
which is not the same as the GSM committee. 3 G mobile devices can use the
2 G network, but 2 G devices cannot connect to 3 G networks. They must use
the older 2 G network, forcing operators to have several systems in place on
the same tower.

Chapter 17 =« GSM

275

4 G and the Future

4 G is currently the most advanced technology readily available, with extremely
high speeds exceeding 50 Mbit/s. The 4 G standard allows for theoretical speeds
much higher than that, but even that isn't fast enough for the future, and work
has already begun on the 5 G network. Time will tell just how far the mobile
network will progress.

Modems

A modem (short for modulator-demodulator) is a device that can send and
receive digital data through an analog carrier. Most veteran computer experts
remember modems as the trusty 56-k modem—a device that connected to a
computer through a serial port and allowed the computer to connect to the
Internet (or a company network) through a telephone line. Where does the 56 k
come from? The speed, 56 thousand baud or 56 Kbit/s data rate. If everything
went well (which it usually didn’t) this meant that users could download data
at a blistering 4 to 5 kilobytes per second. Don't laugh; they were fast modem:s,
yet most were slower.

Although the trusty 56-k modems have been mostly replaced by broadband,
it is interesting to know how they work. Modems are serial devices, and most
were instructed to operate using the Hayes command set: simple ASCII mes-
sages instructing the modem to perform specific actions. Most commands start
with “AT”, short for Attention. A modem is instructed to configure itself in a
specific way, to call a number and to get information using simple text messages.
When the connection is made, the modem is switched from command mode to
data mode, and from there on, the modem sends each byte of data it receives. It is
also possible to change from data mode to command mode again to issue more
instructions to the modem (for example, to hang up). Again, this is performed
by sending AT commands.

The 56-k modem is indeed a dying technology, but its legacy is still with us
and will be for a long time. The AT command idea was so well implemented
that most radio peripherals still use them; Bluetooth devices, for example, are
configured using AT commands. Bluetooth does not connect through telephone
lines, but the modem principle is the same; a digital device transmits digital data
over an analog medium—in this case, radio waves. Even the most modern 4 G
telephone is also a modem, accepting serial data, transmitting and receiving
data over radio waves. GSM devices are exactly the same.

276

Part Il = Standard Libraries

Arduino and GSM

There are multiple ways to connect to devices wirelessly and exchange informa-
tion: Wi-Fi, Bluetooth, and Zigbee to name but a few. Most of these technologies
require the user to create an infrastructure, but there is no wireless infrastruc-
ture as extensive and as widely used as the mobile telephone network. Also,
Arduinos are small, lightweight, and mobile, making them perfect for mobile
network use. A GPS tracker on a car is only useful if it can send information
through an existing network, and is useless if it leaves your Wi-Fi zone (which
probably happens a lot for a car). However, there is a good chance that your car
will go through at least several mobile network cells during its trip, allowing
it to send data at will.

Several shields exist to achieve this. Arduino produces its GSM shield, one
that comes bundled with a SIM card from Movilforum Telefonica. The GSM
shield is unlocked, meaning that it can be used with any mobile operator, but
Movilforum Telefonica’s service is international, and it has a large partner net-
work, allowing for GSM communication just about anywhere.

GSM shields connect to GSM networks but will not work on 3 G and 4 G net-
works. Although on a 2 G network, the shield enables you to make and receive
telephone calls, send and receive SMS messages, and enables data connectivity.

Data connectivity means that you can access the entire Internet, but most
mobile operators have their own internal network, meaning that your telephone is
not directly visible from the Internet. This adds a level of security to your applications
but makes it difficult to “listen” for incoming connections. A GSM device should always
initiate a connection and wait for a response.

GSM devices are often power-hungry and usually require an external power
supply. USB ports that supply 500 mA cannot keep a GSM shield powered under
heavy load; these devices often require a power supply between 700 and 1,000 mA.

To use a GSM shield, Arduino has developed a library to create connections,
send and receive data, and even manage the SIM card.

Arduino GSM Library

The Arduino GSM library is available in Arduino 1.0.4 and later. The GSM library
is a complex library with multiple header files. It can be imported automatically
in the Arduino IDE by going to the menu Sketch > Import Library = GSM, but
doing this adds a large number of files:

B #include <GSM3MobileMockupProvider.h>

B #include <GSM3ShieldVlBaseProvider.h>

Chapter 17 =« GSM

277

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

<GSM3ShieldVliModemVerification.h>
<GSM3ShieldvVlPinManagement .h>
<GSM3ShieldVliSMSProvider.h>
<GSM3MobileClientService.h>
<GSM3ShieldviCellManagement .h>
<GSM3ShieldViMultiServerProvider.h>
<GSM3ShieldvVliBandManagement .h>
<GSM3ShieldVlDataNetworkProvider.h>
<GSM3Shieldvl.hs>
<GSM3CircularBuffer.h>
<GSM3MobileCellManagement .h>
<GSM3MobileAccessProvider.h>
<GSM3MobileClientProvider.h>
<GSM3SMSService.h>
<GSM3MobileDataNetworkProvider.h>
<GSM3ShieldvVlServerProvider.h>
<GSM3MobileServerService.h>
<GSM3VoiceCallService.h>
<GSM3MobileServerProvider.h>
<GSM.h>

<GSM3MobileVoiceProvider.h>
<GSM3ShieldVlVoiceProvider.h>
<GSM3ShieldvliScanNetworks.h>
<GSM3ShieldviClientProvider.h>
<GSM3ShieldvliDirectModemProvider.h>
<GSM3MobileNetworkProvider.h>
<GSM3MobileSMSProvider.h>
<GSM3MobileNetworkRegistry.h>
<GSM3ShieldViModemCore.h>
<GSM3ShieldvViMultiClientProvider.h>
<GSM3ShieldVlAccessProvider.h>

<GSM3SoftSerial.h>

278

Part Il = Standard Libraries

Don't be frightened by the large number of files. For most applications, you
can simply include the GSM library #include <GSM.hs.

Because the GSM library is complex, its different usage is separated into
classes. There are classes to manage GPRS connections: SMS messages, and
voice calls, to name but a few.

GSM Class

The GSM class is responsible for initializing the shield and the on-board GSM
device. It is initialized like this:

GSM GSMAccess
GSM GSMAccess (debug)

The debug parameter is optional. It is a boolean and is false by default. If set
to true, the GSM device outputs AT commands to the console.
To connect to the GSM network, use the begin () function:

GSMAccess.begin() ;
GSMAccess.begin (pin) ;

(

(
GSMAccess.begin(pin, restart);
GSMAccess.begin(pin, restart, sync);

The pin parameter is a character array that contains the PIN code for the SIM
card connected to the GSM shield. If your SIM card does not have a PIN code,
you can omit this parameter. The restart parameter is a boolean and specifies
if the modem is to be restarted. By default, this parameter is true, resulting in
a modem restart. The sync parameter is a boolean and sets the synchroniza-
tion to the base station. In a synchronous configuration, the sketch can tell if
an operation has completed. In an asynchronous configuration, operations are
scheduled, and their result isn’t always immediately available. By default, it is
set to true. All the return codes listed in this chapter correspond to a synchro-
nous configuration.

This function returns a char indicating the status of the modem: ErrOR, IDLE,
CONNECTING, GSM_READY, GPRS_READY, Of TRANSPARENT CONNECTED.

This can be used as follows:

#include <GSM.h>

#define PINNUMBER "0000" // SIM card PIN
GSM gsm(true); // Debug AT messages

void setup ()

{

// initialize serial communications

Chapter 17 =« GSM

279

Serial.begin(9600) ;

// connection state
boolean notConnected = true;

// Start GSM shield
while (notConnected)

{
if (gsm.begin (PINNUMBER) ==GSM_READY)
notConnected = false;
else

{

Serial.println("Not connected") ;
delay (1000) ;

}
}

Serial.println("GSM initialized") ;

}

To shut down the modem, use shutdown ():

GSMAccess.shutdown () ;

This function does not take any parameters and returns a boolean: true if
the modem was shut down and false if the function is currently executing. If
this function returns false, it does not mean that the function failed, only that
the shutdown operation has not yet completed.

SMS Class

GSM modems can, of course, be used to send and receive SMS messages. To
enable SMS message services, use the GSM_SMS class:

GSM_SMS sms;

An SMS message is sent in three steps; first, the destination number is required.
Second, the text is entered. Finally, the message is confirmed.
To set a destination telephone number, use beginsms ():

sms .beginSMS (number) ;

The number parameter is a char array, the telephone number that will receive
the SMS message.
To fill in the SMS body, use print ():

sms.print (message) ;

280

Part Il = Standard Libraries

The message parameter is again a char array and contains the message to
be sent. Note that SMS messages are limited to 160 characters. This function
returns the amount of bytes sent, expressed as an int.

To complete an SMS message and to instruct the modem to send the message,
use endsSMS () :

sms.endSMS () ;

This function does not take any parameters.

When the SMS message has been assembled, the SIM card is told to send
the message as soon as possible. The SIM card coupled with the modem make
an autonomous unit which acts independently from the Arduino. Assembling
and sending a message through the Arduino API does not guarantee that the
message is sent; it is queued to be sent.

Because the device is autonomous, it also receives SMS messages without
warning; there is no callback and no interruption. The sketch must periodically
poll the GSM shield to see if a message is present. This is done with available ():

result = sms.available() ;

This function returns an int, the number of messages waiting on the SIM
card. To begin reading a text message, you must first retrieve the number of the
sender, which is done with remoteNumber ():

sms.remoteNumber (number, size) ;

The number parameter is a char array, a memory location where the sender
ID will be stored. The size parameter is the size of the char array.

When the sender ID has been retrieved, the next thing you must do is to
retrieve the message body. You can do this with read (), which works the same
way as with file functions and serial buffers. It reads one character at a time.

result = sms.read() ;

You can read the entire content of a message with the following code:

// Read message bytes and print them
while (c=sms.read())
Serial.print (c);

SMS messages that have been previously read are marked with a hashtag.
To see if a message has been read without actually fetching the first character,
you can use peek (). Just like with serial buffers, this function returns the first
character but does not increment the index. Subsequent calls to peek () or even
read () will return the same character.

Chapter 17 =« GSM

281

if (sms.peek()=="#")
Serial.println("This message has been discarded") ;

To discard a message, you can use flush():

sms.flush() ;

This function deletes the SMS at the current buffer index from the modem’s
memory.

VoiceCall Class

You can use the voicecall class to place and to answer voice calls. An Arduino
can place voice calls but cannot send voice data without additional hardware.
Most shields have an audio input and output port, allowing users to add addi-
tional components as required. This can be in the form of a microphone and
speaker, or for distress calls, it can also be an electronic component capable
of outputting wave audio. The GSM component accepts text instructions and
encodes/decodes the audio as required. Instructions include dialing numbers,
picking up and hanging up, as well as caller identity functions.

The first thing you must do is create an instance of the GsMvoicecall class:

GSMVoiceCall vcs;

To place a phone call, use voicecall ():

result = vcs.voiceCall (number) ;

The number parameter is a char array and is the telephone number to call.
The function returns an int: 1 if the call were placed or 0 if it were unable to
call. This can be used as follows:

// Check if the receiving end has picked up the call
if (ves.voiceCall (phoneNumber))

{

Serial.println("Call Established") ;

}

Serial.println("Call Finished");

This function places only the call and returns if the call were established. To
check on the call status, use getvVoiceCallStatus ():

result = vcs.getVoiceCallStatus() ;

This function takes no parameters and returns IDLE_CALL, CALLING,
RECEIVINGCALL, Or TALKING, which is described in Table 17-1.

282

Part Il = Standard Libraries

Table 17-1: getVoiceCallStatus() Return Codes

CONSTANT DESCRIPTION

IDLE_CALL The modem is idling: no incoming calls, no outgoing calls, and no
call in progress.

CALLING The modem is currently calling a number.
RECEIVINGCALL The modem is receiving an incoming call.
TALKING A call has been placed (incoming or outgoing) and communication

is established.

The other end of a telephone call can hang up whenever it chooses (or even
when network conditions no longer allow a call to continue), and the Arduino
can also instruct the GSM device to hang up with hangcall():

result = vcs.hangCall () ;

This function takes no parameters and returns an int: 1 if the operation suc-
ceeded and 0 otherwise. This function not only hangs up a connected call, but
can also hang up on an incoming call.

Arduinos can also receive calls, but the GSM modem does not warn the sketch
of incoming calls; the sketch must poll the GSM device with getvoicecall-
status () when there’s an incoming call expected. When an incoming call is
detected (When getvoiceCallStatus () returns RECEIVINGCALL), you can retrieve
the calling number and decide to accept/refuse the call. To get the incoming
telephone number, use retrievecallingNumber ():

result = vcs.retrieveCallingNumber (number, size);

The number parameter is a char array and can store the incoming number.
The size parameter is the size of the array. This function returns 1 if the phone
number is retrieved, and o if it is unable to retrieve the phone number.

To pick up an incoming call, use answercall():

result = vcs.answerCall() ;

This function does not take any parameters and returns 1 if the call is answered,
or o if it is unable to answer. Incoming calls can also be refused with hangcal1().

GPRS

GPRS is the method used to send and receive data using a GSM mobile device. It does
not require an active voice call but does require authentication. When the SIM card
has been told to create a connection, it maintains the connection and automatically
reconnects if needed. Before using a GPRS connection, you must use the GPRS class:

GPRS gprs;

Chapter 17 =« GSM

283

Then, to initiate a connection, you must use attachGPRS ():

grps.attachGPRS (APN, user, password) ;

This function takes three parameters, all three are char arrays. The Apn param-
eter is the Access Point Name, the name of the connection point between the GPRS
network and the Internet. Each GPRS network should have one; check with your
SIM card provider for more information. The user and password parameters are
optional username and password details that are sometimes required to connect
to an APN. Again, the documentation that comes with your SIM card should
give more details. Not all providers use the username and password fields; in
which case they may be left blank. This function returns the same constants as
begin (); it returns GPRS_READY when the connection is established.

if (gprs.attachGPRS (GPRS_APN, GPRS_LOGIN, GPRS_PASSWORD) ==GPRS_READY)
Serial.println("Connected to GPRS network") ;

When the connection to the GPRS network is established, you need to create
either a server or a client. A server waits for incoming connections, and a cli-
ent connects to external servers. A server uses the asMserver class, and a client
uses the gsMclient class. Both work almost the same as an Ethernet connection,
with a few differences; the GSM library attempts to be as compatible as possible
with the Ethernet library.

(AP RAA (G The Ethernet library was presented in Chapter 9.

To create a client, that is to say a device that will connect to another Internet
device, use the esMclient class:

GSMClient client;

When that is done, you must connect to a server. To connect to a server, use

connect ():

result = client.connect(ip, port);

The ip parameter is a 4-byte IP address, and port is an int specifying the
port that the sketch wants to connect to. This function returns a boolean: true
if the connection is established, and false if the connection fails.

When a connection has been made, you can send and receive data. Sending
data is done with print (), println(), and write():

result = client.print(data) ;
result = client.println(data);
result = client.write (databyte) ;

284

Part Il = Standard Libraries

These functions are presented in Chapter 9.
To become a server, that is to say a device that will listen to incoming con-
nections, use the gsMServer class:

GSMServer server (port) ;

The port parameter is an int; it tells the server which port to listen on for
connections.

One difference between the GSM library and the Ethernet library is the
nature of the connection. GSM connections are sometimes unstable; network
coverage may not be available in some locations (for example, inside a building
or under a bridge). To know if a command were successfully executed, use the
ready () function:

result = client.ready() ;

This function does not take any parameters and returns an int; 1 if the previ-
ous operation has completed, and o if it has not (yet) completed.

Many network providers do not allow incoming connections on their network,
making it impossible to run servers with the GSM shield. Check with your
provider to see if there are any such limitations with your network.

Modem

The modem class is used primarily to perform diagnostic operations on the
modem component. To use it, you must use the GsMModen class:

GSMModem modem;

To initialize the modem subsystem, you must first use begin ():

result = modem.begin() ;

This function returns true if the modem subsystem was initialized or false
if there was a problem with the initialization. (For example, the shield has not
been correctly installed.)

To retrieve the IMEI number, the International Mobile Equipment Identifier,
a unique number identifying the shield’s modem, use get IMEI ():

result = modem.getIMEI () ;

This function does not take any parameters and returns a string, the IMEI
number of the GSM modem.

Chapter 17 =« GSM

285

Example Application

One of the domains where Internet-connected devices are in constant demand
is home security. Most security devices use a home’s Wi-Fi connection, but
these devices are vulnerable to attack. For this reason, many security systems
also have a backup GSM system, allowing devices to communicate even if the
physical line to the Internet is severed.

For this application, you will create a system that monitors a door or window.
In the event of this entrance opening, a warning message is sent via text message.
To make sure that the system works, every few minutes a “heartbeat” is sent
to an Internet server. This message is just a small bit of information that shows
that the system works. If the server does not hear from the Arduino within a
certain timeframe, then it knows that something is wrong.

This example uses an Arduino Uno and a GSM shield. One entrance is monitored
by means of a reed switch, button, or other contact-based switch. This switch must
be configured as NC, normally closed, and connected to the Arduino’s ground.
Normally this would require a resistor to pull either the 5-V power rail or the ground,
but Arduinos have internal pull-up resistors that can be activated in code, and
that is what will be done here. If the door is open, the connection is severed, and
the Arduino’s internal pull-up registers an intrusion. Also, if the wires are cut, the
Arduino also registers that as an alert. The schematic is shown in Figure 17-1.

J
b

e e o o o
e o0 00
e e o o o
e 0o 0 00
e e o o o
°
e e o o
e e o o
e e o o
oo e
e @ o o o
D)
e @ o o o
D)
e e o o o

GSM
ARDUINO SHIELD

[
(=
m
(@]
-
m
—

fritzing

Figure 17-1: Project schematic

286

Part Il = Standard Libraries

Your sketch should look like Listing 17-1

Listing 17-1: Sketch (filename: chapterl7. ino)

1 #include <GSM.h>

2

3 #define PINNUMBER "0000" // Replace with your SIM card PIN

4 #define CONTACT "01234567" // Replace with your mobile telephone
number

5 #define GPRS_APN "GPRS_APN" // Replace your GPRS APN

6 #define GPRS_LOGIN "login" // Replace with your APN login

7 #define GPRS_PASSWORD '"password" // Replace with your APN password

8 #define SERVER "yourhomesecurity"

9 #define PORT 8080

10

11 // initialize the library instance
12 GSM gsmAccess;

13 GSM_SMS sms;

14 GSMClient client;

15 GPRS gprs;

16

17 // Variables

18 bool intrusion = false;

19

20 void setup()

21

22 // initialize serial communications and wait for port to open:

23 Serial.begin(9600) ;

24

25 // connection state

26 boolean notConnected = true;

27

28 // Start GSM shield

29 // If your SIM has PIN, pass it as a parameter of begin() in
quotes

30 while (notConnected)

31 {

32 if ((gsmAccess.begin (PINNUMBER) ==GSM_READY) &

33 (gprs.attachGPRS(GPRS_APN, GPRS_LOGIN, GPRS_PASSWORD)

34 ==GPRS_READY))

35 notConnected = false;

36 else

37 {

38 Serial.println ("Not connected") ;

39 delay (1000) ;

40 }

41 }

42

43 pinMode (8, INPUTiPULLUP);

44 45 Serial.println("GSM initialized");

46 |}

Chapter 17

GSM

287

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

void loop ()
{
for (int i = 0; 1 < 600; i++)
{
delay(500); // sleep for half a second
if (digitalRead(8) == HIGH)
{
if (intrusion == false)
{
// An intrusion has been detected. Warn the user!
intrusion = true;
sendWarningSMS () ;

}

else
// The user was already warned about an intrusion, do
nothing

}

else

{
// Everything looks OK
intrusion = false;

// It has been 10 minutes, send a heartbeat
if (client.connect (SERVER, PORT))
Serial.println("connected") ;
client.print ("HEARTBEAT") ;
client.stop() ;

}

else

{
// if you didn't get a connection to the server:
Serial.println("Connection failed") ;

void sendWarningSMs ()

{
sms .beginSMS (CONTACT) ;
sms.print ("Intrusion alert!");
sms.endSMS () ;

}

This sketch begins by importing the GSM library, and then defining the

necessary parameters for this sketch: the PIN number, the contact number, and
different connection parameters.

288

Part Il = Standard Libraries

On line 12, the different objects are created: gsmaccess is used to talk to the
Arduino GSM board, sms is the object used to send SMS messages, client is
used to create a GPRS client connection, and gprs is used to attach the GPRS
connection.

The setup () function is declared on line 20. The serial connection is config-
ured on line 23, and on line 26 the variable not Connected is set to true. As long
as this variable is true, a while loop attempts to attach to the GPRS network,
with the attachGprs () function on line 33. Finally, on line 43, pin 8 is set as an
input with an internal pull-up resistor.

On line 88 a function is declared: sendwarningsms (). This function will send
an SMS message to the specified contact. The SMS message is created on line 90
using the beginsms () function. On line 91, text is sent to the SMS engine—this
will be the content of the message. Finally, on line 92 the endsms () function
will send the message.

The 100p () function is declared on line 49. It starts with a for () loop and
iterates 600 times. Each loop will start by waiting for a second, and then looking
at the state of the digital input on pin 8. If the result is false, that means that the
reed switch has been activated, and the variable intrusion is set to true before
calling the sendwarningsms () function.

Once this loop iterates 600 times, or close to 10 minutes, the sketch will attempt
to connect to a server. If the connection is successful, the sketch will send a mes-
sage to the server telling it that the security system is still up and running. If
the sketch cannot connect, then a warning message is sent to the serial console.

The sketch is simple and needs protection. A warning light could be added,
or at least an output to a relay for a siren of some sort. Also, the device can send
SMS messages to warn people, but it can also receive messages—you can write
a routine that can receive messages to turn the security on if the user leaves the
house without activating his alarm.

Summary

In this chapter, I have shown you just how flexible a GSM shield can be and the
different ways it can be used. You have seen an example using just some of the
many functions, and explored an idea about how to increase connectivity. In
the next chapter, I will show you the Audio library, a powerful library that adds
function to an Arduino Due to output audio files. You will see how audio files
are composed and how to create a device that will output audio to a loudspeaker.

In This Part

Chapter 18: Audio
Chapter 19: Scheduler
Chapter 20: USBHost
Chapter 21: Esplora
Chapter 22: Robot
Chapter 23: Bridge

Audio

This chapter discusses the following functions of the Audio library:
m begin ()
m prepare ()
= yrite()
The hardware needed to use the examples in this chapter includes:

m Arduino Due

m Ethernet Shield (Arduino, SainSmart, etc.)
m Micro-SD card

m Breadboard

m [M35 Temperature Sensor

m Wires

m 3.5-mm audio jack

m An audio amplifier

\[e A} The Audio library is only found in Arduino IDE version 1.5 and later. It is still
considered experimental and under development.

You can find the code download for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 18
folder and the filename is Chapteri1s. ino.

291

http://www.wiley.com

292

Part lll = Device-Specific Libraries

Introducing Audio

Science fiction films from the 1980s were full of strange machines with lots of
flashing lights and annoying beeps. The first PCs sold had only a buzzer, and
the first versions could only do that, buzz. A while later, people played with
the buzzer, making tones and even music for games. There are various videos
on YouTube that show what games used to be like. Don’t laugh; we really did
play like that, and we liked it!

The gaming industry was driving sound development at the time, and gam-
ers wanted more advanced music. It wasn’t long before MIDI sound cards
were released. MIDI is a protocol for connecting musical devices together. (A
computer can also be a musical instrument.) Some sound cards could be pro-
grammed with “instruments” to be played back at different notes. Although
the sound fidelity was much better than the original internal buzzers, it could
still be better. Music was certainly much better, but recorded sounds still were
not possible—or at least, not easily. You could listen to high-quality music, but
the explosions created by your rocket launcher wouldn't sound quite right. The
industry turned to another solution.

A new generation of sound cards was born: Creative Lab’s Sound Blaster series.
It had the features of MIDI sound cards but also had digital signal processors
(DSP for short) that could create complex digital audio signals. Computer pro-
cessors were more and more powerful, and finally powerful enough to create
complex sounds by digitally interpreting an analog signal through the sound
card. We could hear music, and explosions sounded great. We stayed up all
night hurling rockets at each other.

Again, new technology had its benefits but also had a problem: space. Digital
sound files took up a lot of space, and space wasn't readily available at the time.
High-end hard drives were just more than 1 gigabyte in size, and a 3-minute song
recorded from the radio could be hundreds of megabytes in size. If music were
to become digital, we needed larger hard drives or to find a way to compress
music, preferably both. Today, a song can be compressed into 4 or 5 megabytes
and placed onto a music player with gigabytes of space. However, it also requires
something else: faster processors.

Digital Sound Files

One of the first digital audio formats is known as wave: an uncompressed digital
file that represents an analog signal. Where analog signals can have almost every
value possible between their maximum and minimum values, digital cannot. It
requires a resolution: the amount of values it can handle. On a scale of 0 to 10,
an analog signal would create a 7.42, but a digital signal from 0 to 10 in steps of
1 would not; the closest it can do is 7, as shown in Figure 18-1.

Chapter 18 = Audio

293

Original

wave pattern Wave

converted to

t“\m digital form
Y

Output wave

r
A

Figure 18-1: Digital resolution

As you can see, the analog signal flows through different values, but the
digital representation creates a “step” effect; the representation of the data is not
precise, and quality is lost. Thankfully, sound cards do not have values that go
from zero to 10; most are 16 bits for a total of 65,536 values. Previous generations
had 8-bit sampling for a total of 256 values, and 256 values are too low for an
accurate representation. However, the 16-bit value of 65,536 is considered to be
more than enough for most audiophiles. This is the quality found on CDs and
even some Blu-ray audio files. However, the resolution is not the only factor to
take into consideration.

Sound waves are a mixture of different frequencies; the higher the frequency,
the higher the pitch. Humans can normally hear sounds from as low as 20 Hz
all the way to 20 kHz and above. To digitally sample frequencies as high as
20 kHz, the effective sampling rate (the speed at which the sound is sampled)
must be at least doubled or 40 kHz. For typical applications, a sampling rate
of 44.1 kHz is used. A microchip was already on the market that used this
frequency for sampling, designed by Sony Corporation. For professional
applications, sampling was done at rates as high as 48 kHz. 44.1 kHz and
48 kHz are common sample frequencies found on computers, as are multiples
of 44.1 kHz; 22.05 kHz, and 11.025 kHz. 8 kHz was used for a long time for
telephone systems, where audio quality was adequate to understand human
voice conversations. Professional sampling devices can sample at a high rate
for even more accurate results; DVD audio is sampled at 192 kHz, and other
devices can go as high as 2 MHz.

294

Part lll = Device-Specific Libraries

The higher the sampling rate, the more accurate the result will be. The
effects of sampling speed are shown in Figure 18-2.

il ad

Slower, less accurate sampling Faster, more accurate sampling

Figure 18-2: Sampling rates

Higher sampling rates also create more data, meaning more space is required.

Music on the Arduino

Arduinos can create musical tones because music is, put simply, repeated
frequencies. A musical A has a frequency of 220 Hz, a musical A’ is double that, or
440 Hz. By knowing the frequencies of notes, it’s possible to program an Arduino
to create simple musical tones. For example, the famous song “Happy Birthday”
can be written in musical tones as: “CCDCFE CCDCGF CCC1AFED BBAFGE.”
By using tone (), you can generate a musical tune to impress your friends, but
it remains a simple musical tone. The sound is clearly artificial and does not
resemble piano tones or any other musical instrument.

(L AR AA AN tone () is presented in Chapter 4.

Arduino Due

The Arduino Due is a different kind of Arduino. It is based on Atmel’s imple-
mentation of an ARM Cortex-M3, a powerful microcontroller and has more
processing power than most Arduinos. It is a 32-bit microcontroller, runs at
84 MHz, and has more input and output pins than most Arduinos, including
some advanced functions. Audio output on Arduinos is normally done by vary-
ing the frequency of a square wave, but the Arduino Due has two Digital to
Analog Converters (DAC) that can output a true analog signal, like the pulses
produced by tone ().

Pulse width modulation is an “all or nothing signal;” the output alternates
between a logical high and a logical low. High fidelity sound is different; it
requires a signal that has multiple values between the minimum and maximum

Chapter 18 = Audio

295

voltage to control the volume, and to provide a clearer audio signal. The tone ()
function generates a square wave, but unlike pulse width modulation, it has a
50% duty cycle, that is to say, it oscillates between a logical high and a logical
low, both phases being equal in length. It results in an audible tone, but cannot
represent a complex audio signal like voice.

(OR[N PWM is presented in Chapter 4.

Digital to Analog Converters

Digital to Analog Converters (DAC) can be used to generate waveforms and are
often used to create sine, triangle, and sawtooth waves. Because these devices
can create custom waveforms and because sound is also a waveform, they can
be used to create sound—and with relatively good precision.

m Microcontrollers and DACs can generate signals but are not powerful
enough to power devices; they require an amplifier to create a signal powerful enough
for a speaker to use. Connecting a speaker directly to the microcontroller can, and
probably will, damage the pin, maybe even the microcontroller.

A DAC is the opposite of an Analog to Digital Converter (ADC) but it uses
the same properties. A digital signal has a resolution; the amount of bits that are
used to create a signal. On the Arduino Due, the two DACs have 12-bit resolu-
tions; they can write values from 0 to 4,095. The analog output varies from one
analog value to another; on the Arduino Due, it varies from 0 V to +3.3 V, the
voltage of the Cortex-M microcontroller. Because the voltage range is 3.3 V and
because there are 4,096 possible values, the DAC has a precision of 3.3 divided
by 4,096, or approximately 0.000806. Each increment on the digital side will
result in a change of 0.8 mV on the analog side.

Digital Audio to Analog

Digital audio files are essentially a representation of analog signals. It is therefore
easy to take each value and to write that value into a DAC, creating a waveform
that is close to the original audio. There are several factors to consider:

m Resolution—The resolution of the digital audio file is important; on most
computers, they are either 8 bits or 16 bits, but the Arduino Due’s DAC
has a 12-bit resolution.

m Speed—The original file was sampled at a precise speed, and playing
back the audio data at a different speed would change the pitch.

m Stereo or mono—Audio can be recorded as mono (single channel) or stereo
(dual channel). The Arduino Due can play only mono files, so stereo files
play back as mono; both channels convert to a single channel.

296

Part lll = Device-Specific Libraries

Creating Digital Audio

You can create digital audio files using numerous tools, from programs on your
computer to your smartphone. Most operating systems have at least one appli-
cation you can use to record your voice. Digital audio can also be “converted”;
converting one format to another is also possible with a large range of applica-
tions, but because some audio formats are licensed, some of these applications
are either shareware or commercial.

A third option is the capability of some more advanced programs to “speak”
directly, using voice synthesis. This can later be used to create new files con-
taining the voice. This is an interesting solution if you are looking for a robotic
voice system.

For most audio recording, limited resources are required. For nonprofessional
applications, a simple multimedia headset is often more than enough; some USB
models have good sampling rates and offer noise reduction. Try to record your
voice inside with no other ambient noises. Choose a time when you know you
will not receive a phone call or have a visit from someone. Having a break of
even one-half an hour can result in a slightly different voice, so try to record
all the files you need in a single session.

Storing Digital Audio

Digital audio files can be extremely large, and wave files are not compressed.
For a typical desktop computer, this will not be a problem. Audio CDs contain-
ing wave files could hold 80 minutes of stereo music in 700 megabytes, which
is normally more than sufficient for most projects. Most audio files can exceed
the Arduino Due’s internal memory and flash, so another storage medium is
required. To store (and play) digital audio on the Arduino Due, you must use
an SD card with a shield that has SD-card capability.

m The Arduino Due is not a 5-V device; it is a 3.3-V device. Some
shields that are designed for 5-V Arduinos will not work on the Arduino Due, so check
compatibility.

The shield can be any type that supports an SD card; some sensor shields
and most Ethernet shields have an SD-slot present on the board. For more
information on SD cards, see Chapter 12.

Playing Digital Audio
To play back audio files, you must first import the library: audio. h.

#include <Audio.h>

Chapter 18 = Audio 297

To play back Audio files from the SD card, you will also require the SD and
SPI libraries; import sp.h and SpI.h.

#include <SD.h>
#include <SPI.h>

V(o AN The Arduino Due is supported only in the versions of the Arduino IDE.
Version 1.0 does not support the Due, and you cannot import the Audio library from
the menu. Version 1.5 and above support both the Arduino Due and the Audio library.

To initiate the Audio library, you run begin ().
Audio.begin(rate, size);

This function takes two arguments: the rate and a size. The audio rate is the
number of samples per second; for example, 22050 or 44100 are typical values.
For stereo audio files, you must double the audio rate (44100 for 22.05 kHz and
88200 for 44.1 kHz). The size parameter indicates the size of an audio buffer
that will be created by this function, in milliseconds. For example, to prepare
the Arduino Due to play a 44.1-kHz stereo file with a 100-millisecond buffer,
use the following:

// 44100Khz stereo => 88200 sample rate
// 100 mSec of prebuffering.
Audio.begin (88200, 100);

When the Audio library is ready, you must prepare your samples to be played.
This is done with the prepare () function:

Audio.prepare (buffer, samples, volume);

The buffer parameter is the name of a buffer created by your sketch; it is
not the audio buffer created by the begin () function. The samples parameter
is the number of samples to write, and the volume parameter is the volume of
the audio output, expressed as a 10-bit number; 0 is a silent output, and 1023
is the maximum volume possible.

The final step is to write the data into the audio buffer using the write ()
function.

Audio.write (buffer, length);

The buffer parameter and the length parameter are identical to the
parameters used in the prepare () function. This function writes the samples
to the internal audio buffer. If the audio file is not played, playback
commences. If the file is currently played, this adds the samples to the end of
the internal buffer.

298

Part lll = Device-Specific Libraries

Example Program

For this application, you create a digital thermometer, using an LM35, a small
thermometer that is first presented in Chapter 14. The schematic is almost identi-
cal, but for this application, there is a change. When the user presses a button,
the Arduino does not display the time; it says it out loud.

To do this, you have quite a bit of work to do. The Arduino cannot “speak”
directly; to say “The temperature is 22-degrees Celsius,” it requires several sound
files. The first part, “The temperature is” will be one file, and the last part, “degrees
Celsius” will also be one file. In between, you have to record your voice or get
a friend to record theirs. Don’t worry; you don’t have to record every number
between zero and 100; like the previous example in Chapter 14, this application
does not go above 40. You can choose later on if you want to go higher. Also, the
English language does come to your rescue in this example; every number between
zero and 20 will have to be recorded, but after that, it is easier. For example, in the
30s, each number starts with “thirty,” followed by 1 digit. The number 37 could
therefore be a file with the word “thirty,” and a file with the word “seven.” This
is exactly what your GPS system does in your car; “In four-hundred meters, turn
right” is actually composed of several files. It is up to you to create those files or
to find some free audio files on the Internet—the choice is yours.

You must decide how to proceed and with the exact wording required. For
this example, you create numerous audio files. The first one, called temp.wav,
will contain a quick phrase; “The current temperature is” or words to that effect.
Afterward, you need to create numerous files; each number from 0 to 20 and
named as the number they contain, plus the extension .wav. For example, the
file containing the word “18” would be “18.wav.” There is no need to record 21;
this will be done by mixing 20 and 1. Instead, record the tens: 20, 30, and 40.
For most applications, 40 should be sufficient.

The application itself will be simple, but it is something that you can use to
create a nice project. When the user presses a button, the temperature is sampled.
One by one, files are opened on the SD card and sent to an audio buffer. When
all the files are read, the last file is closed, and the system waits for the user to
press the button again.

Hardware

For this example, you will be using an Arduino Due with a shield compat-
ible with the board that has an SD slot. The Ethernet shield used in Chapter 9
would suffice, even if the Ethernet adapter is not used; this application needs
only the SD-card slot. The LM35’s output will be connected to analog input
5, and the ground pin will be connected to the ground pin on the Arduino
Due, but the +Vs pin is different. On previous examples, it was connected to
the +5V pin because that is all that was available. However, the component’s

Chapter 18 = Audio

299

documentation states that the +Vs pin must have at least 4 V, but the Arduino
Due is powered only by 3.3 V. On the Arduino Due, there are two voltage pins:
3.3 Vand 5 V. For this example, the LM35 will be powered by the +5-V pin.
For other components, this might have been a problem; the Arduino Due is
powered at 3.3 V, and the inputs expect to have 3.3 V or lower; applying 5 V to
an input could damage the microcontroller. The LM35, however, can safely be
powered by +5 V in this application because the output is equivalent to 10 mV
per degree Celsius, or 1.5 V for 150 degrees. Therefore, the LM35 can safely be
powered by +5 V because it will not output more than 3.3 V.

The button will be connected to digital pin 2. It will be powered by 3.3 V and
connected to ground through a 10-Kilohm pull-down resistor. When the button
is open, the input will be connected to the ground, resulting in a logical zero.
When the button is pressed, the input will be connected to 3.3 V, resulting in
a logical 1.

Finally, the audio output will be connected to DAC0. Remember, this is only
a signal; it is not strong enough to power a speaker. Using too much power will
result in damage to the Arduino. To output audio, the schematic uses a jack con-
nector. Most home Hi-Fi systems or mobile speakers use a jack input, usually
by using a male-to-male jack cable. It uses the same connecter you would use
to connect your MP3 player to the speaker.

Figure 18-3 shows the layout for this design.

INICATION

ﬂ

-)@

fritzing
Figure 18-3: Hardware layout (Image created with Fritzing)

300

Part 1l

Device-Specific Libraries

Sketch
The code that will be used for this sketch is presented in Listing 18-1.

Listing 18-1: Sketch (filename: Chapter18.ino)

o 3 o0 U1k W N R

W N NN DNDNDMNDNDMNDMNDMNNRERRERPRRPRRERRPR P B B2 o
O VW W I o0 U B WN R O W oo JO0 U W NN o

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <SD.h>
#include <SPI.h>
#include <Audio.h>

const int buttonPin = 2; // The pushbutton pin

const int sensorPin = A5; // The analog input pin

void setup ()

{

//
Se

Debug output at 9600 baud
rial.begin(9600) ;

// Set up SD-card. Check your board for the pin to use

if

{

// Configure high-speed SPI transfers

SP

!/

Aul

//
pi
pi

(1SD.begin(4))

Serial.println("SD initialization failed!");

return;

I.setClockDivider (4) ;

44100Khz mono files, 100 mSec of prebuffering.

dio.begin (44100, 100);

Configure pins
nMode (buttonPin, INPUT) ;
nMode (sensorPin, INPUT) ;

void loop ()

{

// Wait for a button to be pressed

if

{

(digitalRead (buttonPin))

// read the value from the sensor:
int sensorValue = analogRead (sensorPin) ;

Serial.print ("Sensor reading: ");

Serial.print (sensorValue, DEC);

// Convert the temperature

int tempC = (3.3 * analogRead (sensorPin)

Serial.print (" Temperature:

(3.3V on the Due)

")

* 100.0)

/ 1024.0;

Chapter 18 = Audio

301

46
47
48
49
50
51
52
53
54
55
56
57
55
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Serial.println (tempC, DEC);

// Play the first file
playfile (String("temp.wav")) ;

// File name to read?
if (tempC > 20)
{
Serial.print ("Open filename ") ;
String filenamel = String(String(tempC - (tempC % 10))
+ ".wav") ;
Serial.println(filenamel) ;
playfile(filenamel) ;

Serial.print ("Open filename ") ;

String filename2 = String(String(tempC % 10) + ".wav");
Serial.println(filename2) ;

playfile(filename2) ;

}

else
{
Serial.print ("Open filename ") ;
String filename = String(String(tempC) + ".wav");
Serial.println(filename) ;
playfile (filename) ;
1
1
else
{
// Button was not pressed, sleep for a bit
delay (50) ;

void playfile(String filename)

{

const int S=1024; // Number of samples to read in block
short buffer[S];
char chfilename[20];

filename.toCharArray (chfilename, 20);

// Open first wave file from sdcard
File myFile = SD.open(chfilename, FILE_ READ) ;
if (!myFile)
{
// If the file could not be opened, halt
Serial.print ("Error opening file: ");
Serial.println(filename) ;
while (true) ;

continues

302

Part lll = Device-Specific Libraries

Listing 18-1: (continued)

96 }

97

98 // Loop the contents of the file

99 while (myFile.available())

100 {

101 // Read from the file into buffer
102 myFile.read (buffer, sizeof (buffer));
103

104 // Prepare samples

105 int volume = 1023;

106 Audio.prepare (buffer, S, volume) ;
107 // Feed samples to audio

108 Audio.write (buffer, S);

109 }

110 myFile.close() ;

111 }

This sketch has three main functions: the usual setup () and loop () but also
playfile (), the function that will be called to play audio files.

setup () is declared on line 8. The serial port is configured on line 11, and the
SD card reader is initialized on line 14. Communication between the Arduino
and the SD card controller is done via the SPI protocol, and reading wave files
requires high-speed transfers. To do this, on line 21, the SPI clock divider is
defined to speed up communications. On line 24, the Audio library is initial-
ized. It will expect mono files with a bit rate of 44.1 kHz, and allocates a buffer
for 100 milliseconds, more than enough for most data reads from the SD card.
Two pins are then defined on lines 27 and 28; the pin used to read the state of
the button is set as an input, and then the sensor pin is also defined as an input.

loop () is declared on line 31. This is where most of the work will be done.
On line 35, the state of the button is read. If the button is not pressed, almost
all of 100p () is skipped, and the sketch pauses for 50 milliseconds on line 75
before repeating.

If the button is pressed, then the analog value on the sensor pin is read and
stored as a variable. To help debugging, the value is displayed over the serial
port. On line 44, a calculation is made, converting the reading from the sen-
sor to degrees Celsius. Remember that the Arduino Due is a 3.3-V device, and
therefore, the analog value is compared to 3.3 V, not to 5 V. The temperature is
then output to the serial port.

To save space on the SD card, the recording of the different numbers have
been separated into different files. If the temperature is below 21 degrees, then
a single filename will be used; put simply, the filename is the temperature. If the
temperature is eighteen degrees, it refers to a file called “18.wav”. Temperatures
of 21 degrees and more will cause two files to be called; one containing the 10s,
and one containing the single 1s. Twenty-four degrees will cause the sketch to

Chapter 18 = Audio

303

call two files: “20.wav” and “4.wav”. After the filename is created, playfile ()
is called with the filename passed as a string.

playfile() isdeclared online 80.It takes a single parameter, a string, the name
of the file to be opened. On line 82, a const int is declared, which is the amount of
data to be copied from the wave file per pass. On the next line, a buffer is created;
this is the container where data will be placed from the file on the SD card. On
line 84, another variable is created; this is again the filename, but as a char array;
the sp.open () function does not accept strings, only chars.

On line 89, the sketch attempts to open the file on the SD card. If it fails, it
prints out a message on the serial port and then halts execution. If the sketch
does open the file, it carries on.

On line 99, a while loop is created, and loops until there is no more data left
to read in the file. This is done with the File.available () function, which
returns the number of bytes that can be read from the file. On line 102, the
file is read in blocks of sizeof (buffer) into butfer. On line 105, a variable
is declared and contains the value 1023. This is used on the next line, where
the Audio library prepares the samples with the Audio.prepare () function. It
takes the local buffer called buf fer, the size of that buffer, and the volume to be
applied; in this case, 1023, or the highest volume possible. The final step is to
write the local buffer into the Audio buffer with the function audio.write ().
This function takes the same parameters as the audio.prepare () function, with
the exception of the volume. When the while loop is finished, the file is closed,
and the function returns.

Exercise

This application measures the temperature from a single source. You could
modify the sketch to retrieve the temperature from an inside sensor, as well
as the temperature from outside. You could also add a humidity sensor or an
ultraviolet sensor. By pressing a button, you could know that the outside tem-
perature is 38-degrees Celsius, the humidity is 20 percent, and the UV index is
8, but inside you have a comfortable 24 degrees.

Not everyone uses Celsius; you could modify the sketch to use Fahrenheit, and
even use the EEPROM to store your setting, making this a sketch that you can
use worldwide. You could even create your own shield with sensor connectors,
an SD slot, and an audio jack integrated directly onto the shield.

304

Part lll = Device-Specific Libraries

Summary

In this chapter, you have seen how the Due has some advanced functions that
can be used to play back audio files, and the library used to perform these
actions. You have seen how to wire an Arduino Due to a loudspeaker to create
your own alarm clock, temperature sensor, or any sort of device that requires
an audio output. In the next chapter, I will show you the Scheduler library, an
advanced library for the Arduino Due that allows you to run different tasks at
different times.

Scheduler

This chapter discusses the following functions of the Scheduler library for the
Arduino Due:

W startLoop ()
m yield()
The hardware needed to use these functions includes:
m Arduino Due
m [M35 temperature sensor
m PowerSwitch Tail II (110 V or 220 V)

m Adafruit’s RGB LED Weatherproof flexi-strip (http://www.adafruit
.com/products/34 6)

m 3 x TIP120 transistors
m 3 x 100-Q) Y4-W resistors

\[oXN The Scheduler library is only found in Arduino IDE version 1.5 and later. It is
still considered experimental and under development.

You can find the code downloads for this chapter at http://www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 19
folder and the filename is Chapter19. ino.

305

http://www.adafruit.com/products/346
http://www.adafruit.com/products/346
http://www.wiley.com

306

Part lll = Device-Specific Libraries

Introducing Scheduling

Back in the early days of computing, computers could do only one thing at a
time. When you turned on your trusty PC and put in a disk, the operating system
started. Then you changed the disk and ran a spreadsheet. Your spreadsheet
appeared on the screen after a few seconds and you heard some dubious sounds
from the disk drive, and then, finally, you could get to work. If you wanted to
take a break and play a game in glorious four colors, you had to save your work
and quit the spreadsheet (or in some cases, actually restart the computer) before
playing a game. With disks, this didn’t matter so much; you couldn’t have two
programs open at the same time.

When graphical systems arrived on the PC, users wanted to have windows
containing their applications, but they also wanted to switch from one applica-
tion to another, or even have two running at the same time. Hard drives could
store several programs, and there was enough system memory to have multiple
executables in memory at the same time. The question was, how do you run
two programs at the same time?

Computer manufacturers started selling computers with graphical systems
with a lot of memory and internal hard drives, and this became standard.
The more they added on, the more users wanted. To attract users, they would
say that you could run several programs at the same time and that they
could run simultaneously. This is one of the biggest lies in computers, but it
is close enough.

A processor cannot execute multiple programs at the same time; technically it
isn't possible. A processor can execute the instructions it is given, one at a time,
but the trick is in giving it the instructions it needs to run.

The operating system is the software heart of any system. An application
cannot run without the help of an operating system. Even if you use only one
program, you can't just install that program onto a computer without an oper-
ating system. The operating system does much more than just run programs;
it sets up the hardware, including keyboard and mouse inputs, and video out-
put, and it configures the memory as required—something a normal program
doesn’t need. A program can tell the operating system to print something on
the screen, and it is the operating system that does all the hard work, includ-
ing multitasking.

Multitasking is the art of running several programs in a way that makes
users think that they are running at exactly the same time, but they aren’t. The
operating system gives control to an application (or thread) before either taking
back control or waiting until the application gives control back to the operating
system, as shown in Figure 19-1.

Chapter 19 = Scheduler

307

loop() ||

loop2()

loop3()

Y

Execution time
Figure 19-1: Execution of threads

This has led to some complicated situations; Microsoft Windows 3.1 used some-
thing called cooperative multitasking, where applications had to cooperate. If an
application didn’t cooperate (either it wasn’t designed to run in Windows or crashed)
then control was never given to other applications. In Figure 19-2, the thread
badloop () takes control but never gives it back, leaving two threads unable to
function.

loop()
loop2()
badloop()

Figure 19-2: Noncooperative thread

Today, operating systems use multiple techniques to ensure that applications
will run together, even if one is greedy with system resources, and the entire
system keeps on going even if an application crashes.

While writing this book, I am using a text editor. In the background is a
music player to help me concentrate. I am using a two-monitor setup, and on
the opposite screen I have a web browser for reference, and the Arduino IDE
to write the sketches that I will be using. If I need a break, I'll play a game, but
I won't close any applications, I'll let the operating system keep them alive
while I have a break. When I've had a break, I'll come back to my text editor
and continue where I was.

Arduino Multitasking

Arduinos, by default, do not multitask. Take this simple sketch as an example:

// the setup function runs once when you press reset or power the board
void setup() {

// initialize digital pin 13 as an output.

pinMode (13, OUTPUT) ;

}

308

Part lll = Device-Specific Libraries

// the loop function runs over and over again forever
void loop () {
digitalWrite (13, HIGH); // turn the LED on (HIGH is the voltage level)

delay (1000) ; // wait for a second
digitalWrite (13, LOW); // turn the LED off by making the voltage LOW
delay(1000) ; // wait for a second

}

This is the Blink example found in the Arduino IDE’s Examples menu. In
this simple example, an LED is set to blink: one second on, one second off. The
code used to switch between the different states runs quickly; it requires mere
microseconds. digitalWrite () requires a little bit more time, but it is still fast.
Next, the sketch runs a delay (). This function is called a blocking function;
it prevents all other functions from running until it has completed. Because
Arduinos are designed to be single-task devices, no multitasking library was
originally created. An Arduino will continue to run a single task, waiting for
data, or acting on data. Some libraries allow something called a callback; a func-
tion that will be run when an external event occurs. For example, an Arduino
can’t be told to wait forever for an I°C instruction. In this case, a callback is
programmed. The Arduino can continue to do what it needs to do (for example,
read sensors) and when an I?C instruction arrives, the Arduino stops what it is
doing and runs the callback before returning to whatever it was doing before
being interrupted. However, this is not the case of most applications; almost all
functions are blocking, and other functions cannot run until it has completed.

The Arduino Due uses a different microcontroller; instead of using an Atmel
AVR, it uses an Atmel ATSAM3X8, Atmel’s implementation of an ARM Cortex-M3
microcontroller. It is a 32-bit device running at 84 MHz. It has some advanced
features and is a powerful device. Because of its capabilities, one developer in
particular decided to change the way it worked and to implement a schedul-
ing system. The library, called Scheduler, was introduced in Arduino IDE 1.5.

Scheduler

The scheduler implementation is a cooperative scheduler. It remains powerful
yet lightweight but does require some careful thinking when implementing.
It can run several functions at the same time, so long as they cooperate. It also
rewrites one function in particular; the delay () function, which is discussed
later in the Cooperative Multitasking section.

The first thing you need to do is to import the Scheduler library. This can be
done either from the IDE menu (Sketch = Import Library => Schedule) or by
adding the include manually.

#include <Scheduler.h>

Chapter 19 = Scheduler

309

From here, use startLoop ():

Scheduler.startLoop (loopName) ;

This function takes a single parameter: the name of a function declared inside
the sketch. The named function cannot take any arguments, but it can be any
function that you wish. Multiple functions can run consecutively by calling
startLoop () for each named function:

Scheduler.startLoop (loopl) ;
Scheduler.startLoop (loop2) ;
Scheduler.startLoop (loop3) ;

There is one other function to know about—yield():

yield();

This function takes no parameters, returns no data, and from a visual stand-
point, does not do anything, but this is the function that is called to yield control
to another function. Remember, the Scheduler library uses cooperative multi-
tasking, so control must be given back to other functions; otherwise, they will
not have any CPU time.

Cooperative Multitasking
Consider the following example:

#include <Scheduler.h>

void setup ()

{

Serial.begin (9600) ;

// Add "loopl" and "loop2" to scheduling.
Scheduler.startLoop (loopl) ;
Scheduler.startLoop (loop2) ;

}

void loop ()

{

delay (1000) ;

}

void loopl ()

{

Serial.println("loopl()");
delay (1000) ;

}

void loop2 ()

310

Part lll = Device-Specific Libraries

{

Serial.println("loop2()");
delay (1000) ;

}

This sketch is simple; it will import the Scheduler library and run two func-
tions: 1oop1 () and loop2 (). Remember, 1oop () is always called. The two addi-
tional loop functions will simply print a line of text to the serial port and then
wait for a second.

Remember when I said that delay () was blocking? With the Scheduler library,
it isn't; it allows functions to sleep for a set time but gives control back to other
functions. In this case, one loop is called, and when it reaches delay (), it gives
control to the other loop function. When that one reaches delay (), it will once
again return control to the first function, and this will happen until delay ()
ends, after 1 second.

The output of the function on the serial port is a list, alternating between
"loopl ()" and,"loopz()".

Scheduled functions can also use global variables. Change the sketch to add
the following;:

#include <Scheduler.h>
int i;

void setup()

{

Serial.begin(9600) ;

// Add "loopl" and "loop2" to scheduling.
Scheduler.startLoop (loopl) ;
Scheduler.startLoop (loop2) ;

void loop ()
{

delay (1000) ;

}

void loopl ()

{
i++;
Serial.print ("loopl(): ");
Serial.println (i, DEC) ;
delay (1000) ;

Chapter 19 = Scheduler

311

void loop2 ()

{
it++;
Serial.print ("loop2()") ;
Serial.println(i, DEC);
delay (1000) ;

}

A global variable has been added: i. Each time a loop function is called, i is
incremented, and the value is displayed. The output of this function is again a
list, alternating between "loop1 () " and "loop2 () " with the variable i incre-
menting each time.

Noncooperative Functions

Now, add something else. The variable i is incremented each time a loop is
called, and we would like to have a message displayed when i reaches the value
20. This can be achieved by adding a third function, one that looks at the value
of i and prints a message if the value is reached.

#include <Scheduler.h>
int i;

void setup ()

{

Serial .begin(9600) ;

// Add "loopl" "loop2" and "loop3" to scheduling.
Scheduler.startLoop (loopl) ;
Scheduler.startLoop (loop2) ;
Scheduler.startLoop (loop3) ;

void loop ()
{

delay (1000) ;

}

void loopl ()

{
1++;
Serial.print ("loopl(): ");
Serial.println(i, DEC);
delay (1000) ;

312 Partlll = Device-Specific Libraries

void loop2 ()

{
i++;
Serial.print ("loop2()") ;
Serial.println(i, DEC);
delay (1000) ;

}

void loop3 ()

{

if (1 == 20)

{

Serial.println("Yay! We have reached 20! Time to celebratel!");

}
}

The new function, 1oops3 (), is called in the setup () function and has a single
task; to monitor the value of i and print a message when i reaches the value 20.
Except it doesn't. If you run the program and open a serial monitor, you'll see
there is no output from this sketch, and nothing is displayed on the serial port.
loopl () and loop2 () do not print any values, and 1oop3 () does not celebrate
the arrival of the value 20. What happened?

The code is valid; there is no syntax error. Because the code ceased to work
when loop3 () was added, it is safe to say that the problem lies within this func-
tion. Time to take a closer look.

It starts with an if statement: if i equals 20, then a message is printed. And
if i doesn’t equal 20? Nothing, it just loops. It should work, and on most multi-
tasking systems, it would. Most multitasking systems have a kernel that gives
control to functions and then takes control away after a set period of time, or
number of instructions, or whatever algorithm the system uses. On coopera-
tive multitasking, it is up to the programs (or functions) to play nice with the
other functions and to give control back. The problem with loop3 () is that it
continues to run but never gives control back to the other functions. It keeps on
looping waiting for i to reach 20, when i can never be incremented. The other
two functions are still waiting for their turn. To tell 1oop3 () to give control back
to other functions, use yield ().

void loop3 ()

{

if (i == 20)

{

Serial.println("Yay! We have reached 20! Time to celebrate!");

}

yield() ;

}

Chapter 19 = Scheduler

313

A single modification has been made; yield () has been added after the if
loop. When the sketch reaches this point, it releases control of 1oop3 () and
looks to see if any other function needs CPU time. Now all the functions are
cooperative, and the sketch functions as needed.

Cooperative multitasking is an excellent way of making reliable multitasking
code, without the need for a heavy operating system. However, care must be
taken to make sure that the threads are cooperative, by adding yield() func-
tions or delay () statements.

Example Program

This example will be an aquarium temperature sensor, one that will monitor the
temperature and control a lighting system and control the temperature depending
on the result. Every few seconds, the sensor will send the temperature by serial.

Aquariums can be expensive, and enthusiasts often welcome devices that
can help them monitor certain aspects of the water; temperature, acidity, water
hardness, and oxygen levels are all critical to the well-being of the fish they
contain. A mistake can often be disastrous.

The temperature sensor is simple; as with the previous chapter, you will be
using an LM35 temperature sensor. Tropical fish require precise temperatures,
and this application can help you achieve that. Most heating elements auto-
regulate themselves, but for exotic fish, or for breeding conditions, you may
want to regulate the temperature; it should be warmer in the day and slightly
cooler at night. Bala sharks, also known as silver sharks, are a beautiful addition
to large aquariums—and my personal favorite. They are peaceful creatures but
are difficult to please, requiring a temperature between 22 and 28°C. For this
application, the heater will be turned off at 26 and turned on at 24.

Also, lighting conditions are important, especially when breeding. Most lighting
turns on rather violently in the morning and turns off entirely at night, instead
of a more natural cycle of slowly brightening the light and slowly dimming.
This sketch enables you to change that. Figure 19-3 shows the lighting strategy.

O O O @O D
/ \

Figure 19-3: Lighting control

The light regulator will use the Arduino Due’s digital to analog converter.
It will be a single task; one that will wait for hours before changing the light
settings.

314

Part lll = Device-Specific Libraries

There are two ways to make a sketch wait for a long time, either using the
delay () function, which normally means that no other calculation can take
place, or by reading the number of milliseconds since the sketch started. To
make things simple, this application will use two loops; one for the temperature
sensor and one for the lighting application. Both will be running independently.

Hardware

The Arduino Due will have an LM35 temperature sensor connected to AQ. The
LM35 will be powered by 5 volts. Even though the LM35 runs at 5V, it will
never reach 3.3 V, so it’s safe to connect to the Arduino Due.

m The LM35 is not waterproof! Do not place it directly in water; it could
damage the component and cause oxidation of power wires, resulting in toxic water for
the fish. Make sure to totally isolate the LM35 and any wires before placing them inside
an aquarium. The outside glass of an aquarium is often a good indication of the tem-
perature of the water; you can place the LM35 outside the tank, directly on the glass.

The PowerSwitch Tail I is a power cable with on-board electronics. When it
receives a signal on the input pins, it lets the AC electricity through. It requires
little energy to activate; at 5V, it will draw about 10 mA, which the Arduino is
more than capable of delivering. The PowerSwitch Tail Il is also “opto-isolated,”
meaning that the low voltage is never in any contact whatsoever with the AC
lines, making this device extremely safe to use. The output will be connected
to digital pin 7.

To light the aquarium, you can use either an LED array or LED strip. Both
of these can be found on sites like Adafruit. For this application, I recommend
Adafruit’s RGB LED Weatherproof flexi-strip (available at http: //www.adafruit
.com/products/346). These strips contain 60 RGB LEDs per meter, and their
length can be adjusted according to your aquarium. However, they draw far
more current than an Arduino can deliver, so they require an external power
supply and will require three transistors to power them, one for each color
channel. A transistor is like a switch: by providing a small current to the base,
a much larger current can flow from the collector to the emitter, allowing the
Arduino to power devices that either require far more current than what it can
provide, or even power devices that require more voltage.

(@ (O PR AA LA Transistors were presented in Chapter 3 in the

“Transistors” section.

To control the light intensity, you will be using PWM. The LED will essen-
tially be turned on and off very quickly, far too fast for the human eye to see,
and by varying the duty cycle—that is to say, the amount of time spent on

http://www.adafruit

Chapter 19 = Scheduler

315

compared to the amount of time spent off—you can adjust the light intensity.
The three transistors will be controlled by pins 2, 3, and 4. The TIP120 transis-
tor is a powerful component that can let through a large amount of current
compared to what the Arduino can provide, or sink. Adafruit’s flexi-strip
has four connectors: one for a 12-V power supply, and one for each of the red,
green, and blue components. By connecting these to the ground, or 0V, they
turn on each of the color components. This is what the transistor will be used
for; it will allow as much current through as is required, but since the base
will be connected to PWM, it will turn on and off very quickly, giving the
appearance of dimming.

This device does not have a screen and does not provide any way to let the
user configure the timing sequence or when it should start. By default, the
sketch will begin its timing sequence as if the user had connected it at midday.
Figure 19-4 shows the schematic.

oo
--

...
oooooooooooooooooooooo
oooooooooooooooooooooo

fritzing
Figure 19-4: Schematic (Image created with Fritzing)

316

Part lll = Device-Specific Libraries

Sketch

Use the code in Listing 19-1 for this sketch.

Listing 19-1: Sketch (filename: Chapter19. ino)

W J o0 U1 W N

AR R S A R R A D W WW W WWWWWW NN NNDNDRERRRERRBRRRRO
w 3 0 Uk W N R O W oo JO0 U WD E O W OowNIOo Ul bk WNNEFE O W oowJo Ul & W NP o

#include <Scheduler.h>

const int sensorPin = AO0; // The analog input pin
const int powerPin = 7; // The power socket output pin

const int rPin = 4; // Red color component
const int gPin = 3; // Green color component

const int bPin 2; // Blue color component
const int maxTemp = 26; // Turn off heater when above this temp
const int minTemp = 24; // Turn on heater when below this temp

int powerPinStatus = LOW; // By default, no power on the AC circuit
int i; // Temporary variable for if statements

void setup ()

{
// Serial output at 9600 baud
Serial.begin(9600) ;

// Configure sensor pin
pinMode (sensorPin, INPUT) ;

// Start heater and lighting treads
Scheduler.startLoop (heatloop) ;
Scheduler.startLoop (lightloop) ;

void loop ()

{

yield(); // Releases the Arduino from the main loop

// The loop responsible for checking water temperature
void heatloop ()
{
// Get a temperature reading from the temperature sensor
// 3.3V on the due
int tempC = (3.3 * analogRead(sensorPin) * 100.0) / 1024.0;

// Send the temperature reading out the serial port
Serial.print ("Temperature: ");
Serial.println(tempC) ;

// Check to see if we need to change the output
if (powerPinStatus == LOW)

{

Chapter 19 = Scheduler

317

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

//Mains plug currently turned off
if (tempC < minTemp)
{
powerPinStatus = HIGH;
digitalWrite (powerPin, powerPinStatus) ;

}

else
{
// Mains plug currently turned on
if (tempC > maxTemp)
{
powerPinStatus = LOW;
digitalWrite (powerPin, powerPinStatus) ;

// Warn if possible heating element failure

if (tempC < (minTemp - 2))

{
Serial.print ("CRITICAL: Water temperature too low. ");
Serial.println("Heating element failure?");

// Sleep for ten seconds
delay (10000) ;

// The loop responsible for lighting

void lightloop ()

{

// Wait for 7 hours before turning the lights off
delay (7 * 60* 60 * 1000);

// Lower the light level over the span of one hour
for (i = 255; 1 >= 0; i--)

{
analogWrite (rPin, 1i); // Write the red light level
analogWrite (gPin, i); // Write the green light level
analogWrite (bPin, 1i); // Write the blue light level
delay (60 * 60 * 1000 / 255); //Sleep for a few seconds
}

// Wait for 11 hours
delay (11 * 60* 60 * 1000) ;

// Increase the light level over the span of one hour

for (i = 0; i <= 255; 1i++)

{
analogWrite (rPin, 1i); // Write the red light level
analogWrite (gPin, i); // Write the green light level
analogWrite (bPin, 1i); // Write the blue light level

continues

318

Part lll = Device-Specific Libraries

Listing 19-1 (continued)

101 delay (60 * 60 * 1000 / 255); //Sleep for a few seconds
102 }

103

104 //Wait for 4 hours

105 delay (4 * 60* 60 * 1000);

106 }

This sketch begins by importing the Scheduler library. On lines 3 and 4, the
input and output pins are defined. On lines 6, 7, and 8, the pins used to con-
trol the color components are declared. On lines 10 and 11, two temperatures
are defined; the minimum and maximum temperature. When the minimum
temperature is reached, the heating element is turned on. When the maximum
temperature is reached, the heating element is turned off. Change the values
to suit your aquarium.

On line 13 a variable is declared, containing the status of the output pin. By
default, the status is set to LOW. On line 15 a temporary value is declared. It
will be used later by one of the functions.

setup () is declared on line 17. It configures the serial port at 9600 baud; it sets
the sensor pin to input; and it registers two functions as threads: heatloop ()
and lightloop ().

loop () is declared on line 30 and contains a single instruction: yield ().
Every time the CPU gives control to this function, it immediately gives control
back to the sketch, allowing the CPU to control the two other scheduled loops.

On line 36, heatloop () is declared. This is the function that supervises the
heating element; taking measurements from the LM35 and acting upon that
information. First, on line 40, it reads the temperature on the analog input in
degrees Celsius. On lines 43 and 44, this temperature is printed to the serial
port. On line 47, program execution enters an if statement depending on the
state of the output pin. If the pin is set to Low, it compares the current tem-
perature to the minimum temperature. If the current temperature is too low,
the pin status is inverted, and the pin is set to H1GH. If the pin is already H1GH,
the current temperature is checked against the maximum temperature. If the
temperature is too high, the pin status is again inverted, the pin is set Low, and
program execution continues. On line 7, another comparison is made. If the
current temperature is lower than the minimum allowed temperature minus 2
degrees, the serial port issues a warning; maybe the heating element is defec-
tive and can no longer heat the water, in which case immediate action should
be taken. Finally, the function sleeps for 10 seconds before continuing. Because
the Scheduler library has been imported, this is no longer a blocking function;
instead, control is given to other threads.

Online 76, 1ightloop () is declared. This function relies heavily on delay (),
something that can be tricky when using threads. It has five phases. First, it runs
delay () for 7 hours. Remember, this application will be plugged in at midday,

Chapter 19 = Scheduler

319

and the lights will begin to dim at 7 PM. At 7 PM, the second phase begins; the
Arduino’s PWM has 256 possible values. A loop, decreases the value of each of
the color outputs by 1, creating a delay () over 1 hour divided into 256 steps.
Once this hour has passed, the sketch will wait for 11 hours. At 7 A.M, the sketch
will begin to increase the light levels using the looping technique, simulating a
morning sunrise over the course of an hour. The sketch then waits for another
4 hours, until midday. It then repeats the cycle.

Exercises

This application is extremely useful for fish-keepers, but connecting to the PC
to get temperature information may be an unnecessary process. Also, the tem-
perature warning function is critical, but again, if the computer is not turned
on, the user never receives his warning. This application could benefit from an
LCD screen to be effective—to show the temperature, output status, and any
warning messages.

Turning this application on at exactly midday may not be practical for many
people. A real-time clock module would be a good tool for keeping accurate
timing,.

The strip light contains RGB LEDs, and this sketch changes all the colors at
the same rate, resulting in white light. However, in some cases you might not
want white light, but maybe something more green to simulate a more realistic
environment, or maybe leave some blue light on during the night. You can easily
change the sketch to add the color you want.

Summary

In this chapter, you have seen how powerful the Scheduler can be with only
a few instructions. You have seen how an Arduino Due can perform multiple
tasks at the same time, and how to avoid possible problems. In the next chapter,
you will see the USBHost library and how to connect USB input devices to your
Arduino, allowing text and mouse inputs for your sketches.

This chapter discusses the following functions:
m keyPressed()

keyReleased ()

getModifiers ()

getKey ()

getOemKey ()

mouseMoved ()

mouseDragged ()

mousePressed ()

mouseReleased ()

getXChange ()

getYChange ()
B getButton()
The hardware needed to use these functions includes:
m Arduino Due
m USB keyboard
m USB OTG micro adapter

USBHost

321

322

Part lll = Device-Specific Libraries

You can find the code download for this chapter at http://www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 20
folder and the filename is chapter 20. ino.

Introducing USBHost

Most people do not understand the nightmares that some computer users previously
had when adding peripherals. When the PC originally shipped, it did not have a
mouse as standard; you needed to buy that separately. It came with a keyboard,
but that is about it. The keyboard was a standard element to computers, and it
still is. Since there is no need to have two keyboards connected to a computer,
each PC came with a single keyboard connector, the DIN keyboard connector. It
was large and bulky, and kept the connector firmly in place. Then manufactur-
ers decided to add a mouse. Mice were normally sold with a serial connector, the
highly reliable RS-232 connector. Because most computers were sold with two
serial ports and one parallel port, that was easy. It left ports free.

Suppose the user wanted to add a printer. Printers were almost always con-
nected to parallel ports, but the computer had only one. Then a 56-k modem
connected to the remaining serial port. That’s it. No more connectors left. This
would be a problem if the user wanted to go further and connect a scanner or
other device. Expansion cards existed to add a second parallel port, but what
if the user wanted a scanner and two printers? Color printers existed, but they
were expensive, and the cartridges were even more so. For printing in black
and white, some users still preferred to have a second printer for black and
white only.

Peripherals were becoming more and more common, and if the user scanned
lots of text and images, sooner or later, they would require storage. lomega’s Zip
drive was originally an external diskette drive, but one that had a large capac-
ity compared to floppy disks; the original Zip drive could store 100 megabytes.
Don't laugh; that was a lot of storage in 1994! The problem was that it was a
parallel device requiring a parallel port.

Peripheral shopping became a nightmare. When deciding on buying a periph-
eral or not, people had to ask themselves, “Do I have a spare serial/parallel/SCSI
port?” Mice were serial devices, and because every computer being shipped
suddenly had graphical interfaces, a mouse was a requirement. Enter the PS/2
interface.

The PS/2 interface was designed for simplicity. Each computer had one key-
board and one mouse. The old DIN keyboard connector was replaced with
a PS/2 keyboard connector, and mice were created with a PS/2 connector.
There were two connectors on computer mainboards: one purple port for key-
boards and one green port for mice. Both were physically identical: They were
mini-DIN connectors. They had the same power connectors and the same data

http://www.wiley.com

Chapter 20 = USBHost

323

connectors, but if the user mistakenly inverted the keyboard and mouse, they
would not function. Simply unplugging and replugging into the correct port
resolved this. This left a serial connector free for other peripherals: modem:s,
PC-to-PC connectors, software dongles, joysticks, circuit programmers, parallel
port switchers, to name but a few—still far too many. Also, another interesting
event was occurring; some users wanted something that the designers hadn’t
anticipated: two interface options, like one standard mouse for day-to-day
operations and either a track-pad or a mouse specialized for graphical work.

To simplify everything, Universal Serial Bus (USB) was created, which is a way
of connecting devices to a computer using a standard interface. Keyboards, mice,
scanners, modems ... just about anything could be connected to the computer
using USB. Even better, if the amount of USB ports on the computer weren't
enough to add another peripheral, a USB hub could be used. A single USB con-
troller can have as many as 127 different ports by using hubs.

USB Protocol

For USB to work, it requires at least one USB host. This is the device that controls
USB devices, and USB devices communicate with the host. For a standard PC
setup, the PC is the USB host.

Devices connect to the host, and when they do, an enumeration occurs. Each
device connected is given a number from 1 to 127. When enumerated, the device
description is read, so the USB host knows what this device can do. Sometimes
drivers are needed to fully use a USB device; some devices do not require drivers
because the computer already knows what the device’s function is. Several USB
classes exist, and one of them is called HID, short for Human Interface Device.
HID devices include keyboards and mice.

USB devices are “hot pluggable”; they can be connected while the system is
running. They can also be disconnected without the need for rebooting; when
unplugging your keyboard and plugging it into another USB port takes only a
few seconds for the computer to recognize the new port.

For desktop and laptop computers, the USB mechanism is simple; the computer
acts as the USB host, and a connected peripheral is a USB device. The computer
enumerates the USB device, and a connection is established. For some devices,
like mobile phones, this is a more complicated process.

Mobile phones lack the connectivity possibilities of a computer. They have a
single USB port, no disk drive, no CD drive, and limited capabilities for physical
input. Some phones can be used as USB drives; plug in the right kind of smart-
phone to a computer, and the telephone can use an internal SD card as a disk,
allowing the computer access to the files. This is great when you want to copy
multimedia files onto a telephone, but it isn’t always practical. What happens
when you are far from your computer, when you have taken the perfect photo

324

Part lll = Device-Specific Libraries

with your digital camera, and you want to send it via e-mail? This is where USB
On-The-Go (USB OTG) comes in.

USB On-The-Go is an extension to the USB specification, allowing devices
to act as either a master (host) or slave (peripheral). Technically, all USB OTG
devices are masters, but when connected to another master, they can act as a
slave. Some modern smartphones are USB OTG devices and act just like a normal
USB device; plug them into a computer and they become USB slaves, allowing
you to browse files. However, plug in a USB peripheral, and they become a
master. A mobile phone can therefore be connected to a computer or to a USB
drive. Your phone can then browse files on the USB key, just like a computer can.

USB Devices

There are far too many USB devices to list in a single book, and more and more
devices are made each day. Practically any type of computer add-on can be found
with a USB connection, from user input to screen output, from sampling graph-
ics to playing sound. Some devices are intelligent and can communicate with a
master, specifying their USB class and their capabilities. Some have no built-in
intelligence and simply use the +5-V power supply that the USB bus supplies;
this is often the case for some “gadget” USB devices; LED lights, fans, and so on.

Keyboards

A keyboard is one of the most useful components for any personal computer;
it is the primary means of entering textual information to a computer; it is a
human interface device.

Keyboards are, essentially, lots of electronic switches connected to a micro-
controller. It isn’t possible to have one wire per key, so keyboards use a mesh
system. Essentially a giant game of battleships, a keypress causes two wires to
become active, and the microcontroller senses this information and translates
that into a scancode. It then sends this information to the computer.

A scancode corresponds to a key. The information is not sent in ASCII but in
binary information. It is not sent in ASCII for two main reasons: one, not every
letter can be sent as ASCII—function keys, for example. And two, a scancode
does not represent a letter. Let me explain.

While writing this book, I am using a keyboard connected to my computer.
I press the letter A, and the letter A appears in my text editor. I have a French
keyboard which means the letters “Q” and “A” are swapped from an English
keyboard. My operating system translates what I type. So while my keyboard
has the letter “Q” written on it, as far as my computer is concerned (or even
the embedded microcontroller), it is an “A”. Anyone who has a non-English

Chapter 20 = USBHost

325

keyboard and installs operating systems knows; if the operating system has
not been instructed to load a keymap, then the system defaults to QWERTY:
the standard U.S. keyboard. This is something to remember.

The traditional PC keyboard is long dead; manufacturers are making friendlier
keyboards with added buttons to control volume, applications, or even some
laptop functions. More advanced keyboards have programmable buttons that
can either be simple scancodes or preprogrammed to write several scancodes at
once to the computer. Even more advanced gaming keyboards also have LCD
screens and sometimes LCD keys. These are not “standard” keyboards; they
require specific drivers to function but still embed part of a standard keyboard.
When entering the BIOS, these special keyboards still work, but the LCD screen
doesn’t. To achieve this, there is often a small USB hub inside, with different
components behind the hub: the keyboard, the LCD screen, and sometimes
external USB ports to connect USB keys, headphones, and so on.

Mice

Mice are, today, a basic component of every computer, but it wasn’t always the
case. Early computers did not have a mouse, and they were added only when
graphical interfaces became standard.

A mouse is a device, either mechanical or optical, that senses movement rela-
tive to the surface on which it is placed and sends movement information to
the computer in x-/y-coordinates. In addition, there are also buttons (typically
left, middle, and right), with a middle button often capable of scrolling. More
advanced mice may have several more buttons, and gaming mice often have
10 or more buttons.

Hubs

USB hubs work like network hubs; they enable you to connect several devices
onto a single port. To do this, the hub connects to the computer’s USB host, and
further devices are placed behind the hub. The hub dispatches messages from
the host to the device, and messages from devices are sent to the host.

Arduino Due

The Arduino Due is different from other Arduinos for several reasons. It is
based on Atmel’s SAM3X8E microcontroller, which is in turn based on an ARM
Cortex-M3, a powerful device. It has two micro-USB connectors, and runs at
3.3 V (see Figure 20-1).

326

Part lll = Device-Specific Libraries

Figure 20-1: The Arduino Due

The USB connector adjacent to the power barrel, the Programming port, is
a USB serial connector that is connected to an ATmegal6U2 microcontroller
which handles serial communication between the Arduino Due’s main processor
and the host computer. The other USB connector, the Native port, is connected
directly to the SAM3XSE (see Figure 20-2). This means the Due has full control
of this USB port, and can be connected as a slave for native serial communica-
tion. It is also USB OTG-compatible and can be connected to peripherals such
as keyboards and mice using a special adapter.

Figure 20-2: USB OTG connector

These adapters have a micro-USB connector on one side and a full-size USB
connector on the other, allowing keyboards and mice to be connected.

The Arduino Due can use the USBHost library, a powerful library containing
routines to use keyboards and mice as input devices, but it does come at a cost. USB
drivers tend to be big. To reduce the size and complexity of the driver for use with
amicrocontroller, it’s limited to talk only to a single device: a keyboard or a mouse.

Chapter 20 = USBHost

327

It cannot use USB hubs, and as such cannot talk to multiple devices or communi-
cate with keyboards that have a built-in USB hub. This includes some specialized
keyboards or keyboards with USB connectors for plugging in external devices.

USBHost Library

The Arduino 1.5 IDE comes with the USBHost library. To use it, you must first
import it. This can be done in the menu: Sketch = Import Library => USBHost.
This imports quite a few libraries, as shown here:

#include <hidboot.h>
#include <hidusagestr.h>
#include <KeyboardController.hs>
#include <hid.h>

#include <confdescparser.hs>
#include <parsetools.h>
#include <usb ch9.h>
#include <Usb.h>

#include <adk.h>

#include <address.h>
#include <MouseController.hs>

To initialize the USB subsystem, you must create a UsBHost object:

// Initialize USB Controller
USBHost usb;

The usb object can then be given to the different software structures. To
process USB events, you must use the task () function.

usb.task() ;

The task () function waits for a USB event and calls the necessary function as
those events happen. The function is blocking; while it is running, no other func-
tions can run. If no event is received, it will time out after 5 seconds. If no device
is connected, this function returns immediately, instead of waiting for a time-out.

Keyboards

Keyboards have their own controller, the keyboardcontroller class. First, you
must attach the Keyboardcontroller to the USB subsystem:

// Initialize USB Controller
USBHost usb;

// Attach Keyboard controller to USB
KeyboardController keyboard (usb) ;

328

Part lll = Device-Specific Libraries

When initialized, this class calls two functions when a specified event occurs.
There are two events that can be identified by the class outside 1oop (): when a
key is pressed and when a key is released. These do not include modifier keys;
Shift, Control, Alt, and other such keys do not call these functions, but Caps
Lock does.

The two functions are keyPressed () and keyReleased (). No parameters are
passed to these functions; they must retrieve pending information from other sources.

// This function is called when a key is pressed
void keyPressed()

{

Serial.print ("Key pressed");

}

This tells the sketch that a key has been pressed or released, but that is all.
To know which key or combination of keys has been pressed, use getkey ().

result = keyboard.getKey () ;

This function takes no parameters and returns the ASCII code of the key
pressed. Not all keys can be printed as ASCII, and for this reason, another
function is available, getOemKey ().

result = getOemKey () ;

This function, unlike getxey (), does not return an ASCII code, but the OEM
code associated with this key. This key can be one of the function keys or a
multimedia key. It does not work on modifier keys: Shift, Alt, AltGr, Control,
and so on. To get the status of modifier keys, use getModifiers():

result = keyboard.getModifiers() ;

This function returns an int, representing a bit field with modifiers, listed
in Table 20-1.

Table 20-1: Modifier values

MODIFIER KEY VALUE

LeftCtrl 1
LeftShift 2
Alt 4
LeftCmd 8
RightCtrl 16
RightShift 32
AltGr 64

RightCmd 128

Chapter 20 = USBHost

329

The modifiers listed in this table have been created as constants, and as such,
can be used directly in your code.

mod = keyboard.getModifiers() ;
if (mod & LeftCtrl)
Serial.println("L-Ctrl");

Mice

Mice are just as easy to use as a keyboard, using similar techniques. To use a
USB mouse, you must attach the Mousecontroller to the USB subsystem, just
like with a keyboard.

// Attach mouse controller to USB
MouseController mouse (usb) ;

Just like the keyboard controller, the mouse controller can also call functions.
There are four of them: when the mouse is moved, when the mouse is dragged,
when a button is pushed, and when a button is released.

void mouseMoved ()

{

// Mouse has moved

}

void mouseDragged ()

{

// Mouse was moved with a button pressed

}

void mousePressed ()

{

// A mouse button has been pressed

}

void mouse Released()

{

// A pressed button has been released

}

To retrieve movement information, you use getXChange () and getYChange ().
Both return int values, indicating the relative change in direction since the last
time the mouse was polled.

Computer screens use a top-left coordinate system; the (0, 0) coordinate is
in the top-left side (see Figure 20-3). The x- coordinate increases when going
right and decreases when going left. The y- coordinate increases when going
downward and decreases when going upward.

330

Part lll = Device-Specific Libraries

A T-aTis
<T i % >
\ 5] 10
y-aris N (0,0)
51 origin
10+
Y

Figure 20-3: Computer graphics coordinates

The getxchange () function therefore returns a positive value if the move-
ment is towards the right and a negative value if moving left. Likewise, the
getYChange () function returns a positive value if moving upward and a nega-
tive value if moving downward.

To know which button was pressed or released, use getButton (). This func-
tion returns one of three predefined values: LEFT_BUTTON, RIGHT BUTTON Or
MIDDLE_BUTTON.

Serial.print ("Pressed: ");

if (mouse.getButton (LEFT_BUTTON))
Serial.println("L") ;

if (mouse.getButton (MIDDLE BUTTON))
Serial.println ("M") ;

if (mouse.getButton (RIGHT_BUTTON))
Serial.print ("R") ;

Serial.println() ;

Example Program

In the early days of computers, there were no graphics. “Colossal Cave Adventure”
was the game that started a whole new genre: computer adventure games. More
like an interactive book, these games presented the user with a text represen-
tation and asked the user what to do, again, in text. Colossal Cave Adventure
was so detailed that some people visiting the cave that it was based on actually
recognized their surroundings.

The game recognized simple text commands and, through these actions,
completed the story through several possible paths. You might get something
like this:

You are in a small clearing. Butterflies dance in the sunlight, and there is
bird song above. To the south there is a small stream, to the east you can
see a small house, and to the north there is an apple tree.

Chapter 20 = USBHost

331

> GO NORTH

You are under an apple tree. It provides comfortable shade from the sun,
and the ground looks comfortable, more than enough for a quick snooze.

There is an apple in the tree.

As easy as it was to move around, the text system did have its limits. It wasn't
possible to create sentences that were too complicated...

> IS THERE A WORM IN THE APPLE?

I'm sorry, I don't understand you. Please be more specific.
> I WANT TO KNOW IF THE APPLE IS EDIBLE

I'm sorry, I don't understand you. Try rephrasing that.

> IS THE APPLE RIPE?

I'm sorry, I don't understand you. Please be more specific.
> TAKE APPLE

You take the apple.

Early versions of the game actually saved time and size by analyzing the
first five letters of any instruction; by using this method, the game could run
on almost any computer. Later, as systems became faster, fans of the game
developed versions in which each individual word was analyzed, and more
complex orders could be given.

> HIT THE TROLL WITH THE SILVER SWORD

Well, he didn’t see that one coming! The troll curls up into a ball, and
turns back into rock.

More devious programmers had fun making games, turning some situations
into textual nightmares:

> PUT THE RED GEM INTO THE BLUE SOCK AND PUT IT UNDER THE ALTAR

A voice echoes; Naribi accepts your gift! You hear a click from the other
side of the door, and it slowly swings open.

Because the Arduino Due can accept a USB keyboard, it makes a perfect setup
for some old-school games. You won't be designing an entire game; instead,
these routines will concentrate on text input.

Remember, waiting for USB events can block the system for up to 5 seconds,
so these routines will not be called all the time. They will be called only when
the Arduino expects input and will continue to run until the last character is
entered: the Enter key. After the text is entered, the Arduino can scan the indi-
vidual words and then act according to some rules.

Hardware

This application runs on an Arduino Due because of the USB Host possibilities
provided by this platform.

332

Part lll = Device-Specific Libraries

There are no external components for this project, with the exception of a
USB keyboard, and a cable to convert the micro-USB port to a USB port. The
other USB port will be connected to a computer to see the serial output. Serial
communications will be at 9,600 baud.

Source Code

Time to write the sketch, as shown in Listing 20-1.

Listing 20-1: Sketch (filename: Chapter20.ino)

1 #include <KeyboardController.hs>

2

3 // Key pressed

4 int curkeycode = 0;

5

6 // Initialize USB Controller

7 USBHost usb;

8

9 // Attach keyboard controller to USB
10 KeyboardController keyboard (usb) ;
11

12 wvoid setup()

13 {

14 Serial.begin(9600) ;

15 Serial.println("Program started");
16 delay (200) ;

17}

18

19 wvoid loop ()

20

21 keyloop () ;

22}

23

24 // This function intercepts key press
25 wvoid keyPressed()

26 {

27 curkeycode = keyboard.getKey () ;
28 }

29

30 // Sort the final sentence
31 void sortSentence (String sentence)

32

33 // Sentence logic goes here
34 Serial.println (sentence) ;
35}

36

37 wvoid keyloop()
38

Chapter 20 = USBHost

333

39 String sentence = "";

40 bool waitforkey = true;

41

42 while (waitforkey == true)

43 {

44 // Process USB tasks

45 usb.Task () ;

46

47 // Look for valid ASCII characters
48 if (curkeycode >= 97 && curkeycode <= 122)
49 {

50 sentence += char (curkeycode) ;
51 Serial.write (curkeycode) ;

52 }

53

54 // Check for Return key

55 else if (curkeycode == 19)

56 {

57 Serial.println() ;

58 sortSentence (sentence) ;

59 waitforkey = false;

60 }

61

62 curkeycode = 0;

63 }

64 }

On the first line, the sketch loads the Keyboard controller library. This is the
only library that will be required for this example.

The sketch defines an int, curkeycode. This variable holds the keycode from
the keyboard; in most cases, it maps to ASCII, but it cannot be called ASCII
because some keyboards can return non-ASCII characters. The return code
will be checked later to see if it is ASCIL. Until then, it is known as a keycode.

On line 7, the USB host is initialized, and on line 10, a KeyboardController
object is created, and the previous USB object is passed to it. The USB host can
now connect a keyboard to the USB subsystem.

Online 12, setup () is created, but all this does is configure the serial line. On
line 19, 1oop () is created and is even simpler. It calls one function, keyloop (),
over and over again.

There is only one keyboard event that will be of interest for this sketch: when
a key is pressed. The sketch has no interest in when a key is released, so only
one callback function is created: keypPressed (). This function simply updates
the global variable curkeycode with the contents of the USB event.

On line 37, keyloop () is defined. This function is run whenever the sketch
expects a keyboard input. First, an empty string is created, and then a boolean
variable called waitforkey is set to true. While this variable is set to true, the
USB subsystem waits for events. A while loop is created on line 42, and on line

334

Part lll = Device-Specific Libraries

45, the USB task function is run. This function either returns with an event or
times out after 5 seconds. There is no way of telling exactly how this function
ends, so the sketch looks at the contents of the variable curkeycode. If a valid
ASCII character is detected (a keycode between 97 and 122), then the sketch adds
that character to the end of the string. If the value 19 is received, then the sketch
has received a return key press, so a new line is printed, and sortSentence ()
is called with the variable sentence, and the boolean variable is set to false,
telling the loop that it is no longer expecting text input from a keyboard. If any
other value is received, it is simply ignored. These include special characters,
function keys, and control characters.

At the end of the while loop, the value of curkeycode is set to zero, an indica-
tion that the value has been read, and that the while loop expects a new value.
Without this, the while loop might interpret this information as a key press,
even if no key was pressed. Remember, the USB task function times out after
5 seconds, and then the rest of the sketch looks at the value of this variable. It
has to be reset at the end of the loop.

While there’s no logic for parsing the text you've entered in this example,
sortSentence () is where you would write the code for figuring out the sequence
of events in your text adventure story. To run this example, once you've uploaded
the code to the Arduino, connect the keyboard to the Native USB port and your
computer to the Programming port. Open the serial monitor and start typing
away on the keyboard attached directly to the Due. You should see your words
come up in the serial monitor once you press the return key.

Summary

In this chapter you have seen how the Arduino Due can be controlled by a USB
keyboard and mouse. You have seen the functions used to get the status of
inputs and to receive movement information. You have created the beginning
of an interactive system allowing you to enter text to your Arduino. In the next
chapter, you will see the Arduino Esplora and the library that is used to pro-
gram this incredible device and use all the electronics present on this device.

Esplora

This chapter discusses the following functions of the Esplora library:

writeRGB ()
writeRed ()
writeGreen ()
writeBlue ()
readRed ()
readGreen ()
readBlue ()
writeRGB ()
readSlider ()
readLightSensor ()
readTemperature ()
readMicrophone ()
readAccelerometer ()
readJoystickX ()
readJoystickY ()

readJoystickSwitch ()

335

336 Partlll = Device-Specific Libraries

W readJoystickButton ()
readButton ()
noTone ()

readTinkerkitInputA ()

readTinkerkitInputB ()

W readTinkerkitInput ()

The hardware needed to use these functions includes:
m Arduino Esplora

m 2 x TinkerKit 3-wire cables

You can find the code download for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 21
folder and the filename is Chapter21. ino.

Introducing Esplora

Almost all Arduino devices are physical boards that are placed on a desk or
inside an enclosure. To add electronics, you must either use a shield or a bread-
board. The Arduino Esplora is a different beast.

Arduino is all about getting hands-on, and the Esplora goes a step further.
It is a device that ends up in your hands, not on the desk. Get ready to pick it
up and play with it.

The Esplora is an excellent device for users who do not want to get too involved
in electronics because it integrates an amazing amount of peripherals. Although
most Arduinos only have an on-board LED on pin 13, the Esplora has an LED
on pin 13, an RGB LED, a light sensor, a temperature sensor and much, much
more. Here is the entire list:

m Temperature sensor

m Light sensor

m Microphone

m Two-axis analog joystick (with center-push button)
m Four push buttons

m Three-axis accelerometer

m RGB LED

m Piezo buzzer

http://www.wiley.com

Chapter 21 = Esplora

337

m Two TinkerKit inputs
m Two TinkerKit outputs

m [CD screen header

So what is a TinkerKit input or output? TinkerKit is a fantastic way of
connecting components without needing to know anything about electron-
ics. There are different modules: joysticks, accelerometers, potentiometers,
Hall effect sensors, LEDs, servos, and relays to name a few. These modules
can be connected to a port using standard cables; the Arduino Esplora has
four ports.

As you can see, the Arduino Esplora has an amazing amount of components
on the device, but this comes at a cost. The Arduino Esplora is designed to be
held in your hand and has the look and feel of a console game pad. As such, it
does not have any shield connectors (but does have a header for an optional
LCD screen). It also does not have any prototyping space, meaning that adding
components is difficult. There are no electronic input and output pins, and no
headers to add components to. All Arduino Esploras are therefore alike, and
therefore a library was written specifically for this device.

The Arduino Esplora Library

The Esplora library is available in Arduino IDE 1.0.4 and later. To import the
library, use the Arduino IDE: Sketch &> Import Library = Esplora, or add the
library manually:

#include <Esplora.h>

After this file is imported, all the devices on the Arduino Esplora become
available through the Esplora constructor. There is no need to create this object;
it is defined automatically.

RGB LED

The Arduino Esplora has a high-power RGB LED on-board. A sketch can control
this LED and create different colors by varying the output to each component.
This is done automatically via PWM, and writing a value to the LED once keeps
the LED on at the specified color until instructed otherwise.

To set the LED to a specific color, use writeRGB ().

Esplora.writeRGB (red, green, blue);

338

Part lll = Device-Specific Libraries

The red, green, and blue parameters are ints and represent the brightness
of the corresponding color. (Acceptable values ranging from 0 to 255 included.)
It is possible to write a single color value using the writeRed (), writeGreen (),
and writeBlue () functions.

Esplora.writeRed (value) ;
Esplora.writeGreen (value) ;
Esplora.writeBlue (value) ;

Again, each parameter is an int and accepts values between 0 and 255. Writing
to one color does not affect the other components.

By writing an individual color, the sketch may no longer know what color
value was written. For example, if the red value changes based on an external
input, the main program might not know what the value of the red LED is. It is
possible to read these values after writing them by using readred (), readGreen (),
and readBlue ().

redResult = Esplora.readRed() ;
greenResult = Esplora.readGreen() ;
blueResult = Esplora.readBlue() ;

Each of these functions returns an int representing the brightness of the LED.
To turn the LED off, use writerGs () with all parameters set at zero (the value
of the red, green, and blue is off).

Esplora.writeRGB(0, 0, 0); // Turn the LED off

Sensors

The Arduino Esplora has an integrated linear potentiometer in the form of a
slider. This component, connected to an analog-to-digital converter, can give
values between 0 (0 Volts) to 1,023 (5 Volts). To read the value, use readslider ().

result = Esplora.readSlider();

This function does not take any parameters and returns an int, the value of
the position of the potentiometer.

The Arduino Esplora also has a light sensor that is connected in the same way.
It also returns values between 0 and 1,023; the more light, the higher the value.

result = Esplora.readLightSensor() ;

Also available on the list of sensors, the Esplora has a temperature sensor.
The temperature can be read using readTemperature ().

result = Esplora.readTemperature (scale) ;

Chapter 21 = Esplora

339

The scale parameter is a constant, one of either bEGrREES_c for Celsius or
DEGREES_F for Fahrenheit. This function returns an int; returned values vary
between —40° C and 150° C (or —40° F and 302° F).

The Esplora has something else uncommon for an Arduino; it has a micro-
phone. The microphone is not designed to record sounds; instead, it gives an
accurate reading of the amplitude of the ambient noise level. The value can be
read with readMicrophone ().

result = Esplora.readMicrophone () ;

This function takes no parameters and returns an int—the ambient sound
level—on a scale of 0 to 1,023.

Finally, the Esplora also has an accelerometer: a small device that can detect
the tilt of the device. Contrary to what some people believe from the name, an
accelerometer does not calculate coordinate acceleration (a change in velocity);
it measures proper acceleration: acceleration relative to gravity. It can therefore
detect a tilt (a change in direction relative to gravity) but also movement. (For
example, a falling device has limited acceleration attempting to counter gravi-
tational pull.)

Values can be read from the accelerometer by using readaccelerometer ().

value = Esplora.readAccelerometer (axis) ;

This function needs to be called for each axis individually. The axis is specified
using the axis parameter and is one of x_axIs, v_ax1s, or z_ax1s. It returns an
int between —-512 and 512. A result of zero means the axis is perpendicular to
gravity: negative and positive values mean acceleration on the axis.

int x_axis = Esplora.readAccelerometer (X_AXIS) ;
int y axis = Esplora.readAccelerometer (Y AXIS) ;
int z axis = Esplora.readAccelerometer (Z AXIS) ;
Serial.print ("x: ");
Serial.print (x_axis);
Serial.print ("\ty: ");
y axis);
"\tZ: u),.
(

Serial.println(z_axis);

(
(
(
Serial.print (
Serial.print (

1

Buttons

The Esplora comes with an impressive array of buttons. On the left side of
the Esplora is an analog joystick and on the right side are digital buttons.

340

Part lll = Device-Specific Libraries

The joystick can register the exact x-axis and y-axis position, and also has a
center-push button.
To read the joystick inputs, use readJoystickx () and readJoystickY ().

xValue = Esplora.readJoystickX() ;
yValue = Esplora.readJoystickY() ;

These functions both return an int: Values range from -512 to 512. A return
value of zero means that the joystick is in the center and has not been moved.
Negative values mean that the joystick is pushed to the left (x) or down (y).
Positive values mean that the joystick is pushed to the right (x) or up (y).

To read the center-push button, you can use readJoystickswitch().

value = Esplora.readJoystickSwitch() ;

The return value is an int and is either 0 or 1,023. Remember that readJoy-
stickx () and readJoystickY () return 10-bit values and are shifted to make
things easier. The center button also returns a 10-bit value but because it is either
pushed or not, values returned are extremes. If you need something simpler to
use, you can use the readJoystickButton () function.

state = Esplora.readJoystickButton() ;

This function returns a Boolean: Low if the button is pressed and n1cH if the
button is not pressed.
To read the status of the buttons, there is only one function: readButton ().

state = Esplora.readButton (button) ;

This function takes one parameter, the button that is to be read. The button
parameter can be one of four constants: SWITCH_DOWN, SWITCH_LEFT, SWITCH_UP,
or SWITCH RIGHT. This function returns one of two values: HIGH or Low. A return
value of HIGH means the button is in the high position; that is to say, it has not
been pressed. A return value of Low means that the button is in the low position
and is currently pressed.

Buzzer

The Arduino Esplora has a buzzer located on the top left of the device that can
create simple audio outputs. To create an audio output, use tone ().

Esplora.tone (frequency) ;
Esplora.tone (frequency, duration);

The frequency parameter specifies the audio frequency in hertz, expressed
as an unsigned int. The optional duration parameter is the duration of the

Chapter 21 = Esplora

341

tone in milliseconds, also expressed as an unsigned int. If omitted, the tone
continues until interrupted, either by calling the tone () function with new
parameters or by calling the noTone () function.

Esplora.noTone () ;

This function immediately stops the output of a tone () function.

The tone () and noTone () functions are part of the Arduino language, but
these two variants are modified to be used on the Esplora. As such, it is not nec-
essary to specify the pin; the actions are immediately applied to the correct pin.

\[o AN The buzzer is controlled by high-speed PWM, as is the red component of the
RGB LED. Using the buzzer may interfere with the red light.

TinkerKit

The Arduino Esplora comes with four TinkerKit connectors; two are inputs
and two are outputs.

To read the TinkerKit inputs, use readTinkerkitInputa() and
readTinkerkitInputB().

resultA = Esplora.readTinkerkitInputA() ;
)

7

resultB = Esplora.readTinkerkitInputB (

These two functions do not take any parameters and return an int, the
value detected on the TinkerKit input. Values range from 0 (0 V) to 1,023
(6 V). There is another way to read TinkerKit inputs, using a single function:
readTinkerkitInput ().

result = Esplora.readTinkerkitInput (whichInput) ;

This function takes a parameter, whichInput. This parameter is a Boolean:
if it is false (or 0), then the value of TinkerKit input A is returned. If it is true
(or 1), then the value of TinkerKit input B is returned.

The Esplora also has two TinkerKit outputs, but currently, there are no Esplora
specific functions allowing easy output. However, they are digital outputs just
like on any Arduino, so it is still easy to write to their outputs—the trick is to
know which output goes where.

There are two outputs: OUT-A and OUT-B. Just below the connector, next to
the output identifier, is another piece of information: D3 for Output A and D11
for Output B. These are the reference to the digital outputs, and using digi-
talWrite (), you can output digital data. These two pins are also capable of
PWM, so you can also use analogWrite ().

342

Part lll = Device-Specific Libraries

(PR NG digitalWrite () and analogWrite () are standard

functions, which are explained in Chapter 4.

LCD Module

The Arduino Esplora can also host an optional TFT screen placed on the con-
nectors on the middle of the board. This module uses the standard TFT library
(as well as SPI), and there are no Esplora-specific functions for this module.
However, as everything on the board is hardwired, you don’t need as much code
to use a screen as other Arduinos. After including the TFT, SPI, and Esplora
libraries, all you need to do is reference the Esplora TFT object with EsploraTFT.
For more information on the TFT library, see Chapter 13.

There is also another use for the LCD Module connectors. Contrary to most
Arduinos, the Esplora does not support shields; apart from the TFT connector,
there are no connectors capable of placing a board or shield, and there are no
prototyping areas. By using this connector, it is possible to have more inputs
and outputs. The connectors on the left side of the Esplora are not electronically
connected; they are there solely to fix the TFT screen in place. On the right side,
however, several pins are exposed. Of course, this is to allow the TFT screen to
talk using the SPI protocol, but there are a few others, for example, to control the
backlight. Creating a PCB for use with the Esplora is beyond the scope of this
book, but you can find more information on the connector on Arduino’s website.

Example Program and Exercises

The Arduino Esplora is an excellent device to get “hands-on,” and the next
chapter presents another unique device. The Esplora, in the shape of a handheld
game controller, can also be used as a remote control. Without spoiling the next
chapter too much, this project converts the Esplora into a remote control for the
Arduino Robot, an interesting device that is essentially a moving Arduino. It is
controlled by two motors, and can move forward, backwards, and turn around.
This sketch will serve as a remote control for the Arduino Robot, by using the
two TinkerKit outputs. The left TinkerKit connector controls movement to the
left, and the right TinkerKit controls movement to the right. If both are activated,
the device goes forward, and if neither is active, then the device stops.

\[ol N3 If you do not have access to an Arduino Robot, this project can be adapted to
other robotic kits. Several interesting devices are available at http: //www . robot -
shop . com/. This can be adapted to both vehicles and robotic arms.

http://www.robot-shop.com
http://www.robot-shop.com
http://www.robot-shop.com

Chapter 21 = Esplora

343

To do this, the sketch sets the TinkerKit outputs to digital mode and constantly
monitors the status of the buttons. This sketch will use two TinkerKit outputs:
Out A and Out B. Out A will handle the left-hand side motor, and Out B will
control the right-hand side motor. To go forward, both motors will be activated
at the same time. To turn, only one motor will be activated. The sketch will
look like Listing 21-1.

Listing 21-1: Sketch (filename: Chapter21 . ino)

1 #include <Esplora.h>

2

3 #define OUTA 3 // Pin TinkerKit Out A is connected to
4 #define OUTB 11 // Pin TinkerKit Out B is connected to
5

6 void setup ()

7

8 pinMode (OUTA, OUTPUT); // TinkerKit A to output
9 pinMode (OUTB, OUTPUT); // TinkerKit B to output
10 }

11

12 void loop ()

13 {

14 boolean outputA = LOW;

15 boolean outputB = LOW;

16

17 if (Esplora.readButton (SWITCH UP) == LOW)

18 outputA = outputB = HIGH;

19

20 if (Esplora.readButton (SWITCH LEFT) == LOW)

21 outputB = HIGH;

22

23 if (Esplora.readButton (SWITCH RIGHT) == LOW)

24 outputA = HIGH;

25

26 digitalWrite (OUTA, outputd) ;

27 digitalWrite (OUTB, outputB) ;

28 }

On line 1, the Esplora library is imported, the first thing needed for this project.
On lines 3 and 4, there are some define directives, which define the digital
pins used on the TinkerKit outputs because there are no functions available to
write to the TinkerKit pins directly. Because you have to do this the old way,
it requires pinMode () calls in setup (). This is done on line 8 and 9; both pins
are set to OUTPUT.

loop ()is declared on line 12, and this is where the buttons will be read and,
if necessary, the outputs will be written to. It starts on line 14 with the creation
of two variables: outputa and outputB. As you can imagine, they will be used to

344

Part lll = Device-Specific Libraries

hold the output status. They are defined as Low by default, meaning that without
any modification, they will set the outputs Low. On line 17, the first button read
is made. If the up button is pressed, both ocutputa and outputs are set high.

The second read, on line 20, checks to see if the left button has been pressed.
If it has, then outputB is set HIGH. If the user is also pressing on the up button,
the sketch changes the output to n1GH anyway. This is why the variables were
initially set to Low: Reads are made to see if there is a reason to set the variable
to HIGH. If two or more conditions update the variable, that isn't a problem; the
end result is the same. A third read is made on line 23 to see if the right button
has been pressed.

Finally, the two digital outputs are updated with the contents of the variables.
loop () then repeats.

A simple sketch can turn an advanced device into a remote control, even if
there are no specific TinkerKit output routines. By making the sketch use the
digital outputs instead of using specific functions, you can perform more soft-
ware actions than the library alone allows. The TinkerKit outputs can be used
as digital output or PWM, but by knowing the exact pin number, you could use
these pins as serial outputs, or for other purposes.

The output of this sketch is binary only; either the outputs are on or off. With
a little bit of adjustment, this could quickly become an analog output, using the
joystick. That will require a little bit of modification to the example in the next
chapter as well, but you will get to that later.

You will have a remote control allowing a new device freedom of movement,
but there is one button that is not used, the down button. There is no point using
it to slow down, so why not use it to make beep noises? Just like a car horn,
warning the cat or dog to get out of the way.

Alternatively, for advanced programmers, use the Esplora’s accelerometer to
control output.

Summary

In this chapter you have seen the Arduino Esplora, an interesting device with
lots of embedded electronics and a rich library to read and write the compo-
nents. You have seen the library and the different functions used to read from
and write to the different components. You have seen how easy it is to create a
project. In the next chapter, you will see the Arduino Robot and the library used
to control it, and you will be able to use the sketch presented in the chapter to
control its movement.

Robot

This chapter discusses the following functions of the Robot library:

begin() ;
motorsWrite ()
motorsStop ()
turn ()
pointTo ()
compassRead ()
updatelR ()
knobRead ()
keyboardRead ()
digitalRead ()
analogRead ()
digitalWrite ()
analogWrite ()
beginSpeaker ()

beep ()

345

346 Partlll = Device-Specific Libraries

playMelody ()
playFile ()
tempoWrite ()
tuneWrite ()
robotNameWrite ()
robotNameRead ()
userNameWrite ()
userNameRead ()
cityNameWrite ()
cityNameRead ()
countryNameWrite ()
countryNameRead ()
beginTFT ()
beginSD ()
drawBMP ()
displayLogos ()
clearScreen ()
text ()
debugPrint ()

drawCompass ()

parseCommand ()

process ()

The hardware needed to use these functions includes:
m Arduino Robot
m 2 x TinkerKit connection cables and digital inputs

m Arduino Esplora (presented and programmed in Chapter 21)

You can find the code download for this chapter at http://www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 22
folder and the filename is Chapter22. ino.

Introducing Robot Library

Over the years, there have been several attempts to teach programming lan-
guages to children. Teachers and governments wanted to show children that
programming isn’t magic, and that simple logic is all that was required. The

http://www.wiley.com

Chapter 22 = Robot

347

British Broadcasting Corporation, BBC for short, even went as far as to create
its own computer for schools to accompany a television series on computer
programming. It was a huge success and was just one of many projects. One of
these projects was the Logo programming language.

Most programming languages are mathematical: the acquisition, modifica-
tion, and use of numbers. Logo was different; it was based on logic. (Hence the
name Logo is derived from the Greek word logos, thought.) Although designed
for several reasons, an entire generation remembers it for the famous turtle.

The turtle was represented as a computer rendered triangle on our large
cathode-ray tubes connected to primitive computers. The turtle was free to
roam across the screen but needed instructions. For some unknown reason, it
had a paintbrush strapped onto its tail. It could be told to put the brush down
(to start drawing) or to pick it up (to stop drawing). It then required the user
to give it instructions. Anyone who has used BASIC probably knows about the
first program anyone writes:

10 PRINT "Hello, world!"
20 GOTO 10

This would print out endless lines of text and was a good visual start to pro-
gramming but did not go any further. The turtle, however, was different. For
example, take this program:

FD 100
RT 90
FD 100
RT 90
FD 100
ERT 90
FD 100

FD is short for forward. The turtle is instructed to advance for 100 “units”
and then make a right turn (RT) by 90 degrees. Then it is instructed to advance
another 100 units and so on. The result? A square as shown in Figure 22-1.

rr

Forward 100 Right 90 Forward 100 Right 50
Forward 100 Right 30 Forward 100

Figure 22-1: A square in Logo

348

Part lll = Device-Specific Libraries

Squares are basic, but Logo could create hugely complex structures and teach
students about programming. Imagine a flower made up of eight petals. Each
petal could be one “function” and called eight times by placing the turtle in the
correct position. The results were visual, perfect for young children. A lot of us
started off with Logo, and I can remember having great fun in the classroom
with this.

One serious attempt was made to make the turtle “physical.” Created in
the form of a large half-sphere, the turtle made it into the real world, but only
for a short time. A turtle robot was made to show children just what could be
done, but it was too early for the poor turtle. It was expensive, difficult to set
up correctly, and required an exceptionally flat surface. The poor little turtle
eventually disappeared, only a few programs exist today that still use it, either
for teaching, or for simple nostalgia. Programmers returned to the digital world
to see their little turtle. Some of us dreamed of seeing the little turtle return,
and it has. Sort of.

Arduino Robot

Your Arduino Uno will be placed on your desk and will probably live there
until your project is finished and you install it in its final resting place. I have
one hidden behind my television, and it will stay there for quite some time. The
Arduino Robot is different. It is the only Arduino that most certainly will not
stay in the same place.

The Arduino Robot is an Arduino on wheels—literally. There are two large
wheels on each side and two ball casters to keep it steady. It contains an impres-
sive amount of electronics, but more important, it has enough space for you to
add electronics and all the buses and connectors needed to connect components.

The Arduino Robot is, technically, two Arduinos in one. The motor board
is controlled by an ATmega32u4 (the same microcontroller as on the Arduino
Esplora) and contains flash memory, RAM, EEPROM, and two prototyping
areas. It does not have a large amount of I/O, but what it does have is motor
control circuits and power electronics to take standard batteries and power the
two on-board motors. The control board on top uses the same microcontroller
but has more I/O and adds a large array of electronics not seen on most other
Arduinos. It has a keypad like the Arduino Esplora, an LCD screen connector
that is compatible with the LCD module used on the Esplora, an 8-ohm speaker,
a compass, and a large amount of external EEPROM via the I’C protocol (in
addition to internal EEPROM). It also has four prototyping areas.

The Arduino Robot is a complex device, and care must be taken when prepar-
ing it. Unlike most Arduinos, there is some preparation required before using it

Chapter 22 = Robot

349

for the first time: a protective cover must be placed under the device to protect
it, drivers must be installed, and the optional TFT screen must be placed in the
correct position, to name but a few. Arduino keeps an up-to-date webpage on
the Arduino website at http://arduino.cc/en/Guide/Robot.

The Arduino Robot has two boards, and both are independent. They can be
programmed separately, and both have a USB connector used for program-
ming. Note that when programming the Arduino Robot, the electric motors are
automatically disabled to prevent accidents. In order to fully use your sketch,
you will need to power your device with batteries.

Generally, the control board is the only one that is programmed. The Arduino
Robot has a number of functions that facilitate communication between the
two. It is recommended to first use the control board and to program the motor
board only when you are comfortable with the control board. If you make a
mistake, don't worry; the stock motor program is available in the Arduino IDE
as an example. The control board can tell the motor board to perform actions
but also to read sensors on the motor board (like the infrared line following
sensors on the bottom of the motor board).

Robot Library

The Arduino Robot library is a complicated library and depends on a number
of external libraries, mainly for the infrared sensors and audio synthesis. These
libraries have been merged into the Arduino Robot library to save space and
do not need to be added manually. It also depends on some Arduino standard
libraries for use. (Wire and SPI need to be included separately if using the func-
tionality of those libraries.) To import the library, you must first decide which
board you will be using because they do not require the same components. To
create a sketch for the control board, add the robot_control library in Sketch =
Import Library => Robot_Control. This adds the following include declarations:

#include <Fatlémainpage.h>

#include <SdCard.h>
#include <ArduinoRobot.h>
#include <SdInfo.h>
#include <EEPROM_TI2C. h>
#include <FatStructs.h>
#include <Fatléutil.h>
#include <Fatlé6Config.h>
#include <Multiplexer.h>
#include <Fatl6.h>
#include <Arduino LCD.h>
#include <Squawk.h>

http://arduino.cc/en/Guide/Robot

350

Part lll = Device-Specific Libraries

#include <Compass.h>
#include <Wire.h>

#include <Adafruit GFX.h>
#include <SPI.h>

#include <SquawkSD.h>
#include <EasyTransfer2.h>

Not all these are required. Typically, you need only to include ArduinoRobot . h.
To create a sketch for the motor board, add the rRobot_Motor library in Sketch =>
Import Library &> Robot_Motor. This adds the following include declarations:

#include <ArduinoRobotMotorBoard.hs>
#include <Multiplexer.h>

#include <EasyTransfer2.h>

#include <LineFollow.h>

Not all these are required. Typically, you need to include only
ArduinoRobotMotorBoard.h.

Control Board

To use Arduino Robot control board, you must use functions from the
RobotControl class. The functions are accessed through the object directly, so
there is no need to call the constructor. However, to begin using the Arduino
Robot-specific functions, you must first call begin ():

Robot .begin() ;

begin () initializes interboard communication, sets variables to their correct
values and other initializations for the Arduino Robot, but does not initialize
the LCD screen or the speaker; other functions exist for those and are explained
later in this chapter in the “LCD Screen” section.

Robotic Controls

The basis of any robot is, of course, movement. The Arduino Robot has an impres-

sive amount of sensors, but its primary function is to move. The motor board

has two independent motors, and although it is the motor board that drives

these motors, the control board can instruct the motor board to perform actions.
To control the motors directly, use motorswrite ():

Robot .motorsWrite (speedLeft, speedRight);

This function takes two parameters: two int values. The speedLeft variable
instructs the left motor at what speed it should rotate; accepted values range
from -255 and 255. If the value is greater than 0, the motor turns forward. If
the value is negative, the motor turns backward. If the value is zero, the motor

Chapter 22 = Robot

351

stops. The speedright parameter works in exactly the same way. This function
does not return any data.
To instruct both motors to stop, use motorsstop ():

Robot .motorsStop () ;

This function takes no parameters and does not return any data. It instructs
both motors to stop immediately.

Turning can be achieved by varying the speed of rotation of the left and right
motors. By varying the speed of each motor, you can achieve rotation, but the
Arduino Robot goes a step further and has an embedded compass that can be
used for greater accuracy. To tell the Arduino Robot to turn by a specific amount
of degrees, use turn():

Robot.turn (degrees) ;

This function takes one parameter, an int, and accepted values are between
-180 to 180. Negative values make the robot turn left; positive values make the
robot turn right. Entering a value of zero has no effect. This function uses the
on-board compass to get a bearing to magnetic north and then turns the robot
by a specific number of degrees, verified by the compass. To make the robot
turn to a specific heading, use pointTo():

Robot .pointTo (degrees) ;

Like turn (), pointTo () uses the compass to get its bearings, but instead of
turning a specific amount of degrees, it tells the Arduino Robot to face a par-
ticular heading. It takes one parameter, degrees, which is the heading to face,
where 0 is north, east is 90, south is 180, and west is 270.

The robot automatically decides if it should turn left or right, whichever is
the shortest turn.

Sensor Reading

For robots to function correctly, they require multiple sensors. They need to
know where they are and how they can interact with the world. You can add
additional sensors to the Arduino Robot, but it already comes with a few sen-
sors to get you started.

As seen previously, the Arduino Robot can be told to face in a specific direc-
tion, using the compass. You can also read the value of the compass using
compassRead ():

result = Robot.compassRead() ;

This function returns an int; the degrees of rotation from magnetic north.

352

Part lll = Device-Specific Libraries

The Arduino Robot’s compass takes readings relative to magnetic north, and
the compass can be affected by magnetic fields. Make sure to keep your robot away
from speakers, motors, or other strong magnets that could temporarily make the com-
pass give false readings.

The motor board also contains five infrared sensors used for line following.
The motor board can access the reading for the individual sensors, but with the
control board, sketches must use updatelIR():

Robot .updateIR() ;

This function takes no parameters and does not return any data. What it does
is update an array, readable through robot . Irarray[1:

Robot .updateIR() ;
for(int 1i=0; i<=4; i++)
{

Serial.print (Robot.IRarray[i]); // Print the value of each IR sensor
Serial.print (" ");

}

The control board also has a knob, a potentiometer. Powered by 5V, it is
connected to an analog-to-digital converter with 10-bit precision. It maps input
voltages to an integer value between 0 and 1023, and is accessible through
knobRead () :

result = Robot.knobRead() ;

This function returns an int, the value read from the ADC.
The control board also has a five-button keyboard. These keys can be read
througflkeyboardRead():

result = Robot.keyboardRead() ;
This function returns a constant reporting the button that is being pressed.

See the possible values in Table 22-1.

Table 22-1: Keyboard Return Codes

VALUE BUTTON

BUTTON_LEFT Left button pressed
BUTTON_RIGHT Right button pressed
BUTTON_UP Up button pressed
BUTTON_DOWN Down button pressed
BUTTON_MIDDLE Middle button pressed

BUTTON_NONE No button pressed

Chapter 22 = Robot

353

The Arduino Robot contains TinkerKit connectors, both on the control board
and on the motor board. Most of these ports can be read as both digital and
analog, depending on the function call. Two functions can be called: digit-
alRead () and analogRead ().

DigitalResult = Robot.digitalRead (port) ;
AnalogResult = Robot.analogRead (port) ;

The port parameter is a constant: the ID of the TinkerKit port to use. Accepted
values are TKO0-TK3, TKDO-TKD5, and B_TK1 to B_TK4. TK4 and TKS5 are digital
inputs only. digitalRead () returns either TRUE or FALSE. analogRead () returns
integer values between 0 and 1023.

V(oA N Before reading the value of a TinkerKit port, make sure that a device is con-
nected. Reading the value of a port where no device is present can result in unex-
pected results.

Of course, some TinkerKit ports are not used only for input, and the control
board can also set TinkerKit outputs. To write digital output, use digitalwrite():

digitalWrite (port, value) ;

The value parameter is the value to write, either H1GH or Low. The port param-
eter is the TinkerKit port, one of TKD0-TKD5, B_TK1-B_TK4, or LED1 (an LED
located on the control board).

To write an analog value, use analogWrite ():

Robot .analogWrite (port, value);

The value parameter is the analog value to write, ranging from 0 to 255. The
output is not true analog; it is created using PWM, as with most Arduino analog
outputs. The port value is the TinkerKit port to use; it can be used only on TKD4
and cannot be used at the same time as TKO through TK7.

Personalizing Your Robot

I'love all my Arduinos, but there is something even more lovable about com-
puters that can follow you around. Just like a pet, it deserves a name and some
personal information. This information can be stored in EEPROM and retrieved
through special functions.

To give the robot a name, use robotNamewWrite ():

Robot .robotNameWrite (name) ;

The name parameter is a string and can be up to eight characters. The data
will be stored into EEPROM and can be retrieved with robotNameRead ():

354

Part 1l

Device-Specific Libraries

Robot.

robotNameRead (container) ;

In the following snippet, container is a char array and stores the result of
the query.

char container([8];

Robot.

robotNameRead (container) ;

Serial.println(container) ;

To tell the Arduino Robot your name, use userNamewWrite ():

Robot .userNameWrite (name) ;

The name parameter is a string and can be up to eight characters. As with the
robot’s name, the user’s name can be retrieved using userNameRead ():

Robot .userNameRead (container) ;

The container parameter is a char array.
There are two more things the Arduino Robot can read and write—the city
name and the country name:

Robot.
Robot.
Robot.

Robot

cityNameWrite (city) ;
cityNameRead (container) ;
countryNameWrite (country) ;

.countryNameRead (container) ;

As with the previous functions, the write functions take strings, and the read
functions require an 8-byte char array.

LCD Screen

The Arduino Robot control board has a connector for a TFT screen (the same
screen as used on the Arduino Esplora). The Arduino Robot also has advanced
functions to make the most of the screen.

To use the TFT screen, you must first call beginTFT():

Robot.
Robot.

beginTFT() ;
beginTFT (foreground, background) ;

By default, if called without any parameters, the TFT screen is configured
with black as a background color and white as a foreground color. This can be
changed by specifying the colors when calling beginTFT (). Valid colors are
BLACK, BLUE, RED, GREEN, CYAN, MAGENTA, YELLOW, and WHITE.

The TFT screen module also contains a micro-SD card slot, and to activate
it, use beginsD():

Robot.

beginSD() ;

Chapter 22 = Robot

355

This function is required before using functions such as drawsMp () (explained
next) and playFile () (explained in the “Music” section). Be aware that this
library is fairly large and should be used only if you require the SD slot; complex
sketches may have unexpected results if the SD card slot is initialized.

To draw a graphics file to the screen, use drawBMp ():

Robot .drawBMP (filename, x, V);

The filename parameter is the name of the file located on the SD card. It must
be in BMP format. The x and y parameters are the coordinates of the top-left
corner of the image.

Displaying logos is often useful when starting a sketch, but the Arduino Robot
library has a better solution. displayLogos () displays two logos on the screen:

Robot .displayLogos () ;

This function takes no parameters and automatically looks for two files on the
SD card: 1g0.bmp and 1g1.bmp. This function first loads 1g0.bmp and displays
it on the TFT screen before waiting for 2 seconds. Afterward, it loads 191 .bmp
and again waits for 2 seconds. These files are present on the SD card by default
but can be replaced.

To clear the screen, use clearScreen():

Robot .clearScreen() ;

This automatically clears the screen using the default background color (black,
unless specified otherwise).
It is possible to write text to the screen, using text ():

Robot.text (text, x, y, write);

The text parameter can be a string but also an int or a long. The x and y
parameters are the coordinates of the start position. The write parameter is a
Boolean: true if the color to use is the foreground color (write) or false if the
TFT screen uses the background color (erase).

To display debug information on the TFT screen, use debugPrint () :

Robot .debugPrint (value) ;
Robot .debugPrint (value, x, y);

The value parameter can be either an int or a long. The x and y variables are
optional and tell the function where to print the text. By default, the text will
be printed on the top-left corner. This function not only prints a value, but also
refreshes it, adding a unique debugging feature.

Another debug function, and a rather pretty one, is achieved with
drawCompass () :

Robot .drawCompass (degrees) ;

356

Part lll = Device-Specific Libraries

This function draws a compass on the TFT screen and shows the specified
bearing, defined by the degrees parameter. Typically, this value is fetched with
compassRead ().

Music

The Arduino Robot has a built-in speaker on the control board, and numerous
functions exist to take advantage of this component. You need to include the
Wire and SPI libraries to use the speaker. To use the speaker, it must first be
initialized with beginSpeaker ().

Robot .beginSpeaker () ;

This function must be declared in setup ().
The most basic form of sound is the beep and is made using beep ().

Robot .beep (type) ;

The type parameter is one of three constants: BEEP_SIMPLE (a short beep),
BEEP_DOUBLE (a double beep), or BEEP_LONG (a long beep).
To play simple music, use playMelody ().

Robot .playMelody (melody) ;

The melody parameter is a string and describes the notes to be played, as well
as their length. The notes are listed in Table 22-2.

Table 22-2: Melody Notes

TEXT NOTE

C Play “C”
C Play “C#”
d Play “D"
D Play “D#"
e Play “E”
f Play “F”
F Play “F#"
g Play “G”
G Play “G#"
a Play “A"
A Play “A#"
Play “B”

- Silence

Chapter 22 = Robot

357

To set note length, use digits as described in Table 22-3.

Table 22-3: Note Length

DIGIT DURATION

1 Make the next notes full notes

2 Make the next notes half-notes

4 Make the next notes quarter-notes
8 Make the next notes eighth-notes

Make the previous note 3%-length

The Arduino Robot can make simple music, but it is also capable of more
advanced playback, using playFile ().

Robot .playFile (filename) ;

The filename parameter is the name of a file on an SD card. The SD card
reader is located on the back of the LCD screen. As such, it requires the sketch
to call beginsp () beforehand. The file must be in Squawk format, a special
format resembling what was used on Amiga 500 computers. This file format
can generally be created using Music Trackers. For more information, see the
library README located on the project GitHub page at https://github.com/
stg/Squawk.

These files contain music information and are played back at a precise speed
and pitch. You can change both these parameters using functions. To change
the tempo of a music file (to make it play faster or slower), use tempowrite ().

Robot .tempoWrite (speed) ;

The speed parameter is an int, the speed at which to play back the file. The
default value is 50; lower values set the file to be played back slower, and higher
values set the file to be played back quicker. This has no effect on the pitch; to
change the pitch, use tunewrite ().

Robot .tuneWrite (pitch) ;

The pitch parameter is a £1oat and indicates the pitch at which the file should
be played back. The default value is 1.0; higher values set a higher pitch.

Motor Board

The motor board, placed underneath the control board, is responsible for con-
trolling the two DC motors and reading the infrared sensors. It responds to
instructions sent from the control board, but the default sketch can be modified
to fit your use.

https://github.com

358

Part lll = Device-Specific Libraries

Just like the control board, to use the Arduino Robot motor board, you must
use functions from the RobotMotor class. The functions are accessed through
the object directly, so there is no need to call the constructor. However, to begin
using the Arduino Robot-specific functions, you must again first call begin ().

RobotMotor.begin () ;

To retrieve instructions from the control board, use parsecommand ().

RobotMotor.parseCommand () ;

This function takes no parameters and does not return any data. It is used
simply to read and update internal registers. After commands have been parsed,
it is necessary to act on those instructions; this is achieved with process ().

RobotMotor.process () ;

Again, this instruction does not take any parameters and does not return
information. It operates the motors depending on the internal results of
parseCommand () .

These two instructions are, in fact, the basis of the default motor board sketch.

#include <ArduinoRobotMotorBoard.hs>

void setup () {
RobotMotor.begin () ;

1

void loop () {
RobotMotor.parseCommand () ;
RobotMotor.process () ;

}

This sketch simply reads instructions from the control board and acts on
those instructions. Why is there a separate board in this case? Although the
microcontrollers on these boards are powerful, it is often a good idea to keep
the functions separate; one microcontroller powers the control board, the other
powers the motor board. The motor board performs instructions and continues
to do so until instructed otherwise. The control board can perform advanced
calculations or perform blocking functions while the motor board continues to
monitor the DC motors.

Example Program and Exercises

The Arduino Robot is a superb platform and ready for tinkering. With a large
number of inputs, it is easy and fun to create sketches giving your robot free-
dom of movement. For this application, you create a remote controlled Arduino

Chapter 22 = Robot 359

Robot. For this, two TinkerKit digital inputs are used. TK5, placed on the left
of the robot controls the left motor, and TK7 placed on the right controls the
right motor. A logical 1 means that the motor turns, and a logical 0 stops the
motor. These inputs will be read periodically. The speed of the wheels will be
controlled by the potentiometer.

The sketch looks like Listing 22-1.

Listing 22-1: Sketch (filename: Chapter22.ino)

1 #include <ArduinoRobot.hs>

2

3 void setup ()

4 |

5 Robot.begin(); // Start the control board
6 }

7

8 void loop ()

o

10 // Read in potentiometer values

11 int speed = Robot.knobRead() ;

12

13 // Potentiometer data is 0-1023, motors expect 0-255
14 // (we won't use negative values)

15

16 int motorSpeed = map(speed, 0, 1023, 0, 255);
17

18 // Motor variables

19 int leftMotor = 0;

20 int rightMotor = 0;

21

22 if (Robot.digitalRead (TK5) == true)

23 leftMotor = motorSpeed;

24

25 if (Robot.digitalRead(TK7) == true)

26 rightMotor = motorSpeed;

27

28 // Now control the motors

29 Robot .motorsWrite (leftMotor, rightMotor) ;
30

31 // Sleep for a tenth of a second

32 delay (100) ;

33}

Online 1, the Arduino Robot library is imported. Online 5 in setup (), Robot
.begin () is called. From here on, the user can call Robot functions.

loop () is declared on line 8. Because the motor speed will be controlled by
the value of the potentiometer, the analog value is read in on line 11. This value
is stored in an int called speed. The potentiometer gives values between 0 and

360

Part lll = Device-Specific Libraries

1023, but the motor control requires a value between 0 and 255. (Negative val-
ues are not used.) To adapt these values, map () is called on line 16; the result is
stored in an int called motorSpeed.

Two new variables are declared on lines 19 and 20, and default values are
assigned: 0. On line 22, the input of TinkerKit connector TK5 is read, and if
this value is true, the user instructs the left motor to operate. If so, the value
of leftMotor is set to motorSpeed, ordering the motor to turn forward. The
same thing is done with the right-side motor on line 25. Finally, the motors are
programmed on line 29 with motorswrite ().

Now that the motors have been activated or deactivated, the sketch waits for
1/10th of a second through a delay () on line 32 before continuing,.

Multiple TinkerKit connectors are available, and you can use TK6 in the same
manner to control the speaker. How about making the Arduino Robot beep on
command to tell pesky cats and humans to get out of the way?

The TinkerKit inputs are set as digital but can also be set as analog, allowing
the user to control the speed of the Arduino Robot. Change the inputs to make
them analog.

Summary

In this chapter you have seen one of the most fascinating Arduinos, the Arduino
Robot. You have seen the two boards that together make the Robot—the Control
Board and the Motor Board. You have seen the library used to control both and
how simple sketches can result in a fully functional mobile device. You have
also seen how the Arduino Robot can use external sensors to be controlled. In
the next chapter you will learn about the Arduino Yin and the Bridge library
used to exchange messages between the Arduino microcontroller and a more
powerful microprocessor running Linux.

Bridge

This chapter discusses the following functions of the Bridge library:
M Bridge.begin ()

Bridge.put ()

Bridge.get ()
Process.begin ()
Process.addParameter ()
Process.run()
Process.runAsynchronously ()
Process.running ()
Process.exitValue ()
Process.read ()
Process.write ()
Process.flush()
Process.close()
FileSystem.begin ()

FileSystem.open ()

FileSystem.exists ()

361

362

Part lll = Device-Specific Libraries

W FileSystem.rmdir ()
W FileSystem.remove ()
W YunServer.begin ()
m YunClient.connected ()
m yunClient.stop ()
The hardware needed to use these functions includes:
m Arduino Yun
m] x Breadboard
m 1 x LDR
m] x 10 kQ resistor
m Wires

You can find the code download for this chapter at http: //www.wiley.com/
go/arduinosketches on the Download Code tab. The code is in the Chapter 23
folder and the filename is chapter23.ino.

Introducing Bridge Library

There is often confusion as to the name of a microcontroller. A microcontroller
(as the name implies) controls, whereas a microprocessor processes data. This
becomes apparent for the Arduino Ytin, where both are present.

In December 2002, Linksys released its WRT54G residential wireless router.
It was a small device with two antennae behind a blue-and-black cover. Behind
were four Ethernet LAN ports and an uplink port. It was an easy way to add
high-speed Wi-Fi to a home network and was used by a large number of people,
including myself. My WRT54G increased my wireless range at home and allowed
me higher speeds than what my Internet modem provided. (The WRT54G
provided Wi-Fi-G instead of the aging Wi-Fi-B.) It was also a device destined
to be tinkered with.

These devices were based on a 125-MHz MIPS microprocessor with surpris-
ingly good characteristics. With 16 MB of RAM and 4 MB of flash memory, it was
more than capable of running a complete Linux distribution which shipped with
the device. The Linux distribution was delivered under the GPL license, and as
such, Linksys had to make the source code available on its site. This sparked a
group of people to look at that code, and to modify it, allowing more and more
features to be added. Within the space of a few months, a consumer-level router
had functions reserved for top-of-the-line industry-level routers. Although most
routers simply allowed home devices to connect, this new software allowed for
advanced frequency scanning programs, traffic shaping, firewall, scheduling,
and mesh networking, to name but a few. All that the user had to do was to

http://www.wiley.com

Chapter 23 = Bridge

363

overwrite the original firmware—something that could be undone later if needed.
An entire generation of routers were designed around this initial product, and
the new firmware was released under the name OpenWRT.

The power of OpenWRT was not only that it added advanced features, but
it also contained a package manager, meaning users could install their own
programs. The filesystem is also read /write-capable, meaning that users could
create and update files. A simple WRT54G device could be placed anywhere, act
as a sensor, and log the results to a data file. The router was no longer a router
but a small computer.

Since its early days, OpenWRT has been under heavy development, becom-
ing an extremely complex distribution, no longer limited to Linksys devices.
One device to which the OpenWRT has been ported is the Arduino Ydn. This
board is actually two devices in one; on one side, it has an ATMega32u4, which
is the “Arduino” side. The other side is based on an Atheros AR9331. This chip,
with its corresponding RAM, Ethernet, and Wi-Fi chip, hosts an OpenWRT
distribution called Linino. To allow the AVR to communicate with the Atheros,
a library was created: Bridge.

V(oA You can modify files on the root filesystem of the Yun; however, it is strongly

advised to use external storage. The Arduino Yun has an on-board micro-SD slot to
expand filesystem space.

Bridge

The Arduino side of the Yiin can send commands and data requests to the Linux-
side of the device; these instructions are interpreted by a Python 2.7 interpreter
on OpenWRT. In order to begin communications, you must import the Bridge
library. This can be done inside the Arduino IDE, by going to the menu Sketch =
Import Library = Bridge, or by adding the include lines manually:

#include <Bridge.h>
#include <YunClient.h>
#include <Process.h>
#include <Mailbox.h>
#include <HttpClient.h>
#include <Console.h>
#include <YunServer.h>
#include <FileIO.h>

The first include, Bridge.h, is required for intersystem communication. The
other includes are required only when using specific portions of the library. The
YunClient.hinclude is required for HTTP client operations, similar to Ethernet
client includes. Similarly, yunserver.h is required when the Arduino becomes

364

Part lll = Device-Specific Libraries

an Ethernet server. The process . h include is required when running processes

(or commands) on the Linux side. The Mailbox.h include is required when

using the mailbox interface system. The console.h include is required when

simulating a console on the Linux side, and FileIo.h is required when read-

ing and writing files to the micro-SD card and when reading files from Linux.
To begin the Bridge library, use begin():

Bridge.begin() ;

This function does not take any parameters and does not return any values.
It must be called in setup () and is a blocking function; it does not return until
the operation has finished and stops the sketch until it has completed. It takes
roughly 3 seconds to initialize the Bridge system.

To exchange information between the two devices, a put/get system exists.
put () places data into a Python dictionary on Linino. It requires two elements: the
key and a value. The key is a name; the value can be numerical or text but is
stored in text format. Stored data may look like this:

username: john

age: 42

profession: programmer

highscore: 880

To place data on the Linux side, use put () :

Bridge.put (key, value);

This function requires two parameters: the key and the value and does not
return any data. This information is sent to the Atheros processor and placed
inside the Python dictionary. If the key does not exist, it is created, and the
contents of value are stored. If the key already exists, the contents of value are
stored and replace whatever was previously there. To fetch values stored in the
dictionary, use get ():

int result = Bridge.get (key, buffer, buffer length);

This function takes three parameters: key is the text key to search for in the dic-
tionary; buffer is a char array that will be used to store the result; and buf-
fer length is the size of buffer. This function returns an int, the amount of
bytes that have been placed into the buffer. If no data is available, this function
returns 0.

The Bridge class is a simple way to transfer data to and from the Linux side,
and includes features like error correction to ensure that data is always cor-
rectly transferred.

Process

The process class runs and manages applications running on Linux. To begin
using the Process class, you must first create a Process object:

Process p;

Chapter 23 = Bridge

365

Next, you must specify the command to run. This is done with begin ():

Process.begin (command) ;

The command parameter is a text representation of the command or program
to execute; for example, cat, 1s, curl, and such. To add one or more parameters,
use addParameter ():

Process.addParameter (param);

This function takes one parameter, a string with the parameter to add:

Process p; // Create a Process class
p.begin("cat"); // Prepare a program
p.addParameter (" /proc/cpuinfo"); // Add a parameter

The final step is to run the application with the required parameters, which
is done with run ():

Process.run() ;

This function does not take any parameters and executes the program. Thisis a
blocking function; the function does not return until the Linux program finishes.
If you run a program that will not exit by itself, your sketch will freeze and will
not continue. To run a program that does not exit, use runasynchronously():

Process.runAsynchronously () ;

This function does not take any parameters, executes the Linux application,
and returns immediately. The application may or may not be running. To check
the status of a program, use running ():

result = Process.running() ;

This function does not take any parameters and returns a boolean: true if
the application is still running and false if it has terminated.

When an application terminates, it often returns a return code, which is a numeri-
cal value that can give information about the return conditions. (For example, curl
will return 2 if the application failed to initialize, 3 if the URL was malformed,
and 7 if it failed to connect to the host.) To get the return code, use exitvalue ():

result = Process.exitValue/() ;

This function returns an unsigned int: the return code of the Linux applica-
tion. It is not necessary to read the return code for every application. You can
call this only when it’s needed.

Some applications require text input to operate correctly, asking the user for
certain parameters before executing actions. Before asking information from
the user, applications normally display text information. To help exchange data,
read-and-write functions are available.

To read data from a process, use read ():

data = Process.read() ;

366

Part lll = Device-Specific Libraries

read () returns an unsigned int, the first byte of data available from the
serial output of the process, or -1 if no data is available. To write serial data to
a process, use write ():

Process.write(val) ;
Process.write(str) ;
Process.write (buf, len);

The val parameter sends a single byte to the process. To send data as a string,
use the str parameter. Finally, you can send data by specifying a char array
as buf and the length of the buffer as 1en. This function returns a byte, the
number of bytes written to the process.

To flush the buffer, that is, to delete any data waiting to be read, use £1ush ():

Process.flush() ;

This function does not take any parameters and does not return any informa-
tion. It flushes the incoming buffer after all pending output has been written.
To terminate a process, use close ():

Process.close () ;

FilelO

The Arduino Yun has an integrated micro-SD slot, allowing users to expand
the filesystem. This card is handled by Linux, but the FilelO library provides a
convenient way to interact with files—creating, reading, writing, and deleting.
These functions send instructions through the Arduino Yiin bridge.

m The following functions work only with files on the SD card.

Before using filesystem instructions, you must first use begin ():

// Setup File IO
FileSystem.begin() ;

This function must be called inside setup (). Next, you must create a File
object. To do this, you must open () a file. If the file exists, it will be opened. If
the file does not exist, it will be created, but the folder it is in must exist.

File datafile = FileSystem.open (filename) ;
File datafile = FileSystem.open(filename, mode) ;

The filename parameter is a string and indicates the file to open. It can
include directories so long as they are separated by a forward slash (for example,
"data/log.txt"). The optional mode parameter indicates how the file should
be opened, in the default read-only mode (specified by FILE_READ), or in read/
write mode (specified by FI1LE_wrITE). This function returns a File object and is

Chapter 23 = Bridge

367

used to perform read-and-write functions. If the file cannot be opened, the File
object evaluates to false; it is therefore possible to test if the file was opened:

File datafile = FileSystem.open("/data/log.txt", FILE WRITE);
if (!datafile)
Serial.println ("ERROR: File could not be opened!");

File operations are exactly like the SD-card library; functions such as read (),
write (), seek (), and flush() exist. This library is similar in structure to the
SD library; only the underlying routines change. For more information, see
Chapter 12.

However, not every function works on files. open () requires a folder to exist,
but it does not work if the folder does not exist and does not create a folder if
it is missing. To remedy this, various filesystem instructions exist that do not
require a file to perform actions.

To check if a file exists without opening it (or creating a new one), use exists ():

result = FileSystem.exists(filename) ;

The filename parameter is a String and is in the same format as open (). It
returns a boolean: true if the file (or folder) exists and false if it does not exist.
To create a folder, use mkdir ():

result = FileSystem.exists(filename) ;

This function returns a boolean: true if the folder were created, false
otherwise. To delete a folder, use rmdir ():

result = FileSystem.rmdir (folder) ;

This function returns a boolean: true if the folder were deleted, false if the
function were unable to delete the folder. It requires the target folder to be empty;
any files present must be removed. To remove files, use remove ():

result = FileSystem.remove (filename) ;

This function, like the previous functions, returns a boolean: true if deleted,
false otherwise. This function is a wrapper for the system command rm and
as such can delete both files and folders.

YunServer

The YunServer class is used when creating a server on the Arduino Yiin’s Linux
distro. This allows the Arduino side of the Yun to receive requests and to answer
those requests.

To create a server, you must first create a YunServer object:

YunServer server;

When the object has been created, you must tell the Arduino who can con-
nect. Contrary to most Arduino Ethernet shields, you will not want external

368

Part lll = Device-Specific Libraries

connections, only local connections. The Arduino will wait for connections
from the local host, but the local host is also the Linux side of the Arduino. This
means that when incoming connections arrive, they will be routed through the
Linux processor, leaving the AVR microcontroller side of the Arduino free to do
what it does best—control your sketches. To do this, use 1istenonLocalhost ():

server.listenOnLocalHost () ;

The last step, after the object has been created, is to use begin () :

server.begin() ;

The server has now been created, and you can wait for clients to connect. The
difference between the Arduino Ytin and other models using Ethernet or Wi-Fi
shields is the multitasking capacity. Although other Arduinos have to wait for
a client to connect, the Yiin doesn’t need to wait, The Linux server can handle
connections, and the Arduino can see how many clients are waiting and handle
connections as required. Your sketch is free to continue between connections.
All you have to do is wait for a client.

YunClient

The YunClient interface is used for all client-based calls on the Yun. Just like
the server, you must first create a YunClient object:

YunClient client;

To accept an incoming connection, you can talk with the YunServer:

YunServer server;
YunClient client = server.accept();
if (client)

{

// Client has connected

}
You can verify if a client is still connected using connected ():

result = client.connected() ;

This function returns a boolean: true if the client is still connected and false
if it has disconnected.

When a client has connected, you can read and write using standard stream
functions:

String data = client.readString() ;
client.println("Thanks for connecting to my Yan");

When you finish talking to a client, you can terminate the connection using
stop ():

client.stop() ;

Chapter 23 = Bridge

369

Example Application

In Chapter 12, you created a light sensor that was capable of logging data to an
SD card. In this chapter, you again use a light sensor, but one that can log the
temperature to a data file with a timestamp and that can be read over a wire-
less connection.

To do this, you need an Arduino Yiin and a micro-SD card to use for data
logging. A standard LDR will be connected to your Yun through the analog pin
A3. The sketch will wait 20 seconds between each measurement. During this
loop, the sketch will listen to connections from a web navigator.

Hardware

This sketch uses an Arduino Yiin connected to a light-dependent resistor. One
pin of the LDR is connected to +5 V, and the other one is connected to a 10-k(}
resistor that is connected to ground. The analog reading is made where the
LDR and the fixed value resistor are connected. The breadboard example will
look like Figure 23-1:

.
ARDUINO.CC

..
oo

fritzing
Figure 23-1: Project schematic (Image created with fritzing).

370

Part lll = Device-Specific Libraries

Sketch
The sketch will look like Listing 23-1.

Listing 23-1: Sensor sketch (filename: Chapter23. ino)

W J 0 Ul W N

NN R BERRERRBPERRPRBRBE O
N RO WL oI AWN RO

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include <Bridge.h>
#include <FileIO.h>
#include <YunServer.h>
#include <YunClient.h>

YunServer server;
String startString;

int iteration = 0;

void setup ()

{

Serial.begin(9600) ;
Bridge.begin() ;
FileSystem.begin() ;

server.listenOnLocalhost () ;
server.begin() ;

void loop ()

{

String dataString;
YunClient client;

dataString += getTimeStamp () ;
dataString += ", ";

int sensor = analogRead (A3) ;
dataString += String(sensor) ;

Serial.println(dataString) ;

iteration++;

if (iteration == 20)

{
boolean result = logResults (dataString) ;
if (result == false)

{
// Uhoh, couldn't write!
Serial.println("ERR: Couldn't write data to file");

}

iteration = 0;

Chapter 23

Bridge

371

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

for (int 1 = 0; 1 < 20; 1i++)
{
client = server.accept();
if (client)
{
client.print (dataString) ;
client.stop() ;

}

delay (1000) ;

boolean logResults (String dataString)

{

File dataFile = FileSystem.open("/mnt/sd/log.txt", FILE APPEND) ;

if (dataFile)

dataFile.println(dataString) ;
dataFile.close() ;
return true;

}

return false;

// This function return a string with the time stamp
String getTimeStamp () {
Process time; // The process instance
String result; // The String the result will be stored to

time.begin("date"); // The command to run is "date"
time.addParameter ("+%D-%T"); // The parameters to add
time.run(); // Run the command

delay(50); // Give the instruction some time to run

// Get the output from the command line
while (time.available() > 0) {
char ¢ = time.read() ;
if (¢ != '"\n'")
result += c;

return result;

}

On lines 1 to 4, you import the necessary header files. Bridge.h is used for

almost everything on the Arduino Yun. rFile1o.h is used for saving data to
the SD card, and vunclient.h and YunServer.h are used to handle client/

372

Part lll = Device-Specific Libraries

server operations. On line 6, an instance of the YunServer is created. This will
be used later.

setup () is declared on line 11. First, the serial port is initialized, and then
the Bridge and filesystem subsystems are initialized. Finally, the server starts.

loop () is declared on line 23, but before describing its functionality, let’s look
at the two other functions it calls. One is used to write data to the SD card, and
the other retrieves the timestamp from Linux.

getTimeStamp () is declared on line 74. When it runs, it creates an instance
of the Process class. It also creates a variable called result; this is the variable
that holds the result of a Linux command. This command runs inside a process
called time. The function that it calls is named date; when executing the date
command, it returns something like this:

jlangbridge@desknux:~$ date
Fri 29 Aug 15:01:00 UTC 2014

This contains a little bit too much information, you need only a short date
and time. This is achieved by adding some parameters to the instruction:

jlangbridge@desknux:~$ date +%D-%T
08/29/14-15:01:00

To call date, the sketch calls time.begin () on line 78 using date as an argu-
ment. To add parameters, addparameter () is used on line 79. The command
is run on line 80. The next few lines wait for a fraction of a second and then
read the output of the command. This data is placed in a String, which is then
returned to the loop ().

The second function is called 1ogResults (), and it is declared on line 60.
This function takes a string and places that data onto an SD card. It begins by
attempting to open a file on the SD card in the FILE_aAPPEND mode. On line 64 a
verification is made to see if the file were opened. If it were opened, the data is
written, and the file is closed before returning true. If the file weren't opened,
the function returns false.

Back to 1oop (). A variable called datastringis declared and then a YunClient
object is created. The datastring variable holds the date, time, and light sensor
reading. On line 28, the date and time is added from the return value of get-
TimeStamp (). Next, the analog value on pin A3 is read, converted to a string,
and added to dataString. On line 36, the variable iteration is incremented. If
the value equals 20, then the value is written to the data card. Finally, on line 50,
the sketch checks to see if a client is connected. If it is, the datastring displays,
and the connection is closed before returning the iteration value to zero.

Chapter 23 = Bridge

373

Exercises

This sketch is the basis for a compact sensor, and together with a temperature
sensor and barometer, it can be used to create a wireless weather station. Add
some components to the device, and display their value on the web server.

Summary

In this chapter you have seen the Arduino Ydn and the Bridge library used
to exchange messages between the Arduino microcontroller and the Linux
microprocessor. You have seen the different ways in which information can be
exchanged, and how to issue commands and fetch data to and from the Linux
operating system. In the next chapter, you will see how users and companies
have added functionality to Arduinos in the form of user libraries, and how to
import those libraries to add functionality to your own projects.

In This Part

Chapter 24: Importing Third-Party Libraries
Chapter 25: Creating Your Own Shield
Chapter 26: Creating Your Own Library

Importing Third-Party Libraries

This chapter requires the following:

m Arduino Uno
m Adafruit Si1145 breakout board

As you have seen throughout this book, the Arduino libraries add an impres-
sive amount of functionality to the platform. They facilitate the use of a large
number of electronic components and breakout boards. In some cases, using a
shield is as simple as selecting the correct library, but this isnt always the case.
The Arduino ecosystem has grown immensely over the years; it has been used
for an unbelievably large amount of projects. Not all use “standard” components;
some need more specific hardware.

When you import a library, the Arduino has access to more functionality. For
example, the SD library enables you to easily write to large storage formats with
an Arduino, something that would otherwise be difficult to do. This is done by
adding functions, pieces of code that help you talk to hardware, or performing
software calculations and actions. Libraries facilitate this by importing these
functions and making them available to the sketch. Sketches can, of course, add
existing standard Arduino libraries, but they can also add libraries written by
third parties.

377

378

Part IV = User Libraries and Shields

Libraries

So what exactly is a library? Sketches are written in a form of C, and a library is
simply an extension, written in either C or C++ When you create a function in
your sketch, you can call it inside the same sketch. A library has a collection of
functions that can be reused in multiple sketches. When you import a library:
functions are made available, and you can call one, several, or all the functions
in the library as needed. You could also call none of the functions, but that
would be a bit of a waste.

There are several advantages to libraries; by hiding away all the long func-
tions, your sketch is made simpler. For example, if talking to a new external
component, the library can tell your sketch how to read the data from the com-
ponent. First, pull this output high, then send some binary data, wait for a few
milliseconds, retrieve binary data, sort that data, perform some calculations,
and then return the data. All this, just to return the temperature or the ultra-
violet index? Well, you always need to follow the same process, but it can be
taken care of by a function. By putting all this code in a function, your sketch
is clearer, and you even use less memory because the sketch can call one piece
of code several times, instead of having different copies of the same function
in memory:. It also makes maintenance easier; if you have several sketches that
use the same functions, updating the library makes those changes immediately
available to the sketches that use them.

Finding Libraries

Often, the most difficult part of using an external library is finding it in the
first place, and even that isn’t hard. Some hardware manufacturers develop
libraries designed specifically for their shields or breakout boards, and these
are available on the company’s site. For example, Adafruit often has a tutorial
for the breakout boards that it sells, showing how to connect it and typically
with some example code. On these pages, you often find a link to download
the library they created to interface with the component.

Some electronic components do not require breakout boards but are still complex
enough to merit their own library. In Chapter 10 you saw how to create a wireless
device that helps keep houseplants happy. The DHT-11 humidity sensor is a rather
complex device, and the code was a little difficult. I don’t expect every Arduino
user to write code like that. To help beginners use these devices, a DHT-11 library

Chapter 24 = Importing Third-Party Libraries

379

exists. The same goes for other electronic components. To use these libraries, you
need to search online to see if there is something available.

Libraries are, put simply, source code files. There are sites that are dedicated to
hosting open source projects and handling source code. These sites allow other
users to retrieve the source code and to suggest modifications and corrections if
required. A single open source project can have hundreds of developers, each
proposing a change or adding their code to an existing project. One such site
is GitHub (http://github.com).

GitHub gets its name from the open-source code management program, Git.
It allows users to use this application to download the source code, upload changes,
and to create parallel versions. Although the site is optimized for Git, you do not need
to use this program; projects can be downloaded as a Zip file.

On the top of the screen, GitHub allows you to make a search of the available
projects. Give it a try. This chapter will use Silicon Lab’s SI1145 UV sensor. Enter
Arduino si1145 in the search field, and then press Search. There are dozens
of responses, but you can change the order of the results, either by stars (the
amount of popularity a project has), forks (the amount of times this library has
been used to create another project), or recently updated (the last time the project
was updated). Best Match, the default setting, uses all three to create the best
solution and displays those results first.

L [oRN Adafruit also uses Github for its libraries.

One of the best sources of information, not only for libraries but for everything
to do with Arduino, is the Arduino Forum.

Importing a Library

To import a third-party library, you can use the Arduino IDE. When you go
into the Sketch = Import Library menu, you have the choice of importing a
standard Arduino library, but there is also an Add Library menu item, as shown
in Figure 24-1.

Clicking this menu item opens a new window, prompting you to select a
Zip file or folder containing the library you want to import. A Linux computer
shows a window like the one in Figure 24-2.

http://github.com

380

Part IV = User Libraries and Shields

o sketch_juloda | Arduine 1.0.5 @ @
File Edit Sketch Tools Help
Werify / Compile Ctrl+R

x

Show Sketch Folder Ctrl+K
Add File...

sketch

Irmport Library... > Add Library...

B

EEFFR.OM
Esplora
Ethernet
Firmata

G5M
LiguidCrystal
Robet_Control
Robot_Motor
5D

Servo

SoftwareSerial

5P

2 Stepper 5

TFT

Arduing Uno

Figure 24-1: Add Library menu item

-~ Select azip file or a folder containing the library you'd like to add)

x

MNew Folder| | Delete File| Bename File

Folders Files

N
L
bin/
boot/

devf

etc/

hornef

lib/

libga,

lost+found/ v v

>
>

Selection: /

Filter:
ZIP files or folders W

@ cancel W 0K

Figure 24-2: Select archive window

Chapter 24 = Importing Third-Party Libraries

381

The Arduino IDE can recognize two different formats: either a compressed
Zip file or a folder. You must either select a zipped archive or the folder you
want to import.

If the Arduino IDE can import the library, a message displays informing that
the import has completed and that the library is now accessible from the Add
Library menu. If the Arduino IDE cannot import the library, a message displays
in the information bar at the bottom of the application with a brief explanation
of the issue.

The Arduino IDE can import libraries with properly formatted names—it can
handle only ASCII characters such as letters and numbers, and a library cannot start
with a number. Also, dashes (“-”) are not supported, but underscores (“_") are. Check
the library’s name before you try to import it.

It is also possible to manually import a library. To do this, first start by down-
loading the library you want to import. It will normally be available in a com-
pressed format, so after downloading the compressed file you must decompress
it. The result should be a folder with the name of the library you want to import.
Inside this folder, there should be one or more files: the . cpp file is the source
code, and the .n file is the header file. (It may also contain other files.) You will
need to copy (or move) the folder that contains these two files.

To manually import a library, you must first quit the Arduino IDE if it is run-
ning. Next, locate the Arduino library folder. On Windows machines, it is most
likely placed in your Documents or My Documents folder, inside a subfolder
called Arduino. On Macintosh, it will be in your Documents folder, again in
a subfolder called Arduino. Inside the Arduino folder will be another folder
called “libraries.” This folder may or may not contain subfolders, depending
on if you have already imported other libraries or not. Copy and paste your
decompressed archive into this folder, and the next time you start the Arduino
IDE your library will be visible under the Sketch = Import Library menu item.

Using an External Library

Now that you have imported your library, it is time to use it. But where do you
start? You can import your library just like you would import any standard
Arduino library. New libraries appear at the bottom of the Import Library menu,
as shown in Figure 24-3.

This imports the library, but that is all it does. So how exactly do you get your
hardware to work? Most libraries come with at least one example application,

382 PartlV = User Libraries and Shields

sometimes several. This is the case with the SI1145 written by Ladyada, Adafruit’s
founder. Here is an extract of her example sketch:

Float UVindex = uv.readUV () ;

// the index is multiplied by 100 so to get the
// integer index, divide by 100!

UV index /= 100.0;

Serial.print ("US: "); Serial.println(UvVindex) ;
o/ sketch_jul04a | Arduino 1.0.5 (&)
File Edit Sketch Tools Help

Select a zip file or a folder containing the librany you'd like to add & &

Mew Folder| Delete Fle| Rename File

sketch_jullda

‘home/jlangbridge/Desktop/Arduine libraries v

Folders Files

S
L

TrafficLights

>
>

W v

Selection: shomefjlangbridge/Desktopitrduine libraries
DHT

Filter:
ZIP files or folders v

@ Ccancel & 0K -

Figure 24-3: Importing the Si1145 library

This example code is extremely simple. A single function is called: readuv.
Ladyada also explains why the returned data is divided by 100. This function
is called on a uv object. This object is created at the beginning of the sketch, as
follows:

Adafruit_SIll45 uv = Adafruit_SIll45();
After that, another function is called inside the setup () function:

uv.begin() ;

And that’s it. Everything you need to use the SI1145.

Chapter 24 = Importing Third-Party Libraries

383

If there are no examples available, then all is not lost. With the open source
nature of Arduino, most libraries are also open source, so you can read the
contents of the library. These files are written in C++ but are easily readable
and can be opened with any text editor. Opening the SI1145 library header (the
.h file) shows the following lines in the source code:

class Adafruit SI1145
public:
Adafruit SI1145 (void) ;
boolean begin() ;
void reset () ;
uintleée_t readuv() ;
uintlé_t readIR();
uintlé_t readvisible() ;
uintlé_t readProx() ;
private:
uintlé_t readlé (uint8_t addr) ;
uint8 t read8 (uint8 t addr);
void write8 (uint8 t reg, uint8 t wval);
uint8_t readParam(uint8 t p);
uint8_t writeParam(uint8_ t p, uint8 t v);
uint8_t _addr;

}i

The class name is a reference to a C++ class. This becomes an object in your
sketch. This object contains both variables and functions. It consists of several
parts. The private section includes functions and variables that will be
visible only inside the class. The sketch cannot see them and cannot modify the
variables, or call these functions. What the sketch can see are the members of
the public part. As you can see, the previous function is found here, readuv (),
but there are others: readIr (), readvisible (), and readprox (). Although the
function of readvisible () seems obvious, readProx () isn’t clear and wasn't
used in the example sketch. Header files rarely have comments, so you may
not know immediately what this function does. This is a declaration; it tells the
compiler that somewhere in the . cpp file there is a function called readprox (),
so that is where you need to look for the answer.

This is the first few lines of the function found in the C++ file:

// returns "Proximity" - assumes an IR LED is attached to LED
uintl6_t Adafruit_SI1145::readProx (void)

{

return readl6 (0x26) ;

}

Just a few lines of comments, and you can tell what the function does. So this
function calculates the Heat index, the human-felt equivalence temperature—an
interesting addition that could be useful for weather stations.

384

Part IV = User Libraries and Shields

Example Application

For this example, you will import a third-party library to use a piece of hardware.

The Si1145 from Silicon Labs is a digital UV sensor. Targeted for the wearable
market, it is compact, light, and ultra-low-powered. It is a highly professional
solution, but like most professional solutions, it does come at a price. That price is
configuration. This device is not like the LM35 temperature sensor that requires
a simple analog read; it requires a little bit of configuration before you can use it.
When set up, it provides a highly reliable readout. It doesn’t just read UV; it can
read visible light, infrared light, and when used with an infrared LED, it is also
a proximity sensor. All in all, a highly advanced sensor that is great fun to use.

The Si1145 is difficult to use on a typical Arduino project. The component
is surface-mounted, meaning it cannot be placed directly on a breadboard. It is
designed to be as small as possible to keep electronic projects small, and as such,
itis difficult to solder the component to a board by using household equipment.
It takes some skill and a good setup to solder this component by hand. Also, it
is powered by 3.3 V, not the 5 V that an Arduino typically uses. To make this
device easier to use, Adafruit has developed a breakout board for the Si1145
sensor, adding standard-sized pins, allowing it to be used on a breadboard, and
voltage shifters, making it compatible with 5-volt Arduinos. To make it even
easier to use, Adafruit has also created a nicely designed and easy-to-use library.

The first thing you require is the Adafruit Si1145 library. You can find the
Sil1145 breakout board information page here:

https://learn.adafruit.com/adafruit-sill45-breakout-board-uv-ir-visible-
sensor/overview

From that page, you can visit the “Wiring and Test” link where you will find
a link to Adafruit’s GitHub repository:

https://github.com/adafruit/Adafruit SI1145 Library

On that page, there are a few things to note. Figure 24-4 displays the webpage.

Repositories can be in a constant state of change; developers can add, change,
or delete portions of code, and although some projects are updated daily, others
may be updated hourly. You can see the contents of the repository, the filenames,
folders, and the last time they were updated. At the bottom, the contents of
README.txt are displayed, giving some important information on the project.
To the right, there is some statistical information, the number of bug reports,
and different ways to connect to the server to retrieve the source code. Some
of these involve using the Git software package, but the easiest way is to click
the Download Zip button on the bottom right. This takes a snapshot of the
current project, compresses it into a Zip file, and downloads the compressed
file to your computer.

https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor/overview
https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor/overview
https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor/overview
https://github.com/adafruit/Adafruit_SI1145_Library

Chapter 24 = Importing Third-Party Libraries

385

=
o ° This repositery~ Search of type a command @ Explore Gist Blog Help B langbridge +- ¥ B M
adafruit / Adafruit_SI1145_Library @Watch~ 16 Star 2 YFork 3
Arduino library for the S11145 sensors in the Adafruit shop
<> Code
2commits 1branch Orzleases 1 contribulor
@ lIssies Ll
T " . =
(8| I bramch: master - Adafruit_SI1145_Library / + = 1 Pull Requests 0
cof extra | EE Wiki
W tadyada authorsd on Var 28 latest commit 3868303178 1
I examples oof extra }! 3 monthe 4~ Pulse
B Acafruit_si1145cpp init 4 months ag -
B Acafruit_SI1145.h init 4 months ago
% Network
[E] README txt oof extra }! 3 months ago
HTTPS clone URL
README .txt
B
Yo can clone with HTTPS. SSH
This is a library for the Sil145 UV/IR/Visible Light Sensor or Subversion. @
N . - - B > Download ZIP
Designed specifically to work with the 511145 sensor in the adafruit shop = "
----> https://v adafruit.com/products/1777
These sensors use I2C to communicate, 2 pins are reguired to
interface
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Check out the links above for our tutorials and wiring diagrams
written by Limor Fried/Ladyada for Adafruit Industries. L
BSD license, all text above must be included in any redistribution "

Figure 24-4: Adafruit’s Si1145 GitHub page

Now that the Zip file has been downloaded, it has to be imported. For now, try
to import the library as it is currently; the filename is Adafruit_sI1145_Library-
master.zip. Open the Arduino IDE, go to the Sketch = Import Library => Add
Library menu item, as shown in Figure 24-5.

sketch_sepl2a | Arduine 1.0.5 E@g
File Edit [Sketch| Tools Help
Verify / Compile Ctrl+R
Show Sketch Folder Cirl+K
Import Library... J Add Library... g
Add File...
EEPROM
Esplora
Ethernet
extra
Firmata
libraries
NewSPL
RFBee
sSD
SPI
Streaming

Figure 24-5: Import a library

386

Part IV = User Libraries and Shields

A new window opens. Select the Zip file that you downloaded. Didn’t work,
did it? You should have an error message at the bottom of the screen.

This is one of the problems when importing libraries: the naming convention.
The Arduino IDE cannot read the dash in the filename, so why was it there?
Adafruit did not name its library like that; if you look at the Adafruit and Github
pages, the repository name is Adafruit_sI1145_Library, no dash. The dash is
added by a Git convention, adding -master to the end of the compressed file-
name. Git repositories can have several “branches,” different areas of code that
can be modified independently from the rest of the code. This is used from time
to time to test new functionality, and if everything goes to plan, that branch is
then merged back into the main repository, called master.

The Zip file cannot be used as it is. You cannot simply rename the Zip file
because it contains a folder with a dash in the name. To import this library, you
have to try something else: extract the contents. Most operating systems have
native support for Zip files. Extract the contents of the Zip file to a location on
your hard drive. The result should be a folder name called adafruit_sI1145_
Library-master. Rename this folder Adafruit_s11145_Library. Now, import
this folder. As before, go to the Sketch = Import Library => Add Library menu
item. Select the folder (without going inside the folder) and press OK. If every-
thing goes well, you will have a new message on your Arduino IDE, like the
one shown in Figure 24-6.

sketch_jul04a | Arduine 1.0.5

&)
(=

(<

File Edit Sketch Tools Help

sketch_juldda

Arduine Uno

Figure 24-6: Successful library import

Chapter 24 = Importing Third-Party Libraries 387

Now that your library has been imported, you can use it. It becomes available
immediately and is listed in the Import Library menu. This library also adds
an example, available for use immediately in the File > Examples menu. Note
that for both the Import Library and the Example menu items, external libraries
are separated from standard libraries.

Now, load the Si1145 example sketch shown here:

H O 0o 39 o0 U W NP

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

/***

This is a library for the Sil145 UV/IR/Visible Light Sensor

Designed specifically to work with the Sill45 sensor in the
adafruit shop
----> https://www.adafruit.com/products/1777

These sensors use I2C to communicate, 2 pins are required to
interface

Adafruit invests time and resources providing this open source
code,

please support Adafruit and open-source hardware by purchasing

products from Adafruit!

Written by Limor Fried/Ladyada for Adafruit Industries.

BSD license, all text above must be included in any redistribution
**/

#include <Wire.h>
#include "Adafruit SI1145.h"

Adafruit SI1145 uv = Adafruit SI1145();

void setup() {

}

Serial.begin (9600) ;

Serial.println("Adafruit SI1145 test");

if (! uv.begin()) {
Serial.println("Didn't find Si1145");
while (1);

Serial.println ("OK!") ;

void loop () {

Serial.println("===================") ;
Serial.print ("Vis: "); Serial.println(uv.readVisible()) ;
Serial.print ("IR: "); Serial.println(uv.readIR()) ;

// Uncomment if you have an IR LED attached to LED pin!
//Serial.print ("Prox: "); Serial.println(uv.readProx());

https://www.adafruit.com/products/1777

388

Part IV = User Libraries and Shields

43

44 float UVindex = uv.readUV () ;

45 // the index is multiplied by 100 so to get the
46 // integer index, divide by 100!

47 UVindex /= 100.0;

48 Serial.print ("UV: "); Serial.println(Uvindex) ;
49

50 delay (1000) ;

51}

Now, it’s time to have a closer look at that sketch. On lines 1 to 16, the author
begins with a comment. This is a general explanation of the example, what
component it is used for, and some licensing information for the software. The
BSD license allows you to use the source code for your projects. You can use
this library as long as you credit the original author and agree not to take legal
action against them if it does not work as expected.

On line 18, the Wire library is imported. This is used to communicate through
the I2)C protocol, and this is how the Si1145 communicates. On line 19, the Adafruit
SI1145 library is imported.

On line 21, an Adafruit_SI1145 object is created called uv. This is the object
that will be used to access the sensor’s information.

On line 23, setup () is declared. Like most test sketches, it opens up the serial
port to allow for simple debugging. On line 28, begin () is called to the uv object.
Typically, begin () functions are called to initialize hardware pins, to set voltages
to a required state, or to send configuration data to microchips. The Si1145 is an
I’C device, so there is no need to configure the I’C bus; it is done via the Wire
library. It has a fixed address, so there is no configuration required. It does not
require any external pins so that isn’t done either. What it does require is a lot
of parameters to be sent to the device for it to function correctly. This is what
begin () does. For this library, it also detects if the device is present, a nice addi-
tion. It is all too easy to incorrectly connect a device. The function returns true
if the sensor is present, making sure that you have set everything up correctly
before proceeding with the rest of the sketch.

Online 36, 1oop () is declared, and this is where the fun begins. Several func-
tions are called: readvisible () on line 38, readIr () on line 39, and readuv ()
on line 44. The readvisible () function returns the current ambient light level,
and readIr () returns the current infrared light level. Adafruit’s Si1145 breakout
board does not come with an IR LED, but it has a connector if you want to use
one. For those who do, another function is available (but commented out in the
example): readpProx () on line 42.

This is an example of a well-designed library; one that is easy to import includes
board detection in the begin () function, and works well with a fantastic piece
of hardware. The Si1145 is an excellent sensor, and Adafruit has worked hard
to create a good breakout board and a great library to go with it.

Chapter 24 = Importing Third-Party Libraries

389

Exercises

You have seen that with this library, you can use new hardware with only a
few lines of code. The Sil145 is a powerful device, capable of replacing a light-
dependent resistor (LDR) in most applications, with the advantage of including
a proximity sensor. Of course, having a device that can give the exact UV level
is a huge advantage for wearable devices that can be used for skin protection,
both for adults and children. You can monitor when you have had enough sun,
or when it is unsafe for children to play outside. Try to add this device onto one
of the projects that you have created while reading this book. A UV sensor is
always a great addition to weather stations and nice to have for outdoor sensors.

Summary

In this chapter, you have seen what a third-party library is, where you can find
one, and how to run example programs, all of which is designed to get you up
and running. You have seen how to get information about the different func-
tions the library has—what they do and the values they return. You have seen
how to import them into the Arduino IDE and how to use them in your own
applications. Libraries are typically used to add functionality from shields, and
in the next chapter you will see how to design and create your own shield for
use in your projects.

Creating Your Own Shield

As you have seen throughout this book, Arduinos are powerful devices. With a
large amount of input and output pins, they can perform advanced functions,
but the real power comes with shields. Shields expand the functionality of an
Arduino by adding electronic components or connectors. Hundreds of designs
exist, adding Wi-Fi connectivity, Ethernet, LCD and TFT screens, more input
and output, robotics, or simply prototyping.

Even if hundreds of shields exist, sometimes it is worth creating your own.
Don’t worry; this isn't magic. Some hobbyists are frightened of creating printed
circuit boards, but new tools exist that make this simple. There are no expen-
sive machines to buy and no messy chemicals to use. Even the software used
to create these boards is free. If you can create a circuit on a breadboard, you
can create a shield.

Creating a Shield

There are hundreds of boards available, either through Arduino, through
Arduino-compatible vendors, or through hobbyists and makers. If so many
shields are available, why would you want to create your own? Put simply, to
have your own hardware the way you want it. A data-logging shield might miss

391

392

Part Ilv = User Libraries and Shields

a component that you want, or maybe that fancy input and output shield has
a few components that you don’t need. Also, the satisfaction of creating your
own shield is indescribable. You'll see.

The Idea

It all starts with an idea. The idea is normally the project you have on your desk—
a breadboard with dozens of wires linked to a few components. Large projects
can have 100 or more wires connected to dozens of components. Although this
works great for evaluation and development, it won't last long. Imagine that you
have just finished a project for your house. You want to place a data-logging
Arduino in the ceiling, hidden away from sight behind some plaster, or in a
small hole in the wall. You have already thought of everything; a network cable
has been run through the wall to this location, providing a network connection
and power to the Arduino. All you have to do is to place the Arduino and the
breadboard that contains your project: temperature sensors, humidity sensors,
EEPROM data-logging, barometric sensors, and a few other components. You
place the Arduino, you place the breadboard, and you connect everything. A
job well done! You are about to take a break when you notice a wire on the floor.
Where did it come from? It must be from a component when you installed the
breadboard; but where? From which component? There are more than a dozen
components, possibly 100 small wires, and even if the project works great, the
breadboard is a mess. Finding out where the wire came from could be a huge
task. Even worse, this device gives information about a single room; you still
have to install the ones for the kitchen, bedroom, garage, and attic. Imagine
snagging a wire on each. This could take hours, if not days.

Because each breadboard is identical, it is easy to create a shield. Because you
created a breadboard design, it is easy to create an electronic schematic, which
is explained in the section, “Your First Shield.” Having all the components on a
shield instead of a breadboard makes the design much more resilient; no more
wires to catch on clothes or nails. No more components ready to fall off. A nice,
clear design, smaller than a breadboard, which can probably last years (if not
decades). Even better, if you ever get that extension to your home finished, you
already have the design for the shield, and you can add a sensor to the new
room as soon as the work is done.

The Required Hardware

If you have the Arduino IDE set up on a computer, you already have all the
hardware that you need. Back in the old days, you had to have transparent film,
a UV lamp, ferric chloride, and a steady hand. When not created on a computer,

Chapter 25 = Creating Your Own Shield

393

connections and lanes were drawn by hand or by using stickers. This was
printed or drawn onto a transparent film and then placed onto a photoresist
copper-clad board. Exposing this to UV light removes the photoresist that was
not protected by markings, revealing the copper. The board is then dipped into
ferric chloride, a nasty chemical that can stain just about anything bright orange.
When this was complete, the board needed to be cleaned, and the last thing to
do was to drill holes where you were to place components.

This is still done frequently today, but companies have been created that do
the work for you, resulting in a board that is professionally created with a much
higher standard than anything you can make with home equipment. One of
these companies is Fritzing.

The Required Software

Fritzing has been used throughout this book to create images of breadboards
with the circuit connections. You can use this free, open-source application
for a variety of things, from creating a breadboard connection diagram, to an
electronic schematic, all the way to hardware design. Fritzing is available for
Windows, Mac OS, and Linux and is available on the Fritzing website at http://
fritzing.org/.

Fritzing comes with a large collection of components, including the standard
resistor, LED, breadboard, most of the Arduino boards, and more advanced
components such as the PCF8574, which is explained in the section, “Your First
Shield.” Of course, there are hundreds of thousands of components available,
and it isn’t possible to list them all, so some companies and makers create user
libraries of components. For example, Adafruit supplies a component library
that Fritzing can use to help you use its components and breakout boards.

A Fritzing project contains several elements: the breadboard design, the elec-
tronics schematic, and the printed circuit board. This file can then be sent to
the Fritzing website for production; you can order your shield directly through
the application.

Fritzing has an easy-to-use interface. When you open the application, you
are presented with the main screen. On the top, you see four buttons that cor-
respond to four activities. By default, you will be on the Welcome screen. Next,
the Breadboard view allows you to create projects with a virtual breadboard,
using visual components that resemble what you have used until now. Next,
the Schematic view can create an electronic schematic from the Breadboard
view. Finally, the PCB view allows you to create a printed circuit board from
the Breadboard and Schematic views.

To the right are two views: Parts and Inspector. Parts is where you can find
electronic components like resistors and wires, but also breadboards, Arduino,

http://fritzing.org
http://fritzing.org
http://fritzing.org
http://fritzing.org

394

Part Ilv = User Libraries and Shields

and breakout boards. Anything that you want to place is present there. The
Inspector panel is used to change component characteristics; you can change
the value of components, for example, change the resistance of a resistor.

Your First Shield

Throughout this book, you have used libraries and shields created by other
people. Now you are ready to take that a step further and create your own
shield! This chapter describes the steps necessary to design and create your
own shield. To use that shield, you need to create a software library, which is
discussed in the next chapter.

So, what kind of shield can be made? It would be easier to ask what kind
of shield cannot be made; there are so many different shield designs that it is
impossible to list them all. For this chapter, you create an I/O shield, increasing
the capacity of the Arduino by another 16 pins. Why would you want to create
more I/O? Doesn’t the Arduino have enough I/O? I've seen projects where the
makers would clearly say that no, even the Arduino Mega 2560 does not have
enough input and output, and more is always welcome. It would be even better
if the shield could use the I?C protocol, therefore using up few pins.

There are many I*C-compatible components on the market. The component
that you use for this project is the PCF8574AP. This component is an 8-bit I/O
expander, capable of adding eight input and output pins to an I*’C bus. The
Arduino already has a built-in I*C bus, so no other components are required.

The first thing to do when using a new component is to download the data-
sheet. This device is created by NXP, and their website contains a link to data-
sheets. This specific datasheet is available at http: //www.nxp.com/documents/
data_sheet/PCF8574 PCF8574A.pdf. Here is an extract from that datasheet.

The devices consist of eight quasi-bidirectional ports, 100 kHz I?C-bus interface,
three hardware address inputs, and interrupt output operating between 2.5V and
6 V. The quasi-bidirectional port can be independently assigned as an input to
monitor interrupt status or keypads, or as an output to activate indicator devices
such as LEDs. System master can read from the input port or write to the output
port through a single register.

A single paragraph tells you a lot about the component. First is the I?C speed,
100 kHz, something that the Arduino can use. The I°C has three address inputs,
meaning that 3 bits of the address can be set, allowing several components
to be used at the same time, or simply to configure the address on a heavily
populated I*C bus.

http://www.nxp.com/documents

Chapter 25 = Creating Your Own Shield

395

Another important detail; inputs and outputs can function between 2.5 V and
6 V. Arduinos use two voltages: 3.3 V and 5 V. This shield will be compatible
with both types of Arduino, without the need to add voltage-shifting hardware.

Next, it talks about quasi-bidirectional ports. What exactly is a quasi-bidirec-
tional port? An input port is one that can read the voltage on a pin. An output
port is one that can set a voltage on a pin. In theory, a bidirectional port is one
that can do both at the same time: set output voltage and read input voltage.
The problem arises when, for example, the output is set to a logical one, 5 volts,
and the input is a logical zero, ground. In this configuration, that would result
in a pin set too high to be in direct contact with the ground, resulting in a short
circuit, cutting power to the board and potentially damaging the component and
the board. Quasi-bidirectional solves this and allows the component to work
in this fashion. Quasi-bidirectional pins can sink a rather large amount of cur-
rent (tens of milli-amps, more than enough for an LED) but can source only a
small amount of current (sometimes tens of micro-amps). In the case of a short
circuit, the device simply limits the current, as if a large resistor was placed in
the circuit. The advantage is, of course, ease of use. There is no need to set a pin
to be specifically input or output, but the disadvantage is that this pin cannot be
used to power all components; it will not deliver enough power to turn on an
LED. So why does the datasheet talk about output devices such as LEDs? Well,
they can still be used, but they should ground to the device, turning the LED
on when the output is a logical zero or be used with a transistor that requires
much less current to activate than an LED. That part will be left to the end user;
your job is to create the shield that will contain the components and connectors.

Step 1: The Breadboard

Breadboards are an excellent way to test circuits and ideas. It is extremely
easy to add wires, to change connections, and to duplicate part of the circuit if
required. Most projects start as an experiment on a breadboard, even the most
professional Arduino applications.

To create a simple circuit, you can use a breadboard to create a design almost
immediately. There is, however, a slight difference between this breadboard
design and the designs that you have been using. In previous designs, the output
of a component was simply left as it is; to use that output, you need to place a
wire in one of the breadboard connectors. When designing a shield, you should
always use the type of connector that will be on the final design. There is a good
reason for this; one that you will see in the section “The PCB.”

This design requires two PCF8574AP integrated circuits, one 16-pin or two
8-pin headers, and optionally, additional headers to specify the I*C addresses.

396

Part Ilv = User Libraries and Shields

Remember, the PCF8574AP needs to be configured by either pulling pins high
or low to define the address. This can either be done “hard” by physically wir-
ing the pins on the shield, or “soft” by placing jumpers on the board. For this
example, they will be hard-wired. You can add headers and jumpers as an
exercise. The pin layout is shown in Figure 25-1.

ol O i o
a1 [2] [15] spa
Az [3] [14] scL
PO [4] porasra [13] TNT
p1 [5] POFEST4A [ag) by
P2 [6] [11] P&
Pa [7] 10] Ps
Vss [2] (o] P4

Figure 25-1: PCF8574AP pin layout

Open up Fritzing and enter the Breadboard view. By default, a new project
already has a breadboard placed in the center of the view. Go to the Parts panel
and search for the PCF8574AP chip by entering the text “PCF8574” next to the
magnifying glass. The result will be displayed below. To place a component, you
can drag the component from the Component view directly onto the breadboard.
Place the two PCF8574AP chips and headers on the breadboard. Connect +5 V
and GND pins of the Arduino to the power rails of the breadboard, and then
wire power to the integrated circuits.

Pin 16 is Vo, supply voltage, and pin 8 is Vg, supply ground. This is a com-
mon layout for integrated circuits.

Next, connect the I?C bus wires. Remember, pin A4 is for SDA, and A5 is for
SCL. Connect these two pins to the breadboard. Figure 25-2 shows my layout.

Next, set the addresses of the two integrated circuits. Pins 1, 2, and 3 are used
for the address. For this example, device 0 (on the left) will use 000b (all low),
and device 1 (on the right) will use b001; that is, A0 and A1 will be low, and A2
will be high. This can still be achieved without the breadboard view becom-
ing too complicated by using both the top and lower power rails, as shown in
Figure 25-3.

Chapter 25 = Creating Your Own Shield 397

. eeeee eoe e eeeee evs e
1 seges eceees eesee oo

oo ee e o e e R R R A
o D I I A A A ©e e 00 0000000000000 00000s0 000
o ee e e e e D I I I I I A
.o se e e e D A I B I A A D I I I I I Y
. e e m m .
o ee e . .
K DY .
. e e .
.. ee e .

oo

se e

fritzing
Figure 25-2: Power and I>C connected (Image created with Fritzing)

T 1

DIGITAL (PUM:

R
ee e
Y ee oo
EeSeSe—— R
se e o0
. ee oo e
. ee oo
. ce e v e
. ce e e e
. ce e e e
. ce e v e
. se e v e
se e
see e

Figure 25-3: I>C address set (Image created with Fritzing)

398

Part Ilv = User Libraries and Shields

The breadboard view is still visible and not too complicated. That is about to
change. The last thing to do is to connect the two headers, each one requiring
eight wires. The view will be extremely complicated, but don’t worry; you will
see that there is a better way of looking at your circuit when this is done.

Connect all eight input/output pins of the two devices: PO to P7 to each header.
My breadboard looks like the one illustrated in Figure 25-4. Note that I made
the wires a little clearer on the right but not on the left. With the I°C wires in
the way;, it isn't easy to make something that is elegant. It might be possible by
spending a lot of time, but remember that breadboard schematics are all about
getting things done and not about understanding the electronics behind a design.

fritzing
Figure 25-4: Breadboard final layout (Image created with Fritzing)

You now have a working breadboard design, but how do you turn this into a
shield? You can do this directly, but just before, it is time to look at the schematic.

Step 2: The Schematic

Reading breadboard designs isn’t easy. The bottom left pin on both integrated
circuits are pulled low, but is this pin the ground? Is it an address? It is difficult
to know without extensive knowledge of the integrated circuit itself, and there
are tens of thousands of designs. To understand what a circuit does, you have
to look at the schematic.

Chapter 25 = Creating Your Own Shield 399

2

B

Lo L
A

7

FTTFFEFT
fritzing

Figure 25-5: Default schematic view (Image created with Fritzing)

400

Part Ilv = User Libraries and Shields

Fritzing also has a schematic view that updates automatically. To view the
schematic view, click the Schematic tab. (You are currently on the Breadboard
tab.) Figure 25-5 shows my schematic.

Whoa. What is this? This is an engineering nightmare, completely unreadable.
There are dotted lines going from pin to pin, crossing over each other. This is
actually a valid layout; each connection has been made, but it still needs to be
sorted out. This takes some time but is a useful part of any project.

In the schematic view, your job is to re-create the connections in a way that
is easily readable by others (and by yourself). When you mouse over a com-
ponent, it is “selected” by a gray background. Right-clicking this component
opens a menu allowing you to perform certain actions. The most useful are
the rotate and mirror actions. By left-clicking and dragging, you can move the
components around. Attempt to move the components in a way that creates
the least amount of crossing lines. You won't make it perfect, so don't worry if
a few do cross over; this will be sorted when creating the PCB. In my view, I
have moved the components in a way that looks better, and I have also started
to make some connections between the Arduino and the two integrated circuits,
as shown in Figure 25-6.

A connection is already made between the different pins according to what
was done on the breadboard, and now your job is to make a solid, visible line
between the different pins. To do this, Fritzing helps you out. Place your cursor
above one of the pins, and it changes to blue. Click and hold down the mouse,
and you can start to create a wire. Fritzing also highlights pins that need to be
connected in red, making it easier to know what pins need to be connected.

This draws a straight line between the two pins, possibly crossing over other
wires or even components. Don’t worry. You can add bendpoints by clicking
the wire that was created. Try to keep wires horizontal and vertical to make the
schematic easier to read. If you need to move a bendpoint, select the bendpoint
by hovering over it with your mouse, and then drag and drop the bendpoint
to the new location. To delete a bendpoint, hover over and then right click it,
and select the Remove Bendpoint option from the menu. Moving a component
automatically moves the first part of the wire up until the first bendpoint.

After 10 minutes, this is what I created, illustrated in Figure 25-7. It is much
clearer than the first version and can be shown to other makers to share ideas
or to ask for advice if needed.

Chapter 25 = Creating Your Own Shield 401

Part1

ReseT DO/RX

oy

02|

Arduino

L 1L

Uno
s (Rev3)

SV

— e
o o
35 5
—w vecj—=

I 3 scuf
- PCFS74 IV

(RAANAS

fritzing

Figure 25-6: Beginning schematic work (Image created with Fritzing)

402

Part Ilv = User Libraries and Shields

PCFES74 INT

Part1

5V

RESET

AREF

0

A2

Zz

RESET2

Arduino

no
(Rev3)

D13/5CK

o

(RN P} scL

R0 pcresTa INTjtim

|l
|

fritzing
Figure 25-7: Final schematic (Image created with Fritzing)

Although you can create a shield only from a breadboard example, creating a
schematic does help. Did you notice those INT pins on the integrated circuits?
The PCF8574AP can “warn” a device through an interrupt that one of the inputs
has a changed state. On a breadboard, this was impossible to notice, but on a
schematic, it is clearly visible. It might be a good idea to connect these to the
Arduino in a next version. For now, it is time to create the shield.

Step 3: The PCB

The most rewarding part of creating a shield is designing the PCB, the Printed
Circuit Board. It is also the most complicated part, but it isnt overly difficult,
and Fritzing helps you a lot.

Designing a PCB is all about the physical world; in the schematic view, it
doesn’t matter if the connectors go on the left side or on the right side. It is more
a question of preference, and if I put the connectors on the left, it was mainly

Chapter 25 = Creating Your Own Shield

403

because that is what Fritzing started with. For the PCB, it is different. The
Arduino headers, for example, are placed in a specific position and cannot be
moved. Fortunately, this is just one of the many ways in which Fritzing helps you.

When opening the PCB view, you are presented with a black screen with
individual components placed on the screen. Again, there are dotted lines con-
necting the different pins and components. In the middle of the screen, Fritzing
has placed a shield layout. By default, it will be for the Arduino Uno, but this can
be changed. Fritzing can help you create shields for almost all Arduino types.
To select a board, click the board on the screen, and select the board type in
the Inspector on the bottom right side, and select the type. For this example,
you create a shield for the Arduino Uno without the need for the ISCP headers.

This particular shield design already has the correct header placement, so you
do not have to place those. However, you have to place the integrated circuits
and the two headers. This is why you had to use headers for the breadboard
view so that the component is visible. If you had used wires only to connect
other devices, the header would not have been added.

Place the headers on the left in a line close together but not too close. Next,
place the integrated circuits on the board, somewhere where the dotted lines
don’t cross over too often. Remember to use the rotate function to place the
components in the best possible location.

Printed circuit boards have one or several copper plates on their sides or
inside. Basic printed circuit boards have one copper side, known as the single
layer. More advanced circuit boards have copper on both sides and are known
as dual-layered. The mainboard inside your personal computer can sometimes
have up to a dozen “layers” of copper and are extremely advanced. Instead of
the wires on your breadboard, there will be copper “lanes” going from one
component to the other. Fritzing can provide double-layer printed circuit boards,
meaning that there can be connections on both sides.

Contrary to the schematic view, wires cannot cross each other on the same
side. If you cannot go around a wire, you can go underneath or above. This
makes routing slightly difficult, but luckily, Fritzing has yet another tool to
help you, known as autoroute. Autoroute attempts to create wires between the
components and normally does a good job but does need a little bit of tweaking.

My solution is available at http://www.wiley.com/go/arduinosketches.
Have a look, and compare with your own.

The final step to making your shield is to send it for fabrication. This is done
automatically by clicking the Fabricate button on the bottom-right side. After
selecting the amount of printed circuit boards, the design is sent to the Fritzing Fab.

Fritzing checks your design, but only for major problems: short circuits,
design problems, or missing connections. After a few days, you will receive a
professionally made printed circuit board, ready to go! Place it on your Arduino,

http://www.wiley.com/go/arduinosketches

404

Part Ilv = User Libraries and Shields

and prepare yourself for another adventure; after you have created a shield,
you have to create the software for the shield. You do this in the next chapter.

Creating Arduino shields is an excellent way of learning electronics but can
also be a source of income. Several companies sell Arduino shields but also indi-
viduals shields on dedicated electronics sites. Arduino shields work, of course,
on Arduinos, but not only. Several boards exist with Arduino-compatible con-
nectors, even if they are not Arduinos and are not programmed by the Arduino
IDE. One example is Atmel’s SAMA5D3 evaluation board. Atmel supplies most
of the microcontrollers on Arduino boards but also creates advanced processors
for professional designs. The SAMA5D3 is one example of a processor that can
run a full Linux or Android system, but with Arduino shields.

Summary

In this chapter you have seen just how easy it is to create your own shield using
Fritzing, an open-source application to create schematics and help you create
professional quality shields. You have created your own project and developed
a solution to increase the input/output of your Arduino beyond its initial design
point. However, to use your shield, you will require software to control the
components, something that will be presented in the next chapter. You will see
how to create your own library using the Arduino IDE, and how to package it
to distribute to other people and projects.

Creating Your Own Library

This chapter discusses how to create your own library. You can find the code
downloads for this Chapter athttp://www.wiley.com/go/arduinosketches on
the Download Code tab. The code is in the Chapter 26 download and individu-
ally named according to the filenames noted throughout this chapter.

The Arduino project has had an immense success since its creation, and there
are several reasons. The cost is, of course, an important criterion to any proj-
ect. Continuous R & D has also helped, but one of the primary reasons today
is simple: the openness of the project. The Arduino community is extremely
active. Just look at the Arduino forums: Google+ groups or Arduino events
organized in cities throughout the world. This is the community that drives
the ongoing evolution of the platform, either by getting the tools to work with
new electronic components and breakout boards, or finding and creating their
own when nothing exists. In Chapter 25 you created your own shield, now you
will create your own library.

Libraries

You can use libraries for several applications, but two main uses exist. One is
to have specific routines such as temperature conversion, data processing, or
hardware I/O. The second use is to allow the use of specific hardware, hiding

405

http://www.wiley.com/go/arduinosketches

406

Part Ilv = User Libraries and Shields

away any long routines, and making hardware easy to use. This chapter looks
at both of these kinds of libraries.

Library Basics

When you import a library, you import an .h file, the header file. This is a text file
that describes what is in a C++ file (that ends with the . cpp extension). Header
files are used in most C and C++ projects. They are not required for sketches but
are required for libraries. They are a simple way of telling the compiler what to
expect in the C++ file and how to use it. It is also an excellent way for developers
to know what is contained in a library; everything is listed in just a few lines.

Simple Libraries

Function libraries are an easy entry into writing a library; they contain simple
functions similar to ones you might write in your main sketch. Don’t worry, you'll
look at making some with advanced capabilities in the “Advanced Libraries”
section. For now, these contain only simple functions, and their header file is
straightforward.

You can demonstrate the use of a potential library with a function call. You
can use an Arduino to calculate the answer to the Ultimate Question of Life, the
Universe, and Everything. Luckily, Douglas Adams has already answered this
question in The Hitchhiker’s Guide to the Galaxy; a super-computer calculated this
question for 7.5 million years before coming up with the answer: 42. Luckily, the
Arduino is a lot faster to come up with the answer, and the function looks simple:

int theAnswer ()

{

return 42;

}

Looks simple, doesn't it? The only difficulty is making this function usable
as a library. It requires a few things to set up before it is useable. First, you must
think of a name for the library, as well as the folder that will contain your files.
The choice of the name is important because it will also be used for the name
displayed on the Import Library menu item. Try to think of a name that clearly
identifies the library you will create—either the component name, function, or
application. Users of your library will depend on this. For this example, use
theAnswerToEverything.

Create a folder with this name on your desktop or anywhere you have easy
access to. Next, you need to create two files: the source file and the header file.
The Arduino IDE cannot directly open or save C++ and .h files. These can be
created with a standard text editor or with an IDE. Code::Blocks is a freeware

Chapter 26 = Creating Your Own Library

407

IDE that works on several platforms, including Windows, Linux, and Mac OS.
It is available from www.codeblocks.org/downloads/.

The header file is a file that contains a description of the functions that you
will be writing. Its name is just as important as the name of the library and
folder it lives within. For example, when you import the EEPROM library, you
add this line:

#include <EEPROM.h>

This is the header file. Typically, it has the same name as the folder it is held in,
but not always. For example, when importing the Wi-Fi library, you may see this:

#include <WiFi.h>
#include <WiFiServer.h>
#include <WiFiClient.hs>
#include <WiFiUdp.h>

Several header files are located inside this folder, and if you use the Import
Library functionality in the IDE, all header files are automatically imported.
If named well, they clearly state what they do, so anyone using the library can
know what the headers do and if they are needed. Imagine another sort of name:

#include <stuff.h>

This isn’t clear, and users will have no idea what this library does. Remember
to keep your library name precise and clear.

First, create a source file named theAnswerToEverything.cpp. The source
file is written in C++ and has the extension .cpp. Add the following contents
to the file and save it:

int theAnswer ()

{

return 42;

}

There is just this one function; it takes no parameters and returns an int. The
Arduino IDE still does not know about this function; it has to be declared. This
is the role of the header file. Create a new file named theAnswerToEverything.h
and add the following:

int theAnswer () ;

Did you see the difference? It is the same structure, only instead of having
source code within brackets, the line is immediately ended with a semicolon.
This is the declaration. It tells the compiler that this function exists, that it returns
an int, and that it takes no parameters. If called, the compiler will know that
it can find the source code within the . cpp file.

http://www.codeblocks.org/downloads

408

Part Ilv = User Libraries and Shields

There is also one other line that is required and that should be placed at the
very beginning of the file:

#include "Arduino.h"

This imports the Arduino header file, giving you access to Arduino constants
and types. It is automatically included for your sketches, but for libraries, you
must manually add this include statement.

All that is left to do is to import your new library. From the Arduino IDE, go
to Sketch = Import Library = Add Library, as shown in Figure 26-1.

2 sketch_dec05a | Arduino 1.0.6 = e
File Edit Tools Help

Verify / Compile Ctrl+R

sketch Show Sketch Folder Ctrl+K
Add File... .
Import Library... 4 Add Library...
EEPROM
Esplora
Ethernet
Firmata
GSM
LiquidCrystal
Robot_Control
Robot_Motor
RobotlRremote
sD
Servo
SoftwareSerial
SPI
Stepper il
; 3

TFT
WiFi
Wire

Figure 26-1: Import a library.

Select the folder that contains your library, and import it. If everything goes
well, the Arduino IDE should tell you that the import has finished. You can see
your library by navigating back to Sketch => Import Library where you see a
new library listed, as shown in Figure 26-2.

Now that the library has been imported, it is time to test it. Create a new
sketch, and add your library by going to the menu Sketches => Add Library =
theAnswerToEverything. This should add the following line:

#include <theAnswerToEverything.hs>

Chapter 26 = Creating Your Own Library 409

File Edit [Sl(elch Tools Help
Verify / Compile Ctrl+R

Show Sketch Folder Ctrl+K
Add File...

Import Library... Add Library...

} Arduino AVR Boards

void loop() { Audio
f/ put your main cods here, to Eridge

EEPROM

Esplora
Ethernet
Firmata

GSM
LiquidCrystal
Robot Control
Robot IR Remote
Robot Motor
Scheduler

5D

Servo
SoftwareSerial
SpacebrewYun
SPI

Stepper
Temboo

TFT

USBHost

Wik

Wire

Adafruit_SI1145_Library-master
theAnswer

Figure 26-2: A new library has been added.

With that in place, it is now time to use the function you created previously.
Add the following lines to setup (), calling the library’s function:

void setup() {
// put your setup code here, to run once:
Serial.begin(9600) ;
Serial.print ("The answer is ");
Serial.println(theAnswer()) ;

Compile it to make sure that everything works well. Then upload it to your
Arduino, and have a look at the serial output. Congratulations! You have just
created your first library.

410

Part Ilv = User Libraries and Shields

Advanced Libraries

The previous example used only simple functions, but Arduino libraries are
capable of much, much more. You have seen how to initialize external hardware
with the Arduino, usually by specifying some hardware pins. For example,
when using the Servo library, the user must specify which pin is connected to
the servo. Afterward, functions are available to control the servo, but the user
does not have to tell the driver which pin to use. The reason is simple: the driver
has stored that data in memory, so the user does not need to specify it every
time. How? C++ classes.

C++ development is oriented around objects. What is an object? It can be many
things, but mainly, it is a collection of variables and functions, all rolled into a
C++ class. A class provides blueprints; it does not define any data, but defines
data types. An object is then created by using the class blueprint.

Imagine a traffic light. It has three lights: red, yellow, and green. Physically,
three lights are connected to a microcontroller, and the microcontroller issues
instructions to each output pin; turn on the red light, and turn off the yellow
light. The traffic light is physically an object. If you make a second traffic light,
it is a copy of the first; it does exactly the same thing, has the same hardware,
and will be used for the same applications as the first traffic light, but it operates
independently of the first. This is similar to the concept of a software object. In
software, an object is a structure in memory that contains the data and func-
tionality all wrapped up in one package. In this case, imagine an object called
trafficLight. It will have several functions to allow it to work and several
variables to help it keep track of its state. If you create a traffic light and connect
it to an Arduino, you could create a trafficLight object. Connect a second one,
and you could create a second trafficLight object, and so on.

An object is defined by a C++ class. A class is a structure of code that contains
functions, variables, and a constructor. Here’s an example.

A traffic light requires three pins to work: one to activate the red light, one
for the yellow, and one for the green. Under normal conditions, only one light
should ever be on at the same time. This is easy to accomplish, but it requires
you to do two things; turn off the previous light, and turn on the new light. This
is easy enough with one traffic light, but with multiple lights, it would become
increasingly difficult to manage all the pins and variables to keep track of their
states. To make things easier, you could make an object.

To create an object, you need several things. First, you need a way to configure
the object; telling it which pins to use. Then, it requires at least three functions
for manipulating the lights. Naming them after the color they control can make
it more intuitive: red (), amber (), and green (). When creating this library, start
with the header file, and “describe” the object before building the different
parts. This is what the object in the header file TrafficLight .h might look like:

Chapter 26 = Creating Your Own Library

am

1 class TrafficLight

2

3 private:

4 int _redpin, _yellowpin, _greenpin;
5

6 public:

7 TrafficLight (int redpin, int yellowpin, int greenpin);
8 void begin() ;

9 void red() ;

10 void yellow() ;

11 void green() ;

12 };

First, the class TrafficLight is defined. This is the object that will be cre-
ated in your sketch. Next, it has two parts: one called public and one called
private. The public section is where you will place functions and variables
that will be visible to the sketch. This includes functions for controlling the
state of the lights that you (or someone else using your library) will call in the
main sketch. The private section contains functions and variables that are
not visible to the sketch, only to the object. You can see how this works in a
few paragraphs.

On line 7, there is an interesting function. It is called TrafficLight, the same
name as the class. It takes three parameters, does not return any data, and isn’t
even declared as void. This is known as the constructor, which is a function
that is automatically called when the object is created and is even called before
setup (). The constructor is vitally important because it initializes any variables
that need to be set up before the sketch has a chance to execute any functions.
Typically, constructors take parameters, in this case the pins that will be used.

There is another important requirement for header files. When a header
file is imported, the file is parsed, and the compiler knows what functions are
available. If the same file is imported again, it can lead to confusing results, and
compilers will complain. To make sure this does not happen, it is common to
wrap up the header file in a construct:

#ifndef TrafficLight_h
#define TrafficLight h

// Include statements and code go here
#endif

This construct prevents problems if somebody includes the library twice.
In the sketch, the TrafficLight object would be created like this:

const int redNorthPin = 2;
const int yellowNorthPin = 3;

1412

Part Ilv = User Libraries and Shields

const int greenNorthPin = 4;
TrafficLight northLight = TrafficLight (redNorthPin, yellowNorthPin,
greenNorthPin) ;

When this object is created, the constructor is called with the three variables.
Now it is time to write the constructor. This function would be included in
TrafficLight.cpp:

TrafficLight::TrafficLight (int redpin, int yellowpin, int greenpin)
{

_redpin = redpin;

_yellowpin = yellowpin;

_greenpin = greenpin;

}

The function is extremely simple, but it does differ from functions
that have been previously written in this book. First, the function name:
TrafficLight::TrafficLight. The first part, TrafficLight: :, is the name of
the class that the function will belong to. The second part is the function name.
Because this is a constructor, it must have the exact same name as the class. It
takes three int variables. Inside the function, the parameters it was given are
stored in three variables: _red, yellow,and _green. Where do they come from?
They were defined in the header file on line 4. Because they are in the private
section, they cannot be called from the sketch but are used inside this particular
class object. Let the user have access to the required functions, and keep the
rest hidden away. Imagine that you have two traffic lights, a northbound light
and a southbound light. They are created like this:

TrafficLight northLight = TrafficLight (1, 2, 3);
TrafficLight southLight = TrafficLight (9, 8, 7);

Both have been created with different variables. When these objects were
created, each called the constructor independently. Their private variables are also
different: northLight’s red variable contains the value 1, but southLight’s red
contains the value 9. You can create many objects with the same functionality but
with different variables. This makes it possible to turn the northbound light red,
stopping all traffic, while turning the southbound light green, allowing traffic
to go straight, or to turn at a rather difficult junction, without any other traffic.

On line 8 of the header file, there is another function, begin (). You have seen
functions with the same name throughout this book, which are used when a
device is ready to be used. The constructor set up only the variables; it did not
set any outputs, or even declare any pins as output. Typically, this is done in a
begin () function. The sketch might need those pins for something else before
using a traffic light, so it is often good practice to wait until the begin () func-
tion is called. A begin () function might look like this:

Chapter 26 = Creating Your Own Library

413

Boolean TrafficLight: :begin (void)

{

// Set pins as outputs
pinMode (_redpin, OUTPUT) ;
pinMode (_yellowpin, OUTPUT) ;
pinMode (_greenpin, OUTPUT) ;

// Set Yellow and Green off
digitalWrite(_yellowpin, LOW) ;
digitalWrite(_greenpin, LOW) ;

// Set Red on
digitalWrite(redpin, HIGH) ;

return true;

}

The begin () function sets the traffic light pins as outputs, and sets the yellow
and green lights to off. As a security, these traffic lights will start with the red
light on, halting traffic, adding a level of security before deciding which direc-
tion should be green. Next, you need to create functions to turn on individual
lights. When activating the green light, both the red and yellow light are to be
turned off. The greenLight () function might look like this:

void TrafficLight::greenLight (void)

{

// Set Red and Yellow off
digitalWrite(_redpin, LOW) ;
digitalWrite(yellowpin, LOW) ;

// Set Green on
digitalWrite (_greenpin, HIGH);

Adding Comments

Comments are a critical part of any code and are unfortunately often omitted.
They serve several purposes and are particularly useful in libraries.

Most comments are used inside code to explain the function of a portion of
code. Of course you know what the code does; you have spent an hour writing it,
and even more debugging it, and it has become perfect: elegant and functional.
Would co-workers understand what you have done? They might have come
up with another way and may be confused by your code if it isn't explained a
little, no matter how elegant it is. Also, would you read your code 1 year from
now? You might have done dozens of different projects, and your coding style

M4

Part Ilv = User Libraries and Shields

might have changed since this project. Be nice to people; don’t hesitate to write
a comment if you think it could be helpful.

Ironically, one of the problems with comments is when there are too many
comments, or even useless comments. If a variable called inputpin is declared
as an int, there is no point writing a comment to say that it is an input pin and
that it is declared as an int.

Comments are not just about functionality but also about the project. Someone
reading the traffic light header file may understand what the library does, but
there are several types of traffic lights. Most of the time, two traffic lights are
identical; if the northbound light is green, then the southbound light is too,
allowing traffic to flow in both directions. This isn’t the case for this library; the
advantage is that you can control both lights independently, but the disadvantage
is that it generates more work. Tell the user that!

/***
This library is used to control a single traffic light,
it does not allow you to create pairs, instead, you have
full control over the way you want the traffic light to
behave.

It requires three pins per traffic light

Written by an Arduino Sketches reader
BSD license, all text above must be included in any redistribution

***/

class TrafficLight

private:
uint8 t redpin, _amberpin, greenpin;

public:
TrafficLight (uint8_t redpin, uint8_t amberpin, uint8_ t greenpin);
void begin() ;
void red() ;
void amber () ;
void green() ;

}i

It is now clear what the library is used for. Also, you get to add your name
to a project to let people know who did this amazing library, which allows you
to set a license. All the code available in this book has the BSD license—either
code written by myself or by other parties. The BSD license makes the code
free to use, but without any guarantee. It is free to redistribute, but the original
license must remain. It allows code to be used in part or in whole in any software
project, free or commercial. Remember that the Arduino project is open source;
be nice and give back to the community when possible.

Chapter 26 = Creating Your Own Library

415

Adding Examples

Now that you have read through this example and added functions to turn on
the different lights, it is time to move on. Before distributing your library, your
users need to know how the library works. You can spend time writing docu-
mentation, but the easiest way to show people how a library works is to create
an example program. From there, they can upload the example to an Arduino,
modify the code to see how it works, and then copy/paste parts of the example
into their own projects.

An example program is simply a sketch that uses your library. Again, make
sure to comment your code to make it readable, and explain what is being done.
Don’t use a variable that hasn't been explained.

To add an example, first, write a sketch that uses the library. Next, go to
the folder that you are creating for your library. Inside this folder, create a
folder, “examples”. This is where the examples will be placed. Inside that folder,
create another folder, the name of the example you want to create. Some libraries
might require several examples. (Remember, the Ethernet library in Chapter 9
has multiple examples for servers and clients.) Now, paste your sketch inside
this folder, keeping the same name as the folder but with the extension . ino (for
Arduino sketch). Alternately, you can use the Arduino IDE to create the files
and save them to disk directly. When the folder is imported, the Arduino IDE
automatically adds any examples it finds into the Examples menu. For example,
Figure 26-3 shows my TrafficLight library folder with two example sketches.

Name w
v i examples
v a Onelight
<! Onelight.ino
v Threelights
<! Threelights.ino
i/ README.txt
i Trafficlight.cpp
h! TrafficLight.h

Figure 26-3: Traffic lights folder layout

Read Me

Most projects contain a README file—a text file that contains information about
files in a folder. Historically, they were used to describe the contents of a folder,
and were sometimes called README.1ST to inform the user that the contents
should be read first. The README file should contain information about the
project, the functionality that the library adds, what the user needs to make it

416

Part Ilv = User Libraries and Shields

work, and the examples included. This gives the user a good idea about what
your library does without having to look at the source code.

Coding Style

To make it easier to both use and to distribute libraries, certain coding styles
should be followed. These general rules make everything simpler and to make
sure that everyone has a great time when programming Arduino. You can
find the official API style guide here at http://arduino.cc/en/Reference/
APIStyleGuide.

Use CamelCase

Sooner or later, you will need to write a function that is two or three words
long. To put several words into a single compound phrase, there are several
techniques possible. Programming languages are full of examples; using under-
scores results in functions like this_function (), and some languages even
went as far as to put the first word in uppercase and the second in lowercase,
but THESEfunctions () isn't easy to read.

The Arduino style uses CamelCase: each word starts with a capital with the
exception of the first letter. Functions are easier to read that way; functions such
as readFile () Or openImage () are immediately clear and remain perfectly read-
able. CamelCase is even used for multiple everyday objects; the first known use
of CamelCase is in a 1950s technology called CinemaScope. Some readers might
be reading this book on an eReader, another example of CamelCase.

CamelCase does have one disadvantage; it can be difficult to read functions
that contain several uppercase letters: Read1D () for example. Of course, the
function can read an ID, but functions such as GetTcPIPSocketID () become
complicated. Should you write Get TCPIPSocketID () Or GetTcpIpSocketId()?
Generally, you should avoid abbreviations, but when they are inevitable, it is
often better to write them as capitals.

Use English Words

Don'’t shorten words for your functions. If you can’t explain it in three words,
look for another way. Always use complete words: deleteFile () is always clearer
than delFile (), and oFile () doesn’t mean anything, where openrile () does.
Again, it is better to avoid abbreviations because only some abbreviations are
clear to most people. You have probably heard of HTML, and writing “Hyper
Text Markup Language” is going to make some ridiculously long function
names. You can find a perfect example in the Arduino libraries; they don't talk
about PWM, they called the function analogwWrite ().

http://arduino.cc/en/Reference

Chapter 26 = Creating Your Own Library

a7

Don’t Use External Libraries

If you are writing a library, make sure that it uses only the Arduino standard
libraries, or if absolutely necessary, board-specific libraries. If you have a great
idea for a function, but one that can run only on an Arduino Esplora, then you
can use the Esplora libraries. However, if it can be used on any Arduino, it would
be a shame to limit it to one device. Similarly, don’t rely on third-party external
libraries; you are creating an external library, and users might not want to use
your library if it depends on another one. Importing several libraries makes
the code bigger.

Use Standard Names

Most hardware-related drivers use a begin () function in their code. Don't try
to find synonyms; keep the same names as other functions. For example, if
obtaining data, always use read: readInput () or readstatus (). When output-
ting, use write: writeData ().

Distributing Your Library

When the coding is complete and the testing has been done, it is time to
distribute your library. You can create a Zip file of your library and post it on
your homepage (or the page you use to sell your hardware). This makes the
library available to buyers (or visitors to your site) but does not increase visibility.

To make your library as visible as possible, consider putting it on one of the
many sites designed specifically for source code, such as Sourceforge, GitHub,
or Google Code. There are dozens of sites available for free, so long as your
project is open source. This also automatically adds your library to search
engines and allows users to help add new features, be alerted to updates, and
make comments and requests.

Closed Source Libraries

A closed source library is one where you distribute binary code, and users are
not allowed to see the source code. They cannot see the work you have done and
therefore cannot modify the library. This also adds the possibility of request-
ing payment for use of your library, but it goes against everything the Arduino
project is trying to do and is also technically extremely difficult to achieve.
Compilers and linkers take source code and transform it into machine code,
code that can be executed on a microcontroller or processor. This is generally
the format in which closed source libraries are distributed. The problem is that
binary files are created for one specific processor and cannot be used on another.
A program compiled for an AVR cannot be run on an ARM-based device such

18

Part Ilv = User Libraries and Shields

as the Arduino Due or an Intel-based device such as the Galileo. It has to be
recompiled. Even worse, not all AVRs are the same; there are differences in
models that make binary code imports impossible. In short, releasing a binary-
only library makes that library usable on a single Arduino model.

Example Library

In Chapter 25, you created a shield for Arduino based on the PCF8574AP. Now
it is time to write a library to use this device. If you haven’t created your shield
yet, or if you haven't received it, don't worry; you can still use the breadboard
version presented in that chapter, which works in exactly the same way.

The Library

The I’C expander shield contains two PCF8574AP chips, both of which have
configurable addresses. Therefore, you must select two addresses to use for
your devices. You can choose which device will be the first selected—either
chip 0 or chip 1 depending on the application. This will be handled in the con-
structor. The two addresses must be stored inside the class for the rest of the
application to work. To do this, they will be saved as two 8-bit variables called
_chip0Address and _chiplAddress. Part of the job of the expander shield is to
provide extra outputs: two banks of 8 pins. To make this easier to the user, the
library should be designed to allow three different write operations: bit by bit,
8-bit writes, or 16-bit writes. The Arduino naming convention states that these
operations should be called write, and the functions will be called writeBit (),
writeByte (), and writeword (). To write a bit, two values are required: the bit
to write and its position. The bit will be a boolean, and the position will be an
8-bit value. To write a byte, again, two values are required: the byte to write
and which device to use. The byte will be coded as a byte (naturally), and the
device will be a Boo1: 0 for device 0 and 1 for device 1. To write a 16-bit word,
only one parameter is required, the word itself. All three functions should return
a boolean: true if the operation succeeded and false otherwise.

The other part of the expander’s job is to read data. Three functions need
to be created to read data. The Arduino naming convention states that they
should be called read: readBit (), readByte (), and readword (). The readBit ()
function should require one parameter, the bit to read, and output a boolean.
The readByte () function requires one parameter, the chip ID, as a boolean,
and returns a byte. The readword () function does not require any parameters
and returns a word.

Since these devices are I°C devices, they will also require the wire library.

There is one thing that should be taken into account. The user might want to
write a bit of data to one of the chips, but how do you do that without affecting
the other bits? Well, as far as the chip is concerned, you can’t. You can write only

Chapter 26 = Creating Your Own Library

419

8 bits of data at a time, the entire output of the chip. To achieve this, two more
variables will be needed; chipooutput and chipiloutput will both contain
8-bits of data, the data that will be sent to the chip. The user does not need to
worry about how a bit of data is sent, or even be aware that the library cannot
send a single bit, which is one of the reasons why libraries are so powerful.
The library takes care of the details, letting the user concentrate on the sketch.

Finally, a begin () function will be written. This function will initialize the
chip to a power-on state and will be called when the user is ready.

By simply thinking about what the user would need the shield to do, you'll
have a good idea of what the header file should contain. It will look something
like this (filename: PCF8574AP . h):

#include "Arduino.h"

class PCF8574AP
{
private:
int chipOAddress;
int chiplAddress;

int_chipOOutput;
int _chiplOutput;

public:
PCF8574AP (int chipl, int chip2);
void begin() ;

bool writeBit (bool bit, int pos);
bool writeByte(int data, bool chipSelect) ;
bool writeWord (int data) ;

bool readBit (int pos) ;
int readByte (bool chipSelect) ;
int readWord() ;

}i

Now that the structure is created, it is time to work on the C++ file, called
PCF8754AP. cpp. First, add references to the libraries it depends on—arduino.h
and wire.h—as well as the library header, followed by the constructor:

#include "Arduino.h"
#include "Wire.h"
#include "PCF8574AP.h"

PCF8574AP: : PCF8574AP (uint8_t chip0O, uint8_t chipl)

{
_chipOAddress = chipO;
_chiplAddress = chipl;

420 Partlv = User Libraries and Shields

And that’s it. All that needs to be done is to copy the values sent as param-
eters into private variables. Configuration of the chip is done in begin () and
will look like this:

void PCF8574AP: :begin()

{

Wire.begin() ;

// Set all pins of chip 0 to HIGH
_chipOOutput = OxFF;
Wire.beginTransmission(_chipOAddress) ;
Wire.write (_chipOOutput) ;
Wire.endTransmission() ;

// Do the same for chip 1
_chiplOutput = OxFF;
Wire.beginTransmission(_chiplAddress) ;
Wire.write (_chiplOutput) ;
Wire.endTransmission() ;

}

The function begins by calling wire.begin (). Why does it do that? Although
the device requires the Wire library for communication, the user doesn’t need
to know exactly how the shield is connected. It’s up to this function to initialize
the I*C library and start communication with the chips. Next, the function then
sets both output variables to oxFF (or, in binary, 1111 1111). It then proceeds to
write that value to each of the two chips. When the chips first power on, this is
their default state. So why does this function do that, if this is what is expected?
There is no guarantee that the device was powered on; it might just have been
reset, or the device is in an unstable state. This makes sure that the device is in
a known configuration before continuing.

Now to read data. The easiest function to accomplish is readByte () . It simply
reads the 8 bits of the chip and returns that data.

uint8_t PCF8574AP::readByte (bool chipSelect)

{

byte _data = 0;

if (chipSelect == 1)
Wire.requestFrom(_chiplAddress, 1);
else
Wire.requestFrom(chipOAddress, 1);

if (Wire.available())

{

_data = Wire.read() ;

}

Chapter 26 = Creating Your Own Library 421

return(_data) ;

}

This function requests 1 byte of data from either chip, depending on the
value of chipselect. If data is present in the I?C buffer, that data is copied into
the local variable data and then returned. If no data is available, the function
returns zero.

Reading words is just like reading bytes, only 2 bytes are read. This func-
tion obtains a byte of data from both chips, merges them into a word, and then
returns that data. This is accomplished with the following:

uintlée t PCF8574AP::readWord (void)

{

byte _data0 0;
byte _datal = 0;

Wire.requestFrom(_chipOAddress, 1);
if (Wire.available())

{

_data0 = Wire.read();

}

Wire.requestFrom(_chiplAddress, 1);
if (Wire.available())

{

_datal = Wire.read();

}

return(word(_datal, _data0));

}

Things become slightly more complex when reading a specific bit, requiring
bitwise operations:

bool PCF8574AP::readBit (uint8_t pos)

{

byte _data = 0;

// Is the bit requested out of range?
if (pos > 15)
return O;

if (pos < 8)
Wire.requestFrom(chipOAddress, 1);
else
{
Wire.requestFrom(_chiplAddress, 1);
pos -= 8;

422

Part Ilv = User Libraries and Shields

}

if (Wire.available())

{

_data = Wire.read() ;

return (bitRead(data, pos));

}

The function reads in data from one of the chips with wire.requestFrom(),
depending on the bit position. If the requested bit is between 0 and 7, the request
is sent to chip 0; otherwise it is sent to chip 1. Then, the Arduino function
bitRead () is called, extracting the bit that was requested and returning it as a
boolean value.

All the read functions have been completed, but it isn't over yet. The write
functions need to be written. Writing a byte is straightforward:

bool PCF8574AP::writeByte(uint8 t data, bool chipSelect)

{

if (chipSelect == 0)

{

Wire.beginTransmission(_chipOAddress) ;
_chipOOutput = data;
Wire.write(_chipOOutput) ;

}

else if (chipSelect == 1)

{

Wire.beginTransmission(_chiplAddress) ;
_chiplOutput = data;
Wire.write(_chiplOutput) ;

}

else

{

return false;

}

Wire.endTransmission () ;

return true;

}

As with readByte (), writeByte () selects only one chip. If chipselect is 0,
an I’C transmission begins at chip 0. data is copied to _chipooutput, and its
contents are sent to the device. If chip 1 is selected, the same operation occurs,
but for chip 1. Finally, the data is sent, and the function returns true.

Writing a word is similar:

bool PCF8574AP::writeWord(uintlé_t data)

{

Wire.beginTransmission(chipOAddress) ;
_chipOOutput = ((uint8_t) ((data) & O0xff));

Chapter 26 = Creating Your Own Library

423

Wire.write(_ chipOOutput) ;
Wire.endTransmission() ;

delay (5) ;

Wire.beginTransmission(_chiplAddress) ;
_chiplOutput = ((uint8 t) ((data) >> 8));
Wire.write(_chiplOutput) ;
Wire.endTransmission() ;

return true;

By now you should be accustomed to using both chips. The logic behind
this is that both variables are updated, and both chips are updated with those
variables. The trick comes in separating a word into 2 bytes; this is done with
masks and shifts. The first conversion transforms a word into a byte, by omit-
ting the first 8 bits using a mask. The second conversion does the same; only it
shifts the first 8 bits to the right, essentially pushing the first 8 bits to the place
of the second 8 bits, and then masking.

The last function that you need is writing individual bits:

bool PCF8574AP::writeBit (bool bit, uint8_t pos)
{
// Is the bit requested out of range?
if (pos > 15)
return false;

if (pos < 8)
{
//Chip 0
if (bit == true)
{
bitSet (_chipOOutput, pos);
}
else
{
bitClear (_chipOOutput, pos);
}
Wire.beginTransmission(chipOAddress) ;
Wire.write(_chipOOutput) ;
Wire.endTransmission() ;

}

else

{
//Chip 1
if (bit == true)
{

bitSet (_chiplOutput, pos - 8);

}

424

Part Ilv = User Libraries and Shields

else

{

bitClear(_chiplOutput, pos - 8);

}

Wire.beginTransmission(_chiplAddress) ;
Wire.write(_chiplOutput) ;
Wire.endTransmission () ;

}

return true;

}

Because the PCF8574AP can't actually read what it is outputting, when the
user wants to modify a single bit, the function needs to know what the data is
on the bus and then modify it. This is why it was necessary to save the output
as a variable. This is the benefit of using a library, hiding a detail that end users
don’t need to know. Users can just see that they can modify a bit with a single
instruction.

Examples

It doesn’t matter how clear function names are; libraries are always better with
examples. Example sketches also serve another purpose—to test the hardware.
One of the best ways to test if the hardware is correctly set up is to open up an
example and see it run. Even if the shield it drives is basic, users will still use
example sketches as a basis for their own. Put simply: Example sketches need
to clearly demonstrate the functionality of the library.

This library has two examples: one for writing outputs and the other for reading.
Of course, the shield can do both at the same time, so comments need to be put
in place to tell the user that. Also, critically important, the PCF8574AP can read
inputs correctly only if the output is set to high; this needs to be clearly explained
in a comment.

First, for the example to write outputs, you must think about what the user
needs. Of course, he needs to understand the library. He will also need to set
up an example. LCD screen examples are easy to set up; if you are using an
LCD library, you probably already have the LCD screen. This case is different.
Nothing on this particular shield is visible to the user; there are no LEDs, no
LCD screens, nothing that can tell the user what is going on. To see what the
shield can do, a user will have to add his own components. What should you use?
Nothing too fancy. An awesome example would be to use an 8x8 LED matrix,
but not everyone will have that. Don't use specific hardware in examples; use
tools that are readily available. The cheapest, most readily available, and most
robust component available to makers is the trusty LED; almost everyone has a

Chapter 26 = Creating Your Own Library 425

few LEDs on their desk with the corresponding resistors. They might not have
16, so this example uses only one output, with 8 LEDs.

#include <Wire.h>
#include <PCF8574AP.h>

// Define the addresses of both chips on the expander board
#define EXPANDER_CHIPO B0111000
#define EXPANDER CHIP1 B0111001

// You must provide two I2C addresses, one for each chip on the shield
PCF8574AP expanderShield = PCF8574AP(EXPANDER7CHIPO, EXPANDER7CHIP1);

byte output;

void setup ()
{
Serial.begin(9600) ;
expanderShield.begin(); // Start the expander shield, set all outputs
to 1

void loop ()

{
// Write a 16-bit word to the expander shield, all ones
expanderShield.writeWord (0xXFFFF) ;
delay (1000) ;

// Time to begin the light show

// Make the lights go towards the center by writing bytes
expanderShield.writeByte (B01111110, O0);

delay (1000) ;

expanderShield.writeByte (B00111100, O0);

delay (1000) ;

expanderShield.writeByte (B00011000, O0);

delay (1000) ;

expanderShield.writeByte (BO0000000, O0);

delay (1000) ;

// Now make the lights go towards the edges by writing individual bits

// Bits can be set by writing a 1 or a 0 to a specific location: bits
0 to 15

expanderShield.writeBit (1, 0); // Write a logical 1 to bit 0 of the
expander shield

expanderShield.writeBit (1, 7); // Write a logical 1 to bit 7 of the
expander shield

delay (1000) ;

expandersShield.writeBit (1, 1);

426

Part Ilv = User Libraries and Shields

expanderShield.writeBit (1, 6);
delay (1000) ;
expanderShield.writeBit (1, 2);
expanderShield.writeBit (1, 5);
delay (1000) ;
expanderShield.writeBit (1, 3);
expanderShield.writeBit (1, 4);
delay (1000) ;

// turn off all the lights
expanderShield.writeByte (0, 0);
delay (1000) ;

// Create a light display by shifting a bit from one side to the
other, increasing speed
for(int i = 0; 1 < 20; i++)
{
output = 1;
for(int j = 0; j < 8; Jj++)
{

// Write a byte to device 0 (the first I2C extender)
expanderShield.writeByte (output, 0);
delay (600 - (i * 30));
output = output << 1;
}
1
1

This example shows the user how to use the PCF8574AP I/O expander shield,
and the very first thing it does is to include that library. To be able to use that
library, the user must provide two pieces of information: the address for each
component. To make this clear, the addresses are included as define statements
on lines 5 and 6.

On line 9, the PCF8574AP object is created, called expandershield. By using
the defined addresses, the code becomes more readable, and the user understands
what is required to get started. On line 13, the setup () function is declared, as
with any sketch. Inside, the serial connection is configured and expandershield
is initialized with a begin () function.

The 1oop () function is declared on line 20, and this is where the example code
will be placed. To show how the library can write words (or 16-bit numbers),
the example uses the writeword () function. This sets all the outputs to HIGH,
turning the LEDs off.

Next, the user is presented with an example on how to use writeByte ().
A series of four commands are run, each time setting more and more outputs to 0.
The effect of this is to turn on the LEDs from the edge towards the center.

The next series of instructions demonstrates how to write individual bits
using the writeBit () function. Once again, a visual effect is created, this time
turning the LEDs off from the edge towards the center.

Chapter 26 = Creating Your Own Library

427

Finally, to make the example even more visually appealing, a final phase is
used. By using two for loops and using one value for the output and another
value for the delay between operations, the result is a racing light going from
one side of the LEDs to the other, going ever faster and faster.

Multiple comments have been placed in the file to explain to the user what
the sketch is doing. So long as LEDs are connected to the board (cathodes con-
nected to the pins) the user will be presented with a nice light show.

README

Every project should have a README file, a simple text file that describes the
project. When you look at a project on GitHub, the text you see on the project
page comes directly from the README file in the project. Here is mine:

/***

ArduinoSketches Expander Shield Driver

This library is used to control the two PCF8754APs
present on the expander shield. They can perform both
reads and writes, but to perform a read, the output
on that pin must be high.

This library accesses those devices through bit-wise,
byte-wise or word-wise reads and writes.

Written by James A. Langbridge, enhanced by a reader of
Arduino Sketches.

Released under BSD license

To run the examples in this library, you will require
at least 8 LED lights, and corresponding resistors

(for red LEDs, use 150 ohm resistors). The anode should
be connected to the resistor and power supply, and the
cathode should be connected to the input/output of the
shield.
***/

The first line tells the user what this library is for: the Arduino Sketches
expander shield. It contains a little more detail on the project, what it does, how
it achieves that, who originally wrote it, and the license the project is distributed
under. I wrote the original library, but you will continue the project. This library
is distributed under the BSD library; use it in any way you see fit.

Secondly, the file also includes the list of components required to run the
examples, if required. For this example, the user requires 8 LEDs, and the
corresponding resistors.

428

Part Ilv = User Libraries and Shields

Finishing Touches

As usual, the source code here is functional but could do with a little bit of
tweaking. Remember those write functions that tell if the information was
written correctly? They all return true for the time being, but you can enhance
that by looking at the amount of bytes written to the I°C bus. Use that data to
give a more accurate response.

One thing is missing from this library: to perform a read, the user must first
make the output high. What would happen if that weren’t done? The reading
would not be accurate. You could add this to the read functions; because the
outputs are known through a global variable, make sure that the output is high
before reading.

You have your shield, and you have your library, hopefully with your name
on both. Make this your project, and be creative with the applications you come
up with. Don’t forget to tell me all about your projects!

Summary

In this chapter you have seen how to create your own library, and how to make
it easy to use by other users, by creating examples and other files. You have seen
the importance of writing clear comments, how users will read your library,
as well as the importance of naming your functions. Now you have a working
library, ready to use with your own shield. All that is left to do is to imagine
new applications!

*/ (comments), 33
/* (comments), 33
3G, 274
4G, 275

A
abs () function, 73
AC (alternating current), 46
voltage and, 47
Adafruit 5i1145 library, 384-388
ADC (Analog to Digital Converter),
67-68, 295
addresses
IP addresses, 153
MAC address, 153
retrieving, 176
ad-hoc mode for wireless, 171
advanced libraries, 410-413
amperage, 47, 48
analog 1/0O, 67-68
analogRead() function, 68
analogWrite () function, 68
microcontrollers and, 67-68
analog systems, 5
analogRead () function, 68, 353
analogWrite () function, 59-60, 68
archives versus installers, 27

Index

Arduino
capabilities, 22-23
counterfeits, 9
as Ethernet client, 157-158
fetching example program, 161-162
sending/receiving data, 158-161
as Ethernet server, 163-165
sketch example program, 165-167
open source, 20
as Open Source Hardware project, 7
original, 9
software download, 27-28
Arduino board, original, 7
Arduino Due, 13-14, 37
SPI on, 123-125
USB and, 325-237
Arduino Esplora, 18
TFT, 229
Arduino Ethernet, 11
Arduino Ethernet Shield, 21
Arduino GSM Shield, 22
Arduino language, I/O functions,
digital I/O, 65-67
Arduino Leonardo, 10-11
Arduino Mega 2560, 11-12
Arduino Micro, 13
Arduino Mini, 13

429

430

Index = A-B

Arduino Motor Shield, 21
Arduino Playground, 29
Arduino Pro, 16
Arduino project, 7-8
Arduino Robot, 16-17, 348-349
Arduino Tre, 19
Arduino Uno, 10
voltage regulator, 47
Arduino WiFi Shield, 22
Arduino Wireless SD Shield, 21
Arduino Yin, 18-19
Arduino Zero, 19
ARM technology, 6
array data type, 37
ASCII, keyboards, 324
ATmega series, 8
Atmel (Advanced Technology for
Memory and Logic), 5
megaAVR, 8
microcontrollers for Arduino, 7
Atmel 8-bit AVR, 7
Atmel AVR, 5-7
attach() function, 264-265
attached() function, 245
attachGPRS () function, 283
attachInterrupt ()
function, 77-78
ATtiny series, 8-9
audio, 292
ADC (Analog to Digital
Converter), 295
DAC (Digital to Analog
Converters), 294, 295
digital
creating, 296
playing, 296297
sound files, 292-294
storage, 296
effective sampling rate, 293
frequencies, 293
waves, 292-293
audio tones
noTone () function, 69
tone () function, 69

autoscroll () function, 198
available () function, 91-92

B
BASIC Stamp, 7
baud rate, 83-84
begin() function, 91, 94,
155, 174-175
beginsD() function, 354-355
beginSpeaker () function, 356-357
beginTFT () function, 354-355
bipolar stepper motors, 255-256
bits
reading, EEPROM library, 105-107
writing, EEPROM library, 105-107
Blink, 29-33
blink () function, 197
Blum, Jeremy, Exploring
Arduino, 26
boolean data type, 36
bootloaders, 33
breadboards, 23, 56
connection points, 57
Fritzing, 396
shields, 395-398
solderless, 57
strips, 57
break statement, 40
breakdown voltage, 54
Bridge library, 361-364
example application, 369-373
FilelO library, 366-367
Process class, 364-366
YunClient, 368
YunServer class, 367-368
bus speed, I*C protocol, 147-148
buttons, Esplora library, 339-340
buzzer, Esplora library, 340-341
byte data type, 37
bytes
reading, 92
EEPROM library, 104-105
multiple, 92-93
writing, EEPROM library, 104-105

Index = C-D

431

C
C++ classes, 383, 410
cabling, Ethernet, 151
callbacks, 141
Firmata library, 264-266
capacitors, 53-54
decoupling, 54
farad, 54
CD drives, 209
channels, Wi-Fi, 172
char data type, 36
circle() function, 231-232
circuits (electrical), 46
classes
C++, 383,410
SoftwareSerial, 99
clear() function, 196
clearScreen() function, 355
closed source libraries, 417-418
CodeBlocks, 29
coding styles, 416-417
color, TFT library, 232
comments, 30, 33
libraries, 413—414
config() function, 178
connect () function, 157-158
connection points, breadboards, 57
connectServer () function, 86
constrain() function, 73
constructors, 411
control board (Robot library)
controls, 350-351
LCD screen, 354-356
music, 356-357
robot personalization, 353-354
sensor reading, 351-353
control structures, 38—41
cooperative multitasking, 309-311
cos () function, 76
CPOL (Clock Polarity), 123
createChar () function, 199
Creative Commons Attribution
Share-Alike license, 29
CRT (cathode ray tubes), 226227

cruise ship analogy for analog
1/0, 67
CS (Chip Select), 118
cursor, LiquidCrystal library, 196-197

D
DAC (Digital to Analog Converters),
294, 295
data
available () function, 91-92
reading

begin() function, 94
bytes, 92-93
end () function, 94
parsing data, 93-94
peek () function, 93
starting communications, 91
sending, 90
data bits, 85
data encapsulation, 85
data types
array, 37
boolean, 36
byte, 37
char, 36
double, 37
float, 37
int, 37
long, 37
short, 37
String, 37
string, 37
unsigned char, 36
unsigned int, 37
unsigned long, 37
void, 36
word, 37
datalogging shields, 213-214
DC (direct current), 46
voltage and, 47
DDR, 101-102
debugging, output and, 86-87
debugPrint () function, 355

432

Index = D-E

declaring functions, 407-408
declaring variables, 34
decoupling capacitors, 54
delay() function, 70-71
delay function, 35
delayMicroseconds ()
function, 71
detach() function, 245
detachInterrupt () function, 78
DHCP leases, renewing, 156-157
DHT11, 179-189
digital audio
creating, 296
example program, 298-303
playing, 296297
sketch, 300-303
storing, 296
digital I/O
digitalRead() function, 66—67
digitalWrite () function, 67
INPUT pins, 66
INPUT_PULLUP pins, 66
OUTPUT pins, 66
pinMode () function, 66
voltage and, 65
digital sound files, 292-294
digitalRead () function,
66—67, 353
digitalwWrite() function,
67,308, 353
diodes, 54-55
laser, 55

LEDs (light-emitting diodes), 55-56

Schottky diodes, 55
Tunnel diodes, 55
Zener diodes, 54-55

DIP (Dual In-Line Package) chips, 57

disconnect () function, 177-178
displayLogos () function, 355
DMA (Direct Memory Access), 5
DNS (Domain Name Service), 153
double data type, 37

downloads, Arduino software, 27-28

DRAM (Dynamic RAM), 102

drawBMP () function, 355
drawCompass () function, 355
Dual Scan (DSTN), 227

E
Eclipse, 29
EDGE (Enhanced Data rates
for GSM Evolution), 274
editor, 28
EEPROM (Electronically Erasable
Programmable Read-Only
Memory), 5, 103
Arduinos and, 103-104
example program, 110-113
library, 104
reading bits, 105-107
reading bytes, 104-105
reading strings, 107-108
values, reading/writing, 108-110
writing bits, 105-107
writing bytes, 104-105
writing strings, 107-108
nonvolatile memory, 114
storage, preparation, 113-114
effective sampling rate, audio, 293
EIA (Electronic Industries
Association), 50
electricity, 46
amperage, 47, 48
circuits, 46
Ohm'’s law, 49
resistance, 47, 48
voltage, 47-48
electronic components, 23, 49-50
breadboards, 56-57
capacitors, 53-54
diodes, 54-55
LEDs, 55-56
inputs, 57-58
outputs, 57-58
resistors
usage, 52-53
values, 50-52

Index = E-F

433

tolerance, 47
transistors, 56
electronics, 45-46
electricity and, 46
embedded systems, debugging
and, 86-87
encapsulation, 85
encryption
types, 177
WEP, 173
Wi-Fi, 172-173
WPA2, 173
end () function, 94
EPROM (Electrically Programmable
Read Only Memory), 102
chip reprogramming, 102
Esplora, 336-337
Esplora library
buttons, 339-340
buzzer, 340-341
example program, 342-344
LCD module, 342
RGB LED, 337-338
sensors, 338—-339
TinkerKit, 341-342
Ethernet
Arduino as client, 157-158
fetching example program,
161-162
sending/receiving data, 158-161
Arduino as server, 163-165
sketch example program, 165-167
cables, 151
hubs, 151-152
library
importing, 154-155
starting, 155-157
overview, 150-151
PoE, 152
switches, 151-152
EthernetClient object, 157-158
examples, libraries, 415
Exploring Arduino (Blum), 26
external libraries, 381-383

F
farad, 54
FAT (File Allocation Table), 213
fetching, example program, 161-162
FilelO library, 366-367
files
digital sound files, 292-294
SD library
closing, 216-217
opening, 216-217
reading, 217-218
writing, 217-218
source files, 25
filesystem, SD cards, 212
Firmata, 262
Firmata library, 262
callbacks, 264-266
messages
receiving, 263-264
sending, 263
Firmata protocol
example program, 268-269
SysEx, 266267
Flash memory, 210-211
Arduinos and, 103
float data type, 37
floppy disks, 208209
folders, SD library, 218-219
for loop, 41
frequencies, audio, 293
Fritzing, 22
breadboards, 396
schematics, 398-402
functions, 34, 42

abs(), 73

analogRead(), 68,353
analogWrite (), 59-60, 68
attach(), 264-265
attached(), 245
attachGPRS(), 283
attachInterrupt (), 77-78
autoscroll (), 198
available(), 91-92

begin(), 91,94, 155, 174-175

434

Index= F

beginsD(), 354-355

beginSpeaker(), 356357
beginTFT(), 354-355
blink(), 197

circle(), 231-232
clear(), 196
clearScreen(), 355
config(), 178

connect (), 157-158
connectServer(), 86
constrain(), 73

cos(), 76

createChar(), 199
debugPrint (), 355
declarations, 407-408
delay, 35

delay(), 70-71
delayMicroseconds(), 71
detach(), 245
detachInterrupt (), 78
digitalRead(), 66—67, 353
digitalwrite(), 67, 308, 353
disconnect (), 177-178
displayLogos (), 355
drawBMP (), 355
drawCompass (), 355

end(), 94

getKey (), 328
getModifiers(), 328-329
getTimeStamp (), 372
getVoiceCallStatus(), 281-282
getXChange (), 329-330
getYChange (), 329-330
hangCall(), 282
interrupts(), 78
isDirectory(), 219
keyboardRead (), 352

loop (), 35,130, 164
maintain(), 156-157
map (), 73-74

max(), 72-73
micros(), 71-72
millis(), 71

min(), 72

motorsStop(), 351
noAutoscroll (), 198
noBlink (), 197
noCursor (), 197
nolnterrupts(), 78
noTone (), 69, 341
parameters, 34

parseFloat (), 94
parseInt(), 94
peek(), 93

pinMode (), 34, 66
playfile(), 302-303
pointTo(), 351

pow(), 74

print (), 88-90, 158, 195-196
println, 90

println(), 158
processInput (), 264
pulseIn(), 70

random(), 74-75

read(), 104-105, 216-217
readAccelerometer (), 339
readButton (), 340
readBytes (), 92-93
readIR(), 383

readProx (), 383
readSlider(), 338-339
readTemperature (), 338-339
readuv (), 383
readvisible(), 383
receiveData(), 144
robotNameRead (), 353-354
robotNameWrite (), 353-354
RSsI(), 177

scanNetworks (), 176177
SD.begin(), 215-216
sendAnalog(), 263
sendData(), 144
sendDigitalPort (), 263
sendEmail (), 189-190
setBitOrder (), 122
setClockDivider (), 122,123
setDataMode (), 122

setup(), 35

Index

F-I

435

sin(), 76

sqrt(), 74

sSsip(), 177

stop(), 158

stringCallback (), 265

tan(), 76

tone (), 69,295, 340-341
updateIR(), 352
userNameWrite (), 354
Wire.available(), 142
Wire.beginTransmission(), 146
Wire.endTransmission(), 146
Wire.onReceive (), 141-142
Wire.onRequest (), 142
Wire.read(), 142
Wire.requestFrom(), 146

write(), 90, 104-105,
196, 199, 218

WriteBlue(), 338
WriteGreen(), 338
WriteRed(), 338

writeRGB(), 337-338

G
getKey () function, 328

getModifiers () function, 328-329

getTimeStamp () function, 372
getVoiceCallStatus()
function, 281-282

GPRS, 282-284

GSM class, 278-279
modem class, 284
sketch, 286-288

SMS class, 279-281
VoicecCall class, 281-281

H
.h files, 406
hangCall() function, 282
hardware
LED connections, 60
LiquidCrystal library, 200-201
Scheduler library, 314-315
shields, 392-393
stepper motors, 255
TFT library example, 234
USBH library, 331-332
Wi-Fi, 181-182
header files, libraries, 406—407
hot pluggable devices, 323
hubs, 151-152
USB, 325

|

I2C devices, 134-135

I’C pins, 137

I>C protocol, 135-136
address, 136-137

getXChange () function, 329-330
getYChange () function, 329-330
GitHub, 379
GPRS (General Packet Radio
Service), 274, 282-284

graphics, TFT library, 231-233
GSM, 272

Arduino and, 276

EDGE, 274

GPRS, 274

mobile data network, 272-273
GSM class, 278-279
GSM library, 276-278

example application, 285-288

bus speed, 147-148
communication, 137-139
master communication, 139-141
slave communication, 141-147
example program, 142-146
shields, 148
voltage, 147

ICSP header, SPI bus, 120-121
IDE (Integrated Development

Environment), 8, 25
format organization, 381
installation, 26

software download, 27-28
software, 28

436 Index=I-L

IEEE (Institute of Electrical and K
Electronics Engineers), 171 Kdevelop, 29
if statement, 38-39 keyboardRead () function, 352
switch/case, 39-40 keyboards
if...else statement, 38-39 return codes, 352
importing libraries, 379-381, 408-409 USB, 324-325
infrastructure mode, 172 USBH library, 327-239
INPUT pins, 66 keywords
INPUT PULLUP pins, 66 int, 34
inputs, digital pins, 57-58 void, 34
installation, IDE, 26
software download, 27-28 L
installers versus archives, 27 laser diodes, 55
int data type, 37 LCD (liquid crystal display),
int keyword, 34 192-194, 227
interrupts, 76-77 Esplora, 337
attachInterrupt () function, LCD module, Esplora library, 342
77-78 LCD screen, Robot library,
detachInterrupt(), 78 354-356
interrupts() function, 78 led variable, 59-60
noInterrupts() function, 78 LEDs (light-emitting diodes),
interrupts() function, 78 23, 55-56
I/O functions connecting
analog I/0O, 67-68 calculation, 58-59
analogRead () function, 68 hardware, 60
analogWrite () function, 68 software, 59—60
microcontrollers and, 67-68 Esplora, 336-337
audio tones, 69 resistors, 58-59
digital I/O libraries, 42, 405-406
digitalRead() function, 66—67 Adafruit Si1145, 384-388
digitalwWrite() function, 67 advanced, 410-413
INPUT pins, 66 advantages, 378
INPUT PULLUP pins, 66 Bridge, 361-373
OUTPUT pins, 66 closed source, 417-418
pinMode () function, 66 coding styles, 416-417
voltage and, 65 comments, 413-414
pulses, 69-70 distributing, 417
IP addresses, 153 EEPROM, 104-110
ISA cards, 4 reading bytes, 104-105
isDirectory() function, 219 writing bytes, 104-105

ISR (Interrupt Service Routine), 77 Esplora, 337-344

Index = L-M

437

Ethernet
importing, 154-155
starting, 155-157

writing, 195-196
LiquidCrystal object, 194
Logo programming language, 347

example library, 418—427 long data type, 37

external, using, 381-383 loop () function, 35, 130, 164
FilelO, 366-367 loops

Firmata, 262-266 for, 41

function calls, 406 while, 41

GitHub, 379

GSM, 276288 M

.hfiles, 406 MAC address, 153

header files, 406—407

importing, 379-381, 408-409
using imported, 381-383

LiquidCrystal, 194-204

locating, 378-379

README file, 415-416, 427

Robot, 346-360

begin() function, 155
retrieving, 176
maintain() function, 156-157
map () function, 73-74
master communication, I2C protocol,
139-141
mathematical functions

Scheduler, 306-309 abs(), 73

SD, 215-224 constrain() function, 73

Servo, 244 map (), 73-74

sketches and, 378 max (), 72-73

SoftwareSerial, 98-99 min(), 72

source files, 406—407 pow(), 74

SPI, 121-122 random(), 74-75

TFT, 228 sqrt(), 74

third-party, 377 max () function, 72-73
example application, 384-388 memory

USBHost, 327-334 EEPROM, 103

WiFi, 174-189 Flash, 103

LilyPad Arduino, 14-15
liquid crystal display. See LCD
(liquid crystal display)

nonvolatile, 101-102
EEPROM, 114
RAM, 103

LiquidCrystal library volatile, 101-102
cursor, commands, 196-197 messages, Firmata library, 263-264
example program, 199-204 mice
importing, 194 USB, 325
scrolling, 197-198 USBH library, 329-330
text microcontrollers, analog I/O and,
custom, 198-199 67—68

orientation, 197 micros () function, 71-72

438

Index = M-R

micro-SD cards, 20-21, 211-212
micro-USB, 326
MIDI sound cards, 292
millis() function, 71
min () function, 72
MISO (Master In-Slave Out), 118
mobile computing, 170
mobile data network
3G, 274
4G, 275
GSM, 272-274
modems, 275
modems, 275
monitors
CRTs, 226227
DSTN (dual-scan supertwist
nematic), 227
LCD, 227
TFT (Thin Film Transistor), 227-228
MOSI (Master Out-Slave In), 118
motor board (Robot library), 357-358
motorsStop () function, 351
multimeters, 23
multitasking, 307-308
cooperative, 309-311
music
Arduino Due, 294-297
Robot library, 356-357

N

noAutoscroll () function, 198

noBlink () function, 197

noCursor () function, 197

noInterrupts () function, 78

nonvolatile memory, 101-102
EEPROM, 114

noTone () function, 69, 341

(o)

objects, EthernetClient, 157-158
Ohm, 48-49

Ohm'’s law, 49

open source, 20

OpenWRT, 363

output, debugging and, 86-87

OUTPUT pins, 66
outputs, digital pins, 57-58

P
packets, 152
parameters, 34
parity, 85-86
parseFloat () function, 94
parseInt () function, 94
parsing data, 93-94
PBASIC, 7
PCB (Printed Circuit Board), 402-404
PCI bus, 5
peek () function, 93
peripherals, USB and, 322-323
pinMode () function, 34, 66
playfile() function, 302-303
playing digital audio, 296-297
PoE (Power over Ethernet), 152
pointTo () function, 351
polling, 77
ports, 153-154
pow () function, 74
power supply, 23
load, 46
print () function, 88-90, 158,
195-196
println() function, 158
println function, 90
processInput () function, 264
programming. See also sketches
bootloaders, 33
embedded systems, 25
Logo, 347
PS/2 interface, 322-323
pulseIn() function, 70
pulses, reading, 69-70
PWM (pulse-width modulation), 68
servo motors and, 243

R

RAM (Random Access Memory), 6
Arduinos and, 103

random() function, 74-75

read() function, 104-105, 216217

Index = R-S

439

readAccelerometer ()
function, 339
readButton () function, 340
readBytes () function, 92-93
reading data
begin() function, 94
bytes, 92
multiple, 92-93
end () function, 94
parsing, 93-94
peek () function, 93
starting communications, 91
readIR() function, 383
README file, 415-416, 427
readProx () function, 383
readSlider () function, 338-339
readTemperature () function,
338-339
readuv () function, 383
readvisible () function, 383
receiveData () function, 144
registers, 137
resistance, 47, 48
resistors, 23
LEDs and, 58-59
usage, 52-53
values, 50
color code, 51-52
identifying, 50-52
resolution
ADC, 67-68
DAC (Digital to Analog
Converter), 295
LCD, 194
TFT screen preparation, 229-230
RGB LED, Esplora library, 337-338
Robot library, 346-348
control board
controls, 350-351
LCD screen, 354-356
music, 356-357
robot personalization, 353-354
sensor reading, 351-353
example program, 358-360
motor board, 357-358

sketch, 359-360

robotNameRead () function, 353-354

robotNameWrite () function, 353—
354

RS-232, SPI comparison, 119

RSSI (Received Signal Strength
Indication), 173

RSSI() function, 177

RX (receive wire), 83

S
scancodes, 324
scanNetworks () function, 176177
Scheduler library, 306-307
example program, 313-319
hardware, 314-315
importing, 308-309
multitasking, 307-308
cooperative, 309-311
noncooperative functions, 311-313
sketch, 315-319
schematics, shields, 398—402
Schottky diodes, 55
SCLK (serial clock), 118
scrolling, LiquidCrystal library,
197-198
SD (Secure Digital), 208-211
CD drives, 209
datalogging shields, 213-214
flash memory, 210-211
floppy disks, 208-209
speed, 213
USB (Universal Serial Bus), 209-210
SD cards, 211-212, 219
Arduino accepted, 214
capacity, 212-213
clusters, 220
connecting, 215-216
limitations, 214-215
micro-SD cards, 20-21
TFT library, 232233
SD library
advanced usage, 220
card operations, 219
cards, connecting, 215-216

Index= S

example program, 220-224
files
closing, 216217
opening, 216-217
reading, 217-218
writing, 217-218
folder operations, 218-219
importing, 215
sketch, 220-223
SD.begin () function, 215-216
sendAnalog () function, 263
sendData () function, 144
sendDigitalPort () function, 263
sendEmail () function, 189-190
sending data, 90
sending text, 88-90
Sensors
Esplora library, 338-339
Robot library, 351-353
serial connections
example program, 95-98
starting, 87-88
serial devices, 82
serial ports, 82-83
debugging and, 86-87
RX (receive wire), 83
TX (transmit wire), 83
Servo library, 244
servo motors
connecting, 243-244
disconnecting, 245
example application, 246250
moving, 244-245
overview, 242-243
precision, 246

PWM (pulse width modulation), 243

safety, 246

schematic, 248-249

sketch, 249-250
setBitOrder () function, 122
setClockDivider () function, 122,

123

setDataMode () function, 122
setup () function, 35
shields, 20-21

Arduino Ethernet Shield, 21
Arduino GSM Shield, 22
Arduino Motor Shield, 21
Arduino WiFi Shield, 22
Arduino Wireless SD Shield, 21
breadboard, 395-398
creating, 391-392
components, 394-395
hardware, 392-393
initial idea, 392
types, 394
Fritzing, 22
PCB (Printed Circuit Board),
402-404
schematic, 398-402
software, 393-394
short data type, 37
sin() function, 76
sketches, 26
Blink, 29-33
Bridge library, 370-371
comments, 33
digital audio, 300-303
digital thermometer, 128-130
editor, 28
empty, 28
first, 29-33
GSM, 286288
libraries and, 378
Robot library, 359-360
Scheduler library, 315-319
stepper library, 258-259
TFT, 234-239
uploading, 30-32
USBH library, 332-334
slave communication, 141-147
SMS class, 279-281
software
downloading, 27-28
LED connections, 59-60
LiquidCrystal sketch, 201-204
running, 28
shields, 393-394
SoftwareSerial class, 99
SoftwareSerial library, 98-99

Index = S-T

441

solderless breadboards, 57
solid state, 56
source code, 25
closed source libraries, 417-418
source files, 25
libraries, 406—407
SPI (Serial Peripheral Interface), 118
Arduino Due, 123-125
clock modes, 122
communications, 120
configuration, 119-120
example program, 125-132
RS-232 comparison, 119
sketch, 128
SPI bus, 118
Arduino and, 120-121
configuration, 122
SPI library, 121-122
squrt () function, 74
SS (Slave Select), 118
SSID (Service Set ID), 173
connecting to, 175
ssiD() function, 177
statements
break, 40
if, 38-39
if...else, 38-39
stepper library, 256259
sketch, 258-259
stepper motors, 254
bipolar, 255-256
controlling, 254-256
example project, 257-259
hardware, 255
unipolar, 255-256
stop () function, 158
stop bits, 86
storage
digital audio, 296
EEPROM, 113-114
floppy disks, 208209
String data type, 37
string data type, 37
stringCallback () function, 265

strings
reading, EEPROM library, 107-108
writing, EEPROM library, 107-108
strips, breadboards, 57
surface-mounted components, 384
switch/case, 39-40
switches, 151-152
SysEx, 266267

T
tan() function, 76
TCP/1IP protocol, 152

DNS (Domain Name Service), 153
IP addresses, 153
MAC address, 153
ports, 153-154
text
LiquidCrystal library, 195-196
custom, 198-199
orientation, 197
sending, 88-90
TFT library, 230-231
TFT (Thin Film Transistor)
Arduino Esplora, 229
overview, 227-228
TFT library, 228-231
color, 232
example application, 233239
graphic images, 232-233
graphics, 231-232
hardware, 234
initialization, 228-229
screen preparation, 229-230
sketch, 234-239
text, 230-231
thermocouple, 125
third-party libraries, 377
example application, 384-388
time functions
delay(), 70-71
delayMicroseconds(), 71
micros(), 71-72
millis(), 71
TinkerKit, 341-342

442

Index = T-W

tolerance of electrical components, 47

tone () function, 69, 295, 340-341
transistors, 56
trigonometry, 75-76
constants, 76
cos () function, 76
sin() function, 76
tan() function, 76
Tunnel diodes, 55
TX (transmit wire), 83

V)
UART (Universal Asynchronous
Receiver/Transmitter)

baud rate, 83-84

data bits, 85

parity, 85-86

serial connections, starting, 87-88

stop bits, 86
unipolar stepper motors, 255-256
unsigned char data type, 36
unsigned int data type, 37
unsigned long data type, 37
updateIR() function, 352
uploading, sketches, 30-32
USB (Universal Serial Bus), 82-83,

209-210

Arduino Due, 325-237

hubs, 325

keyboards, 324-325

mice, 325

micro-USB connectors, 326

peripherals and, 322-323

PS/2 interface and, 322-323
USB OTG (USB On-The-Go), 324
USB protocol, 323-324
USBH library, 327

example program, 330-334

keyboards, 327-239

mice, 329-330

sketch, 332-334
USBHost, 322
userNameWrite () function, 354

\'
variables, 36-37

declarations, 34

led, 59-60
VLB (VESA Local Bus) bus, 4-5
VoiceCall class (GSM), 281-281
void data type, 36
void keyword, 34
volatile memory, 101-102
voltage, 47-48

breakdown voltage, 54

digital I/O and, 65

12C protocol, 147

voltage drop, 52

w
WavelLAN, 171
waves, digital audio, 292293
wear leveling, 114
web servers, connecting to, 159-161
WECA (Wireless Ethernet
Compatibility Alliance), 171
WEP encryption, 173
WEP network, connecting, 175
while loop, 41
Wi-Fi, 171
ad-hoc mode, 171
channels, 172
encryption, 172-173
infrastructure mode, 172
RSSI (Received Signal Strength
Indication), 173
SSID (Service Set ID), 173
topology, 171-172
Wi-Fi Alliance, 171
WiFi library
client connections, 178-179
configuring, 177-178
connecting, 177-178
example application, 179-189
hardware, 181-182
importing, 174
initializing, 174-175

Index = W-Z

443

network scanning, 176-177
sensor sketch, 182-189
server, 179
WiFi shield, testing for, 175-176
Wire.available () function, 142
Wire.beginTransmission()
function, 146
Wire.endTransmission()
function, 146
Wire.onReceive () function, 141-142
Wire.onRequest () function, 142
Wire.read() function, 142
Wire.requestFrom() function, 146
word data type, 37
WPA2 encryption, 173
WPA-2 Personal network, connecting,
175

write () function, 90, 104-105,

196, 199, 218
writeBlue () function,
338
writeGreen() function,
338

writeRed () function, 338
writeRGB() function, 337-338

X-Y-Z
XMEGA series, 9

YunClient, 368
YunServer class, 367-368

Zener diodes, 54-55

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Need
	What’s on the Website
	Summary

	Part I Introduction to Arduino�������������������������������������
	Chapter 1 Introduction to Arduino��
	Atmel AVR����������������
	The Arduino Project��������������������������
	The ATmega Series������������������������
	The ATmega Series������������������������
	The ATtiny Series������������������������
	Other Series�������������������

	The Different Arduinos�����������������������������
	Arduino Uno������������������
	Arduino Leonardo�����������������������
	Arduino Ethernet�����������������������
	Arduino Mega 2560������������������������
	Arduino Mini�������������������
	Arduino Micro��������������������
	Arduino Due������������������
	LilyPad Arduino����������������������
	Arduino Pro������������������
	Arduino Robot��������������������
	Arduino Esplora����������������������
	Arduino Yún������������������
	Arduino Tre������������������
	Arduino Zero�������������������
	Your Own Arduino?������������������������

	Shields��������������
	What Is a Shield?������������������������
	The Different Shields����������������������������
	Arduino Motor Shield���������������������������
	Arduino Wireless SD Shield���������������������������������
	Arduino Ethernet Shield������������������������������
	Arduino WiFi Shield��������������������������
	Arduino GSM Shield�������������������������
	Your Own Shield����������������������

	What Can You Do with an Arduino?���������������������������������������
	What You Will Need for This Book���������������������������������������
	Summary��������������

	Chapter 2 Programming for the Arduino��
	Installing Your Environment����������������������������������
	Downloading the Software�������������������������������
	Running the Software���������������������������
	Using Your Own IDE�������������������������

	Your First Program�������������������������
	Understanding Your First Sketch��������������������������������������
	Programming Basics�������������������������
	Variables and Data Types�������������������������������
	Control Structures�������������������������
	if Statement�������������������
	switch Case������������������
	while Loop�����������������
	for Loop���������������

	Functions����������������
	Libraries����������������

	Summary��������������

	Chapter 3 Electronics Basics�����������������������������������
	Electronics 101����������������������
	Voltage, Amperage, and Resistance��
	Voltage��������������
	Amperage���������������
	Resistance�����������������
	Ohm’s Law����������������

	The Basic Components���������������������������
	Resistors����������������
	Different Resistor Values��������������������������������
	Identifying Resistor Values����������������������������������
	Using Resistors����������������������

	Capacitors�����������������
	Using Capacitors�����������������������

	Diodes�������������
	Different Types of Diodes��������������������������������
	Using Diodes�������������������

	Light-Emitting Diodes����������������������������
	Using LEDs�����������������

	Transistors������������������
	Using Transistors������������������������

	Breadboards������������������
	Inputs and Outputs�������������������������
	Connecting a Light-Emitting Diode��
	Calculation������������������
	Software���������������
	Hardware���������������
	What Now?����������������

	Summary��������������

	Part II Standard Libraries���������������������������������
	Chapter 4 The Arduino Language�������������������������������������
	I/O Functions��������������������
	Digital I/O������������������
	pinMode()����������������
	digitalRead()��������������������
	digitalWrite()���������������������

	Analog I/O�����������������
	analogRead()�������������������
	analogWrite()��������������������

	Generating Audio Tones�����������������������������
	tone()�������������
	noTone()���������������

	Reading Pulses���������������������
	pulseIn()����������������

	Time Functions���������������������
	delay()��������������
	delayMicroseconds()��������������������������
	millis()���������������
	micros()���������������

	Mathematical Functions�����������������������������
	min()������������
	max()������������
	constrain()������������������
	abs()������������
	map()������������
	pow()������������
	sqrt()�������������
	random()���������������

	Trigonometry�������������������
	sin()������������
	cos()������������
	tan()������������
	Constants����������������

	Interrupts�����������������
	attachInterrupt()������������������������
	detachInterrupt()������������������������
	noInterrupts()���������������������
	interrupts()�������������������

	Summary��������������

	Chapter 5 Serial Communication�������������������������������������
	Introducing Serial Communication���������������������������������������
	UART Communications��������������������������
	Baud Rate����������������
	Data Bits����������������
	Parity�������������
	Stop Bits����������������

	Debugging and Output���������������������������
	Starting a Serial Connection�����������������������������������
	Writing Data�������������������
	Sending Text�������������������
	Sending Data�������������������

	Reading Data�������������������
	Starting Communications������������������������������
	Is Data Waiting?�����������������������
	Reading a Byte���������������������
	Reading Multiple Bytes�����������������������������
	Taking a Peek��������������������
	Parsing Data�������������������
	Cleaning Up������������������

	Example Program����������������������
	SoftwareSerial���������������������
	Summary��������������

	Chapter 6 EEPROM�����������������������
	Introducing EEPROM�������������������������
	The Different Memories on Arduino��
	The EEPROM Library�������������������������
	Reading and Writing Bytes��������������������������������
	Reading and Writing Bits�������������������������������
	Reading and Writing Strings����������������������������������
	Reading and Writing Other Values���������������������������������������
	Example Program����������������������

	Preparing EEPROM Storage�������������������������������
	Adding Nonvolatile Memory��������������������������������
	Summary��������������

	Chapter 7 SPI��������������������
	Introducting SPI�����������������������
	SPI Bus��������������
	Comparison to RS-232���������������������������
	Configuration��������������������
	Communications���������������������

	Arduino SPI������������������
	SPI Library������������������
	SPI on the Arduino Due�����������������������������
	Example Program����������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 8 Wire���������������������
	Introducing Wire�����������������������
	Connecting I2C���������������������
	I2C Protocol�������������������
	Address��������������
	Communication��������������������

	Communicating��������������������
	Master Communications����������������������������
	Sending Information��������������������������
	Requesting Information�����������������������������

	Slave Communications���������������������������
	Receiving Information����������������������������
	Sending Information��������������������������
	Example Program����������������������
	Exercises����������������

	Traps and Pitfalls�������������������������
	Voltage Difference�������������������������
	Bus Speed����������������
	Shields with I2C�����������������������

	Summary��������������

	Chapter 9 Ethernet�������������������������
	Introduction�������������������
	Ethernet���������������
	Ethernet Cables����������������������
	Switches and Hubs������������������������
	PoE����������

	TCP/IP�������������
	MAC Address������������������
	IP Address�����������������
	DNS����������
	Port�����������

	Ethernet on Arduino��������������������������
	Importing the Ethernet Library�������������������������������������
	Starting Ethernet������������������������

	Arduino as a Client��������������������������
	Sending and Receiving Data���������������������������������
	Connecting to a Web Server���������������������������������

	Example Program����������������������
	Arduino as a Server��������������������������
	Serving Web Pages������������������������

	Example Program����������������������
	Sketch�������������

	Summary��������������

	Chapter 10 WiFi����������������������
	Introduction�������������������
	The WiFi Protocol������������������������
	Topology���������������
	Network Parameters�������������������������
	Channels���������������
	Encryption�����������������
	SSID�����������
	RSSI�����������

	Arduino WiFi�������������������
	Importing the Library����������������������������
	Initialization���������������������
	Status�������������
	Scanning Networks������������������������
	Connecting and Configuring���������������������������������
	Wireless Client����������������������
	Wireless Server����������������������

	Example Application��������������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 11 LiquidCrystal�������������������������������
	Introduction�������������������
	LiquidCrystal Library����������������������������
	Writing Text�������������������
	Cursor Commands����������������������
	Text Orientation�����������������������
	Scrolling����������������
	Custom Text������������������

	Example Program����������������������
	Hardware���������������
	Software���������������
	Exercises����������������

	Summary��������������

	Chapter 12 SD��������������������
	Introduction�������������������
	SD Cards���������������
	Capacity���������������
	Speed������������

	Using SD Cards with Arduino����������������������������������
	Accepted SD Cards������������������������
	Limitations������������������

	The SD Library���������������������
	Importing the Library����������������������������
	Connecting a Card������������������������
	Opening and Closing Files��������������������������������
	Reading and Writing Files��������������������������������
	Reading Files��������������������
	Writing Files��������������������

	Folder Operations������������������������
	Card Operations����������������������
	Advanced Usage���������������������

	Example Program and Sketch���������������������������������
	Summary��������������

	Chapter 13 TFT���������������������
	Introduction�������������������
	Technologies�������������������
	TFT Library������������������
	Initialization���������������������
	Screen Preparation�������������������������
	Text Operations����������������������
	Basic Graphics���������������������
	Coloring���������������
	Graphic Images���������������������

	Example Application��������������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 14 Servo�����������������������
	Introduction to Servo Motors�����������������������������������
	Controlling Servo Motors�������������������������������
	Connecting a Servo Motor�������������������������������
	Moving Servo Motors��������������������������
	Disconnecting��������������������
	Precision and Safety���������������������������

	Example Application��������������������������
	Schematic����������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 15 Stepper�������������������������
	Introducing Motors�������������������������
	Controlling a Stepper Motor����������������������������������
	Hardware���������������
	Unipolar Versus Bipolar Stepper Motors���

	The Stepper Library��������������������������
	Example Project����������������������
	Hardware���������������
	Sketch�������������

	Summary��������������

	Chapter 16 Firmata�������������������������
	Introducing Firmata��������������������������
	Firmata Library����������������������
	Sending Messages�����������������������
	Receiving Messages�������������������������
	Callbacks����������������
	SysEx������������

	Example Program����������������������
	Summary��������������

	Chapter 17 GSM���������������������
	Introducing GSM����������������������
	Mobile Data Network��������������������������
	GSM����������
	GPRS�����������
	EDGE�����������

	3 G����������
	4 G and the Future�������������������������
	Modems�������������

	Arduino and GSM����������������������
	Arduino GSM Library��������������������������
	GSM Class����������������
	SMS Class����������������
	VoiceCall Class����������������������
	GPRS�����������
	Modem������������

	Example Application��������������������������
	Summary��������������

	Part III Device-Specific Libraries���
	Chapter 18 Audio�����������������������
	Introducing Audio������������������������
	Digital Sound Files��������������������������
	Music on the Arduino���������������������������
	Arduino Due������������������
	Digital to Analog Converters�����������������������������������
	Digital Audio to Analog������������������������������
	Creating Digital Audio�����������������������������
	Storing Digital Audio����������������������������
	Playing Digital Audio����������������������������

	Example Program����������������������
	Hardware���������������
	Sketch�������������
	Exercise���������������

	Summary��������������

	Chapter 19 Scheduler���������������������������
	Introducing Scheduling�����������������������������
	Arduino Multitasking���������������������������
	Scheduler����������������
	Cooperative Multitasking�������������������������������
	Noncooperative Functions�������������������������������

	Example Program����������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 20 USBHost�������������������������
	Introducing USBHost��������������������������
	USB Protocol�������������������
	USB Devices������������������
	Keyboards����������������
	Mice�����������
	Hubs�����������

	Arduino Due������������������
	USBHost Library����������������������
	Keyboards����������������
	Mice�����������

	Example Program����������������������
	Hardware���������������
	Source Code������������������

	Summary��������������

	Chapter 21 Esplora�������������������������
	Introducing Esplora��������������������������
	The Arduino Esplora Library����������������������������������
	RGB LED��������������
	Sensors��������������
	Buttons��������������
	Buzzer�������������
	TinkerKit����������������
	LCD Module�����������������

	Example Program and Exercises������������������������������������
	Summary��������������

	Chapter 22 Robot�����������������������
	Introducing Robot Library��������������������������������
	Arduino Robot��������������������
	Robot Library��������������������
	Control Board��������������������
	Robotic Controls�����������������������
	Sensor Reading���������������������
	Personalizing Your Robot�������������������������������
	LCD Screen�����������������
	Music������������

	Motor Board������������������

	Example Program and Exercises������������������������������������
	Summary��������������

	Chapter 23 Bridge������������������������
	Introducing Bridge Library���������������������������������
	Bridge�������������
	Process��������������
	FileIO�������������
	YunServer����������������
	YunClient����������������

	Example Application��������������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Part IV User Libraries and Shields���
	Chapter 24 Importing Third-Party Libraries���
	Libraries����������������
	Finding Libraries������������������������
	Importing a Library��������������������������
	Using an External Library��������������������������������

	Example Application��������������������������
	Exercises����������������
	Summary��������������

	Chapter 25 Creating Your Own Shield��
	Creating a Shield������������������������
	The Idea���������������
	The Required Hardware����������������������������
	The Required Software����������������������������

	Your First Shield������������������������
	Step 1: The Breadboard�����������������������������
	Step 2: The Schematic����������������������������
	Step 3: The PCB����������������������

	Summary��������������

	Chapter 26 Creating Your Own Library���
	Libraries����������������
	Library Basics���������������������
	Simple Libraries�����������������������
	Advanced Libraries�������������������������
	Adding Comments����������������������
	Adding Examples����������������������
	Read Me��������������
	Coding Style�������������������
	Use CamelCase��������������������
	Use English Words������������������������
	Don’t Use External Libraries�����������������������������������
	Use Standard Names�������������������������

	Distributing Your Library��������������������������������
	Closed Source Libraries������������������������������

	Example Library����������������������
	The Library������������������
	Examples���������������
	README�������������
	Finishing Touches������������������������

	Summary��������������

	Index
	EULA

