

ffi rs.indd 01:11:10:PM 12/09/2014 Page i

Arduino™ Sketches

ffi rs.indd 01:11:10:PM 12/09/2014 Page iii

Arduino™ Sketches

James A. Langbridge

Tools and Techniques for Programming
Wizardry

ffi rs.indd 01:11:10:PM 12/09/2014 Page iv

Arduino™ Sketches: Tools and Techniques for Programming Wizardry

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-91960-6

ISBN: 978-1-118-91962-0 (ebk)

ISBN: 978-1-118-91969-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-

sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-

ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all

warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be

created or extended by sales or promotional materials. The advice and strategies contained herein may not

be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services

of a competent professional person should be sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation

and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may have changed or disappeared between when

this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included in the version you purchased, you may download

this material at http://booksupport.wiley.com. For more information about Wiley products, visit

www.wiley.com.

Library of Congress Control Number: 2014948616

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affi liates, in the United States and other countries, and may not be used without written permission.

Arduino is a trademark of Arduino, LLC. All other trademarks are the property of their respective owners.

John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

ffi rs.indd 01:11:10:PM 12/09/2014 Page v

To my loving girlfriend, Anne-Laure, who once again put up with entire evenings and
weekends spent on my PC. This is the second time I’ve done that to her, but she put
up with me anyway and kept on smiling (most of the time). I still don’t know how.

To my wonderful daughter, Eléna: I have to admit, I’m addicted to your laugh and
smile, something you did every time I showed you the projects I was working on.
Again you found a way of telling me when I needed to stop and spend more time

playing with you (by unplugging and randomly rewiring my breadboard projects),
but coming back home at the end of a long and difficult day to see you smiling and

jumping into my arms gave me more energy than you can imagine.

vii

ffi rs.indd 01:11:10:PM 12/09/2014 Page vii

James A. Langbridge does not like talking about himself in the third person,

but he will try anyway. James was born in Singapore and followed his parents

to several countries before settling down in Nantes, France, where he lives with

his partner and their daughter.

James is an embedded systems consultant and has worked for more than 15

years on industrial, military, mobile telephony, and aviation security systems.

He works primarily on low-level development, creating bootloaders or opti-

mizing routines in assembly, making the most of small processors. When not

on contract, James trains engineers on embedded systems, or he makes new

gizmos, much to the dismay of his partner.

James wrote his fi rst computer program at age 6 and has never stopped tin-

kering since. He began using Apple IIs, ZX80s and ZX81s, and then moved to

BBC Micros and the Amiga before fi nally having no other option but to use PCs.

About the Author

ix

ffi rs.indd 01:11:10:PM 12/09/2014 Page ix

Scott Fitzgerald is an artist and educator working with technology and its rela-

tionship to people, approaching digital tools from a human-centric perspective.

His work has been featured in numerous books and publications such as The
New York Times and IDN Magazine. He has edited several books on Arduino

and communication technologies, is the author of the book that accompanies

the Arduino Starter Kit, and is responsible for documentation of the Arduino

platform at http://arduino.cc. Scott is currently an assistant arts professor and

head of the interactive media program at New York University Abu Dhabi. He

enjoys tormenting his cat and partner with early morning work sessions.

About the Technical Editor

http://arduino.cc

xi

ffi rs.indd 01:11:10:PM 12/09/2014 Page xi

Credits

Project Editor
Christina Haviland

Technical Proofreader
Ying Chin

Production Editor
Rebecca Anderson

Copy Editor
San Dee Phillips

Manager of Content Development
and Assembly
Mary Beth Wakefi eld

Marketing Director
David Mayhew

Marketing Manager
Carrie Sherrill

Professional Technology and
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Patrick Redmond

Proofreader
Sarah Kaikini, Word One New York

Indexer
Johnna VanHoose Dinse

Cover Designer
Michael E. Trent/Wiley

Cover Image
© iStock.com/johnbloor

xiii

ffi rs.indd 01:11:10:PM 12/09/2014 Page xiii

Writing a book is a huge project. When I was at school, I used to shudder at the

thought of writing 1,000 words for an essay, and I was alone to do it. This book

is, of course, much longer, and I enjoyed every minute of it, thanks to the team

of professionals who helped me every step of the way. Take a quick look at the

people involved in this project, and you will soon see what I’m talking about.

I can’t thank everyone involved personally; there are just too many people,

but there are a few names that I will never forget. My thanks go out to Christina

Haviland, my project editor. When I knew that I would be working with her

again, I was thrilled. She actually managed to put up with me for the entire

duration and didn’t even shout at me when I was late, despite the fact that some

of the chapters were very, very late. I was also thrilled to know that I’d be work-

ing with San Dee Phillips, my copy editor. The job they did transforming raw

data coming out of my brain into something readable is outstanding. Then there

is Scott Fitzgerald, my technical editor, who made sure that I didn’t make any

mistakes. Believe me, nothing slipped by, and despite all the grumbling I did

when I received the corrections, thank you! This wouldn’t have been possible

without you.

I would also like to thank Atmel for their time and effort, for the engineers

I was in contact with to get more information, and to Tom Vu who kept on

encouraging me along the way and sending me new evaluation boards to play

with. My thanks also go out to Silicon Labs for its excellent UV sensor that is

presented in this book and for the time it spent helping me. Thanks to Materiel

.net who managed to get me a new computer, camera, and components in record

time when mine broke, allowing me to get the job done. Your coffee mug is still

on my desk!

Acknowledgments

xiv Acknowledgments

ffi rs.indd 01:11:10:PM 12/09/2014 Page xiv

Of course, this book would not have been possible without the amazing

people at Arduino. I don’t know if they know just how much they have changed

the world of makers. Your boards have brought back the joy I had in creating

gizmos and contraptions.

This has been a huge adventure, and I’ve met a lot of amazing people along

the way. Thank you to every one of you—for your time, your suggestions, and

your encouraging messages.

xv

ffi rs.indd 01:11:10:PM 12/09/2014 Page xv

Introduction xxix

Part I Introduction to Arduino 1

Chapter 1 Introduction to Arduino 3

Chapter 2 Programming for the Arduino 25

Chapter 3 Electronics Basics 45

Part 2 Standard Libraries 63

Chapter 4 The Arduino Language 65

Chapter 5 Serial Communication 81

Chapter 6 EEPROM 101

Chapter 7 SPI 117

Chapter 8 Wire 133

Chapter 9 Ethernet 149

Chapter 10 WiFi 169

Chapter 11 LiquidCrystal 191

Chapter 12 SD 207

Chapter 13 TFT 225

Chapter 14 Servo 241

Chapter 15 Stepper 253

Chapter 16 Firmata 261

Contents at Glance

ffi rs.indd 01:11:10:PM 12/09/2014 Page xvi

xvi Contents at Glance

Chapter 17 GSM 271

Part III Device Specifi c Libraries 289

Chapter 18 Audio 291

Chapter 19 Scheduler 305

Chapter 20 USBHost 321

Chapter 21 Esplora 335

Chapter 22 Robot 345

Chapter 23 Bridge 361

Part IV User Libraries and Shields 375

Chapter 24 Importing Third-Party Libraries 377

Chapter 25 Creating Your Own Shield 391

Chapter 26 Creating Your Own Library 405

Index 429

xvii

ftoc.indd 07:10:10:PM 12/09/2014 Page xvii

Contents

Introduction xxix

Part I Introduction to Arduino 1

Chapter 1 Introduction to Arduino 3

Atmel AVR 5
The Arduino Project 7
The ATmega Series 8

The ATmega Series 8

The ATtiny Series 8

Other Series 9

The Different Arduinos 9
Arduino Uno 10

Arduino Leonardo 10

Arduino Ethernet 11

Arduino Mega 2560 11

Arduino Mini 13

Arduino Micro 13

Arduino Due 13

LilyPad Arduino 14

Arduino Pro 16

Arduino Robot 16

Arduino Esplora 18

Arduino Yún 18

Arduino Tre 19

Arduino Zero 19

Your Own Arduino? 20

Shields 20
What Is a Shield? 20

The Different Shields 21

xviii Contents

ftoc.indd 07:10:10:PM 12/09/2014 Page xviii

Arduino Motor Shield 21

Arduino Wireless SD Shield 21

Arduino Ethernet Shield 21

Arduino WiFi Shield 22

Arduino GSM Shield 22

Your Own Shield 22

What Can You Do with an Arduino? 22
What You Will Need for This Book 23
Summary 24

Chapter 2 Programming for the Arduino 25

Installing Your Environment 26
Downloading the Software 27

Running the Software 28

Using Your Own IDE 29

Your First Program 29
Understanding Your First Sketch 33
Programming Basics 36

Variables and Data Types 36

Control Structures 38

if Statement 38

switch Case 39

while Loop 40

for Loop 41

Functions 42

Libraries 42

Summary 42

Chapter 3 Electronics Basics 45

Electronics 101 46
Voltage, Amperage, and Resistance 46

Voltage 47

Amperage 48

Resistance 48

Ohm’s Law 49

The Basic Components 49
Resistors 50

Different Resistor Values 50

Identifying Resistor Values 50

Using Resistors 52

Capacitors 53

Using Capacitors 54

Diodes 54

Different Types of Diodes 54

Using Diodes 55

Light-Emitting Diodes 55

Using LEDs 55

Transistors 56

 Contents xix

ftoc.indd 07:10:10:PM 12/09/2014 Page xix

Using Transistors 56

Breadboards 56
Inputs and Outputs 57
Connecting a Light-Emitting Diode 58

Calculation 58

Software 59

Hardware 60

What Now? 61

Summary 61

Part II Standard Libraries 63

Chapter 4 The Arduino Language 65

I/O Functions 65
Digital I/O 65

pinMode() 66

digitalRead() 66

digitalWrite() 67

Analog I/O 67

analogRead() 68

analogWrite() 68

Generating Audio Tones 69

tone() 69

noTone() 69

Reading Pulses 69

pulseIn() 70

Time Functions 70
delay() 70

delayMicroseconds() 71

millis() 71

micros() 71

Mathematical Functions 72
min() 72

max() 72

constrain() 73

abs() 73

map() 73

pow() 74

sqrt() 74

random() 74

Trigonometry 75
sin() 76

cos() 76

tan() 76

Constants 76

Interrupts 76

xx Contents

ftoc.indd 07:10:10:PM 12/09/2014 Page xx

attachInterrupt() 77

detachInterrupt() 78

noInterrupts() 78

interrupts() 78

Summary 79

Chapter 5 Serial Communication 81

Introducing Serial Communication 82
UART Communications 84

Baud Rate 84

Data Bits 85

Parity 85

Stop Bits 86

Debugging and Output 86
Starting a Serial Connection 87
Writing Data 88

Sending Text 88

Sending Data 90

Reading Data 91
Starting Communications 91

Is Data Waiting? 91

Reading a Byte 92

Reading Multiple Bytes 92

Taking a Peek 93

Parsing Data 93

Cleaning Up 94

Example Program 95
SoftwareSerial 98
Summary 99

Chapter 6 EEPROM 101

Introducing EEPROM 101
The Different Memories on Arduino 103
The EEPROM Library 104

Reading and Writing Bytes 104

Reading and Writing Bits 105

Reading and Writing Strings 107

Reading and Writing Other Values 108

Example Program 110

Preparing EEPROM Storage 113
Adding Nonvolatile Memory 114
Summary 115

Chapter 7 SPI 117

Introducting SPI 118
SPI Bus 118

Comparison to RS-232 119

Confi guration 119

Communications 120

 Contents xxi

ftoc.indd 07:10:10:PM 12/09/2014 Page xxi

Arduino SPI 120
SPI Library 121
SPI on the Arduino Due 123
Example Program 125

Hardware 126

Sketch 128

Exercises 131

Summary 132

Chapter 8 Wire 133

Introducing Wire 134
Connecting I2C 135
I2C Protocol 135

Address 136

Communication 137

Communicating 138
Master Communications 139

Sending Information 139

Requesting Information 140

Slave Communications 141

Receiving Information 141

Sending Information 142

Example Program 142

Exercises 146

Traps and Pitfalls 147
Voltage Difference 147

Bus Speed 147

Shields with I2C 148

Summary 148

Chapter 9 Ethernet 149

Introduction 149
Ethernet 150

Ethernet Cables 151

Switches and Hubs 151

PoE 152

TCP/IP 152
MAC Address 153

IP Address 153

DNS 153

Port 153

Ethernet on Arduino 154
Importing the Ethernet Library 154

Starting Ethernet 155

Arduino as a Client 157
Sending and Receiving Data 158

Connecting to a Web Server 159

xxii Contents

ftoc.indd 07:10:10:PM 12/09/2014 Page xxii

Example Program 161

Arduino as a Server 163

Serving Web Pages 164

Example Program 165

Sketch 165

Summary 167

Chapter 10 WiFi 169

Introduction 170
The WiFi Protocol 171

Topology 171

Network Parameters 172

Channels 172

Encryption 172

SSID 173

RSSI 173

Arduino WiFi 173
Importing the Library 174

Initialization 174

Status 175

Scanning Networks 176

Connecting and Confi guring 177

Wireless Client 178

Wireless Server 179

Example Application 179
Hardware 181

Sketch 182

Exercises 189

Summary 190

Chapter 11 LiquidCrystal 191

Introduction 192
LiquidCrystal Library 194

Writing Text 195

Cursor Commands 196

Text Orientation 197

Scrolling 197

Custom Text 198

Example Program 199
Hardware 200

Software 201

Exercises 205

Summary 205

Chapter 12 SD 207

Introduction 208
SD Cards 211

Capacity 212

Speed 213

 Contents xxiii

ftoc.indd 07:10:10:PM 12/09/2014 Page xxiii

Using SD Cards with Arduino 213
Accepted SD Cards 214

Limitations 214

The SD Library 215
Importing the Library 215

Connecting a Card 215

Opening and Closing Files 216

Reading and Writing Files 217

Reading Files 217

Writing Files 218

Folder Operations 218

Card Operations 219

Advanced Usage 220

Example Program and Sketch 220
Summary 224

Chapter 13 TFT 225

Introduction 226
Technologies 227
TFT Library 228

Initialization 228

Screen Preparation 229

Text Operations 230

Basic Graphics 231

Coloring 232

Graphic Images 232

Example Application 233
Hardware 234

Sketch 234

Exercises 239

Summary 239

Chapter 14 Servo 241

Introduction to Servo Motors 242
Controlling Servo Motors 243

Connecting a Servo Motor 243

Moving Servo Motors 244

Disconnecting 245

Precision and Safety 246

Example Application 246
Schematic 248

Sketch 249

Exercises 250

Summary 251

Chapter 15 Stepper 253

Introducing Motors 254
Controlling a Stepper Motor 254

xxiv Contents

ftoc.indd 07:10:10:PM 12/09/2014 Page xxiv

Hardware 255

Unipolar Versus Bipolar Stepper Motors 255

The Stepper Library 256
Example Project 257

Hardware 257

Sketch 258

Summary 260

Chapter 16 Firmata 261

Introducing Firmata 262
Firmata Library 262

Sending Messages 263

Receiving Messages 263

Callbacks 264

SysEx 266

Example Program 268
Summary 269

Chapter 17 GSM 271

Introducing GSM 272
Mobile Data Network 272

GSM 273

GPRS 274

EDGE 274

3 G 274

4 G and the Future 275

Modems 275

Arduino and GSM 276
Arduino GSM Library 276

GSM Class 278

SMS Class 279

VoiceCall Class 281

GPRS 282

Modem 284

Example Application 285
Summary 288

Part III Device-Specifi c Libraries 289

Chapter 18 Audio 291

Introducing Audio 292
Digital Sound Files 292
Music on the Arduino 294
Arduino Due 294

Digital to Analog Converters 295

Digital Audio to Analog 295

Creating Digital Audio 296

Storing Digital Audio 296

Playing Digital Audio 296

 Contents xxv

ftoc.indd 07:10:10:PM 12/09/2014 Page xxv

Example Program 298
Hardware 298

Sketch 300

Exercise 303

Summary 304

Chapter 19 Scheduler 305

Introducing Scheduling 306
Arduino Multitasking 307
Scheduler 308

Cooperative Multitasking 309

Noncooperative Functions 311

Example Program 313
Hardware 314

Sketch 316

Exercises 319

Summary 319

Chapter 20 USBHost 321

Introducing USBHost 322
USB Protocol 323
USB Devices 324

Keyboards 324

Mice 325

Hubs 325

Arduino Due 325
USBHost Library 327

Keyboards 327

Mice 329

Example Program 330
Hardware 331

Source Code 332

Summary 334

Chapter 21 Esplora 335

Introducing Esplora 336
The Arduino Esplora Library 337

RGB LED 337

Sensors 338

Buttons 339

Buzzer 340

TinkerKit 341

LCD Module 342

Example Program and Exercises 342
Summary 344

Chapter 22 Robot 345

Introducing Robot Library 346
Arduino Robot 348

xxvi Contents

ftoc.indd 07:10:10:PM 12/09/2014 Page xxvi

Robot Library 349
Control Board 350

Robotic Controls 350

Sensor Reading 351

Personalizing Your Robot 353

LCD Screen 354

Music 356

Motor Board 357

Example Program and Exercises 358
Summary 360

Chapter 23 Bridge 361

Introducing Bridge Library 362
Bridge 363

Process 364

FileIO 366

YunServer 367

YunClient 368

Example Application 369
Hardware 369

Sketch 370

Exercises 373

Summary 373

Part IV User Libraries and Shields 375

Chapter 24 Importing Third-Party Libraries 377

Libraries 378
Finding Libraries 378

Importing a Library 379

Using an External Library 381

Example Application 384
Exercises 389
Summary 389

Chapter 25 Creating Your Own Shield 391

Creating a Shield 391
The Idea 392

The Required Hardware 392

The Required Software 393

Your First Shield 394
Step 1: The Breadboard 395

Step 2: The Schematic 398

Step 3: The PCB 402

Summary 404

 Contents xxvii

ftoc.indd 07:10:10:PM 12/09/2014 Page xxvii

Chapter 26 Creating Your Own Library 405

Libraries 405
Library Basics 406

Simple Libraries 406

Advanced Libraries 410

Adding Comments 413

Adding Examples 415

Read Me 415

Coding Style 416

Use CamelCase 416

Use English Words 416

Don’t Use External Libraries 417

Use Standard Names 417

Distributing Your Library 417

Closed Source Libraries 417

Example Library 418
The Library 418

Examples 424

README 427

Finishing Touches 428

Summary 428

Index 429

xxix

fl ast.indd 01:11:24:PM 12/09/2014 Page xxix

Arduinos have opened up a new world to us. Both makers and professionals

use Arduino-based systems to create wonderful and complex devices to help

to create fascinating gizmos. From the simplest device that turns on a light

when you press a button to advanced 3-D printers, you can use Arduinos in

just about ever y application.

To power all this, Arduinos use sketches—software programs that you

design to complete your device. They communicate with the outside world

and are logic behind your projects. To assist you, the Arduino environment has

libraries—software that you can add as required, depending on your applica-

tion or the hardware that you add. Each library is explained in this book with

examples for each library.

This book introduces you to Arduino sketches, the software routines that

you can use and the different libraries available for the different Arduinos that

you will encounter.

The Arduino can be your canvas, and your sketch can be your digital

masterpiece.

Overview of the Book and Technology

This book covers everything you need to start using Arduinos. It presents the

most common Arduinos on the market today, explains how to get your soft-

ware up and running, and how to program the Arduino, but most important, it

explains the Arduino programming languages and the different libraries that

you can add to your designs to provide extra functionality. It also gives a primer

in electronics to help you in the numerous examples throughout the book.

Introduction

xxx Introduction

fl ast.indd 01:11:24:PM 12/09/2014 Page xxx

How This Book Is Organized

This book is designed to give as much information as possible to someone who

is starting Arduino programming. It is separated into four parts.

Part I, “Introduction to Arduino,” (Chapters 1–3) gives an overview of

Arduinos—where they came from and why they are here to stay. It gives a

primer on electronics and C programming, and also goes into the Arduino

Language, the common elements that you will use for every project.

Part II, “Standard Libraries,” (Chapters 4–17) is dedicated to the libraries

available for every Arduino, that is, the different software components you can

include to add functionality and hardware support. Each library is presented

in its own chapter, and an example is provided for each library to help you

understand its use.

Part III, “Device-Specifi c Libraries,” (Chapters 18–23) is dedicated to librar-

ies that are specifi c to different Arduinos; software you can add to a particular

Arduino to access hardware or perform specifi c tasks. Again, each library is

presented in its own chapter, and examples are provided.

Part IV, “User Libraries and Shields,” (Chapters 24–26) is all about going

even further with your Arduino; it explains how to import user libraries and

how to design and distribute your own libraries. It also shows how to create your

own shield, an electronic board that you can add to your Arduino to provide

even more functionality.

Who Should Read This Book

This book is primarily for makers—people with ideas on how to create amazing

applications or automate everyday tasks—and also for developers who want to

get into the amazing world of Arduino programming.

Tools You Need

Each chapter has an example, and the exact components needed for that chapter

are listed at the beginning of the chapter. To follow every example in this book,

you need the following hardware:

 ■ Computer

 ■ USB cable and micro-USB cable

 ■ 5-V power supply

 Introduction xxxi

fl ast.indd 01:11:24:PM 12/09/2014 Page xxxi

 ■ Breadboard with connector cables

 ■ Several Arduinos:

 ■ 2 x Arduino Uno

 ■ Arduino Due

 ■ Arduino Mega 2560

 ■ Arduino Esplora

 ■ Arduino Robot

 ■ Arduino

 ■ SainSmart LCD Shield

 ■ SainSmart Ethernet Shield

 ■ LM35 Temperature Sensor

 ■ SD card

 ■ Arduino GSM Shield

 ■ Adafruit ST7735 TFT breakout board

 ■ Adafruit MAX31855 breakout board

 ■ Type-K thermocouple wire

 ■ Adafruit SI1145 UV Sensor board

 ■ SainSmart Wi-Fi shield

 ■ DHT11 Humidity sensor

 ■ HC-SR04 ultrasonic distance sensor

 ■ HYX-S0009 or equivalent servo motor

 ■ L293D

 ■ 5-V bipolar stepper motor

 ■ Red, green, and blue LEDs

 ■ 10-kilohm resistors

 ■ 4.7-kilohm resistors

What’s on the Website

The source code for the samples is available for download from the Wiley website

at www.wiley.com/go/arduinosketches.

http://www.wiley.com/go/arduinosketches

xxxii Introduction

fl ast.indd 01:11:24:PM 12/09/2014 Page xxxii

Summary

Arduino development is a fascinating subject, one that opens up a whole new

world of possibilities. Arduinos are perfectly suited for learning about embedded

development, but also for automating everyday tasks or even making amazing

gizmos and contraptions. Throughout this book, you’ll fi nd numerous examples

about how to create simple devices, providing a hardware schematic to get you

started, as well as the sketch to get you up and running.

To get the most out of your sketches, each library is introduced and the dif-

ferent functions are explained. Examples are provided for every library, going

through the code line by line so you understand what the sketch does. My hope

is that this book will serve as a reference for your new projects. Have fun!

c01.indd 05:55:24:PM 11/14/2014 Page 1

 Par t

I
Introduction to Arduino

In This Part

Chapter 1: Introduction to Arduino

Chapter 2: Programming for the Arduino

Chapter 3: Electronics Basics

c01.indd 05:55:24:PM 11/14/2014 Page 2

3

c01.indd 05:55:24:PM 11/14/2014 Page 3

Electronics enthusiasts have always been present. For decades, they have been

creating interesting devices and products. Amateur radio enthusiasts typically

made their own radio sets using schematics found in magazines or simply from

their own design. How many of us built a radio system to discover electronics,

only to be hooked? With a few dollars’ worth of components, you could create

your own radio and listen to glorious long-wave transmissions on a small low-

quality speaker, and yet it was better than what could be bought in the shops

because it was homemade. If you wanted better sound, you could buy a better

speaker. More volume? There were kits for that, too. Audiophiles built their own

amplifi ers and accessories depending on their needs. Electronics shops proposed

books for all levels, from beginner to expert. Kits were also available using the

simplest of components all the way to entire computer systems. It was a time

in which you could build just about anything, and everything. You could, quite

literally, walk into an electronics shop, buy a DIY computer, and spend a few

hours soldering memory chips onto a printed circuit board. That’s how I started.

In the 1990s, things changed slightly. Most hobbyists had a PC on their desk

and could use them to create schematics, simulate parts of a system, and even

print circuit board with transparent layouts, making the entire process much

easier. However, something was missing. Almost all the devices that could be

made were not programmable. Microprocessors were available but were either

too expensive or too complicated. At the time, the 68000 microprocessor was

one of the most reliable components available and was relatively cheap but

C H A P T E R

1

Introduction to Arduino

4 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 4

complex. The microprocessor by itself was useless; it had to be hooked up to

external memory. To run a program on every boot, it had to also have read-only

memory. If you wanted interrupts, again, you had to add a chip into the design.

The end result was complicated and out of the reach of some enthusiasts. To do

without this complexity, enthusiasts that wanted programmable devices tended

to use what was already on their desk: a personal computer.

Most PCs at the time used the ISA bus, as shown in Figure 1-1. ISA was a

simple bus that allowed components to be added to the processor and general

computer system. It was a simple system that allowed users to insert add-on cards

into their computer, and it was extremely easy to use. It wasn’t hard to create

a circuit board that could be plugged into an ISA slot, and complete prototyp-

ing boards existed, enabling enthusiasts and engineers to test a solution before

making their own board. Some of these boards even included breadboards, a

simple system allowing users to place their components and wires without the

need to solder. This sparked a small revolution, and many enthusiasts turned

to this type of board to do what previously could not be done: create program-

mable systems. An ISA board could have digital inputs and outputs, analog

inputs and outputs, radios, communication devices—just about anything was

possible. All this would be controlled by the computer’s CPU, using simple

programming languages such as C or Pascal. My ISA card kept my student

apartment nice and warm by reading data from a thermometer and turning

on electric heaters, acting like a thermostat. It also served as an alarm clock,

programmed depending on my classes the next day. Although I did manage

to miss a few morning classes, in all fairness it was usually my fault; the ISA

card worked perfectly on a tight budget.

Figure 1-1: ISA prototyping board

Computers became faster, and systems evolved. The industry changed, and

so did the expansion ports. Just as enthusiasts became experts on the ISA bus,

the industry invented a new system: the VESA Local Bus (VLB). The VLB bus

 Chapter 1 ■ Introduction to Arduino 5

c01.indd 05:55:24:PM 11/14/2014 Page 5

was an extension to ISA, only adding a second connector for memory-mapped

I/O and Direct Memory Access (DMA), but it announced a change. Computers

were indeed getting faster, and some computer bus systems couldn’t keep up.

Even VLB couldn’t keep up, and after only a year, PCI became the reference.

The PCI bus is an advanced bus but requires components and logic to identify

itself. It suddenly became increasingly diffi cult to create homemade boards.

Some users decided to use other industry-standard ports, such as the parallel

port or RS-232, but most stopped creating such systems. Those that did continue

mainly used analog systems or nonprogrammable digital systems. Instead of

having a programmable microcontroller, the system was designed using logic

gates. For example, a bulb could turn on if both inputs A and B were true, or

if input C was false. These tasks became more and more complicated as the

number of inputs increased.

Analog systems, such as radios and amplifi ers, did not have a form of pro-

gramming. They were designed with a specifi c task in mind. Confi guration

was analog; with a small screwdriver, the designer could “tweak” values with

potentiometers, variable resistances. It wasn’t possible to program the device to

multiply an input signal by a specifi c value; instead, potentiometers were added

to counter the effect of tolerances in the components. Designs therefore added

an additional phase, calibration. Specifi c input signals were fed into devices,

and a specifi c output was expected.

Processors did exist that could be used, and some projects did use them, but

integrating a processor into a design generally meant that several components

needed to be used. Memory chips, I/O controllers, or bus controllers had to be

used, even after a decade of technological advancements, and circuits became

more and more complicated. Even when designs worked, programming them

proved to be a challenge. Most programming was done via EEPROM devices,

short for Electronically Erasable Programmable Read-Only Memory. These

devices could contain a computer program and could be programmed using

an external programmer attached to a computer. They were called erasable

read-only because the contents could indeed be wiped and replaced, but doing

so required removal of the circuit and subjecting it to ultra-violet light for 20

minutes. One small error in a program could often take 30 minutes or more

to correct.

Atmel AVR

Atmel is an American semi-conductor company, founded in 1984, and the name

Atmel is an acronym for Advanced Technology for Memory and Logic. Right

from the start, Atmel designed memory chips that used less power than com-

peting designs, but it soon decided to create programmable devices. In 1994,

Atmel entered the microprocessor market, creating an extremely fast 8051-based

6 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 6

microcontroller. In 1995, Atmel was one of the fi rst companies to license the

ARM architecture, giving it access to advanced processor technology.

Atmel didn’t use only ARM technology, it also created its own processor, the

AVR, in 1996 (see Figure 1-2). What does AVR stand for? Well, that is one of the

many mysteries of Atmel. Designed by Alf-Egil Bogen and Vegard Wollan, some

say it stands for Alf and Vegard’s RISC processor. We will never know, and at the

time, people were not interested in understanding the name, but rather getting

their hands on this advanced piece of technology. Today, more and more people

are curious as to the origin of this curious processor, Atmel continues to tease

the public with videos of the inventors explaining the name, only to have the

big reveal scrambled by mobile telephone interference.

Figure 1-2: Atmel AVR Microprocessor

Previously, programming the read-only memory of a device required some

tedious tasks, like subjecting the chip to UV light, or complicated erase techniques.

This all changed with Atmel’s 8-bit AVR. The AVR was the fi rst microcontroller

family to use on-chip fl ash memory for program storage. It also included Random

Access Memory (RAM) directly on the chip, essentially containing everything

needed to run a microcontroller on a single chip. Suddenly, all the complicated

design could be replaced with a single component. Even better, programming

the chip could be done in minutes, using minimal hardware. Some Atmel

designs allowed users to plug the microcontroller directly into a USB port and

to program it using Atmel’s software. From compilation to program execution

took less than a minute.

Several learning platforms existed: Parallax’s BASIC Stamp and PIC devices

were in use, but Atmel’s AVR made its appearance and added another alternative

for electronics enthusiasts. Previously, on digital systems, the logic was defi ned

before creating the board. Inputs and outputs were connected to logic gates,

and the functionality was designed into the product. Now, with the AVR series,

enthusiasts and engineers had a new possibility. Instead of designing functionality

electronically, systems could be designed to interact with the outside world using

 Chapter 1 ■ Introduction to Arduino 7

c01.indd 05:55:24:PM 11/14/2014 Page 7

computer programming. This simplifi ed electronics; instead of using multiple

logic gates, everything was connected directly to the microcontroller, which could

then be programmed to react to events from the outside world. Programs could be

fl ashed and re-fl ashed, and devices could be programmed and re-programmed,

opening the gates to a whole new world of electronics. In theory, a device could

be made that would adapt to almost every situation possible. The technology

existed; all that was left was for someone to create the device.

The Arduino Project

The Arduino project started in 2005, and was a project for the students at the Interaction

Design Institute Ivrea in Ivrea, Italy. Students were taught to use a BASIC Stamp, a

small microcontroller device programmable in PBASIC (a variation of the BASIC

programming language), but the price for this device (almost $75) was considered

to be too expensive for students, not only on acquisition, but also to replace dam-

aged units.

Arduino started as a project for design students, targeted as a replacement

for the BASIC Stamp. The Atmel 8-bit AVR was chosen for its simplicity and

low price, and had the extra advantage of requiring few external components.

It also has an impressive amount of inputs and outputs, making it a perfect

choice for future designs.

Students and teachers worked together on a new design, one that used the

Atmel AVR and that could easily accept external cards. When the original

design was completed, researchers worked to make the design lighter, less

expensive and easily usable by students, enthusiasts, and engineers. The fi rst

Arduino board was born. Improvements on the Arduino’s original design,

such as replacing the DB-9 serial connector with USB, has helped expand the

platform’s appeal.

There are two sides to every Arduino. There is, of course, the hardware, but

this is only part of an Arduino project. Every Atmel microcontroller used for

Arduino comes with a specifi c fi rmware, a small program embedded on every

device that looks for a program to run or helps install a program using a serial

device.

The fi nal design was released as open source and was designed and sold

by Arduino. Releasing Arduino as an Open Source Hardware project was an

interesting move. Because it was open source, it attracted more and more users

to look into their projects. Because the Arduino already had an excellent input/

output design, users began to create boards that could be added to the original

Arduino. When Arduino designed a new board, it kept the original input/output

layout, enabling existing add-ons to be used with new designs.

Originally designed for education, the Arduino project became famous with

electronics enthusiasts, and its boards were sold by more and more distributors.

8 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 8

Arduino not only created the hardware—an embedded device that does not

have corresponding software and support programs might still be diffi cult to

use—but also spent a lot of time developing its own language and Integrated

Development Environment (IDE). The end result is a nice IDE that can work on

Windows, MacOS, and Linux and converts the Arduino language (a high level

variant of C/C++) to AVR code. The Arduino development environment hides

away all the complications linked to embedded systems and mixing software—

such as setting up an environment, linkers, pesky command lines—and lets the

developer program using simple C language functions through the Arduino

Programming Language.

The ATmega Series

Atmel has placed its AVR design into different groups, depending on various

factors. There are numerous AVR microcontrollers, and knowing which one to

use is essential for projects. Some ATmega devices have more memory, or more

digital and analog inputs and outputs, or have a specifi c package size.

The ATmega Series

The Atmel megaAVR is the muscle of the AVR series. They are designed for

applications requiring large amounts of code, with fl ash memory ranging from

4 k all the way to 512 k, enough for the most demanding of programs. Atmel

megaAVR devices come in various sizes, ranging from 28 pins all the way to 100

pins. These devices have an impressive amount of embedded systems: analog

to digital converters, multiple serial modes, and watchdog timers, to name but

a few. They also have a large amount of digital input and output lines, making

them ideal for devices that communicate with numerous components.

There are close to 100 ATmega devices, ranging in fl ash memory size and

package size, and some models have advanced features such as internal LCD

Controllers, CAN controllers, USB controllers, and Lightning controllers. ATmega

chips are found in almost every Arduino board produced.

You can fi nd more information on the ATmega series on Atmel’s website at:

http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx.

The ATtiny Series

The Atmel tinyAVR series has small-package devices designed for applications

that require performance and power effi ciency. These devices live up to their

name “tiny”; the smallest tinyAVR is 1.5 mm by 1.4 mm. The word “tiny” is only

a reference to their size. Their power is comparable to the larger AVRs; they have

multiple I/O pins that can be easily confi gured and a Universal Serial Interface

that can be confi gured as SPI, UART, or TWI. They can also be powered with as

http://www.atmel.com/products/microcontrollers/avr/megaavr.aspx

 Chapter 1 ■ Introduction to Arduino 9

c01.indd 05:55:24:PM 11/14/2014 Page 9

little as 0.7 V, making them highly energy-effi cient. They can be used in single-

chip solutions or in glue logic and distributed intelligence in larger systems.

There are more than 30 ATtiny devices, and they come with between 0.5 k and

16 k of fl ash memory, and range from 6-pin packages to 32-pin packages. You

can fi nd more information on the ATtiny series on Atmel’s website at: http://

www.atmel.com/products/microcontrollers/avr/tinyavr.aspx.

While the ATtiny series are powerful devices given their size, no Arduino

uses this device as its microcontroller.

Other Series

Atmel also has different AVR series: The XMEGA series deliver real-time per-

formance, with added encryption using AES and DES modules, and includes

an interesting technology, the XMEGA Custom Logic, reducing the need for

external electronics.

Atmel also produces a 32-bit version of its AVR microcontroller: the UC3.

Supporting fi xed-point DSP, a DMA controller, Atmel’s famous Peripheral Event

System and advanced power management, the UC3 is a formidable microcon-

troller. You can fi nd more information on Atmel’s AVR website at: http://www

.atmel.com/products/microcontrollers/avr/default.aspx.

The Diff erent Arduinos

The original Arduino was designed for one specifi c task, and it fi t that task

perfectly. With the success of the original Arduino board, the company decided

to create more designs, some of them for very specifi c tasks. Also, because the

original Arduino design was open source, several companies and individuals

have developed their own Arduino-compatible boards, or have followed in

the open source tradition, and have proposed their modifi cations to Arduino.

Arduino has begun a certifi cation program to ensure compatibility with boards

that use different processors, with the Intel Galileo being the fi rst to receive such

a certifi cation. Anyone is free to make their own Arduino-based derivative, but

the name and logo of Arduino are trademarked. As such, you’ll fi nd a number

of boards with names ending in “uino”, implying compatibility.

W A R N I N G Beware of counterfeits! Some companies propose Arduino boards

that are cheaper than the original Arduino series, but these boards tend to have less

reliable hardware. Arduino boards are cheap but still use good quality electronic

components, whereas counterfeit boards may well use components that will not last

as long. Paying a few extra dollars for a board helps Arduino fi nance more research to

create new Arduino boards and software, and ensures a better user experience. You

can read more about how to spot counterfeit boards at: http://arduino.cc/en/

Products/Counterfeit.

http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://www.atmel.com/products/microcontrollers/avr/default.aspx
http://arduino.cc/en/Products/Counterfeit
http://arduino.cc/en/Products/Counterfeit

10 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 10

Arduino made the board design open source, but it still produces its own

boards. These boards are known as offi cial boards. Other companies also make

Arduino-compatible boards.

Arduino Uno

The Arduino Uno is the “standard” Arduino board and the most readily available.

It is powered by an Atmel ATmega328, with a total of 32 KB of fl ash memory,

2 KB of SRAM, and 1 KB of EEPROM memory. With a total of 14 digital I/O pins

and 6 analog I/O pins, this is a very capable device, able to run most programs.

An on-board ATmega16u2 chip manages serial communication. It is one of the

least expensive boards and the most used. When starting a new project, if you

do not know what Arduino to use, start with the Uno, as shown in Figure 1-3.

Figure 1-3: The Arduino Uno

Arduino Leonardo

The Arduino Leonardo is slightly different to the Uno. Based on the ATmega32u4,

this microcontroller has enhanced USB capabilities and therefore does not require

a dedicated microchip for USB serial communication like the Uno. One advan-

tage to this is cost; one less microchip means a cheaper solution. It also means

that a developer can use the microcontroller as a native USB device, increasing

fl exibility in the communication with a computer. The Leonardo can effectively

emulate a keyboard and mouse via USB HID, as shown in Figure 1-4.

 Chapter 1 ■ Introduction to Arduino 11

c01.indd 05:55:24:PM 11/14/2014 Page 11

Figure 1-4: The Arduino Leonardo

Arduino Ethernet

The Arduino Ethernet, based on the ATmega328 found in the Uno, can connect to

an Ethernet network, a functionality needed in a number of projects. Physically,

the Arduino Ethernet has the same 14-digital inputs/outputs as the Arduino

Uno, with the exception that 4 are used to control the Ethernet module and on-

board micro-SD card reader, limiting the amount of pins available.

It is interesting to note that the Arduino Ethernet has an optional POE mod-

ule, short for Power Over Ethernet. This option enables the Arduino Ethernet

to be powered directly from an Ethernet connection, without the need for an

external power source provided that there is a POE supply on the other end of

the Ethernet cable. Without POE, the Arduino must be powered by an external

source

Another difference from other Arduino boards is the lack of a USB connector.

Because most of the space is taken up with an Ethernet connector, this device

instead supports a 6-pin serial programming header and is compatible with

numerous programming devices (including a device from Arduino, the USB-

Serial adapter). The Arduino Ethernet is shown in Figure 1-5.

Arduino Mega 2560

The Arduino Mega 2560 is only slightly larger than the Arduino Uno, but it has

more input and output pins. It has a total of 54 digital I/O pins and 16 analog

12 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 12

inputs. It also has a large amount of fl ash memory: 256 KB, capable of storing

larger programs than the Uno. It also has generous SRAM and EEPROM: 8 KB

and 4 KB, respectively. It also has 4 hardware UART ports, making it an ideal

platform for communicating with multiple devices serially.

Figure 1-5: The Arduino Ethernet

Arduino Mega boards are used when large amount of inputs and outputs

are required. It is shown in Figure 1-6.

Figure 1-6: The Arduino Mega 2560

 Chapter 1 ■ Introduction to Arduino 13

c01.indd 05:55:24:PM 11/14/2014 Page 13

Arduino Mini

The Arduino Mini is a tiny device, useful for applications where space is reduced

to the absolute minimum (see Figure 1-7). It has 14 digital I/O pins and 4 analog

input pins. (Four more are available but are not broken out.) The device has the

strict minimum: it does not have a USB connector; it has no power regulator;

and it has no headers. Programming is done via an external USB or RS232 to

TTL serial adapter. It is shown in Figure 1-7.

Figure 1-7: The Arduino Mini

Arduino Micro

The Arduino Micro lives up to its name; it is one of the smallest Arduino boards

available. Despite its small size, it still has a large amount of input and output

pins; it has 20 digital input/output pins, of which 7 can be used as PWM outputs.

It also has 12 analog inputs.

The Micro is not designed to have shields but it does have an interesting layout,

as shown in Figure 1-8. It can be placed directly onto a breadboard.

Arduino Due

The Arduino Due differs from all other Arduino designs in that it is not

based on an AVR, but rather uses a microcontroller based on an ARM

Cortex-M3, the Atmel SAM3X8E. This advanced microcontroller is clocked

14 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 14

at 84 MHz and is a full 32-bit device. It has a large amount of digital and

analog I/O: 54 digital pins (12 of which can be used as PWM) and 12 analog

inputs. The board has 4 UARTs, an SPI header, a Twin-Wire Interface, and

even includes a JTAG header.

Figure 1-8: The Arduino Micro

The Arduino Due has more strict power supply requirements, and the micro-

controller itself is powered under 3.3 V. Be careful not to apply 5 V to any of the

pins: otherwise, you will damage the board. When choosing a shield for the

Due, make sure the shield supports 3.3 V. You can identify if a shield is Due

compatible by making sure it conforms to the Arduino R3 layout.

The Arduino Due is an incredibly powerful Arduino. The Due has 512 KB of

fl ash memory and a total of 96 KB of SRAM. It can handle the largest programs

at a fast speed. If you have a lot of calculations to perform, this is the Arduino

that you need (Figure 1-9).

LilyPad Arduino

The LilyPad Arduino is an interesting device. It strays from the typical Arduino

build because it is not rectangular, but round. Secondly, it does not support

shields. What it is designed for, however, is to be a small device that is perfect

for wearable computing, or e-fabric. The round shape means that connectors

are evenly distributed, and its small scale (2 inches in diameter) makes it perfect

for wearable devices. This device is easily hidden, and multiple manufacturers

have designed devices especially for the LilyPad: Wearable LEDs, light sensors,

even battery supply boxes that can be sewn into fabric.

 Chapter 1 ■ Introduction to Arduino 15

c01.indd 05:55:24:PM 11/14/2014 Page 15

To make the LilyPad as small and as light as possible, some sacrifi ces were

made. The LilyPad does not have a voltage regulator, so it is vitally important to

deliver at least 2.7 volts, but more important, no more than 5.5 volts; otherwise,

the LilyPad will be destroyed (see Figure 1-10).

Figure 1-9: The Arduino Due

Figure 1-10: The LilyPad Arduino

16 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 16

Arduino Pro

The Arduino Pro exists in two versions, based either on the ATmega168 or

the ATmega328. The 168 version operates at 3.3 V with an 8 MHz clock, and

the 328 version runs on 5 V at 16 MHz. Both versions have 14 digital inputs/

outputs and 6 analog inputs. It has a JST battery power connector, a power

switch to select between power modes, and space reserved for a power jack,

if needed. It does not have a USB connector but instead uses a FTDI cable for

programming.

The Arduino Pro is different from most other Arduinos in that while it is

a prototyping board it is designed to be embedded in projects. It does not

come with headers—indeed, it does not have any headers at all, as shown in

Figure 1-11. All the digital and analog inputs and outputs are placed at the

exterior of the board, retaining shield layout, ready to be soldered to wire or

connectors if necessary. Instead of being used for prototyping, the Arduino

Pro is aimed at semipermanent installation in fi nished products. The Arduino

Pro was not designed by Arduino but was designed and is manufactured by

SparkFun Electronics.

Arduino Robot

The Arduino Robot is, simply put, an Arduino on wheels. There are two Arduino

boards on the Robot—one controls the on-board motors, and the other contains

sensors. The Control board controls the Motor board and gives it instructions

on how to operate.

The Control board is powered by an ATmega32u4, with 32 KB of fl ash, 2.5 KB

of SRAM, and 1 KB of EEPROM. It also has an external I2C EEPROM device,

providing more storage. It has a compass, a speaker, three LEDs, a fi ve-button

key pad, and an LCD screen. It also has three solder points for external I2C

devices. It also has I/O capability, with fi ve digital I/Os, six PWMs, and four

analog inputs. There is space for eight analog inputs (for distance sensors,

ultrasound sensors, or other sensors) and six digital I/O pins for other devices

(four of which can be used for analog input).

The Motor board is a fully independent board, powered by an ATmega32u4,

the same microcontroller as on the Control board. The Motor board contains

two wheels powered independently, fi ve IR sensors, and I2C and SPI ports. It

also contains the power supply; it is powered by four rechargeable AA batter-

ies, and contains a jack port to recharge the on-board batteries. The board can

also be powered by an on-board USB connector, but in this confi guration, for

safety reasons, the motors are disabled (Figure 1-12).

 Chapter 1 ■ Introduction to Arduino 17

c01.indd 05:55:24:PM 11/14/2014 Page 17

Figure 1-11: The Arduino Pro

Figure 1-12: The Arduino Robot

18 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 18

Arduino Esplora

The Arduino Esplora is a strange device. Where most Arduinos are designed

to sit on a table or be placed under fabric, the Esplora is designed to be held

in your hand. Based on an ATmega32u4, it is not shield compatible and does

not have any solder points for inputs and outputs. Instead, it looks and feels

like a game pad; it has thumb inputs in the form of four digital switches, one

analog joystick, and a linear potentiometer. For more feedback, the Esplora has

a buzzer and an RGB LED. It also features more advanced devices; it has an

on-board microphone, a temperature sensor, a connector for an LCD screen,

and a three-axis accelerometer.

The Esplora has 32 KB of fl ash; 4 KB are used by the bootloader. It has 2.5 KB

of SRAM, and 1 KB of EEPROM. It is a capable device, and it makes up for its

lack of connectors with four TinkerKit connectors: two inputs and two outputs,

as shown in Figure 1-13.

Figure 1-13: The Arduino Esplora

Arduino Yún

The Arduino Yún is based on an ATmega32u4, but it also has an Atheros AR9331

on the same board. The Atheros processor has a complete Linux distribution,

based on OpenWRT, famous for Linux-based wireless routers.

The Arduino Yún has built-in Ethernet and WiFi, and also has a micro-SD slot.

The Yún is different from other Arduinos and shields in that it has advanced

network functionality; the Arduino can send commands to OpenWRT and

 Chapter 1 ■ Introduction to Arduino 19

c01.indd 05:55:24:PM 11/14/2014 Page 19

then continue processing its sketch (Figure 1-14). The two processors work

independently, the Bridge library facilitates communication between the two

processors.

 Figure 1-14: The Arduino Yún

Arduino Tre

The not-yet-released Arduino Tre promises to be a phenomenal beast. Up until

now, the fastest Arduino was the Arduino Due, based on an ARM-compatible

microcontroller. The Tre, created by Arduino and BeagleBoard, combines the

power of a full computer with the fl exible input and output of an Arduino.

The Tre has a Cortex-A8 class processor, the Sitara AM335X processor, run-

ning at 1 GHz. This processor has access to 512 MB of RAM and has an HDMI

port capable of displaying Full HD (1920 x 1080). All this power is interfaced

by an Atmel ATmega32u4 using the Arduino programming environment that

enthusiasts have come to love.

Arduino Zero

The Arduino Zero is a brand new Arduino using Atmel’s SAM D21 micro-

controller. It has 256 KB of fl ash memory, 32 KB of RAM, and runs at 48 MHz.

The Arduino Zero is designed to handle future requirements from the Maker

community, by creating a design that is powerful, robust, and fl exible enough

to be used in robotics and wearable projects, as well as the IoT. It is also the fi rst

design to have an advanced debugger interface.

20 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 20

Your Own Arduino?

Arduino has always created open-source designs, and all the boards listed

previously have schematic fi les available directly from the Arduino website,

under a Creative Commons Attribution Share-Alike license. Put simply, this

means that you are free to study the Arduino schematics to make your own or

to make modifi cations either for personal use or professional use on the condi-

tion that you give credit to Arduino for the original design and release your

own design under the same license.

With the exception of the Arduino Due, all Arduino boards are based on the

Atmel AVR. These chips can be bought from electronic distributors with the

Arduino fi rmware pre-installed, or if you have the proper tools, you can buy

blank chips and load the fi rmware yourself.

Shields

An Arduino by itself is a capable device and already includes numerous input

and outputs, but its power only starts there. Because Arduino designs are open

source, numerous companies have developed shields, printed circuit boards

that are placed on top of the Arduino board that connect to the Arduino’s pins.

There shields add functionality by using different inputs and outputs, either

digital I/O or through serial communication.

What Is a Shield?

A shield is a printed circuit board that can be placed on the top of most Arduino

boards. It connects to the Arduino’s processor through male header pins. Adding

a shield to an Arduino does not necessarily expand the possibilities of an Arduino,

but most do.

For most prototyping projects, you connect wires to the Arduino’s headers

and connect them to a breadboard. This is easy enough for a lot of applications,

like outputting data to two or three LEDs. For more complex applications, a

breadboard isn’t practical due to the complexity of the wiring, or the size of the

components. Micro-SD card readers are extremely small and cannot be placed

onto a breadboard. Soldering wires to a micro-SD reader isn’t particularly easy,

so your choices are limited. Writing data to a micro-SD card is something that

can happen a lot, so it’s fortunate several companies have developed shields

with a micro-SD reader. If your application requires data logging, all you have

to do is to connect the shield to the top of the Arduino, add a few lines of code,

and you are ready to go. It is that simple.

As said previously, not all shields add functionality. Some shields exist to

help prototyping— allowing you to solder components onto the shield—without

 Chapter 1 ■ Introduction to Arduino 21

c01.indd 05:55:24:PM 11/14/2014 Page 21

having to make your own PCB. Prototyping on a breadboard is an excellent

way to test that your design works, but after the design is proven, it is time to

make a better board. For example, if you were creating a doorbell application, it

would be complicated to hide a breadboard behind the ringer. Instead, you could

solder those components onto a prototyping board, saving space and making

your design much more resistant to shock or tampering. The added advantage

of this type of board is that you do not need to create your own printed circuit

board or do any complicated routing.

The Diff erent Shields

Shields exist for a wide variety of applications: storage on SD cards, network

connectivity by Ethernet or WiFi robotics control, enabling displays like LCD

and TFT screens, to name but a few.

Most shields can be stacked, so you are not limited to using only one at a time.

However, some shields may require input and outputs that will subsequently

be unavailable to other designs. Be careful when you choose your shields!

Arduino Motor Shield

When using motors, special care has to be taken. When turned off, motors can

induce voltage spikes, and components need to be added to a design account

for this possibility. Also, typically, USB power is insuffi cient for motors. The

Arduino Motor Shield takes care of this and enables the programmer indepen-

dent control of two DC motors, or one stepper motor. This shield can either be

powered from the Arduino or rely on an external power supply.

Arduino Wireless SD Shield

The Wireless SD shield is designed for an Xbee module but works with any

radio modem with the same footprint. The on-board micro-SD slot allows the

shield to act as a data logger. It also has a small prototyping area for adding

components.

Arduino Ethernet Shield

The Arduino Ethernet shield does exactly as the name implies; it adds

Ethernet connectivity through a W5100 controller, supporting up to four

simultaneous socket connections. This module also includes a micro-SD

slot for data-logging.

The Arduino Ethernet Shield has an optional POE module. On a POE

network, the module (and the parent Arduino) can be powered directly over

Ethernet.

22 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 22

Arduino WiFi Shield

The Arduino WiFi Shield includes an HDG104 Wireless LAN controller, enabling

an Arduino to access 802.11b/g networks. It can connect to open and encrypted

networks. This module also includes a micro-SD slot for data-logging.

Arduino GSM Shield

The Arduino GSM shield connects to the Internet through a GPRS network, at

a maximum of 85.6 KBps. It also has voice capabilities; by adding an external

microphone and speaker circuit, it can make and receive voice calls. It can also

send and receive SMS messages. The modem, an M10 by Quectel, is confi gured

using AT commands, handled in software by the GSM library.

The Arduino GSM Shield comes with a Bluevia SIM card; which allows

for machine-to-machine roaming data connections in blocks of 10 or 20

megabytes. However, the GSM shield will work with a SIM card from a dif-

ferent provider.

Your Own Shield

In some cases, you will want to make your own electronics. For prototyping, a

breadboard is suffi cient, but when you need something more robust and more

professional, it is time to make your own shield. There are several software

options to assist you, but one of the best is the Fritzing application. In Fritzing,

you can create breadboard designs, translate them into electronic schematics,

and generate a shield layout directly. Fritzing also has its own shield creation

system; just upload your schematic to its website and receive a professionally

built shield.

What Can You Do with an Arduino?

This is one of the most commonly asked questions, but the answer is both simple

and complicated. Put simply, you can do almost anything you can imagine. The

most diffi cult part of any Arduino project is identifying a need. Maybe you

have an aquarium at home and would like to control the lighting in a specifi c

way? Maybe you would like to add a parking assist device onto your car. Some

people just want to add some automation to their house, opening and closing

motorized shades at the push of a button. Some people come up with even

more amazing and fun projects: a remote-controlled lawn mower, even a chess

playing robot. The possibilities are almost unlimited. There are a few things

that an Arduino cannot do, but that list is becoming shorter every time a new

Arduino-compatible board is released.

 Chapter 1 ■ Introduction to Arduino 23

c01.indd 05:55:24:PM 11/14/2014 Page 23

Arduino is an excellent way to learn about software development and elec-

tronics because it is a low-cost, robust device that is easy to program.

Some people use Arduino for hobbyist electronics, with projects ranging

from the simple to the incredibly absurd. I know of one person who has entirely

automated his house using 10 Arduino Megas, each room communicating with

the others to better estimate electrical consumption, heating, and personal

comfort.

Arduino is also used professionally because the components are low-cost

and highly reliable and have the added fl exibility of being open source. When

an initial design is completed, developers can make a board much smaller to

be included in toys, small embedded systems, and even industrial machines.

Several 3-D printers are based on Arduino for their ease of use and reliability.

What You Will Need for This Book

Each chapter has a list of elements required to complete. However, when creat-

ing an Arduino project, a few items are required every time. Following is a list:

 ■ A power supply—The Arduino Uno accepts an input voltage of 6 to 20 V,

with 7 to 12 V being recommended. Any standard AC-to-DC center-positive

adapter should work fi ne, preferably one that can supply up to or over 1

amp of current.

 ■ Multimeter—Almost any model. You do not need to buy the most expen-

sive, far from it, but it should test DC voltage, DC amperage and continu-

ity, with optional resistance calculation, and AC voltage and amperage if

you plan to interface your Arduino to main’s power.

 ■ Breadboard—The size depends on your project. Consider a medium-sized

board; if it is too small you might not fi t all your components (or it might

be too cramped, possibly creating short circuits), and large breadboards

can cost more and require more space. (I use 680-point breadboards for

most of my examples and projects.)

 ■ Resistors—A common element of every project. There are numerous

values, but there are some values that will be used more often. There are

kits on the market that propose 10 of every value, or you can go with the

most common, the choice is yours. To start out, ten 220-ohm, ten 1-kilohm,

and ten 10-kilohm resistors should suffi ce.

 ■ LEDs—A great way of knowing the output of a pin. Coupled with a resis-

tor, it can instantly show the state of your project.

 ■ Other electronic components—Sometimes it is handy to have a small

collection of capacitors, switches, and diodes on hand. Each example in

this book has a complete list of the required components.

24 Part I ■ Introduction to Arduino

c01.indd 05:55:24:PM 11/14/2014 Page 24

Summary

This chapter briefl y talked about some of what an Arduino can do, but there

is no way of knowing exactly what everyone will do with it. As I said, your

only limitation will be your imagination, and I would love to hear about

what you have done with an Arduino! You can contact me on my website at

http://packetfury.net . I look forward to hearing about your projects!

In the next chapter, you will learn more about programming an Arduino,

including how to install the Arduino IDE, how to connect an Arduino to your

computer, and uploading your fi rst sketch.

http://packetfury.net

25

c02.indd 01:47:42:PM 12/05/2014 Page 25

The Arduino is an embedded system, that is to say it has the minimum amount

of hardware to get the job done. That does not mean that it is by any means a

weak system; there is no point in having a PCI bus if it will never be used—it

will only take up space, energy, and increase the overall cost of the device.

Arduinos are lightweight—and inexpensive—and make excellent embedded

systems. Just like all embedded systems, programming is done on a host com-

puter, not the Arduino itself.

Programming an embedded system, and indeed programming any sort

of system, is the art of writing text that can be understood by a human, and

translating it into a binary fi le that can be understood by a processor. For this,

some tools are required. The data written by humans is called source code, and

because most source code is in text format, sometimes a simple text editor is

enough. Most people go with an Integrated Development Environment (IDE), an

augmented text editor with add-ons designed for developers. These add-ons can

range from text auto-completion to debugging and often include tools to handle

different types of source fi les, which contain source code. Some projects might

use only one fi le, but large projects can sometimes have hundreds of fi les, if not

thousands. After the source code is written, a compiler must be used, which

reads in the source code and creates one or more binary fi les. These binary fi les

are later uploaded onto the Arduino and run by the microcontroller.

C H A P T E R

2

Programming for the Arduino

26 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 26

Arduino developed all the tools required to get straight to work. With a

different embedded system, you may have to make a choice of an IDE, install

a compiler, and sometimes even a fl asher, and spend precious hours setting

up the system. With Arduino, this isn’t the case; everything is delivered in a

simple package and contains everything needed, from writing your programs

to fl ashing the fi nal binary fi le.

An Arduino program is known as a sketch. There are several defi nitions of

the word sketch such as a brief literary composition or a brief musical composi-

tion. Whatever your preference, an Arduino sketch is like a work of art; you,

the artist, gather and assemble elements to create your masterpiece. Google X

engineer Jeremy Blum, author of the book Exploring Arduino (Wiley, 2013), said,

I believe that creative engineering is indistinguishable from fine artwork.

The Arduino will be your canvas; you are on your way to making something

amazing using sketches and electronics. Your only limitation will be your

imagination.

Installing Your Environment

The fi rst thing that you need to do is to install the Arduino IDE. The Arduino

IDE is a fully integrated piece of software written in Java. Java can run on mul-

tiple platforms, and the IDE is available for Windows, Mac OS X, and Linux.

You can get the Arduino IDE free of charge at the Arduino website:

http://arduino.cc/en/main/software

On this page, you will most likely have several options. The latest stable ver-

sion will always be listed fi rst. Next, any beta versions available will be listed.

Beta versions are test versions that might not be up to the quality of a fi nished

version but that add functionality; it will be up to you to decide if you want

to use it. Beta versions sometimes support more hardware, and if you use the

latest Arduino boards, you might not have a choice.

Also listed on the site are nightly builds and builds for specifi c hardware.

Nightly builds are installers that are generated every night that contain the

latest updates but may in some rare cases also have bugs. Specifi c builds are

builds created for a single board in mind. At the time of writing, there is an

IDE available for the Intel Galileo, an Arduino compatible board designed and

manufactured by Intel that does not use the same compiler.

http://arduino.cc/en/main/software

 Chapter 2 ■ Programming for the Arduino 27

c02.indd 01:47:42:PM 12/05/2014 Page 27

Downloading the Software

Time to get to work! You have to download the software, so fi nd the latest ver-

sion and download it. Figure 2-1 shows what the Arduino site looks like on my

development computer.

Figure 2-1: The Arduino download page

Windows users have a choice between an installer and an archive. For the

installer, simply download the installer, double-click it, and follow the instruc-

tions. For more information on installing, please see the Arduino website on

installing: http://arduino.cc/en/Guide/HomePage.

Mac OS X and Linux users have to download an archive. Simply unpack the

archive using your normal tool, and double-click the Arduino icon inside the newly

created folder. Everything required is inside this folder.

If you have an operating system that is not listed, or if you are curious about

the source code, a source code bundle is also available. You could compile the

source code yourself.

http://arduino.cc/en/Guide/HomePage

28 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 28

Some Linux distributions might bundle the Arduino IDE directly; oth-

ers might require external repositories. Refer to your distribution’s forums

or look at Arduino’s Playground website, a community edited wiki, at:

http://playground.arduino.cc.

Running the Software

Once you have downloaded and installed the software, open the application.

If everything went well, you should have a window that looks like the one in

Figure 2-2.

Figure 2-2: Empty sketch

This is the Arduino IDE, where you will design your sketches. The main

window is the sketch editor, which is where you write your code. At the bottom

is the status window; you receive information on compilation, uploads, or code

errors. In the bottom right of the screen is the device information panel, which

shows the device that you are using, as well as the serial port it is connected to.

The sketch editor isn’t just a simple text editor; the editor colors and formats

text depending on what you write. Comments are greyed out, data types are

written in color, and so on. This provides a nice, easy way to read and write

source code.

http://playground.arduino.cc

 Chapter 2 ■ Programming for the Arduino 29

c02.indd 01:47:42:PM 12/05/2014 Page 29

Using Your Own IDE

The Arduino IDE is a capable environment, but some people may want to use

their own IDE, either for preference or simply because they are used to another

environment. The Arduino community has worked hard on porting the tools to

other programs, and you can fi nd a complete list on the Arduino Playground.

Eclipse, CodeBlocks, Kdevelop, and the command line are just a few of the

environments proposed. Although this book concentrates on the Arduino IDE,

check out other IDEs. For more information see http://playground.arduino

.cc/Main/DevelopmentTools.

Your First Program

It’s time to dive in! By default, Arduinos come with a default sketch called

Blink. This sketch will blink the on-board LED connected to pin 13, available

on most Arduinos. Just plug a USB cable into your computer and your Arduino,

and after a few seconds you will see the LED blink, telling you that everything

went well. Arduinos are all about getting things done, and what better way

to show you just how easy they are than to run your fi rst program. Your fi rst

sketch will look like Listing 2-1:

Listing 2-1: Your fi rst sketch

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeat

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the level)
 delay(200); // wait for 0.2 seconds
 digitalWrite(led, LOW); // turn the LED off by making the LOW
 delay(200); // wait for 0.2 seconds
}

http://playground.arduino.cc/Main/DevelopmentTools
http://playground.arduino.cc/Main/DevelopmentTools

30 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 30

If this source code doesn’t make much sense to you, don’t worry; everything

will be explained a little later. Seasoned C developers might have a few ques-

tions, which will also be answered later.

The previous sketch is an entire program. You can either type it in or use the

Arduino IDE directly; this code listing is actually an example from the Arduino

IDE. To open it, go to File ➪ Examples ➪ 01.Basics ➪ Blink, and a new window

will open with the code. This sketch has comments, text zones where the user

can write about what he is intending to do, indicated by // at the beginning of

the line. Have a quick read through, and try to see what the program is doing.

When you are ready, it is time to upload your fi rst program! Uploading means

installing the binary code onto the Arduino board. Make sure your Arduino

board is connected to your development computer via USB. For this example,

use an Arduino Uno or Arduino Mega. This code can run on all the Arduinos,

so feel free to use whichever you have. To upload the program, a few simple

steps must fi rst be completed. The IDE needs to know what type of board is

connected. First, go into the menu; Tools ➪ Board, and select your board. As

you can see, there are a lot of different boards to choose from. Select the entry

that corresponds to your board; in this example, I have an Arduino Mega 2560,

as illustrated in Figure 2-3.

Figure 2-3: Arduino IDE with the Arduino Mega 2560 selected

 Chapter 2 ■ Programming for the Arduino 31

c02.indd 01:47:42:PM 12/05/2014 Page 31

Next, the IDE needs to know how the board is connected to your computer.

Using the Tools ➪ Serial Port menu, you can select the proper connection. On a

Windows machine, the board will appear as a COM port. On a Mac, the Arduino

connection will start with “/dev/tty.usbmodem.” My development machine is a

Linux system, and in this case the Arduino is connected to /dev/ttyACM0. On

some systems, there might be several serial ports listed. Figure 2-4 illustrates

me selecting my port.

Figure 2-4: Arduino IDE with the Arduino Mega 2560 serial port selected

That’s it—as far as confi guration goes. You have to do this only once; the

Arduino IDE remembers your preferences and keeps them for the next time.

You will need to change your settings if you change boards or plug the board

into a different USB port.

Next, you may optionally verify the source code. The verifi cation stage actually

compiles the source code; the compiler will warn you if anything goes wrong. If

there is a problem, the IDE shows a message at the bottom of the screen, indicat-

ing a line number and the cause of the problem. For this example, the compiler

shouldn’t complain, and it will compile your application. To compile, you must

click the Verify button (the check mark) in the top left of the IDE or go into the

menu Sketch ➪ Verify/Compile. There is also a keyboard shortcut: Ctrl+R.

32 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 32

There is now one fi nal step: you must upload the program onto your Arduino.

Simply click the Upload button next to the Verify button, or go to the menu item

File ➪ Upload. Again, a keyboard shortcut is available: Ctrl+U, as shown in

Figure 2-5. The upload process also re-verifi es the source code before uploading.

Figure 2-5: Successful upload

The Arduino IDE now attempts to contact the Arduino board and transfer

the program into the microcontroller’s fl ash memory. A message at the bottom

should soon display the text “Done Uploading”. Now look at your Arduino

board. Next to the USB connector, a small LED should be blinking; the same one

used to verify that your Arduino was working in the beginning of the chapter.

This time, it should be blinking two to three times per second. Congratulations!

You have now successfully uploaded your fi rst Arduino program!

The program has now been written into fl ash memory, but what does that

mean? Like a program on a computer, it has been “installed” into the nonvolatile

memory and will be executed every time you turn on the Arduino, so try that

right now. Unplug your Arduino from the USB port, wait a few seconds, and

then plug it back in. The Arduino will be powered again from the USB port,

and after a few seconds, the LED will start to fl ash. Your program is running.

 Chapter 2 ■ Programming for the Arduino 33

c02.indd 01:47:42:PM 12/05/2014 Page 33

Although it may appear that the Arduino has simply run your program, it

hasn’t done only that. Arduinos contain something called a bootloader, a small

program that is run every time the device starts. This is only one of the strong

points of the Arduino system; the bootloader is always available to allow the

programmer to refl ash a program. Even if you accidentally fl ash a program that

continuously crashes, you will always be able to refl ash your Arduino, provided

the bootloader is present.

W A R N I N G If you need more program space, you can delete the bootloader and

place your own application at the start of the processor’s instruction sequence. Doing

this has the advantage of freeing the space used by the bootloader and using it for

your own application. The bootloader is a small program, about 2 kilobytes in size.

If you delete the bootloader, you can still refl ash your Arduino, but more specialized

equipment will be required.

Understanding Your First Sketch

Now that your sketch works and you have seen the results, it is time to have a

closer look at the source code. This is presented step by step. The fi rst part gives

some interesting information:

/*
 Blink
 Turns on an LED on for one second, then off for one second repeatedly

 This example code is in the public domain.
 */

Everything placed between the text /* and */ is considered to be a comment,
a portion of source code that is ignored by the compiler. Everything within

these markers will be ignored, so it is the best place to write natural language

text about what the program does, or is doing. It is common to start a source

code fi le with a comment, explaining what the application does. Just by looking

at these few lines, you already have an idea about what the program will do.

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

This, again, explains what will happen using comments. Just like the /* and

*/ markers, when the compiler encounters the marker //, it will ignore every-

thing else after that marker but only for that line. On the fi rst line, the compiler

encounters a comment marker and ignores the text. It then attempts to read in

34 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 34

the second line but again encounters a comment and ignores that, too. On the

third line, there is no comment; this is a real line of code.

It starts with the keyword int, short for integer. This is a variable declaration;

it tells the compiler to reserve space for a variable, a named container that can

change its contents. Because the variable was declared as an integer, it can hold

only whole numbers between -32,768 and 32,767. This variable is named led. The

compiler will assign the value 13 to the variable. Finally, the line is fi nished with

a semicolon. In C, a semicolon marks the end of an instruction.

Now for the next part:

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output.
 pinMode(led, OUTPUT);
}

The fi rst line is a comment. It explains what the next portion of the code will do.

The next line is interesting. The keyword void means an empty data type.

The second word, setup, declares the name of a function. Because of the paren-

theses and curly brackets, you know that this is not a variable but a function.

Functions are portions of code that can be called inside a program; instead of

writing the same code dozens of times, it is possible to write it only once and

have the program call this function as required. It is also a way of separating

code for special needs.

Inside the parentheses, you would list any parameters for the function: these

are variables that can be passed to the function. Because there is nothing inside

the parentheses of setup(), there are no parameters. The function therefore does

not need any data to run. Because the function was declared as void, it will not

return any data either. When this function is called, it will do its job and then

return without any data. But what exactly does it do?

Everything included in the curly brackets is part of the function—in this case,

a single line of code. When the setup function is called, it executes one instruc-

tion, pinMode(). This instruction is not preceded with a data type, meaning that

it is not a variable declaration, and it is not a function declaration. Because it

has parentheses, it is a function, and unlike setup it requires two parameters:

led and OUTPUT. All the standard functions will be listed in Chapter 4, but just

to give you an idea, pinMode() is a function that tells the microcontroller how

a particular pin will be used. Before using a pin, the microcontroller needs to

know how it will be used; in this case, it will be sent as an output. The microcon-

troller can therefore set the output of a pin as HIGH or LOW and will not attempt

to read the status of the pin. The pin in question, identifi ed as led, was defi ned

earlier in the code; it is pin number 13.

 Chapter 2 ■ Programming for the Arduino 35

c02.indd 01:47:42:PM 12/05/2014 Page 35

Now for the fi nal section of code.

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH voltage level)
 delay(200); // wait for a second
 digitalWrite(led, LOW); // turn the LED off, LOWvoltage
 delay(200); // wait for a second
}

Again, the code starts with a comment, giving you an idea of what this por-

tion of code will do. This is a function declaration for a function called loop().

It does not require any parameters to run.

Inside of loop, you’ll see the function digitalWrite(). As you might have

guessed from the name of the function, it performs a write action on a pin in

digital format. It sets the pin status to a logical 1 (HIGH) or a logical 0 (LOW).

The fi rst time the function is called in this sketch, it sets the pin to a logical 1.

The code then calls the delay() function with an argument of 1000. The delay

function tells the microcontroller to wait for a specifi ed number of milliseconds

before proceeding to the next instruction. In this case, it tells the microcontroller

to wait for 1 second before proceeding. So, the program turns on a pin and then

waits for 1 second. The rest of the code is similar; a digitalWrite is performed,

this time setting the pin to a logical 0 (LOW), and then waits for another second.

For those of you used to developing applications in C, you might have noticed

that the Arduino code does not have a main() function. In C, the main() func-

tion is used as an entry point; that is to say, it is the function that is called when

the program starts. This is true for systems programming, where an operating

system takes care of initializing everything required by the program, but this

is not the case on embedded systems.

The Arduino requires that two functions be present; setup() and loop(). These

two functions must be present, even if they are empty, but they rarely will be.

The setup() function is called when a sketch starts and is used to initialize

variables, pin modes, and other components for your sketch. It is good practice

to keep initialization code away from the work code, making things clearer. It

also has the advantage of making your program more robust. Although it is

perfectly possible to set up a pin as required just before performing an action,

it is best to have everything completely set up before starting your program.

Looking into the setup() function can tell you immediately if you have cor-

rectly set up a pin, instead of looking through long lines of code in the work

section. In this example, setup() contained a command to change the status

of a pin, setting it to output.

36 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 36

The loop() function does exactly what its name implies; it loops continu-

ously, as long as power is applied to the Arduino. In the example, loop() set

the output of a pin HIGH, waited for 1 second, set the output of the same pin

to LOW, and then waited for another second. After this was done, the function

ran again. This is also the reason why confi guration should not be done inside

the loop() function; the same code will be run over and over again. If you had

put any confi guration here, variables could have been overwritten, and setting

pin confi gurations might have slowed down the application.

These two functions are required for any sketch, though you are free to add

your own functions as required.

Programming Basics

As said previously, programming is the art of writing something that is read-

able by humans and that can be converted to be understood by computers. The

problem is that computers, despite what people try to tell you, aren’t intelligent

at all. They need to be told exactly what to do, and require exact instructions.

Source code has to be laid out in a precise way.

Variables and Data Types

In your sketches, most of the time you will want to store data and perform some

type of calculation. Counting the number of times a button is pushed, storing

the voltage on an analog pin, or performing a complex mathematical calcula-

tion with vectors: require data to be calculated and stored. This data is saved

in a variable, a memory location that can be changed as required. By declaring

a variable, you are asking the compiler to allocate a specifi c amount of memory,

depending on the data type.

There are different types of data, and you must fi rst tell the compiler exactly

what sort of data you want to store. If you defi ne a variable as capable of holding

integers, you cannot use the same variable to store fl oating-point data, or even

a string of text. The different data types are listed in Table 2-1.

Table 2-1: Diff erent Data Types

DATA TYPE CONTENTS

void No data type

boolean True or false

char One character, stored as an ASCII number (‘A’, ‘B’, ‘C’...)

unsigned
char

Decimal numbers, from 0 to 255

 Chapter 2 ■ Programming for the Arduino 37

c02.indd 01:47:42:PM 12/05/2014 Page 37

DATA TYPE CONTENTS

byte Decimal numbers, from 0 to 255

int Decimal numbers, from –32,768 to 32,767

(Arduino Due, from –2,147,483,648 to 2,147,483,647)

unsigned
int

Decimal numbers, from 0 to 65,535

(Arduino Due, from 0 to 4,294,967,295)

word Decimal numbers, from 0 to 65,535

long Decimal numbers, from –2,147,483,648 to 2,147,483,647

unsigned
long

Decimal numbers, from 0 to 4,294,967,295

short Decimal numbers, –32,768 to 32,767

float Floating point numbers, from –3.4028235 x 1038 3.4028235 x 1038

double Floating point numbers

string An array of char

String Advanced arrays of char

array A collection of variables

Also noteworthy, the Arduino Due is a relatively new device that uses a

32-bit microcontroller instead of the 8-bit AVR found in other Arduino boards.

Therefore, some of the data types are different to other Arduinos. Integers are

coded to 32-bits, meaning they can handle much larger numbers. Also, the

data type double is coded to 8 bytes on the Arduino Due and 4 bytes on other

Arduinos. Therefore, a double has more precision on an Arduino Due.

When declaring a variable, it is important to fi rst specify the data type and

then the variable name. Optionally, you may assign a value by using the equal

sign. Finally, fi nish with a semicolon. The following are legal declarations:

long data;
char usertext;
int pin_number = 42;

You are free to use just about any variable name, but don’t use names that are

too vague. In the previous example, usertext hints that the variable contains

some text that comes from an external source. The variable pin_number suggests

that this is the pin ID for input or output operations, but data? The defi nition

is too vast; does it contain text? Numbers? Later in your sketch, you might start

wondering what this variable contains, and you might even confuse it with

another variable with unpredictable results.

Data types work on variables but also on functions. This is described later

in the “Functions” section.

38 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 38

Control Structures

The power of microprocessors and microcontrollers is their ability to process

data. They follow instructions, and can also execute conditional instruction

depending on data. Does the variable contain a number greater or equal than

42? If so, execute this portion of code. Otherwise, execute another portion. These

instructions come in the form of conditional statements like if, for, and while.

if Statement

The if statement is the simplest of branching statements and is used to detect

if an expression is equal to a result. It is used as follows:

if (expression)
{
 statement;
}

Multiple instructions can be used inside an if statement, by placing multiple

instructions inside curly brackets:

if (expression)
{
 statement;
 another_statement;
}

It is also possible to execute two sets of instructions using an if .. else state-

ment. You can think of it as doing one thing if the result is equal to something,

else performs another action.

if (expression)
{
 do_this;
}
else
{
 do_that;
}

It is also possible to mix several ifs using else:

if (expression)
{
 do_this;
}
else if (expression)
{
 do_that;
}

 Chapter 2 ■ Programming for the Arduino 39

c02.indd 01:47:42:PM 12/05/2014 Page 39

The expression is used to check the veracity of a statement. For example,

you can check to see if a variable is equal to a certain value, less than a value,

greater than a value, and so on. It is also possible to detect other value types;

for example, if a boolean value is true or false.

int myval = 42;
if (myval == 42){
 run_this; // myval equals 42; this function will be executed
}else{
 run_that; //This one will not
}
if (myval < 50){
 run_another_function; //This will be run, since 42 is less than 50
}

Note that in this example, the myval variable is set to the value 42 with a

single equals sign (=), but the value is evaluated with a double equals (==). In

C, a single equal sign always sets the value of a variable (or at least tries to).

Two equal signs makes an evaluation. Watch out when writing if structures;

a single equal sign will force a value into a variable, and the results might not

be quite what you expect!

switch Case

The if statement is easy to use and works well in situations in which you need

to check a variable against one value, possibly two. What would happen if you

need to check against multiple variables? What about a robot that needs to

detect how close an obstacle is? In this case, you might use an if statement; if

the obstacle is less than 3 inches away, then stop the motors. Some situations

are not as simple. Imagine a keypad connected to an Arduino with some stick-

ers on the keypad detailing instructions for the user. If the user presses button

one, then the Arduino will turn on the lights. If the user presses button two,

then the blinds open. If the user presses button three, some music turns on,

and so on. With if statements, this would rapidly get out of hand and would

be diffi cult to read:

if (button == 1){
 turn_on_lights();
}
if (button == 2){
 if (blinds_up == false){
 raise_blinds();
 blinds_up = true;
 }
}
if (button == 3)
…

40 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 40

A more elegant way of writing this is through the switch/case statement.

Just like the if statement, switch/case controls the fl ow of the program by

allowing different sections to be executed depending on a condition. A switch

statement checks the value of a variable, and executes different case statements

depending on the value.

switch(button)
{
 case 1:
 turn_on_lights();
 break;
 case 2:
 if (blinds_up == false)
 {
 raise_blinds();
 blinds_up = true;
 }
 break;
 case 3:
 …

Notice the break instruction; it is typically used at the end of each case and

tells the compiler to stop running instructions. Without the break statement, the

Arduino would continue to execute the case instructions, even when another

case should be used. This can actually be used to your advantage. Imagine that

in this application, pushing buttons 4, 6, and 8 actually do the same thing. You

can write the following:

switch(button)
{
 case 4:
 case 6:
 case 8:
 //code to be run
 break;
}

while Loop

The while loop is the most basic loop in C; it will loop over the same code while

a condition is satisfi ed. As long as the condition is true, while continues to

execute the same code, checking the condition at the end of the loop.

while (button == false)
{
 button = check_status(pin4);
}

 Chapter 2 ■ Programming for the Arduino 41

c02.indd 01:47:42:PM 12/05/2014 Page 41

In this example, the function check_status runs until it returns true. When

that happens, the variable button becomes true, and the while loop will be bro-

ken. It might be within a few milliseconds, or the system might wait indefi nitely.

for Loop

In cases in which you need a portion of code to loop an exact number of times,

the for loop is used. It is similar to while, only it is written differently. The for

loop keeps track of the number of times it has run.

for (expression1; expression2; expression3)
{
 instructions;
 instructions;
}

This might look complicated, but don’t worry; it is simple. It requires three

expressions:

 ■ expression1 is the initializer; it will initialize a variable.

 ■ expression2 is the conditional expression; as long as this condition is

true, the loop keeps on executing.

 ■ expression3 is the modifi er; when a loop is completed, this action is

performed.

For example:

for (int i = 0; i < 10; i++)
{
 myfunc(i);
}

In this example, a variable is defi ned with the name i. The variable is set to

zero, and each time the function myfunc is run, i is increased by one. Finally,

when i reaches 10, the loop stops before running myfunc. This saves you from

writing out all the commands one by one like this:

myfunc(0);
myfunc(1);
…
myfunc(8);
myfunc(9);

N O T E The name i is often used for a temporary variable in for() loops. It is short-

hand for “index.”

42 Part I ■ Introduction to Arduino

c02.indd 01:47:42:PM 12/05/2014 Page 42

Functions

A function is a portion of code that can be called, with parameters if required,

and returns data if required. If you write a long list of repeating statements in

code, or if you have created code that needs to be called several times, it may

be useful to create a function.

The main program is running and then calls a function, called addTwo(),

with two parameters: 12 and 30. The function is run and data is returned. The

program then returns to where it was.

A function requires a data type, even if it does not return any data. If no data

is to be returned, then the data type void must be used. The contents of the

function are contained within curly brackets. In the addTwo() function shown

above, it returned an int datatype, indicated when it was fi rst declared.

Libraries

The Arduino programming environment comes with a standard library, a

library of functions that are included in every sketch. However, the Arduino is

also an embedded system, so the standard library contains the strict minimum.

By default, it can handle basic mathematical operations, and set pins to digital

or analog input and output, but it cannot write data to an SD card, connect

to WiFi, or use a TFT screen. These devices that are not standard on Arduino

boards. Of course, an Arduino can use these devices when they are available,

but to use these devices, a library for the specifi c device must be imported into a

sketch. Otherwise, there is no point in having the extra functionality that could

potentially take up space on a device where space is critical.

Adding a library to your sketch adds more functionality and allows you, the

programmer, to use new functions. For example, by importing the EEPROM

library, you can access the internal EEPROM by using two new functions: read()

and write(). The standard library will be presented in Chapter 4, and different

libraries are presented throughout the book.

C R O S S  R E F E R E N C E Chapter 6 explains EEPROM technology and the EEPROM

library.

Summary

 This chapter showed you how to create your fi rst Arduino sketch and walked you

through it step by step. Arduino has developed all the tools required for you to get

started programming, and they are delivered in a simple package that contains

everything you need, from writing your programs to fl ashing the fi nal binary fi le.

 Chapter 2 ■ Programming for the Arduino 43

c02.indd 01:47:42:PM 12/05/2014 Page 43

An Arduino program is known as a sketch, which is like a work of art. You,

the artist, gather and assemble elements to create your masterpiece, and the

Arduino is your canvas.

In Chapter 3, you will see some of the most common electronic components,

and how to choose their values. Each will be presented, and I will explain how

to use them in your sketches.

45

c03.indd 09:50:42:PM 07/13/2017 Page 45

You can have a lot of fun with an Arduino, but without some electronics, you

won’t get far. Without adding a single electronic component, you could program

an Arduino Robot to run around racetracks, or program a games controller

with an Arduino Esplora, but how about an Arduino Uno? Of course, you can

add shields to add some functionality, but the real fun comes when you add

your own electronics. This chapter shows you how to add your own electronics

components onto an Arduino. No, don’t run away! It is easy, I promise.

Electronics is often shrouded in mystery, conjuring images of highly complex

and advanced components requiring weeks of calculating, just to choose the

right one. Although some components are indeed incredibly advanced, and

although some electronic circuits do indeed require weeks of work, this tends

to be true in advanced fi elds, not basic electronics. At the end of this chapter,

you will understand some basic electronic components, and you will be able to

create your own electronic circuit.

Electronics is fun, but should be taken seriously. In this chapter, you will see

a few warnings for particular components. Some components can’t handle high

voltage; others may be damaged or destroyed if handled incorrectly. Throughout

this book, there are numerous electronic examples, but none of them use high

voltage, AC voltage, or any other dangerous factors. Still, be careful! You will

not hurt yourself with the 5 volts used in the examples, but a short circuit will

damage any components in the circuit.

C H A P T E R

3

Electronics Basics

46 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 46

Electronics 101

Everyone is exposed to electronics in one way or another. You can fi nd elec-

tronics inside your television, your computer, your washing machine, and just

about any device in your house. The electronic boards inside a television are

miniaturized, and look extremely complicated, but every electronic design fol-

lows simple laws of physics.

Electricity is the fl ow of electrons through a conductor. A conductor enables

the fl ow of electricity, and an insulator does not. A resistor restricts the fl ow of

electrical energy.

So, how do electronics relate to electricity? Electronics involve the use of

components to manipulate electricity. This manipulation can be used to pro-

cess information and build logical systems, among other things. For example,

your home computer is fi lled with electronic components. It processes things

like input from the keyboard, and by manipulating electricity it renders the

characters you type on screen. When discussing circuits, it’s good to keep in

mind that there are two different types of supplying power. Alternating cur-

rent (AC) is the type of electricity that comes from a wall socket. It’s good for

traveling over long distances (like from the power station to your home). In an

AC circuit, the direction of electricity switches back and forth rapidly (60 times

a second in North America, 50 times a second in most of the rest of the world)

Direct current (DC) is the type of electricity for circuits you’ll be building in the

examples in this book. It’s best suited for small electrical components like the

ones you’ll be using. In a DC circuit, electricity fl ows in one direction. In most

devices in your home, like your personal computer or television, AC from the

wall is converted to DC for use by the device.

Voltage, Amperage, and Resistance

Electrons are charged particles that naturally move from a location of higher

potential energy to a location of lower potential energy. As the electrons move

through a circuit, they can be harnessed to activate electronic devices to do

work. Light bulbs, your television set, your coffee machine—all these devices

function by harnessing the movement of electrons.

N O T E A circuit is a closed loop that has a power supply and something to use the

power (called a load). A power supply connected to itself without a load is called a

short circuit, which can cause wires to melt or power supplies to catch fi re.

When describing electricity, three measurements are used: voltage, amper-

age, and resistance.

 Chapter 3 ■ Electronics Basics 47

c03.indd 09:50:42:PM 07/13/2017 Page 47

 ■ Voltage is the difference in electronic charge between two points.

 ■ Amperage is the rate at which electrons fl ow past a point in a circuit.

 ■ Resistance is the amount a component resists the fl ow of electrical energy.

Voltage

Voltage is defi ned as the amount of potential energy between two points in a

circuit. In all circuits, the direction of the fl ow of electrons is determined by a

location with higher potential electronic energy, and a point with lower potential

energy. All available voltage will be used in a circuit.

It is possible to increase the amount of voltage in a circuit by placing power

sources in series. For example, one AA battery typically has 1.5 volts of potential

energy between the two ends. To have a potential energy of three volts, you can

place two AA batteries end to end (so the “+” end of one touches the “-” end of

the other). In this way, you would add the voltage of both batteries to create a

power supply of three volts.

All electrical devices, have a voltage rating. The voltage rating describes the

ideal voltage for that device. It also describes the type of circuit it is designed to

be used with. In most cases, all the AC power sockets in your house provide the

same voltage. Appliances and devices that are designed to plug into the wall are

all rated for this sort of voltage. The power supply for the device will typically

step-down the AC voltage to a DC voltage that is appropriate for the device. For

example, my DVD player plugs into the wall, but the components inside run on

12 V DC. However, if you bought a device in the United States, fl ew across the

Atlantic and tried to plug it into a socket in the United Kingdom, you may have

an unpleasant surprise. Household electricity in the United States is 110V AC,

and in Europe it is approximately 230V AC, depending on the country. Because

all available voltage is used in a circuit, a device that is rated for 110 V will be

overloaded trying to use the excess voltage in a 230 V socket and be damaged

as a result. Some devices (like many laptop chargers) can automatically adapt

between voltages, but many electronic devices cannot.

The Atmel ATmega328 microcontroller, found on the Arduino Uno, is an elec-

tronic device that can function between 1.8 V DC and 5.5 V DC. This describes

the component’s tolerance; it can function with a voltage between the two values.

Typically, most devices connected to an Arduino won’t work with voltages at

the lower end of the range. To simplify design, the Arduino Uno has a voltage

regulator: a device that accepts a wide range of input voltage from a power

supply and provides a steady output voltage. In the case of the Arduino Uno,

the input voltage can range between 6 V DC and 20 V DV and supplies a steady

5 V DC to the ATmega328 and any external components. Five volts is a common

voltage for hobbyist electronics and some professional electronics. Some sensors

48 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 48

and components use 3.3 V DC for power. The Uno has a separate regulator to

power devices that require this voltage.

Providing too much or too little voltage to a component may damage it or

destroy it.

Amperage

Amperage describes the amount of current in a circuit, which is the rate at which

electric charge fl ows past a point in a circuit. It is measured in Amperes, or

Amps. You’ll be using components that use fractions of an amp in the projects

in this book. It’s common to use the analogy of water fl owing through a pipe

to illustrate the concept of electricity in a circuit. In this analogy, if voltage is

the pressure forcing water through the pipe, amperage would be the amount

of water fl owing past a specifi c point in the pipe. The faster the water, the more

current. Contrary to voltage, with amperage it is better to provide more than

is required by the system because the system uses only the amount it needs.

To illustrate how current is used, imagine a simple circuit with a battery and

a lamp. The lamp is the load in the circuit, and the battery is the power supply.

The lamp runs off of 5 V DC and 20 milliamps (0.02 amps). The battery can

supply up to one amp of current at 5 V DC. All the voltage will be used up, but

the lamp will only use the amount of current it needs to turn on. Unlike extra

voltage in a circuit, surplus amperage doesn’t get used. If too little amperage is

available, components will not work as expected: lights will dim, microcontrollers

will reset, and all sorts of problems can result. Typically it’s a good idea to use a

power supply that provides at least two times the amperage your circuit needs.

Resistance

Resistance describes the ability for something to resist the fl ow of electrical

energy. Materials with very high resistance are often used as insulators, like

rubber and plastics. It’s often necessary to regulate the fl ow of electrical energy

through a circuit by increasing or decreasing resistance. For example, most

LEDs used as indicators in hobbyist projects use less than the 5 V DC that the

Arduino supplies. Placing a resistive element in series with the Arduino and

the LED will decrease the voltage so the LED will function properly.

The practical unit of resistance is called the Ohm and is represented by the

Greek letter omega (Ω). A resistance of 1 ohm is considered to be extremely weak,

while a resistance of 1 million ohms is considered to be an effective insulator.

Even if it’s not stated in the documentation, all components have some resistance,

even wires for carrying electricity.

 Chapter 3 ■ Electronics Basics 49

c03.indd 09:50:42:PM 07/13/2017 Page 49

Ohm’s Law

One of the most frequently used formulas in electronics is Ohm’s law, which

states that the current that fl ows through a conductor between two points

is directly proportional to the potential difference between the two points.

Figure 3-1 depicts Ohm’s Law.

V

I

R
V
R

I =

Figure 3-1: Ohm’s Law

In this Ohm’s Law formula, I is the fl ow of current, V is the potential differ-

ence, and R is the resistance of the conductor in ohms. For example, imagine a

50 Ω resistor placed on the ends of a 1.5 V AA battery. In this case, the formula

would appear as shown in Figure 3-2.

1.5V

I

50 Ω

V
R

I =

1.5
50

I =

I = 30 mA

Figure 3-2: Ohm’s Law example

I is unknown. However, both V and R are known, so I can be calculated. V

is the voltage of the battery (1.5 volts) and R is the resistive value of the resis-

tor (50). Knowing these two values, you can now calculate the current fl owing

inside the resistor—0.03 amps, or 30 milliamps.

The Basic Components

Looking at a circuit board, you might be afraid of all the different components

on the board, all the different types.... How can you possibly understand all

that? In truth, there are relatively few electronic components, and most are

50 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 50

extremely simple to understand. There are a few complicated components, but

they are rarely used and are mostly used in specifi c situations. The examples

used in this book use only common components, ones that are readily available

at most electronics shops, and their use is explained here.

Resistors

Resistors are electronic components designed to restrict the fl ow of electrical

energy. There are different resistor values associated with varying resistors.

Diff erent Resistor Values

Manufacturers cannot make every value of resistor possible, instead there is a

standard range of values. The Electronic Industries Association (EIA) standard

resistor values dictate the values of most resistors. Resistors use the follow-

ing numbers: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, and 82, in any power of 10.

For example, you can easily fi nd a 10 Ω resistor, or a 220 Ω resistor, or even a

4.7 kΩ resistor, but you will have great diffi culty fi nding a 920 Ω resistor; the

closest you will easily fi nd is 820 Ω or 1000 Ω. How would it be possible to obtain

a resistor with a value of 920 Ω? Putting resistors in series, that is to say one after

the other, adds their values, so an 820 Ω resistor with a 100 Ω resistor combined

is the same as a 920 Ω resistor, as illustrated in Figure 3-3. Examples in this book

do not use resistors in series, instead standard values will be used. Resistors have

various tolerances, typically deviating from 5% to 10% from their stated value.

R = R1 + R2

R1

R2

=

Figure 3-3: Resistors in series

Putting resistors in parallel, that is to say one next to the other, has a differ-

ent effect on the value of the total resistance, as shown in Figure 3-4. Again,

this confi guration will not be used in the examples in this book and is here for

reference only.

Identifying Resistor Values

Resistors come in several shapes and sizes, but the ones that you will want to

use for your examples are quite common, and can be identifi ed as ¼ watt. This

 Chapter 3 ■ Electronics Basics 51

c03.indd 09:50:42:PM 07/13/2017 Page 51

type of resistor has long legs to fi t easily into a breadboard for rapid prototyping

of circuits. Other kinds of resistors include surface-mounted resistors, available

if you need to save space and are working on a printed circuit board, but they

can be diffi cult to solder. The most common resistors look like the component

shown in Figure 3-5.

R1 R2

=
R1 × R2

R1 + R2
R =

Figure 3-4: Resistors in parallel

Resistor

LED

Figure 3-5: A common axial 10% tolerance resistor

Note the bands of color on the resistor; resistors are too small to put any

readable text on and are color-coded to indicate their value. Typically, you’ll

fi nd resistors with 4 stripes on them, though versions with 5 or 6 bands exist

as well. Table 3-1 lists the color code.

Table 3-1: Resistor Color Code

COLOR DIGIT 1 DIGIT 2 MULTIPLIER TOLERANCE

Black 0 0 x 100

Brown 1 1 x 101

Red 2 2 x 102

Orange 3 3 x 103

Yellow 4 4 x 104

Green 5 5 x 105

Blue 6 6 x 106

Continues

52 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 52

COLOR DIGIT 1 DIGIT 2 MULTIPLIER TOLERANCE

Violet 7 7 x 107

Gray 8 8 x 108

White 9 9 x 109

Gold ± 5%

Silver ± 10%

The fi rst two bands indicate the value in ohms, the third band is a multiplier

for scaling, and the fourth indicates how far the actual value may deviate from

the stated value. A resistor with red, violet, orange, and gold stripes has a value

of 2.7 KΩ; 2, 7, 103, and 10-percent tolerance. A 100 Ω resistor is brown, black,

brown, and silver; 1, 0, 101, 10 percent.

N O T E Color-blind people might be starting to worry here; don’t. Whatever your

color vision problems, I can assure you, you will be able to identify resistor values. I

have acute achromatopsia, meaning that I see more or less in black and white. All col-

ors are diffi cult for me to see. This was a problem during my studies, where teachers

didn’t know how to react, but today, this is never a problem for me. A simple ohmme-

ter or multimeter can quickly tell you the value of a resistor.

Using Resistors

The current and voltage can be regulated in an electronic circuit by resistors.

Imagine an electronic circuit powered by a 5 V DC power supply. You want

to add a Light Emitting Diode (LED) to show that the circuit is powered, in

this case a red LED. This LED has a voltage drop of 1.7 V. A voltage drop means

that the voltage of the circuit will be reduced by that amount. Therefore, if you

were to place an LED directly between the +5 V and 0 V it would be damaged

(remember, all voltage gets used up in a circuit). There must be a component to

reduce the voltage across the LED, a resistor is the ideal candidate. The schematic

of this circuit is shown in Figure 3-6.

Because you want 1.7 V across the LED, and because the circuit is powered

by 5 volts, that means there should be a voltage drop of 3.3 volts across the

resistor. Also, the LED is rated for 20 milliamps of current, but for this project

15 milliamps should be enough. Therefore, to have 15 milliamps fl ow through

the LED, you will have to use a 220 Ω resistor. Another example is shown at the

end of this chapter.

Table 3-1 (continued)

 Chapter 3 ■ Electronics Basics 53

c03.indd 09:50:42:PM 07/13/2017 Page 53

Figure 3-6: A resistor used to power an LED

Capacitors

Where resistors are designed to resist electric current, capacitors are designed

to store small amounts of electric energy.

Capacitors are composed of two parallel sheets of conductor separated by a

thin nonconductor, which could be made from a number of materials, such as

paper, mica, ceramic, plastic, and sometimes even air. When connected to electric

potential, electrons are attracted into the capacitor and released when the outside

voltage drops. A capacitor is, essentially, a small (and weak) rechargeable battery.

Capacitors come in many shapes and sizes and can be some of the smallest

components available to the biggest, capable of dwarfi ng entire battery packs.

Have you ever taken apart an electronic device and seen large, cylindrical com-

ponents, normally in blue or black plastic? Chances are those are electrolytic

capacitors, and you probably have not seen the biggest available.

W A R N I N G Some capacitors can be connected any way in a circuit; others must

be placed in a certain way. Electrolytic capacitors especially have a polarity, and this

must be respected. Failure to correctly polarize electrolytic capacitors can result in

catastrophic failure; the component will leak or explode, potentially damaging the

rest of your circuit. Don’t try this at home!

54 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 54

The unit of capacitance is the farad (F). Most capacitors are in the microfarad

range, but they can be as small as 1 picofarad (10-12 F) and as large as 104 F in

supercapacitors.

Using Capacitors

If capacitors can store energy, how can this be used? First, capacitors can be

used to regulate power lines, helping to fi lter out slight drops in power. Power

lines are thought to be stable, but this is not always the case. Especially in motor

systems, the power levels in power lines can vary. When motors start, they draw

a lot of current, making the voltage temporarily drop. Adding capacitors onto

the power supply helps fi lter out those drops and stabilizes the power for other

components. These are described as decoupling capacitors.

W A R N I N G Some capacitors can hold a large charge, and that charge is still there

when you remove the power. Be careful when using these devices. Examples in this

book are limited to 12V, which do not pose a threat, but larger devices like computer

monitors and televisions can contain capacitors that store massive amounts of energy.

Be careful!

One other use for capacitors, and one that is the most used on homemade

electronics, is to help with one of the most basic components: buttons. A but-

ton is a simple mechanical device that will either make an electrical contact

or break it. The problem is that these devices are not perfect, and pushing a

button to make a contact often results in “bounces,” or unwanted spikes, when

the metal inside the switch bounces on the contacts. By using a capacitor, the

bounces can be fi ltered out.

Diodes

A diode is a small component that allows electricity to fl ow in only one direc-

tion. A perfect diode would not have any voltage drop and would not allow

any electricity to fl ow in the opposite direction, but we don’t live in a perfect

world. Diodes do in fact have a voltage drop depending on the type of diode

you use. A silicon diode like the 1N4148 have a voltage drop of approximately

0.65 V. Germanium diodes have a voltage drop of about 0.3 V.

Also, diodes have something called a breakdown voltage, the reverse voltage at

which a diode conducts in reverse and most often breaks the component. The

1N4148 has a breakdown voltage of at least 100 volts, something that you will

not encounter in the examples in this book, but it is useful to know.

Diff erent Types of Diodes

There are many types of diodes. This book presents only the most common

diode. Other types of diodes exist; Zener diodes have a specifi c breakdown

 Chapter 3 ■ Electronics Basics 55

c03.indd 09:50:42:PM 07/13/2017 Page 55

voltage, and the breakdown state does not destroy the component. Schottky

diodes have a low forward voltage drop. Tunnel diodes are extremely interest-

ing because they use quantum tunneling and are used for advanced circuits.

There are also many other common diodes, ones that could deserve their

own section. Laser diodes are special types of diodes that create laser lights;

you can fi nd these components in consumer electronics like CD players and Blu-

ray recorders. Light-emitting diodes (LEDs) work in the same way, producing

visible and nonvisible light and are presented in the next section.

Using Diodes

Diodes are used primarily to protect circuits either by avoiding a reverse-voltage

or avoiding voltage spikes.

Electric motors can use large amounts of energy to make the motor spin.

When there is an interruption of current fl ow inside the component motor, this

can lead to a sharp rise in voltage across the device circuit. If the voltage drawn

is beyond what the circuit is designed to handle, it may damage or destroy it.

Light-Emitting Diodes

Light-emitting diodes are exactly what their name implies; diodes, electronic

components that let current fl ow in one direction only and that emit light. LEDs

are used as indicators in home electronics, and have started to replace tradi-

tional incandescent light bulbs in home and industrial lighting. They are far

more robust than light bulbs; they use less energy and exist in many different

colors, shapes, and sizes.

Most LEDs emit a single-color with typical colors being red, orange, green,

blue, and white. Dual-color LEDs also exist that can be either one of two colors

or a mix between two colors, and fi nally, RGB LEDs exist that can take on almost

any color by varying the red, green, and blue components.

LEDs also exist that emit nonvisible light: ultra-violet and infrared. Laser

diodes are special types of light-emitting diodes, capable of creating laser light

in various wavelengths and powers.

Using LEDs

Using LEDs is remarkably similar to their parent family: diodes. However, the

difference is in their power consumption. Care must be taken not to supply too

much current to an LED; otherwise it is possible to damage or even destroy the

component.

LEDs have a larger voltage drop than their diode counterparts. Most common

red LEDs have a voltage drop between 1.8 V–2 V, yellow LEDs 2.0 V, green LEDs

2.2 V, and blue LEDs can have up to a 3.4 V voltage drop. Typical maximum cur-

rent for LEDs is around 20 mA for all LEDs, though blue versions can draw 30

56 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 56

mA. Your electronics distributor will have more information about the specifi c

model you are using, so consult their documentation.

Transistors

Transistors are largely responsible for the proliferation of digital technologies, as

well as many of the advances in computing power and size. A transistor is like

a tiny switch but is solid state, meaning that there are no moving parts to wear

out and can turn on and off much faster than any mechanical device. There are

several sorts of transistors, but this tutorial talks only about the most common

type in hobbyist electronics: the bipolar transistor.

Using Transistors

Although there are dozens of uses for transistors, examples in this book cover

only one possible use: a switch.

Imagine an Arduino system powered by 5 volts. This system is designed to

turn on and off an electric motor, one that needs to be powered by a 12-volt

power supply. The motor also requires more current than the Arduino can sup-

ply. How can the Arduino possibly power a 12-volt motor using only a 5-volt

output? The answer is, of course, by using a transistor as a switch.

A bipolar transistor has three leads. The Collector is connected to the positive

side of the circuit, and the Emitter is connected to the negative side of the circuit,

or the ground. Electrons will fl ow from the Collector to the Emitter, depending

on the voltage at the Base. By supplying a relatively low voltage to the transistor’s

base, current can fl ow through the transistor into the collector and out of the

emitter. In short, the transistor conducts current through the collector-emitter

path only when a voltage is applied to the base. When no base voltage is present,

the switch is off. When base voltage is present, the switch is on.

Breadboards

Electronics is fun; there is a joy in assembling components to do a required task;

and it is hugely satisfying. When fi nished, some electronics are akin to digital

art, in their function and in their implementation. Some circuit boards are a work

of art in their own right, because of placing LEDs at strategic places, and cutting

out the board to be the right shape. Have a closer look at your Arduino; notice

the pictures printed onto the board, the picture of Italy, and imagine the time

that was taken to make this board its current shape. It did take a lot of time, but

that is also what frightens some people; do you really have to make one of these

boards every time you make a design? Printed circuit boards like the Arduino

and shields can either be made at home using some specialized equipment and

 Chapter 3 ■ Electronics Basics 57

c03.indd 09:50:42:PM 07/13/2017 Page 57

chemicals, or fabricated professionally. Luckily, when prototyping, you don’t

need to do all that; there is a much simpler alternative: the breadboard.

Use of the term breadboard in this discussion may surprise you; normally it

is a fl at, wooden board designed to cut bread (or other foods). In the early days

of amateur radio, amateurs would nail bare copper wire onto a wooden board

(more often than not a breadboard which was readily available), and solder

components onto the wires. Because components were much bigger in those

days, some components (tubes especially) could actually be screwed onto the

breadboard. Amateurs had created an easy prototyping device from an item

readily available at any supermarket.

Modern breadboards are sometimes called solderless breadboards, implying that

they can be reused. They exist in all sizes, from the smallest boards, designed

to hold a single component, all the way to huge prototyping boards, designed

to include an entire single board computer. Breadboards are normally classed

by their number of connection points, the number of holes on the board that can

accept wires and components.

Typical breadboards have two areas called strips. The terminal strip is the

main part of any breadboard and is designed to hold components and wires.

There is normally a notch in the middle, marking a separation between con-

nectors, but it is also designed to allow air to fl ow beneath components helping

them cool down.

The terminal strip is normally numbered: numbers horizontally and letters

vertically. What is important to know is that a single number is connected to all

the letters; A0, B0, C0, D0, and E0 are all connected electronically. A component

pin placed in E0 connects to a wire connected to A0 but does not connect to a

wire placed in A1.

The bus strip is located along the side of the terminal, and serves as a power

rail. Normally, two rows are available: one for the supply voltage and one for

the ground.

The holes are not placed at random; their spacing is exactly 0.1”, or 2.54 mm,

accommodating many electronic components, and all Dual In-Line Package

(DIP) chips. Most of the AVR chips exist in DIP format, making it possible to

build an Arduino directly on a breadboard.

Inputs and Outputs

The Arduino’s digital pins can be confi gured to be inputs or outputs to either

write information or to read it.

There are two types of inputs on Arduino boards, digital and analog. On

the digital pins, the Arduino “reads” either a logical zero (0 volts), or a logical 1

(equivalent to the power supply of the Arduino itself). Most Arduinos are pow-

ered by 5 volts, but a few are powered by 3.3 volts. If using a 3.3 voltboard like

the Due, don’t put 5 V on an input pin; you could damage the microcontroller.

58 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 58

Note that in digital mode, there is a reasonable amount of tolerance; an input

of up to 2 volts is still considered to be a logical zero.

On the analog pins, things are different. An analog signal has an infi nite

number of steps between zero volts and the power supply of the Arduino. In

practice, it is not possible to sample an infi nite amount of values, and the Arduino

uses something called an Analog Digital Converter (ADC) to change the analog

signal to a discrete number of steps. The Arduino’s ADC has a resolution of 10-bits,

which means there are 1,024 values that can be recognized on an analog input.

Connecting a Light-Emitting Diode

In this chapter, you have learned about basic electronic components, so now put

that to the test. In this example, you control an LED placed on a breadboard,

connected to an Arduino. The Arduino will be programmed to fade the LED.

In this example, I will use an Arduino Uno and also a blue LED. Check the

information about the LED you’re using to determine the voltage and current

requirements. The LED I’m using has a forward voltage of 3.4 V and pulls

30 mA of current.

Calculation

LEDs must be used with resistors, so the fi rst thing that has to be done is to

calculate the resistor that will be used. The Arduino Uno outputs 5 V DV, and

the LED has a forward voltage of 3.4 volts; therefore, the resistor will have a

potential difference of 1.6 volts. It will also let 30 mA of current pass. Because

we know the amperage and voltage of the circuit, we can fi gure out the neces-

sary resistance. My calculation is shown in Figure 3-7.

V
I

R =

1.6
0.020

R =

R = 80 Ω

Figure 3-7: Calculating the resistor

Even though the LED is rated at an absolute maximum of 30 mA, you should

try and aim for less than 30 mA of current. A safe bet would be to let 20 mA of

current through the LED; that still makes it nice and bright and will not dam-

age the component. For the time being, let’s assume you want to let 30 mA of

 Chapter 3 ■ Electronics Basics 59

c03.indd 09:50:42:PM 07/13/2017 Page 59

current pass through the LED, in which case the circuit would require a 53 Ω

resistor. This is not a standard resistor value. The closest standard resistor value

below 53 ohms is 47 ohms. If you do the math, you’ll see that a 47-ohm resistor

would allow 34 mA of current through the LED, above its rated tolerance. If

you re-do the calculations aiming for 20 mA, the new result is 80 Ω. The closest

standard value is 82 Ω, which is close to the target. Therefore, for this example,

the schematic will use an 82 Ω resistor.

Software

It’s time to code the application. This sketch illustrates a common beginner’s

task with the Arduino, fading an LED. Listing 3-1 presents the source code.

Listing 3-1: Fade

int led = 9; // the pin that the LED is attached to
int brightness = 0; // how bright the LED is
int fadeAmount = 5; // how many steps to fade the LED each loop

// the setup routine runs once when you press reset or power the board:
void setup() {
 // declare pin 9 to be an output:
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 // set the brightness of pin 9:
 analogWrite(led, brightness);

 // change the brightness for next time through the loop:
 brightness = brightness + fadeAmount;

 // reverse the direction of the fading when the LED is fully bright
 // or fully off :
 if (brightness == 0 || brightness == 255) {
 fadeAmount = -fadeAmount ;
 }
 // wait for 30 milliseconds to see the dimming effect
 delay(30);
}

The led variable is the pin the LED is connected to. You’re using pin 9 because

it is one of the PWM pins. That is, it is one of the pins you can call analogWrite()

on. In the setup() function, the pin is set to become an output. Then, the loop()

function adds the value stored in fadeAmount to the variable brightness, looks to

see if the value should be inverted, and then waits for 30 milliseconds. Because

this function is looped, it constantly updates the output pin value, ranging from

60 Part I ■ Introduction to Arduino

c03.indd 09:50:42:PM 07/13/2017 Page 60

0 to 255, before returning back to zero. This will have the effect of starting with

the LED completely off and then slowly increasing brightness to full before

fading back to off.

Hardware

The code is done; the next thing to do is to actually create the circuit. This is

only a prototype, so you will be using a breadboard. It is one of the simplest

circuits you can build: two wires, one resistor, and one LED. The LED will be

powered by the Arduino board.

First things fi rst—the breadboard view. My view is shown in Figure 3-8.

Figure 3-8: LED output (Image made with Fritzing)

After you re-create this circuit, you are now ready to upload your sketch

to the Arduino, wait a few seconds, and look at an LED fading beautifully.

Congratulations; you have just created your fi rst hardware design! You now

know how to create a sketch, and you know how to create an electronic circuit.

The following chapters explain the different libraries in detail with example

sketches and circuits to help you along your way.

 Chapter 3 ■ Electronics Basics 61

c03.indd 09:50:42:PM 07/13/2017 Page 61

What Now?

Now, it is all up to you. You might want to make this a permanent application

in your house. Breadboards are good for prototyping, but a more permanent

solution would require either creating a printed circuit board or maybe even

an Arduino shield. A printed circuit board could be placed anywhere, and

with enough wires, could even be placed far from the Arduino. You could put

this outside in the garden as a night light, for example. Shields require being

connected to the Arduino and therefore are not as easy to place outside. With a

shield and an enclosure, you could make a night-light for a young child or even

add a decoration in the living room. It is easy to add a few additional LEDs to

this design to light up a cupboard or to illuminate a decoration. You can even

make a small holiday display or welcome sign.

Summary

 Welcome to the amazing world of Arduino! This chapter has given you a brief

overview of electronics, enough to get you started with the projects contained

in this book.

The following chapters explain some of the libraries that can be added to

projects to give you an insight to what can be done. In Chapter 4 you will be

using the standard library, which has the basic building blocks that you will see

and use in every sketch. I will go through the different functions and explain

how each one works.

c04.indd 09:52:4:PM 07/13/2017 Page 63

 Par t

II
Standard Libraries

In This Part

Chapter 4: The Arduino Language

Chapter 5: Serial Communication

Chapter 6: EEPROM

Chapter 7: SPI

Chapter 8: Wire

Chapter 9: Ethernet

Chapter 10: WiFi

Chapter 11: LiquidCrystal

Chapter 12: SD

Chapter 13: TFT

Chapter 14: Servo

Chapter 15: Stepper

Chapter 16: Firmata

Chapter 17: GSM

c04.indd 09:52:4:PM 07/13/2017 Page 64

65

c04.indd 09:52:4:PM 07/13/2017 Page 65

Functionality can be added to Arduino programs using libraries, but every

Arduino project invariably starts with one library; the Arduino Language. The

Arduino Language contains everything required for basic programs, allowing

access to input and output pins, mathematical functions, and control structures.

This chapter lists those functions and gives an explanation of each one. You can

also consult the Arduino reference page at http://arduino.cc/en/Reference/.

I/O Functions

An Arduino is a powerful system, but its power comes from interacting with the

real world. To do this, the Arduino must use Input and Output, shortened to I/O.

Pins can be defi ned as either being an input or output; it is up to you to decide.

Digital I/O

Digital I/O is defi ned as using a digital signal to communicate; a logical 1 or

logical 0. In Arduino, 1 is defi ned as having a “high” voltage; normally at or

close to the system voltage. 0 is defi ned as having a “low” voltage, typically 0.

A system powered by 5 volts will usually have 5 volts for a logical 1 and 0 volt

for a logical 0. A system powered by 3.3 V will usually have 3.3 V and 0.

C H A P T E R

4

The Arduino Language

http://arduino.cc/en/Reference

66 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 66

Examples of digital inputs are switches, like push buttons or contact switches.

They are either on or off; there are no values in between.

pinMode()

Before using a pin as a digital input or output, you must fi rst confi gure the pin,

which is done with pinMode(). pinMode() uses two parameters: pin and mode.

pinMode(pin, mode)

The pin parameter is simply the digital pin number you want to set. The mode

parameter is one of three constants: INPUT, OUTPUT, or INPUT_PULLUP. The INPUT

and OUTPUT constants set the pin to be a digital input or output, respectively.

The INPUT_PULLUP constant sets the selected pin to become a digital input but

also connects an internal resistor to keep the input level at a logical one if there

is no input value.

By default, all digital pins are confi gured as INPUT, but it’s considered best

practice to explicitly declare the pinMode().

INPUT

Pins confi gured as INPUT can read voltage applied to them. It takes only a small

amount of current to change an INPUT pin’s state. The drawback to this is that

pins confi gured as INPUT with nothing connected to them are more likely to

change state due to electronic interference like static discharges. It is useful to

use a pull-down resistor (going to ground) when connecting a switch to a pin

confi gured as INPUT. Ten kilohm is a good resistor value for this.

INPUT pins are good at reading logical inputs but cannot be used to input,

or sink, any current. For example, you cannot use an INPUT pin to sink current

from an LED.

OUPUT

Pins confi gured as OUTPUT are capable of delivering power to circuits, up to

40 mA. This is more than enough to power an LED but is not enough to power

motors. Output pins cannot read sensors. Connecting output pins directly to 5

volts or 0 volts can damage the pin.

INPUT_PULLUP

Pins confi gured as INPUT_PULLUP are confi gured as output, but with an internal

pull-up resistor connected. On most Arduino boards this internal resistor is at

least 20 kilohms. This has the effect of setting the input value to HIGH if it is

pulled to ground, and LOW if voltage is applied.

digitalRead()

In order to read the state of a digital pin, you must use digitalRead():

result = digitalRead(pin);

 Chapter 4 ■ The Arduino Language 67

c04.indd 09:52:4:PM 07/13/2017 Page 67

The pin parameter is the pin number you want to read from. This function

returns either HIGH or LOW, depending on the input.

digitalWrite()

To write the state of a pin that was declared as an OUTPUT, use the digitalWrite()

function:

digitalWrite(pin, value);

The pin parameter is the pin number you want to write to, and the value is

the logical level you want to write; HIGH or LOW.

Analog I/O

Analog is different than digital. Digital signals are one of two states; either true

(a logical one), or false (a logical zero). Digital states are not designed to have

any other value.

Analog is different in that it has a potentially infi nite amount of values between

two points. Analog is all around us. A light bulb is normally either on or off,

but consider the sun. At nighttime, there is no light, and in daytime, midday,

on a sunny day with no clouds, you would think that you have the maximum

amount of sunlight. And during sunrise? You can see the amount of sunlight

change visibly within a few minutes. During a cloudy day? There is light but

not as much as during a clear day. This is no longer digital; it isn’t on or off. The

sun is analog; there are an infi nite amount of possibilities.

Imagine a cruise ship. At the front of most large ships, there is a scale, a water

line. It is used for several reasons, but to simplify, this marker serves to determine

if a ship has been overloaded. Overloaded, a ship is at risk of sinking. The water

line, technically called the Plimsoll Line, is where the water meets the hull. You

can imagine that this line varies between two values: the minimum and the

maximum. For this example, imagine between 20 feet and 40 feet. Right now, the

ship you are watching is loading passengers, excited to sail to the Mediterranean.

Slowly, the Plimsoll line rises: 30 feet, 31 feet, 32 feet.... And it stops at 33 feet.

With a maximum Plimsoll line of 40 feet, this ship is safe to sail, but what is

the exact value? 33 feet? Exactly? Probably not. It might be 33 feet and 1 inch,

or maybe 33 feet and 3/8 of an inch? The point is, it doesn’t matter. Humans

aren’t good with an infi nite amount of values, and a docker looking at the ship

will fi ll in the registry with 33 feet; he won’t need absolute precision. It doesn’t

matter if a little bit is lost in the process.

Microcontrollers work in the same way. Microcontrollers are digital, but

many can read analog values, including Arduinos. The device used to read

analog is called an ADC, short for Analog to Digital Converter. The ADC cannot

handle infi nite values. It has a resolution. The Arduino divides the range into

68 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 68

different equally sized portions. A 10-bit device can distinguish 210 different

values—or a total of 1,024 different values. If used on a range between 0 and 5

volts; an input of 0 volts would result in a decimal 0; an input of 5 volts would

give the maximum of 1,023. Something in between, such as 2.5 V would yield

a value of 512. A 10-bit ADC can sense differences of 5 volts divided by the

resolution, or 1,024. This device can therefore have an accuracy of 5 / 1,024, or

roughly 0.005 volts.

analogRead()

To read a value from an analog pin, you call analogRead().

int analogRead(pin)

analogRead() reads the voltage value on a pin and returns the value as an

int. The pin argument denotes the analog pin you want to read from. When

referring to an analog pin, call them as A0, A1, A2,…A6.

This function takes approximately 100 microseconds to perform. In theory,

you could sample a pin up to 10,000 times a second. However, it’s best to let

the ADC “settle” for a few milliseconds between reads for more accurate data

acquisition.

analogWrite()

analogWrite() is used to write an analog output on a digital pin. Wait, analog?

On a digital pin? Well, yes, sort of. It’s not a true analog value that’s being written.

Arduinos use something called Pulse-width modulation, PWM for short. PWM

is digital but can be used for some analog devices. It uses a simple technique to

“emulate” an analog output. It relies on two things: a pulse width and a duty

cycle. It is a way of simulating any value within a range by rapidly switching

between 0 volts and 5 volts.

The pulse width (also called a period) is a short duration of time in which the

duty cycle will operate. The duty cycle describes the amount of time that the

output will be at a logical one in the given period. Depending on the Arduino

you’re using, the period can range from 490 Hz to 980 Hz. A duty cycle of 50

percent means that during 50 percent of the pulse width, the output will be at

a logical one, and the remaining 50 percent of the pulse width, the duty cycle

will be at a logical 0. A duty cycle of 0 percent means that the output will always

be p, and a duty cycle of 100 percent means that the output will always be 1.

PWM is an excellent method for controlling motors and dimming LEDs; it

worked well in the previous chapter. However, some components do not like

receiving pulses and want a stable output. For example, another Arduino read-

ing an analog input would read in alternating values of 5 V and 0 V instead of

a true analog signal. In this case, adding a capacitor to the circuit will “fi lter”

the output.

 Chapter 4 ■ The Arduino Language 69

c04.indd 09:52:4:PM 07/13/2017 Page 69

Generating Audio Tones

Although most Arduinos are incapable of playing back advanced audio without

additional electronics, they can play musical notes and tones natively.

Audio, or sound in general, is simply a vibration that propagates as waves of

pressure. To generate sound, speakers and buzzers vibrate at certain frequen-

cies to create sound.

Audio tones generated by Arduinos are variable frequencies, which can range

from just a few Hertz up to 20 kHz, around the limits of human audition.

tone()

tone() is used mainly to generate audio tones on devices like buzzers. Although

designed to generate audible tones, it is not limited to audio. This function

generates a square wave, a signal that alternates instantly between two values,

typically the maximum voltage and zero. It generates signals with a fi xed 50

percent duty cycle, from frequencies as low as 31 Hz to 80 kHz (humans can

typically hear up to 20 kHz). tone() accepts unsigned integers as a parameter.

This function requires either two or three parameters, depending on your use.

tone(pin, frequency)
tone(pin, frequency, duration)

The pin parameter is the pin number on which to produce a tone. The fre-

quency parameter is the frequency to generate in hertz, passed as an unsigned

int. Finally, the optional duration parameter is the duration of the tone in mil-

liseconds, passed as an unsigned long. If this parameter is not specifi ed, the

tone will be generated indefi nitely, or until the program tells the tone genera-

tion to stop.

noTone()

noTone() stops the square wave generation of tone() on the specifi ed pin. If

no tone is generated, this function has no effect. This function must be called

before generating another tone on the same pin.

Reading Pulses

Arduinos can be told to react to pulses received on digital pins, reading serial

data when data becomes available, or to call specifi c functions when a signal

is received. However, in some cases, it is not the change in the signal that is

important, but the time the signal stays at a logical state.

Imagine a sensor attached to your door. You want to know if the door was

opened, and you want to know exactly how long the door was opened for. By

adding a reed switch to your door, you can have a logical 1 (HIGH) if the door

70 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 70

is closed, and a logical 0 (LOW) if the door is opened. How long was the door

opened for? The Arduino can tell you.

pulseIn()

pulseIn() will tell you the length of a pulse. It requires a pin as a parameter and

the type of pulse to read. When programmed, the Arduino waits for a signal

on the selected pin. For example, you can tell the Arduino to wait for a pin to

go HIGH. When it does, it starts a counter. When the signal returns to LOW, it

stops the counter, and returns the number of microseconds. If no signal change

is received within a set time, the function gives up and returns 0.

unsigned long length pulseIn(pin, value)
unsigned long length pulseIn(pin, value, time-out)

The pin parameter is the pin number to listen on, as an int value. The value

parameter is the type of signal to wait for: either HIGH or LOW. The optional

timeout parameter tells the Arduino how long to wait for a signal. It is an

unsigned long and represents the amount of microseconds to wait. If omitted,

it waits for 1 second before timing out.

pulseIn() is accurate within 10 microseconds when the time-out is up to

3 minutes long. Pulses longer than 3 minutes may be calculated inaccurately.

Also, responding to interrupts can give inaccurate results because the internal

timers are not updated during interrupt handling.

Time Functions

Timing is important in electronics projects. Electronics are not instantaneous,

and most sensor components require some time before they can be accessed. A

typical one-wire humidity sensor requires 100 ms of time between the command

to acquire a reading and returning the result. Querying the component before

it has had adequate time to complete its task could result in malformed data or

cause the component to send a previous result. In either case, your sketch might

not work as intended. Fortunately, Arduinos can patiently wait for a specifi ed

amount of time, by calling delay().

Another time function on Arduinos is the ability to get the time that the

current sketch has been running. When an Arduino is powered on (or reset),

two counters begins counting: the number of microseconds that the system has

been running and the number of milliseconds.

delay()

delay() tells the microcontroller to wait for a specifi ed number of milliseconds

before resuming the sketch. This can be used to tell the microcontroller to wait

 Chapter 4 ■ The Arduino Language 71

c04.indd 09:52:4:PM 07/13/2017 Page 71

for a specifi ed period of time before reading a sensor, or slowing down a loop

that is running too fast.

delayMicroseconds()

delayMicrosecond() is similar to delay(), but instead of waiting for a specifi ed

number of milliseconds, it waits for a specifi c number of microseconds.

This function is accurate to a certain point; values above 16,383 produce

inaccurate results. If you need an accurate delay above 16,000 microseconds

(or 16 milliseconds), use a mix of delay() and delayMicroseconds(), like in

the following snippet of code, where the Arduino is asked to wait for 22.5 mil-

liseconds, or a total of 25,500 microseconds.

delay(25); // waits for 25 milliseconds
delayMicroseconds(500) waits for 500 microseconds

millis()

millis() returns the number of milliseconds that the sketch has been running,

returning the number as an unsigned long. This can be used to check how long

the current sketch has been running, but it can also be used to calculate how

long a function takes to run, by comparing the number of milliseconds before

and afterward.

unsigned long timeBefore;
unsigned long timeAfter;

timeBefore = millis(); //Get the time before running a function
aLongFunction(); //Run a function that could take some time
timeAfter = millis(); //And now get the time after running the function

This data is stored in a counter that will overfl ow (go beyond the data capac-

ity and return to zero) after approximately 50 days.

micros()

micros() is almost identical to the millis() function, except it returns the

number of microseconds in an unsigned long. The counter overfl ows far more

quickly than millis(); roughly every 70 minutes.

unsigned long time;

void setup(){
 Serial.begin(9600);
}
void loop(){
 Serial.print(“Time: “);

72 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 72

 time = micros();
 //prints time since program started
 Serial.println(time);
 // wait a second so as not to send massive amounts of data
 delay(1000);
}

This function has a minimum number of microseconds that can be correctly

evaluated. On Arduinos with a clock speed of 16 MHz, the resolution is 4 micro-

seconds. On 8 MHz models, the resolution is 8 microseconds.

Mathematical Functions

The Arduino is a capable calculator, and the Arduino language has a large

amount of mathematical functions to help you calculate. They can be used

for simple calculations, to quickly analyze the voltage of one pin compared to

another, or more advanced functions, to help robots move around and calculate

the best path available.

min()

min() returns the smaller of two numbers.

result = min(x, y)

The two values can be of any numerical data type, returning the same data

type as the parameter. This is used both as a way of knowing the smaller of

two values and also to constrain data range; by using min(), you can make sure

that an input value never goes over a certain value.

int sensorData = 100;
min(sensorData, 255); // Returns 100 (sensorData is smaller)
min(sensorData, 100); // Returns 100
min(sensorData, 64); //Returns 64

max()

max() is similar to min(), except it returns the higher of two values.

result = max(x, y)

max() can take any numerical data type and can be used to obtain a minimum

value for sensor data.

int sensorData = 100;
max(sensorData, 255); // Returns 255
max(sensorData, 100); // Returns 100 (both values are the same)

 Chapter 4 ■ The Arduino Language 73

c04.indd 09:52:4:PM 07/13/2017 Page 73

max(sensorData, 64); //Returns 100 (sensorData is larger)

constrain()

constrain() is like combining parts of max() and min() at the same time; it

constrains data values to a set range.

value = constrain(data, min, max)

Imagine a light sensor, reading the ambient light inside your living room,

letting you turn the lights on or off. Values may vary between dark (you can still

vaguely see your way around), and bright (comfortable to see, but not blinding).

For a light sensor that gives values between 0 and 1,023, you could set the con-

strain levels to values between 40 and 127. Values below 40 are considered too

dark to have a reliable reading, and values over 127 are too bright. What if a ray

of sunlight hits the sensor? It would still be bright enough to see comfortably,

but the sensor may return the maximum value: 255. Or what would happen if

somebody covered the light sensor, for example, a cat and their incredible sense

of disturbing scientifi c experiments by sleeping on your equipment? With no

light at all, the sensor might return 0, and if you ever divide a value by your

sensor reading, you could cause an error (because computers can’t divide by 0).

The following code will make sure you receive the sensor data, but constrained

between values of 40 and 127 if the original sensor data was out of those bounds.

sensorValue = constrain(sensorData, 40, 127);

abs()

abs() returns the absolute value of a number, for example, the non-negative value

of the number, without regard to its sign. The absolute value of 2 and –2 is 2.

value = abs(x);

This function is implemented in such a way that only values should be cal-

culated, not the results from mathematical operations or functions.

abs(i++); // Do not do this, the result might not be what you expected

i++; // First calculate
abs(i); // Then use the result

map()

map() remaps a number in one range set to another. It takes a number, a theo-

retical boundary, and remaps that number as if it were in another boundary.

map(value, fromLow, fromHigh, toLow, toHigh);

74 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 74

This function takes a value called value in a range between fromLow and

fromHigh, and remaps that value to a new range set by toLow and toHigh.

The clearest way to explain map() is with an example. Imagine a sensor, con-

nected to an analog pin. It outputs numbers from 0 to 1,023. How would you

convert this to a percentage? The map() function could do this in a single line.

result = map(sensorData, 0, 1023, 0, 100);

Mapping can also be used to invert value ranges:

result = map(sensorData, 1, 50, 50, 1);

pow()

pow() raises a number to the power of x.

double result = pow(float base, float exponent);

The base number and exponent are calculated as float, allowing for fractional

exponents. The result of this calculation is returned as a double.

sqrt()

sqrt() calculates the square root of a number.

double result = sqrt(x);

The number x can be of any numerical data type, and the result is expressed

as a double.

random()

Arduinos are capable of generating pseudo-random numbers using the ran-

dom() function:

result = random(max);
result = random(min, max);

This function takes one or two parameters specifying the range for the ran-

dom number to be chosen. If the min parameter is omitted, the result will be a

number between zero and max, otherwise the number will be between min and

max. The result is returned as a long.

Computers cannot generate purely random numbers, and instead use com-

plex algorithms. While the output may indeed seem random, it is actually a

sequence that is extremely long but always the same. To prevent your Arduino

 Chapter 4 ■ The Arduino Language 75

c04.indd 09:52:4:PM 07/13/2017 Page 75

from always starting at the beginning, you can use the randomSeed() function

to select where in that sequence to start:

randomSeed(seed);

The seed parameter is a long and can be any value you choose (either a fi xed

number or the amount of milliseconds that your sketch has been running).

Trigonometry

Trigonometry is a branch of mathematics that studies relationships between

lengths and angles of triangles. Although some students might hate trigonom-

etry at school, complaining that they will never need to calculate the side of a

triangle in everyday life, the truth is that trigonometry is used in a great number

of things we interact with every day. It is used in electronics, architecture, civil

engineering, and a large number of fi elds.

Consider the triangle shown in Figure 4-1.

B

Ca

b
c

A

Figure 4-1: Right triangle

This triangle has three angles, called A, B, and C, and three sides, called a, b,
and c. If the angle C is a right angle, that is, 90 degrees, you can calculate all the

values with a little additional information. When dealing with right triangles,

you can compute A, B, C, a, b, and c if you have the values for one side and one

angle, or two of the sides.

Why would this be used? There are several reasons why you would want

to use trigonometry with an Arduino. For example, the Arduino Robot could

calculate a path around an obstacle if the angle and the distance are known. You

could create a clock application on an LCD screen. Because you know the angle

of the line (the hour), and the length of a line (a fi xed value), you can apply the

previous formula to draw the hour hand on-screen. In robotics, trigonometry

is used extensively to know where the end of an arm will be based on calcula-

tions for every segment of the arm.

76 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 76

Trigonometry calculations on the Arduino are accomplished with sin(),

cos(), and tan().

sin()

sin() calculates the sine of an angle in radians. The result is returned as a

double between –1 and 1.

result = sin(angle);

Here, the angle parameter is a float, the angle in radians, and the function

returns a double; the sine of the angle.

cos()

cos() calculates the cosine of an angle in radians. The result is returned as a

double between –1 and 1.

result = cos(angle);

Once again, this function takes a single parameter, a float, the angle in

radians, and returns a double.

tan()

tan() calculates the tangent of an angle in radians. The result is returned as

a double.

result = cos(angle);

Constants

The functions used to calculate the sine, cosine, and tangent all require the angle

to be expressed in radians, which isn’t always what you have. Converting degrees

to radians and back again is a simple mathematical formula, but the Arduino

goes one step further, proposing two constants; DEG_TO_RAD, and RAD_TO_DEG:

deg = rad * RAD_TO_DEG;
rad = deg * DEG_TO_RAD;

Arduino also has another constant; PI, which of course is the familiar con-

stant for π.

Interrupts

Interrupts are a way to respond immediately to external signals without having

to spend a lot of time looking for changes.

 Chapter 4 ■ The Arduino Language 77

c04.indd 09:52:4:PM 07/13/2017 Page 77

Imagine you are at home, and you are waiting for an important parcel. This

parcel will be delivered to your letter box without requiring a signature. The

chances are that the postman will not knock on your door. You want to get

your hands on it as soon as possible, so you go outside to look at the letter box

frequently. It isn’t there, so you wait for 10 minutes or so before having another

look. You have to decide when to stop working (if you can actually work at all)

before looking again, choosing a time that suits you. In computer terms, this

continual checking for an event is known as polling.

Interrupts are different. A few days later, you wait for another parcel; only this

time the parcel requires a signature, so the delivery man knocks on your door.

This gives you a little more freedom. Because you don’t have to waste time by

looking inside the letter box every few minutes, you can get some work done.

The delivery man will knock on your door to let you know that he has arrived,

and at that time you can stop working for a few minutes to get your parcel. The

downside to this is that you have to react quickly; if the delivery man does not

get an answer quickly, he will go away. This situation is analogous to an interrupt.
Interrupts are a technique to let the processor continue working while waiting

for an external event. It might not occur at all, in which case the main program

continues, but if an external signal is received, the computer interrupts the main

program and executes another routine, known as an Interrupt Service Routine, or

ISR. ISRs are designed to be fast, and you should spend as little time as possible

inside an ISR. When servicing an interrupt, some functions will not continue to

work; delay() and millis() will not increment in interrupt context.

All Arduinos have interrupts; most use interrupts internally for serial commu-

nication or for timing counters. Some Arduinos have more user-programmable

interrupts. Table 4-1 shows which interrupts are available on which pins for

different models.

Table 4-1: Interrupt Pins on Arduinos

BOARD INT.0 INT.1 INT.2 INT.3 INT.4 INT.5

Uno 2 3

Ethernet 2 3

Leonardo 3 2 0 1 7

Mega2560 2 3 21 20 19 18

The Arduino Due is different. It has highly advanced interrupt handling and

can effectively be programmed to interrupt on every digital pin.

attachInterrupt()

This function specifi es which routine to call when a specifi ed interrupt is received.

attachInterrupt(interrupt, ISR, mode)

78 Part II ■ Standard Libraries

c04.indd 09:52:4:PM 07/13/2017 Page 78

This function attaches a function to the interrupt number interrupt, depending

on the status of the pin. The mode specifi es the pin state to trigger the interrupt.

Valid states are LOW, CHANGE, RISING, FALLING, or HIGH. ISR names the function

you want to run. The ISR can be any function you write, but it cannot have

parameters and cannot return information.

The Arduino Due has a slightly different prototype, as shown here:

attachInterrupt(pin, ISR, mode) // Arduino Due only!

detachInterrupt()

This function detaches a previously attached interrupt handler from attachIn-

terrupt(). Interrupts on this ID will now be ignored. All other interrupts remain

in place. It requires the interrupt ID to function.

 detachInterrupt(interrupt);

This function is again slightly different for the Arduino Due; the Due requires

the pin number to be specifi ed, not the interrupt ID.

detachInterrupt(pin); // Arduino Due only!

noInterrupts()

noInterrupts() temporarily disables interrupt handling. This is useful when

you are in an interrupt handler and do not want to be disturbed by other inter-

rupts. It does have a down side; some system functions require interrupts,

mainly communication. Do not disable all interrupts just because your code

does not require user-made interrupt handlers. Disable interrupts only when

there is timing-critical code being performed.

// Normal code
noInterrupts();
// Time critical code
interrupts();
// Normal code

interrupts()

interrupts() re-enables all interrupts. You do not need to reconfi gure inter-

rupt handlers; all interrupts will be reconfi gured as they were before calling

noInterrupts().

 Chapter 4 ■ The Arduino Language 79

c04.indd 09:52:4:PM 07/13/2017 Page 79

Summary

 In this chapter you have seen the Arduino Language, a set of instructions and

functions that are used on every Arduino and are available for every sketch.

In the next chapter, you will see the functions used to communicate with the

outside world through serial communications.

81

c05.indd 04:6:4:PM 12/04/2014 Page 81

After reading this chapter, you will be familiar with the following functions:

 ■ if (Serial)

 ■ available()

 ■ begin()

 ■ end()

 ■ find()

 ■ findUntil()

 ■ parseFloat()

 ■ parseInt()

 ■ peek()

 ■ print()

 ■ println()

 ■ read()

 ■ readBytes()

 ■ readBytesUntil()

 ■ setTime-out()

 ■ write()

C H A P T E R

5

Serial Communication

82 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 82

The following hardware is required to complete the activities and examples

presented in this chapter:

 ■ Arduino Uno

 ■ USB Cable

The code download for this chapter is found at http://www.wiley.com/go/

arduinosketches on the Download Code tab. The code is in the Chapter 5 folder

and the fi lename is chapter5.ino.

Introducing Serial Communication

The original IBM PC, introduced in 1981, came with two serial ports, physical

connectors allowing the computer to connect to devices or another computer

via the RS-232 protocol. For most people, this was the beginning of the serial

port, but in reality, it started much earlier. Early computers had serial ports, and

they have even been used on mainframes. They have been in use almost since

the beginning of microprocessor-based computers.

The word serial comes from the way data is transmitted; serial devices send

bits one at a time on a single wire. This is something that you have seen before;

it is like a telephone call. Both users pick up the telephone and a single wire con-

nects them together. Both users can talk at the same time (even if it is considered

polite to listen while the other person talks), and words are sent one at a time.

Both sides are free to start talking when they want, and also free to stop talking.

While serial devices send bits on a single wire, parallel devices send multiple

bits on multiple wires. Although parallel communications can be faster than

serial, they were often more expensive, requiring more wires. There are also

speed limitations due to physical limitations of conductive wiring. Figure 5-1

shows the difference between serial and parallel communications.

A new standard was born: RS-232. RS-232 serial ports were a standard feature

on computers allowing users to connect mice, modems, and other peripherals

using a common connector. These connectors allowed computers to talk with

peripherals, and even talk with other computers. Software was designed to send

data between computers on serial links, but while RS-232 was fast enough for

devices like mice and modems, it became too slow to handle large amounts of

data.

The original serial ports have been removed from most modern computers

in favor of a new standard: USB. USB is short for Universal Serial Bus, and even

that, however advanced it may be, still uses the same principle: sending data

through a serial line. USB does not use RS-232, instead it uses new techniques

to send data serially. It can, however, connect to RS-232 hardware using a spe-

cial converter, which is required when a computer does not have RS-232 but

http://www.wiley.com/go

 Chapter 5 ■ Serial Communication 83

c05.indd 04:6:4:PM 12/04/2014 Page 83

needs to connect to an RS-232 compatible device. Luckily, Arduinos use USB

communications, so an adapter is not required.

Serial

Parallel

Figure 5-1: Serial versus parallel

Serial ports are extremely simple. This simplicity is one reason why they are

used so often. Data is sent on one wire, the transmit wire (TX), and received on

another, the receive wire (RX). On the other side of the cable, it is connected to

another computer with a TX pin and an RX pin. Inside the cable itself, the TX

and RX wires are inverted. The TX pin on one side is connected to the RX pin

on the other side. This is illustrated in Figure 5-2.

TX

RX

TX

RX

Figure 5-2: Transmit and receive wires

With all the technological advances made over the years, you could ask the

question: Why do systems still use RS-232? There are several reasons. First, it

is a proven technology in that it has been used reliably for decades. Second,

there are a large amount of cheap electronic components that communicate via

RS-232. They are easy to use, requiring only a few lines of code to implement.

Third there is the cable distance. Although not necessarily a big advantage for

84 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 84

some systems, RS-232 low-capacitance cables can be 1,000 feet long, although

most cables limit the distance to 50 feet.

Arduinos use serial ports for communicating with computers and other

devices. The USB port of an Arduino is used for serial communication with a

computer, with the added advantage that USB can also be used to power the

device. USB also has the advantage of auto-confi guring most of the parameters.

Some Arduinos have other hardware serial ports, enabling communication

with up to four other devices. The USB communication is sent to Arduino pins

0 and 1, meaning that those pins are reserved if your device must communicate

with a computer.

UART Communications

A Universal Asynchronous Receiver/Transmitter (UART) is a piece of hardware

that translates from serial and parallel forms. This is what is used to commu-

nicate on a serial interface. Data is sent to the UART device in parallel format,

for example, a byte. The UART takes the byte and sends the data 1 bit at a time,

adding any required information and line handling. On the receiving end,

another UART device decodes the data and returns it to parallel form.

The native UART controller on all Arduinos has a buffer of 64 bytes, mean-

ing the Arduino can receive up to 64 characters while busy with other tasks.

For UARTs to communicate, they must be confi gured in the same way. This

information consists of the following:

 ■ Baud rate

 ■ Data bits

 ■ Parity

 ■ Stop bits

Baud Rate

Originally, the baud rate was the amount of times that a signal could be changed

per second. Now, it commonly refers to the speed at which information can be

transmitted. If you want to send a logical one several times in a row, you do

not need to change the signal. The receiving device looks at the input line once

every few microseconds or nanoseconds and samples the level. If your sender

transmits a series of 1s every millisecond, the receiving device looks at the input

line every millisecond. The receiver reads the value and then waits for a mil-

lisecond before the next reading. During this time, the sending device has the

time to change the logical level (if needed) before the receiver re-samples the data.

It is important that both devices share the same baud rate. If one device

is sending faster or slower than another device, the communications will be

 Chapter 5 ■ Serial Communication 85

c05.indd 04:6:4:PM 12/04/2014 Page 85

misinterpreted. If your serial terminal is showing lots of strange characters, then

there is a chance that the baud rate is not the same between the two devices.

A baud rate of 1,000 baud is synonymous to a bit rate of 1,000 bits per second.

However, that does not mean that 1,000 bits of data are sent. The data is encap-
sulated, placed inside other bits that help the computer identify the data being

sent. RS-232 allows asynchronous communications, meaning that the commu-

nications line does not require a clock signal, and communications can begin

and stop at any time instead of requiring a constant fl ow. RS-232 needs some

way of telling the receiver that they are about to send data and that they have

fi nished sending a packet. For this reason, RS-232 connections almost always

have a start bit, 8 data bits, and a stop bit for a total of 10 bits. Some parameters

allow for an extra parity bit, or two stop bits, for a total of 12 bits, while only

transmitting 8 bits of data. An example data packet is illustrated in Figure 5-3.

Data StopStart Parity

1 bit 5–9 bits 0–1 bits 1–2 bits

Figure 5-3: A serial packet containing data

Various baud rates exist; most are either multiples of the original baud rate,

75 baud, or multiples of crystal oscillators. Most UART devices are capable of

multiple speeds: 300, 1,200, 2,400, 4,800, 9,600, 19,200, 38,400, 57,600, and 115,200

are the most common. Some chips can go even faster. Other devices have non-

standard speeds; you need to fi nd a speed supported by both the sender and the

receiver. In embedded systems, 9,600, 19,200, and 115,200 are common values.

Data Bits

The number of data bits in each packet can be between 5 and 9 bits. Often this

data is used to represent a character or symbol. Five data bits are typically used

for Baudot code, a character table predating ASCII that gave baud its name. Seven

data bits are used for pure ASCII characters. Most modern systems use 8 bits

because that corresponds to 1 byte. Do not try to speed up data throughput by

lowering the amount of data bits, even if you are sending only ASCII. It is best

to remain compatible with as many devices as possible and to use 8 data bits,

unless the other equipment does not let you use the default 8 bits.

Parity

Parity is used as error detection, attempting to detect transmission errors. A par-

ity bit can be added to make the number of 1s in a packet even or odd. Receiving

equipment can detect transmission errors and request the sending equipment to

re-send data if the data has unexpected information. This was mainly used on

86 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 86

older equipment because modern signaling technology no longer needs parity

checking, but it is still available if needed.

Stop Bits

Stop bits are automatically sent at the end of every packet. They allow the receiv-

ing hardware to detect the end of a character and to resynchronize with the

incoming stream. Modern electronic devices usually use 1 stop bit, but older

systems can use 1 1/2 or 2 bits.

Debugging and Output

Systems developers have a wide variety of debugging techniques to help them.

Programs can be run and “frozen,” allowing the developer to look inside the

program and see what is happening. You can run a program line by line, watch-

ing variables change during a program. In some cases, you can even rewrite

lines of code before they are executed, without having to restart your program.

Embedded systems offer an alternative, a physical port that connects directly

to the processor that allows a hardware debugger to take control. Again, pro-

grams can be run step by step; variables can be examined and modifi ed; and

advanced debugging techniques can be used. All this comes at a cost; some

debuggers can cost tens of thousands of dollars.

Arduinos forgo these complex and costly implementations for less expensive

alternatives. The most common tool used for this purpose is the serial port.

Debugging with a serial port can be effective. It is possible to add a single

line to a program, printing out information and simple statements:

Debug: We are about to enter the function connectServer()
Debug: Connected!
Debug: Leaving connectServer()
Debug: Connecting to a client...
Debug: Connected with status 2! (should be 1)

This is an example of a debug output. First, you can tell that the function con-

nectServer() was called and that the program also cleanly exited the function.

Don’t laugh; this is still in use on lots of development projects!

The last line is where things get interesting. You can use the serial output to

display values as shown here. If you can’t use a debugger to look at a variable’s

content, then print it out. In a single line, the developer knows that a return

value was not what he expected it to be, and now he has a good idea of where

to look for the problem.

 Chapter 5 ■ Serial Communication 87

c05.indd 04:6:4:PM 12/04/2014 Page 87

N O T E Serial connections depend on correct parameters. If the speed parameter

is wrong, the receiving UART device will receive garbled data. You will not get small

portions of cleartext with a few wrong characters; the entire text will be unreadable. If

your terminal is showing corrupted data, check your settings.

Starting a Serial Connection

All Arduinos have at least one serial port to communicate with a PC called

Serial. Some boards have several UART devices. The Arduino Mega, for example,

has three additional UART controllers called Serial1, Serial2, and Serial3.

The Arduino Leonardo’s microcontroller has a built-in USB communication

device, separating USB and Serial communication. On the Leonardo, the Serial

class refers to the virtual serial driver, not the serial device on pins 0 and 1.

These pins are connected to Serial1.

To do anything with a serial port, you must use the functions available to

the Serial class.

To begin using a UART device, you must fi rst do some basic confi guration. You

need to set at least one parameter; the baud rate, or speed. Optionally, you can

set the data bits, parity, and stop bits if required. Arduinos, by default, require

you to set the speed and set 8N1 as a default confi guration. To do this, you use

the begin function of the Serial object.

Serial.begin(speed);
Serial.begin(speed, config);

For Arduino Megas, you can also use the other serial objects (note that these

are not connected to the USB port through the 16U2):

Serial1.begin(speed);
Serial1.begin(speed, config);
Serial2.begin(speed);
Serial2.begin(speed, config);
Serial3.begin(speed);
Serial3.begin(speed, config);

The speed parameter is a long and indicates the baud rate. To communicate

with a PC, use one of the following: 300, 600, 1,200, 2,400, 4,800, 9,600, 14,400,

19,200, 28,800, 38,400, 57,600, or 115,200. Typically, 9,600 is an appropriate speed

for communicating debug information. You are free to use just about any speed

you want as long as both devices are operating at the same speed. For example,

some Bluetooth devices can send serial data at speeds much faster than 115,200,

88 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 88

in the order of one megabaud (one million baud). Be aware of what the device

or computer is expecting.

Serial confi guration is normally done in setup() because devices tend to not

change the speed at which they communicate over time.

void setup()
{
 Serial.begin(9600); // Opens the serial port, sets data
// rate to 9600 baud}
void loop() {}

For the Arduino Leonardo, you can detect if the USB serial communications

channel is open. The Serial class can return true or false, depending on the

communication state.

if(Serial) // Check to see if the channel is open

If you have a number of statements in your setup() that you want to send serially,

it is useful to wait until the Leonardo’s serial port has initialized before proceeding.

while(!Serial){ // while there is no serial connection
;; // do nothing
}

This works on the Leonardo, Micro, Esplora, and other 32U4-based boards.

On all other boards, this function always returns true, even if the device is not

connected to USB.

Writing Data

Now that you have established a connection, your Arduino can send data to

a receiving device. For debugging, you will probably send ASCII a standard

used to transmit text using the English alphabet and some punctuation, and

use a terminal emulator for receiving messages. The Arduino IDE integrates a

terminal emulator to easily access messages and debugging data. Terminal edi-

tors are used to ASCII but will get confused if receiving a non-ASCII character.

If a terminal emulator receives a non-ASCII character, for example, something

formatted as a raw byte, it will probably produce an unintelligible mess.

Sending Text

To send ASCII data, use print(). This function sends data to the serial device

as human-readable ASCII format. The data to be printed can be in any format.

It can print a single ASCII character or a complete string.

Serial.print("Hello, world"); // Output an entire string
Serial.print('!'); // Output a single character

 Chapter 5 ■ Serial Communication 89

c05.indd 04:6:4:PM 12/04/2014 Page 89

It can also print number formats by converting those to ASCII.

Serial.print(42); // Outputs the ASCII string "42" to the serial port
Serial.print(1.2345); // Outputs "1.23"

By default, numbers are displayed in decimal and rounded to two decimal

places. You can change both of these. To print a specifi c amount of decimal places,

just specify the number of digits after the fl oating-point number to be displayed:

Serial.print(1.2345, 0); // Prints "1"
Serial.print(1.2345, 1); // Prints "1.2"
Serial.print(1.2345, 4); // Prints "1.2345"

To display numbers in different formats, you need to specify the numerical

type constant after the number. There are four possibilities: BIN for binary, DEC

for decimal, HEX for hexadecimal, and OCT for octal.

Serial.print(42, BIN); // Prints 0010 1010
Serial.print(42, DEC); // Prints 42
Serial.print(42, HEX); // Prints 2A
Serial.print(42, OCT); // Prints 52

print() prints data but does not append any special characters to the end of

the text. In ASCII, there are a number of these reserved characters. These are

escaped with a backslash (\). For example, how would you print a quote that

has to reside in another quote?

Serial.print(""He said "Captain", I said "what""); // Compiler error

As far as the compiler understands this line, the text starts at the fi rst quotation

mark, and ends at the second, so what is all this noise afterward? The compiler

won’t understand and will ask you to correct the problem. To show that this is

a special character, you must fi rst escape it.

Serial.print(""He said \"Captain\", I said \"what\"");
 //reference intact!

You need to escape characters like quotation marks, backslashes, and single

quotes.

There are also other special ASCII characters to be aware of. Consider the

following code:

Serial.print("Imagination is more important than knowledge.");
Serial.print("Albert Einstein");

At fi rst glance, everything looks good. However, computers are extremely

good at doing exactly what you ask for, and nothing more. The result might not

quite be what you expect when viewed in a terminal:

Imagination is more important than knowledge.Albert Einstein

90 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 90

Those lines of text were put on different lines; why didn’t the second text start

on the next line? Well, the compiler wasn’t told to do this. To manually insert a

new line, you must use the \n character, for a new line.

Serial.print("Imagination is more important than knowledge.\n");
Serial.print("Albert Einstein");

Now things look better. The text now appears like this:

Imagination is more important than knowledge.
Albert Einstein

That’s more like it. Now this quotation is readable. Of course, inserting the

new line escape sequence is going to get boring, especially if some are forgot-

ten. Luckily, there is a function that can do this for you. The println function

automatically adds a new line and a return at the end of the text.

Serial.println("Imagination is more important than knowledge.");
Serial.println("Albert Einstein");

With citations, the author is frequently added on the bottom of the text, but

with an indentation. This too can be added by the tabulation sequence: \t.

Serial.println("Imagination is more important than knowledge.");
Serial.print("\tAlbert Einstein");

 Tabulation can be important for data output, as shown in more detail in the

chapter example.

Sending Data

Not all data can be sent as easily as ASCII. If you are trying to output the result

of a sensor, it sometimes isn’t practical to convert that data to an int and send

it as text. It takes up more time and is just as easy to send that data as a byte

onto the serial line. Because the default serial connection can send 8 bits of data

per packet, you can send a byte in a single data packet. This is exactly what is

done when fl ashing an Arduino; the Arduino IDE doesn’t convert your sketch

to ASCII before sending the data; it sends the data 1 complete byte at a time.

Luckily, sending data is just as easy as sending text and can be accomplished

with the write() function. This function accepts either a single byte or a string

to send. It can also accept a buffer as a parameter and a second parameter to

indicate the length of the buffer.

Serial.write(byte);
Serial.write(string);
Serial.write(buffer, len);

 Chapter 5 ■ Serial Communication 91

c05.indd 04:6:4:PM 12/04/2014 Page 91

Reading Data

It isn’t all about sending data through a serial connection; Arduinos can also

receive data. Receiving data can be used for many projects; computers can send

data, for example, to control the brightness of an LED. Some wireless devices

like Bluetooth also use serial ports to transmit data; maybe your telephone can

send data to unlock a door or to open a window. Arduinos can also talk to each

other over a serial connection, for example, a master Arduino telling a slave

Arduino to turn on the lights in the room it controls.

When the UART device receives data, it stores it in an internal buffer. This

buffer normally holds 64 characters; any more, and data will be lost. Don’t

worry; in practice, 64 is more than enough because interrupts can be put in

place to tell the microcontroller to retrieve information from this buffer before

too much data arrives.

Starting Communications

The fi rst part of any communications is to initiate the connection. Each side

must open up a serial port before being able to send and receive data. For the

Arduino to initialize a serial communication, you must use the begin() function:

Serial.begin(speed);
Serial.begin(speed, config);

This function requires one or two parameters; the speed parameter is the

baud rate for the serial communication. It must be the same on both devices,

otherwise they will not be able to communicate. It is expressed as an int, and

is the exact speed to use. By default, the Arduino IDE will use 9,600, but you

are free to choose a different value, so long as both the Arduino serial monitor

and the Arduino itself use the same speed.

Is Data Waiting?

You can check the number of bytes in the serial buffer by calling available().

This can also let you know if there is any valid data waiting to be read.

int bytes = Serial.available();

There are two ways people typically use available(). One way is to return

the result to know the amount of bytes waiting to be read.

int inBytes = Serial.available();

92 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 92

You can also evaluate if there are a certain number of bytes with an if()

statement:

if (Serial.available() > 0)
{
 // Read in serial data
}

Trying to read the serial buffer if no data is available can waste time in your

sketch. To avoid a sketch freezing while waiting for data, you can change the

duration of the serial time-out, as explained here.

Reading a Byte

You can read a byte from the data buffer using the read() function. This function

takes 1 byte from the UART buffer and returns it to the program. This function

does not return a byte, instead, it returns an int. There is a good reason for

this. What would happen if the buffer were empty? Would the function return

0? That might be the byte waiting for the user in the buffer; there is no way of

telling. Instead, the read() function returns an int. The return values are in the

range of 0 to 255, or –1 if no data is available. This function returns immediately

and does not wait for data to arrive.

Reading Multiple Bytes

Reading in a single byte at a time can be tedious; fortunately there are other

ways of getting data from a serial connection.

readBytes() reads multiple bytes from a serial port and places them into

a buffer.

Serial.readBytes(buffer, length);

You must specify the amount of bytes to read, in which case the function

stops when all the data has been received. There is also another reason why this

function might stop; asking this function for more characters than is available

could cause the Arduino to momentarily stall while waiting for data that may

never arrive. To avoid this, there is a time-out for waiting to read serial data. The

time-out is set by setTime-out(). It takes one parameter: a long that contains

the number of milliseconds to wait for all the data to arrive. By default, serial

ports time out after 1 second.

Serial.setTime-out(time);

You can now retrieve multiple bytes and time out if no data is available.

However, the Arduino still has one trick left. Imagine working with a protocol

that allows your computer to send messages to an Arduino: turn on the lights

 Chapter 5 ■ Serial Communication 93

c05.indd 04:6:4:PM 12/04/2014 Page 93

in the bedroom, turn off the TV, and other such instructions. These instruc-

tions are sent in small packets, and each packet ends with an exclamation mark.

There is a function available that reads in serial data and stops either when

all the data is read in, when there is a time-out, or when a special character is

received. This function is called readBytesUntil() and accepts one argument:

the character to wait for.

Serial.readBytesUntil(character, buffer, length);

Both readbytes() and readBytesUntil()return a byte of data: the amount

of characters read from the serial port. This will be zero if no data was received

because a time-out occurred, less than the expected length if some data was

received and a time-out occurred while waiting for the full packet, or the same

expected length if all the requested data were available. In the case of read-

BytesUntil(), non-zero values may also indicate that the terminator character

was detected.

Taking a Peek

There is a way to get hold of the fi rst byte of data from the UART buffer without

modifying the buffer. There are several reasons why this might be useful to you.

When you know that data has arrived, what does it contain? Is this ASCII data

that needs to be put in a string? Or is this binary data that needs to be put in

another buffer? Would it help to know what the fi rst character is? Well, you can.

Just like those who cheat when it is their birthday, there is a way to peek at data

without changing anything. This will return the fi rst byte from the buffer, but

it will not remove the byte from the buffer. Again, it returns an int; it returns

the fi rst byte of data if it is available; otherwise it returns –1.

data = Serial.peek();

From here, you can read one or several bytes using the functions listed pre-

viously, and the fi rst byte of data read with peek() will still be in the buffer.

Parsing Data

You have the data, but what do you do with it? Everything received is either

ASCII text or binary data. If it is binary data, then your program must analyze

the data and extract the data. ASCII, however, is received as text. This is great

if you want to know the user’s name, but what if you ask him for his age? What

if the serial port receives an instruction to turn on an LED at a specifi c light

setting? It might be text that represents an int or float, but how do you extract

that data? The answer is simple: You parse it.

94 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 94

parseInt() and parseFloat() scan through text and extract the fi rst int or

float encountered. Any preceding text that is not a number is ignored. Parsing

stops when the fi rst non-numerical character is found after a numerical char-

acter, as shown in Figure 5-4.

I a m

Search

Number

Letter

Keep

Stop

3 7 y e a r s o l d

Figure 5-4: Finding numbers in a string

parseInt() would ignore the fi rst letters and extract the number 37. The data

before the number and the number itself will be removed from the buffer. The

rest of the data remains intact.

You can run the parseInt() function repeatedly, which can be helpful if data

is sent to the Arduino as comma-separated values (CSV). If sending a series of

three numbers (127,255,64), parseInt() can be called three times to extract

three numbers. For example, if you want to set the values of an RGB LED.

int red = Serial.parseInt(); // Will read 127
int green = Serial.parseInt(); // Will read 255
int blue = Serial.parseInt(); // Will read 64

Cleaning Up

The fi nal part of any phone call is to hang up, and it is the same with serial

connections. If your application requires you to terminate a serial connection,

it can be done by calling end().

Serial.end()

Input from the USB serial connection is sent to pins 0 and 1, meaning that those

pins cannot be used for anything else when a serial connection is established.

After calling Serial.end(), any pins associated with that serial connection can

be used for general input and output. If you need to restart a serial connection,

call begin() again with the desired baud.

 Chapter 5 ■ Serial Communication 95

c05.indd 04:6:4:PM 12/04/2014 Page 95

Example Program

For this example, you use an Arduino Uno. It connects via USB to your develop-

ment PC and is powered via USB. No power supply is needed, and there will

not be any components connected this time.

This program demonstrates the principles of a serial connection. The Arduino

welcomes the user, asks for her name, and then presents itself. It asks for the

user’s age and then gives the age. Finally, it prints out a few ASCII characters

using tabs.

Listing 5-1: Serial Connection (Filename: Chapter5.ino)

1 char myName[] = {"Arduino"};
2 char userName[64];
3 char userAge[32];
4 int age;
5 int i;
6
7 void setup()
8 {
9 // Configure the serial port:
10 Serial.begin(9600);
11
12 // Welcome the user
13 Serial.println("Hello! What is your name?");
14
15 //Wait for a few seconds, then read the serial buffer
16 delay(10000);
17 Serial.readBytes(userName, 64);
18
19 //Say hello to the user
20 Serial.print("Hello, ");
21 Serial.print(userName);
22 Serial.print(". My name is ");
23 Serial.print(myName);
24 Serial.print("\n");
25
26 //Ask for user's age
27 Serial.print("How old are you, ");
28 Serial.print(userName);
29 Serial.println("?");
30
31 //Wait for a few seconds, then read the serial buffer
32 delay(10000);
33 age = Serial.parseInt();
34

Continues

96 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 96

35 //Print out the user's age
36 Serial.print("Oh, you are ");
37 Serial.print(age);
38 Serial.println("?");
39 Serial.print("I am ");
40 Serial.print(millis());
41 Serial.println(" microseconds old. Well, my sketch is.");
42
43 //Now print out the alphabet
44 Serial.println("I know my alphabet! Let me show you!");
45 Serial.println("Letter\tDec\tHex\t");
46 for (i = 'A'; i <= 'Z'; i++)
47 {
48 Serial.write(i);
49 Serial.print('\t');
50 Serial.print(i);
51 Serial.print('\t');
52 Serial.print(i, HEX);
53 Serial.print('\t');
54 Serial.print('\n');
55 }
56 }
57
58 void loop()
59 {
60 // put your main code here, to run repeatedly:
61 }

Lines 1 to 5 declare the global variables in the program. The myName variable is

declared and initialized with the name "Arduino"; the others are only declared.

On line 7, setup() is declared. Because the code runs only once, all the code

in this example is placed in setup(). Even though there’s nothing happening

in loop(), it still needs to be there.

On line 10, the serial device is initialized. The default serial port, Serial, con-

nects to pins 0 and on1e. On an Arduino Uno, these are connected to the USB

port. The speed is set to 9,600 baud, and no other parameters are set; therefore

the device defaults to 8 data bits, no parity, and 1 stop bit. On line 13, the Arduino

greets the user through println(). The program waits for 10 seconds and reads

the serial buffer with readBytes(). The data will be put into the userName vari-

able and read up to the size of the buffer, 64 bytes. I hope your name isn’t longer

than 64 characters! Because it probably isn’t, the function will read the bytes

in your name and then wait for 1 second to see if there are up to 64 characters.

After this, it returns what data it has.

On line 19, the sketch greets the user again, this time with her name. This is

done by printing some default text and then printing a variable, the user’s name.

Listing 5-1 (continued)

 Chapter 5 ■ Serial Communication 97

c05.indd 04:6:4:PM 12/04/2014 Page 97

Again, it prints out some default text and then prints another variable, its own

name. Finally, it prints out the new line character. These four lines of code are

printed on a single line of text.

On line 27, the sketch again asks the user a question, and on line 32, it waits

for another 10 seconds for the user to enter some text. On line 33, the sketch

calls parseInt(), emptying the buffer looking for numbers. The result is stored

in the age variable.

On line 36, the sketch again talks to the user, fi rst confi rming her age, and

then on line 40 calls millis(). This function returns the number of milliseconds

that the sketch has been running.

At line 43, the sketch prints out a formatted table, using tabs. The sketch tells

the user that it knows its ABCs, and demonstrates its mastery of the alphabet.

The fi rst column will be the letter, the second will be the decimal value, and

the third will be the hexadecimal value.

Line 46 is a loop that iterates through letters A to Z. These are chars and can

be printed as such. In ASCII, capital letters are associated with values from

65 to 90. write()sends these as bytes. The Arduino’s serial monitor interprets

these as the ASCII equivalent. If print() had been used, the decimal number

would have been printed, as on line 50. On line 52, the sketch again prints the

value but this time using hexadecimal notation.

The result of the sketch looks like this:

Hello! What is your name?
> Elena
Hello, Elena. My name is Arduino

How old are you, Elena?
> I am 8 years old.
Oh, you are 8?
I am 21001 microseconds old. Well, my sketch is.
I know my alphabet! Let me show you!
Letter Dec Hex
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
I 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D

98 Part II ■ Standard Libraries

c05.indd 04:6:4:PM 12/04/2014 Page 98

N 78 4E
O 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
V 86 56
W 87 57
X 88 58
Y 89 59
Z 90 5A

To run this sketch, simply upload it from the Arduino IDE. By pressing

Ctrl+Shift+M, or by going to Tools ➪ Serial monitor menu item, you can access

the serial monitor that enables you to read the serial data and to input values.

Try this out and have fun with it.

This sketch is not perfect, there are a few fl aws that were left in. For example,

when reading from the serial port, the sketch fi rst waits 10 seconds. This is not

a particularly desirable interaction; the user doesn’t know how long they have,

and they may not react in time. How would you change the sketch so that it

waits until data is available? The available() function might be useful. You

could also try to accomplish the same with peek().

Secondly, the sketch does not check for any problems; it might not receive a

name, or it might not receive a correct age. This is also left as an exercise; try to

correct this, and re-ask the question if the sketch does not receive a good answer.

How could you add additional columns to display octal values? What about

binary?

SoftwareSerial

When no more serial ports are physically available, the SoftwareSerial library

can use software to emulate serial communications on other digital pins without

the need for a UART. This allows you to have multiple serial ports on a device

that would not normally allow it. Because transmission is handled by software

and not hardware, only one SoftwareSerial port can receive data at any time.

Also, speed is limited to 115,200 baud.

This introduces the concept of libraries. A library is software that can be added

as required. It provides functionality and is often not something that you would

need every time. If your sketch does not require a library, there is nothing else

to do. If your sketch does require a library, you must fi rst import it, that is to

say tell the Arduino IDE that your sketch requires the functionality provided

by a library. To see the list of libraries available, look at the Arduino IDE in the

 Chapter 5 ■ Serial Communication 99

c05.indd 04:6:4:PM 12/04/2014 Page 99

Sketch ➪ Import Library menu. There, you will see a list of available libraries.

Clicking on one of these will automatically import the library.

Before you can use a software serial implementation, you must fi rst import the

library and create an instance of the SoftwareSerial class called an object. When

instantiating the object, it requires two parameters: the pin used for receiving

data and the pin used to send data. Just like the Serial class, you typically call

begin() in setup(). The methods used by SoftwareSerial are just like those used

with Serial, so print(), println(), available(), and the rest work the same.

#include <SoftwareSerial.h>
#define rxPin 10
#define txPin 11
// set up a new software serial port instance
SoftwareSerial mySerial = SoftwareSerial(rxPin, txPin);

void setup()
{
mySerial.begin(4800);
mySerial.println("Hello, world!");
}

The SoftwareSerial object has its own internal buffer of 64 characters. If it

receives any more characters, it will overfl ow. To check the overfl ow status of

the buffer, the call overflow() function can be used:

bool result = mySerial.overflow();

This function checks the internal overfl ow fl ag and automatically resets it.

Subsequent calls to this function will report no overfl ow, unless more data has

been received, causing another overfl ow.

SoftwareSerial requires a pin that supports change interrupts, which, depend-

ing on your model, is not available on all pins. The Mega2560 can use pins 10

through 15, 50 to 53, and A8 to A15 for RX. On the Leonardo, pins 8 through 11

and 14 to 16 can be used. The transmit pin does not require interrupt support,

so any digital pin can be used. For more information about interrupt pins on

your Arduino, check Arduino’s website for your specifi c board.

Summary

In this chapter you have seen how to open and close serial communications,

allowing you to connect to your Arduino and how to exchange information.

In the next chapter you will see how to store long-term data on your Arduino

using the EEPROM library .

101

c06.indd 01:5:18:PM 12/09/2014 Page 101

This chapter discusses the read() and write() functions of the EEPROM library.

The hardware needed to run the examples in this chapter are an Arduino Uno

and a USB cable.

You can fi nd the code downloads for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 6

download and the fi lename is chapter6.ino.

Introducing EEPROM

Life would be boring if you had to reinstall software every time you turned

off your computer. In the beginning, that is almost exactly what happened. A

computer was turned on, and if a fl oppy disk was not inserted, the computer

did not know what to do and just waited. It had no idea of who used it or what

programs were available. Ironically, little has changed; instead of a fl oppy disk,

we have hard drives, storing many times more data, but it still relies on the

same principle.

Computers typically have two types of memory: volatile and nonvolatile.

Volatile memory contains data as long as it is powered. When the power is

removed, all the data is lost. This is how RAM works on your home computer.

It uses a memory module called DDR. Actually; DDR memory is even more

C H A P T E R

6

EEPROM

http://www.wiley.com

102 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 102

volatile than you might at fi rst think; it needs to be refreshed frequently to keep

the data in place. This might sound like poor engineering, but the truth is that

Dynamic RAM (DRAM) is extremely fast, dense, and relatively cheap, allowing

for inexpensive memory chips that work very well.

Volatile memory is used to store variables and data. The actual program is

placed in nonvolatile memory and uses volatile memory to operate. Your alarm

clock might have this function. You can set an alarm, but if the power is cut,

you have to reprogram the alarm clock; otherwise, you won’t wake up on time.

Nonvolatile memory is memory that retains data when power is removed. The

fi rst implementation of nonvolatile memory was an implementation of volatile

memory with a small cell battery. When that battery ran out, the data would be

lost. One solution to this was EPROM memory, as shown in Figure 6-1.

Figure 6-1: EPROM memory chip

Electrically Programmable Read Only Memory (EPROM) is a special memory

that retains its data even when power has been removed. Early versions of

EPROM required specialized equipment to be programmed. True ROM chips

existed well before the arrival of EPROM, but EPROM added something that

ROM chips did not have; they could be erased and reprogrammed.

Reprogramming the fi rst EPROM chips was not something particularly easy

to accomplish; these devices had a quartz “window” on the top of the chip. By

placing the chip under ultraviolet light, the device could be erased within 20

minutes. When fully erased, the device could be reprogrammed.

Although such devices did work well, they were not always practical. They

could store programs or nonvolatile variables, but devices became more intelligent

 Chapter 6 ■ EEPROM 103

c06.indd 01:5:18:PM 12/09/2014 Page 103

and required an increasing number of parameters. How would you feel if your

multimedia player couldn’t change its name, IP address, or basic confi guration?

Something had to be done.

Electrically Erasable Programmable Read Only Memory (EEPROM) is a new

generation of EPROM devices. EPROMs had to be removed from their circuit to

be programmed or erased; however, EEPROM can be erased and reprogrammed

in-circuit. Not only can they be reprogrammed, but also the erase and repro-

gram sequence can be applied to specifi c memory portions. In short, EEPROM

devices can be modifi ed byte by byte, providing an excellent method of storing

long-term variables. Data retention for EEPROM devices is normally guaranteed

for 10 to 20 years, but that is only a minimum. The real fi gure is normally much

higher. Most EPROM devices were also guaranteed for 10 to 20 years, and a lot

of systems built in the 70s are still working fi ne.

EEPROM does suffer from one fl aw; writing data damages the device, ever

so slightly. Don’t panic! That doesn’t mean that the device will stop working

minutes after turning it on. Most EEPROM devices support at least 100,000

writes to the same byte, often much more. Writing data once a day to the same

memory location will give a lifetime of at least 273 years. Remember; EEPROM

is used for confi guration data—data that does not often change, for example,

serial numbers or IP addresses. Are you actually going to change your IP address

100,000 times?

EEPROMs are slower than other types of memory due to their technol-

ogy. EEPROM cannot be written to directly; the memory must fi rst be erased

before bits can be written, and it is this erase phase that damages the device

ever so slightly.

The Diff erent Memories on Arduino

Arduinos have three different memory technologies: RAM, Flash, and EEPROM.

The RAM on Arduinos is exactly like the volatile memory on your computer;

it is used to store variables, and the contents are lost when the power is removed.

The Flash memory is used for the sketch itself, as well as a small bootloader.

This is the memory that is used when you upload a sketch. Previous contents

are erased and replaced. Flash memory supports at least 10,000 write cycles.

The EEPROM memory is a slightly different memory technology, support-

ing more write cycles. EEPROM memory on ATmega microcontrollers support

at least 100,000 writes and can be read and written to byte by byte. This is the

memory that will contain long-term settings and is not overwritten by each

fl ash. Updating your sketch won’t overwrite your variables.

The EEPROM size varies for each microcontroller. The ATmega8 and ATmega168

found in early versions of the Arduino both have 512 bytes of EEPROM, and

104 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 104

the ATmega328 in the Uno has 1,024 bytes. The ATmega1280 and ATmega2560

used in the different versions of the Arduino Mega both have 4 KB of EEPROM.

The EEPROM Library

The EEPROM library is a collection of routines that can access the internal

EEPROM memory, reading and writing bytes. The EEPROM library can be

imported by manually writing the include statement:

#include <EEPROM.h>

Optionally, you can add the EEPROM library using the Arduino IDE. Go to

the Sketch menu item; select the Import Library submenu, and select EEPROM.

This automatically includes the library, as shown in Figure 6-2.

Figure 6-2: Importing the EEPROM library

Reading and Writing Bytes

The entire EEPROM library consists of two functions: read() and write().

These two functions can read and write bytes from specifi c memory locations.

The read() function reads data from a specifi ed address adr, expressed as

an int, and returns data as a byte.

EEPROM.read(adr);

 Chapter 6 ■ EEPROM 105

c06.indd 01:5:18:PM 12/09/2014 Page 105

The write() function writes a byte contained in data to a specifi c address

adr. This function does not return any values.

EEPROM.write(adr, data);

The Arduino compiler automatically sets the correct start memory location. It

doesn’t matter if you use an Uno, Mega2560, or Mini; the compiler “translates”

the correct address. Reading at memory location 0 read from the fi rst byte of

EEPROM.

Consider the following program:

byte value;
void setup()
{
 // initialize serial and wait for port to open:
 Serial.begin(9600);
 while (!Serial) {
 // wait for serial port to connect. Needed for Leonardo only
 }
 value = EEPROM.read(0);
 Serial.print("Value at position 0:");
 Serial.print(value, DEC);
 Serial.println();
}
void loop(){}

In this program, the Arduino reads the fi rst byte of EEPROM memory and

displays it over the serial interface. Yes, it is that simple. Writing a byte into

memory is just as straightforward:

void setup()
{
 EEPROM.write(0, value);
}

void loop() {}

Writing a byte erases the byte in memory before rewriting, and this takes some

time. Each write takes approximately 3.3 ms for each byte. Writing the entire

contents of a 512-byte EEPROM device takes a little more than 1 1/2 seconds.

Reading and Writing Bits

Bits are used when using true/false values. In some applications there will be

relatively few (or sometimes none at all), and in others, you will use boolean

variables extensively. An Arduino cannot write individual bits to EEPROM; to

store bits, they must fi rst be stored in a byte. There are two possibilities.

106 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 106

If you have a single bit to store, the easiest way is just to code it as a byte, even

if you use 1 out of 8 bits.

If you have several bits to store, you might want to try storing them all in

1 byte to save space, for example, a notifi cation LED that the user can program

as he wants. If this is an RGB LED, the user can choose a mix of any primary

colors for notifi cation. This can be coded into 3 bits; 1 for red, 1 for green, and

1 for blue. A logical 1 means the color is present, and a logical 0 means the color

is not present.

You can defi ne this as follows:

// primary colors
#define BLUE 4 // 100
#define GREEN 2 // 010
#define RED 1 // 001

Did you note that RED was defi ned as 1, and has the number 001 next to it?

Arduinos, like all computer systems, store data as binary—a collection of ones and

zeros. It is critical to understand binary when performing bitwise calculations.

Binary is a base-two system; that is to say that each digit can take one of two

possible values—0 or 1. The rightmost fi gure corresponds to 20, the number to

its left corresponds to 21, the next one to 22, and so on. In this example, I have

used three specifi c values: 1, 2, and 4. I did not use 3 since in binary, 3 is written

as 011, and I wanted each color to be assigned to a bit.

There are fi ve more bits that could be coded into this byte. Each bit could

indicate another behavior; maybe the LED should blink? Or maybe a warning

beep? You can make this decision.

Also, another important part of bitwise calculations is AND and OR. In binary

logic, a result is TRUE if one value AND the second value are both TRUE. TRUE and

TRUE would result in TRUE, but TRUE and FALSE would result in FALSE. A result

is TRUE if one value OR another value is TRUE. 1 OR 1 is TRUE, as is 1 OR 0, but

0 OR 0 is FALSE.

Let’s imagine you want a cyan light to be lit up if something occurs. Cyan is a

mix of green and blue. In English, you would say that you want green and blue,

but in computer logic, you would say that you want GREEN or BLUE. A logical

OR is true if one of the two values being compared is true. In this case, GREEN

(010) is compared to BLUE (100), and the answer becomes 110.

So, the result, called CYAN, is 110, but now that you have encoded that, how

can you get the data out of it? This time, you will be using a logical AND. A

logical AND is true if the both the values being compared are true. So, CYAN AND

BLUE? CYAN has a value of 110, and the value of BLUE is 100. The leftmost bit is

1 in both, so that will return as a 1. The second bit is 1 in CYAN and 0 in BLUE.

It returns 0. The third bit is 0 in both values; it also returns 0. The result is 100.

You can now say that BLUE is present in CYAN because the result was not zero.

 Chapter 6 ■ EEPROM 107

c06.indd 01:5:18:PM 12/09/2014 Page 107

Now, time to try that again with RED. The value of CYAN is 110, and RED is 001.

The fi rst two bits are 1 in CYAN and 0 in RED. They return 0. The third bit is 0 in

CYAN and 1 in RED. The logical AND process returns 000. There is no RED in CYAN

because CYAN AND RED returns 0.

To read boolean data, read the byte containing the data from EEPROM and

then perform a logical AND with the reference value. To create boolean data, you

must take an empty variable (initialized as 0) and then perform logical OR opera-

tions with reference values. What happens if you want to update an existing

value? You already know how to set a bit, using a logical OR, but to clear a bit,

you must use a logical NOT AND. NOT inverts a status; if it was previously TRUE,

it will become FALSE. By inverting the reference, you keep every bit that is set

except the one you want to clear. To toggle a bit, simply use the logical XOR to

invert its status. XOR, short for Exclusive OR, will be true if and only if one of the

inputs is TRUE; if they are both TRUE, then the result will be FALSE.

Figure 6-3 shows a table of logical operators, showing the effect of each.

A B A | B A ^ B ~AA & B

0 0 0 0 10

1 0 1 1 00

0 1 1 1 10

1 1 1 0 01

OR XOR NOTAND

Figure 6-3: Logical operators

Following is a short example of how to perform bitwise operations. A bitwise

OR is performed using the | symbol:

value |= RED; // Bitwise OR. Sets the BLUE bit

To perform a bitwise AND, use the & symbol:

vavalue &= ~GREEN; // Bitwise AND. Clears the RED bit (AND NOT RED)

And fi nally, to perform an exclusive OR, use the ^ symbol:

value ^= BLUE; // Bitwise XOR. Toggles the GREEN bit

Reading and Writing Strings

Strings are generally an array of char values and as such can be easily stored

and recalled. In Arduino, it’s possible to use a char array as a string, or you

can use the String data type for more robust data manipulation, at the cost of

program size. With character arrays, you can recall the entire allocated memory

and print it out as required.

108 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 108

Suppose you need to store a string, defi ned as such:

char myString[20];

You can also set a string to a specifi c value when you declare it. Note that

while this array can contain up to 20 elements, not all of them have data.

char myString[20] = "Hello, world!";

You can store information in EEPROM like this:

int i;
for (i = 0; i < sizeof(myString); i++)
{
 EEPROM.write(i, myString[i]);
}

This routine will write the contents of the string to EEPROM memory, one

byte at a time. Even if the string is only 5 bytes long, it will store the contents

of the entire array. That is, if you declare a char array of 20 elements and only

have valid data in the fi rst 5 bytes, you’ll still be writing 20 bytes to EEPROM.

You could make a more optimized routine that automatically stops when it

receives a null character: the end of a C string, but because this routine writes

to EEPROM memory that is not often (if ever) changed, there is no point to over-

complexifying the program. Reading a string is just as easy:

int i;
for (i = 0; i < sizeof(myString); i++)
 {
 myString[i] = EEPROM.read(i);
 }

Again, the operation is the same; it will take 1 byte from EEPROM and place

it into the string, and repeat for each byte in the string.

Reading and Writing Other Values

If the EEPROM can only read and write bytes, how can you save the contents

of an integer or a fl oating point number? At fi rst it might seem impossible, but

remember that in computers, everything is just 1s and 0s. Even a fl oating-point

number is written in memory as binary, it just occupies a larger number of bytes.

Just like with strings, it is possible to write just about anything in EEPROM

memory, by reading and writing 1 byte at a time.

Before beginning, you must know exactly what sort of data you need to read

and write. For example, on all Arduinos except the Due, an int is written as

2 bytes. By using techniques known as shifts and masks, it is possible to “extract”

bytes of data. Shifting takes a binary number and “shifts” data to the left or to

 Chapter 6 ■ EEPROM 109

c06.indd 01:5:18:PM 12/09/2014 Page 109

the right by a certain number of bits. Masking makes it possible to perform bit-

wise operations on a portion of a binary number. Take the following example:

void EEPROMWriteInt(int address, int value)
{
 byte lowByte = ((value >> 0) & 0xFF);
 // Now shift the binary number 8 bits to the right
 byte highByte = ((value >> 8) & 0xFF);
 EEPROM.write(address, lowByte);
 EEPROM.write(address + 1, highByte);
}

In this example, an int is to be saved into EEPROM. It contains two bytes:

the low byte and the high byte. The terminology “low” and “high” bytes is

used when a number is stored on several bytes; the low byte contains the least

signifi cant part of the number, and the high byte contains the most signifi cant

part of the number. First, the lowest byte is extracted. It simply takes the num-

ber and performs a bitwise AND with 0xFF. The 0x in front of the letters tells the

Arduino IDE that this is a hexadecimal number. Just like binary, hexadecimal is

another way of printing a number. Instead of using only two values per fi gure,

hexadecimal uses 16. 0xFF is the hexadecimal representation of 255, the largest

number that a byte can hold. Then, the same value is shifted right 8 bits, and

again, an AND is performed. This is an elegant solution that can work for integers

but will not work for more complex numbers, like a fl oating-point. You cannot

perform shifts with a fl oating-point, more advanced techniques are required.

Several users have requested EEPROM functions to write any sort of data, one

possible solution is available in the Arduino Playground and is called EEPROM

Write Anything. If you want to write anything to EEPROM, look at this example

from the playground—but be forewarned, it uses advanced programming

techniques that are not covered in this book:

http://playground.arduino.cc/Code/EEPROMWriteAnything

Here is an extract of this code:

template <class T> int EEPROM_writeAnything(int ee, const T& value)
{
 const byte* p = (const byte*)(const void*)&value;
 unsigned int i;
 for (i = 0; i < sizeof(value); i++)
 EEPROM.write(ee++, *p++);
 return i;
}

Again, this code requires specifi c information: the exact size of the value to

save. Be careful when using int values; again, on the Arduino Due, they are a

different size than other Arduino boards.

http://playground.arduino.cc/Code/EEPROMWriteAnything

110 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 110

Where possible, try to use byte-size values, but as you can see, it is possible

to store just about anything in EEPROM.

Example Program

In the previous chapter, you created a program that would greet the user, ask

for his name and age, and write some data to a serial port. However, when the

Arduino was unplugged, it forgot everything; the next time it was powered

on, it would ask for the same information. We’ll build on that same program

but now store the responses in EEPROM. The Arduino should fi rst check its

EEPROM memory. If no information is found, it will ask the user some questions

and then store that information into nonvolatile memory. If the information is

found, it will tell the user what information it has and then delete the contents

of its memory. It is now clear that an Arduino knows its ABCs, so I removed

that portion of code from the example. The program is shown in Listing 6-1.

Listing 6-1: Example program (code fi lename: Chapter6.ino)

1 #include <EEPROM.h>
2
3 #define EEPROM_DATAPOS 0
4 #define EEPROM_AGEPOS 1
5 #define EEPROM_NAMEPOS 2
6 #define EEPROM_CONTROL 42
7
8 char myName[] = {"Arduino"};
9 char userName[64];
10 char userAge[32];
11 unsigned char age;
12 int i;
13 byte myValue = 0;
14
15 void setup()
16 {
17 // Configure the serial port:
18 Serial.begin(9600);
19
20 // Does the EEPROM have any information?
21 myValue = EEPROM.read(EEPROM_DATAPOS);
22
23 if (myValue == 42)
24 {
25 // Get the user's name
26 for (i = 0; i < sizeof(userName); i++)
27 {
28 userName[i] = EEPROM.read(EEPROM_NAMEPOS + i);
29 }
30

 Chapter 6 ■ EEPROM 111

c06.indd 01:5:18:PM 12/09/2014 Page 111

31 // Get the user's age
32 age = EEPROM.read(EEPROM_AGEPOS);
33
34 // Print out what we know of the user
35 Serial.println("I know you!");
36 Serial.print("Your name is ");
37 Serial.print(userName);
38 Serial.print(" and you are ");
39 Serial.print(age);
40 Serial.println(" years old.");
41
42 // Write zero back to the control number
43 EEPROM.write(EEPROM_DATAPOS, 0);
44 }
45 else
46 {
47 // Welcome the user
48 Serial.println("Hello! What is your name?");
49
50 // Wait until serial data is available
51 while(!Serial.available())
52 // Wait for all the data to arrive
53 delay(200);
54
55 // Read in serial data, one byte at a time
56 Serial.readBytes(userName, Serial.available());
57
58 // Say hello to the user
59 Serial.print("Hello, ");
60 Serial.print(userName);
61 Serial.print(". My name is ");
62 Serial.print(myName);
63 Serial.println("\n");
64
65 // Save the user's name to EEPROM
66 for (i = 0; i < sizeof(userName); i++)
67 {
68 EEPROM.write(EEPROM_NAMEPOS + i, userName[i]);
69 }
70
71 // Ask for user's age
72 Serial.print("How old are you, ");
73 Serial.print(userName);
74 Serial.println("?");
75
76 // Wait until serial data is available
77 while(!Serial.available())
78 // Wait for all the data to arrive
79 delay(200);
80 age = Serial.parseInt();

Continues

112 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 112

81
82 // Print out the user's age
83 Serial.print("Oh, you are ");
84 Serial.print(age);
85 Serial.println("?");
86 Serial.print("I am ");
87 Serial.print(millis());
88 Serial.println(" microseconds old. Well, my sketch is.");
89
90 // Now save this to EEPROM memory
91 EEPROM.write(EEPROM_AGEPOS, age);
92
93 // Since we have all the information we need, and it has been
94 //saved, write a control number to EEPROM
95 EEPROM.write(EEPROM_DATAPOS, EEPROM_CONTROL);
96 }
97
98 }
99
100 void loop()
101 {
102 // put your main code here, to run repeatedly:
103 }

So, what has changed? Well, the most visible change is that the code con-

cerning Arduino’s ABC recital has been removed. This example concentrates

on something else.

On line 11, the user’s age is now stored in an unsigned char. Originally

this was stored in an int, but this presents a problem for EEPROM memory.

Remember that in Chapter 4 you saw that int values stored from –32768 to 32767.

You won’t need all those numbers; humans don’t (yet) live that long, and in any

case, negative numbers aren’t necessary. The problem isn’t the range; it is the

size of the container. On most Arduinos, an int is coded on 2 bytes (in the Due

it occupies 4 bytes). If you release your program as open source, you will have

no way of knowing which Arduino will be used. In addition, an int for an age

is a bad idea; it isn’t optimal. An unsigned char is always 1 byte and can handle

numbers from 0 all the way to 255. This will be easier to write to an EEPROM.

On line 21, the sketch reads data from the EEPROM. The exact location is

defi ned by EEPROM_DATAPOS. Of course, the function could have been called

directly with the number 0 (and this is exactly what the compiler is going to

do), but adding a #define makes the code more readable and also allows the

developer to change memory location without worrying about forgetting a call.

This makes everything neater. This sketch shows the persistence of nonvolatile

memory, and as such, it has to have a way of ignoring any data stored. To do

this, a “control” byte is allocated. The Arduino reads a value in the EEPROM. If it

receives the number 42, it presumes that the EEPROM contains valid information

Listing 6-1 (continued)

 Chapter 6 ■ EEPROM 113

c06.indd 01:5:18:PM 12/09/2014 Page 113

and attempts to read that data. If the Arduino reads any other number, it asks

the user for information, writes that data to EEPROM, and then writes the

control byte.

Assuming that no valid EEPROM data has been found, the sketch is close to

what was already present in the previous chapter. On lines 50 and 76, the serial

call has been changed. At the end of the previous example, I asked you to try

and fi nd a better way of listening for serial communication. This is one way of

waiting for serial data. What did you fi nd?

On line 91, the sketch saves the contents of the variable age to EEPROM using

a single function call: EEPROM.write(). However, on line 65, the string userName

is saved 1 byte at a time. The entire string memory is written to EEPROM, but

you could tweak the code to write only what is needed. What would you write?

This brings the question: How do you organize memory? It is up to you,

the engineer and creator, to decide how the memory will be partitioned. This

example used position 0 as the control byte, position 1 as the age, and 20 bytes

from position 2 onward as a string containing your name. Don’t hesitate to use

a spreadsheet or some paper notes to map out your memory, to know what will

go where. An example is shown in Figure 6-4.

AGEPOS

DATAPOS
0 7 8

USERNAME

POSTCODE TELEPHONE

TELEPHONE (cont.)

15

Figure 6-4: Memory organization

Keep in mind that #define statements are easier to change rather than looking

through your code if you need to change something.

Preparing EEPROM Storage

One of the problems encountered with EEPROM memory happens the fi rst

time a sketch is run. This sketch assumes that if a certain number is present

in the fi rst block, then the rest of the information is valid. When running this

sketch on another system, you do not know what EEPROM contains. If you are

unlucky, the fi rst byte will already contain the control number you’re looking

for, but the rest of the data may not contain a valid age, or a valid name. This

could simply result in garbled text, but in another application, it might lead to

114 Part II ■ Standard Libraries

c06.indd 01:5:18:PM 12/09/2014 Page 114

signifi cant problems. Imagine a small sensor that connects to the Internet to

upload temperature readings to a server. If the IP address is stored in EEPROM,

and that memory location does not contain valid data, then your application

will attempt to upload data to a server that does not belong to you.

To prevent this, some designers add a reset button to their project. By adding

a few lines to your sketch, you can erase EEPROM data in the case of a fi rst-

time power on, or if the Arduino board were changed. Some applications use

the control number for error checking, adding several numbers throughout

EEPROM memory for more reliability. Or, you could use a second sketch, one

that you upload that sets EEPROM data exactly as you want, before refl ashing

the fi nal sketch. There are several solutions available; it all depends on what

solution is the best for you and your application. Don’t trust EEPROM contents

on a new system; take the time necessary to prepare the nonvolatile memory.

Adding Nonvolatile Memory

Arduinos have limited EEPROM memory that is suffi cient for most programs,

but in some cases you might need to add EEPROM memory. Numerous EEPROM

components exist, for example the Atmel AT24C01A that adds 1 KB of memory,

or the AT24C16A that adds 16 KB of memory. However, these components are

connected to the I2C bus (explained in Chapter 8) and cannot be addressed by

the EEPROM library. The EEPROM library can handle only the internal EEPROM,

not external. If you want more external memory, it must be addressed by the

bus that it uses.

If you require large amounts of nonvolatile memory, other solutions exist.

Arduino shields exist that can accept SD or micro-SD cards. At the time of writ-

ing, micro-SD cards have capacities up to 128 gigabytes, more than enough for

most logging applications.

SD cards are based on fl ash memory, and as such, also inherit fl ash memory’s

weakness: write cycles. However, most SD cards have an internal controller

that implements something called wear leveling, a technique used to limit the

amount of write cycles to a specifi c place in memory. This greatly increases the

life expectancy of the fl ash memory, allowing for normal fi lesystem use, even

when fi les are frequently updated. If you need nonvolatile memory that is often

changed, consider using an SD-card shield. SD-card operation is explained in

Chapter 12.

 Chapter 6 ■ EEPROM 115

c06.indd 01:5:18:PM 12/09/2014 Page 115

Summary

 In this chapter, you have seen how to read and write data to and from an

Arduino’s internal EEPROM memory. In the next chapter, I will explain SPI

communications, another form of serial communication used to talk to sensors

and exchange information.

117

c07.indd 01:5:32:PM 12/09/2014 Page 117

This chapter discusses the following functions of the SPI library:

 ■ begin()

 ■ end()

 ■ setBitOrder()

 ■ setDataMode()

 ■ setClockDivider()

 ■ transfer()

The hardware needed to use these functions includes:

 ■ Arduino Due

 ■ Adafruit MAX31855 breakout board

 ■ Type-K thermocouple wire, from Adafruit Industries

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 7

folder and the fi lename is Chapter7.ino.

 C H A P T E R

7

SPI

http://www.wiley.com

118 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 118

Introducting SPI

Serial data connections have been the backbone for computer communication

systems for decades. Reliable and suffi ciently fast for most devices, they have

been used to communicate with modems, IC programmers, and computer-to-

computer communications for most of computing’s history. They use few wires

compared to other communications systems and are generally robust—qualities

that are useful for embedded systems and peripherals.

Serial communications are also used deep inside embedded systems where

space is critical. Instead of connecting a device to a 32-bit data bus, a simple

temperature sensor can, instead, be connected to the microcontroller via just a

few wires. It makes design simpler, cheaper, and more effi cient.

Although serial connections have a lot of advantages, they also have disad-

vantages. Having a modem and a programmer requires a computer with two

serial ports; a serial port cannot (easily) handle multiple devices. One serial

port, one device. This is the same for microcontrollers and microprocessors;

most devices have at least one serial port, but it is diffi cult to fi nd a device with

more than three RS-232 serial ports. Also, more ports mean more software—and

more tasks used to check the serial buffers. Also, a modem might be used for

long periods of time, but a chip programmer will be used for just a minute or

two, tying up a serial port for a single task that is rarely run.

SPI Bus

To allow multiple devices to be used on a single serial port, the SPI bus was

created. SPI is short for Serial Peripheral Interface and is indeed an interface to

devices, using a synchronous serial line capable of full-duplex communication

(meaning that both devices can send and receive at the same time).

SPI is a master/slave protocol; one master communicates with one or more

slaves. Communication is made with only one slave at a time; to communicate

with another slave, the master must fi rst stop communicating with the fi rst slave.

Slaves cannot “talk” on the network without being instructed to by the master.

To connect and talk to a slave, a master requires at least four wires. The “Master

Out-Slave In” (MOSI) and “Master In-Slave Out” (MISO) wires are used for data

communication; SCLK is a serial clock that regulates the speed of the commu-

nication; and SS (short for Slave Select) is used to select the peripheral. It’s not

uncommon to see SS referred to as CS (for Chip Select) in some documentation.

SS is a wire that “selects” a slave on a logical zero. The MOSI, MISO, and

SCLK wires are connected to every device on the SPI bus, and devices listen

only to the master and communicate if their SS wire is set to active low. This

allows for several slaves to be connected to a master on the same network. A

typical SPI bus is shown in Figure 7-1.

 Chapter 7 ■ SPI 119

c07.indd 01:5:32:PM 12/09/2014 Page 119

Figure 7-1: An SPI network using several slaves

Comparison to RS-232

SPI is also simpler in design compared to RS-232 communications; RS-232

uses two wires (Tx and Rx), but it requires a set clock speed on both sides of

communication. The clock on both devices connected via RS-232 need to be in

agreement, preventing confi guration problems or desynchronization. SPI masters

generate their own clock signal and send that signal to every device. SPI devices

are therefore normally simpler to design, cheaper to fabricate, and easier to use.

Another difference between SPI and RS-232 is the way data is sent. RS-232

was designed for long distance communications; SPI is not. It does not need to

handle signal noise like RS-232 and therefore does not require checksum bits.

This has one major advantage; where RS-232 communications have to send 7-bit

or 8-bit data, SPI can select any length it wants. Some devices send 8-bit data,

some send 16-bits, even devices using nonstandard lengths like 12-bits can be

found on the market.

Confi guration

Although SPI does not require explicit confi guration like RS-232 devices, it does

require a form of confi guration. The clock signal is a digital signal, oscillating

between a logical one and a logical zero. Some devices will be active on a rising

edge (as the clock goes from low to high), and some will be active on a falling

edge (as the clock goes from high to low). Also, the clock can be confi gured to

be active low or active high.

120 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 120

Also, because SPI are serial devices, bits are sent one at a time. Because of this,

you have to know if the device is expecting the most-signifi cant bit fi rst or the

least-signifi cant bit fi rst. Data is normally shifted out with the most signifi cant

bit fi rst.

One last confi guration is the clock speed. The clock is generated by the mas-

ter, and as such, it is the master that defi nes the speed of the bus. Most compo-

nents have a maximum speed confi guration; creating a clock signal above this

frequency results in corrupted data.

Communications

SPI is a master/slave protocol, and as such, the master initiates communication

with a slave. To do this, it pulls the slave’s SS pin low (while maintaining any

other SS wires high). This tells the slave that it is being addressed.

To communicate, the slave requires a clock signal, which will be generated by

the master. Each clock pulse results in a bit of data being transmitted; however,

some sensors (like the DHT-11 used later in this book) require a small timeframe

in which the conversion will be made. If this is required, the master must not

initiate the clock until the slave has had time to complete the conversion.

When the clock signal is generated, both the master and slave are free to com-

municate at the same time. In reality both devices do communicate at the same

time; the master transmits on the MOSI line, and the slave listens to that line.

At the same time, the slave transmits on the MISO line, and the master listens

to that line. Both happen at the same time, but some devices do not require

meaningful data to be received; a slave device that transmits only data receive

data from the master but it ignores all information sent to it.

When the master fi nishes, either sending the data it requires or retrieving

data, it normally stops the clock signal and deselects the slave.

Arduino SPI

The SPI bus on the Arduino is an exception compared to most other ports. On

select Arduinos, the SPI bus is present as a dedicated header—the ICSP header,

as shown in Figure 7-2.

The ISCP header has several uses, including bypassing the Arduino boot-

loader to program the microcontroller directly, (ISCP is short for In-Circuit

Serial Programming), but this is out of the scope of this book.

The ISCP port also normally exposes the SPI bus, depending on models.

The Arduino Uno, the reference model of the Arduino family, uses pin 11 and

ICSP-4 for the SPI MOSI signal. These pins are duplicates; they are electrically

 Chapter 7 ■ SPI 121

c07.indd 01:5:32:PM 12/09/2014 Page 121

connected. On the Arduino Leonardo, the MOSI pin is available only on the

ICSP header and cannot be output to any digital pins.

ICSP

Figure 7-2: The ICSP header on an Arduino Uno

If you move on to designing your own shields, use the ICSP headers. Arduino

shields that use SPI cannot function on the Arduino Leonardo if they do not

use the ICSP header, and SPI is used for numerous connections (including

SD-card readers).

The ICSP header does not include any SS lines; only the MISO, MOSI, and

SCLK lines are exposed, together with power and ground connectors. Because

the Slave Select pin is not used to transfer data, but used only to tell a slave

that it will be addressed, any digital output pin can be used as a Slave Select.

This way, you can have an extremely large amount of slaves on your system;

however, remember that only one slave can be selected at any time; it is up to

you to drive all the outputs high when not talking to a slave.

Arduinos also have the possibility of becoming an SPI slave, and as such,

AVR-based Arduinos have an input SS pin. The Arduino SPI library can be

only a master, and as such, this pin must be confi gured as an output. Failure to

do so might make the Arduino believe that it is a slave and render the library

inoperative. On most Arduinos, this is pin 10, and on the Arduino Mega2560,

it is pin 53.

SPI Library

The Arduino SPI library is a powerful library designed to handle SPI commu-

nications simply and effectively. Most Arduino boards utilize the SPI library in

the exact same way, but there are notable differences if you’re using an Arduino

122 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 122

Due. Before discussing these extended methods, let’s review the standard func-

tions of the library.

To use the library, you must fi rst import it. In the Arduino IDE, either go to

the menu, Sketch ➪ Import Library ➪ SPI, or add the library manually:

#include <SPI.h>

To initialize the SPI subsystem, you must fi rst use begin().

SPI.begin();

This function automatically sets the SCLK, MOSI, and SS pins to output,

pulling SCLK, MOSI LOW, and SS HIGH. It also sets the MISO pin as an input.

 To stop the SPI subsystem, call end():

SPI.end();

Ending the SPI subsystem frees up the I/O lines, letting you use them for

other uses.

To confi gure the SPI bus, three functions are available: setBitOrder(), set-

DataMode(), and setClockDivider().

setBitOrder() controls the way in which bits are sent on a serial line: the

least-signifi cant bit (LSB) fi rst or the most signifi cant bit (MSB) fi rst. This func-

tion takes one parameter: a constant, either LSBFIRST or MSBFIRST.

SPI.setBitOrder(order);

setDataMode() sets the clock polarity and phase. It takes a single parameter,

the “mode,” for the SPI clock to use.

SPI.setDataMode(mode);

The mode parameter is one of four constants: SPI_MODE0, SPI_MODE1, SPI_MODE2,

and SPI_MODE3. The difference between these four modes is listed in Table 7-1.

Table 7-1: The Diff erent SPI Clock Modes

MODE CPOL CPHA EFFECT

SPI_MODE0 0 0 Clock base zero, capture on rising, propaga-

tion on falling

SPI_MODE1 0 1 Clock base zero, capture on falling, propa-

gation on rising

SPI_MODE2 1 0 Clock base one, capture on falling, propaga-

tion on rising

SPI_MODE3 1 1 Clock base one, capture on rising, propaga-

tion on falling

 Chapter 7 ■ SPI 123

c07.indd 01:5:32:PM 12/09/2014 Page 123

CPOL is short for Clock Polarity and tells the device if the clock is active on

a logical 1 or a logical 0. CPHA is short for Clock Phase and tells the device if

data should be captured on a rising edge (going from 0 to 1) or a falling edge

(going from 1 to 0).

Finally, the clock divider function, setClockDivider(), is used to set the

clock frequency in relation to the system clock.

SPI.setClockDivider(divider);

For AVR-based systems like the Arduino Uno, the divider parameter is a

numerical value: 2, 4, 8, 16, 32, 64, or 128. These values are available as constants:

 ■ SPI_CLOCK_DIV2

 ■ SPI_CLOCK_DIV4

 ■ SPI_CLOCK_DIV8

 ■ SPI_CLOCK_DIV16

 ■ SPI_CLOCK_DIV32

 ■ SPI_CLOCK_DIV64

 ■ SPI_CLOCK_DIV128

By default, AVR systems using a system clock of 16 MHz use a divider of 4,

SPI_CLOCK_DIV4, resulting in an SPI bus frequency of 4 MHz.

N O T E The Arduino Due has more advanced SPI features that are explained in the

section “SPI on the Arduino Due.”

To send and receive data on the SPI bus, use transfer().

result = SPI.transfer(val);

This function takes a byte as a parameter, the byte to send on the SPI bus. It

returns a byte, the byte of data received on the SPI bus. transfer()sends and

receives only a single byte per call; to receive more data, call this function as

many times as needed.

SPI on the Arduino Due

The Arduino Due is not an AVR device but uses Atmel’s SAM3X8E: a micro-

controller based on ARM’s Cortex-ME design. It is a more powerful device and

has advanced SPI functionality.

The SPI library is almost the same on AVR devices and ARM-powered devices,

but changes slightly. When calling an SPI function, you must also add the SS

pin that will be used.

124 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 124

N O T E The Extended SPI library for the Due is only available on Arduino 1.5 and

greater.

Most SPI devices are compatible, but as you have seen previously, there are

different modes, and sometimes you will have two SPI devices on your system

that use different modes. This can complicate designs greatly, forcing you to

reconfi gure the SPI controller each time you change peripherals. The Arduino

Due has a way around this.

The Arduino Due can use pins 4, 10, and 52 as slave select. These pins must

be specifi ed on each call, including the setup with SPI.begin():

void setup(){
 // Initialize the bus for a device on pin 4
 SPI.begin(4);
 // Initialize the bus for a device on pin 10
 SPI.begin(10);
 // Initialize the bus for a device on pin 52
 SPI.begin(52);

}

begin() is written in a different way:

SPI.begin(slaveSelectPin);

It takes one parameter, the slave select pin, to use. So why is this required?

This becomes obvious when confi guring the SPI bus:

// Set clock divider on pin 4 to 21
SPI.setClockDivider(4, 21);
// Set clock divider on pin 10 to 42
SPI.setClockDivider(10, 42);
// Set clock divider on pin 52 to 84
SPI.setClockDivider(52, 84);

Each SS pin can have its own clock frequency, and the Arduino automatically

changes the clock frequency when talking to a particular slave. This also applies

to any confi guration made:

// Set mode on pin 4 to MODE0
SPI.setDataMode(4, SPI_MODE0);
// Set mode on pin 10 to MODE2
SPI.setDataMode(10, SPI_MODE2);

The SPI system now automatically changes modes when talking to a particular

slave. To initiate communications, use transfer(), specifying the pin:

result = SPI.transfer(slaveSelectPin, val);
 result = SPI.transfer(slaveSelectPin, val, transferMode);

 Chapter 7 ■ SPI 125

c07.indd 01:5:32:PM 12/09/2014 Page 125

Again, it takes a byte, val, and sends it on the SPI bus. It returns result as a

byte. However, you must also indicate the slaveSelectPin. This function has

an optional parameter, transferMode. Because the extended SPI library requires

you to specify the slave select pin, the library will change the outputs of the

slave select pin. By specifying the SS pin, this output is pulled low to access the

selected slave. By default, when a byte has been sent, the extended SPI library

will then output a logical one to the SS pin, deselecting the slave. To avoid this,

use the transferMode parameter. This parameter is one of two possible values,

as shown in Table 7-2.

Table 7-2: The Transfer Modes Available on the Arduino Due

TRANSFER

MODE RESULT

 SPI_CONTINUE The SS pin is not driven high; it remains low. The slave is still selected.

SPI_LAST Specifi es that this is the last byte to send/receive. The SS pin is driven

high; the slave is deselected.

By default, SPI_LAST is used. Please be aware that some SPI devices automati-

cally send data when they are selected; deselecting and reselecting the slave

after every byte can result in unexpected data.

To stop the SPI interface for a particular pin, use end():

SPI.end(slaveSelectPin);

This terminates the SPI interface for this particular slave select pin, freeing

the pin for other uses, but keeps the SPI interface active if other slave select pins

were confi gured.

Example Program

For this application, you create a digital thermometer using a thermocouple. A

thermocouple is a temperature measuring device created by the contact of two

different conductors: differences in temperature from different points creates

voltage. The voltage generated is extremely small (often a few microvolts per

degree Celsius) so they are often coupled with amplifi ers.

The major advantage to thermocouples is their price—just a few dollars per

cable. Their downside is their accuracy; they can sometimes be off by a few

degrees (type K typically has a +/–2° C to +/–6° C accuracy), but their tempera-

ture range more than makes up for this. A typical thermocouple can work with

temperatures between –200° C and +1000° C (–238° F to +1800° F). Although it

is not likely that such a device would be used in medical applications, they are

frequently used in the industry to monitor temperatures in ovens. To illustrate

126 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 126

the temperatures that thermocouples can support, copper becomes liquid at

1084° C (1983° F) and gold becomes liquid at 1063° C (1946° F). They can there-

fore be placed in almost every oven, fi re or barbecue. If ever you want to create

a smokehouse to make smoked salmon, a thermocouple is an excellent way to

keep track of the temperature directly inside the fi re and on the racks.

Thermocouples do not report a temperature; rather, they report a temperature

difference between their hot junction (the tip) and the cold junction (the other

end of the thermocouple that is connected to the printed circuit board). To use

a thermocouple effectively, it is important to know the temperature on the cold

junction, and integrated drivers do this automatically.

The MAX31855 is a thermocouple driver, capable of working with a variety

of thermocouples. It has good accuracy, fast conversion, and excellent range.

(This device, coupled with a type K thermocouple, can register up to +1350° C

(+2462° F). Different thermocouples exist, using different metals and handling

different temperature ranges. A thermocouple driver must be connected to

the correct thermocouple to function. To communicate this data with another

device, the MAX31855 uses the SPI bus and is a read-only device. It outputs the

thermocouple temperature, reference junction temperature, and fault indicators.

The MAX31855 can warn when a thermocouple short occurs, or when the con-

nection is broken, making it excellent for industrial applications.

The MAX31855 is only available in a surface-mounted format (SO-8), but

Adafruit has created a small, reliable breakout board for this component. The

MAX31855 itself can support only 3.3 V power, but Adafruit have added volt-

age shifting onto its breakout board, allowing this component to be used by

both AVR (which typically operate at 5 V) and the Cortex-M (running at 3.3 V)

based Arduinos.

Hardware

For this example, you use an Arduino Due. The Due is a powerful device, pow-

ered by 3.3 V and with advanced SPI functionality. You also use an Adafruit

MAX31855 breakout board and thermocouple. This board has two connectors:

One is placed on the breadboard and the thermocouple connects to one. It

requires some soldering; the connectors are packaged with the card but not

connected, but it is easy to do and requires only a few minutes.

The Arduino Due has three slave select pins available; for this example, you

use the digital pin 10. The layout is shown in the Figure 7-3.

The layout is extremely simple; the breakout board is connected to the Arduino

Due’s 3.3 V power and also to the ground. The driver’s SS pin is connected to

digital pin 10; this is the slave select pin and will be pulled low when the Arduino

Due requests information from the MAX31855. The SPI clock on pin 21 is con-

nected to the breakout board’s clock connector. To read information from the

 Chapter 7 ■ SPI 127

c07.indd 01:5:32:PM 12/09/2014 Page 127

breakout board, the MISO, pin 74, is connected to the breakout board’s data pin

(labeled DO). What about the Arduino Due’s MOSI, Master Out-Slave In? The

MAX31855 is a read-only device, and as such, does not require any data from

the master. To simplify the design, this pin was voluntarily omitted. So how

does the MAX31855 know when to send information? This device automati-

cally prepares to send data when its slave select pin is driven low. Temperature

conversions and fault detection are done continuously when the MAX31855 is

not selected, and as soon as the MAX31855 is selected via slave select (as soon

as SS is driven low), the conversion process stops, and it begins to transmit data.

Figure 7-3: Hardware layout image created with Fritzing

The K-type thermocouple is connected to the breakout board, but be care-

ful of the polarity. The Adafruit thermocouple cable and breakout board come

with complete documentation on how to connect. Only the tip should be used

to sense the temperature. If the cable is too long, do not put more than neces-

sary inside the device you want to get a temperature reading from. Leave the

rest of the cable outside.

128 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 128

There are several versions of the MAX31855 chip: one per cable type. The chip

on Adafruit’s breakout board can use only K-type thermocouples. Connect the

wire to the breakout board, being careful to use the correct polarity (red and

yellow wires).

Sketch

Now that the hardware is connected, it is time to deal with the software. This

sketch communicates with the MAX31855 through the SPI bus. The datasheets

explain how the data transmits. The MAX31855 sends 32-bits of data (unless

stopped by the slave select pin), corresponding to several pieces of information.

The transmission is shown in Table 7-3.

Table 7-3: MAX31855 Data Output

BIT NAME FUNCTION

D[31:18] 14-bit thermocouple tempera-

ture data

Contains signed 14-bit thermocouple

temperature

D17 Reserved Always reads as 0

D16 Fault Reads as 1 if a fault is detected, otherwise 0

D[15:4] 12-bit internal temperature

data

Contains signed 12-bit cold junction

temperature

D3 Reserved Always reads as 0

D2 SCV Fault Reads 1 if the thermocouple is shorted to

VCC

D1 SCG Fault Reads 1 if the thermocouple is shorted to

ground

D0 OC Fault Reads 1 if the thermocouple is not

connected

The data is delivered in a 32-bit package, but there is something interesting

about the layout. It can be seen as two 16-bit values: bits D31 to D16 and D15

to D0. The fi rst 16-bits contains everything that is essential: the temperature

detected on the thermocouple and a fault bit. If there is a fault, or if the user

wants to know the cold-junction temperature, then the second 16-bit value can

be read, but otherwise, it is not required.

Time to write the sketch as follows in Listing 7-1:

Listing 7-1: Digital Thermometer Sketch (fi lename: Chapter7.ino)

1 #include <SPI.h>
2
3 const int slaveSelectPin = 10;

 Chapter 7 ■ SPI 129

c07.indd 01:5:32:PM 12/09/2014 Page 129

4
5 void setup()
6 {
7 Serial.begin(9600);
8
9 // Initialize the bus for a device on pin 10
10 SPI.begin(slaveSelectPin);
11 }
12
13 void loop()
14 {
15 // Read in 4 bytes of data
16 byte data1 = SPI.transfer(slaveSelectPin, 0, SPI_CONTINUE);
17 byte data2 = SPI.transfer(slaveSelectPin, 0, SPI_CONTINUE);
18 byte data3 = SPI.transfer(slaveSelectPin, 0, SPI_CONTINUE);
19 byte data4 = SPI.transfer(slaveSelectPin, 0, SPI_LAST); // Stop
20
21 // Create two 16-bit variables
22 word temp1 = word(data1, data2);
23 word temp2 = word(data3, data4);
24
25 // Is the reading negative?
26 bool neg = false;
27 if (temp1 & 0x8000)
28 {
29 neg = true;
30 }
31
32 // Is the MAX31855 reporting an error?
33 if (temp1 & 0x1)
34 {
35 Serial.println("Thermocouple error!");
36 if (temp2 & 0x1)
37 Serial.println("Open circuit");
38 if (temp2 & 0x2)
39 Serial.println("VCC Short");
40 if (temp2 & 0x4)
41 Serial.println("GND short");
42 }
43
44 // Keep only the bits that interest us
45 temp1 &= 0x7FFC;
46
47 // Shift the data
48 temp1 >>= 2;
49
50 // Create a celcius variable, the value of the thermocouple temp
51 double celsius = temp1;
52
53 // The thermocouple returns values in 0.25 degrees celsius

continues

130 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 130

Listing 7-1: (continued)

54 celsius *= 0.25;
55 if (neg == true)
56 celsius *= -1;
57
58 // Now print out the data
59 Serial.print("Temperature: ");
60 Serial.print(celsius);
61 Serial.println();
62
63 // Sleep for two seconds
64 delay(2000);
65 }

On the fi rst line, the SPI library is imported. Because this is an Arduino Due,

version 1.5 or later of the Arduino software must be used. On line 3, a constant is

declared, naming the pin that will be used by the Slave Select. The sketch needs

this information. Because you will be using the extended library, the Arduino

will activate the slave select pin; you won’t have to.

On line 5, setup()is declared. The serial output is confi gured on line 7, and

on line 10, the SPI subsystem is initialized for the one slave select pin declared

as a constant earlier: slaveSelectPin.

On line 13, loop()is declared. This will contain all the SPI routines and print

the temperature. On line 16, an SPI read function is called. By calling an SPI read

with the slaveSelectPin variable, the Arduino Due automatically pulls the slave

select pin low. For the MAX31855, this has the effect of initiating communication;

the MAX31855 will wait for a valid clock to write 32 bits of data to the master.

By using the SPI_CONTINUE variable, the slave select pin is maintained low.

Because you want to read 32 bits of data, and because the transfer()function

sends and receives 8 bits, this must be done four times. The fi rst three are called

with the SPI_CONTINUE parameter, but the fourth is called with the SPI_LAST

parameter on line 19, indicating that this is the last transfer, and the Arduino

should pull the slave select pin high. This is all done automatically.

The four calls have been made by sending the value zero. Because the MAX31855

is not connected to the MOSI pin, you can send any data you want; it will simply

be ignored.

The data is now contained in four bytes. The fi rst temperature reading is 14-bits,

so it is now contained in 2 bytes, but how can that be used? The creators of the

MAX31855 have put a lot of thought into the data output, and the data can be

separated into two 16-bit values, or two “words.” To create a word from 2 bytes,

you can use word(). This function takes 2 variables in the form of 2 bytes, and

concatenates them into a word, a 16-bit value. This is done on line 22 and 23.

On line 26, a boolean is declared. According to the datasheet, bit 31 corre-

sponds to the sign of the temperature. This will be read now; the data will be

 Chapter 7 ■ SPI 131

c07.indd 01:5:32:PM 12/09/2014 Page 131

transformed later. On line 27, a logical AND is made, comparing the value to

0x8000; which is the bitmask, used to access a specifi c byte in the data (refer to

the discussion of “Reading and Writing Bits” in Chapter 6 for more information

on bitmasks). If the value is true, then the fi rst bit is equal to one, meaning that

the temperature reading is negative, and the neg variable is updated.

Bit number 16 corresponds to a fault condition; if it is true, then the MAX31855

is reporting an error and a bitwise comparison is made on the second 16-bit

value where bits 0, 1, and 2 correspond to specifi c faults.

On line 45, a bitmask is created. The fi rst 16 bits of data correspond to the

temperature, but you will not need all that information. By creating a bitmask,

you can fi lter out bits that do not interest you. In this case, the fi rst bit, the sign,

isn’t required; it has already been placed in a variable. The last two are also of

no interest and are discarded. The data is still not usable in its current state; the

last 2 bits have been discarded and are equal to zero, but now the data has to be

“shifted”; pushing the bits right until they are aligned as required.

On line 51, a new variable is created, a double. On the Due, this type of vari-

able can contain fl oating point values with 64 bits of precision. Because the

MAX31855 returns values in increments of 0.25 degrees, using a double or a

float ensures that the decimal values are kept. First, the shifted 16-bit value is

copied into this variable, and then it is multiplied by 0.25; it now contains the

correct temperature in degrees Celsius.

Finally, the temperature might be negative. This is checked on line 55; if the

neg variable is true, then the value returned was negative, and so the tempera-

ture is multiplied by –1.

On line 59, this temperature is written to the serial port, and the Arduino is

told to wait for 2 seconds. The MAX31855 continues to monitor the temperature

and continues to convert that temperature. When SPI.transfer() is next called

through loop(), the MAX31855 communicates the temperature to the Arduino

without the need for waiting.

Exercises

This sketch displays the temperature in degrees Celsius but not in Fahrenheit.

Try to add a function to convert between Celsius and Fahrenheit. The conver-

sion is a simple mathematical formula; multiply the temperature in Celsius by

1.8, and then add 32.

The MAX31855 is designed so that the fi rst 16 bits correspond to the tempera-

ture with an additional fault bit. The last 16 bits are not normally required for

normal operations; how would you modify the sketch to read the next 16 bits

only if a fault is detected.

132 Part II ■ Standard Libraries

c07.indd 01:5:32:PM 12/09/2014 Page 132

This sketch is designed to work with an Arduino Due, but you can modify it

to be used on an Arduino Uno. Try to make this work on an Arduino Uno by

using standard SPI commands.

Summary

 In this chapter, you have seen how to communicate with sensors using the

SPI bus, and you have created your fi rst sensor board. In the next chapter, you

will see another serial communications protocol commonly used on Arduino

projects: the I2C protocol.

133

c08.indd 01:5:48:PM 12/09/2014 Page 133

This chapter discusses the following functions:

 ■ begin()

 ■ beginTransmission()

 ■ write()

 ■ endTransmission()

 ■ read()

 ■ available()

 ■ requestFrom()

 ■ onReceive()

 ■ onRequest()

The hardware needed to use the examples in this chapter includes:

 ■ Arduino Uno x 2

 ■ Arduino Due

 ■ Silicon Labs Sensor EXP board

You can fi nd the code downloads for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 8

folder and individually named according to the code fi lenames noted through-

out this chapter.

C H A P T E R

8

Wire

http://www.wiley.com

134 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 134

Introducing Wire

Connection wires I2C, short for Inter-IC bus, is a serial bus designed to enable

access to numerous devices. The Arduino’s hardware serial bus can connect

only to one device at a time, and SPI (see Chapter 7) can talk to three devices.

In 1982, Philips created the I2C standard, capable of addressing hundreds of

devices, using only two wires. It was fi rst used to connect peripherals together

in a television set, but since then, I2C has been used in cars, computer systems,

and hobbyist electronics, to name a few. It is an easy and inexpensive way to

interconnect dozens (if not hundreds) of devices on a same network.

Originally, only a few I2C devices existed, but today there are hundreds of

devices. Temperature sensors, pressure sensors, accelerometers, displays, and

even EEPROM memory can all be accessed by I2C, using simple reads and writes.

An EEPOM device controlled by I2C is illustrated in Figure 8-1.

Figure 8-1: I2C EEPROM integrated circuit

I2C is based on a master slave system; the master addresses slaves and requests

information. The slave then replies and remains silent until again asked to com-

municate by the master. The original IsC specifi cation allowed communications

 Chapter 8 ■ Wire 135

c08.indd 01:5:48:PM 12/09/2014 Page 135

up to 100 kHz but numerous specifi cations existed. The newest in 2012 allows

for 5 MHz clock speeds.

Another name for I2C is the Two Wire Interface (shortened to TWI). This is

where the Wire library gets its name.

Connecting I2C

 I2C requires two data wires, as well as a common ground. The two wires are

called SDA (for Serial Data), and SCL (for Serial Clock). All devices in the I2C

network are connected to these two wires. Both SDA and SCL lines are open

drain, meaning that the devices can force their value low but cannot provide

power, which will be provided directly from the main power line. For I2C to

work, these two lines must be equipped with pull-up resistors, as shown in

Figure 8-2. The values are not critical, and values range widely; 4.7 kilohm resis-

tors are common. Arduinos have internal pull-up resistors that are automatically

activated on both the SDA and SCL lines when the I2C connection is initialized.

This is illustrated in Figure 8-2.

SCL

+5V

A B C

SDA

Figure 8-2: Pull-up resistors to SDA and SCL lines

Connecting multiple I2C devices is extremely easy; there is no notion of chip

select, chip activate, or any other mechanism. All SDA pins are connected

together, and all SCL pins are also connected together. The I2C protocol defi nes

which circuit is to respond.

I2C Protocol

I2C is a master/slave network; the master initiates the communication, and the

slave responds. Each I2C slave has a specifi c address, and the master must send

this address to the network for a slave to answer. The I2C protocol has several

136 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 136

specifi cations, so care must be taken when choosing devices, as there is a lot of

confusion concerning addressing.

Address

The original I2C protocol specifi ed 7-bit addressing and was later extended to

allow 10-bit addressing. Some vendors talk about 8-bit addressing, but techni-

cally, this does not exist. Here’s why.

I2C can send and receive data only in multiples of 8 bits—8 bits, 16 bits, and

so on. In 7-bit addressing, addresses are (of course) 7 bits long, and the last bit is

used to select a read or a write, for a total of 8 bits. In 10-bit addressing, things

are a little more complicated. There is still the R/W bit, but the fi rst 5 bits are

sent as 11110, an address that is reserved in 7-bit addressing and is used only

to tell the system that another byte will follow with the address complement.

Figure 8-3 shows both 7-bit and 10-bit addressing.

A6 A5 A4 A3 A2 A1 A0 R/W 7 bits

10 bitsA7 A6 A5 A4 A3 A2 A1 A01 1 1 1 0 A9 A8 R/W

Figure 8-3: 7-bit and 10-bit addressing methods

Some vendors give 8-bit addresses for devices, but again, technically, they

do not exist. Vendors will give two values for 8-bit devices, both a read and a

write address. The fi rst 7 bits will be the same, but the last bit will be 1 for a read

operation or 0 for a write operation. An example of this is shown in Figure 8-4.

1 0 0 0 0

Write Address: 0×90 Read Address: 0×91

001 1 0 0 0 1001

1 0 0 0001

Figure 8-4: 8-bit addresses

When the master contacts a slave on the I2C network, it sends two vital pieces

of information; the address of the slave, and whether it is a read or write opera-

tion. When this information is received by the slaves, each slave compares the

address to its own. If a device has this address, it will send an acknowledge

signal (referred to as ACK), indicating that it is present on the network and that

the master can now issue instructions.

 Chapter 8 ■ Wire 137

c08.indd 01:5:48:PM 12/09/2014 Page 137

I2C devices tend to be small with few pins. (Most devices have the bare mini-

mum.) Therefore, it is rarely possible to confi gure your own addresses for these

devices. Most devices therefore have addresses that are specifi ed by the manu-

facturer. On an ordinary computer network, it is easy to have dozens of the same

type of computer with a user settable IP address unique to each machine. On an

I2C network, this isn’t possible; two identical sensors will use the same address.

To allow developers to have several sensors in the same network, some devices

allow you to change the address depending on input pins. By connecting one

or several pins to either +5 V or 0 V, you can set part of the address (usually

the lower bits). You might therefore have several temperature sensors, using

addresses 0x90, 0x91, and 0x92, as shown in Figure 8-5.

LM75A

SDA
A0

A1

A2
SCL LM75A

A0

+5 V +5 V

A1

A2
LM75A

A0

A1

A2

0×90 0×91 0×92

Figure 8-5: Configuring different addresses

Communication

I2C works on the master/slave scheme; a master either requests information from

a slave or gives information to a slave. The master is responsible for initiating

contact before releasing the bus so that a slave may communicate. Slaves can-

not “talk” without permission; a slave cannot warn the system of an action; the

master must poll for this information. This is the big difference between I2C

and standard serial communication; it is not full duplex, meaning that devices

cannot send data and receive data at the same time. Only one master is on an

I2C network (except for some specifi c confi gurations).

To talk to devices, I2C uses a system of registers. A register is a small memory

location on each device that can store data; it can be read or written to (some-

times both) depending on the type of data that is contained. For example, a

temperature sensor has a register that contains the current temperature. When a

master asks for information, it does not ask directly for the temperature; instead,

it asks for the contents of a register. A temperature sensor will, of course, have

a temperature register but might contain a confi guration register (Celsius or

Fahrenheit), a warning register (when this temperature is reached, an external

138 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 138

interrupt occurs), and possibly others with different specialized functions. To

read or write this data, you need to know several details:

 ■ The slave address

 ■ The register number

 ■ If it is a read or write operation

 ■ The length of the data to be received

It is important to know exactly how much data is to be sent and received.

Each I2C device is different and will function in a different way. Devices that

have only one writable register might accept a single byte of data directly and

will place that byte into the register. Other devices with several writable regis-

ters might require you to send the register number, followed by the contents,

or maybe send the contents of all the registers in multiple writes. I2C describes

a way to send data and receive data, but for your own implementation, it is up

to you what you need.

All Arduinos have a pair of I2C pins. The Arduino Due has two separate

I2C buses, SDA and SCL, as well as SDA1 and SCL1. The pins reserved for I2C

operations are listed in Table 8-1.

Table 8-1: I2C Pins on Diff erent Arduino Boards

BOARD SDA SCL

Uno A4 A5

Ethernet A4 A5

Mega2560 20 21

Leonardo 2 3

Due 20 21

Communicating

To communicate on the I2C bus, the Wire library must fi rst be initialized. As

with all Arduino libraries, you must import the Wire library. This is done by

either adding the library from the Arduino IDE (Sketch ➪ Import Library ➪

Wire) or by manually typing in the sketch.

#include <Wire.h>

To declare the Arduino as an I2C device, call Wire.begin(). If the Arduino

is used as a slave, you must specify an address.

Wire.begin(address); // configures the Arduino as an I2C slave

 Chapter 8 ■ Wire 139

c08.indd 01:5:48:PM 12/09/2014 Page 139

Masters do not have an address because they are free to start communica-

tions whenever they want and automatically receive all responses. To declare

the Arduino as a master, call the Wire.begin()command, without an address

parameter.

Wire.begin(); // configure the Arduino as an I2C master

Master Communications

On most projects, the Arduino is confi gured as an I2C master, sending mes-

sages to slaves and listening to the responses. To create an I2C message, you

must follow several steps:

 1. Begin the transmission.

 2. Write the data.

 3. End the transmission.

This creates a custom I2C message to a specifi c slave. When a slave answers,

there is no encapsulation, and a write can be performed without beginning or

ending a transmission. Data requests are also encapsulated but are made by a

single function.

Sending Information

The I2C protocol specifi es that master communication must be done in a single

transmission. To avoid breaks in the message, the message is fi rst constructed

and completed before being sent.

To start sending data, the sketch must fi rst begin a transmission structure by

using Wire.beginTransmission(). It takes one parameter, the destination address.

Wire.beginTransmission(address);

The sketch is then required to queue data, using Wire.write(). This function

can be called in three different ways. It can be called with a byte as the param-

eter to be appended to the queue. A string can be specifi ed, in which case each

byte of the string will be appended. An array can be specifi ed with a second

parameter, the length of data to send. Wire.write() will return the amount of

bytes appended to the message, but it’s not necessary to read this.

Wire.write(value); // append a byte
Wire.write(string); // append a string
Wire.write(data, length); // append an array with a specified number
 of bytes
number =Wire.write(string); // store the number of bytes appended in
 a variable

140 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 140

Wire.endTransmission() specifi es the end of the message, and sends it. This

function takes an optional parameter, the bus release parameter. If TRUE, a stop

message is sent, and the I2C bus is freed. If FALSE, a restart message is sent; the

I2C bus is not released, and the master can continue issuing orders. By default,

the bus is always freed.

Wire.endTransmission(); // send the message
Wire.endTransmission(stop); // send the message and close the connection

Wire.endTransmission() returns a status byte. Table 8-2 shows a list of

return values.

Table 8-2: Transmit Error Codes

RETURN CODE RESULT

0 Success

1 Data too long to fi t in the transmit buff er

2 Receives a NACK on transmit of address

3 Receives a NACK on transmit of data

4 Unknown error

Requesting Information

When requesting information, the master performs a read operation, specify-

ing the destination and the number of bytes the slave should send. The entire

message is created using a single function: Wire.requestFrom(). This function

takes two parameters and an optional third. First, the destination has to be

specifi ed—which slave is to receive this message and send data? Second, how

much data is the master requesting? This is specifi ed as the number of bytes.

Finally, an optional parameter specifi es if the bus should be released.

Wire.requestFrom(address, quantity);
Wire.requestFrom(address, quantity, stop);

Wire.requestFrom() creates a message and immediately sends it on the I2C

bus. Now that the request has been sent, the master can wait for a message

using Wire.read().

data = Wire.read(); // store the information in a variable

Wire.read() returns a single byte from the input buffer. For multibyte mes-

sages, this function must be called for each byte. Requesting a certain amount

 Chapter 8 ■ Wire 141

c08.indd 01:5:48:PM 12/09/2014 Page 141

of bytes does not mean that the slave will send that amount of data; it could be

less. To see if any data is available in the buffer, call Wire.available().

number = Wire.available();

Wire.available() looks at the buffer and returns the amount of bytes remain-

ing. It can be used with Wire.read() to create a routine that does not block if

data is not available.

while(Wire.available()) // Repeat as long as there is data waiting
{
 char c = Wire.read(); // Read in one byte
 Serial.print(c); // Print the byte
}

Slave Communications

Most people expect the Arduino to be an I2C master, controlling the network.

In some cases, it can be useful to have an Arduino as an I2C slave, especially

when several Arduinos are to be used. Arduinos also have a major advantage

over other I2C devices; you can specify any address you see fi t. You can have

a total of 128 Arduino slaves on an I2C network, which should be more than

enough to fully automate your house.

You do not know when an I2C master will send or request information, and

a sketch cannot be told to hold indefi nitely while waiting for information. To

allow a sketch to continue while waiting for an I2C request, the Wire library

allows you to create callbacks, functions that are called when an event occurs.

The I2C callbacks are Wire.onReceive() (when the Arduino receives informa-

tion) and Wire.onRequest() (when the Arduino is requested for information).

Receiving Information

Wire.onReceive() is called when a master sends information to a slave. To

create this callback, you must create a function. The name can be anything you

choose, but it must accept one parameter, an int (the number of bytes received

from the master).

void receiveData(int byteCount)
{
 // Put your code here
}

Wire.onReceive(receiveData); // Create the callback

142 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 142

When the Arduino slave receives an I2C communication, the Wire library

calls this function with the number of bytes received. To receive individual

bytes, call Wire.read().

data = Wire.read();

Just as when communicating as a master device, Wire.read() reads 1 byte

from the I2C buffer and returns that data. Similarly, to know the amount of

remaining bytes in the I2C buffer, call Wire.available().

number = Wire.available();

It is, of course, possible to mix the two functions together.

while(Wire.available())
{
 data = Wire.read();
 // Do something with data
}

Sending Information

When a slave Arduino is asked for information, the Wire library calls the function

previously registered by Wire.onRequest(). Again, the name of the function can

be anything you want, but this one takes no parameters and returns nothing.

void sendData(void)
{
 // Put your code here
}
Wire.onRequest(sendData); // Create the callback

You must then provide the data required by the master, using Wire.write(),

explained previously.

Example Program

For this example program, you use two Arduinos: one acts as an I2C master,

and the second acts as an I2C slave. Both connect together using the I2C bus.

Because Arduinos have internal pull-up resistors, the resulting schematic is

extremely simple. The SDA pins of both devices are connected together, and

the SCL pins are also connected together. There is one last, important stage:

Both grounds are also connected—yes, three wires between the two devices. I

said that I2C is a two-wire solution, and it is. It was designed to be used inside

a single device, where the power supply and ground is normally identical. It

 Chapter 8 ■ Wire 143

c08.indd 01:5:48:PM 12/09/2014 Page 143

can also be used for inter-device communication, like in this project, but in that

case, the grounds must be connected.

The slave Arduino will turn on and off the on-board LED according to mes-

sages from the master. The master can send “0” to turn the LED off and “1” to

turn the LED on. It can also request a byte of data from the slave; this data will

be the current state of the LED. The master will also turn its LED on and off, so

you should see a perfectly synchronized pair of LEDs.

Time to start, so start with the slave. The code is simple as shown in Listing 8-1.

Listing 8-1: The Slave (fi lename: Chapter8bSlave.ino).

1 #include <Wire.h>
2
3 #define SLAVE_ADDRESS 0x08
4 int data = 0;
5 int state = 0;
6
7 void setup()
8 {
9 pinMode(13, OUTPUT); // Internal LED
10 Serial.begin(9600);
11 Wire.begin(SLAVE_ADDRESS); // Initialize as I2C slave
12
13 // Register I2C callbacks
14 Wire.onReceive(receiveData);
15 Wire.onRequest(sendData);
16 }
17
18 void loop()
19 {
20 // Nothing to do
21 delay(100);
22 }
23
24 // Callback for data reception
25 void receiveData(int byteCount)
26 {
27 while(Wire.available())
28 {
29 data = Wire.read();
30 Serial.print("Data received: ");
31 Serial.println(data);
32
33 if (data == 1)
34 {
35 digitalWrite(13, HIGH); // Turn the LED on
36 state = 1;
37 }
38 else

continues

144 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 144

Listing 8-1: (continued)

39 {
40 digitalWrite(13, LOW); // Turn the LED off
41 state = 0;
42 }
43 }
44 }
45
46 // Callback for sending data
47 void sendData()
48 {
49 Wire.write(state); // Send the LED state
50 }

On line one, the Wire library is imported. On line 3, a value is declared, SLAVE_

ADDRESS. This is the slave I2C address, and it will be needed later by the master.

On line 7, setup() is defi ned. This function contains everything the sketch

needs to function correctly. Pin 13 is set as a digital output because this is the

pin that has an on-board LED. Serial communication is started, in case you want

to debug anything. On line 11, the I2C subsystem is initialized, and because an

address is specifi ed (SLAVE_ADDRESS), this board will be an I2C slave. To be an

effective I2C slave, the sketch requires at least one of two callbacks to be present;

either when receiving or sending data. In this case, both are used.

On line 14, a callback is created to be called when data is received. This callback

registers the function receiveData(), declared on line 25. The second callback

is used when the slave is asked to provide data. It registers the function send-

Data(), which is declared on line 25.

Nothing happens in loop(). This sketch responds only to I2C messages, and

when the buffer is empty, it is not expected to do any work, so loop() is empty.

On line 25, receiveData() is declared. Thanks to the callback, this function

is called every time data is received on the I2C bus destined for this Arduino. It

requires one parameter, the number of bytes received as the parameter byte-

Count. Due to the nature of this project, only 1 byte will be received at a time,

so each byte received is immediately handled. On other projects, this can be

used to detect the type of transmission.

On line 27, the sketch runs a while loop and continues to iterate so long as

data is available in the buffer. The byte is read into the data variable by Wire

.read() on line 29. Finally, the LED is turned on if the byte received was equal

to 1 and turned off otherwise.

There is a second function, called sendData(), defi ned on line 47. This func-

tion is simple; when a data request is received, it sends out 1 byte, the state of

the LED. Because this is an answer, there is no need to create a message; the

sketch is free to send a byte directly to the master, as ordered.

Now that the slave is programmed, it is time to create the master sketch. The

code is shown in Listing 8-2.

 Chapter 8 ■ Wire 145

c08.indd 01:5:48:PM 12/09/2014 Page 145

Listing 8-2: Master Sketch (fi lename: Chapter8bMaster.ino).

1 #include <Wire.h>
2
3 #define SLAVE_ADDRESS 0x08
4 int data = 0;
5 int state = 0;
6
7 void setup()
8 {
9 pinMode(13, OUTPUT); // Internal LED
10 Serial.begin(9600);
11 Wire.begin(); // Initialize as I2C master
12 }
13
14 void loop()
15 {
16 Wire.beginTransmission(SLAVE_ADDRESS); // Prepare message to slave
17 Wire.write(1); // Send one byte, LED ON
18 Wire.endTransmission(); // End message, transmit
19 digitalWrite(13, HIGH); // Turn the LED on
20
21 delay(10); // Give the slave time to react
22 printLight(); // What is the slave's status?
23
24 delay(1000);
25
26 Wire.beginTransmission(SLAVE_ADDRESS); // Prepare message to slave
27 Wire.write(0); // Send one byte, LED OFF
28 Wire.endTransmission(); // End message, transmit
29 digitalWrite(13, LOW); // Turn the LED off
30
31 delay(10); // Give the slave time to react
32 printLight(); // What is the slave's status?
33
34 delay(200);
35 }
36
37 void printLight()
38 {
39 Wire.requestFrom(SLAVE_ADDRESS, 1); // Request 1 byte from slave
40
41 data = Wire.read(); // Receive a byte af data
42 switch (data)
43 {
44 case 0:
45 Serial.println("LED is OFF");
46 break;
47 case 1:

continues

146 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 146

Listing 8-2: (continued)

48 Serial.println("LED is ON");
49 break;
50 default:
51 Serial.println("Unknown status detected");
52 break;
53 }
54 }

This sketch starts the same as the slave sketch; the Wire library is imported,

and the address of the slave is defi ned. setup() is almost identical, except on

line 11, begin() does not take an address parameter because this is the master.

Unlike the slave sketch, the master sketch uses loop(). It is designed to tell

the slave to turn on its LED, wait for a few milliseconds, and then tell the slave

to turn off its LED. After each transmission, it requests a byte of information to

know the current state of the LED.

On line 16, the sketch begins creating a message. Wire.beginTransmission()

requires one parameter, the destination address, which in this case is the slave

Arduino. A message is created in a buffer but not sent. The Arduino auto-

matically formats the message as required. On line 17, a byte is added to the

message—a simple value: 1. According to the project specifi cations, sending a

1 to the slave turns on the LED. The instruction is added, but the message is

not complete. Another step is required: Wire.endTransmission(). On line 18,

that is exactly what is done. By using default settings, the message is sent and

the I2C bus is freed.

To illustrate what is going on, the master also turns its LED on and off. This

is what is done on line 19. On line 22, printLight() is called. This function is

declared on line 37. It requests a byte from the slave, and prints the result in

readable format.

To request data from a slave, Wire.requestFrom() is called. This is done on

line 39. The fi rst parameter is the address; in this case, the slave. The second

parameter is the number of bytes to return—in this case: a single byte. When

the order is sent, the sketch waits for a read() operation to complete, on line

41. That data is then fed into a switch statement, and the data is printed to the

serial line.

When the sketch fi nishes turning the slave’s LED on, the entire process is

repeated with an order to turn the LED off.

Exercises

This sketch can control one LED by sending 1 byte, telling the slave to either

turn the LED on or off. By sending 2 bytes, you could tell the slave to turn on one

of several LEDs. Try to modify this sketch to turn on several LEDs. Remember

 Chapter 8 ■ Wire 147

c08.indd 01:5:48:PM 12/09/2014 Page 147

that the I2C protocol can send bytes and request bytes. It is up to you to decide

how to inform the slave of your intentions. What solution did you come up with?

Traps and Pitfalls

The I2C protocol is rather complex, and as such, problems can arise. They are

normally easily fi xed, and most electronic components use the standard I2C

revision, simplifying usage.

Voltage Diff erence

Most Arduinos are powered by 5 volts, but some I2C circuits can be powered by

3.3 V, sometimes even lower. If you need to use 3.3-V devices (like the example

in this chapter), then you have three choices. You could use a 3.3-V device like

the Arduino Due. This was the solution chosen for this chapter. You could also

use a level shifter, an electronic component that can convert a 3.3-V signal to a

5-V signal. The third option is to use a 5-V device anyway, but there are risks.

The I2C is an open drain bus, meaning that power is not supplied by the

components, but rather by the power lines themselves using pull-up resistors.

The Arduino’s I2C pins have internal pull-up resistors that are automatically

activated, pulling the line to 5 V. If you include external pull-up resistors to

a 3.3-V power rail (like the one supplied by an Arduino), then the end result

will be a voltage level slightly above 3.3 V. Most devices can handle up to 3.6 V

without a problem.

The input voltage is also a problem. The Atmel AVR specifi cations say that an

I2C input is considered high when it reaches and surpasses 0.7 times the power

voltage. For a 5-volt system, this means the signal must reach 3.5 volts. With two

external pull-up resistors to a 3.3-V rail, this is achieved, but there is little margin

for error. It could work, and in practically all cases, it does, but be aware of the

technical implications. I have never heard of either an I2C device or an Arduino

being damaged by this technique, but if you are making a long-term project

or a professional board, you might want to consider using other techniques.

Bus Speed

Numerous bus frequencies exist for I2C; the original bus speed was 100 kHz, but

additions allowed 400 kHz, 1 MHz, 3.4 MHz, and 5 MHz speeds. Components

using the Ultra Fast Mode transfer speed (5 MHz) are rare and heavily specialized.

148 Part II ■ Standard Libraries

c08.indd 01:5:48:PM 12/09/2014 Page 148

Most standard components use the 100 kHz bus speed. Be aware that you can-

not mix bus speeds; all components use the same bus speed as defi ned by the

master. Arduinos are programmed to use a 100 kHz clock speed. It is possible

to change this speed, but it involves editing the source code of the Arduino

programming environment, which is out of the scope of this book. For stan-

dard Arduino applications, the bus is limited to 100 kHz, which is suffi cient

for most sensors.

Shields with I2C

Some shields require the presence of I2C, but this is a problem for some boards. If

you use an Arduino Uno, the I2C pins are A4 and A5. However, on the Arduino

Mega 2560, I2C is on pins 20 and 21, so shields requiring I2C that work on the

Uno will not work on the Mega 2560. Be careful if using a shield with I2C.

Summary

 In this chapter, you have seen how to connect I2C devices, and how to com-

municate with them. You have also seen how the Arduino can become an I2C

master, and how to confi gure it to become an I2C slave.

In the next chapter, you will consider the Ethernet protocol and how it is used

to network computers together. I will show you how to connect your Arduino

to a local network, how to confi gure the board, and how to communicate both

as a client and as a server.

149

c09.indd 01:6:22:PM 12/09/2014 Page 149

This chapter discusses the begin() function. The hardware required to run the

examples in this chapter includes:

 ■ Arduino Uno

 ■ Arduino Ethernet Shield

 ■ Light Dependent Resistor

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 9

folder and the fi lenames are:

 ■ Chapter9client.ino

 ■ Chapter9server.ino

Introduction

The fi rst personal computers were not connected to each other; they were stand-

alone devices, designed to calculate input from a user and to output the result

of calculations to the same user. When fi les needed to be transferred from one

machine to another, fl oppy disks were used.

C H A P T E R

9

Ethernet

http://www.wiley.com

150 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 150

The advances made in computer science also meant that fi les became bigger;

because computers had more memory and could do faster calculations, the results

could also be bigger. Soon, disks became too small to exchange information.

Precious time was lost when data was to be retrieved; a desktop computer

simply could not store all the information it required, and when modifi cations

were made to a fi le on one computer, other computers would not be aware of

changes. It became obvious that this had to change and that computers had to

talk between themselves.

Serial communication had been used before computers existed and was an

early means of connecting two computers. However, its speed made this type of

link impractical. In addition, it could connect only two computers to each other.

Engineers designed some interesting ways to connect three or four computers

together using serial links, but the technology simply could not link computers

the way they are today.

Again, it was a military need that boosted the industry. In the late 1950s, one

of the fi rst uses of networked computers was with military radar. Soon after-

ward, the aviation sector took over, and two airline-booking mainframes were

connected. The question remained, how many computers would need to be

connected? Dozens? Hundreds? Thousands, maybe? At the time, nobody could

have imagined the impact of what they were working on and could certainly not

have dreamed of the Internet. In 1969, three universities and a research center

were linked together using 50-kilobit network lines. Research notes could be

shared, and messages could be sent from researcher to researcher.

More and more companies and institutions saw the need to connect their offi ces

and centers, and thousands upon thousands of machines were being networked

into small, independent networks. With the need for more and more computers

on the same network, the original networking designs could not keep up with

the rise in traffi c. Networking architectures became a system administrator’s

nightmare; in some cases, adding a computer onto a network forced all the

other devices to disconnect before attempting to reconnect. Something needed

to be done, both in making networks larger and allowing them to connect over

greater distances. In 1973, the Ethernet standard was proposed in Xerox PARC.

It was commercially introduced in 1980 and standardized in 1983. The original

version proposed a high-speed throughput—10 megabits, or ten million bits

of data per second. This speed was later increased to 100 megabits and then

1 gigabit—the highest speed available in home networks. Ethernet supports

speeds up to 100 gigabits per second.

Ethernet

Ethernet describes the physical connection between two or more computers;

the electronic signaling between devices, and the physical format of the cables.

 Chapter 9 ■ Ethernet 151

c09.indd 01:6:22:PM 12/09/2014 Page 151

Several other network technologies have been used in computing, such as token

ring and ARCNET, but Ethernet remains the dominant system in place today.

Ethernet Cables

Ethernet describes both twisted cable and fi ber optic cables, but for most home

and offi ce use, you will fi nd only a twisted pair cable, a cable where the two ele-

ments are twisted around each other to cancel out electromagnetic interference.

The cable comes in several categories, but the physical connectors are the same

as shown in Figure 9-1.

Figure 9-1: Ethernet cables

The advantage to Ethernet cables is their fl exibility. Both ends have the same

connector, and either end can connect to any device. Cables come in many different

lengths—from the shortest (used to connect switches together) to the longest (used

sometimes to connect two buildings together to form a network).

Category 6 cables are used on gigabit networks or networks that can send

one thousand million bits of data per second. They have strong electromagnetic

shielding, making them heavier and harder to bend than the previous Category

5 and 5e cables, and they are more expensive. Category 5e can be used on gigabit

networks, but they have a lower signaling speed and are more susceptible to

electromagnetic interference. Arduino Ethernet interfaces normally operate at

10- or 100-megabit speeds, so Category 5e cables are suffi cient.

Switches and Hubs

A standard Ethernet cable can be used to connect two computers together,

but to connect more than two computers, you must use a special device.

152 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 152

Hubs are relatively old technology and are used to connect multiple computers

and devices together. An eight-port hub could connect eight computers, or even

be used to connect to more hubs, allowing large networks of devices. Hubs were

cheap but had a downside; they took packets, small pieces of information that

are assembled together to form a larger message, and forwarded them to every

device in the network, even to those that were not supposed to receive this

information. All computers on a network therefore fi ltered all incoming traffi c,

and multiple communications could not happen at the same time. To avoid this,

switches were developed.

A switch is a network device that receives packets of data and can inspect

that packet to know where it is supposed to go. When it has that information, it

sends that packet to the correct port—and only to that port. All other devices on

the switch are free to communicate during this time. Today, it is becoming hard

to fi nd hubs, but switches are readily available. On the back of your modem,

you probably have some RJ45 connectors for Ethernet cables; the chances are,

that is a switch.

PoE

Power over Ethernet, or PoE, is a way of powering remote devices directly by

the Ethernet cable.

Power is transmitted over a twisted pair, and as such, cables using PoE are not

normally gigabit-capable. There are exceptions, but they are currently expensive.

Arduinos are not normally PoE devices and cannot be used with a PoE-

powered cable, unless an optional module is supplied. The Arduino Ethernet

has an option to allow PoE, allowing the Arduino to be powered directly from

the cable. This means that your Arduino does not need to be powered by a bat-

tery, USB, or through the barrel jack connector, but it does require the Arduino

to be powered by a PoE-capable switch or injector. Imagine a network cable

running through your garden, powering an Arduino sensor in a place where

you do not have mains power.

TCP/IP

Ethernet is a physical means of connecting computers together in small or large

networks, but to allow programs to talk to each other, an application layer is

required. The most commonly used is TCP/IP.

The TCP/IP protocol is relatively complex, but for most day-to-day usage, it is

easy to understand. Each device has an address, and data is sent to that address.

 Chapter 9 ■ Ethernet 153

c09.indd 01:6:22:PM 12/09/2014 Page 153

MAC Address

The MAC address is the hardware address of the network connector. Each

device has its own specifi c address, and in theory, no two devices should have

the same MAC address.

IP Address

This address is defi ned by the user or by the network administrator. It is the

address used to identify a network device, both for sending information and for

receiving. It is possible to have devices that use the same address, and indeed,

this happens every day. Your modem probably has a local address like 192.168.0.1,

and your neighbor might have this address, too.

IP addresses are made out of 4 bytes. Normally, the fi rst 3 bytes are the net-

work, and the fourth is the machine on that network. The network 192.168.0.XXX

is an “internal” network, one that is shielded from the Internet. You can add

any devices.

DNS

Humans are good at remembering text but not so good at remembering num-

bers. When you want to connect to Wiley’s Internet site to get more information

about new books, you can enter http://www.wiley.com into your browser. This

address, however, does not name a machine; machines can be contacted only

by their IP address. You can almost certainly remember the text www.wiley

.com, but could you remember 208.215.179.146? Probably not. To counter this,

DNS was invented. DNS, short for Domain Name Service, is a large database

that translates human readable domain names (like www.wiley.com) into the

more diffi cult IP address system. All the code presented in this book is available

on Wiley’s website, and to download the code, you need to enter Wiley’s web

address into your browser. Your browser might not know Wiley’s IP address,

and if it doesn’t, it will send a request to a DNS server. The DNS request will

say, “Hey, could you please tell me the address of www.wiley.com?” The DNS

server will respond with either the IP address of the request, or an error message

if it does not exist. Your browser can then contact Wiley’s server.

Port

To connect to a server (a machine that will provide a service), a client (some-

thing that requires this service) requires two things: the address of the server

http://www.wiley.com
http://www.wiley
http://www.wiley.com
http://www.wiley.com?%E2%80%9D

154 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 154

(or a domain name that will later be converted to an IP address) and a port. It

is not something physical; it is represented only in software.

Imagine you want to create a web server. You install the required software, and

your computer is connected to the Internet. You are now ready to go. Computers

can now connect to your server and view your web pages. Now imagine you

want to create an FTP server on the same computer as the web server. How

can you do that? How can the server understand what the client wants? This

is where ports come in.

A server program creates a port, and a client connects to that port. Some ports

are standard; others are created randomly. A web server will always be opened

on port 80, and your Internet browser will automatically attempt to connect to

port 80 when you add an Internet address beginning with http. When using

secure HTTP, the browser connects to port 443. It is also possible to tell the

browser to which port you want to connect by specifying the port; just add a

colon and the port number at the end.

Port numbers range from 1 to 65535. Port numbers 1024 and below are reserved,

and most computers require administrative rights to open a low port. High

ports, from 1025 upward, can be opened with non-administrator programs.

When playing a multiplayer game, the server almost certainly uses a high port,

and clients know which port to connect to. (For example, Minecraft uses port

25565 by default.)

Ethernet on Arduino

Most Arduinos do not come with Ethernet support. The Arduino Ethernet is an

exception; it remains close to the Arduino Uno design and has an Ethernet port

with optional PoE support. The Arduino Yún also has an Ethernet connector,

but the Arduino Yún is two machines in one. An Arduino “talks” to an Atheros

processor, running a Linux distribution that handles network connectivity. The

Arduino Tre has a similar interface; an Arduino “talks” to a Cortex-A8 micro-

processor that has an Ethernet connector. This chapter covers only Arduino

boards with an Ethernet chip addressed directly by an Arduino-compatible

microcontroller: the Arduino Ethernet and any Arduino with an Ethernet shield.

Importing the Ethernet Library

To import the Ethernet library, you can use the Arduino IDE. Go to Sketch ➪

Import Library ➪ Ethernet. Doing so imports a relatively large amount of libraries:

#include <EthernetClient.h>
#include <EthernetServer.h>
#include <Dhcp.h>

 Chapter 9 ■ Ethernet 155

c09.indd 01:6:22:PM 12/09/2014 Page 155

#include <Ethernet.h>
#include <Dns.h>
#include <EthernetUdp.h>
#include <util.h>

Depending on your application, you may not need all these libraries. Some

projects might not use an Ethernet server or might not require DNS, but it is

best to start off with all the libraries and remove them later if required.

Starting Ethernet

Like many libraries, the Ethernet library is initialized with begin(). This func-

tion can be called in different ways, depending on your needs:

Ethernet.begin(mac);
Ethernet.begin(mac, ip);
Ethernet.begin(mac, ip, dns);
Ethernet.begin(mac, ip, dns, gateway);
Ethernet.begin(mac, ip, dns, gateway, subnet);

In all cases, begin() requires a MAC address. The MAC address is either

supplied on a sticker attached to the Arduino or Ethernet shield, or you have

to invent your own.

W A R N I N G Do not use the same MAC address for multiple devices. These

numbers are designed to be unique, and two identical MAC addresses on the same

network will result in both devices having connectivity problems. Switches have

an internal MAC table, and when it receives a packet, it updates the table. Packets

will then be forwarded to this host until the switch receives a packet from the other

device. On most switches, this will cause intermittent reachability, and on some

advanced switches, one device will be deactivated and cannot connect.

The MAC address is typically represented as an array of six hexadecimal bytes:

// The MAC address for this shield:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

For projects where multiple devices will be used or sold, consider placing the

MAC address in EEPROM. (EEPROM is presented in Chapter 6.)

If begin() is not supplied an IP address, it issues a DHCP request to confi gure

itself automatically. begin() returns an int; 1 if the DHCP server was contacted

and DHCP information was received. Otherwise, it returns 0. All other uses of

begin() require an IP address, and do not return anything. To use this func-

tionality, you must import “Dhcp.h” and make sure your router can assign IP

addresses through DHCP.

156 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 156

The IP address is supplied in the form of an array of bytes:

// The IP address for this shield:
byte ip[] = { 192, 168, 0, 10 };

This IP address will be used on the local network. The DNS and gateway

parameters are optional; if omitted, they default to the same IP address with

the last octet set to one. The subnet parameter is also optional; if omitted, it

defaults to 255.255.255.0.

When the IP address has been obtained by DHCP, you can retrieve the IP

address from the Ethernet controller via localIP().

Ethernet.localIP(); // Retrieve the IP address

If no parameters are specifi ed, the IP address is returned as a string.

Serial.println(Ethernet.localIP());

It is, however, possible to obtain the IP address in byte format, by specifying

a byte to read.

Serial.print("My IP address: ");
for (byte thisByte = 0; thisByte < 4; thisByte++) {
 // print the value of each byte of the IP address:
 Serial.print(Ethernet.localIP()[thisByte], DEC);
 Serial.print(".");
}
Serial.println();

DHCP leases are only available for a certain time; to maintain a DHCP lease,

you must specifi cally request a renewal. On most servers, this will re-issue

the same IP address, but on some systems this might result in a change of IP

address. To renew a DHCP lease, call Ethernet.maintain().

result = Ethernet.maintain();

maintain() returns a byte, depending on the DHCP answer. Table 9-1 lists

the values returned by this function.

Table 9-1: maintain() return codes

RESULT DESCRIPTION

0 Nothing happened

1 Renew failed

2 Renew success

3 Rebind fail

4 Rebind success

 Chapter 9 ■ Ethernet 157

c09.indd 01:6:22:PM 12/09/2014 Page 157

In the previous connection example, the IP address was defi ned as an array

of bytes:

byte ip[] = { 192, 168, 0, 10 };

It is possible to use the IPAddress class to simplify writing a list of IP Addresses.

The IP Address class takes four parameters; the four parts of an IP address.

// The DNS server IP
IPAddress dns(192, 168, 0, 1);
// The Router's address (the gateway)
IPAddress gateway(192, 168, 0, 1);
// The IP subnet
IPAddress subnet(255, 255, 255, 0);
// The Arduino's IP address
IPAddress ip(192, 168, 0, 10);

Ethernet.begin(mac, ip, dns, gateway, subnet);

Arduino as a Client

The Arduino is an excellent Ethernet client; it can reliably initiate connections to

servers, send data from sensors, and receive data from the server. When using

the Arduino as a client, you must use the EthernetClient object.

EthernetClient client;

A client connects to a server. The term “server” designates any network con-

nected device that a client connects to fetch or upload information. On a home

network, this can be just about anything. Most home modems have an internal

web server that allows you to confi gure it and to look at statistics. Your com-

puter might have a server application installed (either a web server or an FTP

server), and even if your PC is a client to the modem, it can still be a server for

other devices.

A server is therefore just about anything—a computer, a network device, even

another Arduino. A client is also just about anything, even a piece of hardware

that requires the service provided by a server. The client must connect to the

server, and in Arduino you make a connection with connect(). To connect to

a server, you need one of these two things: either the IP address of the server

or the domain name and the port.

result = client.connect(ip, port);
result = client.connect(dns, port);

The ip parameter is either an array of 4 bytes or an IPAddress object. The port

parameter is an int and is the port on the server to which you want to connect.

158 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 158

The dns parameter is a string and is the domain name to connect to. It is auto-

matically converted to an IP address via a DNS query.

connect() returns a boolean: true if the connection is made, otherwise it

returns false.

It is possible to check the status of a connection calling client.connected().

result = client.connected();

This function does not take any parameters and returns true if the client is

still connected and false if it is no longer connected. Note that if data is still

waiting to be read, then this function returns true, even if the connection has

been severed.

To disconnect from a server, use stop().

client.stop();

This function takes no parameters and does not return any data. It simply

severs the network connection.

Sending and Receiving Data

Sending and receiving data is done through a stream; data can either be written

in binary format or in text format. To send text data, use print() and println().

client.print(data);
client.print(data, BASE);
client.println();
client.println(data);
client.println(data, BASE);

The difference between print() and println() is that println() adds a

new line character to the end of the string. The data parameter is the string or

data to print, and the optional BASE argument is the numerical system to use.

The data parameter is either a String or an array of char.

To write binary data, use write().

client.write(val);
client.write(buf, len);

The val parameter is a byte to send over the TCP/IP link. The buf parameter

is an array of bytes, and the len parameter specifi es the number of bytes to send.

To read from the network socket, use read().

data = client.read();

This function does not take any parameters and returns the next byte in the

stream, or –1 if no data is available. To check if data is waiting to be read, use

available().

result = client.available();

 Chapter 9 ■ Ethernet 159

c09.indd 01:6:22:PM 12/09/2014 Page 159

This function does not take any parameters and returns the number of bytes

waiting in the buffer.

This allows an Arduino to connect to a server and to exchange stream infor-

mation, but how exactly is that useful for your application? Almost all protocols

rely on an exchange of stream information, including HTTP, FTP, and other

common protocols.

Connecting to a Web Server

Web servers also stream data. Each connection is made to port 80 of the web

server and can be done in plaintext. After all, before graphical interfaces, all

the web was viewed as simple text.

To help as an example, I have uploaded a fi le to my web server called hel-

loarduino.html. It is located at the following address:

http://packetfury.net/helloarduino.html

If you open this in a web browser, you will be greeted by a simple sentence:

Hello, Arduino! To understand how an Arduino, and indeed any web browser

works, try to connect to the web server using telnet, a protocol used to connect

to a server using a text-oriented message. This utility is standard on Linux and

Mac OS systems, and can be run by opening a terminal and entering telnet

<IP> <port> as a command. IP is the IP address of the server you want to con-

nect to, and port is the port of the service you want to connect to. For a web

browser, this will be 80. For a Windows machine, a download is required. PuTTY

is a very nice, free application that lets you connect to services. It is available at

http://www.putty.org.

telnet packetfury.net 80

This program creates a connection to the specifi ed host on the specifi ed port.

Here, you connect to packetfury.net on port 80. Normally, a web server listens

to connections on port 80. You should be greeted with something that looks

like this:

jlangbridge@desknux:~/Downloads$ telnet packetfury.net 80
Trying 195.144.11.40...
Connected to packetfury.net.
Escape character is '^]'.

After a short time, you will get another message:

HTTP/1.0 408 Request Time-out
Cache-Control: no-cache
Connection: close
Content-Type: text/html

http://packetfury.net/helloarduino.html
http://www.putty.org

160 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 160

<html><body><h1>408 Request Time-out</h1>
Your browser didn't send a complete request in time.
</body></html>
Connection closed by foreign host.

Web servers expect a request fairly quickly after creating a connection. It

keeps the number of connections low, but also web browsers are supposed to

be fast and connect only when the user has specifi ed an address. You still have

a few seconds to send a message, though.

To get a web page, you must inform the web server that you want to GET a

document. Afterward, specify the document name. Then, specify the protocol;

in this case use HTTP/1.1. Finally, specify the host. Remember, some web serv-

ers host multiple websites. For example, you want to GET the webpage called

helloarduino.html from my website. You fi rst tell the server that this is a GET

request, then specify the web page itself, followed by the protocol. On a second

line, you specify which web server you want the page from. The formatted http

request looks like this:

GET helloarduino.html HTTP/1.1
Host: packetfury.net

To do this, open up a telnet application. Telnet requires two things: the server

to connect to and a port. The server is packetfury.net, the name of the website.

The port is 80. Enter the request text:

GET helloarduino.html HTTP/1.1
Host: packetfury.net

Remember, you have little time in which to do this. You might want to copy

the text fi rst and then paste it into your telnet client. Validate your request by

pressing enter twice. The web server requires a blank line to run a request. If

everything goes well, you should be greeted with the following:

HTTP/1.1 200 OK
Date: Mon, 28 Apr 2014 15:02:17 GMT
Server: Apache/2.2.24
Last-Modified: Mon, 28 Apr 2014 14:46:54 GMT
ETag: «6181d54-10-4f81b62f60b9b»
Accept-Ranges: bytes
Content-Length: 16
Vary: Accept-Encoding
Content-Type: text/html

Hello, Arduino!

Now that you know how to fetch a webpage, you can also write a sketch for

your Arduino to fetch information directly from a web page. You can, of course,

create your own web server on your local network. You don’t even need any

 Chapter 9 ■ Ethernet 161

c09.indd 01:6:22:PM 12/09/2014 Page 161

complicated software; although you can create a real web server, you can also

get great results from Python scripts. Your Python script could then inform

Arduinos of the temperature that you want for your living room or when to

turn on the automatic sprinkler system.

Example Program

Now that you have fetched a web page from a web server, it is time to tell the

Arduino to do the same thing. The sketch will look like Listing 9-1.

Listing 9-1: Fetching (fi lename: Chapter9client.ino)

1 #include <SPI.h>
2 #include <Ethernet.h>
3
4 // If your Arduino has a MAC address, use that instead
5 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
6 char server[] = "www.packetfury.net"; // name of server
7
8 // Set a static IP address to use if the DHCP fails to assign
9 IPAddress ip(192,168,0,42);
10
11 // Initialize the Ethernet client library
12 EthernetClient client;
13
14 void setup()
15 {
16 // Open serial communications and wait for port to open:
17 Serial.begin(9600);
18
19 // Start the Ethernet connection:
20 if (Ethernet.begin(mac) == 0)
21 {
22 Serial.println("Failed to configure Ethernet using DHCP");
23 // Can't get an IP, so use another one
24 Ethernet.begin(mac, ip);
25 }
26 // Give the Ethernet shield some time to initialize:
27 delay(2000);
28 Serial.println("Connecting...");
29
30 // Are we connected?
31 if (client.connect(server, 80))
32 {
33 Serial.println("Connected");
34 // Make a HTTP request:
35 client.println("GET helloarduino.html HTTP/1.1");
36 client.println("Host: www.packetfury.net");
37 client.println();
38 }

Continues

http://www.packetfury.net
http://www.packetfury.net

162 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 162

Listing 9-1 (continued)

39 else
40 {
41 // Warn if the connection wasn't made
42 Serial.println("Connection failed");
43 }
44 }
45
46 void loop()
47 {
48 // Check for incoming bytes
49 if (client.available())
50 {
51 char c = client.read();
52 Serial.print(c);
53 }
54
55 // If the server disconnected, then stop the client:
56 if (!client.connected())
57 {
58 Serial.println();
59 Serial.println("Disconnecting.");
60 client.stop();
61
62 // Now sleep until a reset
63 while(true);
64 }
65 }

This sketch requires two libraries, SPI and Ethernet, and they are imported on

lines 1 and 2. On line 5, a MAC address is created. All Ethernet devices have a

MAC address, and they should be unique. If your Arduino has a MAC address

sticker, please use that value instead. On line 6, the server name is defi ned;

this is the server that you will be connecting to. The Arduino will attempt to

talk to a DHCP sever to get network information automatically. If this fails,

the sketch will tell the Arduino to use a default IP address; this is specifi ed on

line 9. Please adjust as required.

The EthernetClient object is declared on line 12. Since this Arduino will

connect to a server, it will be a client, and as such requires initializing the

EthernetClient object; the resulting object is called client.

The setup() function is declared on line 14. Like the previous sketches, it

starts by initializing a serial communications channel so that you can connect

and see what is going on. This is also how the contents of the web page will be

displayed. On line 20, the sketch calls Ethernet’s begin() function. The result

is used to tell if the Arduino has received a message from the DHCP server or

not. If it has, a message is printed to the serial channel; if it hasn’t, the Arduino

will attempt to use the default address. This is done on line 24.

 Chapter 9 ■ Ethernet 163

c09.indd 01:6:22:PM 12/09/2014 Page 163

Once the network confi guration has been made, the next step is to connect

to the server. This is done on line 31 using the connect() function. Once again,

the result is used to see if the Arduino has connected or not. If it has, then on

line 35 the sketch sends three lines to the web server. First, a GET instruction.

Second, the server name. Finally, an empty line to inform the web server that

there is nothing else you want to send. It should reply. If the connection wasn’t

made, an error message is printed on the serial port.

The loop() function is declared on line 46. First it detects to see if any bytes

are waiting in the buffer using the available() command. If there is data

waiting, then each byte is read from the buffer and printed to the serial port.

This is done on lines 51 and 52. On line 56, the sketch checks to see if it is still

connected to the server; once the server responds with a web page, it is free to

terminate the connection before serving another client. If the server has indeed

terminated the connection, a message is printed to the serial port and the sketch

sleeps until a reset is performed.

Arduino as a Server

You can use the Arduino as a network client, but it is also a capable network

server. Instead of connecting to a server, it becomes a server, waiting for clients

to connect before sending or receiving information.

To use your Arduino as an Ethernet server, you must initialize the

EthernetServer object.

EthernetServer server = EthernetServer(port);

It takes one parameter: the port to listen for incoming connections. Web servers

connect to port 80 and telnet on port 23. Remember, ports below 1024 are reserved

for specifi c applications, and ports above are free to be used. If you create your

own protocol, use one of the high ports.

To listen for a client, you must create an EthernetClient object.

EthernetClient client;

This function is nonblocking, that is to say, if a client is not available, the object

will still be created and the rest of the sketch will continue to run. To verify if

a client has actually connected, test the client object. If a client has connected,

it will return true.

if (client == true)
{
 // Client has connected, send data
}

164 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 164

From here, it is possible to send and receive data using the client() object.

The server is only responsible for opening a port and accepting connections on

that port; data will be read from and written to the client object.

Servers spend most of their time waiting for connections and responding to

connections before waiting for another connection. As such, they are usually

in loop() waiting for a connection before acting. When an exchange has com-

pleted, close the connection using the stop() function.

client.stop();

To wait for connections, send data, and then close the connection, you can

use code that looks like this:

void loop()
{
 EthernetClient client = server.available();
 if (client == true)
 {
 // Client has connected, send data
 client.println("Hello, client!");
 client.stop();
 }
}

Serving Web Pages

Web servers are the most visible ways of connecting to an Arduino over a net-

work to get data and also great fun! They can be seen on computers, tablets,

and mobile telephones and can easily be tweaked to produce some visually

stunning interfaces.

When a web browser connects to a web server, it expects some specifi c infor-

mation. It not only just receives a web page, but also some headers that you do

not normally see. The server informs the web browser if the page is accessible

(remember those 404-error messages you see from time to time?), the sort of data

that is to be sent, and the connection status after the data has been delivered.

Additional headers can be added if needed.

A typical exchange might look like this:

HTTP/1.1 200 OK
Content-Type: text/html
Connection: close

The 200 return code means that the page was found and is available. The

content type of this page is HTML, sent as text data. Finally, the connection will

be closed after the page has been sent. If the web browser wants another page,

 Chapter 9 ■ Ethernet 165

c09.indd 01:6:22:PM 12/09/2014 Page 165

it must reconnect. To tell the browser that the content is about to be sent, the

server sends a blank line, and then sends the HTML data.

Example Program

For this program, you use an Arduino Uno with an Ethernet shield. This is a

continuation of the previous chapter and still uses the light sensor. You can

now read light conditions in real time by connecting to your Arduino from a

web browser.

When a connection is made, the Arduino fi rst reads the analog value on A3

before displaying that value in HTML.

Sketch

Now it’s time to write the sketch, as shown in Listing 9-2.

Listing 9-2: Server Sketch (fi lename: Chapter9server.ino)

1 #include <SPI.h>
2 #include <Ethernet.h>
3
4 // Enter a MAC address and IP address for your controller below.
5 // The IP address will be dependent on your local network:
6 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
7 IPAddress ip(192,168,0,177);
8
9 int lightPin = A3;
10
11 //Initialize the Ethernet server to listen for connections on port 80
12 EthernetServer server(80);
13
14 void setup() {
15 // Open serial communications
16 Serial.begin(9600);
17
18 // start the Ethernet connection and the server:
19 Ethernet.begin(mac, ip);
20 server.begin();
21 Serial.print("Server up on ");
22 Serial.println(Ethernet.localIP());
23 }
24
25 void loop() {
26 // Listen for incoming clients
27 EthernetClient client = server.available();
28
29 if (client)
30 {

Continues

166 Part II ■ Standard Libraries

c09.indd 01:6:22:PM 12/09/2014 Page 166

Listing 9-2 (continued)

31 Serial.println("New connection");
32 // An HTTP request ends with a blank line, wait until the
 request has finished
33 boolean currentLineIsBlank = true;
34 while (client.connected())
35 {
36 if (client.available())
37 {
38 char c = client.read();
39 Serial.write(c);
40 // if you've gotten to the end of the line (received a newline
41 // character) and the line is blank, the HTTP request has ended,
42 // so you can send a reply
43 if (c == '\n' && currentLineIsBlank) {
44 // send a standard http response header
45 client.println("HTTP/1.1 200 OK");
46 client.println("Content-Type: text/html");
47 client.println("Connection: close");
48 client.println("Refresh: 5");
49 client.println();
50 client.println("<!DOCTYPE HTML>");
51 client.println("<html>");
52
53 // Get a light level reading
54 int light = analogRead(lightPin);
55
56 // Send this data as a web page
57 client.print("Current light level is ");
58 client.print(light);
59 client.println("
");
60
61 client.println("</html>");
62 break;
63 }
64 if (c == '\n') {
65 // you're starting a new line
66 currentLineIsBlank = true;
67 }
68 else if (c != '\r') {
69 // you've gotten a character on the current line
70 currentLineIsBlank = false;
71 }
72 }
73 }
74 // Wait a second for the client to receive data
75 delay(1);
76
77 // Close the connection
78 client.stop();
79

 Chapter 9 ■ Ethernet 167

c09.indd 01:6:22:PM 12/09/2014 Page 167

80 Serial.println("Client disonnected");
81 }
82 }

Summary

 In this chapter, you have seen how Ethernet works as well as the difference

between a server and a client. You have seen how to connect to a web server

from an Arduino, as well as how to become a server for other devices to con-

nect and retrieve data.

In Chapter 10 you will see how the Arduino can connect wirelessly using

Wi-Fi technology. You will also see the differences between Ethernets, and how

to create a wireless client and server.

169

c10.indd 09:53:23:PM 07/13/2017 Page 169

This chapter discusses the following functions of the WiFi library:

 ■ begin()

 ■ macAddress()

 ■ BSSID()

 ■ RSSI()

 ■ scanNetworks()

 ■ SSID()

 ■ encryptionType()

 ■ disconnect()

 ■ config()

 ■ setDNS()

 ■ WiFiClient()

 ■ WiFiServer()

The hardware needed to use these functions includes:

 ■ Arduino Uno

 ■ SainSmart WiFi shield

C H A P T E R

10

WiFi

170 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 170

 ■ DHT11 humidity and temperature sensor

 ■ Breadboard

 ■ Wires

 ■ 10 kilohm resistor

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 10

folder and the fi lename is chapter10.ino.

N O T E The Wireless technology name is Wi-Fi with a hyphen, but in the Arduino

library, where it is unable to use hyphens, it is called WiFi. For this chapter, Wi-Fi refers

to the technology, and WiFi to the Arduino library capable of using WiFi cards.

Introduction

All aspects of computers have evolved at an incredible rate. A high-end com-

puter from 10 years ago is, by today’s standard, easily surpassed by a mobile

telephone. Processors, memory, and storage have all increased, and component

size has drastically decreased. Mobile computers used to be rare; today, laptop

computers are seen just about everywhere, as are tablets, smartphones, and even

smart watches. The need for mobility has been driving the industry for years,

but the need for data even more so.

Early networks were slow, complicated, cabled systems. Today, Ethernet

technology can be found in almost every house. On the back of most Internet

modems is a small Ethernet switch, providing four or more “ports”; connect-

ing a computer is as simple as plugging an Ethernet cable in the ports. To add

another computer, just plug in another cable in the next open port. This is perfect

for households, and the same technology also powers huge companies with

thousands of computers, including the Internet. Networks have become fast and

reliable, but until recently, the need for physical wiring confl icted with mobility.

Mobile users had data on the go. Commercial teams could have documents

on their computer with them, and engineers could have development tools and

diagnostics with them. However, to get access to the Internet, or even to transfer

documents, they had to plug in their laptop to the company’s network. Most

meeting rooms had an Ethernet switch with a few cables, just in case anyone

needed quick access. Mobile devices would never be truly mobile until they got

rid of the cables tethering them to the desk, and so Wi-Fi was born.

http://www.wiley.com

 Chapter 10 ■ WiFi 171

c10.indd 09:53:23:PM 07/13/2017 Page 171

The WiFi Protocol

Wi-Fi standard devices use a wireless local area network (LAN). The technology

is managed by the Wi-Fi Alliance, a group of some of the leading companies in

wireless and networking products that did not actually create the technology

itself.

In 1985, the U.S. Federal Communication Commission opened up part of the

wireless spectrum for unlicensed use. The original wireless protocol was called

WaveLAN, developed by NCR for cashier systems. The radio portion was hid-

den from operating systems, and to the drivers, WaveLAN cards were talking

together via wired systems, making installation and use extremely easy.

Its successor, 802.11, was created in 1997. It had a data-rate of either 1 or 2

megabits per second and a communications distance of 60 feet. Interoperability

problems were detected, notably because the Institute of Electrical and Electronics

Engineers (IEEE for short) creates standards but does not test them for certifi -

cation. The original 802.11 was not widely embraced, but a new version was:

802.11b. With the birth of 802.11b came the Wireless Ethernet Compatibility

Alliance (WECA), which proposed rigorous certifi cation programs. All devices

sold with a Wi-Fi logo were compatible, and consumers loved the technology.

WECA later changed its name to the Wi-Fi Alliance.

802.11b gave much faster data rates: 1, 2, 5.5, and 11 megabits per second.

Although these speeds were good for browsing the web, they were not fast

enough for video streaming or heavy data transfer. 802.11g proposed data rates

of up to 55 Mbit/s, while retaining 802.11b compatibility. (When talking to an

802.11b device, the speed would be at a maximum of 11 Mbit/s). Newer versions

provide even faster data rates; 802.11n can go as fast as 150 Mbit/s; 802.11ac can

go up to 866.7 Mbit/s; and 802.11ad can transfer data at a staggering 6.75 Gbit/s.

Topology

Wi-Fi works with several network topologies, but there are two main types that

are used: ad-hoc and infrastructure.

Ad-hoc mode is an unmanaged, decentralized mode. Wireless peers are free to

connect to other peers, and the network is managed by all the peers. Wireless

devices maintain network connectivity by forwarding packets to other devices

when needed. All network peers have an equal status, and the network is only

as reliable as the parameters of the hosts (transmit power, interference, and

link-length). Ad-hoc networks are often closed networks; peers cannot always

communicate outside the network.

172 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 172

Infrastructure mode is a managed mode. This topology requires one or several

devices to “manage” the network, allowing peers to connect to it (or refuse con-

nection depending on the security settings). Peers do not communicate between

themselves; instead they send their packets to the network management devices:

typically access points. Infrastructure access points often serve as access points

to other networks: typically a wired network or a connection to the Internet.

Multiple access points can be on a wired network, allowing for several zones,

or “hot spots” where peers can connect wirelessly.

Network Parameters

For a network to function, several parameters are required. Imagine an apart-

ment block—several neighbors are within close range. Each family has an

Internet connection, and each family also wants access to wireless for their

laptops, tablets, and mobile phones. Each family also wants their devices to be

private. Instead of creating one large wireless network, each family wants its

own small wireless network. It also wants it to work securely and effi ciently,

while allowing neighbors access to their wireless networks.

Channels

Wi-Fi works with two base frequencies: 2.4 GHz and 5 GHz. However, in prac-

tice, there are several frequencies; the 2.4-GHz band operates from 2.412 GHz

all the way to 2.484 GHz. This spectrum is separated into different frequen-

cies, or channels. If all wireless devices used exactly the same frequency, that

frequency would soon become saturated as small networks started competing

with other networks. Also, Wi-Fi is not the only wireless technology to use

the 2.4 GHz band. For example, Bluetooth also uses these frequencies. To help,

Wi-Fi uses channels.

A channel is a specifi c frequency used by one particular wireless network.

Channels work in the same way as your television; information is received

wirelessly and picked up through the TV antenna. By selecting a particular

channel, you decide to listen to one particular frequency in the range, therefore

excluding all other channels. When you fi nish watching a program, you can

switch to another channel, receiving the information on one channel at a time.

Wi-Fi channels work almost the same way except that channels can overlap each

other. Each wireless controller (an Internet modem or access point) is confi gured

to use a particular channel. Some analyze the network before initializing and

automatically choose a free channel.

Encryption

Although most people don’t think much about it, Wi-Fi presents a problem. You

might be at home, shopping on your favorite Internet site. After you choose the

 Chapter 10 ■ WiFi 173

c10.indd 09:53:23:PM 07/13/2017 Page 173

articles you want, you go to pay, entering in your debit card details. Wireless

information can, theoretically, be seen by anyone. Just like a regular conversation,

if the person is close enough to hear, then he can get access to that information.

To avoid this, infrastructure wireless communications are normally encrypted.

Anyone can listen in to your conversation with your favorite Internet site but

will not be able to understand because that conversation is encrypted with a

special key that others do not know.

There are two forms of encryption: WEP and WPA2. WEP (short for Wireless

Equivalent Privacy) is an early form of wireless encryption. Today, the standard is

outdated, and Wi-Fi networks are encouraged to use the newer WPA2 encryption.

WPA2 (short for Wi-Fi Protected Access 2) is a solution to the weaknesses

found in WEP and is a stronger version of the previous WPA encryption. It

enables strong 256-bit AES encryption, using either 64 hexadecimal characters

or 8 to 63 printable ASCII characters as a passkey. Again, several versions exist,

but two main versions are used: WPA2 Personal and WPA2 Enterprise. WPA2

Personal requires a passkey and is perfect for home or small offi ce environ-

ments. WPA2 Enterprise requires a specialized server and protects against

more advanced attacks.

Not only does the encryption secure communications, it also secures the

network. A wireless device that does not have the password cannot connect.

SSID

The network SSID, short for Service Set ID, is essentially the “network name,”

as it is known. This is the name that displays when you refresh your wireless

network list, and is the name that devices attempt to connect to. SSIDs are

sometimes hidden but are always present. A hidden SSID works in exactly the

same way, only the name is not broadcast to devices; devices can still attempt

to connect to a hidden SSID.

RSSI

RSSI is short for Received Signal Strength Indication and is an indication of

signal strength. The units are arbitrary; some devices report signal strength as

a percentage, others as a unit called dBm, or decibels per milliwatt of power.

Reading this value gives an indication of signal strength and not distance

because signal strength can be altered by physical obstructions (like walls) or

electromagnetic interference.

Arduino WiFi

The Arduino WiFi library is designed to work with a large amount of network

controllers through a simple system. The WiFi library “talks” to the Wi-Fi shield

174 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 174

through the SPI bus, and communication is normally handled with a small

microcontroller, “translating” messages on the SPI bus to the network controller.

Several vendors manufacture Wi-Fi shields, and there is also an offi cial Arduino

shield. Each board has its strong points: external antenna connectors, ultra-low

power, and bridging possibilities. It all depends on your project. This chapter

talks about standard connections without any external components or antennae.

The WiFi library can connect to a variety of Wi-Fi standards: typically B,

G, and N networks. It can handle both WEP and WPA-2 Personal encryption

but cannot connect to a WPA-2 Enterprise network. Also, it cannot connect to

hidden SSIDs.

The WiFi library uses the SPI bus and requires the SPI pins to be free. It uses

pins 11, 12, and 13 on the Arduino Uno, and 50, 51, and 52 for the Arduino Mega.

Pin 10 is used as a Slave Select pin, and pin 7 is used as a digital handshake;

these pins should not be used by the rest of the sketch.

The WiFi library methods are similar to those in the Ethernet library, and

many of the functions are identical—only changed slightly to handle wireless

networks and the subtle differences they face.

C R O S S  R E F E R E N C E Ethernet is presented in Chapter 9.

Importing the Library

To use the WiFi library, it must fi rst be imported, which you can do in the Arduino

IDE (menu Sketch ➪ Add Library ➪ WiFi) or by adding the library manually:

#include <WiFi.h>

You need to import other libraries, depending on your project:

#include <WiFiServer.h>
#include <WiFiClient.h>
#include <WiFiUdp.h>

The WiFiServer.h header fi le is used if the Arduino is to be a server. If a client

connection is going to be made, the WiFiClient.h header fi le should be used. The

WiFiUdp.h library should be imported if UDP communications are to be used.

Initialization

To initialize the WiFi subsystem, you must use begin(). It can take several

parameters, depending on your confi guration. To start the WiFi subsystem

without any parameters (network SSID, password), just call begin():

WiFi.begin();

 Chapter 10 ■ WiFi 175

c10.indd 09:53:23:PM 07/13/2017 Page 175

To connect to an open SSID (one that does not require a password), use only

the ssid parameter:

WiFi.begin(ssid);

To connect to a WPA-2 Personal protected network, specify the SSID and the

password:

WiFi.begin(ssid, password);

To connect to a WEP protected network, another parameter is required. WEP

protected networks can have up to four keys, and you must specify which one

to use:

WiFi.begin(ssid, keyIndex, key);

Both keys and SSIDs can be written as an array of chars:

char ssid[] = "yourNetworkSSID";
char password[] = "MySuperSecretPassword";

Status

Of course, initialization presumes that a WiFi shield is present and correctly

connected, which might not always be the case. To test for a WiFi shield, use

the status() function:

result = WiFi.status();

This function takes no parameters and returns one of several constants, as

shown in Table 10-1.

Table 10-1: Status Update Return Codes

CONSTANT MEANING

WL_IDLE_STATUS The WiFi shield is idle, without any instructions.

WL_NO_SSID_AVAIL There are no networks to connect to.

WL_SCAN_
COMPLETED

An initial SSID scan has been completed, and the WiFi shield
knows about available SSIDs.

WL_CONNECTED The WiFi shield has successfully connected to an SSID.

WL_CONNECT_
FAILED

The WiFi shield was unable to connect; either the encryption key
is wrong, or the connection was refused by the access point.

WL_CONNECTION_
LOST

The WiFi shield was previously connected, but that connection
has been lost (either out of range, or interference).

Continues

176 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 176

CONSTANT MEANING

WL_DISCONNECTED The WiFi shield has successfully disconnected from a network.

WL_NO_SHIELD The Arduino cannot fi nd a WiFi shield connected to the board.

Unlike Ethernet shields, WiFi shields have a fi xed MAC address. To know

the MAC address of the WiFi shield, use macAddress(). This function does

not return any data but requires a parameter: a 6-byte array in which the MAC

address will be placed.

byte mac[6];
WiFi.macAddress(mac); //Retrieve the MAC address, place it in mac

To retrieve the MAC address for the access point you are connected to, use

BSSID():

WiFi.BSSID(bssid);

Just like the macAddress() function, this function does not return any data

but requires a data container as a parameter: a 6-byte array in which the MAC

address will be placed.

To retrieve the RSSI, the signal quality indicator, use the RSSI() function:

long result = WiFi.RSSI();

RSSI, short for Received Signal Strength Indication, is a measurement of

power in received radio signals. It is an indicator that generally goes from −100

to 0; the closer to 0, the stronger the reception. It cannot be used to estimate the

range of a wireless device since interference can come not only from range, but

also from electronic equipment or walls.

Scanning Networks

Due to the mobile nature of wireless, it can be helpful to scan the wireless

networks around you to know which to connect to. An Arduino in a car might

automatically connect to a home network when it’s in range to send diagnostic

information on your car but might also be confi gured to connect to another

network, for example, a friend’s house. In this case, the Arduino needs to peri-

odically scan the available wireless networks until it fi nds one it recognizes.

Wireless scanning on computers is frequent; open your wireless confi guration

panel to see a list of available networks.

To initiate a scan, use scanNetworks():

result = WiFi.scanNetworks();

Table 10-1 (continued)

 Chapter 10 ■ WiFi 177

c10.indd 09:53:23:PM 07/13/2017 Page 177

This function takes no parameters and returns an int—the number of wire-

less networks detected. A scan can take a few seconds to complete, but when

done, the results are stored on the wireless chip, ready for interrogation. The

chip stores several pieces of information: the SSID name, the signal strength,

and the encryption type.

To retrieve the SSID of a network, use SSID():

result = WiFi.SSID(num);

It takes one parameter: the number of a network scanned with the scanNet-

works() function. It returns a String: the name of the SSID.

To know the RSSI of a station broadcasting, use RSSI() specifying the net-

work number:

result = WiFi.RSSI(num);

Exactly like RSSI() used to learn the RSSI of the current network, this function

returns a long, the value in dBm, short for Decibel-milliwatts. Typical values

range from −80 to 0; the higher the number, the better the reception.

Wireless networks also broadcast their security, specifi cally the encryption

method required to connect (if any). To know the encryption of a network, use

encryptionType(), specifying the network number:

result = WiFi.encryptionType(num);

This function returns a constant: the type of encryption detected. Table 10-2

lists the values.

Table 10-2: Possible Encryption Types

VALUE MEANING

ENC_TYPE_WEP WEP encryption

ENC_TYPE_TKIP WPA encryption

ENC_TYPE_CCMP WPA2 encryption

ENC_TYPE_NONE No encryption, open network

ENC_TYPE_AUTO Multiple encryption methods possible

Connecting and Confi guring

To connect to a wireless network, use begin(), explained previously in the

“Initialization” section. To disconnect from a network, use disconnect():

WiFi.disconnect();

178 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 178

This function does not take any parameters and does not return any

information. It immediately disconnects from the current network.

By default, the WiFi shield uses DHCP to obtain an IP address and network

settings. When begin() is called, DHCP negotiations begin after connecting to

the network. While some wireless networks provide DHCP, others do not and

require manual confi guration. To perform manual confi guration, use config().

This function can be called in four ways:

WiFi.config(ip);
WiFi.config(ip, dns);
WiFi.config(ip, dns, gateway);
WiFi.config(ip, dns, gateway, subnet);

In its most basic form, config() requires one parameter: the IP address to

use, expressed as an array of 4 bytes, or optionally, using an IPAddress object.

This object takes 4 bytes; the 4 bytes of an IP Address:

IPAddress ip(192.168.0.10);

 To translate human-readable text into IP addresses, a Domain Name Server

must be specifi ed as the dns parameter, again, as an array of 4 bytes, or IPAddress.

For packets to leave the current network to another network, a gateway IP must

be specifi ed with gateway. Finally, to change subnet, you must specify the sub-

net IP (by default: 255.255.255.0).

Calling config() before begin() forces the WiFi shield to use the settings

specifi ed. Calling config() after begin() again forces the WiFi shield to use

the settings that were specifi ed, but the begin() function will attempt to contact

a DHCP server beforehand, resulting in a possible IP change.

The downside to this is that to use a specifi c DNS, you must specify the IP

address. Some computers prefer to use an external DNS. (For example, Google

allows users to use their DNS instead of their Internet provider’s DNS.) To

remedy this, the setDNS() function can be used.

WiFi.setDNS(dns_server1);
WiFi.setDNS(dns_server1, dns_server2);

This function requires either one or two DNS server addresses. It returns

no data and immediately sets the DNS server values without changing the IP

address.

Wireless Client

Just like with the Ethernet library, the WiFi library has its own client class.

Remember, a client is a device that connects to a server on a specifi ed port. A

server is always on listening for client connections.

Before connecting to a server, the client must fi rst create a client object; for

the WiFi library, this is called WiFiClient.

 Chapter 10 ■ WiFi 179

c10.indd 09:53:23:PM 07/13/2017 Page 179

// Initialize the client library
WiFiClient client;

This library is almost identical to the Ethernet library, though certain techni-

cal aspects are different to handle wireless connectivity. To create a socket to a

server, you must use connect(), just like with the Ethernet library:

result = client.connect(server, port);

The function takes two parameters: port is an int and indicates the port to

which you want to connect. The server parameter is either an IPAddress (or

an array of 4 bytes), or a String containing the server name. It returns a bool-

ean: true if the connection was accepted, and false if the connection failed.

Wireless Server

Wireless devices can also be servers, waiting for clients to connect before answer-

ing to requests. Again, the WiFi library has its own specialized object: WiFiServer:

WiFiServer server(port);

The port parameter is the port that you want to open, expressed as an int.

When the port is opened, the server waits for incoming connections with begin():

server.begin(); // Wait for clients to connect

Example Application

I’m terrible with plants. Taking care of most kinds isn’t that complicated; I just

need to keep the dirt moist, keep them out of direct sunlight (but still enough

sunlight) and change the dirt from time to time. Just keeping the dirt moist

seems to be too much for me, and this is where technology can help.

The DHT11 is a popular temperature and humidity sensor; it is inexpensive,

reliable, and fairly easy to use. It comes with a plastic cover offering protection

from most environments, and as long as you don’t put water directly onto it, it

can live happily with your houseplants. It is illustrated in Figure 10-1.

The DHT11 does have something unique. Previous chapters talked about serial

communications, some of them requiring more wires than others, but some (I2C

especially) requiring only two wires to function. This component is different; it

requires only one. There is one wire used to send and to receive data, in addition

to a power and ground. Although it might sound complicated to use a single

wire for both data reception and emission, it is actually fairly straightforward.

The downside to this component is that you can make only one reading every

2 seconds, but that is more than enough for a houseplant, even mine.

180 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 180

Figure 10-1: The DHT11

This application uses an Arduino Uno and a SainSmart wireless shield.

A DHT11 sensor will be connected to the board, allowing the user to get an

accurate reading. Because I’m terrible with plants, I probably won’t check the

reading frequently, so this device must communicate with the outside world

to send alerts. It will monitor the humidity of the dirt and send e-mails when

the humidity level drops below a certain level. For this, it must be connected

to the Internet. Because I don’t have a wired access point nearby, I’ll be using

a wireless network.

This project requires a certain number of services to be put in place. First, it

requires a DHCP server on the current network. Most Internet modems have their

own DHCP server, so it should be compatible with most wireless access points.

Secondly, it requires access to an SMTP server, a server used to send e-mail.

Most Internet providers give you access to an e-mail server, but they may refuse

e-mail that does not come from their network. Your Internet provider or e-mail

service provider can give you information on how to access its mail servers.

The DHT11 is an interesting component in that it uses only one wire for

communication. The Arduino is able to switch between input and output, so

that isn’t a problem.

 Chapter 10 ■ WiFi 181

c10.indd 09:53:23:PM 07/13/2017 Page 181

The DHT11 communication protocol is slightly complicated. The data pin

is normally at a logical high. To read from the DHT11, the Arduino must pull

this data line down to zero for more than 18 milliseconds (ms) before returning

it to a logical high for 40 μs. As a response, the DHT11 pulls the data line low

for 54 μs and then pulls it high for 80 μs. This is an acknowledgment; it tells

the Arduino that the request has been received and that data will follow. The

DHT11 then sends 5 bytes for a total of 40 bits.

The timing of the data is the complicated part. The difference between a 1

and a zero is the amount of time that the data line remains high; 24 μs means

a zero, and 70 μs means a 1, as shown in Figure 10-2.

54 μs 24 μs

54 μs

0

Bit 1

Bit 0

+5 V

0

+5 V

70 μs

Figure 10-2: DHT11 sending a logical zero and a logical 1

At the end of the communication, the DHT11 pulls the data line back to a

logical high.

Hardware

The hardware confi guration is fairly straightforward. For this, you need an

Arduino Uno. The WiFi shield is socketed on top of the Arduino. The DHT11

will be connected to +5 V and ground, and the data pin will be connected to

digital pin 10. There is also a 10-kilohm pull-up resistor on the data line. Digital

output 13 will also be used to turn on and off the internal LED for status indi-

cation. If the LED is on, then there is a problem with the board. The setup is

shown in Figure 10-3.

182 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 182

Figure 10-3: Hardware schematic (Image created with Fritzing)

Sketch

Time to get to work! Now that the hardware is complete, it is time to write the

sketch. The sketch will look like that shown in Listing 10-1.

Listing 10-1: Wireless Sensor Sketch (fi lename: Chapter10.ino)

1 #include <WiFi.h>
2 #include <WiFiClient.h>
3
4 const int DHTPin=10;
5 const int LEDPin=13;
6
7 const int MINHumidity=25;
8
9 char ssid[] = "yourNetwork"; // Your network SSID (name)
10 char pass[] = "secretPassword"; // Your network WPA2 password
11 char server[] = "smtp.yourdomain.com"; // Your SMTP server
12

 Chapter 10 ■ WiFi 183

c10.indd 09:53:23:PM 07/13/2017 Page 183

13 boolean firstEmail = true;
14
15 int status = WL_IDLE_STATUS;
16
17 WiFiClient client; // Set up the wireless client
18
19 void setup()
20 {
21 Serial.begin(9600);
22
23
22 Serial.println("Plant monitor");
23
24 // Configure the LED pin, set as output, high
25 pinMode(LEDPin, OUTPUT);
26 digitalWrite(LEDPin, HIGH);
27
28 // Is there a WiFi shield installed?
29 if (WiFi.status() == WL_NO_SHIELD) {
30 Serial.println("ERR: WiFi shield not found");
31 // No point continuing with the sketch
32 while(true);
33 }
34
35 // Attempt to connect to the WiFi network
36 while (status != WL_CONNECTED) {
37 Serial.print("Attempting to connect to WPA SSID: ");
38 Serial.println(ssid);
39 // Connect to WPA/WPA2 network:
40 status = WiFi.begin(ssid, pass);
41
42 // Wait 10 seconds for connection:
43 delay(10000);
44 }
45
46 // If we got here, then the connection is good. Set LED pin low
47 and display information on serial
48 digitalWrite(LEDPin, LOW);
49 Serial.println("Connected!");
50 }
51
52 void loop()
53 {
54 // Get a humidity reading
55 int val = getDht11Humidity();
56
57 // Print it out to the serial port
58 Serial.print("Current humidity: ");
59 Serial.print(val);
60 Serial.println("");

Continues

184 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 184

Listing 10-1 continued

61 if (val < MinHumidity)
62 {
63 // Below minimum humidity. Warn!
64 Serial.println("Plant is thirsty!");
65 sendEmail();
66 firstEmail = false;
67 }
68 else
69 {
70 // All OK
71 Serial.println("Humidity OK");
72 firstEmail = true;
73 }
74
75 // Wait for half an hour
76 delay(1800000);
77 }
78
79
80 int getDht11Humidity()
81 {
82 byte data[6] = {0};
83
84 // Set up variables
85 byte mask = 128;
86 byte idx = 0;
87
88 // Request a sample from the DHT11
89 pinMode(DHTPin, OUTPUT);
90 digitalWrite(DHTPin, LOW);
91 delay(20);
92 digitalWrite(DHTPin, HIGH);
93 delayMicroseconds(40);
94 pinMode(DHTPin, INPUT);
95
96 // Will we get an ACK?
97 unsigned int loopCnt = 255;
98 while(digitalRead(DHTPin) == LOW)
99 {
100 if (--loopCnt == 0) return NAN;
101 }
102
103 loopCnt = 255;
104 while(digitalRead(DHTPin) == HIGH)
105 {
106 if (--loopCnt == 0) return NAN;
107 }
108
109 // Acknowledged, read in 40 bits
110 for (unsigned int i = 0; i < 40; i++)

 Chapter 10 ■ WiFi 185

c10.indd 09:53:23:PM 07/13/2017 Page 185

111 {
112 // Pin will go low. Wait until it goes high
113 loopCnt = 255;
114 while(digitalRead(DHTPin) == LOW)
115 {
116 if (--loopCnt == 0) return NAN;
117 }
118
119 // What is the current time?
120 unsigned long t = micros();
121
122 // Pin will go high. Calculate how long it is high.
123 loopCnt = 255;
124 while(digitalRead(DHTPin) == HIGH)
125 {
126 if (--loopCnt == 0) return NAN;
127 }
128
129 // Is this a logical one, or a logical zero?
130 if ((micros() - t) > 40) data[idx] |= mask;
131 mask >>= 1;
132 if (mask == 0) // next byte?
133 {
134 mask = 128;
135 idx++;
136 }
137 }
138
139
140 // Get the data, and return it
141 float f = data[0];
142 return (int)f;
143 }
144
145
146 boolean sendEmail()
147 {
148 // Attempt to connect
149 if(!client.connect(server,25))
150 return false;
151
152 // Change this to your IP
153 client.write("helo 1.2.3.4\r\n");
154
155 // change to your email address (sender)
156 client.write("MAIL From: <plant@yourdomain.com>\r\n");
157
158 // change to recipient address
159 client.write("RCPT To: <you@yourdomain.com>\r\n");
160

Continues

186 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 186

Listing 10-1 continued

161 client.write("DATA\r\n");
162
163 // change to recipient address
164 client.write("To: You <you@yourdomain.com>\r\n");
165
166 // change to your address
167 client.write("From: Plant <plant@yourdomain.com>\r\n");
168
169 client.write("Subject: I need water!\r\n");
170
171 if (firstEmail == true) // First email
172 {
173 client.write("I'm thirsty!\r\n");
174 }
175 else
176 {
177 int i = random(4);
178 if (i == 0)
179 client.write("You don't love me any more, do you?\r\n");
180 if (i == 1)
181 client.write("All I know is pain...\r\n");
182 if (i == 2)
183 client.write("I would have watered you by now...\r\n");
184 if (i == 3)
185 client.write("My suffering will soon be over...\r\n");
186 }
187
188 client.write(".\r\n");
189
190 client.write("QUIT\r\n");
191 client.stop();
192
193 return true;
194 }

This sketch has four functions: the setup() and loop() that are present in

every sketch and two others, getDht11Humidity() and sendEmail().

At the start, the sketch includes two libraries: WiFi.h and WiFiClient.h. On

lines 4 and 5, two pins are defi ned: the pin connected to the DHT11 data pin and

the pin connected to an LED. On line 7, another pin is defi ned: MINHUMIDITY. This

is the value that will be used as a warning level for the sensor; if the humidity

falls below this level (expressed as relative humidity), the user will be warned.

On lines 9, 10, and 11, three variables are defi ned as char arrays. These need

to be changed depending on your network setup; they are the SSID the Arduino

will connect to, the password to use, and the SMTP server that will be used to

send e-mails.

On line 13 is a variable: thirsty. This is a boolean: true if the plant needs

water, and false if the dirt has enough humidity. Finally, you have an int named

status. This is the status of the wireless connection and will be used later.

 Chapter 10 ■ WiFi 187

c10.indd 09:53:23:PM 07/13/2017 Page 187

setup() is declared on line 19. setup() needs to do several things: confi gure

the serial port for debug messages (line 21), set the LED pin correctly and turn

the LED on (line 26), test to see if a WiFi shield is connected (line 30) and attempt

to connect to a wireless network (line 37). It loops until the sketch connects to

the designated network. When it does, the LED is turned off, and a message is

sent to the serial port.

loop() is declared on line 53 and does one simple task. It gets a humidity

reading from the DHT11 (on line 56), prints out the data to the serial port (line

59), and then calculates if the sensor reading is less than the minimum humid-

ity level. If it has, then the plant is thirsty, and the user is warned. It sends out

a message to the serial connection on line 58 and then calls a function: sendE-

mail(). Finally, the variable thirsty is set to true. If the minimum humidity

level has not been reached, the plant is probably happy as it is, and the thirsty

variable is set to false, telling the sketch that all is well. Finally, a delay() tells

the Arduino to wait for one-half an hour before taking another reading.

setup() and loop(), required by all Arduino sketches, have been written, but

two more are required; one of them reads in data from the DHT11 and reports

the humidity level, and the second one sends an e-mail. The fi rst function is

getDht11Humidity(). This function is responsible for initiating communications

with the DHT11, requesting data, receiving that data, and parsing part of it. It’s

a complicated function, but don’t worry; it isn’t that hard.

First off, there needs to be some variables to manipulate and hold data from

the sensor, an array named data, and two bytes named mask and idx. To request

a sample from the DHT11, the data line must be pulled low for at least 18 mil-

liseconds and then set high. This is done on line 89 by setting the pin as an

OUTPUT. It is pulled LOW; then a delay() function waits for 20 ms before setting

the pin HIGH again. The sketch waits for 40 microseconds and then switches the

DHT pin to INPUT. The DHT11 can now transmit data.

First, the DHT confi rms that it has received an order by replying with an

ACK. According to the datasheet, when the DHT11 is ordered to send data,

it fi rst responds by fi rst driving the data pin low for 80 μS, and then high for

80 μS. It then again pulls the data pin low, ready to send data. This is its way of

acknowledging the order, and informing the microcontroller that it will soon

send data. The sketch waits until the line is set HIGH, and then it waits again

until the line is pulled LOW. This is done on lines 98 and 104. Both portions of

the sketch have a time-out; if 255 cycles have passed, the sketch reports a time

out. The 255 cycles correspond to more than 80 μs, so if the time out occurs,

there was indeed a problem; the ACK wasn’t sent.

On line 110, a for loop is created. When the DHT11 has fi nished acknowledg-

ing reception, it will send 40 bits of data. This loop repeats 40 times once for

each of the 40 bits the DHT11 should send. First, the pin is set LOW. Remember,

the DHT11 sends and receives on a single wire. Previously, the Arduino had

control of the wire, but when the signal was sent, it also signaled the DHT11

188 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 188

that it will be responsible for setting the state of the digital pin. To allow it to

do this, the pin must be set LOW, and now becomes an input.

The state of the input is read on line 114; as long as the pin is low, this por-

tion of the code repeats (unless a time-out occurs). When the line is set HIGH

by the DHT11, this is where the work starts. First, the current system clock

time is stored in a variable. This is the amount of microseconds the system has

been powered on. A while() loop is created on line 125 and repeats as long as

the pin is at a logical one, or HIGH. When the DHT sets the pin LOW, another

time reading is made, and the difference between the two is calculated. If the

data line was high for 24 μs, it was a logical zero. If the line was high for 70 μs,

it was a logical one. The Arduino can’t tell exactly when the pulse started and

when it stopped, but it can guess closely. The easiest thing to do is to split the

values: say, 40 μs. If the pulse were calculated as lasting more than 40 μs, the

DHT11 sent a logical one; otherwise, it sent a logical zero. This is done on line

131. Afterward, the value is masked into the data buffer. Each bit is masked on

each byte, incrementing the bit until the byte is complete and then moving on

to the next byte.

So what is this NAN that is returned if something goes wrong? NAN is

short for Not A Number, and is a good way of returning an error message for

functions that expect numerical returns. If the function returns something that

is not a number, that means there was an error reading one of the return bits.

The DHT11 sends the relative humidity value as a byte, an int is created from

the fi rst byte sent to be returned to the main program This int will contain the

relative humidity, directly in percent.

Now, all that is left to do is to create a function to write e-mails. The function

is declared on line 144. On line 149, the WiFi client attempts to connect to an

e-mail server, on port 25. It uses an if statement, but checks for the result of

a function, and not a variable. The exclamation mark in front of the function

means NOT; it will execute the contents of the if statement if the result of the

function is NOT TRUE. If the connection is refused, the function returns false.

Despite what might be thought of the complexity of e-mails, the SMTP pro-

tocol is extremely simple. The user must fi rst authenticate, tell the server who

he is, who he wants to contact, and then send the data. That’s it! Almost… Some

servers will require authentication, this will be explained below.

This function has all the lines necessary for communication with an SMTP

server. You must specify your own “from e-mail”, the “to e-mail”, and a few

other parameters. Remember the firstEmail variable? This is where it is used.

If firstEmail is true, the sketch is sending its fi rst email, so a nice e-mail

should be sent. This is done on line 173. If the firstEmail variable is false, this

isn’t the fi rst time an e-mail has been sent to the user, and he probably needs a

gentle reminder. On line 177, a random number is generated, and then one of

 Chapter 10 ■ WiFi 189

c10.indd 09:53:23:PM 07/13/2017 Page 189

four messages are used. The user was warned, wasn’t he? Well, in that case, the

plant has the right to insist a little more by sending some different messages.

Finally, the client sends a message informing the SMTP server that it has sent

all the data required and then quits. The client.stop() function makes sure

that the Arduino disconnects from the SMTP server. The function then returns

true, informing the sketch that everything went well.

Exercises

The sendEmail() function sends all the required information to an SMTP server,

but SMTP servers also send information, including information that could be

useful in case of a disconnection (wrong e-mail, server full, and so on). Have a

look at the SMTP documentation, or a few examples of how SMTP servers work,

and add some functions to verify the data sent by the server. Many examples

are on the Internet, including some examples using Telnet with SMTP, which

might be a good place to start. An example of SMTP exchanges is available at

http://packetfury.net/index.php/en/Arduino/tutorials/251-smtp.

When placing a WiFi shield on the Uno, the internal LED is probably hidden.

Try adding an external LED to the device to show that an error has occurred,

and a second external LED to indicate the plant needs water.

While some SMTP servers will not require authentication, there are more and

more servers that do. This adds one additional step. A login requires three ele-

ments: the user login, the password (of course), but also a step to tell the server

what type of authentication you are requesting. The most common authentica-

tion is LOGIN. The server will request a simple login and password. To request

a LOGIN authentication, you must send a new line:

auth login

The server will respond with a strange line, something like this:

334 VXNlcm5hbWU6

So what is this? This is an encoded word, written in Base64. This is a way

of including special characters like accents and non-Latin letters in ASCII. You

must fi rst convert your login and password to Base64, using one of the numer-

ous web pages available. You can fi nd a Base64 encoder at http://packetfury

.net/index.php/en/Arduino/250-base64.php.

The exchange with the server will look like this:

Client: auth login
Server: 334 VXNlcm5hbWU6
Client: <login>

http://packetfury.net/index.php/en/Arduino/tutorials/251-smtp
http://packetfury

190 Part II ■ Standard Libraries

c10.indd 09:53:23:PM 07/13/2017 Page 190

Server: 334 UGFzc3dvcmQ6
Client: <password>

In your sketch, add some form of authentication, maybe like this:

client.write("auth login");
client.write("<Base64 login>");
client.write("<Base64 password>");

Summary

 In this chapter, you have seen how to install and use Arduino’s WiFi board, how

to scan for wireless networks, and how to connect to a wireless network. I have

shown how to read from a sensor using a single wire, and how to connect to an

SMTP server to send an e-mail. In the next chapter, you will see more about SD

cards: what they are, how they can be used, and how to read and write data to

and from these devices using an Arduino.

191

c11.indd 01:6:50:PM 12/09/2014 Page 191

This chapter discusses the following functions of the LiquidCrystal library:

 ■ LiquidCrystal()

 ■ begin()

 ■ print()

 ■ write()

 ■ clear()

 ■ home()

 ■ setCursor()

 ■ cursor()

 ■ noCursor()

 ■ blink()

 ■ noBlink()

 ■ rightToLeft()

 ■ leftToRight()

 ■ scrollDisplayLeft()

 ■ scrollDisplayRight()

 ■ autoscroll()

C H A P T E R

11

LiquidCrystal

192 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 192

 ■ noAutoscroll()

 ■ createChar()

The hardware needed to use the examples in this chapter includes:

 ■ Arduino Mega 2560

 ■ SainSmart LCD Shield

 ■ HC-SR04 ultrasonic distance sensor

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 11

download folder and is named Chapter 11.ino.

Introduction

For computers to be effective, they require two things: a way to input data and a

way to output data. Data output can be in several forms; sometimes, it is invisible,

communicating with other devices, such as safety systems in transportation.

They are busy keeping you safe, but you will never see them. Other forms are

slightly more visible: devices designed to turn on other devices, such as a timer

designed to turn on a coffee machine at a particular time. They have the capac-

ity to interact with the outside world but can be diffi cult to see.

Of all the human senses, sight is probably the most powerful. The best way

for a computer to communicate data to the user is visually. Lights are often used

for small quantities of data; a small light on your television set can tell you if it

is receiving information from a remote control, and the amount of devices that

tell you if they are powered with a simple red light is staggering. When more

data needs to be displayed, other methods need to be used.

One of the most frequently used methods of displaying data is the liquid

crystal display. Liquid crystal displays (or LCDs for short) can be found in digital

watches, calculators, agendas, and vending machines, and the same technology

is used for computer screens. They get their name from the thin fi lm of liquid

crystal contained inside the screen, wedged between two conductive plates.

When in their natural state, the crystals inside the liquid are twisted, and light

can pass through. When the crystals are subjected to an electrical current, they

untwist, blocking the light. This makes the portion of the screen black.

LCD technology is fast and reliable, and uses little energy. Solar powered

calculators allowed the user to make calculations with a minimal amount of

light, and the solar panel was more than suffi cient to power the processor and

the LCD screen.

The earliest LCD screens were used to display numbers, typically for pocket

calculators or wristwatches. To simplify the design, a format was created, one

that allows the display of all numbers from 0 to 9. When decimal points were

http://www.wiley.com

 Chapter 11 ■ LiquidCrystal 193

c11.indd 01:6:50:PM 12/09/2014 Page 193

added, it became the perfect screen for calculators. An example is shown in

Figure 11-1.

Figure 11-1: LCD screen of a calculator, displaying numbers

Although this works great for numbers, it doesn’t work as well for letters. Some

letters can be approximated, and some words can be guessed. Hands up; how

many of you used calculators to write words? For example, entering 77345993

on a calculator and turning it upside down for EGGSHELL? I did.

To allow letters to be printed, the previous system was modifi ed, adding

more segments. This did indeed work, even if it increased the complexity of

the LCD screen and the electronics needed to control it. It still wasn’t perfect,

and some letters were slightly diffi cult to read: for example, the letter V. Also,

it did not allow for uppercase and lowercase letters to coexist; only uppercase

letters were displayed and not every lowercase letter could be easily displayed.

An example is shown in Figure 11-2.

Figure 11-2: LCD screen showing text

194 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 194

Electronics became smaller and smaller, while still becoming more and more

powerful. New production techniques allowed LCD screens to become more

and more advanced, and a new generation was born.

Modern LCD screens can display numbers and letters: both uppercase and

lowercase. Much like the fonts on a computer screen, text and numbers can be

written using a matrix of dots. By creating a simple matrix of 5 x 7 points, every

single letter in the Latin alphabet can be displayed, and this even works on other

alphabets. The downside to this is the complexity of the electronics involved

to create connections for a matrix of 5 by 7 squares for every letter required,

but most displays come with an integrated controller making the task much

easier. Just tell the display what you want to print, and the controller does all

the hard work for you.

This type of LCD screen does not talk about resolution. A typical desktop or

laptop screen talks about a resolution in pixels, but these screens talk about the

number of letters; 16 x 2 means 16 letters on two lines. It does not talk about

resolution because this isn’t how these screens work; they are composed of sev-

eral small 5 x 7 screens, but with space between each segment. It isn’t possible

to display graphics on this type of screen.

LiquidCrystal Library

The Arduino LiquidCrystal library has been designed specifi cally for one con-

troller: the Hitachi HD44780. Numerous boards exist with this controller, and

it is so popular that other controllers also have HD44780 compatibility.

Before using the library, it must fi rst be imported. To import the library, go into

the Arduino IDE, and select the menu Sketch ➪ Import Library ➪ LiquidCrystal.

Alternatively, you can manually add the header fi le into your sketch:

#include <LiquidCrystal.h>

To use the LiquidCrystal library, you must fi rst create a named LiquidCrystal

object. Numerous parameters are required, and values depend on the device

that you will be using.

LiquidCrystal lcd(rs, enable, d4, d5, d6, d7);
LiquidCrystal lcd(rs, rw, enable, d4, d5, d6, d7);
LiquidCrystal lcd(rs, enable, d0, d1, d2, d3, d4, d5, d6, d7);
LiquidCrystal lcd(rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7);

The rs parameter is short for Register Select and indicates the pin that is con-

nected to the LCD’s RS input. The enable parameter allows selection of the LCD

device and indicates the pin that is connected to the LCD’s ENABLE connector.

 Chapter 11 ■ LiquidCrystal 195

c11.indd 01:6:50:PM 12/09/2014 Page 195

The r/w parameter is an optional parameter used to indicate if the Arduino is

reading from or writing to the LCD screen. Some applications will write only

to the LCD screen, in which case the R/W pin can be omitted. Otherwise, it

must be connected to the LCD’s R/W pin.

The remaining parameters are the data pins. Two options are available: either

selecting four data pins or eight. This means that data sent to or received from

the LCD controller is either in 4-bit mode or 8-bit. Originally, all data was writ-

ten in 8 bits, but 4-bit mode allows programmers to send two 4-bit messages to

be interpreted as an 8-bit message. This allows the designer to save four digital

I/O pins when designing devices.

N O T E There are several misunderstandings about the diff erence between 4-bit

mode and 8-bit mode. One of them is about speed. It is indeed “faster” to send a

single 8-bit message instead of two 4-bit messages, but with more than 90 percent

of alphanumeric LCD screens, speed is not an issue. They have a relatively low refresh

rate, meaning that it is possible to send an entire 2 x 16 message to the LCD screen

before it has time to refresh the screen, even when using 4-bit mode.

When the LiquidCrystal object has been correctly created, it is necessary to

initialize it. This is achieved with begin().

lcd.begin(cols, rows);

This function requires two parameters: the amount of columns and rows

that the LCD device supports. Typical LCD screens are 2 x 16, but numerous

models exist, and it isn’t possible to ask every device what size they are. This

information must be given.

Writing Text

The main function of an alphanumeric LCD screen is, of course, to display text.

Because these screens have a built-in microcontroller, they perform almost

exactly like serial terminals. When you send ASCII text to the controller, it prints

those characters to the LCD screen. Just like a serial console on your computer,

it continues to display those characters until you send more text than can be

displayed, or until you send it an instruction.

To write text directly to the LCD screen, use print().

result = lcd.print(data);
result = lcd.print(data, BASE);

The data variable is of any data type; typically this would be a chain of

characters, but it can also be numerical data. If it is numerical data, it will be

196 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 196

printed as decimal by default, but this can be confi gured using the optional

BASE parameter by selecting one of BIN, DEC, OCT, or HEX. This function returns

a byte, the number of bytes written to the LCD device.

To print a single character, use write().

result = lcd.write(data);

The data parameter is a character that will be printed to the LCD. This func-

tion returns a byte; the number of bytes written to the LCD device (in this case,

either 1 if successful, or 0 if there was an error).

To clear the screen, call clear().

lcd.clear();

This function takes no parameters and does not return any information. It

sends a command to the LCD microcontroller to erase any text on the screen

and to return the cursor to the top-left corner.

Cursor Commands

Cursor functions work similarly to the cursor on a spreadsheet; you may set

the cursor to be at any position, and the text you enter will be printed at that

position. By default, the cursor is set at the top-left side of the screen when ini-

tializing and will be updated to be placed at the end of any text that you write.

When adding text to the display (by using multiple print() calls, for example),

it will be added to the end of the line. So, for example:

lcd.print("Hello, ");
lcd.print("world!");

These two lines will result in printing a single line: “Hello, world!” This is

useful when calling print() several times if displaying numerical values:

lcd.print("Temperature: ");
lcd.print("temp, DEC");

However, you can return the cursor to the top-left of the screen using home():

lcd.home(); // Returns the cursor to row 0, column 0

You can also place the cursor precisely where you want using the setCursor():

lcd.setCursor(col, row);

By default, the cursor itself is invisible. To make it visible (as an underscore

at the position where the next character will be printed), use cursor():

lcd.cursor();

 Chapter 11 ■ LiquidCrystal 197

c11.indd 01:6:50:PM 12/09/2014 Page 197

To disable the cursor again, use noCursor():

lcd.noCursor();

These two functions do not take any parameters and do not return any data.

To display a blinking cursor, use blink():

lcd.blink();

To hide the blinking cursor, use noBlink().

lcd.noBlink();

Using cursor() or blink()may produce unexpected results; the exact results

depend on the screen’s manufacturer. Consult your documentation.

Text Orientation

Text can be oriented both left to right and right to left. By default, LCD alpha-

numerical displays are confi gured to be left to right. On startup, the cursor is

placed at the far left, and each character makes the cursor move one step to the

right. To confi gure the LCD screen to be in right-to-left confi guration, use this

function:

lcd.rightToLeft();

This function takes no parameters and returns no data. To change the orien-

tation back to left to right, use the following function:

lcd.leftToRight();

Neither function affects previously written text, and the cursor’s position is

not updated.

Scrolling

LCD displays are used on numerous devices; they are cheap and reliable. You

see them often on cash registers in supermarkets; an LCD device can tell you

what item the cashier has just scanned and the cost of the item. At the end, it

gives you the grand total to double-check with your calculations. Assuming that

you want to print the total and that you need room for two decimal places, a

decimal point, a dollar sign, and the remaining room for digits, then a standard

16 x 2 LCD device can be used for some expensive shopping. Sixteen characters

are more than enough to display prices but become far too small if you want

to place your company name or even some text. “Thanks for shopping with

us; have a nice day!” is far too large for a 16 x 2 LCD screen, even on two lines.

198 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 198

So how can you print all that? The answer lies with scrolling, pushing existing

characters out of the way for new text.

Text can be scrolled in two directions: left and right. The following functions

shift both the text and the cursor by one space, either left or right:

lcd.scrollDisplayLeft();
lcd.scrollDisplayRight();

Automatic scrolling enables a simpler approach; text is automatically shifted

when a character is printed to the screen. Automatic shifting can be done in both

left-to-right or right-to-left confi gurations and depends on the current position.

To enable autoscroll, call autoscroll():

lcd.autoscroll();

From here on, subsequent writes to the screen will result in previous char-

acters to be automatically shifted. To disable autoscroll, use noAutoscroll():

lcd.noAutoscroll();

Note that the cursor is also autoscrolled; this has the effect of always writing

new characters to the same position.

Custom Text

Alphanumeric LCD screens are widely used, and it is not possible to imagine

every use case before production. Although most simply display the time or

short text, some require more advanced use. Imagine a home wireless telephone;

the LCD screen is designed to print simple text, phone numbers, and why not

a menu system to confi gure the telephone, but the constructor also wanted to

add some information: the current battery level. It would be possible to display

the battery level as a percentage or simply to ignore the battery if it is more than

25 percent charged, but maybe you would like to create your own character,

something that resembles a battery. Maybe an elevator in a high rise building

has an intelligent system. If you want to go to fl oor 42, the elevator will tell you

to use a particular elevator. For example: Floor 42, →. The arrow will indicate

that you should use the elevator on the right. It is more visual than writing text

and might even be more economical to use such a solution because a smaller

screen can be used. LCD screens already have a large amount of characters

prerecorded, but there is still room for eight custom characters.

To create custom characters, an array of binary data must be created. This

data is arranged in eight lines of 5-bit binary data, like so:

byte smiley[8] = {

 B00000,
 B10001,

 Chapter 11 ■ LiquidCrystal 199

c11.indd 01:6:50:PM 12/09/2014 Page 199

 B00000,
 B00100,
 B00100,
 B00000,
 B10001,
 B01110,
};

Now, to attribute that data to a character, use createChar():

lcd.createChar(num, data);

The num variable is the number of the character; slots 0 to 7 are available.

The data parameter is the data structure you created previously. For example:

lcd.createChar(0, smiley);

Finally, to use the custom character, use write() specifying the byte to use:

lcd.write(byte(num));

Example Program

For this example, you build a distance sensor: a small device that displays the

distance of the closest object to the device. Distance sensors are found in daily

life; for example, they are used on building sites to know the distance between

two walls or by real estate agents to calculate the size of a room. They are also

used by robots to detect obstacles and used by cars in exactly the same way to

help you reverse into a tight parking space.

There are several ways to achieve this, but they all rely on the same principle:

bouncing waves. By emitting a certain frequency, the device calculates the time

taken to receive a “copy” of that wave. Imagine yourself in a large open space:

a stadium or in the mountains. When you shout, you wait for a small period

of time before hearing your echo. Sound has traveled from your mouth and

propagates. When it hits a solid surface, it refl ects and is dispersed in different

directions. Some of that sound returns to you, and your ears hear the sound.

By calculating the time it took to hear your echo and factoring in the speed

of sound, you can get a rough estimate of the distance. However, this doesn’t

work for small distances; the speed of sound is so fast that it is impossible for

a human to calculate the distances inside a house, but for electronics, it isn’t a

problem. The HC-SR04 is one device that can do this.

The HC-SR04 is an ultrasonic distance sensor, as illustrated in Figure 11-3.

Ultrasonic distance sensors are easily recognizable by their shape. When placed

on a robot, it looks like two “eyes,” and in a way, they are. One “eye” is an

ultrasonic speaker, and the second is an ultrasonic microphone. Ultrasound

200 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 200

waves are created, and the device calculates the time taken for those waves to

return to the device. This results in surprisingly accurate results and is good

for distances up to four meters away.

Figure 11-3: HC-SR04 Ultrasonic Sensor

The sensor has four pins: one for the power, one for the ground, one to issue a

pulse, and the fi nal pin to read the distance. The result is not in a binary format;

this pin will not output text or data in a serial fashion. Instead, the pulse length

is proportional to the time taken to receive a result. Fortunately, the Arduino

can handle this with a single command.

To allow the user to read the data easily, an LCD screen will be used. This

setup could easily be used with a serial device, but that doesn’t make sense. The

serial port displays text and so does an alphanumeric LCD screen. Only LCD

screens are signifi cantly more user-friendly.

This example uses a SainSmart LCD Keypad shield. This shield contains

a 16 x 2 LCD screen with a nice blue backlight. It contains all the electronics

necessary to use an LCD screen: power, the backlight control, all connected to

the Arduino on digital pins. It uses four data pins, and therefore will use 4-bit

commands. The example is not specifi c to this shield, but if you use a different

screen, make sure your code and wiring refl ects the necessary changes.

Hardware

The SainSmart LCD Keypad shield is a fairly large device. A normal 16 x 2

LCD screen is about as long as an Arduino Uno, and this shield covers the Uno

completely, making it diffi cult to add additional peripherals. For this reason,

the Arduino Mega2560 was chosen. It is longer than the Uno, and even with the

shield present, there are still a large amount of I/O pins available. The HC-SR04

ultrasonic distance sensor is a small device, and by chance, is exactly as wide as

 Chapter 11 ■ LiquidCrystal 201

c11.indd 01:6:50:PM 12/09/2014 Page 201

the extended digital outputs of the Arduino Mega2560. To create a self-contained

device, the sensor will be placed directly into the header pins, bypassing the

need for a breadboard. Let me explain.

By reading the datasheet of the HC-SR04, available at http://packetfury

.net/attachments/HCSR04b.pdf, you can fi nd the requirements for power-

ing the sensor: one pin for power and one ground connection. The maximum

current used by the sensor is 15 mA. The maximum power delivered by the

Arduino’s I/O pins can’t exceed 40 mA. That is more than double, a comfort-

able safety margin. The pin connected to the sensor’s VCC sets as output and

sets HIGH. The pin connected to the sensor’s ground also is an output but sets

LOW. Just as LED lights can be powered by an I/O pin pulled HIGH, the sensor

will be powered by these pins. Similarly, the ground can be an I/O pin pulled

LOW. The sensor will be suffi ciently powered by the board, but remember that

this is a prototype and designed for simplicity. It is possible to do what you are

about to do, but if you end up creating your own shield with an LCD screen

and ultrasonic distance sensor built in, it is good practice to route the shield so

that the sensor is powered by the main power, not powered by the Arduino.

W A R N I N G Don’t connect the sensor just yet! The reason for this is explained

later in this chapter when I talk about the sketch.

Software

The sketch is shown in Listing 11-1.

Listing 11-1: Sketch (fi lename: Chapter 11.ino)

1 #include <LiquidCrystal.h>
2
3 const int vccPin=40;
4 const int gndPin=34;
5 const int trigPin=38;
6 const int echoPin=36;
7
8 // Initialize the library with the numbers of the interface pins
9 LiquidCrystal lcd(8, 9, 4, 5, 6, 7);
10
11 void setup()
12 {
13 Serial.begin (9600);
14
15 // Set up the LCD's number of columns and rows
16 lcd.begin(16, 2);
17
18 // Configure the pins
19 pinMode(trigPin, OUTPUT);

Continues

http://packetfury

202 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 202

Listing 11-1: (continued)

20 pinMode(echoPin, INPUT);
21 pinMode(vccPin, OUTPUT);
22 pinMode(gndPin, OUTPUT);
23
24 // Trigger set to low
25 digitalWrite(trigPin, LOW);
26
27 // VCC and GND
28 digitalWrite(vccPin, HIGH);
29 digitalWrite(gndPin, LOW);
30
31 // Prepare LCD screen text
32 lcd.print("Distance");
33 }
34
35 void loop()
36 {
37 long duration, distance;
38
39 digitalWrite(trigPin, HIGH);
40 delayMicroseconds(10);
41 digitalWrite(trigPin, LOW);
42
43 duration = pulseIn(echoPin, HIGH);
44 distance = duration / 58;
45
46 // Set the cursor to column 0, line 1 (beginning of second line)
47 lcd.setCursor(0, 1);
48
49 if (distance >= 400 || distance <= 0)
50 {
51 // Inform the user that we are out of range
52 lcd.print("Out of range");
53 }
54 else
55 {
56 // Tell the user what distance has been detected
57 lcd.print(distance);
58 lcd.print(" cm "); // Extra space overwrites any text
59 }
60
61 // Wait for half a second before repeating
62 delay(500);
63 }

From the start, on line 1, the LCD library is imported. Afterward, four pins

are defi ned as constants: vccPin, gndPin, trigPin, and echoPin. These pins

correspond to the pins found on the HC-SR04 sensor board. The vccPin and the

 Chapter 11 ■ LiquidCrystal 203

c11.indd 01:6:50:PM 12/09/2014 Page 203

gndPin are the power pins, and trigPin and echoPin are the data pins. Later,

trigPin will be an output, and echoPin will be an input.

On line 9, the LCD display is confi gured, creating an lcd device. This function

uses six parameters, which tell the sketch that it will use four data lines and

does not use the optional read/write parameter. It is called using six integers:

8, 9, 4, 5, 6, and 7. The fi rst value corresponds to the RS pin. On the SainSmart

LCD Keypad shield, RS is pin 8. The second value is the enable pin, and this is

wired to pin 9. Finally, 4, 5, 6, and 7 are the data pins. As with the rs and enable

pins, these are hardwired on the shield.

On line 11, setup()is declared. On line 13, the serial port is initialized. It isn’t

used in this example, but it is ready in case you need to start debugging your

application. The LCD device is already activated, but the sketch knows only what

pins the LCD device is connected to. It still doesn’t know how many lines and

columns the device has. This is done on line 16 with begin(); it has 16 columns

and two lines. On lines 19 to 24, the four pins for the sensor are confi gured. One

pin, echoPin, will be confi gured as INPUT, and the three others will be OUTPUT.

On line 25, the trigger pin is set LOW. On line 28, the vccPin is set HIGH; it will

now supply 5 V. On line 29, the gndPin is set LOW; it is now a ground connection.

Finally, on line 32, some text is sent to the LCD device: one word—“Distance.”

This is printed at the default cursor position: (0,0), located at the top-left corner

of the screen. This text will be present at all times, and the text on the second

line will be updated in loop().

On line 35, loop() is declared. This is where all the sensor reading and text

writing takes place. It starts by declaring two variables: duration and distance.

The HC-SR04 requires a pulse on the trigPin pin of at least 10 microseconds.

To do this, the sketch fi rst sets trigPin HIGH, waits for 10 microseconds using

delayMicroseconds(), and then sets trigPin to a logical LOW.

After receiving a pulse, the HC-SR04 starts working. It emits a number of

ultrasonic bursts and listens to the results. After the distance has been calcu-

lated, the result is returned via the pulsePin, a variable length pulse. So how

can the Arduino know how long the pulse is? The answer is simple: pulseIn().

This function was presented in Chapter 4. Put simply, it waits for a pulse to

appear on the designated pin. It waits for the logic level to change and then

starts counting. When the logic level changes back to its original setting, it stops

counting and returns the length of the pulse in microseconds. This is done on

line 53, placing the result into a variable: duration. On line 54, a small calcula-

tion is made; the variable duration is divided by 58. This value comes from the

sensor’s documentation. Divide the number by 58 to get a result in centimeters

and by 148 to get the result in inches. Now that you have the distance, it is time

to print the results.

The results will be printed on the second line of the LCD screen, so the

coordinates must be set. This is done on line 47; the position is set to column 0,

204 Part II ■ Standard Libraries

c11.indd 01:6:50:PM 12/09/2014 Page 204

line 1. Remember, most numbers start with 0, so this is actually on the fi rst

column on the second line. The HC-SR04 can give results up to 4 meters away;

values greater than that will be ignored. A quick check is done on line 49 with

an if() statement. If the result is greater than 400 centimeters or if the result is

negative, the sketch writes “Out of range” if the distance value is out of range.

If it is not out of range, the value is printed. This is done in two steps: fi rst, the

decimal value is displayed. Afterward, some text is displayed with a leading

space and several spaces after the text. Why? Because if the previous text were

“Out of range,” the end of that text would still be visible. Writing text on a line

does not automatically delete all the text at the end of the line. Just like using

the insert function in a word processor, each keypress deletes one character and

inserts the character you want in that text, but it does not delete text afterward.

To make sure that no trailing text is displayed, several spaces are included.

The last thing that happens is waiting for one-half a second before repeating

the process. This is done on line 62. Figure 11-4 shows the fi nished product.

Figure 11-4: The finished product

N O T E It is vitally important to double-check the Arduino before connecting com-

ponents. It is tempting to connect the sensor before uploading the sketch to the

Arduino, but what would happen if the previous sketch used the I/O pins for some-

thing else? In the worst case, the VCC and GND pins could be inverted, essentially

reversing the polarity of the component, damaging or destroying it. I have a dozen

Arduino boards at home, and it is impossible to remember exactly which board has

which sketch. Remember to upload the proper code of your Arduino before connect-

ing external devices.

 Chapter 11 ■ LiquidCrystal 205

c11.indd 01:6:50:PM 12/09/2014 Page 205

Exercises

This sketch gives surprisingly accurate results with inexpensive hardware, but

a few quick tricks might make this sketch even better. It is currently written for

the metric system, using centimeters. You could change the output to meters

when the distance value is more than 100. For people using the imperial system,

the sketch can be modifi ed to print the data in inches, not in centimeters.

One good way of changing between inches and centimeters would be to

use something that the SainSmart LCD Keypad shield already has: a keypad.

Look at the documentation; the keypad is an analog device connected to

pin A0. When the keypad is pressed, the voltage on A0 changes, and that is how

the sketch knows that a button has been pressed. Try to create something that

would change the output when one of the buttons is pressed. analogRead()

would be useful here for reading the results of keypresses.

Summary

In this chapter, you have seen not only how to connect liquid crystal displays,

but you have learned how to create special characters for your device, and how

to display data onto the screen. In the next chapter, I will show you the SD

library, how it talks to SD cards, and how it can be used to read and write data

to a card. You will see a data logging application that will allow you to write

thousands of samples to a card, and how to read them back .

207

c12.indd 01:7:14:PM 12/09/2014 Page 207

This chapter discusses the following functions of the SD library:

 ■ begin()

 ■ open()

 ■ exists()

 ■ close()

 ■ read()

 ■ peek()

 ■ position()

 ■ seek()

 ■ size()

 ■ available()

 ■ print()

 ■ println()

 ■ write()

 ■ mkdir()

 ■ rmdir()

 ■ flush()

 ■ isFolder()

C H A P T E R

12

SD

208 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 208

The hardware needed to run the examples in this chapter includes:

 ■ Arduino Uno

 ■ Ethernet shield (Arduino, SainSmart, or similar board)

 ■ Micro-SD Card

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 12

download folder and the fi lename is Chapter12.ino.

Introduction

The hunger for storage has increased exponentially. Early computers did not

have hard drives; the operating system and applications were stored on a fl oppy

disk. The fi rst commercially available fl oppy disk was an 8-inch disk, which

became available in 1971. It could store an enormous 175 KB of data. In 1976, the

standard became 5 ¼ inch (ironically known as the minifl oppy). The original

model could store 87.5 KB, but newer models could store more than 1 megabyte.

The large slots on your desktop computer that house a DVD drive or Blu-ray

drive are that size because of fl oppy disks; the size of the minifl oppy disk drive

became standard.

As technology advanced, so did the storage capacity of disks, and 5 ¼-inch

disks were considered too big; the computer industry turned to 3 ½-inch fl op-

pies, known as micro-fl oppies. Early models could store 360 KB, but later models

could either be single density (720 KB) or double density (1.44 MB). Those are

the disks that powered the computer industry, storing and exchanging data.

Operating systems were sold on fl oppies, and the fi rst thing that users were

told to do was to copy this fl oppy and keep the original safe. A single fl oppy

disk was more than enough to hold an operating system and a few programs.

Figure 12-1 shows examples of three different types of early fl oppy disks.

Figure 12-1: Floppy disks

http://www.wiley.com

 Chapter 12 ■ SD 209

c12.indd 01:7:14:PM 12/09/2014 Page 209

Technology continued to advance, and more and more fi les were created

digitally. Businesses could fi nd themselves submerged with fl oppies, and data

retrieval could be extremely slow because a lot of time was taken fi nding the

right fl oppy. Also, fl oppy disks were not the most reliable medium possible.

(Older readers might remember the infamous Abort, Retry, Ignore message.)

The solution came, and it was called the hard drive.

A hard drive is, essentially, a fl oppy disk that cannot be removed. Original

models could hold just a few megabytes, but it didn’t take long to increase stor-

age space—from 20 megabytes to 40, 120, 340, 540.... The gigabyte barrier was

broken in the early 1990s. However, this was not the end of fl oppies, far from it.

Operating systems and programs were still sold on fl oppies, and backups used

fl oppy disks. However, another problem was noticed.

With the advance into the digital era, everything ended up on a computer—

letters, books, photos, images, and music. It was easy to add a few hard drives

onto a computer until internal space ran out, but the industry’s main problem

was data exchange; the ability of transferring data from one computer to another.

A simple Word document could be just a few kilobytes in size, but add a few

images or photos, and it could become bigger than a fl oppy disk, the only medium

used to transfer data from one location to another. The Internet wasn’t available

everywhere and most certainly not at the speeds required to transfer megabytes

of data. We would have to wait a few years for high-speed devices like USB. I

can remember receiving parcels containing dozens of fl oppy disks containing

programs. (Windows 3.1 came on 7 fl oppy disks; Windows NT 3.1 came on 22.)

CD drives offered a solution, the medium is capable of storing 650 to 700

MB of data. Applications could be shipped on a single CD, and the increase

in size meant that applications became more and more multimedia-oriented.

Microsoft Encarta was a revolution for its time—an entire encyclopedia on a

CD. However, it wasn’t the most effective data transfer device possible, being a

write-once read-many media. After a CD was “burned,” it couldn’t be erased.

Different techniques were used, including the possibility to rewrite CD media,

but a new technology put a stop to all that.

The Universal Serial Bus (USB) is an extension for PCs and mobile devices.

Developed in the mid-1990s, the fi nal USB 1 specifi cation was released in January

1996. Until USB, shopping for peripherals was a nightmare. A printer would use

a parallel port, but so would a scanner and a Zip drive. A mouse might use a

serial port, but so would a modem and a programmer. Expansion ports were

sold, adding serial ports, parallel ports, PS/2 ports, and so on. USB revolutionized

all this—printers, scanners, mice, modems, even some fl oppy drives. All these

peripherals could use USB, and it was embraced by the industry. However, the

industry was about to try something else. In the year 2000, the fi rst USB fl ash

drive was created, as shown in Figure 12-2.

210 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 210

Figure 12-2: USB flash drives

The fi rst commercial product could hold 8 MB of data, more than fi ve times

that of a fl oppy disk. It was solid and robust, and could survive spending days

in a pocket, falling off desks, or being subjected to temperature differences. It

had a high transfer speed compared to fl oppy disks (1 MB/second) and was

better than fl oppies in almost all fi elds.

In 2000, USB 1.1 was surpassed by USB 2.0, adding higher transfer speeds.

USB 2.0 could transfer up to 35 MB/s; huge fi les could fi nally be transferred

quickly and effi ciently. A second generation fl ash disk used USB 2.0, which was

signifi cantly faster than USB 1.1—approximately 20 times faster.

Speed increased and so did storage capacity. Every so often, capacities doubled.

Sixteen-megabyte versions were soon available, replaced by 32 megabytes, and

so on. Fourteen years later, terabyte-sized fl ash drives are available. Despite their

huge growth and advances, fl ash drives have remained relatively unchanged.

They rely on a small controller and fl ash memory.

Flash memory is different from fl oppies and hard drives. Floppy disks have

a thin, fl exible disk of magnetic storage plastic, encased in a rigid plastic case.

A motor inside the disk drive turns the disk, and heads are placed above the

surface of the disk. To fetch data, the heads are placed at a specifi c location and

the motor turns the disk. The heads read the data stored on the disk, but the

 Chapter 12 ■ SD 211

c12.indd 01:7:14:PM 12/09/2014 Page 211

heads must wait for the disk to rotate to the right position to do so. Hard drives

function in the same way, only the motor is included inside the drive.

Both fl oppies and hard drives are susceptible to damage; for example, a hard

drive falling from your pocket might destroy the device. Flash memory works

differently. Unlike fl oppies and hard drives, fl ash memory has no moving parts,

and is therefore much more resilient to shocks and impacts. It requires very

little energy to function, and some forms of fl ash memory have read and write

speeds far greater than the fastest hard drive available.

USB fl ash drives still aren’t the answer to our needs. We can now easily

transfer data from one computer to another, but mobile devices are becoming

more and more present. Mobile telephones, digital cameras, camcorders, and

mp3 players all require storage. Early devices had a fi xed amount of storage,

and although it might have been more than enough for some, for others the

storage wasn’t close to being enough. My fi rst digital camera had 16 megabytes

of memory, more than enough for a quick photo shoot, but not enough for my

holidays. Users wanted choice, so companies turned back to a format that had

existed for as long as USB itself. Multiple mobile memory storage devices were

created, but the most dominant format is the SD card.

SD Cards

SD, short for Secure Digital, is an evolution over the previous MultiMediaCard

standard. The SD Card Association manages the format, specifi cations, and evo-

lutions, and uses a trademarked logo to enforce compatibility. If your device has

the same logo as the one on your SD card, you know that they will be compatible.

Physically, SD cards are available in three formats: standard size, mini, and

micro (see Figure 12-3). Today, most devices use either the standard size format

(for larger devices, like cameras, camcorders, and personal computers) or the

micro-size format (for smaller devices, such as e-book readers, telephones, and

mp3 players).

SD cards are not only used for data storage, but also for data transfer. You

can transfer photos from your camera either with a USB cable or directly by

taking out the card and connecting it to your PC. Some desktop computers have

an SD-card reader, as do many laptops. For micro-SD cards, you have several

choices. There are USB readers that can read several types of cards or USB

keys that can accept a micro-SD card and be used as a regular USB fl ash drive.

Adapters also exist to convert a micro-SD card into a standard full-size SD card.

212 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 212

 Figure 12-3: SD cards, micro-SD cards, and SD-card readers

Capacity

SD cards have gone through numerous changes to their specifi cation since their

release in 1999. The original SD specifi cation allowed cards with capacities up

to 2 gigabytes. When the 2 gigabyte barrier became a problem, SD-HC was

introduced. Short for SD High Capacity, it specifi ed a way of storing up to 32

gigabytes of data. It does not simply integrate more space; the protocol had to be

changed to allow for higher capacity. Again, the size barrier became a problem,

and SD-XC (for eXtended Capacity) was born. The standard insists that newer

formats accept older cards, but the opposite is not true; some SD-compatible

devices will not accept SD-HC cards, even if they can fi t physically.

The card capacity is only one factor. To use a card’s capacity, the system nor-

mally needs to use a fi lesystem. A fi lesystem is a way of preparing the space on

a physical storage medium (SD-card, fl oppy, or hard drive) to allow fi les and

folders to be stored in a hierarchal way. SD cards can be used to transfer data

between devices and operating systems with different specifi cations. From this

variety of formats, FAT has emerged as the most common fi lesystem.

 Chapter 12 ■ SD 213

c12.indd 01:7:14:PM 12/09/2014 Page 213

FAT, short for File Allocation Table, has been used since the early days of PCs.

It has undergone several changes over the years. The original FAT specifi cation,

FAT8, is no longer in use. FAT16 uses 16 bits to defi ne sector entries (a method

of storing fi le information) and is limited to 2 gigabyte partitions. FAT32 was

released after this, and storage space was theoretically increased to 2 terabytes;

although in practice, few systems used it beyond 32 gigabytes. Newer systems

use the exFAT fi lesystem, a new but incompatible fi lesystem that allows huge

storage capacity; in theory, up to 64 zettabytes. For comparison, in 2013, the

entire World Wide Web was estimated at 4 zettabytes.

FAT32 has been surpassed technically by several fi lesystems, including exFAT

and NTFS, but still remains in use for its simplicity. NTFS adds several interesting

features such as journaling, linking, and quotas; features that are not required

by a digital camera. The code required to interact with a FAT32 fi lesystem is

extremely small, making it ideal for embedded systems.

Speed

There is also another factor to consider when choosing SD cards: their speed.

The SD Speed Class Rating is a simple way of understanding the minimum

speed of a card. Visible by either a letter C with a number inside, it shows the

number of guaranteed megabytes-per-second transfer speed. A Class 2 card

(A C with the number 2 inside) guarantees that the write transfer speed will

not drop below 2 megabytes per second. A Class 10 will not drop below 10

megabytes per second. The newer speed category is shown by the letter U, and

to date, two categories exist. UHS-1 (a U with the number 1 inside) guarantees

read/write performance of 10 megabytes a second, and UHS-3 (a U with the

number 3 inside) is guaranteed for 30 megabytes read/write per second. Please

note that these fi gures are stated only as a minimum; some Class 2 cards are

more than capable of being branded as a Class-6 or higher but have not gone

through certifi cation.

Using SD Cards with Arduino

Arduinos cannot natively use SD cards; they need a shield or a breakout board

to provide an SD slot. Fortunately, several shields exist with SD capacity. Most

Ethernet and wireless shields provide micro-SD slots, and numerous vendors

provide datalogging shields—a shield with a micro-SD slot and space to add your

own sensor components, as shown in Figure 12-4.

214 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 214

Figure 12-4: A SainSmart Ethernet shield with a micro-SD slot

Accepted SD Cards

The Arduino SD library can work with SD and SD-HC cards, all the way up

to 32 gigabytes. This limitation is mainly due to the fi lesystem; Arduinos can

use FAT16 and FAT32 fi lesystems but cannot use the newer, proprietary exFAT.

SD-XC cards are normally formatted with exFAT, but some people have reported

using SD-XC cards formatted to FAT-32.

An Arduino can work with any speed classes of SD-cards, but data throughput

will be limited when writing with an Arduino. You may want to buy a faster

card if you transfer data to and from a PC.

Limitations

Back in the days of Windows 3.11, fi lenames were harder to deal with. They

were written in the 8.3 notation; fi lenames could consist of only 8 letters, and

the extension (the text after the dot), could consist of only three letters. The

fi lesystem did not differentiate between uppercase and lowercase letters for the

system; everything was written in uppercase letters. Files were seen as WIN

.COM, AUTOEXEC.BAT, and RECIPES.TXT. If you wanted to name a video

of your family on holidays on a tropical island, swimming in a crystal clear

sea, you had to be very creative. An extension to FAT allowed the use of LFN,

 Chapter 12 ■ SD 215

c12.indd 01:7:14:PM 12/09/2014 Page 215

short for Long File Names, but it is only an extension; it is not part of the FAT

 specifi cation. There is a reason why your camera names your photos IMG_xxxx.

JPG; it is probably limited to the 8.3 fi le-naming system. Arduinos also can

use only 8.3 fi lenames. This isn’t a problem for cameras where fi lenames are

just numbers, and it is rarely a problem for Arduinos where fi les are normally

confi guration, or data-logging.

Communications to and from the SD card are done via SPI. The SS pin (SPI

Slave Select) must be left untouched. The SD library will not work if the SS pin

is not confi gured as an output.

Numerous shields exist and do not always use the same pin to initialize the

SD card. The chip select pin can change from one design to another; consult

the shield documentation to know which pin to use when initializing the SD

card reader.

The SD Library

The Arduino language has an SD library built in. This library depends on three

other internal libraries that handle card and fi lesystem-specifi c functions, but

abstraction makes the library extremely easy to use. It is possible to use the other

libraries, which is explained briefl y in the “Advanced Usage” section.

Importing the Library

To be able to use the SD library, you must fi rst import it. This can be done either

automatically in the Arduino IDE by going to the Sketch ➪ Import Library ➪

SD menu item, or manually with this:

#include <SD.h>

Arduinos communicate with SD card controllers using the SPI protocol. Thus,

you must also import that library:

#include <SPI.h>

Connecting a Card

As with many Arduino libraries, to initialize the library, you must call SD.begin().

result = SD.begin();
result = SD.begin(csPin);

SD.begin() returns true if a card is detected and the library initialized;

otherwise, it returns false. The optional csPin argument is used to confi gure

216 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 216

which slave select pin should be used if your application does not use the default

hardware SS pin. Most shields will use the default hardware pin.

 // See if the card is present and can be initialized:
 if (!SD.begin(chipSelectPin)) {
 Serial.println("Could not initialize SD card.");
 // End the sketch gracefully
 return;
 }
 Serial.println("SD Card initialized.");

Opening and Closing Files

The SD library can create, update, and delete fi les on a FAT16/32 fi lesystem. The

SD library (and indeed most programming environments) does not differentiate

between creating a fi le and opening a fi le. The system is told to open a fi le. If

the fi les exists, it will be opened. If it does not exist, an entry is created, and a

new blank fi le is opened. To open a fi le, call SD.open().

file = SD.open(filepath);
file = SD.open(filepath, mode);

The filepath parameter, expressed as an array of char, is the name of the

fi le to use or to create. If the fi le does not exist, it will be created, but this func-

tion will not create folders. To specify a folder, use the slash (/) character.

The mode parameter can be one of two constants: FILE_READ or FILE_WRITE.

The FILE_READ constant tells the sketch to open the fi le as read only. This is

the default setting if the mode parameter is omitted. The FILE_WRITE constant

opens the fi le in read/write mode. SD.open() returns a File object, something

that describes and points to a fi le. It is used as a reference to read, update, or

close fi les. To open a fi le, you must fi rst create a File object, and then use that

object on subsequent fi le actions:

File myFile;
myFile = SD.open("data.dat", FILE_WRITE);

It is also possible to check beforehand if a fi le exists. To do this, use SD.exists().

result = SD.exists(filename);

This function tests to see if a filename exists and returns true if it exists or

false if it does not exist.

After you perform any read or write operations, you must close the fi le. This

is done using close() from the File class.

file.close();

 Chapter 12 ■ SD 217

c12.indd 01:7:14:PM 12/09/2014 Page 217

The File object is created when opening the fi le. This function takes no

parameters and does not return any data.

File myFile;
myFile = SD.open("data.dat", FILE_WRITE);
// Perform any read or write operations here
myFile.close();

Reading and Writing Files

Reading fi les is done with a pointer to a fi le position. By default, when a fi le is

opened, this pointer is set to the beginning of the fi le (byte 0). As each byte is

read in, the pointer increments, until it reaches the end of the fi le. You can set

the position of the pointer to any location inside the fi le.

Writing fi les is done by either appending data to the end of the fi le, no matter

where the pointer is located, or writing data at the fi le pointer location.

When reading and writing to a fi le, you will be using the File class, which

inherits from Stream, just like Serial does.

Reading Files

To read a byte from a fi le, use the read() function of the File class.

data = file.read();

This function returns 1 byte at a time (or −1 if no data is available) and auto-

matically updates the pointer. If you do not want the pointer to be updated,

you can call peek().

data = file.peek();

Its use is exactly the same as read(), returning 1 byte, but the pointer is not

updated. Several calls to peek() returns the same byte. To know the value of

the pointer (to know which byte is the next to be read), use position().

result = file.position();

This function does not take any parameters and returns an unsigned long

indicating the current position within the fi le. It is also possible to set the posi-

tion with seek().

result = file.seek(position);

This function attempts to set the fi le pointer to the value of position, defi ned

as an unsigned long. To know the size of the current open fi le, use size(). It

returns the fi le size in bytes as an unsigned long.

data = file.size();

218 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 218

To know if there are any more bytes available for reading, use available().

number = file.available();

This function returns the remaining bytes inside a fi le, as an int.

Writing Files

Three functions are used to write data to a fi le. print() and println() are used

in the same way as the Serial functions of the same name and write()places

bytes at the pointer position in the fi le.

print() and println() can be used to write formatted data: text and decimal

numbers, as well as binary, hexadecimal, and octal representations using the

optional base parameter. By specifying BIN as the base parameter, print will

write binary notation. Using OCT and HEX, print will write octal and hexadecimal

respectively. The difference between print() and println() is that println()

automatically adds a new line character at the end. Both of these functions

ignore the fi le pointer and append data to the end of the fi le.

file.print(data);
file.print(data, base);
file.println(data);
file.println(data, base);

The write() function is different. It can write data directly inside a fi le but

will not insert data; it will overwrite any data present if not at the end of the fi le.

file.write(data);
file.write(buffer, len);

The data parameter can be a byte, a char, or a string. The buffer param-

eter is a byte, array of char, or a String, and the len parameter indicates the

number of bytes to be used.

write(), print(), and println() also return the number of bytes written to

the buffer, but reading this is optional.

Folder Operations

If no directory is specifi ed, all operations are performed on the root folder of the

SD card. It is, however, possible to create folders and work inside those folders.

Folders are used in the UNIX fashion; paths are separated by forward slashes

(/), for example, folder/fi le.txt. All folders are named from the root folder; you

cannot "cd" into a folder without fi rst specifying the root folder(s).

 Chapter 12 ■ SD 219

c12.indd 01:7:14:PM 12/09/2014 Page 219

Folders and fi les are handled differently. When creating a fi le, you must “open”

the fi le, and the Arduino will create the fi le if it does not exist. This does not

work for folders; you must fi rst create the folder before creating the fi le.

To create a folder, use mkdir().

result = SD.mkdir(folder);

This function returns true if the folder was created, or false if the operation

did not succeed. It takes a string as a parameter and is the folder to be created

(complete with forward slashes). It can also create intermediate folders if required:

SD.mkdir("/data/sensors/temperature"); //Will create all folders

To remove a folder, use rmdir().

result = SD.rmdir(folder);

This deletes the folder from the fi lesystem but only on the condition that it

is empty. The function returns true if the folder were deleted, or false if it did

not complete the operation.

Folders are, in fact, special fi les. They can be opened with open(), but to know

if a “fi le” is a regular fi le or a directory, you can use the isDirectory() function.

result = file.isDirectory();

This function takes no parameters and returns a boolean; true if the fi le is a

folder, and false if the fi le is a regular fi le.

Card Operations

Data is buffered; that is to say that when the sketch is told to save data, that

data is not necessarily written to the SD card immediately. Because SD cards

have an embedded controller, write operations can be queued and the actual

write can be performed a few seconds later. When the SD embedded controller

receives multiple write operations, later write operations are often delayed until

the card has fi nished current operations. To force all data to be written to a fi le,

use flush().

flush(file);

This operation is also called automatically when a fi le is closed with close().

220 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 220

Advanced Usage

The SD library actually makes use of three internal libraries: Sd2Card, SdVolume,

and SdFile. All the functions present in the SD library are wrapper functions

that call different functions in these three libraries. The SD library follows the

Arduino philosophy, making it easy to do advanced functions. However, you can

still use these three libraries if you need access to even more advanced functions.

Sd2Card card;
SdVolume volume;
SdFile root;

There are numerous functions, and these functions are mainly out of the

scope of this book, but there are a few that may be of interest.

To get information about the card size, you can get data about the geometry of

the SD card—that is, the number of clusters and the number of blocks per cluster.

unsigned long volumesize = volume.blocksPerCluster();
volumesize *= volume.clusterCount();
volumesize *= 512;

On SD cards, blocks are always 512 bytes. You can get the amount of blocks per

cluster, and the amount of clusters on the card, giving you the card size, in bytes.

More utility functions are listed in the example program: CardInfo. It is avail-

able in the Arduino IDE: Files ➪ Examples ➪ SD ➪ CardInfo.

Example Program and Sketch

For this application, you build a data-logging application. The aim is to under-

stand how sunlight evolves during a day. For this, you will require several

components, but the sensor in this application is a light dependent resistor, or

LDR for short. An LDR will have variable resistance depending on the amount

of sunlight (or artifi cial light) it receives. The circuit for this example will require

a pull-down resistor in order to create a circuit known as a voltage divider. This

is illustrated in Figure 12-5. The voltage at Vin is always 5 volts, and depending

on the resistance of the LDR, the voltage at Vout will be somewhere between

the maximum of 5 volts and the minimum of 0 volts, depending on the light

being received.

When there is no light, the resistance or the LDR will be high, and the refer-

ence voltage will be closer to zero. When there is a lot of sunlight, the resistance

will be weak, and the reference voltage will be closer to 5 volts. This reference

is read by an ADC on the Arduino’s A3 pin. The ADC will compare the voltage

on the pin to the 5 Volts the Arduino runs off. It will return a value between 0

and 1023, and depending on the component you use, it is possible to calculate

the Lux value of visible light.

 Chapter 12 ■ SD 221

c12.indd 01:7:14:PM 12/09/2014 Page 221

LDR

0 V

5 V

10 KΩ

Figure 12-5: An LDR in a voltage divider setup

Knowing the present amount of light is not very useful; it would be better if

the data could be logged so that you can see the evolution of light levels dur-

ing the day. For that, data will have to be logged. You could use the built-in

EEPROM, but EEPROM storage is limited, and getting data back onto your PC

could be complicated. SD cards have much larger capacity and can easily be

removed from the Arduino and read on any computer. Also, using an SD card

has another benefi t; the resulting fi le can be formatted into a specifi c fi le type. For

this application, you can create a CSV fi le (short for Comma Separated Values).

This fi le can be imported directly into any spreadsheet application, allowing

you to use the data to create graphs.

The schematic will be simple; only a few components are required for this

operation, but this application does require a shield with SD capability. The

schematic is listed in Figure 12-6.

Figure 12-6: Project schematic (Image created with Fritzing)

222 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 222

As with most shields, the I/O lines remain accessible. You can plug in the

cables straight on the Ethernet shield, and they will work in exactly the same way.

Use the code in Listing 12-1 to write the sketch.

Listing 12-1: Sketch (fi lename: Chapter12.ino)

1 #include <SD.h>
2 #include <SPI.h>
3 const int chipSelect = 4; // Change this as required
4
5 int light;
6 int lightPin = A3;
7 unsigned int iteration = 1;
8
9
10 void setup()
11 {
12 Serial.begin(9600);
13
14 Serial.print("Initializing SD card...");
15 // Chip Select pin needs to be set to output for the SD library
16 pinMode(10, OUTPUT);
17
18 // Attempt to initialize SD library
19 if (!SD.begin(chipSelect)) {
20 Serial.println("Card failed, or not present");
21 // don't do anything more:
22 return;
23 }
24 Serial.println("Card initialized.");
25 }
26
27 void loop()
28 {
29 // Get a light level reading
30 light = analogRead(lightPin);
31
32 // Open the SD data file
33 File dataFile = SD.open("light.txt", FILE_WRITE);
34
35 // Has the file been opened?
36 if (dataFile)
37 {
38 // Create a formatted string
39 String dataString = "";
40 dataString += String(iteration);
41 dataString += ",";
42 dataString += String(light);
43 dataString += ",";
44

 Chapter 12 ■ SD 223

c12.indd 01:7:14:PM 12/09/2014 Page 223

45 // Print data to the serial port, and to the file
46 Serial.println(dataString);
47 dataFile.println(dataString);
48
49 // Close the file
50 dataFile.close();
51 }
52
53 // Increase the iteration number
54 iteration++;
55
56 // Sleep for one minute
57 delay(60 * 1000);
58 }

The sketch begins by importing the SD library and the SPI library. Three

variables and one constant are defi ned. The chipSelect constant should refer

to the pin that acts as the CS pin for the SD card on your board. On the Ethernet

board specifi ed at the beginning of this chapter, the SD card is connected to pin

4. Refer to the documentation of your shield if you’re unsure. This is the pin

that will be used to talk to the SD card. The light variable will hold the sensor

value from the LDR. The lightPin is the pin on which these readings will take

place. Finally, the iteration variable will show the number of readings; it will

be used to format your data in a spreadsheet.

setup() begins with confi guring the serial port for debugging, something you

are probably used to by now. On line 14, a status message is sent serially from

the Arduino, telling the user that the SD card is about to be initialized. The SD

card initialization is done on line 19, but before that, on line 16, the Arduino’s

default Chip Select pin (digital pin 10) is set as an output. This is required for

the SD library to work, even if the pin is not connected to your card. The SD

library will fail without this.

The SD card is initialized on line 19, by using the pin previously defi ned in the

chipSelect constant. If the SD card fails to initialize, but your card is correctly

formatted in FAT32, check to see if you are using the right pin number for your

board. If the initialization fails, the sketch will inform the user; otherwise a

message will be printed to the serial port informing that everything went well.

loop() starts on line 27. First, the sketch reads the value on the lightPin and

stores it in the light variable. When this data has been read in, it is time to open

the SD fi le. This is done on line 33; the sketch calls the fi le called light.txt.

If this fi le exists, it will be opened; otherwise, the fi le will be created. Because

the sketch uses the FILE_WRITE parameter, it will be opened for reading and

writing. The sketch then checks if the fi le has been opened on line 36. If it is

open, a String is created, and populated with data: the iteration variable and

the light variable, separated by a comma. On line 46, this string is printed to

the serial port, and then, using SD. println(), appended to the data fi le. After

this has been done, the fi le is closed, and all the data is fl ushed to the SD card.

224 Part II ■ Standard Libraries

c12.indd 01:7:14:PM 12/09/2014 Page 224

Why is the fi le closed after every write? It is good practice to close a fi le when

it is not needed, and it forces data to be fl ushed to the SD card. On embedded

systems, you do not know when the user may unplug the system. Leaving a

fi le open could potentially mean that data is left unwritten and therefore lost.

Closing the fi le ensures that data is written as soon as possible, and the SD card

is left in a clean state.

The result of this sketch creates a text fi le that can be imported into a spread-

sheet, like Excel or LibreOffi ce Calc. The results of a sunrise in my city are shown

in Figure 12-7. The ambient light level is already at 200 due to street lights, but

something happened at the 16-minute mark—the visible light suddenly dropped

down considerably, but only for a minute. This was probably the sensor being

blocked—probably by my cat—but it shows that surprises can happen!

Figure 12-7: Example data output

Summa ry

In this chapter, you have seen how to connect an SD card to your Arduino using

different methods, and how to initialize the card. I have shown how to read

and write data to the card, and how that data can be used later to give visual

results. In the next chapter, I will show you how to make an even more visual

impact using TFT scree ns.

225

c13.indd 01:7:32:PM 12/09/2014 Page 225

This chapter discusses the following functions of the TFT library:

 ■ TFT()

 ■ begin()

 ■ width()

 ■ height()

 ■ background()

 ■ text()

 ■ setTextSize()

 ■ point()

 ■ line()

 ■ rect()

 ■ circle()

 ■ stroke()

 ■ fill()

 ■ noStroke()

 ■ noFill()

 ■ loadImage()

 C H A P T E R

13

TFT

226 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 226

 ■ isValid()

 ■ image()

The hardware needed to use the example in this chapter includes:

 ■ Arduino Uno

 ■ LM35 Temperature sensor

 ■ Adafruit ST7735 TFT breakout board (available at http://www.adafruit

.com/product/358)

 ■ Micro-SD card

 ■ Breadboard

 ■ Connection cables

 ■ 10-kilohm resistor

 ■ Light Dependent Resistor

You can fi nd the code download for this chapter at http://www.wiley

.com/go/arduinosketches on the Download Code tab. The code is in the

Chapter 13 download folder and the fi lename is chapter13.ino.

Introduction

Computer enthusiasts love their hardware, and one of the most loved (and most

feared) devices is the humble monitor. When you talk about a monitor, some

people immediately think about a previous technology, known as CRT.

Cathode Ray Tubes (CRT for short) was the technology used by televisions

and monitors for decades. Put simply, it is an electron canon; a device at one end

blasts out electrons onto a fl uorescent screen. Large magnets divert the electron

beam to hit specifi c places on the screen, causing the screen to light up at distinct

points. Of course, electrons are highly susceptible to atmospheric impurities,

and even air, so the gun and the screen were encased inside a large glass shell

in a vacuum. To avoid becoming too fragile, the glass was often thick, and to

block most X-ray radiation, the glass used often was lead glass. Devices could

be made fairly small but were often deep. (In extreme cases, CRTs were as deep

as they were wide, but most were about one-half as deep as they were wide.)

They have been used as televisions, of course, but also on oscilloscopes, data

output, signaling, aircraft cockpits, and even as memory devices.

CRT screens could produce beautiful images but at a cost. The bigger they

were, the heavier they got. A 27-inch CRT TV could weigh more than 100 lbs

(40 kg). One of the largest and heaviest was a 40-inch screen that weighed in

http://www.adafruit
http://www.wiley

 Chapter 13 ■ TFT 227

c13.indd 01:7:32:PM 12/09/2014 Page 227

at 750 lbs (340 kg). If you wanted a big screen, you made sure you had friends

available to help you install it.

The arrival of LCD screens changed home theater technology at a speed

that has rarely been seen. LCD seems to have many advantages over CRT; it

is relatively cheap, lightweight, robust, and easier to recycle. Screens could

suddenly become bigger, but ironically, they could also become smaller. Large

CRT screens were impractical for their size, but similarly, who could honestly

imagine a mobile telephone with a CRT screen? Old mobile computers did have

CRT screens though. They weren’t the clamshell shape that you can see today;

rather, they were like large bricks. The keyboard came off the top, and on one

side was a CRT screen with fl oppy drives on the other. LCD screens not only

made mobile telephones possible, but also changed the way mobile computers

are used.

Technologies

Many screen technologies have been introduced since the introduction of LCD

displays, each generation addressing problems and inconveniences of the pre-

vious technology.

One of the fi rst changes was the introduction of passive matrix addressing.

This technology allowed a single pixel to be changed by addressing its x-and

y-coordinates, and pixels retained their state until ordered to change. This

technology was reliable but offered slow refresh rates and became impractical

as the screen resolution increased.

Dual Scan, known as DSTN (short for dual-scan supertwist nematic), gave

faster screen refresh rates but at the cost of sharpness and brightness. DSTN

screens were uncomfortable for watching fi lms; there was visible noise and

smears on these screens. I can remember taking a long-haul fl ight where a

new multimedia system was installed on every seat but using DSTN screens.

(Previously, fl ying was like going to a cinema, one large screen for a single

cabin.) The lack of screen comfort actually made me stop watching a fi lm and

prefer reading in-fl ight magazines.

TFT, short for Thin Film Transistor, is another technology for displays.

Originally, it was much more expensive compared to DSTN panels, but pro-

duction costs were reduced as demand increased. TFT allows for crystal clear

text and graphics, with superb colors. TFT panels are used in almost all mobile

devices and nonportable equipment such as televisions and computer monitors.

The ST7735 is an integrated circuit that can drive small-sized TFT displays

(128 x 160 pixels in size). An Arduino or other device can communicate with the

ST7735 which will talk to the screen. Because the driver has on-board memory

228 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 228

for storing a video buffer, once it sends commands to the chip, the Arduino’s

memory is free for sketches and variables.

ST7735-based LCD screens are available from a large number of manufactur-

ers. SainSmart, Adafruit, and Arduino sell LCD screens based on this device.

The controller can handle a large number of colors, up to 252,000 discrete

values (though the library isn’t capable of accessing all of them).

TFT Library

Arduino has its own TFT library capable of controlling small-factor TFT screens.

The TFT library is based on the hard work from Adafruit Industries. Adafruit

originally sold a board containing a TFT screen—the ST7735—and created two

libraries to accompany that device: one for the ST7735 and a graphical library

common to all its LCD TFT devices. The Arduino TFT library is based on the

ST7735 library and the Adafruit GFX library. The primary difference between

the Arduino and Adafruit libraries has to do with the way drawing commands

are called. The Arduino TFT library tries to emulate the processing program-

ming language for its commands. It “talks” via the SPI bus and is simple to use.

C R O S S  R E F E R E N C E SPI is presented in Chapter 7.

Initialization

To use the TFT library, you must fi rst import it and the SPI library. As it relies

on SPI for communication, it is imperative. This can be done automatically by

importing the library from the Arduino IDE (go to the menu Sketch ➪ Import

Library ➪ TFT), or import the library manually:

#include <TFT.h>

Next, the TFT object needs to be initialized. For this, it requires some infor-

mation: the different pins used to communicate with the controller. It requires

at least three pins: CS, DC, and RESET. The DC pin is for Data/Command and

tells the controller if the information being sent is data or a command. CS is

for Chip Select and is used by the SPI bus. The last pin is the RESET pin and it

resets the TFT screen if necessary. This can also be placed onto the Arduino’s

reset pin. The TFT object is initialized as follows:

#define TFT_CS 10
#define TFT_DC 9
#define TFT_RESET 8

TFT screen = TFT(TFT_CS, TFT_DC, TFT_RESET);

 Chapter 13 ■ TFT 229

c13.indd 01:7:32:PM 12/09/2014 Page 229

The ST7735 is an SPI device, and as such, it uses the SPI MOSI, MISO, and

CLK pins. These are already present on fi xed pins on the Arduino, so it is not

necessary to defi ne them. If necessary, you can use software SPI, in which case,

you need to defi ne the MOSI and CLK pins. While hardware SPI is signifi cantly

faster for drawing objects on the screen, sometimes you may have to use those

pins for other reasons. (MISO is not required for this controller.) Using software

SPI, you would be declare pins as follows:

#define TFT_SCLK 4
#define TFT_MOSI 5
#define TFT_CS 10
#define TFT_DC 9
#define TFT_RESET 8

TFT screen = TFT(CS, DC, MOSI, SCLK, RESET);

N O T E The Arduino Esplora has a socket that is designed specifi cally for TFT screens.

As such, it uses fi xed pins and is not initialized in the same way. For more information

on the Esplora, and how to use a TFT screen with the Esplora, see Chapter 21.

The last thing you need to do is to begin the TFT subsystem; to do this, use

the begin() function:

screen.begin();

This function does not take any parameters and does not return any data.

Screen Preparation

For most graphics to work, it is essential to know the screen’s size, that is, its

resolution. The resolution is the number of pixels wide and the number of pixels

high. Not all screens are the same size, both in terms of physical screen size

and pixels. It is not always possible to know the physical screen size, but you

can ask the library the screen’s resolution. There are two functions for this: one

that returns the screen height and one that reports the screen width. For this,

use width() and height().

int scrwidth = screen.width();
int scrheight = screen.height();

Neither of these functions take any parameters, and both return int val-

ues—the size in pixels.

Before using the screen, it is often necessary to clear the screen of any text and

graphics. Performing a screen wipe is good practice when initializing an LCD

screen. It might be a cold boot (where the system was powered off before use) in

230 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 230

which case the screen is probably blank, or a warm boot (where the system was

reset but was already powered) in which case there may be text and graphics on

the screen. To clear the screen of any graphics, use the background() function:

screen.background(red, green, blue);

This function requires three parameters: the red, green, and blue components

of the color to be used. The red, green, and blue parameters are int variables

and contain 8-bit color levels (from 0 to 255). The screen does not display colors

with full 8-bit colors per channel. The red and blue values are scaled to 5 bits

(32 steps each), while the green is scaled to 6 bits (64 steps). The advantage of

scaling these values in the library means that the Arduino can read in graphics

data with 8-bit components without the need to modify them.

Text Operations

The Arduino TFT library has support for text operations enabling you to write

text directly onto the screen without having to do any complicated calculations.

Writing text is as simple as specifying the text and the coordinates. The TFT

library does the rest.

To write text to the screen, use text().

screen.text(text, xPos, yPos);

The text parameter is the text to be written on the screen as a char array. The

xPos and yPos coordinates are integers and correspond to the top-left corner

of the text.

Computer screens use an x,y coordinate system, but unlike coordinates that

you see in mathematics, computer screens use a slightly different way. The ori-

gin or coordinate 0,0 is the top-left corner of a screen. The x-value increases the

further to the right it goes, and the y-value increases the further down it goes.

This is illustrated in Figure 13-1.

Figure 13-1: Computer screen coordinate system

 Chapter 13 ■ TFT 231

c13.indd 01:7:32:PM 12/09/2014 Page 231

Unlike in serial consoles, text written to the TFT screen does not wrap auto-

matically. That is to say, if the length of the text written to the screen is wider

than the screen’s width, it is not automatically put onto the next line. You must

be sure not to write too much data. Text written outside the screen is ignored.

Text can be printed in several sizes; for this, use setTextSize():

screen.setTextSize(size);

The size parameter is an int between 1 and 5. It corresponds to the height

of the text in pixels divided by 10: text size 1 is 10-pixels high, text size 2 is

20-pixels high, and so on. The size can go up to 5 for text that is 50-pixels high.

By default, text size is set to 1. This function does not change any text already

present on the screen but sets the size for all future calls to the text() function.

Basic Graphics

The Arduino TFT library also has functions for graphical operations: drawing

lines, circles, and dots. It is with these simple tools that you can create advanced

graphics, graphs, and interfaces.

The most basic of all drawing functions is the point. This simply places one

pixel at the specifi ed coordinates:

screen.point(xPos, yPos);

The xPos and yPos parameters are int values and represent the location of

the pixel to be drawn on screen.

The next drawing function is the line, which connects a pair of coordinates

to each other. It is called like this:

screen.line(xStart, yStart, xEnd, yEnd);

The xStart and yStart parameters are int values and specify the start coor-

dinates. The xEnd and yEnd parameters are also int values and specify the end

coordinates. A solid line is drawn between these two points.

You can create a rectangle with four lines, but Arduino offers a way to do

this automatically using rect().

screen.rect(xStart, yStart, width, height);

Just like line(), this function takes a pair of coordinates as int values that

corresponds to the top-left corner of a rectangle. The width and height param-

eters correspond to the width and height of the rectangle, in pixels. The lines

will be drawn parallel to the screen edges. All four angles will be right angles.

To draw circles, use circle():

screen.circle(xPos, yPos, radius);

232 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 232

The xPos and yPos parameters are int values and specify the center of the

circle. The radius parameter, also an int, is the radius of the circle to print, in

pixels.

Coloring

All the graphical functions take coordinates and parameters to defi ne their size

and shape but do not take parameters for color. This is done through different

functions. The philosophy is this: you tell the controller what color you want

to use, and all subsequent drawing will use that color.

Color functions aren’t used only for lines but also for any fi lled spaces. A rect-

angle can have one color for the lines defi ning its boundary, while the interior

of the rectangle could be a different color. By specifying a fi ll color, anything

present inside the rectangle would be erased by a solid color. The color can be

any RGB value. It’s also possible to declare no color, in which case the color is

“transparent”; where any existing pixels are left untouched.

This is accomplished using two functions: stroke() and fill(). To defi ne

the color of points and lines, use stroke():

screen.stroke(red, green, blue);

This function takes three int values; 8-bit values for the red, green, and blue

components. Again, these values are scaled down to what the TFT screen is

capable of displaying. When this function is called, no previous drawings are

modifi ed; only future calls to drawing elements will be affected. This function

works only on points, lines, and outline graphics for circles and rectangles. To

specify how to fi ll a circle or rectangle, use fill():

screen.fill(red, green, blue);

Again, it takes three int values: the red, green, and blue components expressed

as 8-bit values.

To set the outline color as transparent, use the noStroke() function:

screen.noStroke();

To set the fi ll color as transparent, use the noFill() function:

screen.noFill();

Graphic Images

If you were creating a weather station with graphic icons on an LCD screen,

it would be possible to create a basic geometric image representing the Sun.

Lightning would be a little more diffi cult to render and clouds are quite com-

plicated. It is much easier to use a ready-made image fi le to load and display

on the screen. The TFT library can do this off of an SD card.

 Chapter 13 ■ TFT 233

c13.indd 01:7:32:PM 12/09/2014 Page 233

Most modules and shields that use the ST7735 controller also have an SD-card

slot that can read micro-SD cards. They are an excellent way to store large amounts

of data like images. Because SD-card controllers use SPI and the ST7735 device

is also an SPI device, it is easy to combine the two; they both share the MOSI/

MISO/CLK lines. All that is needed is another slave select pin.

C R O S S  R E F E R E N C E SPI is explained in more detail in Chapter 7. SD card

usage is explained in Chapter 12.

To load an image directly from an SD card, use loadImage():

PImage image = screen.loadImage(name);

The name parameter is the fi lename to be loaded from an SD card. This

function returns a PImage object. A PImage object is the base class used to draw

bitmap images onto a TFT screen. It contains the image data and can be used

to write an image to a specifi c place on the screen. When this object has been

loaded, you can retrieve information about it. You can use two functions to get

the image width and height, and another function verifi es the validity of the data.

width = image.width();
height = image.height();

These two functions are called on the PImage object, and both functions return

an int, corresponding to the width and height of the image in pixels.

To verify that the PImage object is valid, use isValid():

result = image.isValid();

This function, called on the PImage object, returns a boolean; true if the image

is valid and false if there is a problem.

To display an image at specifi c coordinates, use image():

screen.image(image, xPos, yPos);

The image parameter is the PImage object created when using the loadIm-

age() function. The xPos and yPos parameters are the coordinates where the

top-left corner of the image will be displayed.

Example Application

In the previous chapter, you created a system capable of data logging the level

of sunlight. It is time to take that example a little further and to create a visual

data logger application. Just how much light is there outside? And what is the

temperature? Now you can put that together visually on a TFT screen.

234 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 234

The temperature will be a real-time readout, but the light levels will be over

a period of time shown as a graph. To make things look nice, a background

image will display. The graph displays from left to right, and when the graph

reaches the far right side, the screen refreshes, and the graphs starts over again.

Hardware

The screen used in this example is the Adafruit ST7735 breakout board. Adafruit

sells an LCD screen by itself, but this is not what you want. A screen without

any additional hardware may be great for creating your own device after a pro-

totype has been made, but to create this sketch, you need the ST7735 breakout

board, a more complete version that is hosted on its own PCB, with pins that

can be placed onto a breadboard. As an added bonus: the breakout board also

has a micro-SD slot, which will come in handy for this project.

The breakout board must be hooked up to the SPI bus. It has two chip select

pins: one for the embedded SD-card controller, and one for the TFT screen itself.

The SD-card reader is also an SPI device, and therefore it will share the SPI bus

with the ST7735, but it needs its own chip select pin. The device also has a Lite

pin, allowing the Arduino to turn on the TFT backlight.

To get a temperature reading, use an LM35 temperature sensor connected to

A0, and to get a light level reading, use a photo-resistor on A1.

The assembly is shown in Figure 13-2. The SPI MISO and MOSI pins are

connected to the TFT breakout board’s SPI pins, as well as the clock line. The

backlight pin is connected to the 5-volt rail, turning the TFT’s backlight on

as soon as it is powered. The SD–controller chip select is connected to the

Arduino’s D4 pin, and the TFT chip select is connected to D10. There are two

remaining pins—D/C, combined with the SPI pins, will be used to tell the TFT

screen if this is a command or data, and the Reset pin is also used to reset the

TFT screen if required.

Sketch

Now comes the fun part; it is time to put everything together. The sketch that

you will be using to start off with is shown in Listing 13-1.

Listing 13-1: TFT Sketch (fi lename: Chapter13.ino)

1 // Required headers
2 #include <SD.h>
3 #include <TFT.h>
4 #include <SPI.h>
5
6 // Pin definitions
7 #define TFT_CS 10
8 #define SD_CS 4

 Chapter 13 ■ TFT 235

c13.indd 01:7:32:PM 12/09/2014 Page 235

9 #define DC 9
10 #define RST 8
11
12 int lightPos = 0;
13 int currentTemp = 1;
14
15 PImage backgroundIMG;
16
17 // Create an instance of the TFT library
18 TFT screen = TFT(TFT_CS, DC, RST);
19
20 // Char array for printing text on the screen
21 char tempPrintout[10];
22
23 void setup()
24 {
25 // Initialize the screen
26 screen.begin();
27
28 // TFT screen will first be used to output error messages
29 screen.stroke(255, 255, 255);
30 screen.background(0, 0, 0); // Erase the screen
31
32 // Initialize the SD card
33 if (!SD.begin(SD_CS))
34 {
35 screen.text("Error: Can't init SD card", 0, 0);
36 return;
37 }
38
39 // Load and print a background image
40 backgroundIMG = screen.loadImage("bg.bmp");
41 if (!backgroundIMG.isValid())
42 {
43 screen.text("Error: Can't open background image", 0, 0);
44 return;
45 }
46
47 // Now that the image is validated, display it
48 screen.image(backgroundIMG, 0, 0);
49
50 // Set the font size to 50 pixels high
51 screen.setTextSize(5);
52 }
53
54 void loop()
55 {
56
57 // Get a light reading
58 int lightLevel = map(analogRead(A1), 0, 1023, 0, 64);
59

Continues

236 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 236

Listing 13-1 continued

60 // Have we reached the edge of the screen?
61 if (lightPos == 160)
62 {
63 screen.image(backgroundIMG, 0, 0);
64 screen.stroke(0, 0, 255);
65 screen.fill(0, 0, 255);
66 screen.rect(100, 0, 60, 50);
67 lightPos = 0;
68 }
69
70 // Set up line color, and draw a line
71 screen.stroke(127, 255, 255);
72 screen.line(lightPos, screen.height() - lightLevel,
73 lightPos, screen.height());
74 lightPos++;
75 // Get the temperature
76 int tempReading = analogRead(A2);
77 int tempC = tempReading / 9.31;
78
79 // Has the temperature reading changed?
80 if (tempC != currentTemp)
81 {
82 // Need to erase previous text
83 screen.stroke(0, 0, 255);
84 screen.fill(0, 0, 255);
85 screen.rect(100, 0, 60, 50);
86
87 // Set the font color
88 screen.stroke(255, 255, 255);
89
90 // Convert the reading to a char array, and print it
91 String tempVal = String(tempC);
92 tempVal.toCharArray(tempPrintout, 4);
93 screen.text(tempPrintout, 120, 5);
94
95 // Update the temperature
96 currentTemp = tempC;
97 }
98
99 // Wait for a moment
100 delay(2000);
101 }

On the fi rst few lines of the sketch, you import the libraries that will be

required for this project: the TFT library for the LCD screen, the SD library for

the SD card reader, and the SPI library, which is required for communication

by the other libraries.

On the following lines, some pin declarations are made; these are the pins

that will be used for the TFT screen. RST is the reset pin that will be used to

 Chapter 13 ■ TFT 237

c13.indd 01:7:32:PM 12/09/2014 Page 237

reset the TFT screen when the TFT subsystem is ready, or as required by the

sketch. DC is used as an extension to SPI to tell the TFT screen if the incoming

message is either data, or an instruction. Also, the chip select pins for both the

TFT screen and the SD card reader.

Figure 13-2: Project assembly (Image created with Fritzing)

On lines 12 and 13, two int variables are declared: lightPos and currentTemp.

These two variables contain the graph position and the current temperature,

respectively.

On line 15, a PImage object is created, called background. This is where the

sketch loads an image into memory and allows you to display a background

image on the screen.

On line 18, a TFT object, named screen, is created. It is instantiated with

three arguments, the three pins used to control the screen. The SPI wires are

not specifi ed because they are on fi xed pins. Because they cannot be changed,

there is no need to specify them.

238 Part II ■ Standard Libraries

c13.indd 01:7:32:PM 12/09/2014 Page 238

On line 21, another variable is created, a char array called tempPrintout. This

will be used to store the temperature that will be printed out on the screen.

On line 23, setup() is declared. There are a lot of things to confi gure in this

sketch, so setup() will have a lot of work to do. First, communication with the

screen is started on line 26. In this example, the TFT screen is used for debug

messages, so it must be set up to display any status messages before proceed-

ing. On line 29, stroke() is called, informing the TFT screen of the color that

should be used for future drawing events, including text messages. To make

sure that any text is readable, background() is called, setting the screen to black.

On line 33, the sketch attempts to initialize the SD library. In case of failure,

text() is called with a message at coordinates 0,0. This results in some text

being displayed on the top-left corner of the screen. If the SD library did start,

the next step is to load an image. The sketch looks for a fi le called bg.bmp in the

root directory of the SD card. If it fi nds the image, it places it into the PImage

object backgroundIMG. The sketch then tests the contents of backgroundIMG for

a valid graphics fi le. If the contents are not valid, a text error message displays

on the TFT screen. If the contents are valid, then the background image displays

on the screen starting at coordinates 0,0, the top-left corner. Finally, text size is

set to 5; 50 pixels high.

loop() is declared on line 54. This function begins by reading in the light level

the voltage on pin A3. The analog-to-digital converter returns values varying

from 0 to 1023, but the sketch would like a different value. Ideally, these values

should not exceed 64. The screen is 128 pixels high, and the graph takes up the

lower portion of the screen, so 64 is an excellent maximum. The ideal function

to do this is map(). Next, the sketch needs to print a new line on the graphs, but

before doing that, there is one question that needs answering; has the graph

reached the edge of the screen? This is checked in the if() statement on line

61. If the graph has reached the edge of the screen, several things need to be

done. First, the background image is refreshed, erasing anything present on the

screen. Next, both the stroke and fi ll graphics are set to blue. Then, a rectangle

is printed, where the temperature is supposed to go. Finally, the lightPos vari-

able is set to 0, the left side of the screen.

On line 72, a line is drawn on the screen. The fi rst set of arguments are the

x and y starting coordinates of the line, and the second set of coordinates is

screen and y-end coordinates of the line. height() and the value from the light

sensor are used to determine the length of the line on the y-axis.

Now that the light level has been calculated and drawn on screen, it is time

to look at the temperature. The analog value of the LM35 is read in, and a

small conversion is made to transform the value into a temperature in Celsius.

Now the sketch checks if the temperature has changed. Erasing a portion of

the screen and printing a new number can cause a visible fl icker. Because the

temperature shouldn’t vary that much, a simple system has been put in place to

 Chapter 13 ■ TFT 239

c13.indd 01:7:32:PM 12/09/2014 Page 239

print the temperature when a change is detected. The comparison is made on

line 80, using an if() statement. If the temperature has changed since the last

reading, in lines 85 through 88 a background color is declared, the stroke color

is changed, and a portion of the screen is erased. Before the text is displayed,

the color is changed back to white.

Text must be supplied as a char array, but it is often much easier to print

text into a String. On line 91 a String object called tempVal is created, stor-

ing the temperature as a String. The next line converts the String into a char

array, storing it into the tempPrintout. This array is printed on the TFT screen

at coordinates that match up with the rectangle you drew earlier.

Finally, the sketch is told to wait for 2 seconds before repeating.

Exercises

The temperature display is visible on the screen, but it could do with being a

little prettier—or maybe even more colorful. Modify the sketch to change either

the foreground or the background of the text according to the temperature; 15

degrees could be a cool blue and 35 a bright red.

Summary

In this chapter, you have seen what a TFT screen is, how it can be used for

your projects, and how an Arduino communicates with it. You have seen how

to initialize the screen, how to print text and pictures to the screen, as well as

basic graphics in black and white and in color. In the next chapter, I will talk

about servo motors and how to control them using an Arduino with just a few

lines of code .

241

c14.indd 01:7:44:PM 12/09/2014 Page 241

This chapter discusses the following functions of servo motors:

 ■ attach()

 ■ attached()

 ■ write()

 ■ writeMicroseconds()

 ■ read()

 ■ detach()

The hardware needed to run the examples in this chapter includes:

 ■ Arduino Uno

 ■ USB Cable

 ■ Breadboard

 ■ LM35

 ■ HYX-S0009 or equivalent servo motor

You can find the code download for this chapter at http://www

.wiley.com/go/arduinosketches on the Download Code tab. The code is in

the Chapter 14 download folder and the fi lename is Chapter14.ino.

C H A P T E R

14

Servo

http://www

242 Part II ■ Standard Libraries

c14.indd 01:7:44:PM 12/09/2014 Page 242

Introduction to Servo Motors

Most motors are simple devices that turn on their axle when current is supplied.

When a motor turns, the user generally has no idea about the angle or speed;

to get this information, sensors are required. Servo motors differ by knowing

exactly the angle that they are at and adjusting their position as required. Most

servo motors cannot turn 360 degrees; instead, they are often limited to a range.

Most servo motors have 180 degrees of rotation, as shown in Figure 14-1.

90°

0° 180°

Figure 14-1: Servo motor movement

To know the exact position, servo motors can use a wide variety of techniques.

Most use a potentiometer, using electrical resistance to understand how far the

arm has turned, while more advanced systems use a coded optical wheel to get

precise information.

Servo motors were originally designed in the dark times of war. They were

used in radar and anti-aircraft artillery during World War II. Radar requires

the angle of the emitter and receiver to be known because the position of the

aircraft needs to be calculated and displayed on a screen. Anti-aircraft artillery

needs to be placed at a precise angle depending on the results of the calculation,

and servo motors could place heavy loads at the right angle much faster than

humans and with more reliability.

Although it might seem strange to have a motor that does not make complete

turns, servo motors have a wide range of uses. They are used in industrial systems

to open and close valves; they are still used on radar or tracking equipment to

point a device in the right direction with a high level of precision; and robots

use servo motors to keep arms at a precise angle, while providing enough force

to keep the arm in place with a high load. Hobbyists making remote controlled

vehicles are familiar with servo motors because they are used to control steering.

When the front wheels of a car turn left or right, this is a servo-motor acting,

keeping the direction in place despite resistive force.

 Chapter 14 ■ Servo 243

c14.indd 01:7:44:PM 12/09/2014 Page 243

A servo motor is a motor assembly with additional sensors and logic. In short,

an embedded microcontroller reads the angle of the output shaft, and controls

a small motor.

Controlling Servo Motors

Most motors require only two wires: one for the power and one for the ground.

Stepper motors are slightly different, having several wires to move a motor by

a specifi c number of degrees, but still have no embedded intelligence. (Stepper

motors are explained in Chapter 15.) Servo motors are different; most require

three wires. One wire is for power, one is for the ground connection, and the

third one is for sending orders to the servo motor.

Servo motors use pulse width modulation (PWM) to receive instructions. Pulse

width modulation uses short and precise pulses of digital signals to transmit

information. PWM was fi rst presented in Chapter 4.

A servo expects a pulse every 20 milliseconds. The length of the pulse instructs

the servo motor to move to a specifi c angle. The PWM signals vary between

a ½ and 2 ½ milliseconds. A ½ millisecond pulse instructs the servo motor

to move to its minimum position, and a 2 ½ millisecond pulse tells the Servo

motor to move to its maximum position. A 1 ¼ millisecond pulse will move to

the central position.

The question is, “How exactly can this be done in an Arduino?” The PWM

interface on an Arduino does not have the same timings as servo motor controls,

and it is easy to make a mistake and make a pulse longer than 2 milliseconds.

Fortunately, the Arduino abstraction layer makes this extremely easy, requiring

only a few instructions.

Most boards allow up to 12 Servo motors to be connected at any one time,

with the exception of the Arduino Mega, which can control up to 48 motors.

However, this comes at a small price. Using the Servo library automatically

disables PWM operations on pins 9 and 10. Again, the Arduino Mega is

an exception and can happily use up to 12 Servo motors without interfer-

ence. Any more than 12 servo motors results in PWM being disabled on

pins 11 and 12.

N O T E In Arduino 0016 and earlier, only two servos were supported, on pins 9 and 10.

Connecting a Servo Motor

Servo motors typically have three wires. The power wire, usually red, is con-

nected to the power rail. The ground wire, usually black or brown, is connected

to the ground rail. The third wire, usually yellow or orange, is the signal wire

244 Part II ■ Standard Libraries

c14.indd 01:7:44:PM 12/09/2014 Page 244

and is connected directly to a digital pin on the Arduino. The Arduino can

normally directly supply power to a servo motor, but when using several servo

motors, you need to separate the Arduino power supply to the servo power

supply to avoid brown outs. Servo motors, even if they do not always act like

typical motors, still have a small motor inside and can draw large amounts of

current, far more than what the ATmega can deliver.

Before using servo motors, you must import the Servo library. You can do

this either by importing the library through the Arduino IDE menu (Sketch ➪

Import Library ➪ servo) or by manually typing:

#include <Servo.h>

In your software, you must fi rst create a new servo object before issuing

instructions. You must create one object per servo motor (or group of servo

motors) to control.

Servo frontWheels;
Servo rearWheels;

To tell the Arduino which pins the servo motors are connected to, call attach(),

specifying the pin, and optionally, specifying the minimum and maximum

pulse size.

servo.attach(pin)
servo.attach(pin, min, max)

By default, Arduino uses 544 microseconds as the minimum pulse length

(equivalent to 0 degrees) and 2,400 microseconds as the maximum pulse width

(equivalent to 180 degrees). If your servo motor has different settings for a maxi-

mum and minimum pulse, you can change the values in attach() by specifying

the durations in microseconds. For example, a servo motor that uses a 1 mil-

lisecond minimum and 2 millisecond maximum can be confi gured like this:

servo.attach(pin, 1000, 2000);

From then on, the Arduino automatically calculates the length of the pulse

according to the wanted angle but will not issue commands until a function

specifi cally orders the servo motor to move.

Moving Servo Motors

Telling a servo motor to move to a specifi c angle is easily accomplished using

write(). The Arduino will do all the necessary calculations; determining the

length of the pulse to generate and sending the pulse on time:

servo.write(angle);

 Chapter 14 ■ Servo 245

c14.indd 01:7:44:PM 12/09/2014 Page 245

The angle parameter is an integer number, from 0 to 180, and represents the

angle in degrees.

If you require precision, you can specify the length of the pulse by using

the writeMicroseconds() function. This eliminates the need for calculation

by the Arduino and specifi es the exact pulse length, an integer, expressed in

microseconds:

servo.writeMicroseconds(microseconds);

It does not matter what the original position was, the servo motor automati-

cally adjusts its position. The Arduino does not need to calculate this either;

all the intelligence is embedded inside the motor assembly. It does, however,

keep the last angle that it was instructed to use, and this value can be fetched

with read():

int angle = servo.read()

Remember that servo motors can receive only instructions and not return

information. The value returned by read() is the value inside the Arduino.

When connecting a servo motor, there is no way to know what position it was

in initially. It can be helpful to set a servo motor to a default position before

starting your application. (For example, a remote-controlled car should prob-

ably have the wheels turn so that they are at 90 degrees; without adjusting the

steering, the owner would expect the car to go straight and not at an angle.)

Servo motors and other physical objects take time to get to where you want

them to be, so it’s considered good practice to give your motor a bit of time to

get where it wants to go. Some motors move faster than others, if you’re unsure

of how much time you’ll need, it’s best to check your motor’s documentation.

Disconnecting

If required, servo motors can be disconnected inside sketches. To disconnect a

servo, use detach():

servo.detach()

Subsequent calls to attached() return false, and no more signals will be

sent until the sketch calls attach() again.

Servo motors can be attached, detached, and re-attached in software. Sometimes

a sketch needs to know the status of the devices connected at that time. To see

if a servo motor is connected, you can use attached():

result = servo.attached();

This function returns 1 (or true) if a servo motor has been declared as attached,

and 0 (or false) otherwise. Note that this won’t tell you if your motor is physi-

cally attached or not, just that it is connected in software.

246 Part II ■ Standard Libraries

c14.indd 01:7:44:PM 12/09/2014 Page 246

Precision and Safety

Controlling multiple servo motors can be rather processor-intensive, and this

can sometimes affect precision if you have a large amount of servos controlled

by one Arduino. In extreme cases, slight angular distortion may be visible on

servo motors with the lowest angular value. This is often in the range of 1 to

2 degrees.

There are situations in which using servo motors can be a safety issue. If

used with robotics, one of the most basic rules of robotics is to never get in the

way of a robotic arm. Imagine a robotic arm powered by servo motors that is

to place an object in the user’s hand. The movement must be precise and not go

above or below a certain angle.

Using the Servo library does not stop interrupts. You can still respond to

interrupts, and timing functions such as millis() still work, but remember

that the end of a servo motor pulse can be lengthened by the time it takes to

execute an interrupt handler. If your interrupt handler takes 200 microseconds

to complete and is called close to the end of a servo’s pulse, in the worst case,

the pulse sent to the servo motor can be lengthened by 200 microseconds, mean-

ing that the resulting angle is not what you expected. It will be corrected the

next time a pulse is sent, and the servo motor will move to the correct angle. In

most applications, this will not be a problem, but just keep this in mind if your

application has an absolute limit that must not be exceeded.

Example Application

Servo motors can be used for a variety of projects, from remote controlled cars

to robotics. To keep things simple, this section uses a servo motor to create a

retro-style thermometer. In the digital age, you might sometimes forget what

these devices used to look like. Mercury thermometers are usually long glass

objects, with a straight line, but some thermometers are round, and have a hand

similar to clocks. A servo motor can be used to move the hand, controlled by an

Arduino that gets a temperature reading from an external component, perfect

for indoor or outdoor temperature readings.

This example uses an LM35. The LM35 is an inexpensive and readily avail-

able precision temperature sensor calibrated in Celsius, and illustrated in

Figure 14-2. It can be used to sense temperatures between –55° C and +150° C

by adding a resistor and a reference voltage, but without any additional resistor,

it can sense temperatures between 0° C and 100° C. The LM35 outputs 10 mV

for each degree, from 0 V for 0° C to 1,000 mV (or 1 V) for 100° C.

 Chapter 14 ■ Servo 247

c14.indd 01:7:44:PM 12/09/2014 Page 247

 Figure 14-2: An LM35

However, the Arduino’s analog-to-digital converters are normally calibrated

from 0 to 5 volts, but the LM35 will never output 5 volts. To compare analog

values, the Arduino will compare the input to something called a reference—a

voltage. Generated inside the microcontroller, this reference is normally set to

the same voltage as the Arduino’s power. The reference voltage can be changed

so instead of sampling values between 0 and 5 volts, the Arduino can be told

to sample between 0 and 1.1 volts. You do this by calling analogReference

(INTERNAL). This will give more precision for this application, but it comes at

a price. If using the INTERNAL constant, this sketch will not run correctly on an

Arduino Mega; it will require changing. When this example is complete, it will

be up to you, the designer, to choose if you want to sample on 5 V and keep

compatibility or to use a different sample range and only use specifi c boards.

By using a reference of 1.1 V, the 10-bit ADC will have a sampling precision

of 1.1 divided by 1,024, or 1.07 mV. The LM35 outputs 10 mV per degree, so 10

divided by 1.07 is approximately 9.31. So, a change of 9.31 in the analog reading

equals 1 degree. To get a reading in Celsius, simply get the return value and

divide by 9.31.

The sketch can now retrieve temperatures between 0 and 100 degrees Celsius,

but this range is too large. If your internal thermometer is showing 100 degrees,

your house might be on fi re, and you shouldn’t be looking at your thermometer.

If the outside reading is 100 degrees, something is wrong. In both cases, there is

no use in displaying the temperature, so everything above 50 will be ignored.

Finally, the last part will be to convert a temperature into the servo motor

movement. For this example, the servo motor will be mounted so that the 0–180

degrees line is parallel to the fl oor. Ninety degrees will be straight up. The tem-

perature hand will move only between 45 degrees and 135 degrees.

This brings a question: How should the temperature be converted to an angle?

This sounds like a lot of complicated calculation; 0 degrees Celsius is 45 degrees

248 Part II ■ Standard Libraries

c14.indd 01:7:44:PM 12/09/2014 Page 248

for the Servo motor, and 50 degrees Celsius will be an angle of 135 degrees. The

truth is, there is no need to make any calculations; the Arduino will do that for

you using map(), explained in Chapter 4. As a reminder, map() works like this:

result = map(value, fromLow, fromHigh, toLow, toHigh);

This function maps a number from one range to another, and that is exactly

what is in this example: two ranges. Temperature values vary from 0 to 50, and

angles vary from 45 to 135. Therefore, with a single function, the Arduino will

automatically calculate the output to the stepper motor, converting a tempera-

ture range to an angle range.

Schematic

This application uses an Arduino Uno. The LM35 will be connected to analog

pin 0, and the servo will be connected to digital pin 9. The wiring that should

be used is shown in Figure 14-3.

Figure 14-3: Temperature sensor application schematic (Image created with Fritzing)

 Chapter 14 ■ Servo 249

c14.indd 01:7:44:PM 12/09/2014 Page 249

Sketch

Time to write the sketch, as shown in Listing 14-1.

Listing 14-1: Sketch (fi lename: Chapter14.ino)

1 #include <Servo.h>
2
3 float tempC;
4 int angleC;
5 int reading;
6 int tempPin = A0;
7 int servoPin = 9;
8
9 Servo thServo;
10
11 void setup()
12 {
13 analogReference(INTERNAL);
14 Serial.begin(9600);
15 thServo.attach(servoPin);
16 thServo.write(90);
17 delay(1000);
18 }
19
20 void loop()
21 {
22 reading = analogRead(tempPin);
23 tempC = reading / 9.31;
24 angleC = map(tempC, 0, 50, 135, 45);
25 Serial.print(tempC);
26 Serial.print(" Celsius, ");
27 Serial.print(angleC);
28 Serial.println(" degrees");
29 thServo.write(angleC);
30 delay(500);
31 }

The work starts right from line 1. On the fi rst line of the sketch, the Servo

library is imported. On lines 3 to 7, variables are defi ned. The temperature is

defi ned as a fl oating-point number, and all other variables are defi ned as integers.

On line 9, a Servo object is created, called thServo, short for thermometer

Servo. This is the instance on which instructions will be called.

On line 11, the setup function is created. In this function, three things will

be done. First, the reference voltage is set to INTERNAL, meaning the analog-to-

digital converter will compare against a 1.1 V reference, not 5 volts as it would

normally. This works for all analog inputs, and therefore, no pin is specifi ed.

250 Part II ■ Standard Libraries

c14.indd 01:7:44:PM 12/09/2014 Page 250

Second, a serial interface is created for debugging. Finally, the sketch is told to

attach a servo motor on pin 9 (servoPin), and a default value is written. Ninety

degrees is specifi ed, moving the arm to a default position in the middle of the

reading. The sketch is given 1 second to move, which is more than enough time.

On line 20, the loop() function is defi ned. First, the sketch reads the voltage

from A0 , comparing it to 1.1 V. The result, returned as an integer, is stored in

reading. Next, the variable reading is divided by 9.31 (calculated previously),

and the result is stored in a fl oating-point number, called tempC. Next, the angle

must be calculated. This is done through map(), by fi rst indicating the values

that are expected for the temperature (0 to 50) and next, the values expected as

an angle (135 to 45). The numbers are inverted because this servo motor turns

counterclockwise, and the lowest temperature is expected to be on the left.

On lines 25 to 28, data is printed to the serial port. This is used as debug

information and can be omitted in a fi nal version.

Finally, on line 29, the angle is written to the servo pin, and the sketch waits

for one-half a second before repeating.

Congratulations, you have just created a retro thermometer!

Exercises

This sketch is fully functional but requires some tweaking to be optimal. For

example, the servo motor movement may sometimes be a little erratic. Now

look at the serial output to have a better idea:

22.34 Celsius, 86 degrees
22.77 Celsius, 86 degrees
23.20 Celsius, 88 degrees

So, the difference between 22.77 and 22.34 degrees Celsius does not result in

a movement, but the difference between 22.77 and 23.20 degrees Celsius results

in a 2-degree movement? This is the result of the map() function, and because

it “translates” a 50-unit range to a 90-unit range, it will lose a little precision. If

you need more precision, you will have to look at another way of controlling

the servo motor. Try using writeMicroseconds() for greater accuracy.

Also, there is one requirement that was not put into place. Temperatures above

50 degrees Celsius should be ignored, but they aren’t. map() specifi es values

between 0 and 50, and will “map” them to values between 45 and 135, but this

does not mean that values are limited. If the input value is outside of the input

range, it will also be outside of the output range. Try to limit input or output

values, using min() and max(), or even better, use constrain().

What solution did you come up with?

 Chapter 14 ■ Servo 251

c14.indd 01:7:44:PM 12/09/2014 Page 251

Summary

In this chapter, you have seen what a servo motor is and how it differs from

typical motors. You have seen how it is controlled, and how to position it as

required. In the next chapter, you will see another type of motor—the stepper

motor—the functions used to control it, and an example application to put it

all together .

253

c15.indd 01:8:0:PM 12/09/2014 Page 253

This chapter discusses the following functions of the Stepper library:

 ■ Stepper()

 ■ setSpeed()

 ■ step()

The hardware needed to use these functions includes:

 ■ Arduino Uno

 ■ 1 x L293D

 ■ 1 x 5-V bipolar stepper motor

 ■ Breadboard

 ■ Cables

You can fi nd the code downloads for this chapter at http://www.wiley

.com/go/arduinosketches on the Download Code tab. The code is in the Chapter

15 download and the fi lename is Chapter15.ino.

C H A P T E R

15

Stepper

http://www.wiley

254 PartII ■ Standard Libraries

c15.indd 01:8:0:PM 12/09/2014 Page 254

Introducing Motors

Electric motors generally work by creating electromagnetic fi elds from coils,

forcing magnets on an axle to move, therefore driving the axle. By generating

electromagnetic fi elds, a motor turns continuously until current is removed.

Servo motors (presented in Chapter 14) function a little differently, but even if

their usage is different, a servo motor is still controlled by an ordinary electric

motor managed by a small microcontroller to ensure the servo motor can move

to a precise position.

Stepper motors are different. They have several coils inside, and the

internal axle is “toothed.” When applying current to one of the coils, the

closest “tooth” is attracted to the coil, and the axle moves by a few degrees.

Current is then removed from the coil and sent through another coil, again

attracting a tooth and moving the axle by a few degrees. By repeating this

operation, a stepper motor can be controlled to turn continuously in either

direction, but this is not normally a stepper motor’s main function. Stepper

motors can have precise movement and as such can drive gears with equal

precision.

Imagine a printer. Paper is fed into the printer, and the printer begins to print

one line. A print head moves across the paper and deposits ink in precise loca-

tions according to the image that was sent to it. When the print head arrives

at the far edge of the paper, the paper is fed into the printer, and the printer

heads returns in the opposite direction, continuously printing until the end of

the page. Feeding paper into the printer is extremely precise; too much paper

and white lines appear on the sheet. Too little, and the resulting image will be

squashed. The movement has to be precise and feed exactly the right amount

of paper. Chances are, the motor feeding the paper into the printer is a step-

per motor. Also, because the printer head requires precise positioning, there

is a good chance that the belt used to attach the printer head assembly is also

controlled by a stepper motor.

Stepper motors have several characteristics, but the most important one is

the angle per “step.” This can vary greatly in the different models, but ranges

of between 2–5 degrees are common.

Controlling a Stepper Motor

Stepper motors are different from standard electrical motors, and as such, can

be diffi cult to control. They require both software and hardware to be used.

Fortunately, the hardware isn’t diffi cult to use, and the Arduino software library

is even easier.

 Chapter 15 ■ Stepper 255

c15.indd 01:8:0:PM 12/09/2014 Page 255

Hardware

Stepper motors come in different sizes, and more important, different power

ranges. It is common to fi nd 12-V models, but this can be complicated for 5-V

systems. Also, stepper motors tend to require higher current than what a micro-

controller can provide. For most applications, a microcontroller cannot control

a stepper motor directly; it must be interfaced with additional hardware. An

H-Bridge is one type of component that can help use a stepper.

An H-bridge is an electronic component (or confi guration of transistors)

designed initially to control electric motors, as shown in Figure 15-1.

A

V

C

B

D

M

Figure 15-1: An H-bridge driver

By activating A and D, current can fl ow from the 12-volt rail, through a

motor’s electromagnet, to ground. This turns the motor in one direction. When

activating B and C, the current fl ows in the opposite direction, and therefore

the motor also turns in the opposite direction. This confi guration also has the

added bonus of allowing the motor to turn freely, by deactivating all inputs, or

even to brake the motor by activating C and D.

Because an H-bridge controls one electromagnet and because stepper motors

are composed of two or more electromagnet coils driven in sequence, a dual

H-bridge can be used to drive a stepper motor. This is achieved by turning on

specifi c coils and giving the motor enough time to align to that coil before turning

it off and turning on another coil. By doing this, you can have a motor turn in

a precise fashion, a few degrees at a time. The downside is that stepper motors

are not as fast as classic motors, but they were not designed for speed. It is still

possible to vary the motor speed by changing the frequency of the inputs, and

stepper motors can still achieve relatively fast rotation speeds.

Unipolar Versus Bipolar Stepper Motors

Unipolar stepper motors have coils with a center tap, an electrical connection in

the middle of the coil. This makes current switching easier; instead of inverting

256 PartII ■ Standard Libraries

c15.indd 01:8:0:PM 12/09/2014 Page 256

current, the center tap can be used as a grounding point for the current, and

one pole or the other can be powered, therefore effectively inverting polarity

without the need for complicated electronics. The center taps are often joined

together, so these motors often have fi ve leads.

Bipolar motors do not have a center tap; instead, the hardware must be used to

invert current. As this inversion is easily achieved with an H-bridge, managing

this is no longer a major factor. Bipolar motors do present a major advantage;

because they have simplifi ed coils, they can often achieve more torque for the

same weight.

N O T E H-bridge drivers are commonly used for both unipolar and bipolar stepper

motors, therefore no longer requiring the center tap, maximizing the torque of unipo-

lar motors.

The Stepper Library

The Arduino IDE has built-in support for stepper motors through the Stepper

library. To import the Stepper library, either add the library automatically via

the Sketch ➪ Import Library ➪ Stepper menu item, or manually:

#include <Stepper.h>

To begin using a stepper motor, you must create a new instance of the Stepper class.

Stepper(steps, pin1, pin2);
Stepper(steps, pin1, pin2, pin3, pin4);

The steps parameter is an int which indicates the number of steps that your

motor must make to complete one revolution. Some motors only document

the number of degrees per step; in that case, divide that number by 360 to

get the number of steps. The pin1 and pin2 parameters are digital output pins

used for two lead stepper motors. The pin3 and pin4 parameters are used for

motors with four leads. This is done like so:

Stepper myStepperMotor = Stepper(84, 5, 6, 7, 8);

Stepper motors turn by performing single steps, and to increase the speed

of the motor, you must change the frequency at which steps are performed. To

do this, use setSpeed():

Stepper.setSpeed(rpm);

This function does not return any data and confi gures the output sequence

to make the motor turn at the specifi ed speed in revolutions per minute. The

 Chapter 15 ■ Stepper 257

c15.indd 01:8:0:PM 12/09/2014 Page 257

rpm parameter is a long. The fi nal function is used to instruct the motor to

move by a specifi c amount of steps:

Stepper.step(steps);

This function does not return any data and requires one parameter: steps.

The steps parameter is an int and indicates the number of steps to perform.

Depending on the wiring, positive values will cause the motor to turn in one

direction, and negative values will make the motor turn the opposite direc-

tion. This function does not return until the task is complete, and depending

on the amount of steps to perform, this can take a long time. During this

time, the sketch cannot continue to perform other actions.

Example Project

In this project, you create another thermometer, one that varies slightly from

the servo motor example in the previous example. An LM35 temperature

sensor will connect to A0. The stepper motor will connect to digital pins 8,

9, 10, and 11 through a double H-bridge. This project is different from the

previous because it will not show the exact temperature, but a variation.

A stepper motor can maintain its position and provide force to keep the

angle correctly positioned. A stepper motor cannot know its exact position;

an order is given to move a certain number of steps in one direction or

another, but it cannot know if the motor shaft has turned correctly. Maybe

there was too much force involved, and the motor couldn’t overpower the

force. The advantage to this is that stepper motors can be repositioned; you

can force the hand into a certain position and then let the motor reposition

itself as required. This thermometer will not show the exact temperature,

but a variation. The user can reposition the hand into a central position at

any time, and by looking at the thermometer moments later, he will know

if it is getting colder or warmer.

Hardware

This project uses an Arduino Uno for the control part of the project and an LM35

temperature sensor like in the servo example. It also uses an H-bridge control-

ler and a 5-V stepper motor. Most H-bridges can use higher power motors, but

with a less powerful motor the user can change the position of the motor by

hand. An illustration of the circuit is shown in Figure 15-2.

258 PartII ■ Standard Libraries

c15.indd 01:8:0:PM 12/09/2014 Page 258

Figure 15-2: Project schematic (Image created with Fritzing)

Stepper motors often have different connections, depending on the make and

model. See the documentation that came with your motor to see how to connect it.

Sketch

The sketch is the easy part of the project; this sketch simply reads the temperature

and updates the position of the motor depending on temperature differences.

The sketch is shown in Listing 15-1.

Listing 15-1: Stepper thermometer (fi lename: Chapter15.ino)

1 #include <Stepper.h>
2
3 // Set this to the number of steps your motor needs to make one turn
4 #define STEPS 100
5
6 // Stepper motor is connected to pins 8 to 11
7 Stepper stepper(STEPS, 8, 9, 10, 11);

 Chapter 15 ■ Stepper 259

c15.indd 01:8:0:PM 12/09/2014 Page 259

8
9 // the previous reading from the analog input
10 int previous = 0;
11
12 void setup()
13 {
14 // Set a low stepper speed
15 stepper.setSpeed(10);
16
17 // Make a single temperature reading
18 previous = analogRead(0);
19 }
20
21 void loop()
22 {
23 // Get the sensor value
24 int val = analogRead(0);
25
26 // Move the stepper motor depending on the result
27 stepper.step(val - previous);
28
29 // Remember the previous value
30 previous = val;
31
32 delay(5000);
33 }

The Stepper.h fi le is required for any projects that use the stepper library,

and this is included on line one of the sketch. On line 4, the amount of steps

required to make a complete revolution is defi ned. Change this according to

the stepper motor you have. On line 7, the Stepper instance is created using the

amount of steps defi ned in STEPS and using digital lines 8 through 11.

setup() defi ned on line 12 does two things. First, it sets up the speed of the

stepper motor to 10 rpm. This is a relatively slow speed, but the motor doesn’t

need to turn quickly. Secondly, it takes a reading from the temperature sensor

to use as a reference value. The value is stored in previous, a variable defi ned

on line 10.

On line 21, loop() is declared. In loop(), you’ll fi rst read the value of the

analog pin into a variable called val and then change the stepper motor’s

position by the difference between previous and val. Finally, the contents of

previous are replaced by the contents of val, and the sketch waits for 5 seconds

before looping.

260 PartII ■ Standard Libraries

c15.indd 01:8:0:PM 12/09/2014 Page 260

Summary

In this chapter, you have seen what a stepper motor is, how and where it is

used, and how to control one with an Arduino. The example has given you an

idea of how easy it is to use a stepper motor, and how you can use them in your

own applications. In the next chapter, you will see the Firmata library, a control

library that lets you read and write Arduino pins directly from a computer.

261

c16.indd 09:0:50:PM 11/28/2014 Page 261

This chapter discusses the following functions of the Firmata library:

 ■ begin()

 ■ sendAnalog()

 ■ sendDigitalPorts()

 ■ sendDigital()

 ■ sendString()

 ■ available()

 ■ processInput()

 ■ attach()

 ■ detach()

The hardware needed to use the example in this chapter includes:

 ■ Arduino Uno

 ■ Computer

 ■ USB cable

 ■ Breadboard

 ■ 4.7-kΩ resistor

 ■ LED

C H A P T E R

16

Firmata

262 Part II ■ Standard Libraries

c16.indd 09:0:50:PM 11/28/2014 Page 262

Introducing Firmata

Arduinos are used in a wide variety of projects, from the most simple to some

extremely complex devices. In most cases, their exact use is known; you know

beforehand that digital pin 3 will be used to light an LED, and that analog input 4

will read the value of a light sensor. For some projects, you may not know what

is connected, but you will still need to set pins as input or output, depending

on the situation. Imagine a laboratory setup, one where you can study how new

components work before deciding to use them in your projects. You could write

a quick sketch each time to see how a component works, but this isn’t always

the best solution and certainly not the easiest. One way to easily set up your

laboratory is to use Firmata.

Firmata is a protocol that communicates between computers and microcon-

trollers to easily access the Arduino hardware from software on a host machine.

It uses standard serial commands and as such can be used on several different

Arduino models. Messages are sent serially to and from the host computer,

indicating pin status or requesting a pin to change state.

Firmata Library

To use the Firmata library, you must fi rst import it. You can import the Firmata

library from the Arduino IDE automatically, by going to the Sketch ➪ Import

Library ➪ Firmata menu entry. Alternatively, you can write the lines manually:

#include <Firmata.h>
#include <Boards.h>

The Firmata protocol has several revisions, and if two devices use different

revisions, that can lead to errors. To prevent this, you can specify which protocol

revision to use with setFirmwareVersion():

setFirmwareVersion(major, minor);

The major and minor parameters are bytes, which specify the revision to use.

For most Arduino applications, this is set to major version 0 and minor version 1.

To begin using the Firmata library, you must fi rst call begin():

Firmata.begin();
Firmata.begin(speed);

This function opens a serial connection. By default, the speed is set to 57600

baud, but this can be changed by the optional speed parameter.

 Chapter 16 ■ Firmata 263

c16.indd 09:0:50:PM 11/28/2014 Page 263

Sending Messages

The status of pins is sent as messages to and from the software on the host

machine. Messages can be addressed to digital and analog pins. To send the

status of an analog pin, use sendAnalog():

Firmata.sendAnalog(byte pin, int value);

The pin parameter is the analog pin you are requesting information about.

The value parameter is the value read from the pin. This function does not read

the pin value directly; you must explicitly read the value fi rst:

analogValue = analogRead(pin);
Firmata.sendAnalog(pin, analogValue);

Digital pins are sent differently. Because serial connections are slow, relative

to the speed of a microprocessor, something had to be done to speed up the

transfer. Digital pins are either on or off, 1 or 0. To send the maximum amount

of information in the minimum packet size, multiple pins are sent in a single

message.

Firmata.sendDigitalPorts(pin, firstPort, secondPort);

Up to eight pins can be sent in the pin parameter, sent as a byte. The pins

must be sent in order; when starting at pin 6, it must be followed by pin 7, pin

8, and so on. To set the fi rst pin, use the firstPort parameter sent as a byte. To

set the number of pins sent, use the secondPort parameter. The pin data will

be sent to the computer, specifying that the data received is the data of the pins

from firstPort to secondPort.

This works well when sending a range of pin data but is not effi cient if you

want to send the status of a single pin or if the pins are not linear. You can also

send the data of a single pin using sendDigitalPort():

Firmata.sendDigital(pin, value);

This function sends the status of the pin and sends the pin input as value.

To send a string to the host computer, use sendString():

Firmata.SendString(string);

This sends the String string to the host computer.

Receiving Messages

Receiving messages on an Arduino is the same as working with other types of

serial information; fi rst, you must wait until you have received data and then

264 Part II ■ Standard Libraries

c16.indd 09:0:50:PM 11/28/2014 Page 264

process that data. Data is received directly on the serial port. To see if data is

waiting, use available():

result = Firmata.available();

This function does not take any parameters and returns true if one or more

bytes are waiting to be processed. To process data, use processInput():

Firmata.processInput();

Typically, you would use both functions together:

while(Firmata.available())
{
 Firmata.processInput();
}

The Firmata library hides all the complicated parts of receiving data, including

the data storage and processing. The library automatically decodes messages and

enables you to perform actions on the data received using a system of callbacks.

Callbacks

Firmata works by using a system of callbacks, routines that are called when a

specifi c action is performed, or in this case, when a specifi c message is received.

Callbacks are highly customizable, and you can write a callback to perform almost

any action you want simply by creating a function. Callbacks are put in place

using an attach function; in the case of the Firmata library, it is called attach():

Firmata.attach(messagetype, function);

Table 16-1 lists the messagetype parameter, which is one of the constants. The

function parameter is the callback function that you have written.

Table 16-1: Callback Constants

CONSTANT USE

ANALOG_MESSAGE Analog value of a single pin

DIGITAL_MESSAGE Digital value of a digital port

REPORT_ANALOG Enables or disables the reporting of an analog pin

REPORT_DIGITAL Enables or disables the reporting of a digital port

SET_PIN_MODE Change the mode of the selected pin (input, output, and so on)

FIRMATA_STRING Used for receiving text messages

SYSEX_START Used for sending generic messages

SYSTEM_RESET Used to reset fi rmware to default state

 Chapter 16 ■ Firmata 265

c16.indd 09:0:50:PM 11/28/2014 Page 265

A callback requires a certain number of parameters to be defi ned, which is

extremely specifi c as to the datatypes to use. The system restart callback does

not require any parameters:

void systemResetCallback(void);

To receive strings, the stringCallback function requires one parameter:

void stringCallback(char *datastring);

SysEx messages require more information and have three parameters:

void sysexCallback(byte pin, byte count, byte *array);

Finally, all other callbacks use a generic format:

void genericCallback(byte pin, int value);

Callbacks must have different names. If you use both digital and analog

pins, you will have two functions: one for handling digital data and the other

for analog input. For example, code will allow you to receive both digital and

analog instructions:

void analogWriteCallback(byte pin, int value)
{
 // Code goes here
}
void digitalWriteCallback(byte pin, int value)
{
 // Code goes here
}
Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);

A note on handling digital data: Analog data is sent one pin at a time, but this

is not the case with digital pins. As seen previously, digital pin data is sent in

groups of 8. This is known as a port. Port 1 will send the data of pins 1 to 8, and

port 2 will send the data of pins 9 to 16, and so on. It is up to you to control if

the pins should be written. To write all pins from a specifi ed port, use this code:

void digitalWriteCallback(byte port, int value)
{
 byte i;
 byte pinValue;

 if (port < TOTAL_PORTS)
 {
 for(i=0; i<8; i++)
 {

266 Part II ■ Standard Libraries

c16.indd 09:0:50:PM 11/28/2014 Page 266

 pinValue = (byte) value & (1 << i);
 digitalWrite(i + (port*8), currentPinValue);
 }
 }
}

To set a pin input or output, the mode parameter corresponds directly to the

Arduino pinMode() constants. However, the trick is to know what pin corre-

sponds to what sort of input/output. To do this, you can use some predefi ned

data for each board. The Boards.h fi le details how many digital and analog pins

a board has. For example, the Arduino Mega has the following line defi ned in

the source code:

#define TOTAL_PINS 70 // 54 digital + 16 analog

To know if a pin is digital, use IS_PIN_DIGITAL() and IS_PIN_ANALOG().

To convert a pin to a digital or analog equivalent, use PIN_TO_DIGITAL() and

PIN_TO_ANALOG(). You can use the following code to set the state of a digital pin:

void setPinModeCallback(byte pin, int mode)
{
 if (IS_PIN_DIGITAL(pin))
 {
 pinMode(PIN_TO_DIGITAL(pin), mode);
 }
}

To remove a callback, use detach():

Firmata.detach(callback);

The callback parameter is one of the constants used to attach a callback

(refer to Table 16-1).

SysEx

One of the messages that the Firmata protocol can exchange is called SysEx.

Short for System Excusive, SysEx was originally used in synthesizers using

the MIDI protocol to include custom commands. When writing a protocol, it is

almost impossible to imagine every scenario, and to make sure that the MIDI

protocol could handle just about everything, SysEx was developed. The idea was

to exchange information and change settings that could not be accessed by other

means. In extreme cases, memory was transferred (partitions or instruments,

for example). In the Firmata protocol, it allows users to exchange information

such as I2C bus data and the servo motor confi guration.

 Chapter 16 ■ Firmata 267

c16.indd 09:0:50:PM 11/28/2014 Page 267

To receive SysEx data, you must fi rst create a SysEx callback, as explained in

the “Callbacks” section.

An example callback might look like this:

void sysexCallback(byte command, byte argc, byte *argv)
{
 // Code goes here
}

The SysEx instruction identifi er is sent as a byte, called command. The Arduino

Firmata library defi nes a series of constants to describe a received message; as

listed in Table 16-2.

Table 16-2: SysEx Constants

CONSTANT FUNCTION

RESERVED_COMMAND Reserved chip-specifi c instructions.

ANALOG_MAPPING_
QUERY

Ask for analog to pin number mapping.

ANALOG_MAPPING_
RESPONSE

Reply with mapping data.

CAPABILITY_QUERY Ask for supported modes of all pins.

CAPABILITY_RESPONSE Reply with capability data.

PIN_STATE_QUERY Ask for a pin’s current mode and value.

PIN_STATE_RESPONSE Reply with pin mode and value.

EXTENDED_ANALOG Analog write to any pin, including PWM and servo.

SERVO_CONFIG Set servo parameters (angle, pulse, and such).

STRING_DATA Send a string message.

SHIFT_DATA 34-bit shift out data.

I2C_REQUEST Request I2C data.

I2C_REPLY Respond with I2C data.

I2C_CONFIG I2C parameters.

REPORT_FIRMWARE Report version number of Firmata fi rmware.

SAMPLING_INTERVAL Set sampling interval.

SYSEX_NON_REALTIME MIDI reserved.

SYSEX_REALTIME MIDI reserved.

These constants are kept up to date at the Firmata website at http://firmata

.org/wiki/V2.2ProtocolDetails.

http://firmata

268 Part II ■ Standard Libraries

c16.indd 09:0:50:PM 11/28/2014 Page 268

Example Program

The beauty of Firmata is that it can adapt to so many situations. It is, of course,

up to you to choose which pins will be used. If you want to expose only some

pins, for example, to allow Firmata to control them, you can choose to enable

just those relevant to your project. The sketch might receive Firmata instructions

to update pins, but ultimately it is up to you, the developer, to decide if you

should allow these instructions on all pins. Maybe you do not want a Firmata

program to be able to modify certain pins. If a pressure sensor is connected to

two pins, you do not want Firmata to change the pins to output and potentially

damage the component.

The Arduino IDE has an excellent sketch that lets you begin working with

Firmata: the StandardFirmata program. To access this program, go to Files ➪

Examples ➪ Firmata ➪ StandardFirmata, and upload the sketch to your board.

However, uploading the sketch to your Arduino is only one-half the project;

you also need a Firmata program on your computer. Several programs exist,

and one is available on the Firmata website at http://www.firmata.org/wiki/

Main_Page#Firmata_Test_Program.

Download the version for your system (Windows, Mac OS, and Linux binaries

are available), and run the program. You need to know which serial port your

Arduino is connected to. After this is done, you are presented with the Firmata

screen, where the status of every pin is presented. This works by sending data

to the Arduino as quickly as possible; the faster the data transfer, the more

responsive the output will be. The Arduino also sends data to the computer,

using a clever sampling rate technique, which is described next.

Using this system, you can instruct your Arduino to perform advanced features

such as turning LEDs on and off without the need to write a sketch or reading

input lines without knowing in advance what will be connected (if anything).

However, this has its limitations. As explained previously, if you require a device

to be present on specifi c pins, you might want to edit the Standard Firmata

sketch to not poll or update those pins. It is up to you, the programmer, to know

which pins you want to expose and to create or modify a sketch to make sure

that only the pins that are usable can be accessed by Firmata.

The Standard Firmata sketch is complicated and is one of the larger sketches

that you will see on an Arduino, but it is well structured and can be used as the

basis for your own sketches. By looking at setup(), you can see this:

Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION,
 FIRMATA_MINOR_VERSION);

Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);

http://www.firmata.org/wiki

 Chapter 16 ■ Firmata 269

c16.indd 09:0:50:PM 11/28/2014 Page 269

Firmata.attach(SET_PIN_MODE, setPinModeCallback);
Firmata.attach(START_SYSEX, sysexCallback);
Firmata.attach(SYSTEM_RESET, systemResetCallback);

The fi rst line sets the Firmata version, something that the Firmata applica-

tion checks. It is defi ned using two constants: FIRMATA_MAJOR_REVISION and

FIRMATA_MINOR_REVISION. These constants are set by the Arduino Firmata library.

Next, a series of callbacks are defi ned; all seven possible callbacks are present

in this sketch. This sketch can therefore react to every sort of Firmata message,

or at least call a specifi c function when the message is received. It is then up to

you to fi ll in the callbacks using the Standard Firmata sketch as an example.

In loop() the sketch receives and processes messages from the computer:

while(Firmata.available())
 Firmata.processInput();

One of the variables in the program is samplingInterval. This defi nes the

rate at which Firmata polls the pins. The sketch then has a clever technique to

make sure that the wanted sampling rate is maintained. Following is the code

that is used:

currentMillis = millis();
if (currentMillis - previousMillis > samplingInterval)
{
 previousMillis += samplingInterval;
 // Code goes here
}

The variables currentMillis and previousMillis are each defi ned as an

unsigned long. Each time Arduino enters loop(), the millis() function will

be called, returning the number of milliseconds that the sketch has been run-

ning for. This value is then placed inside the variable currentMillis. Then,

a comparison is made between currentMillis minus previousMillis and

the samplingInterval. If the value of currentMillis minus previousMillis

is larger than samplingInterval, previousMillis is increased by the value

contained in samplingInterval, and the sketch is free to send all the pin data.

Summar y

In this chapter, I have shown you the Firmata library and how it interacts with

an Arduino. You have seen the different messages and the callbacks used to react

to them. In the next chapter, you see how to use the Arduino GSM shield and

connect to mobile data networks, transfer data to and from servers, and create

your own wireless server. You also see how to place and receive telephone call s.

271

c17.indd 09:54:11:PM 07/13/2017 Page 271

This chapter discusses the following functions of the GSM library:

 ■ GSMAccess.begin()

 ■ GSMAccess.shutdown()

 ■ GSM_SMS.beginSMS()

 ■ GSM_SMS.print()

 ■ GSM_SMS.endSMS()

 ■ GSM_SMS.available()

 ■ GSM_SMS.remoteNumber()

 ■ GSM_SMS.read()

 ■ GSM_SMS.peek()

 ■ GSM_SMS.flush()

 ■ GSMVoiceCall.voiceCall()

 ■ GSMVoiceCall.getVoiceCallStatus()

 ■ GSMVoiceCall.answerCall()

 ■ GSMVoiceCall.hangCall()

 ■ GSMVoiceCall.retrieveCallingNumber()

 ■ GPRS.attachGPRS()

 ■ GSMClient.connect()

 ■ GSMServer.ready()

 ■ GSMModem.begin()

 ■ GSMModem.getIMEI()

C H A P T E R

17

GSM

272 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 272

The hardware needed to use these functions includes

 ■ Arduino Uno

 ■ Arduino GSM Shield

 ■ Active SIM card

 ■ 1 x Reed switch

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 17

folder and the fi lename is Chapter17.ino.

Introducing GSM

One of the many things that defi nes the human race is our capacity to communi-

cate. Throughout our inventions, we have developed ways to express ourselves,

and to talk to more and more people, further and further away. Try to imagine

life without a mobile phone, or any sort of telephone. How do you tell someone

something? There are still options available to you; you could write a letter (a

real letter, not an e-mail, one with pen and paper). It would take a day or two to

arrive, and the recipient would read it when he arrived home (or at the offi ce).

You could also leave the house to see the person, either by going to her house,

business, or a common meeting place (the town square, or even a restaurant).

Neither of these options are as fast as dialing them up.

Of course, things do change. When writing this book, I am constantly in contact

with my publisher and editor. I pick up my mobile phone, and call a number,

and a few seconds later, another telephone rings, separated by a wide distance.

I am in Europe, and they are in the United States. No matter where I am, either

at home in France, or on a business trip to England, Brazil, or Singapore, people

can get ahold of me. The international telephone network connects millions

upon millions of people together, at distances that span the entire world, but

the ability to place telephone calls is only one aspect of this network.

Mobile Data Network

Long gone are the days when a mobile telephone was used only for placing

phone calls. Today, even the most basic of phones can receive network data as

either text or multimedia messages. More advanced phones can receive e-mails,

browse websites, or even stream high-quality videos through advanced data

networks. We can be almost anywhere and still receive Facebook requests and

spam messages. Times have indeed changed.

http://www.wiley.com

 Chapter 17 ■ GSM 273

c17.indd 09:54:11:PM 07/13/2017 Page 273

Although this may appear to be simple, it is extremely complicated to achieve.

Data is sent through multiple channels, and simply walking around outside can

be complicated for the mobile telephone network, as users regularly disconnect

from one tower while connecting to a new tower. This is all handled transpar-

ently by the telephone and the telephone network, resulting in what appears to

be a seamless network. The truth is, at any one moment, a telephone, or device

in a mobile network, may not send and receive data.

GSM

The fi rst generation of mobile communications, known as 1 G, was a simple

technology that allowed full-duplex voice communication (full-duplex meaning

that you could talk and listen at the same time). A simple system, it worked

extremely well for people that needed to be on the move and connected continu-

ously. Most 1 G telephones were car phones; relatively large devices that ran

on a car’s battery, but allowed users to do what the telephones were designed

for—talking.

The 1 G network was entirely analog, but was only called 1 G when a new

technology was needed; it was then known as the second generation, or 2 G and

replaced 1 G.

In 1981, the European Conference of Postal and Telecommunications

Administration (known as CEPT) created a new committee, the Groupe Spéciale

Mobile, based in Paris. The GSM name would later be known as Global System

for Mobile Communication, and its logo would become the de facto standard

in almost all countries.

GSM changed quite a few technical aspects; all communications were now

digital instead of analog. By using digital technology, communications could be

compressed, using less bandwidth, allowing more users access to the network.

Because mobile devices were becoming truly mobile and smaller, phone’s radio

emission strength was reduced, requiring more and more cells to allow com-

munications. Cell towers were now cheap to produce, so this wasn’t a problem,

as was the cost to pay for safe devices that could be placed in a pocket and

used all day.

One of the changes that the GSM specifi cation proposed was something that

is still in use: a SIM card. A SIM card contains a unique serial number, operator

network information, subscriber information, temporary network information,

and two passcodes for the user: the PIN and PUK. By using a SIM card, users

can choose their mobile operator, and mobile operators can sometimes “lock”

mobile phones to their network.

The original GSM specifi cation did not include data transfer but was rapidly

modifi ed to allow SMS messages, just one such method that uses digital data.

SMS, short for Short Message System, is a technique to send 160 characters to

274 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 274

cell towers or to telephones. Although most people think of SMS messages as

“I will be 20 minutes late,” they are also an effi cient way of warning people in

case of an emergency, and for publicity, taxi reservations, payment systems,

or even for proprietary inter-application communication. The number of SMS

messages range in the billions per year, and although their use is slowly declin-

ing in favor of other messaging systems, in 2013, an estimated 145 billion SMS

messages were sent.

SMS is not the only data transfer technique used by the GSM network; two

other major systems exist.

GPRS

GPRS, short for General Packet Radio Service, is a packet-based data exchange

technique. Although most GSM connections were circuit-switched (meaning

that a connection was established and then terminated when the connection

was cut), GPRS introduced a packet-switching technique, allowing operators to

charge clients by the quantity of data used, and not the time spent transferring

data. GPRS is an extension to the GPS 2 G technology, and as such, is often known

as 2.5 G. This technology allows theoretical speeds of up to 50 Kbit/s, but true

throughput is often limited at 40 Kbit/s.

EDGE

EDGE, short for Enhanced Data rates for GSM Evolution, is an enhancement

over the previous GPRS data connection method. With a theoretical max speed

of 250 Kbit/s, this norm was soon called 2.75 G by mobile telephone owners. It is

still used today as a fallback when other high-speed networks are not available.

3 G

The third generation of mobile networks is a large change from the previous 2

G, and is not compatible with the older systems, but remains a fallback technol-

ogy for current telephones. 3 G allows for higher data speeds than previous

standards, ranging from 2 Mbit/s all the way to 28 Mbit/s.

The 3 G standard was created by the International Telecommunication Union,

which is not the same as the GSM committee. 3 G mobile devices can use the

2 G network, but 2 G devices cannot connect to 3 G networks. They must use

the older 2 G network, forcing operators to have several systems in place on

the same tower.

 Chapter 17 ■ GSM 275

c17.indd 09:54:11:PM 07/13/2017 Page 275

4 G and the Future

4 G is currently the most advanced technology readily available, with extremely

high speeds exceeding 50 Mbit/s. The 4 G standard allows for theoretical speeds

much higher than that, but even that isn’t fast enough for the future, and work

has already begun on the 5 G network. Time will tell just how far the mobile

network will progress.

Modems

A modem (short for modulator-demodulator) is a device that can send and

receive digital data through an analog carrier. Most veteran computer experts

remember modems as the trusty 56-k modem—a device that connected to a

computer through a serial port and allowed the computer to connect to the

Internet (or a company network) through a telephone line. Where does the 56 k

come from? The speed, 56 thousand baud or 56 Kbit/s data rate. If everything

went well (which it usually didn’t) this meant that users could download data

at a blistering 4 to 5 kilobytes per second. Don’t laugh; they were fast modems,

yet most were slower.

Although the trusty 56-k modems have been mostly replaced by broadband,

it is interesting to know how they work. Modems are serial devices, and most

were instructed to operate using the Hayes command set: simple ASCII mes-

sages instructing the modem to perform specifi c actions. Most commands start

with “AT”, short for Attention. A modem is instructed to confi gure itself in a

specifi c way, to call a number and to get information using simple text messages.

When the connection is made, the modem is switched from command mode to

data mode, and from there on, the modem sends each byte of data it receives. It is

also possible to change from data mode to command mode again to issue more

instructions to the modem (for example, to hang up). Again, this is performed

by sending AT commands.

The 56-k modem is indeed a dying technology, but its legacy is still with us

and will be for a long time. The AT command idea was so well implemented

that most radio peripherals still use them; Bluetooth devices, for example, are

confi gured using AT commands. Bluetooth does not connect through telephone

lines, but the modem principle is the same; a digital device transmits digital data

over an analog medium—in this case, radio waves. Even the most modern 4 G

telephone is also a modem, accepting serial data, transmitting and receiving

data over radio waves. GSM devices are exactly the same.

276 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 276

Arduino and GSM

There are multiple ways to connect to devices wirelessly and exchange informa-

tion: Wi-Fi, Bluetooth, and Zigbee to name but a few. Most of these technologies

require the user to create an infrastructure, but there is no wireless infrastruc-

ture as extensive and as widely used as the mobile telephone network. Also,

Arduinos are small, lightweight, and mobile, making them perfect for mobile

network use. A GPS tracker on a car is only useful if it can send information

through an existing network, and is useless if it leaves your Wi-Fi zone (which

probably happens a lot for a car). However, there is a good chance that your car

will go through at least several mobile network cells during its trip, allowing

it to send data at will.

Several shields exist to achieve this. Arduino produces its GSM shield, one

that comes bundled with a SIM card from Movilforum Telefonica. The GSM

shield is unlocked, meaning that it can be used with any mobile operator, but

Movilforum Telefonica’s service is international, and it has a large partner net-

work, allowing for GSM communication just about anywhere.

GSM shields connect to GSM networks but will not work on 3 G and 4 G net-

works. Although on a 2 G network, the shield enables you to make and receive

telephone calls, send and receive SMS messages, and enables data connectivity.

N O T E Data connectivity means that you can access the entire Internet, but most

mobile operators have their own internal network, meaning that your telephone is

not directly visible from the Internet. This adds a level of security to your applications

but makes it diffi cult to “listen” for incoming connections. A GSM device should always

initiate a connection and wait for a response.

GSM devices are often power-hungry and usually require an external power

supply. USB ports that supply 500 mA cannot keep a GSM shield powered under

heavy load; these devices often require a power supply between 700 and 1,000 mA.

To use a GSM shield, Arduino has developed a library to create connections,

send and receive data, and even manage the SIM card.

Arduino GSM Library

The Arduino GSM library is available in Arduino 1.0.4 and later. The GSM library

is a complex library with multiple header fi les. It can be imported automatically

in the Arduino IDE by going to the menu Sketch ➪ Import Library ➪ GSM, but

doing this adds a large number of fi les:

 ■ #include <GSM3MobileMockupProvider.h>

 ■ #include <GSM3ShieldV1BaseProvider.h>

 Chapter 17 ■ GSM 277

c17.indd 09:54:11:PM 07/13/2017 Page 277

 ■ #include <GSM3ShieldV1ModemVerification.h>

 ■ #include <GSM3ShieldV1PinManagement.h>

 ■ #include <GSM3ShieldV1SMSProvider.h>

 ■ #include <GSM3MobileClientService.h>

 ■ #include <GSM3ShieldV1CellManagement.h>

 ■ #include <GSM3ShieldV1MultiServerProvider.h>

 ■ #include <GSM3ShieldV1BandManagement.h>

 ■ #include <GSM3ShieldV1DataNetworkProvider.h>

 ■ #include <GSM3ShieldV1.h>

 ■ #include <GSM3CircularBuffer.h>

 ■ #include <GSM3MobileCellManagement.h>

 ■ #include <GSM3MobileAccessProvider.h>

 ■ #include <GSM3MobileClientProvider.h>

 ■ #include <GSM3SMSService.h>

 ■ #include <GSM3MobileDataNetworkProvider.h>

 ■ #include <GSM3ShieldV1ServerProvider.h>

 ■ #include <GSM3MobileServerService.h>

 ■ #include <GSM3VoiceCallService.h>

 ■ #include <GSM3MobileServerProvider.h>

 ■ #include <GSM.h>

 ■ #include <GSM3MobileVoiceProvider.h>

 ■ #include <GSM3ShieldV1VoiceProvider.h>

 ■ #include <GSM3ShieldV1ScanNetworks.h>

 ■ #include <GSM3ShieldV1ClientProvider.h>

 ■ #include <GSM3ShieldV1DirectModemProvider.h>

 ■ #include <GSM3MobileNetworkProvider.h>

 ■ #include <GSM3MobileSMSProvider.h>

 ■ #include <GSM3MobileNetworkRegistry.h>

 ■ #include <GSM3ShieldV1ModemCore.h>

 ■ #include <GSM3ShieldV1MultiClientProvider.h>

 ■ #include <GSM3ShieldV1AccessProvider.h>

 ■ #include <GSM3SoftSerial.h>

278 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 278

Don’t be frightened by the large number of fi les. For most applications, you

can simply include the GSM library #include <GSM.h>.

Because the GSM library is complex, its different usage is separated into

classes. There are classes to manage GPRS connections: SMS messages, and

voice calls, to name but a few.

GSM Class

The GSM class is responsible for initializing the shield and the on-board GSM

device. It is initialized like this:

GSM GSMAccess
GSM GSMAccess(debug)

The debug parameter is optional. It is a boolean and is false by default. If set

to true, the GSM device outputs AT commands to the console.

To connect to the GSM network, use the begin() function:

GSMAccess.begin();
GSMAccess.begin(pin);
GSMAccess.begin(pin, restart);
GSMAccess.begin(pin, restart, sync);

The pin parameter is a character array that contains the PIN code for the SIM

card connected to the GSM shield. If your SIM card does not have a PIN code,

you can omit this parameter. The restart parameter is a boolean and specifi es

if the modem is to be restarted. By default, this parameter is true, resulting in

a modem restart. The sync parameter is a boolean and sets the synchroniza-

tion to the base station. In a synchronous confi guration, the sketch can tell if

an operation has completed. In an asynchronous confi guration, operations are

scheduled, and their result isn’t always immediately available. By default, it is

set to true. All the return codes listed in this chapter correspond to a synchro-

nous confi guration.

This function returns a char indicating the status of the modem: ERROR, IDLE,

CONNECTING, GSM_READY, GPRS_READY, or TRANSPARENT_CONNECTED.

This can be used as follows:

#include <GSM.h>

#define PINNUMBER "0000" // SIM card PIN

GSM gsm(true); // Debug AT messages

void setup()
{
 // initialize serial communications

 Chapter 17 ■ GSM 279

c17.indd 09:54:11:PM 07/13/2017 Page 279

 Serial.begin(9600);

 // connection state
 boolean notConnected = true;

 // Start GSM shield
 while(notConnected)
 {
 if(gsm.begin(PINNUMBER)==GSM_READY)
 notConnected = false;
 else
 {
 Serial.println("Not connected");
 delay(1000);
 }
 }

 Serial.println("GSM initialized");
}

To shut down the modem, use shutdown():

GSMAccess.shutdown();

This function does not take any parameters and returns a boolean: true if

the modem was shut down and false if the function is currently executing. If

this function returns false, it does not mean that the function failed, only that

the shutdown operation has not yet completed.

SMS Class

GSM modems can, of course, be used to send and receive SMS messages. To

enable SMS message services, use the GSM_SMS class:

GSM_SMS sms;

An SMS message is sent in three steps; fi rst, the destination number is required.

Second, the text is entered. Finally, the message is confi rmed.

To set a destination telephone number, use beginSMS():

sms.beginSMS(number);

The number parameter is a char array, the telephone number that will receive

the SMS message.

To fi ll in the SMS body, use print():

sms.print(message);

280 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 280

The message parameter is again a char array and contains the message to

be sent. Note that SMS messages are limited to 160 characters. This function

returns the amount of bytes sent, expressed as an int.

To complete an SMS message and to instruct the modem to send the message,

use endSMS():

sms.endSMS();

This function does not take any parameters.

When the SMS message has been assembled, the SIM card is told to send

the message as soon as possible. The SIM card coupled with the modem make

an autonomous unit which acts independently from the Arduino. Assembling

and sending a message through the Arduino API does not guarantee that the

message is sent; it is queued to be sent.

Because the device is autonomous, it also receives SMS messages without

warning; there is no callback and no interruption. The sketch must periodically

poll the GSM shield to see if a message is present. This is done with available():

result = sms.available();

This function returns an int, the number of messages waiting on the SIM

card. To begin reading a text message, you must fi rst retrieve the number of the

sender, which is done with remoteNumber():

sms.remoteNumber(number, size);

The number parameter is a char array, a memory location where the sender

ID will be stored. The size parameter is the size of the char array.

When the sender ID has been retrieved, the next thing you must do is to

retrieve the message body. You can do this with read(), which works the same

way as with fi le functions and serial buffers. It reads one character at a time.

result = sms.read();

You can read the entire content of a message with the following code:

// Read message bytes and print them
while(c=sms.read())
Serial.print(c);

SMS messages that have been previously read are marked with a hashtag.

To see if a message has been read without actually fetching the fi rst character,

you can use peek(). Just like with serial buffers, this function returns the fi rst

character but does not increment the index. Subsequent calls to peek() or even

read() will return the same character.

 Chapter 17 ■ GSM 281

c17.indd 09:54:11:PM 07/13/2017 Page 281

if(sms.peek()=='#')
 Serial.println("This message has been discarded");

To discard a message, you can use flush():

sms.flush();

This function deletes the SMS at the current buffer index from the modem’s

memory.

VoiceCall Class

You can use the VoiceCall class to place and to answer voice calls. An Arduino

can place voice calls but cannot send voice data without additional hardware.

Most shields have an audio input and output port, allowing users to add addi-

tional components as required. This can be in the form of a microphone and

speaker, or for distress calls, it can also be an electronic component capable

of outputting wave audio. The GSM component accepts text instructions and

encodes/decodes the audio as required. Instructions include dialing numbers,

picking up and hanging up, as well as caller identity functions.

The fi rst thing you must do is create an instance of the GSMVoiceCall class:

GSMVoiceCall vcs;

To place a phone call, use VoiceCall():

result = vcs.voiceCall(number);

The number parameter is a char array and is the telephone number to call.

The function returns an int: 1 if the call were placed or 0 if it were unable to

call. This can be used as follows:

// Check if the receiving end has picked up the call
if(vcs.voiceCall(phoneNumber))
{
 Serial.println("Call Established");
}
Serial.println("Call Finished");

This function places only the call and returns if the call were established. To

check on the call status, use getVoiceCallStatus():

result = vcs.getVoiceCallStatus();

This function takes no parameters and returns IDLE_CALL, CALLING,

RECEIVINGCALL, or TALKING, which is described in Table 17-1.

282 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 282

Table 17-1: getVoiceCallStatus() Return Codes

CONSTANT DESCRIPTION

IDLE_CALL The modem is idling: no incoming calls, no outgoing calls, and no
call in progress.

CALLING The modem is currently calling a number.

RECEIVINGCALL The modem is receiving an incoming call.

TALKING A call has been placed (incoming or outgoing) and communication
is established.

The other end of a telephone call can hang up whenever it chooses (or even

when network conditions no longer allow a call to continue), and the Arduino

can also instruct the GSM device to hang up with hangCall():

result = vcs.hangCall();

This function takes no parameters and returns an int: 1 if the operation suc-

ceeded and 0 otherwise. This function not only hangs up a connected call, but

can also hang up on an incoming call.

Arduinos can also receive calls, but the GSM modem does not warn the sketch

of incoming calls; the sketch must poll the GSM device with getVoiceCall-

Status() when there’s an incoming call expected. When an incoming call is

detected (when getVoiceCallStatus() returns RECEIVINGCALL), you can retrieve

the calling number and decide to accept/refuse the call. To get the incoming

telephone number, use retrieveCallingNumber():

result = vcs.retrieveCallingNumber(number, size);

The number parameter is a char array and can store the incoming number.

The size parameter is the size of the array. This function returns 1 if the phone

number is retrieved, and 0 if it is unable to retrieve the phone number.

To pick up an incoming call, use answerCall():

result = vcs.answerCall();

This function does not take any parameters and returns 1 if the call is answered,

or 0 if it is unable to answer. Incoming calls can also be refused with hangCall().

GPRS

GPRS is the method used to send and receive data using a GSM mobile device. It does

not require an active voice call but does require authentication. When the SIM card

has been told to create a connection, it maintains the connection and automatically

reconnects if needed. Before using a GPRS connection, you must use the GPRS class:

GPRS gprs;

 Chapter 17 ■ GSM 283

c17.indd 09:54:11:PM 07/13/2017 Page 283

Then, to initiate a connection, you must use attachGPRS():

grps.attachGPRS(APN, user, password);

This function takes three parameters, all three are char arrays. The APN param-

eter is the Access Point Name, the name of the connection point between the GPRS

network and the Internet. Each GPRS network should have one; check with your

SIM card provider for more information. The user and password parameters are

optional username and password details that are sometimes required to connect

to an APN. Again, the documentation that comes with your SIM card should

give more details. Not all providers use the username and password fi elds; in

which case they may be left blank. This function returns the same constants as

begin(); it returns GPRS_READY when the connection is established.

if (gprs.attachGPRS(GPRS_APN, GPRS_LOGIN, GPRS_PASSWORD)==GPRS_READY)
 Serial.println("Connected to GPRS network");

When the connection to the GPRS network is established, you need to create

either a server or a client. A server waits for incoming connections, and a cli-

ent connects to external servers. A server uses the GSMServer class, and a client

uses the GSMClient class. Both work almost the same as an Ethernet connection,

with a few differences; the GSM library attempts to be as compatible as possible

with the Ethernet library.

C R O S S  R E F E R E N C E The Ethernet library was presented in Chapter 9.

To create a client, that is to say a device that will connect to another Internet

device, use the GSMClient class:

GSMClient client;

When that is done, you must connect to a server. To connect to a server, use

connect():

result = client.connect(ip, port);

The ip parameter is a 4-byte IP address, and port is an int specifying the

port that the sketch wants to connect to. This function returns a boolean: true

if the connection is established, and false if the connection fails.

When a connection has been made, you can send and receive data. Sending

data is done with print(), println(), and write():

result = client.print(data);
result = client.println(data);
result = client.write(databyte);

284 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 284

These functions are presented in Chapter 9.

To become a server, that is to say a device that will listen to incoming con-

nections, use the GSMServer class:

GSMServer server(port);

The port parameter is an int; it tells the server which port to listen on for

connections.

One difference between the GSM library and the Ethernet library is the

nature of the connection. GSM connections are sometimes unstable; network

coverage may not be available in some locations (for example, inside a building

or under a bridge). To know if a command were successfully executed, use the

ready() function:

result = client.ready();

This function does not take any parameters and returns an int; 1 if the previ-

ous operation has completed, and 0 if it has not (yet) completed.

Many network providers do not allow incoming connections on their network,

making it impossible to run servers with the GSM shield. Check with your

provider to see if there are any such limitations with your network.

Modem

The modem class is used primarily to perform diagnostic operations on the

modem component. To use it, you must use the GSMModem class:

GSMModem modem;

To initialize the modem subsystem, you must fi rst use begin():

result = modem.begin();

This function returns true if the modem subsystem was initialized or false

if there was a problem with the initialization. (For example, the shield has not

been correctly installed.)

To retrieve the IMEI number, the International Mobile Equipment Identifi er,

a unique number identifying the shield’s modem, use getIMEI():

result = modem.getIMEI();

This function does not take any parameters and returns a String, the IMEI

number of the GSM modem.

 Chapter 17 ■ GSM 285

c17.indd 09:54:11:PM 07/13/2017 Page 285

Example Application

One of the domains where Internet-connected devices are in constant demand

is home security. Most security devices use a home’s Wi-Fi connection, but

these devices are vulnerable to attack. For this reason, many security systems

also have a backup GSM system, allowing devices to communicate even if the

physical line to the Internet is severed.

For this application, you will create a system that monitors a door or window.

In the event of this entrance opening, a warning message is sent via text message.

To make sure that the system works, every few minutes a “heartbeat” is sent

to an Internet server. This message is just a small bit of information that shows

that the system works. If the server does not hear from the Arduino within a

certain timeframe, then it knows that something is wrong.

This example uses an Arduino Uno and a GSM shield. One entrance is monitored

by means of a reed switch, button, or other contact-based switch. This switch must

be confi gured as NC, normally closed, and connected to the Arduino’s ground.

Normally this would require a resistor to pull either the 5-V power rail or the ground,

but Arduinos have internal pull-up resistors that can be activated in code, and

that is what will be done here. If the door is open, the connection is severed, and

the Arduino’s internal pull-up registers an intrusion. Also, if the wires are cut, the

Arduino also registers that as an alert. The schematic is shown in Figure 17-1.

Figure 17-1: Project schematic

286 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 286

Your sketch should look like Listing 17-1

Listing 17-1: Sketch (fi lename: chapter17.ino)

1 #include <GSM.h>
2
3 #define PINNUMBER "0000" // Replace with your SIM card PIN
4 #define CONTACT "01234567" // Replace with your mobile telephone
 number
5 #define GPRS_APN "GPRS_APN" // Replace your GPRS APN
6 #define GPRS_LOGIN "login" // Replace with your APN login
7 #define GPRS_PASSWORD "password" // Replace with your APN password
8 #define SERVER "yourhomesecurity"
9 #define PORT 8080
10
11 // initialize the library instance
12 GSM gsmAccess;
13 GSM_SMS sms;
14 GSMClient client;
15 GPRS gprs;
16
17 // Variables
18 bool intrusion = false;
19
20 void setup()
21 {
22 // initialize serial communications and wait for port to open:
23 Serial.begin(9600);
24
25 // connection state
26 boolean notConnected = true;
27
28 // Start GSM shield
29 // If your SIM has PIN, pass it as a parameter of begin() in
 quotes
30 while(notConnected)
31 {
32 if((gsmAccess.begin(PINNUMBER)==GSM_READY) &
33 (gprs.attachGPRS(GPRS_APN, GPRS_LOGIN, GPRS_PASSWORD)
34 ==GPRS_READY))
35 notConnected = false;
36 else
37 {
38 Serial.println("Not connected");
39 delay(1000);
40 }
41 }
42
43 pinMode(8, INPUT_PULLUP);
44 45 Serial.println("GSM initialized");
46 }

 Chapter 17 ■ GSM 287

c17.indd 09:54:11:PM 07/13/2017 Page 287

47
48 void loop()
49 {
50 for (int i = 0; i < 600; i++)
51 {
52 delay(500); // sleep for half a second
53 if (digitalRead(8) == HIGH)
54 {
55 if (intrusion == false)
56 {
57 // An intrusion has been detected. Warn the user!
58 intrusion = true;
59 sendWarningSMS();
60 }
61 else
62 {
63 // The user was already warned about an intrusion, do
 nothing
64 }
65 }
66 else
67 {
68 // Everything looks OK
69 intrusion = false;
70 }
71 }
72
73 // It has been 10 minutes, send a heartbeat
74 if (client.connect(SERVER, PORT))
75 {
76 Serial.println("connected");
77 client.print("HEARTBEAT");
78 client.stop();
79 }
80 else
81 {
82 // if you didn't get a connection to the server:
83 Serial.println("Connection failed");
84 }
85 }
86
87 void sendWarningSMS()
88 {
89 sms.beginSMS(CONTACT);
90 sms.print("Intrusion alert!");
91 sms.endSMS();
92 }

This sketch begins by importing the GSM library, and then defi ning the

necessary parameters for this sketch: the PIN number, the contact number, and

different connection parameters.

288 Part II ■ Standard Libraries

c17.indd 09:54:11:PM 07/13/2017 Page 288

On line 12, the different objects are created: gsmAccess is used to talk to the

Arduino GSM board, sms is the object used to send SMS messages, client is

used to create a GPRS client connection, and gprs is used to attach the GPRS

connection.

The setup() function is declared on line 20. The serial connection is confi g-

ured on line 23, and on line 26 the variable notConnected is set to true. As long

as this variable is true, a while loop attempts to attach to the GPRS network,

with the attachGPRS() function on line 33. Finally, on line 43, pin 8 is set as an

input with an internal pull-up resistor.

On line 88 a function is declared: sendWarningSMS(). This function will send

an SMS message to the specifi ed contact. The SMS message is created on line 90

using the beginSMS() function. On line 91, text is sent to the SMS engine—this

will be the content of the message. Finally, on line 92 the endSMS() function

will send the message.

The loop() function is declared on line 49. It starts with a for() loop and

iterates 600 times. Each loop will start by waiting for a second, and then looking

at the state of the digital input on pin 8. If the result is false, that means that the

reed switch has been activated, and the variable intrusion is set to true before

calling the sendWarningSMS() function.

Once this loop iterates 600 times, or close to 10 minutes, the sketch will attempt

to connect to a server. If the connection is successful, the sketch will send a mes-

sage to the server telling it that the security system is still up and running. If

the sketch cannot connect, then a warning message is sent to the serial console.

The sketch is simple and needs protection. A warning light could be added,

or at least an output to a relay for a siren of some sort. Also, the device can send

SMS messages to warn people, but it can also receive messages—you can write

a routine that can receive messages to turn the security on if the user leaves the

house without activating his alarm.

Summary

In this chapter, I have shown you just how fl exible a GSM shield can be and the

different ways it can be used. You have seen an example using just some of the

many functions, and explored an idea about how to increase connectivity. In

the next chapter, I will show you the Audio library, a powerful library that adds

function to an Arduino Due to output audio fi les. You will see how audio fi les

are composed and how to create a device that will output audio to a loudspeaker.

c18.indd 06:57:50:PM 12/08/2014 Page 289

Par t

III
Device-Specifi c Libraries

In This Part

Chapter 18: Audio

Chapter 19: Scheduler

Chapter 20: USBHost

Chapter 21: Esplora

Chapter 22: Robot

Chapter 23: Bridge

c18.indd 06:57:50:PM 12/08/2014 Page 290

291

c18.indd 06:57:50:PM 12/08/2014 Page 291

This chapter discusses the following functions of the Audio library:

 ■ begin()

 ■ prepare()

 ■ write()

The hardware needed to use the examples in this chapter includes:

 ■ Arduino Due

 ■ Ethernet Shield (Arduino, SainSmart, etc.)

 ■ Micro-SD card

 ■ Breadboard

 ■ LM35 Temperature Sensor

 ■ Wires

 ■ 3.5-mm audio jack

 ■ An audio amplifi er

N O T E The Audio library is only found in Arduino IDE version 1.5 and later. It is still

considered experimental and under development.

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 18

folder and the fi lename is Chapter18.ino.

C H A P T E R

18

Audio

http://www.wiley.com

292 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 292

Introducing Audio

Science fi ction fi lms from the 1980s were full of strange machines with lots of

fl ashing lights and annoying beeps. The fi rst PCs sold had only a buzzer, and

the fi rst versions could only do that, buzz. A while later, people played with

the buzzer, making tones and even music for games. There are various videos

on YouTube that show what games used to be like. Don’t laugh; we really did

play like that, and we liked it!

The gaming industry was driving sound development at the time, and gam-

ers wanted more advanced music. It wasn’t long before MIDI sound cards

were released. MIDI is a protocol for connecting musical devices together. (A

computer can also be a musical instrument.) Some sound cards could be pro-

grammed with “instruments” to be played back at different notes. Although

the sound fi delity was much better than the original internal buzzers, it could

still be better. Music was certainly much better, but recorded sounds still were

not possible—or at least, not easily. You could listen to high-quality music, but

the explosions created by your rocket launcher wouldn’t sound quite right. The

industry turned to another solution.

A new generation of sound cards was born: Creative Lab’s Sound Blaster series.

It had the features of MIDI sound cards but also had digital signal processors

(DSP for short) that could create complex digital audio signals. Computer pro-

cessors were more and more powerful, and fi nally powerful enough to create

complex sounds by digitally interpreting an analog signal through the sound

card. We could hear music, and explosions sounded great. We stayed up all

night hurling rockets at each other.

Again, new technology had its benefi ts but also had a problem: space. Digital

sound fi les took up a lot of space, and space wasn’t readily available at the time.

High-end hard drives were just more than 1 gigabyte in size, and a 3-minute song

recorded from the radio could be hundreds of megabytes in size. If music were

to become digital, we needed larger hard drives or to fi nd a way to compress

music, preferably both. Today, a song can be compressed into 4 or 5 megabytes

and placed onto a music player with gigabytes of space. However, it also requires

something else: faster processors.

Digital Sound Files

One of the fi rst digital audio formats is known as wave: an uncompressed digital

fi le that represents an analog signal. Where analog signals can have almost every

value possible between their maximum and minimum values, digital cannot. It

requires a resolution: the amount of values it can handle. On a scale of 0 to 10,

an analog signal would create a 7.42, but a digital signal from 0 to 10 in steps of

1 would not; the closest it can do is 7, as shown in Figure 18-1.

 Chapter 18 ■ Audio 293

c18.indd 06:57:50:PM 12/08/2014 Page 293

Output wave

Wave
converted to
digital form

Original
wave pattern

Figure 18-1: Digital resolution

As you can see, the analog signal fl ows through different values, but the

digital representation creates a “step” effect; the representation of the data is not

precise, and quality is lost. Thankfully, sound cards do not have values that go

from zero to 10; most are 16 bits for a total of 65,536 values. Previous generations

had 8-bit sampling for a total of 256 values, and 256 values are too low for an

accurate representation. However, the 16-bit value of 65,536 is considered to be

more than enough for most audiophiles. This is the quality found on CDs and

even some Blu-ray audio fi les. However, the resolution is not the only factor to

take into consideration.

Sound waves are a mixture of different frequencies; the higher the frequency,

the higher the pitch. Humans can normally hear sounds from as low as 20 Hz

all the way to 20 kHz and above. To digitally sample frequencies as high as

20 kHz, the effective sampling rate (the speed at which the sound is sampled)

must be at least doubled or 40 kHz. For typical applications, a sampling rate

of 44.1 kHz is used. A microchip was already on the market that used this

frequency for sampling, designed by Sony Corporation. For professional

applications, sampling was done at rates as high as 48 kHz. 44.1 kHz and

48 kHz are common sample frequencies found on computers, as are multiples

of 44.1 kHz; 22.05 kHz, and 11.025 kHz. 8 kHz was used for a long time for

telephone systems, where audio quality was adequate to understand human

voice conversations. Professional sampling devices can sample at a high rate

for even more accurate results; DVD audio is sampled at 192 kHz, and other

devices can go as high as 2 MHz.

294 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 294

The higher the sampling rate, the more accurate the result will be. The

effects of sampling speed are shown in Figure 18-2.

Slower, less accurate sampling Faster, more accurate sampling

 Figure 18-2: Sampling rates

Higher sampling rates also create more data, meaning more space is required.

Music on the Arduino

Arduinos can create musical tones because music is, put simply, repeated

frequencies. A musical A has a frequency of 220 Hz, a musical A’ is double that, or

440 Hz. By knowing the frequencies of notes, it’s possible to program an Arduino

to create simple musical tones. For example, the famous song “Happy Birthday”

can be written in musical tones as: “CCDCFE CCDCGF CCC1AFED BBAFGF.”

By using tone(), you can generate a musical tune to impress your friends, but

it remains a simple musical tone. The sound is clearly artifi cial and does not

resemble piano tones or any other musical instrument.

C R O S S  R E F E R E N C E tone() is presented in Chapter 4.

Arduino Due

The Arduino Due is a different kind of Arduino. It is based on Atmel’s imple-

mentation of an ARM Cortex-M3, a powerful microcontroller and has more

processing power than most Arduinos. It is a 32-bit mi crocontroller, runs at

84 MHz, and has more input and output pins than most Arduinos, including

some advanced functions. Audio output on Arduinos is normally done by vary-

ing the frequency of a square wave, but the Arduino Due has two Digital to

Analog Converters (DAC) that can output a true analog signal, like the pulses

produced by tone().

Pulse width modulation is an “all or nothing signal;” the output alternates

between a logical high and a logical low. High fi delity sound is different; it

requires a signal that has multiple values between the minimum and maximum

 Chapter 18 ■ Audio 295

c18.indd 06:57:50:PM 12/08/2014 Page 295

voltage to control the volume, and to provide a clearer audio signal. The tone()

function generates a square wave, but unlike pulse width modulation, it has a

50% duty cycle, that is to say, it oscillates between a logical high and a logical

low, both phases being equal in length. It results in an audible tone, but cannot

represent a complex audio signal like voice.

C R O S S  R E F E R E N C E PWM is presented in Chapter 4.

Digital to Analog Converters

Digital to Analog Converters (DAC) can be used to generate waveforms and are

often used to create sine, triangle, and sawtooth waves. Because these devices

can create custom waveforms and because sound is also a waveform, they can

be used to create sound—and with relatively good precision.

W A R N I N G Microcontrollers and DACs can generate signals but are not powerful

enough to power devices; they require an amplifi er to create a signal powerful enough

for a speaker to use. Connecting a speaker directly to the microcontroller can, and

probably will, damage the pin, maybe even the microcontroller.

A DAC is the opposite of an Analog to Digital Converter (ADC) but it uses

the same properties. A digital signal has a resolution; the amount of bits that are

used to create a signal. On the Arduino Due, the two DACs have 12-bit resolu-

tions; they can write values from 0 to 4,095. The analog output varies from one

analog value to another; on the Arduino Due, it varies from 0 V to +3.3 V, the

voltage of the Cortex-M microcontroller. Because the voltage range is 3.3 V and

because there are 4,096 possible values, the DAC has a precision of 3.3 divided

by 4,096, or approximately 0.000806. Each increment on the digital side will

result in a change of 0.8 mV on the analog side.

Digital Audio to Analog

Digital audio fi les are essentially a representation of analog signals. It is therefore

easy to take each value and to write that value into a DAC, creating a waveform

that is close to the original audio. There are several factors to consider:

 ■ Resolution—The resolution of the digital audio fi le is important; on most

computers, they are either 8 bits or 16 bits, but the Arduino Due’s DAC

has a 12-bit resolution.

 ■ Speed—The original fi le was sampled at a precise speed, and playing

back the audio data at a different speed would change the pitch.

 ■ Stereo or mono—Audio can be recorded as mono (single channel) or stereo

(dual channel). The Arduino Due can play only mono fi les, so stereo fi les

play back as mono; both channels convert to a single channel.

296 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 296

Creating Digital Audio

You can create digital audio fi les using numerous tools, from programs on your

computer to your smartphone. Most operating systems have at least one appli-

cation you can use to record your voice. Digital audio can also be “converted”;

converting one format to another is also possible with a large range of applica-

tions, but because some audio formats are licensed, some of these applications

are either shareware or commercial.

A third option is the capability of some more advanced programs to “speak”

directly, using voice synthesis. This can later be used to create new fi les con-

taining the voice. This is an interesting solution if you are looking for a robotic

voice system.

For most audio recording, limited resources are required. For nonprofessional

applications, a simple multimedia headset is often more than enough; some USB

models have good sampling rates and offer noise reduction. Try to record your

voice inside with no other ambient noises. Choose a time when you know you

will not receive a phone call or have a visit from someone. Having a break of

even one-half an hour can result in a slightly different voice, so try to record

all the fi les you need in a single session.

Storing Digital Audio

Digital audio fi les can be extremely large, and wave fi les are not compressed.

For a typical desktop computer, this will not be a problem. Audio CDs contain-

ing wave fi les could hold 80 minutes of stereo music in 700 megabytes, which

is normally more than suffi cient for most projects. Most audio fi les can exceed

the Arduino Due’s internal memory and fl ash, so another storage medium is

required. To store (and play) digital audio on the Arduino Due, you must use

an SD card with a shield that has SD-card capability.

W A R N I N G The Arduino Due is not a 5-V device; it is a 3.3-V device. Some

shields that are designed for 5-V Arduinos will not work on the Arduino Due, so check

compatibility.

The shield can be any type that supports an SD card; some sensor shields

and most Ethernet shields have an SD-slot present on the board. For more

information on SD cards, see Chapter 12.

Playing Digital Audio

To play back audio fi les, you must fi rst import the library: Audio.h.

#include <Audio.h>

 Chapter 18 ■ Audio 297

c18.indd 06:57:50:PM 12/08/2014 Page 297

To play back Audio fi les from the SD card, you will also require the SD and

SPI libraries; import SD.h and SPI.h.

#include <SD.h>
#include <SPI.h>

N O T E The Arduino Due is supported only in the versions of the Arduino IDE.

Version 1.0 does not support the Due, and you cannot import the Audio library from

the menu. Version 1.5 and above support both the Arduino Due and the Audio library.

To initiate the Audio library, you run begin().

Audio.begin(rate, size);

This function takes two arguments: the rate and a size. The audio rate is the

number of samples per second; for example, 22050 or 44100 are typical values.

For stereo audio fi les, you must double the audio rate (44100 for 22.05 kHz and

88200 for 44.1 kHz). The size parameter indicates the size of an audio buffer

that will be created by this function, in milliseconds. For example, to prepare

the Arduino Due to play a 44.1-kHz stereo fi le with a 100-millisecond buffer,

use the following:

 // 44100Khz stereo => 88200 sample rate
 // 100 mSec of prebuffering.
 Audio.begin(88200, 100);

When the Audio library is ready, you must prepare your samples to be played.

This is done with the prepare() function:

Audio.prepare(buffer, samples, volume);

The buffer parameter is the name of a buffer created by your sketch; it is

not the audio buffer created by the begin() function. The samples parameter

is the number of samples to write, and the volume parameter is the volume of

the audio output, expressed as a 10-bit number; 0 is a silent output, and 1023

is the maximum volume possible.

The fi nal step is to write the data into the audio buffer using the write()

function.

Audio.write(buffer, length);

The buffer parameter and the length parameter are identical to the

parameters used in the prepare() function. This function writes the samples

to the internal audio buffer. If the audio file is not played, playback

commences. If the fi le is currently played, this adds the samples to the end of

the internal buffer.

298 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 298

Example Program

For this application, you create a digital thermometer, using an LM35, a small

thermometer that is fi rst presented in Chapter 14. The schematic is almost identi-

cal, but for this application, there is a change. When the user presses a button,

the Arduino does not display the time; it says it out loud.

To do this, you have quite a bit of work to do. The Arduino cannot “speak”

directly; to say “The temperature is 22-degrees Celsius,” it requires several sound

fi les. The fi rst part, “The temperature is” will be one fi le, and the last part, “degrees

Celsius” will also be one fi le. In between, you have to record your voice or get

a friend to record theirs. Don’t worry; you don’t have to record every number

between zero and 100; like the previous example in Chapter 14, this application

does not go above 40. You can choose later on if you want to go higher. Also, the

English language does come to your rescue in this example; every number between

zero and 20 will have to be recorded, but after that, it is easier. For example, in the

30s, each number starts with “thirty,” followed by 1 digit. The number 37 could

therefore be a fi le with the word “thirty,” and a fi le with the word “seven.” This

is exactly what your GPS system does in your car; “In four-hundred meters, turn

right” is actually composed of several fi les. It is up to you to create those fi les or

to fi nd some free audio fi les on the Internet—the choice is yours.

You must decide how to proceed and with the exact wording required. For

this example, you create numerous audio fi les. The fi rst one, called temp.wav,

will contain a quick phrase; “The current temperature is” or words to that effect.

Afterward, you need to create numerous fi les; each number from 0 to 20 and

named as the number they contain, plus the extension .wav. For example, the

fi le containing the word “18” would be “18.wav.” There is no need to record 21;

this will be done by mixing 20 and 1. Instead, record the tens: 20, 30, and 40.

For most applications, 40 should be suffi cient.

The application itself will be simple, but it is something that you can use to

create a nice project. When the user presses a button, the temperature is sampled.

One by one, fi les are opened on the SD card and sent to an audio buffer. When

all the fi les are read, the last fi le is closed, and the system waits for the user to

press the button again.

Hardware

For this example, you will be using an Arduino Due with a shield compat-

ible with the board that has an SD slot. The Ethernet shield used in Chapter 9

would suffi ce, even if the Ethernet adapter is not used; this application needs

only the SD-card slot. The LM35’s output will be connected to analog input

5, and the ground pin will be connected to the ground pin on the Arduino

Due, but the +Vs pin is different. On previous examples, it was connected to

the +5V pin because that is all that was available. However, the component’s

 Chapter 18 ■ Audio 299

c18.indd 06:57:50:PM 12/08/2014 Page 299

documentation states that the +Vs pin must have at least 4 V, but the Arduino

Due is powered only by 3.3 V. On the Arduino Due, there are two voltage pins:

3.3 V and 5 V. For this example, the LM35 will be powered by the +5-V pin.

For other components, this might have been a problem; the Arduino Due is

powered at 3.3 V, and the inputs expect to have 3.3 V or lower; applying 5 V to

an input could damage the microcontroller. The LM35, however, can safely be

powered by +5 V in this application because the output is equivalent to 10 mV

per degree Celsius, or 1.5 V for 150 degrees. Therefore, the LM35 can safely be

powered by +5 V because it will not output more than 3.3 V.

The button will be connected to digital pin 2. It will be powered by 3.3 V and

connected to ground through a 10-Kilohm pull-down resistor. When the button

is open, the input will be connected to the ground, resulting in a logical zero.

When the button is pressed, the input will be connected to 3.3 V, resulting in

a logical 1.

Finally, the audio output will be connected to DAC0. Remember, this is only

a signal; it is not strong enough to power a speaker. Using too much power will

result in damage to the Arduino. To output audio, the schematic uses a jack con-

nector. Most home Hi-Fi systems or mobile speakers use a jack input, usually

by using a male-to-male jack cable. It uses the same connecter you would use

to connect your MP3 player to the speaker.

Figure 18-3 shows the layout for this design.

Figure 18-3: Hardware layout (Image created with Fritzing)

300 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 300

Sketch

The code that will be used for this sketch is presented in Listing 18-1.

Listing 18-1: Sketch (fi lename: Chapter18.ino)

1 #include <SD.h>
2 #include <SPI.h>
3 #include <Audio.h>
4
5 const int buttonPin = 2; // The pushbutton pin
6 const int sensorPin = A5; // The analog input pin
7
8 void setup()
9 {
10 // Debug output at 9600 baud
11 Serial.begin(9600);
12
13 // Set up SD-card. Check your board for the pin to use
14 if (!SD.begin(4))
15 {
16 Serial.println("SD initialization failed!");
17 return;
18 }
19
20 // Configure high-speed SPI transfers
21 SPI.setClockDivider(4);
22
23 // 44100Khz mono files, 100 mSec of prebuffering.
24 Audio.begin(44100, 100);
25
26 // Configure pins
27 pinMode(buttonPin, INPUT);
28 pinMode(sensorPin, INPUT);
29 }
30
31 void loop()
32 {
33 // Wait for a button to be pressed
34
35 if (digitalRead(buttonPin))
36 {
37 // read the value from the sensor:
38 int sensorValue = analogRead(sensorPin);
39
40 Serial.print("Sensor reading: ");
41 Serial.print(sensorValue, DEC);
42
43 // Convert the temperature (3.3V on the Due)
44 int tempC = (3.3 * analogRead(sensorPin) * 100.0) / 1024.0;
45 Serial.print(" Temperature: ");

 Chapter 18 ■ Audio 301

c18.indd 06:57:50:PM 12/08/2014 Page 301

46 Serial.println(tempC, DEC);
47
48 // Play the first file
49 playfile(String("temp.wav"));
50
51 // File name to read?
52 if (tempC > 20)
53 {
54 Serial.print("Open filename ");
55 String filename1 = String(String(tempC - (tempC % 10))
56 + ".wav");
57 Serial.println(filename1);
55 playfile(filename1);
59
60 Serial.print("Open filename ");
61 String filename2 = String(String(tempC % 10) + ".wav");
62 Serial.println(filename2);
63 playfile(filename2);
64 }
65 else
66 {
67 Serial.print("Open filename ");
68 String filename = String(String(tempC) + ".wav");
69 Serial.println(filename);
70 playfile(filename);
71 }
72 }
73 else
74 {
75 // Button was not pressed, sleep for a bit
76 delay(50);
77 }
78 }
79
80 void playfile(String filename)
81 {
82 const int S=1024; // Number of samples to read in block
83 short buffer[S];
84 char chfilename[20];
85
86 filename.toCharArray(chfilename, 20);
87
88 // Open first wave file from sdcard
89 File myFile = SD.open(chfilename, FILE_READ);
90 if (!myFile)
91 {
92 // If the file could not be opened, halt
93 Serial.print("Error opening file: ");
94 Serial.println(filename);
95 while (true);

continues

302 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 302

Listing 18-1: (continued)

96 }
97
98 // Loop the contents of the file
99 while (myFile.available())
100 {
101 // Read from the file into buffer
102 myFile.read(buffer, sizeof(buffer));
103
104 // Prepare samples
105 int volume = 1023;
106 Audio.prepare(buffer, S, volume);
107 // Feed samples to audio
108 Audio.write(buffer, S);
109 }
110 myFile.close();
111 }

This sketch has three main functions: the usual setup() and loop()but also

playfile(), the function that will be called to play audio fi les.

setup() is declared on line 8. The serial port is confi gured on line 11, and the

SD card reader is initialized on line 14. Communication between the Arduino

and the SD card controller is done via the SPI protocol, and reading wave fi les

requires high-speed transfers. To do this, on line 21, the SPI clock divider is

defi ned to speed up communications. On line 24, the Audio library is initial-

ized. It will expect mono fi les with a bit rate of 44.1 kHz, and allocates a buffer

for 100 milliseconds, more than enough for most data reads from the SD card.

Two pins are then defi ned on lines 27 and 28; the pin used to read the state of

the button is set as an input, and then the sensor pin is also defi ned as an input.

loop() is declared on line 31. This is where most of the work will be done.

On line 35, the state of the button is read. If the button is not pressed, almost

all of loop() is skipped, and the sketch pauses for 50 milliseconds on line 75

before repeating.

If the button is pressed, then the analog value on the sensor pin is read and

stored as a variable. To help debugging, the value is displayed over the serial

port. On line 44, a calculation is made, converting the reading from the sen-

sor to degrees Celsius. Remember that the Arduino Due is a 3.3-V device, and

therefore, the analog value is compared to 3.3 V, not to 5 V. The temperature is

then output to the serial port.

To save space on the SD card, the recording of the different numbers have

been separated into different fi les. If the temperature is below 21 degrees, then

a single fi lename will be used; put simply, the fi lename is the temperature. If the

temperature is eighteen degrees, it refers to a fi le called “18.wav”. Temperatures

of 21 degrees and more will cause two fi les to be called; one containing the 10s,

and one containing the single 1s. Twenty-four degrees will cause the sketch to

 Chapter 18 ■ Audio 303

c18.indd 06:57:50:PM 12/08/2014 Page 303

call two fi les: “20.wav” and “4.wav”. After the fi lename is created, playfile()

is called with the fi lename passed as a String.

playfile() is declared on line 80. It takes a single parameter, a String, the name

of the fi le to be opened. On line 82, a const int is declared, which is the amount of

data to be copied from the wave fi le per pass. On the next line, a buffer is created;

this is the container where data will be placed from the fi le on the SD card. On

line 84, another variable is created; this is again the fi lename, but as a char array;

the SD.open() function does not accept strings, only chars.

On line 89, the sketch attempts to open the fi le on the SD card. If it fails, it

prints out a message on the serial port and then halts execution. If the sketch

does open the fi le, it carries on.

On line 99, a while loop is created, and loops until there is no more data left

to read in the fi le. This is done with the File.available() function, which

returns the number of bytes that can be read from the fi le. On line 102, the

fi le is read in blocks of sizeof(buffer) into buffer. On line 105, a variable

is declared and contains the value 1023. This is used on the next line, where

the Audio library prepares the samples with the Audio.prepare() function. It

takes the local buffer called buffer, the size of that buffer, and the volume to be

applied; in this case, 1023, or the highest volume possible. The fi nal step is to

write the local buffer into the Audio buffer with the function Audio.write().

This function takes the same parameters as the Audio.prepare() function, with

the exception of the volume. When the while loop is fi nished, the fi le is closed,

and the function returns.

Exercise

This application measures the temperature from a single source. You could

modify the sketch to retrieve the temperature from an inside sensor, as well

as the temperature from outside. You could also add a humidity sensor or an

ultraviolet sensor. By pressing a button, you could know that the outside tem-

perature is 38-degrees Celsius, the humidity is 20 percent, and the UV index is

8, but inside you have a comfortable 24 degrees.

Not everyone uses Celsius; you could modify the sketch to use Fahrenheit, and

even use the EEPROM to store your setting, making this a sketch that you can

use worldwide. You could even create your own shield with sensor connectors,

an SD slot, and an audio jack integrated directly onto the shield.

304 Part III ■ Device-Specific Libraries

c18.indd 06:57:50:PM 12/08/2014 Page 304

Summary

In this chapter, you have seen how the Due has some advanced functions that

can be used to play back audio fi les, and the library used to perform these

actions. You have seen how to wire an Arduino Due to a loudspeaker to create

your own alarm clock, temperature sensor, or any sort of device that requires

an audio output. In the next chapter, I will show you the Scheduler library, an

advanced library for the Arduino Due that allows you to run different tasks at

different times.

305

c19.indd 06:0:4:PM 12/05/2014 Page 305

This chapter discusses the following functions of the Scheduler library for the

Arduino Due:

 ■ startLoop()

 ■ yield()

The hardware needed to use these functions includes:

 ■ Arduino Due

 ■ LM35 temperature sensor

 ■ PowerSwitch Tail II (110 V or 220 V)

 ■ Adafruit’s RGB LED Weatherproof fl exi-strip (http://www.adafruit

.com/products/346)

 ■ 3 x TIP120 transistors

 ■ 3 x 100-Ω ¼-W resistors

N O T E The Scheduler library is only found in Arduino IDE version 1.5 and later. It is

still considered experimental and under development.

You can fi nd the code downloads for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 19

folder and the fi lename is Chapter19.ino.

 C H A P T E R

19

Scheduler

http://www.adafruit.com/products/346
http://www.adafruit.com/products/346
http://www.wiley.com

306 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 306

Introducing Scheduling

Back in the early days of computing, computers could do only one thing at a

time. When you turned on your trusty PC and put in a disk, the operating system

started. Then you changed the disk and ran a spreadsheet. Your spreadsheet

appeared on the screen after a few seconds and you heard some dubious sounds

from the disk drive, and then, fi nally, you could get to work. If you wanted to

take a break and play a game in glorious four colors, you had to save your work

and quit the spreadsheet (or in some cases, actually restart the computer) before

playing a game. With disks, this didn’t matter so much; you couldn’t have two

programs open at the same time.

When graphical systems arrived on the PC, users wanted to have windows

containing their applications, but they also wanted to switch from one applica-

tion to another, or even have two running at the same time. Hard drives could

store several programs, and there was enough system memory to have multiple

executables in memory at the same time. The question was, how do you run

two programs at the same time?

Computer manufacturers started selling computers with graphical systems

with a lot of memory and internal hard drives, and this became standard.

The more they added on, the more users wanted. To attract users, they would

say that you could run several programs at the same time and that they

could run simultaneously. This is one of the biggest lies in computers, but it

is close enough.

A processor cannot execute multiple programs at the same time; technically it

isn’t possible. A processor can execute the instructions it is given, one at a time,

but the trick is in giving it the instructions it needs to run.

The operating system is the software heart of any system. An application

cannot run without the help of an operating system. Even if you use only one

program, you can’t just install that program onto a computer without an oper-

ating system. The operating system does much more than just run programs;

it sets up the hardware, including keyboard and mouse inputs, and video out-

put, and it confi gures the memory as required—something a normal program

doesn’t need. A program can tell the operating system to print something on

the screen, and it is the operating system that does all the hard work, includ-

ing multitasking.

Multitasking is the art of running several programs in a way that makes

users think that they are running at exactly the same time, but they aren’t. The

operating system gives control to an application (or thread) before either taking

back control or waiting until the application gives control back to the operating

system, as shown in Figure 19-1.

 Chapter 19 ■ Scheduler 307

c19.indd 06:0:4:PM 12/05/2014 Page 307

Execution time

loop()

loop2()

loop3()

Figure 19-1: Execution of threads

This has led to some complicated situations; Microsoft Windows 3.1 used some-

thing called cooperative multitasking, where applications had to cooperate. If an

application didn’t cooperate (either it wasn’t designed to run in Windows or crashed)

then control was never given to other applications. In Figure 19-2, the thread

badloop() takes control but never gives it back, leaving two threads unable to

function.

loop()

loop2()

badloop()

Figure 19-2: Noncooperative thread

Today, operating systems use multiple techniques to ensure that applications

will run together, even if one is greedy with system resources, and the entire

system keeps on going even if an application crashes.

While writing this book, I am using a text editor. In the background is a

music player to help me concentrate. I am using a two-monitor setup, and on

the opposite screen I have a web browser for reference, and the Arduino IDE

to write the sketches that I will be using. If I need a break, I’ll play a game, but

I won’t close any applications, I’ll let the operating system keep them alive

while I have a break. When I’ve had a break, I’ll come back to my text editor

and continue where I was.

Arduino Multitasking

Arduinos, by default, do not multitask. Take this simple sketch as an example:

// the setup function runs once when you press reset or power the board
void setup() {
 // initialize digital pin 13 as an output.
 pinMode(13, OUTPUT);
}

308 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 308

// the loop function runs over and over again forever
void loop() {
 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

This is the Blink example found in the Arduino IDE’s Examples menu. In

this simple example, an LED is set to blink: one second on, one second off. The

code used to switch between the different states runs quickly; it requires mere

microseconds. digitalWrite() requires a little bit more time, but it is still fast.

Next, the sketch runs a delay(). This function is called a blocking function;

it prevents all other functions from running until it has completed. Because

Arduinos are designed to be single-task devices, no multitasking library was

originally created. An Arduino will continue to run a single task, waiting for

data, or acting on data. Some libraries allow something called a callback; a func-

tion that will be run when an external event occurs. For example, an Arduino

can’t be told to wait forever for an I2C instruction. In this case, a callback is

programmed. The Arduino can continue to do what it needs to do (for example,

read sensors) and when an I2C instruction arrives, the Arduino stops what it is

doing and runs the callback before returning to whatever it was doing before

being interrupted. However, this is not the case of most applications; almost all

functions are blocking, and other functions cannot run until it has completed.

The Arduino Due uses a different microcontroller; instead of using an Atmel

AVR, it uses an Atmel ATSAM3X8, Atmel’s implementation of an ARM Cortex-M3

microcontroller. It is a 32-bit device running at 84 MHz. It has some advanced

features and is a powerful device. Because of its capabilities, one developer in

particular decided to change the way it worked and to implement a schedul-

ing system. The library, called Scheduler, was introduced in Arduino IDE 1.5.

Scheduler

The scheduler implementation is a cooperative scheduler. It remains powerful

yet lightweight but does require some careful thinking when implementing.

It can run several functions at the same time, so long as they cooperate. It also

rewrites one function in particular; the delay() function, which is discussed

later in the Cooperative Multitasking section.

The fi rst thing you need to do is to import the Scheduler library. This can be

done either from the IDE menu (Sketch ➪ Import Library ➪ Schedule) or by

adding the include manually.

#include <Scheduler.h>

 Chapter 19 ■ Scheduler 309

c19.indd 06:0:4:PM 12/05/2014 Page 309

From here, use startLoop():

Scheduler.startLoop(loopName);

This function takes a single parameter: the name of a function declared inside

the sketch. The named function cannot take any arguments, but it can be any

function that you wish. Multiple functions can run consecutively by calling

startLoop() for each named function:

Scheduler.startLoop(loop1);
Scheduler.startLoop(loop2);
Scheduler.startLoop(loop3);

There is one other function to know about—yield():

yield();

This function takes no parameters, returns no data, and from a visual stand-

point, does not do anything, but this is the function that is called to yield control

to another function. Remember, the Scheduler library uses cooperative multi-

tasking, so control must be given back to other functions; otherwise, they will

not have any CPU time.

Cooperative Multitasking

Consider the following example:

#include <Scheduler.h>

void setup()
{
 Serial.begin(9600);

 // Add "loop1" and "loop2" to scheduling.
 Scheduler.startLoop(loop1);
 Scheduler.startLoop(loop2);
}

void loop()
{
 delay(1000);
}

void loop1()
{
 Serial.println("loop1()");
 delay(1000);
}

void loop2()

310 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 310

{
 Serial.println("loop2()");
 delay(1000);
}

This sketch is simple; it will import the Scheduler library and run two func-

tions: loop1() and loop2(). Remember, loop() is always called. The two addi-

tional loop functions will simply print a line of text to the serial port and then

wait for a second.

Remember when I said that delay() was blocking? With the Scheduler library,

it isn’t; it allows functions to sleep for a set time but gives control back to other

functions. In this case, one loop is called, and when it reaches delay(), it gives

control to the other loop function. When that one reaches delay(), it will once

again return control to the fi rst function, and this will happen until delay()

ends, after 1 second.

The output of the function on the serial port is a list, alternating between

"loop1()" and "loop2()".

Scheduled functions can also use global variables. Change the sketch to add

the following:

#include <Scheduler.h>

int i;

void setup()
{
 Serial.begin(9600);

 // Add "loop1" and "loop2" to scheduling.
 Scheduler.startLoop(loop1);
 Scheduler.startLoop(loop2);

 i = 0;
}

void loop()
{
 delay(1000);
}

void loop1()
{
 i++;
 Serial.print("loop1(): ");
 Serial.println(i, DEC);
 delay(1000);
}

 Chapter 19 ■ Scheduler 311

c19.indd 06:0:4:PM 12/05/2014 Page 311

void loop2()
{
 i++;
 Serial.print("loop2()");
 Serial.println(i, DEC);
 delay(1000);
}

A global variable has been added: i. Each time a loop function is called, i is

incremented, and the value is displayed. The output of this function is again a

list, alternating between "loop1()" and "loop2()" with the variable i incre-

menting each time.

Noncooperative Functions

Now, add something else. The variable i is incremented each time a loop is

called, and we would like to have a message displayed when i reaches the value

20. This can be achieved by adding a third function, one that looks at the value

of i and prints a message if the value is reached.

#include <Scheduler.h>

int i;

void setup()
{
 Serial.begin(9600);

 // Add "loop1" "loop2" and "loop3" to scheduling.
 Scheduler.startLoop(loop1);
 Scheduler.startLoop(loop2);
 Scheduler.startLoop(loop3);

 i = 0;
}

void loop()
{
 delay(1000);
}

void loop1()
{
 i++;
 Serial.print("loop1(): ");
 Serial.println(i, DEC);
 delay(1000);
}

312 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 312

void loop2()
{
 i++;
 Serial.print("loop2()");
 Serial.println(i, DEC);
 delay(1000);
}

void loop3()
{
 if (i == 20)
 {
 Serial.println("Yay! We have reached 20! Time to celebrate!");
 }
}

The new function, loop3(), is called in the setup() function and has a single

task; to monitor the value of i and print a message when i reaches the value 20.

Except it doesn’t. If you run the program and open a serial monitor, you’ll see

there is no output from this sketch, and nothing is displayed on the serial port.

loop1() and loop2() do not print any values, and loop3() does not celebrate

the arrival of the value 20. What happened?

The code is valid; there is no syntax error. Because the code ceased to work

when loop3() was added, it is safe to say that the problem lies within this func-

tion. Time to take a closer look.

It starts with an if statement: if i equals 20, then a message is printed. And

if i doesn’t equal 20? Nothing, it just loops. It should work, and on most multi-

tasking systems, it would. Most multitasking systems have a kernel that gives

control to functions and then takes control away after a set period of time, or

number of instructions, or whatever algorithm the system uses. On coopera-

tive multitasking, it is up to the programs (or functions) to play nice with the

other functions and to give control back. The problem with loop3() is that it

continues to run but never gives control back to the other functions. It keeps on

looping waiting for i to reach 20, when i can never be incremented. The other

two functions are still waiting for their turn. To tell loop3() to give control back

to other functions, use yield().

void loop3()
{
 if (i == 20)
 {
 Serial.println("Yay! We have reached 20! Time to celebrate!");
 }
 yield();
}

 Chapter 19 ■ Scheduler 313

c19.indd 06:0:4:PM 12/05/2014 Page 313

A single modifi cation has been made; yield() has been added after the if

loop. When the sketch reaches this point, it releases control of loop3() and

looks to see if any other function needs CPU time. Now all the functions are

cooperative, and the sketch functions as needed.

Cooperative multitasking is an excellent way of making reliable multitasking

code, without the need for a heavy operating system. However, care must be

taken to make sure that the threads are cooperative, by adding yield() func-

tions or delay() statements.

Example Program

This example will be an aquarium temperature sensor, one that will monitor the

temperature and control a lighting system and control the temperature depending

on the result. Every few seconds, the sensor will send the temperature by serial.

Aquariums can be expensive, and enthusiasts often welcome devices that

can help them monitor certain aspects of the water; temperature, acidity, water

hardness, and oxygen levels are all critical to the well-being of the fi sh they

contain. A mistake can often be disastrous.

The temperature sensor is simple; as with the previous chapter, you will be

using an LM35 temperature sensor. Tropical fi sh require precise temperatures,

and this application can help you achieve that. Most heating elements auto-

regulate themselves, but for exotic fi sh, or for breeding conditions, you may

want to regulate the temperature; it should be warmer in the day and slightly

cooler at night. Bala sharks, also known as silver sharks, are a beautiful addition

to large aquariums—and my personal favorite. They are peaceful creatures but

are diffi cult to please, requiring a temperature between 22 and 28°C. For this

application, the heater will be turned off at 26 and turned on at 24.

Also, lighting conditions are important, especially when breeding. Most lighting

turns on rather violently in the morning and turns off entirely at night, instead

of a more natural cycle of slowly brightening the light and slowly dimming.

This sketch enables you to change that. Figure 19-3 shows the lighting strategy.

Figure 19-3: Lighting control

The light regulator will use the Arduino Due’s digital to analog converter.

It will be a single task; one that will wait for hours before changing the light

settings.

314 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 314

There are two ways to make a sketch wait for a long time, either using the

delay() function, which normally means that no other calculation can take

place, or by reading the number of milliseconds since the sketch started. To

make things simple, this application will use two loops; one for the temperature

sensor and one for the lighting application. Both will be running independently.

Hardware

The Arduino Due will have an LM35 temperature sensor connected to A0. The

LM35 will be powered by 5 volts. Even though the LM35 runs at 5 V, it will

never reach 3.3 V, so it’s safe to connect to the Arduino Due.

W A R N I N G The LM35 is not waterproof! Do not place it directly in water; it could

damage the component and cause oxidation of power wires, resulting in toxic water for

the fi sh. Make sure to totally isolate the LM35 and any wires before placing them inside

an aquarium. The outside glass of an aquarium is often a good indication of the tem-

perature of the water; you can place the LM35 outside the tank, directly on the glass.

The PowerSwitch Tail II is a power cable with on-board electronics. When it

receives a signal on the input pins, it lets the AC electricity through. It requires

little energy to activate; at 5 V, it will draw about 10 mA, which the Arduino is

more than capable of delivering. The PowerSwitch Tail II is also “opto-isolated,”

meaning that the low voltage is never in any contact whatsoever with the AC

lines, making this device extremely safe to use. The output will be connected

to digital pin 7.

To light the aquarium, you can use either an LED array or LED strip. Both

of these can be found on sites like Adafruit. For this application, I recommend

Adafruit’s RGB LED Weatherproof fl exi-strip (available at http://www.adafruit

.com/products/346). These strips contain 60 RGB LEDs per meter, and their

length can be adjusted according to your aquarium. However, they draw far

more current than an Arduino can deliver, so they require an external power

supply and will require three transistors to power them, one for each color

channel. A transistor is like a switch: by providing a small current to the base,

a much larger current can fl ow from the collector to the emitter, allowing the

Arduino to power devices that either require far more current than what it can

provide, or even power devices that require more voltage.

C R O S S  R E F E R E N C E Transistors were presented in Chapter 3 in the

“Transistors” section.

To control the light intensity, you will be using PWM. The LED will essen-

tially be turned on and off very quickly, far too fast for the human eye to see,

and by varying the duty cycle—that is to say, the amount of time spent on

http://www.adafruit

 Chapter 19 ■ Scheduler 315

c19.indd 06:0:4:PM 12/05/2014 Page 315

compared to the amount of time spent off—you can adjust the light intensity.

The three transistors will be controlled by pins 2, 3, and 4. The TIP120 transis-

tor is a powerful component that can let through a large amount of current

compared to what the Arduino can provide, or sink. Adafruit’s fl exi-strip

has four connectors: one for a 12-V power supply, and one for each of the red,

green, and blue components. By connecting these to the ground, or 0 V, they

turn on each of the color components. This is what the transistor will be used

for; it will allow as much current through as is required, but since the base

will be connected to PWM, it will turn on and off very quickly, giving the

appearance of dimming.

This device does not have a screen and does not provide any way to let the

user confi gure the timing sequence or when it should start. By default, the

sketch will begin its timing sequence as if the user had connected it at midday.

Figure 19-4 shows the schematic.

Figure 19-4: Schematic (Image created with Fritzing)

316 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 316

Sketch

Use the code in Listing 19-1 for this sketch.

Listing 19-1: Sketch (fi lename: Chapter19.ino)

1 #include <Scheduler.h>
2
3 const int sensorPin = A0; // The analog input pin
4 const int powerPin = 7; // The power socket output pin
5
6 const int rPin = 4; // Red color component
7 const int gPin = 3; // Green color component
8 const int bPin = 2; // Blue color component
9
10 const int maxTemp = 26; // Turn off heater when above this temp
11 const int minTemp = 24; // Turn on heater when below this temp
12
13 int powerPinStatus = LOW; // By default, no power on the AC circuit
14
15 int i; // Temporary variable for if statements
16
17 void setup()
18 {
19 // Serial output at 9600 baud
20 Serial.begin(9600);
21
22 // Configure sensor pin
23 pinMode(sensorPin, INPUT);
24
25 // Start heater and lighting treads
26 Scheduler.startLoop(heatloop);
27 Scheduler.startLoop(lightloop);
28 }
29
30 void loop()
31 {
32 yield(); // Releases the Arduino from the main loop
33 }
34
35 // The loop responsible for checking water temperature
36 void heatloop()
37 {
38 // Get a temperature reading from the temperature sensor
39 // 3.3V on the due
40 int tempC = (3.3 * analogRead(sensorPin) * 100.0) / 1024.0;
41
42 // Send the temperature reading out the serial port
43 Serial.print("Temperature: ");
44 Serial.println(tempC);
45
46 // Check to see if we need to change the output
47 if (powerPinStatus == LOW)
48 {

 Chapter 19 ■ Scheduler 317

c19.indd 06:0:4:PM 12/05/2014 Page 317

49 //Mains plug currently turned off
50 if (tempC < minTemp)
51 {
52 powerPinStatus = HIGH;
53 digitalWrite(powerPin, powerPinStatus);
54 }
55 }
56 else
57 {
58 // Mains plug currently turned on
59 if (tempC > maxTemp)
60 {
61 powerPinStatus = LOW;
62 digitalWrite(powerPin, powerPinStatus);
63 }
64 }
65
66 // Warn if possible heating element failure
67 if (tempC < (minTemp - 2))
68 {
69 Serial.print("CRITICAL: Water temperature too low. ");
70 Serial.println("Heating element failure?");
71 }
72
73 // Sleep for ten seconds
74 delay(10000);
75 }
76
77 // The loop responsible for lighting
78 void lightloop()
79 {
80 // Wait for 7 hours before turning the lights off
81 delay(7 * 60* 60 * 1000);
82
83 // Lower the light level over the span of one hour
84 for (i = 255; i >= 0; i--)
85 {
86 analogWrite(rPin, i); // Write the red light level
87 analogWrite(gPin, i); // Write the green light level
88 analogWrite(bPin, i); // Write the blue light level
89 delay(60 * 60 * 1000 / 255); //Sleep for a few seconds
90 }
91
92 // Wait for 11 hours
93 delay(11 * 60* 60 * 1000);
94
95 // Increase the light level over the span of one hour
96 for (i = 0; i <= 255; i++)
97 {
98 analogWrite(rPin, i); // Write the red light level
99 analogWrite(gPin, i); // Write the green light level
100 analogWrite(bPin, i); // Write the blue light level

continues

318 Part III ■ Device-Specific Libraries

c19.indd 06:0:4:PM 12/05/2014 Page 318

Listing 19-1 (continued)

101 delay(60 * 60 * 1000 / 255); //Sleep for a few seconds
102 }
103
104 //Wait for 4 hours
105 delay(4 * 60* 60 * 1000);
106 }

This sketch begins by importing the Scheduler library. On lines 3 and 4, the

input and output pins are defi ned. On lines 6, 7, and 8, the pins used to con-

trol the color components are declared. On lines 10 and 11, two temperatures

are defi ned; the minimum and maximum temperature. When the minimum

temperature is reached, the heating element is turned on. When the maximum

temperature is reached, the heating element is turned off. Change the values

to suit your aquarium.

On line 13 a variable is declared, containing the status of the output pin. By

default, the status is set to LOW. On line 15 a temporary value is declared. It

will be used later by one of the functions.

setup() is declared on line 17. It confi gures the serial port at 9600 baud; it sets

the sensor pin to input; and it registers two functions as threads: heatloop()

and lightloop().

loop() is declared on line 30 and contains a single instruction: yield().

Every time the CPU gives control to this function, it immediately gives control

back to the sketch, allowing the CPU to control the two other scheduled loops.

On line 36, heatloop() is declared. This is the function that supervises the

heating element; taking measurements from the LM35 and acting upon that

information. First, on line 40, it reads the temperature on the analog input in

degrees Celsius. On lines 43 and 44, this temperature is printed to the serial

port. On line 47, program execution enters an if statement depending on the

state of the output pin. If the pin is set to LOW, it compares the current tem-

perature to the minimum temperature. If the current temperature is too low,

the pin status is inverted, and the pin is set to HIGH. If the pin is already HIGH,

the current temperature is checked against the maximum temperature. If the

temperature is too high, the pin status is again inverted, the pin is set LOW, and

program execution continues. On line 7, another comparison is made. If the

current temperature is lower than the minimum allowed temperature minus 2

degrees, the serial port issues a warning; maybe the heating element is defec-

tive and can no longer heat the water, in which case immediate action should

be taken. Finally, the function sleeps for 10 seconds before continuing. Because

the Scheduler library has been imported, this is no longer a blocking function;

instead, control is given to other threads.

On line 76, lightloop() is declared. This function relies heavily on delay(),

something that can be tricky when using threads. It has fi ve phases. First, it runs

delay() for 7 hours. Remember, this application will be plugged in at midday,

 Chapter 19 ■ Scheduler 319

c19.indd 06:0:4:PM 12/05/2014 Page 319

and the lights will begin to dim at 7 P.M. At 7 P.M, the second phase begins; the

Arduino’s PWM has 256 possible values. A loop, decreases the value of each of

the color outputs by 1, creating a delay() over 1 hour divided into 256 steps.

Once this hour has passed, the sketch will wait for 11 hours. At 7 A.M, the sketch

will begin to increase the light levels using the looping technique, simulating a

morning sunrise over the course of an hour. The sketch then waits for another

4 hours, until midday. It then repeats the cycle.

Exercises

This application is extremely useful for fi sh-keepers, but connecting to the PC

to get temperature information may be an unnecessary process. Also, the tem-

perature warning function is critical, but again, if the computer is not turned

on, the user never receives his warning. This application could benefi t from an

LCD screen to be effective—to show the temperature, output status, and any

warning messages.

Turning this application on at exactly midday may not be practical for many

people. A real-time clock module would be a good tool for keeping accurate

timing.

The strip light contains RGB LEDs, and this sketch changes all the colors at

the same rate, resulting in white light. However, in some cases you might not

want white light, but maybe something more green to simulate a more realistic

environment, or maybe leave some blue light on during the night. You can easily

change the sketch to add the color you want.

Summary

In this chapter, you have seen how powerful the Scheduler can be with only

a few instructions. You have seen how an Arduino Due can perform multiple

tasks at the same time, and how to avoid possible problems. In the next chapter,

you will see the USBHost library and how to connect USB input devices to your

Arduino, allowing text and mouse inputs for your sketches.

c19.indd 06:0:4:PM 12/05/2014 Page 320

321

c20.indd 05:8:46:PM 12/05/2014 Page 321

This chapter discusses the following functions:

 ■ keyPressed()

 ■ keyReleased()

 ■ getModifiers()

 ■ getKey()

 ■ getOemKey()

 ■ mouseMoved()

 ■ mouseDragged()

 ■ mousePressed()

 ■ mouseReleased()

 ■ getXChange()

 ■ getYChange()

 ■ getButton()

The hardware needed to use these functions includes:

 ■ Arduino Due

 ■ USB keyboard

 ■ USB OTG micro adapter

 C H A P T E R

20

USBHost

322 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 322

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 20

folder and the fi lename is Chapter 20.ino.

Introducing USBHost

Most people do not understand the nightmares that some computer users previously

had when adding peripherals. When the PC originally shipped, it did not have a

mouse as standard; you needed to buy that separately. It came with a keyboard,

but that is about it. The keyboard was a standard element to computers, and it

still is. Since there is no need to have two keyboards connected to a computer,

each PC came with a single keyboard connector, the DIN keyboard connector. It

was large and bulky, and kept the connector fi rmly in place. Then manufactur-

ers decided to add a mouse. Mice were normally sold with a serial connector, the

highly reliable RS-232 connector. Because most computers were sold with two

serial ports and one parallel port, that was easy. It left ports free.

Suppose the user wanted to add a printer. Printers were almost always con-

nected to parallel ports, but the computer had only one. Then a 56-k modem

connected to the remaining serial port. That’s it. No more connectors left. This

would be a problem if the user wanted to go further and connect a scanner or

other device. Expansion cards existed to add a second parallel port, but what

if the user wanted a scanner and two printers? Color printers existed, but they

were expensive, and the cartridges were even more so. For printing in black

and white, some users still preferred to have a second printer for black and

white only.

Peripherals were becoming more and more common, and if the user scanned

lots of text and images, sooner or later, they would require storage. Iomega’s Zip

drive was originally an external diskette drive, but one that had a large capac-

ity compared to fl oppy disks; the original Zip drive could store 100 megabytes.

Don’t laugh; that was a lot of storage in 1994! The problem was that it was a

parallel device requiring a parallel port.

Peripheral shopping became a nightmare. When deciding on buying a periph-

eral or not, people had to ask themselves, “Do I have a spare serial/parallel/SCSI

port?” Mice were serial devices, and because every computer being shipped

suddenly had graphical interfaces, a mouse was a requirement. Enter the PS/2

interface.

The PS/2 interface was designed for simplicity. Each computer had one key-

board and one mouse. The old DIN keyboard connector was replaced with

a PS/2 keyboard connector, and mice were created with a PS/2 connector.

There were two connectors on computer mainboards: one purple port for key-

boards and one green port for mice. Both were physically identical: They were

mini-DIN connectors. They had the same power connectors and the same data

http://www.wiley.com

 Chapter 20 ■ USBHost 323

c20.indd 05:8:46:PM 12/05/2014 Page 323

connectors, but if the user mistakenly inverted the keyboard and mouse, they

would not function. Simply unplugging and replugging into the correct port

resolved this. This left a serial connector free for other peripherals: modems,

PC-to-PC connectors, software dongles, joysticks, circuit programmers, parallel

port switchers, to name but a few—still far too many. Also, another interesting

event was occurring; some users wanted something that the designers hadn’t

anticipated: two interface options, like one standard mouse for day-to-day

operations and either a track-pad or a mouse specialized for graphical work.

To simplify everything, Universal Serial Bus (USB) was created, which is a way

of connecting devices to a computer using a standard interface. Keyboards, mice,

scanners, modems … just about anything could be connected to the computer

using USB. Even better, if the amount of USB ports on the computer weren’t

enough to add another peripheral, a USB hub could be used. A single USB con-

troller can have as many as 127 different ports by using hubs.

USB Protocol

For USB to work, it requires at least one USB host. This is the device that controls

USB devices, and USB devices communicate with the host. For a standard PC

setup, the PC is the USB host.

Devices connect to the host, and when they do, an enumeration occurs. Each

device connected is given a number from 1 to 127. When enumerated, the device

description is read, so the USB host knows what this device can do. Sometimes

drivers are needed to fully use a USB device; some devices do not require drivers

because the computer already knows what the device’s function is. Several USB

classes exist, and one of them is called HID, short for Human Interface Device.

HID devices include keyboards and mice.

USB devices are “hot pluggable”; they can be connected while the system is

running. They can also be disconnected without the need for rebooting; when

unplugging your keyboard and plugging it into another USB port takes only a

few seconds for the computer to recognize the new port.

For desktop and laptop computers, the USB mechanism is simple; the computer

acts as the USB host, and a connected peripheral is a USB device. The computer

enumerates the USB device, and a connection is established. For some devices,

like mobile phones, this is a more complicated process.

Mobile phones lack the connectivity possibilities of a computer. They have a

single USB port, no disk drive, no CD drive, and limited capabilities for physical

input. Some phones can be used as USB drives; plug in the right kind of smart-

phone to a computer, and the telephone can use an internal SD card as a disk,

allowing the computer access to the fi les. This is great when you want to copy

multimedia fi les onto a telephone, but it isn’t always practical. What happens

when you are far from your computer, when you have taken the perfect photo

324 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 324

with your digital camera, and you want to send it via e-mail? This is where USB

On-The-Go (USB OTG) comes in.

USB On-The-Go is an extension to the USB specifi cation, allowing devices

to act as either a master (host) or slave (peripheral). Technically, all USB OTG

devices are masters, but when connected to another master, they can act as a

slave. Some modern smartphones are USB OTG devices and act just like a normal

USB device; plug them into a computer and they become USB slaves, allowing

you to browse fi les. However, plug in a USB peripheral, and they become a

master. A mobile phone can therefore be connected to a computer or to a USB

drive. Your phone can then browse fi les on the USB key, just like a computer can.

USB Devices

There are far too many USB devices to list in a single book, and more and more

devices are made each day. Practically any type of computer add-on can be found

with a USB connection, from user input to screen output, from sampling graph-

ics to playing sound. Some devices are intelligent and can communicate with a

master, specifying their USB class and their capabilities. Some have no built-in

intelligence and simply use the +5-V power supply that the USB bus supplies;

this is often the case for some “gadget” USB devices; LED lights, fans, and so on.

Keyboards

A keyboard is one of the most useful components for any personal computer;

it is the primary means of entering textual information to a computer; it is a

human interface device.

Keyboards are, essentially, lots of electronic switches connected to a micro-

controller. It isn’t possible to have one wire per key, so keyboards use a mesh

system. Essentially a giant game of battleships, a keypress causes two wires to

become active, and the microcontroller senses this information and translates

that into a scancode. It then sends this information to the computer.

A scancode corresponds to a key. The information is not sent in ASCII but in

binary information. It is not sent in ASCII for two main reasons: one, not every

letter can be sent as ASCII—function keys, for example. And two, a scancode

does not represent a letter. Let me explain.

While writing this book, I am using a keyboard connected to my computer.

I press the letter A, and the letter A appears in my text editor. I have a French

keyboard which means the letters “Q” and “A” are swapped from an English

keyboard. My operating system translates what I type. So while my keyboard

has the letter “Q” written on it, as far as my computer is concerned (or even

the embedded microcontroller), it is an “A”. Anyone who has a non-English

 Chapter 20 ■ USBHost 325

c20.indd 05:8:46:PM 12/05/2014 Page 325

keyboard and installs operating systems knows; if the operating system has

not been instructed to load a keymap, then the system defaults to QWERTY:

the standard U.S. keyboard. This is something to remember.

The traditional PC keyboard is long dead; manufacturers are making friendlier

keyboards with added buttons to control volume, applications, or even some

laptop functions. More advanced keyboards have programmable buttons that

can either be simple scancodes or preprogrammed to write several scancodes at

once to the computer. Even more advanced gaming keyboards also have LCD

screens and sometimes LCD keys. These are not “standard” keyboards; they

require specifi c drivers to function but still embed part of a standard keyboard.

When entering the BIOS, these special keyboards still work, but the LCD screen

doesn’t. To achieve this, there is often a small USB hub inside, with different

components behind the hub: the keyboard, the LCD screen, and sometimes

external USB ports to connect USB keys, headphones, and so on.

Mice

Mice are, today, a basic component of every computer, but it wasn’t always the

case. Early computers did not have a mouse, and they were added only when

graphical interfaces became standard.

A mouse is a device, either mechanical or optical, that senses movement rela-

tive to the surface on which it is placed and sends movement information to

the computer in x-/y-coordinates. In addition, there are also buttons (typically

left, middle, and right), with a middle button often capable of scrolling. More

advanced mice may have several more buttons, and gaming mice often have

10 or more buttons.

Hubs

USB hubs work like network hubs; they enable you to connect several devices

onto a single port. To do this, the hub connects to the computer’s USB host, and

further devices are placed behind the hub. The hub dispatches messages from

the host to the device, and messages from devices are sent to the host.

Arduino Due

The Arduino Due is different from other Arduinos for several reasons. It is

based on Atmel’s SAM3X8E microcontroller, which is in turn based on an ARM

Cortex-M3, a powerful device. It has two micro-USB connectors, and runs at

3.3 V (see Figure 20-1).

326 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 326

Figure 20-1: The Arduino Due

The USB connector adjacent to the power barrel, the Programming port, is

a USB serial connector that is connected to an ATmega16U2 microcontroller

which handles serial communication between the Arduino Due’s main processor

and the host computer. The other USB connector, the Native port, is connected

directly to the SAM3X8E (see Figure 20-2). This means the Due has full control

of this USB port, and can be connected as a slave for native serial communica-

tion. It is also USB OTG-compatible and can be connected to peripherals such

as keyboards and mice using a special adapter.

Figure 20-2: USB OTG connector

These adapters have a micro-USB connector on one side and a full-size USB

connector on the other, allowing keyboards and mice to be connected.

The Arduino Due can use the USBHost library, a powerful library containing

routines to use keyboards and mice as input devices, but it does come at a cost. USB

drivers tend to be big. To reduce the size and complexity of the driver for use with

a microcontroller, it’s limited to talk only to a single device: a keyboard or a mouse.

 Chapter 20 ■ USBHost 327

c20.indd 05:8:46:PM 12/05/2014 Page 327

It cannot use USB hubs, and as such cannot talk to multiple devices or communi-

cate with keyboards that have a built-in USB hub. This includes some specialized

keyboards or keyboards with USB connectors for plugging in external devices.

USBHost Library

The Arduino 1.5 IDE comes with the USBHost library. To use it, you must fi rst

import it. This can be done in the menu: Sketch ➪ Import Library ➪ USBHost.

This imports quite a few libraries, as shown here:

#include <hidboot.h>
#include <hidusagestr.h>
#include <KeyboardController.h>
#include <hid.h>
#include <confdescparser.h>
#include <parsetools.h>
#include <usb_ch9.h>
#include <Usb.h>
#include <adk.h>
#include <address.h>
#include <MouseController.h>

To initialize the USB subsystem, you must create a USBHost object:

// Initialize USB Controller
USBHost usb;

The usb object can then be given to the different software structures. To

process USB events, you must use the task() function.

usb.task();

The task() function waits for a USB event and calls the necessary function as

those events happen. The function is blocking; while it is running, no other func-

tions can run. If no event is received, it will time out after 5 seconds. If no device

is connected, this function returns immediately, instead of waiting for a time-out.

Keyboards

Keyboards have their own controller, the KeyboardController class. First, you

must attach the KeyboardController to the USB subsystem:

// Initialize USB Controller
USBHost usb;

// Attach Keyboard controller to USB
KeyboardController keyboard(usb);

328 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 328

When initialized, this class calls two functions when a specifi ed event occurs.

There are two events that can be identifi ed by the class outside loop(): when a

key is pressed and when a key is released. These do not include modifi er keys;

Shift, Control, Alt, and other such keys do not call these functions, but Caps

Lock does.

The two functions are keyPressed() and keyReleased(). No parameters are

passed to these functions; they must retrieve pending information from other sources.

// This function is called when a key is pressed
void keyPressed()
{
 Serial.print("Key pressed");
}

This tells the sketch that a key has been pressed or released, but that is all.

To know which key or combination of keys has been pressed, use getKey().

result = keyboard.getKey();

This function takes no parameters and returns the ASCII code of the key

pressed. Not all keys can be printed as ASCII, and for this reason, another

function is available, getOemKey().

result = getOemKey();

This function, unlike getKey(), does not return an ASCII code, but the OEM

code associated with this key. This key can be one of the function keys or a

multimedia key. It does not work on modifi er keys: Shift, Alt, AltGr, Control,

and so on. To get the status of modifi er keys, use getModifiers():

result = keyboard.getModifiers();

This function returns an int, representing a bit fi eld with modifi ers, listed

in Table 20-1.

Table 20-1: Modifi er values

MODIFIER KEY VALUE

LeftCtrl 1

LeftShift 2

Alt 4

LeftCmd 8

RightCtrl 16

RightShift 32

AltGr 64

RightCmd 128

 Chapter 20 ■ USBHost 329

c20.indd 05:8:46:PM 12/05/2014 Page 329

The modifi ers listed in this table have been created as constants, and as such,

can be used directly in your code.

mod = keyboard.getModifiers();
if (mod & LeftCtrl)
 Serial.println("L-Ctrl");

Mice

Mice are just as easy to use as a keyboard, using similar techniques. To use a

USB mouse, you must attach the MouseController to the USB subsystem, just

like with a keyboard.

// Attach mouse controller to USB
MouseController mouse(usb);

Just like the keyboard controller, the mouse controller can also call functions.

There are four of them: when the mouse is moved, when the mouse is dragged,

when a button is pushed, and when a button is released.

void mouseMoved()
{
 // Mouse has moved
}
void mouseDragged()
{
 // Mouse was moved with a button pressed
}
void mousePressed()
{
 // A mouse button has been pressed
}
void mouse Released()
{
 // A pressed button has been released
}

To retrieve movement information, you use getXChange() and getYChange().

Both return int values, indicating the relative change in direction since the last

time the mouse was polled.

Computer screens use a top-left coordinate system; the (0, 0) coordinate is

in the top-left side (see Figure 20-3). The x- coordinate increases when going

right and decreases when going left. The y- coordinate increases when going

downward and decreases when going upward.

330 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 330

Figure 20-3: Computer graphics coordinates

The getXChange() function therefore returns a positive value if the move-

ment is towards the right and a negative value if moving left. Likewise, the

getYChange() function returns a positive value if moving upward and a nega-

tive value if moving downward.

To know which button was pressed or released, use getButton(). This func-

tion returns one of three predefi ned values: LEFT_BUTTON, RIGHT_BUTTON or

MIDDLE_BUTTON.

Serial.print("Pressed: ");
if (mouse.getButton(LEFT_BUTTON))
 Serial.println("L");
if (mouse.getButton(MIDDLE_BUTTON))
 Serial.println("M");
if (mouse.getButton(RIGHT_BUTTON))
 Serial.print("R");
Serial.println();

Example Program

In the early days of computers, there were no graphics. “Colossal Cave Adventure”

was the game that started a whole new genre: computer adventure games. More

like an interactive book, these games presented the user with a text represen-

tation and asked the user what to do, again, in text. Colossal Cave Adventure

was so detailed that some people visiting the cave that it was based on actually

recognized their surroundings.

The game recognized simple text commands and, through these actions,

completed the story through several possible paths. You might get something

like this:

You are in a small clearing. Butterfl ies dance in the sunlight, and there is

bird song above. To the south there is a small stream, to the east you can

see a small house, and to the north there is an apple tree.

 Chapter 20 ■ USBHost 331

c20.indd 05:8:46:PM 12/05/2014 Page 331

> GO NORTH

You are under an apple tree. It provides comfortable shade from the sun,

and the ground looks comfortable, more than enough for a quick snooze.

There is an apple in the tree.

As easy as it was to move around, the text system did have its limits. It wasn’t

possible to create sentences that were too complicated...

> IS THERE A WORM IN THE APPLE?
I'm sorry, I don't understand you. Please be more specific.
> I WANT TO KNOW IF THE APPLE IS EDIBLE
I'm sorry, I don't understand you. Try rephrasing that.
> IS THE APPLE RIPE?
I'm sorry, I don't understand you. Please be more specific.
> TAKE APPLE
You take the apple.

Early versions of the game actually saved time and size by analyzing the

fi rst fi ve letters of any instruction; by using this method, the game could run

on almost any computer. Later, as systems became faster, fans of the game

developed versions in which each individual word was analyzed, and more

complex orders could be given.

> HIT THE TROLL WITH THE SILVER SWORD

Well, he didn’t see that one coming! The troll curls up into a ball, and

turns back into rock.

More devious programmers had fun making games, turning some situations

into textual nightmares:

> PUT THE RED GEM INTO THE BLUE SOCK AND PUT IT UNDER THE ALTAR

A voice echoes; Naribi accepts your gift! You hear a click from the other

side of the door, and it slowly swings open.

Because the Arduino Due can accept a USB keyboard, it makes a perfect setup

for some old-school games. You won’t be designing an entire game; instead,

these routines will concentrate on text input.

Remember, waiting for USB events can block the system for up to 5 seconds,

so these routines will not be called all the time. They will be called only when

the Arduino expects input and will continue to run until the last character is

entered: the Enter key. After the text is entered, the Arduino can scan the indi-

vidual words and then act according to some rules.

Hardware

This application runs on an Arduino Due because of the USB Host possibilities

provided by this platform.

332 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 332

There are no external components for this project, with the exception of a

USB keyboard, and a cable to convert the micro-USB port to a USB port. The

other USB port will be connected to a computer to see the serial output. Serial

communications will be at 9,600 baud.

Source Code

Time to write the sketch, as shown in Listing 20-1.

Listing 20-1: Sketch (fi lename: Chapter20.ino)

1 #include <KeyboardController.h>
2
3 // Key pressed
4 int curkeycode = 0;
5
6 // Initialize USB Controller
7 USBHost usb;
8
9 // Attach keyboard controller to USB
10 KeyboardController keyboard(usb);
11
12 void setup()
13 {
14 Serial.begin(9600);
15 Serial.println("Program started");
16 delay(200);
17 }
18
19 void loop()
20 {
21 keyloop();
22 }
23
24 // This function intercepts key press
25 void keyPressed()
26 {
27 curkeycode = keyboard.getKey();
28 }
29
30 // Sort the final sentence
31 void sortSentence(String sentence)
32 {
33 // Sentence logic goes here
34 Serial.println(sentence);
35 }
36
37 void keyloop()
38 {

 Chapter 20 ■ USBHost 333

c20.indd 05:8:46:PM 12/05/2014 Page 333

39 String sentence = "";
40 bool waitforkey = true;
41
42 while (waitforkey == true)
43 {
44 // Process USB tasks
45 usb.Task();
46
47 // Look for valid ASCII characters
48 if (curkeycode >= 97 && curkeycode <= 122)
49 {
50 sentence += char(curkeycode);
51 Serial.write(curkeycode);
52 }
53
54 // Check for Return key
55 else if (curkeycode == 19)
56 {
57 Serial.println();
58 sortSentence(sentence);
59 waitforkey = false;
60 }
61
62 curkeycode = 0;
63 }
64 }

On the fi rst line, the sketch loads the Keyboard controller library. This is the

only library that will be required for this example.

The sketch defi nes an int, curkeycode. This variable holds the keycode from

the keyboard; in most cases, it maps to ASCII, but it cannot be called ASCII

because some keyboards can return non-ASCII characters. The return code

will be checked later to see if it is ASCII. Until then, it is known as a keycode.
On line 7, the USB host is initialized, and on line 10, a KeyboardController

object is created, and the previous USB object is passed to it. The USB host can

now connect a keyboard to the USB subsystem.

On line 12, setup() is created, but all this does is confi gure the serial line. On

line 19, loop() is created and is even simpler. It calls one function, keyloop(),

over and over again.

There is only one keyboard event that will be of interest for this sketch: when

a key is pressed. The sketch has no interest in when a key is released, so only

one callback function is created: keyPressed(). This function simply updates

the global variable curkeycode with the contents of the USB event.

On line 37, keyloop() is defi ned. This function is run whenever the sketch

expects a keyboard input. First, an empty String is created, and then a boolean

variable called waitforkey is set to true. While this variable is set to true, the

USB subsystem waits for events. A while loop is created on line 42, and on line

334 Part III ■ Device-Specific Libraries

c20.indd 05:8:46:PM 12/05/2014 Page 334

45, the USB task function is run. This function either returns with an event or

times out after 5 seconds. There is no way of telling exactly how this function

ends, so the sketch looks at the contents of the variable curkeycode. If a valid

ASCII character is detected (a keycode between 97 and 122), then the sketch adds

that character to the end of the string. If the value 19 is received, then the sketch

has received a return key press, so a new line is printed, and sortSentence()

is called with the variable sentence, and the boolean variable is set to false,

telling the loop that it is no longer expecting text input from a keyboard. If any

other value is received, it is simply ignored. These include special characters,

function keys, and control characters.

At the end of the while loop, the value of curkeycode is set to zero, an indica-

tion that the value has been read, and that the while loop expects a new value.

Without this, the while loop might interpret this information as a key press,

even if no key was pressed. Remember, the USB task function times out after

5 seconds, and then the rest of the sketch looks at the value of this variable. It

has to be reset at the end of the loop.

While there’s no logic for parsing the text you’ve entered in this example,

sortSentence() is where you would write the code for fi guring out the sequence

of events in your text adventure story. To run this example, once you’ve uploaded

the code to the Arduino, connect the keyboard to the Native USB port and your

computer to the Programming port. Open the serial monitor and start typing

away on the keyboard attached directly to the Due. You should see your words

come up in the serial monitor once you press the return key.

Summary

 In this chapter you have seen how the Arduino Due can be controlled by a USB

keyboard and mouse. You have seen the functions used to get the status of

inputs and to receive movement information. You have created the beginning

of an interactive system allowing you to enter text to your Arduino. In the next

chapter, you will see the Arduino Esplora and the library that is used to pro-

gram this incredible device and use all the electronics present on this device.

335

c21.indd 01:9:32:PM 12/09/2014 Page 335

This chapter discusses the following functions of the Esplora library:

 ■ writeRGB()

 ■ writeRed()

 ■ writeGreen()

 ■ writeBlue()

 ■ readRed()

 ■ readGreen()

 ■ readBlue()

 ■ writeRGB()

 ■ readSlider()

 ■ readLightSensor()

 ■ readTemperature()

 ■ readMicrophone()

 ■ readAccelerometer()

 ■ readJoystickX()

 ■ readJoystickY()

 ■ readJoystickSwitch()

C H A P T E R

21

Esplora

336 Part III ■ Device-Specific Libraries

c21.indd 01:9:32:PM 12/09/2014 Page 336

 ■ readJoystickButton()

 ■ readButton()

 ■ noTone()

 ■ readTinkerkitInputA()

 ■ readTinkerkitInputB()

 ■ readTinkerkitInput()

The hardware needed to use these functions includes:

 ■ Arduino Esplora

 ■ 2 x TinkerKit 3-wire cables

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 21

folder and the fi lename is Chapter21.ino.

Introducing Esplora

Almost all Arduino devices are physical boards that are placed on a desk or

inside an enclosure. To add electronics, you must either use a shield or a bread-

board. The Arduino Esplora is a different beast.

Arduino is all about getting hands-on, and the Esplora goes a step further.

It is a device that ends up in your hands, not on the desk. Get ready to pick it

up and play with it.

The Esplora is an excellent device for users who do not want to get too involved

in electronics because it integrates an amazing amount of peripherals. Although

most Arduinos only have an on-board LED on pin 13, the Esplora has an LED

on pin 13, an RGB LED, a light sensor, a temperature sensor and much, much

more. Here is the entire list:

 ■ Temperature sensor

 ■ Light sensor

 ■ Microphone

 ■ Two-axis analog joystick (with center-push button)

 ■ Four push buttons

 ■ Three-axis accelerometer

 ■ RGB LED

 ■ Piezo buzzer

http://www.wiley.com

 Chapter 21 ■ Esplora 337

c21.indd 01:9:32:PM 12/09/2014 Page 337

 ■ Two TinkerKit inputs

 ■ Two TinkerKit outputs

 ■ LCD screen header

So what is a TinkerKit input or output? TinkerKit is a fantastic way of

connecting components without needing to know anything about electron-

ics. There are different modules: joysticks, accelerometers, potentiometers,

Hall effect sensors, LEDs, servos, and relays to name a few. These modules

can be connected to a port using standard cables; the Arduino Esplora has

four ports.

As you can see, the Arduino Esplora has an amazing amount of components

on the device, but this comes at a cost. The Arduino Esplora is designed to be

held in your hand and has the look and feel of a console game pad. As such, it

does not have any shield connectors (but does have a header for an optional

LCD screen). It also does not have any prototyping space, meaning that adding

components is diffi cult. There are no electronic input and output pins, and no

headers to add components to. All Arduino Esploras are therefore alike, and

therefore a library was written specifi cally for this device.

The Arduino Esplora Library

The Esplora library is available in Arduino IDE 1.0.4 and later. To import the

library, use the Arduino IDE: Sketch ➪ Import Library ➪ Esplora, or add the

library manually:

#include <Esplora.h>

After this fi le is imported, all the devices on the Arduino Esplora become

available through the Esplora constructor. There is no need to create this object;

it is defi ned automatically.

RGB LED

The Arduino Esplora has a high-power RGB LED on-board. A sketch can control

this LED and create different colors by varying the output to each component.

This is done automatically via PWM, and writing a value to the LED once keeps

the LED on at the specifi ed color until instructed otherwise.

To set the LED to a specifi c color, use writeRGB().

Esplora.writeRGB(red, green, blue);

338 Part III ■ Device-Specific Libraries

c21.indd 01:9:32:PM 12/09/2014 Page 338

The red, green, and blue parameters are ints and represent the brightness

of the corresponding color. (Acceptable values ranging from 0 to 255 included.)

It is possible to write a single color value using the writeRed(), writeGreen(),

and writeBlue() functions.

Esplora.writeRed(value);
Esplora.writeGreen(value);
Esplora.writeBlue(value);

Again, each parameter is an int and accepts values between 0 and 255. Writing

to one color does not affect the other components.

By writing an individual color, the sketch may no longer know what color

value was written. For example, if the red value changes based on an external

input, the main program might not know what the value of the red LED is. It is

possible to read these values after writing them by using readRed(), readGreen(),

and readBlue().

redResult = Esplora.readRed();
greenResult = Esplora.readGreen();
blueResult = Esplora.readBlue();

Each of these functions returns an int representing the brightness of the LED.

To turn the LED off, use writeRGB() with all parameters set at zero (the value

of the red, green, and blue is off).

Esplora.writeRGB(0, 0, 0); // Turn the LED off

Sensors

The Arduino Esplora has an integrated linear potentiometer in the form of a

slider. This component, connected to an analog-to-digital converter, can give

values between 0 (0 Volts) to 1,023 (5 Volts). To read the value, use readSlider().

result = Esplora.readSlider();

This function does not take any parameters and returns an int, the value of

the position of the potentiometer.

The Arduino Esplora also has a light sensor that is connected in the same way.

It also returns values between 0 and 1,023; the more light, the higher the value.

result = Esplora.readLightSensor();

Also available on the list of sensors, the Esplora has a temperature sensor.

The temperature can be read using readTemperature().

result = Esplora.readTemperature(scale);

 Chapter 21 ■ Esplora 339

c21.indd 01:9:32:PM 12/09/2014 Page 339

The scale parameter is a constant, one of either DEGREES_C for Celsius or

DEGREES_F for Fahrenheit. This function returns an int; returned values vary

between –40° C and 150° C (or –40° F and 302° F).

The Esplora has something else uncommon for an Arduino; it has a micro-

phone. The microphone is not designed to record sounds; instead, it gives an

accurate reading of the amplitude of the ambient noise level. The value can be

read with readMicrophone().

result = Esplora.readMicrophone();

This function takes no parameters and returns an int—the ambient sound

level—on a scale of 0 to 1,023.

Finally, the Esplora also has an accelerometer: a small device that can detect

the tilt of the device. Contrary to what some people believe from the name, an

accelerometer does not calculate coordinate acceleration (a change in velocity);

it measures proper acceleration: acceleration relative to gravity. It can therefore

detect a tilt (a change in direction relative to gravity) but also movement. (For

example, a falling device has limited acceleration attempting to counter gravi-

tational pull.)

Values can be read from the accelerometer by using readAccelerometer().

value = Esplora.readAccelerometer(axis);

This function needs to be called for each axis individually. The axis is specifi ed

using the axis parameter and is one of X_AXIS, Y_AXIS, or Z_AXIS. It returns an

int between –512 and 512. A result of zero means the axis is perpendicular to

gravity: negative and positive values mean acceleration on the axis.

int x_axis = Esplora.readAccelerometer(X_AXIS);
int y_axis = Esplora.readAccelerometer(Y_AXIS);
int z_axis = Esplora.readAccelerometer(Z_AXIS);

Serial.print("x: ");
Serial.print(x_axis);
Serial.print("\ty: ");
Serial.print(y_axis);
Serial.print("\tz: ");
Serial.println(z_axis);

Buttons

The Esplora comes with an impressive array of buttons. On the left side of

the Esplora is an analog joystick and on the right side are digital buttons.

340 Part III ■ Device-Specific Libraries

c21.indd 01:9:32:PM 12/09/2014 Page 340

The joystick can register the exact x-axis and y-axis position, and also has a

center-push button.

To read the joystick inputs, use readJoystickX() and readJoystickY().

xValue = Esplora.readJoystickX();
yValue = Esplora.readJoystickY();

These functions both return an int: Values range from –512 to 512. A return

value of zero means that the joystick is in the center and has not been moved.

Negative values mean that the joystick is pushed to the left (x) or down (y).

Positive values mean that the joystick is pushed to the right (x) or up (y).

To read the center-push button, you can use readJoystickSwitch().

value = Esplora.readJoystickSwitch();

The return value is an int and is either 0 or 1,023. Remember that readJoy-

stickX() and readJoystickY() return 10-bit values and are shifted to make

things easier. The center button also returns a 10-bit value but because it is either

pushed or not, values returned are extremes. If you need something simpler to

use, you can use the readJoystickButton() function.

state = Esplora.readJoystickButton();

This function returns a Boolean: LOW if the button is pressed and HIGH if the

button is not pressed.

To read the status of the buttons, there is only one function: readButton().

state = Esplora.readButton(button);

This function takes one parameter, the button that is to be read. The button

parameter can be one of four constants: SWITCH_DOWN, SWITCH_LEFT, SWITCH_UP,

or SWITCH_RIGHT. This function returns one of two values: HIGH or LOW. A return

value of HIGH means the button is in the high position; that is to say, it has not

been pressed. A return value of LOW means that the button is in the low position

and is currently pressed.

Buzzer

The Arduino Esplora has a buzzer located on the top left of the device that can

create simple audio outputs. To create an audio output, use tone().

Esplora.tone(frequency);
Esplora.tone(frequency, duration);

The frequency parameter specifi es the audio frequency in hertz, expressed

as an unsigned int. The optional duration parameter is the duration of the

 Chapter 21 ■ Esplora 341

c21.indd 01:9:32:PM 12/09/2014 Page 341

tone in milliseconds, also expressed as an unsigned int. If omitted, the tone

continues until interrupted, either by calling the tone() function with new

parameters or by calling the noTone() function.

Esplora.noTone();

This function immediately stops the output of a tone() function.

The tone() and noTone() functions are part of the Arduino language, but

these two variants are modifi ed to be used on the Esplora. As such, it is not nec-

essary to specify the pin; the actions are immediately applied to the correct pin.

N O T E The buzzer is controlled by high-speed PWM, as is the red component of the

RGB LED. Using the buzzer may interfere with the red light.

TinkerKit

The Arduino Esplora comes with four TinkerKit connectors; two are inputs

and two are outputs.

To read the TinkerKit inputs, use readTinkerkitInputA() and

readTinkerkitInputB().

resultA = Esplora.readTinkerkitInputA();
resultB = Esplora.readTinkerkitInputB();

These two functions do not take any parameters and return an int, the

value detected on the TinkerKit input. Values range from 0 (0 V) to 1,023

(5 V). There is another way to read TinkerKit inputs, using a single function:

readTinkerkitInput().

result = Esplora.readTinkerkitInput(whichInput);

This function takes a parameter, whichInput. This parameter is a Boolean:

if it is false (or 0), then the value of TinkerKit input A is returned. If it is true

(or 1), then the value of TinkerKit input B is returned.

The Esplora also has two TinkerKit outputs, but currently, there are no Esplora

specifi c functions allowing easy output. However, they are digital outputs just

like on any Arduino, so it is still easy to write to their outputs—the trick is to

know which output goes where.

There are two outputs: OUT-A and OUT-B. Just below the connector, next to

the output identifi er, is another piece of information: D3 for Output A and D11

for Output B. These are the reference to the digital outputs, and using digi-

talWrite(), you can output digital data. These two pins are also capable of

PWM, so you can also use analogWrite().

342 Part III ■ Device-Specific Libraries

c21.indd 01:9:32:PM 12/09/2014 Page 342

C R O S S  R E F E R E N C E digitalWrite() and analogWrite()are standard

functions, which are explained in Chapter 4.

LCD Module

The Arduino Esplora can also host an optional TFT screen placed on the con-

nectors on the middle of the board. This module uses the standard TFT library

(as well as SPI), and there are no Esplora-specifi c functions for this module.

However, as everything on the board is hardwired, you don’t need as much code

to use a screen as other Arduinos. After including the TFT, SPI, and Esplora

libraries, all you need to do is reference the Esplora TFT object with EsploraTFT.

For more information on the TFT library, see Chapter 13.

There is also another use for the LCD Module connectors. Contrary to most

Arduinos, the Esplora does not support shields; apart from the TFT connector,

there are no connectors capable of placing a board or shield, and there are no

prototyping areas. By using this connector, it is possible to have more inputs

and outputs. The connectors on the left side of the Esplora are not electronically

connected; they are there solely to fi x the TFT screen in place. On the right side,

however, several pins are exposed. Of course, this is to allow the TFT screen to

talk using the SPI protocol, but there are a few others, for example, to control the

backlight. Creating a PCB for use with the Esplora is beyond the scope of this

book, but you can fi nd more information on the connector on Arduino’s website.

Example Program and Exercises

The Arduino Esplora is an excellent device to get “hands-on,” and the next

chapter presents another unique device. The Esplora, in the shape of a handheld

game controller, can also be used as a remote control. Without spoiling the next

chapter too much, this project converts the Esplora into a remote control for the

Arduino Robot, an interesting device that is essentially a moving Arduino. It is

controlled by two motors, and can move forward, backwards, and turn around.

This sketch will serve as a remote control for the Arduino Robot, by using the

two TinkerKit outputs. The left TinkerKit connector controls movement to the

left, and the right TinkerKit controls movement to the right. If both are activated,

the device goes forward, and if neither is active, then the device stops.

N O T E If you do not have access to an Arduino Robot, this project can be adapted to

other robotic kits. Several interesting devices are available at http://www.robot-

shop.com/. This can be adapted to both vehicles and robotic arms.

http://www.robot-shop.com
http://www.robot-shop.com
http://www.robot-shop.com

 Chapter 21 ■ Esplora 343

c21.indd 01:9:32:PM 12/09/2014 Page 343

To do this, the sketch sets the TinkerKit outputs to digital mode and constantly

monitors the status of the buttons. This sketch will use two TinkerKit outputs:

Out A and Out B. Out A will handle the left-hand side motor, and Out B will

control the right-hand side motor. To go forward, both motors will be activated

at the same time. To turn, only one motor will be activated. The sketch will

look like Listing 21-1.

Listing 21-1: Sketch (fi lename: Chapter21.ino)

1 #include <Esplora.h>
2
3 #define OUTA 3 // Pin TinkerKit Out A is connected to
4 #define OUTB 11 // Pin TinkerKit Out B is connected to
5
6 void setup()
7 {
8 pinMode(OUTA, OUTPUT); // TinkerKit A to output
9 pinMode(OUTB, OUTPUT); // TinkerKit B to output
10 }
11
12 void loop()
13 {
14 boolean outputA = LOW;
15 boolean outputB = LOW;
16
17 if (Esplora.readButton(SWITCH_UP) == LOW)
18 outputA = outputB = HIGH;
19
20 if (Esplora.readButton(SWITCH_LEFT) == LOW)
21 outputB = HIGH;
22
23 if (Esplora.readButton(SWITCH_RIGHT) == LOW)
24 outputA = HIGH;
25
26 digitalWrite(OUTA, outputA);
27 digitalWrite(OUTB, outputB);
28 }

On line 1, the Esplora library is imported, the fi rst thing needed for this project.

On lines 3 and 4, there are some define directives, which defi ne the digital

pins used on the TinkerKit outputs because there are no functions available to

write to the TinkerKit pins directly. Because you have to do this the old way,

it requires pinMode() calls in setup(). This is done on line 8 and 9; both pins

are set to OUTPUT.

loop()is declared on line 12, and this is where the buttons will be read and,

if necessary, the outputs will be written to. It starts on line 14 with the creation

of two variables: outputA and outputB. As you can imagine, they will be used to

344 Part III ■ Device-Specific Libraries

c21.indd 01:9:32:PM 12/09/2014 Page 344

hold the output status. They are defi ned as LOW by default, meaning that without

any modifi cation, they will set the outputs LOW. On line 17, the fi rst button read

is made. If the up button is pressed, both outputA and outputB are set high.

The second read, on line 20, checks to see if the left button has been pressed.

If it has, then outputB is set HIGH. If the user is also pressing on the up button,

the sketch changes the output to HIGH anyway. This is why the variables were

initially set to LOW: Reads are made to see if there is a reason to set the variable

to HIGH. If two or more conditions update the variable, that isn’t a problem; the

end result is the same. A third read is made on line 23 to see if the right button

has been pressed.

Finally, the two digital outputs are updated with the contents of the variables.

loop()then repeats.

A simple sketch can turn an advanced device into a remote control, even if

there are no specifi c TinkerKit output routines. By making the sketch use the

digital outputs instead of using specifi c functions, you can perform more soft-

ware actions than the library alone allows. The TinkerKit outputs can be used

as digital output or PWM, but by knowing the exact pin number, you could use

these pins as serial outputs, or for other purposes.

The output of this sketch is binary only; either the outputs are on or off. With

a little bit of adjustment, this could quickly become an analog output, using the

joystick. That will require a little bit of modifi cation to the example in the next

chapter as well, but you will get to that later.

You will have a remote control allowing a new device freedom of movement,

but there is one button that is not used, the down button. There is no point using

it to slow down, so why not use it to make beep noises? Just like a car horn,

warning the cat or dog to get out of the way.

Alternatively, for advanced programmers, use the Esplora’s accelerometer to

control output.

Summary

In this chapter you have seen the Arduino Esplora, an interesting device with

lots of embedded electronics and a rich library to read and write the compo-

nents. You have seen the library and the different functions used to read from

and write to the different components. You have seen how easy it is to create a

project. In the next chapter, you will see the Arduino Robot and the library used

to control it, and you will be able to use the sketch presented in the chapter to

control its movement .

345

c22.indd 02:55:42:PM 12/08/2014 Page 345

This chapter discusses the following functions of the Robot library:

 ■ begin();

 ■ motorsWrite()

 ■ motorsStop()

 ■ turn()

 ■ pointTo()

 ■ compassRead()

 ■ updateIR()

 ■ knobRead()

 ■ keyboardRead()

 ■ digitalRead()

 ■ analogRead()

 ■ digitalWrite()

 ■ analogWrite()

 ■ beginSpeaker()

 ■ beep()

C H A P T E R

22

Robot

346 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 346

 ■ playMelody()

 ■ playFile()

 ■ tempoWrite()

 ■ tuneWrite()

 ■ robotNameWrite()

 ■ robotNameRead()

 ■ userNameWrite()

 ■ userNameRead()

 ■ cityNameWrite()

 ■ cityNameRead()

 ■ countryNameWrite()

 ■ countryNameRead()

 ■ beginTFT()

 ■ beginSD()

 ■ drawBMP()

 ■ displayLogos()

 ■ clearScreen()

 ■ text()

 ■ debugPrint()

 ■ drawCompass()

 ■ parseCommand()

 ■ process()

The hardware needed to use these functions includes:

 ■ Arduino Robot

 ■ 2 x TinkerKit connection cables and digital inputs

 ■ Arduino Esplora (presented and programmed in Chapter 21)

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 22

folder and the fi lename is Chapter22.ino.

Introducing Robot Library

Over the years, there have been several attempts to teach programming lan-

guages to children. Teachers and governments wanted to show children that

programming isn’t magic, and that simple logic is all that was required. The

http://www.wiley.com

 Chapter 22 ■ Robot 347

c22.indd 02:55:42:PM 12/08/2014 Page 347

British Broadcasting Corporation, BBC for short, even went as far as to create

its own computer for schools to accompany a television series on computer

programming. It was a huge success and was just one of many projects. One of

these projects was the Logo programming language.

Most programming languages are mathematical: the acquisition, modifi ca-

tion, and use of numbers. Logo was different; it was based on logic. (Hence the

name Logo is derived from the Greek word logos, thought.) Although designed

for several reasons, an entire generation remembers it for the famous turtle.

The turtle was represented as a computer rendered triangle on our large

cathode-ray tubes connected to primitive computers. The turtle was free to

roam across the screen but needed instructions. For some unknown reason, it

had a paintbrush strapped onto its tail. It could be told to put the brush down

(to start drawing) or to pick it up (to stop drawing). It then required the user

to give it instructions. Anyone who has used BASIC probably knows about the

fi rst program anyone writes:

10 PRINT "Hello, world!"
20 GOTO 10

This would print out endless lines of text and was a good visual start to pro-

gramming but did not go any further. The turtle, however, was different. For

example, take this program:

FD 100
RT 90
FD 100
RT 90
FD 100
ERT 90
FD 100

FD is short for forward. The turtle is instructed to advance for 100 “units”

and then make a right turn (RT) by 90 degrees. Then it is instructed to advance

another 100 units and so on. The result? A square as shown in Figure 22-1.

Figure 22-1: A square in Logo

348 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 348

Squares are basic, but Logo could create hugely complex structures and teach

students about programming. Imagine a fl ower made up of eight petals. Each

petal could be one “function” and called eight times by placing the turtle in the

correct position. The results were visual, perfect for young children. A lot of us

started off with Logo, and I can remember having great fun in the classroom

with this.

One serious attempt was made to make the turtle “physical.” Created in

the form of a large half-sphere, the turtle made it into the real world, but only

for a short time. A turtle robot was made to show children just what could be

done, but it was too early for the poor turtle. It was expensive, diffi cult to set

up correctly, and required an exceptionally fl at surface. The poor little turtle

eventually disappeared, only a few programs exist today that still use it, either

for teaching, or for simple nostalgia. Programmers returned to the digital world

to see their little turtle. Some of us dreamed of seeing the little turtle return,

and it has. Sort of.

Arduino Robot

Your Arduino Uno will be placed on your desk and will probably live there

until your project is fi nished and you install it in its fi nal resting place. I have

one hidden behind my television, and it will stay there for quite some time. The

Arduino Robot is different. It is the only Arduino that most certainly will not

stay in the same place.

The Arduino Robot is an Arduino on wheels—literally. There are two large

wheels on each side and two ball casters to keep it steady. It contains an impres-

sive amount of electronics, but more important, it has enough space for you to

add electronics and all the buses and connectors needed to connect components.

The Arduino Robot is, technically, two Arduinos in one. The motor board

is controlled by an ATmega32u4 (the same microcontroller as on the Arduino

Esplora) and contains fl ash memory, RAM, EEPROM, and two prototyping

areas. It does not have a large amount of I/O, but what it does have is motor

control circuits and power electronics to take standard batteries and power the

two on-board motors. The control board on top uses the same microcontroller

but has more I/O and adds a large array of electronics not seen on most other

Arduinos. It has a keypad like the Arduino Esplora, an LCD screen connector

that is compatible with the LCD module used on the Esplora, an 8-ohm speaker,

a compass, and a large amount of external EEPROM via the I2C protocol (in

addition to internal EEPROM). It also has four prototyping areas.

The Arduino Robot is a complex device, and care must be taken when prepar-

ing it. Unlike most Arduinos, there is some preparation required before using it

 Chapter 22 ■ Robot 349

c22.indd 02:55:42:PM 12/08/2014 Page 349

for the fi rst time: a protective cover must be placed under the device to protect

it, drivers must be installed, and the optional TFT screen must be placed in the

correct position, to name but a few. Arduino keeps an up-to-date webpage on

the Arduino website at http://arduino.cc/en/Guide/Robot.

The Arduino Robot has two boards, and both are independent. They can be

programmed separately, and both have a USB connector used for program-

ming. Note that when programming the Arduino Robot, the electric motors are

automatically disabled to prevent accidents. In order to fully use your sketch,

you will need to power your device with batteries.

Generally, the control board is the only one that is programmed. The Arduino

Robot has a number of functions that facilitate communication between the

two. It is recommended to fi rst use the control board and to program the motor

board only when you are comfortable with the control board. If you make a

mistake, don’t worry; the stock motor program is available in the Arduino IDE

as an example. The control board can tell the motor board to perform actions

but also to read sensors on the motor board (like the infrared line following

sensors on the bottom of the motor board).

Robot Library

The Arduino Robot library is a complicated library and depends on a number

of external libraries, mainly for the infrared sensors and audio synthesis. These

libraries have been merged into the Arduino Robot library to save space and

do not need to be added manually. It also depends on some Arduino standard

libraries for use. (Wire and SPI need to be included separately if using the func-

tionality of those libraries.) To import the library, you must fi rst decide which

board you will be using because they do not require the same components. To

create a sketch for the control board, add the Robot_Control library in Sketch ➪

Import Library ➪ Robot_Control. This adds the following include declarations:

#include <Fat16mainpage.h>

#include <SdCard.h>
#include <ArduinoRobot.h>
#include <SdInfo.h>
#include <EEPROM_I2C.h>
#include <FatStructs.h>
#include <Fat16util.h>
#include <Fat16Config.h>
#include <Multiplexer.h>
#include <Fat16.h>
#include <Arduino_LCD.h>
#include <Squawk.h>

http://arduino.cc/en/Guide/Robot

350 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 350

#include <Compass.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <SPI.h>
#include <SquawkSD.h>
#include <EasyTransfer2.h>

Not all these are required. Typically, you need only to include ArduinoRobot.h.

To create a sketch for the motor board, add the Robot_Motor library in Sketch ➪

Import Library ➪ Robot_Motor. This adds the following include declarations:

#include <ArduinoRobotMotorBoard.h>
#include <Multiplexer.h>
#include <EasyTransfer2.h>
#include <LineFollow.h>

Not all these are required. Typically, you need to include only

ArduinoRobotMotorBoard.h.

Control Board

To use Arduino Robot control board, you must use functions from the

RobotControl class. The functions are accessed through the object directly, so

there is no need to call the constructor. However, to begin using the Arduino

Robot-specifi c functions, you must fi rst call begin():

Robot.begin();

begin()initializes interboard communication, sets variables to their correct

values and other initializations for the Arduino Robot, but does not initialize

the LCD screen or the speaker; other functions exist for those and are explained

later in this chapter in the “LCD Screen” section.

Robotic Controls

The basis of any robot is, of course, movement. The Arduino Robot has an impres-

sive amount of sensors, but its primary function is to move. The motor board

has two independent motors, and although it is the motor board that drives

these motors, the control board can instruct the motor board to perform actions.

To control the motors directly, use motorsWrite():

Robot.motorsWrite(speedLeft, speedRight);

This function takes two parameters: two int values. The speedLeft variable

instructs the left motor at what speed it should rotate; accepted values range

from –255 and 255. If the value is greater than 0, the motor turns forward. If

the value is negative, the motor turns backward. If the value is zero, the motor

 Chapter 22 ■ Robot 351

c22.indd 02:55:42:PM 12/08/2014 Page 351

stops. The speedRight parameter works in exactly the same way. This function

does not return any data.

To instruct both motors to stop, use motorsStop():

Robot.motorsStop();

This function takes no parameters and does not return any data. It instructs

both motors to stop immediately.

Turning can be achieved by varying the speed of rotation of the left and right

motors. By varying the speed of each motor, you can achieve rotation, but the

Arduino Robot goes a step further and has an embedded compass that can be

used for greater accuracy. To tell the Arduino Robot to turn by a specifi c amount

of degrees, use turn():

Robot.turn(degrees);

This function takes one parameter, an int, and accepted values are between

–180 to 180. Negative values make the robot turn left; positive values make the

robot turn right. Entering a value of zero has no effect. This function uses the

on-board compass to get a bearing to magnetic north and then turns the robot

by a specifi c number of degrees, verifi ed by the compass. To make the robot

turn to a specifi c heading, use pointTo():

Robot.pointTo(degrees);

Like turn(), pointTo() uses the compass to get its bearings, but instead of

turning a specifi c amount of degrees, it tells the Arduino Robot to face a par-

ticular heading. It takes one parameter, degrees, which is the heading to face,

where 0 is north, east is 90, south is 180, and west is 270.

The robot automatically decides if it should turn left or right, whichever is

the shortest turn.

Sensor Reading

For robots to function correctly, they require multiple sensors. They need to

know where they are and how they can interact with the world. You can add

additional sensors to the Arduino Robot, but it already comes with a few sen-

sors to get you started.

As seen previously, the Arduino Robot can be told to face in a specifi c direc-

tion, using the compass. You can also read the value of the compass using

compassRead():

result = Robot.compassRead();

This function returns an int; the degrees of rotation from magnetic north.

352 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 352

N O T E The Arduino Robot’s compass takes readings relative to magnetic north, and

the compass can be aff ected by magnetic fi elds. Make sure to keep your robot away

from speakers, motors, or other strong magnets that could temporarily make the com-

pass give false readings.

The motor board also contains fi ve infrared sensors used for line following.

The motor board can access the reading for the individual sensors, but with the

control board, sketches must use updateIR():

Robot.updateIR();

This function takes no parameters and does not return any data. What it does

is update an array, readable through Robot.Irarray[]:

Robot.updateIR();
for(int i=0; i<=4; i++)
{
 Serial.print(Robot.IRarray[i]); // Print the value of each IR sensor
 Serial.print(" ");
}

The control board also has a knob, a potentiometer. Powered by 5 V, it is

connected to an analog-to-digital converter with 10-bit precision. It maps input

voltages to an integer value between 0 and 1023, and is accessible through

knobRead():

result = Robot.knobRead();

This function returns an int, the value read from the ADC.

The control board also has a fi ve-button keyboard. These keys can be read

through keyboardRead():

result = Robot.keyboardRead();

This function returns a constant reporting the button that is being pressed.

See the possible values in Table 22-1.

Table 22-1: Keyboard Return Codes

VALUE BUTTON

BUTTON_LEFT Left button pressed

BUTTON_RIGHT Right button pressed

BUTTON_UP Up button pressed

BUTTON_DOWN Down button pressed

BUTTON_MIDDLE Middle button pressed

BUTTON_NONE No button pressed

 Chapter 22 ■ Robot 353

c22.indd 02:55:42:PM 12/08/2014 Page 353

The Arduino Robot contains TinkerKit connectors, both on the control board

and on the motor board. Most of these ports can be read as both digital and

analog, depending on the function call. Two functions can be called: digit-

alRead() and analogRead().

DigitalResult = Robot.digitalRead(port);
AnalogResult = Robot.analogRead(port);

The port parameter is a constant: the ID of the TinkerKit port to use. Accepted

values are TK0-TK3, TKD0–TKD5, and B_TK1 to B_TK4. TK4 and TK5 are digital

inputs only. digitalRead() returns either TRUE or FALSE. analogRead() returns

integer values between 0 and 1023.

N O T E Before reading the value of a TinkerKit port, make sure that a device is con-

nected. Reading the value of a port where no device is present can result in unex-

pected results.

Of course, some TinkerKit ports are not used only for input, and the control

board can also set TinkerKit outputs. To write digital output, use digitalWrite():

digitalWrite(port, value);

The value parameter is the value to write, either HIGH or LOW. The port param-

eter is the TinkerKit port, one of TKD0–TKD5, B_TK1–B_TK4, or LED1 (an LED

located on the control board).

To write an analog value, use analogWrite():

Robot.analogWrite(port, value);

The value parameter is the analog value to write, ranging from 0 to 255. The

output is not true analog; it is created using PWM, as with most Arduino analog

outputs. The port value is the TinkerKit port to use; it can be used only on TKD4

and cannot be used at the same time as TK0 through TK7.

Personalizing Your Robot

I love all my Arduinos, but there is something even more lovable about com-

puters that can follow you around. Just like a pet, it deserves a name and some

personal information. This information can be stored in EEPROM and retrieved

through special functions.

To give the robot a name, use robotNameWrite():

Robot.robotNameWrite(name);

The name parameter is a string and can be up to eight characters. The data

will be stored into EEPROM and can be retrieved with robotNameRead():

354 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 354

Robot.robotNameRead(container);

In the following snippet, container is a char array and stores the result of

the query.

char container[8];
Robot.robotNameRead(container);
Serial.println(container);

To tell the Arduino Robot your name, use userNameWrite():

Robot.userNameWrite(name);

The name parameter is a string and can be up to eight characters. As with the

robot’s name, the user’s name can be retrieved using userNameRead():

Robot.userNameRead(container);

The container parameter is a char array.

There are two more things the Arduino Robot can read and write—the city

name and the country name:

Robot.cityNameWrite(city);
Robot.cityNameRead(container);
Robot.countryNameWrite(country);
Robot.countryNameRead(container);

As with the previous functions, the write functions take strings, and the read

functions require an 8-byte char array.

LCD Screen

The Arduino Robot control board has a connector for a TFT screen (the same

screen as used on the Arduino Esplora). The Arduino Robot also has advanced

functions to make the most of the screen.

To use the TFT screen, you must fi rst call beginTFT():

Robot.beginTFT();
Robot.beginTFT(foreground, background);

By default, if called without any parameters, the TFT screen is confi gured

with black as a background color and white as a foreground color. This can be

changed by specifying the colors when calling beginTFT(). Valid colors are

BLACK, BLUE, RED, GREEN, CYAN, MAGENTA, YELLOW, and WHITE.

The TFT screen module also contains a micro-SD card slot, and to activate

it, use beginSD():

Robot.beginSD();

 Chapter 22 ■ Robot 355

c22.indd 02:55:42:PM 12/08/2014 Page 355

This function is required before using functions such as drawBMP() (explained

next) and playFile() (explained in the “Music” section). Be aware that this

library is fairly large and should be used only if you require the SD slot; complex

sketches may have unexpected results if the SD card slot is initialized.

To draw a graphics fi le to the screen, use drawBMP():

Robot.drawBMP(filename, x, y);

The filename parameter is the name of the fi le located on the SD card. It must

be in BMP format. The x and y parameters are the coordinates of the top-left

corner of the image.

Displaying logos is often useful when starting a sketch, but the Arduino Robot

library has a better solution. displayLogos() displays two logos on the screen:

Robot.displayLogos();

This function takes no parameters and automatically looks for two fi les on the

SD card: lg0.bmp and lg1.bmp. This function fi rst loads lg0.bmp and displays

it on the TFT screen before waiting for 2 seconds. Afterward, it loads lg1.bmp

and again waits for 2 seconds. These fi les are present on the SD card by default

but can be replaced.

To clear the screen, use clearScreen():

Robot.clearScreen();

This automatically clears the screen using the default background color (black,

unless specifi ed otherwise).

It is possible to write text to the screen, using text():

Robot.text(text, x, y, write);

The text parameter can be a String but also an int or a long. The x and y

parameters are the coordinates of the start position. The write parameter is a

Boolean: true if the color to use is the foreground color (write) or false if the

TFT screen uses the background color (erase).

To display debug information on the TFT screen, use debugPrint():

Robot.debugPrint(value);
Robot.debugPrint(value, x, y);

The value parameter can be either an int or a long. The x and y variables are

optional and tell the function where to print the text. By default, the text will

be printed on the top-left corner. This function not only prints a value, but also

refreshes it, adding a unique debugging feature.

Another debug function, and a rather pretty one, is achieved with

drawCompass():

Robot.drawCompass(degrees);

356 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 356

This function draws a compass on the TFT screen and shows the specifi ed

bearing, defi ned by the degrees parameter. Typically, this value is fetched with

compassRead().

Music

The Arduino Robot has a built-in speaker on the control board, and numerous

functions exist to take advantage of this component. You need to include the

Wire and SPI libraries to use the speaker. To use the speaker, it must fi rst be

initialized with beginSpeaker().

Robot.beginSpeaker();

This function must be declared in setup().

The most basic form of sound is the beep and is made using beep().

Robot.beep(type);

The type parameter is one of three constants: BEEP_SIMPLE (a short beep),

BEEP_DOUBLE (a double beep), or BEEP_LONG (a long beep).

To play simple music, use playMelody().

Robot.playMelody(melody);

The melody parameter is a string and describes the notes to be played, as well

as their length. The notes are listed in Table 22-2.

Table 22-2: Melody Notes

TEXT NOTE

c Play “C”

C Play “C#”

d Play “D”

D Play “D#”

e Play “E”

f Play “F”

F Play “F#”

g Play “G”

G Play “G#”

a Play “A”

A Play “A#”

b Play “B”

- Silence

 Chapter 22 ■ Robot 357

c22.indd 02:55:42:PM 12/08/2014 Page 357

To set note length, use digits as described in Table 22-3.

Table 22-3: Note Length

DIGIT DURATION

1 Make the next notes full notes

2 Make the next notes half-notes

4 Make the next notes quarter-notes

8 Make the next notes eighth-notes

. Make the previous note ¾-length

The Arduino Robot can make simple music, but it is also capable of more

advanced playback, using playFile().

Robot.playFile(filename);

The filename parameter is the name of a fi le on an SD card. The SD card

reader is located on the back of the LCD screen. As such, it requires the sketch

to call beginSD() beforehand. The fi le must be in Squawk format, a special

format resembling what was used on Amiga 500 computers. This fi le format

can generally be created using Music Trackers. For more information, see the

library README located on the project GitHub page at https://github.com/

stg/Squawk.

These fi les contain music information and are played back at a precise speed

and pitch. You can change both these parameters using functions. To change

the tempo of a music fi le (to make it play faster or slower), use tempoWrite().

Robot.tempoWrite(speed);

The speed parameter is an int, the speed at which to play back the fi le. The

default value is 50; lower values set the fi le to be played back slower, and higher

values set the fi le to be played back quicker. This has no effect on the pitch; to

change the pitch, use tuneWrite().

Robot.tuneWrite(pitch);

The pitch parameter is a float and indicates the pitch at which the fi le should

be played back. The default value is 1.0; higher values set a higher pitch.

Motor Board

The motor board, placed underneath the control board, is responsible for con-

trolling the two DC motors and reading the infrared sensors. It responds to

instructions sent from the control board, but the default sketch can be modifi ed

to fi t your use.

https://github.com

358 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 358

Just like the control board, to use the Arduino Robot motor board, you must

use functions from the RobotMotor class. The functions are accessed through

the object directly, so there is no need to call the constructor. However, to begin

using the Arduino Robot-specifi c functions, you must again fi rst call begin().

RobotMotor.begin();

To retrieve instructions from the control board, use parseCommand().

RobotMotor.parseCommand();

This function takes no parameters and does not return any data. It is used

simply to read and update internal registers. After commands have been parsed,

it is necessary to act on those instructions; this is achieved with process().

RobotMotor.process();

Again, this instruction does not take any parameters and does not return

information. It operates the motors depending on the internal results of

parseCommand().

These two instructions are, in fact, the basis of the default motor board sketch.

#include <ArduinoRobotMotorBoard.h>

void setup(){
 RobotMotor.begin();
}
void loop(){
 RobotMotor.parseCommand();
 RobotMotor.process();
}

This sketch simply reads instructions from the control board and acts on

those instructions. Why is there a separate board in this case? Although the

microcontrollers on these boards are powerful, it is often a good idea to keep

the functions separate; one microcontroller powers the control board, the other

powers the motor board. The motor board performs instructions and continues

to do so until instructed otherwise. The control board can perform advanced

calculations or perform blocking functions while the motor board continues to

monitor the DC motors.

Example Program and Exercises

The Arduino Robot is a superb platform and ready for tinkering. With a large

number of inputs, it is easy and fun to create sketches giving your robot free-

dom of movement. For this application, you create a remote controlled Arduino

 Chapter 22 ■ Robot 359

c22.indd 02:55:42:PM 12/08/2014 Page 359

Robot. For this, two TinkerKit digital inputs are used. TK5, placed on the left

of the robot controls the left motor, and TK7 placed on the right controls the

right motor. A logical 1 means that the motor turns, and a logical 0 stops the

motor. These inputs will be read periodically. The speed of the wheels will be

controlled by the potentiometer.

The sketch looks like Listing 22-1.

Listing 22-1: Sketch (fi lename: Chapter22.ino)

1 #include <ArduinoRobot.h>
2
3 void setup()
4 {
5 Robot.begin(); // Start the control board
6 }
7
8 void loop()
9 {
10 // Read in potentiometer values
11 int speed = Robot.knobRead();
12
13 // Potentiometer data is 0-1023, motors expect 0-255
14 // (we won't use negative values)
15
16 int motorSpeed = map(speed, 0, 1023, 0, 255);
17
18 // Motor variables
19 int leftMotor = 0;
20 int rightMotor = 0;
21
22 if (Robot.digitalRead(TK5) == true)
23 leftMotor = motorSpeed;
24
25 if (Robot.digitalRead(TK7) == true)
26 rightMotor = motorSpeed;
27
28 // Now control the motors
29 Robot.motorsWrite(leftMotor, rightMotor);
30
31 // Sleep for a tenth of a second
32 delay(100);
33 }

On line 1, the Arduino Robot library is imported. On line 5 in setup(), Robot

.begin() is called. From here on, the user can call Robot functions.

loop() is declared on line 8. Because the motor speed will be controlled by

the value of the potentiometer, the analog value is read in on line 11. This value

is stored in an int called speed. The potentiometer gives values between 0 and

360 Part III ■ Device-Specific Libraries

c22.indd 02:55:42:PM 12/08/2014 Page 360

1023, but the motor control requires a value between 0 and 255. (Negative val-

ues are not used.) To adapt these values, map() is called on line 16; the result is

stored in an int called motorSpeed.

Two new variables are declared on lines 19 and 20, and default values are

assigned: 0. On line 22, the input of TinkerKit connector TK5 is read, and if

this value is true, the user instructs the left motor to operate. If so, the value

of leftMotor is set to motorSpeed, ordering the motor to turn forward. The

same thing is done with the right-side motor on line 25. Finally, the motors are

programmed on line 29 with motorsWrite().

Now that the motors have been activated or deactivated, the sketch waits for

1/10th of a second through a delay() on line 32 before continuing.

Multiple TinkerKit connectors are available, and you can use TK6 in the same

manner to control the speaker. How about making the Arduino Robot beep on

command to tell pesky cats and humans to get out of the way?

The TinkerKit inputs are set as digital but can also be set as analog, allowing

the user to control the speed of the Arduino Robot. Change the inputs to make

them analog.

Summary

 In this chapter you have seen one of the most fascinating Arduinos, the Arduino

Robot. You have seen the two boards that together make the Robot—the Control

Board and the Motor Board. You have seen the library used to control both and

how simple sketches can result in a fully functional mobile device. You have

also seen how the Arduino Robot can use external sensors to be controlled. In

the next chapter you will learn about the Arduino Yún and the Bridge library

used to exchange messages between the Arduino microcontroller and a more

powerful microprocessor running Linux.

361

c23.indd 05:57:18:PM 12/05/2014 Page 361

This chapter discusses the following functions of the Bridge library:

 ■ Bridge.begin()

 ■ Bridge.put()

 ■ Bridge.get()

 ■ Process.begin()

 ■ Process.addParameter()

 ■ Process.run()

 ■ Process.runAsynchronously()

 ■ Process.running()

 ■ Process.exitValue()

 ■ Process.read()

 ■ Process.write()

 ■ Process.flush()

 ■ Process.close()

 ■ FileSystem.begin()

 ■ FileSystem.open()

 ■ FileSystem.exists()

 C H A P T E R

23

Bridge

362 Part III ■ Device-Specific Libraries

c23.indd 05:57:18:PM 12/05/2014 Page 362

 ■ FileSystem.rmdir()

 ■ FileSystem.remove()

 ■ YunServer.begin()

 ■ YunClient.connected()

 ■ YunClient.stop()

The hardware needed to use these functions includes:

 ■ Arduino Yún

 ■ 1 x Breadboard

 ■ 1 x LDR

 ■ 1 x 10 kΩ resistor

 ■ Wires

You can fi nd the code download for this chapter at http://www.wiley.com/

go/arduinosketches on the Download Code tab. The code is in the Chapter 23

folder and the fi lename is Chapter23.ino.

Introducing Bridge Library

There is often confusion as to the name of a microcontroller. A microcontroller

(as the name implies) controls, whereas a microprocessor processes data. This

becomes apparent for the Arduino Yún, where both are present.

In December 2002, Linksys released its WRT54G residential wireless router.

It was a small device with two antennae behind a blue-and-black cover. Behind

were four Ethernet LAN ports and an uplink port. It was an easy way to add

high-speed Wi-Fi to a home network and was used by a large number of people,

including myself. My WRT54G increased my wireless range at home and allowed

me higher speeds than what my Internet modem provided. (The WRT54G

provided Wi-Fi-G instead of the aging Wi-Fi-B.) It was also a device destined

to be tinkered with.

These devices were based on a 125-MHz MIPS microprocessor with surpris-

ingly good characteristics. With 16 MB of RAM and 4 MB of fl ash memory, it was

more than capable of running a complete Linux distribution which shipped with

the device. The Linux distribution was delivered under the GPL license, and as

such, Linksys had to make the source code available on its site. This sparked a

group of people to look at that code, and to modify it, allowing more and more

features to be added. Within the space of a few months, a consumer-level router

had functions reserved for top-of-the-line industry-level routers. Although most

routers simply allowed home devices to connect, this new software allowed for

advanced frequency scanning programs, traffi c shaping, fi rewall, scheduling,

and mesh networking, to name but a few. All that the user had to do was to

http://www.wiley.com

 Chapter 23 ■ Bridge 363

c23.indd 05:57:18:PM 12/05/2014 Page 363

overwrite the original fi rmware—something that could be undone later if needed.

An entire generation of routers were designed around this initial product, and

the new fi rmware was released under the name OpenWRT.

The power of OpenWRT was not only that it added advanced features, but

it also contained a package manager, meaning users could install their own

programs. The fi lesystem is also read/write-capable, meaning that users could

create and update fi les. A simple WRT54G device could be placed anywhere, act

as a sensor, and log the results to a data fi le. The router was no longer a router

but a small computer.

Since its early days, OpenWRT has been under heavy development, becom-

ing an extremely complex distribution, no longer limited to Linksys devices.

One device to which the OpenWRT has been ported is the Arduino Yún. This

board is actually two devices in one; on one side, it has an ATMega32u4, which

is the “Arduino” side. The other side is based on an Atheros AR9331. This chip,

with its corresponding RAM, Ethernet, and Wi-Fi chip, hosts an OpenWRT

distribution called Linino. To allow the AVR to communicate with the Atheros,

a library was created: Bridge.

N O T E You can modify fi les on the root fi lesystem of the Yún; however, it is strongly

advised to use external storage. The Arduino Yún has an on-board micro-SD slot to

expand fi lesystem space.

Bridge

The Arduino side of the Yún can send commands and data requests to the Linux-

side of the device; these instructions are interpreted by a Python 2.7 interpreter

on OpenWRT. In order to begin communications, you must import the Bridge

library. This can be done inside the Arduino IDE, by going to the menu Sketch ➪

Import Library ➪ Bridge, or by adding the include lines manually:

#include <Bridge.h>
#include <YunClient.h>
#include <Process.h>
#include <Mailbox.h>
#include <HttpClient.h>
#include <Console.h>
#include <YunServer.h>
#include <FileIO.h>

The fi rst include, Bridge.h, is required for intersystem communication. The

other includes are required only when using specifi c portions of the library. The

YunClient.h include is required for HTTP client operations, similar to Ethernet

client includes. Similarly, YunServer.h is required when the Arduino becomes

364 Part III ■ Device-Specific Libraries

c23.indd 05:57:18:PM 12/05/2014 Page 364

an Ethernet server. The Process.h include is required when running processes

(or commands) on the Linux side. The Mailbox.h include is required when

using the mailbox interface system. The Console.h include is required when

simulating a console on the Linux side, and FileIO.h is required when read-

ing and writing fi les to the micro-SD card and when reading fi les from Linux.

To begin the Bridge library, use begin():

Bridge.begin();

This function does not take any parameters and does not return any values.

It must be called in setup() and is a blocking function; it does not return until

the operation has fi nished and stops the sketch until it has completed. It takes

roughly 3 seconds to initialize the Bridge system.

To exchange information between the two devices, a put/get system exists.

put() places data into a Python dictionary on Linino. It requires two elements: the

key and a value. The key is a name; the value can be numerical or text but is

stored in text format. Stored data may look like this:

username: john
age: 42
profession: programmer
highscore: 880

To place data on the Linux side, use put():

Bridge.put(key, value);

This function requires two parameters: the key and the value and does not

return any data. This information is sent to the Atheros processor and placed

inside the Python dictionary. If the key does not exist, it is created, and the

contents of value are stored. If the key already exists, the contents of value are

stored and replace whatever was previously there. To fetch values stored in the

dictionary, use get():

int result = Bridge.get(key, buffer, buffer_length);

This function takes three parameters: key is the text key to search for in the dic-

tionary; buffer is a char array that will be used to store the result; and buf-

fer_length is the size of buffer. This function returns an int, the amount of

bytes that have been placed into the buffer. If no data is available, this function

returns 0.

The Bridge class is a simple way to transfer data to and from the Linux side,

and includes features like error correction to ensure that data is always cor-

rectly transferred.

Process

The Process class runs and manages applications running on Linux. To begin

using the Process class, you must fi rst create a Process object:

Process p;

 Chapter 23 ■ Bridge 365

c23.indd 05:57:18:PM 12/05/2014 Page 365

Next, you must specify the command to run. This is done with begin():

Process.begin(command);

The command parameter is a text representation of the command or program

to execute; for example, cat, ls, curl, and such. To add one or more parameters,

use addParameter():

Process.addParameter(param);

This function takes one parameter, a string with the parameter to add:

Process p; // Create a Process class
p.begin("cat"); // Prepare a program
p.addParameter("/proc/cpuinfo"); // Add a parameter

The fi nal step is to run the application with the required parameters, which

is done with run():

Process.run();

This function does not take any parameters and executes the program. This is a

blocking function; the function does not return until the Linux program fi nishes.

If you run a program that will not exit by itself, your sketch will freeze and will

not continue. To run a program that does not exit, use runAsynchronously():

Process.runAsynchronously();

This function does not take any parameters, executes the Linux application,

and returns immediately. The application may or may not be running. To check

the status of a program, use running():

result = Process.running();

This function does not take any parameters and returns a boolean: true if

the application is still running and false if it has terminated.

When an application terminates, it often returns a return code, which is a numeri-

cal value that can give information about the return conditions. (For example, curl

will return 2 if the application failed to initialize, 3 if the URL was malformed,

and 7 if it failed to connect to the host.) To get the return code, use exitValue():

result = Process.exitValue();

This function returns an unsigned int: the return code of the Linux applica-

tion. It is not necessary to read the return code for every application. You can

call this only when it’s needed.

Some applications require text input to operate correctly, asking the user for

certain parameters before executing actions. Before asking information from

the user, applications normally display text information. To help exchange data,

read-and-write functions are available.

To read data from a process, use read():

data = Process.read();

366 Part III ■ Device-Specific Libraries

c23.indd 05:57:18:PM 12/05/2014 Page 366

read()returns an unsigned int, the fi rst byte of data available from the

serial output of the process, or –1 if no data is available. To write serial data to

a process, use write():

Process.write(val);
Process.write(str);
Process.write(buf, len);

The val parameter sends a single byte to the process. To send data as a String,

use the str parameter. Finally, you can send data by specifying a char array

as buf and the length of the buffer as len. This function returns a byte, the

number of bytes written to the process.

To fl ush the buffer, that is, to delete any data waiting to be read, use flush():

Process.flush();

This function does not take any parameters and does not return any informa-

tion. It fl ushes the incoming buffer after all pending output has been written.

To terminate a process, use close():

Process.close();

FileIO

The Arduino Yún has an integrated micro-SD slot, allowing users to expand

the fi lesystem. This card is handled by Linux, but the FileIO library provides a

convenient way to interact with fi les—creating, reading, writing, and deleting.

These functions send instructions through the Arduino Yún bridge.

W A R N I N G The following functions work only with fi les on the SD card.

Before using fi lesystem instructions, you must fi rst use begin():

// Setup File IO
FileSystem.begin();

This function must be called inside setup(). Next, you must create a File

object. To do this, you must open() a fi le. If the fi le exists, it will be opened. If

the fi le does not exist, it will be created, but the folder it is in must exist.

File datafile = FileSystem.open(filename);
File datafile = FileSystem.open(filename, mode);

The filename parameter is a String and indicates the fi le to open. It can

include directories so long as they are separated by a forward slash (for example,

"data/log.txt"). The optional mode parameter indicates how the fi le should

be opened, in the default read-only mode (specifi ed by FILE_READ), or in read/

write mode (specifi ed by FILE_WRITE). This function returns a File object and is

 Chapter 23 ■ Bridge 367

c23.indd 05:57:18:PM 12/05/2014 Page 367

used to perform read-and-write functions. If the fi le cannot be opened, the File

object evaluates to false; it is therefore possible to test if the fi le was opened:

File datafile = FileSystem.open("/data/log.txt", FILE_WRITE);
if (!datafile)
 Serial.println("ERROR: File could not be opened!");

File operations are exactly like the SD-card library; functions such as read(),

write(), seek(), and flush() exist. This library is similar in structure to the

SD library; only the underlying routines change. For more information, see

Chapter 12.

However, not every function works on fi les. open() requires a folder to exist,

but it does not work if the folder does not exist and does not create a folder if

it is missing. To remedy this, various fi lesystem instructions exist that do not

require a fi le to perform actions.

To check if a fi le exists without opening it (or creating a new one), use exists():

result = FileSystem.exists(filename);

The filename parameter is a String and is in the same format as open(). It

returns a boolean: true if the fi le (or folder) exists and false if it does not exist.

To create a folder, use mkdir():

result = FileSystem.exists(filename);

This function returns a boolean: true if the folder were created, false

 otherwise. To delete a folder, use rmdir():

result = FileSystem.rmdir(folder);

This function returns a boolean: true if the folder were deleted, false if the

function were unable to delete the folder. It requires the target folder to be empty;

any fi les present must be removed. To remove fi les, use remove():

result = FileSystem.remove(filename);

This function, like the previous functions, returns a boolean: true if deleted,

false otherwise. This function is a wrapper for the system command rm and

as such can delete both fi les and folders.

YunServer

The YunServer class is used when creating a server on the Arduino Yún’s Linux

distro. This allows the Arduino side of the Yún to receive requests and to answer

those requests.

To create a server, you must fi rst create a YunServer object:

YunServer server;

When the object has been created, you must tell the Arduino who can con-

nect. Contrary to most Arduino Ethernet shields, you will not want external

368 Part III ■ Device-Specific Libraries

c23.indd 05:57:18:PM 12/05/2014 Page 368

connections, only local connections. The Arduino will wait for connections

from the local host, but the local host is also the Linux side of the Arduino. This

means that when incoming connections arrive, they will be routed through the

Linux processor, leaving the AVR microcontroller side of the Arduino free to do

what it does best—control your sketches. To do this, use listenOnLocalhost():

server.listenOnLocalHost();

The last step, after the object has been created, is to use begin():

server.begin();

The server has now been created, and you can wait for clients to connect. The

difference between the Arduino Yún and other models using Ethernet or Wi-Fi

shields is the multitasking capacity. Although other Arduinos have to wait for

a client to connect, the Yún doesn’t need to wait, The Linux server can handle

connections, and the Arduino can see how many clients are waiting and handle

connections as required. Your sketch is free to continue between connections.

All you have to do is wait for a client.

YunClient

The YunClient interface is used for all client-based calls on the Yún. Just like

the server, you must fi rst create a YunClient object:

YunClient client;

To accept an incoming connection, you can talk with the YunServer:

YunServer server;
YunClient client = server.accept();
if (client)
{
 // Client has connected
}

You can verify if a client is still connected using connected():

result = client.connected();

This function returns a boolean: true if the client is still connected and false

if it has disconnected.

When a client has connected, you can read and write using standard Stream

functions:

String data = client.readString();
client.println("Thanks for connecting to my Yún");

When you fi nish talking to a client, you can terminate the connection using

stop():

client.stop();

 Chapter 23 ■ Bridge 369

c23.indd 05:57:18:PM 12/05/2014 Page 369

Example Application

In Chapter 12, you created a light sensor that was capable of logging data to an

SD card. In this chapter, you again use a light sensor, but one that can log the

temperature to a data fi le with a timestamp and that can be read over a wire-

less connection.

To do this, you need an Arduino Yún and a micro-SD card to use for data

logging. A standard LDR will be connected to your Yún through the analog pin

A3. The sketch will wait 20 seconds between each measurement. During this

loop, the sketch will listen to connections from a web navigator.

Hardware

This sketch uses an Arduino Yún connected to a light-dependent resistor. One

pin of the LDR is connected to +5 V, and the other one is connected to a 10-kΩ

resistor that is connected to ground. The analog reading is made where the

LDR and the fi xed value resistor are connected. The breadboard example will

look like Figure 23-1:

Figure 23-1: Project schematic (Image created with fritzing).

370 Part III ■ Device-Specific Libraries

c23.indd 05:57:18:PM 12/05/2014 Page 370

Sketch

The sketch will look like Listing 23-1.

Listing 23-1: Sensor sketch (fi lename: Chapter23.ino)

1 #include <Bridge.h>
2 #include <FileIO.h>
3 #include <YunServer.h>
4 #include <YunClient.h>
5
6 YunServer server;
7 String startString;
8
9 int iteration = 0;
10
11 void setup()
12 {
13 Serial.begin(9600);
14 Bridge.begin();
15 FileSystem.begin();
16
17 server.listenOnLocalhost();
18 server.begin();
19 }
20
21 void loop ()
22 {
23 String dataString;
24 YunClient client;
25
26 dataString += getTimeStamp();
27 dataString += ", ";
28
29 int sensor = analogRead(A3);
30 dataString += String(sensor);
31
32 Serial.println(dataString);
33
34 iteration++;
35 if (iteration == 20)
36 {
37 boolean result = logResults(dataString);
38 if (result == false)
39 {
40 // Uhoh, couldn't write!
41 Serial.println("ERR: Couldn't write data to file");
42 }
43 iteration = 0;
44 }
45

 Chapter 23 ■ Bridge 371

c23.indd 05:57:18:PM 12/05/2014 Page 371

46 for (int i = 0; i < 20; i++)
47 {
48 client = server.accept();
49 if (client)
50 {
51 client.print(dataString);
52 client.stop();
53 }
54 delay(1000);
55 }
56 }
57
58 boolean logResults(String dataString)
59 {
60 File dataFile = FileSystem.open("/mnt/sd/log.txt", FILE_APPEND);
61
62 if (dataFile)
63 {
64 dataFile.println(dataString);
65 dataFile.close();
66 return true;
67 }
68 return false;
69 }
70
71 // This function return a string with the time stamp
72 String getTimeStamp() {
73 Process time; // The process instance
74 String result; // The String the result will be stored to
75
76 time.begin("date"); // The command to run is "date"
77 time.addParameter("+%D-%T"); // The parameters to add
78 time.run(); // Run the command
79
80 delay(50); // Give the instruction some time to run
81
82 // Get the output from the command line
83 while (time.available() > 0) {
84 char c = time.read();
85 if (c != '\n')
86 result += c;
87 }
88
89 return result;
90 }

On lines 1 to 4, you import the necessary header fi les. Bridge.h is used for

almost everything on the Arduino Yún. FileIO.h is used for saving data to

the SD card, and YunClient.h and YunServer.h are used to handle client/

372 Part III ■ Device-Specific Libraries

c23.indd 05:57:18:PM 12/05/2014 Page 372

server operations. On line 6, an instance of the YunServer is created. This will

be used later.

setup() is declared on line 11. First, the serial port is initialized, and then

the Bridge and fi lesystem subsystems are initialized. Finally, the server starts.

loop() is declared on line 23, but before describing its functionality, let’s look

at the two other functions it calls. One is used to write data to the SD card, and

the other retrieves the timestamp from Linux.

getTimeStamp() is declared on line 74. When it runs, it creates an instance

of the Process class. It also creates a variable called result; this is the variable

that holds the result of a Linux command. This command runs inside a process

called time. The function that it calls is named date; when executing the date

command, it returns something like this:

jlangbridge@desknux:~$ date
Fri 29 Aug 15:01:00 UTC 2014

This contains a little bit too much information, you need only a short date

and time. This is achieved by adding some parameters to the instruction:

jlangbridge@desknux:~$ date +%D-%T
08/29/14-15:01:00

To call date, the sketch calls time.begin() on line 78 using date as an argu-

ment. To add parameters, addParameter() is used on line 79. The command

is run on line 80. The next few lines wait for a fraction of a second and then

read the output of the command. This data is placed in a String, which is then

returned to the loop().

The second function is called logResults(), and it is declared on line 60.

This function takes a String and places that data onto an SD card. It begins by

attempting to open a fi le on the SD card in the FILE_APPEND mode. On line 64 a

verifi cation is made to see if the fi le were opened. If it were opened, the data is

written, and the fi le is closed before returning true. If the fi le weren’t opened,

the function returns false.

Back to loop(). A variable called dataString is declared and then a YunClient

object is created. The dataString variable holds the date, time, and light sensor

reading. On line 28, the date and time is added from the return value of get-

TimeStamp(). Next, the analog value on pin A3 is read, converted to a String,

and added to dataString. On line 36, the variable iteration is incremented. If

the value equals 20, then the value is written to the data card. Finally, on line 50,

the sketch checks to see if a client is connected. If it is, the dataString displays,

and the connection is closed before returning the iteration value to zero.

 Chapter 23 ■ Bridge 373

c23.indd 05:57:18:PM 12/05/2014 Page 373

Exercises

This sketch is the basis for a compact sensor, and together with a temperature

sensor and barometer, it can be used to create a wireless weather station. Add

some components to the device, and display their value on the web server.

Summary

In this chapter you have seen the Arduino Yún and the Bridge library used

to exchange messages between the Arduino microcontroller and the Linux

microprocessor. You have seen the different ways in which information can be

exchanged, and how to issue commands and fetch data to and from the Linux

operating system. In the next chapter, you will see how users and companies

have added functionality to Arduinos in the form of user libraries, and how to

import those libraries to add functionality to your own projects .

c23.indd 05:57:18:PM 12/05/2014 Page 374

c24.indd 01:10:14:PM 12/09/2014 Page 375

 Par t

IV
User Libraries and Shields

In This Part

Chapter 24: Importing Third-Party Libraries

Chapter 25: Creating Your Own Shield

Chapter 26: Creating Your Own Library

c24.indd 01:10:14:PM 12/09/2014 Page 376

377

c24.indd 01:10:14:PM 12/09/2014 Page 377

This chapter requires the following:

 ■ Arduino Uno

 ■ Adafruit Si1145 breakout board

As you have seen throughout this book, the Arduino libraries add an impres-

sive amount of functionality to the platform. They facilitate the use of a large

number of electronic components and breakout boards. In some cases, using a

shield is as simple as selecting the correct library, but this isn’t always the case.

The Arduino ecosystem has grown immensely over the years; it has been used

for an unbelievably large amount of projects. Not all use “standard” components;

some need more specifi c hardware.

When you import a library, the Arduino has access to more functionality. For

example, the SD library enables you to easily write to large storage formats with

an Arduino, something that would otherwise be diffi cult to do. This is done by

adding functions, pieces of code that help you talk to hardware, or performing

software calculations and actions. Libraries facilitate this by importing these

functions and making them available to the sketch. Sketches can, of course, add

existing standard Arduino libraries, but they can also add libraries written by

third parties.

C H A P T E R

24

Importing Third-Party Libraries

378 Part IV ■ User Libraries and Shields

c24.indd 01:10:14:PM 12/09/2014 Page 378

Libraries

So what exactly is a library? Sketches are written in a form of C, and a library is

simply an extension, written in either C or C++. When you create a function in

your sketch, you can call it inside the same sketch. A library has a collection of

functions that can be reused in multiple sketches. When you import a library:

functions are made available, and you can call one, several, or all the functions

in the library as needed. You could also call none of the functions, but that

would be a bit of a waste.

There are several advantages to libraries; by hiding away all the long func-

tions, your sketch is made simpler. For example, if talking to a new external

component, the library can tell your sketch how to read the data from the com-

ponent. First, pull this output high, then send some binary data, wait for a few

milliseconds, retrieve binary data, sort that data, perform some calculations,

and then return the data. All this, just to return the temperature or the ultra-

violet index? Well, you always need to follow the same process, but it can be

taken care of by a function. By putting all this code in a function, your sketch

is clearer, and you even use less memory because the sketch can call one piece

of code several times, instead of having different copies of the same function

in memory. It also makes maintenance easier; if you have several sketches that

use the same functions, updating the library makes those changes immediately

available to the sketches that use them.

Finding Libraries

Often, the most diffi cult part of using an external library is fi nding it in the

fi rst place, and even that isn’t hard. Some hardware manufacturers develop

libraries designed specifi cally for their shields or breakout boards, and these

are available on the company’s site. For example, Adafruit often has a tutorial

for the breakout boards that it sells, showing how to connect it and typically

with some example code. On these pages, you often fi nd a link to download

the library they created to interface with the component.

Some electronic components do not require breakout boards but are still complex

enough to merit their own library. In Chapter 10 you saw how to create a wireless

device that helps keep houseplants happy. The DHT-11 humidity sensor is a rather

complex device, and the code was a little diffi cult. I don’t expect every Arduino

user to write code like that. To help beginners use these devices, a DHT-11 library

 Chapter 24 ■ Importing Third-Party Libraries 379

c24.indd 01:10:14:PM 12/09/2014 Page 379

exists. The same goes for other electronic components. To use these libraries, you

need to search online to see if there is something available.

Libraries are, put simply, source code fi les. There are sites that are dedicated to

hosting open source projects and handling source code. These sites allow other

users to retrieve the source code and to suggest modifi cations and corrections if

required. A single open source project can have hundreds of developers, each

proposing a change or adding their code to an existing project. One such site

is GitHub (http://github.com).

N O T E GitHub gets its name from the open-source code management program, Git.

It allows users to use this application to download the source code, upload changes,

and to create parallel versions. Although the site is optimized for Git, you do not need

to use this program; projects can be downloaded as a Zip fi le.

On the top of the screen, GitHub allows you to make a search of the available

projects. Give it a try. This chapter will use Silicon Lab’s SI1145 UV sensor. Enter

Arduino si1145 in the search fi eld, and then press Search. There are dozens

of responses, but you can change the order of the results, either by stars (the

amount of popularity a project has), forks (the amount of times this library has

been used to create another project), or recently updated (the last time the project

was updated). Best Match, the default setting, uses all three to create the best

solution and displays those results fi rst.

N O T E Adafruit also uses Github for its libraries.

One of the best sources of information, not only for libraries but for everything

to do with Arduino, is the Arduino Forum.

Importing a Library

To import a third-party library, you can use the Arduino IDE. When you go

into the Sketch ➪ Import Library menu, you have the choice of importing a

standard Arduino library, but there is also an Add Library menu item, as shown

in Figure 24-1.

Clicking this menu item opens a new window, prompting you to select a

Zip fi le or folder containing the library you want to import. A Linux computer

shows a window like the one in Figure 24-2.

http://github.com

380 Part IV ■ User Libraries and Shields

c24.indd 01:10:14:PM 12/09/2014 Page 380

Figure 24-1: Add Library menu item

Figure 24-2: Select archive window

 Chapter 24 ■ Importing Third-Party Libraries 381

c24.indd 01:10:14:PM 12/09/2014 Page 381

The Arduino IDE can recognize two different formats: either a compressed

Zip fi le or a folder. You must either select a zipped archive or the folder you

want to import.

If the Arduino IDE can import the library, a message displays informing that

the import has completed and that the library is now accessible from the Add

Library menu. If the Arduino IDE cannot import the library, a message displays

in the information bar at the bottom of the application with a brief explanation

of the issue.

N O T E The Arduino IDE can import libraries with properly formatted names—it can

handle only ASCII characters such as letters and numbers, and a library cannot start

with a number. Also, dashes (“-”) are not supported, but underscores (“_”) are. Check

the library’s name before you try to import it.

It is also possible to manually import a library. To do this, fi rst start by down-

loading the library you want to import. It will normally be available in a com-

pressed format, so after downloading the compressed fi le you must decompress

it. The result should be a folder with the name of the library you want to import.

Inside this folder, there should be one or more fi les: the .cpp fi le is the source

code, and the .h fi le is the header fi le. (It may also contain other fi les.) You will

need to copy (or move) the folder that contains these two fi les.

To manually import a library, you must fi rst quit the Arduino IDE if it is run-

ning. Next, locate the Arduino library folder. On Windows machines, it is most

likely placed in your Documents or My Documents folder, inside a subfolder

called Arduino. On Macintosh, it will be in your Documents folder, again in

a subfolder called Arduino. Inside the Arduino folder will be another folder

called “libraries.” This folder may or may not contain subfolders, depending

on if you have already imported other libraries or not. Copy and paste your

decompressed archive into this folder, and the next time you start the Arduino

IDE your library will be visible under the Sketch ➪ Import Library menu item.

Using an External Library

Now that you have imported your library, it is time to use it. But where do you

start? You can import your library just like you would import any standard

Arduino library. New libraries appear at the bottom of the Import Library menu,

as shown in Figure 24-3.

This imports the library, but that is all it does. So how exactly do you get your

hardware to work? Most libraries come with at least one example application,

382 Part IV ■ User Libraries and Shields

c24.indd 01:10:14:PM 12/09/2014 Page 382

sometimes several. This is the case with the SI1145 written by Ladyada, Adafruit’s

founder. Here is an extract of her example sketch:

Float UVindex = uv.readUV();
// the index is multiplied by 100 so to get the
// integer index, divide by 100!
UV index /= 100.0;
Serial.print("US: "); Serial.println(UVindex);

Figure 24-3: Importing the Si1145 library

This example code is extremely simple. A single function is called: readUV.

Ladyada also explains why the returned data is divided by 100. This function

is called on a uv object. This object is created at the beginning of the sketch, as

follows:

Adafruit_SI1145 uv = Adafruit_SI1145();

After that, another function is called inside the setup() function:

uv.begin();

And that’s it. Everything you need to use the SI1145.

 Chapter 24 ■ Importing Third-Party Libraries 383

c24.indd 01:10:14:PM 12/09/2014 Page 383

If there are no examples available, then all is not lost. With the open source

nature of Arduino, most libraries are also open source, so you can read the

contents of the library. These fi les are written in C++ but are easily readable

and can be opened with any text editor. Opening the SI1145 library header (the

.h fi le) shows the following lines in the source code:

class Adafruit_SI1145 {
public:
 Adafruit_SI1145(void);
 boolean begin();
 void reset();
 uint16_t readUV();
 uint16_t readIR();
 uint16_t readVisible();
 uint16_t readProx();
private:
 uint16_t read16(uint8_t addr);
 uint8_t read8(uint8_t addr);
 void write8(uint8_t reg, uint8_t val);
 uint8_t readParam(uint8_t p);
 uint8_t writeParam(uint8_t p, uint8_t v);
 uint8_t _addr;
};

The class name is a reference to a C++ class. This becomes an object in your

sketch. This object contains both variables and functions. It consists of several

parts. The private section includes functions and variables that will be

visible only inside the class. The sketch cannot see them and cannot modify the

variables, or call these functions. What the sketch can see are the members of

the public part. As you can see, the previous function is found here, readUV(),

but there are others: readIR(), readVisible(), and readProx(). Although the

function of readVisible() seems obvious, readProx() isn’t clear and wasn’t

used in the example sketch. Header fi les rarely have comments, so you may

not know immediately what this function does. This is a declaration; it tells the

compiler that somewhere in the .cpp fi le there is a function called readProx(),

so that is where you need to look for the answer.

This is the fi rst few lines of the function found in the C++ fi le:

// returns "Proximity" - assumes an IR LED is attached to LED
uint16_t Adafruit_SI1145::readProx(void)
{
 return read16(0x26);
}

Just a few lines of comments, and you can tell what the function does. So this

function calculates the Heat index, the human-felt equivalence temperature—an

interesting addition that could be useful for weather stations.

384 Part IV ■ User Libraries and Shields

c24.indd 01:10:14:PM 12/09/2014 Page 384

Example Application

For this example, you will import a third-party library to use a piece of hardware.

The Si1145 from Silicon Labs is a digital UV sensor. Targeted for the wearable

market, it is compact, light, and ultra-low-powered. It is a highly professional

solution, but like most professional solutions, it does come at a price. That price is

confi guration. This device is not like the LM35 temperature sensor that requires

a simple analog read; it requires a little bit of confi guration before you can use it.

When set up, it provides a highly reliable readout. It doesn’t just read UV; it can

read visible light, infrared light, and when used with an infrared LED, it is also

a proximity sensor. All in all, a highly advanced sensor that is great fun to use.

The Si1145 is diffi cult to use on a typical Arduino project. The component

is surface-mounted, meaning it cannot be placed directly on a breadboard. It is

designed to be as small as possible to keep electronic projects small, and as such,

it is diffi cult to solder the component to a board by using household equipment.

It takes some skill and a good setup to solder this component by hand. Also, it

is powered by 3.3 V, not the 5 V that an Arduino typically uses. To make this

device easier to use, Adafruit has developed a breakout board for the Si1145

sensor, adding standard-sized pins, allowing it to be used on a breadboard, and

voltage shifters, making it compatible with 5-volt Arduinos. To make it even

easier to use, Adafruit has also created a nicely designed and easy-to-use library.

The fi rst thing you require is the Adafruit Si1145 library. You can fi nd the

Si1145 breakout board information page here:

https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-
sensor/overview

From that page, you can visit the “Wiring and Test” link where you will fi nd

a link to Adafruit’s GitHub repository:

https://github.com/adafruit/Adafruit_SI1145_Library

On that page, there are a few things to note. Figure 24-4 displays the webpage.

Repositories can be in a constant state of change; developers can add, change,

or delete portions of code, and although some projects are updated daily, others

may be updated hourly. You can see the contents of the repository, the fi lenames,

folders, and the last time they were updated. At the bottom, the contents of

README.txt are displayed, giving some important information on the project.

To the right, there is some statistical information, the number of bug reports,

and different ways to connect to the server to retrieve the source code. Some

of these involve using the Git software package, but the easiest way is to click

the Download Zip button on the bottom right. This takes a snapshot of the

current project, compresses it into a Zip fi le, and downloads the compressed

fi le to your computer.

https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor/overview
https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor/overview
https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor/overview
https://github.com/adafruit/Adafruit_SI1145_Library

 Chapter 24 ■ Importing Third-Party Libraries 385

c24.indd 01:10:14:PM 12/09/2014 Page 385

Figure 24-4: Adafruit’s Si1145 GitHub page

Now that the Zip fi le has been downloaded, it has to be imported. For now, try

to import the library as it is currently; the fi lename is Adafruit_SI1145_Library-

master.zip. Open the Arduino IDE, go to the Sketch ➪ Import Library ➪ Add

Library menu item, as shown in Figure 24-5.

Figure 24-5: Import a library

386 Part IV ■ User Libraries and Shields

c24.indd 01:10:14:PM 12/09/2014 Page 386

A new window opens. Select the Zip fi le that you downloaded. Didn’t work,

did it? You should have an error message at the bottom of the screen.

This is one of the problems when importing libraries: the naming convention.

The Arduino IDE cannot read the dash in the fi lename, so why was it there?

Adafruit did not name its library like that; if you look at the Adafruit and Github

pages, the repository name is Adafruit_SI1145_Library, no dash. The dash is

added by a Git convention, adding -master to the end of the compressed fi le-

name. Git repositories can have several “branches,” different areas of code that

can be modifi ed independently from the rest of the code. This is used from time

to time to test new functionality, and if everything goes to plan, that branch is

then merged back into the main repository, called master.

The Zip fi le cannot be used as it is. You cannot simply rename the Zip fi le

because it contains a folder with a dash in the name. To import this library, you

have to try something else: extract the contents. Most operating systems have

native support for Zip fi les. Extract the contents of the Zip fi le to a location on

your hard drive. The result should be a folder name called Adafruit_SI1145_

Library-master. Rename this folder Adafruit_SI1145_Library. Now, import

this folder. As before, go to the Sketch ➪ Import Library ➪ Add Library menu

item. Select the folder (without going inside the folder) and press OK. If every-

thing goes well, you will have a new message on your Arduino IDE, like the

one shown in Figure 24-6.

Figure 24-6: Successful library import

 Chapter 24 ■ Importing Third-Party Libraries 387

c24.indd 01:10:14:PM 12/09/2014 Page 387

Now that your library has been imported, you can use it. It becomes available

immediately and is listed in the Import Library menu. This library also adds

an example, available for use immediately in the File ➪ Examples menu. Note

that for both the Import Library and the Example menu items, external libraries

are separated from standard libraries.

Now, load the Si1145 example sketch shown here:

1 /***
2 This is a library for the Si1145 UV/IR/Visible Light Sensor
3
4 Designed specifically to work with the Si1145 sensor in the
5 adafruit shop
6 ----> https://www.adafruit.com/products/1777
7
8 These sensors use I2C to communicate, 2 pins are required to
9 interface
10 Adafruit invests time and resources providing this open source
 code,
11 please support Adafruit and open-source hardware by purchasing
12 products from Adafruit!
13
14 Written by Limor Fried/Ladyada for Adafruit Industries.
15 BSD license, all text above must be included in any redistribution
16 **/
17
18 #include <Wire.h>
19 #include "Adafruit_SI1145.h"
20
21 Adafruit_SI1145 uv = Adafruit_SI1145();
22
23 void setup() {
24 Serial.begin(9600);
25
26 Serial.println("Adafruit SI1145 test");
27
28 if (! uv.begin()) {
29 Serial.println("Didn't find Si1145");
30 while (1);
31 }
32
33 Serial.println("OK!");
34 }
35
36 void loop() {
37 Serial.println("===================");
38 Serial.print("Vis: "); Serial.println(uv.readVisible());
39 Serial.print("IR: "); Serial.println(uv.readIR());
40
41 // Uncomment if you have an IR LED attached to LED pin!
42 //Serial.print("Prox: "); Serial.println(uv.readProx());

https://www.adafruit.com/products/1777

388 Part IV ■ User Libraries and Shields

c24.indd 01:10:14:PM 12/09/2014 Page 388

43
44 float UVindex = uv.readUV();
45 // the index is multiplied by 100 so to get the
46 // integer index, divide by 100!
47 UVindex /= 100.0;
48 Serial.print("UV: "); Serial.println(UVindex);
49
50 delay(1000);
51 }

Now, it’s time to have a closer look at that sketch. On lines 1 to 16, the author

begins with a comment. This is a general explanation of the example, what

component it is used for, and some licensing information for the software. The

BSD license allows you to use the source code for your projects. You can use

this library as long as you credit the original author and agree not to take legal

action against them if it does not work as expected.

On line 18, the Wire library is imported. This is used to communicate through

the I2C protocol, and this is how the Si1145 communicates. On line 19, the Adafruit

SI1145 library is imported.

On line 21, an Adafruit_SI1145 object is created called uv. This is the object

that will be used to access the sensor’s information.

On line 23, setup() is declared. Like most test sketches, it opens up the serial

port to allow for simple debugging. On line 28, begin() is called to the uv object.

Typically, begin() functions are called to initialize hardware pins, to set voltages

to a required state, or to send confi guration data to microchips. The Si1145 is an

I2C device, so there is no need to confi gure the I2C bus; it is done via the Wire

library. It has a fi xed address, so there is no confi guration required. It does not

require any external pins so that isn’t done either. What it does require is a lot

of parameters to be sent to the device for it to function correctly. This is what

begin() does. For this library, it also detects if the device is present, a nice addi-

tion. It is all too easy to incorrectly connect a device. The function returns true

if the sensor is present, making sure that you have set everything up correctly

before proceeding with the rest of the sketch.

On line 36, loop() is declared, and this is where the fun begins. Several func-

tions are called: readVisible() on line 38, readIR() on line 39, and readUV()

on line 44. The readVisible() function returns the current ambient light level,

and readIR() returns the current infrared light level. Adafruit’s Si1145 breakout

board does not come with an IR LED, but it has a connector if you want to use

one. For those who do, another function is available (but commented out in the

example): readProx() on line 42.

This is an example of a well-designed library; one that is easy to import includes

board detection in the begin() function, and works well with a fantastic piece

of hardware. The Si1145 is an excellent sensor, and Adafruit has worked hard

to create a good breakout board and a great library to go with it.

 Chapter 24 ■ Importing Third-Party Libraries 389

c24.indd 01:10:14:PM 12/09/2014 Page 389

Exercises

You have seen that with this library, you can use new hardware with only a

few lines of code. The Si1145 is a powerful device, capable of replacing a light-

dependent resistor (LDR) in most applications, with the advantage of including

a proximity sensor. Of course, having a device that can give the exact UV level

is a huge advantage for wearable devices that can be used for skin protection,

both for adults and children. You can monitor when you have had enough sun,

or when it is unsafe for children to play outside. Try to add this device onto one

of the projects that you have created while reading this book. A UV sensor is

always a great addition to weather stations and nice to have for outdoor sensors.

Summ ary

In this chapter, you have seen what a third-party library is, where you can fi nd

one, and how to run example programs, all of which is designed to get you up

and running. You have seen how to get information about the different func-

tions the library has—what they do and the values they return. You have seen

how to import them into the Arduino IDE and how to use them in your own

applications. Libraries are typically used to add functionality from shields, and

in the next chapter you will see how to design and create your own shield for

use in your proje cts.

391

c25.indd 06:35:58:PM 12/05/2014 Page 391

As you have seen throughout this book, Arduinos are powerful devices. With a

large amount of input and output pins, they can perform advanced functions,

but the real power comes with shields. Shields expand the functionality of an

Arduino by adding electronic components or connectors. Hundreds of designs

exist, adding Wi-Fi connectivity, Ethernet, LCD and TFT screens, more input

and output, robotics, or simply prototyping.

Even if hundreds of shields exist, sometimes it is worth creating your own.

Don’t worry; this isn’t magic. Some hobbyists are frightened of creating printed

circuit boards, but new tools exist that make this simple. There are no expen-

sive machines to buy and no messy chemicals to use. Even the software used

to create these boards is free. If you can create a circuit on a breadboard, you

can create a shield.

Creating a Shield

There are hundreds of boards available, either through Arduino, through

Arduino-compatible vendors, or through hobbyists and makers. If so many

shields are available, why would you want to create your own? Put simply, to

have your own hardware the way you want it. A data-logging shield might miss

 C H A P T E R

25

Creating Your Own Shield

392 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 392

a component that you want, or maybe that fancy input and output shield has

a few components that you don’t need. Also, the satisfaction of creating your

own shield is indescribable. You’ll see.

The Idea

It all starts with an idea. The idea is normally the project you have on your desk—

a breadboard with dozens of wires linked to a few components. Large projects

can have 100 or more wires connected to dozens of components. Although this

works great for evaluation and development, it won’t last long. Imagine that you

have just fi nished a project for your house. You want to place a data-logging

Arduino in the ceiling, hidden away from sight behind some plaster, or in a

small hole in the wall. You have already thought of everything; a network cable

has been run through the wall to this location, providing a network connection

and power to the Arduino. All you have to do is to place the Arduino and the

breadboard that contains your project: temperature sensors, humidity sensors,

EEPROM data-logging, barometric sensors, and a few other components. You

place the Arduino, you place the breadboard, and you connect everything. A

job well done! You are about to take a break when you notice a wire on the fl oor.

Where did it come from? It must be from a component when you installed the

breadboard; but where? From which component? There are more than a dozen

components, possibly 100 small wires, and even if the project works great, the

breadboard is a mess. Finding out where the wire came from could be a huge

task. Even worse, this device gives information about a single room; you still

have to install the ones for the kitchen, bedroom, garage, and attic. Imagine

snagging a wire on each. This could take hours, if not days.

Because each breadboard is identical, it is easy to create a shield. Because you

created a breadboard design, it is easy to create an electronic schematic, which

is explained in the section, “Your First Shield.” Having all the components on a

shield instead of a breadboard makes the design much more resilient; no more

wires to catch on clothes or nails. No more components ready to fall off. A nice,

clear design, smaller than a breadboard, which can probably last years (if not

decades). Even better, if you ever get that extension to your home fi nished, you

already have the design for the shield, and you can add a sensor to the new

room as soon as the work is done.

The Required Hardware

If you have the Arduino IDE set up on a computer, you already have all the

hardware that you need. Back in the old days, you had to have transparent fi lm,

a UV lamp, ferric chloride, and a steady hand. When not created on a computer,

 Chapter 25 ■ Creating Your Own Shield 393

c25.indd 06:35:58:PM 12/05/2014 Page 393

connections and lanes were drawn by hand or by using stickers. This was

printed or drawn onto a transparent fi lm and then placed onto a photoresist

copper-clad board. Exposing this to UV light removes the photoresist that was

not protected by markings, revealing the copper. The board is then dipped into

ferric chloride, a nasty chemical that can stain just about anything bright orange.

When this was complete, the board needed to be cleaned, and the last thing to

do was to drill holes where you were to place components.

This is still done frequently today, but companies have been created that do

the work for you, resulting in a board that is professionally created with a much

higher standard than anything you can make with home equipment. One of

these companies is Fritzing.

The Required Software

Fritzing has been used throughout this book to create images of breadboards

with the circuit connections. You can use this free, open-source application

for a variety of things, from creating a breadboard connection diagram, to an

electronic schematic, all the way to hardware design. Fritzing is available for

Windows, Mac OS, and Linux and is available on the Fritzing website at http://

fritzing.org/.

Fritzing comes with a large collection of components, including the standard

resistor, LED, breadboard, most of the Arduino boards, and more advanced

components such as the PCF8574, which is explained in the section, “Your First

Shield.” Of course, there are hundreds of thousands of components available,

and it isn’t possible to list them all, so some companies and makers create user

libraries of components. For example, Adafruit supplies a component library

that Fritzing can use to help you use its components and breakout boards.

A Fritzing project contains several elements: the breadboard design, the elec-

tronics schematic, and the printed circuit board. This fi le can then be sent to

the Fritzing website for production; you can order your shield directly through

the application.

Fritzing has an easy-to-use interface. When you open the application, you

are presented with the main screen. On the top, you see four buttons that cor-

respond to four activities. By default, you will be on the Welcome screen. Next,

the Breadboard view allows you to create projects with a virtual breadboard,

using visual components that resemble what you have used until now. Next,

the Schematic view can create an electronic schematic from the Breadboard

view. Finally, the PCB view allows you to create a printed circuit board from

the Breadboard and Schematic views.

To the right are two views: Parts and Inspector. Parts is where you can fi nd

electronic components like resistors and wires, but also breadboards, Arduino,

http://fritzing.org
http://fritzing.org
http://fritzing.org
http://fritzing.org

394 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 394

and breakout boards. Anything that you want to place is present there. The

Inspector panel is used to change component characteristics; you can change

the value of components, for example, change the resistance of a resistor.

Your First Shield

Throughout this book, you have used libraries and shields created by other

people. Now you are ready to take that a step further and create your own

shield! This chapter describes the steps necessary to design and create your

own shield. To use that shield, you need to create a software library, which is

discussed in the next chapter.

So, what kind of shield can be made? It would be easier to ask what kind

of shield cannot be made; there are so many different shield designs that it is

impossible to list them all. For this chapter, you create an I/O shield, increasing

the capacity of the Arduino by another 16 pins. Why would you want to create

more I/O? Doesn’t the Arduino have enough I/O? I’ve seen projects where the

makers would clearly say that no, even the Arduino Mega 2560 does not have

enough input and output, and more is always welcome. It would be even better

if the shield could use the I2C protocol, therefore using up few pins.

There are many I2C-compatible components on the market. The component

that you use for this project is the PCF8574AP. This component is an 8-bit I/O

expander, capable of adding eight input and output pins to an I2C bus. The

Arduino already has a built-in I2C bus, so no other components are required.

The fi rst thing to do when using a new component is to download the data-

sheet. This device is created by NXP, and their website contains a link to data-

sheets. This specifi c datasheet is available at http://www.nxp.com/documents/

data_sheet/PCF8574_PCF8574A.pdf. Here is an extract from that datasheet.

The devices consist of eight quasi-bidirectional ports, 100 kHz I2C-bus interface,
three hardware address inputs, and interrupt output operating between 2.5 V and
6 V. The quasi-bidirectional port can be independently assigned as an input to
monitor interrupt status or keypads, or as an output to activate indicator devices
such as LEDs. System master can read from the input port or write to the output
port through a single register.

A single paragraph tells you a lot about the component. First is the I2C speed,

100 kHz, something that the Arduino can use. The I2C has three address inputs,

meaning that 3 bits of the address can be set, allowing several components

to be used at the same time, or simply to confi gure the address on a heavily

populated I2C bus.

http://www.nxp.com/documents

 Chapter 25 ■ Creating Your Own Shield 395

c25.indd 06:35:58:PM 12/05/2014 Page 395

Another important detail; inputs and outputs can function between 2.5 V and

6 V. Arduinos use two voltages: 3.3 V and 5 V. This shield will be compatible

with both types of Arduino, without the need to add voltage-shifting hardware.

Next, it talks about quasi-bidirectional ports. What exactly is a quasi-bidirec-

tional port? An input port is one that can read the voltage on a pin. An output

port is one that can set a voltage on a pin. In theory, a bidirectional port is one

that can do both at the same time: set output voltage and read input voltage.

The problem arises when, for example, the output is set to a logical one, 5 volts,

and the input is a logical zero, ground. In this confi guration, that would result

in a pin set too high to be in direct contact with the ground, resulting in a short

circuit, cutting power to the board and potentially damaging the component and

the board. Quasi-bidirectional solves this and allows the component to work

in this fashion. Quasi-bidirectional pins can sink a rather large amount of cur-

rent (tens of milli-amps, more than enough for an LED) but can source only a

small amount of current (sometimes tens of micro-amps). In the case of a short

circuit, the device simply limits the current, as if a large resistor was placed in

the circuit. The advantage is, of course, ease of use. There is no need to set a pin

to be specifi cally input or output, but the disadvantage is that this pin cannot be

used to power all components; it will not deliver enough power to turn on an

LED. So why does the datasheet talk about output devices such as LEDs? Well,

they can still be used, but they should ground to the device, turning the LED

on when the output is a logical zero or be used with a transistor that requires

much less current to activate than an LED. That part will be left to the end user;

your job is to create the shield that will contain the components and connectors.

Step 1: The Breadboard

Breadboards are an excellent way to test circuits and ideas. It is extremely

easy to add wires, to change connections, and to duplicate part of the circuit if

required. Most projects start as an experiment on a breadboard, even the most

professional Arduino applications.

To create a simple circuit, you can use a breadboard to create a design almost

immediately. There is, however, a slight difference between this breadboard

design and the designs that you have been using. In previous designs, the output

of a component was simply left as it is; to use that output, you need to place a

wire in one of the breadboard connectors. When designing a shield, you should

always use the type of connector that will be on the fi nal design. There is a good

reason for this; one that you will see in the section “The PCB.”

This design requires two PCF8574AP integrated circuits, one 16-pin or two

8-pin headers, and optionally, additional headers to specify the I2C addresses.

396 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 396

Remember, the PCF8574AP needs to be confi gured by either pulling pins high

or low to defi ne the address. This can either be done “hard” by physically wir-

ing the pins on the shield, or “soft” by placing jumpers on the board. For this

example, they will be hard-wired. You can add headers and jumpers as an

exercise. The pin layout is shown in Figure 25-1.

Figure 25-1: PCF8574AP pin layout

Open up Fritzing and enter the Breadboard view. By default, a new project

already has a breadboard placed in the center of the view. Go to the Parts panel

and search for the PCF8574AP chip by entering the text “PCF8574” next to the

magnifying glass. The result will be displayed below. To place a component, you

can drag the component from the Component view directly onto the breadboard.

Place the two PCF8574AP chips and headers on the breadboard. Connect +5 V

and GND pins of the Arduino to the power rails of the breadboard, and then

wire power to the integrated circuits.

Pin 16 is VDD, supply voltage, and pin 8 is VSS, supply ground. This is a com-

mon layout for integrated circuits.

Next, connect the I2C bus wires. Remember, pin A4 is for SDA, and A5 is for

SCL. Connect these two pins to the breadboard. Figure 25-2 shows my layout.

Next, set the addresses of the two integrated circuits. Pins 1, 2, and 3 are used

for the address. For this example, device 0 (on the left) will use 000b (all low),

and device 1 (on the right) will use b001; that is, A0 and A1 will be low, and A2

will be high. This can still be achieved without the breadboard view becom-

ing too complicated by using both the top and lower power rails, as shown in

Figure 25-3.

 Chapter 25 ■ Creating Your Own Shield 397

c25.indd 06:35:58:PM 12/05/2014 Page 397

Figure 25-2: Power and I2C connected (Image created with Fritzing)

Figure 25-3: I2C address set (Image created with Fritzing)

398 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 398

The breadboard view is still visible and not too complicated. That is about to

change. The last thing to do is to connect the two headers, each one requiring

eight wires. The view will be extremely complicated, but don’t worry; you will

see that there is a better way of looking at your circuit when this is done.

Connect all eight input/output pins of the two devices: P0 to P7 to each header.

My breadboard looks like the one illustrated in Figure 25-4. Note that I made

the wires a little clearer on the right but not on the left. With the I2C wires in

the way, it isn’t easy to make something that is elegant. It might be possible by

spending a lot of time, but remember that breadboard schematics are all about

getting things done and not about understanding the electronics behind a design.

Figure 25-4: Breadboard final layout (Image created with Fritzing)

You now have a working breadboard design, but how do you turn this into a

shield? You can do this directly, but just before, it is time to look at the schematic.

Step 2: The Schematic

Reading breadboard designs isn’t easy. The bottom left pin on both integrated

circuits are pulled low, but is this pin the ground? Is it an address? It is diffi cult

to know without extensive knowledge of the integrated circuit itself, and there

are tens of thousands of designs. To understand what a circuit does, you have

to look at the schematic.

 Chapter 25 ■ Creating Your Own Shield 399

c25.indd 06:35:58:PM 12/05/2014 Page 399

Figure 25-5: Default schematic view (Image created with Fritzing)

400 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 400

Fritzing also has a schematic view that updates automatically. To view the

schematic view, click the Schematic tab. (You are currently on the Breadboard

tab.) Figure 25-5 shows my schematic.

Whoa. What is this? This is an engineering nightmare, completely unreadable.

There are dotted lines going from pin to pin, crossing over each other. This is

actually a valid layout; each connection has been made, but it still needs to be

sorted out. This takes some time but is a useful part of any project.

In the schematic view, your job is to re-create the connections in a way that

is easily readable by others (and by yourself). When you mouse over a com-

ponent, it is “selected” by a gray background. Right-clicking this component

opens a menu allowing you to perform certain actions. The most useful are

the rotate and mirror actions. By left-clicking and dragging, you can move the

components around. Attempt to move the components in a way that creates

the least amount of crossing lines. You won’t make it perfect, so don’t worry if

a few do cross over; this will be sorted when creating the PCB. In my view, I

have moved the components in a way that looks better, and I have also started

to make some connections between the Arduino and the two integrated circuits,

as shown in Figure 25-6.

A connection is already made between the different pins according to what

was done on the breadboard, and now your job is to make a solid, visible line

between the different pins. To do this, Fritzing helps you out. Place your cursor

above one of the pins, and it changes to blue. Click and hold down the mouse,

and you can start to create a wire. Fritzing also highlights pins that need to be

connected in red, making it easier to know what pins need to be connected.

This draws a straight line between the two pins, possibly crossing over other

wires or even components. Don’t worry. You can add bendpoints by clicking

the wire that was created. Try to keep wires horizontal and vertical to make the

schematic easier to read. If you need to move a bendpoint, select the bendpoint

by hovering over it with your mouse, and then drag and drop the bendpoint

to the new location. To delete a bendpoint, hover over and then right click it,

and select the Remove Bendpoint option from the menu. Moving a component

automatically moves the fi rst part of the wire up until the fi rst bendpoint.

After 10 minutes, this is what I created, illustrated in Figure 25-7. It is much

clearer than the fi rst version and can be shown to other makers to share ideas

or to ask for advice if needed.

 Chapter 25 ■ Creating Your Own Shield 401

c25.indd 06:35:58:PM 12/05/2014 Page 401

Figure 25-6: Beginning schematic work (Image created with Fritzing)

402 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 402

Figure 25-7: Final schematic (Image created with Fritzing)

Although you can create a shield only from a breadboard example, creating a

schematic does help. Did you notice those INT pins on the integrated circuits?

The PCF8574AP can “warn” a device through an interrupt that one of the inputs

has a changed state. On a breadboard, this was impossible to notice, but on a

schematic, it is clearly visible. It might be a good idea to connect these to the

Arduino in a next version. For now, it is time to create the shield.

Step 3: The PCB

The most rewarding part of creating a shield is designing the PCB, the Printed

Circuit Board. It is also the most complicated part, but it isn’t overly diffi cult,

and Fritzing helps you a lot.

Designing a PCB is all about the physical world; in the schematic view, it

doesn’t matter if the connectors go on the left side or on the right side. It is more

a question of preference, and if I put the connectors on the left, it was mainly

 Chapter 25 ■ Creating Your Own Shield 403

c25.indd 06:35:58:PM 12/05/2014 Page 403

because that is what Fritzing started with. For the PCB, it is different. The

Arduino headers, for example, are placed in a specifi c position and cannot be

moved. Fortunately, this is just one of the many ways in which Fritzing helps you.

When opening the PCB view, you are presented with a black screen with

individual components placed on the screen. Again, there are dotted lines con-

necting the different pins and components. In the middle of the screen, Fritzing

has placed a shield layout. By default, it will be for the Arduino Uno, but this can

be changed. Fritzing can help you create shields for almost all Arduino types.

To select a board, click the board on the screen, and select the board type in

the Inspector on the bottom right side, and select the type. For this example,

you create a shield for the Arduino Uno without the need for the ISCP headers.

This particular shield design already has the correct header placement, so you

do not have to place those. However, you have to place the integrated circuits

and the two headers. This is why you had to use headers for the breadboard

view so that the component is visible. If you had used wires only to connect

other devices, the header would not have been added.

Place the headers on the left in a line close together but not too close. Next,

place the integrated circuits on the board, somewhere where the dotted lines

don’t cross over too often. Remember to use the rotate function to place the

components in the best possible location.

Printed circuit boards have one or several copper plates on their sides or

inside. Basic printed circuit boards have one copper side, known as the single

layer. More advanced circuit boards have copper on both sides and are known

as dual-layered. The mainboard inside your personal computer can sometimes

have up to a dozen “layers” of copper and are extremely advanced. Instead of

the wires on your breadboard, there will be copper “lanes” going from one

component to the other. Fritzing can provide double-layer printed circuit boards,

meaning that there can be connections on both sides.

Contrary to the schematic view, wires cannot cross each other on the same

side. If you cannot go around a wire, you can go underneath or above. This

makes routing slightly diffi cult, but luckily, Fritzing has yet another tool to

help you, known as autoroute. Autoroute attempts to create wires between the

components and normally does a good job but does need a little bit of tweaking.

My solution is available at http://www.wiley.com/go/arduinosketches.

Have a look, and compare with your own.

The fi nal step to making your shield is to send it for fabrication. This is done

automatically by clicking the Fabricate button on the bottom-right side. After

selecting the amount of printed circuit boards, the design is sent to the Fritzing Fab.

Fritzing checks your design, but only for major problems: short circuits,

design problems, or missing connections. After a few days, you will receive a

professionally made printed circuit board, ready to go! Place it on your Arduino,

http://www.wiley.com/go/arduinosketches

404 Part Iv ■ User Libraries and Shields

c25.indd 06:35:58:PM 12/05/2014 Page 404

and prepare yourself for another adventure; after you have created a shield,

you have to create the software for the shield. You do this in the next chapter.

Creating Arduino shields is an excellent way of learning electronics but can

also be a source of income. Several companies sell Arduino shields but also indi-

viduals shields on dedicated electronics sites. Arduino shields work, of course,

on Arduinos, but not only. Several boards exist with Arduino-compatible con-

nectors, even if they are not Arduinos and are not programmed by the Arduino

IDE. One example is Atmel’s SAMA5D3 evaluation board. Atmel supplies most

of the microcontrollers on Arduino boards but also creates advanced processors

for professional designs. The SAMA5D3 is one example of a processor that can

run a full Linux or Android system, but with Arduino shields.

Summary

 In this chapter you have seen just how easy it is to create your own shield using

Fritzing, an open-source application to create schematics and help you create

professional quality shields. You have created your own project and developed

a solution to increase the input/output of your Arduino beyond its initial design

point. However, to use your shield, you will require software to control the

components, something that will be presented in the next chapter. You will see

how to create your own library using the Arduino IDE, and how to package it

to distribute to other people and projects.

405

c26.indd 01:10:40:PM 12/09/2014 Page 405

This chapter discusses how to create your own library. You can fi nd the code

downloads for this chapter at http://www.wiley.com/go/arduinosketches on

the Download Code tab. The code is in the Chapter 26 download and individu-

ally named according to the fi lenames noted throughout this chapter.

The Arduino project has had an immense success since its creation, and there

are several reasons. The cost is, of course, an important criterion to any proj-

ect. Continuous R & D has also helped, but one of the primary reasons today

is simple: the openness of the project. The Arduino community is extremely

active. Just look at the Arduino forums: Google+ groups or Arduino events

organized in cities throughout the world. This is the community that drives

the ongoing evolution of the platform, either by getting the tools to work with

new electronic components and breakout boards, or fi nding and creating their

own when nothing exists. In Chapter 25 you created your own shield, now you

will create your own library.

Libraries

You can use libraries for several applications, but two main uses exist. One is

to have specifi c routines such as temperature conversion, data processing, or

hardware I/O. The second use is to allow the use of specifi c hardware, hiding

 C H A P T E R

26

Creating Your Own Library

http://www.wiley.com/go/arduinosketches

406 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 406

away any long routines, and making hardware easy to use. This chapter looks

at both of these kinds of libraries.

Library Basics

When you import a library, you import an .h fi le, the header fi le. This is a text fi le

that describes what is in a C++ fi le (that ends with the .cpp extension). Header

fi les are used in most C and C++ projects. They are not required for sketches but

are required for libraries. They are a simple way of telling the compiler what to

expect in the C++ fi le and how to use it. It is also an excellent way for developers

to know what is contained in a library; everything is listed in just a few lines.

Simple Libraries

Function libraries are an easy entry into writing a library; they contain simple

functions similar to ones you might write in your main sketch. Don’t worry, you’ll

look at making some with advanced capabilities in the “Advanced Libraries”

section. For now, these contain only simple functions, and their header fi le is

straightforward.

You can demonstrate the use of a potential library with a function call. You

can use an Arduino to calculate the answer to the Ultimate Question of Life, the

Universe, and Everything. Luckily, Douglas Adams has already answered this

question in The Hitchhiker’s Guide to the Galaxy; a super-computer calculated this

question for 7.5 million years before coming up with the answer: 42. Luckily, the

Arduino is a lot faster to come up with the answer, and the function looks simple:

int theAnswer()
{
 return 42;
}

Looks simple, doesn’t it? The only diffi culty is making this function usable

as a library. It requires a few things to set up before it is useable. First, you must

think of a name for the library, as well as the folder that will contain your fi les.

The choice of the name is important because it will also be used for the name

displayed on the Import Library menu item. Try to think of a name that clearly

identifi es the library you will create—either the component name, function, or

application. Users of your library will depend on this. For this example, use

theAnswerToEverything.

Create a folder with this name on your desktop or anywhere you have easy

access to. Next, you need to create two fi les: the source fi le and the header fi le.

The Arduino IDE cannot directly open or save C++ and .h fi les. These can be

created with a standard text editor or with an IDE. Code::Blocks is a freeware

 Chapter 26 ■ Creating Your Own Library 407

c26.indd 01:10:40:PM 12/09/2014 Page 407

IDE that works on several platforms, including Windows, Linux, and Mac OS.

It is available from www.codeblocks.org/downloads/.

The header fi le is a fi le that contains a description of the functions that you

will be writing. Its name is just as important as the name of the library and

folder it lives within. For example, when you import the EEPROM library, you

add this line:

#include <EEPROM.h>

This is the header fi le. Typically, it has the same name as the folder it is held in,

but not always. For example, when importing the Wi-Fi library, you may see this:

#include <WiFi.h>
#include <WiFiServer.h>
#include <WiFiClient.h>
#include <WiFiUdp.h>

Several header fi les are located inside this folder, and if you use the Import

Library functionality in the IDE, all header fi les are automatically imported.

If named well, they clearly state what they do, so anyone using the library can

know what the headers do and if they are needed. Imagine another sort of name:

#include <stuff.h>

This isn’t clear, and users will have no idea what this library does. Remember

to keep your library name precise and clear.

First, create a source fi le named theAnswerToEverything.cpp. The source

fi le is written in C++ and has the extension .cpp. Add the following contents

to the fi le and save it:

int theAnswer()
{
 return 42;
}

There is just this one function; it takes no parameters and returns an int. The

Arduino IDE still does not know about this function; it has to be declared. This

is the role of the header fi le. Create a new fi le named theAnswerToEverything.h

and add the following:

int theAnswer();

Did you see the difference? It is the same structure, only instead of having

source code within brackets, the line is immediately ended with a semicolon.

This is the declaration. It tells the compiler that this function exists, that it returns

an int, and that it takes no parameters. If called, the compiler will know that

it can fi nd the source code within the .cpp fi le.

http://www.codeblocks.org/downloads

408 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 408

There is also one other line that is required and that should be placed at the

very beginning of the fi le:

#include "Arduino.h"

This imports the Arduino header fi le, giving you access to Arduino constants

and types. It is automatically included for your sketches, but for libraries, you

must manually add this include statement.

All that is left to do is to import your new library. From the Arduino IDE, go

to Sketch ➪ Import Library ➪ Add Library, as shown in Figure 26-1.

Figure 26-1: Import a library.

Select the folder that contains your library, and import it. If everything goes

well, the Arduino IDE should tell you that the import has fi nished. You can see

your library by navigating back to Sketch ➪ Import Library where you see a

new library listed, as shown in Figure 26-2.

Now that the library has been imported, it is time to test it. Create a new

sketch, and add your library by going to the menu Sketches ➪ Add Library ➪

theAnswerToEverything. This should add the following line:

#include <theAnswerToEverything.h>

 Chapter 26 ■ Creating Your Own Library 409

c26.indd 01:10:40:PM 12/09/2014 Page 409

Figure 26-2: A new library has been added.

With that in place, it is now time to use the function you created previously.

Add the following lines to setup(), calling the library’s function:

void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600);
 Serial.print("The answer is ");
 Serial.println(theAnswer());
}

Compile it to make sure that everything works well. Then upload it to your

Arduino, and have a look at the serial output. Congratulations! You have just

created your fi rst library.

410 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 410

Advanced Libraries

The previous example used only simple functions, but Arduino libraries are

capable of much, much more. You have seen how to initialize external hardware

with the Arduino, usually by specifying some hardware pins. For example,

when using the Servo library, the user must specify which pin is connected to

the servo. Afterward, functions are available to control the servo, but the user

does not have to tell the driver which pin to use. The reason is simple: the driver

has stored that data in memory, so the user does not need to specify it every

time. How? C++ classes.

C++ development is oriented around objects. What is an object? It can be many

things, but mainly, it is a collection of variables and functions, all rolled into a

C++ class. A class provides blueprints; it does not defi ne any data, but defi nes

data types. An object is then created by using the class blueprint.

Imagine a traffi c light. It has three lights: red, yellow, and green. Physically,

three lights are connected to a microcontroller, and the microcontroller issues

instructions to each output pin; turn on the red light, and turn off the yellow

light. The traffi c light is physically an object. If you make a second traffi c light,

it is a copy of the fi rst; it does exactly the same thing, has the same hardware,

and will be used for the same applications as the fi rst traffi c light, but it operates

independently of the fi rst. This is similar to the concept of a software object. In

software, an object is a structure in memory that contains the data and func-

tionality all wrapped up in one package. In this case, imagine an object called

trafficLight. It will have several functions to allow it to work and several

variables to help it keep track of its state. If you create a traffi c light and connect

it to an Arduino, you could create a trafficLight object. Connect a second one,

and you could create a second trafficLight object, and so on.

An object is defi ned by a C++ class. A class is a structure of code that contains

functions, variables, and a constructor. Here’s an example.

A traffi c light requires three pins to work: one to activate the red light, one

for the yellow, and one for the green. Under normal conditions, only one light

should ever be on at the same time. This is easy to accomplish, but it requires

you to do two things; turn off the previous light, and turn on the new light. This

is easy enough with one traffi c light, but with multiple lights, it would become

increasingly diffi cult to manage all the pins and variables to keep track of their

states. To make things easier, you could make an object.

To create an object, you need several things. First, you need a way to confi gure

the object; telling it which pins to use. Then, it requires at least three functions

for manipulating the lights. Naming them after the color they control can make

it more intuitive: red(), amber(), and green(). When creating this library, start

with the header fi le, and “describe” the object before building the different

parts. This is what the object in the header fi le TrafficLight.h might look like:

 Chapter 26 ■ Creating Your Own Library 411

c26.indd 01:10:40:PM 12/09/2014 Page 411

1 class TrafficLight
2 {
3 private:
4 int _redpin, _yellowpin, _greenpin;
5
6 public:
7 TrafficLight(int redpin, int yellowpin, int greenpin);
8 void begin();
9 void red();
10 void yellow();
11 void green();
12 };

First, the class TrafficLight is defi ned. This is the object that will be cre-

ated in your sketch. Next, it has two parts: one called public and one called

private. The public section is where you will place functions and variables

that will be visible to the sketch. This includes functions for controlling the

state of the lights that you (or someone else using your library) will call in the

main sketch. The private section contains functions and variables that are

not visible to the sketch, only to the object. You can see how this works in a

few paragraphs.

On line 7, there is an interesting function. It is called TrafficLight, the same

name as the class. It takes three parameters, does not return any data, and isn’t

even declared as void. This is known as the constructor, which is a function

that is automatically called when the object is created and is even called before

setup(). The constructor is vitally important because it initializes any variables

that need to be set up before the sketch has a chance to execute any functions.

Typically, constructors take parameters, in this case the pins that will be used.

There is another important requirement for header fi les. When a header

fi le is imported, the fi le is parsed, and the compiler knows what functions are

available. If the same fi le is imported again, it can lead to confusing results, and

compilers will complain. To make sure this does not happen, it is common to

wrap up the header fi le in a construct:

#ifndef TrafficLight_h
#define TrafficLight_h

// Include statements and code go here

#endif

This construct prevents problems if somebody includes the library twice.

In the sketch, the TrafficLight object would be created like this:

const int redNorthPin = 2;
const int yellowNorthPin = 3;

412 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 412

const int greenNorthPin = 4;
TrafficLight northLight = TrafficLight(redNorthPin, yellowNorthPin,
 greenNorthPin);

When this object is created, the constructor is called with the three variables.

Now it is time to write the constructor. This function would be included in

TrafficLight.cpp:

TrafficLight::TrafficLight(int redpin, int yellowpin, int greenpin)
{
 _redpin = redpin;
 _yellowpin = yellowpin;
 _greenpin = greenpin;
}

The function is extremely simple, but it does differ from functions

that have been previously written in this book. First, the function name:

TrafficLight::TrafficLight. The fi rst part, TrafficLight::, is the name of

the class that the function will belong to. The second part is the function name.

Because this is a constructor, it must have the exact same name as the class. It

takes three int variables. Inside the function, the parameters it was given are

stored in three variables: _red, _yellow, and _green. Where do they come from?

They were defi ned in the header fi le on line 4. Because they are in the private

section, they cannot be called from the sketch but are used inside this particular

class object. Let the user have access to the required functions, and keep the

rest hidden away. Imagine that you have two traffi c lights, a northbound light

and a southbound light. They are created like this:

TrafficLight northLight = TrafficLight(1, 2, 3);
TrafficLight southLight = TrafficLight(9, 8, 7);

Both have been created with different variables. When these objects were

created, each called the constructor independently. Their private variables are also

different: northLight’s _red variable contains the value 1, but southLight’s _red

contains the value 9. You can create many objects with the same functionality but

with different variables. This makes it possible to turn the northbound light red,

stopping all traffi c, while turning the southbound light green, allowing traffi c

to go straight, or to turn at a rather diffi cult junction, without any other traffi c.

On line 8 of the header fi le, there is another function, begin(). You have seen

functions with the same name throughout this book, which are used when a

device is ready to be used. The constructor set up only the variables; it did not

set any outputs, or even declare any pins as output. Typically, this is done in a

begin() function. The sketch might need those pins for something else before

using a traffi c light, so it is often good practice to wait until the begin() func-

tion is called. A begin() function might look like this:

 Chapter 26 ■ Creating Your Own Library 413

c26.indd 01:10:40:PM 12/09/2014 Page 413

Boolean TrafficLight::begin(void)
{
 // Set pins as outputs
 pinMode(_redpin, OUTPUT);
 pinMode(_yellowpin, OUTPUT);
 pinMode(_greenpin, OUTPUT);

 // Set Yellow and Green off
 digitalWrite(_yellowpin, LOW);
 digitalWrite(_greenpin, LOW);

 // Set Red on
 digitalWrite(_redpin, HIGH);

 return true;
}

The begin() function sets the traffi c light pins as outputs, and sets the yellow

and green lights to off. As a security, these traffi c lights will start with the red

light on, halting traffi c, adding a level of security before deciding which direc-

tion should be green. Next, you need to create functions to turn on individual

lights. When activating the green light, both the red and yellow light are to be

turned off. The greenLight() function might look like this:

void TrafficLight::greenLight(void)
{
 // Set Red and Yellow off
 digitalWrite(_redpin, LOW);
 digitalWrite(_yellowpin, LOW);

 // Set Green on
 digitalWrite(_greenpin, HIGH);
}

Adding Comments

Comments are a critical part of any code and are unfortunately often omitted.

They serve several purposes and are particularly useful in libraries.

Most comments are used inside code to explain the function of a portion of

code. Of course you know what the code does; you have spent an hour writing it,

and even more debugging it, and it has become perfect: elegant and functional.

Would co-workers understand what you have done? They might have come

up with another way and may be confused by your code if it isn’t explained a

little, no matter how elegant it is. Also, would you read your code 1 year from

now? You might have done dozens of different projects, and your coding style

414 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 414

might have changed since this project. Be nice to people; don’t hesitate to write

a comment if you think it could be helpful.

Ironically, one of the problems with comments is when there are too many

comments, or even useless comments. If a variable called inputPin is declared

as an int, there is no point writing a comment to say that it is an input pin and

that it is declared as an int.

Comments are not just about functionality but also about the project. Someone

reading the traffi c light header fi le may understand what the library does, but

there are several types of traffi c lights. Most of the time, two traffi c lights are

identical; if the northbound light is green, then the southbound light is too,

allowing traffi c to fl ow in both directions. This isn’t the case for this library; the

advantage is that you can control both lights independently, but the disadvantage

is that it generates more work. Tell the user that!

/***
This library is used to control a single traffic light,
it does not allow you to create pairs, instead, you have
full control over the way you want the traffic light to
behave.
It requires three pins per traffic light

Written by an Arduino Sketches reader
BSD license, all text above must be included in any redistribution
***/
class TrafficLight
{
 private:
 uint8_t _redpin, _amberpin, _greenpin;

 public:
 TrafficLight(uint8_t redpin, uint8_t amberpin, uint8_t greenpin);
 void begin();
 void red();
 void amber();
 void green();
};

It is now clear what the library is used for. Also, you get to add your name

to a project to let people know who did this amazing library, which allows you

to set a license. All the code available in this book has the BSD license—either

code written by myself or by other parties. The BSD license makes the code

free to use, but without any guarantee. It is free to redistribute, but the original

license must remain. It allows code to be used in part or in whole in any software

project, free or commercial. Remember that the Arduino project is open source;

be nice and give back to the community when possible.

 Chapter 26 ■ Creating Your Own Library 415

c26.indd 01:10:40:PM 12/09/2014 Page 415

Adding Examples

Now that you have read through this example and added functions to turn on

the different lights, it is time to move on. Before distributing your library, your

users need to know how the library works. You can spend time writing docu-

mentation, but the easiest way to show people how a library works is to create

an example program. From there, they can upload the example to an Arduino,

modify the code to see how it works, and then copy/paste parts of the example

into their own projects.

An example program is simply a sketch that uses your library. Again, make

sure to comment your code to make it readable, and explain what is being done.

Don’t use a variable that hasn’t been explained.

To add an example, fi rst, write a sketch that uses the library. Next, go to

the folder that you are creating for your library. Inside this folder, create a

folder, “examples”. This is where the examples will be placed. Inside that folder,

create another folder, the name of the example you want to create. Some libraries

might require several examples. (Remember, the Ethernet library in Chapter 9

has multiple examples for servers and clients.) Now, paste your sketch inside

this folder, keeping the same name as the folder but with the extension .ino (for

Arduino sketch). Alternately, you can use the Arduino IDE to create the fi les

and save them to disk directly. When the folder is imported, the Arduino IDE

automatically adds any examples it fi nds into the Examples menu. For example,

Figure 26-3 shows my Traffi cLight library folder with two example sketches.

Figure 26-3: Traffic lights folder layout

Read Me

Most projects contain a README fi le—a text fi le that contains information about

fi les in a folder. Historically, they were used to describe the contents of a folder,

and were sometimes called README.1ST to inform the user that the contents

should be read fi rst. The README fi le should contain information about the

project, the functionality that the library adds, what the user needs to make it

416 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 416

work, and the examples included. This gives the user a good idea about what

your library does without having to look at the source code.

Coding Style

To make it easier to both use and to distribute libraries, certain coding styles

should be followed. These general rules make everything simpler and to make

sure that everyone has a great time when programming Arduino. You can

fi nd the offi cial API style guide here at http://arduino.cc/en/Reference/

APIStyleGuide.

Use CamelCase

Sooner or later, you will need to write a function that is two or three words

long. To put several words into a single compound phrase, there are several

techniques possible. Programming languages are full of examples; using under-

scores results in functions like this_function(), and some languages even

went as far as to put the fi rst word in uppercase and the second in lowercase,

but THESEfunctions() isn’t easy to read.

The Arduino style uses CamelCase: each word starts with a capital with the

exception of the fi rst letter. Functions are easier to read that way; functions such

as readFile() or openImage() are immediately clear and remain perfectly read-

able. CamelCase is even used for multiple everyday objects; the fi rst known use

of CamelCase is in a 1950s technology called CinemaScope. Some readers might

be reading this book on an eReader, another example of CamelCase.

CamelCase does have one disadvantage; it can be diffi cult to read functions

that contain several uppercase letters: ReadID()for example. Of course, the

function can read an ID, but functions such as GetTCPIPSocketID() become

complicated. Should you write GetTCPIPSocketID() or GetTcpIpSocketId()?

Generally, you should avoid abbreviations, but when they are inevitable, it is

often better to write them as capitals.

Use English Words

Don’t shorten words for your functions. If you can’t explain it in three words,

look for another way. Always use complete words: deleteFile() is always clearer

than delFile(), and oFile() doesn’t mean anything, where openFile() does.

Again, it is better to avoid abbreviations because only some abbreviations are

clear to most people. You have probably heard of HTML, and writing “Hyper

Text Markup Language” is going to make some ridiculously long function

names. You can fi nd a perfect example in the Arduino libraries; they don’t talk

about PWM, they called the function analogWrite().

http://arduino.cc/en/Reference

 Chapter 26 ■ Creating Your Own Library 417

c26.indd 01:10:40:PM 12/09/2014 Page 417

Don’t Use External Libraries

If you are writing a library, make sure that it uses only the Arduino standard

libraries, or if absolutely necessary, board-specifi c libraries. If you have a great

idea for a function, but one that can run only on an Arduino Esplora, then you

can use the Esplora libraries. However, if it can be used on any Arduino, it would

be a shame to limit it to one device. Similarly, don’t rely on third-party external

libraries; you are creating an external library, and users might not want to use

your library if it depends on another one. Importing several libraries makes

the code bigger.

Use Standard Names

Most hardware-related drivers use a begin() function in their code. Don’t try

to fi nd synonyms; keep the same names as other functions. For example, if

obtaining data, always use read: readInput()or readStatus(). When output-

ting, use write: writeData().

Distributing Your Library

When the coding is complete and the testing has been done, it is time to

distribute your library. You can create a Zip fi le of your library and post it on

your homepage (or the page you use to sell your hardware). This makes the

library available to buyers (or visitors to your site) but does not increase visibility.

To make your library as visible as possible, consider putting it on one of the

many sites designed specifi cally for source code, such as Sourceforge, GitHub,

or Google Code. There are dozens of sites available for free, so long as your

project is open source. This also automatically adds your library to search

engines and allows users to help add new features, be alerted to updates, and

make comments and requests.

Closed Source Libraries

A closed source library is one where you distribute binary code, and users are

not allowed to see the source code. They cannot see the work you have done and

therefore cannot modify the library. This also adds the possibility of request-

ing payment for use of your library, but it goes against everything the Arduino

project is trying to do and is also technically extremely diffi cult to achieve.

Compilers and linkers take source code and transform it into machine code,

code that can be executed on a microcontroller or processor. This is generally

the format in which closed source libraries are distributed. The problem is that

binary fi les are created for one specifi c processor and cannot be used on another.

A program compiled for an AVR cannot be run on an ARM-based device such

418 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 418

as the Arduino Due or an Intel-based device such as the Galileo. It has to be

recompiled. Even worse, not all AVRs are the same; there are differences in

models that make binary code imports impossible. In short, releasing a binary-

only library makes that library usable on a single Arduino model.

Example Library

In Chapter 25, you created a shield for Arduino based on the PCF8574AP. Now

it is time to write a library to use this device. If you haven’t created your shield

yet, or if you haven’t received it, don’t worry; you can still use the breadboard

version presented in that chapter, which works in exactly the same way.

The Library

The I2C expander shield contains two PCF8574AP chips, both of which have

confi gurable addresses. Therefore, you must select two addresses to use for

your devices. You can choose which device will be the fi rst selected—either

chip 0 or chip 1 depending on the application. This will be handled in the con-

structor. The two addresses must be stored inside the class for the rest of the

application to work. To do this, they will be saved as two 8-bit variables called

_chip0Address and _chip1Address. Part of the job of the expander shield is to

provide extra outputs: two banks of 8 pins. To make this easier to the user, the

library should be designed to allow three different write operations: bit by bit,

8-bit writes, or 16-bit writes. The Arduino naming convention states that these

operations should be called write, and the functions will be called writeBit(),

writeByte(), and writeWord(). To write a bit, two values are required: the bit

to write and its position. The bit will be a boolean, and the position will be an

8-bit value. To write a byte, again, two values are required: the byte to write

and which device to use. The byte will be coded as a byte (naturally), and the

device will be a Bool: 0 for device 0 and 1 for device 1. To write a 16-bit word,

only one parameter is required, the word itself. All three functions should return

a boolean: true if the operation succeeded and false otherwise.

The other part of the expander’s job is to read data. Three functions need

to be created to read data. The Arduino naming convention states that they

should be called read: readBit(), readByte(), and readWord(). The readBit()

function should require one parameter, the bit to read, and output a boolean.

The readByte() function requires one parameter, the chip ID, as a boolean,

and returns a byte. The readWord() function does not require any parameters

and returns a word.

Since these devices are I2C devices, they will also require the Wire library.

There is one thing that should be taken into account. The user might want to

write a bit of data to one of the chips, but how do you do that without affecting

the other bits? Well, as far as the chip is concerned, you can’t. You can write only

 Chapter 26 ■ Creating Your Own Library 419

c26.indd 01:10:40:PM 12/09/2014 Page 419

8 bits of data at a time, the entire output of the chip. To achieve this, two more

variables will be needed; _chip0Output and _chip1Output will both contain

8-bits of data, the data that will be sent to the chip. The user does not need to

worry about how a bit of data is sent, or even be aware that the library cannot

send a single bit, which is one of the reasons why libraries are so powerful.

The library takes care of the details, letting the user concentrate on the sketch.

Finally, a begin() function will be written. This function will initialize the

chip to a power-on state and will be called when the user is ready.

By simply thinking about what the user would need the shield to do, you’ll

have a good idea of what the header fi le should contain. It will look something

like this (fi lename: PCF8574AP.h):

#include "Arduino.h"

class PCF8574AP
{
 private:
 int _chip0Address;
 int _chip1Address;

 int_chip0Output;
 int _chip1Output;

 public:
 PCF8574AP(int chip1, int chip2);
 void begin();

 bool writeBit(bool bit, int pos);
 bool writeByte(int data, bool chipSelect);
 bool writeWord(int data);

 bool readBit(int pos);
 int readByte(bool chipSelect);
 int readWord();

};

Now that the structure is created, it is time to work on the C++ fi le, called

PCF8754AP.cpp. First, add references to the libraries it depends on—Arduino.h

and Wire.h—as well as the library header, followed by the constructor:

#include "Arduino.h"
#include "Wire.h"
#include "PCF8574AP.h"

PCF8574AP::PCF8574AP(uint8_t chip0, uint8_t chip1)
{
 _chip0Address = chip0;
 _chip1Address = chip1;
}

420 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 420

And that’s it. All that needs to be done is to copy the values sent as param-

eters into private variables. Confi guration of the chip is done in begin() and

will look like this:

void PCF8574AP::begin()
{
 Wire.begin();

 // Set all pins of chip 0 to HIGH
 _chip0Output = 0xFF;
 Wire.beginTransmission(_chip0Address);
 Wire.write(_chip0Output);
 Wire.endTransmission();

 // Do the same for chip 1
 _chip1Output = 0xFF;
 Wire.beginTransmission(_chip1Address);
 Wire.write(_chip1Output);
 Wire.endTransmission();
}

The function begins by calling Wire.begin(). Why does it do that? Although

the device requires the Wire library for communication, the user doesn’t need

to know exactly how the shield is connected. It’s up to this function to initialize

the I2C library and start communication with the chips. Next, the function then

sets both output variables to 0xFF (or, in binary, 1111 1111). It then proceeds to

write that value to each of the two chips. When the chips fi rst power on, this is

their default state. So why does this function do that, if this is what is expected?

There is no guarantee that the device was powered on; it might just have been

reset, or the device is in an unstable state. This makes sure that the device is in

a known confi guration before continuing.

Now to read data. The easiest function to accomplish is readByte(). It simply

reads the 8 bits of the chip and returns that data.

uint8_t PCF8574AP::readByte(bool chipSelect)
{
 byte _data = 0;

 if(chipSelect == 1)
 Wire.requestFrom(_chip1Address, 1);
 else
 Wire.requestFrom(_chip0Address, 1);

 if(Wire.available())
 {
 _data = Wire.read();
 }

 Chapter 26 ■ Creating Your Own Library 421

c26.indd 01:10:40:PM 12/09/2014 Page 421

 return(_data);
}

This function requests 1 byte of data from either chip, depending on the

value of chipSelect. If data is present in the I2C buffer, that data is copied into

the local variable _data and then returned. If no data is available, the function

returns zero.

Reading words is just like reading bytes, only 2 bytes are read. This func-

tion obtains a byte of data from both chips, merges them into a word, and then

returns that data. This is accomplished with the following:

uint16_t PCF8574AP::readWord(void)
{
 byte _data0 = 0;
 byte _data1 = 0;

 Wire.requestFrom(_chip0Address, 1);
 if(Wire.available())
 {
 _data0 = Wire.read();
 }

 Wire.requestFrom(_chip1Address, 1);
 if(Wire.available())
 {
 _data1 = Wire.read();
 }

 return(word(_data1, _data0));
}

Things become slightly more complex when reading a specifi c bit, requiring

bitwise operations:

bool PCF8574AP::readBit(uint8_t pos)
{
 byte _data = 0;

 // Is the bit requested out of range?
 if (pos > 15)
 return 0;

 if (pos < 8)
 Wire.requestFrom(_chip0Address, 1);
 else
 {
 Wire.requestFrom(_chip1Address, 1);
 pos -= 8;

422 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 422

 }
 if(Wire.available())
 {
 _data = Wire.read();
 }

 return(bitRead(_data, pos));
}

The function reads in data from one of the chips with Wire.requestFrom(),

depending on the bit position. If the requested bit is between 0 and 7, the request

is sent to chip 0; otherwise it is sent to chip 1. Then, the Arduino function

bitRead() is called, extracting the bit that was requested and returning it as a

boolean value.

All the read functions have been completed, but it isn’t over yet. The write

functions need to be written. Writing a byte is straightforward:

bool PCF8574AP::writeByte(uint8_t data, bool chipSelect)
{
 if (chipSelect == 0)
 {
 Wire.beginTransmission(_chip0Address);
 _chip0Output = data;
 Wire.write(_chip0Output);
 }
 else if (chipSelect == 1)
 {
 Wire.beginTransmission(_chip1Address);
 _chip1Output = data;
 Wire.write(_chip1Output);
 }
 else
 {
 return false;
 }
 Wire.endTransmission();

 return true;
}

As with readByte(), writeByte() selects only one chip. If chipSelect is 0,

an I2C transmission begins at chip 0. data is copied to _chip0Output, and its

contents are sent to the device. If chip 1 is selected, the same operation occurs,

but for chip 1. Finally, the data is sent, and the function returns true.

Writing a word is similar:

bool PCF8574AP::writeWord(uint16_t data)
{
 Wire.beginTransmission(_chip0Address);
 _chip0Output = ((uint8_t) ((data) & 0xff));

 Chapter 26 ■ Creating Your Own Library 423

c26.indd 01:10:40:PM 12/09/2014 Page 423

 Wire.write(_chip0Output);
 Wire.endTransmission();

 delay(5);

 Wire.beginTransmission(_chip1Address);
 _chip1Output = ((uint8_t) ((data) >> 8));
 Wire.write(_chip1Output);
 Wire.endTransmission();

 return true;
}

By now you should be accustomed to using both chips. The logic behind

this is that both variables are updated, and both chips are updated with those

variables. The trick comes in separating a word into 2 bytes; this is done with

masks and shifts. The fi rst conversion transforms a word into a byte, by omit-

ting the fi rst 8 bits using a mask. The second conversion does the same; only it

shifts the fi rst 8 bits to the right, essentially pushing the fi rst 8 bits to the place

of the second 8 bits, and then masking.

The last function that you need is writing individual bits:

bool PCF8574AP::writeBit(bool bit, uint8_t pos)
{
 // Is the bit requested out of range?
 if (pos > 15)
 return false;

 if (pos < 8)
 {
 //Chip 0
 if (bit == true)
 {
 bitSet(_chip0Output, pos);
 }
 else
 {
 bitClear(_chip0Output, pos);
 }
 Wire.beginTransmission(_chip0Address);
 Wire.write(_chip0Output);
 Wire.endTransmission();
 }
 else
 {
 //Chip 1
 if (bit == true)
 {
 bitSet(_chip1Output, pos - 8);
 }

424 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 424

 else
 {
 bitClear(_chip1Output, pos - 8);
 }
 Wire.beginTransmission(_chip1Address);
 Wire.write(_chip1Output);
 Wire.endTransmission();
 }

 return true;
}

Because the PCF8574AP can’t actually read what it is outputting, when the

user wants to modify a single bit, the function needs to know what the data is

on the bus and then modify it. This is why it was necessary to save the output

as a variable. This is the benefi t of using a library, hiding a detail that end users

don’t need to know. Users can just see that they can modify a bit with a single

instruction.

Examples

It doesn’t matter how clear function names are; libraries are always better with

examples. Example sketches also serve another purpose—to test the hardware.

One of the best ways to test if the hardware is correctly set up is to open up an

example and see it run. Even if the shield it drives is basic, users will still use

example sketches as a basis for their own. Put simply: Example sketches need

to clearly demonstrate the functionality of the library.

This library has two examples: one for writing outputs and the other for reading.

Of course, the shield can do both at the same time, so comments need to be put

in place to tell the user that. Also, critically important, the PCF8574AP can read

inputs correctly only if the output is set to high; this needs to be clearly explained

in a comment.

First, for the example to write outputs, you must think about what the user

needs. Of course, he needs to understand the library. He will also need to set

up an example. LCD screen examples are easy to set up; if you are using an

LCD library, you probably already have the LCD screen. This case is different.

Nothing on this particular shield is visible to the user; there are no LEDs, no

LCD screens, nothing that can tell the user what is going on. To see what the

shield can do, a user will have to add his own components. What should you use?

Nothing too fancy. An awesome example would be to use an 8x8 LED matrix,

but not everyone will have that. Don’t use specifi c hardware in examples; use

tools that are readily available. The cheapest, most readily available, and most

robust component available to makers is the trusty LED; almost everyone has a

 Chapter 26 ■ Creating Your Own Library 425

c26.indd 01:10:40:PM 12/09/2014 Page 425

few LEDs on their desk with the corresponding resistors. They might not have

16, so this example uses only one output, with 8 LEDs.

#include <Wire.h>
#include <PCF8574AP.h>

// Define the addresses of both chips on the expander board
#define EXPANDER_CHIP0 B0111000
#define EXPANDER_CHIP1 B0111001

// You must provide two I2C addresses, one for each chip on the shield
PCF8574AP expanderShield = PCF8574AP(EXPANDER_CHIP0, EXPANDER_CHIP1);

byte output;

void setup()
{
 Serial.begin(9600);
 expanderShield.begin(); // Start the expander shield, set all outputs
 to 1
}

void loop()
{
 // Write a 16-bit word to the expander shield, all ones
 expanderShield.writeWord(0xFFFF);
 delay(1000);

 // Time to begin the light show
 // Make the lights go towards the center by writing bytes
 expanderShield.writeByte(B01111110, 0);
 delay(1000);
 expanderShield.writeByte(B00111100, 0);
 delay(1000);
 expanderShield.writeByte(B00011000, 0);
 delay(1000);
 expanderShield.writeByte(B00000000, 0);
 delay(1000);

 // Now make the lights go towards the edges by writing individual bits
 // Bits can be set by writing a 1 or a 0 to a specific location: bits
 0 to 15
 expanderShield.writeBit(1, 0); // Write a logical 1 to bit 0 of the
 expander shield
 expanderShield.writeBit(1, 7); // Write a logical 1 to bit 7 of the
 expander shield
 delay(1000);
 expanderShield.writeBit(1, 1);

426 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 426

 expanderShield.writeBit(1, 6);
 delay(1000);
 expanderShield.writeBit(1, 2);
 expanderShield.writeBit(1, 5);
 delay(1000);
 expanderShield.writeBit(1, 3);
 expanderShield.writeBit(1, 4);
 delay(1000);

 // turn off all the lights
 expanderShield.writeByte(0, 0);
 delay(1000);

 // Create a light display by shifting a bit from one side to the
 other, increasing speed
 for(int i = 0; i < 20; i++)
 {
 output = 1;
 for(int j = 0; j < 8; j++)
 {
 // Write a byte to device 0 (the first I2C extender)
 expanderShield.writeByte(output, 0);
 delay(600 - (i * 30));
 output = output << 1;
 }
 }
}

This example shows the user how to use the PCF8574AP I/O expander shield,

and the very fi rst thing it does is to include that library. To be able to use that

library, the user must provide two pieces of information: the address for each

component. To make this clear, the addresses are included as defi ne statements

on lines 5 and 6.

On line 9, the PCF8574AP object is created, called expanderShield. By using

the defi ned addresses, the code becomes more readable, and the user understands

what is required to get started. On line 13, the setup() function is declared, as

with any sketch. Inside, the serial connection is confi gured and expanderShield

is initialized with a begin() function.

The loop() function is declared on line 20, and this is where the example code

will be placed. To show how the library can write words (or 16-bit numbers),

the example uses the writeWord() function. This sets all the outputs to HIGH,

turning the LEDs off.

Next, the user is presented with an example on how to use writeByte().

A series of four commands are run, each time setting more and more outputs to 0.

The effect of this is to turn on the LEDs from the edge towards the center.

The next series of instructions demonstrates how to write individual bits

using the writeBit() function. Once again, a visual effect is created, this time

turning the LEDs off from the edge towards the center.

 Chapter 26 ■ Creating Your Own Library 427

c26.indd 01:10:40:PM 12/09/2014 Page 427

Finally, to make the example even more visually appealing, a fi nal phase is

used. By using two for loops and using one value for the output and another

value for the delay between operations, the result is a racing light going from

one side of the LEDs to the other, going ever faster and faster.

Multiple comments have been placed in the fi le to explain to the user what

the sketch is doing. So long as LEDs are connected to the board (cathodes con-

nected to the pins) the user will be presented with a nice light show.

README

Every project should have a README fi le, a simple text fi le that describes the

project. When you look at a project on GitHub, the text you see on the project

page comes directly from the README fi le in the project. Here is mine:

/***
ArduinoSketches Expander Shield Driver

This library is used to control the two PCF8754APs
present on the expander shield. They can perform both
reads and writes, but to perform a read, the output
on that pin must be high.

This library accesses those devices through bit-wise,
byte-wise or word-wise reads and writes.

Written by James A. Langbridge, enhanced by a reader of
Arduino Sketches.

Released under BSD license

To run the examples in this library, you will require
at least 8 LED lights, and corresponding resistors
(for red LEDs, use 150 ohm resistors). The anode should
be connected to the resistor and power supply, and the
cathode should be connected to the input/output of the
shield.
***/

The fi rst line tells the user what this library is for: the Arduino Sketches

expander shield. It contains a little more detail on the project, what it does, how

it achieves that, who originally wrote it, and the license the project is distributed

under. I wrote the original library, but you will continue the project. This library

is distributed under the BSD library; use it in any way you see fi t.

Secondly, the fi le also includes the list of components required to run the

examples, if required. For this example, the user requires 8 LEDs, and the

corresponding resistors.

428 Part Iv ■ User Libraries and Shields

c26.indd 01:10:40:PM 12/09/2014 Page 428

Finishing Touches

As usual, the source code here is functional but could do with a little bit of

tweaking. Remember those write functions that tell if the information was

written correctly? They all return true for the time being, but you can enhance

that by looking at the amount of bytes written to the I2C bus. Use that data to

give a more accurate response.

One thing is missing from this library: to perform a read, the user must fi rst

make the output high. What would happen if that weren’t done? The reading

would not be accurate. You could add this to the read functions; because the

outputs are known through a global variable, make sure that the output is high

before reading.

You have your shield, and you have your library, hopefully with your name

on both. Make this your project, and be creative with the applications you come

up with. Don’t forget to tell me all about your projects!

Summa ry

In this chapter you have seen how to create your own library, and how to make

it easy to use by other users, by creating examples and other fi les. You have seen

the importance of writing clear comments, how users will read your library,

as well as the importance of naming your functions. Now you have a working

library, ready to use with your own shield. All that is left to do is to imagine

new applicatio ns!

429

bindex.indd 01:2:52:PM 12/09/2014 Page 429

Index

*/ (comments), 33

/* (comments), 33

3G, 274

4G, 275

A

abs() function, 73

AC (alternating current), 46

voltage and, 47

Adafruit Si1145 library, 384–388

ADC (Analog to Digital Converter),

67–68, 295

addresses

IP addresses, 153

MAC address, 153

retrieving, 176

ad-hoc mode for wireless, 171

advanced libraries, 410–413

amperage, 47, 48

analog I/O, 67–68

analogRead() function, 68

analogWrite() function, 68

microcontrollers and, 67–68

analog systems, 5

analogRead() function, 68, 353

analogWrite() function, 59–60, 68

archives versus installers, 27

Arduino

capabilities, 22–23

counterfeits, 9

as Ethernet client, 157–158

fetching example program, 161–162

sending/receiving data, 158–161

as Ethernet server, 163–165

sketch example program, 165–167

open source, 20

as Open Source Hardware project, 7

original, 9

software download, 27–28

Arduino board, original, 7

Arduino Due, 13–14, 37

SPI on, 123–125

USB and, 325–237

Arduino Esplora, 18

TFT, 229

Arduino Ethernet, 11

Arduino Ethernet Shield, 21

Arduino GSM Shield, 22

Arduino language, I/O functions,

digital I/O, 65–67

Arduino Leonardo, 10–11

Arduino Mega 2560, 11–12

Arduino Micro, 13

Arduino Mini, 13

bindex.indd 01:2:52:PM 12/09/2014 Page 430

430 Index ■ A–B

Arduino Motor Shield, 21

Arduino Playground, 29

Arduino Pro, 16

Arduino project, 7–8

Arduino Robot, 16–17, 348–349

Arduino Tre, 19

Arduino Uno, 10

voltage regulator, 47

Arduino WiFi Shield, 22

Arduino Wireless SD Shield, 21

Arduino Yún, 18–19

Arduino Zero, 19

ARM technology, 6

array data type, 37

ASCII, keyboards, 324

ATmega series, 8

Atmel (Advanced Technology for

Memory and Logic), 5

megaAVR, 8

microcontrollers for Arduino, 7

Atmel 8-bit AVR, 7

Atmel AVR, 5–7

attach() function, 264–265

attached() function, 245

attachGPRS() function, 283

attachInterrupt()

function, 77–78

ATtiny series, 8–9

audio, 292

ADC (Analog to Digital

Converter), 295

DAC (Digital to Analog

Converters), 294, 295

digital

creating, 296

playing, 296–297

sound fi les, 292–294

storage, 296

effective sampling rate, 293

frequencies, 293

waves, 292–293

audio tones

noTone() function, 69

tone() function, 69

autoscroll() function, 198

available() function, 91–92

B

BASIC Stamp, 7

baud rate, 83–84

begin() function, 91, 94,

155, 174–175

beginSD() function, 354–355

beginSpeaker() function, 356–357

beginTFT() function, 354–355

bipolar stepper motors, 255–256

bits

reading, EEPROM library, 105–107

writing, EEPROM library, 105–107

Blink, 29–33

blink() function, 197

Blum, Jeremy, Exploring
Arduino, 26

boolean data type, 36

bootloaders, 33

breadboards, 23, 56

connection points, 57

Fritzing, 396

shields, 395–398

solderless, 57

strips, 57

break statement, 40

breakdown voltage, 54

Bridge library, 361–364

example application, 369–373

FileIO library, 366–367

Process class, 364–366

YunClient, 368

YunServer class, 367–368

bus speed, I2C protocol, 147–148

buttons, Esplora library, 339–340

buzzer, Esplora library, 340–341

byte data type, 37

bytes

reading, 92

EEPROM library, 104–105

multiple, 92–93

writing, EEPROM library, 104–105

 Index ■ C–D 431

bindex.indd 01:2:52:PM 12/09/2014 Page 431

C

C++ classes, 383, 410

cabling, Ethernet, 151

callbacks, 141

Firmata library, 264–266

capacitors, 53–54

decoupling, 54

farad, 54

CD drives, 209

channels, Wi-Fi, 172

char data type, 36

circle() function, 231–232

circuits (electrical), 46

classes

C++, 383, 410

SoftwareSerial, 99

clear() function, 196

clearScreen() function, 355

closed source libraries, 417–418

CodeBlocks, 29

coding styles, 416–417

color, TFT library, 232

comments, 30, 33

libraries, 413–414

config() function, 178

connect() function, 157–158

connection points, breadboards, 57

connectServer() function, 86

constrain() function, 73

constructors, 411

control board (Robot library)

controls, 350–351

LCD screen, 354–356

music, 356–357

robot personalization, 353–354

sensor reading, 351–353

control structures, 38–41

cooperative multitasking, 309–311

cos() function, 76

CPOL (Clock Polarity), 123

createChar() function, 199

Creative Commons Attribution

Share-Alike license, 29

CRT (cathode ray tubes), 226–227

cruise ship analogy for analog

I/O, 67

CS (Chip Select), 118

cursor, LiquidCrystal library, 196–197

D

DAC (Digital to Analog Converters),

294, 295

data

available() function, 91–92

reading

begin() function, 94

bytes, 92–93

end() function, 94

parsing data, 93–94

peek() function, 93

starting communications, 91

sending, 90

data bits, 85

data encapsulation, 85

data types

array, 37

boolean, 36

byte, 37

char, 36

double, 37

float, 37

int, 37

long, 37

short, 37

String, 37

string, 37

unsigned char, 36

unsigned int, 37

unsigned long, 37

void, 36

word, 37

datalogging shields, 213–214

DC (direct current), 46

voltage and, 47

DDR, 101–102

debugging, output and, 86–87

debugPrint() function, 355

bindex.indd 01:2:52:PM 12/09/2014 Page 432

432 Index ■ D–E

declaring functions, 407–408

declaring variables, 34

decoupling capacitors, 54

delay() function, 70–71

delay function, 35

delayMicroseconds()

function, 71

detach() function, 245

detachInterrupt() function, 78

DHCP leases, renewing, 156–157

DHT11, 179–189

digital audio

creating, 296

example program, 298–303

playing, 296–297

sketch, 300–303

storing, 296

digital I/O

digitalRead() function, 66–67

digitalWrite() function, 67

INPUT pins, 66

INPUT_PULLUP pins, 66

OUTPUT pins, 66

pinMode() function, 66

voltage and, 65

digital sound fi les, 292–294

digitalRead() function,

66–67, 353

digitalWrite() function,

67, 308, 353

diodes, 54–55

laser, 55

LEDs (light-emitting diodes), 55–56

Schottky diodes, 55

Tunnel diodes, 55

Zener diodes, 54–55

DIP (Dual In-Line Package) chips, 57

disconnect() function, 177–178

displayLogos() function, 355

DMA (Direct Memory Access), 5

DNS (Domain Name Service), 153

double data type, 37

downloads, Arduino software, 27–28

DRAM (Dynamic RAM), 102

drawBMP() function, 355

drawCompass() function, 355

Dual Scan (DSTN), 227

E

Eclipse, 29

EDGE (Enhanced Data rates

for GSM Evolution), 274

editor, 28

EEPROM (Electronically Erasable

Programmable Read-Only

Memory), 5, 103

Arduinos and, 103–104

example program, 110–113

library, 104

reading bits, 105–107

reading bytes, 104–105

reading strings, 107–108

values, reading/writing, 108–110

writing bits, 105–107

writing bytes, 104–105

writing strings, 107–108

nonvolatile memory, 114

storage, preparation, 113–114

effective sampling rate, audio, 293

EIA (Electronic Industries

Association), 50

electricity, 46

amperage, 47, 48

circuits, 46

Ohm’s law, 49

resistance, 47, 48

voltage, 47–48

electronic components, 23, 49–50

breadboards, 56–57

capacitors, 53–54

diodes, 54–55

LEDs, 55–56

inputs, 57–58

outputs, 57–58

resistors

usage, 52–53

values, 50–52

bindex.indd 01:2:52:PM 12/09/2014 Page 433

 Index ■ E–F 433

tolerance, 47

transistors, 56

electronics, 45–46

electricity and, 46

embedded systems, debugging

and, 86–87

encapsulation, 85

encryption

types, 177

WEP, 173

Wi-Fi, 172–173

WPA2, 173

end() function, 94

EPROM (Electrically Programmable

Read Only Memory), 102

chip reprogramming, 102

Esplora, 336–337

Esplora library

buttons, 339–340

buzzer, 340–341

example program, 342–344

LCD module, 342

RGB LED, 337–338

sensors, 338–339

TinkerKit, 341–342

Ethernet

Arduino as client, 157–158

fetching example program,

161–162

sending/receiving data, 158–161

Arduino as server, 163–165

sketch example program, 165–167

cables, 151

hubs, 151–152

library

importing, 154–155

starting, 155–157

overview, 150–151

PoE, 152

switches, 151–152

EthernetClient object, 157–158

examples, libraries, 415

Exploring Arduino (Blum), 26

external libraries, 381–383

F

farad, 54

FAT (File Allocation Table), 213

fetching, example program, 161–162

FileIO library, 366–367

fi les

digital sound fi les, 292–294

SD library

closing, 216–217

opening, 216–217

reading, 217–218

writing, 217–218

source fi les, 25

fi lesystem, SD cards, 212

Firmata, 262

Firmata library, 262

callbacks, 264–266

messages

receiving, 263–264

sending, 263

Firmata protocol

example program, 268–269

SysEx, 266–267

Flash memory, 210–211

Arduinos and, 103

float data type, 37

fl oppy disks, 208–209

folders, SD library, 218–219

for loop, 41

frequencies, audio, 293

Fritzing, 22

breadboards, 396

schematics, 398–402

functions, 34, 42

abs(), 73

analogRead(), 68, 353

analogWrite(), 59–60, 68

attach(), 264–265

attached(), 245

attachGPRS(), 283

attachInterrupt(), 77–78

autoscroll(), 198

available(), 91–92

begin(), 91, 94, 155, 174–175

bindex.indd 01:2:52:PM 12/09/2014 Page 434

434 Index ■ F

beginSD(), 354–355

beginSpeaker(), 356–357

beginTFT(), 354–355

blink(), 197

circle(), 231–232

clear(), 196

clearScreen(), 355

config(), 178

connect(), 157–158

connectServer(), 86

constrain(), 73

cos(), 76

createChar(), 199

debugPrint(), 355

declarations, 407–408

delay, 35

delay(), 70–71

delayMicroseconds(), 71

detach(), 245

detachInterrupt(), 78

digitalRead(), 66–67, 353

digitalWrite(), 67, 308, 353

disconnect(), 177–178

displayLogos(), 355

drawBMP(), 355

drawCompass(), 355

end(), 94

getKey(), 328

getModifiers(), 328–329

getTimeStamp(), 372

getVoiceCallStatus(), 281–282

getXChange(), 329–330

getYChange(), 329–330

hangCall(), 282

interrupts(), 78

isDirectory(), 219

keyboardRead(), 352

loop(), 35, 130, 164

maintain(), 156–157

map(), 73–74

max(), 72–73

micros(), 71–72

millis(), 71

min(), 72

motorsStop(), 351

noAutoscroll(), 198

noBlink(), 197

noCursor(), 197

noInterrupts(), 78

noTone(), 69, 341

parameters, 34

parseFloat(), 94

parseInt(), 94

peek(), 93

pinMode(), 34, 66

playfile(), 302–303

pointTo(), 351

pow(), 74

print(), 88–90, 158, 195–196

println, 90

println(), 158

processInput(), 264

pulseIn(), 70

random(), 74–75

read(), 104–105, 216–217

readAccelerometer(), 339

readButton(), 340

readBytes(), 92–93

readIR(), 383

readProx(), 383

readSlider(), 338–339

readTemperature(), 338–339

readUV(), 383

readVisible(), 383

receiveData(), 144

robotNameRead(), 353–354

robotNameWrite(), 353–354

RSSI(), 177

scanNetworks(), 176–177

SD.begin(), 215–216

sendAnalog(), 263

sendData(), 144

sendDigitalPort(), 263

sendEmail(), 189–190

setBitOrder(), 122

setClockDivider(), 122, 123

setDataMode(), 122

setup(), 35

bindex.indd 01:2:52:PM 12/09/2014 Page 435

 Index ■ F–I 435

sin(), 76

sqrt(), 74

SSID(), 177

stop(), 158

stringCallback(), 265

tan(), 76

tone(), 69, 295, 340–341

updateIR(), 352

userNameWrite(), 354

Wire.available(), 142

Wire.beginTransmission(), 146

Wire.endTransmission(), 146

Wire.onReceive(), 141–142

Wire.onRequest(), 142

Wire.read(), 142

Wire.requestFrom(), 146

write(), 90, 104–105,

196, 199, 218

WriteBlue(), 338

WriteGreen(), 338

WriteRed(), 338

writeRGB(), 337–338

G

getKey() function, 328

getModifiers() function, 328–329

getTimeStamp() function, 372

getVoiceCallStatus()

function, 281–282

getXChange() function, 329–330

getYChange() function, 329–330

GitHub, 379

GPRS (General Packet Radio

Service), 274, 282–284

graphics, TFT library, 231–233

GSM, 272

Arduino and, 276

EDGE, 274

GPRS, 274

mobile data network, 272–273

GSM class, 278–279

GSM library, 276–278

example application, 285–288

GPRS, 282–284

GSM class, 278–279

modem class, 284

sketch, 286–288

SMS class, 279–281

VoiceCall class, 281–281

H

.h fi les, 406

hangCall() function, 282

hardware

LED connections, 60

LiquidCrystal library, 200–201

Scheduler library, 314–315

shields, 392–393

stepper motors, 255

TFT library example, 234

USBH library, 331–332

Wi-Fi, 181–182

header fi les, libraries, 406–407

hot pluggable devices, 323

hubs, 151–152

USB, 325

I

I2C devices, 134–135

I2C pins, 137

I2C protocol, 135–136

address, 136–137

bus speed, 147–148

communication, 137–139

master communication, 139–141

slave communication, 141–147

example program, 142–146

shields, 148

voltage, 147

ICSP header, SPI bus, 120–121

IDE (Integrated Development

Environment), 8, 25

format organization, 381

installation, 26

software download, 27–28

software, 28

bindex.indd 01:2:52:PM 12/09/2014 Page 436

436 Index ■ I–L

IEEE (Institute of Electrical and

Electronics Engineers), 171

if statement, 38–39

switch/case, 39–40

if...else statement, 38–39

importing libraries, 379–381, 408–409

infrastructure mode, 172

INPUT pins, 66

INPUT_PULLUP pins, 66

inputs, digital pins, 57–58

installation, IDE, 26

software download, 27–28

installers versus archives, 27

int data type, 37

int keyword, 34

interrupts, 76–77

attachInterrupt() function,

77–78

detachInterrupt(), 78

interrupts() function, 78

noInterrupts() function, 78

interrupts() function, 78

I/O functions

analog I/O, 67–68

analogRead() function, 68

analogWrite() function, 68

microcontrollers and, 67–68

audio tones, 69

digital I/O

digitalRead() function, 66–67

digitalWrite() function, 67

INPUT pins, 66

INPUT_PULLUP pins, 66

OUTPUT pins, 66

pinMode() function, 66

voltage and, 65

pulses, 69–70

IP addresses, 153

ISA cards, 4

isDirectory() function, 219

ISR (Interrupt Service Routine), 77

K

Kdevelop, 29

keyboardRead() function, 352

keyboards

return codes, 352

USB, 324–325

USBH library, 327–239

keywords

int, 34

void, 34

L

laser diodes, 55

LCD (liquid crystal display),

192–194, 227

Esplora, 337

LCD module, Esplora library, 342

LCD screen, Robot library,

354–356

led variable, 59–60

LEDs (light-emitting diodes),

23, 55–56

connecting

calculation, 58–59

hardware, 60

software, 59–60

Esplora, 336–337

resistors, 58–59

libraries, 42, 405–406

Adafruit Si1145, 384–388

advanced, 410–413

advantages, 378

Bridge, 361–373

closed source, 417–418

coding styles, 416–417

comments, 413–414

distributing, 417

EEPROM, 104–110

reading bytes, 104–105

writing bytes, 104–105

Esplora, 337–344

bindex.indd 01:2:52:PM 12/09/2014 Page 437

 Index ■ L–M 437

Ethernet

importing, 154–155

starting, 155–157

example library, 418–427

external, using, 381–383

FileIO, 366–367

Firmata, 262–266

function calls, 406

GitHub, 379

GSM, 276–288

.h fi les, 406

header fi les, 406–407

importing, 379–381, 408–409

using imported, 381–383

LiquidCrystal, 194–204

locating, 378–379

README fi le, 415–416, 427

Robot, 346–360

Scheduler, 306–309

SD, 215–224

Servo, 244

sketches and, 378

SoftwareSerial, 98–99

source fi les, 406–407

SPI, 121–122

TFT, 228

third-party, 377

example application, 384–388

USBHost, 327–334

WiFi, 174–189

LilyPad Arduino, 14–15

liquid crystal display. See LCD

(liquid crystal display)

LiquidCrystal library

cursor, commands, 196–197

example program, 199–204

importing, 194

scrolling, 197–198

text

custom, 198–199

orientation, 197

writing, 195–196

LiquidCrystal object, 194

Logo programming language, 347

long data type, 37

loop() function, 35, 130, 164

loops

for, 41

while, 41

M

MAC address, 153

begin() function, 155

retrieving, 176

maintain() function, 156–157

map() function, 73–74

master communication, I2C protocol,

139–141

mathematical functions

abs(), 73

constrain() function, 73

map(), 73–74

max(), 72–73

min(), 72

pow(), 74

random(), 74–75

sqrt(), 74

max() function, 72–73

memory

EEPROM, 103

Flash, 103

nonvolatile, 101–102

EEPROM, 114

RAM, 103

volatile, 101–102

messages, Firmata library, 263–264

mice

USB, 325

USBH library, 329–330

microcontrollers, analog I/O and,

67–68

micros() function, 71–72

bindex.indd 01:2:52:PM 12/09/2014 Page 438

438 Index ■ M–R

micro-SD cards, 20–21, 211–212

micro-USB, 326

MIDI sound cards, 292

millis() function, 71

min() function, 72

MISO (Master In-Slave Out), 118

mobile computing, 170

mobile data network

3G, 274

4G, 275

GSM, 272–274

modems, 275

modems, 275

monitors

CRTs, 226–227

DSTN (dual-scan supertwist

nematic), 227

LCD, 227

TFT (Thin Film Transistor), 227–228

MOSI (Master Out-Slave In), 118

motor board (Robot library), 357–358

motorsStop() function, 351

multimeters, 23

multitasking, 307–308

cooperative, 309–311

music

Arduino Due, 294–297

Robot library, 356–357

N

noAutoscroll() function, 198

noBlink() function, 197

noCursor() function, 197

noInterrupts() function, 78

nonvolatile memory, 101–102

EEPROM, 114

noTone() function, 69, 341

O

objects, EthernetClient, 157–158

Ohm, 48–49

Ohm’s law, 49

open source, 20

OpenWRT, 363

output, debugging and, 86–87

OUTPUT pins, 66

outputs, digital pins, 57–58

P

packets, 152

parameters, 34

parity, 85–86

parseFloat() function, 94

parseInt() function, 94

parsing data, 93–94

PBASIC, 7

PCB (Printed Circuit Board), 402–404

PCI bus, 5

peek() function, 93

peripherals, USB and, 322–323

pinMode() function, 34, 66

playfile() function, 302–303

playing digital audio, 296–297

PoE (Power over Ethernet), 152

pointTo() function, 351

polling, 77

ports, 153–154

pow() function, 74

power supply, 23

load, 46

print() function, 88–90, 158,

195–196

println() function, 158

println function, 90

processInput() function, 264

programming. See also sketches

bootloaders, 33

embedded systems, 25

Logo, 347

PS/2 interface, 322–323

pulseIn() function, 70

pulses, reading, 69–70

PWM (pulse-width modulation), 68

servo motors and, 243

R

RAM (Random Access Memory), 6

Arduinos and, 103

random() function, 74–75

read() function, 104–105, 216–217

bindex.indd 01:2:52:PM 12/09/2014 Page 439

 Index ■ R–S 439

readAccelerometer()

function, 339

readButton() function, 340

readBytes() function, 92–93

reading data

begin() function, 94

bytes, 92

multiple, 92–93

end() function, 94

parsing, 93–94

peek() function, 93

starting communications, 91

readIR() function, 383

README fi le, 415–416, 427

readProx() function, 383

readSlider() function, 338–339

readTemperature() function,

338–339

readUV() function, 383

readVisible() function, 383

receiveData() function, 144

registers, 137

resistance, 47, 48

resistors, 23

LEDs and, 58–59

usage, 52–53

values, 50

color code, 51–52

identifying, 50–52

resolution

ADC, 67–68

DAC (Digital to Analog

Converter), 295

LCD, 194

TFT screen preparation, 229–230

RGB LED, Esplora library, 337–338

Robot library, 346–348

control board

controls, 350–351

LCD screen, 354–356

music, 356–357

robot personalization, 353–354

sensor reading, 351–353

example program, 358–360

motor board, 357–358

sketch, 359–360

robotNameRead() function, 353–354

robotNameWrite() function, 353–

354

RS-232, SPI comparison, 119

RSSI (Received Signal Strength

Indication), 173

RSSI() function, 177

RX (receive wire), 83

S

scancodes, 324

scanNetworks() function, 176–177

Scheduler library, 306–307

example program, 313–319

hardware, 314–315

importing, 308–309

multitasking, 307–308

cooperative, 309–311

noncooperative functions, 311–313

sketch, 315–319

schematics, shields, 398–402

Schottky diodes, 55

SCLK (serial clock), 118

scrolling, LiquidCrystal library,

197–198

SD (Secure Digital), 208–211

CD drives, 209

datalogging shields, 213–214

fl ash memory, 210–211

fl oppy disks, 208–209

speed, 213

USB (Universal Serial Bus), 209–210

SD cards, 211–212, 219

Arduino accepted, 214

capacity, 212–213

clusters, 220

connecting, 215–216

limitations, 214–215

micro-SD cards, 20–21

TFT library, 232–233

SD library

advanced usage, 220

card operations, 219

cards, connecting, 215–216

bindex.indd 01:2:52:PM 12/09/2014 Page 440

440 Index ■ S

example program, 220–224

fi les

closing, 216–217

opening, 216–217

reading, 217–218

writing, 217–218

folder operations, 218–219

importing, 215

sketch, 220–223

SD.begin() function, 215–216

sendAnalog() function, 263

sendData() function, 144

sendDigitalPort() function, 263

sendEmail() function, 189–190

sending data, 90

sending text, 88–90

sensors

Esplora library, 338–339

Robot library, 351–353

serial connections

example program, 95–98

starting, 87–88

serial devices, 82

serial ports, 82–83

debugging and, 86–87

RX (receive wire), 83

TX (transmit wire), 83

Servo library, 244

servo motors

connecting, 243–244

disconnecting, 245

example application, 246–250

moving, 244–245

overview, 242–243

precision, 246

PWM (pulse width modulation), 243

safety, 246

schematic, 248–249

sketch, 249–250

setBitOrder() function, 122

setClockDivider() function, 122,

123

setDataMode() function, 122

setup() function, 35

shields, 20–21

Arduino Ethernet Shield, 21

Arduino GSM Shield, 22

Arduino Motor Shield, 21

Arduino WiFi Shield, 22

Arduino Wireless SD Shield, 21

breadboard, 395–398

creating, 391–392

components, 394–395

hardware, 392–393

initial idea, 392

types, 394

Fritzing, 22

PCB (Printed Circuit Board),

402–404

schematic, 398–402

software, 393–394

short data type, 37

sin() function, 76

sketches, 26

Blink, 29–33

Bridge library, 370–371

comments, 33

digital audio, 300–303

digital thermometer, 128–130

editor, 28

empty, 28

fi rst, 29–33

GSM, 286–288

libraries and, 378

Robot library, 359–360

Scheduler library, 315–319

stepper library, 258–259

TFT, 234–239

uploading, 30–32

USBH library, 332–334

slave communication, 141–147

SMS class, 279–281

software

downloading, 27–28

LED connections, 59–60

LiquidCrystal sketch, 201–204

running, 28

shields, 393–394

SoftwareSerial class, 99

SoftwareSerial library, 98–99

bindex.indd 01:2:52:PM 12/09/2014 Page 441

 Index ■ S–T 441

solderless breadboards, 57

solid state, 56

source code, 25

closed source libraries, 417–418

source fi les, 25

libraries, 406–407

SPI (Serial Peripheral Interface), 118

Arduino Due, 123–125

clock modes, 122

communications, 120

confi guration, 119–120

example program, 125–132

RS-232 comparison, 119

sketch, 128

SPI bus, 118

Arduino and, 120–121

confi guration, 122

SPI library, 121–122

squrt() function, 74

SS (Slave Select), 118

SSID (Service Set ID), 173

connecting to, 175

SSID() function, 177

statements

break, 40

if, 38–39

if...else, 38–39

stepper library, 256–259

sketch, 258–259

stepper motors, 254

bipolar, 255–256

controlling, 254–256

example project, 257–259

hardware, 255

unipolar, 255–256

stop() function, 158

stop bits, 86

storage

digital audio, 296

EEPROM, 113–114

fl oppy disks, 208–209

String data type, 37

string data type, 37

stringCallback() function, 265

strings

reading, EEPROM library, 107–108

writing, EEPROM library, 107–108

strips, breadboards, 57

surface-mounted components, 384

switch/case, 39–40

switches, 151–152

SysEx, 266–267

T

tan() function, 76

TCP/IP protocol, 152

DNS (Domain Name Service), 153

IP addresses, 153

MAC address, 153

ports, 153–154

text

LiquidCrystal library, 195–196

custom, 198–199

orientation, 197

sending, 88–90

TFT library, 230–231

TFT (Thin Film Transistor)

Arduino Esplora, 229

overview, 227–228

TFT library, 228–231

color, 232

example application, 233–239

graphic images, 232–233

graphics, 231–232

hardware, 234

initialization, 228–229

screen preparation, 229–230

sketch, 234–239

text, 230–231

thermocouple, 125

third-party libraries, 377

example application, 384–388

time functions

delay(), 70–71

delayMicroseconds(), 71

micros(), 71–72

millis(), 71

TinkerKit, 341–342

bindex.indd 01:2:52:PM 12/09/2014 Page 442

442 Index ■ T–W

tolerance of electrical components, 47

tone() function, 69, 295, 340–341

transistors, 56

trigonometry, 75–76

constants, 76

cos() function, 76

sin() function, 76

tan() function, 76

Tunnel diodes, 55

TX (transmit wire), 83

U

UART (Universal Asynchronous

Receiver/Transmitter)

baud rate, 83–84

data bits, 85

parity, 85–86

serial connections, starting, 87–88

stop bits, 86

unipolar stepper motors, 255–256

unsigned char data type, 36

unsigned int data type, 37

unsigned long data type, 37

updateIR() function, 352

uploading, sketches, 30–32

USB (Universal Serial Bus), 82–83,

209–210

Arduino Due, 325–237

hubs, 325

keyboards, 324–325

mice, 325

micro-USB connectors, 326

peripherals and, 322–323

PS/2 interface and, 322–323

USB OTG (USB On-The-Go), 324

USB protocol, 323–324

USBH library, 327

example program, 330–334

keyboards, 327–239

mice, 329–330

sketch, 332–334

USBHost, 322

userNameWrite() function, 354

V

variables, 36–37

declarations, 34

led, 59–60

VLB (VESA Local Bus) bus, 4–5

VoiceCall class (GSM), 281–281

void data type, 36

void keyword, 34

volatile memory, 101–102

voltage, 47–48

breakdown voltage, 54

digital I/O and, 65

I2C protocol, 147

voltage drop, 52

W

WaveLAN, 171

waves, digital audio, 292–293

wear leveling, 114

web servers, connecting to, 159–161

WECA (Wireless Ethernet

Compatibility Alliance), 171

WEP encryption, 173

WEP network, connecting, 175

while loop, 41

Wi-Fi, 171

ad-hoc mode, 171

channels, 172

encryption, 172–173

infrastructure mode, 172

RSSI (Received Signal Strength

Indication), 173

SSID (Service Set ID), 173

topology, 171–172

Wi-Fi Alliance, 171

WiFi library

client connections, 178–179

confi guring, 177–178

connecting, 177–178

example application, 179–189

hardware, 181–182

importing, 174

initializing, 174–175

bindex.indd 01:2:52:PM 12/09/2014 Page 443

 Index ■ W–Z 443

network scanning, 176–177

sensor sketch, 182–189

server, 179

WiFi shield, testing for, 175–176

Wire.available() function, 142

Wire.beginTransmission()

function, 146

Wire.endTransmission()

function, 146

Wire.onReceive() function, 141–142

Wire.onRequest() function, 142

Wire.read() function, 142

Wire.requestFrom() function, 146

word data type, 37

WPA2 encryption, 173

WPA-2 Personal network, connecting,

175

write() function, 90, 104–105,

196, 199, 218

writeBlue() function,

338

writeGreen() function,

338

writeRed() function, 338

writeRGB() function, 337–338

XYZ

XMEGA series, 9

YunClient, 368

YunServer class, 367–368

Zener diodes, 54– 55

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Overview of the Book and Technology
	How This Book Is Organized
	Who Should Read This Book
	Tools You Need
	What’s on the Website
	Summary

	Part I Introduction to Arduino�������������������������������������
	Chapter 1 Introduction to Arduino��
	Atmel AVR����������������
	The Arduino Project��������������������������
	The ATmega Series������������������������
	The ATmega Series������������������������
	The ATtiny Series������������������������
	Other Series�������������������

	The Different Arduinos�����������������������������
	Arduino Uno������������������
	Arduino Leonardo�����������������������
	Arduino Ethernet�����������������������
	Arduino Mega 2560������������������������
	Arduino Mini�������������������
	Arduino Micro��������������������
	Arduino Due������������������
	LilyPad Arduino����������������������
	Arduino Pro������������������
	Arduino Robot��������������������
	Arduino Esplora����������������������
	Arduino Yún������������������
	Arduino Tre������������������
	Arduino Zero�������������������
	Your Own Arduino?������������������������

	Shields��������������
	What Is a Shield?������������������������
	The Different Shields����������������������������
	Arduino Motor Shield���������������������������
	Arduino Wireless SD Shield���������������������������������
	Arduino Ethernet Shield������������������������������
	Arduino WiFi Shield��������������������������
	Arduino GSM Shield�������������������������
	Your Own Shield����������������������

	What Can You Do with an Arduino?���������������������������������������
	What You Will Need for This Book���������������������������������������
	Summary��������������

	Chapter 2 Programming for the Arduino��
	Installing Your Environment����������������������������������
	Downloading the Software�������������������������������
	Running the Software���������������������������
	Using Your Own IDE�������������������������

	Your First Program�������������������������
	Understanding Your First Sketch��������������������������������������
	Programming Basics�������������������������
	Variables and Data Types�������������������������������
	Control Structures�������������������������
	if Statement�������������������
	switch Case������������������
	while Loop�����������������
	for Loop���������������

	Functions����������������
	Libraries����������������

	Summary��������������

	Chapter 3 Electronics Basics�����������������������������������
	Electronics 101����������������������
	Voltage, Amperage, and Resistance��
	Voltage��������������
	Amperage���������������
	Resistance�����������������
	Ohm’s Law����������������

	The Basic Components���������������������������
	Resistors����������������
	Different Resistor Values��������������������������������
	Identifying Resistor Values����������������������������������
	Using Resistors����������������������

	Capacitors�����������������
	Using Capacitors�����������������������

	Diodes�������������
	Different Types of Diodes��������������������������������
	Using Diodes�������������������

	Light-Emitting Diodes����������������������������
	Using LEDs�����������������

	Transistors������������������
	Using Transistors������������������������

	Breadboards������������������
	Inputs and Outputs�������������������������
	Connecting a Light-Emitting Diode��
	Calculation������������������
	Software���������������
	Hardware���������������
	What Now?����������������

	Summary��������������

	Part II Standard Libraries���������������������������������
	Chapter 4 The Arduino Language�������������������������������������
	I/O Functions��������������������
	Digital I/O������������������
	pinMode()����������������
	digitalRead()��������������������
	digitalWrite()���������������������

	Analog I/O�����������������
	analogRead()�������������������
	analogWrite()��������������������

	Generating Audio Tones�����������������������������
	tone()�������������
	noTone()���������������

	Reading Pulses���������������������
	pulseIn()����������������

	Time Functions���������������������
	delay()��������������
	delayMicroseconds()��������������������������
	millis()���������������
	micros()���������������

	Mathematical Functions�����������������������������
	min()������������
	max()������������
	constrain()������������������
	abs()������������
	map()������������
	pow()������������
	sqrt()�������������
	random()���������������

	Trigonometry�������������������
	sin()������������
	cos()������������
	tan()������������
	Constants����������������

	Interrupts�����������������
	attachInterrupt()������������������������
	detachInterrupt()������������������������
	noInterrupts()���������������������
	interrupts()�������������������

	Summary��������������

	Chapter 5 Serial Communication�������������������������������������
	Introducing Serial Communication���������������������������������������
	UART Communications��������������������������
	Baud Rate����������������
	Data Bits����������������
	Parity�������������
	Stop Bits����������������

	Debugging and Output���������������������������
	Starting a Serial Connection�����������������������������������
	Writing Data�������������������
	Sending Text�������������������
	Sending Data�������������������

	Reading Data�������������������
	Starting Communications������������������������������
	Is Data Waiting?�����������������������
	Reading a Byte���������������������
	Reading Multiple Bytes�����������������������������
	Taking a Peek��������������������
	Parsing Data�������������������
	Cleaning Up������������������

	Example Program����������������������
	SoftwareSerial���������������������
	Summary��������������

	Chapter 6 EEPROM�����������������������
	Introducing EEPROM�������������������������
	The Different Memories on Arduino��
	The EEPROM Library�������������������������
	Reading and Writing Bytes��������������������������������
	Reading and Writing Bits�������������������������������
	Reading and Writing Strings����������������������������������
	Reading and Writing Other Values���������������������������������������
	Example Program����������������������

	Preparing EEPROM Storage�������������������������������
	Adding Nonvolatile Memory��������������������������������
	Summary��������������

	Chapter 7 SPI��������������������
	Introducting SPI�����������������������
	SPI Bus��������������
	Comparison to RS-232���������������������������
	Configuration��������������������
	Communications���������������������

	Arduino SPI������������������
	SPI Library������������������
	SPI on the Arduino Due�����������������������������
	Example Program����������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 8 Wire���������������������
	Introducing Wire�����������������������
	Connecting I2C���������������������
	I2C Protocol�������������������
	Address��������������
	Communication��������������������

	Communicating��������������������
	Master Communications����������������������������
	Sending Information��������������������������
	Requesting Information�����������������������������

	Slave Communications���������������������������
	Receiving Information����������������������������
	Sending Information��������������������������
	Example Program����������������������
	Exercises����������������

	Traps and Pitfalls�������������������������
	Voltage Difference�������������������������
	Bus Speed����������������
	Shields with I2C�����������������������

	Summary��������������

	Chapter 9 Ethernet�������������������������
	Introduction�������������������
	Ethernet���������������
	Ethernet Cables����������������������
	Switches and Hubs������������������������
	PoE����������

	TCP/IP�������������
	MAC Address������������������
	IP Address�����������������
	DNS����������
	Port�����������

	Ethernet on Arduino��������������������������
	Importing the Ethernet Library�������������������������������������
	Starting Ethernet������������������������

	Arduino as a Client��������������������������
	Sending and Receiving Data���������������������������������
	Connecting to a Web Server���������������������������������

	Example Program����������������������
	Arduino as a Server��������������������������
	Serving Web Pages������������������������

	Example Program����������������������
	Sketch�������������

	Summary��������������

	Chapter 10 WiFi����������������������
	Introduction�������������������
	The WiFi Protocol������������������������
	Topology���������������
	Network Parameters�������������������������
	Channels���������������
	Encryption�����������������
	SSID�����������
	RSSI�����������

	Arduino WiFi�������������������
	Importing the Library����������������������������
	Initialization���������������������
	Status�������������
	Scanning Networks������������������������
	Connecting and Configuring���������������������������������
	Wireless Client����������������������
	Wireless Server����������������������

	Example Application��������������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 11 LiquidCrystal�������������������������������
	Introduction�������������������
	LiquidCrystal Library����������������������������
	Writing Text�������������������
	Cursor Commands����������������������
	Text Orientation�����������������������
	Scrolling����������������
	Custom Text������������������

	Example Program����������������������
	Hardware���������������
	Software���������������
	Exercises����������������

	Summary��������������

	Chapter 12 SD��������������������
	Introduction�������������������
	SD Cards���������������
	Capacity���������������
	Speed������������

	Using SD Cards with Arduino����������������������������������
	Accepted SD Cards������������������������
	Limitations������������������

	The SD Library���������������������
	Importing the Library����������������������������
	Connecting a Card������������������������
	Opening and Closing Files��������������������������������
	Reading and Writing Files��������������������������������
	Reading Files��������������������
	Writing Files��������������������

	Folder Operations������������������������
	Card Operations����������������������
	Advanced Usage���������������������

	Example Program and Sketch���������������������������������
	Summary��������������

	Chapter 13 TFT���������������������
	Introduction�������������������
	Technologies�������������������
	TFT Library������������������
	Initialization���������������������
	Screen Preparation�������������������������
	Text Operations����������������������
	Basic Graphics���������������������
	Coloring���������������
	Graphic Images���������������������

	Example Application��������������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 14 Servo�����������������������
	Introduction to Servo Motors�����������������������������������
	Controlling Servo Motors�������������������������������
	Connecting a Servo Motor�������������������������������
	Moving Servo Motors��������������������������
	Disconnecting��������������������
	Precision and Safety���������������������������

	Example Application��������������������������
	Schematic����������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 15 Stepper�������������������������
	Introducing Motors�������������������������
	Controlling a Stepper Motor����������������������������������
	Hardware���������������
	Unipolar Versus Bipolar Stepper Motors���

	The Stepper Library��������������������������
	Example Project����������������������
	Hardware���������������
	Sketch�������������

	Summary��������������

	Chapter 16 Firmata�������������������������
	Introducing Firmata��������������������������
	Firmata Library����������������������
	Sending Messages�����������������������
	Receiving Messages�������������������������
	Callbacks����������������
	SysEx������������

	Example Program����������������������
	Summary��������������

	Chapter 17 GSM���������������������
	Introducing GSM����������������������
	Mobile Data Network��������������������������
	GSM����������
	GPRS�����������
	EDGE�����������

	3 G����������
	4 G and the Future�������������������������
	Modems�������������

	Arduino and GSM����������������������
	Arduino GSM Library��������������������������
	GSM Class����������������
	SMS Class����������������
	VoiceCall Class����������������������
	GPRS�����������
	Modem������������

	Example Application��������������������������
	Summary��������������

	Part III Device-Specific Libraries���
	Chapter 18 Audio�����������������������
	Introducing Audio������������������������
	Digital Sound Files��������������������������
	Music on the Arduino���������������������������
	Arduino Due������������������
	Digital to Analog Converters�����������������������������������
	Digital Audio to Analog������������������������������
	Creating Digital Audio�����������������������������
	Storing Digital Audio����������������������������
	Playing Digital Audio����������������������������

	Example Program����������������������
	Hardware���������������
	Sketch�������������
	Exercise���������������

	Summary��������������

	Chapter 19 Scheduler���������������������������
	Introducing Scheduling�����������������������������
	Arduino Multitasking���������������������������
	Scheduler����������������
	Cooperative Multitasking�������������������������������
	Noncooperative Functions�������������������������������

	Example Program����������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Chapter 20 USBHost�������������������������
	Introducing USBHost��������������������������
	USB Protocol�������������������
	USB Devices������������������
	Keyboards����������������
	Mice�����������
	Hubs�����������

	Arduino Due������������������
	USBHost Library����������������������
	Keyboards����������������
	Mice�����������

	Example Program����������������������
	Hardware���������������
	Source Code������������������

	Summary��������������

	Chapter 21 Esplora�������������������������
	Introducing Esplora��������������������������
	The Arduino Esplora Library����������������������������������
	RGB LED��������������
	Sensors��������������
	Buttons��������������
	Buzzer�������������
	TinkerKit����������������
	LCD Module�����������������

	Example Program and Exercises������������������������������������
	Summary��������������

	Chapter 22 Robot�����������������������
	Introducing Robot Library��������������������������������
	Arduino Robot��������������������
	Robot Library��������������������
	Control Board��������������������
	Robotic Controls�����������������������
	Sensor Reading���������������������
	Personalizing Your Robot�������������������������������
	LCD Screen�����������������
	Music������������

	Motor Board������������������

	Example Program and Exercises������������������������������������
	Summary��������������

	Chapter 23 Bridge������������������������
	Introducing Bridge Library���������������������������������
	Bridge�������������
	Process��������������
	FileIO�������������
	YunServer����������������
	YunClient����������������

	Example Application��������������������������
	Hardware���������������
	Sketch�������������
	Exercises����������������

	Summary��������������

	Part IV User Libraries and Shields���
	Chapter 24 Importing Third-Party Libraries���
	Libraries����������������
	Finding Libraries������������������������
	Importing a Library��������������������������
	Using an External Library��������������������������������

	Example Application��������������������������
	Exercises����������������
	Summary��������������

	Chapter 25 Creating Your Own Shield��
	Creating a Shield������������������������
	The Idea���������������
	The Required Hardware����������������������������
	The Required Software����������������������������

	Your First Shield������������������������
	Step 1: The Breadboard�����������������������������
	Step 2: The Schematic����������������������������
	Step 3: The PCB����������������������

	Summary��������������

	Chapter 26 Creating Your Own Library���
	Libraries����������������
	Library Basics���������������������
	Simple Libraries�����������������������
	Advanced Libraries�������������������������
	Adding Comments����������������������
	Adding Examples����������������������
	Read Me��������������
	Coding Style�������������������
	Use CamelCase��������������������
	Use English Words������������������������
	Don’t Use External Libraries�����������������������������������
	Use Standard Names�������������������������

	Distributing Your Library��������������������������������
	Closed Source Libraries������������������������������

	Example Library����������������������
	The Library������������������
	Examples���������������
	README�������������
	Finishing Touches������������������������

	Summary��������������

	Index
	EULA

