Making Everything Easier!”

BeagleBone
DUMMIED

Learn to:

« Connect the BeagleBone and install
the Linux” OS

+ Explore the Cloud 9 IDE and learn
simple programming with BoneScript
and Python’

« Create electronics projects connected
to the BeagleBone GPIO

+ Set up a home automation web server
with the BeagleBone

Rui Santos
Luis Perestrelo

Get More and Do More at Dummies.com-

Start with FREE Cheat Sheets
() .
c‘oﬁ' g } Cheat Sheetsinclude
9‘&00 « Checklists
« Charts

« Common Instructions
« And Other Good Stuff!

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/beaglebone

¥ \

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s

of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
«Videos
« [llustrated Articles
- Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
- Digital Photography
« Microsoft Windows & Office
- Personal Finance & Investing
« Health & Wellness
« Computing, iPods & Cell Phones
- eBay
« Internet
« Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

http://www.dummies.com/cheatsheet/beaglebone

BeagleBone

130)38

DUMMIES

by Rui Santos and Luis Perestrelo

DUMMIES

BeagleBone For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN
IT IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2014954656

ISBN: 978-1-118-99291-3 (pbk); ISBN 978-1-118-99292-0 (ebk); ISBN 978-1-118-99305-7 (ebk)
Manufactured in the United States of America

109 87654321

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance

INErOAUCHIONcnaaeeenaeeeeeeeeaeeneencenacenceaceacenncenceaceancans |

Part I: Getting Started with the BeagleBone................... 5

Chapter 1: Introducing the BeagleBomne...........ccccoocveniiniiniiniiiinicieeeniceseeseeneee 7
Chapter 2: Installing the Operating SysStem.........cccoevvevieririiiniieeieeieeieeeeseeeee e 17
Chapter 3: Connecting Your BeagleBone.............cccooiririiiieieninenieieeeseseeeeeeens 29

Part 11: Covering the Basics..............ueeeueueeeeeeeeeeenees 47

Chapter 4: Introducing the Linux Shellccccoveiieiiiiieiieieeeeceee e 49
Chapter 5: Designing CirCUILS........ceceriririeieiereseseeeetetete e esee e sae e eseesnesaens 89
Chapter 6: Introducing Digital Electronics with the BeagleBone 107
Part 111: Programming with BoneScript...................... 133
Chapter 7: Introducing BoneScript.........ccocoeieiiiinieneninieeeeeeeeeeteee e 135
Chapter 8: Experimenting with BoneScriptcccooveeieiiiciieieeeeceeceeeeseeeeae 153

Part IV: Programming with Python..................cccccceee. 179

Chapter 9: Introducing Pythonccccoociiviiiiiniiniieeeeete et 181
Chapter 10: Experimenting with Python...........ccocoioviiniiiiniineceeee 197
Chapter 11: Mastering the Art of Coding.........ccccooereninirinieiiieeeeeeeeeee 237

Part U: Turning Your BeagleBone into a
Desktop COMPULEr...........cceeeiacceeeeeaaaeeeeeeaanneeeeeaanees 253

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 255
Chapter 13: Building Your WebSitecccccooiriiiiiiieriieeeeeee e 287
Part Vl: Playing with the BeagleBone........................ 311
Chapter 14: Building Your First Project.......ccccoveiiiiieiieiieiiceeeeecee e 313
Chapter 15: Running Your Home Automation Web Servercccccocvevvevverenrennnne. 337
Part Ull: The Part of Tenscccaecueeeeeeeecaaanneeeeeeeas 361
Chapter 16: Ten Amazing Projects for the BeagleBoneccccocvvciiniiniineennnns 363

Chapter 17: Ten Resources and Tips for BeagleBone Users............ccccecceveevienuennnne. 371

Appendix A: Troubleshooting..................cccueeeeecacanns 377
Appendix B: Controlling BeagleBone’s GPIOs.............. 385
Appendix C: Guide to the BeagleBone’s GPIO:s............ 389

Table of Contents

INErOAUCTIONceneeeeeaeeaaeaaeneenaenacencencencennsensenceaceances]

ADOUt ThisS BOOKuvviiieiiiiieeiee ettt eeaan e 1
FOOliSh ASSUMPLIONS.....ccueiiiiiiiciicieeieetecte ettt r e saee e 2
Icons Used in ThisS BOOKccooouviiiiiiiiiieceeeeeee ettt 2
Beyond the BOOKccooieiiiiiiiiiiciececeeeetestese et ste ettt 3
Where 10 GO from HETE.......coovviiiiiiiiiieeece et e 3

Part I: Getting Started with the BeagleBone.................... 5

Chapter 1: Introducing the BeagleBone 1
Touring the Original BeagleBone and the BeagleBone Black..................... 8
Exploring Uses for the BeagleBone.............ccccooceeviiiviinninniniiniinieneeceen 13
Accessorizing Your BeagleBone...........ccocevviiniiniiniiniiineeeeeee 13

Chapter 2: Installing the Operating System 17
INtroducing LINUXcooiiiiiiiiiiiiiieeiectetcteteceeee et 18
Selecting a DistribUtion..........ccoccuieiiiiiieiiisieceeeeee e 18

Knowing the factory defaults on your BeagleBone.......................... 18
Downloading your Linux distributionccccceecveeeeviinciniieciennnenne. 19
Decompressing your Linux distribution..........ccccceeceeviniinvieniennnne. 20
Flashing and Inserting Your microSD Card..........cccccovevvierciiniiinvieneeneennen. 22
Flashing a microSD card in Windows...........cceceevevvernienninnieniennenne. 23
Flashing a microSD card in Mac OS Xccccoovvevveveeciiecieeieeeeeeene 24
Flashing a microSD card in LINUXccccceeevininiienienienenencececeens 25
Inserting your microSD €ardcccceevveeeerieneeneeneeieere e 26
Flashing the Onboard eMMC...........cccceeviiriinieneenieeieeeeeete e 27

Chapter 3: Connecting Your BeagleBone 29

Connecting Via USBcccooiiiiiiieieeiieieeiceteeie ettt se e es 29
InStalling AYiVETSccoiiiiieriieieeieeieeee e 30
Browsing to your BeagleBone..........ccocooviiniiniininniiiiieeee 31

Blinking the onboard LEDS...........ccoooiiiiiieoiiececeeeeee e 32

Connecting via SSH over USB..........ccccooiriririiieeneeeceeteteee e 33
WINAOWS....einiiiiiieteeee ettt sttt s st ees 34
Mac OS X and LINUX.....cocoveiririeieirieneesieteese et 35

Connecting via SSH over Ethernet.........ccccoccovviviinniiniiniiiniinienienceeeen, 36
WINAOWS..c.eiiiiiiiiiietetetetee ettt st e sae e esbeesbesaesnneeas 36

(/i BeagleBone For Dummies

Connecting the Original BeagleBone via Serial over USB......................... 39
WINAOWS.....oiiiiciecieeieeteeeeee ettt steeteste st esrae s e esve e veeseesseenseensanns 39
Mac OS X and LIiNUX.....cccceeverieriienieneeneesieesieesieesieeseetessesnessnesseesns 40
Connecting the BeagleBone Black via Serial over USB...........cccccecveuennen. 41
WINAOWS..c.iiiiiiiieietent ettt st st esbe et esbeesbeesesnneens 42
Mac OS X and LiNUX......ccceererrierrienienienieneeneeneesessieesee e snesseesaeennes 44

Part 11: Covering the Basics...............cuuueeeeeeeeeeeeeeaees 47

Chapter 4: Introducing the Linux Shell 49
Examining the Promptcoccovviiiiiiiiniineeeeceeeeeeee 49
Introducing the root SUPEIUSETc.coccviieiiieciieieccecee et 51
Exploring the Linux File Systemcccoooviiiiiiiininieeeeeeceeeen 52

Listing files and direcCtoriescccoceevieeiercienieneececcieeeeee e 53
Understanding the directory tree.........cooecveeeeeeeeeevieneceeeeeeeens 55
Changing dir€CtOriescccevveriieereeieieiese e 55
Understanding relative and absolute paths...........cccovirvinennnne 57
ChecKing file tYPeS.....c.ccveeiecieciiecieeeeee ettt 59
Creating dir€CtOries.cociivieieriiiieeeeeeee e 60
Creating, editing, and viewing text files........ccceceeeievirvincienciennenne. 62
Removing files and directories
Copying and renaming filesccoceeveriirniinennencenieneeeeeeeseee
Selecting multiple files in Linux
Using long-listing format and permissions...........cccccceeevvevveeereenen. 74
Managing Software on Your BeagleBone............cccocoeveririiinieninenenieienne 77
Installing SOftWare.........ccvevieviieciieiececeeeee e 78
RUNNING SOftWATEcocviiiieiieieeieeiececteee et 79
Updating SOftWATE........cocveriierieeieeiinieeieetertese et se e 79
RemovINg SOftWATEcceeviiiiiiiiriirieeetetee e 80
Seeing what'’s installed on your BeagleBone............ccccoovvvrrnnnnn. 81
Changing the Hostname and Password...........ccccceveririnnienieneneneeeeeeene 81
Shutting Down and Rebootingcccceeiirieneeiieniieieeeciece e 82
Commanding the Prompt Like a Jedi Master.........cccccceevvevciencienveneeneennen. 83
Recalling previous commandsceceecverieneeneenennienniessieneeseennes 83
Autocompleting commandsccceceeviervieniieniieniieneeeeeeeee e 84
Using keyboard shortcuts..........ccocevveevieniiniininniicncneceeeeeeee 85
Keeping everything cleancccocoevevieienininiineeeeeececeeene 87
Chapter 5: Designing Circuitscoviiiiniinnnn. 89
Introducing El€CtTiCitycccveciiiciieiieeiecieceeceeeee e 89
Voltage, current, and resistance..........cccceceevveeienceeneeneeneeseeceeienns 90
The water analogycccceveereeriiriiiriieieeeereere et se e 91
A basic circuit example..........cccceeiiieiiiiiiieee e 92
Examining the EQUationsccccooviiriiniiiniiniieceeeeee e 93
ORIN’S LAW .ottt ettt st 93

Power CalCUIAtioNScooovviiiiiiiiiiceeeeeeeec et 94

Table of Contents

JOULE S LAW ...t et 95
Units Of MEASUIEMENTc...eeviveiiiiiiieieeeieee et e e eesveeeeennee 95
Working With CIFCUILScceevvieiiieiieieccce et 96
Circuit diagrams.........coecveeierierierieniese et 96
COlOr COAING ...vvieiiiiiiiiiiieeiet ettt ettt saesae e 101
Resistor color Charts..........coeiieviiiiciiiceeeeee e 103
DAtASNEELS ...t 105

Looking for the Right TOOIS.......cc.cccceciieiiieeececcee e, 108
Breadboardsccoevieieiinire e 108
JUIMPET WITES ..ottt s 111

Essential Components and Parts........c.cccocevieveeninnieneeiieniienieeeeseeneenne 112

Getting to Know the GPIO........cccooviiiiiiiiiieiicieciececeteseeeese e 113

Understanding How GPIOs Work..........ccocoviiniiiiiiinniiiinieieeeeeeee 114
Viewing the GPIO pins 1ayout..........cccoeeeeeieeiinieciecieceeceeereeeeeee, 114

Setting GPIOS as OULPULS......cceoiruirieieieieeeeee et 115
Wiring the circuit for an LED...........cccoeoieviieiiinciecieeeeeeeeeeee, 115
Controlling the GPIO..........ccociiiiiniiieeeecececece e 118

Setting GPIOS as INPULS.....cccociiriiiirierieeierereececeeee et 120
Wiring the circuit for a pushbutton...........ccoccoeviviiiniiniinnninenee. 120
Controlling the GPIO.........cccocviiiiiieeeeceeeeeee e 122

Setting GPIOS as PWM.......cccooiiiiiiieieieceeeeeee ettt 122
Wiring the circuit for a brightness-regulated LED......................... 124
Controlling the GPIO..........ccoociiiiiiiiieeceeececece e 124

Creating Shell SCIIPLS ...cccviviiriirietceeteeccce et 128

Adding Capes to the BeagleBone............ccocovviiniiniiniininniniinieeienienene 129
BeagleBone Proto Cape........cccecveeiieieeiecieciecieecieeie et 129
BeagleBone POWer Capecceeieienierieniineeieieeeeeceeeee e 130
BeagleBone Motor Cape........ccccceeiiiieeieeieniesieeseesieeie e eveene e 130
BeagleBone mikroBUS Capeccocueevievienieneeneenieeieecieeieeeeeeenn 130
BeagleBone GPS/GPRS Cape.......cccccovuevvienieniinieneeseciesieeieeienenn 131
BeagleBone LCD Cape......ccccooeeviiriinienienieneestenieeieeie e sne s 131
BeagleBone HD Camera Cape.........cccceevvevieneenienennienienienienienenn 132

Part 11l: Programming with BoneScript 133

Chapter 7: Introducing BoneScript. 135
Introducing JavaScript, Node.js, and BoneScript.........cccccvevrrveevennennns 135
Introducing Cloud9 IDE..........ccoooimiriiieieeeeteee ettt 136
Launching the Cloud9 IDEc.ccoieiiriiiiieeeeeeeeeee e 137

Exploring the Cloud9 IDE.........ccccociiiiniiniiieeeeeeeeeieeeeeeeenn 138
Creating a folder and .js fil€........cccceoveeverrieniininiicieneeeeeee 140
Blinking an Onboard LED with BoneScriptccccoveeveniiniiniiiniinene 141
COMMENTINGveeeiiiiieiieieeieeeecee et erte et steeaeeaeeeseeaeessessaenseens 142

Loading the BoneScript module.............cocoeceeiiieninieninieieneseene 143

vii

(/iii BeagleBone For Dummies

Creating variables..........cccceeieiiiiieceeeceeeee e 143
Configuring PINS......ccccecievererieieteteere et 144
Setting the default pin state..........cccocevvieevienvienieneeceeeeeecee, 144
Setting an iNterval.........c.cccevivieieieierereeeeeeee e 145
Creating a funCtionccocevieieieieecceeceeee s 145
Running the SCriptccooieviiiiiinee e 146
Blinking More LEDs with BoneScriptcccoooveviieiieiieieciecieceeeeeeene 147
Wiring the Circuit........ccooieriiiiiiiieeeeee e 147
Opening the blinked.js demo...........cccccceerieniienieeceecieeieeeeeeeene 149
Running the SCriptcccooiiiiieieieeeeeeeeeeee s 151
Chapter 8: Experimenting with BoneScript 153
Reading an INPUL........c.ccviieiiiiiieceeeeee e s 154
Wiring a pushbutton.........cccveieeiiiiiinieceeee e 154
Writing the code to read the state of a pushbutton...................... 156
Running the script to read the state of a pushbutton................... 157
Controlling an LED with a Pushbuttonccccoceiininnnniiiieeee 158
Wiring an LED and a pushbutton.............cccceeveeieieeeieciecieneceee 159
Writing the Code........ooniiniiiiiiiiiieeeccceee e 160
Running the SCriptcoooveviiriiiiniee e 161
Adjusting the Brightness with an RGB LED...........ccccccocevviviinviinneniiennnn. 162
Wiring the RGB LED.......cccocooiiiiiiniiirinciricneeeereceeeeceeeene 163
Writing the COde........ooniiniiniiieiieeceeee e 165
Running the SCriptcooieiiiiieieeceeeeeee e 167
Sweeping a Servo with a Potentiometercccocvvveeverviinieniieneeneens 167
ANAlOZ INPULS.....eiiiiriiierteteeee e 168
Wiring everything together ..., 170
Writing the code to sweep a servo with a potentiometer 172
Running the script to sweep a servo with a potentiometer......... 173
Detecting Movement with a Motion Sensorcccceeeveecveecienieseeneeneenne 173
Wiring the motion SENSOYccceevieviieciiriecieeieseeeee e 174
Writing the code for motion detectionccccoeceevvinieniinnieecnennee. 174
Running the script for motion detectionccccceccevviriiinieninnncnn. 176

Part IU: Programming with Pythonccccceeee. 179

Chapter 9: Introducing Python 181
Getting Started with Python..........ccoocoiiiiiiiiniiieeeeee 181
Making sure your libraries are up to date.......... ccceecveeeciveecuernnenne 182

Installing the ibrariesccooeeceeeiieciiecieceeceeceeeeeee e 183

Blinking an LED with Python.........ccccceeiiiiiiiiienicicccececece e 183
Wiring the circuit for an LED.........c.ccccevviivviinviiniiniciceeeeieeeeee, 183

Writing the code for an LEDccccovvvviinviiniiiniinicccecceieeeen 184

Running the script for blinking an LED..........cccoccoviiiniinnnnnnnneen. 189

Reading a Pushbutton with Python..........cccccoeoiiiiiii e, 190
Wiring the circuit for a pushbutton..........ccccccoeeveeieiieiienieceeeee, 190

Writing the code and running the script for a pushbutton.......... 190

Table of Contents

Writing the code with interruptsccccoveeeeciiecinieee, 192
Introducing if . . . else and if . . . elif statements..............ccoc.......... 193
Getting to know the print functionccceeeeveevincinciecciecien, 195
Chapter 10: Experimenting withPython 197
Fading an RGB LED with Python.........c.cccecveiiiiiiiiiieicecececeeeeee 197
Wiring an RGB LEDcocoviiiiiiiiiieceeeceeeeee e 198
Writing the code for fading an RGB LED...........cccccoovvniininnenniennee. 200
Running the script for fading an RGB LED...........cccccccvvvniinninnncen. 203
Working with Analog SENSOTScceccveeciieieeieeiecieeee e 203
Using the right voltage for the ADC..........cocoviiiivinininieeereeee 204
Wiring an IR diStance SENSOY.........c.cecueeveeieeieeieceeeeeeseesee e 205
Writing the code to measure distance...........ccceeceeecverveneenieennenen. 208
Running the script to measure distance..........ccccceeceevvrviirvienceennnnn. 210
Wiring a temperature SENSOTcoceeierierienienieneeneenieeseeseeeees 210
Writing the code to read temperature...........ccceeeeveceeenieeeneenneen. 212
Running the script to read temperature...........ccccccceeeveecreecreevennnnn. 212
Sending an Email with Pythoncccccooviiiiiiiiiceeeee 213
Knowing the prerequiSitesccccooveeveeiieneenieeseeciecieeeeeceeeenn 213
Writing the code to send an email..........ccccoecvevieniiniinienceneeienee, 214
Running the script to send an email...........ccooceeviiviniinniniennennn. 217
Mixing Up Projects and Creating Functions...........c.cccceeeveeiinieneeneenneens 217
Creating a function with Python ... 217
Sending temperature readings by email..........cccccecceeciirviiecieenennnnn. 220
Controlling an RGB LED with distance readings...........ccccceevennenn. 222
Introducing UARTc.ooiiiiiiiiiiecieetescsetee ettt 229
Wiring the BeagleBone to an UART device........ccccoceevienennennennee. 230
Writing the code to test UARTcocoviieiiniiniiiceeccceeee, 231
Running the script to test UARTccccoeveiievieeeeeeeeeeeiee 234
Understanding UART’S USESccccectevienininieieieieneeeetetenie e 235
Chapter 11: Mastering the Art of Coding........................ 237
General Programming TiPSccecveerienieneeniieiieeieeieeieeeeseeseeseeseeesaeenes 237
Variables and function names.........cc.ceceeveevienieninincniinienenenenene 238
CONSTANTS ...ttt et 239
Comments, white space, and indentationcccceecvveeveennennns 240
DEDUZGINGcooiiiieiieeieeeee ettt et e st e e e te e e ta e e eesnsaennneas 241
Diving into Binary and Data Storageccccocecevieenieieninenieieeereeene 245
230 F:))T RPN 246
Hexadecimal ..ottt 247

Data StOTAZE.eevuiireieriiiiiiieeeete ettt et sbe et sae st st sbesanesaaens 247
BoneScript-Specific Programming Tipscccccevevviriieniienienienieneenene 248
Looping, looping, and more loopingccccecveeeeeeiieencieeeieeeieenns 248
Understanding the importance of JavaScript callbacks............... 249
Python-Specific Programming Tips........ccccoevieveeiieiieiieeiecieceeceeseesieene 250
Creating functions to clear up the mess........cccccceeveeveiervencienceennnnne 250

Creating time-dependent code..........ccccevverriirniencieniieniienienreneeens 250

x

X

BeagleBone For Dummies

Part U: Turning Your BeagleBone into a
Desktop Computerouucccaccueeeecaaceeeeaccaanneesecaanees 253

Chapter 12: Using Your BeagleBone Black as a

Desktop Computer.coviiiiiiii i nieennns 255
Getting Startedccooieeeieieieecee e 255
Connecting the Peripherals and Booting Up..........ccceceeveniinieiieneenneens 256

Connecting a Micro HDMI cable or DVI display........ccccccceeveruennenee. 258
Connecting a USB hub, keyboard, and mouse...............cccccveeuvennenn. 258
Connecting to yOUr YOULEYccoevereevieeriieieeieeieeie e ere v e 259
Connecting the POWETcccieviiniirieniniecececee e 260
BOOING UP..iiiiiiiiiiieiciteeeeee ettt 260
Accessing the Terminalccooceevieiiiiniiinniiniiiee e 261
Roaming the Desktop Environmentccccooceiviniinieniennenneeneenceneee 263
Viewing the Applications menu..........cccceecueevieeieneeneeneeneeseeeeenne. 263
Using the task bar........ccccoeveevieiieciceceeeee e 263
Working with multiple desktops.........cccceecvevviincieniiniiieceeeeeee, 266
Customizing the BeagleBone..........cccccooivviniiiiiniiniiieieeeeeeeeeeee 267
Customizing the desktop appearance..........ccccecevveerviervienieeneennenn. 267
ChOOSING @ SCIEEN SAVETcueevvierierieieeieereesteeeeeaeereeaeereseaesseens 268
Creating icons on the desktopccoceveriiiiienininiceeeee, 269
Changing the desktop background...........ccccoevevvieeviinciinciencieniennnne 270
Using the File Manager.........c.cccocvviierienienienienecieesieeieeie st ee e saeenes 271
Navigating the File Managerccccoevveviiniininnennenenienieeeenens 272
Creating blank filescccccevieirirrierieeeeeeeeee e 275
Creating new folders.........coevieiriierieieeeeee e 275
Opening a folder in the terminal...........cococeiiiiiinininniee, 275
Accessing external storage devicescccccevvvevveveeneenienieenieennn. 276
Using the Task Managerccccoecveevienienienieneesieesieesieeiestesee e seeseeenes 277
Browsing the Webooooiiiiiiiiiieecettceeeeeee sttt 278
Using the Customization menu.........ccocceeveevienienennensenienieneenens 278
Searching for web pPagesccceeevveieeieceenieceeeeeee e 279
Finding words within web pagesccceccevvevieneeceeceececieeeene 280
Using tabbed browsingccccceeeievieeieciienieseeseeceee e 280
Adding and using bOOKMArKS..........cccceeevervierieniieneeniereeneeieeeeeeen 281
Changing Settings........cccceeieriiniinieiceeeeeee e 282
Shutting Down, Rebooting, and Logging Offccccecivviniiniinninnnnns 283

Chapter 13: Building Your Website 287
Introducing HTML, CSS, and JavaScriptcccceevvevieveecieecieceeceeeeeeneene 287
Getting Startedccooevieieieee s 288

Using a BeagleBone Black as a desktop computer........................ 288

Controlling the BeagleBone remotely through SSH 289

Table of Contents

Creating Your First Website.........cccocveiiieiieiieiciceeeeeceeee e 289
Organizing your filesccoceeieiiiiiinineeeeeeee e 289
Opening a NEW file.........ccoevieriiiiiiiieeeeeeeee e 289
Writing the first lin€.........ccooveviiiiiiiiiieeeeccceeeee e 290
Structuring an HTML documentccccevveenieneenienniennieniieniennne 290

Formatting Your HTML Content.........cccocteviiniininninnenienienieneeseeneenne 291
Adding @ titleooveeeeiieeee e 291
Adding headingscccoovveeieiieiiieiceceee e 292
Inserting paragraphscccceceeveeciiiieecieceeceeseese e 293
VIEWING YOUTr WED PAZEeovieieeiieiieieeieeieete et esee e sae e ae s 293
INSerting liNKSccocveriiiiiniiiieeieeiecectee et 294
Adding IMAZESc.eoveieiieieieeeere sttt eesae e ssens 295
Creating [iStS...c.ccvuiiieeiicieeiecieeeeee et 296

Formatting Your HTML Documentc..ccoceeveriiiniennieniieneeneeneeneeeeee 298

Styling Your HTML Content with CSS.........cccooiiiiiiiiieeceeeeeeeeee 298
Embedding a style sheet.........ccccoeciiiiiniinieiiiicecececeeeeeee 298
Knowing the basics of CSS........ccociiiiriiniiececeeeeene 300
Experimenting with COlOrS.........ccoccovviiriiniiiiiiieeee 300
Changing text aPPEATANCEcceevreevieeieereereeeeeee et ereereeaeeeeens 301
Understanding the box model...........ccccooviininiiniinninniniencecee. 302

Styling Your HTML Elementsccccocveiieiieniienieeiecieeie e eeseeesaeenne 304
Wrapping Up YOUY CONENLcceevviriieieeieniecieseeieeieete e 305
Dividing your Web Page.........ccccueeeeeerierienreeeeeeiesieneseeeeeessessensens 305
Customizing your logo and navigation bar..........ccccecevvveniencennnnne 306
Customizing your CONtAINETccceevuerrieriieriienienienee st seeseenieens 307
Testing your web Page........ccoeveieviiieniiniieeeeecee e 308

Publishing Your First WebSiteccccocoveiieiienieciicicececeeeeceee e 309

Part Vl: Playing with the BeagleBone......................... 311

Chapter 14: Building Your First Project......................... 313
Getting Started.......ccecveiiieieceeeeeeeee e 313
Wiring Up the LCDccuiouieiieieieeeeeeecetete ettt 315

Wiring the LCD ..ottt 316
Writing the code for the LCD........cccooiviiniiiniiniiicceeeeeee, 316
Running the script for the LCDccoooveeieiiiiieeeeeeceeeeeee 319
Programming the Email Reader...........ccooueeieniiciieiienicieciececeeeeeeene 320
Putting It All TOGETREY.......ccoooiiiiiieiececeeeeeeeeee e 322
Wiring the pushbuttonsccccevivviiecinciiniiceeece e, 322
Understanding the concept........coccevvevierienienieneeneneneeieeeeeene 323
Writing the Code........cooiiiiiiiiieee e 324
Adding the LED and BUuzzercccoeoviieiiiiiieeie et 333
Wiring the LED and bUzzerc.cooeeeieeieeiieieeieseececveeeie e 334
Writing the code for the LED and buzzercccccvevvevvenueenenee. 335

Running the script of the complete projectccccecvvevvrveenennn. 335

Xxi

X’ii BeagleBone For Dummies

Chapter 15: Running Your Home Automation Web Server......... 337
Exploring What YOu Can Doccceeierieiienieieeeieeeeee e seeseeenes 337
Examining the Framework...........ccccoecviviiniiniiniiniciceeeceeeeeeseeeee 338

Installing SOCKEL.I0....c..covvieiiiiieieeiieetce e 339
Keeping your files organized..........c.ccocevieniininninnennieniienieneenene 339
Repurposing your previous HTML and CSS..........cccccoveevvecieeiennn. 340
Wiring YOUur CirCUitooueeeeeierierieiieeeceeiee et 340
Writing Your Web Page..........covovieiiiiiiiiceceteteeeeeeee e 340
Creating yoUr GUIcccoevieviiiiiniieeiecieeeeie ettt sne e 341
Adding JavaScript to your web page.......cccocevcienienienieneeneeienen 341
Explaining your main JavaScript........ccccecevviiniineenenniniienienienene 342
Running Your Web Server ...ttt 343
Loading modules and initializing a variable. . . 343
Creating yOUYr WED SEIVEYcccuecievienieeieeiienieeieecieeve e eseeae e 344
Establishing socket communication............cceceeveevieviinciencieniennnen. 344
Launching your Web SErver..........cccoccovveeienienieneeneeieeieeeeseennens 345
Accessing Your BeagleBone with Another Device...........cccoovvriennenen. 346
Dropping Your LED and Controlling an Appliancecccccocevvieveenenne 347
Adjusting Outputs with PWM........ccccoiiiiiiiicieeeeeeeeeeee e 349
Designing the GULL...........cccooiriiiiiiiiieeeceeeee e 350
Writing your main SCript........ccccceeeviieeeeeeieseceee e 351
Creating YOUY WED SEIVEYcccuevierieriieiieieenieeieesiesiesressesnesanens 352
Launching the web server to control a PWM output.................... 354
Connecting a temperature SENSOYcoceevvervieriieriieniieneeneeneeseeseesaeenne 354
Writing your wWeb Page..........ocveiieviieiieiiceceeeeeeee e 356
Creating your Web SEIVETcccocieiiiiieririeieieieeseeeece e 357
Launching the web server for your temperature monitoring...... 359

Part Ull: The Part of Tens............ccaeecueeeeeeceecaaaneeeeeeee 301

Chapter 16: Ten Amazing Projects for the BeagleBone........... 363
Underwater Exploration RoObot...........ccccooviiiiiniiiiiiieiceccccceeceee 363
Autonomous Sailboat to Tame the Seas.........ccccoecvevienievinninniinienieee 364
Autonomous Robot for BeagleBone Blackc.cccoceevevvinvinninnnienniennnn. 365
BONESCIIPE ..ottt ettt a e aeere e 366
Multimedia Center with Kodi..........ccoeeievieiieiiiiiiciececieceeceeeeeeeeee 366
BeagleBone Gaming CONSOIE.........cccccueeieiiinieniieiiieieeieeie e seeenee 367
BeagleBone As Super Nintendoccccoecverieneenieeneenieeiiecieeieeeeseeseenes 368
BeagleBone Cape for DIones.........cccocevieiienieneeiiienieeeeieeieseeseeseesieenne 369
Desktop Five-Axis CNC Millccoooiieiiieieiceeeeeeee e 369

BeagleBone 3D Printerooceeeiiieciiecieeeeeeee et 370

Table of Contents

Chapter 17: Ten Resources and Tips for BeagleBone Users....... n
Finding Components and Parts.........ccccccoevverieneenienieneeieciecieeeeseeseenne 371
Acquiring Electronics Starter Kits.........cccoccevviercienienienieeniecieeeieeeenne 372
Protecting Your BeagleBone with a Case.........ccceeververviencieniiinienienenns 373
Attending Events and Workshops..........cccecuevvievieniinieninnenienieeieseenene 373
Joining the BeagleBoard Community...........ccccceeviieviieieecieecieeieceeeeeeneene 374
Interacting with the Community...........ccoooveririiniinenineeeeee 374
Sharing Your BeagleBone Projects with Others........c.cccccevevieieneenenns 375
Improving by Failing.........c.cccevvieiiiiiieieieeceeeeeeeeee e 375
Looking for Project Ideas.........ccccvvvveeiiniiniinienecieeieceeieste et 376
Finding Out More about BeagleBonecccccoccvvviininiieniiniiniinieene 376

Appendix A: Troubleshootingcc.ceuuuacacuueeeaaeeee 377

Common Sources Of EXTOrscocccevevevrincnnincnieeneecncseeceeeeeeenens 377
Things NOt t0 DO...couiiiiiiiiiett ettt 379
MISCEIIANEOUS ..ottt ettt sttt 380
Expanding the file system on your microSD card 381

Accessing external storage devices when
using the Linux Shell..........cccoccoiiiniiniiniiieeeeee 382

Appendix B: Controlling BeagleBone’s GPl0s............... 385

Controlling the GPIO with the File Systemc.ccccoeeeeiinviiniecieeeeeene 385
Controlling the GPIO with BoneScriptocoocevvieiienenenineeeeeee 386
Controlling the GPIO with Python.........cccceeieviiiiiiiiiceceeeeceeeeee 386

Appendix C: Guide to the BeagleBone's GPIO0:s 389

INdex......ccooccaaiiiaicaaiiiinniiinnnciaenaiccaecacceeasccecccaae 393

X

Xl(/ BeagleBone For Dummies

Introduction

’ n recent years, there has been a trend to make programming and elec-
tronics not only more powerful, but also more accessible. These sciences
used to be within the reach of only those who had dedicated plenty of years
to them. Today, there’s a different paradigm on the horizon: easy to learn,
hard to master. Development boards such as the BeagleBone have intro-
duced the possibility of easily being launched into the world of electronics
and programming, resulting in an outpouring of creativity all over the world.
Previously, there was an enormous gap between having an idea for a project
and going through with it. Now hobbyists and enthusiasts can use the boards
to get started with electronics and programming, but these boards also have
the computational power that enables advanced users to create the most
daunting projects.

How the BeagleBone manages to be a board that’s at the same time easy to
use and extremely powerful is truly a marvel. This book’s purpose is to give
you the joy of experiencing that marvel personally.

About This Book

The BeagleBone is a powerful and versatile development board. Using it is
easy and intuitive. This book’s intention is to walk you through the world of
digital electronics and programming using the BeagleBone.

We believe that the best way to discover new concepts is through practice.
In this book, you get to know all the important concepts by building circuits
and programming them with the BeagleBone. Blinking an LED is a classic
place to start, and you’ll be doing it in no time. From there, you find out how
to control motors and read from sensors. Ultimately, you gather all the basic
concepts in the book and take a dive into web-based projects and home
automation.

BeagleBone For Dummies tries to strike a balance between the technical and
important details while striving to be a lightweight read. If you don’t have fun
while trying out the projects provided throughout this book, we’ve failed.

2

BeagleBone For Dummies

Foolish Assumptions

Regarding your expertise with electronics, programming, and embedded
platforms in general, we assume nothing. This book has the necessary infor-
mation to get you started from absolutely nothing. We have to assume two
things, though:

»* You have a personal computer, and you know how to use it to do basic
things such as navigate a web browser, create folders and files, and write
emails.

» You have a router with an Internet connection and an Ethernet cable you
can use to connect it to the BeagleBone.

Because Linux is an operating system that isn’t as widely used as Mac OS X
and Windows, this book provides the necessary information in case you're
using Linux for the first time. If you've previously worked with Linux, you can
skip the parts of the book that refer to that topic and just visit them when
you need a refresher on a particular subject.

leons Used in This Book

A\\S

WING/
&

SMBER
S

For Dummies books use icons to highlight pieces of information that are
worthy of special attention. This book uses the following icons:

Information following this icon provides shortcuts or small details that may
make your life a little bit simpler — or a lot simpler! Paying attention to Tips is
a great way not only to see how to do things in the most efficient way, but also
to discover some extra information that may be helpful.

This book deals with a lot of electronics, which is a world of tiny and fragile
things. Also, the BeagleBone is a computer, and everyone has a story of some-
thing bad that a computer may have done. In most cases, though, it isn’t the
computer’s fault that an important file was deleted, that it crashed at a crucial
moment, or that it discarded the lengthy changes you made in a document.
You have to use care with a computer. This icon highlights common, harmful
mistakes that you might make to ensure that you don’t.

This icon is used for concepts that are used a lot throughout a chapter, a part,
or even the entire book. Saving Remember items in the long-term-memory
drive of your brain is probably a good idea!

Introduction

The science behind computers and electronics is quite vast and complex. For
the most part, we put technical details in sections highlighted by this icon. It’s
not obligatory to read them to proceed through the book. These items provide
some cool little facts, though. More important, they provide insight into how
things are working from a scientific point of view, which may make it easier to
understand some concepts.

Beyond the Book

A useful resource at your disposal is the book’s dedicated website — www .
dummies.com/cheatsheet /beaglebone — where you can download sev-
eral files and all the code that is used throughout the book. You can also read
the eCheat Sheet, which provides a simple way for you to quickly see how to
power your BeagleBone, install your BeagleBone’s drivers, and access your
BeagleBone through your browser.

Additionally, there are several web articles with insightful and helpful infor-
mation about some extra topics related to the BeagleBone, programming, and
digital electronics. For example, you can find out how to use a multimeter to
troubleshoot your circuits, discover ten software packages to install in your
BeagleBone, and be introduced to the keyboard shortcuts you can use in

the Cloud9 IDE (Integrated Development Environment). You can find these
articles at www.dummies.com/extras/beaglebone.

Rui maintains a personal website, which contains additional information and
interesting projects for the BeagleBone and other development boards. Feel
free to check it out at http://RandomNerdTutorials.com.

Where to Go from Here

Now is the time to initiate the launch sequence. You don’t have to start
with Chapter 1, but it’s a good place to begin to get acquainted with the
BeagleBone and all the possibilities it offers you.

Your second destination, however, depends on your experience with elec-
tronics and programming. If that experience is nonexistent, that’s totally
fine! This book has been written so that going through it sequentially makes
the most sense. But playing around with an embedded platform such as the
BeagleBone involves many different types of knowledge, and we don’t want
you to go through something that you’re already familiar with. We strived to
create a book that is appealing for both beginners and experienced users.

http://www.dummies.com/cheatsheet/beaglebone
http://www.dummies.com/cheatsheet/beaglebone
http://www.dummies.com/extras/beaglebone
http://RandomNerdTutorials.com

4 BeagleBone For Dummies

If you've dabbled in circuit design before, Chapters 5 and the beginning of
Chapter 6 may not contribute much to your knowledge. If you're already a
Linux user, you may want to skip Chapter 4, because it doesn’t tell you much
that you don’t already know.

We suggest that whenever you decide to skip a chapter, you at least skim the
titles of each section to make sure that no concepts that are new to you are
left out.

Parts III, IV, and V are somewhat independent and can be read in whatever
order you prefer. If Parts Ill and IV get you all excited about taking on the
advanced electronic projects at the end of this book, maybe leaving Part V
for later is a good choice. Conversely, if you want to use the BeagleBone as a
desktop computer as fast as possible, you can go straight to Part V right after
Part L.

After spending some time with this book, you should be more than ready
to take on projects of your own. There’s no limit to your creativity with the
BeagleBone. Strap yourself in!

Part|

Getting Started with
the BeagleBone

getting started
with the

BeaqleBone

http://www.dummies.com/cheatsheet/beaglebone

A WA

X\

In this part . . .

Getting to know the BeagleBone and all its features
Discovering other components that you may need

Preparing your BeagleBone with the latest operating
system

Booting your BeagleBone for the first time

Getting started in digital electronics by blinking an LED

Chapter 1
Introducing the BeagleBone

In This Chapter
Getting acquainted with the BeagleBone
Exploring the key differences between the two BeagleBone versions
Exploring the possibilities the BeagleBone offers

Determining what else you need

Welcome to the world of BeagleBone, the low-cost embedded Linux
computer for hobbyists and developers used by hundreds of thou-
sands of people all around the world

The BeagleBone is a tiny board, but don’t be fooled by its size: Its potential

is huge. That board has a brain — the processor — that’s almost as smart as
the latest popular smartphones, yet you can buy the BeagleBone at a fraction
of the cost. Use it to control your home remotely, host your own server, or
build a robot. You're limited only by your imagination.

Actually, there’s no right or wrong way to use this small computer. Some
people want to use it for programming; others want to use it find out about
electronics. Still other people (such as the authors of this book) prefer to mix
the two worlds to produce some awesome projects.

The day this tiny board hit the market, the price for entrée into the world of
programming and electronics was significantly lowered — both in terms of
actual money and in terms of ease of understanding. With the BeagleBone’s
easy-to-use libraries and project examples, a novice can start creating a proj-
ect in no time.

If you're already familiar with these concepts — in the sense that you've
worked with a microcontroller before, such as an Arduino — you’ll find that
the BeagleBone can help you “one-up” your projects because it offers a lot
more computational power and, consequently, a lot more capabilities than
the Arduino and similar microcontrollers. With the BeagleBone, there are very
few hardware limitations or software constraints, so you are able to tackle the
most ambitious projects.

8 Part I: Getting Started with the BeagleBone

&

@%

With an ever-growing community of makers, designers, and programmers
around the world sharing their projects on the Internet, the BeagleBone is
hands down one of the best ways to express your enthusiasm for technology.
We highly encourage that you share your knowledge with others when you
get to that point.

Touring the Original BeagleBone
and the BeagleBone Black

WBER

A\\S

When you first get your BeagleBone, you'll find the board and a Mini USB
cable inside the box. If you purchased an Original BeagleBone, you also get a
4GB microSD card. That’s everything you need to get started, along with your
computer.

There are two distinct versions of the BeagleBone: the Original BeagleBone
and the BeagleBone Black. The two boards are similar except for a few small
details, which we explain in the next two sections of this chapter.

The contents of this book will generally make sense whether you're using the
Original BeagleBone or the BeagleBone Black. Whenever there’s a need to dif-
ferentiate the two, we do so appropriately.

Another familiar, common designation on the web for the BeagleBone Black is
BBB. We don’t use that designation throughout this book, but you may find it
often if you do online research about matters related to the BeagleBone Black.

Whenever we simply use the term BeagleBone, there’s no difference between
the two versions with regard to the concept we’re exploring.

At a first glance, you may feel intimidated about grabbing such bare boards
(see Figure 1-1 and Figure 1-2). They are so tiny and seemingly fragile, yet so
powerful. Certainly, you're curious to understand all the tiny components sit-
ting on top of your BeagleBone.

Following are the components featured in both the Original BeagleBone and
the BeagleBone Black:

v Processor: You can call the processor the “brains” of your BeagleBone.
Both boards feature an ARM Cortex-A8 operating at a maximum speed
of 720MHz for the Original BeagleBone and 1GHz for the BeagleBone
Black. This means that the latter makes a decision/calculation every
0.000000001 second!

v RAM: The Original BeagleBone has 256MB of DDR2 (Double Data Rate 2),
whereas the BeagleBone Black has 512MB of DDR3.

Chapter 1: Introducing the BeagleBone 9

DC power Ethernet
Reset USB client

USR LEDs

6
kR ;u
R150

[T aeca)
@ @ @

Processor 5
S,
%P W ji all 29
—— Headers P8 »-» ®mnoiaadsds N 90|
s j sl L g o
- RAM 26 . & 4
Figure 1-1: - u 9 geaq)
The Original i Ea L\77(’.‘800 i ;-’r "
BeagleBone. -6 1] -4 >
USB host MicroSD card slot
Headers P9
Photo courtesy of Adafruit Industries
v+ microSD card slot: The Original BeagleBone doesn’t have any built-in
memory, so it always needs to have a microSD card inside to be able to
work. By default, it comes with a 4GB microSD card. The BeagleBone
Black doesn’t come with a microSD card because it has built-in memory.
Regardless, you can still insert a microSD card into it to install or update
your operating system or because you want to have more available
memory to play around with.
+* DC power connector: Your BeagleBone needs 5 volts (V) and 500 milli-
P amps (mA) of direct current to power up.

Connecting the BeagleBone to your computer with a USB cable also pro-
vides the necessary power for the board to power up.

If you have a connector that fits into your BeagleBone connector, that

QUING/ doesn’t necessarily mean that it’s the right power adapter! Not all power
adapters provide exactly 5V; some of them actually provide 12V. You
also need to check for the connector’s polarity; the center ring has to
provide the 5V and the outer ring has to provide Ground (GND). You
need to be careful. Even though the board has a voltage regulator, feed-
ing it excess power or wrong polarity could permanently damage it!

1 0 Part I: Getting Started with the BeagleBone

DC power Ethernet

USR LEDs

USB client

eMMC

Processor

RAM

|
Headers P8

Figure 1-2:
The
BeagleBone
Black.
|

MicroSD card slot Micro-HDMI

User boot button
USB host

Headers P9
Serial debugger

v USB client: Both boards offer an USB client for powering up, communi-
cations, and debugging.

+* USB host: Both boards include one USB port. This port enables you to
connect peripherals such as a keyboard or a USB stick.

v~ Ethernet: Both boards feature a standard RJ45 Ethernet port. By plug-
ging an Ethernet cable in it and connecting the BeagleBone directly to
a router or by sharing the Wi-Fi connection of your computer, you can
easily manage software on your BeagleBone, as well as build projects
that require an Internet connection.

1~ Headers: The BeagleBone headers, labeled P8 and P9, can be used in
many ways. You can use them to insert capes or supply power, for exam-
ple, and you can program them to establish communications with other
devices or act as inputs or outputs.

v~ USR LEDs: The USR LEDs indicate the status of your board:
® USRO: Blinks for as long as the system is running

e USRI: Blinks whenever the microSD card is being accessed

Chapter 1: Introducing the BeagleBone

e USR2: Blinks to indicate that the central processing unit (CPU) is
active

e USR3: For the BeagleBone Black, this LED blinks when the eMMC
(embedded MultiMediaCard) memory is being accessed

+” Reset button: This button resets your board when you press it. Keep in
mind, though, that your BeagleBone is just like a regular computer; you
should reboot it this way only when it crashes.

Besides the previously mentioned components, the BeagleBone Black has a
few additional components (refer to Figure 1-2). These are:

v eMMC: The eMMC memory is the built-in memory on your BeagleBone
Black. The amount you have depends on your BeagleBone Black’s revi-
sions (Rev):

® BeagleBone Black Rev A and B: 2GB of eMMC memory
® BeagleBone Black Rev C: 4GB of eMMC memory

v Micro HDMI: This port is used to connect your BeagleBone Black to a
computer display or a television set.

v~ Serial header: The BeagleBone Black has a separate header for one of
its serial ports, enabling you to easily connect a USB-to-TTL serial cable
(read Chapter 3 for more on this topic).

+ Power button: If you press the power button, the board shuts down
after a few seconds. You can turn it ON once more by pressing the power
button again. You can also do a full power cycle by pressing the board
for about 10 seconds; the board turns OFF and then comes back ON. You
should avoid this, though, as it may corrupt the eMMC or SD card. Use it
only if your board is not responding to your commands.

1 User boot button: By default, your BeagleBone Black boots from onboard
memory with the operating system (OS) installed there. By holding down
this button when you power the board, you indicate that you want it to
boot from the microSD card. You also use this button to install an operating

\‘&N\BEB system on the eMMC.

Re,

If you're buying a BeagleBone now, it’s very unlikely that you’ll find an Original
BeagleBone.

You can find all the boards available if you visit http: //beagleboard.org/
boards. At the bottom of the page, you also see a table that compares the
features of the boards. Additionally, at that same link you can find distributors
all around the world that have the BeagleBone Black (and perhaps the other
boards) available for purchase.

\\3

11

http://beagleboard.org/boards
http://beagleboard.org/boards

Part |: Getting Started with the BeagleBone

Original BeagleBone and BeagleBone
Black interfaces

If you're an advanced user, knowing the sup-
ported interfaces is often quite important, so
they're listed here. If the following list makes no
sense to you, don't worry; the book covers some
of these concepts. For now, the important thing
to know is that both the Original BeagleBone
and the BeagleBone Black support a huge
number of different interfaces, enabling you to
connect with most devices and components.

The following list includes interfaces featured
on both boards:

v 4x UART
v 8x PWM
v LCD

v GPMC

v MMC1

v 2x SPI

v 2x12C

v A/D converter
v 2x CAN

v Bus

v 4timers

Additionally, the Original BeagleBone features
two other interfaces:

v FTDI USB to serial
v JTAG via USB

Discovering the BeagleBoard and
BeagleBoard-xM

The BeagleBoard appeared on the scene in
2008. The BeagleBoard xM showed up two
years later. These two boards differ somewhat
from the BeagleBone Black and the Original
BeagleBone, so this book wasn’t written with
support for these platforms in mind.

Despite being older, these boards still offer a lot
of capabilities and may even be advantageous

for some very specific, high-end projects. For
hobbyists, however, the BeagleBone Black is
hands down the best option due to its reduced
cost and great versatility. Also, it's a much
better tool to use to get initiated in electronics
and computation.

Chapter 1: Introducing the BeagleBone ’3

Exploring Uses for the BeagleBone

The BeagleBone is one of the best tools to use to discover programming and
electronics. It’s also a good way to see and understand more closely how a
computer works. Throughout this book, you explore some of the many capa-
bilities that this board offers.

You can create electronics projects, for example, by using BoneScript (see
Chapters 7 and 8) and Python (see Chapters 9 and 10). You can use the
BeagleBone to build a web page (see Chapter 13) and to run a home automa-
tion webserver (see Chapter 15). You can build projects to automatically
access your email, notify you when a new one arrives and display it on an
external screen (see Chapter 14).

You can control your BeagleBone remotely with the Linux terminal (see
Chapter 4) and even set up the BeagleBone Black as a desktop computer
(see Chapter 12). For such a low-cost device, the variety of uses for the
BeagleBone is nothing short of amazing. And all these ideas are just scratch-
ing the surface. Just as a beagle is often a person’s best friend, so is your
imagination when it comes to playing around with the BeagleBone.

Accessorizing Vour BeagleBone

Digital Electronics can quickly become an expensive hobby, but to get
started, you need to spend only a few bucks on a BeagleBone Black. With a
BeagleBone Black and a Mini USB cable, you have everything you need to
create your first project: making the onboard LEDs blink. Don’t feel over-
whelmed by all the accessories listed in this section, because you don’t need
all of them right out of the gate. You may find that you already have most of
these accessories on hand, so you may need to purchase only some of the
accessories to complete our projects.

Here’s a list of all the accessories you may need for the projects covered in
this book:

v USB A-to-Mini B cable: The BeagleBone comes with one Mini USB
cable. This cable not only powers up your BeagleBone, but also enables
you to connect your BeagleBone to your computer. (Read more about
this topic in Chapter 3.)

v microSD card: The Original BeagleBone doesn’t have any kind of inter-
nal memory, so you need a microSD card to install and run the operating
system; the Original BeagleBone already comes with a microSD card. On
the other hand, the BeagleBone Black Rev A and B have 2GB of built-in

7 4 Part I: Getting Started with the BeagleBone

\\3

|
Figure 1-3:

A microSD
card,
microSD
card
adapter, and
external SD
card writer.
|

\\3

memory, and Rev C has 4GB. The operating system can be run on the
built-in memory and so these boards don’t include a microSD card in
their standard package

You must have a microSD card to install a new operating system or

to update the existing one, however. We recommend that you get a
branded microSD card with at least 4GB of storage for your BeagleBone
Black.

v microSD card adapter and writer: Most computers have a slot for SD
cards, so you can insert your microSD card into a microSD card adapter
(see Figure 1-3) and connect it to your computer. If your computer doesn’t
have an SD card slot, you might consider buying an SD card writer.

mitsai &

SD card reader

microSD card adapter

‘ microSD card

There are many different types of microSD cards and SD card writers. Generally,
their prices are based on the speed at which data is written on them. We recom-
mend that you go for branded versions of both the writer and the card, and that
you get at least a class 4 microSD card.

v Ethernet cable: Connecting your BeagleBone to your router with an
Ethernet cable enables you to install and update software; additionally,
the BeagleBone is a great platform to create Internet-related projects.
It also provides you an extra way to control your BeagleBone remotely.
(Read more about this topic in Chapter 3.)

v+ 5V DC power supply: The BeagleBone can be powered up with a Mini
USB cable by just being connected to your computer, but if you want to
use your BeagleBone at maximum performance, capability, and featuring
lots of USB peripherals — and/or for portable applications — we recom-
mend that you use the 5V barrel connector. The power adapter that’s
required needs to provide 5V over a 5.5mm outer diameter and 2.1mm
inner diameter. It must supply a minimum of 500 mA to power up your
BeagleBone.

Chapter 1: Introducing the BeagleBone

A USB connection provides either 500 mA or 900 mA of current (depend-
ing on whether it is USB 2.0 or USB 3.0). This is generally enough to have
a BeagleBone connected through Ethernet and powering several electri-
cal components. However, if you connect many USB peripherals, you are
advised to go for an external 1.2A to 2A power supply.

a\\J

v Display: Most displays with an HDMI output work with the BeagleBone
Black. You can also buy an LCD cape that’s specially designed to act as a

\BER display (see Chapter 6).
\3
S Not all displays are compatible with the BeagleBone Black. Make sure

that you carefully read the sidebar at the end of this chapter to find out
more about compatible accessories.

The Original BeagleBone doesn’t have a built-in Micro HDMI port. Worry
not, though: You can still output image and sound with an LCD cape.

v HDMI-to-Micro HDMI cable: If you have a BeagleBone Black with an
HDMI-to-Micro HDMI cable, you can output video and sound to a dis-
play (see Figure 1-4).

1 USB keyboard and mouse: Most standard USB keyboards and mice are
compatible with the BeagleBone. Keep in mind, though, that the board
has only a single USB host port, so you have to connect a USB hub if you
want to add more than one peripheral (see Figure 1-4).

|
Figure 1-4:
BeagleBone
Black as

a desktop
computer,
connected
to a display,
a mouse,
and a
keyboard.
|

7 6 Part I: Getting Started with the BeagleBone

\\3

\\3

+* USB hub: The USB hub enables you to expand the number of USB ports
on your BeagleBone. This accessory is essential if you want to have mul-
tiple peripherals connected at the same time (see Figure 1-4).

v+ USB-to-TTL serial cable: If you have a BeagleBone Black, this cable could
be useful to debug your BeagleBone Black during the booting process.

The Original BeagleBone has this feature built in, so you don’t need the
extra cable.

v Other cables: If your display doesn’t have an HDMI output, you may be
able to use a Micro HDMI-to-VGA or Micro HDMI-to-DVI converter. That
way, you can repurpose your old desktop display.

Using converters for the Micro HDMI adds a whole other layer of incom-
patibilities. We recommend that you check our sidebar at the end of this
chapter.

v Case: The BeagleBone arrives without a case, and some people actually
prefer that look and feel, but it’s important that your board stay away
from static electricity, conductive metal, and liquids. It’s a piece of elec-
tronics, after all. The best way to protect your BeagleBone is with a case.

+” Breadboard: Using a solderless breadboard is the best way to proto-
type. It’s really easy to use, as it doesn’t require any soldering. That
means that you don’t make any permanent connections and can easily
modify your circuit at any time.

v Multimeter: A multimeter is a useful device that measures many things
related to electricity.

v Soldering iron: Solder is a metal that liquefies easily when heat is applied
to it and quickly goes solid again the moment it’s exposed to air tempera-
ture. A soldering iron is used to melt solder to establish permanent metal-
lic connections.

v Other components: Some projects in this book use extra components
such as LEDs, servos, motion sensors, and electrical wires. You don’t
need to get anything right away; we tell you when the time is right.

Compatible accessories for the BeagleBone Black

If you're looking for additional information exist, but the ones that are listed have been
regarding compatible accessories for your verified to work with the BeagleBone Black. If
BeagleBone Black, visit http://elinux. youraccessoryis notworking properly, butyou
org/Beagleboard:BeagleBone find its name on that list, then you can be sure
Black_Accessories. that the problem is not an incompatibility, and

Note: The accessories listed on that web page
aren’t the only compatible accessories that

you can continue to troubleshoot.

http://elinux.org/Beagleboard:BeagleBone_Black_Accessories
http://elinux.org/Beagleboard:BeagleBone_Black_Accessories
http://elinux.org/Beagleboard:BeagleBone_Black_Accessories

Chapter 2

Installing the Operating System

In This Chapter

Getting to know Linux

Obtaining your Linux distribution

Preparing your microSD card

Preparing the onboard eMMC

Fe BeagleBone is a tiny computer with all the features of today’s
computers, which ultimately means that it also needs an operating system
(0S). Because BeagleBone is an open-hardware project, it runs on Linux — an
open-source OS. Using free software makes using the board less expensive and
creates the perfect tool to use to learn programming.

As with any other computer, you can use a BeagleBone to store files, surf

the web, install applications, and do pretty much all the everyday stuff that
you're used to doing. The real advantage of your BeagleBone over a typical
computer, however, is that the BeagleBone has input and output pins that
bridge the gap between the realms of computing and electronics. With a
BeagleBone, you can create and control interesting electronic projects with

a very high degree of complexity. After all, the foundation of your project is a
computer. Also, because the BeagleBone is a low-cost device, it doesn’t cost a
fortune to replace it if you somehow break it!

This chapter explains which distribution of Linux to use, as well as where you
can download it and how to install it. In Chapter 4 and Chapter 12, you dive
deeper and see how to use the Linux shell and its desktop environment.

If your BeagleBone has just arrived, and you haven’t done anything with it yet,
your board already has a fresh OS installed. To prevent unexpected issues,
however, you should be running the latest version of the same OS shown in
this book, so we recommend that you follow the instructions in this chapter to
ensure that everything throughout the book works for you.

The BeagleBoard Black comes from the factory with an empty microSD card
slot. We highly recommend that you buy a microSD card with at least 4GB of
storage to install the new Linux distribution as described in this chapter. If you
have a 2GB card handy, however, you can use it to get started. Keep in mind,

7 8 Part I: Getting Started with the BeagleBone

though, that there’ll be very little space left on the card after you install Linux.
You'll be able to use it to work through the procedures in the following chap-
ters, but eventually, you’ll need more memory.

Introducing Linux

Linux was created as a free OS for personal computers. Because of its many
advantages, it quickly made its way into a plethora of applications. Nowadays,
Linux is used on a wide range of hardware platforms, such as mobile phones,
tablets, embedded systems, servers, and routers.

Linux is a good example of the strength of an open-source community. No
company developed this OS. Instead, thousands of people all around the
world contributed their knowledge to create and improve this software — at
no cost at all.

Linux is hands-down the most popular software around for programmers and
developers, mainly because anyone can have full access to the code, modify
it, study it, and distribute it. Read Chapter 4 for a more detailed description
of Linux, including its advantages and proper use.

GMBER The Linux kernel is the core of your computer’s software. It’s the lowest level
of software that interfaces with the hardware; it’s the code that controls every-
thing, translating whatever you do on your computer into a language that the
hardware can understand.

Selecting a Distribution

A distribution is a complete Linux package that contains the Linux kernel and
a couple of other pieces of open-source software that provide a wide variety
of functionalities.

Knowing the factory defaults
on your BeagleBone

We recommend that you follow the instructions in this chapter to install the
latest Debian distribution, which is used throughout this book. Every new
BeagleBone is configured to work out of the box by default, however. The
original configuration depends on your board:

Chapter 2: Installing the Operating System ’ 9

»* The Original BeagleBone includes a microSD card that has the Angstrém
distribution installed.

v BeagleBone Black ships from the factory with Linux installed on the
board’s eMMC memory and with an empty microSD card slot, which we
recommend that you use to install Debian.

The Linux distribution depends on the board version:

1 BeagleBone Black Rev A and Rev B have Angstrom installed in the built-
in memory.

v BeagleBone Black Rev C comes with Debian preinstalled.

We opted to use the Debian distribution for this book because Debian cur-
rently is the most-supported distribution in this embedded platform. The
next sections of this chapter walk you through the procedure for installing
Debian.

If you want to see a list of all OSes that are fully compatible with BeagleBone,
visit http://elinux.org/Beagleboard:BeagleBoneBlack#
Software_ Resources.

Even though there are plenty of similarities between one Linux distribution
and the next, there are also a few differences. The commands presented
through this book assume that you’re using Debian, which means that some of
the commands that we present won’t work in other distributions.

Downloading your Linux distribution

You need to use a computer to download the distribution from the Internet and
flash your microSD card. (Flashing is the process used when you completely
rewrite a data storage device rather than simply saving files on it.) You can use
a Windows, Mac OS X, or Linux computer; we illustrate how to prepare your
microSD card on all three systems. You can find the official distributions avail-
able for download at http://beagleboard.org/latest-images.

The distribution you need to work with on this book depends on how you
intend to run Linux and is subject to change with future releases. Regardless,
the process of downloading the newest image should be very similar, as
should the respective filenames. You have two alternatives:

v 1If you're booting Linux from a microSD card on a BeagleBone Black or an
Original BeagleBone, download Debian using the file labeled as Debian
(BeagleBone, BeagleBone Black — 2GB SD) 2014-05-14.

v 1If you're booting Linux from your BeagleBone Black’s eMMC memory,
download Debian eMMC flasher using the file labeled as Debian
(BeagleBone, BeagleBone Black — 2GB eMMC) 2014-09-04.

http://elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources
http://elinux.org/Beagleboard:BeagleBoneBlack#Software_Resources
http://beagleboard.org/latest-images

20 Part I: Getting Started with the BeagleBone

\\J

\\J

If you have a BeagleBone Black and, thus, the chance to flash the eMMC
memory, we recommend that you use the second option, which not only
increases system performance, but is also much more practical. You won’t
need to have the microSD card with you at all times.

If you don’t want to reflash the eMMC memory on the BeagleBone Black — in
other words, if you want to keep the factory default OS — you can choose the
standard Debian image and boot the OS directly from the microSD card.

You can download the distribution in two ways. The first way is much simpler
but may take some more time than the second way. Here are your options:

1 Web browser: You can download the distribution directly from your
web browser by clicking the distribution name. When you click the name
of the distribution, a new web page opens. After about 3 seconds, your
file should start downloading.

v BitTorrent: BitTorrent enables you to download larger files faster. It
gathers all the small pieces of the file you want and starts downloading
your file from people who already have them, maximizing the transfer
speed. To use this method, you must have a BitTorrent application on
your computer. When you open the BitTorrent link, a torrent file that’s
compatible with the BitTorrent application is downloaded to your
computer.

You can find a free BitTorrent application that works in all three OSes at www .
utorrent.com.

Decompressing your Linux distribution

The Linux distribution you download is compressed in an .xz file. You have
to decompress the .xz file so that you can access the . img file contained
inside. The procedure you use to decompress the file depends on your
computer’s OS.

Windows
If you're using a Windows PC to decompress your Linux distribution, you

need to install the application 7-Zip. Follow these steps:
1. Go to www.7-zip.org/download.html.
2. Download the . exe file.

3. Run the . exe file to install 7-Zip.

http://www.utorrent.com
http://www.utorrent.com
http://www.7-zip.org/download.html

Chapter 2: Installing the Operating System 2 ’

With 7-Zip installed, you're ready to decompress your .xz file. Follow
these steps:

1. Open the 7-Zip application.
2. Click the Extract icon.
The Extract dialog box opens (see Figure 2-1).

Extracticon

[Ez] C\Users\Rui\Downloads\, - g
File Edit| View Favorites Tools Help
=
L] v owp w X 1
Add Edract Test Copy Move Delete Info
F | g CAUsers\Rui\Downloads\, v
Name Size Modified Created Accessed Astributes Packed Size Comment
DN || 168B-eMMC-. 482868180 2014-06-2315:07 2014-06-2315:04 2014-06-23 1504 A 492868180
Figure 2-1:
Decom- & Exract
pressing Bt
your Linux sers\u\Dowrloads \BBE-e MVC fizsher-debian-7.5-20 14.05-12-23b img R
distribution Fath mose C—
H Full pathr
by using il patranes .
7-Zip for Overtre mode (] Show Passward
sk before overarte v
Windows
8.1. oK Cancel Help
|

3. Navigate to the folder where you saved your Linux distribution.
4. Save the file in your preferred folder, and click OK.

Your . img file is extracted.

Mac 0S X

If you're using a Mac to decompress your Linux distribution, follow these
steps:

1. Go to the App Store.

2. Search for and install the free application The Unarchiver.
3. Navigate to your Downloads folder.

4. Double-click your .xz file.

The decompressing process starts immediately.

22

Part |: Getting Started with the BeagleBone

Linux

If you're using Linux, you don’t need to install a new decompression applica-
tion because Linux already has built-in software that can decompress .xz
files. You see how to extract the . img file in Linux later in section “Flashing a
microSD Card in Linux.”

Flashing and Inserting
Your microSD Card

Chapter 1 suggests that you buy a microSD card for your BeagleBone. If you
followed that recommendation, you should have a 4GB microSD card of at
least Class 4 with an adapter. You have two options for writing the . img file
to a microSD card:

v 1If your computer has an SD card slot, insert your microSD card into a
microSD card adapter (see Figure 2-2) and connect it to your computer.

v If your computer doesn’t have an SD card slot, you need an external SD
card writer. Insert your microSD card into a microSD card adapter (see
Figure 2-2); then insert your SD card into your external SD card writer
and connect it to your computer.

mitsai &

|
Figure 2-2:

A microSD
card,
microSD
card
adapter, and
external SD
card writer.
|

SD card reader

microSD card adapter

microSD card

Flashing an image file to your microSD card isn’t like copying a photograph
or document to your common flash drive. You need to use a special program
that converts the Linux distribution to a couple of files that your BeagleBone
is able to read. The following sections explain how to properly use programs
to flash data storage devices.

Chapter 2: Installing the Operating System 23

|
Figure 2-3:
Flashing a
microSD
card on
Windows by
using Win32
Disk Imager.
|

\NG/
Vg\“

You have to be really careful while flashing your microSD card. Before press-
ing Enter or Return, you need to be completely sure you are selecting the right
device name. Selecting the wrong device name results in irreversible data loss,
such as erasing your computer’s hard disk.

Flashing your microSD card completely erases it. Make sure that you’ve copies
of any files on the microSD card that you may need later.

Flashing a microSD card in Windows

Flashing a microSD card in Windows requires an application called Win32
Disk Imager (see Figure 2-3), which is available for free download.

) Win32 Disk Imager = =

Image File Device
05-14-2gb.img/BBE-£MMCflasher -debian-7.5-2014-05-14-2gb.img| b v

Progress

Version: 0.9.5 Cancel Read Write Exit.

Wiite data in 'lmage File' to 'Device’

Follow these steps to install it:

1. Go to the Win32 Disk Imager download page at http://

sourceforge.net/projects/win32diskimager.

2. Click the Download button to retrieve the installer.

3. Run the Win32 Image Writer application installer.
With Win32 Disk Imager installed, you're ready to write the . img file to your
microSD card. Follow these steps:

1. Connect your microSD card to your computer.

2. Open Win32 Disk Imager.

3. Select your Linux-distribution . img file.

4. Select your microSD card as the device.

This process erases and overwrites the selected device. Be certain that
you've selected the microSD card, and be certain that you have copies
of any files that you need from the card. We can’t stress this enough: Be
certain that the microSD card is the device you chose!

http://sourceforge.net/projects/win32diskimager
http://sourceforge.net/projects/win32diskimager

24 Part I: Getting Started with the BeagleBone

5. Click Write to start writing the image to the microSD card.

This process takes between 10 and 20 minutes, depending on your
microSD card class number and your SD card writer’s transfer speed.

Flashing a microSD card in Mac 0S X

On a Mac, you can use the Terminal application to copy the image to your
microSD card, as shown in Figure 2-4.

800 } rui — bash — 107x25 e
Last login: Sun Jul 13 16:16:18 on ttys0Bo
ruis~ ruis df -h
Filesystem Size Used Avail Capacity iused ifree ¥iused Mounted on
/dev/disk@s2 46561 O6GL 36961 21% 25268096 06626646 21% /
devis 108Ki 189Ki 8BL 100% 858 o 100% /dev

N | ncp -hosts @i @B @Bi 100%] ® 100% /net
map auto_home @Bi @81 OB 10% ° o 180% /home

, /dev/diskl 96Mi 74MI 2aMi TT% s12 @ 180% /Volumes/boot
Flgure 2-8: | icevrdiskest 7.361 z.eMi 7.361 1% 1 ® 100% /Volumes/MICROSDCARD

. ruii~ rui$ sudo diskutil umount /dev/disk2sl

ruii~ rui$ sudo dd if=~/Downloads/BBB-eMMC-flasher-debian-7.5-2814-85-14-2gb-1. ing of=/dev/disk2 bs=1m
FlaShmg a 1700+ records in

H 1700+ records out

m|crOSD 1782579208 bytes transferred in 1011.784529 secs (1761B17 bytes/sec)

ruiz~ rui$

card on
a Mac
by using
Terminal.
|
Follow these steps:
1. Navigate to /Applications/Utilities.
2. Double-click Terminal to open a new Terminal window.
3. Connect your microSD card to your computer.
4. Type df -h to get a listing of the devices connected to your computer.
5. Find out which device is your microSD card.
It will be something similar to /dev/sdisk2s1.
QMING/ Be very careful that you choose the right /dev device. Using an incorrect
Y device name results in permanent data loss from the device you choose.
You can even overwrite the disk that contains your computer’s OS. We
can’t stress this enough: Be certain that the microSD card is the device
you choose!
6. Type sudo diskutil umount /dev/disk2s1 to unmount your micro SD
A\ card.

The command is umount even though you say “unmount.”

Chapter 2: Installing the Operating System 25

\NG/
g“‘“

|
Figure 2-5:
Flashing a
microSD
card on
Linux by
using the
terminal in
Ubuntu.
|

WING/
&

For the next command, you have to ignore the device number. For this
example, /dev/disk2s1 becomes /dev/disk2.

7. Run sudo dd if=~/<downloads folder>/<filename>.img of=/dev/disk2
bs=1m.

This process takes between 10 and 20 minutes, depending on your
microSD card and your SD card writer’s transfer speed.

Flashing a microSD card in Linux

With Linux, you don’t have to install extra applications; the OS already has
everything you need to decompress the .xz file and flash your microSD card
with the latest OS (see Figure 2-5).

(] rui@rnt: ~/Downloads

rui@rnt:~$ cd Downloads
rui@rnt:~/Downloads$ xz -dk BBB-eMMC-flasher-debian-7.5-2014-05-14-2gb.1img.xz
rui@rnt:~/Downloads$ df -h
i Size Used Avail Use% Mounted on

16G 3,7G 12G 25% /

4,0K 0 4,8K 0% /sys/fs/cgroup

2,96 4,0K 2,9G 1% /dev

588M 1,2M 587M 1% /run

5,0M ® 5,6M 0% /run/lock

2,9G 228K 2,9G 1% /run/shm

100M 72K 100M 1% /run/user
/dev/sda7 356 2,2G 31G 7% /home
/dev/sdb1l 932G 533G 399G 58% /media/rui/RUI
/dev/sdd1 3,7G 906M 2,8G 25% /media/rui/MICROSDCARD
rui@rnt:~/Downloads$ sudo umount /dev/sddi
[sudo] password for rui:
rui@rnt:~/Downloads$ sudo dd if=~/Downloads/BBB-eMMC-flasher-debian-7.5-2014-05-14-2gb.1img
of=/dev/sdd bs=1M
1700+0 records in
1700+0 records out
1782579200 bytes (1,8 GB) copied, 351,67 s, 5,1 MB/s
rui@rnt:~/Downloads$

To flash a microSD card in Linux, follow these steps:

1. Press Ctrl+Alt+T to open the terminal window.
2. Connect your microSD card to your computer.
3. Type cd to navigate to your Downloads folder (cd /Downloads).
4. Type xz -dk <filename>.img.xz to decompress your .xz file.
5. Type df -h to get a list of the devices connected to your computer.
6. Find out which device is your microSD card.

It will be something similar to /dev/sdb1l.

Be very careful that you choose the right /dev device. Using an incor-
rect device name results in permanent data loss from the device you
choose. You can even overwrite the disk that contains your OS. We can’t
stress this enough: Be certain that the microSD card is the device you
choose!

26

Figure 2-6: =

Inserting

amicroSD 3

cardintoa

BeagleBone ;

Black.

Part |: Getting Started with the BeagleBone

7. Type sudo umount /dev/sdbl to unmount your micro SD card.
The command is umount even though we say “unmount.”

For the next command, you have to ignore the device number. For this
example, /dev/sdbl becomes /dev/sdb.

. Run sudo dd if=~/<downloads folder>/<filename>.img of=/dev/sdb
bs=1m.

This process takes between 10 and 20 minutes, depending on your
microSD card and your SD card writer’s transfer speed.

Inserting your microSD card

When your microSD card is all set, you need to insert it into your BeagleBone.
The card slot is on the back of your board, right next to the MicroHDMI port,
as shown in Figure 2-6. Just press the card gently into the slot until you feel

a click. Done! Your BeagleBone now happily boots with the freshly installed
Debian distribution.

Micro HDMI

wnithy
EE!ZIJ
0210 @
am 66y

Sm) Em"'"""'d
E5 96y
Ei:mo

™ -
31 112

%) "wEQ“' -
] E" LyTE = ™
11D @i ! .

Y112 fim e |
0N
G |
s
HE5s [C
‘an 2@ o
22 &

DO

-'N'-P’

—— =

FO

oo o &

i ech.J:JéJLR‘. Y

srmmmmssmmans IO ITE S
e
§E8aESRaR022TSTMIRIESS

=7/ plehhkhRhRRREREREe 114 773
[l mesemmseracdt T LI LI TLVETLILIL T T T TP Y
2933200000300 0|
2009022002220 0

MicroSD card slot MicroSD card

If you're going to boot Linux directly from a microSD card with your BeagleBone
Black, you need to hold the user boot button down (see Figure 2-7) for about

5 to 7 seconds every time you power on your BeagleBone Black. Otherwise,

the BeagleBone Black boots from the preinstalled OS on the onboard eMMC
memory.

Chapter 2: Installing the Operating System 2 7

|
Figure 2-7:
The user
boot button
on the
BeagleBone
Black.

User boot button

Flashing the Onboard e MMC

A\\S

A\

If you're using a BeagleBone Black and want to flash your onboard eMMC
memory, you need to do one more thing.

If you're going to boot Linux directly from a microSD card or you are using an
Original BeagleBone, you can skip this section and go straight to Chapter 3.

The amount of built-in storage of your BeagleBone Black depends on the
board revision:

1 BeagleBone Black Rev A and Rev B have 2GB.

1 BeagleBone Black Rev C comes with 4GB.
When we talk about using built-in storage, we mean something slightly dif-
ferent from running your OS on your microSD card. You don’t need to worry

about the fact that BeagleBone Black Rev A and Rev B have only 2GB of
onboard eMMC memory.

28 Part I: Getting Started with the BeagleBone

WING/
&

To flash your BeagleBone Black’s eMMC memory, follow these steps:

1.

While your BeagleBone Black is powered off, insert your microSD
card into the microSD slot (refer to Figure 2-6).

. Hold down the user boot button of the BeagleBone (refer to

Figure 2-7).

. While holding the user boot button, press the power button on your

board. When the board is powered up, you should continue to hold
the user boot button for 5 to 7 seconds and then release it.

The USR LEDs blink during this process.

Flashing can take about 30 to 40 minutes. When this process is finished,
all four USR LEDs will be off.

4. Unplug your board.

5. Remove the microSD card.

If you don’t remove the microSD card the next time you boot your
BeagleBone Black, or if you remove the microSD card while the flashing
process is occurring, your eMMC memory can get corrupted and your
BeagleBone Black won'’t boot. If the card does become corrupt, you have
to repeat this section again to flash your BeagleBone’s eMMC memory
properly.

You'’re done! The next time you plug in your board, it boots with the new OS.

Chapter 3
Connecting Your BeagleBone

In This Chapter
Connecting your BeagleBone via USB and installing drivers
Blinking the onboard LEDs
Controlling your BeagleBone remotely via SSH and serial

' he BeagleBone was designed in such a way to be both easy and inexpen-
sive to set up. With just a computer and a Mini USB cable, you can start
programming your BeagleBone right off the bat.

This chapter presents multiple ways to accomplish something that we’ve
found to be quite useful: controlling your BeagleBone remotely. We prefer to
program the BeagleBone by connecting a USB cable to a computer or having
an Ethernet cable connected to a router.

Connecting your BeagleBone to a terminal enables you to do things such as
run scripts, install software, and manage files.

Connecting via USB

If your BeagleBone is running the OS through the microSD card, insert it
before powering up your BeagleBone. Then follow these steps to set up your
BeagleBone:

1. Using the Mini USB cable that came with your board, connect your
BeagleBone to your computer.

After a few seconds, a drive called BeagleBone Getting Started should
appear in your computer’s file system. Your BeagleBone comes with
everything you need to get started: the drivers for its setup, as well as
documentation and project examples.

2. Go to your file system, and double-click the BeagleBone Getting
Started disk.

30 Part I: Getting Started with the BeagleBone

3. Open the file called START.htm in your default web browser (see
Figure 3-1).

= BeagleBone Getting Started (D:) - g
Home Share View (2]
T § » ThisPC » BeagleBone Getting Started () v & | | Search BeagleBone Getting St.. £
X Favorites Name ‘ Date modified Type Size
B Desktop ! App 141622 Filefolder
8 Downloads debug File folder
| Recent places Docs File folder
! Drivers File folder
& OneDrive ! dtbs File folder
scripts File folder
¥ Homegroup £ autorun Setup Information 1KB
=) Text Document 18
18 This PC ¢4 initrd Disc Image File 2803KB
[LicensE Text Document 418
€ Network [Mo File 80 KB
@ README Chrome HTML Do. 17 K8
|| README.md MD File 1K8
[50Csh SHFile 1K8
@ START Chrome HTML Do... 17KB
) u-boot Disc Image File 393 KB
1 uknv Text Document 2k8
| ulnitrd File 2203K8
| 2image 23/04/2014 1622 File 3631KB
|
Figure 3-1:
START.htm
selected in
. 19items 1 item selected 16,4 KB =]
Windows 8.1. _
=)
— 1 S

Installing drivers

With the file you just opened on your web browser, click Step 2: Install
Drivers in the menu on the left side of the web page (see Figure 3-2). Use the
“\gN\BEI? appropriate installation method based on your OS (Windows or Mac OS X).
<
&

If you're using Linux, it isn’t necessary to install the drivers.

v Windows: If you're using Windows, we recommend that you try to install
the drivers for the 64-bit version. If that installation fails, you're running
a 32-bit version, so install the 32-bit drivers. Doing things this way guar-
antees that you won'’t install 32-bit drivers on a 64-bit machine.

v Macintosh: In Mac OS X, you have to install the network and serial driv-
ers. This process is very straightforward. After you open each driver file,
you click the Next button until the installation is finished.

Chapter 3: Connecting Your BeagleBone 3 ’

Click to install drivers

Operating | ycp privers
System
Windows. If in doubt, try the 64-bit installer first.
®apy Beptnstaler
+ MNote #1: Windows Driver Cerffication waming may pop up two or three fimes
Click “Ignore”, “Install” or "Run”
Step1: @ « Note #2: To checkif youe running 32 or 64-bit Windows see this:
Plug in BeagleBone via USB hitp:iiSUpPOrt Micros oft com/kn/G27218.
S + MNote#3: On systems without the latest senvice release, you may get an error
Install drivers Windows 32.bit installer [ﬂxcqnﬂﬂn7n) Inthat casg p\ea;e |nsla\|lrvemlmwmg annrel_ry' o
(32-bit) hitp:iiwww. microsoft.com/ d on.aspx?id=13523,
—— Step 3: « Note#4: You may need to reboot Windows
Browse to web server on board
Figure 3-2: TR Mac Oosx Lot Install both sets of drivers.
Installing Updte 1o latest sotware
. Linux mkudevrule.sh Driver installation isn't required, but you might find a few udev rules helpful.
the drivers. Otner software options
E— parTwaIeoee menaon Note: Additional FTDI USB to serialt/TAG information and drivers are available from

Browsing to your BeagleBone

After your drivers are installed, you need to open an URL on your web
browser. Enter 192.168.7.2 in the address bar.

‘x&N\BEB We recommend that you use only Google Chrome or Mozilla Firefox, because
& other web browsers don'’t offer some JavaScript functionalities that the
BeagleBone requires. Both web browsers are free to download at their official
websites: https://www.google.com/chrome/browser and https://
www.mozilla.org.

If everything is working properly, you should see a green box at the top of the
screen that says Your board is connected! (see Figure 3-3).

BoneScript option

board.org

BeagleBone 101 Your board is connected!
A BeagleBone Black rev 0008 S/N 1614BBBK0872 running BoneScript 0.2.4 at 192.168.7.2

Update image

BeagleBone: open-hardware expandable computer
—

Artist-tes

Figure 3-3:

A web page o
getPlatiorm()
hosted by a wehiit

getPinMode(

BeagleBone. G s
> digitalwrite()
S ot

https://www.google.com/chrome/browser
https://www.mozilla.org
https://www.mozilla.org

32 Part I: Getting Started with the BeagleBone

Blinking the onboard LEDs

On the leftmost menu of the web page, click BoneScript (refer to Figure 3-3).
A new page with a couple of BoneScript examples opens.

Try your first blink-an-LED project. Don’t worry about the programming; you
don’t need to understand it at this point. We just want to give you a glimpse
of what you should be capable of doing with your BeagleBone by the time
you work your way through more of this book. For now, just sit back, click
the Run button (see Figure 3-4), and watch the magic happen — by looking at
your board, of course.

Example 2

Example 1 Run button

/[BeagleBoard.org - bonell % |

« C A | [4192.168.12/Sypport/BoneScript/ Tl »

Turn LEDs on’|| run

3

ne:green:usr';

", he , resetUSR1);

Figure 3-4:
Running
BoneScript

examples. - _

r', "mmc0', resetUSR2):

, "cpul', resetUSR3);

) ()

Example 3

The first example (refer to Figure 3-4) turns ON all four USR LEDs. Take a look
at Figure 3-5 to see where they're located.

Chapter 3: Connecting Your BeagleBone 33

|
Figure 3-5:
BeagleBone
Black’s four
USR LEDs
turned on.
|

LEDs

The second example (refer to Figure 3-4) should turn all four USR LEDs off,
and the last example (also shown in Figure 3-4) returns the LEDs to their
default state. They blink in the way they normally do from the moment you
power up the BeagleBone.

If nothing occurs when you click the Run button in all three examples, some-
thing must be wrong! Make sure that your BeagleBone is connected to your
computer. If it still doesn’t work, it may be because the browser you're using
doesn’t support these features. In that case, use Chrome or Firefox as recom-
mended earlier.

Connecting via SSH over USB

SSH (which stands for secure shell) is a method of establishing a communica-
tion with another computer securely. All data sent via SSH is encrypted. SSH
is based on a Unix shell, so it allows you to access your BeagleBone files from
a remote machine by using terminal commands. It has grown to be one of the
most popular methods for communication between different devices.

34 Part |: Getting Started with the BeagleBone

“NG’
$

Unix was an operating system that originated in the mid-1960s, with a few
characteristics that made it quite appealing: portability, multitasking, and mul-
tiuser capability, and a few more advanced concepts. Today, many OSes are
based on Unix; the most prominent are Linux and Mac OS X.

Windows

If you use Windows, you need to download and install a free application
called PuTTY. Here’s how to install it:
1. Open your web browser.
2. Go to www.putty.org.
3. Click the putty.exe file to download it.
4. Run the putty. exe file to install the software.
With PuTTY installed, power up your BeagleBone and follow these steps:
1. Connect your BeagleBone to your computer by using a Mini USB
cable.
2. Open PuTTY.
3. In the PuTTY Configuration dialog box, select SSH.
4. Type 192.168.7.2 as the host.

The port needs to remain at the default number, which is 22. The dialog
box should have the settings shown in Figure 3-6.

5. Click Open.
6. When you’re asked to log in, type root and press Enter.
7. When you’re asked to type a password, press Enter.
By default, no password is set.
When you connect your computer to your BeagleBone for the first time, you're
prompted by a message warning you that you’re attempting to establish a con-

nection with an unknown host. This message just means that your computer
and the BeagleBone aren’t friends yet. Simply click OK to proceed.

http://www.putty.org

35

Chapter 3: Connecting Your BeagleBone

|
Figure 3-6:
PuTTY set-
tings for
establish-
ing an SSH
communica-
tion over
USB.

SSH option
PuTTY Configuration E
Category:
=)- Session Basic options for your PuT|TY session
: T. L_Dglg'ng Specify the destination you want to fonnect to
=) Terminal
Y -Kleq,'bcard Host Name {or IP address) Port
. Bel 192.168.7.9 2
‘... Features Connection type:
=} Window (JRaw (O Telnet () Rlogin (®SSH () Senal
i Appearance)
- Behaviour Load, save or delete a stored session
. Translation Saved Sessions
- Selection
i Colours -
i Default Settings
=J- Connection Load
- Data Save
- Proxy
- Telnet Delete
- Rlogin
- SSH
- senal Close window on exit: .
(OMways (OMNever (®) Onlyon clean extt
About Open Cancel

Mac 0S X and Linux

In Mac OS X and Linux, you can use the default terminal window to establish
an SSH communication, because SSH comes in all Unix-based OSes. Follow
these steps:

1. Connect your BeagleBone to your computer by using a Mini USB
cable.
2. Open a new window, as follows:

¢ On a Mac, navigate to /Applications/Utilities and double-
click Terminal to open a new terminal window.

¢ In Linux, press Ctrl+Alt+T to open a new terminal window.
3. Type sudo ssh root@192.168.7.2.
4. Enter your computer password, and type yes.
5. When you’re asked to type a password, press Enter or Return.
By default, no password is set.

Your terminal window should look like Figure 3-7.

36 Part I: Getting Started with the BeagleBone

|
Figure 3-7:
Connecting a
BeagleBone
via SSH

over USB

by using

the Mac
Terminal
application.

WING/
&

®@ 00 7% rui — ssh — 80x24 e

Last login: Sun Jul 13 15:35:53 on console
rui:~ rui$ sudo ssh root@192.168.7.2
Password:

Debian GNU/Linux 7

BeagleBoard.org BeagleBone Debian Image 2014-04-23

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian
Last login: Wed Apr_?! 20:24:32 2014 from 192.168.7.1

root@beaglebone:~#

When you connect your computer to your BeagleBone for the very first time,
you're prompted by a message warning you that you're attempting to estab-
lish a connection with an unknown host. This message just means that your
computer and the BeagleBone aren’t friends yet. Simply click OK to proceed.

Connecting via SSH over Ethernet

Having an Ethernet cable connected to your BeagleBone ensures that you
have access to the Internet. This access is really handy, as you may need to
install or update an application or work on Internet-related projects.

Establishing this type of communication also enables you to access your
BeagleBone from any other devices as long as you remain connected to the
same network.

Simply open your terminal window or PuTTY, and you can establish an SSH
connection in a similar fashion to the method you use to connect via USB, as
described in the following sections.

Windows

If you haven’t downloaded it yet, you need a free application called PuTTY to
establish an SSH connection using a Windows PC. Refer to the instructions
earlier in this chapter in the “Connecting via SSH over USB” section

With PuTTY installed, you need to power up your BeagleBone and follow
these steps:

37

Chapter 3: Connecting Your BeagleBone

WING/
&

\NG/
&éb“

|
Figure 3-8:
PuTTY set-
tings for
establish-
ing an SSH
communica-
tion over
Ethernet.
|

1. Power up your BeagleBone with a Mini USB cable or with a 5V DC
power supply.

Any time that it is possible, it’s recommended that you power your
BeagleBone with a DC power supply so that you are guaranteed to not have
any issues with power. Make sure that the outer ring of the plug is ground
and the center is 5V. You can find more information about this in Chapter 1.

. Connect an Ethernet cable from your router to your BeagleBone.
. Open PuTTY.

. In the PuTTY Configuration dialog box, select SSH.

. Type beaglebone as the host.

U1 & W N

The port needs to remain at the default number, which is 22.
Your dialog box should have the settings shown in Figure 3-8.
6. Click Open.
7. When you’re asked to log in, type root and press Enter.
8. When you’re asked to type a password, press Enter.
By default, no password is set.
When you connect your computer to your BeagleBone for the very first time,
you’re prompted by a message warning you that you're attempting to estab-

lish a connection with an unknown host. This message just means that your
computer and the BeagleBone aren’t friends yet. Simply click OK to proceed.

SSH option
R PuTTY Configuration | < ||
Category:
-} Session Basic options for your PuT[TY session
i T“ 'F”glg'"g Specify the destination you want to ¢onnect to
7 ?T“é:huam Host Name (or IP address) Fort
. Bel |beaglebone] ||2
i ' [Features Connection type:
=} Window (JRaw () Telnet () Rlogin ®SSH () Serial
i i Appeamnce)
. Behaviour Load, save or delete a stored session
. Translation Saved Sessions
i Selection
i Colours n
i Default Settings
=)+ Connection o=
-~ Data Save
‘. Proxy
- Telnet Delete
- Rlogin
- SSH
Sedal Close window on exit:)
(O Mways () Never ®) Only on clean exit
About Open Cancel

38 Part I: Getting Started with the BeagleBone

\NG/
Vg,\\

|
Figure 3-9:
Connectinga
BeagleBone
via SSH over
Ethernet

by using

the Linux
terminal in
Ubuntu.
|

Mac 0S X and Linux

In Mac OS X and Linux, you can use the default terminal window to establish
an SSH communication, because SSH comes in all Unix-based OSes. Follow
these steps:

1. Power up your BeagleBone with a Mini USB cable or with a 5V DC
power supply.

Any time that it is possible, it’s recommended that you power your
BeagleBone with a DC power supply so that you are guaranteed to not
have any issues with power. Make sure that the outer ring of the plug is
ground and the center is 5V. You can find more information about this in
Chapter 1.

2. Connect an Ethernet cable from your router to your BeagleBone.
3. Open a new window, as follows:

¢ On a Mac, navigate to /Applications/Utilities and double-
click Terminal to open a new Terminal window.

¢ In Linux, press Ctrl+Alt+T to open a new terminal window.
4. Type sudo ssh root@beaglebone.local.
5. Enter your computer password, and type yes.
6. When you’re asked to type a password, press Enter or Return.
By default, no password is set.

The window should look like Figure 3-9.

() rui@rnt: ~

rui@rnt:~$ sudo ssh rootg@beaglebone.local

[sudo] password for rui:

The authenticity of host 'beaglebone.local (192.168.7.2)' can't be established.
ECDSA key fingerprint is c@:81:1a:f4:58:b9:51:15:00:df:ee:71:c4:d9:fd:54.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'beaglebone.local,192.168.7.2" (ECDSA) to the list of
known hosts.

Debian GNU/Linux 7

BeagleBoard.org BeagleBone Debian Image 2014-04-23

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian
Last login: Sun Jul 13 16:19:59 2014

root@beaglebone:~# I

Chapter 3: Connecting Your BeagleBone

WING/
&

When you connect your computer to your BeagleBone for the very first time,
you're prompted by a message warning you that you're attempting to estab-
lish a connection with an unknown host. This message just means that your
computer and the BeagleBone aren’t friends yet. Simply click OK to proceed.

Connecting the Original BeagleBone
via Serial over USB

\\J

QUING!

Note: If you're working with a BeagleBone Black, skip to the next section, as
the following instructions are specific to the Original BeagleBone.

The serial port is a way to send data between your Original BeagleBone and
another device. Establishing a serial communication between your computer
and your Original BeagleBone requires a Mini USB cable, which comes with
the board.

For most applications, we think that connecting the Original BeagleBone via
SSH over USB is the way to go. Still, it’s useful to know about this connection
technique because it enables you to send data to and from many devices
other than PCs, which may be useful if you're experiencing booting problems
or networking issues. You can see what’s happening to your board right after
plugging in the power with a serial debugger.

At this point, you should have the Original BeagleBone drivers installed. Go
back to section “Installing drivers” at the beginning of this chapter if that isn’t
the case.

Windows

Before you power up your board, you need to download and install a free
application called PuTTY on your computer. Refer to the instructions in the
“Connecting via SSH over USB” section earlier in this chapter.

With PuTTY installed, you can establish a serial communication with your
Original BeagleBone. Follow these steps:

1. Connect your Original BeagleBone to your computer with a Mini USB
cable.

2. Open PuTTY.

3. In the PuTTY Configuration dialog box, select Serial.

39

4 0 Part I: Getting Started with the BeagleBone

\\J

Figure 3-10:
PuTTY set-
tings for
establish-
ing a serial
communica-
tion over
USB.

WING/
&

4. Type the name of your Original BeagleBone’s serial port.

Open Device Manager to see the serial port’s name. Press Windows+R,
type devmgmt.msc, and press Enter. The name of your BeagleBone’s

serial port is listed below Ports.
5. Type 115200 in the Speed field.

At this point, the dialog box should look similar to Figure 3-10.

Serial option
e PuTTY Configuration n_
Category:
- S_ession Basic options for your PuTTY session
T“) |ﬁ°g|g'ng Specify the destination you want to connect to

=)+ Terminal o
| i Keyboard Serial line Spepd

L Ball COM3 115200

' Features Connection type:
=} Window (JRaw () Telnet () Rlogin (_)SSH (@) Serial
i i Appeamnce)

. Behaviour Load, save or delete a stored session

. Translation Saved Sessions

i Selection

i Colours n
i Default Settings
=)+ Connection o=

-~ Data Save

- Proxy

- Telnet Delete

- Rlogin

- SSH

Sedal Close window on exit:)
(O Mways () Never ®) Only on clean exit
About Open Cancel

6. Click Open.

8. When you're asked to log in, type root and press Enter.

9. When you’re asked to type a password, press Enter.

. Press Enter.

If you don’t press Enter, you're left with a blank screen and a blinking

cursor.

By default, no password is set.

Mac 0S X and Linux

In Mac OS X and Linux, you can use the default terminal window to establish

a serial communication. Follow these steps:

Chapter 3: Connecting Your BeagleBone

\NG/
g““

Figure 3-11:
Linux termi-
nal with a
serial com-
munication
established
with an
Original
BeagleBone.
|

1. Connect your Original BeagleBone to your computer with a Mini USB
cable.

2. Open a new window, as follows:

* On a Mac, navigate to /Applications/Utilities and double-
click Terminal to open a new Terminal window.

¢ In Linux, press Ctrl+Alt+T to open a new terminal window.
3. Type sudo screen /dev/tty.usbserial-*B 115200.

4. Type your computer password, and press Enter or Return.

(2]}

. Press Enter or Return again.

If you don’t press Enter or Return, you’ll be left with a blank screen and
a blinking cursor.

6. When you’re asked to log in, type root and press Enter or Return.
7. When you’re asked to type a password, press Enter or Return.

By default, no password is set (see Figure 3-11).

[~} rui@rnt: ~

Debian GNU/Linux 7 beaglebone ttyoo®

default username:password is [debian:temppwd]
Support/FAQ: http://elinux.org/BeagleboardDebian
The IP Address for usb® is: 192.168.7.2
beaglebone login: root

Last login: Wed Apr 23 20:20:15 UTC 2014 on tty00
Linux beaglebone 3.8.13-bone47 #1 SMP Fri Apr 11 01:36:09 UTC 2014 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in fusr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@beaglebone:~#

Connecting the BeagleBone
Black via Sevial over USB

The serial port is a way to send data between the BeagleBone Black and
another device. Establishing a serial communication between your computer
and your BeagleBone Black requires a USB-to-TTL Serial cable (see Figure 3-12).

41

Part |: Getting Started with the BeagleBone

|
Figure 3-12:
USB-to-TTL
Serial cable.
|

For most applications, we think that connecting the BeagleBone Black via SSH
over USB is the way to go. This connection technique allows you to send data
to and from many devices other than PCs, which may be useful if you're expe-
riencing booting problems or networking issues. You can see what’s happen-
ing to your board right after plugging in the power with a serial debugger.

\\J

Windows

Before you power up your board, you need to make a few connections and
install PuTTY. For instructions on installing PuTTY, see the “Connecting via
SSH over USB” section earlier in this chapter.

1. Connect the USB side of the TTL cable to your computer.

2. Connect the wires to the J1 headers on your BeagleBone Black as
shown in Figure 3-13:

® Black wire to Pin 1
¢ Green wire to Pin 4
e White wire to Pin 5
With PuTTY installed, you can establish a serial communication with your
BeagleBone Black. Follow these steps:
1. Open PuTTY.
2. In the PuTTY Configuration dialog box, select Serial.
3. Type the name of your BeagleBone Black’s serial port.

\\J
Open Device Manager to see the serial port’s name. Press Windows+R,

type devmgmt.msc, and press Enter. The name of your BeagleBone’s
serial port is listed below Ports.

Chapter 3: Connecting Your BeagleBone

Figure 3-13:
BeagleBone
Black con-
nectedto a
USB-to-TTL
Serial cable.
|

Figure 3-14:
Establishing
serial com-
munication
over USB.
|

4. Type 115200 in the Speed field.
5. Click Open.

6. Power on your BeagleBone Black with a Mini USB cable.

You see all sorts of information about the booting process (see
Figure 3-14).

7. When you’re asked to log in, type root and press Enter.

8. When you're asked to type a password, press Enter.

By default, no password is set.

BeagleBone

fritzing

COMS - PuTTY - B

43

b4

Part |: Getting Started with the BeagleBone

Mac 0S X and Linux

In Mac OS X and Linux, you can use the default terminal window to establish
a serial communication. With your BeagleBone Black unplugged, follow these
steps:

1. Open a new window, as follows:

* On a Mac, navigate to /Applications/Utilities and double-
click Terminal to open a new Terminal window.

¢ In Linux, press Ctrl+Alt+T to open a new terminal window.

2. Type Is /dev/tty*.
3. Connect the USB side of the TTL cable to your computer.

4. Connect the wires to J1 headers on your BeagleBone Black as shown

in Figure 3-13, earlier in this chapter:
e Black wire to Pin 1
¢ Green wire to Pin 4

e White wire to Pin 5

. Type Is /dev/tty*.

Now you can see a new device connected to your computer — in
Figure 3-15, ttyUSBO.

To establish the serial communication, follow these steps:

. Type sudo screen /dev/ttyUSB0 115200.

. Power on your BeagleBone Black with a Mini USB cable.

You see all sorts of information about the booting process (see
Figure 3-16).

3. Enter your computer password, and press Enter or Return.
4. When you’re asked to log in, type root and press Enter or Return.

5. When you’re asked to type a password, press Enter or Return.

By default, no password is set.

Cha

Figure 3-15:
Detecting a
new device
connected
on Linux
terminal.
|

Figure 3-16:
Linux ter-
minal with

a serial
communica-
tion with a
BeagleBone
Black.
|

rui@rnt: ~

rui@rnt:~$
/dev/tty
/dev/ttyo
/dev/ttyl
/dev/ttyl10
/dev/tty11l

fdev/tty12

fdev/tty13
| |/dev/tty14
/dev/ttyl5

/dev/ttyl6
/dev/ttyl7
/dev/ttyis
/dev/tty19
rui@rnt:~$
==A) fdev/tty
/dev/tty0
fdev/ttyl
/dev/ttyl0
/dev/tty11l
/dev/ttyi2
|| fdev/tty13
fdev/tty1d
fdev/tty15
/dev/ttyl6
/dev/ttyl7
/dev/ttyi8
/dev/tty19
4 rui@rnt:~$

&

1s [fdev/tty*
Jdev/jtty2
Jdev/jtty20
Jdev/jtty21
Jdev/jtty2z2
Jdev/jtty23
Jdev/tty24
Jdev/jtty2s
Jdev/jtty26
Jdev/jtty27
Jdev/jtty2s
Jdev/jtty29
Jdev/tty3
Jdev/tty3e
1s [fdev/tty*
Jdev/jtty2
Jdev/jtty20
Jdev/jtty21
Jdev/jtty22
Jdev/jtty23
Jdev/jtty2a
Jdev/tty2s
Jdev/jtty26
Jdev/jtty27
Jdev/jtty2s
Jdev/tty29
Jdev/jtty3
Jdev/tty3e
sudo screen

[dev/tty31
[dev/tty32
[dev/tty33
[dev/tty34
[dev/tty3s
[/dev/tty36
[dev/tty3T
fdev/tty3s
[dev/tty39
[dev/tty4

[/dev/ttydo
[dev/ttya1l
[dev/ttyaz

fdev/tty31
fdev/tty32
[dev/tty33
[dev/tty34
[dev/tty3s
[dev/tty36
[fdev/tty37
[dev/tty38
[dev/tty39
[dev/tty4

[dev/tty40
[fdev/ttyd1l
[dev/ttyaz

/dev/ttyusBe

Jdev/tty43
/dev/ttyd4
J/dev/tty4s
[/dev/ttyde
[dev/ttya7
[/dev/tty4ds
[fdev/ttyas
fdev/tty5s

/dev/tty5e
Jdev/tty51
[dev/tty52
[/dev/ttys3
[fdev/tty54

fdev/ttya3
J/dev/ttyd4
J/dev/tty4s
J/dev/ttydé
[dev/ttya7
/dev/tty4s
[/dev/tty4s
fdev/tty5
fdev/tty50
Jdev/tty51
[dev/tty52
J/dev/tty53
/dev/tty54
115200

pter 3:

Jdev/tty55
Jdev/tty56
Jdev/tty57
Jdev/ttyss
Jdev/ttys9
Jdev/tty6
fdev/tty60
fdev/ttys1
Jdev/tty62
Jdev/tty63
Jdev/tty7
Jdev/ttys
Jdev/tty9

fdev/[tty55
Jdev/tty56
Jdev/tty57
Jdev/ttyss
Jdev/ttys9
Jdev/ttys
Jdev/ttyse
fdev/tty61
fdev/tty62
Jdev/tty63
Jdev/tty7
Jdev/ttys
Jdev/ttys

Connecting Your BeagleBone

Jdev/ttyprintk
Jdev/ttyse
Jdev/ttys1i
Jdev/ttysio
Jdev/ttysii
Jdev/ttysiz
Jdev/jttysi3
Jdev/ttysi4
Jdev/ttysis
Jdev/ttysie
Jdev/ttysi7
Jdev/ttysis
Jdev/ttysi9

Jdev/ttyprintk
Jdev/ttyse
Jdev/ttys1i
Jdev/ttysio
Jdev/ttysii
Jdev/jttysiz
Jdev/ttysi3
Jdev/jttysSi4
Jdev/jttySis
Jdev/ttysie
Jdev/ttysi7
Jdev/ttysis
Jdev/ttysi9

Jdev/jttys2

Jdev/jttysz2o
Jdev/jttysz21
Jdev/jttysz22
Jdev/ttysz3
Jdev/ttys24
Jdev/jttys2s
Jdev/ttys26
Jdev/jttys27
Jdev/jttyszs
Jdev/jttys29
Jdev/ttys3

Jdev/ttys3e

Jdev/jttys2

Jdev/jttysz2o
Jdev/jttys21
Jdev/jttys22
Jdev/ttysz3
Jdev/ttysz4
Jdev/ttys2s
Jdev/jttyS26
Jdevjttys27
Jdev/jttyszs
Jdev/ttys29
Jdev/ttys3

Jdev/jttys3e

Jdev/ttys3i
Jdev/ttys4
Jdev/ttyss
Jdev/ttyse
Jdev/ttys7
Jdev/ttyss
Jdev/jttys9

Jdev/jttys31
Jdev/ttys4
Jdev/ttyss
Jdev/ttyse
Jdev/ttys7
Jdev/ttyss
Jdev/ttys9
Jdev/ttyUsBo

The new device

arting kernel ...

Uncompressing L
.381797]
.549007]
.612639]
.649746]
.686854]
.723962]
.740122]
.749715]
.756460]
.772924]
.835560]

for gpio-L

inu . done, booting the kernel.
omap2_mbox_probe: platform not supported
tps65217-bl tps65217-bl: no platform

bone-capemgr
bone-capemgr
bone-capemgr
bone-capemgr
bone-capemgr
bone-capemgr
bone-capemgr

bone_capemgr.
bone_capemgr.
bone_capemgr.
bone_capemgr.
bone_capemgr.
bone_capemgr.
bone_capemgr.

EH
EH

9:
EH

slot #0:
slot #1:

slot #2
slot #3

slot #6:
slot #6:
loader: failed to load slot-6 BB-BONELT-HDMIN:00A@ (prio 2)

data provided

Mo cape found
Mo cape found
No cape found
No cape found

BB-BONELT-HDMIN conflict P8.45 (#5:BB-BONELT-HDMI)

Failed verification

omap_hsmmc mmc.5: of_parse_phandle_with_args of 'reset' failed

pinctrl-single 44e10800.pinmux: pin 44e10854 already requested by 44e18800.pinmux; cannot c

eds.8

8.847271] pinctrl-single 44e10860.pinmux: pin-21 (gpio-leds.8) status -22
0.854552] pinctrl-single 44e10800.pinmux: could not request pin 21 on device pinctrl-single

Loading, please

wait...

Scanning for Btrfs filesystems

systemd-fsck[203]: rootfs: clean, 77102/233856 files, 384138/933632 blocks

Debian GNU/Linux 7 beaglebone ttyoe

default username:password is [debian:temppwd]

Support/FAl

The IP Address
beaglebone logii

for usbo is:

n: root[25.

192.168.7.2

http://elinux.org/Beagleboard:BeagleBoneBlack_Debian

67632] libphy: PHY 4a101000.mdio:01 not found

[25.172870] net ethe: phy 4a1e1000.mdio:01 not found on slave 1

Last login: Wed Apr 23 20:20:09 UTC 2014 on tty0®

Linux beaglebone 3.8.13-bone47 #1 SMP Fri Apr 11 01:36:09 UTC 2014 armv7l

The programs included with the Debian GNU/Linux system are free software;

‘the exact distribution terms for each program are described in the
individual files in Jusr/share/doc/*/copyright.

|
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

\lpermitted by applicable law.
| [root@beaglebone: ~#

b5

46 Part I: Getting Started with the BeagleBone

Part I
Covering the Basics

S

o
o]
7]
(e}
(=2
m
us]
(=]
=)
m

Visit www . dummies . com/extras/beaglebone for additional Dummies content

St 14 ©on using a multimeter.

http://www.dummies.com/extras/beaglebone

In this part . . .

v Exploring the Linux world and getting acquainted with the Linux
Shell

v Discovering electricity: the equations, circuit diagrams, and
various components

v Taking a closer look at your BeagleBone and expanding its
functionalities

Chapter 4
Introducing the Linux Shell

In This Chapter
Getting acquainted with Linux’s superuser
Using the Linux Shell to manage files and directories
Installing and managing software on your BeagleBone
Personalizing your BeagleBone by changing its name and your password
Working efficiently with the shell

A t a first glance, the Linux operating system (OS) may look like a weirder,
more complex, and less pretty way to do the things that the beloved
Windows and Mac OS X are capable of. Often, it’s said that Linux isn’t a user-
friendly OS, which explains why a typical computer user who simply wants to
browse the web, for example, prefers to use Windows or Mac OS X.

The added complexity of Linux, however, paves the way for heavy customiza-
tion and versatility, as well as user efficiency. These perks, along with the fact
that Linux is free, has led to the existence of a huge community of users who
are keen on constantly improving the system. Ultimately, Linux has become
the best option for embedded systems such as the BeagleBone.

This chapter shows you how you can use the command prompt to get around
a computer in a way that you're probably not used to: using only text. You
can forget about using a graphical user interface (GUI) for a while. Although
using the command line may seem odd at first, this approach has plenty of
advantages, as you see in this chapter.

Examining the Prompt

To open the command-line prompt, start by connecting to your BeagleBone
via SSH. You can do that by either connecting the BeagleBone to your com-
puter via USB or by connecting the BeagleBone to your router using an
Ethernet cable. If you have previously worked through Chapter 3, the steps
presented here are similar to the steps in that chapter except that this time
you are logged in as debian instead of root.

50 Part II: Covering the Basics

If you connected by USB, do one of the following:

v Windows: In Windows, while using PuTTY, choose SSH and type 192.168.7.2
at the Host Name (or IP address) dialog box. A login prompt should appear
a few seconds later: Type debian as the username and temppwd as the
password.

v Linux or Mac OS X: If you're using Linux or Mac OS X, simply type sudo
ssh debian@192.168.7.2 in the terminal window and then type temppwd
as your password.

If you connected by Ethernet, do one of the following:

v Windows: In Windows, while using PuTTY, choose SSH and type beagle-
bone at the Host Name (or IP address) dialog box. A login prompt
should appear a few seconds later: Type debian as the username and
the password temppwd.

v Linux or Mac OS X: If you're using Linux or Mac OS X, simply type sudo
ssh debian@beaglebone.local in the terminal window and then type
temppwd as your password.

You run the show from the terminal window. This is where you type com-
mands to accomplish various tasks, from organizing your files and directories
(by creating, removing, copying, or moving them) to compiling and running
programs you've written.

Your BeagleBone’s prompt should look like Figure 4-1.

@ debian@beaglebone: ~ - O “

|
Figure 4-1:
Logging in
as Debian.
|

The last line on the screen shown in Figure 4-1 reads debian@beaglebone: ~$.
You need to understand a few things from that single line:

v The first part, debian, is the user you're logged in as. Under other cir-
cumstances, that name could be Richard or OfficePC-4.

Chapter 4: Introducing the Linux Shell 5 ’

v The next part, beaglebone, is the hostname. If you're connected in
a network, that name is the name your BeagleBone displays to other
computers. You find out how to alter that name in the “Changing the
Hostname and Password” section later in this chapter.

v~ After the colon is the current working directory — the folder that you're
currently inside — so all commands that you type, unless you specify
otherwise, refer to files inside that directory. In this case, you see a
tilde (~) because that’s shorthand for the logged-in user’s home direc-
tory. When you’re logged in as debian, the home directory is /home/
debian. Another very important user, called root, is the administrator
of the system and is known as superuser in the Linux OS. We talk more
about the root account throughout this chapter.

v The last part is the prompt for input, which is $ in this example because
you’re logged in as a regular user. When you're logged in as root, the
prompt is #.

Introducing the root superuser

In the Linux community the administrator of the system is called the super-
user. This section introduces you to the superuser.

In Chapter 3, you log in as root, which is the superuser of most Linux sys-
tems. root is used for privileged tasks, such as installing and updating soft-
ware, messing around directories with restricted access, and controlling the
BeagleBone’s input and output pins.

In this chapter, you don’t need to log in as root, but the root user shows up
throughout this chapter and the remainder of this book. Actually, even when
you’re not logged in as root, you run programming scripts and commands
with root permission. As such it’s important that you know about what the
root superuser is capable of.

To log in as a superuser, type the following command:

debian@beaglebone:~$ sudo su
root@beaglebone: /home/debian#

By default, no password is required to log in as root, but if you've defined
one, you're prompted to type it.

As superuser, you have the power to do practically whatever you want. Cool.
But that also means the system won’t protect you from yourself: If you're
careless, you may make changes on your board that will be difficult to rec-
tify! For that reason, it’s often considered to be hazardous to work as root.
Generally, you should only log in as root when absolutely necessary.

52

Part ll: Covering the Basics

NG/
QV'

As previously mentioned, for the remainder of this chapter you don’t need to
be logged in as root — although some sections prompt you to execute com-
mands with root access (read more on this later in the “Managing Software on
Your BeagleBone” section). You should only exercise the superuser’s powers
when whatever it is that you tried to do as a regular user didn’t work.

The default username and password are debian and temppwd, respectively.
You find out how to change the username and password in the “Changing
the Hostname and Password” section later in this chapter. Log in as a regular
user by entering the following command:

root@beaglebone:~# login debian

Password:

Last login: Wed Apr 23 20:21:20 UTC 2014 on pts/0

Linux beaglebone 3.8.13-bone47 #1 SMP Fri Apr 11 01:36:09 UTC 2014 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
debian@beaglebone: ~$

The password text isn’t visible while you're typing (someone may be looking!)
so simply press Enter or Return when you’re done typing.

Exploring the Linux File System

WING/

It’s time to play around with the command line. For starters, type pwd,
(which means print working directory):

debian@beaglebone:~$ pwd
/home/debian

The output is /home/debian. The first forward slash (/) is the root of the
file system (which is not the same as the root user!). Forward slashes are
always used to indicate folders and files within other folders. In this case, the
current working directory is debian, which is inside home, which is inside
the root of the file system. Here, debian is the username with which you are
logged in.

Even though the directory home is one level above the directory debian, the
so-called “home directory” represented by the tilde (~) is actually /home/
debian.

Chapter 4: Introducing the Linux Shell

WING/

WMBER
‘g'c
&

SMBER

The commands in Linux are case-sensitive, which means that PWD, PwD, pWd,
and any other variations are completely different from pwd. The same holds
true for all other commands and for any code written in the programming lan-
guages addressed in this book.

Listing files and directories

If you type the command Is, a list of the files and directories within your
working directory is printed. Right now, you should be inside your home
directory, which should have the directories Desktop and bin:

debian@beaglebone:~$ 1s
bin Desktop

This directory is the same as the desktop on your general-use computer; it
holds the files that appear on the desktop when you use the GUL. We cover
this topic in more detail in Chapter 12.

In reality, the complete syntax for the 1s command (and for a great many
other commands) is

ls [OPTIONS] <filename>

Don’t be confused by the fact that we use <filename> when
<directoryname> would make more sense. We use <filename> for two
reasons:

v The Linux OS interprets everything that exists on your computer as a
file, from your hard drive to a photograph you just uploaded to your
hard drive to your keyboard. In this case, a container of files, also known
as a directory, is itself considered to be a file.

v <filename> That is the general syntax for many commands that deal
with files in general.

When typing commands, you can also use ~ as shorthand for /home/root.
Also keep in mind that the first forward slash that appears when you type pwd
(that is, the root of the file system) is, for all practical purposes, a folder like
any other; thus, it can be accessed by its name just like any other folder.

By default, 1s with no options and no directory specified prints a list of
the files and directories of your current working directory. You can specify
exactly which directory you want to be listed, such as Desktop (which
doesn’t have anything in it at the moment) or the root of the file system:

debian@beaglebone:~$ 1ls Desktop

53

54 Part ll: Covering the Basics

Here is the root:

debian@beaglebone:~$ 1s /
bin dev home lost+found mnt proc run selinux sys usr
boot etc 1lib media opt root sbin srv tmp var

Many options are available for the 1s command. A rundown of all of them
isn’t necessary to get through the remainder of this book, but you should
know about one useful option: -1, which makes the 1s command print its list
in a long format. Here’s an example:

debian@beaglebone:~$ 1ls -1

total 8

drwxr-xr-x 2 debian debian 4096 Apr 23 20:27 bin
drwxr-xr-x 2 debian debian 4096 Apr 23 20:21 Desktop

debian@beaglebone:~$ 1ls -1 /
total 76
drwxr-xr-x 2 root root 4096 Apr 23 20:35 bin
drwxr-xr-x 3 root root 4096 Apr 23 20:36 boot
drwxr-xr-x 14 root root 3600 Apr 23 20:20 dev
drwxr-xr-x 103 root root 4096 Jun 30 22:31 etc
drwxr-xr-x 3 root root 4096 Apr 23 20:57 home
drwxr-xr-x 15 root root 4096 Apr 11 01:41 1lib
drwx------ 2 root root 16384 Apr 23 20:21 lost+found
drwxr-xr-x 2 root root 4096 Apr 23 20:20 media
drwxr-xr-x 2 root root 4096 Feb 3 10:24 mnt
drwxr-xr-x 5 root root 4096 Apr 23 20:36 opt
dr-xr-xr-x 117 root root 0 Jan 1 1970 proc
drwx------ 3 root root 4096 Apr 23 21:02 root
drwxr-xr-x 23 root root 740 Apr 23 20:20 run
drwxr-xr-x 2 root root 4096 Apr 23 20:40 sbin
drwxr-xr-x 2 root root 4096 Jun 10 2012 selinux
drwxr-xr-x 2 root root 4096 Apr 23 20:14 srv
dr-xr-xr-x 12 root root 0 Jan 1 2000 sys
drwxrwxrwt 8 root root 4096 Jun 30 22:17 tmp
drwxr-xr-x 10 root root 4096 Feb 21 04:24 usr

o drwxr-xr-x 12 root root 4096 Apr 23 20:34 var

B\
Note that because these options are optional, they’re always preceded by a
dash (as in -1) so that the command knows that 1 is an option, not a file.

For now, you don’t need to get too caught up on all the information that this
so-called long listing provides. It’s covered in more detail later in this chapter,
in the “Using long-listing format and permissions” section.

Chapter 4: Introducing the Linux Shell

|
Figure 4-2:

A partial
directory
tree.
|

Understanding the directory tree

When talking about how the file system is organized within a computer, the
analogy of a tree makes complete sense: Just as a tree has a trunk from which
branches sprout, and other branches in turn sprout from those branches, the
Linux file system is a root directory (the trunk) that holds a bunch of directo-
ries that include other directories, which hold files.

Figure 4-2 illustrates the directory tree on your BeagleBone (and generally
in any Linux OS). Note: The directory tree isn’t complete because it doesn’t
include all the directories that branch off root; neither does it include their
subdirectories or files. You can see, however, where home is relative to the
other directories, as well as how you can get to Desktop.

/
[I I I I I 1
bin boot dev etc home lib
[
Debian
[
Desktop

Changing directories

In many situations, you want to change the working directory of your system.
You accomplish this task with the cd command. Generally, you type cd
[name of the directory you want to go to]. You can use a couple of varia-
tions, or shortcuts, with the command.

Using the general case
The general case is cd [directoryl, as shown here:

debian@beaglebone:~$ cd Desktop
debian@beaglebone: ~/Desktop$

By using pwd, you can verify that you're now inside Desktop:

debian@beaglebone: ~/Desktop$ pwd
/home/debian/Desktop

55

Part ll: Covering the Basics

Discovering the root directory

The directories that are inside the root make up
the core of your BeagleBone, as they contain
everything that's necessary for it to run — from
all the regular programs and files on your com-
puter to various configuration files and files that
represent the devices on the system (such as
a mouse or a disk). Most likely, you won't find
yourself working inside any of them very often,
if ever. In case you're curious, though, here’s a
brief description of most of them:

bin: Short for binaries; contains programs and
commands for the user. (The program Is is con-
tained inside this directory, for example.)

boot: Contains the files necessary at boot
time.

dev: Short for devices; stores a list of files that
represent the devices on the system.

etc: Contains various configuration files.
home: Contains a directory for each user.

1ib: Contains system libraries and drivers that
are used by different programs of the 0S.

lost+£found: Contains files that were saved
during system failures.

media: Stores the details of removable stor-
age devices such as USB flash drives and
microSD cards.

mnt: Represents the mount point for external
systems. If you plug in your cellphone by using
a Micro USB cable, for example, you'll find the
phone’s data in this directory.

opt: Normally contains third-party software
and/or extra software.

proc: Contains files that represent information
about the system, providing insight into matters
such as the CPU (central processing unit) and
the memory. This information, however, isn't
trivial to interpret.

root: Represents the home directory for the
root user.

sbin: Contains programs that usually are
usable only by the root user.

sys: Contains files directly related to the 0S
itself.

tmp: Stores temporary files; whatever’s in here
is removed upon reboot.

usr: Contains programs and files accessible
by all users.

var: Contains files whose size vary, such as
databases and system log files.

To go back to /home/debian, you use a similar approach:

debian@beaglebone: ~/Desktop$ cd ~

debian@beaglebone: ~$

Moving up one directory

The command cd
shown here:

. . places you inside the current directory’s parent, as

Chapter 4: Introducing the Linux Shell 5 7

debian@beaglebone: ~$ pwd
/home/debian
debian@beaglebone:~$ cd ..
debian@beaglebone: /homes cd ..
debian@beaglebone: /3

Moving to the previous directory

When you type cd -, you move to the directory you were previously in. Unlike
other shortcuts, cd - also prints on the terminal the folder that you jumped to:

debian@beaglebone: /s ecd ~
debian@beaglebone:~$ cd Desktop
debian@beaglebone: ~/Desktop$ pwd

/home/debian/Desktop
debian@beaglebone: ~/Desktop$ ed -
/home/debian

debian@beaglebone: ~$

Returning to the home directory

When you use cd by itself, you return to the home directory. This command
is the same as cd ~:

debian@beaglebone: ~$ pwd
/home/debian

debian@beaglebone:~$ ed /
debian@beaglebone:/$ pwd

/

debian@beaglebone:/$ cd
debian@beaglebone:~$ pwd
/home/debian
debian@beaglebone: ~$

Understanding relative and absolute paths

So far in this chapter, we’ve talked about how you can go inside directories
that are directly above or below one another in the directory tree, similar to
the way you usually navigate a computer with a GUI, clicking your way through
directories until you arrive at your destination. Clickable interfaces are intui-
tive and easy to use, which is why they’re considered to be user-friendly.

Imagine, however, that you want to access one folder that’s buried deep in
the darkest recesses of your directory tree. Even with a GUI, you may con-
sider it to be quite bothersome to navigate that far through the file system.
Now imagine doing it with the command prompt and having to type the cd
command so many times!

Part ll: Covering the Basics

Understanding command line, prompt, and shell

The terms command line, prompt, and shellare you type the commands that the shell carries
often used interchangeably. Command line and out. The shell is the brains of the operation,
prompt mean pretty much the same thing, but whereas the command line or prompt is simply
there’s a slight difference between them and where you tell the shell what task you want it
shell. The command line or prompt is where to perform.

SMBER

WMBER
@&
&

Fortunately, the Linux shell offers a solution through relative and absolute
paths. So even though the command prompt might seem confusing and not
as intuitive as a GU], it provides tools that enable you to do work much faster
than you can with a GUL

The best way to understand absolute and relative paths is to view an analogy:

1 Relative paths: Imagine that you're following the directions someone
gave you to arrive at your destination — a directory or a file. In that
sense, the destination is relative to where you are right now: your cur-
rent working directory.

v Absolute paths: Imagine that you don’t need to follow someone’s direc-
tions to get to a destination because you have the specific address; you
put this address in your GPS system and get there directly. The absolute
path is the exact, complete address of the file you want to access.

Absolute paths are always measured from the root, so they always start with /,
followed by the complete list of directories you have to go through to arrive at
your destination. (You used absolute paths in the preceding section with the
commands cd / and cd ~.) Here’s an example:

debian@beaglebone:~$ cd /home/debian/Desktop
debian@beaglebone: ~/Desktop$

The tilde (~) is short for /home/debian, so in the preceding example, you
could also use cd ~/Desktop to achieve the same results. This command
always gets you to Desktop, regardless of your current working directory:.
That’s what differentiates it from using a relative path. The computer knows
that you're using a relative path from the fact that you never start with / when
writing one.

To go to a subdirectory somewhere below your current directory, list the
path through the subdirectories you have to go through, separated with
slashes(/):

A\

Chapter 4: Introducing the Linux Shell 59

debian@beaglebone: ~/Desktop$ cd ..
debian@beaglebone:~$ cd ..
debian@beaglebone: /home$ cd debian/Desktop
debian@beaglebone: ~/Desktop$

If you ever get confused while using relative paths, think about the analogy of
following directions to a destination. Imagine that you're in the boot folder and
want to go to Desktop (refer to Figure 4-2). The directions would be “You have
to go up one directory, then down to home, down again to Debian, and then
down again to Desktop.” The following example shows you how those direc-
tions are written as commands. You start by getting inside the boot folder by
using an absolute path and then get to Desktop by using a relative path:

debian@beaglebone: ~/Desktop$ e¢d /boot
debian@beaglebone: /boot$ cd ../home/debian/Desktop
debian@beaglebone: ~/Desktop$

Always use cd .. to go “up” and the directory name to go “down.” Here’s one
last example:

debian@beaglebone: ~/Desktop$ ed ../../../etc
debian@beaglebone: /etc$

You use a relative or absolute path based on which is more convenient at the
moment. Normally, you should use an absolute path if the folder you're cur-
rently in is very far away from the one you want to access. In the preceding
example, it probably would have made more sense to use an absolute path,
because the command could have been shortened to cd /etc. Otherwise,
using a relative path may be more convenient.

Paths are extremely helpful and convenient, because with paths, you can do
anything from anywhere. You can use them with any command to accomplish
tasks in different locations from your current working directory, such as
when you want to list the contents of debian while you're at the root:

debian@beaglebone: /S 1ls home/debian
bin Desktop

The preceding example uses a relative path, but the absolute path /home/
debian renders the same result. After all, the root is the starting point of
everything.

Checking file types

The file command followed by a filename gives you a brief description of
the file you requested; how detailed the information is depends on each file,
but the file type (directory, special file, and so on) is always shown. Because

60

Part ll: Covering the Basics

there aren’t many files on your BeagleBone yet, the example in this section
uses the files in the directory /dev. The following succession of commands
starts by changing to the /dev directory, listing it, and using the £ile com-
mand on those files:

debian@beaglebone:~$ cd /dev
debian@beaglebone: /dev$ 1s

alarm loop0 raml2 ttylé tty43
ttyS2

ashmem loopl raml3 ttyl7 tty44
ttys3

audio loop2 raml4 ttyl8 tty45
ubi ctrl

autofs loop3 raml5 ttyl9 tty4e6
uinput

binder loop4 ram2 tty2 tty47
urandom

block loop5 ram3 tty20 tty48
usbmon0O (...)

debian@beaglebone:/dev$ file alarm block log
alarm: character special

block: directory

log: socket

The previous example demonstrates that you can use a command with more
than one file. The command is carried out for all the files you type in.

Some of the files within the directories of the root directories are very impor-
tant for the system to run; therefore, you rarely find yourself doing anything
inside them. Not working as a superuser guarantees safety, however, so nosing
as described with the preceding code is perfectly safe.

These files don’t have many details to show you. If you had an image on your
BeagleBone, using £ile on it would output details such as the format and
resolution:

debian@beaglebone:~$ file firstView.png

firstView.png: PNG image data, 1920 x 1080, 16-bit/color
RGB, non-interlaced

Creating directories

You've probably felt the need to create directories (or folders) when working
on your standard computer. In Linux, you can create directories by using the
mkdir command followed by the name you want to give the directory, like so:

debian@beaglebone:~$ mkdir project

Chapter 4: Introducing the Linux Shell

\NG/
&“q‘“

Then you can use the 1s command to verify that a new folder has been
created:

debian@beaglebone:~$ 1s
bin Desktop project

You can get inside this new directory with the cd command. Also, you can
create several folders in a single use of mkdir, as shown here:

debian@beaglebone:~$ cd project

debian@beaglebone: ~/project$ mkdir ListOfMaterials
theoretical stuff circuitSchematic Code for
the project

debian@beaglebone: ~/project$ 1ls

circuitSchematic Code for the project ListOfMaterials
theoretical stuff

We recommend that you avoid using spaces between words whenever pos-
sible. The preceding command is a good example of the wisdom of that
guideline: If you'd typed mkdir List of materials, you would have created
three folders — List, of, and materials — rather than one. If absolutely
necessary, you can say “Hey Shell, the name of the file | want to access starts
and ends here, not at the space” by wrapping the file in quotation marks.
When you type mkdir “List of Materials”, you create a folder named List of
Materials.

By default, the command prompt uses the space between words to sepa-
rate the various inputs of a command for all commands, not just mkdir.
Even though we advise you to avoid using spaces when naming stuff, you
may come across something created by someone who didn’t think about
this issue. In that case, you have no choice but to use the quotation-marks
technique.

As with most commands, you can specify options to use with the mkdir com-
mand. The most useful one is -p, which enables you to create multiple direc-
tories within directories in a single line of code. Also, the —v option displays
some additional information about the command you used, such as when
each step of the command is completed. The following example illustrates
these two options in action:

debian@beaglebone: ~/projects mkdir -vp
stuff/schematics/datasheets

mkdir: created directory 'stuff'

mkdir: created directory 'stuff/schematics'

mkdir: created directory 'stuff/schematics/datasheets'

01

62

Part ll: Covering the Basics

ANG/
S

Naming conventions

The best way to deal with the difficulty of multi-
word naming is to concatenate multiple words
into a single word. Running words together
can make them hard to read, however, as in
this example: anamelikethisquickly
becomesconfusing. It's useful to be able
to distinguish each word in the name. Every
programmer has a preferred method. Possible

\\J

conventions include using uppercase let-
ters or underscores, as in aNameLikeThis
IsNoLongerConfusing or a_name
like this is not confusing_
either. Use the technique that feels most
comfortable to you. You can also use hyphens,
but that's a less-common convention among
programmers.

You can add multiple options to a command by concatenating them, as you

saw in the preceding example.

Without the —p option, the shell would attempt to create the directory
datasheets inside the stuff/schematics directory. Because this direc-

tory wouldn'’t exist yet, an error would have resulted.

Take a moment to appreciate this use of mkdir. In standard use of a com-
puter with a GUI, you’d have to go through the trouble of creating a folder,
going inside it, creating another, and so on. Using the command line, how-

ever, you create a folder and a subfolder by typing a single line command. In
many other situations, you can accomplish what would normally be tedious
tasks simply in this straightforward fashion. As mentioned at the beginning
of this chapter, at first glance using the Linux command line may seem to be
less user-friendly and more confusing than using a GUI, but you can’t deny
the added velocity at which you can complete simple tasks when you know
your way around and understand the commands.

Creating, editing, and viewing text files
You can create an empty file by using the touch command, as shown here:

debian@beaglebone: ~/project$ touch hello.txt
debian@beaglebone: ~/project$ 1ls
circuitSchematic hello.txt
Code for the project ListOfMaterials

stuff
theoretical stuff

After you create the empty file, you can open it by using a text editor such as
nano:

debian@beaglebone: ~/project$ nano hello.txt

\P

WING/
&

Chapter 4: Introducing the Linux Shell 63

As expected, hello. txt is empty — that is, it has no text in it. Naturally,
you can write whatever text you want, but leave well enough alone for now.
You’re about to find out how to add text to a file by using — you guessed

it — the command line. For now, exit nano by pressing Ctrl+X.

To store text in a file, use the following command:
debian@beaglebone: ~/project$ echo 'Hello World!' > hello.txt

The touch command may seem to be a bit redundant when you’re dealing
with . txt files because both of the preceding commands — writing some-
thing on nano or using echo — create a file if it doesn’t exist already, as shown
in the following example:

debian@beaglebone: ~/project$ echo 'Hello World!!' >
hello2.txt

debian@beaglebone: ~/project$ nano hello3.txt

debian@beaglebone: ~/project$ ls

circuitSchematic hello3.txt stuff
Code_for the project hello.txt theoretical stuff
hello2.txt ListOfMaterials

Note that hello3. txt appears only if you write something in it before exiting
nano. If you don’t write something in the file before exiting nano, the file isn’t
created.

To look at the contents of a file rather than opening it with a text editor such
as nano, you can use the cat command as follows:

debian@beaglebone: ~/project$ cat hello.txt
Hello World!

To append text to the end of a file, use the echo command as shown here:

debian@beaglebone: ~/project$ echo 'Pleased to meet you!'
>> hello.txt

debian@beaglebone: ~/project$ cat hello.txt

Hello World!

Pleased to meet you!

To break down these last few new commands, the echo command is used to
display on the terminal the text that follows it. Had you simply used it with
text following it, you'd get a result like the following:

debian@beaglebone: ~/project$ echo 'Hello!'
Hello!

64 Part II: Covering the Basics

In this example, no file is specified for saving the text, so the output is sent to
the standard output, which is the terminal. The greater-than sign (>) is used to
redirect that output where you want, such as to the beginning of an existing
file or a file you want to create. Using two greater-than signs (>>) means that
you want to redirect the output to the end of the specified file.

Finally, you should know that the real use of the command cat is to concate-
nate files and print the output. If you concatenate a file with nothing, as we've
done thus far, cat simply outputs that file.

The following examples show you how you can use the cat command for
what it was born to do:

debian@beaglebone: ~/project$ echo 'Good bye!' > bye.txt
debian@beaglebone: ~/project$ cat hello.txt bye.txt
Hello World!
Pleased to meet you!

<MBER Good bye!

You can redirect the output of a command by using the > sign, as follows:

debian@beaglebone:~/project$ cat hello.txt bye.txt > helloAndBye.txt
debian@beaglebone: ~/project$ cat helloAndBye.txt

Hello World!

Pleased to meet you!

Good bye!

<MBER

%,

As with mkdir, commands aren’t limited to one file. You can specify them to
work with as many files as you want, and the files are processed in order, as
shown in the next succession of commands.

\&Q,N\BER It’s interesting to note that the concept of redirecting your output applies to all
commands. That means that any command that prints words in the terminal
(the standard output) can be saved in a . txt file with the use of the > sign:

&

debian@beaglebone:~/project$ echo 'Hello!' 'Everything ok?' 'Bye!'

Hello! Everything ok? Bye!

debian@beaglebone: ~/project$ echo 'Hello!' > hello2.txt 'How are you?' >
hello3.txt 'See you later!' > bye2.txt

debian@beaglebone: ~/project$ cat hello2.txt hello3.txt bye2.txt

Hello! How are you? See you later!

debian@beaglebone: ~/project$ 1ls

bye2.txt hello3.txt stuff
bye.txt helloAndBye.txt teste2.txt
circuitSchematic hello.txt teste.txt

Code_for the project ListOfMaterials theoretical stuff
hello2.txt

Chapter 4: Introducing the Linux Shell 65

|
Figure 4-3:
Editing a

file by using
nano.

debian@beaglebone: ~/project$ 1ls > list.txt
debian@beaglebone: ~/project$ cat list.txt

bye2.txt

bye.txt
circuitSchematic
Code for the project
hello2.txt
hello3.txt
helloAndBye.txt
hello.txt
ListOfMaterials
list.txt

stuff

teste2.txt
teste.txt
theoretical stuff

Using the commands covered in this section, you can manipulate and work
with files fairly easily. Sometimes, though, you may want to open the file and
use a more direct approach to edit it; that’s what text editors are for. Try
using nano again to view the contents of a text file (see Figure 4-3).

debian@beaglebone: ~/projects nano helloAndBye.txt

i3

debian@beaglebone: ~/project = =

GNU nano 2.2.6

File: helloAndBye.txt

Use the arrow keys to move around the file and make whatever alterations
you want. You can save by pressing Ctrl+O or exit by pressing Ctrl+X. If you
attempt to exit without saving, nano asks you whether you want to save;
type Y for yes or N for no and then press Enter or Return. There are plenty of
other tools within nano, but we don’t go into them all here. Press Ctrl+G to
access the Get Help information.

66 Part ll: Covering the Basics

Try experimenting

Play around! Each time you read about a new hesitate to try it. If it doesn’t work, you’ll prob-
command and discover a new concept, feel ably understand why later, and if it does work,
free to try the new technique with one of the you've taughtyourself something new! Trial and
older commands, such as using 1s with redi- error is a very effective way to find your way
rection. If something that you've read gives you around a computer, and the fact that you aren't
an idea about something that may work, don't working as superuser should guarantee safety.

Removing files and directories

To remove files, you can use the rm command:

debian@beaglebone: ~/projects 1ls

bye2.txt Code_for the project helloAndBye.txt list.txt
bye.txt hello2.txt hello.txt stuff
CircuitSchematic hello3.txt ListOfMaterials TheoreticalStuff

debian@beaglebone:~/project$ rm hello.txt
debian@beaglebone: ~/project$ 1ls

bye2.txt hello3.txt stuff
bye.txt helloAndBye.txt teste2.txt
circuitSchematic hello.txt teste.txt
Code_for the project ListOfMaterials theoretical stuff
hello2.txt list.txt
QNING/ There’s no way to undelete files and directories when you delete them this
N way, so be cautious! The rm command also works for directories, but special

care is required when you use it for that purpose; directories are special files,
after all. If you attempt to remove a directory through the normal use of rm,
this message would be the result:

debian@beaglebone: ~/project$ rm ListOfMaterials
rm: cannot remove ‘ListOfMaterials': Is a directory

This message means that you need to use rm with some of the available options
to remove directories. You can use three options with the rm command:

v -r, which recursively (hence the name) removes the contents of direc-
tories from bottom to top to ensure that no files are left without a direc-

tory to reside in
v -1i, which prompts the user to confirm each deletion

v -f, which forces its way down, overriding any confirmation prompts
that may occur for some specific files

Chapter 4: Introducing the Linux Shell 6 7

\\3

Use the following command remove the stuff folder created in earlier exam-
ples in this chapter:

debian@beaglebone:~/project$ rm -rfi stuff

rm: descend into directory ‘stuff'? y

rm: descend into directory ‘stuff/schematics'? y

rm: remove directory ‘stuff/schematics/datasheets'? y
rm: remove directory ‘stuff/schematics'? y

rm: remove directory ‘stuff'? y

The -1 and - f options are sort of contradictory, and the one that comes last
is the one that’s dominant. In other words, rm -rif would be quite different
from rm -rfi, which is used in the preceding example. The-1i option would
be ignored, and everything would be removed right away. Most of the time,
using either rm -rf or -ri makes more sense.

Naturally, you can use each of these options independently. If you don’t use
-1i, everything is deleted without asking for permission; if you don’t use - £,
you’d probably see no difference, because there are no files in that folder you
need to force to be deleted; and if you don’t use -r, you get the error mes-
sage shown earlier in this section.

Another way to remove a directory safely is to use the rmdir command,
which forbids you from deleting folders that still have content. The following
example illustrate how this command works in a new folder:

debian@beaglebone:
debian@beaglebone:
debian@beaglebone:
debian@beaglebone:

filel file2 file3

debian@beaglebone:
debian@beaglebone:

~/project$ mkdir toBeDeleted

~/project$ cd toBeDeleted
~/project/toBeDeleted$ touch filel file2 file3
~/project/toBeDeleted$ 1s

~/project/toBeDeleted$ cd ..
~/project$ rmdir toBeDeleted

rmdir: failed to remove ‘toBeDeleted': Directory not empty

debian@beaglebone:
debian@beaglebone:
debian@beaglebone:
debian@beaglebone:
debian@beaglebone:
debian@beaglebone:

bye2.txt
bye.txt
circuitSchematic

~/project$ cd toBeDeleted
~/project/toBeDeleted$ rm filel file2 file3
~/project/toBeDeleted$ 1ls
~/project/toBeDeleted$ cd ..
~/project$ rmdir toBeDeleted
~/projects 1s
hello3.txt teste2.txt
helloAndBye.txt teste.txt
hello.txt theoretical stuff

Code_for the project ListOfMaterials

hello2.txt

list.txt

Note that we didn’t specify a file type, such as . txt, with touch. The truth is, for
simple text files, specifying a file type doesn’t matter. By definition, an empty file
or blank file is a file with the size of 0 bytes, which is what an empty . txt file is.

68 Part ll: Covering the Basics

You can delete a directory while you're still inside it. When you do that, the
prompt still tells you that you're inside that directory, but when you leave it,
you realize that the directory has ceased to exist:

debian@beaglebone: ~/project$ mkdir toBeDeleted
debian@beaglebone: ~/project$ c¢d toBeDeleted

debian@beaglebone: ~/project/toBeDeleted$ rmdir ../toBeDeleted
debian@beaglebone: ~/project/toBeDeleted$ ed ..
debian@beaglebone: ~/projects 1ls

bye2.txt hello3.txt teste2.txt
bye.txt helloAndBye.txt teste.txt
circuitSchematic hello.txt theoretical stuff
Code for the project ListOfMaterials
hello2.txt list.txt
“&N\BEH When you type a command without specifying a path, the shell assumes that
& you're talking about a file inside your current directory. In the preceding exam-

ple, there’s no toBeDeleted directory inside toBeDeleted, which is why
you need to use rmdir with the relative path .. /toBeDeleted.

Copying and renaming files

Copying and renaming files are common tasks, no matter what OS you use.
In Linux, you can perform these tasks by using pretty straightforward com-
mands. For copying, you use the following command:

cp [OPTIONS] <copy from> <copy to>

copy_fromis the name of the file from which you want to copy a file, and
copy_to is where you want to save the copied file. The following code illus-
trates this command, starting by creating a <copy_ to> folder:

debian@beaglebone: ~/project$ mkdir importantFiles
debian@beaglebone:~/project$ cp hello2.txt importantFiles

The syntax for moving a file with the mv command is the same as the syntax
for the cp command:

debian@beaglebone: ~/project$ mv bye.txt importantFiles

If the importantFiles directory didn’t exist, the mv command would
rename the file bye . txt, making it importantFiles. Although this renam-
ing may lead to confusion and unexpected errors, use the following technique
to rename files from the command prompt:

debian@beaglebone: ~/project$ c¢d importantFiles
debian@beaglebone: ~/project/importantFiles mv hello2.txt greetings.txt
debian@beaglebone: ~/project/importantFiles ed ..

SMBER

”59

\NG/
&YQ‘“

Chapter 4: Introducing the Linux Shell 69

Now confirm the results of what you just typed :

debian@beaglebone: ~/project$ 1ls importantFiles
bye.txt greetings.txt

The mv command means either “move a file” or “rename a file,” depending on
whether its second input is a directory that already exists.

If the destination folder already has a file with the same name as the file you're
copying, that file will be overwritten!

You can use several options with these commands, two of which are quite
useful and probably familiar to you. One option is- i, which protects you from
overwriting files in the same way that you’re protected from deleting files with
rm; you're prompted to confirm before the file is overwritten. The other option
is-v, which describes what’s going on, just like when it’s used with mkdir.

Selecting multiple files in Linux

Sometimes, you need to select multiple files, but without a GUI, dragging the
mouse won’t do. When you use the command line, you can select multiple
files by using wildcards.

The name does them justice, as wildcards are special characters that can be
used to represent any character in different ways. Rather than providing a
filename for your command to work with, you provide a pattern. The best
way to explain this concept is to provide examples.

Start by creating a new folder (for matters of organization) and filling it with
files of a similar name:

debian@beaglebone: ~/project$ mkdir Hellos

debian@beaglebone: ~/project$ cd Hellos

debian@beaglebone: ~/project/Hellos$ touch hellol.txt hello2.txt hello3.txt
hello4.txt

debian@beaglebone: ~/project/Hellos$ 1ls

hellol.txt hello2.txt hello3.txt hello4.txt

Naturally, the patterns here are hello and . txt. You can use three wildcards.

The question-mark (?) wildcard replaces one single character, so hello?.
txt refers to all those hellos. Try it with the £ile command:

debian@beaglebone: ~/project/Hellos file hello?.txt
hellol.txt: empty
hello2.txt: empty
hello3.txt: empty
hello4.txt: empty

70 Part II: Covering the Basics

Note, however, that the ? wildcard replaces just one character. If you had
more than ten hellos, this code would select only the first nine:

debian@beaglebone: ~/project/Hellos touch hellol2.txt
debian@beaglebone: ~/project/Hellos file hello?.txt
hellol.txt: empty

hello2.txt: empty

hello3.txt: empty

hello4.txt: empty

This example is where the asterisk (*) wildcard comes in. Rather than replac-
ing just one single character, it replaces any number of characters. hello*
selects everything that starts with hello; * . txt selects everything that
ends in . txt; and *hello* selects everything that has the word hello in it:

debian@beaglebone: ~/project/Hellos touch oh hello.txt helloBuddy.txt
debian@beaglebone:~/project/Hellos file hello*

hellol2.txt: empty
hellol.txt: empty
hello2.txt: empty
hello3.txt: empty
hello4.txt: empty

helloBuddy.txt: empty

debian@beaglebone:~/project/Hellos file *.txt

hellol2.txt: empty
hellol.txt: empty
hello2.txt: empty
hello3.txt: empty
hello4.txt: empty

helloBuddy.txt: empty
oh hello.txt: empty

debian@beaglebone: ~/project/Hellos file *hello*

hellol2.txt: empty
hellol.txt: empty
hello2.txt: empty
hello3.txt: empty
hello4.txt: empty

helloBuddy.txt: empty
oh hello.txt: empty

As expected, file hello* won’t return information about the oh_hello.
txt file,and file *hello* and file *.txt won’t miss any file. Note,
however, that if you had files with the names bye. txt and hello.jpgin
there, these two commands would yield different results: file *hello*
would ignore bye . txt, and file *.txt would ignore hello.jpg.

The last wildcard is square brackets ([1), which replaces a character with a
set of specific letters. To select all files whose names start with a, b, or ¢, for
example, you can use [abc] *:

Chapter 4: Introducing the Linux Shell 7 ’

debian@beaglebone: ~/project/Hellos touch awesome beaglebone can do
extremely fantastic gigs

debian@beaglebone:~/project/Hellos file [abe]*

awesome: empty

beaglebone: empty

can: empty

You can also use [] the other way around, to select files that don’t not start
with the specified characters, by using the * character:

debian@beaglebone: ~/project/Hellos file [“abc]*

do: empty
extremely: empty
fantastic: empty
gigs: empty
hellol2.txt: empty
hellol.txt: empty
hello2.txt: empty
hello3.txt: empty
hello4.txt: empty
helloBuddy.txt: empty
oh hello.txt: empty

Finally, you can specify a range by using [] and a hyphen, like so:

debian@beaglebone: ~/project/Hellos file [b-e]*
beaglebone: empty
can: empty
do: empty
extremely: empty

Wildcards may be a bit confusing, but all you need to remember is the rule

of thumb that a wildcard replaces one or more characters, allowing you to
narrow or broaden the number of files you want to select. Playing around
with wildcards is the best way to get a feel for how to use them. Following
are some more examples, the first two of which deserve special attention and
explanation:

debiane@beaglebone: ~/project/Hellos touch hello23.txt
debian@beaglebone: ~/project/Hellos file hello[23].txt
hello2.txt: empty

hello3.txt: empty

hello23.txt doesn’t appear when you use file hello[23].txt.

Weird, huh? This result is due to the fact that what’s inside the brackets
is a list of one possible character to substitute for one character imme-
diately next to hello and before .txt. file hello[23] [23].txt or

/2

Part ll: Covering the Basics

hello[32] [32] .txt or any other combination, would display hello23.
txt but not hello2.txt or hello3.txt because it’s looking for two
characters before . txt:

debian@beaglebone: ~/project/Hellos touch A
debian@beaglebone: ~/project/Hellos file *a*

awesome: empty
beaglebone: empty
can: empty
fantastic: empty

In this example, you're selecting all files whose names contain a. The file &
doesn’t appear due to the fact that, as stated earlier in this chapter, Linux
is case-sensitive. The letter a and the letter A are completely different
characters.

Here are some more examples to help you get familiar with how wildcards
work:

debian@beaglebone: ~/project/Hellos file hello[2-4].txt
hello2.txt: empty

hello3.txt: empty

hello4.txt: empty

debian@beaglebone: ~/project/Hellos file hello??.txt
hellol2.txt: empty

debian@beaglebone: ~/project/Hellos file hello["23]*

hellol2.txt: empty
hellol.txt: empty
hello4.txt: empty

helloBuddy.txt: empty
debian@beaglebone: ~/project/Hellos file ?

A: empty
debian@beaglebone: ~/project/Hellos file *
A: empty
awesome : empty
beaglebone: empty
can: empty
do: empty
extremely: empty
fantastic: empty
gigs: empty
hellol2.txt: empty
hellol.txt: empty
hello23.txt: empty
hello2.txt: empty
hello3.txt: empty
hello4.txt: empty

helloBuddy.txt: empty
oh hello.txt: empty

Chapter 4: Introducing the Linux Shell

\NG/
$

You can use wildcards with any other commands, just as you’d use the name
of a file. As proof, bid adieu to the Hellos directory as follows:

debian@beaglebone: ~/project/Hellos rm -v *hello*

removed ‘hellol2.txt'

removed ‘hellol.txt'

removed ‘hello2.txt'

removed ‘hello3.txt'

removed ‘hello4.txt'

removed ‘helloBuddy.txt'

removed ‘oh hello.txt'

debian@beaglebone: ~/project/Hellos 1s

A awesome beaglebone can do extremely fantastic gigs

You could simply have deleted everything right away by using the * wildcard
because it replaces any number of characters. The following code does that:

debian@beaglebone: ~/project/Hellos$S rm -v *
removed ‘A’

removed ‘awesome'

removed ‘beaglebone'’

removed ‘can'

removed ‘'do’

removed ‘extremely’

removed ‘fantastic'

removed ‘gigs'

debian@beaglebone: ~/project/Hellos$ 1ls
debian@beaglebone: ~/project/Hellos$ cd ..
debian@beaglebone: ~/project$ rmdir Hellos

The computer uses spaces to separate the inputs of commands! That said,
when you’re using asterisks, an accidental space could lead to catastrophic
results. Suppose that you want to delete all the . jpg files you have inside a
folder. To do that, you could use

rm *.jpg
Had you unwittingly placed an extra space in the command, as in
rm * .jpg

the shell would interpret this command as a direction to remove * — which
means remove everything — and then attempt to remove a file named . jpg.
You may unwittingly delete a very important file in that directory, and there’s
no “undelete” option. One solution would be to use the -i option whenever
you decide to delete many files, but having to confirm each deletion would be
tedious and would defeat the purpose of using wildcards. The best solution

is simply to be very cautious whenever you're deleting files — and to double
that caution if you're doing so by resorting to wildcards.

/3

74

Part ll: Covering the Basics

WING/

&@‘

You should always be cautious when deleting files. If, for any specific project
you may encounter in the future, you find yourself working as a superuser,
that caution should be much greater. Nothing can hold you back from deleting
everything on the computer, leading to a system crash due to the deletion of a
crucial file, directory, or whatever. The command that causes this problem is
rm -rf /*issued by someone who's logged in as superuser. We're exposing
you to this command because someone, somewhere may claim that it’s the
solution to the problem you’re having. Now you're prepared for this claim, and
you can ignore it. You can also laugh and say, “Ah, almost got me there!”

Using long-listing format and permissions

Earlier in this chapter, in the section “Listing files and directories,” we intro-
duce the long-listing format of the 1s command, which is displayed when you
use it with the -1 option. This format offers quite a bit of information about
the files in the directory you list:

debian@beaglebone:~/projects 1s -1
total 32
-rw-r--r-- 1 debian debian 32 Jul 1 00:11 bye2.txt

drwxr-xr-x 2 debian debian 4096 Jun 30 23:58 CircuitSchematic
drwxr-xr-x 2 debian debian 4096 Jun 30 23:58 Code_for the project
-rw-r--r-- 1 debian debian 0 Jul 1 00:11 hello2.txt

debian debian 0 Jul 1 00:11 hello3.txt

debian debian 43 Jul 1 00:09 helloAndBye.txt

-rw-r--r-- 1
1
drwxr-xr-x 2 debian debian 4096 Jul 1 00:43 importantFiles
2
1
2

-YW-Tr--T--

drwxr-xr-x 2 debian debian 4096 Jun 30 23:58 ListOfMaterials
debian debian 18 Jul 1 00:15 list.txt
debian debian 4096 Jun 30 23:58 TheoreticalStuff

-YW-Y--Y--
drwxr-xr-x

You should dissect these lines for the information they contain. Starting from
the right (because those commands are the most intuitive and the easiest to
explain), you have the following:

v The filename (bye2.txt): Remember that the names of directories are
also filenames.

v The time and date of the last modification (sul 1 00:11): If you had an
older file, this format would change slightly. Rather than showing the
time when you last altered the file, the year in which you modified it
would be displayed.

v~ The size of the file, measured in bytes (32 or 4096): One important thing
to note is that for the directories, this number is the size of the file that rep-
resents the directory, not the sum of the contents of the directory. Thus,
all directories display a size of 4096 bytes, regardless of whether they are
empty. To have the sizes of the contents printed in units that make more
sense (such as 1K, 120M, and 2QG), use the -h (human-readable) option.

Chapter 4: Introducing the Linux Shell

1+ The owner of the file and the group that owns it (debian debian): The
two columns that feature debian represent, from left to right, the owner
of the file and the group that owns it. Thus, the second column could be
something like LabPCs.

v+ The number of hard links to the file (1 or 2): The number before
debian represents the number of hard links to the file. In the case of a
directory, that number is the number of immediate subdirectories it con-
tains, as well as the directory itself and the parent directory. Therefore,
a directory with no subdirectories has at least two hard links to it.

The remaining columns consist of information regarding permissions; they
provide insight into who is able to use the files and in which ways. You can
do three things with a file: read it (r), write in it (w), and execute it (x). Also,
there are three groups of people, from the point of view of your computer:
the owner, the group, and the world.

That information is provided in the leftmost part of each line and is always a
combination of ten characters. To understand this code, you can break it into
four parts: one for the size of one character and three for the sizes of three
characters:

v The first character tells you what kind of file you're dealing with: a regu-
lar file (-) or a directory (d).

v Next are the permissions for the owner (the first three characters), the
group (the next three characters), and everyone else (the last three char-
acters). For a specific file, someone who has read permission can open
the contents of the file or list a directory; someone who has write permis-
sion can change the contents of the file and of a directory (such as by
creating or deleting files); and someone who has execute permission for a
regular file can use it as a program and run it, or enter a directory.

Typically, you see -rw-r--r-- in a file. This code means that the owner can
read it and write in it, and everyone else (the group and the world) can read
it but not make any changes. The code is always rwx, so if you see a hyphen
in the place of one of these letters, the file doesn’t give that specific permis-
sion to that group of people.

For a directory, you often see drwxr -xr-x. Here’s the letter-by-letter translation:

v It’s a directory (d).

v The owner can read, write, and execute it (rwx). Because this item is a
directory, the owner can see its contents with the 1s command or when
using a GUI (read permission), add files to or delete files from it (write
permission), and get inside the directory (execute permission).

v The group can read and execute it (r-x) but not write in it, meaning that
they can list its contents (read permission) and also get inside it (execute
permission), but they can’t create or delete any files (no write permission).

76 Part II: Covering the Basics

v Everyone else has the same permissions as the group — that is, they can
NG/ check the contents without messing around with them.
5>
S

Two small details are worth noting:

v Even if a file gives you write permission, it still answers to the directory
that contains it. Even though you can alter the file itself, you can rename
or delete it only if you have write permission for its directory.

v In reality, you can’t do anything in a directory if you don’t have the
execute permission, so a three-character indicator such as rw- doesn’t
allow you to do anything. Most things that you try to do result in a
Permission denied error.

The chmod command enables you to change a file’s permissions. You have many
ways to use this command, but perhaps the most intuitive way is to use the sum
(+) and subtraction (-) operators, along with the people or groups to which you
want to give or remove permissions: the user (the owner of the file), the group,
the world (other users), or all of these by using u, g, o, or a, respectively.

In the following example a command removes write permission from
hello2.txt for the user, gives write permission to the group for bye2 . txt,
and grants execute permission to the world for hello3. txt:

debianebeaglebone: ~/projects 1ls -1
total 32
-rw-r--r-- 1 debian debian 32 Jul 1 00:11 bye2.txt

debian debian 4096 Jun 30 23:58 CircuitSchematic
debian debian 4096 Jun 30 23:58 Code for the project
-IW-T--T-- debian debian 0 Jul 1 00:11 hello2.txt

1
drwxr-xr-x 2
2
1

-rw-r--r-- 1 debian debian 0 Jul 1 00:11 hello3.txt
1
2
2
1

drwxr-xr-x

-rw-r--r-- 1 debian debian 43 Jul 1 00:09 helloAndBye.txt
debian debian 4096 Jul 1 00:43 importantFiles
debian debian 4096 Jun 30 23:58 ListOfMaterials
-YW-Y--T-- debian debian 18 Jul 1 00:15 list.txt
drwxr-xr-x 2 debian root 4096 Jun 30 23:58 TheoreticalStuff
debian@beaglebone: ~/project$ chmod u-w hello2.txt
debian@beaglebone: ~/project$ chmod g+w bye2.txt
debian@beaglebone: ~/project$ chmod o+x hello3.txt
debianebeaglebone: ~/projects 1ls -1

total 44
drwxr-xr-x

drwxr-xr-x
drwxr-xr-x

debian debian 4096 Apr 23 2014 Code for the project
debian debian 4096 Apr 23 2014 ListOfMaterials
debian debian 10 Apr 23 2014 bye.txt

debian debian 35 Apr 23 2014 bye2.txt

2
drwxr-xr-x 2
1
1

drwxr-xr-x 2 debian debian 4096 Apr 23 2014 circuitSchematic
1
1
1

-IW-T--T--
-T--TW-T--
-rw-r--r-- 1 debian debian 33 Apr 23 2014 hello.txt
debian debian 0 Apr 23 2014 hello2.txt
debian debian 0 Apr 23 2014 hello3.txt

~Y--T--T--
-r--r--r-x

Chapter 4: Introducing the Linux Shell

-rw-r--r-- 1 debian debian 43 Apr 23 2014 helloAndBye.txt
-rw-r--r-- 1 debian debian 173 Apr 23 2014 list.txt
-rw-r--r-- 1 debian debian 9 Apr 23 2014 teste.txt
-rw-r--r-- 1 debian debian 9 Apr 23 2014 teste2.txt
drwxr-xr-x 2 debian debian 4096 Apr 23 2014 theoretical stuff

As you can verify, the user lost his or her permission to write in the file

hello2.txt. To confirm, use the echo command:

debian@beaglebone: ~/project$ echo 'This will not work' > hell
o2.txt
-bash: hello2.txt: Permission denied

For bye2. txt, even though you can’t readily test it, you can check the list
to see that the group was given write permission for it. The same applies to
hello3.txt, which now shows an x that wasn’t there earlier.

Managing Software on
Vour BeagleBone

\NG/
Q\“ Y
$

When you know your way around the command line, downloading and
installing new software on a computer or device running the Linux OS is quite
easy and straightforward. The software comes in what are called packages —
software programs that can be downloaded from the Internet and installed
simply by typing a command in the prompt.

To download and install these packages, you normally use a package man-
ager, which downloads and installs not only the software you requested, but
also all other required software, known as dependencies. The Debian distribu-
tion uses a package manager called apt.

If you read other literature about the BeagleBone, you may find that you should
use the opkg utility as the package manager. As mentioned in Chapter 2, up until
recently, the standard distribution used by the BeagleBone was Angstrom. The
examples in this book use the Debian distribution, so apt is the way to go.

To manage your software, you need the authorization of the administrator,
whom you already know as the superuser. Being logged in as root is often
considered to be unsafe, as the computer becomes vulnerable not only to
its user (who may unwittingly make undesired changes in the file system),
but also to malicious software that may have gotten inside. With that in
mind, you can carry out a command with the authorization of the root
user without being logged in as such. To do so, type sudo (superuser do)
before a command.

/7

78 Part II: Covering the Basics

In any other situation, if you get an error message telling you that the command
you typed can be executed only with the authorization of root, try using sudo
before it. Be cautious, though. If the command is telling you that it needs the
authorization of root, it’s probably because something serious is involved!

a\\J

First and foremost, you have to update the list of available package versions
that your package manager is aware of. (The package manager keeps such a
list in the BeagleBone’s file system.) Type the following command:

<MBER sudo apt-get update
You need to be connected to the Internet for this command to work.

Text scrolls by after you type the command, giving information about the
newest listings.

Next, you should update the software, which you can achieve by command-
ing apt to upgrade. This command upgrades all the packages you’ve installed
to their most recent versions:

sudo apt-get upgrade

In terms of wording, the difference between updating and upgrading is
subtle, but what they do is quite different (even though they’re usually done
together). sudo apt-get update updates the list of available package ver-
sions but doesn’t install or upgrade any of them, whereas sudo apt-get
upgrade updates the packages themselves, checking the list to do so. For
that reason, you should always run update before upgrade.

Installing software

To install a package for which you already know the name, you have to type
the following command:

sudo apt-get install <desired application>

To see how this process works, use the following command to install the
Midnight Commander application, which is a visual file manager:

sudo apt-get install mc

This command downloads the package from the Internet and installs it, as
<MBER well as any dependencies it requires to work properly.

Always run sudo apt-get update before installing software.

Chapter 4: Introducing the Linux Shell 79

Running software

To run programs directly from the prompt, simply type their names, as
shown in the following command and in Figure 4-4:

debian@beaglebone:~$ mc

2 mc [debian@beaglebone]:~ = =

.cache
.config
.dbus
_fontconfig

|
Figure 4-4:
Running
Midnight
Commander
through
PuTTY.
|

Updating software

You can update the latest versions of your software by typing the upgrade
command:

sudo apt-get upgrade

Generally, though, you want to update the list of available package versions
before you upgrade to ensure that apt gets you the most recent updates for
your installed software.

In the “Installing software” section, we show you how to get updates and
upgrades by writing the commands separately, but you can write them both
in a single line as follows:

sudo apt-get update && sudo apt-get upgrade

The && is a binary operator that means AND. The AND operator is commonly
used in programming to test for multiple conditions. For now, keep in mind
that its use ensures that the second command executes only if the first suc-
ceeds. If your update fails for some reason (maybe because you lack an
Internet connection), the system won’t even attempt to upgrade.

80

Part ll: Covering the Basics

This process (specifically, the upgrading part) can take a very long time,
which can be troublesome if you want to update a single application.
Fortunately, you can do so by typing the install command again, remem-
bering to update the list of available package versions first:

sudo apt-get update && sudo apt-get install mc

This command doesn’t install the software all over again. Instead, the pack-
age manager first checks for updates and installs them. If updates aren’t
available, the package manager displays a message that the software is
already up to date.

Removing software

To remove software from your BeagleBone, you resort once more to the apt
package manager. Here’s an example:

sudo apt-get remove mc

This command, however, leaves behind files that are somehow related to the
software, such as configuration files and logs. If you don’t intend to use those
files in any way, you can remove everything by using purge:

sudo apt-get purge mc

You can also direct the system to check for unnecessary packages and/or
files and remove them automatically.

The package manager downloads and installs not only the requested package,
but also any other packages that it may depend on. Thus, if you delete some
software, its dependencies may stay behind. The apt package manager deems
the dependencies unnecessary and deletes them automatically when you
issue the following command:

sudo apt-get autoremove
Don’t fret about giving so much power to the package manager. Before dele-
tion, you see a list of the packages that will be removed, and you’re prompted
to press Y to confirm that you do want those packages removed. You also see

how much space will be freed.

To remove all files that are undoubtedly unnecessary, you can type the fol-
lowing command:

sudo apt-get clean

Chapter 4: Introducing the Linux Shell 8 ’

WING/
&

These files are usually installation files. They remain on your computer

after the installation of a program, even though they’re no longer needed.
Removing them isn’t an issue. If you decide to reinstall a package, you can
simply do so as previously described in the “Installing software” section. The
installation file downloads again.

We highly recommend not removing any package that you didn’t install your-
self unless you're absolutely certain that you know what it’s for. It may be a
necessary package that comes with the Linux OS, and removing it may lead to
a system crash.

Seeing what's installed on your
BeagleBone

To see a list of installed packages on your BeagleBone, type the following
command:

dpkg --list
Note that this command doesn’t require root authorization. After all, you
aren’t messing around with the software; you're just listing it. Consequently,

it’s not necessary to use sudo.

To see whether a specific package is installed, as well as a more detailed
description about it, you can use the following command:

dpkg --status <nameOfThePackage>

Changing the Hostname and Password

Currently, the hostname of your BeagleBone is, rather boringly, beaglebone.
You may want to change it to something more personal. Doing so is also
useful when you start to use more than one BeagleBone on the same network,
because the hostname is the name that’s displayed to all the other users on
that network.

If you want to change the hostname, start by typing the following command:

debian@beaglebone:~$ sudo echo 'newHostName' > /etc/hostname

82

Part ll: Covering the Basics

A\

Your hostname is changed to the one that you prefer. The BeagleBone won’t
recognize this “host,” however, so you need to edit the hosts file. To open
and edit it, follow these steps:

1. Type the following in a text editor such as nano:

debian@beaglebone:~$ sudo nano /etc/hosts

2. On the line that reads 127.0.0.1 beaglebone, change beaglebone to
your new hostname

3. Save the file, and quit nano.
4. Reboot your BeagleBone.

Your new hostname should appear during your next login.

Use the arrow keys to navigate nano, and press Ctrl+O to save and Ctrl+X to
exit. If you attempt to exit without saving, you’re prompted to press Y if you
want to save or N if you don’t.

The default debian user password is temppwd. If you want to change it, simply
type the command passwd and follow the steps printed in the terminal:

debian@beaglebone:~$ passwd

Changing password for debian.
(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully
debian@beaglebone: ~$

The text is hidden while you write the passwords.

Shutting Down and Rebooting

There are better ways to shut down and reboot your BeagleBone than simply
unplugging it. Unceremoniously unplugging your BeagleBone is the equiva-
lent of shutting down your computer by pressing the power button or even
removing its power source, which sometimes leads to complications such as
file corruption.

To shut down your BeagleBone, simply type this command on the command
line:

debian@beaglebone:~$ sudo shutdown -h now

Chapter 4: Introducing the Linux Shell 83

You see the following information after you use the shutdown command:

Broadcast message from root@beaglebone (pts/0) (Thu Jul 3 18:50:09 2014):
The system is going down for system halt NOW!
debian@beaglebone: ~$

To reboot, type this:
debian@beaglebone:~$ sudo reboot
This is the result:

Broadcast message from root@beaglebone (pts/0) (Thu Jul 3 18:44:29 2014):
<P The system is going down for reboot NOW!

You need to log in again through SSH after rebooting.

Commanding the Prompt
Like a Jedi Master

This section provides a few tips and tricks that maximize the efficiency with
which you use the Linux OS. This material won’t help you save the galaxy or
show you how to fetch the TV remote with telekinesis, but it should help you
navigate the prompt much faster than before — and with a lot more style.

Recalling previous commands

You can easily recall the commands you’ve used previously by pressing the up-
and down-arrow keys. Imagine that you listed the contents of a file by using 1s
-1; then you created a directory and a file inside this new directory. You want
to see the list again to see the default permissions of this new directory. Rather
than keying in 1s -1 again, you can simply press the up-arrow key twice.

Next, imagine that you want to list the contents of this new folder to see the
file inside it, but you want to add the -h option. Simply press the up-arrow
key to bring 1s -1 onscreen once more; you can use the left and right arrow
keys to navigate through that line and then add the -h option and the name
of the new directory. You can tell that this method saves some work.

Now imagine repeating the entire process for someplace other than your
working directory, a place with a very long absolute path, such as this:

ls -1 /home/debian/Desktop/project/aFolder/aDeeperFolder/
anEvenDeeperFolder/theDeepestFolder

84

Part ll: Covering the Basics

In fact, create this folder now for the sake of further exemplification:

debian@beaglebone: ~/Desktop$ mkdir -p aFolder/aDeeperFolder/
anEvenDeeperFolder/theDeepestFolder

Autocompleting commands

After writing the first letters of a line, press Tab to command the shell to try
to guess what you meant to write and to autocomplete it. Naturally, this fea-
ture is most useful when you want to access long filenames. If it fails, write a
little more to give the shell a better hint. You can try it by typing the follow-

ing at the Desktop and then pressing the Tab key:

debian@beaglebone: ~/Desktop$ cd aF
The shell completes the line with cd aFolder/.

Note the slash at the end. When you used cd to access a directory in the
previous sections, you never placed a slash at the end of its name. Placing or
not placing a slash is exactly the same. Why does the autocompletion add a
slash, then? That’s because it’s ready to continue guessing the names of files
within that directory. If you keep pressing the Tab key, you eventually end up
with the following command:

debian@beaglebone: ~/Desktop$ c¢d aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder

Because nothing else was inside any of those folders, it was quite easy for the
shell to autocomplete your command even without having hints; there was

only one option, after all. Otherwise, the prompt prints a list of possible files,
asking you to write a few more letters. The following example illustrates that:

debian@beaglebone: ~/Desktop/aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder$ touch heyJohn heyMarie heyCarl

If you type file and then press Tab repeatedly, you see the following:

debian@beaglebone: ~/Desktop/aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder$ file hey

Chapter 4: Introducing the Linux Shell 85

WBER
e&
&

Continue pressing Tab. The prompt suggests all the possibilities:

debian@beaglebone: ~/Desktop/aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder$ file hey

heyCarl heyJohn heyMarie

debian@beaglebone: ~/Desktop/aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder$ file hey

If you give the prompt a better hint, such as this,

debian@beaglebone: ~/Desktop/aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder$ file heyd

when you press Tab again, you see the result:

debian@beaglebone: ~/Desktop/aFolder/aDeeperFolder/anEvenDeeperFolder/
theDeepestFolder$ file heyJohn

Using keyboard shortcuts

You have ways to navigate the command line other than pressing the left- and
right-arrow keys, which sometimes seem to take forever to get you some-
where. Following are some useful keyboard shortcuts:

v Ctrl+A and Ctrl+E do the same thing as the Home and End keys — that
is, they bring you to the beginning and the end of the current command,
respectively.

v~ Ctrl+Left and Ctrl+Right jump between inputs (arguments) in a command;
the cursor jumps from a space or a slash to the next.

v Ctrl+U clears the entire line.

v Ctrl+K deletes everything from the position of the cursor to the end of
the line.

v Ctrl+W deletes a single word before the cursor.

v Ctrl+R allows you to search your command history. If you press Ctrl+R
and then type cd, for example, your most recent command involving cd
appears on the command line. Pressing Ctrl+R again shows you the cd
command before that, and so on. Press the left- or right-arrow key when
you find the one you want.

This search finds characters, not commands. If you had a command such
asmkdir photos from cd, you could use Ctrl+R with cd to find it.

86 Part ll: Covering the Basics

\\J

Using these Ctrl shortcuts helps you jump around quite fast. Suppose that
you want to copy a file from the Desktop to the anEvenDeeperFolder
directory. First, create the file by using the touch command:

debian@beaglebone: ~/Desktop$ touch hello.txt

To copy the file, you would have to type the following cumbersome
command:

debian@beaglebone: ~/Desktop$ cp hello.txt /home/debian/Desktop/aFolder/
aDeeperFolder/anEvenDeeperFolder

What a chore! Instead, you can achieve the same result by following these
steps:

1. Press Ctrl+R and then type mkdir:

(reverse-i-search) ‘mkdir': [mlkdir -p aFolder/aDeeperFolder/
anEvenDeeperFolder/theDeepestFolder

The preceding example and those that follow are all about showing you
how to have your cursor jumping around in a line by using keyboard
shortcuts. In the examples, the terminal cursor is represented with
closed brackets ([]). If your cursor is somewhere else and you press the
keyboard shortcuts you’ll get different results.

2. Press Ctrl+right arrow until your cursor is right before the directory
you want to eliminate from the path:

debian@beaglebone: ~/Desktops mkdir -p aFolder/aDeeperFolder/
anEvenDeeperFolder [/] theDeepestFolder

3. Press Ctrl+K to get rid of theDeepestFolder/:

debian@beaglebone: ~/Desktop$ mkdir -p aFolder/aDeeperFolder/
anEvenDeeperFolder [

4. Press Ctrl+A to go to the beginning of the line:

debian@beaglebone: ~/Desktops [m]kdir -p aFolder/aDeeperFolder/
anEvenDeeperFolder

5. Press Ctrl+right arrow twice.
Your cursor is now after-p:

debian@beaglebone: ~/Desktop$ mkdir -p[]aFolder/aDeeperFolder/
anEvenDeeperFolder

6. Press Ctrl+W twice to erase mkdir -p,and then type cp hello.txt:

debian@beaglebone: ~/Desktops []aFolder/aDeeperFolder/anEvenDeeperFolder

87

Chapter 4: Introducing the Linux Shell

Alternatively, you can type something like cp he and then press Tab:

debian@beaglebone: ~/Desktop$ cp he[]aFolder/aDeeperFolder/
anEvenDeeperFolder [

7. Press Tab:

debian@beaglebone: ~/Desktop$ cp hello.txt[]aFolder/aDeeperFolder/
anEvenDeeperFolder

Keeping everything clean

Typing the command clear or pressing Ctrl+L quickly clears the screen, but

it doesn’t clear the terminal window. In fact, the result is like pressing Enter or
Return many times: If you scroll up, you still see the commands you used previ-
ously. If you truly want to clear everything, you can use the reset command.

The reset command reinitializes the terminal window, so that it appears to
have just started (and, thus, has nothing in it). The command doesn’t reiniti-
ate the shell, however, so it doesn’t alter the shell’s state. In layman’s terms,
the shell’s state is the same, so you can still access your command history.

Taking things further

The Linux 0S offers a world of possibilities. It
allows you to do plenty of things and gives you
a degree of freedom, versatility, and customiz-
ability thatis rare in any 0S. This chapter should
be enough to get you started using Linux on the
BeagleBone, but if you're interested in find-
ing out more, you can grab a copy of Linux For
Dummies, 9th Edition, by Richard Blum (John
Wiley & Sons, Inc.).

Also, Linux is open-source software, so con-
sulting the web is often a good way to find out
more. You can find many friendly Linux users

who are more than happy to share some of
their knowledge and resources. If you search
for the specific problem that you encounter,
there is bound to be someone who has had the
exact same problem — and someone who has
explained how to solve it.

Additionally, www.linux.com/learn,
http://linuxsurvival.com, and
http://elinux.org are great resources
to find out more about Linux. Elinux is a website
destined specifically for embedded systems
that run Linux, such as the BeagleBone.

http://www.linux.com/learn
http://linuxsurvival.com
http://elinux.org

88 Part ll: Covering the Basics

Chapter 5
Designing Circuits

In This Chapter
Getting to know electricity
Knowing the mathematical relationships for controlling electronic components
Working with circuit diagrams, color coding, and datasheets

Fis chapter gets you up to speed regarding the most basic principles of
electricity so that you can understand what is happening on the circuits
you build to interact with your BeagleBone. It introduces you to the funda-

mentals of electricity. We explain new techniques, rules, and/or new circuit

components and their respective symbols throughout the remainder of the
book where those concepts are most appropriate.

The study of the phenomena that deal with electricity is complex and vast.
Deep down, things such as your phone, your computer, and your BeagleBone
are nothing but a great deal of electric components manipulating electric-
ity. You don’t need to understand how these components work to use those
devices. Because you’ll make electronic circuits of your own that use the
BeagleBone as support, however, you should understand some basic prin-
ciples of electricity.

Introducing Electricity

Ah, electricity. Most people know what it is but have no idea what it really

is. It’s been around since the dawn of the universe, and some sources say
that the ancients actually believed it was some kind of magic. Thunder is a
manifestation of electricity. Rubbing a pencil on your hair and then using it to
attract pieces of paper is also electricity. When you press a few keys on your
keyboard, what makes them show up on your screen? Again, electricity.

Electricity appears as a form of energy due to the existence of electrically
charged particles (protons and electrons; see Figure 5-1) on the structure of
an atom — the foundation of all matter.

90 Part II: Covering the Basics

ELECTRON

Figure 5-1:
The struc-

ture of an NUCLEUS
atom.

NEUTRON

Uoltage, current, and resistance

This energy can appear as a static accumulation of electrical charge — an

electric potential or voltage — or as a dynamic flow of electrons — an electric
current (see Figure 5-2).

T— RoTON i o o N - b
Figure 5-2:

Electric
current on

an atomiC ELECTRON
NEUTRON
level.

NUCLEUS
|

*ELECTRONS BUMP FROM ATOM TO ATOM

An electric current is basically electrons bumping from atom to atom. This
phenomenon happens only in some materials. The atoms that make up
rubber, for example, are too posh to engage in this kind of behavior. Copper
atoms, however, are party animals that get down on the dance floor for some
bumping action with just the slightest motivation. Elements such as copper

Chapter 5: Designing Circuits

are defined as good conductors. They still need some motivation, though,
some sort of energy to get them moving. That energy is known as voltage, and
thus there must be a voltage source to provide that energy. In a sense, voltage
is the force that pushes the electric current forward.

Generally, you don’t need to know any of this mumbo-jumbo about how volt-
age and current exists. Long story short, applying a voltage to a conductive
material gets an electrical current flowing. You do need to know how voltage
and current behave and how they can be manipulated, however.

The electrical wires mentioned in Chapter 1 usually have copper in them to
get the current flowing. This copper is covered by a nonconductive material —
an insulator — so that the copper where the current flows is protected.

The third concept you need to be aware of is electrical resistance. All elec-
tronic components exhibit some sort of resistance, which is a material’s
capacity to resist electric current. For the current to get through this mate-
rial, the current needs to be pushed through; it needs a voltage. What we call
a voltage drop occurs at the resistive component.

In the next section, you find out about mathematizing these values by using
three very simple equations, so it’s important to know the following:

v Voltage is measured in volts (V). A 1.5V AA battery, for example, is a
1.5V voltage source.

1 Current is measured in amperes, or amps for short (A). The variable
used to represent it, however, is often I (from current intensity).

1 Resistance is measured in ohms ((0) and is represented as R.

The symbol for resistance, (), is the uppercase Greek letter omega. One of the
side effects of taking an electronics course is that you may end up knowing
pretty much the entire Greek alphabet.

The water analogy

It’s much easier to understand electrical phenomena when you compare
electric current with water flow. Imagine a system of plumbing pipes through
which water flows. Some sort of force has to drive the water, such as a water
pump, which is analogous to a voltage source. Also imagine that one section
of the pipes has a much smaller diameter than the rest of the system. This
section exhibits much higher resistance to the flow of water, so for the water
current to pass at the same speed, more force is required.

91

92

Part ll: Covering the Basics

|
Figure 5-3:

A basic
circuit that
lights up an
LED.
|

WING/
&

A basic circuit example

The simple circuit shown in Figure 5-3 consists of a voltage source, a resistor,
and a light-emitting diode (LED) connected with wires made of copper or any
other conductive material.

Resistor

9V_|_

LED \\:

The voltage source — typically, a battery, such as the 9V battery in

Figure 5-3 — supplies voltage to the circuit, which draws current from the
battery. The relationship between the value of the battery and the current
that’s drawn from it is called power, which is measured in watts (W).

All electronic circuits are . . . well, circuits: They’re always a closed loop.
Current must always return to its source. That said, the voltage supplied by
the battery drops along the circuit. Each component eats up a slice of those
tasty 9V due to the resistance they exhibit, and the voltage dropped along the
entire circuit must always equal the amount of voltage supplied.

Copper wires exhibit resistance, but that resistance is so ridiculously low that
you can pretend it isn’t there at all for most applications. Consequently, you
can assume that no voltage drop whatsoever occurs along the wires.

When a circuit has no resistive components, the voltage can’t drop before the
current goes back into the battery again. This type of circuit is called a short-
circuit and is often harmful to your circuit and its components. Don’t test this
at home, but if you connect a battery’s positive (+) pole to its negative (-) pole
with a wire, the battery would become really hot and lose all its energy very
quickly. Such is the effect of a short-circuit.

Some components are very specific to the amount of voltage that they need
to work, which is why it’s important to understand the concepts presented
in this chapter. If you apply the 9V directly to the LED, the LED would blow
up. Well, actually, just the filament inside would burn up, so the event really
wouldn’t be a fun one. The LED would light up for a brief moment; then there
would be some smoke and a nasty smell. On the other hand, if you apply less

Chapter 5: Designing Circuits 93

WBER
\‘&
&

voltage to the LED than is specified, the light won’t reach its full brightness or
may even not light at all. That’s why a resistor is close to it. If the LED needs
2V and draws about 0.03A to work properly, the circuit somehow needs to get
rid of the extra 7V that come from the battery. Determining these values is
what the next section is about.

The current along a closed loop is the same through all components. The volt-
age drop varies from component to component in the circuit.

Examining the Equations

This section describes the equations that govern the electrical phenomena
that are introduced in this chapter. If math is generally a nightmare for you,
do not worry; these are all pretty straightforward calculations.

Ohm’s Law

Ohm’s Law — the bread and butter of all things electric — describes the
mathematical relationship among voltage, current, and resistance. Its name
derives from the German physicist who discovered it in 1827: Georg Simon
Ohm. The equation for Ohm’s Law is

V=IxR

The relationship is a simple one: The voltage drop on a resistive component
is proportional to its resistance and the current flowing through it.

Suppose that you want to get a current of 2A through two different resis-
tances: one with the value of 1 () and another with the value of 3 (). Because
the second resistance has a higher value, it resists the current in a more
significant way. Thus, you need more force to push the current through; you
need a higher voltage. Here are the equations for those two situations:

2x1=2V
2x3=6V

Using algebra, you can rearrange the equation of Ohm’s Law to obtain any
value provided that you know the other two.

94

Part ll: Covering the Basics

\\3

&NWR

&

To know how much current will go through a resistance when you know the
voltage drop, you use this equation:

I=V/R

To find out the resistance you need to get a specific value for voltage drop
and current, use this equation:

R=V/I
To figure out the value of the resistor that would get rid of the extra 7V (9V

from the voltage source minus 2V that the LED needs) from the earlier exam-
ple, the equation is this:

R=7/0.03~233Q

The equal sign with the wiggly dashes, =, means approximately equal to.

Power calculations

Power (P) is the amount of energy per second that your circuit consumes. It’s
calculated as follows:

P=VxI

Naturally, you can rearrange this equation with algebra, leading to the follow-
ing alternatives:

I=P/V
V=P/I

The power provided by a voltage source must always be used up in its
entirety throughout the circuit. Mathematically, this means that for the circuit
example, the power dissipated at the resistance plus the power dissipated at
the LED equals the power supplied by the voltage source:

P, e =9%0.03=0.27W
Pociaior +Prsp = 7X0.034+2x0.03=0.27W

resistor

A voltage supply provides power; circuit components use it.

Chapter 5: Designing Circuits 95

Joule’s Law

A few years after Ohm came up with his law relating resistance, current, and
voltage, the English physicist James Prescott Joule decided to relate Ohm’s
Law to the concept of power. Joule’s Law was derived as

V=IxR(Ohm’s Law)
and
P=VxI(calculating power)
Thus,
P=IxRxI=xR Joule’s Law)
Joule’s Law can be rearranged as
R=P/I
By using any of the rearranged forms of Ohm’s Law and the equation for

power calculation, you can find out different relationships. In the end,
though, the values must always be the same:

[=V/R(Ohm’s Law)
and

P =VxI(calculating power)
Thus,

P=VxV/R=V?/R (Joule’s Law)

which can be rearranged as

R=V?*/P

Units of measurement

In the world of electronics, you often deal with very small numbers, such as
currents of 0.0001A, or resistances of very high values, such as 10000004.

96 Part II: Covering the Basics

For convenience, these numbers can be shortened with prefixes, as shown in

Table 5-1.

Table 5-1 Units of Measurement
Prefix Symbol Multiplier
Tera T 10"
Giga G 10°
Mega M 108
Kilo K 108
Mili M 108
Micro u 10
Nano N 10°
Pico P 1012

The two values used in this section’s introduction could be written like so:

» 0.0001A = 100 pA
»* 1000000 Q = 1 MQ

Working with Circuits

This section explains the different basic electrical components, as well as the
rules and standards on how to represent them in an electric circuit.

Circuit diagrams

Circuit diagrams are collections of standardized symbols and sets of rules
used throughout the world of electronics to represent electronic circuits.
Figure 5-3, earlier in this chapter, shows an example of a circuit diagram. This
section explains the symbols in the diagrams.

DC Voltage source/DC power supply/battery

The DC voltage source (which can also be called the DC power supply or bat-
tery) powers up your circuit, feeding it the current that it needs for opera-
tion. The required voltage depends on the application. An electric DC motor
usually requires a larger amount of voltage than lighting an LED, for example.
The symbol for the DC voltage source is shown in Figure 5-4.

Chapter 5: Designing Circuits

|
Figure 5-4:
DC Voltage
source.
|

|
Figure 5-5:
Resistor.
|

|
Figure 5-6:
The symbol
on the leftis
for a diode.
Onthe
rightis the
symbol for
an LED.
|

nd I
T

Resistor

The resistor is the most basic, most common electronic component of simple
electronic circuits. It’s there to control the voltage and current supplied to
the components that use the energy to do something, such as lighting up.
Figure 5-5 shows the symbol for a resistor.

~AM~

Diodes

Diodes are components used to force the current to flow in only one direc-
tion, which is why the circuit symbol displays an arrow, as shown on the left
side of Figure 5-6. An LED is simply a diode that also happens to light up. The
circuit symbols for the two are very similar except for the two arrows on an
LED, as shown on the right side of Figure 5-6.

1 1’4

Unlike resistors, diodes have polarities, and the direction of current flow is
always from the anode (+) pin to the cathode (-) pin. Therefore, the tip of the
arrow is the (=) side of the diode. Figure 5-7 illustrates diode polarity on an
LED.

97

98 Part II: Covering the Basics

....... -"-,‘*: The shorter leg or

i the flat side of the
i lens indicates the
i =— LED’s(-)

........ " cmone

Figure 5-7:
LED polarity.

QNING/ If you slightly change the circuit in Figure 5-3 by flipping the LED around as
Sy shown in Figure 5-8, the circuit wouldn’t work. The LED wouldn’t light up
because it would be blocking current flow. Remember that the current sup-
plied by the battery goes from its (+) to its (-) pin. Be careful whenever you
work with components that have polarities!

|
Figure 5-8: R1
A nonfunc-
tioning
circuit, + ;
with its LED
orientation L1
reversed.
|
The alternative configuration shown in Figure 5-9 — in which the battery has
been inverted — does work.
s Nothing is wrong with the configuration in Figure 5-9 as far as science is

concerned, but having the power source’s (+) pin pointing upward has been
known as a good practice for organization for a very long time. Generally, you
want your circuit’s current to go around in a clockwise fashion.

Chapter 5: Designing Circuits

|
Figure 5-9:

A function-
ing circuit,

in which

the LED and
the battery
orientations
have been
reversed.
|

|
Figure 5-10:
Adding a
switch to
the circuit.
|

\\J

R1

+
Y

L1

Switches

The example circuit has a somewhat significant issue: Unless you unplug the
battery, the LED will always be lit until the battery discharges. A very simple,
yet quite useful way to add control to your circuit is to use switches, as
shown in Figure 5-10.

S1
Nl

R1

Ll\\:

When you use a switch, you either make a metallic connection (enabling cur-
rent to go through) or you break one. In the example circuit, the switch func-
tions as an on/off switch.

When it comes to drawing a circuit diagram, the term switch refers to pushbut-
tons as well as actual switches.

Capacitors

We state earlier in this chapter that resistors are the most common compo-
nents of electronic circuits. Capacitors run a close second. Capacitors are
electronic components that can store energy electrostatically. The mathemat-
ics and possible applications of this capability go beyond the scope of this
book, but because capacitors are such common components of circuits, we
needed to at least expose you to its symbol, shown in Figure 5-11. It’s just a
matter of time until you meet a schematic that features this symbol.

99

’ 00 Part II: Covering the Basics

|
Figure 5-11:
The two
equivalent | | \ |
circuit sym- I] 1
bols for a
capacitor.
|
Capacitors come in two main types: ceramic and electrolytic (see Figure 5-12). An
electrolytic capacitor exhibits polarity in the same way that diodes do. Generally,
you want to connect the (+) pin to the side that current is coming from.
|
— |
Figure 5-12:
Ceramic
capacitor
(left) and ‘
electrolytic \
capacitor
(right).
|
To know which pin is the anode (+) and which pin is the cathode (-), you
have two options:
v The (=) pin should always be the shorter leg. One of the legs may have
been trimmed, however, so this feature isn’t the most reliable determinant.
v The (-) pin is the one below the band white stripe as shown in
Figure 5-13.
|
Figure 5-13:
The cathode
(-)onan —
electrolytic
capacitor.

101

Chapter 5: Designing Circuits

The capacitance of a capacitor is measured in farads, and the most common
values are on the order of pF (microfarads), nF (nanofarads), and pF (picofarads).

Integrated circuit (IC) chips

You can combine electrical components in a million ways to achieve differ-
ent results. At their core, your calculator, your car, your computer, and your
BeagleBone all boil down to the same thing: a great many transistors along
with some resistors, capacitors, and whatever other basic components they
need. In that sense, integrated circuit (IC) chips appeared on the scene to
simplify matters. An integrated circuit is a fully functioning circuit inside a
small plate of (normally) silicon. It can feature up to several billion transis-
tors along with other components while being the size of your fingernail.
Figure 5-14 shows just one example.

The black squares on your BeagleBone are IC chips. Each one is responsible
for a different task on the board.

Color coding

Color coding is an important technique in building an electronic circuit,
especially the further you progress in terms of complexity. As you may have
noticed, wires come in different colors, albeit there is absolutely no differ-
ence among them in purely electric terms. The colors exist to help you with
organizing your circuit, which is really, really handy if the wiring on it is
abundant. Also, if you're working on a project with some other person, estab-
lishing a code can greatly help each of you understand what each person has
done without much of a headache.

Transistors

The transistor is a tiny electric component fea-
turing three pins rather than two. The voltage
between a pair of these pins controls the cur-
rent flowing through the other two. It's funny
that this simple capability makes it the heart of
all modern electronics.

The first computer created was the size of a
football stadium. The development of the tran-
sistor made it possible to shrink computers to
the size of your desk or even your palm.

To be honest, you most likely won't ever feature
a transistor on the circuits you build, but that's
because someone already did all the hard work
for you. The BeagleBone is made up of billions
of transistors. Even though you don't really need
to know about the transistor to carry on using
this book, we think it's important that you at
least know what it is. The things we talk about
in this book wouldn’t even exist if not for the
transistor.

’ 02 Part II: Covering the Basics

MTS62C19A-HS105

Ul
—|{OUT1A VLOAD }—
—{ouT2A SENSE1}—
—] SENSE2 COMPIN1 }—
—]compIN2 OUT1B}—
—{ouT2B 101}—
—|GND GND3}—
— _{GND1 GND2}—
Figure 5-14: —]102 111 —
Adual _1112 PHASE1}—
full-bridge —__fppyagED VREF1|—
moltgrdrlver —vrer2 RC1|—
(model
umber — RC2 VLOGIC }—
MTS2916A-
HGC1).
|

You can use whatever color code you want. Following is a common standard:

v Red for positive power supply (+)
v Black/white for circuit ground (-)
v~ A different color for every part of your circuit

You can call a part of a circuit whatever you want and organize accord-
ingly. Here are a few examples:

¢ All wires that come directly from a BeagleBone pin are blue; every-
thing else (apart from the power supply) is green.

e The wires that deal with the resistive network of the circuit are
yellow, whereas those related to the left DC motor are green, and
those related to the right DC motor are white.

e The wires that come into the Bluetooth device are blue; those that
come out of the device are green; all wires related to the LCD dis-
play are yellow.

For very simple circuits, this technique doesn’t make much of a difference,
but it’s a good idea for you to start having it in mind. When you reach a
higher degree of complexity, you’ll be able to work with a procedure with
which you're already comfortable. Organization, communication with a part-
ner, and debugging become much simpler.

Chapter 5: Designing Circuits 7 03

Figure 5-15:
A resistor.
|

Resistor color charts

The resistance of a resistor is determined by the color bands that appear
along it. The bands are read from left to right. What is left, though, and what
is right? In Figure 5-15, the three bands on the right are separated by gaps of
equal size, whereas the separation to the fourth band is larger. This arrange-
ment means that you should flip your resistor. The order of the bands in
Figure 5-15 is Red Red Red Gold — not Gold Red Red Red!

The first two bands represent the numbers of the first two digits, whereas the
third represents the number of zeros after those digits — its multiplier. The
fourth band is the tolerance of this value.

Table 5-2 provides an explanation of the color codes.

Table 5-2 Resistor Color Chart

Color Value Multiplier Tolerance
Black 0 x10° -
Brown 1 x10' 1%
Red 2 x102 2%
Orange 3 x103 -
Yellow 4 x10* 5%
Green 5 x10° £0.5%
Blue 6 x108 +0.25%
Violet 7 x107 £0.1%
Gray 8 x10° +0.05%
White 9 x10° -

Gold - x107 +5%
Silver - x102 +10%

In Figure 5-15, in which the code is Red Red Red Gold, the value is determined
as follows:

2 2 x10°+5%=2200+5%Q

’ 04 Part Il: Covering the Basics

Figure 5-16:
Connecting
resistors in

series.

|
|
Figure 5-17:
Connecting
resistors in

parallel.
|

The tolerance means that the value isn’t precisely 2200 Q, but somewhere
between 2200 x (1+0.05) = 2310 Q and 2200 x (1-0.05) = 2090 Q.

Keep yourself organized! As you may have noticed, finding out the value of a
resistor can be somewhat tedious. Keeping different resistors separated and
labeled may save you some time. The same applies to other components, such
as capacitors.

Because resistor values are based on a color code, naturally, it’s hard to

have every single resistance value available. If you use Ohm’s Law for some
application and realize you need a resistor value that doesn’t exist, using the
closest existing value shouldn’t be an issue. If your calculations lead you to a
resistance value of 233 (), a 220 Q or 270 () resistor should be okay — the 270 Q
value is preferred to avoid feeding more current than you should; values other
than these may not work for your circuit.

If you find yourself looking at a circuit diagram that needs a specific value for
a resistor that you don’t have at the moment, you have two options:

1 Make a trip to your closest electronics store.

v Combine the resistors that you have handy.
If you have to exercise the option of combining resistors, you can connect
them in two different ways so that their equivalent resistance, which is

labeled Req, will either increase (series connection) or decrease (parallel
connection), as shown in Figure 5-16 and Figure 5-17.

R1 R2 Req = R1 + R2
[TW—W
; 1*
RlX R2

R1 |Req

£, > P

Chapter 5: Designing Circuits 7 05

|
Figure 5-18:
An ATMEGA
328P-PU IC
chip.

\\3

You can see these techniques at work in the following examples:

1 Series connection: A 270 () resistor connected in series with a 220 Q is
exactly the same as if you'd used a single 490 Q resistor.

v Parallel connection: A 1200 Q) resistor connected in parallel with a 800 Q
is exactly the same as if you’d used a single 720 () resistor.

Datasheets

A datasheet is basically — you guessed it! — a sheet containing data about a
certain electrical component.

Datasheets are particularly useful when you use an IC because you don’t
need to know about the circuit inside it. Circuits for which you don’t need
to know what is going on inside is what electronic enthusiasts normally

call a black box. You simply need to know what goes in (the input pins) and
what comes out (the output pins), which you do by consulting its datasheet.
Consider Figure 5-18.

The simplest way to access a component’s datasheet is to do an online
search for something along the lines of “ATMEGA328P-PU datasheet,” where
ATMEGA328P-PU is the model number. Some PDF files should be among the
results of the search; open one to access a great deal of information about
your chip.

A datasheet needs to be extremely detailed, featuring things like the circuit
inside the IC chip and the highest level of humidity that the device can handle.
Generally, you don’t need to worry about these details unless you're working
on some high-end, very specific project. Often, you need to be concerned only
about the page that contains the pinout: the information about the IC’s pins.

It’s important to note that we’ve merely scratched the surface of the theory of
circuit design. For a more detailed approach, feel free to consult Electronics
For Dummies, by Gordon McComb and Earl Boysen (John Wiley & Sons, Inc.).

’ 06 Part II: Covering the Basics

Chapter 6

Introducing Digital Electronics
with the BeagleBone

In This Chapter
Finding out about the tools of the trade for electronic projects
Discovering several electrical components for your circuits
Getting acquainted with the GPIO pins

Controlling the BeagleBone’s Output and Input pins by writing into and reading from
files

Figuring out what PWM is and how you can employ it using the BeagleBone

Augmenting the BeagleBone’s capabilities with capes

Fis chapter is where working with the BeagleBone starts to get cool. If
you’ve worked through the chapters consecutively, you understand how
to use Linux and play around with the command-line prompt, and you have
a grasp of the basics of electronics. For the remainder of this book, you use
this combined knowledge to unlock the BeagleBone’s full potential.

Besides the outstanding computational power that the BeagleBone offers,

it also boasts many capabilities for interfacing with electrical devices and
components. There are two sets of headers along its edges that host 46 pins
each, allowing you to easily — yet awesomely — create electronics proj-
ects. All these pins apparently are the same, but they can be programmed
to do a wide range of tasks. Reading from sensors, lighting up light-emitting
diodes (LEDs), and wiring up motors are some of the possible applications.
This chapter introduces you to the various tools necessary to start building
electronic circuits; explains the general purpose input/output (GPIO) mode
of the BeagleBone’s pins; illustrates how to use these pins in GPIO mode;
and explores the use of capes, which are plug-in boards that expand the
BeagleBone’s capabilities.

’ 08 Part II: Covering the Basics

Looking for the Right Tools

Figure 6-1:
Breadboard.
|

WING/
&

This section describes the most important tools you need to start creating
prototypes of your projects. After you have a diagram and the necessary
components, you need to know how to connect the whole thing — easy to do
with a breadboard, jumper wires, and a pair of needle-nose pliers.

Breadboards

Simply put, the breadboard (see Figure 6-1) is what allows you to create pro-
totypes so that you can test and experiment with them without making per-
manent connections that you can’t undo. With a breadboard, you can reuse
the components of your circuit without any kind of setback.

What makes the breadboard so special? Beneath all the holes in it are copper
tracks (see Figure 6-2), which enable you to create metallic connections for
current to pass through without committing to more permanent solutions
(such as soldering).

There are many sizes and types of breadboards, but the concept is always
the same: If you plug a wire into one of the holes in a breadboard, you con-
nect the wire to a copper track that keeps all the holes in its row connected.

The copper tracks are normally covered by a plastic coating. If you're looking
at a breadboard and can’t see the copper, trust us when we say that it would
look the same as Figure 6-2. Don’t try removing the plastic coating to check it
out for yourself!

Chapter 6: Introducing Digital Electronics with the BeagleBone ’ 09

Figure 6-2:
The copper
tracks of a
breadboard.

\\J

A\

A WH WAL
| UHM Mi‘

:HVIvHH‘si

1
}

!Uiﬂlrli ‘_

To better understand the connections within the board, refer to Figure 6-1.
On the long sides of the board are two lines of holes separated from the cen-
tral holes. On most boards, these holes are delimited by a red (+) and a blue
() line, which suggests that you use them as a positive power source (+) and
a negative power source (-), respectively. The copper tracks beneath those
holes are horizontal and are broken at the center. If you connect the positive
side of a 9V battery to one of those tracks, any electrical component leading
to the same track will be fed with 9V.

Some breadboards don’t have the red and blue lines, whereas others don’t
exhibit the break at the center of the horizontal lines, but their layout is still
exactly the same as in Figure 6-1.

At the center of the breadboard are shorter lines in parallel with the short
side of the board. The tracks there are vertical and are also broken at the
center. For components with multiple legs, such as integrated circuits (IC)
and pushbuttons, this trench in the center prevents the legs on one side
from connecting to the other. (Some tiny breadboards have only the vertical
copper tracks.)

In a sense, the horizontal and vertical lines are the same things — copper
tracks — so you can connect things however you want, such as connecting
the battery to a vertical line. Conventions exist for a reason, however; they're
often guidelines to the easiest way to accomplish a task and also ways to keep
you organized.

Thus, we advise you to follow this convention: Horizontal is for power and
ground; vertical is for everything else.

Figure 6-3 shows how to connect a circuit on a breadboard by using a 9V bat-
tery, a pushbutton, a 470Q) resistor, and a light-emitting diode (LED).

’ ’0 Part II: Covering the Basics

|

Figure 6-3: A s1
pushbutton E
circuit with *
an LED and

a 9V battery.
|

R1

¥

L1

P Components in the world of electronics are very, very tiny. Using needle-nose
pliers (see Figure 64) to plug your resistors, LEDs and ICs into your breadboard
can save you lots of time and protect your sanity, since using human hands alone
often becomes a headache — especially as the breadboard becomes clustered.

Figure 6-4:
Needle-
nose pliers.

For a typical LED, 220Q to 470 usually is good enough to protect the LED
from burning up without reducing its brightness too much, even if different
LEDs differ slightly in terms of necessary current and voltage. Naturally, you
can also calculate the necessary resistor value for a LED using Ohm’s Law (see
Chapter 5), but there’s no need to do so for most LEDs.

Figure 6-5:
An assort-
ment of
jumper
wires.
|

A\

Jumper wires

Jumper wires (which are also known as jump wires or simply jumpers) are
usually used with a breadboard because they’re easy to plug into holes.
These wires consist of copper, an insulator so that the electric signal is pro-
tected, and a connector. Figure 6-5 shows a collection of jumper wires.

Depending on the type of connector on the ends of the wires, jumper wires can
be female/female, female/male, or male/male. Male connectors are exposed,
unshielded electrical terminals that can be easily inserted into a receptacle,
such as the BeagleBone, the breadboard, or a female connector to ensure a
robust electrical connection. Since you will be prototyping on a breadboard,
for the remainder of this book only male-male jumper wires are necessary.

Jumper wires are definitely the easiest way to establish communication
among your LEDs, sensors, resistors, and other electrical components and
the BeagleBone. There’s no need to cut, trim, or bend them; they're ready to
use from the moment you get them!

There are several more tools used in circuit design, but there isn’t space in
this book to cover them all. The tools presented in this chapter are all that
you need to start having some fun with the BeagleBone. You can read about
several other tools that are useful for an electronics enthusiast at www .
dummies.com/extras/beaglebone.

Chapter 6: Introducing Digital Electronics with the BeagleBone

111

http://www.dummies.com/extras/beaglebone
http://www.dummies.com/extras/beaglebone

’ ’2 Part II: Covering the Basics

Essential Components and Parts

|
Figure 6-6:
Essential
compo-
nents for
understand-
ing basic
electronics.
|

Although thousands upon thousands of electrical components make up many
projects, a few could be called essential because of the frequency at which
they’re employed in circuits. They're also good candidates for playing around
with on the BeagleBone and learning how to properly use the board, and we

recommend them that you get them as soon as possible. You can see plenty
of them in Figure 6-6.

Servo horns Servomotors RGB LEDs Potentiometers Buzzer

7 | =

At o fu\

e

i

L

Switches Pushbuttons LEDs Resistors 9V battery adapter

To get through the remainder of this book, you should have these
components:

1 Resistors: Resistors are extremely cheap, and you can buy lots of them
at a time. The values you'll use the most are 220Q) , 470Q, 1k (, and 10k

Q, but buying an assorted pack of plenty of resistor values is definitely
the best idea.

v LEDs: Get a few of them, in various colors!

v RGB LEDs: These LEDs differ slightly from the previous ones due to the
fact that their colors can vary.

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 ’3

+ Pushbuttons: Pushbuttons are the best way to add controllability to
your projects. You use them for when you want stuff to happen only
when you press the button.

v Switches: Similarly to pushbuttons, switches are used to control a
circuit’s behavior. Unlike pushbuttons, the switch stays in the same
position until you toggle it again, whereas you have to keep pressing a
pushbutton to engage it.

v Buzzers: Buzzers are very simple electronic devices that output sound
when a voltage is applied to them.

v 9V battery adapter: For projects where you need to use a 9V battery,
you require an adapter to connect the battery’s poles to a breadboard.

v~ Variable resistors (potentiometers): We recommend that you get at least
a 2K and a 10K potentiometer.

v Servomotor: Servomotors are usually tiny, slow-rotating motors that
require a small amount of current to do their jobs, which makes them
ideal to use with development boards such as the BeagleBone.

* Servo horn: Servo horns are small plastic components that are attached
to your servomotor to suit different needs.

A\
Although you can use other kinds of motors with the BeagleBone, such as DC
motors, they require external circuitry to amplify the low current that’s drawn
from the BeagleBone’s pins.

P Most online electronics shops feature starter kits, which may be the easi-

est way to get launched into circuit design. Purchasing a starter kit usually
ensures that you get a good deal, because buying all the components sepa-
rately is more expensive. You can read more about starter kits in Chapter 18.

The components we have just talked about are essential to get started, and
will be the basic building blocks of many of your circuits. This book features
projects that use some more advanced components that are used for specific
applications — we will tell you to get these when the time comes.

Getting to Know the GPI0

GPIO stands for general purpose input/output, which sums up what pins in
this mode can do quite well: They can be either inputs or outputs for the vast
majority of applications.

In the digital world of electronics, electricity happens in a binary way. In that
sense, GPIO pins are either HIGH or LOW. In HIGH state, the pin is connected
to 3.3 volts (V). In LOW state, the pin is connected to ground.

’ ’4 Part Il: Covering the Basics

a\\J

Saying that a pin is HIGH or LOW is equivalent to saying that it’s on or off. In
computer science, these two states are often called true and false or 1 and 0.
You use these designations to control the GPIOs. HIGH and LOW, dear reader,
sum up the world of digital electronics. Whatever you do in your computer
is translated into a set of HIGH and LOW voltages along its hardware to carry
out the task you requested. It’s beautiful how such complex systems can be
designed through such a simple concept. The following sections give you a
glimpse of what you can do with just HIGH and LOW.

Understanding How GPI10s Work

In Chapter 4, we say that for the Linux operating system (OS), everything is a
file. We weren’t exaggerating with the term everything: files are also how you
control the GPIOs: by reading from and writing into files in the BeagleBone’s
file system.

Chapters 7 through 11 show you how to control the GPIOs in a simpler yet
more abstract way by using libraries for the BoneScript and Python program-
ming languages. But it’s important, useful, and insightful to understand how
to control the GPIOs via a more direct approach: manipulating those files
directly from the command-line prompt.

If you're acquainted with programming, you should know that you can control
the GPIOs with any language that allows you to open, read, and write into files,
such as C.

To work along with the examples in the following sections, make sure that you
have the following items on hand:

v Breadboard

v Jumper wires

v 220 Q or 470 Q and 10K Q) resistors

v Pushbutton or toggle switch

v LEDs

Viewing the GPIO pins layout

Figure 6-7 shows the default GPIO pins. Besides those pins, the figure shows
eight ground (GND) pins, two 3.3V pins, and four 5V pins; virtually, you can
use these pins as power sources. Other pins labeled in the figure are useful in
later chapters.

|
Figure 6-7:
The layout
of the GPIO
pins on the
BeagleBone.
|

\NG/
S

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 ’5

GND GND
3.3V (vDD) 3.3V (VDD)

5V (VDD) 3 5V (vDD)

5V (SYS) 5V (5YS) | s [cdlelnd
9 |10 610 69 i} GPIO 68

61030 [RERIIREM 610 60 GPI0 45 1

GPIO 40 (PWM) GP10 23 (PWM)
GP10 48 GPIO 51 (PWM) GP1O 47
GPIOS5 GPI0 27

GPI022 (PWM)
6r103 (PwM) RS IPPR GPIO 2 (PWM)
6P10 49 JRERIPYE GPIO 15
GPI0117 A GPIO 14

AIN2

s
GP10 20 GPIO7 (PWM)

GND PYH GND 43 | 44
GND LIl GND 45 | 46

The pins that aren’t labeled in the figure are, by default, in a mode different
from GPIO. Some of those pins can be put in GPIO mode, up to a total of 65
possible digital inputs and outputs. Doing so isn’t really necessary, though,
as there are already quite a lot of pins set in GPIO mode by default.

The BeagleBone’s pins are rated at 3.3V, which means that connecting 5V to
them could be extremely hazardous to your board — to the point of blow-

ing up the processor and permanently ruining the board. You need to be
extremely careful whenever you need 5V for some components in your circuit
and make sure that 5V never reaches any of the BeagleBone’s pins.

If you're curious about the complete capabilities of the expansive headers,
visit http://beagleboard.org/Support /bonel01 for more information.

Setting GPI0s as Outputs

Often, the best way to get acquainted with a new working platform is to light
up and turn off an LED on command. To do so, you set a GPIO as output; you
want to control the state of a component.

Wiring the circuit for an LED

First, you set up the circuitry. Use the following steps to wire your circuit as
shown in Figure 6-8. For the locations of the pins used in the following steps,
refer to Figure 6-7.

http://beagleboard.org/Support/bone101

’ ’6 Part II: Covering the Basics

1. Turn off the BeagleBone.

Before plugging things into the BeagleBone, it’s generally a good idea to
shut it down (as described in Chapter 4) and remove the power source
from it.

2. Power up the breadboard.

Using a jumper wire, connect the BeagleBone’s 3.3V source — pins 3 or 4
on header P9 — to the breadboard’s positive track.

3. Set up your ground.

Connect the BeagleBone’s GND pin — for example, pins 1 and 2 on both
headers — to the breadboard’s negative track.

4. Connect a GPIO pin to the board.

This example uses GPIO 40 — pin 14 on the P9 header. Use a jumper to
connect it to a vertical row on your breadboard.

5. Connect a resistor.

Without a resistor, an LED burns up easily. A 220 Q or 470 Q) resistor
should drop enough voltage without reducing the LED’s brightness too
much. Connect the resistor to the jumper you pulled from pin 14, effec-
tively connecting the resistor to GPIO 40.

6. Connect the LED.

Connect the LED’s negative leg — the cathode, which is usually the
shorter leg — to the breadboard’s negative track where you connected
ground in Step 3. Connect the positive leg — the anode — to the resistor.

The circuit you've just built is similar to the one used in Chapter 5 to explain
the concepts of circuit design. There’s one small difference, though: The
power comes from GPIO 40 rather than a battery, which you turn on and off
by writing into the command prompt.

Adafruit and Fritzing

Throughout this book, you see circuits simi- electronics kits and components. Adafruit is
lar to the one in Figure 6-8. They were drawn also well-known for creating learning guides
using Adafruit's Fritzing library. Fritzing is an and contributing to open source projects, and
open source software that makes it easy to Adafruit designed the BeagleBone Black part
draw circuits. Adafruit is a company that sells for the Fritzing software.

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 ’ 7

|
Figure 6-8:
Wiring up
anLEDona
breadboard.
|

\\3

® & & & ¢ & & O & ¢ O O O O O O O 6 O O O 6 O O O O O O O O O O 00
® ® ® ® o ® ® ® 9 9 ® 0 O O ° T " S O B G G O O O B G ® o o o o o
® @ o & 0 9 ® O O O O O O O O " O O T O O ST O O S O ® ® o o 0 0
® & & ¢ ¢ 9 & O O O O P O O P S P S P O O P O P PO S OPN ® @ @& o 0 9
e & & ¢ ¢ & & 0 O O O O 0 O O O O 6 O O O O O O O ° 0 e & o @ @ @

us]
m
11
(o}
—
1]
o
(=)
=]
m

fritzing

In Step 2, you connect the BeagleBone’s 3.3V pin to the breadboard. In reality,
for this specific project, making that connection serves no purpose. It’s gen-
erally good practice, however, to always have the horizontal tracks on your
breadboard powered with a constant voltage and with a circuit ground. If you
were to connect the resistor to the positive rail on your breadboard, the LED
would light up, but you’d have no control over it. Feel free to try it out!

’ ’8 Part II: Covering the Basics

\\3

Controlling the GPI0

Because pin 14 is already a GPIO pin by default, you can set it as output. After
you’ve done that, you can easily control whether you want the LED to be on
or off by setting the pin to HIGH or LOW, respectively.

You need to be logged in as the root user to access the GPIOs. If you're cur-
rently logged in as debian, you can easily change to root as follows:

debian@beaglebone:~$ sudo su
On the command line, after connecting to your BeagleBone (using your pre-

ferred method, as described in Chapter 2), change to the gpio directory with
the following command:

root@beaglebone: ~# cd /sys/class/gpio
If you list the contents of this directory, you can see that gpio40 isn’t there:

root@beaglebone: /sys/class/gpio# 1s
export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

You have to export it first by writing in the export file, which creates a
folder containing files that can be altered to control the pin’s state. On the
command line, type the following:

root@beaglebone: /sys/class/gpio# echo 40 > export
root@beaglebone: /sys/class/gpio# 1s
export gpio40 gpiochip0 gpiochip32 gpiochipé4 gpiochip96 unexport
To control the pin’s state, change to the newly created gpio40 directory:
root@beaglebone: /sys/class/gpio# cd gpio40
root@beaglebone: /sys/class/gpio/gpio40# 1s

active LOW direction edge power subsystem uevent value

The direction file defines whether this GPIO pin functions as an input or
output pin. Because you want to control its state by writing into it, your pin is
supposed to be an output:

root@beaglebone: /sys/class/gpio/gpio40# echo out > direction

The value file holds the value of the GPIO: HIGH (1) or LOW (0). Thus, to
turn the LED on, enter the following command:

root@beaglebone: /sys/class/gpio/gpio40# echo 1 > value

Now your LED should be on, as shown in Figure 6-9.

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 ’ 9

|
Figure 6-9:
You turn on
the LED by
typing in
files in the
Beagle-
Bone's file
system.
|

\\3

\\J

<moow | wWOT--

£9 19 65 L5 S5 €5 |5 6k Lb Sy O v 6C Lo S& 88 ¢

If the LED seems dim, try a lower resistance value. We recommend that you
not go lower than 2200}, though.

To turn it off, use the following command:
root@beaglebone: /sys/class/gpio/gpio40# echo 0 > value

When you’re done with a pin, it’s often a good idea to unexport it so that it
becomes available for different purposes. You unexport the pin by writing
into the unexport file. The following succession of commands unexports
gpio40 and shows that its directory has been eliminated.

root@beaglebone: /sys/class/gpio/gpiod0# cd ..

root@beaglebone: /sys/class/gpio# 1s

export gpio40 gpiochip0 gpiochip32 gpiochipé4 gpiochip96 unexport
root@beaglebone: /sys/class/gpio# echo 40 > unexport

root@beaglebone: /sys/class/gpio# 1s

export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

If you're successful in controlling the LED, you may have just taken your first
big step into digital electronics. Although lighting up an LED may not seem
like much, the concept behind it is pretty much the same as controlling a
motor, a buzzer, or an LCD screen!

Feel free to play around with the other GPIOs shown in Figure 6-7 earlier in this
chapter.

’ 20 Part II: Covering the Basics

Setting GPI0s as Inputs

A\

\NG/
S

The procedure for setting a GPIO pin as input is very similar to the technique
in the “Setting GPIOs as outputs” section earlier in this chapter. The key dif-
ference is that you read from the value file rather than writing in it. To verify
this difference, you need to build the circuit shown in Figure 6-9. Grab a push-
button and follow these steps:

Wiring the circuit for a pushbutton

To wire up a pushbutton to the BeagleBone, follow these steps and refer
to the diagram for the circuit in Figure 6-10. For the locations of the pins
referred to in the following steps, refer to Figure 6-7 earlier in this chapter.

If you still have the circuit from the preceding example, you can skip Step 2.

1. Turn off the BeagleBone.

Remove the power source and shut down the BeagleBoard through the
command line, as described in Chapter 4.

2. Power up the breadboard, and set up the ground.

Using jumper wires, you can connect pin 1 or 2 of either header to the
negative track — these pins provide ground — and connect pin 3 or 4 of
header P9 to the positive track — these provide 3.3V.

The BeagleBone pins aren’t 5V tolerant! Be careful to connect pin 3 or 4
of header P9, not pins 5, 6, 7, and 8.

3. Connect a GPIO pin to the breadboard.

You can use any of the pins that are labeled as GPIOs. This example uses
GPIO 45, which is pin 11 of header P8. Connect it to a vertical row on the
breadboard through the use of a jumper.

4. Place your pushbutton on the breadboard.

If you're using a pushbutton, you should place it at the center of the
breadboard to separate the pairs of legs.

5. Connect one of the pushbutton’s legs to the positive rail.
Use a jumper to establish this connection.
6. Connect the other leg to the input pin.

Connect it to the jumper that comes from the BeagleBone pin of the
GPIO that you are using — pin 11 of header P8 in this example.

7. Connect a pull-down resistor.

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 2 ’

A pull-down resistor is a resistor used to prevent the existence of a short
circuit when the pushbutton is closed. Connect it from the ground track
to the leg of the pushbutton that connects to the input pin. A 10K Q
resistor should do the job.

When the pushbutton is closed (which is the same as saying that the
pushbutton is pressed), having a pull-down resistor makes the current —
which follows the path of least resistance, according to Ohm’s Law — go
to the input pin rather than to the ground. Thus, there is a voltage reading
at the input pin.

® © 0 9 & ® 9 0 ° 9 0 O O O O O T O S S O T O S G S G S O O O O E O S B OO
® © © o & © & 0 © © 0 © 6 O © O O O O O O 6 O 6 6 0 6O O O O O S 0 G O O
® @ 9 9 ® 9 9 0 0 O O P O T O O S O O T O P O S S S S O S GO T O OO O OOE
® ® © ® & ® & & O 6 O O O O O O O O O O O G OO O G G O O S G S S OO O S
® e o0 s e e et e e e e o] e e e e e

(] L)

L L)
® ® © 8 o ® o © 0 0 ° 0 0 0 0 O " S O B] ® © o 9 o ¢ 0 0 0 0 0 0 "
® 9 9 0 9 9 9 P P P O P O P O 9 O P O P e O P P P e " e P O O O P OO PO
* o o ® ® 8 o o o ® 5 0 5 0 0 0 " " B
* e o0 ® ® 0 9 ° 0 0 0 " O OO O O e O] O S e e O O O O OO PO O O OO0
* o o 0 ® 8 8 o o o ® 8 o 0 0 8 O ° s O g L ® © o o o ® o 8 o 0 0 0 0 O

L] L L] I

e o @ L]

a

D

11]

(o]

=

D

w

o

=)

—)
Figure 6-10:
Wiring up
a pushbut-
ton on the
breadboard.

’ 22 Part II: Covering the Basics

Controlling the GPI0

When you’re done with the circuitry, you can move on to the command line.
Start by exporting the pin that you use as an input by typing the following
commands:

root@beaglebone: /sys/class/gpio# echo 45 > export
root@beaglebone: /sys/class/gpio# 1s
export gpio45 gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

Then set the pin as input by writing into the direction file:

root@beaglebone: /sys/class/gpio# cd gpio45
root@beaglebone: /sys/class/gpio/gpiod5# echo in > direction

If the button isn’t pressed, the 3.3V from the positive track of your bread-
board has no way of reaching the GPIO pin, so if you read from the value file,
you should get 0 because the pin is connected to ground:

root@beaglebone: /sys/class/gpio/gpio45# cat value
0

If you're pressing the button, however, the value file should hold 1, indicat-
ing that the pin is in the HIGH state:

root@beaglebone: /sys/class/gpio/gpio4S# cat value
1

Unexport the pin when you’re done:

root@beaglebone: /sys/class/gpio/gpiod5# cd ..

root@beaglebone: /sys/class/gpio# echo 45 > unexport
root@beaglebone: /sys/class/gpio# 1s

export gpiochip0 gpiochip32 gpiochip64 gpiochip96 unexport

By itself, reading the state of a button (pressed or not pressed, HIGH or LOW)
doesn’t sound very exciting. Throughout this book, though, you use input
pins to control outputs. You instruct your BeagleBone to read from a pin and
then follow directions such as “If it’s HIGH, do <somethings>; if it’s LOW, do
<something else>.”

Setting GP10s as PWM

Digital electronics are weird. How can everything be programmed with a fixed
binary (HIGH and LOW) set of values? Suppose that you want to create a cir-
cuit to sound a buzzer. Are you stuck with either an ear-deafening sound or
no sound at all? Is there no middle level?

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 23

\\J

Scientifically speaking, the answer is “Nope, no middle level.” Your voltage
output is always either 3.3V or 0V, and that’s what you’re stuck with. In

reality, though, techniques are available that enable you to produce “fake”
mid-level voltages. That’s where pulse-width modulation (PWM) comes in.

PWM is a digital electronics technique that relies on the fact that instantane-
ity is a lie. There are no instantaneous phenomena in life — only very, very
fast phenomena.

Practically speaking, if you alternate an LED’s voltage between LOW
(0V) and HIGH (3.3V) very, very fast, the human eye — which is a slower
system than the rate of this change — won’t be able to keep up with the
speed at which the LED goes on and off. Instead, it sees some mid-level
brightness.

The same applies to buzzers and servo motors: If you set the frequency at
which the PWM changes from LOW to HIGH to very high, they won’t be able
to keep up with this rate of change. Because their speed/volume doesn’t
change instantaneously according to the voltage, they instead sound or
rotate at a level somewhere in the middle.

PWM is a way to create a fake analog output from your BeagleBone. A good
analogy to distinguish analog from digital is to think of lamps. A lamp that
simply allows you to turn it on or off is a digital system; a lamp that features a
brightness-selection dial is an analog system.

You have ways to produce real analog outputs from the BeagleBone, but
doing so requires external components called digital-to-analog convert-
ers (DACs), which are seldom necessary except for specific applications.
Analog inputs are often needed for projects, however, so the BeagleBone
features internal analog-to-digital converters (ADCs), which we cover in
Chapter 9.

Specifically, when you use PWM, you’re doing several things (see
Figure 6-11):

v Generating a square wave that changes between LOW and HIGH at a very
high frequency. Its period — the time it takes until it repeats itself — is
very short.

v Setting its duty cycle. The duty cycle is the fraction of the period at
which the pin stays HIGH. A duty cycle of 50 percent results in an LED
at 50 percent brightness.

’ 24 Part Il: Covering the Basics

period

_ Max brightness. _

1 Value thatlyou see
off

""""" — duty

2 Jl i_
[[
’ _ |
|

Figure 6-11:
How PWM

L e o o e e e

Wiring the circuit for a brightness-
requlated LED

To illustrate how you can set a GPIO as PWM, grab an LED, a resistor and a
few jumpers, and build the same circuit shown in the section “Setting GPIOs
as Outputs” and Figure 6-8 earlier in this chapter. The circuit is the same, but
pin 14 on header P9 is configured quite differently.

Controlling the GPI0

On the command line, follow these steps:

1. Activate pwm:

root@beaglebone:~# echo am33xx pwm > /sys/devices/bone capemgr.9/
slots

WING/
g‘ Your bone capemgr . # directory may have a number different from 9.
Check ahead by using 1s, or simply press Tab after typing bone to auto-
complete the directory name.

2. Set P9 14 as pwm:

root@beaglebone:~# echo bone pwm P9 14 > /sys/devices/bone
capemgr.9/slots

As in the earlier examples, you can access a directory with a couple of
files that you can write in so you can control pin P9_14.

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 25

WING/

egmmm

e

egmmm

e

3. Change to the /sys/devices/ocp.3/pwm test P9 14.15 directory
and list it:

root@beaglebone:~# cd /sys/devices/ocp.3/pwm test P9 14.15
root@beaglebone:/sys/devices/ocp.3/pwm _test P9 14.15# 1ls
driver duty modalias period polarity power run subsystem uevent

The ocp . # folder may also have a different number, and pwm_test_
P9 14.15 may or may not have. 15. Again, autocompletion is your
friend: Simply press Tab after typing ocp and after typing pwm.

4. Change the polarity to 0:
echo 0 > polarity
Having the polarity set to 1 implies thinking in reverse. A higher duty
cycle means lower voltage (brightness for the LED’s case), which is why

it’s preferable to set it to 0. It’s more intuitive: A higher duty cycle means
higher voltage.

5. Define the period in nanoseconds:

echo 1000 > period

6. Define the duty cycle in nanoseconds:
echo 500 > duty

Play around with different periods/duty cycles to get the gist of using GPIOs
as PWM! In the values used as examples, the LED should be at 50 percent
brightness. Try changing the duty cycle to other values, and notice how the
brightness of the LED changes:

echo 250 > duty
echo 100 > duty
echo 750 > duty
echo 900 > duty

The values of period and duty by themselves don’t hold much meaning.
What matters is the relative proportion of the duty toward the period. A
period of 1,000 nanoseconds with a duty cycle of 500 nanoseconds would have
the same brightness as a 2,000 period and 1,000 duty. The duty cycle is 50 per-
cent of the period in both cases.

The PWM must always change between HIGH and LOW much faster than the
system does. Thus, the value you set for period depends on the component
you're using. Checking the component’s datasheet can often help in this
regard. If you can’t find any information, though, you can always try different
values until you get the right one.

’ 26 Part II: Covering the Basics

Trying out PWM with a buzzer and a servomotor

You can experiment with PWM by using a servo motor and/or a buzzer if you
have one handy. The wiring of the buzzer is very similar to that of the LED in
Figure 6-8, but it doesn’t require a resistor (see Figure 6-12).

w

D

2T}

wa

—

D

o

(o)

=)

m
|
Figure 6-12:
Wiring a
buzzerto
control it
with PWM.

Chapter 6: Introducing Digital Electronics with the BeagleBone 7 2 7

The wiring of the servomotor is similar, but the servomotor has two wires that
need to be connected to 3.3V (red) and ground (black), and the middle wire (usu-
ally yellow or orange) should be connected to the digital pin. You can use pin
P9_3 or P9_4 as a constant 3.3V DC source. Figure 6-13 shows the circuit.

* ° o @ * @ o @ 0 * o * o @ @ @

® 0 @ e e @ L]] * e o
) @ @ @ @ @ @ 0 ® @ @ @° O @ @ ® @ ® o @ @ ¢ @
e ® & @ ® @ @ ® ¢ @ 0 ® 9 0 o e ® 9 & 9 0 @
F ® ® @ ® @ @ ° °® @ o ° @ 0 0 /I ® @ @ @ ® @ @ 9
F e & & ® & & ¢ & & ¢ ® ¢ O 0 ® @ & o o o © O
e ® o @ o @ ¢ ® ® ® 0 ° 0 0 ® @ @ @ ¢ ® ¢ @
V' ® ® & @ & ¢ ® & O ° & O 9 O O f ® ¢ @ & & 0 O @ O
e ® o @ & ® 9 ® O 9 ° O ¢ 0 O DD ® o ¢ @ @ 0 O O 0 O 9 PO
}F @ ® @ © & & & & & & 0 O % O O r:-j ® & & & & ¢ 0 " " 0 0 0
F'e ® & & @ & 9 & & & 0 0 9 o SO Om msg ® & & o 0 0 0 O 0
Ve ® & ¢ & & & & & & O © 9 O GO B ° O & ® & & & o 0 & " 0

us]
]
ol
(o}
—
m
(o)
(=]
3
M

Figure 6-13:
Wiring a
servo to
control it
with PWM.
|

\\J

Play around with these three circuits by trying different period and duty
values!

’ 28 Part II: Covering the Basics

Creating shell scripts

A shell script is a way to memorize several lines of commands, in a sequential
fashion, and use them whenever you please. Consider the example of lighting
an LED. The full list of commands, from exporting to writing into the value of
the GPIO, is as follows:

echo 40 > /sys/class/gpio/export
echo out > /sys/class/gpio/gpio40/direction
echo 1 > /sys/class/gpio/gpio40/value

You can simply put all these commands into a shell script that you can use
for future reference. Using nano, create a . sh file as follows:

root@beaglebone: ~# nano exportAndON.sh

To create a shell script, all you have to do is write the lines of commands, in
the correct sequence, just as you did before. The first line should always be
#!/bin/bash. Simply write this code in the nano text editor:

#!bin/bash

echo 40 > /sys/class/gpio/export

echo out > /sys/class/gpio/gpio40/direction
echo 1 > /sys/class/gpio/gpio40/value

Close nano by pressing Ctrl+X and then press Y to save. Your shell script is
created! It isn’t ready to use yet, however, because it doesn’t have execute
permission. You can change that situation with the chmod command:

root@beaglebone: ~# chmod +x exportAndON.sh

Now you can go through the entire process of exporting gpio40, setting it as
output, and turning it on by typing the following:

root@beaglebone: ~# ./exportAndON.sh
The first line of a script is called a shebang and always starts as #!. If you

don’t include this line in the script, you can still run it by typing bash
<scriptname.shs. . /<scriptname.sh>, however, won’'t work.

You can create shell scripts for whatever you want. Feel free to experiment!

Chapter 6: Introducing Digital Electronics with the BeagleBone ’ 29

Adding Capes to the BeagleBone

Capes are plug-in boards that you can plug on top of the BeagleBone com-
puter to add extended capabilities to it in a simple manner. Capes give you
quick access to some easy-to-use systems such as LCD screens, GPS modules,
and motor controllers. Some of these are introduced in this section; if you're
interested in checking out the enormous list of capes, visit http://elinux.
org/Beagleboard:BeagleBone Capes.
\NG/

§g‘“ Some capes aren’t compatible with both the Original BeagleBone and the

BeagleBone Black. Always check ahead or ask the manufacturer before making

a purchase.

BeagleBone Proto Cape

The BeagleBone Proto Cape is a simple cape that fits atop your BeagleBone.
It contains through-hold solder points and two 46-pin headers that connect
directly to the BeagleBone. Its simplicity and accessibility make it a great
workspace for creating prototypes after the breadboard phase.

Some Proto Capes, such as the ones from Tigal KG (see Figure 6-14), also
exhibit extra useful circuitry such as LEDs and switches. Visit https://
www.tigal.com/product/2413 for more information.

@ 0 0
9,0990"
® 6006
G0
eoeoo.-.-

go.-

Figure 6-14:
BeagleBone
Proto Cape
from Tigal.
|

© 0060000
°

@
@
(=]
D
D
<
@
@
@

)
@
@
@
@
@
L)
@
@
]

e ee
e e

@
@
)
@
@
=)
L
@
@

e

)\0&
L
%

Photo courtesy of Tigal

http://elinux.org/Beagleboard:BeagleBone_Capes
http://elinux.org/Beagleboard:BeagleBone_Capes
https://www.tigal.com/product/2413
https://www.tigal.com/product/2413

’30 Part II: Covering the Basics

BeagleBone Power Cape

You can use the Power Cape to supply power in a flexible way. When the
Power Cape is plugged in to your BeagleBone, if the BeagleBone isn’t being
fed by any other source (such as an USB cable), the Power Cape supplies the
necessary power through its lithium battery. Conversely, if 4.5V or higher DC
power is available from other sources, the lithium battery recharges, even if
the BeagleBone is off.

The Power Cape provides two interesting features:

v An onboard power monitor (INA219), which allows you to monitor the
voltage of the battery and the current it supplies.

v A scheduling feature that enables you to designate when to turn your
BeagleBone on. You can schedule your BeagleBone to start feeding off
the battery at a desired time, which may be interesting for automation
projects.

You can visit http://andicelabs.com/shop/andicelabs/beaglebone-
power-cape/ for more information.

BeagleBone Motor Cape

Motor Capes make the whole deal of using motors much easier and straight-
forward. Because the BeagleBone’s GPIO pins can drive a current of only 6
milliamps (mA) maximum, they don’t have the kick to get powerful motors
running without some external help.

By using a Motor Cape, you can drive up to eight DC brush motors going at
500 mA per motor — quite the power-up!

The vendors of this cape sell it with NXT connectors or screw terminal
blocks. The latter type usually are the easiest to work with in most standard
electrical projects.

Visit http://elinux.org/CircuitCo:BeagleBone Motor w/ Screw
Blocks for more information.

BeagleBone mikroBUS Cape

The BeagleBone mikroBUS Cape (see Figure 6-15) is a plug-in board that
enables you to connect up to four MikroElektronika Click Boards to the
BeagleBone in the easiest way possible.

http://andicelabs.com/shop/andicelabs/beaglebone-power-cape/
http://andicelabs.com/shop/andicelabs/beaglebone-power-cape/
http://elinux.org/CircuitCo:BeagleBone_Motor_w/_Screw_Blocks
http://elinux.org/CircuitCo:BeagleBone_Motor_w/_Screw_Blocks

Chapter 6: Introducing Digital Electronics with the BeagleBone

Figure 6-15:
BeagleBone
mikroBUS
Cape.
|

Photo courtesy of Tigal

Click Boards are tiny plug-and-play devices that require minimal settings.
The idea is simple: Create small boards that have the same pinout standard,
which allows boards with completely different functionalities to be con-
nected in the same fashion. A microSD slot, an MP3 board, and a Bluetooth
module are all connected in the same way, and all of them can easily fit on
the BeagleBone mikroBUS cape.

Currently, more than 70 Click Boards are available, and the list keeps growing.
Visit www.mikroe.com/mikrobus for more information on this new concept.

BeagleBone GPS/GPRS Cape

As its name suggests, this cape adds GPS (Global Positioning System) and
GPRS (General Packet Radio Service) functionality to the BeagleBone, allow-
ing you to track your position and use the GPRS for straightforward machine-
to-machine (M2M) communication.

It’s a good idea to buy an external antenna with this cape, because the board
doesn’t feature one. Visit the manufacturer’s page at www.exploitsys.
com/ENG/GPS_GPRS%20BB%20Cape.html for more information.

BeagleBone LCD Cape

Plenty of LCD capes are available for the BeagleBone. These caps sit nicely
atop your board while adding touchscreen capability to it. Resolution varies
from 480x272 pixels to 800x480 pixels. Figure 6-16 shows one such cape.

131

http://www.mikroe.com/mikrobus
http://www.exploitsys.com/ENG/GPS_GPRS%20BB%20Cape.html
http://www.exploitsys.com/ENG/GPS_GPRS%20BB%20Cape.html

132

Part II: Covering the Basics

Figure 6-16:
BeagleBone
Black 5.0
Display

Cape from
Chipsee.
|

With this cape, you can interact directly with the BeagleBone through touch
and through the buttons located in positions that enable easy use. The cape
also feature expansion connectors so that you can easily access the GPIO
that are still free after the cape has been plugged in.

Visit https://www.tigal.com/product /4269 for more information.

Photo courtesy of Tigal

BeagleBone HD Camera Cape

RadiumBoard’s HD Camera Cape provides an easy way to use your
BeagleBone Black with a high-resolution mobile camera. This cape is divided
into two parts: an expansion board that manages the data and a board with
the necessary sensors for imaging and optics.

This cape isn’t compatible with the Original BeagleBone!
If you're a camera enthusiast, a rundown of the cape’s key features may be

important for you. Visit the following link for the details: http://elinux.
org/Beagleboard:BeagleBone HD Camera Cape.

https://www.tigal.com/product/4269
http://elinux.org/Beagleboard:BeagleBone_HD_Camera_Cape
http://elinux.org/Beagleboard:BeagleBone_HD_Camera_Cape

Partlll
Programming with
BoneScript

Visit www . dummies . com/extras/beaglebone to read an article about using
keyboard shortcuts with the Cloud9 IDE.

http://www.dummies.com/extras/beaglebone

X \

In this part . . .

Launching the Cloud9 integrated development environment
(IDE) for the first time

Experimenting with BoneScript and writing your first script

Understanding general programming concepts, such as vari-
ables, i f statements, and while loops

Playing around with a three-color LED, some buttons, and a
motion sensor

Chapter 7
Introducing BoneScript

In This Chapter
Getting familiar with JavaScript, Node.js, and BoneScript
Launching and exploring Cloud9 IDE
Writing your first script from scratch with BoneScript
Wiring an LED and a resistor and blinking more LEDs

One of the coolest things that the BeagleBone enables you to do is
watch the code you write become projects that interact with the real
world. Chapter 6 gives you a glimpse of that world, but it really merely
scratches the surface.

This chapter introduces BoneScript, a library containing functions specially
created for the BeagleBone. This library greatly simplifies the process of con-
figuring the pins of your BeagleBone; tasks such as blinking a light-emitting
diode (LED), reading a button, controlling a servomotor, and reading a sensor
are quite easy with BoneScript.

You get into programming just as you get the hang of riding a bike — by
practicing — and that’s exactly what this chapter helps you do. This chapter
introduces new concepts with examples whose results you can promptly
watch in the real world. We greatly encourage you to try them yourself and,
after you feel confident, add a twist of your own.

Introducing JavaScript, Node.js,
and BoneScript

JavaScript is a programming language that is most commonly used on websites.
If you've ever visited a website with really cool things, such as interactive but-
tons, slideshow animations, alert messages, or pop-up windows, some sort of
JavaScript certainly was working on the back end. JavaScript is used in web
browsers, and it allows interactions with the clients without talking to the server.

’36 Part lll: Programming with BoneScript

WMBER
@"&
&

JavaScript communication is done asynchronously. This means that data isn’t
transmitted at regular intervals, which makes it different than several commu-
nication protocols.

Node. js is a framework that allows applications written in JavaScript to run
applications outside the web browser and interact directly with the server.
BoneScript is a Node . j s library that makes reading and controlling the
GPIOs (general purpose inputs/outputs; see Chapter 6) of your BeagleBone a
no-brainer.

One thing that makes JavaScript really powerful is the fact that unlike in other
programming languages, your code won’t wait to run each line sequentially.
Some lines are skipped and then wait for an event such as a button press. For
this reason, people often say that this language is much faster than usual. This
language contrasts with Python, the other GPIO-controlling language covered
in this book, in which all lines of code run one after another, each line waiting
for the previous one to complete before doing its task.

Introducing Cloud9 IDE

The Cloud9 integrated development environment (IDE) is an open-source web-
based programming platform that supports several programming languages.
This great piece of software comes installed on your BeagleBone by default.
Its greatest advantage is that the code you write on your desktop computer is
immediately passed to your BeagleBone through the SSH (Secure Shell).

Cloud9 also comes with some features that make every programmer’s life a
little bit easier:

v+ Code completion: After you start typing a command, if you hover your
mouse over what you've typed, you see suggestions for autocompleting
your command.

v Functions: The code editor comes with search, a goto file, themes, and
much more.

v Drag-and-drop functionality: It’s easy to move folders and files within
your workspace.

v Programming: Cloud9 supports several programming languages, such
as JavaScript, Python, HTML, Ruby, and C.

1 SSH and FTP: You can access your own server with SSH (the process is
similar to the one described in Chapter 3, but done in a browser) and
connect to your FTP server to edit your projects.

v Collaborative: Cloud9 enables you to work with other developers to edit
the same code and chat in real time.

Chapter 7: Introducing BoneScript ’3 7

\\J
Visit the official Cloud9 IDE website at https://c9. io to find out more about
this software.

Launching the Cloud9 IDE

Grab your BeagleBone and connect it to your computer through a Mini

USB cable. After the board boots up, open your web browser, and type
192.168.7.2:3000 in the address bar. You see something similar to Figure 7-1
when the page loads.

You can also access the Cloud 9 IDE via Ethernet. Power up your BeagleBone,
and connect an Ethernet cable from your BeagleBone to your router. Open
your web browser, and type beaglebone:3000. You see a page that looks like
the one shown in Figure 7-1.

If you've changed your hostname as discussed in Chapter 4, in your web
browser’s address bar, type <yourhostname>:3000.

/[clouds - Clouds x - a n'l

<« C f [1 192.1687.2:3000/ide htm % »| =

Fle Edit Find View Goto R Preview QR Beta Feedback @9 John Doe &% ' (@l

v i doudo Welcome

» i attic

: : :i:un ‘Walkthroughs
> i extras)
Welcome «
» i javasaipts .

Welcome to this new workspace on Cloud9. Use this welcome screen to
tweak the look & feel of the Cloud9 user interface. If you prefer a simple

Works pace

favicon.ico programmer's ditor, you can choose to change the layout below. 000 11:45
W index.himl Cloud?9 - The infroduction
B uces Thank you for participating in our private beta program Please usethe nore
a Feedback button in the top toolbar to provide us with any comments,
B params.json cl
- suggestions or compliments that you may have @by
B reaDME.Md
=== Configure Cloud9 Google Compute Engi
very excited about the possibiliies
= Cloud9. So much so, that we built
I ElouEiD i support for Compute Engine into the
backend of the soon-to-bereleased
| Base Layout: a major update of Cloudd! We've seen
major improvements in speed,
H . Spit Layout: No S provisioning and the ability to automate
Flgure 1-1: deployments and management of our

ClOUdg IDE bash - “beaglebone Imr f=}
rUnnIng On a root@beaglebone:/var/1ib/cloudS#
BeagleBone
Black.
|

https://c9.io

’38 Part lll: Programming with BoneScript

Exploving the Cloud9 IDE

When you open the Cloud9 IDE for the first time, you may feel intimidated.
There are so many menus, submenus, options, and tabs!

To get started with your first project, you need to know about only a few of
the windows of the Cloud9 IDE. The following sections give you a closer look
at the six main areas of the Cloud9 IDE.

Menus tab

If you've ever used any computer application, you'll find that the menus in
the Cloud9 IDE are organized in a very familiar way:

v+ File menu commands create, open, save, and close files.

v Edit menu commands give you the option to undo or redo a task, as well
as cut, copy, paste, and edit your files. You can use the typical Ctrl or
Cmd key shortcuts with these tools.

v+ Find menu commands make it easy to find or replace words in your code.

v View menu commands allow you to change the look and feel of your
editor window.

»* Goto menu commands provide fast ways to access the right file.
»* Run menu commands are used to run and build your scripts.

v Tools menu commands are used to format your code, rename variables,
and play macros.

v+ Window menu commands enable you to select the windows you want to
open or close.

Workspace

You can access all your folders and files with the workspace window (see
Figure 7-2). Just like in your computer’s file system, everything is organized
in a hierarchy. You can drag and drop to move files, and creating folders and
files is quite easy.

Editor

The first time you open the Cloud9 IDE, the Preferences tab is open in the
editor window (refer to Figure 7-1 earlier in this chapter). You can close that
tab because by default, Cloud9 is preconfigured.

Chapter 7: Introducing BoneScript ’39

|
Figure 7-2:
Exploring
the Cloud9
IDE.
|

As soon as you open one of your scripts, the editor window looks like the one
shown in “Creating a folder and . js file” later in this chapter. This window is
where you write all your code. The editor highlights the functions according
to the syntax of the programming of the file you have open, which is decided
by its file extension.

Menustab Address bar Editor

¥ Call Stack

B LicensE

params. json
B README.md
W testace. himl

bash - "beaglebone
root@beaglebone:/var/lib/cloudds [

Immediate

Workspace Terminal Console output Debugger

Console

When you run a script, the console prints the output of your application
(refer to Figure 7-2 earlier in this chapter). If you're running a web server,
for example, the console tells you the URL of the page that is being served.
You can also print messages — using the JavaScript function console.
log ('<Your message>'). Those messages are commonly used to debug
your code.

’ 4 0 Part lll: Programming with BoneScript

“\NG’
QA !

SMBER
)

Debugger

The debugger is the perfect way to see exactly what is happening when you
run your scripts (refer to Figure 7-2 earlier in this chapter). You can create a
breakpoint so that your code runs only to a certain line that you define. You
can also see which functions your code is calling and which values are stored
in your variables.

Terminal

Terminal allows you to run commands as described in Chapter 4 and
Chapter 7. You can control your BeagleBone directly from the web browser,
meaning that you can update or install new software, move files, and per-
form other commands. By default, you're logged in as root, so you have full
access to all commands that can be performed on your board.

Be careful when you are logged in as root! As the administrator — or, as the
Linux community usually calls it, superuser — you have the permissions to
execute commands that would actually mess up the BeagleBone. Refer to
Chapter 4 for more on the root user.

Creating a folder and .js file

With the Cloud9 IDE open, you can create a folder and file in your workspace.
Follow these steps:

1. Right-click the cloud9 folder and choose New Folder from the short-
cut menu.
A new folder is created inside the c1oud9 folder.

2. Name the new folder Projects.

The new folder is named Projects because that’s where all projects in
future chapters will be stored. Naturally, you can name yours whatever
you want.

3. Right-click the Projects folder and choose New File from the short-
cut menu.

This step creates a new file inside your Projects folder.
4. Name your file blink.js.

Your file must end with the extension . js (JavaScript) because it will
run a JavaScript script.

The result should be similar to Figure 7-3.

Chapter 7: Introducing BoneScript ’4 ’

Fle Edit Fnd View Goto Run Tools Window Preview () Run Beta Feedback 1 John Doe §% QD
o 0

¥ Walch Expressions

v B douds E blinkjs

» i attic 1
» = autorun
v i demo

Workspace

1860ng8Q

A analogs
B analog2 js
A blink.py No isplay
B blinked,js w Scope Variables

¥ Call Stack

B slinkino Prope alue
B fadejs Mo variables to display
B inputjs w Breakpoints
A inputzjs
B shiftout js
> I exras
» im images
» i javascripts bash - "beaglebone’
I v [Projects root@beaglebone: /var/1lib/cloudds
A blinkjs
Figure 7-3: P
. » i stylesheets
Projects > o supert
faviconico
folder and

W indexhtml

a new file B ucose
4 params.json

ca l l Ed B README.md
bllnkjs W testace.html
|

Immediate

The new file

Blinking an Onboard LED
with BoneScript

This section shows you how to write your first script from scratch to blink
an onboard LED. There’s a popular saying in the digital electronics world: If
you can blink an LED, you can do anything. It’s true. The difference between
controlling an LED to controlling, say, the outlet that controls your toaster
is almost nonexistent. Don’t underestimate this project just because it’s a
simple one.

If you followed the instructions in the preceding sections, at this moment you
have your first folder and a . j s file created.

When you get done with writing the program in this section, it will look like this:

/*
Blink
Turns an onboard LED on and off continuously,
with intervals of 1 second.

5/

// Load BoneScript module
var b = require('bonescript!');

’ 4 2 Part lll: Programming with BoneScript

// Create a variable called led, which refers to the onboard USR3 LED
var led = "USR3";
// Initialize the led as an OUTPUT
b.pinMode (led, b.OUTPUT);
// Create a variable called state, which stores the current state of the LED.
var state = b.LOW;
// Set the LED as LOW (off)
b.digitalWrite(led, state);
// Execute the toggle function every one second (1000 milliseconds)
setInterval (toggle, 1000);
// Function that turns the LED either HIGH (on) or LOW (off)
// depending on the parameter state.
function toggle() {
if (state == b.LOW) state = b.HIGH; // if the LED is LOW (off), change
the state to HIGH (on)
else state = b.LOW; // otherwise, if the LED is HIGH (on), change the
state to LOW (off)
b.digitalWrite(led, state); // write the new state value to the led pin,
turning the led on or off

This script has only a few lines of code, which you can divide, like so:

v Commenting

v Loading the BoneScript module
v Creating variables

v Configuring pins

v~ Setting the default pin state

v Setting an interval

v Creating a function

The following sections describe these groups of code in more detail. Follow
along and write the snippets of code to your blink. js file.

Commenting

The script starts as follows:

/*
Blink
Turns an onboard LED on and off continuously,
with intervals of 1 second.

=/

// Load BoneScript module

Chapter 7: Introducing BoneScript 743

¢MBER
S

This group of code is a series of comments. Comments are plain English — or
some other language — that explains how the code works. Anything desig-
nated as a comment is ignored and won'’t interfere with your code.

It’s important that you use comments frequently so that other people who
read your code understand what you're trying to do. Comments are also help-
ful for reminding yourself what your code did when you open the file a few
months later. They're easily the leading tools for organization.

There are two types of comments:
v Single-line: The // symbol indicates that anything that follows in that

line should be ignored.

v Multiple-line: Any text between the /* and */ symbols is a comment
written across multiple lines. It’s a good practice to start a script with
multiple-line comments that include the script name, a brief explanation
of what the code does, and some information about the author.

Loading the BoneScript module
Following is the first line of code that runs:

var b = require('bonescript') ;
You need to type this line every time you work with BoneScript because it
loads the BoneScript module into your script in an object — called b in this
case. An object is a combination of properties, and a property is an associa-

tion between a name and a value. You control your BeagleBone by changing
the values of the object you created.

Creating variables

The next line creates another variable:

// Create a variable called led, which refers to the onboard USR3 LED
var led = "USR3";

This line creates a variable called 1ed to store the string "USR3" that refers
to your onboard USR3 LED. A string is a collection of characters, words, and
phrases, written between quotation marks.

’ 44 Part lll: Programming with BoneScript

\NG/
&‘g‘“

JavaScript is case-sensitive. If you define 1ed as your variable, you always
need to type led, because LeD, LED, and Led are different.

Configuring pins
You need to initialize the LED as an output:

// Initialize the led as an OUTPUT
b.pinMode (led, b.OUTPUT) ;

To configure a pin to act as an output or input, you use the function
pinMode (), which takes two parameters:

pinMode (<GPIO>, <mode>)
The two parameters are

v GPI0: The string of the pin you want to define — in this case, USR3,
which is defined as 1ed.

v mode: This argument sets the GPIO as an OUTPUT or as an INPUT. An
LED is always an OUTPUT.

This function can take four more parameters — mux, pul lup, slew, and
callback — but they’re optional, and we don’t use them in the following
examples.

Setting the default pin state
Create a variable called state, and set the default state to your LED:
// Create a variable called state, which stores the current state of the LED.
var state = b.LOW;
// Set the LED as LOW (off)
b.digitalWrite(led, state);
// Execute the toggle function every one second (1000 milliseconds)

You use the digitalWrite () function to write HIGH or LOW to your GPIO:

digitalWrite (<GPIO>, <value>, [callback])

Chapter 7: Introducing BoneScript 7 45

This function takes three parameters:
v GPIO: Define the string of the pin you want to define. You want to change
the led state.
v value: Set as HIGH or LOW. By default, you want the LED turned off.

v callback: Call a function upon completion. This parameter is optional,
and even though you don’t need it for this example, you use it frequently
when programming in BoneScript.

Setting an interval
The following line is executed every second:

// Execute the toggle function every one second (1000 milliseconds)
setInterval (toggle, 1000);

To toggle the LED on and off every second, you use a function called
setInterval ():

setInterval (<callback>, <milliseconds>)
The two parameters of this function are:

v callback: Calls a function upon completion. In this example, it exe-
cutes the toggle () function.

1 milliseconds: Sets the length of time between executions in milliseconds.
In this case, the length of time is 1000 milliseconds (1 second).

Creating a function

This section is the most important part of your code, because it’s when you
create the toggle () function that turns your LED on or off:

function toggle() {
if (state == b.LOW) state = b.HIGH; // if the LED is LOW (off), change
the state to HIGH (on)
else state = b.LOW; // otherwise, if the LED is HIGH (on), change the
state to LOW (off)
b.digitalWrite(led, state); // write the new state value to the led pin,
turning the led on or off

146

Part lll: Programming with BoneScript

Functions are great ways to organize your code. If you want to do something
multiple times, instead of repeating your whole code several times, you
create a separate function that you can call and execute any time. This is how
you create a new function:

function toggle() {
// Your code goes here

}

Inside the curly braces, you can type what you want your code to do. In this
example, you want to see whether the state variable is LOW, which means
that the LED is off, so you change the state variable to HIGH. If the LED is
HIGH, change state to LOW:

if (state == b.LOW) state = b.HIGH; // if the LED is LOW (off), change the state
to HIGH (on)

else state = b.LOW; // otherwise, if the LED is HIGH (on), change the state to
LOW (off)

When setting the value of a variable, you use a single equal sign, such as
state = b.HIGH. When you want to check for the value of a variable, as in
an if statement, you use two equal signs, as in if (state == b.LOW).

When you know the next state of your LED, you need to use the function
digitalWrite () again to change the pin from LOW to HIGH or vice versa,
according to the value stored in the state variable:

b.digitalWrite(led, state); // write the new state value to the led pin, turning
the led on or off

Running the script

Before you can run your script, you need to save it. Simply press Ctrl+S or
Cmd-+S and then click the green Run button at the top of the screen. You
should see your USR3 LED blinking every second.

After your script has run for a while, you can stop your program by clicking
the Stop button.

If you click the Run button and nothing happens to your board, you’re proba-
bly running the script in debugger mode. To turn off debugger mode, click the
little bug icon shown in Figure 7-4.

Chapter 7: Introducing BoneScript ’4 7

Run button

Fle Edit Find Viev to oW Preview) Run Beta Feedback @ John Doe
v B douds E blinkjs n c o
» B attic Expressions
» W autorun
¥ i demo

Works pace

B bink.py
B binkled.j5
B Bink.in

3 aluirite(led,
v i Projects (

B binkjs

>

IProjects/blink

stop Command: /Projec

Figure 7_4: . debugger listening on port 15454
Turning off A params
B ReADME.md
debugger W tostoce i
mode.
E—— @ Output Immediate

Debugger mode turned off

Blinking More LEDs with BoneScript

In this section, you see how to design a circuit to introduce a physical LED to
the blinking on-board LEDs.

Grab your BeagleBone, a Mini USB cable, a computer, a breadboard, an LED,
and a 220 Q or 470 Q resistor. That’s everything you need for this section.

Wiring the circuit

Before you start wiring your circuit, make sure that your BeagleBone is discon-
nected from power.

WING/

Follow these steps to wire your circuit as shown in Figure 7-5:

1. Connect the BeagleBone’s ground (GND) pin (pins 1 and 2 on both
headers) to the breadboard’s negative track.

’ 48 Part lll: Programming with BoneScript

2. Use a jumper to connect a BeagleBone pin to a vertical row on your
breadboard.

This example uses pin 14 on the P9 header.
3. Connect a 220 Q or 470 Q resistor to the jumper you pulled from P9_14.

Without a resistor, an LED burns up easily. A 220 Q or 470 () resistor
should drop enough voltage without reducing the LED’s brightness. If
the LED is too dim, use a 220 () resistor rather than a 470 Q resistor.

4. Connect the LED’s negative leg (the cathode, which is usually the
shorter leg) to ground, and the positive leg (the anode) to the resistor.

e & & @ @ ° & O O O O 0 O O O O O O B G S SO PO O O QS DN e @ o @ 0o 0
® @ ® ® o ® ® 8 5 9 ® O O ¢ O O O O " S O O O S B e o o o o @
® @ & & @ & & 0 O O O 0 O O O O O O S O O P O O O PSP e o o 0 0 0
® @ 9 ® ® © ® ® ® 9 O O O P T S O O O O O O O O O O O e o o ® e @
® & 9 © & 9 & 9 O O O O O 6 O O O S P S S PO O S ® & o @ @°
® & & ¢ & & & & O O O O O O O O O O O OO OO E S DN 1 e ¢ & 0 0o @
® & 9 @ & & 9 O O O O O O O O O O O O O O OO B O PO] ® o o ® 9o 0
e & & @ & O 9 O O O O O O O O O O O P O e 0D ’FE-M’S ® ¢ @ @ o 0
® ® ® O ¢ & ¢ O ¢ O O O O O O O O O P O S " OV O O O D ® o o 9 9o
e & & @ & & 0 O O O B O O O O O OO O S D * e 0 0 *® @ ® 0 0 0

w

)

o1}

Q

=

o

w

o

=]

o
|
Figure 7-5:
Pin P9_14
attached to
an LED and
a resistor.

fritzing

Chapter 7: Introducing BoneScript 7 4 9

Opening the blinked.js demo

In this section, you don’t write code, as there is a built-in demo that does just
what you want. Follow these instructions to open the demo:
1. Connect your BeagleBone to your computer with a Mini USB cable.
2. Type 192.168.7.2:3000 in the address bar.
This text loads the Cloud9 IDE.
3. Click the folder demos in the workspace.
4. Double-click the blinked. js file.
The file opens, as shown in Figure 7-6.
This code is similar to the code in the “Blinking an onboard LED with

BoneScript” section, but it adds a few more concepts, such as arrays and
loops, which are covered in the following sections.

Fle Edt Fnd View Goto Run Tools ow Preview ©Run Beta Feedback [@® John Doe #

v im doudg
> -

Works pace

Navigate

A bi
4 birked 15
B Binkino

|
bash - “beaglebone
Flgure 1-6: | : root@beaglebone: /var/1ib/cloudsit

Cloud9 IDE
with demo
file blinked. N testace hind
js open.
|

Loading a module

When you’re programming with BoneScript, the following is always your first
line of code:

var b = require('bonescript') ;

’50 Part lll: Programming with BoneScript

gMBER
S

Creating an array
With an array, you can store multiple values in a single variable:

var leds = ["USRO", "USR1", "USR2", "USR3", "P9 14"];

You could create five variables to store all those strings:

var led0 = "USRO";
var ledl = "USR1";
var led2 = "USR2";
var led3 = "USR3";
var led4 = "P9 14";

An array makes your code look nicer and your variables more accessible.
They are also very useful to use in loops, which are covered in the next sec-
tion. If you want to access the elements of your array, such as the "USRO"
string, you need to type leds[0]. Here’s how it works:

leds [<index>]

The first element in an array is indexed as 0, the second element is stored in
the index 1, and so on.

Creating a loop

You use a for loop when you have a snippet of code that you want to repeat
several times:

for(var i in leds) {
b.pinMode (leds[i], b.OUTPUT) ;
}

That for loop goes through all the LED pins — the ones stored in the 1eds
array — and set them as outputs. You could take another approach by config-
uring the LEDs as outputs if you repeat the code five times:

b.pinMode (leds [0], b.OUTPUT) ;
b.pinMode (leds[1], b.OUTPUT) ;
b.pinMode (leds[2], b.OUTPUT) ;
b.pinMode (leds [3], b.OUTPUT) ;
b.pinMode (leds[4], b.OUTPUT) ;

As you can see, with a for loop, your code looks more organized and less
repetitive. Using for loops may seem to add complexity, but imagine having
to set up 30 outputs without using a loop.

Chapter 7: Introducing BoneScript

A\

Setting the default pin state

In this section, you set all pins to LOW as default. The following line creates a
variable that stores the current state:

var state = b.LOW;

Then you use another for loop to go through all your five LEDs and turn
them off with the digitalwrite () function:

for(var i in leds) {
b.digitalWrite (leds[i], state);

Executing the toggle () function

Using a setInterval () function allows you to call the toggle () function
every second:

setInterval (toggle, 1000) ;

The toggle () function does exactly what it does in the “Creating a function”
section: blinks an onboard LED. But now you’re using a for loop to change
the state of all five LEDs to HIGH or LOW, according to the value stored in the
state variable:

function toggle() {
if (state == b.LOW) state = b.HIGH;
else state = b.LOW;
for(var i in leds) {
b.digitalWrite(leds[i], state);
}

Running the script

At this point, if you’ve completed all the preceding sections, you should have
your circuit wired and a window with the blinked. js script open.

You don’t need to save your script and delete comma because you haven'’t
edited your code.

Simply click the Run button, and watch all four USR LEDs and the LED blink-
ing at the same time (see Figure 7-7)!

151

’52 Part lll: Programming with BoneScript

|
Figure 7-7:
Demo
blinked.js
running on a
BeagleBone
Black.

If your USR LEDs are blinking but the physical LED isn’t, you may have wired
something wrong. Placing the LED in reverse is quite often the problem.
Reread the instructions to confirm that you set things up properly.

Chapter 8 covers more BoneScript proj-
ects, featuring different electrical compo-
nents and more BoneScript functions, but if
you want to take things even further, check
the BoneScript Library page on the official
website: http://beagleboard.org/

More on BoneScript

Support/BoneScript. There, you can
find more information about BoneScript func-
tions and other project examples. You can
also check Chapter 18 to discover more about
this powerful programming language for the
BeagleBone.

http://beagleboard.org/Support/BoneScript
http://beagleboard.org/Support/BoneScript

Chapter 8

Experimenting with
BoneScript

In This Chapter
Discovering how to interact with your circuits
Adjusting the brightness of an RGB LED
Moving a servomotor with a potentiometer

Detecting whether someone entered your room

A\

Fe more you know about BoneScript, the easier it gets to see the end-
less possibilities for playing around with this programming language.
This chapter shows you how to turn on a light by pressing a pushbutton,
how to control a motor’s rotation through the use of a potentiometer, and
how to automatically turn on a light that warns you that someone has
entered a room.

At first glance, all the projects in this chapter may seem straightforward

and simple, just as most of the electronic devices you engage with are. For
example, on a daily basis you encounter things that have buttons, knobs, and
sensors that control some output. This chapter walks you through the most
basic, yet most important, functions that BoneScript offers. Later, you'll be
able to incorporate the building blocks presented in this chapter into your
own unique projects.

The instructions in this chapter assume that you can connect your
BeagleBone to your computer (see Chapter 3), you already know how to open
the Cloud9 integrated development environment (IDE), and you can create a
new file inside your Projects folder (see Chapter 7). There are also some
BoneScript functions used in this chapter that are covered in Chapter 7, and
you should read it if you need an explanation on them.

’54 Part lll: Programming with BoneScript

Reading an Input

NG/
S

In the BoneScript projects in the previous chapter of this book, you work
only with outputs, defining a pin as an output and then running a script that
set that pin to either HIGH or LOW. The result is a blinking light-emitting
diode (LED). You make something happen in the world, which means that
your pin works as an output.

At times, though, you want to interact with your circuit. Often, it’s desirable
for the BeagleBone to read from something that happened in the world, pro-
cess that information, and then make something happen.

When we say that the BeagleBone is reading from something, it means that it is
using an input to receive information such as sensor data or a button press.

The first step of that process is reading the state of a digital pin that’s set as
an input. In this example, you use a pushbutton to control whether a pin is
HIGH (when the pushbutton is pressed) or LOW (when it isn’t pressed) and
then make the BeagleBone read that information and output the state of the
button to a computer screen.

You need the following supplies to get started:

v A pushbutton
»* A 10K Q resistor
v A breadboard

v Jumper wires

Wiring a pushbutton

Figure 8-1 shows a circuit with a pushbutton and a resistor. Most pushbut-
tons are designed to be inserted right into the middle gap of the breadboard,
just like the one in the schematic. This circuit is pretty easy to assemble.

If you have a pushbutton that’s slightly different from the one used in this
example, you must test its continuity with a multimeter. (You can read about
using a multimeter at www.dummies.com/extras/beaglebone. Test
whether the pushbutton leads that you're using are connected when the push-
button is pressed and disconnected when the pushbutton is released.

http://www.dummies.com/extras/beaglebone

Chapter 8: Experimenting with BoneScript 755

e o o 0o @ e o o 0 o ® ®o o 0 0 ® e o o 0 * o @ o @ ® o ® ¢ 0
. . L] . L] . .
® @ & 0 & 0 0 0 O O O O P O O P PO P O 0 ® & ¢ ° & & O O 0 0 0 e 0
® © ® 8 o ® 0 0 ° 6 O 9 0 O " O O B O ® o 0o o 5 5 0 0 0 s 0 s
® @ 9 0 ® 9 ® 0 O e 9 9 O O O O O O O OO ® ® 9 0 ® o o 0 0 0 " e O
® ® 9 o o 0 o o o o O o 0 O " s 0O O B O ® o o 5 o 5 o 0 0 5 s 0 0
® @ ® @ ® 9 P 9 O ° P O O O O O O @ O O @ ® ® o @ e @ 9o 0 0 @ e e O
® ® o 8 o 0 0 O 6 0 O O O S S S O S O ® o 0 6 0 0 0 0 0 0 0 0 0
® ® o e o 9 ® 9 ° 0 9 O O S S O OB O ® ® o o ® 9 ° 9 8 " ® O
® & & o ® & & & & & o o 0 0 0 0 b
* o o 0 ® ® 9 ® ® 0 9 0 9 P P O O O O ® ® 9 e o ° 0 0 0 " O O
* & & 0 ® & & & & 5 5 " s s O S e ® & & & & & 5 6 " 0 s s S

s}
D
o]
le]
—
D
o
]
= |
m

Figure 8-1:
Pushbutton
connected
to the
Beagle-
Bone's input
pin P8_11.

Follow these steps to wire your circuit:
1. Connect the BeagleBone’s ground (GND) — pin P9_1 or P9_2 — to the
negative track of the breadboard.
2. Use a jumper to connect P8_11 to a vertical row on your breadboard.
This pin is the one you’ll be using as an input.

3. Connect the BeagleBone’s 3.3V source — pin P9_3 or P9_4 — to the
breadboard’s positive track.

’56 Part lll: Programming with BoneScript

4. Connect the pushbutton.

Place it in the center of the board to ensure that each pair of legs is elec-
trically separated.

5. Using jumpers, connect one of the pushbutton’s legs to the positive
rail of the breadboard and the other leg to the jumper that comes
from P8_11.

6. Connect a pull-down resistor between the other leg of the pushbutton
and the negative track of the breadboard.

Writing the code to read the
state of a pushbutton

We encourage you to keep all your files inside the Projects folder so that
everything is well organized. To get started with the code, create a new file
called readButton.js in your Projects folder.

Write the following in your readButton. js script:
var b = require ('bonescript') ;
var button = 'P8 11';

b.pinMode (button, b.INPUT) ;
b.digitalRead (button, printStatus);

function printStatus(x) {
console.log('Button state = ' + x.value) ;

The first two lines of code start like all the examples presented in Chapter 7.
You’re loading the BoneScript module into your script and creating a variable
called but ton that refers to P8_11.

On the third line of code, you set the button as an INPUT with the function
pinMode (). Next comes a function that enables you to read the state of your
digital pins:

digitalRead (<GPIO>, [callback])
This function takes two parameters:

v GPIO: This pin is the one for which you want to know the state. In this
case, the pin is P8_11, which you define in the but ton variable.

v callback: This parameter, called upon completion, returns the button
value — HIGH or LOW — stored in the x.value variable.

Chapter 8: Experimenting with BoneScript 757

WMBER
@&
&

Callbacks are functions that you use frequently when working with JavaScript. In
this example, as soon as the digitalRead () function completes its process, it
executes the callback function printStatus (). The printStatus (x) function
takes a single parameter, which is the returned value from the digitalRead ()
function, referred by the letter x in parentheses. In the case of digitalRead (),
the value returned is either HIGH or LOW.

The last section of code prints on your console the state of your button,
which is stored in the x.value variable:

function printStatus(x) {
console.log('Button state = ' + x.value) ;

The console.log('<your message>') function is the easiest way to
print something to the console. Note that you can print a message you write
inside it, such as 'Button state = ', as well as the current value of a vari-
able, such as x.value. You put the message and the variable together with a

plus (+).

Apostrophes aren’t used to print variable values. Typing console.log('Button
state = ' + 'x.value"), with the x.value inside apostrophes, prints the line
Button state = x.value rather than the actual value of the variable.

The console.log ('<your message>"') function gives the user some feed-

back on what’s happening while the code is running. It’s one of the best tools
for debugging your code as you experience later in Chapter 11.

Running the script to read the
state of a pushbutton

When you have all the code written, press Ctrl+S or Cmd+S to save it and
then click the Run button or press F5 to execute your script.

Take a look at your console output. If you weren’t pressing the button, the
message Button state = 0 should have been printed.

Conversely, if you run the script again while pressing the button (see
Figure 8-2), you see on your screen the line Button state = 1.

The terms HIGH and LOW refer to 1 and 0, respectively.

158

Part lll: Programming with BoneScript

|
Figure 8-2:
Pushbutton
wiredto a
BeagleBone
Black.
|

Controlling an LED with a Pushbutton

In this project, you find out how to control the state of an output depending
on the state of an input — by turning an LED on and off when you press or
release a pushbutton. This project also introduces the concept of interrupts.

Interrupts are clever ways to wait for something to change. With the
attachInterrupt () function, you can create a function that waits for an
input pin to change its state by going from LOW to HIGH or the reverse. When
that happens, attachInterrupt () automatically detects that change and
executes a function. This function is useful because it solves some timing
issues. The alternative would be to create a script that waits for a button to
change, which would be really difficult.

You need the following components:

v A pushbutton

1 A 10K Q resistor

v An LED

v A 220 Q or 470 Q resistor
v A breadboard

v Jumper wires

Chapter 8: Experimenting with BoneScript 759

Wiring an LED and a pushbutton

This example is very straightforward to prepare if you’ve worked through
examples in the previous chapter and in the “Reading an Input” section pres-
ented earlier in this chapter because you know how to wire an LED and a
pushbutton. We won’t go into much detail on how to wire this circuit; simply
follow the circuit diagram shown in Figure 8-3. You can also follow the steps
in the aforementioned sections.

® ® & & & & ¢ ® ¢ 0 ° O O O O O O O O O O O B O O O O G O O O O O O " O
® 0 0 0 0 0 O O O P e GO e e e e e G 0 e e e e e e e e o 0 0 e
® & & ® & & & ® & O O O O O O O O O O O B O G O O O O WO e @ ° ° o @
® 6 9 6 0 ° 0 O 0O O e GO e O E e GO G OO e e O e S e I I)
® ® & @ & & @ & & ® O & O O O O O O O O) O 0 O " O " O " O ® o o ® o 9

o

L} L)

o.i
" e 0 0 . .] e e e 0 . el o oo o oo | e o 0 0 0 0
® ® & & & & ¢ 9 O 0 O O " " O O O S S S PO e o 5 ° 9 gj ® o ®o ° o
LI . o o wu_] jmo ® o 0 0 0
L ® ® o ® % 0 9 O O 0 " O O O O L] e o o 0o * o o o 0
s e o . ° e e e o 0 0 00

I | -

e o

G ¢ ¢ ¢
L]

vs]
m
o7)
w0
—
m
us]
o
3
m

Figure 8-3:
An LED

and a
pushbutton
wired to a
BeagleBone
Black.
|

’ 60 Part I1l: Programming with BoneScript

Writing the code

When everything is wired up, power up your BeagleBone, and start coding
the next script. Create a new file called buttonLED. js, and type the follow-
ing code in it:

var b = require('bonescript') ;

var led = "P9 14";
var button = "P8 11";

b.pinMode (led, b.OUTPUT) ;
b.pinMode (button, b.INPUT) ;

var state = b.LOW;
b.digitalWrite (led, state);

b.attachInterrupt (button, true, b.CHANGE, toggle) ;
function toggle (x) {
if (x.value == b.HIGH) {
console.log("The button is HIGH") ;
b.digitalWrite(led, b.HIGH) ;
else {

console.log("The button is LOW") ;
b.digitalWrite (led, b.LOW) ;

}

The first portion of code is identical to what you’ve used in the previous
examples in this chapter. This line is where the code gets interesting:

b.attachInterrupt (button, true, b.CHANGE, toggle);
You're going to use the attachInterrupt () function to create an interrupt
that triggers the toggle () function when someone presses or releases the
button:

attachInterrupt (<GPIO>, <handler>, <mode>, [callbackl])

This function takes up to four parameters:

v GPIO: This pin is the one for which you want to know the state. In this
case, the pin is P8_11, defined in the but ton variable.

Chapter 8: Experimenting with BoneScript

\\J

» handler: You can simply set this parameter as true so that it always
calls the callback if an interrupt occurs. Alternatively, you can set it as
a string that’s evaluated and, if true, it executes the callback. In this
example, you don’t want to evaluate handler’s value; you want it to
always be true because you want to execute the toggle () function
every time an interrupt occurs. In fact, this parameter is true in most
situations.

v mode: The three types of modes are RISING, FALLING, and CHANGE. In
this example, you use CHANGE mode, because you want to toggle the
LED when the button is pressed and when the button is released. You'd
use RISING if you only wanted to check for the button’s being pressed,
whereas FALLING refers to the button’s being released.

v callback: This parameter is called upon completion — that is, when
a change occurs on the input pin — if the handler parameter is
true.

All the magic happens in the toggle () function:

function toggle (x)
if (x.value == b.HIGH) (
console.log ("The button is HIGH") ;
b.digitalWrite(led, b.HIGH) ;

else {

console.log("The button is LOW") ;
b.digitalWrite (led, b.LOW) ;

}

When an interrupt occurs, it saves the current state in the x.value variable.
Soif (x.value == b.HIGH)— that is, if the button is pressed — you want to
toggle the LED to HIGH. When another interrupt occurs — when you release
the pushbutton — your LED toggles to LOW.

Running the script

Save your project and then click Run or press F5.

Your LED should stay on for as long as you hold down the pushbutton (see
Figure 8-4), and it should turn off the moment you release the pushbutton.

If the LED is too dim, use a 220 Q) resistor rather than a 470 Q resistor.

101

’ 62 Part lll: Programming with BoneScript

|
Figure 8-4:
The LED
stays on as
long as the
pushbutton
is pressed.
|

samae

19 85 45

Knowing how to control output pins depending on the state of input pins

is a very important asset and one of the most prominent building blocks of
advanced electronics projects. Just as your pushbutton controls an LED, you
could have an infrared sensor controlling an alarm that goes off whenever
someone attempts to raid your fridge. In terms of wiring and coding, the situ-
ation is pretty much the same. You have a digital input — HIGH for “fridge
door open” and LOW for “fridge door closed” — and a digital output in the
form of the alarm.

Adjusting the Brightness
with an RGB LED

Everyone loves LEDs. How much cooler could things get with an LED that has
three colors and can combine them to create some color effects?

These little pieces of awesomeness are known as RGB (red-green-blue) LEDs.
In this project, you find out how to control them by using pulse-width modu-
lation (PWM) with BoneScript and by using interrupts. PWM is covered in
more detail in Chapter 6.

The circuit you build in this section consists of an RGB LED whose color and
brightness are controlled by pressing a pushbutton.

Chapter 8: Experimenting with BoneScript 7 63

SMBER
é‘,\“

You need the following components:

+* An RGB common cathode LED
¥ 4x 220 Q or 470 Q) resistors
v A breadboard

v Jumper wires

Wiring the RGB LED

There are two types of RGB LEDs:

1 Common cathode: The longest lead is connected to the ground pin.
Then you connect the other leads to output pins. Except for the longest
lead, all leads are associated with different colors; having a lead con-
nected to a pin in the HIGH state lights its color. For leads connected to
pins in the LOW state, those colors are off.

1+ Common anode: The longest lead is connected to the power pin. Then
you connect the other leads to output pins, and things work in reverse:
LOW values turn a color of the LED on, whereas HIGH turns that color off.
If you use a common anode LED, you have to alter your code and wiring
according to this reversal of what HIGH and LOW on each lead does.

In the preceding section, we say that you require an RGB common cathode
LED. You can use a common anode LED, but keep in mind some things will be
slightly different than what’s described in this section.

You control the color of an RGB LED by deciding which leads are HIGH and
which are LOW.

Follow these steps to wire everything together:

1. Wire a pushbutton and a pull-down resistor to your breadboard.
Refer to Figure 8-1 earlier in this chapter to verify the wiring.

2. Use a jumper to connect P9_14 to a vertical row on your breadboard.
This pin will control the red color of your RGB LED.

3. Use a jumper to connect P9_16 to a vertical row on your breadboard.
This pin will control the green color of your RGB LED.

4. Use a jumper to connect P8_13 to a vertical row on your breadboard.
This pin will control the blue color of your RGB LED.

Use color coding to keep yourself organized. In this example, using
jumper wires that are red for P9_14, green for P9_16, and blue for P§_13
probably would be a good idea.

’ 64 Part lll: Programming with BoneScript

5. To each of these jumpers, wire a 200 Q or 470 Q resistor.

6. Wire the longer lead of your RGB LED to ground (GND) on the bread-
board rail.

7. Check the schematic in Figure 8-5 to make sure that you have the
wiring right.

s

o8]
m
o]
(e}
[
D
o8]
o
=,
D

|
Figure 8-5:
RGB

wired to a
BeagleBone
Black
|

Chapter 8: Experimenting with BoneScript 7 65

SMBER

You can use eight pins use as PWM pins. Refer to Chapter 6 for more
information.

Writing the code

Create a new file called RGB. js, and type the following script:

var b = require('bonescript');

var RGB = ["P9 14", "P9 16", “P8713"];
var button = "P8 11";

var RGB lead=0;

var brightness=0;

for (var 1 = 0; 1 < 3; i++) {
b.pinMode (RGB[i], b.OUTPUT) ;

}

b.pinMode (button, b.INPUT);
b.attachInterrupt (button, true, b.RISING, bright);

function bright () {
if (RGB lead < 3) { // do this for each color defined by each of the RGB
LED's leads.
if (brightness < 1) { //brightness is increased until maximum
brightness=brightness+0.25; // brightness is increased 25% at a

time.
b.analogWrite (RGB[RGB_lead], brightness, 2000,
console.log('Brighter')); // write the PWM values into the

current RGB lead
}
else { //when one of the colors reaches the maximum brightness
brightness=0; // turn that color off
b.analogWrite (RGB[RGB lead], brightness, 2000, console.log('RGB
lead off'));
RGB lead++;
}
}
else { // when the program has gone through the three RGB LED's leads,
start over

RGB_lead=0;

In the first lines of code, you load your BoneScript module, and you create
some variables and an array:

var b = require('bonescript') ;

’ 66 Part I1l: Programming with BoneScript

var RGB = ["P9 14", "P9 16", "P8 13"];
var button = "P8 11";

var RGB_lead=0;

var brightness=0;

Then you configure all pins as outputs with a for loop. You also set a button
as an input:

for (var i = 0; i < 3; i++) {
b.pinMode (RGB[i], b.OUTPUT) ;

}

b.pinMode (button, b.INPUT) ;

Next, you create an interrupt that executes every time you press the pushbut-
ton. This interrupt is activated with a RISING edge and calls the bright ()
function:

b.attachInterrupt (button, true, b.RISING, bright);

The bright () function is the main character of this code. Spanning the
entire function is an if . . .else statement that checks whether the code
went through all the RGB LED leads:

if (RGB lead < 3) {
(...)
}

else {

}

Inside that main if, the program has another if statement that checks
whether the maximum brightness of 1 has been reached:

if (brightness < 1) {
(oool

else {

}

Before we get into more detail, you need to be aware of the function called
analogWrite ():

analogWrite (<GPIO>, <value>, [freq], [callbackl])
The analogWrite () function takes four parameters:

v GPIO: This pin is the one to apply voltage. In this case, the pins are
P9_14, P9_16, and P8_14, which you define in the RGB array.

Chapter 8: Experimenting with BoneScript 7 6 7

v value: The duty cycle of the PWM can be any value between 0 and 1.
This value defines the fraction of the duty cycle with regard to the PWM
frequency, which in this case defines the LED’s brightness.

v freq: The default frequency of the PWM is 2000 Hz.

P v callback: Call this function upon completion.
See Chapter 6 for the theory behind PWM.

analogWrite () gives a GPIO some voltage between 0V and 3.3V (Low and
HIGH, respectively). In this circuit, it’s the function that actually increases the
brightness defined by each of the RGB LED’s leads:

brightness=brightness+0.25;
b.analogWrite (RGB[RGB lead], brightness, 2000, console.log('Brighter'));

The same function is used to turn an RGB LED lead off:

brightness=0;
b.analogWrite (RGB[RGB lead], brightness, 2000, console.log('RGB lead off'));

Running the script

Don'’t forget to save your code before you run it by pressing Ctrl+S or Cmd+S.

Then click the green Run button or press F5, and try out your project. When

you press the pushbutton, you see the LED’s brightness increase, and if you
P press it a couple of times, the LED goes through all the RGB LEDs colors.

If the LED is too dim, use 220 () resistors rather than 470 Q) resistors.

Note: If you press the pushbutton too quickly, brightness may increase by
two levels.

\\3
You can use the PWM concepts in this project to dim the light on your desk or
control a servomotor.

Sweeping a Servo with
a Potentiometer

This project shows you how to read analog inputs with yet another extremely
useful BoneScript function: analogRead (). As its name suggests, this func-
tion allows you to use input pins to read analog values. You also have the
opportunity to practice PWM. By putting these two concepts together, you
see how you can control the rotation of a servo with a potentiometer.

’ 68 Part I1l: Programming with BoneScript

You need the following components:

v A servomotor that operates at 3.3V
v A 1K Q resistor

v A 10K Q potentiometer

v A breadboard

v Jumper wires

The next section introduces some important matters regarding analog inputs.

Analog inputs

As mentioned in Chapter 6, PWM produces a “fake” analog signal. In reality,
this signal is just a digital signal that alternates between the values HIGH and
LOW very quickly, making systems (such as the human eye when it comes
to LEDs) perceive that things are working somewhere in the middle. Thus,
the BeagleBone doesn’t require DACs (digital-to-analog converters) because
PWM does the trick just fine.

The real world is an analog world, not a digital one. Therefore, when it comes
to reading information from the world, you find that inputs can have a varied
range of values, such as temperature, humidity, and light levels or even the
resistance of a potentiometer. Due to this fact, analog inputs are necessary,
which ultimately led to the BeagleBone’s featuring internal ADCs (analog-to-
digital converters).

The BeagleBone has seven ADCs and their mission is simple: Read analog
voltages between OV and 1.8V and put them to scale (that is, convert them to
values 0 to 1).

Wiring the test circuit

You can verify that an ADC is doing its job by using a very simple circuit
and code. All you have to do is wire up a potentiometer (see Figure 8-6) as
follows:

v One of the outer leads goes into GND.

v The middle lead goes into the P9_40 pin of the BeagleBone. You’ll be
using this pin for the ADC.

v The other outer lead goes into P_32. This pin is a 1.8 V source, which is
the maximum value that the ADCs on the BeagleBone can handle.

Chapter 8: Experimenting with BoneScript 7 69

P ® o o ¢ @ @ @ L J ® @ @ @ 9 O ® @ O O O O ¢ O 0 O O O O 0 0
P oo o @ 0 0 0 ® @ & o 9 0 9 ° O O O O O O P O O O O OO
» & & & ¢ ¢ o @ ® @ @& & © & & & & & & O & O O O O O " O
P @ o & o © o @ ® @ o @ o © & 9o O O O & O O O O O ° O O
P @ @ o @ o o .. .;. ® @ @ o @ @ & & © ° @ O O ° O O O ° O @

us]
m
a1]
Q
—
m
o
o
3
M

|
Figure 8-6:
Potentio-
meter

wired to a
BeagleBone
Black.
|

Writing the test code
Create a new file called potentiometer.js, and type the following script:

var b = require('bonescript');
var pot = 'P9 40';

b.analogRead (pot, printADC) ;

’ 70 Part lll: Programming with BoneScript

\\J

function printADC(x) {
console.log(x.value) ;
b.analogRead (pot, printADC) ;

}

This code is quite straightforward. The first analogRead () function reads
the value of pin P9_40 and then uses a callback to the printADC () function,
which prints the value of the analog input pin and executes analogRead ()
again. The analogRead () function takes two parameters:

analogRead (<GPIO>, [callback])
The two parameters for the analogRead () function are the following:
v GPI0: This pin is the one you want to read the analog input value. In this

case, the pin is P8_40, which you define in the pot variable.

* callback: Call this parameter upon completion. It returns a value
stored in the x.value object of the analog input value.

Running the test script

When you run this script, you should see your console output filling with num-
bers, all of them below 1. As you rotate the knob on the potentiometer, these
numbers vary between 0 and 1, depending on the voltage level at the input pin.

The values may never reach 0 or 1, but may be at some values very, very close
to those.

Wiring everything together

To build your circuit and connect it to your BeagleBone, you use an analog
input pin (see Figure 8-7). Follow these steps:

1. Connect the BeagleBone’s ground (GND) — pin P9_1 or P9_2 — to the
negative track of the breadboard.

2. Connect the BeagleBone’s 3.3V source — pin P9_3 or P9_4 — to the
breadboard’s positive track.

3. Connect the servo brown or black wire to the GND breadboard rail.
4. Connect the servo red wire to the 3.3V breadboard rail.

5. Place a 1K Q resistor in your breadboard and then connect the servo
orange or yellow wire to the resistor.

6. Connect the other lead of the 1K (resistor to the P9_14 pin in your
BeagleBone.

Chapter 8: Experimenting with BoneScript 7 7 ’

7. Connect the left lead of your potentiometer to the GND breadboard rail.

8. Connect the middle lead of your potentiometer to the P9_40 pin in
your BeagleBone.

9. Connect the right lead of your potentiometer to the P9_32 pin in your

BeagleBone.
V?‘\w\ml
S Your ADC pins can handle a maximum 1.8V, which is why you connect the
source lead of your potentiometer to pin P9_32.
L
L] L
w
m
o
@
—
m
w
| o
=)
Figure 8-7:)
Potentio-
meter
and servo
wiredto a
BeagleBone
Black.

’ 72 Part lll: Programming with BoneScript

Writing the code to sweep a servo
with a potentiometer

Create a new file called sweepingServo.js in your Projects folder, and
type the following:

var b = require('bonescript') ;
var servo = 'P9 14';
var pot = 'P9 40';

var duty min = 0.03;
b.pinMode (servo, b.OUTPUT) ;
b.analogRead (pot, updatePosition) ;

function updatePosition (x)
var position = x.value
var duty cycle = (position*0.115) + duty min;
b.analogWrite (servo, duty cycle, 60, nextUpdate) ;

}

function nextUpdate () {
b.analogRead (pot, updatePosition) ;
}

In the first five lines of code, you load the BoneScript module, create a few
handy variables, and set the servo as an OUTPUT.

Next, you use the analogRead () function. This function calls the
updatePosition () function, sending to it the current potentiometer posi-
tion. This position is stored in the x.value object. As demonstrated in the
following code snippet:

b.analogRead (pot, updatePosition) ;

Then you create a new variable to store the current position and adjust the
duty cycle. The values 0.115 and duty_ min should be used to relate the
position of the potentiometer to the duty cycle of the PWM, and there is
no need for you to worry about those. Simply use the following code:

var position = x.value
var duty cycle = (position*0.115) + duty min;

Finally, you move the servo to this new position and execute the nextUpdate ()
function to check again whether the potentiometer has moved. The code stays in
that loop, keeps checking for new movements, and changes the servo according
to the potentiometer position:

b.analogWrite (servo, duty cycle, 60, nextUpdate) ;

Chapter 8: Experimenting with BoneScript 7 73

Running the script to sweep a servo
with a potentiometer

After saving and running your project, you should be able to see your servo
moving according to the way you move the potentiometer (see Figure 8-8).

|
Figure 8-8:
Sweep your
servo by
rotating your
potentio-
meter.
|

You could use a similar approach to control a robot servo with a remote

control, which works the same way. Most robots are moved by servomotors,

and remote controls have joysticks with potentiometers. If building a robot is
° something that piques your interest, you're now a little bit closer to that goal!

Most servomotors can rotate only 180 degrees.

Detecting Movement with
a Motion Sensor

Have you ever wondered why a light automatically turns on when you arrive
in a building or when you enter a public restroom? In this example, you simu-
late that situation using a PIR (passive infrared) sensor and an LED.

’ 74 Part lll: Programming with BoneScript

You need the following components:

+* A PIR motion sensor

v An LED

v A 220 Q or 470 Q resistor
v A breadboard

v Jumper wires

Wiring the motion sensor

You can start by wiring an LED and a 220 () or 470 Q resistor to the same
digital pins that you use throughout this chapter. (If the LED is too dim, use a
220 Q resistor rather than a 470 Q resistor.) Wire the PIR motion sensor (see
Figure 8-9) as follows:

v VCC: Connect the sensor red wire to the breadboard rail and then con-
nect the BeagleBone’s P9_7 or P9_8 pin to it.
This PIR motion sensor requires 5V to operate.

v OUT: Connect the output orange wire to the P8_19 pin.

+* GND: Connect the sensor black wire to the GND breadboard rail.

Writing the code for motion detection

Create a new file called motionSensor. js in your Projects folder, and
type the following script:

var b = require('bonescript') ;

var led
var pir

= "P9_14";
= "P8 19";
b.pinMode (led, b.OUTPUT) ;
b.pinMode (pir, b.INPUT) ;

b.digitalWrite (led, b.LOW) ;
setInterval (checkMotion, 2000) ;

function checkMotion ()
b.digitalRead (pir, activate);
function activate (x) {
if (x.value == b.HIGH) {
b.digitalwWrite(led, b.HIGH) ;
console.log("Motion detected") ;

Chapter 8: Experimenting with BoneScript 7 75

else {
b.digitalWrite(led, b.LOW) ;
console.log("No motion detected") ;

® o e 9 " ¢ 9 O O O ® ® ¢ 9 9 @ ® 9 o ® e O " O ® O O S O ST
® o 9 o ® ® @ ® ° " O @ ® ® 8 9 8 ® O " O O e o ® o ° @
® © ® o 9 ® ¢ " e " e e ® ® o ® o ® O " e O o ® ° o o @
® @ @ 9 e ¢ e 0 0 0 0 @ ® o ¢ 9 e ° 9 0 e 0 e e 0 ® o o 0o o @
® @ 0 9 9 ° ® " O O 0 0 @ ® ® @ 9 0 ® 0 P e O e P 0 ® ° @ ° 0
* o @ ® o o o @ ® & & 0 0 0 8 8 s s s 0 ® o o & o o
® ®© o ® ® © 0 & 5 O 8 0 @ ® o o 8 o o 5 8 o ® 8 ® 8 U .‘s e o 8 ® o o
® o ® o @ ® o o 9 o ® @ 0 @ ® s o o o @
L ® o o 9 e 0 @ o @ e e o 0o o @
L B (] ® o e 9 o @ @ o @ ® o o o o @

o]
1]
11}
(e}
=
(2]
o
o
3
D

|
Figure 8-9:
PIR sensor
and LED
wiredto a
BeagleBone
Black.
|

176

Part lll: Programming with BoneScript

Figure 8-10:
The motion
sensor
circuit with
no motion
detected.
|

As always, you start by loading the BoneScript module and defining variables.
Set the pin P9_14, which refers to the LED as an OUTPUT, and set the PIR
motion sensor as an INPUT, which refers to the PIR motion sensor’s OUT pin.

Next, you use the digitalWrite () function to set the default LED state

to LOW. Subsequently, you use the setInterval () function to execute the
checkMotion () function every 2 seconds to look for any movement in front
of your sensor.

The last step is creating a function called checkMotion (). That function
starts by reading the digital value of the PIR motion sensor and then calls the
activate () function, which works by checking whether the value read from
the PIR INPUT pin is HIGH. If so, the function turns on the LED and prints a
message to the console saying that motion has been detected. If the value
read from the PIR INPUT pin is LOW, the function turns off the LED and tells
the user that no motion was detected.

Running the script for motion detection

When you’re running this code, you receive feedback in two ways:

v If no motion is detected, the LED remains off, and No motion
detected is printed on your console (see Figure 8-10).

Chapter 8: Experimenting with BoneScript 7 77

|
Figure 8-11:
Motion
detected!
|

v~ If motion is detected, the LED lights up, and Motion detectedis
printed on your console (see Figure 8-11).

Now you know how those automatic lights work and have even built one
yourself. If you want the entire building to hear when someone raids your
fridge or enters your room, all you have to do is replace the LED with a
buzzer, which is wired exactly the same way.

’ 78 Part lll: Programming with BoneScript

Part IV
Programming with Python

Programmer’s Happiness

© $ S ' & > S & A Q
0&0 . @0 ‘QQ% O\AQJ 6\‘56‘ Q,é %\"b 6\\0 \Q‘Z&Q @
3° & o2 w2 Q & ' & 'bé\ o QQ‘
Q o S\ S A S) Q,\& 0} X @
N Q Q %\t} Q R S N © Q
Q\Q\\ bQ" <<°\3 2 (\\\, & S?; Q,Q «§ N\
N R & & L& &8 S
© S ¥ R D NN 00
X > N &
® S S
D <<0 \)Q’
N N
& 0
3 N
X N
D) <<°
Q
&
<
Time

Visit www . dummies . com/cheatsheet /beaglebone for additional Dummies
extras content on soldering your circuits.

http://www.dummies.com/cheatsheet/beaglebone

In this part . . .

Experimenting with Python, covering the basics on outputs and
inputs

Finding out about Python's advanced functions for advanced
projects

Controlling a three-color LED, sending emails automatically,
and reading from sensors and devices.

Employing good practices for better programming

Chapter 9
Introducing Python

In This Chapter
Getting acquainted with Python
Writing your first Python script to blink an LED
Using Python to configure an input pin and test your code with a pushbutton

One of the greatest features of the BeagleBone is the fact that you can
program it in several programming languages. After all, the BeagleBone
is an embedded Linux system that works just like a computer, with the added
perks of input and output pins.

This chapter introduces Python, a powerful programming language that
features a dedicated library to interface with the BeagleBone. Python code

is easy to understand, and Adafruit’s BeagleBone IO (input/output) Python
Library that you use in this chapter offers a plethora of functions that enable
you to control the BeagleBone’s pins in a simple and intuitive way.

This library has conventions that are very similar to the Python library dedi-
cated to Raspberry Pi, the popular RPi.GPIO. Thus, porting projects from one
platform to the other should be quite straightforward.

Throughout this chapter, we greatly advise that you use the Cloud9 integrated
development environment (IDE) to write the scripts for your projects and test
them. Refer to Chapter 8 for more information on how to launch and use it.

Getting Started with Python

Before you get to the fun stuff, you need to be sure that your BeagleBone is
set up properly. Installing the operating system is covered in Chapter 2; if you
have not already worked through that chapter, go through it now to make sure
your BeagleBone is ready to use Python to access its input and output pins.

’ 82 Part IV: Programming with Python

This section shows you how you can verify whether Python is indeed ready
to be used and how to make it ready if it isn’t properly set up.

Making sure your libraries are up to date

Before proceeding, you should update and upgrade your software just to
make sure you have the latest versions. Use the following command:

sudo apt-get update && sudo apt-get upgrade

You can test the installation of Adafruit’s BeagleBone Input/Output (BBIO)
library for Python by executing the following command:

sudo python -c "import Adafruit BBIO.GPIO as GPIO; print GPIO"

If everything is working correctly, your console window should print the fol-
lowing line:

<module 'Adafruit BBIO.GPIO' from '/usr/local/lib/python2.7/dist-packages/
Adafruit BBIO/GPIO.so'>

If so, you can skip the next section.

Comparing Python and BoneScript

an LED with Python" in this chapter with the
“Blinking an onboard LED with BoneScript"
section in Chapter 8.

If you read Chapters 8 and 9, you should feel
relatively comfortable with programming
in BoneScript. In many ways, Python and
BoneScript are similar. In both languages, you
use variables, as well as 1 £ and while state-
ments, and you also control the BeagleBone's
pins by changing the values of an object. But
you need to be aware of some key differences:

v Indentation is not just organization.
Although you should indent your code
as much as possible when you program
in BoneScript, indentation is merely a
tool — albeit a powerful one — to keep

v The flow of code is different. Python's your program organized. In fact, you could

interpreter runs each line sequentially. Two
programs, one in BoneScript and another
in Python, that do the same thing may end
up being quite different To verify that dif-
ference, compare the section "Blinking

write an entire program in a single line of
code. In Python, however, indentations tell
the interpreter which parts of the code are
inside statements such as i f and for.

Chapter 9: Introducing Python 783

\\J

Installing the libraries

If executing the command in the preceding section results in errors, you need
to install the libraries manually. Type the following command:

sudo apt-get install build-essential python-dev python-setuptools python-pip
python-smbus -y

Things are always subject to change, and future versions of the Linux kernel
may require different libraries, which could make this whole process different.
You can bookmark the following link as a reference: https://learn.
adafruit.com/setting-up-io-python-library-on-beaglebone-
black/installation-on-ubuntu. Even though the title mentions Ubuntu,
installation in Debian is pretty much the same.

Blinking an LED with Python

\NG/
Qgs\

Often, it’s said that blinking an LED is the foundation of digital electronics.
Doing it isn’t perceived as simply lighting up a tiny lamp; it’s perceived as
controlling an output. The gap from blinking an LED to controlling the motors
of a quadcopter isn’t a big one. Thus, this project helps you get acquainted
with Python and Adafruit’s BeagleBone IO Library.

Wiring the circuit for an LED

Always make sure that your BeagleBone is disconnected from power before
you start wiring!

Follow these instructions to wire your circuit as shown in Figure 9-1:
1. Connect the BeagleBone’s ground (GND) — pins 1 and 2 on both
headers — to the negative track of the breadboard.
2. Use a jumper to connect P9_14 to a vertical row on your breadboard.
This pin is the one you’ll be using as an output.

3. Connect a 220 Q or 470 Q resistor to the jumper you pulled from
P9_14.

This step should ensure that your LED doesn’t burn up without reducing
its brightness. If the LED is too dim, use a 220 Q) resistor rather than a
470 Q resistor.

4. Connect the negative leg of the LED (the cathode, which is usually
the shorter leg) to ground and the positive leg (the anode, usually the
longer leg) to the resistor.

https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/installation-on-ubuntu
https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/installation-on-ubuntu
https://learn.adafruit.com/setting-up-io-python-library-on-beaglebone-black/installation-on-ubuntu

’ 84 Part IV: Programming with Python

® & @& 0 & @ ® ¢ O & O O O O O O O O 0 O 0 0 00000 e @ o ¢ 0o o
® ® & 9 9 & ¢ O O 9 O O O O O O O O O O O G O O O B O e @ ° @ ° 9
® & & & & & ¢ ¢ O O O O O O O O O O O O O O O O S ® o o & 0 o
® & & & 9 ¢ © O O % O O " O O O " O O OO GO P PO SO ® @ ° 9 0 9
e & & & & & & & & & O O & O O O O 6 O O O O O O O 00 ® & o & o @
® @ & & & ¢ O 0 0 O O O O O O O O O O O O O S O O 0O e o o 0o 0 @
® & & ® 9 ¢ 9 0 O 9 O O " P O O G S O O P SO B S SO] ¢ o @ o @ ° ¢
e & & 9 & ¢ O 0 O O O O O 0 " O O O P O 0 0D ‘Fﬁ-w’.‘} ® ¢ o 0 0 00
® ® & ¢ & ¢ © ¢ O O O O O O O O O O " O O O O S S O O S S S OO O PO CE
e & & & & & O 0 O 0 O O O O O O O S O O O 0D * e o @ * o o & ° o

s}
o]
©
(o]
=1
]
e)
(o]
=
D

|
Figure 9-1:
Pin P9_14
attached to
an LED and
a resistor.
|

Writing the code for an LED

Python scripts end with the extension . py, so start by creating a file named
blink.py and type the following code:

Chapter 9: Introducing Python 785

#!/usr/bin/python

Blink
Turns an onboard LED on and off continuously,
with intervals of 1 second.

#import libraries
import Adafruit BBIO.GPIO as GPIO
import time

#create a variable called led, which refers to the P9_14 pin
led = "P9 14"

#initialize the pin as an OUTPUT
GPIO.setup(led, GPIO.OUT)

#loop forever

while True:
GPIO.output (led, GPIO.HIGH) #set P9 14 high - turn it on
time.sleep (1) #stay idle for 1 second
GPIO.output (led, GPIO.LOW) #set P9 14 low - turn it off
time.sleep(1l) #stay idle for 1 second

This script can be divided into several parts, which the following sections
cover in detail:

v Using a shebang

v Commenting

v Importing libraries

v Creating a variable

v Configuring pins

v Using a loop

v~ Setting the pin state

Using a shebang

A shebang is a character sequence starting with the number sign and an
exclamation mark (#!). It’s not explicitly necessary, but including it on
Python scripts is often a good thing to do, so the blink.py file starts with
the following line:

#!/usr/bin/python

’ 86 Part IV: Programming with Python

We suggest that you use Cloud9 IDE to program the BeagleBone, but you can
also run scripts from the command line. To run a Python script, you have to
type the following command:

python script name.py
However, if you include a shebang in your code, you only have to type:

./script name.py

Commenting

Comments are notes that you can write in your script file that don’t belong to
the code. You include them to help you with organization. The blink.py file
includes the following comments:

Blink
Turns an onboard LED on and off continuously,
with intervals of 1 second.

#import libraries
Python has two types of comments:

v Single-line: A cardinal sign (#) indicates a comment, and the script
ignores everything after it until the end of line.

* Multiple-line: Any text between two sets of triple quotation marks ("" ")
is ignored, which allows you to use them to create comments that span
multiple lines.

lmporting libraries

To use the Adafruit library that’s installed on your BeagleBone, you have

to import it. This library allows you to control the pins of your board in a
simple and intuitive way by defining an object. For this example, we call the
object GPI0, but you can call it whatever you want. The following line of code
imports that library:

import Adafruit BBIO.GPIO as GPIO
You can also use Adafruit’s library to use pins for uses other than GPIO
(general purpose input/output), such as PWM (pulse-width modulation) and

analog inputs, in which case you’d import it as

import Adafruit BBIO.PWM as <object name>

Chapter 9: Introducing Python 78 7

or
import Adafruit BBIO.ADC as <object name>

The time library is a useful library that, as its name implies, provides func-
tions that deal with time. In this project, you use it so you can use the sleep
function, which halts the program for a set amount of seconds. This is how
you import it:

import time

Creating a variable

Whenever you want to save a value in a variable, simply write the variable’s
name and make it equal to the value you want to save. In this example, you
save the string "P9_ 14" in the led variable:

#create a variable called led, which refers to the onboard P9 14 LED
led = "P9 14"

Configuring pins
In this section, you need to define the pin’s job. In this case, you want to con-
trol an LED, so you define it as an output:

#initialize the LED as an OUTPUT
GPIO.setup(led, GPIO.OUT)

For GPIO, the setup function has always two parameters in the following
syntax:

setup (GPIO, mode)
The two parameters are:

v GPIO: The pin you want to control — in this case, P9_14, defined in the
led variable

» mode: OUT or IN, depending on whether you want to use the pin as an
output or input, respectively

The functions that control the pins of the BeagleBone must always be used
with the object you defined preceding them!

Using a loop

The while loop can be used as follows:

while condition:
<indented code>

’ 88 Part IV: Programming with Python

\\3

SMBER
&

WMBER
@&
&

When you use a while loop, the code that’s indented below it repeats itself
as long as the while condition is met — in other words, as long as the condi-
tion evaluates as True. A condition can be anything. A system controlling a
parking lot’s gate could be coded like so:

while number of cars == maximum:
keep gate closed()

In the preceding example, assume that number of cars is a variable that
changes according to the current number of cars inside the parking lot.
maximum is a variable that has a fixed value containing the number of parking
spots. keep _gate closed () is a function that does exactly what its name
suggests. The chapters in the remainder of this book use variables and func-
tions such as these whose names intuitively suggest their tasks.

The while loop in this example continues forever because the condition is
defined to be always evaluated as True:

while True:
GPIO.output (led, GPIO.HIGH) #set P9 14 high - turn it on
time.sleep(1l) #stay idle for 1 second
GPIO.output (led, GPIO.LOW) #set P9_14 low - turn it off
time.sleep(1l) #stay idle for 1 second

In most programming languages, such as BoneScript, indentation is a great
way to make sure that your code is well organized and tidy, but your program
still works even if you don’t indent any lines of code. In Python, however,
your program doesn’t work correctly if you don’t get the indentation right.
For statements such as while, the Python interpreter knows what part of
the code is included in the statement only by checking the indentation. You
can use one or more spaces and tabs, but make sure to maintain consistency
throughout the code.

Contrary to JavaScript — and, thus, to BoneScript — Python’s code is evalu-
ated from the top of the script in a sequential fashion, one line at a time. That’s
the reason why a thing such as a loop can exist in this programming language.
When the Python interpreter reaches the while statement, it knows that the
lines indented below it have to run for as long as the condition holds True.

Setting the pin state

You use the output () function to define whether a pin is HIGH or LOW. This
function is defined as follows:

output (GPIO, state)

|
Figure 9-2:
Circuit

that blinks
an LED
controlled
by Python
code.
|

Chapter 9: Introducing Python 7 89

This function has two parameters:

»* GPIO: The pin you want to control — in this case, P9_14, defined in the
led variable

V¥ state: HIGH or LOW, depending on the state you want the pin to have

In this case, you set the pin’s state to HIGH for 1 second and then to LoOW for
1 second, and repeat this process indefinitely. You achieve this process by
using the time.sleep (seconds) function, which halts the problem for the
defined number of seconds (1 second in this case):

GPIO.output (led, GPIO.HIGH) #set P9 14 high - turn it on
time.sleep(1l) #stay idle for 1 second

GPIO.output (led, GPIO.LOW) #set P9 14 low - turn it off
time.sleep(1l) #stay idle for 1 second

Running the script for blinking an LED
To see the project working, simply save the script by pressing Ctrl+S or
Cmd-+S and then click the green Run button. To terminate the program, click

Stop or press Ctrl+C.

You should see your LED blinking, such as the one shown in Figure 9-2.

<moow | WOT-=
<moow | LoT--

o rd

’ 90 Part IV: Programming with Python

Reading a Pushbutton with Python

Digital inputs are just as important as digital outputs. Buttons and sensors
that control the outputs of a circuit are the basis of some really great projects.

\NG/
S

\NG/
&V%“

Wiring the circuit for a pushbutton

Always make sure that your BeagleBone is disconnected from power before
you start wiring!

To wire a pushbutton to a BeagleBone, follow these steps:

1.

Connect the BeagleBone’s (GND) — pins 1 and 2 on both headers — to
the negative track of the breadboard.

. Use a jumper to connect PS_11 to a vertical row on your breadboard.

This pin is the one you’ll be using as an input.

. Connect the BeagleBone’s 3.3V source — P9_3 or P9_4 — to the bread-

board’s positive track.

If you are powering your BeagleBone through an external source, the
P_5 and P_6 pins of the BeagleBone supply a 5-volt (V) source; if you
are powering it through an USB cable, the pins providing 5 V are P9_7
and P9_8. Regardless, you should avoid using any of those four pins as a
small mistake might permanently damage your BeagleBone.

. Connect the pushbutton.

Place the pushbutton at the center of the board to ensure that each pair
of legs is electrically separated. Through the use of jumpers, connect
one of its legs to the positive rail of the breadboard and the other leg to
the jumper that comes from P8_11.

. Connect a pull-down resistor between the other leg of the pushbutton

and the negative track of the breadboard.

Your circuit should look similar to Figure 9-3.

Writing the code and running the script
for a pushbutton

After wiring the circuit, create a file named button.py and type the follow-
ing code:

Chapter 9: Introducing Python 79 ’

#!/usr/bin/python

#import libraries
import Adafruit BBIO.GPIO as GPIO
import time

button = "P8_11" create a variable called button, which refers to the P8_11 pin

#initialize the pin as an INPUT
GPIO.setup (button, GPIO.IN) # Initialize P8_11 as an input

#loop forever
while True:
if GPIO.input (button) == True: # Checks if the pin is HIGH
print ("HIGH")
time.sleep(0.01) # In order to not overburden the CPU

® 0 6 6 0 ° 0 0 5 O 0 O O O O O G S G O S S O S O O OO G GO SO O S S O e
® 9 9 9 9 9 P P P S O T P P P P P T O PSS P e e PO RO e
® © 0 0 0 0 0 0 0 0 0 O 0 O O O O O O S 0 O S O O O O O O O OO O O O OO
® 0 © 0 6 0 0 0 O 6 O O O O O O O G OO SO O G O S SO G O P S SO GO OGS
N N T P D N P TV PP S
[}
® o 0 0 0 ° ® ® o 0 e N i ® @ ® @ o ¢ o 0o 9o 0 9 0 0 @
® 9 o o 0o 0 0 0 0 00 0 0 " 0 O 6 00 S O O O O O O O O O O O O O S O O e
o s 0 ® & o 0 8 0 0 0 0 8 0 0 0 6 0 0
* o ° @ ® ® 09 9 00 0000 0 e e 0 e O eSO OO0 0O e e 00
® o o @ R EE R R R e I ® o o 0o 0 0 0 00 0 0 0 0 0
e ° ° e ® ® o e ® ® e o o ® ee bl e I o o o o @ . e e @
o e @ L] ® e e 0 0 * e e @ * e o @ ® e o e @ . l (I B

(un]

m

7 1]

(o]

=

m

(us]

| (=]

3

Figure 9-3: m
Pushbutton
connected
to Beagle-

Bone's input
pin P8_11.
|

’ 92 Part IV: Programming with Python

WBER
\‘&
&

The terms HIGH and LOW, True and False, and 1 and 0 always refer to the
same thing, but their use depends on the context.

This code uses concepts from the “Writing the code for an LED” section. It
involves two new concepts, however: the if statement and the print () func-
tion. The print () function is quite simple and intuitive; the message that makes
up its argument is printed on the console. The if statement should be read as
follows: “If this condition is met, run the indented code below the statement.”

Additionally, you use GPIO. input (GPIO), which is a variable that holds the
value of the pin — HIGH for when the button is pressed, and LOW for when
it isn’t.

Test your circuit by clicking Run and then pressing the pushbutton a few
times. Whenever you press it, the message HIGH should be printed on the
console, most likely more than once. It prints several times because the
script works as follows: In every cycle of the while loop, the script checks
whether pin P8_11 is HIGH. If it is, the message prints. Because every cycle of
this loop executes extremely fast, the program always reads the value HIGH
from P8_11 and prints it several times in less than a second. Even if you're
really quick with pressing the button, in reality you are actually very slow
from the BeagleBone’s point of view, so the board always equates one fast
press of the pushbutton as the pushbutton being held down for a while.

This kind of thing can be troublesome. Imagine if your mouse registered
multiple clicks when you clicked it only once! Thus, buttons are often used
with interrupts. Rather than checking whether the pin is HIGH or LOW, the
code checks whether the pin just went from HIGH to LOW (a falling edge) or
from LOW to HIGH (a rising edge). Pressing a button generates a rising edge,
whereas releasing it generates a falling edge. Those things happen only once
per button press or release.

Writing the code with interrupts

To check for rising and falling edges rather than whether the input pin is
HIGH or LOW, the Adafruit library offers the function wait for edge (pin,
desired edge).When the program reaches that line of the code, the pro-
gram blocks until the interrupt happens. It is used as follows:

wait for edge (GPIO, mode)
That function takes these parameters:

v GPIO: The first parameter is the input pin you want to check for a rising
or falling edge.

v mode: The second parameter is RISING or FALLING, depending on
whether you want to check for a rising or falling edge.

Chapter 9: Introducing Python 7 93

Test your circuit with the following code, and you see that HIGH and LOW
should be printed only once per button press or release:

#!/usr/bin/python

#import libraries
import Adafruit BBIO.GPIO as GPIO
import time

button = "P8 11" create a variable called button, which refers to the P8 11 pin

#initialize the pin as an INPUT
GPIO.setup (button, GPIO.IN)

#loop forever
while True:
GPIO.wait for edge (button, GPIO.RISING) #blocks the program until a rising
edge happens on pin P8 11.
print ("HIGH")
GPIO.wait for_ edge (button, GPIO.FALLING) #blocks the program until a falling
edge happens on pin P8 11.
print ("LOW")

Introducing if . . . else and
if . .. elif statements

if . . . else statements, along with loops, are among the most important
coding tools for adding control to your program. if. . . else statements
are used as follows

if condition:
do_something ()

else

do_something else()

Their use is just as the words describe them: If a certain condition is met, the
indented code below the if runs. Otherwise, the indented code below the else
is in the spotlight. If you use only an if, as in the code for the pushbutton, the
code after the if runs normally if the pushbutton is pressed. If the pushbutton
isn’t pressed, the interpreter just skips that part in the code.

With an if, you can also use the elif statement, which can be read as
else if:

if conditionl:
do_something ()
elif condition2:
do_something else()
else:
do_another something else()

’ 94 Part IV: Programming with Python

WMBER
@&
&

In these situations, the code below the else is often the default possibility;
if and elif statements are about particular situations.

You can use an if statement alone, with an elif, with an else, or with both.
else and elif, on the other hand, make no sense without a preceding if,
and such code would result in an error.

To illustrate the use of an if elif statement, you use a button cir-
cuit and interrupts, but these interrupts happen in a slightly different way.
Rather than using the wait for edge function, you use two other functions:

V* add_event detect (GPIO, event) defines an event that you want to
detect — in this case, a falling or rising edge.

V¥ event detected (GPIO) is a method that returns True whenever the
defined event happens.

Totestif. .elif and these new functions, you can use the following code:

#!/usr/bin/python

#import libraries
import Adafruit BBIO.GPIO as GPIO
import time

button = "P8_11" # create a variable called button, which refers to the P8_11 pin
count = 0 # create a variable called count and initialize it with the value zero.
This variable will count the number of times the button was pressed.

GPIO.setup (button, GPIO.IN) #initialize the pin as an INPUT
GPIO.add event detect (button, GPIO.RISING) #adds an event to detect. In this

case, the rising edge of pin P8 11.

#loop forever

while True:
if GPIO.event detected(button) == True: # if a rising edge is detected, run
the code below
if count == 0: # if the value of count is zero, run the code below

print ("Button was pressed once!")
count = count + 1 #increment count
elif count < 3:
print ("Button was pressed less than three times but more than once!")
count = count + 1 #increment count
elif count ==
print ("Button was pressed three times!")
count = count + 1 #increment count
elges
print ("Button was pressed more than three times!")

time.sleep(0.01) # in order to not overburden the CPU

Chapter 9: Introducing Python 7 95

Unlike the example in the “Writing the code with interrupts” section, in which
wait for edge is used and the program is blocked at that line of code

until a pushbutton press occurs, adding an event to detect is a nonblocking
technique, which means that your program doesn’t block waiting for the
pushbutton to be pressed. You can verify by placing a line of code such as
print (“test”) atthe end of both programs. In the wait for edge case,
test is printed only after the pushbutton is pressed and then released,
because the interpreter doesn’t get to that line of code before the wait for
edge functions unblock. In the event detected case, your screen is filled
with the test message, because the program still keeps running despite the
pushbutton press, which is why this option is called a nonblocking option.

Getting to know the print function

You can use the print () function to print the actual value of a variable. We
simply wrote the code in the preceding section in a different way to illustrate the
use of the i f, elif, and else statements. In fact, print () is used as follows:

print (argumentl + argument2 + argument3 + ...)

So far, you've used this function only with strings you place inside it — indi-
cated by the quotation marks — but you can command it to print variables
as well. To print both strings and variables that are numbers in the same
print command, you have to convert the numbers to a string first. Don’t
worry! You can do that simply by typing str (variable). You can verify by
testing the following code:

#!/usr/bin/python

#import libraries
import Adafruit BBIO.GPIO as GPIO
import time

button = "P8 11" # create a variable called button, which refers to the P8 11 pin
count = 0 # create a variable called count and initialize it with the value zero.
This variable will count the number of times the button was pressed.

GPIO.setup (button, GPIO.IN) #initialize the pin as an INPUT
GPIO.add event detect (button, GPIO.RISING) #adds an event to detect. In this
case, the rising edge of pin P8 11.

#loop forever
while True:
if GPIO.event detected(button) == True: # if a rising edge is detected, run
the code below
count = count + 1 #increment the variable count
print ("Button was pressed " + str(count) + " times!")

time.sleep(0.01) # in order to not overburden the CPU

’ 96 Part IV: Programming with Python

\\3
The print () function is very useful for receiving feedback from your project,
as well as for debugging it.

More on Python

Chapter 11 explores Python's capabilities fur- number of free tutorials at pages such as
ther with some interesting projects. Still, there’s http://learnpython.org.Youcanalso
a lot more to this programming language than check out Python For Dummies, by Stef Maruch
this book covers. The Internet features a vast and Aahz Maruch (John Wiley & Sons, Inc.).

http://learnpython.org

Chapter 10
Experimenting with Python

In this Chapter
Fading an RGB LED using PWM with Adafruit’s Python library
Employing the Python library to read analog inputs
Discovering Python’s capability for web projects by sending emails automatically
Figuring out how you can use functions to use various projects together
Getting acquainted with the powerful communication protocol UART

C hapter 10 covers Python and Adafruit’s BeagleBone Input/Output (BBIO)
library, which enables you to control the BeagleBone’s General Purpose
Input Output (GPIO) pins in a simple and straightforward manner. In this
chapter, you get to know functions that allow you to do more complex and
useful tasks.

The chapter starts in the analog world. For outputs you get to see Adafruit’s
Python BBIO functions that deal with pulse-width modulation (PWM) by cre-
ating a project to fade an RGB LED. For inputs you find out how to measure
analog quantities from temperature sensors. You also get to see the ease with
which the BeagleBone can interact with the web, and you explore one of the
BeagleBone’s communication protocols — UART — that makes data transfer
between devices a breeze.

As we preach throughout this book, illustration and practice are great ways
to understand and master important digital electronic concepts and the
BeagleBone. Gather your tools; it’s wiring time!

Fading an RGB LED with Python

Light-emitting diodes (LEDs) are fun. RGB (red-green-blue) LEDs triple the fun
with the possibility of creating some sweet color effects with three different
colors.

’ 98 Part IV: Programming with Python

\\J

\\3

aA\\J

This project consists of controlling which colors of the RGB LED are on and
how bright they are through the use of pulse-width modulation (PWM) and
Adafruit’s BeagleBone I/O Python Library.

If you have enough space to set aside the projects in this chapter without
unwiring them, we recommend that you keep them intact. Later in the chapter
is a section where you mix various projects together.

You need the following components:

»* An RGB common cathode LED
v Three 220 O or 470 Q resistors
v A breadboard

v Jumper wires

Wiring an RGB LED

This section assumes that you use an RGB common cathode LED. If you have
only a common anode LED, your code and your wiring has to be slightly dif-
ferent from what is illustrated in the following sections. See Chapter 8 for a
description of RGB common cathode LEDs and RGB common anode LEDs.

The wiring for this project is exactly the same as the wiring for the RGB proj-
ect in Chapter 8, but the project itself is quite different.

To wire everything together, follow these steps:

1. Use a jumper to connect P9_14 to a vertical row on your breadboard.
This pin is the one you use to control the red color of your RGB LED.

2. Use a jumper to connect P9_16 to a vertical row on your breadboard.
This pin is the one you use to control the green color of your RGB LED.

3. Use a jumper to connect P§_13 to a vertical row on your breadboard.
This pin is the one you use to control the blue color of your RGB LED.

Use color coding to keep yourself organized. In this scenario, using red
jumper wires for P9_14, green jumper wires for P9_16, and blue jumper
wires for P8_13 probably would be a good idea.

Chapter 10: Experimenting with Python 7 99

4. To each of these jumpers, wire a 220 Q or 470 Q resistor.

5. Wire the longer lead of your RGB LED to ground (GND) on the bread-
board rail.

Figure 10-1 illustrates the correct wiring.
Trimming the long lead might make it easier to plug the RGB LED into the bread-

board. If you do that, you can distinguish the GND lead by looking at the LED’s
lens. The biggest chunk of lead inside the lens corresponds to the GND lead.

us)]
m
1]
0
—
(]
lus)
(o]
=)
m

Figure 10-1:
RGB

wired to
BeagleBone
Black.

200 Part IV: Programming with Python

egmmm
& You can use eight pins as PWM pins. Read Chapter 6 for more information
about the PWM pins.

Writing the code for fading an RGB LED

Create a script named RGB. py, and type the following:

#!/usr/bin/python
import Adafruit BBIO.PWM as PWM
import time

RGB = ["P9714", "P9 16", "P8713"]
#RGB[0] controls red, RGB[1] controls green, RGB[2]controls blue

for i in range(0, 3): #runs the indented code below 3 times
PWM.start (RGB[i], 0) #initialize PWM with all leads OFF

#set initial conditions
c_initial = RGB[O0]
c_next = RGB[1]

c_off = RGB[2]

while True:
PWM.set duty cycle(c off, 0)
for i in range(0, 100):
PWM.set_duty cycle(c_initial, 100-i)
PWM.set duty cycle(c next, i)
time.sleep(0.05) #change this line for faster/slower fading speed
#swap the colors in the following order: R->G->B->Repeat
aux = c_initial
c_off = c_next
c_next = c_off
c off = aux

The following sections break down the code for easier understanding.

lmporting libraries

The first step after the shebang in a Python script is importing libraries. In
this case, you want to import Adafruit’s library and define a PWM object,
which you name pPwM:

import Adafruit BBIO.PWM as PWM
import time

Then you import the time library, which we cover in Chapter 9. This library
enables you to halt the program for a set number of seconds, using the
sleep () function:

Chapter 10: Experimenting with Python 20 ’

gMBER

\\J

Initializing PWM and setting initial conditions

The following chunk of code contains two Python concepts: lists and for
loops:

RGB = [“P9_l4“, "P9 16", “P8_l3“]
#RGB[0] controls red, RGB[1l] controls green, RGB[2]controls blue

for i in range(0, 3): #runs the indented code below 3 times
PWM.start (RGB[i], 0) #initialize PWM with all leads OFF

Alist is a compound data type. It’s a group of variables. Within a list, you can
save more than one value. In this case, you create a list called RGB where you
save the pins that are used in this project. You can access each individual
value within a list by using a subscript. In this case, RGB[0] refersto "P9_ 14",
RGB[1] refersto "P9_ 16", and RGB [2] refers to "P8_13". You can use each
element of a list the same way that you use a regular variable.

In Python, the subscript that refers to the first element of a list is always 0,
not 1.

You can use lists that consist of both text (strings) and numeric values, such
as someList = [1, "hello" 35.117, 141, "bye"].lIt’s often advis-
able, however, for a list to hold items of the same type.

Next comes the for loop:

for i in range(0, 3): #runs the indented code below 3 times
PWM.start (RGB[i], 0) #initialize PWM with all leads OFF

for loops are of extreme importance in the world of programming because
they enable you to do stuff a set number of times while increasing a variable
in every iteration of the code.

The code after this for loop runs three times, but it isn’t always exactly
the same code. Because the variable i increases by 1 at each iteration, this
loop goes through all elements of the RGB list and runs the function PwWM.
start (pin, duty) on each of them:

PWM. start (pin, duty)
This function takes two parameters:

v pin: The pin that you want to use as PWM.

v duty: The initial duty cycle, which goes from 0 for off to 100 for
maximum.

202 Part IV: Programming with Python

WING/
&

Chapter 6 explains that the BeagleBone’s PWM default polarity is HIGH, which
is somewhat counterintuitive. In the situation described in Chapter 6, the
duty-cycle period is a period in which the voltage is LOW, so by default, set-
ting a higher duty cycle on a BeagleBone PWM pin means a LOW voltage.
Adafruit’s Python library (and BoneScript) functions work in reverse; the
default polarity becomes LOW, so the duty cycle is a period in which the volt-
age is HIGH.

The default might be different on your BeagleBone, and the functions of the
libraries you are using might be of a different version that changed these
defaults. That said, if things don’t work properly, you may have to reverse
all the parts of the code that deal with PWM such that a higher duty cycle
means lower brightness (100 is off and 0 is maximum).

Last, you define the initial conditions for the leads of your RGB LED:

#set initial conditions
c_initial = RGBI[O0]
c_next = RGBI[1]

c_off = RGB[2]

Red is the first color, green is the second, and blue is off initially. Naturally,
you can change this order as you want. You can also have the three colors on
at the same time for different color effects.

Fading from one color to the next

For the while that loops forever, you start by turning one of the lights off;
blue is defined as the one that stays off initially. Thus, you set the duty cycle
of the PWM that controls blue to 0. Then you have a for loop that increments
i from 0 to 100 in intervals of 0.05 seconds, increasing c¢_next’s duty cycle
with i while ¢_initial’s decreases. This loop makes the RGB LED continu-
ally fade from ¢_initial (initially red) to ¢_next (initially green). The fol-
lowing snippet of code is responsible for that:

while True:
PWM.set duty cycle(c_off, 0)
for i in range(0, 100):
PWM.set_duty cycle(c_initial, 100-1)
PWM.set_duty cycle(c_next, i)
time.sleep(0.05) #change this line for faster/slower fading speed

Swapping the variables

Because you want the same code to run over and over with different colors
and succession, this part of the code swaps the values of the variables
around:

Chapter 10: Experimenting with Python 203

\\J

N\

#swap the colors in the following order: R->G->B->Repeat
aux = c_initial
c_initial = c_next
c_next = c_off
c_off = aux

c_initial gets the value within ¢_next; ¢ next gets ¢ _off;and c_off
gets ¢_initial. An auxiliary variable named aux is used so that you don’t
lose the value within ¢_initial when swapping the values.

Running the script for fading an RGB LED

Save the script, run it, and watch the show! Mess around with your code to
see the LED fading faster, slower, and in a different order. Change the way
duty cycles vary, and combine the three colors in different ways to create
cool light effects.

If your circuit doesn’t work, you might need to troubleshoot it with a multi-
meter. Check www.dummies.com/extras/beaglebone to see how to

do so.

If the LED is too dim, use a 220 Q) resistor rather than a 470 Q resistor.

Working with Analog Sensors

Analog sensors measure many types of useful data, such as temperature,
humidity, light, and distance. The simplest analog sensors work by outputting
a voltage that depends on the data they measure. This relationship is often
listed on the datasheet of the device as a mathematical formula or a graphi-
cal representation.

You work with different sensors in similar ways, as demonstrated by the two
examples in the next sections. All you have to do is connect the sensor to
one of the BeagleBone’s analog-to-digital converter (ADC) pins and read its
voltage. Sometimes, there may be a difference in wiring, but the greatest dif-
ference is in the calculation that relates voltage to the data that the sensor
measures. Figure 10-2 shows which of the BeagleBone’s pins can be used as
analog inputs; they’re labeled from AINO to AING.

You need the following components:

v Temperature sensor: TMP36
v Infrared (IR) distance sensor: Sharp GP2Y0A21YK
v Two 10K Q resistors

http://www.dummies.com/extras/beaglebone

204

Part IV: Programming with Python

|
Figure 10-2:
BeagleBone
GPIOs with
the ADC
pins.
|

NG/
S

v A breadboard

v Jumper wires

GND GND
3.3V (VDD) 3.3V (VDD)
5V (VDD) 3l 5V (VDD)

5V (SYS) 5V (SYS)

GPIOES
[GIEN] 11 12 [CIIeF¥)
GPIO31 GPIO 40 (PWM) jPR Grio 26

P10 3 (PwM) NI IPZ GPIO 2 (PWM)
GPI0 49 JPENIPYE GPIO 15
GPI0 117 PP GPIO 14

GPI0125

ana BRI ono_aoc

aine PRI Ains

AIN2 AIN3

AIND AIN1
GPI020 GPIO 7 (PWM)

GND GND

GND GND

If you can read and understand the important information in a datasheet, you
should be able to use any other sensors by using the concepts shown in this
section.

Using the right voltage for the ADC

The following information is so important that the section is one big Warning.
Take heed!

Feeding a voltage higher than 1.8V to an ADC pin of the BeagleBone may be haz-
ardous to your board. This situation is something of a nuisance, because most
sensors output voltages up to 3.3V, which means that you can’t connect them
to the ADC immediately. You need a circuit consisting of two resistances to eat
up the extra voltage (see Figure 10-3). This circuit is called a voltage divider.

Because the ADC pin is in parallel to one of the resistances, it has the same
voltage. When you have two resistors in series, the voltage dropped along
one of them is the following:

___ Rl
VADC - (Rl +R2) Vsensor

Chapter 10: Experimenting with Python 205

Figure 10-3:
Voltage-
divider
circuit.
|

R1

— ADC
R2

+ | Vsensor

The voltage on the resistor is the ratio of the total resistance. Using two equal
resistors means that the ADC has 50 percent of the total voltage. If you're
dealing with 3.3V, half is 1.65V, which gives you a little leeway. Two 10K Q
resistors should do the trick. Don’t use resistors with smaller values!

If you use sensors that output a higher maximum voltage level, it’s impera-
tive to determine the ratio of the resistances that you use. For a sensor that
outputs 5V, for example, you have the following:

_ R1 R1 _
' _Rtotalxs‘:) Rtotal ~

In this case, you should use a pair of resistors where the resistor that is in
parallel with the ADC has to have at most 36 percent of the total resistance.
You should use a value slightly smaller than the one calculated to have some
leeway. A 10K Q and a 22K Q) resistor achieve a ratio of 31.25 percent, which
works just fine by setting the maximum voltage to 1.5625V.

Due to the imprecision of resistors, these values are always slightly different.
That’s why it’s important to calculate for slightly less than 1.8V so that you
have some safety margin.

Wiring an IR distance sensor

The IR sensor we use for this project is the Sharp GP2Y0A21YK (see

Figure 10-4), due to the fact that it’s quite popular and easy to acquire. If you
use another sensor, you should consult its datasheet to see which of its pins
are GND (ground), Vcc (supply voltage), and Vo or Vout(output voltage). You
also need to find the mathematical or graphical relationship between voltage
and distance, which affects the last calculation in the code.

200

Part IV: Programming with Python

Figure 10-4:
IR distance
sensor:
Sharp
GP2Y0DA21YK.
|

Follow these steps to prepare your breadboard to wire up the IR distance
sensor Sharp GP2Y0A21YK:

1. Use a jumper to connect GND — P9_1, P9_2, P8_1, or P§_2 — to a hori-
zontal track on your breadboard.

2. Use a jumper to connect 5V to another horizontal track on your

breadboard.

Use P9_7 and P9_8 if you are powering the BeagleBone via USB and use
P9_5 and P9_6 if you are powering it through an external voltage source.

3. Use a jumper to connect P9_40 to a vertical row on the breadboard.

This pin is the one that will read the analog input: AIN 1.

4. Divide the voltage by connecting two 10K Q resistors to the jumper
that comes from P9_40.

One resistor should connect to GND, and the other should connect to

the output voltage that comes from the sensor.

To wire up the sensor, you need to know its pinout, which you can find on the
datasheet. For the Sharp sensor we're using for this project, refer to Table 10-1.
The position described in the table is based on the connectors pointing

toward you.
Table 10-1 Pinout of IR Distance Sensor Sharp GP2Y0A21YK
Position Pin Number Signal Name
Leftmost pin 1 Vo
Middle pin 2 GND
Rightmost pin 3 Vce

Chapter 10: Experimenting with Python 20 7

Follow these steps to connect the pins to the jumpers you pulled from the
BeagleBone (see Figure 10-5):
1. Connect pin 1 of the IR sensor to the resistor that connects to P9_40.
2. Connect pin 2 of the IR sensor to GND.
3. Connect pin 3 of the IR sensor to 5V.

looo.o-mw ® & & & o ® ° ¢ 0° 0

Figure 10-5:
IR distance
sensor
wired to
BeagleBone
Black with
avoltage
divider.
|

ue]
m
1]
(o}
—
m
us]
(o]
=
m

208 Part IV: Programming with Python

\\3

\\J

Writing the code to measure distance

Create a script named IR.py, and type the following code:

#!/usr/bin/python

import Adafruit BBIO.ADC as ADC
import time

import math

sensor = "P9 40" #or AIN1
ADC.setup ()

while True:
reading = ADC.read(sensor) # values from 0 to 1
voltage = reading * 1.65 #values from 0 to 1.65V
distance = 13.93 * pow(voltage, -1.15)
if distance > 80:
print ("Can't measure more than 80cm!")
elges
print ("The reading, voltage and distance (in cm) are " + str(reading),
str(voltage), str(distance))
time.sleep(0.05) #loop every 50 milliseconds.

This code is quite straightforward: It imports an object as ADC to access the
ADC pins on the BeagleBone. A new library joins the fray: math. This library
includes several functions that simplify complex calculations.

A variable named sensor defines the analog pin to be used, and you use
ADC.setup (), which always needs to be present in a program before it
starts reading from the ADCs.

You can write AINO-6 in place of P9_33-40. Note, though, that the order of
the numbering of the AINs does not correspond to the numbering of the P9
header: AIN4 is P9_33, and AIN5 is P9_36, for example. Refer to Figure 10-2
earlier in this chapter whenever you’re in doubt.

Then comes the while True: loop. The program reads the value of the
ADC, which goes from 0 to 1 and represents the fraction of the voltage that’s
read on the pin. Because that voltage always goes from 0 to 1. 65, simply
multiplying the reading by 1.65 gets you the real value.

Getting the actual voltage value isn’t necessary in many applications. In fact,
working with percentages may be much easier.

You convert the voltage reading to the distance in centimeters. This calcula-
tion depends on the sensor you use. The pow () function is imported from
the math library and calculates voltage to the power of -1.15. It works as
follows:

\\3

Chapter 10: Experimenting with Python 209

result = pow(base, exponent)
This function has three variables:

»” base: The number you want to elevate to the power of the exponent
v exponent: The exponent’s value

v result: The variable where the result will be saved

Python can make that calculation without resorting to functions, but the
process is a bit messy and prone to bugs. Also, introducing the math library
seems like a good idea, as the library features many other useful mathematical
functions, such as sine (), cosine (), and root (). Your program would also
work with voltage**-1.15 instead.

Sharp’s sensor datasheet provides only a graphical representation to convert
voltage into distance, so the formula used in the example is a made-up work-
around, which means the following:

v It isn’t 100 percent accurate.

v The graphic shows that some distances less than 6cm read the same
voltage as distances greater than 6cm. Thus, this formula works only for
distances greater than 6 cm.

v The 6cm distance is theoretical. In reality, this value will most likely be
different — both because the sensor isn’t perfect and because you're
using a voltage divider. You can (and should) test what’s truly the mini-
mum distance after you run the script.

At the end, you simply print everything and make the program sleep for
0.05 second after each iteration so as to not overburden the central pro-
cessing unit (CPU).

If you can’t find the mathematical relationship for a given graphic, don’t fret.
You can simply write a program consisting of intervals and if statements. For
this project, if you check the IR’s datasheet, you see that a sensor output of
1V and 1.5V means a distance between ~15 cm and ~25 cm. Thus, you could
create a program that works in the following fashion:

if distance > 15 and distance <= 25
do_something ()

elif distance > 25 and distance <= 35
do_something else()

#and so on so forth

Normally, though, it’s easy to find a mathematical relationship. If you don’t
see it on the datasheet, try an Internet search.

2 ’ 0 Part IV: Programming with Python

WING/
&

Running the script to measure distance

Save your script by pressing F5 or clicking Run. Move your hand or any other
object close to and farther from your sensor to see that the values printed on
your screen reflect different distance readings.

Play around with the IR sensor by moving an object very close to it —
somewhere between 5cm and 15cm — and use a ruler to check the practical
minimum value of distance that you read. This value will be useful in future
programs. For us, the distance was a little bit over 9cm, so that’s the value
we use as minimum.

Wiring a temperature sensor

The wiring for this project is simple. Start by checking your temperature sen-
sor’s datasheet to see its pinout. If you're using the TMP36 and looking at it
from below, with the curved side facing you, you can refer to Table 10-2.

Table 10-2 Pinout of the Temperature Sensor TMP36
Position Pin Number Signal Name
Leftmost pin 1 Vce

Middle pin 2 Vout

Rightmost pin 3 GND

The sensor we used in the example doesn’t require a voltage divider because
its output surpasses 1.8V only for 266 degrees F (130 degrees C). If the one you
use surpasses that voltage at a much lower temperature — or if you're afraid
that the TMP36 will read more than 266 degrees F — simply employ a voltage
divider as described in the “Using the right voltage for the ADC” section. You
can wire it to your circuit exactly as described in the “Writing the code to mea-
sure distance” section.

Follow these steps to wire your temperature sensor:
1. Connect the BeagleBone’s GND — pin P9_1, P9_2, P8_1, or P9_2 — to

the sensor’s GND.

2. Connect the BeagleBone’s 3.3V supply — pins P9_3 and P9_4 — to the
sensor’s Vcc.

3. Connect the BeagleBone’s AIN) — pin P9_39 — to the sensor’s Vout
(output).

Chapter 10: Experimenting with Python 2 ’ ’

Figure 10-6 shows a circuit diagram for this circuit.

* @ ® o ° @ * o @ * o ® @® L

L] L] L] L]
® & & ® & & ¢ © & & © ¢ & & & & & © & & & & O & O & G O OO
® @ @ ® 0 9 ° ° O 0 O O O O O O O O P OO O O OO O O O O
e & & o & & © ® ® O O & O O & O O O O O O " O O O O O O OGN
® @ & ® & & ©® © & © O O O O © O O O & O O O O O O O G O OO
® @ @ ° @ 9 O ° O O O O 9 @O O O O O O O O O O O O O O O OO
® & & & & & & & & & & & O & & 5 O O O O O O ¢ o & o @
® & @ ® @ ° ° °® O & 9 O O O O O O O O O OO * o @ o 9
o ¢ ¢ ® O " T O " ® O O @ " O O O O " O O T N R R E®T O O VPO
® & & & & 0 O " 0 0 O O O " OO O " O S OO N S O P DY ONOTDSE
® ® ® ® @ ® ¢ ¢ O ¢ O ° O O © O O O O O O O e ® @ o @

(us)
m
o]
(o]
—
D
o
o]
=
D

Figure 10-6:
Temperature
sensor
wired to
BeagleBone
Black.

2 ’ 2 Part IV: Programming with Python

Writing the code to read temperature

As we mention earlier in this chapter, the code you use to read from a sensor
is always similar regardless of the type of sensor. The only important differ-
ences between this code and the code in the “Writing the code to measure
distance” section are the calculations that give the temperature in different
units. Refer to “Wiring an IR distance sensor” earlier in this section for a dis-
cussion of the code that deals with analog inputs.

To have your BeagleBone print the temperature values that the sensor reads,
type the following code:

import Adafruit BBIO.ADC as ADC
import time

sensor = "P9 39"
ADC. setup ()

while True:
reading = ADC.read(sensor) # values from 0 to 1
voltage = reading * 3.3 #values from 0 to 3.3V, although this only surpasses
1.8V for temperatures over 266 degrees F

the voltage/temperature relationship is as follows:
Vo = 1/100 * Temperature + 0.5

temperatureC = (voltage - 0.5) * 100

temperatureF = (temperatureC * 9/5) + 32

print ("The reading is: " + str(reading) + "which is, in Volts: " +
str(voltage))

print ("The temperature in Celsius is: " + str(temperatureC) + "; and in
Fahrenheit: " + str(temperatureF))

time.sleep(0.05) #loop every 50 milliseconds.

Running the script to read temperature

Save and run your script, and watch your readings fill the screen. Touch your
sensor with your finger, and notice that the values increase. If it’s chilly out-
side, and you're using a laptop, take your circuit for a walk and see the values
decreasing. The sensor should detect the temperature quickly.

Simply reading from sensors is fun, but getting stuff running based on read-
ings is what the buzz is all about. Don’t unwire this circuit from your bread-
board just yet. You use it in another project later in this chapter.

Chapter 10: Experimenting with Python 2 ’3

Deriving a formula from a linear graphic

The TMP36's temperature-versus-voltage curve
is a nice linear one. If you look at the graphic on
its datasheet, and if you remember middle-school
algebra, finding out the function that relates
those variables isn’t hard. To continue reading

is the slope, which is the rate with which a vari-
able changes in response to the other. To deter-
mine it, you need to choose two (x,y) points,
called (x0, y0) and (x1, y2). Then simply employ
the following formula:

this part, open TMP36's datasheet and search for
the output voltage—versus—temperature graphic. _yl=y0

~ x1—=x0

Many sensors follow relationships like the one
for the TMP36, so being able to find the rela-
tionship is quite handy. All linear relationships
follow the formula y = mx + b. In this case, the
value on the y-axis is Vo, and the value on the
x-axis is the temperature in Celsius. b is the
value that intersects the y-axis, which is 0.5V. m

This way, for the TMP36 temperature sensor,
you end up with the formula

Vo x Temperature + 0.5

=L
100

Sending an Email with Python

The BeagleBone is hands-down an exceptional platform for creating web-based
projects, due to how easy it is to establish a connection with it. Moreover,
Python hosts quite a few functions that greatly simplify matters. For this proj-
ect, you use Python’s email library to create a program that sends emails.

Knowing the prerequisites

Before you get to write the code, there are some prerequisites you need to be
aware of.

Finding your email’s SMTP server

SMTP stands for Simple Mail Transfer Protocol, a standard for email transmission.
Each email provider has a different SMTP server, and you have to include the
details in your code. The best bet for finding them is searching in the Internet for
<e-mail provider> SMTP; the necessary details should come up right away.

Reading input from the keyboard

Chapter 9 explains how to read inputs from the world (such as buttons) and
how to output text and anything else with the print command. To read input
from the keyboard, you use the raw_input (message) function, which blocks
the program until the user types something and presses Enter or Return:

2 ’4 Part IV: Programming with Python

“\NG’
QA !
$

data = raw_input (message)
Two variables are involved in this function:

v input: The message you want to use to prompt the user to type
something

v data: The variable where the input is saved

Writing the code to send an email
Create a file called emailing.py, and type the following script:

import smtplib
from email.mime.text import MIMEText

my email = raw_input ("Insert your e-mail ")

my password = raw_input ("Insert your e-mail's password ")
subject = raw_input ("Insert the subject ")

destination = raw_input ("Insert the destination e-mail ")
text = raw_input ("Insert the message ")

msg = MIMEText (text)

msg ['Subject'] = subject
msg['From'] = my email
msg['Reply-To'] = my email
msg['To'] = destination

server = smtplib.SMTP ("smtp.gmail.com", 587)
server.starttls()

server.login(my email, my password)
server.sendmail (my email, destination, msg.as_string())
server.quit ()

print ("Your e-mail has been sent!")

The example code features Gmail’s SMTP server and port. If you use a differ-
ent email provider, that part of the code needs to be changed as described in
the “Finding your email’s SMTP server” section in this chapter.

Don’t create a file named email.py! This is the name of Python’s standard
library module for emails, and your script won’t work. Avoid creating scripts
with names that are too general.

For simplicity, we've broken this program into four parts, which are
described in the following sections.

QNG

Chapter 10: Experimenting with Python

Beware of spam!

A program that automatically sends emails
can easily fill your inbox if you're not cautious.
Simply creating a loop without any time.
sleep() orwait.for.interrupt ()
function would result in your program’s writ-
ing emails as fast as the CPU can handle.

Thousands of emails could be sentin less than
a second!

In reality, email providers have defenses against
spam, but your account would most likely be
suspended, which you don‘t want to happen.

\\3

Importing libraries

The first two lines of code import the required Python libraries to use SMTP
and email-related functions. Specifically, email .mime . text imports an
object (which you name MIMEText) that’s required to build the email with
the correct format:

import smtplib
from email .mime.text import MIMEText

Getting the email’s details

This snippet prompts the user to insert all the required data regarding the
email and saves it in variables:

my email = raw_input ("Insert your e-mail ")

my password = raw_input ("Insert your e-mail's password ")
subject = raw_input ("Insert the subject ")

destination = raw_input ("Insert the destination e-mail ")
text = raw_input ("Insert the message ")

To test this program, you can simply send the email to yourself by writing
your own email address in the destination variable.

This general program allows you to use whatever emails you want and send
whatever messages you want. You could simply use the following in your
code:

my email = "myemail@gmail.com"
my password = "mypassword"

(...)

215

2 ’6 Part IV: Programming with Python

\NG/
g“‘“

Typing this kind of code is known as hard-coding, which often makes things
simpler but less general. The trade-off for this simplicity is having to change
the code if you want to send a different text or subject, or want to use differ-
ent email addresses.

If you hard-code, be sure to remove the while True: loop. Your program
won'’t block waiting for input, and if you don’ remove the loop you’ll spam the
destination inbox.

Creating the email

The next part starts by creating an object named msg that allows you to
create the email itself. MIMEText (text) takes the email’s body as a para-
meter. Then you build the fields in a standard email with the details that you
provided earlier and saved in variables:

msg = MIMEText (text)

msg['Subject'] = subject
msg['From'] = my email
msg['Reply-To'] = my email
msg['To'] = destination

Sending the email

This section is where a connection to an SMTP server is established and the
email is sent:

server = stmplib.SMTP ("smtp.gmail.com", 587)
server.starttls ()

server.login(my email, my password)
server.sendmail (my email, destination, msg.as_string())
server.quit ()

These functions have a few important, not-so-obvious details:

V stmplib.SMTP (SMTP server, port): This function connects to the
SMTP server provided. Its parameters depend on the email provider
you’re using.

V* server.starttls (): This function is used for email providers only
that use TLS (Transport Layer Security) to encrypt their messages. If
yours doesn’t, you can simply remove this line of code. Generally, when
you search for your email’s SMTP server you also find information on
whether your email provider uses TLS.

» msg.as_string(): This function deals with all the complexities regard-
ing the fact that msg is an object with multiple parts and isn’t defined as
a message (that is, a string) to be sent.

Chapter 10: Experimenting with Python 2 ’ 7

Running the script to send an email

You're all set to run the script. Save and simply press F5 or click the Run
button, and look at your console. The program is waiting for your input.
When you type that input, the program terminates and tells you that the
email has been sent. Go check your inbox!

Mixing Up Projects and
Creating Functions

The project in “Sending an Email with Python” earlier in this chapter enables
you to send emails easily and automatically. Although that’s cool, you could
easily achieve the same thing by using a standard computer. One thing that
makes the BeagleBone awesome is the ease with which your electrical proj-
ects in the real world can interact with the Internet. In this section, you see
how to put two or more projects together through the use of functions. You
can send the data read by the temperature sensor over email, as well as con-
trol the brightness and color of an RGB LED through the distance measured
by the IR sensor.

Reading a temperature is a program of its own; so is sending an email. The
same applies to reading the distance of an IR sensor or controlling the
brightness of an RGB LED. These are all independent tasks that can be done
without any of the other tasks. That’s why creating your own functions with
Python is the best course of action here. Rather than creating an entire pro-
gram in a linear process, you create different pieces of a puzzle and put them
together in the end. When programs start to grow in size, it is definitely the
best approach to divide the program into several tasks that can be tested
independently and then put everything together in the end.

This section assumes you have gone through all the previous sections in this
chapter because each independent task is a project built and tested in those
sections. Through the use of functions, you add interaction between the dif-

ferent chunks of code.

Creating a function with Python

Functions are extremely useful to define tasks that you do often in your
scripts. The following snippet of code shows an example of a good use of
functions:

2 ’8 Part IV: Programming with Python

def calculator(operandl, operand2, operator):
print ("Calculating " + str(operandl) + str(operator) + str(operand2))
if operator == '+':
return operandl + operand2
elif operator == '-':
return operandl - operand2
elif operator == '*':
return operandl * operand2
elif operator == '/':
return operandl / operand2
elif operator == '%':
return operandl % operand2
elges
return "invalid inputs!"

while True:
operandl = raw_input ("Introduce first operand ")
operand2 = raw_input ("Introduce second operand ")
operator = raw_input ("Introduce the operator ")
result = calculator(int (operandl), int (operand2), operator)
print (result)

\\J

This code should be quite easy to understand. Note three things, however:

v raw_input () always returns a string. For a computer, the number 2 and
the character 2 are different things. Because strings are collections of
characters, the value held in raw_input () is one or more character(s).
To make math with that value, you have to convert it to an integer by
using int () or to a floating-point number (a number with a decimal
point) by using float ().

v+ Normally, you want to use apostrophes: ' ¢’ when referring to charac-
ters and quotation marks and "str" when referring to strings.

v The operation % is the modulo operation, which determines the remain-
der of a number when dividing it by another.

When you write a line of code that uses a function, such as my email =
input (“Insert your e-mail”),you’re executing a function call, which
asks for a function to be executed. Functions are chunks of code that take
parameters, make copies of those parameters, process those copies, and pro-
duce return values.

The functions used throughout this book are defined in the libraries you
imported at the start of each program. Someone wrote these functions and
saved them in those libraries. The projects in Chapter 6 control the GPIOs
through writing and reading from files — a fact that’s completely transparent
to you when you’re programming in Python. Someone else wrote the code that
deals with the pesky complexities of using files and put it all in a function that
anybody can use.

What changes when you mix the programs?

The answer is: very little. We need to note some require the same library, which is just a
changes, though. Some of these changes are matter of organization.
merely organizational, whereas others are

. v Normally, initial conditions and initialization
essential. They are

of functions such as PWM () and ADC () are

v Thewhile True: loop mustbe changed done right after the libraries are imported.
to the main code; otherwise, the program Although your code would still work with-
will be stuck in one of the functions forever. out this change, the change isn't just merely
This change is essential. about organization; it improves efficiency

because these parts of the code need to
happen only once. This function assures that
they do indeed run only once instead of at
every iteration of the while True: loop.

v Importing the libraries required for every
function usually occurs at the start of the
script, before the function definitions. It's
common for two different functions to

To create a function, use this structure:

def function name (parameterl, parameter2, ...): #the function header
#all the function code goes here
return some_variable

QNG

$V~

\\3

Remember indentation! If you don’t indent when defining a function, the inter-
preter has no way to distinguish the rest of the code from the function code.

Aline such as some_variable = function name (parameterl,
parameter2) would do the following:

1. Call your function.

2. Make copies of parameterl and parameter2.

3. Process the values contained in the copies of parameterl and
parameter2.

4. Return a value that would be saved in some variable.

Functions don’t necessarily require the return line or parameters. These func-
tions are used simply to carry out tasks (such as setting some pins to HIGH or
printing some output), not necessarily to process data and return something
to be used in the main part of the code.

Chapter 10: Experimenting with Python 2 ’ 9

220 Part IV: Programming with Python

Sending temperature readings by email

Because this program is based on the ones in earlier sections of this chapter,
the best strategy is to start by copying and pasting them under function
definitions. Then move all the library importations to the start of the script.
The code for the temperature sensor remains similar, but it doesn’t have the
while True: loop. The function that runs it should return the tempera-
ture at the end. The email part requires a slight change; you want to send
the sensor temperature, not a message that you write. Besides the libraries
imported at the start and while True: loop, the main code has two lines of
code, consisting of the function calls. Type the following code for the com-
bined programs:

import Adafruit BBIO.ADC as ADC
import time
import math

import smtplib
from email.mime.text import MIMEText

sensor = "P9 39" #or AINO
ADC.setup ()

def read temperature():
reading = ADC.read(sensor) # values from 0 to 1
voltage = reading * 1.8 #values from 0 to 1.8V

the voltage/temperature relationship is as follows:
Vo = 1/100 * Temperature + 0.5

temperature ¢ = (voltage - 0.5) * 100

temperature f = (temperature c * 9/5) + 32

return "the temperature in Celsius is" + temperature c

def send email (message)

my email = raw_input ("Insert your e-mail ")

my password = raw_input ("Insert your e-mail's password ")
subject = raw_input ("Insert the subject ")

destination = raw_input ("Insert the destination e-mail ")
text = message

msg = MIMEText (text)

msg['Subject'] = subject
msg['From'] = my email
msg['Reply-To'] = my email

msg['To'] = destination

Chapter 10: Experimenting with Python 22 ’

&

‘SQ,N\BEH

server = smtplib.SMTP("smtp.gmail.com", 587)
server.starttls()

server.login(my email, my password)
server.sendmail (my email, destination, msg.as string())
server.quit ()

print ("Your e-mail has been sent!")

while True:
temperature = read temperature();
send email (temperature) ;

Note that the message variable of the send _email () function holds the
same data as the temperature variable of the main code. When you send a
variable as a parameter, you make a copy of it with whatever name you define
in the function header. You're not altering the variable temperature! It’s very
important to remember that the variables within the code of a function are
isolated from the rest of the world.

You could use the send_email () function with whatever message you
desire; the code doesn’t care whether the message is a temperature or not. It
just takes in a message — any message — and sends it. That’s the idea behind
functions; they’re chunks of code that can be used independently.

Getting lazy

Most likely, you always want to send sensor readings to your own email address
and not to someone else’s, so having to type all the details is a tad tedious. You
can simply hard-code the details in your email function, as follows:

def send email (message)
my email = "myEmailegmail.com"
my password = "my_password"
subject = "Temperature Reading"
destination = "myEmail@gmail.com"
text = "The reading is + str(message)" #this is the change

msg = MIMEText (text)

msg['Subject'] = subject
msg['From'] = my email
msg['Reply-To'] = my email
msg['To'] = destination

server = stmplib.SMTP('smtp.gmail.com', 587)
server.starttls()

server.login(my email, my password)
server.sendmail (my email, destination, msg.as_string())
server.quit ()

print ("Your e-mail has been sent!")

222 Part IV: Programming with Python

WING/
&

\\3

This “lazy” version of the temperatureEmail . py script does not block wait-
ing for input. It’s 100 percent automatic. Thus, it’s essential that you remove
the while True: loop, lest you get your entire inbox spammed with temper-
ature readings — or, more likely, get your email account suspended. Without
the loop, the program sends the reading only one time.

Running the script to send the temperature

Save your program by pressing Ctrl+S or Cmd+S and run it by clicking on Run
or pressing F5 several times, and see the results. Play around with the tem-
perature sensor as to see different values.

Functions are great ways not only to keep your programs tidy and organized,
but also to promote reusability. You could use the send email (message)
function to send the data read by a humidity or light sensor, for example.
Conversely, you could use the read_temperature () function with a pro-
gram that turns an air conditioner on or off, depending on the temperature.

Functions also make it simpler to work in a team whose members have differ-
ent tasks. The person who programmed the air conditioner doesn’t need to
have any clue about how his colleague got the temperature sensor working.
Simply knowing what a function returns and what its parameters are gives
you enough information to proceed.

Controlling an RGB LED
with distance readings

Seeing the RGB LED’s brightness and color change as you move your hand
around should be a fun thing to do. The good news is that if you’ve worked
through this chapter in order, you already have a great deal of the code
required to make this happen.

The circuit for this project is the same as the two circuits in the sections
“Wiring an RGB LED” and “Wiring an IR distance sensor.” If you didn’t unwire
them, you're good to go. If you did unwire them, follow the earlier instructions
or see Figure 10-7.

This section assumes you are using a common cathode RGB. If that isn’t the
case, refer to the “Wiring an RGB LED” section to see what changes.

Rather than control the PWM'’s duty cycle with time, you're going to control

it with the distance measured. The function that controls the LED needs to be
changed to accommodate this fact. The code that measures distance remains
the same as in the “Writing the code to measure distance” section, but no
longer has the while True: loop. You also need to return the distance at
the end of the function that runs the code. The biggest addition is the fact
that you need to transform your distance measurement to a percentage; PWM

Chapter 10: Experimenting with Python 223

doesn’t work with absolute values. That’s what the function absolute to
percentage () in the following code is for.

ol
e A

Figure 10-7:
RGB and

IR distance
sensor
wired to
BeagleBone
Black.
|

auogaibeag

fritzing

Using your distance readings
The program works like this:
1. Import libraries.
2. Set initial conditions, and initialize ADC and PWM.

3. Run read_distance (), and save the distance measured.

224 Part IV: Programming with Python

4. Run absolute to percentage (), which takes the distance value in
centimeters and transforms 10 to 80 cm to 0 to 100 percent.

5. Run control LED (), which uses the distance measured to light up
the LED.

6. Repeat Steps 3, 4, and 5 until interrupted.
The code is as follows:

#!/usr/bin/python

import Adafruit BBIO.PWM as PWM
import time

import Adafruit BBIO.ADC as ADC
import math

#setup RGB
RGB = ["P9_ 16", "P8 13", "P9 14"]
#RGB[0] controls red, RGB[1l] controls green, RGB[2]controls blue

for i in range(0, 3): #runs the indented code below 3 times
PWM.start (RGB[i], 0) #initialize PWM with all leads OFF

#set initial conditions for RGB
c_initial = RGB[O0]

c_next = RGB[1]

c_off = RGB[2]

#setup IR Sensor
sensor = "P9_40" #or AINI
ADC.setup ()

def read distance():
reading = ADC.read(sensor) # values from 0 to 1
voltage = reading * 1.65 #values from 0 to 1.65V
distance = 13.93 * pow(voltage, -1.15) # values from 10 to 80 cm
theoretically
return distance

def absolute to percentage(distance, minimum, maximum):
distance = distance - minimum #shift the 10-80 interval to 0-70
maximum = maximum - minimum #the maximum value, 80cm, is now 70
if distance > maximum: #after 80cm (which is 70 after the shift), values
start being unreliable
distance = maximum #thus, everything after the max is the max itself.
return distance * 100/maximum # this puts the measured value in terms of
0 to 100 percent
which is what PWM works with.
def control LED(distance):
PWM.set duty cycle(c_off, 0)
for i in range(0, 100):
PWM.set duty cycle(c_initial, 100-distance)
PWM.set duty cycle(c_next, distance)
time.sleep(0.01)

Chapter 10: Experimenting with Python 225

\\J

while True:
distance = read distance()
distance = absolute_to_percentage (distance, 9, 80)
print (distance)
if (distance > 0): #this happens like once in a million, if at all, but the
program stops when it happens. And at 1GHz, a million is not so
little!
control LED(distance)
time.sleep(0.05)

swap the colors in the following order: R->G->B->Repeat
aux = c_off

c off = c_initial

c_initial = c_next

c_next = aux

The biggest addition here is the new function absolute to_ percentage (),
which transforms absolute data readings into values ranging from 0 to 100
percent so that they’re ready to be used as PWM duty cycles.

Like any good function, absolute to percentage () promotes reusability.

If you need to do the same thing with data read from any other type of sensor —
distance, temperature, light, or whatever — you could use the same function
without any changes. The following code includes comments with the values
specific to the IR sensor to make it easier to understand:

def absolute_to percentage(distance, minimum, maximum) :

distance = distance - minimum #shift the 9-80 interval to 0-70

if distance > maximum: #after 80cm (which is 70 after the shift), values
start being unreliable

distance = maximum #thus, everything after the max is the max itself.

return distance * 100/maximum # this puts the measured value in terms of 0

to 100 percent
which is what PWM works with.

Note that there should be a minimum distance that the IR distance sensor
can read. The way in which you determine this distance is covered in the
“Running the script to measure distance” section. For us, this distance was

9 cm, and that’s what we use in the example. You can subtract 9 from your
distance measured to ensure that the minimum value is 0. Just remember
that the real distance is actually that value plus the minimum (9 in this case).
This subtraction makes converting the absolute value of the distance into a
percentage much, much easier:

distance = distance - minimum #shift the 9-80 interval to 0-70
maximum = maximum - minimum

Afterward, you check whether the distance measured is greater than 70 (which
would be more than 80 cm). Because the sensor’s datasheet shows that values
read after 80 cm start being unreliable, you set your maximum as 80 cm:

226 Part IV: Programming with Python

if distance > maximum: #after 80cm (which is 70 after the shift), values start
being unreliable
distance = maximum #thus, everything after the max is the max itself.

Finally, you return a percentage value of the distance measured (with
100 percent being 80 cm or more):

return distance * 100/maximum # this puts the measured value in terms of 0 to
100 percent

It’s important to note that the variables are swapped outside the function. We
do this because variables inside a function are called local variables. These
variables not only are private to the function itself, but also reset every time
the function call terminates.

Otherwise, there aren’t many changes in the code you used previously for the
RGB, in the “Writing the code for fading an RGB LED” section. One difference
is that the duty cycle depends on distance rather than i, which, in the pre-
vious case, was a variable that increments every 0.05 second.

Running the script to fade an RGB LED with an IR distance sensor.

Save the program and start it by clicking Run or pressing F5. Move your hand
or an object closer to or farther from the IR sensor, and you should see the
brightness of the RGB LED changing accordingly. Its color still changes peri-
odically, though.

What if the LED didn’t change color the color periodically? What if everything —
the color and the brightness — was controlled by your hand? Sound fun?
Let’s roll.

Enhancing the project

Quite a few parts of this code go beyond gluing the previous two projects
together with minor changes, simply due to the fact that we wanted to do a
cool thing. Without further ado, here’s what the control LED () function for
this program does.

You should save the following script in a new file. We named ours
enhRGBInfraRed.py:

#!/usr/bin/python

import Adafruit BBIO.PWM as PWM
import time

import Adafruit BBIO.ADC as ADC
import math

#setup RGB
RGB = ["P9 16", "P8 13", "P9 14"]
#RGB[0] controls red, RGB[1] controls green, RGB[2]controls blue

for i in range(0, 3): #runs the indented code below 3 times
PWM.start (RGB[i], 0) #initialize PWM with all leads OFF

#set initial conditions for RGB
c_red = RGB[0]

c_green = RGB[1]

c_blue = RGB[2]

#setup IR Sensor
sensor = "P9_40" #or AINI
ADC.setup ()

def read distance():
reading = ADC.read(sensor) # values from 0 to 1
voltage = reading * 1.65 #values from 0 to 1.65V
distance = 13.93 * pow(voltage, -1.15) # values from 10 to 80 cm
theoretically
return distance

def absolute to percentage(distance, minimum, maximum):

distance = distance - minimum #shift the 10-80 interval to 0-70

maximum = maximum - minimum #the maximum value, 80cm, is now 70

if distance > maximum: #after 80cm (which is 70 after the shift), values
start being unreliable

distance = maximum #thus, everything after the max is the max itself.

return distance * 100/maximum # this puts the measured value in terms of 0

to 100 percent
which is what PWM works with.

def control LED(distance) :

if distance <= 33.3:
PWM.set_duty cycle(c_red, 100 - distance*3)
PWM.set duty cycle(c green, distance*3)
PWM.set_duty cycle(c_blue, 0)

elif distance > 33.3 and distance <= 66.7:
distance = distance - 33.3
PWM.set duty cycle(c_green, 100 - distance*3)
PWM.set_duty cycle(c_blue, distance * 3)
PWM.set duty cycle(c_red, 0)

elif distance > 66.7:
distance = distance - 66.7
PWM.set duty cycle(c blue, 100 - distance*3)
PWM.set_duty cycle(c_red, distance*3)
PWM.set_duty cycle(c_green, 0)

Chapter 10: Experimenting with Python 22 7

228 Part IV: Programming with Python

while True:
distance = read distance()
distance = absolute_to_percentage (distance, 9, 80)
print (distance)
if (distance > 0): #this happens like once in a million, if at all, but the
program stops when it happens. And at 1GHz, a million is not so
little!
control LED(distance)
time.sleep(0.05)

Everything that deals with distance readings is exactly the same. The func-
tion that controls the LED, however, has changed significantly:

def control LED(distance) :

if distance <= 33.3:
PWM.set duty cycle(c_red, 100 - distance*3)
PWM.set_duty cycle(c_green, distance*3)
PWM.set duty cycle(c_blue, 0)

elif distance > 33.3 and distance <= 66.7:
distance = distance - 33.3
PWM.set duty cycle(c_green, 100 - distance*3)
PWM.set duty cycle(c_blue, distance * 3)
PWM.set_duty cycle(c_red, 0)

elif distance > 66.7:
distance = distance - 66.7
PWM.set_duty cycle(c_blue, 100 - distance*3)
PWM.set duty cycle(c red, distance*3)
PWM.set duty cycle(c_green, 0)

This part of the code runs the show. This an enhanced version of the
control LED () function receives a value of 0 to 100 to set the PWM of the
pins that control the RGB and decides how they’re used.

This function could be written in many ways to produce different color
effects with the RGB. In this case, the LED fades from one color to the next,
depending on the distance from an object. If you place your hand near the
sensor and move it away slowly up to 80 cm or more, you should see the LED
fade from red to green to blue to red again.

You divide the 0-to-100 interval by 3 so that only two colors are active at
any interval. What happens for each interval is decided by if and elif
statements. The first 0if checks whether the distance measured is less than
33.3 percent of 8 cm. If so, blue is off, and the LED fades from red to green
gradually:

if distance <= 33.3:
PWM.set duty cycle(c_red, 100 - distance*3)
PWM.set_duty cycle(c_green, distance*3)
PWM.set duty cycle(c blue, 0)

Chapter 10: Experimenting with Python 229

Creating permanent connections

If you enjoyed the projects provided throughout need to know how to use a soldering iron. You
this chapter, you may be interested in creating can learn more about working with a solder-
something more permanent than the prototypes ing iron at www . dummies.com/extras/
you've built with the breadboard. To do so, you beaglebone.

The next two chunks of code do the same thing for the remaining intervals:

elif distance > 33.3 and distance <= 66.7:
distance = distance - 33.3
PWM.set duty cycle(c_green, 100 - distance*3)
PWM.set_duty cycle(c_blue, distance * 3)
PWM.set duty cycle(c_red, 0)

elif distance > 66.7:
distance = distance - 66.7
PWM.set duty cycle(c blue, 100 - distance*3)
PWM.set duty cycle(c_red, distance*3)

PWM.set duty cycle(c_green, 0)

Note that you always shift the distance reading to a value of 0 to 33 (percent) —
so that you are always working with the same values, making the code simpler —
but you multiply it by 3 so that the PWM duty cycle that it sets is still 0 to 100
(percent).

Running the script for the enhanced version to fade an RGB LED
with an IR distance sensor

Save and run the script, and experiment! Feel free to alter the code — namely,
the duty cycles of the PWM — and save and run it again to see different results.

For fun, you could also try to change the RGB LED program to choose its
color and/or brightness depending on the temperature readings.

Introducing UART

UART which stands for universal asynchronous receiver/transmitter, is a well-
known, commonly used way for different devices to communicate through
serial. Many of UART’s parameters, such as the data format and speed of
transmission (baud rate, which is the same as bits per second), are configu-
rable, which is why universal is part of its title.

http://www.dummies.com/extras/beaglebone
http://www.dummies.com/extras/beaglebone

230 Part IV: Programming with Python

“ NG/
QV'

Devices communicate through the use of RX (receive) and TX (transmit) pins.
To make two devices send data to each other, you merely need to cross these
pins: One device’s RX connects to the other device’s TX, and the first device’s TX
connects to the second’s RX. The process is quite intuitive: You wire the pin that
transmits the data of one device to the pin that receives data of the other device.

Wiring the BeagleBone to an UART device

The BeagleBone features five serial UARTSs, although UARTO is reserved for
communication with the computer (if you connect it through USB, that is).
Also, UARTS3 features only a TX pin. People often say that the BeagleBone
actually has 4.5 serial UARTS for this reason.

As stated in the preceding section, you want to cross the TX and RX pins of
each device. Also, the device you're connecting to the BeagleBone needs

to be powered, usually requiring a supply of 3.3V or 5V, and a GND pin that
needs to be connected. So to use the BeagleBone’s UART1, for example, you
make the connections shown in Table 10-3.

Table 10-3 Connecting the BeagleBone’s UART1 to a device

BeagleBone Device

P9 24 (UART1_TX) Device's RX pin

P9_26 (UART1_RX) Device's TX pin

P9_7 or P9_8 (5V through USB) or P9_5 or P9_6 Device’s 5V or 3.3V power
(external supply) for a 5V device. P9_3 or P9_4 for supply

a 3.3V device.

P9 1,P9_2,P8_1,0rP8_2 Device’s GND pin

If you use a 5V device, be extremely careful with your wiring! Feeding 5V wires
into the BeagleBone will severely damage it.

To work with and test UART communication on the BeagleBone, you'll be
using two of its serial UARTs: UART1 and UART?2. If you pretend that UART2
is another device altogether, you can easily use UART1 to write into it (see
Figure 10-8). The wiring is as follows:

v Connect P9_24 (UART1_TX) to P9_22 (UART2_RX).
v Connect P9_26 (UART1_RX) to P9_21 (UART2_TX).

Chapter 10: Experimenting with Python 23 ’

w
D
)
To]
—
D
w
(a}
| = |
Figure 10-8: i
UART com-
munication
established
ona
BeagleBone
o o
Black. fritzing
|
Writing the code to test UART
To verify that communication is happening, you create two programs and run
them at the same time. The programs are very similar; the difference is that
one deals with UART1 and the other with UART2. We named our programs
UART1 test.py and UART2 test.py.
&\\NG! - -

Before you get into coding, make sure that you have the necessary Python
library installed. Type the following code in the command line:

pip install pyserial
The code for UART1 test.py is the following:
import Adafruit_ BBIO.UART as UART
import serial
import time
UART. setup ("UART1")

serl = serial.Serial (port = "/dev/ttyOl", baudrate=9600)

serl.close()

232 Part IV: Programming with Python

serl.open /()

while True:
if serl.isOpen() :
serl.write ("This is a message from UART1!\n")
rxbuf = serl.readline()
print (rxbuf)
time.sleep(0.05)

The code for UART2 test .py is very similar:
import Adafruit BBIO.UART as UART
import serial
import time
UART.setup ("UART2")
ser2 = serial.Serial (port = "/dev/ttyO2", baudrate=9600)
ser2.close()
ser2.open ()
while True:
if ser2.isOpen():
ser2.write ("This is a message from UART2!\n")
rxbuf = ser2.readline()

print (rxbuf)
time.sleep(0.05)

As usual, the code starts with importing libraries. This time, you define an
object named UART and initialize it with the serial UART that you’ll be using
(either 1 or 2):

UART.setup ("UART1")

Next, you create a variable named ser1 that actually serves as an object (a
variable that contains multiple fields):

objectName.fieldl
objectName.field2
objectName.field3
That variable saves the value returned from a function:
serl = serial.Serial (port = "/dev/ttyOl", baudrate=9600)
The function takes the following parameters:
v port: The serial UART that you're using. After using UART . setup

(“UART#"), you create a file in the /dev directory. This file is always
/dev/ttyO#. Note that the filename contains the letter O, not the digit 0.

Chapter 10: Experimenting with Python 233

QUING/

\\3

»” baudrate: The speed at which you want to establish the communica-
tion. The BeagleBone supports the following baud rates:

* 9600

e 14440

® 19200

e 28800

* 38400

¢ 56000

* 57600

¢ 115200
If you have two devices operating at two different baud rates, the communica-
tion won'’t work! You can test this fact by giving different baud rates to UART1

test.py and UART2_ test.py. Most of the time, it’s easier to alter the baud
rate of the BeagleBone’s UART than it is to change the device’s baud rate.

If you have issues with communication, try lowering the baud rate.

Next, you close the serial port to reset it (in case it was used previously and
data was still inside) and then reopen it:

serl.close ()

serl.open ()

Then comes the while True: loop, in which each UART writes a message to
its TX pin and reads a message from its RX pin. This message is saved in the
rxbuf variable. Finally, you print the message that was read from the RX pin.

In computer science, a buffer is often a block of memory used to save data
temporarily, which is why we call the variable rxbuf.

Notice two important details in this last section of the code:

v if serl.isOpen ():If nothing wrong happened, serl.isOpen() is
the same as True, so that if will happen all the time. If something went
wrong with accessing the serial port, however, ser1l.isOpen () holds
False, so it ensures that the program won’t do anything.

V serl.write("This is a message from UART1!\n"):The \n
stands for newline — a special character that represents pressing the
Enter key on your computer keyboard. Without this character, the pro-
gram wouldn’t work, because rxbuf = serl.readline () reads data

234 Part IV: Programming with Python

Figure 10-9:
The UART2
program
receiving

a message
from the
UART1
program.

until it finds \n — that is, it reads an entire line. For this reason, the
message you send requires \n. Without that character, all data would
be sent on the same line, and this function would stay blocked forever

because it would never find the \n.

Running the script to test UART

Select each script, and press F5 or click Run after saving. Nothing happens if
you run just one script; it blocks at the readline () function, waiting for a
message. When you run the two scripts, you see the messages being printed.
This is a message from UART1! is printed in UART2’s program (see
Figure 10-9), and This is a message from UART2! is printed in UART1’s

program.

" [clouds - Clouds x \

« c A D
Fle Edit Find View Preview € Run

» | doudd

UART. setup("UART1"
7 serl

9 serl.

ART1!\n")

tpy-RudE +

This is a message from UARTL!
This is a message from UARTL!
This is a message from UARTL!
This is a message from UARTL!
This is a message from UARTL!

This is a message from UARTL!

SN €

Runner: Python

ol »

hn Doe &% é

&

CWD Environment

ol ()

Feel free to experiment with other baud rates, although you won’t notice the
change immediately because the programs have the time.sleep (0.05)
function slowing things down. If you increase the baud rate, data is transmit-

ted faster.

Chapter 10: Experimenting with Python 235

Understanding UART’s uses

Simply put, UART is awesome. It’s simple and asynchronous, allowing for fast
communications without much effort on your part.

Many devices communicate through UART. The BeagleBone, for example,
communicates this way with your computer. Other examples include GPS
modules, wireless modules (such as Bluetooth and Wi-Fi), and some sensors
that are more complex than analog ones that simply relate data to a voltage
level.

If you wired the BeagleBone to a GPS module, for example, you could easily
read all the information it provided — normally, much more than merely lon-
gitude and latitude — with code very similar to the code in the “Writing the
code to test UART” section. The only differences are that you want only to
read from it, and you have to change the baud rate to make it the same as the
GPS’s:

import Adafruit BBIO.UART as UART
import serial
import time

UART.setup ("UART1")

serl = serial.Serial (port = "/dev/ttyOl", baudrate=9600) #change according to
the GPS's baudrate

serl.close()
serl.open ()

while True:
if serl.isOpen() :
rxbuf = serl.readline()
print (rxbuf)
time.sleep(0.05)

236 Part IV: Programming with Python

Chapter 11
Mastering the Art of Coding

In This Chapter
Understanding the good practices of programming
Discovering ways to avoid bugs and techniques for debugging
Getting acquainted with binary and data storage
Becoming familiar with BoneScript-specific techniques
Exploring techniques for programming in Python

ust as Salvador Dali’s artistic style was significantly different from Pablo

Picasso’s, every programmer has his or her own way of creating a program.
Give two programmers the same task and their code will definitely look quite
different. Although everyone has an individual style, some good practices are
standard throughout the world of programming and can be quite useful.

Following standard programming guidelines isn’t just about organization; it’s
also about making your code simple and straightforward so it’s easy for you
and others to read it and alter it. It’s about making the program efficient. Most
important, though, these practices greatly reduce your chance of getting bugs
in your code and making debugging much easier when bugs do occur.

This chapter is about the art of good coding. Even though the information

in this chapter may seem to consist of small tips and tricks, when your code
starts to grow, these tidbits become extremely helpful. Trust us: Finding that
one little bug in a huge script of code is one of the most frustrating endeavors
of life. It’s better to avoid bugs from the get-go.

General Programming Tips

This section explains some tricks you can use while programming in any lan-
guage. They help you keeping your code organized, readable, and less prone
to bugs. These tips also make it easier for you to detect bugs in your code.

238 Part IV: Programming with Python

\\3

Following a convention when writing code has the same effect as color-coding
your circuit. It helps with readability, debugging, and teamwork.

Variables and function names

Very few programs work without variables, and those that do result in huge
messes. We present several variables in earlier chapters of this book. Even
though variable names are arbitrary, it helps greatly to use self-explanatory
names such as the following:

v 1led to hold the name of the pin you're using to light an LED, such as
"USR3" or "P9_ 14"

v state for a variable that holds HIGH or LOW
v b for a BoneScript module object
¥ button for an input pin to which a button is wired, such as "p8_12"

v dutyCycle for a variable that holds the duty-cycle value of a pulse-
width modulation (PWM) output pin

Imagine opening your code two months after you wrote it or handing your
code to someone else. Would you or the other person easily understand
what each variable represents? Unless you have an exceptional memory, we
greatly recommend that you employ this technique in your code.

Additionally, you can use several conventions for variable and function
names. You should adopt one convention and use it in all your programs to
avoid some pretty annoying bugs. It’s quite common to declare a variable
such as dutycycle and then write duty cycle or dutyCycle somewhere
else in your code. JavaScript and Python are case-sensitive languages, so
this entry would be an error. Although this type of bug is easy to detect, cor-
recting it is an unnecessary waste of time. Following are the two most widely
used conventions for naming variables:

v Camel case: This convention is commonly used with the prebuilt func-
tions of JavaScript, and we also prefer to use it when programming in
BoneScript. All words after the first should have uppercase first letters.
Using this convention, you’d enter inputPin rather than inputpin.

+ Underscores: This convention is used in the prebuilt functions of many
programming languages, including Python. The words that compose the
variable names are separated by underscores, like so: input_pin.

Some people prefer the underscores convention, the reason usually being
that an underscore makes the most sense as a replacement for a space and
makes the variable more readable. On the other hand, some people prefer the

Chapter 11: Mastering the Art of Coding 239

camel case convention because it’s faster to type (fewer keystrokes) and (in
our opinion) looks more elegant. Follow the convention you prefer, or simply
use the same one as the prebuilt functions of the language you’re using.

Following are some other conventions for naming variables:

v index for a variable that indicates the index of an array or a list.

v~ i for loops, j for a loop inside a loop, and k for a loop inside a loop
inside a loop. Additionally, these variables are often used as indexes of
arrays or lists when the instructions regarding the array or list are inside
loops.

V¥ aux, tmp, and temp for auxiliary or temporary variables used to hold a
value that will be placed in another variable later — you can’t swap the
value of two variables without using a third, for example.

v n and count for variables that count the number of times something
happens.

We recommend that you keep variable names short, but don’t shorten them
so much that they become unreadable. Using tmp or temp for temporary is
justifiable; using iPin rather than inputPin might lead to confusion.

Using names that somewhat explain the variable’s or the function’s task, as
well as following conventions, makes changing parts of your code a faster
process. You don’t need to define a variable to deal with a pin’s state; you
could use "P9_14" all the time instead of defining 1ed = "P9_14".If you
decide to change it to pin P8_12 for whatever reason — such as if you notice
that P9_14 is already being used for another task — you have to change all
the lines of your code instead of just one.

Constants

Constants are variables whose values never change throughout the program.
They’re great ways to ensure that altering your script is fast and simple. An
example in Python may help you get the idea. The following example illus-
trates a (incomplete) snippet of code where the speed of several DC (direct
current) motors — for an RC (remote control) car, for example — would be
proportional to a constant value and the voltage read from some sensor.

motorl speed = 5*voltagel
motor2 speed = 5*voltage2
motor3 speed = 5*voltage3
motor4 speed = 5*voltage4

24 0 Part IV: Programming with Python

A\

When you test your remote-control car, find that you're not satisfied with the
results, and want to change the constant 5, you have no choice but to change
it everywhere. You could change it just once if you define a constant like this:

SPEED CONSTANT = 5

motorl speed = SPEED CONSTANT*voltagel
motor2 speed = SPEED CONSTANT*voltage2
motor3 speed = SPEED CONSTANT*voltage3
motor4 speed SPEED CONSTANT*voltage4

When you define a constant, testing for different values becomes much less
tedious.

Constants are regular variables like any others, but they’re defined at the start
and never changed through the program. To differentiate constants from other
variables, type them in all caps.

You can also define a constant for a message that you’ll be printing many
times and don’t want to type repeatedly, as in the following JavaScript script:

var SENSOR_MESSAGE = "The reading from your sensor is: "

(...)

console output (SENSOR _MESSAGE + temperature sensor)
console output (SENSOR MESSAGE + light sensor)
console_output (SENSOR_MESSAGE + distance_sensor)

If you’ve programmed in languages such as C and C++ for example, you've
probably dealt with constants in a similar fashion. From a computational point
of view, those constants are quite different from what we did in the previous
examples. For those languages, constants are their own data type; in fact,
they’re simply replaced with their values everywhere before the code actually
runs. In Python and BoneScript, though, from a technical point of view they’re
regular variables like any others.

Comments, white space, and indentation

There’s no such thing as a perfect method of programming. Advanced pro-
grammers usually develop their own style. There are definitely standards for
writing better code, however. If you're working with a team, contributing to
an open-source project, developing a program that will take several days or
weeks to complete, or writing something that you may look at again a couple
of months later, you should always do the following:

Chapter 11: Mastering the Art of Coding 24 ’

1 Comment your code. Typing descriptive comments requires just a slight
writing effort that can make an enormous difference in the long run.
With proper comments, you never need to figure out what a snippet of
code does. The explanation is right there!

v Use white space. Adding extra spaces between your variable names and
functions, as well as lines between instructions, makes your code pret-
tier and more readable. Most programming languages ignore extra white
space, so there’s absolutely no issue in using it to promote readability.

For example, you can use white space for organization in the form of
extra lines between instructions to create blocks of similar code, as in
this example:

import Adafruit BBIO.PWM as PWM #import objects from libraries
import Adafruit BBIO.ADC as ADC
import Adafruit BBIO.UART as UART

import math #import libraries
import time
import serial

led = "P9_l6" #define variables for pins
sensor = "P9_40"

PWM.start (led, 0) #initialize modules
ADC.setup ()
UART.setup ("UART1")

v Indent your code. Python forces you to use indentation, but many pro-
gramming languages don’t. Believe us when we say that being lazy in
your programming and not caring about indentation may lead to a lot
of frustration if a bug occurs. The bug may simply be a missing or extra
closing brace (}), which is easy to detect if your code is indented — and
a pain to find if it isn’t.

The origin of the term bug comes from a literal bug in the system. The term
was first used in computer science in 1946, when computer pioneer Grace
Hooper revealed that the cause of a malfunction in an early electromechanical
computer was a moth trapped in a relay.

Debugging

Quite often, your program might not work when you first run it. Sometimes,
you come across runtime errors. These errors stop your program and print
an error message on the terminal. In the following chunk of code, the closing
parenthesis has been left out:

24 2 Part IV: Programming with Python

\\3

// Load BoneScript module

var b = require('bonescript; #bug is here

// Create a variable called led, which refers to the on-board USR3 LED
var led = "USR3";

That error results in this message:

/var/lib/cloud9/Projects/debug example.js:9
var led = "USR3";

AAA

SyntaxError: Unexpected token var
at Module. compile (module.js:439:25)
at Object.Module. extensions..js (module.js:474:10)
at Module.load (module.js:356:32)
at Function.Module. load (module.js:312:12)
at Function.Module.runMain (module.js:497:10)
at startup (node.js:119:16)
at node.js:902:3

[Process stopped]

The first line of the error message prints exactly where the trouble first
arises: the ninth line of the debug_example. js file. The referenced line is
always the first instruction after the line that was badly written, excluding
blank and comment lines (because they aren’t instructions). Thus, all you
have to do is to check the instruction immediately before line 9.

These bugs are the best kinds of bug you can have. The interpreter notices
that something is amiss and tries to help you figure out the issue.

Sometimes, though, you come across bugs that aren’t really errors. Your pro-
gram runs perfectly but doesn’t do what it’s supposed to do. These bugs are
the tricky ones.

A good analogy for this process is to think of the interpreter as a translator.
You write the code in a language, and the interpreter translates it into some-
thing the computer can understand. Ultimately, the computer is a huge circuit
that understands 1 and 0: HIGH and LOW. If the interpreter notices a gram-
matical error, it stops you and warns you about it. If you're spouting nonsense
that’s grammatically correct, however, the interpreter allows you to proceed.
In the end, the interpreter warns that there’s a problem with I is human
because it’s not grammatically correct, but it doesn’t warn you about The
BeagleBone is a microbanana.

The following script is the one used in Chapter 7 to blink an LED, with a very
slight change. The change is almost unnoticeable, really, but it’s enough to
make the LED stay off rather than blinking. This is one of those bugs that the
interpreter doesn’t warn you about.

Chapter 11: Mastering the Art of Coding 243

If you want to get a glimpse of how frustrating debugging can be, feel free to
try to find the bug. Spoilers are after the code snippet.

/*
Blink
Turns an onboard LED on and off continuously,
with intervals of 1 second.

Y

// Load BoneScript module
var b = require('bonescript');
// Create a variable called led, which refers to the onboard USR3 LED
var led = "USR3";
// Initialize the led as an OUTPUT
b.pinMode (led, b.OUTPUT);
// Create a variable called state, which stores the current state of the LED.
var state = b.LOW;
// Set the LED as LOW (off)
b.digitalWrite(led, state);
// Execute the toggle function every one second (1000 milliseconds)
setInterval (toggle, 1000);
// Function that turns the LED either HIGH (on) or LOW (off)
// depending on the parameter state.
function toggle() {
if (state = b.LOW) state = b.HIGH; // if the LED is LOW (off), change
the state to HIGH (on)
else state = b.LOW; // otherwise, if the LED is HIGH (on), change
the state to LOW (off)
b.digitalWrite(led, state); // write the new state value to the led
pin, turning the led on or off

The bug is in the following line of code:
if (state = b.LOW) state = b.HIGH; // if the LED is LOW

This mistake — using = instead of == when comparing two variables — is
very common. Keep the following in mind:

» = is used to attribute a value to a variable.

V¥ == is used to compare the value of two variables.
This is what happens inside that i f statement:

1. state saves the value b.LOW (which is 0).

2. The condition inside the if is evaluated. This condition is merely the
value of state, which is 0 (false).

244 Part IV: Programming with Python

3. The code inside that if —thatis, state = b.HIGH — doesn’t
execute.

4. state always stays with the value b . LOW.

Had the code been written the other way around — that is, with state =
b.HIGH — the if would always execute, and the else would never execute.
The LED would just stay on.

Rather than scan the whole code with eagle eyes to find that one little mis-
take, you can detect which parts of the code are executing and which parts
aren’t, as well as finding the value of a variable by printing stuff everywhere.
For example, in the following we add three instructions to print information
on the terminal.

function toggle()
if (state = b.LOW){ // if the LED is LOW (off), change the state to
HIGH (on)
console.log("This happens 1.");
state = b.HIGH;

}
else { // otherwise, if the LED is HIGH (on), change the state to
LOW (off)
console.log("This happens 2.");
state = b.LOW;

}

b.digitalWrite(led, state); // write the new state value to the led
pin, turning the led on or off

console.log(state) ;

}

When you run the code with those changes, you see that only the code below
else executes, and that the value of state is stuck on 0. That shows you
exactly where you have to look to find the problem with your program.

Another useful technique is to use comments for more than, well, comments.
Whenever you want to remove a chunk of code but don’t want to erase it
(because you might use it later or because you're unsure whether removing it
is the correct thing to do), you can simply wrap it up in comments: /* code */
in BoneScript or """ code """ in Python.

Despite being aware of several techniques to avoid bugs and to correct them
when they do happen, naturally errors still happen frequently. It’s true that
searching for a bug is quite frustrating, but figuring it out and correcting it
also provides great joy. Figure 11-1 shows the typical state of mind for a pro-
grammer over the course of time.

Chapter 11: Mastering the Art of Coding 245

172}
w
[«}]
c
‘a
o
©
I
K2
@
1]
1]
o
(=]
e
o
N N 3 & > N Y Q N\
& & &
Q)Qb\ “C$° QQQ’ §% é\%@ & \\\\'\‘b 6\(\\\ \\'DQQ @
S S N & & N 34 \g&
S N O N & ¥ N N O &
Q\Q\ N <(0° 2 X ™ W Q,Q . é} A\
S N 2 o & & S
(@) $0 QQJ . & N\ AN Q
— N & & N <&
Figure 11-1: S N
gure 11-1:) & &
Program- &e’:@ 2
. : S &
mer’s happi- & «
S
ness chart. ® .
E— Time

Diving into Binary and Data Storage

For simple applications, you don’t need to know much about binary besides
the fact that 1 is True/HIGH/on and 0 is False/LOW/of £. A brief introduction
to binary is important, however, for three reasons:

v In complex applications, especially (but not only) for mastering commu-
nication protocols such as UART, I2C, and SPI, having good knowledge of
binary is very important.

v Binary is the foundation of all things regarding computers. Your vari-
ables are sets of ones and zeros. Your instructions are sets of ones and
zeros. Everything you do on the computer is converted to a set of ones
and zeros that command which parts of the computer’s hardware go
HIGH and which stay Low.

+* Knowing binary is awesome.

Have you ever wondered why copying things to a CD is often called burning the
CD? Burning is what the CD recorder does. It has a laser that precisely burns
some areas of the disc according to the data to be saved. The specific areas
that the recorder burns and those that it doesn’t are based on the data you're
saving on the CD. The materials darkened by the laser are zeros; the ones left

24 6 Part IV: Programming with Python

<MBER

a\\S

translucent are ones. The CD reader extracts the data by using another, much
weaker laser to find all the ones and zeros on the disc. After that, the computer
converts the binary code to user-readable data.

Binary

For those who don’t understand it, binary often looks completely alien and
complex. In reality, it’s quite simple. It’s like counting as though you had only
two fingers in each hand. With ten fingers, here’s what you do:

v 0,1,2,3,4,5,6,7,8,9 and then add another number to the left, starting
at 1.

v» 10,11, 12,13, 14, (..), 19, 20, 21, 22 (.. .) and then add another number
to the left, starting at 1.

v 100, 101, 102 (.. .), 110, 111, 112 (..).
In binary, though, you have only two fingers, so you proceed in the same way
but you are limited to two numbers: 0 and 1 (hence, the name binary). For
example,

v 0, 1, and then add another number to the left, starting at 1.

v 10, 11, and then add another number to the left, starting at 1.

v 100, 101, 110, 111 and then add another number to the left, starting at 1.

v 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111, and then add another

number to the left, starting at 1, and so on.

You read these numbers one by one. You read binary number 1001, for exam-
ple, as “one zero zero one” (not “one thousand and one”). The same applies
for hexadecimal (next section).

Converting from binary to decimal is quite straightforward. Look at the fol-
lowing example, which uses the binary code 101 0 0:

1 0 1 0 0
1x2%+ 0x23+ 1x22+ 0x2!+ 0x20=20

Even though you may not realize it, the process is actually the same one you
use for decimal numbers. Look at the decimal number 15634:

1 5 6 3 4
1x10%+ 5x10% + 6 x 102 + 3x 10!+ 4 x10° = 15634

Chapter 11: Mastering the Art of Coding 24 7

Hexadecimal

To avoid having hordes of ones and zeros filling computer screens, many
applications use hexadecimal. For organization purposes, values are often
displayed in hexadecimal rather than binary. Hexadecimal is another way to
represent numbers, going from 0 to 15 in the following succession:

0,1,23,4,56,7,89,A,B,C,D, F

In hexadecimal, you count up to 15 (hence the name hexadecimal), as if you
had 16 fingers on each hand. The following example shows how to convert
a hexadecimal number into a decimal number; it’s a similar approach as the
one in the previous section:

4 A F 6 0
4x16%+ 10 x 163 + 15 x 162 + 6 x 16! + 0 x 16° = 307040

Data storage

Data on a computer is stored in bits (binary digits). 0 is a bit. 01 is two bits.
Nowadays, most computers are 32-bit or 64-bit, which means that the instruc-
tions, variables, and everything else that the computer works with are sets of
32 or 64 binary digits.

Characters on computers are often written based on the ASCII (American
Standard Code for Information Interchange) table. This table defines a charac-
ter for a set of 8 bits, which allows for a total of 28 = 256 characters. The letter
A (uppercase) is number 65 on the ASCII table, which is 0100 0001 in binary.

Signed integers require a bit (the first one is called the MSB, or most signifi-
cant bit) to indicate whether a value is negative or positive. Thus, a signed
integer on a 32-bit machine saves a value only up to 2°! rather than 2%,

There’s a lot more to talk about on the topic of how a computer uses binary
to control everything that’s going on inside it. For example, storing an integer
value is completely different from storing a number with a decimal point, and
negative values are also saved in a different way using a technique known

as Two’s complement (generally, as there are other techniques that can be
employed). This book doesn’t get into much detail on data storage, but if this
section interests you, you should research it online.

Congratulations! You're now fully qualified to stamp Figure 11-2 on a T-shirt.

24 8 Part IV: Programming with Python

There are 10 types

— of people in the world:
Figure 11-2: .
There are those who understand binary
10types of and those who don't.
people...

BoneScript-Specific Programming Tips

This section tells you a little about two concepts: looping and callbacks.
These were briefly introduced in Chapter 7.

Looping, looping, and more looping

In Python, it’s easy to make your code loop indefinitely. You simply use
while True:, and the code runs forever until you manually stop it. Here’s
an example:

#!/usr/bin/python

import Adafruit BBIO.GPIO as GPIO
import time

led = "P9 14"
GPIO.setup(led, GPIO.OUT)

while True:
GPIO.output (led, GPIO.HIGH)
time.sleep (1)
GPIO.output (led, GPIO.LOW)
time.sleep (1)

BoneScript is a bit different, and you have a couple of ways to get it into loop-
ing. Chapters 7 and 8 cover some of these techniques, but we think that this
topic deserves its own section.

Chapter 11: Mastering the Art of Coding 24 9

Consider the following script to blink an LED:

var b = require('bonescript') ;
var led = "USR3";

b.pinMode (1led, b.OUTPUT) ;

var state = b.LOW;
b.digitalWrite(led, state);
setInterval (toggle, 1000) ;

function toggle() {
if (state == b.LOW) state = b.HIGH;
else state = b.LOW;
b.digitalWrite(led, state);

}

The preceding code makes your toggle () function run forever because the
setInverval () function calls the toggle () function every second.

Alternatively, you can take advantage of the setTimeout () function to keep
recalling your loop () function:

var b = require('bonescript') ;
var inputPin = "P9 36";
var outputPin = "P9 14";

b.pinMode (outputPin, b.ANALOG OUTPUT) ;
loop () ;

function loop() {
var value = b.analogRead (inputPin) ;
b.analogWrite (outputPin, value) ;
setTimeout (loop, 1) ;

}

The 1oop () function reads the analog inputPin and writes a value to the
outputPin repeatedly until you stop your code. This simplicity is thanks to
the setTimeout () function

Understanding the importance
of JavaScript callbacks

When you pass a function to another function as an argument, the process

is called a callback. BoneScript projects in Chapters 7 and 8 use callbacks
very often. Callbacks are extremely important in JavaScript, which is an asyn-
chronous language, because they enable you to execute functions when an

250

Part IV: Programming with Python

\\s

event occurs. In the preceding section, the setInterval () function has a
loop as a callback; after 1 millisecond elapses, that function calls the 1oop ()
function.

The name callback refers to the fact that the callback is executed only upon
completion of the main function.

If you consider that JavaScript was created for web interaction, it makes
quite a lot of sense for it to be an asynchronous language. Most of the time,
you don’t want things to happen in succession. You want things to happen as
responses to whatever the user does on the website.

Python-Specific Programming Tips

This section introduces some Python tips that can help you make your pro-
grams more organized, more efficient, and less subject to errors, while also
introducing a few techniques for programming in Python.

Creating functions to clear up the mess

In BoneScript, creating functions is necessary because the code isn’t read
sequentially, so you need to use callbacks that refer to functions to make the
code do what you want it to.

In Python, theoretically — and we place enormous emphasis on theoretically —
functions aren’t necessary. But writing a program that consists of several lines
of code is extremely hard and frustrating if you don’t resort to functions. The
main part of a script should always feature little more than function calls.

Creating time-dependent code

When you work with projects that interact with the real world, managing
the speed at which a program runs is important. Most of the Python code
featured in Chapters 9 and 10 of this book have the time.sleep () function
because you need to settle things down a bit when everything works at such
high speeds. (The BeagleBone Black processes data every nanosecond!)

The time.sleep () function halts the program for a set amount of seconds.
In some cases, that’s not the kind of time control that you want. Imagine that
you want part of your code to run for only a set amount of seconds instead

a\\J

Chapter 11: Mastering the Art of Coding 25 ’

of a set number of iterations. A good example would be a computer game in
which the player has to accomplish a task in a limited amount of time. The
code would use a new function, time.time (), in the following fashion:

#gets how many seconds have passed since the 1lst of January of 1970
t0 = time.time()
tl = time.time()
while t1 - t0 > 60: #runs this part for 60 seconds
player position = get player position()
if (player position > finish line)
success = True
elise
success = False
tl = time.time()

The time.time () function returns how many seconds have elapsed since
January 1, 1970 (midnight UTC/GMT), without counting leap seconds. This
period is known as the Unix epoch and is basically Second Zero for Unix sys-
tems (such as Linux, Mac OS, i0S, and Android).

Most Unix systems store an epoch date as a signed 32-bit integer, which means
that these systems can store only up to 23! = 2147483648 seconds (see the
“Data storage” section to better understand what a signed integer is). Problems
may arise 23! seconds after the Unix epoch on January 19, 2038. Think of this
date as the Unix system’s version of the Y2K problem. In fact, this event is
often regarded as the Y2038 problem.

The code starts by defining two values that have the same value:

t0 = time.time ()
tl = time.time ()

Thus, at the start of the program, t1 -t0 = 0.

Note that the while loop tests for t1 - t0 > 60. At the end of the loop,
you determine the time again and save it as t1. You repeat this process over
and over until 60 seconds have passed. t0 stays the same throughout the
entire while loop, whereas t1 takes in the value of the time at every itera-
tion. Eventually, the difference between these two variables will be greater
than 60, which means that 60 seconds will have elapsed.

The time library has plenty of interesting functions. Feel free to check out its
documentation at https://docs.python.org/2/library/time.html.
You can also check its Python console manual by typing the following at the
command line:

python
>>> import time as time
>>> help(time)

https://docs.python.org/2/library/time.html

252 Part IV: Programming with Python

PartV

Turning Your BeagleBone into
a Desktop Computer

g Visitwww.dummies.com/cheatsheet/beaglebone to discover ways to do
-Yqig-§ more with your BeagleBone.

http://www.dummies.com/cheatsheet/beaglebone

X \

In this part . . .

Gathering all the peripherals and turning your BeagleBone
Black into a desktop computer

Discovering the BeagleBone Black's desktop features

Understanding how the World Wide Web works: HTML, CSS
and JavaScript

Creating your own website and publishing it for the world to
see

Chapter 12

Using Your BeagleBone Black
as a Desktop Computer

In This Chapter
Setting up the peripherals and booting
Revisiting the Linux Terminal
Navigating the desktop environment
Changing the look and feel of the desktop environment
Managing files and browsing the web
Terminating an LXDE session

our BeagleBone Black definitely doesn’t look like a regular computer.

You might be wondering, “How can such a small device be compared to
a laptop or a desktop computer?” Don’t let that tiny board fool you. It’s quite
capable of doing tasks and projects that your computer can’t do.

This chapter explains how you can connect a few peripherals to your
BeagleBone Black and turn it into a desktop computer. It probably won’t be
as fast as your computer, but it still can be quite fun to play with.

Getting Started

The default graphical user interface (GUI) used for the BeagleBone Black

is LXDE, which stands for lightweight X11 desktop environment. It’s part of
the Debian Wheezy distribution, and it’s one of the best solutions for the
BeagleBone Black because it’s optimized for processor and memory use. It’s
a lightweight GUL

256 Part V: Turning Your BeagleBone into a Desktop Computer

‘x‘gN\BEIi Before you start connecting all your peripherals, keep in mind that this

& chapter is specifically about the BeagleBone Black. The Original BeagleBone
doesn’t support an HDMI output. If you purchase an LCD cape (such as the
one shown in Figure 12-1) for your Original BeagleBone, however, you can still
do the project in this chapter. You can also use the BeagleBone Black with it,
if you prefer it that way. The LCD capes you can choose among have slightly
different configurations, but they all come with documentation that explains
exactly how to use them. When you get your BeagleBone with an LCD cape
up and running, the desktop environment is exactly the same as we show you
throughout this chapter, so you can easily follow along.

Figure 12-1:
Original
BeagleBone
with an LCD
cape.
|

Connecting the Peripherals and Booting Up

Most peripherals and cables required for this chapter are pretty standard.
You may already have most of them, and those that you don’t have are easy
to acquire. You may need the following list of components:

v Micro HDMI cable

+»* USB hub

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 25 7

v Keyboard and mouse
v~ Ethernet cable
v Power adapter

Figure 12-2 shows where you connect each of the peripherals on the
BeagleBone Black.

DC power Ethernet

|
. ...,.JH Rbsegisbosder
Figure 12-2: - = EafE '_'];1 r‘”q (
BeagleBone
Black’s
peripheral : e
connection | = 4 m{‘r_roig”c‘;r;m
locations.
— Micro HDMI

USB host

258 Part V: Turning Your BeagleBone into a Desktop Computer

a\\J

WING/

&@

\\3

Figure 12-3:
A USB hub.

We assume that at this point, you've installed the latest image of the Debian
operating system in your BeagleBone Black’s eMMC memory or on a microSD
card that’s inserted into your BeagleBone. If that’s not the case, see Chapter 2
for instructions.

Make sure that your BeagleBone Black is properly updated and upgraded. It’s
a good idea to connect to it through Secure Shell (SSH) and run the following
on the command line:

sudo apt-get update && sudo apt-get upgrade

Connecting a Micro HOMI
cable or DVI display

HDMI (High-Definition Multimedia Interface) displays have replaced DVI
(Digital Visual Interface) displays. Although many DVI displays are still

being used for many applications, the trend has been to shift to HDMI. The
BeagleBone supports only Micro HDMI output, but if you have an adapter that
can convert DVI to HDMI, you can repurpose an old DVI display. If you have
an active HDMI converter, make sure that it has an external power source.

We recommend using a Micro HDMI cable with an HDMI display. Some DVI dis-
plays won’t be compatible with your BeagleBone Black, and ultimately, a DVI
display may not display anything in your screen. You could spend a lot of time
trying to figure out the problem, only to realize that the screen you used isn’t
compatible with your BeagleBone Black.

Connecting a USB hub, keyboard, and mouse

Because the BeagleBone Black offers only one USB host slot, you must use
a USB hub to plug in more than a single USB peripheral. You can get an inex-
pensive hub like the one shown in Figure 12-3 at most electronics or com-
puter stores. To use the BeagleBone Black as a desktop computer, you need
to connect a USB keyboard and mouse to it.

Chapter 12: Using Your BeagleBone Black as a Desktop Computer

The virtual keyboard alternative

If you currently don’t have a USB hub and/or a sudo apt-get install Florence
keyboard, but you want to use the BeagleBone
as a desktop computer as soon as possible,
you can plug the mouse into the USB port of the
BeagleBone and download a virtual keyboard.
This approach isn't optimal, but it's a good
short-term solution. You download the keyboard
by typing the following on the terminal:

This command installs a program named
Florence that runs a virtual keyboard. You can
install it via an SSH connection or by using the
terminal on the Desktop environment, as shown
inthe section “Accessing the Terminal” later in
this chapter.

Connecting to your router

Do you ever wonder whether it’s still possible to use a computer without an
Internet connection? We can’t recall a time in the past few years that being
on a computer without an Internet connection was an enjoyable experience.
You can simply connect an Ethernet cable from your home router to the
BeagleBone Black. After you've made that connection, you can easily install
and update software or simply browse the web while using your BeagleBone
Black as a desktop computer.

In Figure 12-4, you see an Ethernet cable connected to a BeagleBone Black.

Ethernet cable

Figure 12-4:
Power
adapter and
Ethernet
cable con-
nected to a
BeagleBone
Black.
|

Power adapter cable

259

260 Part V: Turning Your BeagleBone into a Desktop Computer

Connecting the power

Connecting both a mouse and a keyboard to the BeagleBone Black — as you
do in this chapter — can be quite power-consuming, so the power provided
by an USB cable may not be sufficient for everything to work smoothly. If you
connect your BeagleBone Black via USB to your desktop or laptop computer
and everything lights up, great! The BeagleBone Black is getting power. Some
functions may be slow or won’t work properly, however. In the worst-case
scenario, the peripherals may not even light up. To err on the side of caution,
you should get a proper power adapter. That way, you can rest assured that
your BeagleBone has all the energy necessary to run at its fullest speed and
performance. In Figure 12-4, a 5V power source is connected to a BeagleBone
Black.

WWNG/
N Make sure your power adapter provides 5V — not more or less than that! Also,
you need to ensure that the power adapter has the correct polarity on the

jack: The center provides 5V, whereas the outer ring is ground (GND).

Booting up

As soon as you apply power to your BeagleBone Black, it automatically
boots. After a few seconds, you should see the typical, awesome-looking
beagle with its tongue sticking out as the background of the desktop (see
Figure 12-5).

Figure 12-5:
First look
atyour
BeagleBone
Black’s
desktop
environment.
[7 EeW

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 26 ’

V?‘“\NG! If you don’t see anything on the display, try disconnecting everything and then
S redoing the connections described in the preceding sections. Then reboot
your board. Also, if you're using a TV set as your display, make sure that you
change its source to HDMI.

If you can’t see the full image shown in Figure 12-5, or if it’s small in compari-
son with the screen, the problem has to do with your screen’s adjustment.
Try going into your screen’s settings menu and adjusting the picture size until
everything fits in a way that’s pleasant to you.

\\J

Accessing the Terminal

When you have your BeagleBone Black set up like a desktop computer, you
can do all the regular things that you do on a computer — such as creating
files and folders or running applications — without using the terminal. If you
have the knack of the terminal, however, and know how much faster things
can be done that way, you can easily access it.

Even if you prefer doing everything in the desktop environment and using the
terminal as little as possible, you still need to use it for some tasks, such as
installing and updating software.

To access the terminal, click the icon in the bottom-left corner of your screen.
P Mouse over to Accessories and click LXTerminal, as shown in Figure 12-6.

You can read more about how to use the Linux terminal in Chapter 4.

] = File Manager
% Graphics > [# Leafpad
(&) Internet >| -
I | < Programming > Use the command line
Figure 12-6: |[Preferences >
Opening the Run
terminal. [E togout

— W-“b‘a"@beag‘eu"l

Figure 12-7 shows an open terminal window. You can have several terminal
windows and tabs open at the same time. Click File to generate a new termi-
nal window or tab. You can also see the keyboard shortcuts that do the same
things on the menu that appears when you click File.

262 Part V: Turning Your BeagleBone into a Desktop Computer

|
Figure 12-7:
The terminal
application
window.

\\J

debian@beaglebone: ~

During an LXDE session, you may need to resize or minimize your open win-
dows, such as the terminal. You handle this task in much the same way as you
would on a Mac or Windows computer.

In this terminal, you can do pretty much the same things you may have done

in previous chapters, but here you’re controlling the BeagleBone directly

rather than controlling it remotely through the use of SSH. If you've created the
emailer.py program from Chapter 10, for example, you can run it from the
terminal. Start by logging in as root and then changing to the Projects folder:

sudo su
cd /var/lib/cloud9/Projects
python emailing.py

To run the Python script from the terminal, simply type
python emailing.py

Chapter 4 mentions the nano terminal text editor, which you can use to view
and edit your text files. When you use your BeagleBone Black to create a desk-
top environment, you have other text-editor options, such as Leafpad. If you
are in the Projects folder, type the following command in the terminal:

leafpad emailing.py

Note that after you issue the command line to start Leafpad, the terminal
becomes stuck; you can’t write anything in the terminal from that point on.
(Well, you can, but it won’t have any effect.) That’s not a problem because you
can have as many open terminal windows and tabs as you want, and only the

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 263

one where you issued a command to run a program is stuck. Any other open
tabs or terminal windows are still functional. When you want to terminate
something that’s being run in the terminal, for example Leafpad, simply press
Ctrl+C with the terminal window that’s running it open.

\\3
Ctrl+C is the Cancel command when you are operating the Terminal. If you
need to copy something from the Terminal, the appropriate shortcut is
Ctrl+Shift+C. You can use Ctrl+Shift+X for cutting and Ctrl+Shif+V for pasting.
P If running the script failed, you probably don’t have the necessary permis-

sions. When you use the BeagleBone as a desktop computer, you're logged in
as debian. Regardless, you can still run programs as root. Don’t forget to log
in as root or to precede your commands with sudo:

sudo python /var/lib/cloud9/emailing.py

Roaming the Desktop Environment

Before you start managing files or browsing the web, you need to know how
to navigate the environment. This section explains the components of the
interface.

Viewing the Applications menu

Click the leftmost icon (the Applications menu) in the bottom-left corner of
your screen; it sort of looks like a bird. The Applications menu appears, as
shown in Figure 12-6 earlier in this chapter.

The Applications menu is more or less the same as the Windows Start menu.
After you’ve installed more programs, other categories should appear, such
as Graphics for image-related programs and Programming for tools used to
write code. Whenever you mouse over one of these categories, you see a list
of applications associated with the category, and you can click a program’s
name to run it.

Using the task bar

At the bottom of the screen is a bar known as a panel. Most people, however,
would call this the task bar. This bar provides both information and shortcuts
for accessing your programs (see Figure 12-8).

264 Part V: Turning Your BeagleBone into a Desktop Computer

|

Figure 12-8:

The task I[- deb\an@beagleb..“ - deb\aﬂ I‘ f[ema\\img.py]
bar. ' T '
— Desktop 2 Running programs ~ CPU Usage Monitor
Desktop 1 Network connection
Minimize-all Digital clock
Program shortcuts Screenlock
Applications menu Logout

From left to right, the task bar displays the following things by default:

v Applications menu icon: You can read more about this menu on the pre-
vious section.

v~ Shortcut icons for programs: By default, the two shortcuts are for the File
Manager and the web browser, but you can add other shortcuts. This is
shown later in this chapter in the “Adding application shortcuts” section.

v+ Minimize-all button: This button minimizes all the windows that are
open on your LXDE session.

1 Buttons to change into different desktops: By default, there are two of
them. You can read about using multiple desktops in the “Working with
multiple desktops” section later in this chapter.

v+~ All programs that you have currently running: Programs that are cur-
rently minimized have their names enclosed in brackets. In Figure 12-8,
for example, [emailing.py] is a minimized Leafpad window.

1 CPU Usage Monitor: The green graph displays the toll that your CPU is
taking at the moment. If the CPU is currently hard at work, the rectangle
is filled with green. If you just started a processor-heavy program, sev-
eral peaks show up at the rightmost side. Note that this graph runs from
right to left, displaying the newest data on the right.

v+~ Information about network connection: Mousing over this icon pro-
vides information regarding your network connection. You can double-
click it to manage your available connections.

v~ Digital clock: The clock displays the current time. When you mouse
over the time, the date and day of the week are displayed.

v ScreenLock button: At the time this book was written, that button was
buggy and wouldn’t work. When the bugs are fixed, clicking the icon
locks the screen so that the screen saver displays and you have to type
a password when you want to return to work.

v+ Logout button: When you click it, a new window opens so you can shut
down, reboot, or log out of the current session.

Figure 12-9:
Changing
the set-
tings of an
icon on the
task bar.
|

Figure 12-10:
Adding a
plug-in to

the task bar.

|

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 265

Changing icon settings
Save for the CPU Usage Monitor, you can right-click all icons on the task bar
to alter their settings, as you see in Figure 12-9.

B \
[# Add { Remove Panel items
= Remowve "Digital Clock" From Panel

[# Panel Settings
|y Create New Panel

About

Adding and removing plug-ins

In Figure 12-9 you also see an option to add and remove panel items.

When you choose this option, the Panel Preferences dialog box opens (see
Figure 12-10). Click the Add button in the Panel Preferences dialog box to see
another window that features several plug-ins that you can add to the task
bar. To add a plug-in, click the name of the plug-in and then click Add.

- -
Geometry Appearance (Panel Applets | Advanced Available plugins =
Currently loaded plugins stretch |[*] 4 Add Manage Networks
Minimize All Windows - Network Status Monitor
Spacer O Remove | || Battery Monitor
Desktop Pager

2 "

Spacer O #7 Edit Ternperature Monitor
Task Bar (Window List) S U Keyboard Layout Switcher
CPU Usage Moniter = Resource monitors
System Tray i» Down WNCKPager
Digital Clock CPUFreq frontend
Application Launch Bar Keyboard LED
Volume Control Volume Control m
Allocate space CPU Usage Monitor

Spacer

cl
¥ Cose Menu
Desktop Pager =]
@ cCancel 4k Add

To remove a plug-in from the task bar, right-click it. You see the menu in
Figure 12-9. Click Remove “plug-in name” (where plug-in name is the actual
name of the plug-in) from Panel to remove the plug-in.

Adding application shortcuts

It’s important to note that the previous section explains how to add plug-ins

not shortcuts for applications. To add an application shortcut, you use the
Application Launch Bar plug-in that’s on the task bar by default; it’s next to the
Applications menu icon. Follow these steps to add a shortcut icon to the task bar:

266 Part V: Turning Your BeagleBone into a Desktop Computer

1. Right-click the Application Launch Bar plug-in icon, and choose
Settings from the shortcut menu.

The Application Launch Bar dialog box opens (see Figure 12-11). On the
left side, you see the applications for which you already have shortcuts.

2. From the list on the right side of the Application Launch Bar dialog
box, select the application for which you want to create a shortcut.

All applications you currently have on your BeagleBone are listed, sepa-
rated by category.

3. Click the Add button.

C]
Applications E 4 Add Ayvailable Applications E
=] File Manager < &5 Accessories
@ Web Browser Bammove = File Manager
L Up jj?(Leafpad
- |
& Down 3 ‘:ﬁﬂ Graphics
S b (&) Internet
Figure 12-11: b < Programiming
Addlng a b \E| Preferences
shortcut for
an applica- o) =
tion on the =
task bar. X Close
|
Adding task bars

You can add more task bars to your screen. Right-click anywhere on the current
task bar and choose Create New Panel from the shortcut menu. A dialog box
opens that enables you to choose the new task bar’s position and size. You can
also adjust its appearance and designate the plug-ins you want it to feature.

Working with multiple desktops

Linux systems in general allow you to use multiple desktops on the same
monitor. Having multiple desktops open is handy for keeping things orga-
nized and doing tasks in parallel. There are several ways to change between
desktops. For one, you can click the desktop buttons described in the pre-
ceding section (refer to Figure 12-8). The blue rectangle is the active desktop.
To change to the other one, simply click the gray rectangle.

P On the icons for the desktops, the smaller rectangle shows the windows that
are open and where on the screen they are. In the case of Figure 12-§, all the
windows are in the center of the screen, and the second desktop doesn’t have
any window open.

a\\J

WMBER
\‘&
&

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 26 7

Even if you prefer using a single desktop, it’s good to know about the desktop
icons on the task bar. If you unknowingly change from the active desktop to
the other desktop, and it looks as though all your work has disappeared in
the blink of an eye, just click the other desktop icon to return to the desktop
where you were working.

The two desktops are completely independent, so you can customize each one,
with different icons on the desktop, different shortcuts, and different themes.
You can also have a program running on one desktop but not on the other.

This feature can be really, really useful sometimes. For instance, you could
use one desktop for work — featuring programming applications, documenta-
tion and a few folders with all your scripts — and another for play — featur-
ing programs for media playing and/or some videogames. If you are working
on something that requires both research and development, you could use
Desktop 1 for all the websites, datasheets, and any kind of documentation
necessary and Desktop 2 for writing the code.

To add a desktop, right-click the Desktop Pager plug-in — that’s where the
icons for choosing between each desktop are — and choose Desktop Pager
Settings from the shortcut menu. A window opens, in which you can choose
the number of desktops and assign them names.

To move a running program from one desktop to the other, simply right-click
the application’s title bar and choose Send to Desktop from the shortcut
menu. You can choose which desktop you want the application to go to, and
you can even send it to all desktops. If you drag the application window to
either side of the screen, the application is sent to the next desktop.

You can have as many desktops as you want, but don’t push the BeagleBone
too hard. Even though it’s quite powerful for its size, it’s still a system with lim-
ited resources.

Customizing the BeagleBone

You use the Preferences tab of the Applications menu to set up the
BeagleBone desktop environment in a way that’s comfortable, good-looking,
and easy to use.

Customizing the desktop appearance

To customize your desktop, choose Applications=>Preferences=> Openbox
Configuration Manager. After a second or two, you see the Openbox
Configuration Manager, which includes many customization options (see
Figure 12-12).

268 Part V: Turning Your BeagleBone into a Desktop Computer

L] Openbox Configuration Manager, -+ x
HTheme Theme
— B
Appearance ™ Active
PixelElegance-1.1 Menu
Windows Nermal »
Move & Resize Selected
Mouse
Planton
Desktops
Margins
Dock
|
Figure 12-12: =
The :
Elinstall a new theme...
Openbox
COnﬁgUra' lsl_lz’_ Create a theme archive (.obt)...
tion
Manager. About ¢ Close
I -

With the configuration manager, you can change pretty much every single
thing about the appearance of your desktop. Using the Theme tab, you can
change the theme to one of the many predefined themes or installing themes
that you fetch from the Internet. With the Appearance tab, you can change
the font of all text that appears in your windows, such as the title, menu
headers, and menu items.

You can also customize your windows, mouse, and the margins of the desk-
top. With the Desktops tab, you can change the names of your desktops to
something that makes more sense.

These examples just scratch the surface of the customization you can do.
Play around with the settings on the different tabs until you get the style that
you prefer. Don’t worry — it’s impossible to break anything by merely chang-
ing its appearance.

Choosing a screen saver

On the Preferences tab, you can choose the Screensaver option to not only
change your screen saver, but also define several parameters for it, such as
the time it takes for the screen to lock and the time it takes for the screen-
saver animation to restart.

Figure 12-13:
Adding
shortcuts
for applica-
tions on the
desktop.
|

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 269

You can choose among plenty of screen savers and modes. If you prefer not
to use a screen saver, you can disable the feature or just have a blank screen.

Creating icons on the desktop

Apart from that awesome-looking beagle on the desktop, the screen looks
kind of bland, doesn’t it? To make your desktop look more like what you may
be used to on a typical computer, you can add a few icons for applications,
folders, and files that you use frequently.

First, you create shortcuts for applications on your desktop by following
these steps:

1. Click the Applications menu icon for in the lower-left corner of your
screen.

2. Mouse over to the application you want to have on the desktop and
right-click it.

3. Select Add to Desktop as shown in Figure 12-13.

2 £/ File Manager
% Graphics >[= I
(@ Internet > ™ | xTerminal

<% Programming >
(%] preferences >
Run

Logout

In several chapters of this book, you use the Projects folder quite a lot. If
you've already created it when going through other chapters, then having it
on the desktop would be convenient. Normally, you could add a folder to the
desktop through standard drag-and-drop or copy-and-paste procedures (simi-
lar to what you’d do on a Windows or Mac computer).

Because the Projects folder isn’t below /home/debian, however, you
don’t have the necessary permissions to move it around by standard means.
Generally, any folder that isn’t below /home/debian has only execute and
read permission for users other than the administrator of the system, root,
which means that although you can open the folder and see its contents, you
can’t edit or move the folder or its contents unless you're logged in as root.
To move the Projects folder, use the following steps:

2 70 Part V: Turning Your BeagleBone into a Desktop Computer

1. Start the terminal and log in as root, as follows:

sudo su
<MBER
S Keep in mind that you’re logged in as root only in the terminal. Logging
in as superuser doesn’t give you root permissions in the desktop envi-
ronment — only on the command line.

2. Copy the Projects folder to the desktop.

You have to do this recursively because other files are inside the
Projects folder. Consequently, you use the —r option:

cp -r /var/lib/cloud9/Projects /home/debian/Desktop

The Projects folder should immediately show up on your desktop.
You still don’t have permission to see or change any of the files within it,
though.

3. Add read and write permission for all, doing so recursively to the
entire folder by typing the following command:

chmod -R a+rw Projects
WING/
® Some commands use-r for the recursive option, whereas others use -R.
The cp and chmod commands used in these steps are good examples.
Using the wrong case is often a source of errors.

You should now be able to access and alter any files in your Projects folder
within the desktop environment.

To change to the regular user again while you're in the terminal emulator, type
login <username> and then enter a password. The default username is
debian, and the default password is temppwd.

<P If you’re unsure about the concepts of permissions, root and terminal com-
mands, you should check Chapter 4. You can also read how to change the
username and password of your BeagleBone’s regular user in Chapter 4.

Changing the desktop background

You can search for backgrounds to download from the Internet. Alternatively,
you can use a background from your usual computer by transferring it to the
BeagleBone on a USB drive. The "Accessing external storage devices" section
explains how to transfer a file from a USB drive. We challenge you to find a
desktop background that looks cooler than that dog, though!

Chapter 12: Using Your BeagleBone Black as a Desktop Computer

After you download or copy the background you want to use, follow these
steps to change the background:

1. Right-click any empty spot on the desktop, and choose Desktop
Preferences from the shortcut menu.

2. Make your selections for customizing your desktop (see Figure 12-14).

[

Desktop Preferences - [+ =

Appearance | Advanced

Background

Wallpaper: | = desktop-background jpg B

Background color: | I

Wallpaper mode: | Stretch to fill the entire screen o]

—— | Text

Figure 12_14 Font of label text: Sans 12
The Desktop Color of label text: Color of shadow: | N
Preferences
dialog box. ¢ close
|

Using the File Manager

The File Manager (see Figure 12-15) is the tool you use to manage your files.
(Whew, didn’t see that one coming!) Chapter 4 explains how to create direc-
tories, rename and copy files, and so on by using command-line options while
controlling the BeagleBone remotely through SSH, but you can do those
things with a more familiar approach by using the File Manager. If you prefer,
you can still use the command line, naturally.

The File Manager bears many striking resemblances to Windows’s File
Explorer. You do things such as selecting and copying files in the exact same
way. Additionally, most of the keyboard shortcuts available in Windows and
Mac OS X are supported by LXDE. The widely known Ctrl+C and Ctrl+V short-
cuts are available for copying and pasting files and folders, for example.

Even though using the terminal may seem alien and difficult at first, after you
get the gist of it, it greatly speeds the process of managing files. Being a Linux
Shell ninja is not about style alone. The terminal really does have several
advantages; it just takes a while to get used to it.

\\3

271

2 72 Part V: Turning Your BeagleBone into a Desktop Computer

Figure 12-15:
The

LXDE File
Manager

on the
BeagleBone.
|

i

Previous Folder

Directory Tree

Next Folder

Folder History

o
v ¥

menu:ffapplications/ ¥ | demo ¥ | debian
| J

Up to Parent's Folder

Home

4 View Jools Help

Current path

[Narﬁllbfcloudgfdemo

Ly uw 7 ']
P [alsa = |ﬁ| ﬁj |gl _‘
b B apt analog.js input.js fade.js Blink.ino
P £ aptitude ' Y
P W azpel Kd ad Kd Kd
¥ B clouds blinkled.js blink.py input2.js shiftout.js
b attic H
b autorun
L @demo | Ad
P 7 extras analog2 js
P [Jimages
P £ javascriptd
P £ Projects
P [static
[> E tity\esh‘eet o
(<] B
9 items Free space: 1.5 GB (Total: 3.6 GB)
Add Tab Tabs Close Tabs

You start the File Manager by choosing Applications=>Accessories or clicking
its button in the bottom-left corner of the screen.

Navigating the File Manager

On the right side of Figure 12-15, shown earlier in this chapter, you see all
files and folders within the open folder. You open folders and files by double-
clicking them. Files open in the default application for that type of file. If
Leafpad is your default text editor, for example, a . txt file would open in it.

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 2 73

In some cases, you may want to open a file with a different application.

Take an .html file, for example. You would want to open it with a text editor
to edit its contents and with your web browser so you can see the actual page.
(This type of thing happens a lot in Chapter 15, which introduces HTML.) To
open a file with an application other than the default, follow these steps:

1. Right-click the file, and choose Open With from the shortcut menu.

The Choose an Application dialog box opens, enabling you to choose the
application you want to use to open the file (see Figure 12-16).

2. Click the application you want to use.

3. If you want this application to be the default application for that type
of file, select the Set Selected Application as Default Action of This
File Type box at the bottom of the dialog box.

] Choose An Application -

+
]

File Type To be Opened: Python script

Installed Application | custorn Command Line
b 25 Accessories
b 5% Graphics
< (2 Internet
& Chromium Web Browser
P Icedove MailfNews
lceweasel
) wicd Network Manager

| TE—

— 3§ xcChat IRC
Figure 12-16; | |= <= programming
Choosing an =
application Use selected application to open files
to Open a Set selected application as default action of this file type
file. @ cancel | <Jok |
|

On the left side of the File Manager window (refer to Figure 12-15) is the direc-
tory tree, which shows the parent folder of the current folder and all the fold-
ers above that. The root directory is also shown.

Geany

In Figure 12-16, the default application for open-
ing Python scripts is set to be Geany. Geanyis a
helpful yet simple integrated development envi-
ronment (IDE) for programming. Unlike Leafpad,
but like Cloud9, it highlights different parts of
code in different colors and provides several

other useful tools, such as a terminal window
in the IDE itself, akin to Cloud9. You can install it
by typing the following command:

sudo apt-get install geany

2 74 Part V: Turning Your BeagleBone into a Desktop Computer

Immediately above those directories, you can change what you want to be
displayed. Instead of having the directory tree showing, for example, you
could have Places showing. You can select between one or the other by
pressing the arrow next to Directory Tree/Places (see Figure 12-15, earlier
in this chapter). Figure 12-17 shows what you see when you have the Places
displaying.

Places ~
deb\an
[r— e L
@Traah
Figure 12-17: =
Displaying | texar a
Places. |E3 debian
I

Places are special types of folders, and at least four are always available:

v debian is what could be called the main directory. Because you're
logged in as debian, this place is the only one where you have permis-
sion to create and edit files.

v Desktop, a folder inside debian, holds the files and folders that you
can see on the desktop of your BeagleBone. It should be filled with docu-
ments and programs that you use frequently and want to have easy
access to.

v Trash holds your deleted files and folders. Whenever you delete some-
thing (by selecting it and then pressing the Delete key), it’s not erased
from your BeagleBone; it goes to the Trash folder. This is a good thing.
If you change your mind about deleting something, you can just go to
the Trash folder, right-click a file, and restore it from the shortcut menu.
On the other hand, if you want to erase the files in the trash from your
computer, just right-click the Trash icon and choose Empty Trash from

QNG the shortcut menu.

V.
S There’s no turning back after you choose the Empty Trash command!
Your files are gone.

v Applications has all the applications on your BeagleBone, sorted by
categories. Save for the Run and Logout buttons, it shows virtually the
same things as the Applications menu.

Additionally, any mounted devices show up as places. When we captured
Figure 12-17, for example, we had a LEXAR USB stick plugged into the USB
hub. Bookmarked folders also appear as places.

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 2 75

Note that the File Manager has a similar design to that of a web browser. It fea-
tures several familiar buttons, such as Home, Add Tab, and Bookmarks. You
can also check your folder history and access a folder directly by typing the
full path to a folder in the Path bar (labeled as Current Path in Figure 12-15),
the same as you would do with a website’s address.

Creating blank files

To create a blank file, choose Filem>Create Newr>Blank File. You see a dialog
box that prompts you to enter a name for the new file. If you change your
mind about creating the file, you can click the Cancel button. Alternatively,
you can right-click any empty space in the desired folder and choose Create
New from the shortcut menu.

A cool thing about Linux systems is that they let you turn a blank file into
pretty much anything. That blank file could easily be a program in Python,
C, or JavaScript; an HTML file; or a shell script. It could also merely be a text
file, which is the default. The extension you assign when you save the file is
what defines its application.

Creating new folders

Folders are great ways to keep your files organized. You can have all the pro-
grams, files, and folders structured in a way that feels comfortable for you.

Creating a new folder is much like creating a blank file. Choose File=>Create
Newr>Folder, or right-click an empty space and choose Create New from the
shortcut menu. In the dialog box that opens, type the name you want to use
for the folder you're creating.

You don’t have the necessary permission to create files and folders in other
folders except those that are inside the debian directory unless you go
through the terminal and are logged in as root.

Opening a folder in the terminal

A very useful option on the Tools menu is the Open Current Folder in Terminal
option, which does exactly what its name suggests. This command enables
you to use the Linux commands to make changes in the current folder. (Read
Chapter 4 for more information about the Linux commands you can use.)

2 76 Part V: Turning Your BeagleBone into a Desktop Computer

There are several advantages to using a terminal window:

» You can run scripts that you have in that folder by using the terminal.

v If you've mastered using the command line, you can do things much
faster than you can by using the File Manager.

v Even though you’re not logged in as root in your session, you can issue
root commands through the terminal. Simply precede each command
with sudo.

QNING/ The Tools menu also includes an Open Current Folder as Root command.

¥ Sometimes, though, this command doesn’t work properly until you add some
extra features that aren’t enabled in the BeagleBone by default. In addition,
being logged in as root is often somewhat dangerous, especially if you're con-
nected to a network. We think that anything that you want to do as root, you
can achieve more easily and safely by using the terminal.

Accessing external storage devices

Any external USB storage device (such as an external hard drive or USB stick)
that you plug in is automatically recognized by the BeagleBone. After you've
plugged in a device, you see the window shown in Figure 12-18. Afterward,
the device appears in Places (see LEXAR in Figure 12-17 earlier in this
chapter).

= Removable mediumis inserted -+ n

Removable medium is inserted

== Type of medium: Removable Disk

Please select the action you want to perform:

Figure 12-18:
An external
medium

has been
inserted.
|

ancel ok

©
0

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 2 77

Using the Task Manager

<MBER
)

Figure 12-19:
The Task
Manager.

|

\NG/
&éb“

The CPU Usage Monitor on the task bar displays the heavy lifting that the
BeagleBone’s processor is doing. If the graph shows many green peaks or just
a flat bar, the processor is hard at work, and the BeagleBone may be slow for
the time being. Maybe it’s still loading a program, or maybe you’re running
way too many programs.

The CPU Usage Monitor scrolls from right to left, which means that the green
peaks on the right display the most recent data.

You can press Ctrl+Alt+Del to start the Task Manager, which shows which
programs are currently running (see Figure 12-19). You can also open it
through the Applications menu, under the category System Tools.

(2] Task Manager -+ x
Fle Wiew Help
- |usage: 38 % - Me 137 MB of 496 MB used
Command User | CPU% v | RSS VM-Size
Ixtask debian 20% 80MB 777
Ixpanel debian 3% 112MB 97.0
openbox debian 2% 7.3 MB 14.6
pemanfm debian 0% 124MB 1217
Ixterrinal debian 0% 8.1MB 863
bash debian 0% 1.5 ME 4.0
sh debian 0% 464.0 KB 13
obconf debian 0% 36.8MB 108.8
gvfsd-trash debian 0% 2.6 MB 75
gvfs-gphoto2-volume-monitor debian 0% 2.0 MB 75
gvfs-afc-volume-monitor debian 0% 2.0 MB 1681
@ [D)
Ifmure details | B’th

LXDE’s Task Manager may not come installed by default, in which case, press-
ing Ctrl+Alt+Del won’t work. But this is Linux, which means that installing soft-
ware is a breeze. With an Internet connection, you install the Task Manager, by
typing the following in the terminal:

sudo apt-get install 1lxtask

The Task Manager shows all the processes that are currently running on the
BeagleBone, as well as the CPU and memory use. If a program isn’t respond-
ing, you can terminate it from the Task Manager, by right-clicking the pro-
gram name and choosing Term from the shortcut menu. With this command
you are politely asking the program to close, allowing it to shut down safely
and closing all files and programs that depend on it. If the process is being
stubborn, you can also use the rough method, which is to kill it. When you
right-click a process and choose Kill from the shortcut menu, the program is
terminated immediately, and some data may be lost.

2 78 Part V: Turning Your BeagleBone into a Desktop Computer

WING/
&

Many processes shown in the Task Manager are probably alien to you, and
some are necessary to run the board itself. Don’t play around with processes
that you don’t recognize: You may crash the BeagleBone and corrupt some
data. Additionally, be patient. Programs usually don’t crash; they just take a
while to initiate. You should use the Task Manager to terminate or kill pro-
grams only as a last resort.

Browsing the Web

<MBER
S

To browse the web, you need to start a web browser. Although several
options do exist, the only one that comes installed by default on the
BeagleBone is the Chromium web browser. To start it, you have two options:

v Click the task bar icon for the web browser in the bottom-left corner of
the screen.

v Choose Applications=>Internetz>Chromium Web Browser.

Don’t forget to have your BeagleBone connected to the Internet before you
launch the web browser. The “Connecting to your router” section explains
how to have your BeagleBone connected to the Internet.

Figure 12-20 shows the Chromium web browser. It includes a toolbar with
some useful buttons, as well as an address bar. Naturally, most of the web
browser’s space is allocated for the web page itself.

Chromium is the open-source web browser that provides the source code for
the widely known Google Chrome browser. If you normally use Google
Chrome, you'll feel just at home using Chromium.

Using the Customization menu

Figure 12-21 shows Chromium’s Customization menu, which lets you open
new tabs, new windows, and Incognito windows, which are windows that
don’t save the web pages that you visit in your history.

From the Customization menu, you can also access your bookmarks, check
your recent tabs, and zoom the page. Several tools are available, such as Find
and Print, and you can check your history and your recent downloads by
choosing their commands.

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 2 79

Bookmark Page

Previous Page Next Match

Next Page Add New tab Previous Match

Close tab Address bar Find bar

Reload Page

o Nerd Tutarials x| fiz BeagleBoard.org - com: x (2] clouds - Clouds

[randomnerdtutorials.com

beaglebone black

Random Nerd Tutorials

Electronics Projects, Tutorials and Reviews!

Home Download Resources About Contact Rui More

Email Notifier with the Download all
BeagleBone Black

Written by Rui Santos

my Projects

This project shows how
easilyitistosetupa
BeagleBone Black to
parseinternet from the
Web. Featuring an LED

and a buzzer to notify

Figure 12-20:

The
Chromium immediately read the DDWnIUad an!

message through the use of an LCD screen. ... Click to Continuem-

web
I

browser. .
Filed Under: BeagleBone Black
| =

you whenever an e-mail

N Click the button below
arrives, you can

Close Find bar

Customization menu

Searching for web pages

Chromium’s default search engine is Google, which should meet most of your
needs as far as search engines are concerned. To search for something on
the Internet, you can simply type what you’re looking for in the address bar.
If you type something other than a web-page address, the browser treats the
text as a Google search.

280

Part V: Turning Your BeagleBone into a Desktop Computer

Figure 12-21:
Chromium’s
Customiza-
tion menu.
|

If you prefer another search engine, you can change it by choosing
Customization=>Settings and changing the default search engine in the Search
section of the resulting dialog box.

ﬁ

c a & |=
| New Tab Ctr+T

I 5 apps [New Tab New Window Ctrl4+N
New Incognite Window shift+ctrl+n

Bookmarks >

Recent Tabs >

e

& save Page As... ctrl+s

Q. Find... ctrl+F

B print .. ctrl+p

O ‘ Tools >

Deutsch History ctrl+H

Downloads ctrl+)

Sign in to Chromium
[Settings
About Chromium
Help
= !_ 1 [Exit sShift+cCtri+Q
=
P

Welcome to Chromium Chrome Web Store

Finding words within web pages

To find words on the web page you’re currently visiting, press Ctrl+F. The
Find bar appears (refer to Figure 12-20). When it does, type the word or group
of words that you want to search for. Found instances of the search item are
highlighted on the web page, and you can use the up and down arrows on the
Find bar to move to the next or previous match.

The Find tool of Chromium’s web browser is not case-sensitive.

When your search item includes more than one word, Find tries to locate a
phrase that looks exactly the way you typed it.

Using tabbed browsing

Figure 12-20 shows three open tabs: Rui’s website, beagleboard.org, and
our reliable Cloud9 IDE. Having multiple tabs open enables you to change
between open web pages quickly and easily.

a\\S

WING/

|
Figure 12-22:
Adding a
bookmark.
|

\\3

Chapter 12: Using Your BeagleBone Black as a Desktop Computer

To add a new tab, click the New Tab button, choose Customization=>New Tab,
or you press Ctrl+T. The page that opens includes links to some of your most-
visited web pages, as well as a Google search bar. Additionally, if you want to
open a web page by clicking a hyperlink, but you want it to be opened on a
new tab, you can click the hyperlink while pressing and holding the Ctrl key.

To move among the different tabs, click the one you want to go to. To close
a tab, click the X button next to its name. If you close a tab by mistake and
want to reopen it, choose Customization=>Recent Tabs. You see a list of the
tabs you've had open recently; click one to reopen it.

You have several useful keyboard shortcuts for navigating tabs:

v Ctrl+Tab cycles through the tabs in order from left to right.

v Ctrl+Shift+Tab cycles through the tabs from right to left.

v Ctrl+number takes you to a specific tab. If you have more than nine tabs
open, Ctrl+9 always takes you to the last tab.

Be careful about having too many tabs open! The BeagleBone’s CPU may not
be able to handle that much data.

Adding and using bookmarks

Adding bookmarks is a great way to open your favorite web pages easily.
When you click the star next to the address bar (refer to Figure 12-20), the
Bookmark dialog box pops up (see Figure 12-22). You can change the name of
the bookmark and designate the folder in which the bookmark will be stored.

x

Bookmark Bemove

Name: [EeagleBard.org - community sup

Folder: | Bookmarks Bar s

Edit...| | Done

= Signinto get your bookmarks everywhere.

If you have a Google account, you can sign in to it to have your bookmarks
shared across all your computers.

To see your bookmarks, choose Customization=>Bookmarks. You can also check
the Show Bookmarks Bar box that appears in the Bookmarks menu to have all
your bookmarks appear below the address bar in the Chromium web browser.

281

282 Part V: Turning Your BeagleBone into a Desktop Computer

Changing settings

Naturally, several settings are defined by default in Chromium, such as the search
engine. You can change these settings by choosing Customization=>Settings.

You can set your preferences for how a new page opens in Chromium. Choose
Customization=>Settings. Under On startup (see Figure 12-23), you have the
following options to specify what should happen when you start Chromium:

+* Open the New Tab Page: This option starts Chromium with blank page
featuring a Google search bar and links to your most frequented web-
sites. This is the default setting.

v+ Continue Where I Left Off: the page restores to where you left off the
last time you used the browser. The tabs you had open previously
reopen.

+* Open a Specific Page or Set of Pages: You can define a set of pages
automatically open when you start Chromium. For example, you might
choose to have your email service, Facebook page, and favorite newspa-
per open.

You can choose a theme for Chromium. In the Appearance section (see
Figure 12-23), you can choose to show the Home button, which appears next
to the Reload button and takes you back to your home page. When you check
that box, you have the option to define a home page.

When you click the Show Advanced Settings link, even more options show
up. In the advanced settings, there are three different sections that deserve
special attention.

v With the Privacy section you activate services that protect you while
you’re on the Internet.

v With the Web Content section you choose the zoom of your web pages
and the size of the text on the pages.

v With the Languages section you choose which language(s) your spell-
checker should check for errors when you are writing something on the
browser. Additionally, you can check a box to have the browser offer
the possibility to translate a page whenever a page isn’t on its default
language.

There are plenty of settings for you to explore; feel free to nose around until
Chromium is customized in a way you feel comfortable with.

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 283

A, Settings x

<« C [chro

5 Apps [New Tab

v =

Chromium Settings

History

Sign in
Extension Sign in to Chromium with your Google Account te save your personalized browser features to
I Settings the web and access them from Chromium on any computer. You'll also be automatically
signed in to your favorite Google services, Learn more
Hely Sign in te Chromium

On startup
® Open the New Tab page
Continue where | left off

Open a specific page or set of pages. Set pages

Appearance
Get themes Use GTK+ theme

Show Home button
#| Always show the bookmarks bar

Use system title bar and borders

Search
Set which search engine is used when searching from the omnibox,

Google w || Manage search engines...

Users

You are currently the only Chromium user,
|

Add new user... Delete this user Import bookmarks and settings...

Figure 12-23:

T}? S . Default browser

e ettlngs Chromium cannot determine or set the default browser,
menu on
. Show advanced settings...

Chromium.
|

Shutting Down, Rebooting,
and Logging Off

In an LXDE session, you can shut down your BeagleBone, reboot it, or
temporarily log off so that no one messes around with the computer while
you're away. To do so, you have to click the green guy running out of a door.
Somehow, he manages to be in two places at the same time, and as such you
have two ways to access the logout option:

v Choose Applications=>Logout.
! ..R.I v Click the Logout icon in the bottom-right corner of the screen.

284 Part V: Turning Your BeagleBone into a Desktop Computer

You see the window shown in Figure 12-24.

FNE

11 DEsKTOP ENVIRONMENT

Logout LXDE session?

[n | shutdown

& Reboot
|

Figure 12-24: [5] Logout
Terminating
an LXDE @ cancel
session.
|

The best way to find out how to use the
BeagleBone's desktop environment is simply
to explore. If you want to get some more spe-
cific instruction, try doing an Internet search.
In your search, you should include the specific
thing you are looking for and one of the follow-
ing keywords:

v~ BeagleBone, which is the computer you're
using

v Debian/Debian Wheezy, which is the
Linux distribution that's running on the
BeagleBone

v LXDE, which is the GUI you're using

v QOpenbox, which is the window manager of
your desktop environment

Finding out more about the BeagleBone's
desktop environment

v PCManFM, which is the standard file man-
ager program for LXDE

If you want to find out how to customize the
digital clock on the task bar, for example, you
could try searching for LXDE digital clock.

Naturally, you can also search for useful and
interesting software packages thatyou can use
onyour BeagleBone. Many people have posted
lists on the Internet of software packages that
they consider to be useful, fun, or even essen-
tial. At www.dummies.com/extras/
beaglebone you can also find a list of some
software packages.

http://www.dummies.com/extras/beaglebone
http://www.dummies.com/extras/beaglebone

ANG/
S

Chapter 12: Using Your BeagleBone Black as a Desktop Computer 285

You can choose to shut down the BeagleBone completely, reboot it, or merely
log out. If you log out, you're prompted to enter your username and pass-
word when you return to the computer.

The username is debian, and the default password is temppwd.

Sometimes, the reboot option doesn’t work due to lack of authorization to use
that command.

You can also shut down and reboot from the command line by using sudo
shutdown -h now and sudo reboot.

286 Part V: Turning Your BeagleBone into a Desktop Computer

Chapter 13

Building Your Website

In This Chapter

Understanding the terminology

Preparing your tools

Designing your first website

Customizing your website’s appearance
Making your website available to the world

N ot so long ago, only a few people could have the luxury of having
a website. Coding for a website was an obscure skill that not many

people had the chance to develop. Now the game has changed, and people
regularly build their own websites. Even though building your own website
may seem like a daunting feat, this chapter shows you how to do it.

This chapter walks you through building a two-page website, with practi-
cal examples that you can follow along and test in real time. The examples
involve a website featuring electronics projects with the BeagleBone; nev-
ertheless, if you have a personal interest such as photography, painting,
gaming, writing, or pretty much anything that you want to share with the
Internet, this is the perfect chance for you to do so.

Chapter 15 is all about building a web server hosted with the BeagleBone,
which you can use to control electronic devices through the web. Prior
knowledge of HTML (which is what this chapter is about) is required to com-
plete the project in Chapter 15.

Introducing HTML, CSS, and JavaScript

A good web page requires three things:

v+ HTML (Hypertext Markup Language) is a markup language used to
create web pages. Web browsers were created to read HTML files. A web
browser uses the HTML tags to interpret where the content goes on the

page.

288 Part V: Turning Your BeagleBone into a Desktop Computer

HTML is a markup language, not a programming language. A markup lan-
guage turns your text into an image, a link, or a list.

1 CSS (Cascading Style Sheets) describe the appearance of your HTML
documents.

Cascading Style Sheets can format all elements or just one element when
more than one style is applied (hence, the name Cascading).

v JavaScript is a programming language that’s most commonly used on
websites. If you've ever visited a website that does really cool things
through interactive buttons, slideshow animations, alert messages, or
pop-up windows, some sort of JavaScript was certainly working on the
back end. JavaScript is used in web browsers and allows interactions

6\%\\‘- STI/& with clients without talking to the server.

Lately, the trend has been to use JavaScript in many applications other
than web design, such as BoneScript introduced in Chapter 7.

Getting Started

You can use two launch pads to get started in web design with your
BeagleBone. You can either use your BeagleBone Black as a desktop com-
puter or control your BeagleBone remotely through secure shell (SSH).

Using a BeagleBone Black
as a desktop computer

One way to work through this chapter is to turn your BeagleBone Black into

a desktop computer, complete with peripherals, and use Leafpad (the default

text editor) or any other text editor to write HTML or CSS code. Chapter 12
® explains how to turn your BeagleBone Black into a desktop computer.

You can get to Leafpad by using Applications menur>Applicationt>Leafpad.
After you write your HTML files, you can open them with the Chromium

web browser, which is installed by default on the BeagleBone Black. Choose
Applications menu=Internet=>Chromium.

Chapter 13: Building Your Website 289

<MBER

Controlling the BeagleBone
remotely through SSH

If you don’t want to set up your BeagleBone Black as a desktop computer, or
if you have an Original BeagleBone, you can use the Cloud9 integrated devel-
opment environment (IDE) to code your web pages. (Read Chapter 7 for more
about the Cloud9 IDE.) Cloud9 is one of the best ways to write code for your
BeagleBone in any language, including HTML and CSS.

Your website will be locally hosted, which means that it will be a file on your
computer, not something you can access through the Internet. When you’re
working through SSH, the . html file you create is saved on your BeagleBone’s
file system. Because you aren’t working in in a graphical environment, you
can’t promptly see the fruits of your labor. Fortunately, Cloud9 IDE offers

a solution: Simply right-click your . html file and choose Preview from the
shortcut menu.

Creating Your First Website

A\

In this section, you create your first website. The example website is about
electronics and programming; naturally, you can make your website about
whatever you want.

The book’s website at www . dummies.com/cheatsheet /beaglebone
includes downloads for the two web pages, the style-sheet file, and the images
that are the final result of this chapter.

Organizing your files

When you’re working, it’s always a good idea to keep everything well orga-
nized, especially if you have several files for the same project. Start by
creating a new folder on your desktop or from the cloud9 IDE, and name

it myWebsite. Inside the myWebsite folder, create another folder called
images (see Figure 13-1).

Opening a new file

Open a new file in a text editor such as Leafpad or in the Cloud9 IDE. Choose
Filec>Save, and save the new file as index.html.

http://www.dummies.com/cheatsheet/beaglebone

290 Part V: Turning Your BeagleBone into a Desktop Computer

\NG/
§‘1~“

Figure 13-1:
The
myWebsite
folderon a
BeagleBone
Black.
|

Your new file’s name should end with the . html extension. Otherwise, your
web browser won’t recognize the file, and it won’t open properly.

- myWebsite -ox

Elle Edit Go Bookmarks \iew Tools Help

| lhornefdebian/Desktop/mywebsite |

=

images

§° T v i

Places v
debian

Desktop

(==

& Tash

EE}J Applications

1item Free space: 1.8 GB (Total: 3.7 GB)

Whriting the first line
The first line of any HTML document is always the following:
<!DOCTYPE html>

IDOCTYPE isn’t an HTML-specific tag. It’s simply an instruction that tells your
web browser that it’s reading an HTML file and which version of HTML you’re
using.

Even though IDOCTYPE isn’t case sensitive, most IDEs — such as
Cloud9 — will only give a special color to it if you type it in capital letters.

Structuring an HTML document

The overall structure of an HTML document looks like the following snippet
of code. Start by typing the following code in your text editor:

< !DOCTYPE html>
<html>
<head>
</head>
<body>
</body>
</html>

The HTML that defines the structure of your page goes between the <html>
and </html> tags.

Chapter 13: Building Your Website 29]

\\J
Because most web pages require the preceding snippet of code, you can use
that template every time you start writing a new web page.

An HTML document is divided into two main parts:

v Header: The <head> and </head> tags mark the start and end of the
header. You insert the title of the web page into the <head> tag.
v Body: The <body> and </body> tags mark the start and end of the
«® body. Everything that goes inside those tags is the visible page content.

HTML tags aren’t case sensitive, but we recommend that you use lowercase.

Formatting Vour HTML Content

This chapter highlights the most important HTML tags. Don’t worry; you
don’t need to memorize them. You can always use this book as a reference
when you're creating a website.

Adding a title

The title goes inside the <head> and </head> tags. The title is exactly what
it sounds like: the title of your document, which shows up in your web brows-
er’s title bar.

Here’s how you can add the <title> tag to your code. The result is shown in
Figure 13-2.

Chromium's title bar

|| Electronics Projects wit X

C [J file://fhome/debian/Desktop/myWebsite/index html 7 =

Figure 13-2:
Chromium
web
browser dis-
playing the
web page’s
title on the
tab.
|

292 Part V: Turning Your BeagleBone into a Desktop Computer

<!DOCTYPE html>

<html>
<head>
<title> Electronics Projects with BeagleBone</title>
</head>
<body>
</body>
</html>
SMBER
éo“‘ Indentation! Indentation! Indentation! Web design uses a lot of tags that go
inside tags that go inside tags. Even though using indentation is not strictly
necessary, it’s extremely easy to get lost if you don’t use this technique.
Adding headings
Now you can start adding visible content to the web page, starting with a
heading. Different levels of HTML headings are defined with the <h1> through
<hé6> tags (hl stands for heading number one), and the heading tags always
go inside the <body> tags. Type the following code:
<!DOCTYPE html>
<html>
<head>
<title>Electronics Projects with BeagleBone</titles
</head>
<body>
<hl>Electronics Projects</hl>
<h2>Home</h2>
</body>
</html>
QNING/ Most web browsers help you by going through your errors and trying to fill
N in some blanks. For example, a closing tag such as </h1> could be consid-

ered optional, and if you try the following example, your web page works

as expected. At some point, however, you may run into a web browser that
doesn’t fill in the blanks, so you should always use end tags to prevent unex-
pected errors (and to keep yourself organized, too).

<!DOCTYPE htmls>
<html>
<body>
<hl1>This is a heading 1
<h2>This is a heading 2
</body>
</html>

The purpose of heading tags is to structure your document with the relevant
headings so search engines can index your website and find relevant content
with those headings. Even though you can adjust the font size of your text

Chapter 13: Building Your Website 29 3

|
Figure 13-3:
First glance
atyour web
page.
|

A\

with the heading tags, that’s not what you should use them for. You should use
CSS to make your website pretty, as described later in this chapter in the

“Changing text appearance” section.

Inserting paragraphs

To mark text as a paragraph, you use the <p> tag. Most of your readable con-

tent goes inside a paragraph tag. Add a paragraph tag to your index.html
file like so:

<!DOCTYPE html>
<html>
<head>
<title>Electronics Projects with BeagleBone</title>
</head>
<body>
<hl>Electronics Projects</hl>
<h2>Home</h2>
<p>My first web page.</p>
</body>
</html>

Viewing your web page

Save your index.html file; then right-click it and choose Preview from
the shortcut menu, or open it in Chromium. You see something similar to
Figure 13-3.

Electronics Projects

Home

My first web page.

You can start experimenting with your web page by adding some of the HTML
tags that you already know. Feel free to add new headings and paragraphs;
then open your web browser to see the result. HTML doesn’t do much besides
add raw text, though, so the page won’t look very pretty. Later in the “Styling
your HTML content with CSS” section you find out how to dress it up with CSS.

294 Part V: Turning Your BeagleBone into a Desktop Computer

WBER
@&
&

WMBER
@&
&

\NG/
§&§

QNG

Save your file every time you make changes. Refresh the web browser after
saving, and all changes should be updated immediately.

Inserting links

Most websites contain multiple pages. To make it possible for your visitors to
navigate through the pages of your website, you have to insert hyperlinks to
the other web pages with the <a> tag:

About this website
The reader sees the words 2About this website, which is called the
anchor text. If he or she clicks the anchor text, the about . html web page
opens. The code for that page has to be inside your mywWebsite folder.
The <a> tag introduces attributes, which are represented in this case by
href="". HTML elements have attributes that usually add functionalities or

provide additional information to an HTML element.

You can also insert links that go to any web page on the Internet if you type
the following:

Visit BeagleBoard website

The user sees the message Visit BeagleBoard website. If he or she
clicks the hyperlink, the official BeagleBone website opens.

Even though most web browsers don’t display http:// at the start of the

domain name, you need to type that prefix in your href="" attributes; other-

wise, the website may not open.

You can also include in your About page a link with the following attribute:
Contact me here.

When your reader clicks the Contact me here link, his or her default

email application opens, ready to shoot you an email. Simply replace name@

example.com with the email address of your choice.

Keep in mind that posting your address online may attract a lot of spambots
that will send you unsolicited emails.

Chapter 13: Building Your Website 295

WBER
@&
&

Adding images

Images are great ways to capture the attention of your website’s visitors. You
insert an image by using the tag.

You need to have an image to work with in your images folder, so copy an
image there. The image in the example is called beagleboneblack. jpg.
Add the following tag to your code, but replace images/beagleboneblack.
jpg with the path to your image file:

Did you notice that the doesn’t have a closing tag? Some HTML tags
don’t have a closing tag because everything they need to do their task is actu-
ally placed inside the opening tag — not between an opening and a closing tag.

If the image is a bit bigger than you needed, you can change its size by insert-
ing a couple of attributes to manipulate the width and height of your image.
Here are some of the attributes that you can use with the tag:

v src (source): Specifies where your image is located. You can insert an
URL or the path to your image location.

v width: Changes the width of your image, measured in pixels.

1 height: Changes the height of your image, measured in pixels.

v alt: Stands for alternative text. If a browser can’t display your image for

some reason, it displays your alternative text instead of the image.

If you want to change the width of your image to 290 pixels and the height
to 350, type the following:

Figure 13-4 shows the web page with the photo.
You can also use two tags together. If you want to make your image clickable
so that another page opens when the user clicks the image, you insert the
 tag between the <a> and tags, as follows:

296 Part V: Turning Your BeagleBone into a Desktop Computer

[Electronics Projects wit %

C' [file://fhome/debian/Desktop/myWebsite/index.html 97 =

Electronics Projects

Home

My first web page.

Visit BeadgleBoard website!

Contact me here.

Figure 13-4:
Your web
page with a
BeagleBone
Black photo.
|

Creating lists
Lists help you organize your content. There are two types of lists:

v Ordered lists: You designate an ordered list with the and </01>
tags when the order of your items is important, as in step-by-step
instructions. Each item in the list starts with a number or a letter (see
Figure 13-5).

<ols>
Follow step number one</lix>
<1li>This is step number two
That's the final step

Chapter 13: Building Your Website 29 7

[Lists Example x
-y
¥

C' [file:///home/debian/Desktop/myWebsite/index.html

Ordered List

1. Follow step number one
2. This is step number two
3. That's the final step

|
Figure 13-5:
Ordered list.
|

+* Unordered lists: You use the and tags when the items can
be presented in any order, as shown in Figure 13-6.

One tip
Another tip</1li>
<lis>Last tip

[Lists Example x
-y
¥

C' [file:///home/debian/Desktop/myWebsite/index.html

Unordered List

+ Onetip
¢ Another tip

— + Last tip
Figure 13-6:
Unordered
list.
|

You can also use an unordered list to create a navigation bar on your website.
Into each list item, simply insert an <a> tag that links to your other web pages.

<uls>
Home
<lis>About</1li>

Right now, the result of the preceding code doesn’t look anything like a navi-
gation bar. The formatting is done with CSS in the “Customizing your logo and

navigation bar” section.

298 Part V: Turning Your BeagleBone into a Desktop Computer

Formatting Your HTML Document

Many other tags that are useful for formatting web pages, including the
following:

V” : Put text inside the and tags to mark
the text as important. In a web browser, the text appears in bold but
keep in mind that HTML is used to mark things, not to make them pretty;
the primary use of this tag is to mark your text as important. If you
simply want to make your text bold, you should use CSS.

1 : Put text inside the and tags to emphasize it. The web
browser displays this text in italic.

v <hr>: Use the <hr> tag to add a horizontal line to separate portions of
content. If you're describing your project, for example, you could sepa-
rate the parts list and the circuit schematic with a <hr> tag.

V¥ <l--insert comment-->: Keep your code organized with this tag.
Comments don’t appear on your web page, so you can use them to
remember why you wrote some of the HTML tags when you revisit that
code sometime later.
\j
You can use lots of other tags to mark your text, but we don’t cover them
because they're not relevant to the remainder of this book.

Styling Vour HTML Content with CSS

At the moment, your web page is basic, with no color or customization (see
Figure 13-7). It merely contains the text marked with HTML. Ew. Using CSS,
you can add some colors and change the layout to make it look better. Who
said programmers can’t be artistic?

Embedding a style sheet

All your style instructions are stored in a separate text file. Open a new file in
your text editor, name it stylesheet.css, and save it in your myWebsite
folder.

Vg‘“\NG!

Your filename should have the . css extension; otherwise, the file won’t work

properly.

Chapter 13: Building Your Website 299

Y| Electronics Projects wit %

Cc [filel//fhome/debian/Desltop/myWebsite/index.html v =

-

Electronics Projects

* Home

Home
My first web page.
Visit BeagleBoard website!

Contact me here.

Figure 13-7:
How your
web page

looks so far.

|

4

To embed a style sheet into your HTML document, type the following in your
header tag:

<link rel="stylesheet" href="stylesheet.css" type="text/css">

At this point, you should have all this code in your header tag of your HTML
document:

<head>

<title>Electronics Projects with BeagleBone</title>

<link rel="stylesheet" href="stylesheet.css" type="text/css">
</head>

Now you have your style sheet connected to your HTML document. This
process saves you a ton of time because you can embed the same style sheet
in all your other web pages. Also, when you edit that single file, it applies the
changes to all your other web pages at the same time, which makes it easy to
give all your web pages the same colors, fonts, and overall organization.

300 Part V: Turning Your BeagleBone into a Desktop Computer

\\3

Knowing the basics of CSS

Each CSS instruction requires three things: a selector, a property and a value,
as shown here:

selector { property: value; }

selector is the HTML element you want to change. After that, you insert
all the instructions inside the brackets. The property you want to alter is fol-
lowed by a colon and the value. All instructions end with a semicolon.

For example, copy this code snippet into your stylesheet.css file:
hl { color: navy; }

Then save your file, and refresh your web browser. Now all your elements
that use the <h1> tag are navy blue.

You can have more than one instruction for the same selector, as follows:

selector ({
property: value;
property: value;

}

CSS ignores extra spaces, so nothing stops you from, say, having all your
instructions on the same line. However, we suggest that you organize your
code as in the preceding example to keep your code cleaner and more user-
friendly. It’s also the standard way of writing CSS.

You can select more than one HTML element at the same time. The following
example changes the color to navy for all elements that use the <h1> or <h2>
tags:

hil, h2 { color: navy; }

Experimenting with colors

When you visit a website, you usually notice a main color. The navigation bar,
headings, and hyperlinks may be the same color or similar colors. This color
scheme makes the website more memorable and more pleasant to navigate.
The examples in this chapter use mainly blues for your website, but you can
use any color you desire.

Chapter 13: Building Your Website 30 ’

In the preceding section, you change all your headings to navy blue. You can
also change the color of your background with the following instruction:

body { background: #EGE6E6; }

What do those numbers and letters mean? That’s hardly the name of a color.
They’re hexadecimal numbers, used in this case to specify combinations of
red, green, and blue (RGB). Hexadecimal values range from 0 to 9 and from
A to F. The lowest value for a hexadecimal number is 0, and the highest is F.
From 0 to F, there are a total of 16 values for each hexadecimal digit. All web
browsers support 140 color names, which means that each color name has a
hexadecimal color value. Following are some of the most basic values:

v Black: #000000

v Red: #FF0000

v Green: #00FF00

v Blue: #0000FF

v White: #FFFFFF
To find the right color, you don’t need to keep trying combinations of num-
bers and letters. You can use any color picker online, such as the one at www .

w3schools.com/tags/ref colorpicker.asp. You simply select the
color you want and then copy the hexadecimal number to your CSS code.

\\3

Changing text appearance

When you’re working with HTML, you can customize your text to look exactly
as you want. HTML is like a word processor with all the options you're
already familiar with: font family, font size, text position, and so on. Instead

of using a graphical user interface (GUI), however, you need to write code
instructions in your style sheet. Here are the most important properties you
can modify:

V” text-align: Sets where your text is aligned horizontally. You can set
your text left, center, right, or justified.

V” text-decoration: Removes or sets text decorations. You can use any
of four values: none, underline, overline, and line-through.

v font-family: Changes the default font for the text.
v font-style: Changes the style of the text to italic, bold, or normal.
v font-size: Increases or decreases the sizes of letters.

v font-weight: Specifies the weight of a font. The options are normal,
bold, bolder, and lighter.

http://www.w3schools.com/tags/ref_colorpicker.asp
http://www.w3schools.com/tags/ref_colorpicker.asp

302 Part V: Turning Your BeagleBone into a Desktop Computer

\P
) You can also change the indentation, change capitalization, and make plenty

of other text customizations. If you want to know how to do something spe-
cific, simply search for it online.

Usually, when using font-family, you should specify more than one font,
because you want to make sure that each visitor’s web browser has at least
one of those fonts:

body { font-family: Verdana, Geneva, sans-serif; }

You define a priority in the preceding example. Geneva is the font only if the
web browser doesn’t have Verdana, and so on.

Next, you customize hyperlinks to make them look better. First, you define
your hyperlinks as navy and remove the underline by changing text -
decoration to none:

a {
color: navy;
text-decoration: none;

}

To give your visitors some interaction, you want your hyperlinks to be under-
lined when visitors move a mouse pointer over them. Add the following snip-
pet to your CSS file:

a:hover, a:active { text-decoration: underline; }

Understanding the box model

In discussions of CSS, you frequently hear the term box model. This impor-
tant subject is one that a lot of people don’t fully understand.

Because the layout determines the look and feel of your web page, control-
ling the position of your HTML elements is important, and that’s done with
CSS. You can think of each HTML element as being a box that holds your
content. The CSS box model contains a few properties that help you position
your HTML elements where you want them:

1 content: Sets where your text, hyperlinks, or images appear
v width: Sets the width in pixels
1 height: Sets the height in pixels

Chapter 13: Building Your Website 3 () 3

|
Figure 13-8:
The CSS box
model.
|

»* padding: Adds a layer of transparent space around your content box
»* border: Adds a border around your padding

v margin: Adds a layer of transparent space around your border

Figure 13-8 depicts all these properties.

Margin

Border
Padding

Content

To see the box model in action, you can create a new HTML document called
boxModel .html with the same tags as shown in the “Structuring an HTML
document” section and insert the following code into the <body> tags:

<div>
<p>Your content goes here!</p>
</div>

Then add this code to your style sheet:

div {
width: 100px;
padding: 15px;
border: 10px solid blue;
margin 25px; }

}

Now save all your files and refresh your web browser to see the final result
(shown in Figure 13-9). The spaces around your content show all the CSS
properties being applied to it.

304 Part V: Turning Your BeagleBone into a Desktop Computer

'Y Box Model X

C [file:///home/debian/Desktop/my 57 =

Your content goes here!

|
Figure 13-9:
Demon-
strating the
box model
with CSS.
|

Styling Vour HTML Elements

Imagine a website on which each heading is a different color, size, and font.
Some artist from Pablo Picasso’s age probably would love it, but that’s not
really what you're aiming for.

On the other hand, sometimes it’s useful to change things individually. You
may want to set the navigation bar’s hyperlinks to a different color, for exam-
ple. The ease with which you can select all or just a single HTML element
shows how powerful CSS can be with just the slightest effort.

You can select an ID from an HTML element and customize that HTML ele-
ment. You can add a footer to your web page index.html by creating a
<divs> tag with an id called footer and then add the paragraph with all
your content. The id could have a name other than footer, if you prefer, as
shown here:

<div id="footer">
<p>Created by Name</p>
</div>

Add the following code to your style sheet:

#footer p {
text-align: center;
}

Chapter 13: Building Your Website 305

When you refresh your web browser, you see your footer paragraph, and only
your footer paragraph, centered on the page.

Wrapping up your content

Changing the margins of your page isn’t necessary, but it makes your website
look better. Imagine that someone opens your website on a very wide screen.
Your content will be stretched and hard to read. To accommodate such a
screen, insert your HTML elements between the <div> tags.:

<body>
<div id="wrapper">
<!--Insert all your HMTL elements here-->
</div>
</body>

The ID name given to <div> tags used in this fashion is usually wrapper, but
it could be any other name. You should always try to give intuitive names to
your IDs.

In your CSS file, change the margin of your wrapper with the following code:

#wrapper { margin: 20px 70px; }

Dividing your web page

You still need to divide a few elements of your web page. You have to sepa-
rate your logo and your navigation in two different <div> tags. Add the fol-
lowing <div> with the ID 1ogo to your HTML document:

<div id="logo">
<hl>Electronics
Projects</hl>
</div>

Insert the and <11i> tags you created in the “Creating lists” section in a
<div> with the ID nav:

<div id="nav">

Home</1li>
About</1li>

</div>

306 Part V: Turning Your BeagleBone into a Desktop Computer

Customizing your logo and navigation bar

To make your logo stay on the navigation bar and on the left side of your web
page, add this snippet of code to your style sheet:

#logo {
display: inline-block;
float: left;

}

Now change the appearance of the unordered list to make it look like a real
navigation bar. Copy the following code to your stylesheet.css file and
save it. This change moves your navigation bar to the right side of your web
page inline with the logo; it also makes the background navy blue and makes
a few other adjustments.

#nav {
float: right;
background: navy;
height: 40px;
line-height: 30px;
margin-bottom: 20px;
display: inline-block;
text-align: center;
font-weight: bold;
width: 250px;
border-radius: 10px;

}

#nav ul {
list-style: none;
margin: 0 auto;

#nav 1i {
float: left;
display: inline;
margin: O0;

}

The following code makes your hyperlinks for the navigation white and keeps
them in place:

#nav ul 1i a {
display: inline-block;
height: 30px;
padding: 5px 20px;
color: white;

}

Your web page with the logo and navigation bar should look similar to
Figure 13-10.

Chapter 13: Building Your Website 3 () 7/

| Electronics Projects wit X

C [file:///fhome/debian/Desktop/myWebsite/index.html v =
Electronics Projects
Home

My first web page.
Visit BeagleBoard website!

Contact me here.

|
Figure 13-10:

Logo and

navigation
bar. Created by Name

Customizing your container

At this point your background is grayish, which makes it hard for visitors to
read your content. Create a new <divs> tag with the container ID so that
you have a place to insert all your readable content with a white background.
Insert the following between <div> tags:

<div id="container"s>
<h2>Home</h2>
<p>This is my first web page!</p>
(...)

</div>

308 Part V: Turning Your BeagleBone into a Desktop Computer

Next, with the help of CSS, make your background white and make the proper
spacing adjustments:

#container {
padding: 40px;
clear: both;
background: white;
border-radius: 10px;

Testing your web page

Save all your files, open or preview your index.html file, and refresh your
web browser. Does the page look as expected (see Figure 13-11)? Cool!

Vs
If your page doesn’t look like the one in the figure, go to www . dummies. com/
beaglebone and download all the source files. Compare them with the code
you wrote and try to figure out what’s missing.

[Electronics Projects wit
€ [file://fhome/debian/Desktop/myWebsite/index.html b
Electronics Projects

Home
My first web page.
Visit BeagleBoard website!
Contact me here.

|

Figure 13-11:

The final
resu|t. Created by Name
|

http://www.dummies.com/beaglebone
http://www.dummies.com/beaglebone

Chapter 13: Building Your Website 309

\\3

Start navigating through your website and check whether all the hyperlinks
go where they should and all your images load fine.

The beauty of a website is that after it’s published, you can update your code
any time, so fear not! This is just your starting template; the goal is to inspire
you to build upon this website. Update it with some of the projects elsewhere
in this book. Take pictures. Show it to your friends and customize it any way
you want.

Publishing Your First Website

Hosting your website on a reliable hosting service isn’t free; you have to
pay a certain amount per month to get your own domain and a hosting
plan. Companies such as Bluehost (www.bluehost . com), HostGator (www.
hostgator. com), and GoDaddy (https://www.godaddy.com) offer
starter plans that are relatively cheap and are more than enough to host a
personal website.

http://www.bluehost.com
http://www.hostgator.com
http://www.hostgator.com
https://www.godaddy.com

3 ’ 0 Part V: Turning Your BeagleBone into a Desktop Computer

PartVl
Playing with the BeagleBone

web™ Visit www . dummies . com/cheatsheet /beaglebone for additional Dummies
el § content related to the BeagleBone.

http://www.dummies.com/cheatsheet/beaglebone

In this part . . .

Having some fun with the BeagleBone by taking on more
advanced projects

Analyzing your email with Python and read messages on an
LCD screen

Discovering how to use the BeagleBone as a tool for home
automation projects

Using a home automation web server to interact with your
BeagleBone

Chapter 14
Building Your First Project

In This Chapter
Preparing to build a complete, functional, and useful apparatus
Dividing and conquering to build the project incrementally
Wiring up an LCD and programming an email reader
Building a device that reads and displays your emails

' his chapter shows you how to build a lasting, complete, and useful
project.

In the completed project, your BeagleBone functions as a small, energy-efficient
apparatus that notifies you when you receive an email, and allows you to use
buttons and an LCD screen to go through your entire mailbox and read any
message.

Getting Started

Before you get to work, you need to assemble your supplies. Here’s the shop-
ping list:

v A breadboard

v Many jumper wires

v A 3.3V liquid crystal display (LCD) screen, preferably one that’s 20 char-
acter by 4 line and is compatible with the Hitachi HD44780 LCD controller

v+ Four pushbuttons

v Four 10K Q resistors

v A light-emitting diode (LED)
v A 470 Q or 220 Q resistor

v An Ethernet cable and a stable connection to the web

314 Partvi: Piaying with the BeagleBone

v Two potentiometers, preferably 5K Q and 10K Q
v A buzzer

So that you know what your objective is for this project, Figure 14-1 shows
the completed email notifier and reader.

|
Figure 14-1:
LCD email
notifier and
reader.
|

The best way to build a project that integrates various pieces of hardware
and software is to divide and conquer. You work incrementally, because
building and testing one part before moving on to the next usually yields the
best results. If instead you wire up everything, write all the code, and turn on
the device without having tested the parts, you’ll most likely get unexpected
results, and debugging the whole thing is much harder and tedious than test-
ing and debugging each part individually.

Here’s the attack strategy for this chapter:

1. Create a program that can print a simple message on the LCD.

2. Create a program that reads your email and prints the important details
on the terminal.

3. Integrate this program into the main one, while adding buttons to select
the email and scroll the message.

4. Add an LED and a buzzer to notify you when a new email arrives.

Chapter 14: Building Your First Project 3] §

Wiring Up the LCD

|
Figure 14-2:
A standard
HD44780
LCD.

\NG/
V?‘“

QWING!

In this section, you wire up the LCD and create a script to print a simple mes-
sage on it. You do this by creating a function that drives the screen; when
that’s done, all you have to do is have the function receive the message from
the web as a parameter rather than as a message written by you.

Figure 14-2 shows a standard 20x4 LCD Hitachi HD44780 LCD, which is the
type we recommend for this project.

PR

W o,
Gl Tiliom
@ e

If you use a different LCD from the one we recommend, you may have to add
wiring. Hitachi’s LCDs feature built-in resistors for the backlight LEDs, but
some other LCDs may not, which means that you have to integrate them your-
self. Be sure to read the important parts of the datasheet with care! If you're
still unsure, you can always add an 1K () resistor between 3.3V and the LCD’s
pin 15. We strongly recommend, however, that you get an LCD as similar as
possible to the one we used. In any case, all lines of code that depend on the
LCD you use have a comment that says so.

There are several LCDs that require 5V to operate. We strongly recommend
that you stay away from those and use a 3.3V LCD because this project is a
complex one that involves lots of wiring. If you mistakenly plug 5V into the
BeagleBone, you may blow up its processor.

3 ’ 6 Part VI: Playing with the BeagleBone

Wiring the LCD

Follow these steps to wire up the LCD (and check Figure 14-3 for reference):

1. Connect 3.3V to the power rails of the breadboard.
You can get the voltage from the BeagleBone’s pins P9_3 and P9_4.

2. Connect ground (GND) to another rail of the breadboard.
Pins P9_1, P9_2, P8_1 and P8_2 of the BeagleBone all provide ground.

3. Power the LCD.
Use jumper wires to connect the 3.3V to LCD pin 2 (VDD) and LCD pin
15 (LED+). If your LCD doesn’t feature built-in resistors for the backlight
LEDs, place a resistor between pin 15 and the 3.3V. To set your ground,
connect GND to LCD pin 1 (VSS) and LCD pin 5 (R/W).

4. Add a potentiometer to control the contrast.
Connect one of the outer leads to 3.3V and another outer lead to GND;
the middle lead connects to LCD pin 3 (VO/contrast).

5. Connect the BeagleBone’s pin P8_8 to LCD pin 4 (RS).

6. Connect the BeagleBone’s pin P8_10 to LCD pin 6 (E/clock enable).

7. Connect the BeagleBone’s pin P8_18 to LCD pin 11 (DB4).

8. Connect the BeagleBone’s pin P8_16 to LCD pin 12 (DB5).

9. Connect the BeagleBone’s pin P8_14 to LCD pin 13 (DB6).

10. Connect the BeagleBone’s pin P8_12 to LCD pin 14 (DB7).
11. Connect 3.3V to LCD pin 15 (A/+backlight).
@ 12. Connect GND to LCD pin 16 (K/-backlight).

/ If your circuit doesn’t work, you might need to troubleshoot it with a multimeter.
Check www . dummies . com/cheatsheet /beaglebone to see how to do so.
Writing the code for the LCD
Before you get into any actual coding, you need to install Adafruit’s Python
library, which features plenty of functions that you can use with the LCD.

P We encourage you to visit www . dummies . com/cheatsheet/beaglebone

to download all the code for this chapter. Sometimes, typing the code yourself
or copying and pasting can lead to unexpected errors that can be quite time-
consuming to figure out. Downloading the code ensures that you don’t have
any snippet of code missing.

http://www.dummies.com/cheatsheet/beaglebone
http://www.dummies.com/cheatsheet/beaglebone

Chapter 14: Building Your First Project 3] /

auogatbeag

Figure 14-3:
LCD wired to
BeagleBone

Black.
|

fritzing

Start by installing some necessary dependencies. Most likely, you already
have these dependencies installed, but just to make sure, enter the following

commands:

sudo apt-get update
sudo apt-get install build-essential python-dev python-smbus python-pip git

sudo pip install Adafruit BBIO

Create a dedicated folder for this project. We created ours on /var/1lib/
cloud9 and called it email notifier. Change to the directory where you
created the folder, and type the following on the command line:

318

Part VI: Playing with the BeagleBone

A\\S

\\J

QWING/

cd /var/lib/cloud9/email notifier

git clone https://github.com/adafruit/Adafruit Python CharLCD.git
cd Adafruit Python CharLCD

sudo python setup.py install

git clone is a useful command that clones entire repositories from GitHub.
In this case, you clone the necessary source code to install the LCD library.

Before you see the code that runs the script, here’s an introduction to the
LCD functions that you use for your program:

V” clear (): Clears the LCD, erasing any message that was printed on it
previously.

1 message (string): Writes the desired string to the display. Note that
the LCD can’t realize when it reaches the end of a line; thus, messages
must include \n (newline) to use all the rows of the LCD.

You can use many other functions with the LCD. Even though they’re not nec-
essary for this project, they're interesting and can be useful for plenty of tasks
(or even for improvements on this project). You can get a complete rundown
of these functions by typing the following on the command line:

python
>>>import Adafruit CharLCD as LCD
>>>help (LCD.Adafruit CharLCD)

The backlight () function won’t work due to the fact that you connected the
backlight pin directly to 3.3V and not a GPIO; thus, you have no control over it.
We opted to do this for simplicity because controlling the backlight isn’t really
important for this project.

To start writing the code, create a file named LCD. py, and type the following:
#!/usr/bin/python
import math

import time

import Adafruit CharLCD as LCD

lcd rs = 'P8_8'

lcd_en = 'P8_10'
lcd_d4 = 'P8_18'
led ds = 'Pg_16'
lcd _d6 = 'P8_14'
led_d7 = 'Pg_12'

lcd backlight = 'P8 7'

Q‘“\NG!

Chapter 14: Building Your First Project 3 ’ 9

Define LCD column and row size for 20x4 LCD.

Change depending on your LCD

We use these a lot so we define them as constants
LCD_COLUMNS = 20

LCD_ROWS =4

Initialize the LCD using the pins above.
led = LCD.Adafruit CharLCD(lcd rs, lcd en, lcd d4, lcd d5, lcd d6, lcd d7,
LCD_COLUMNS, LCD ROWS, lcd backlight)

message = "Hello\nWorld!"
lcd.clear ()

lcd.message (message)
time.sleep(10)
lcd.clear ()

This script does the following things:

1. Imports libraries.

2. Creates variables referring to the pins of the LCD that are connected to
the BeagleBone. These variables are necessary to initialize the LCD.

3. Defines constants referring to the number of columns and rows that the
LCD features. These two values are important when you want to display
bigger messages.

. Initializes the LCD.
. Creates a string to hold the message you want to print.

. Clears the LCD’s previous message and displays the new message.

N Oy U

. Waits 10 seconds and then clears the LCD message.

Running the script for the LCD

After saving, you can press F5 to see a result similar to Figure 14-4. Feel free
to play around. Send other messages, experiment with other functions to, for
example, scroll messages sideways and change the contrast. Get a feel for
how to work with an LCD, because this skill is both useful and fun.

If you don’t see anything, you may not have enough contrast. If everything was
wired correctly, the contrast is defined by the potentiometer; rotate it to see
whether rotation solves the problem. If not, recheck the code and the wiring.

320 rartvi: Playing with the BeagleBone

Figure 14-4:
Hello world!
|

Programming the Email Reader

This part of this chapter shows you how you can use Python code to access
your email and print details about the most recently received messages on the
console terminal. When that’s done, you merely have to adapt this program and
the one you created earlier in this chapter to display the message on your LCD.

To check your email with Python, you use what’s known as the Universal Feed
Farser. feedparser is a Python library that analyzes feeds in all known formats
of web standards.

This project uses Gmail as an example for the following reasons:

v It’s the most popular email provider worldwide.

v Gmail is very developer-friendly, so accessing its feed is easy and
straightforward.

Explaining how to access the feed of every email provider is beyond the scope
of this book, so we strongly recommend that you use a Gmail account to get
through the remainder of this chapter and find out how to parse a feed. With
some Internet research, you should be able to adapt the feed parser for this
specific application for a different email provider or any other web-based
application — provided that the provider or website allows you to access its
feed. Later in this section, you can see some more information on how to do so.

Chapter 14: Building Your First Project 32 ’

Parsing web feeds

Web feeds allow programmers to create soft- \Website owners use different standards to pub-
ware that checks for updates published on a lish their feeds. Atom, RSS, and RDF are proba-
website. For programmers to do this, though the bly the most popular standards. Things change
site owner needs to use specialized software somewhat from standard to standard.

to publish a feed of content in standard format

that the computer can interpret. Then this feed

can be read by programs such as the one you

create in this section.

One last thing before you start coding. You need to install the following
libraries:

sudo apt-get install python-pip python2.7-dev
sudo pip install feedparser
sudo easy_ install -U distribute

Enter the following code:

#!/usr/bin/python

import feedparser
import time

USERNAME = "YOUR_USERNAME" # just the part before the @ sign, add yours here
PASSWORD = "YOUR_PASSWORD"

MAIL CHECK FREQ = 10 # check mail every 10 seconds

while True:
d = feedparser.parse("https://" + USERNAME + ":" + PASSWORD
"@gmail.google.com/gmail/feed/atom")
print (d.entries[0] .published) #prints email's date
print (d.entries[0].title) #prints email's title
print (d.entries[0] .author) #prints email's author
print (d.entries[0] .description) #prints email message
time.sleep (MAIL CHECK FREQ)

This code shouldn’t be too hard to understand. After the libraries are
imported, three constants are declared: two strings to hold your username
and password, and an integer to define the frequency at which this program
runs. The MAIL. CHECK FREQ constant is used with a time.sleep () function
at the end of the while True: loop. Without including the time.sleep ()

322 Part VI: Playing with the BeagleBone

\\J

function, your program would run at the CPU frequency (1 GHz), which is
1 nanosecond per instruction (on a BeagleBone Black). It’s safe to assume that
you don’t receive that many emails in such a short period of time.

What'’s important for you to understand here is the part where the feed
parser functions are used. First, you create an object that you name g; this
object holds the feed after it has been parsed (analyzed) by the function
feedparser.parse (). Afterward, you can access each entry of the email
by using d.entries; the index 0 stands for the most recent email. You can
check whichever email you want by using another index up to 20 entries.

You can find more about Python’s feedparser at https://pythonhosted.
org/feedparser. You should go to Common RSS Elements for matters spe-
cific to what you're doing in this section. If you want to try getting your own
email or some other website running with the feedparser, you should read
more on the previously mentioned website, as well as do an Internet search on
your website/email provider’s feed.

When you run the script, information about the latest email you received
should print on the console output. This information is updated every
CHECK MAIL FREQ seconds. The next section shows how to make the
output print on an LCD.

Putting It All Together

This project uses two pushbuttons to swap messages in succession. One
pushbutton selects the previous message, and the other selects the next
message.

What makes this program somewhat complex is the fact that you need to
implement some way to scroll down for messages that have more total charac-
ters than the LCD can display at any time — that is, rows x columns. For this
purpose, you use another two pushbuttons that scroll the message up or down.

Wiring the pushbuttons

The opposite leads of a pushbutton are disconnected, and when a user
presses the button, the leads establish a connection. You can quickly test
that feature by using a multimeter in continuity mode. Follow these steps or
refer to Figure 14-5 to add each of the pushbuttons to your circuit:

1. Attach one of the pusbhutton leads to the 3.3V breadboard rail.

2. Attach a 10K Q resistor to the opposite lead of the pushbutton.

3. Connect the other lead of the resistor to the ground rail.

https://pythonhosted.org/feedparser
https://pythonhosted.org/feedparser

Chapter 14: Building Your First Project 3 2 3

Figure 14-5:
LCD and
four push-
buttons
wired to the
BeagleBone
Black.
|

4. Repeat the same process for all four pushbuttons.

5. Insert a jumper wire between the pushbutton and the resistor into the
BeagleBone’s pin for that pushbutton.

The left pushbutton, which scrolls up, is attached to P8_15. The next
pushbutton scrolls down and is attached to P8_13. The third pushbutton
selects the previous email and is connected to P8_11. The last pushbut-
ton selects the next email and is connected to P8_9.

auogatbeag

fritzing

Understanding the concept

This section provides a short summary of how the algorithm is done without
getting into any specifics of the code. The following sections explain each
part minutely.

After importing libraries and initializing modules, you set up some important
variables. You use functions to do the following things:
v Get the date of the latest email received

v Parse the latest email, saving all the relevant data, including the number
of entries

324 Part VI: Playing with the BeagleBone

v Display the first four lines of the most recent email, which consists of
title, author, and the first two lines of the message

v Create a time stamp so that you can create conditions that depend on
the elapsed time

When that’s done, you move on to the while True: loop, which does the
following things:

1. It checks for new email.

¢ If there is new email, the variables — one that holds the number
of the current message and one that’s responsible for scrolling
the message on the LCD — are reset to 0, and the LCD screen is
updated with the latest email.

e If not, a check is done to see whether any of the buttons has been
pressed.

¢ If the Previous button has been pressed, a function runs to
select the previous message; parse the email to save the rel-
evant data, including the number of entries; and display the
message on the LCD.

¢ Else if the Next button has been pressed, a function runs to
select the next message; parse the email to save the relevant
data, including the number of entries; and display the mes-
sage on the LCD.

e Else if the Scroll Up button has been pressed, the code decre-
ments by 1 the variable that’s responsible for scrolling the
message on the LCD; then the current message is displayed.

¢ Else if the Scroll Down button has been pressed, the variable
that’s responsible for scrolling the message on the LCD is
incremented by 1; then the current message is displayed.

2. Using the time stamp, the code checks whether the program has been
running for longer than 60 seconds. If so, the email is checked again for
any new messages, and the time stamp is reset.

3. The program is halted for 5 seconds at every iteration of the while
True: loop.

The following sections cover specifics.

Writing the code

As always, the first thing to do is import libraries, as follows:

Chapter 14: Building Your First Project 325

#!/usr/bin/python

Email Notifier

Importing libraries

import math

import time

import feedparser

import Adafruit CharLCD as LCD
import Adafruit BBIO.GPIO as GPIO

Next, you define variables for the BeagleBone pins that you’ll use as

pushbuttons:

Defining variables

button scroll up = "P8_15"
button scroll down = "P8 13"
button previous = "P8 11"
button next = "P8_9"

Then you initialize all the inputs:

Initializing all the inputs
GPIO.setup (button scroll up, GPIO.IN)
GPIO.setup (button scroll down, GPIO.IN)
GPIO.setup (button previous, GPIO.IN)
GPIO.setup (button next, GPIO.IN)

Following that, you add events to detect the button presses:

Setting buttons to detect rising edge events
GPIO.add event detect (button scroll up, GPIO.RISING)
GPIO.add event detect (button scroll down, GPIO.RISING)
GPIO.add event detect (button previous, GPIO.RISING)
GPIO.add event detect (button next, GPIO.RISING)

Using events to work with buttons is a nonblocking technique. The program
continues running even if no button is pressed; it doesn’t wait. You can read
more about events in Chapter 9.

Next, you initialize some important variables and constants:

USERNAME = "YOUR_USERNAME" # Just the part before the @ sign, add yours here
PASSWORD = "YOUR PASSWORD" # Replace with your password

LOOP_FREQ = 5 # Check buttons every 5 seconds

CHECK_LATEST MAIL = 60 # Check for a new email every 60 seconds
current_message = 0 # Store position of our current message selected

scroll = 0 # Store how much you want to scroll down or up
your mail

326 Part VI: Playing with the BeagleBone

The variable current message has a value that changes depending on
the presses of the Previous and Next buttons. The scroll variable changes
depending on the presses of the Scroll Up and Scroll Down pushbuttons.

Next, you set up the LCD by configuring it according to the BeagleBone pins
that are connected to it, defining constants for the number of rows and col-
umns you have (you’ll be using these constants a lot), and finally initializing
the LCD by using the characteristics you defined. You also clear the screen
to get rid of any messages that could have been there before you started run-
ning the program.

BeagleBone LCD configuration

lcd rs = 'P8 8'
lcd en = 'P8 _10'
lcd_d4 = 'pg_18'
lcd ds = 'P8 16"
lcd dé = 'P8 14
led_d7 = 'P8_12'

lcd_backlight

'pg 7!

Define LCD column and row size for 20x4 LCD

You can change the columns and rows size to any LCD size. For example 16x2
LCD_COLUMNS = 20

LCD_ROWS =4

Initialize the LCD using the pins above

lcd = LCD.Adafruit CharLCD(lcd rs, lcd en, lcd d4, lcd d5, lcd d6, lcd d7,
lcd columns, lcd rows, lcd backlight)

Clear LCD screen

lcd.clear ()

After that come the function definitions. Those functions are the real brains
of the program, and each one of them deserves special attention.

Select previous mail

This function gets as a parameter the current message variable, which
holds a value from 0 to 19 that decides which entry of the feed parser (in
other words, which email in your inbox) you want to display. The main part
of the code calls this function whenever the Previous button is pressed and
returns current message - 1 to indicate that you want to display the pre-
vious message. Note that the program returns 0 if you attempt to go beyond
that.

Select previous mail
def select previous_message (current_message) :
current_message -= 1
if current message < 0: # can't go further than this
current_message = 0
return current message

Chapter 14: Building Your First Project 32 7

Select next mail

This function works in a similar fashion to the preceding one, except that it
happens when the Next button is pressed, and it returns current message +
1 to indicate that you want to display the next message.

Select next mail
def select next message(current message, number entries):
if current message < (number entries-1): # can't go further than this
current_message += 1
return current message

Note that this function also receives the parameter number entries,
which holds the number of emails inside your mailbox (up to a maximum of
20). You can increase the variable only if it hasn’t surpassed the number of
entries — hence, that if. Also note that current message is used as an
index, and indexes start at 0, which is why you compare current message
with number entries - 1 rather than simply number entries.

Return date of latest mail

This function runs every CHECK LATEST MAIL seconds and parses the
email in the same fashion described in the preceding sections. After saving
all the data from the email at the variable m, you simply return the date of the
most recent email. If there are no emails in the mailbox, you return an empty
string.

Return date of latest mail
def latest mail date():

m="" # Clear m list
Save all mail date in list called m
m = feedparser.parse("https://" + USERNAME + ":" + PASSWORD +

"@gmail .google.com/gmail/feed/atom")
Check if m list is empty
if len(m.entries) ==
date = ""
else:
Save our latest mail date in variable date
date = m.entries[0] .published
return date

Read and save current mail

This function does all the heavy-lifting. The function takes the entry that you
want to read (0 if no buttons were pressed) and does the following things
sequentially:

1. The function clears the previous list of parsed email data and saves the
data from the current email in an object called m:

328 Part VI: Playing with the BeagleBone

\\J

il = 0 # Clear m list
Save all mail date in list called m
m = feedparser.parse ("https://" + USERNAME + ":" + PASSWORD +

"@egmail.google.com/gmail/feed/atom")

2. The function checks the length of m to know the number of emails in

your mailbox and saves the value in number entries. This variable is
returned at the end of the function call. Afterward, the function checks
whether the mailbox is empty and saves mail data as an empty list if
that’s the case. This variable is also returned at the end of the function.

Store the number of unread mails in number_entries variable
number entries = len(m.entries)
If no emails in inbox, returns mail data empty
if number entries ==
mail data = []

If the mailbox isn’t empty, the function saves the email’s author, title,
and message in three variables and creates a temporary variable to hold
all that data, with the fields separated by \n, separating each field line
by line. Additionally, a special null character, \ 0, is added at the end of
the message to detect in a simple way when the end of the message has
been reached.

Keep in mind that the feed parser can fetch only the first 100 characters
of an email’s feed.

author = m.entries[current message].author # Save author name

title = m.entries[current message] .title # Save mail title

message = m.entries[current message].description # Save first 100
characters of our mail

Create a string with all the data in a temporary variable

tmp mail data = "A:" + author + "\n" + "T:" + title + "\n" + "M:" +
message + "\0"

4. After clearing the variables i, tmp data,and mail data, the program

goes through each character of the tmp_mail data string to find
the relevant information and saves it, ready to be sent to the LCD, in
tmp_data.

Before you go any further, it’s important that you understand the task of
four variables within this function:

e tmp mail data saves all the data that you want from the parser,
separated by \n characters.

* tmp data is a variable that saves the data in a format ready to be
displayed on the LCD, which means placing \n every 20 or 16 char-
acters (depending on your LCD).

Chapter 14: Building Your First Project 329

* mail data is the main string to be sent to be displayed on the
LCD.

e i is just a counter that lets you know when you’ve copied a
number of characters equal to LCD COLUMNS. When that happens,
it’s time to display the message on the LCD in a new line.

Thus, you have a for loop that goes through each character in tmp__
mail data and does the following things:

a. Adds the character to tmp_data.

b. Checks for the end of a line (LCD_COLUMNS) or \n. If the code
reaches the end of a line without finding \n, it adds \n. Then the
code appends the data to themail data list, using the append ()
function. When this if happens, the code fetches the next line to
be displayed on the LCD, which means resetting the tmp_data and
i variables.

c. Otherwise, if the code detects \ 0, the end of the message has
been reached. It appends this last part of the message tomail
data, also using the rstrip () function. The rstrip () function
removes a character from a string. You want to remove \ 0 because
it’s merely there to help you figure out when you reach the end;
you don’t want it to be part of the message.

d. Increments i at every iteration of the for loop.
e. Returns mail data and number entries.

for character in tmp mail data:
tmp_data += character # Concatenate each character in our
variable tmp_data
Check if you reached the max number of characters per row
or if it is time to do newline

if i == lcd columns or character == '\n':

Add a newline to the end of string, if it doesn't have
one yet

if character != '\n':

tmp _data += "\n"

Appends the data to our list

mail data.append (tmp_data)

Reset variables

tmp_data = ""

i=0
If we reached the last character, it appends the last data
in our mail data list
elif character == '\0':

mail data.append(tmp data.rstrip('\0'))
i += 1 # Increment variable i by 1

return mail data, number entries

330 Part VI: Playing with the BeagleBone

Here’s the complete code:

Read and save current mail
def read save mail (current message) :

ma="" # Clear m list
Save all mail date in list called m
m = feedparser.parse("https://" + USERNAME + ":" + PASSWORD +

"@gmail.google.com/gmail/feed/atom")
Store the number of unread mails in number entries variable
number entries = len(m.entries)
If no emails in inbox, returns mail data empty
if number entries ==
mail data = []
else:
author = m.entries[current message].author # Save author name
title = m.entries[current message] .title # Save mail title
message = m.entries[current message] .description # Save first 100
characters of our mail
Create a string with all the data in a temporary variable
tmp_mail_data = "A:" 4+ author + "\n" + "T:" + title + "\n" + "M:" +
message + "\0"
Clear variables i, tmp_data and mail_data
i=0
tmp data = ""
mail data = []
Go through each character of tmp mail data string
for character in tmp mail data:
tmp_data += character # Concatenate each character in our variable
tmp_data
Check if you reached the max number of characters per row
or if it is time to do newline

if i == lcd columns or character == '\n':
Add a newline to the end of string, if it doesn't have one
yet if character != '\n':

tmp_data += "\n"

Appends the data to our list

mail data.append(tmp data)

Reset variables

tmp data = ""

i=0
If we reached the last character, it appends the last data in our

mail data list

elif character == '\0':

mail data.append(tmp data.rstrip('\0'))
i += 1 # Increment variable i by 1

return mail data, number entries

Chapter 14: Building Your First Project 33 ’

Display selected mail in the LCD screen

This last function displays the email on the LCD, using all the variables
you've created so far. It takes mail data and number entries from the
preceding function as parameters, as well as current message, which
depended on the Previous and Next button presses. Another parameter is the
scroll variable, which should be a value (minimum 0) indicating whether
you want to scroll the message up or down, depending on which button
(Scroll Up or Scroll Down) has been pressed.

The function clears the LCD screen and checks for the number of entries as
follows:

v~ If the number of entries is bigger than 0, the mailbox isn’t empty, and the
function has work to do. After resetting the variables i and tmp_data,
the code goes through each row of the LCD in a while loop.

In this while loop, that runs while 1 is less than 1cd_rows, the code
prepares the message to be displayed line by line. The tmp_data vari-
able saves the part of the mail data variable that you want to display,
depending on the current line as well as the use of the Scroll Up and
Scroll Down buttons.

After this loop, the message is ready to be displayed inside the tmp
data string. When sending the message to the LCD through 1cd.
message (), though, the code strips it of the final \n.

v Otherwise, if the number of entries is 0, display a message saying that
there are no emails in your mailbox.

Display selected mail in the LCD screen
Each time the button scroll down is pressed, it scrolls down our mail by
one line
def display message(mail data, number entries, current message, scroll):
lcd.clear() # Clear LCD screen
Check if there is a mail to display
if number entries > 0:
Reset variables before while loop
i=0
tmp_data = ""
Goes through each row of our LCD
while i < lcd rows:
Prepare message to be displayed in LCD screen
tmp data += mail datal[scroll+i]
i += 1 # Increment variable i by 1
Display final message in LCD screen
lcd.message (tmp_data.rstrip('\n'))
else:
Display following message in your LCD, if there are no new mails
lcd.message ("No new emails in\n your inbox...")

332 Part VI: Playing with the BeagleBone

A\

Setup

The next part of the code is straightforward. It simply uses the functions you
created to define initial conditions, and it creates a time stamp to see when
exactly the program started running.

Initial setup

Updates variables and LCD screen with the latest mail

recent date = latest mail date()

date = recent_date

mail data, number entries = read save mail (current message)

display message(mail data, number entries, current message, scroll)
time stamp = time.time()

The time time () function checks the current time in seconds since the
January 1, 1970. By saving that value into a variable, you create a time stamp.
You can then use the time time () function again and compare the value it
returns to your time stamp to see how many seconds have passed since the
last call of the time time () function. Chapter 11 talks a little bit more about
time stamps and the time library.

The while True: loop

The while True: loop deals with detecting events on the buttons, calling
all the required functions to display the email that you want, as well as the
part that you desired (scrolled up or scrolled down). It’s important to note
that at the end of the loop, the time.time () function determines whether
CHECK LATEST MAIL has elapsed so your program accesses your email only
every CHECK LATEST MAIL seconds.

while True:
check if we have a new mail
if date != recent date:
Reset our variables
current message = 0
scroll = 0
Update our variables and LCD screen with the latest mail
mail data, number entries = read save mail (current message)
display message(mail data, number entries, current message, scroll)
recent date = latest mail date()
else:
Detect if we have pressed button previous
if GPIO.event detected (button previous) :
scroll = 0 # Reset scroll variable
Update our variables and LCD screen with the latest mail
current message = select previous message (current message)
mail data, number entries = read save mail (current message)
display message(mail data, number entries, current message, scroll)
Detect if we have pressed the button next

Chapter 14: Building Your First Project 333

elif GPIO.event detected(button next):
scroll = 0 # Reset scroll variable
Update our variables and LCD screen with the latest mail
current _message = select next message(current message, number
entries)
mail data, number entries = read save mail (current message)
display message(mail data, number entries, current message, scroll)
Detect if we have pressed the button scroll up
elif GPIO.event detected(button scroll up) :
if scroll > 0:
scroll -=1 # Decrements our variable 1 position
Scrolls down one line of text in our message
display message(mail data, number entries, current message,
scroll)
Detect if we have pressed the button scroll down
elif GPIO.event detected(button_scroll down) :
if (scroll+lcd rows) < len(mail data):
scroll += 1 # Increments our variable 1 position
Scrolls down one line of text in our message
display message(mail data, number entries, current message,

scroll)
60 second timer, to check if we have received a new mail
if time.time() - time stamp > CHECK LATEST MAIL:
date = latest mail date() # Update variable date with the most recent
mail date
time_stamp = time.time() # Resets our timer

Wait 5 seconds
time.sleep (LOOP_FREQ)

Adding the LED and Buzzer

No advanced electronics project is complete without an LED. Also, if this
program is supposed to notify you whenever you receive an email, having a
buzzer outputting sound whenever a new mail arrives would be fun. This sec-
tion adds a cherry on the top of your project.

V?‘“\NG! In our experience, some buzzers that are simply connected to a voltage with-

S out anything in between output a deafening, ridiculously sharp sound that will
probably give you nightmares. Given that fact, this project includes a potenti-
ometer that enables you to reduce the intensity of the buzzer, or even mute it,
by limiting the current that goes into the buzzer. We suggest that you double-
check your wiring and your code before you run this script. Buzzers are fun,
but if you happen to have a bug that makes it stay on forever, you may want to
throw your BeagleBone out the window. If that happens, remember that you
can turn off the buzzer quickly by pulling the wire that connects it to GND or
3.3V. It’s generally inadvisable to pull wires on powered-on circuits, but a non-
stopping buzzer is almost a national emergency.

334 Partvi: Playing with the BeagleBone

Wiring the LED and buzzer

Follow these steps or check Figure 14-6 to wire up these new additions:

1. Connect the positive leg (longer lead) of an LED to P9_16 by using a

jumper.
2. Connect a 220 Q or 470 Q resistor between the LED and GND.
&‘“\BER 3. Connect one of the outer legs of the potentiometer to P9_14.
& You could use the buzzer alone, but this project uses a potentiometer in
series with the buzzer so that you can limit its output or even mute it.
4. Connect the other outer leg of the potentiometer to GND.
5. Connect the middle leg of the potentiometer to the positive
wire — the red one — of the buzzer.
6. Connect the buzzer’s negative wire — the black one — to GND.
|
Figure 14-6:
LCD, but-
tons, LED,
and buzzer
wired to the
BeagleBone

Black. fritzing
—

Chapter 14: Building Your First Project 335

NMBER
@&
&

Writing the code for the LED and buzzer

To add functionality for the LED and the buzzer to your code, follow these
steps:

1. Initialize two more variables.

buzzer = "P9 14"
led = "P9 16"

2. Set up two general purpose input/output (GPIO) outputs.

GPIO.setup (buzzer, GPIO.OUT)
GPIO.setup(led, GPIO.OUT)

3. Change the code of the first i f of the while True: loop, which
checks for new email.

check if we have a new mail
if date != recent date:
New stuff starts here
If we have a new mail, it turns our buzzer ON for 2 seconds and
the LED for 10 seconds.
GPIO.output (buzzer, GPIO.HIGH)
GPIO.output (led, GPIO.HIGH)
time.sleep(2)
GPIO.output (buzzer, GPIO.LOW)
time.sleep(8)
GPIO.output (led, GPIO.LOW)
New stuff ends here
Reset our variables
current_message = 0
scroll = 0
Update our variables and LCD screen with the latest mail
mail data, number entries = read save mail (current message)
display message(mail data, number entries, current message, scroll)
recent date = latest mail date()

Running the script of the complete project

It’s time to try the script! Save the latest file — the one that contains the
code for the complete project — and run it. Set those LOOP_FREQ and
CHECK LATEST MAIL constants to values that you feel comfortable with.
Send yourself tons of emails (you can do this automatically with the script
in Chapter 10 in the section “Sending an Email with Python”) to see whether
everything is working properly.

All the code for this project is available at www . dummies.com/cheatsheet/
beaglebone.

http://www.dummies.com/cheatsheet/beaglebone
http://www.dummies.com/cheatsheet/beaglebone

330 Partvi: Playing with the BeagleBone

Chapter 15

Running Your Home Automation
Web Server

In This Chapter
Understanding the advantages of using the BeagleBone for home automation
Exploring home automation web servers
Writing web pages to control outputs and inputs
Controlling house appliances with the BeagleBone

Improving your web server

Fe BeagleBone is an outstanding platform for integrating computation
with electronics, which allows you to create awe-inspiring projects fea-
turing the best of both worlds. In this chapter, you build your very own home
automaton web server — a web page that interacts with the physical world.
The objective of this chapter is to help you build a canvas to which you can
add more features as you desire.

Exploring What You Can Do

This section explores the possibilities of this project and explains the limita-
tions of creating a web server.

The BeagleBone is quite a powerful tool when it comes to home automation.
Because it provides easy access to the web and lots of general purpose input/
outputs (GPIOs), you can do several neat things with it. All the projects from
the other chapters — and more! — can be controlled remotely through the
web server that you build with this chapter. You can control everything from
LEDs to your toaster to your air conditioner. Isn’t that exciting?

Limitations exist, however. The main limitation of this project is the fact that
accessing your BeagleBone from anywhere in the world (through a hosted web-
site) isn’t as straightforward as you might hope. You're limited to accessing the

338 Part VI: Playing with the BeagleBone

BeagleBone through any device — laptop or desktop computer, smartphone,
tablet or even another BeagleBone — that’s connected to your router.

If you really want to control your web server from locations outside your
workplace or home, you can overcome this limitation through a technique
known as router port forwarding. In router port forwarding, a computer — the
BeagleBone, in this case — on your network is made accessible by any com-
puter on the Internet. Explaining this technique is beyond the scope of this
book, but plenty of tutorials are available on the web. If you port-forward
your router and put your website on the Internet, nothing will stop you from
using the web server from anywhere in the world.

Examining the Framework

\\3
To complete this project, you should know the basics of BoneScript, HTML,

and CSS. If you need more information, read Chapters 7 and Chapter 13.

When you’re done with the project in this chapter, your BeagleBone will be
hosting a web server, establishing a communication between your device’s
web browser and your BeagleBone GPIOs. Your web server is created with
some Node. js code, and when you access IP address 192.168.7.2:8888,
your web browser requests two files — index.html and stylesheet.
css — that are stored on your BeagleBone (see Figure 15-1). Those files

are displayed like regular web pages in your web browser so you see a nice
graphical user interface (GUI).

Node web server
Web browser with socket.io
192.168.7.2:8888

Index.html
stylesheet.css

Figure 15-1:
Diagram

of the BeagleBone
framework. outputs/inputs

192.168.7.2 is the local USB address of your BeagleBone; 8888 is the port
that you'll be using. A port is an application-specific software construct that

acts as the endpoint on a computer’s operating system. Theoretically, you can
use any number from 0 to 65535 as the port, but some numbers won’t work
because they’re reserved — for example, 3000 is reserved for the Cloud9 IDE.
You can try whichever port you want, but rest assured that 8888 works just fine.

\\J

When you click one of the buttons on your web page, an event triggers and
talks with your Node . js code, which has the package socket . io listening
for an event to occur. Based on that event message, your Node . js code can
either read from or write in your BeagleBone’s pins.

The following sections get into the specifics.

Installing socket.io

Your BeagleBone comes with most Node . j s packages that you need, but
for this project, you have to install an additional package called socket . io.
Type the following commands in a terminal:

sudo npm install update
sudo npm install —g socket.io

The first command updates the list of all available packages to the latest
version, and the second one installs socket . io globally. This package
allows real-time communication between your web-browser events and your
BeagleBone. In other words, as soon as you click a button on your web page,
your Node . js code that was listening acts immediately according to the
message sent in that event.

You must ensure that your BeagleBone has an Internet connection before you
update and install the socket . 1o package.

Keeping your files organized

We encourage you to use the Cloud9 IDE as often as possible to program your
BeagleBone. For this chapter particularly, Cloud9 is perfect for running and
debugging projects in Node. js.

Keeping your files organized is a must. Follow these steps to get organized:

1. Create a new folder called controllingOutputs.
This folder is where you're going to store all the other files.
2. Create the following files in the controllingOutputs folder:
e A JavaScript file named server.js
e An HTML file named index.html

e A CSS file named stylesheet.css

Chapter 15: Running Your Home Automation Web Server 339

34 0 Part VI: Playing with the BeagleBone

Repurposing your previous HTML and CSS

Chapter 13 explains how to build a website. If you've already worked through
that chapter, you can start by copying the website files to your new files
index.html and stylesheet.css.

GMBER We don’t describe the changes that we made in our stylesheet.css file
because they're really minor and not relevant to this chapter. If you've read
Chapter 13, you should be able to make these changes easily, or customize
your web page to look as you prefer. You can also download those files at
www . dummies.com/cheatsheet /beaglebone

Wiring Your Circuit

For the circuit, you need a breadboard, a light-emitting diode (LED), a 220Q
or 470 resistor, and two jumper wires. The LED must be connected to

pin P9_14 of your BeagleBone. For details on how to wire this circuit, read
Chapter 7.

This project isn’t about the LED; it’s about getting the communication
between your web server and the BeagleBone running. Normally, lighting
up an LED is the first thing you do when employing a new technique. In this
case, the new technique is working with the web server. In fact, every elec-
tronics enthusiast rejoices whenever they are able to light up an LED with a
different technology. But here’s the most important thing: If you can control
an LED, you can control any electronic device — such as your toaster, your
desktop light, or your air conditioner — through a neat web page that you
can access with your smartphone or tablet from the comfort of your sofa.
How cool is that?

Writing Vour Web Page

You can download all the code used throughout this chapter at www.
dummies.com/cheatsheet /beaglebone

At first, your index.html file will be very similar to the web-page file in
Chapter 13. It simply has a few basic tags: <html>, <head>, and <body>. You
give a title to your web page and link it to your stylesheet . css file. Finally,
you insert a wrapper, a logo, a footer, and some <div> tags to organize your
content in a centered container. Nothing new here.

http://www.dummies.com/cheatsheet/beaglebone
http://www.dummies.com/cheatsheet/beaglebone
http://www.dummies.com/cheatsheet/beaglebone

Chapter 15: Running Your Home Automation Web Server

<!DOCTYPE html>
<html>
<head>
<title>Home Automation Web Server with BeagleBone</title>
<link rel="stylesheet" href="stylesheet.css" type="text/css" />
</head>
<body>
<div id="wrapper">
<div id="logo"><hl>Home Automation Web Server</hl></div>
<div id="container" align="center">
</div>
<div id="footer"><p>Powered by BeagleBone</p></div>
</div>
</body>
</html>

Creating your GUI

The best thing about this project is that it makes building your own GUI easy.
You don’t need a terminal window to input data in or read your data from.
Inside the container <div>, type the following code, which displays in your
web page the word LED with a heading number two:

<h2>LED</h2>

Below your heading number two, you should have a paragraph tag (<p>)
that’s updated when you click the buttons and that also gives you feedback
on the LED’s status (on or off):

<p id="outputStatus">Status</p>

In the next snippet of code, you create two buttons that appear on your web
page. When you click these buttons, the changeState () function is trig-
gered. This function takes only one parameter: state, which can be 1 or 0.

<div id="buttons">
ON
O0FF</1li>
</div>

Adding JavaScript to your web page

Inserting scripts into your web page makes the page interactive. Any scripts
that you want to add to your web page always go inside the <head> tag. Type
the following line of code:

<script src = "/socket.io/socket.io.js" ></script>

341

34 2 Part VI: Playing with the BeagleBone

That snippet of code imports the socket . io library, which is required for
establishing a communication between your web page and your server.

Next, you add JavaScript to your web page by adding <script> tags:

<script>
// Your JavaScript code goes here
</scripts>

Explaining your main JavaScript

All the code in this section goes inside the <script > tags. First, you have to
establish communication with your server with the io.connect () function:

// Establishing connection with server
var socket = io.connect() ;

The changeState (state) function is triggered every time you click a
button in the interface. This function takes a state parameter. If state
is equal to 1, it emits a changeState event that tells your BeagleBone
that it has to turn on the LED. It also updates the paragraph with the ID
outputStatus to “Status: ON”.

// Changes the led state
function changeState (state) {

if (state==1)
// Emit message changing the state to 1
socket.emit ('changeState', '{"state":1}');

// Change led status on web page to ON
document .getElementById ("outputStatus") .innerHTML = "Status: ON";

}
else if (state==0)
// Emit message changing the state to 0
socket.emit ('changeState', '{"state":0}');
// Change led status on web page to OFF
document .getElementById ("outputStatus") .innerHTML = "Status: OFF";

}
The following paragraphs break down the new functions.
The emit () function takes two parameters:
socket.emit (<event name>, <event messages)

V” event name is a string with the event name that your server. js file is
listening to.

V” event name is an object with one value called state, which is 1 or 0.

Chapter 15: Running Your Home Automation Web Server 343

The getElementById () function searches for an HTML tag with the ID
outputStatus and changes the HTML content of that tag to “Status:
ON”, as shown in the following snippet of code:

document .getElementById("outputStatus") .innerHTML = "Status: ON";

Describing the whole communication process in such detail makes it look
as though it will take forever for an LED to turn on or off, but as soon as you
start experimenting with this project, you see that this occurrence happens
immediately.

\\j

Running Your Web Server

This section describes how to create and run a web server. You use some
new JavaScript functions and modules for real-time communications. This
section is where you see and understand the code you have to run in the
Cloud9 IDE to serve your index.html and stylesheet.css files.

Loading modules and
initializing a variable
First, you load all the modules required by server. js, such as the following:

v http: This module offers an easy way to interface with the HTTP protocol.
v £s (file system): This module allows you to access your file system.
v path: This module has utilities to handle and transform file paths.

v bonescript: This module makes interactions with your BeagleBone’s
GPIOs as easy as possible.

//Loading modules

var http = require('http');
var fs = require('fs');

var path = require('path');
var b = require('bonescript') ;

Next, you create a new variable called 1ed, which refers to pin P9_14 on your
BeagleBone, and initialize that pin as an OUTPUT:

// Create a variable called led, which refers to P9 14
var led = "P9_14";

// Initialize the led as an OUTPUT

b.pinMode (led, b.OUTPUT) ;

344 Part VI: Playing with the BeagleBone

Creating your web server

This part of the code is the trickiest part. The following snippet creates your
web server on port 8888. This code is executed only when you access the
web page through your web browser. It starts by opening your index.html
file; then it checks whether you have a . css file. If it finds one, it styles your
web page. If you don’t have your files in the same folder as your server.

js file, the web page will be blank, displaying a 404 (page not found) error
message.

// Initialize the server on port 8888
var server = http.createServer (function (req, res) {
// requesting files
var file = '.'+((req.url=='/"')?'/index.html':req.url);
var fileExtension = path.extname (file);
var contentType = 'text/html';
if (fileExtension == '.css'){
contentType = 'text/css';
}

fs.exists(file, function (exists) {
if (exists) {
fs.readFile(file, function(error, content){
if (terror) {
// Page found, write content
res.writeHead (200, {'content-type':contentType}) ;
res.end(content) ;

}
}

elsef
// Page not found
res.writeHead (404) ;
res.end('Page not found');

}
1

}).1listen(8888) ;

Establishing socket communication

The code in this section is dedicated to establishing the socket communica-
tion. First, you have to load socket .io module.

// Loading socket io module
var io = require('socket.io') .listen (server) ;

Sockets are methods for establishing communication between a client program
and a server. Normally, a server runs on a specific computer — in this case,
the BeagleBone — and features a socket that stays listening. While listening,
the server is waiting for a client to make a connection request. A socket is

WING/

the endpoint of a two-way communication. Simply put, a socket is like your
house’s mailbox: It’s the place you go to fetch the data that arrives.

When communication is established, the code waits for an emit with
the 'changeState' event name. As soon as that event is triggered, the
handleChangeState () function executes.

// When communication is established
io.on('connection', function (socket) {

socket.on ('changeState', handleChangeState) ;
1)

The handleChangeState (data) function takes a parameter called data,
which contains a string that shows the current state of your LED. Then

the code gets the data by using the JSON.parse () method. Next is the
digitalWrite () function, which is the code that actually turns your LED
on or off.

// Change led state when a button is pressed
function handleChangeState (data) {
var newData = JSON.parse (data) ;
console.log("LED = " + newData.state) ;
b.digitalWrite (led, newData.state);

}

If all goes well, a few seconds after you click Run in the Cloud9 IDE, you see a
message in the output window saying that the server is running and waiting
for a client (your web browser) to make a connection request:

// Displaying a console message for user feedback
server.listen(console.log("Server Running ..."));

Launching your web server

Launching your web server is easy. You simply save all three files. Click Run
in the Cloud9 IDE, and you should see a message in your output window that
says Server Running....

That’s it! Your web server is up and running, ready to be accessed. Open a
tab in your web browser, and type 192.178.7.2:8888. You see a page similar
to Figure 15-2.

This code works only if your computer is connected directly to the
BeagleBone by USB. If that’s not the case, read the next section to see how
to access the BeagleBone through a device connected in your workspace
network.

Chapter 15: Running Your Home Automation Web Server 345

346 Part VI: Playing with the BeagleBone

Figure 15-2:
Project
controlling
outputs run-
ning on the
BeagleBone
Black.

L:Jc\:uc\S-C\cucIS X Home Automation Webs: % |
\

<« C A [J192.168.7.2:3888 el ow| =

Home Automation Web Server

LED

Status: ON

Powered by BeagleBone

Accessing Vour BeagleBone
with Another Device

With the setup described in the preceding section, you can access your
BeagleBone only with devices that are connected directly to your BeagleBone
via USB, such as your laptop. The reason is that 192.178.7.2 is the board’s
local USB IP address. Perhaps it would be cooler to access the BeagleBone
through its Ethernet IP — that is, the address it occupies on your home or
office network.

Start by connecting your BeagleBone to your router with an Ethernet cable.
In a terminal window — either in the Cloud9 IDE or at a terminal connected
via secure shell (SSH) — type the following command:

ifconfig

You should see something similar to Figure 15-3. The ifconfig command dis-
plays various information about your Linux computer’s network accessibilities.
You see, for example, that usb0 has the address 192.168.7. 2, as expected.

What you're interested in is the Ethernet [P address, which appears imme-
diately after etho and is called out in Figure 15-3. That address is the
BeagleBone’s IP address in our home network, so it should be a different
address for you. Instead of typing 192.168.7.2:8888 in the web browser, you
can type your address instead, followed by the port, which is 8888. You can
do this on any device — such as a tablet or smartphone — that’s connected
to the same router as the BeagleBone, allowing you to access the web page
and, ultimately, the BeagleBone’s GPIOs.

Chapter 15: Running Your Home Automation Web Server

[clouds - Clouds % \ [} Home Automation Webs: X] n]
€ 5 C fi [)19216872 n

» i douas

n (req, res) {
html":req.url);
ontentType
bash - "beaglebone

:/var/1ib/cloud9# ifconfig
:d0:94

errors:@ dropped verruns:@ frame:e
ES6 errors:® dropped:® overruns:® carrier:@
P txqueuelen:1600

|
:1/128 Scope:Host
1 . UNNING MTU:65536 Metric:1
Flgure 15-3: cets:B814 errors:@ dropped:@ overruns:® frame:@
. ce 14 errors:® dropped:@ overruns:@ carrier:0
Entering
. . RX bytes:65p851 (638.5 KiB) TX bytes:653851 (638.5 KiB)
the ifconfig
command. -
— S € e
Ethernet IP
address

Dropping Your LED and Controlling
an Appliance

We hope you’re happy about seeing that LED light up! We know that it’s
just an LED, but socket communication isn’t a very trivial thing, and it’s an
extremely useful concept.

Controlling some house appliances may be more exciting than lighting up an
LED. You can easily and immediately replace the LED with a new component
that allows you to control any device that connects directly to the sockets on
the wall.

The easiest route is to get yourself a PowerSwitch Tail Il (www . powerswitch
tail.com), which provides a safe way of dealing with high-voltage devices
(see Figure 15-4).

http://www.powerswitchtail.com
http://www.powerswitchtail.com

348 Part VI: Playing with the BeagleBone

|
Figure 15-4:
Power-
Switch

Tail 1.
|

\\3

Photo courtesy of Adafruit Industries

The way this bulky component works is quite straightforward. Rather than
connecting a house appliance directly to the wall, you connect it to the
PowerSwitch Tail Il which plugs into the wall. The PowerSwitch Tail Il has
three pins that enable it to behave like a simple digital logic device. You con-
nect the device to an output pin of the BeagleBone and GND. Your output pin
will send a signal that’s either HIGH or LOW. Whenever the signal is HIGH,
there’s a connection to the wall socket; when it’s LOW, the connection is
broken, as though the device were unplugged. Table 15-1 shows the pinout
according to the code given earlier in the “Running your web server” section,
in which P9_14 is the pin that provides the signal.

Table 15-1 Pinout of PowerSwitch Tail Il

Pin Number Signal Name BeagleBone Pins
1 +in (3.3V) P9_14

2 -in GND

3 GND Not used

Search for the PowerSwitch Tail II's instruction sheet for more details on how
to wire it up.

There’s another way to have your BeagleBone control a house appliance, but
that method is more complicated, requires a bit of extra knowledge and wari-
ness because you're dealing with alternating current, and involves relay mod-
ules. Also, it’s not directly related to the BeagleBone itself. This book doesn’t
explain the trick, but plenty of tutorials are available on the Internet.

Chapter 15: Running Your Home Automation Web Server 34 9

Adjusting Outputs with PWM

All the projects featured in this book with BoneScript and Python can be
modified to work with a custom interface like the one you’ve been building
in this chapter. (Read Chapters 7 to 11 for details on BoneScript and Python.)
For this project, you need the following supplies:

v A servo motor

v A 1K Q resistor

v Four jumper wires

Use the circuit diagram in Figure 15-5 as a reference.

@

m

o]

(o]

—

D

o

o

3

| m
Figure 15-5:
Aservo
wiredto a
BeagleBone
Black.

350 Part VI: Playing with the BeagleBone

Keeping all your files organized is the key to preventing many annoying bugs
and complications. Set up your folder and files as described in these steps:

1. Create a new folder called adjustingPWM.
That folder is where you’re going to store all the other files.
2. In the adjustingPWM folder, create the following files:
e A JavaScript file named server.js
e An HTML file named index.html

e A CSS file named stylesheet.css

This stylesheet.css file is exactly like in the examples earlier in this chap-
ter. Keep in mind that the index.html file also starts from the same place in
all examples.

The following code shows the part of the index.html file that should be the
same for all the examples in this chapter:

<!DOCTYPE html>
<html>
<head>
<title>Home Automation Web server with BeagleBone</titles>
<link rel="stylesheet" href="stylesheet.css" type="text/css" />
<script src = "/socket.io/socket.io.js" ></scripts>
</head>
<body>
<div id="wrapper">
<div id="logo"><hl>Home Automation Web server</hls></divs>
<div id="container" align="center"s>
</div>
<div id="footer"s<p>Powered by BeagleBone</p></div>
</div>
</body>
</html>
<!--All the code up until this point will always be the same.-->

Designing the GUI

This project is quite fun to experiment with! You have a slider that you can
drag to adjust the pulse-width modulation (PWM) output. Start by creating a
heading 2 that tells what your project is all about:

<h2>Servo Position</h2>

\\3

Chapter 15: Running Your Home Automation Web Server 35 ’

Next, you use the HTML <input> tag:

<input type="range" min="0" max="1" step="0.1" onchange="changePosition(this.
value) ">

This tag has five attributes:

v type: Displays a range element on your web page

v min: Sets the minimum value for an input (in this case, 0)
” max: Sets the maximum value for an input (in this case, 1)
v step: Sets the interval between values (in this case, 0.1)

»” onchange: Executes the changePosition (this.value) function
every time you drag the slider

If you start dragging your slider a few steps to the left, and then suddenly
stop and release the slider, the last value is sent to your server to update its
current servo position.

As soon as you can move a servo, you can adjust the brightness of an LED or

the intensity of a buzzer, to name a few examples. This example is just an idea
to spark your creativity, displaying how PWM can be controlled through your
web server.

Writing your main script

All the following code goes inside <script> tags. First, you have to establish
a communication with your server with the io.connect () function:

// Establishing connection with server
var socket = io.connect () ;

Next, you create a new function called changePosition (value), which
takes only one parameter value that refers to the last value read from the
slider.

The emit () function triggers a changePosition event that goes with a
message telling your server the last position of the slider:

// Changes the servo position

function changePosition (value) {

// Emit message changing the servo position to a value from 0 to 1
socket.emit ("changePosition", '{"position":"' + value +'"}');

}

352 Part VI: Playing with the BeagleBone

Creating your web server

The next bit of code is quite similar to the preceding ones. In fact, parts are
exactly the same, so we explain only the newest parts, which are highlighted
with bold.

//Loading modules

var http = require('http');
var fs = require('fs');

var path = require('path');
var b = require('bonescript');

// Create a variable called servo, which refers to P9 14
var servo = "P9_14";

// Initialize the server on port 8888
var server = http.createServer (function (reg, res) {
// requesting files
var file = '.'+((req.url=="/"')?'/index.html':req.url);
var fileExtension = path.extname(file);
var contentType = 'text/html';
if (fileExtension == '.css'){
contentType = 'text/css';
}
fs.exists(file, function(exists){
if (exists) {
fs.readFile(file, function(error, content){
if (lerror) {
// Page found, write content
res.writeHead (200, {'content-type':contentType}) ;
res.end (content) ;

H

}

elsef
// Page not found
res.writeHead (404) ;
res.end('Page not found');

}

D

}).listen(8888) ;

// Loading socket io module
var io = require('socket.io').listen(server);

// When communication is established
io.on('connection', function (socket) {
socket.on('changePosition', handleChangePosition) ;

DE

Chapter 15: Running Your Home Automation Web Server 353

// Change servo position according to the slider value
function handleChangePosition(data) {
var newData = JSON.parse (data);
b.analogWrite (servo, newData.position, 60,
console.log("Servo Position = " + newData.position));

}

// Displaying a console message for user feedback
server.listen(console.log("Server Running ..."));

The hardest and most complicated part of this code is the part that deals
with running and communicating with the web server itself. Listening to com-
mands from a web browser doesn’t involve any changes. What changes is
what you want to do. In this case, you want to control a servo, not set an LED
on or off. You start by creating a new variable:

// Create a variable called servo, which refers to P9 14
var servo = "P9 14";

Next, you need to handle what comes through your socket. Specifically, as
soon as the web browser establishes a connection, you're interested in the
sliding bar’s current position, which is returned when the changePosition
event is triggered, and you want the handleChangePosition () function to
be called.

// When communication is established
io.on('connection', function (socket) {

socket.on ('changePosition', handleChangePosition) ;
D F

This function features code that you're already used to if you've completed
the “Establishing socket communication” section. The JSON.parse ()
method extracts the data from the socket communication; then it writes the
PWM value into the pin of the servo and prints a message about the servo’s
position.

// Change servo position according to the slider value
function handleChangePosition(data) {
var newData = JSON.parse (data);
b.analogWrite (servo, newData.position, 60,
console.log("Servo Position = " + newData.position));

354

Part VI: Playing with the BeagleBone

Figure 15-6:
Project
adjusting
PWM run-
ning on a
BeagleBone
Black.
|

Launching the web server
to control a PWM output

To launch your web server, you save all three files and click Run in your
Cloud9 IDE. When you open your web server, you see a page similar to the
one shown in Figure 15-6.

Drag the slider left and right. Enjoy watching your servo move according to
your slider bar’s position!

EJ cloudd - Cloudd x Home Automation Webse x

= C A [)192.1687.2:0988 el 2 =

Home Automation Web Server

Servo Position

Powered by BeagleBone

Connecting a temperature sensor

The preceding sections showed how to control outputs through a web server,
but it’s also helpful to know how to read and treat inputs. You can create
your own weather station that tells you the room temperature, humidity, and
brightness level. You can have a passive infrared (PIR) sensor displaying on
your web page when someone enters your room. You can even have a wind-
speed sensor in your window. There are lots of possibilities.

To add a temperature sensor, you need the following items:

v A breadboard
v Three jumper wires

v A temperature sensor TMP36, which has three pins wired as shown in
Figure 15-7

Chapter 15: Running Your Home Automation Web Server 355

\NG/
Vg,“

Figure 15-7:
Temperature
sensor
wiredto a
BeagleBone
Black.

You can use any temperature sensor if you can extract the important details of
its datasheet and make the appropriate changes in the code.

The BeagleBone’s Analog-to-Digital Converter (ADC) input pins can only
handle input voltages up to 1.8V. If you feed one of them with more than that,
things might get nasty. The TMP36 temperature sensor that we suggest you to
use surpasses 1.8V only for 266 degrees F (130 degrees C), so it should be safe
to wire it directly to the BeagleBone. If you use another sensor, one that sur-
passes 1.8V at a much lower temperature — or if you're afraid that the TMP36
will read more than 266 degrees F — you need to use a voltage divider and
slightly adapt the code. You can read more about this in Chapter 10.

s)
m
Q
(o}
—
(3]
les)
(o]
=
m

356 Part VI: Playing with the BeagleBone

As usual, keeping all your files organized is the key to preventing many
annoying bugs and complications, so we suggest that you follow these steps:
1. Create a new folder called readingInputs.
That folder is where you’re going to store all the other files.
2. In the readingInputs folder, create the following files:
e A JavaScript file named server.js
e An HTML file named index.html
e A CSS file named stylesheet.css
The stylesheet.css file is exactly the same as the file discussed earlier

in this chapter. The beginning of the index.html page, which affects the
design of the web page, is also the same.

Writing your web page

For this project, you don’t really have a GUI. You aren’t prompted to click or
change anything. You just look at the page to read information about your
sensor. As before, start by displaying on your web page what your project is
about:

<h2>Temperature</h2>

Next, add a heading 3 with the ID temperature, which is where you output
the current temperature values:

<h3 id="temperature"></h3>

Inside your main <script> tags, you have to establish a communication
with your server with the io.connect () function:

var socket = io.connect () ;

This time, you don’t want to emit data to your server. Instead, you wait for
your server to send a new temperature value. When the sensorsUpdate
event is triggered, you receive a new input reading that’s extracted with the
JSON.parse () method.

Next, you do some math with the voltage that you received to calculate tem-
perature in Celsius and Fahrenheit. Finally, by using the getElementById ()
function, you update the HTML tag with the temperature ID showing the
latest temperature reading.

Chapter 15: Running Your Home Automation Web Server 35 7

socket.on('sensorsUpdate', function (data) {
// store new data on reading variable
var reading = JSON.parse(data);
// calculate the temperature according to our voltage
var voltage = reading.temperature * 3.3;

var temperatureC = (voltage-0.5) * 100;

var temperatureF = (temperatureC * 9/5) + 32;

// Displaying temperature in C and F in the web page
document .getElementById ("temperature") .innerHTML = " " +

Math.round (temperatureC)
+ "°C " + Math.round (temperatureF) +
" ° ; ol ;

) g

Creating your web server

The following script is quite similar to the preceding ones, so this section
explains only the newest snippets of code, which are highlighted with bold:

// Loading modules

var http = require('http');
var fs = require('fs');

var path = require('path');
var b = require('bonescript');

// Create variables
var temperature = 'P9_39';
var s;

// Initialize the server on port 8888
var server = http.createServer (function (req, res) {
// requesting files
var file = '.'+((req.url=="/"')?'/index.html':req.url);
var fileExtension = path.extname (file);
var contentType = 'text/html';
if (fileExtension == '.css'){
contentType = 'text/css';
}

fs.exists(file, function(exists) {
if (exists) {
fs.readFile(file, function(error, content){
if (terror) {
// Page found, write content
res.writeHead (200, {'content-type':contentType}) ;
res.end (content) ;

358 rartvi: Playing with the BeagleBone

elsef
// Page not found
res.writeHead (404) ;
res.end('Page not found');
}
D

}) .listen(8888) ;

// Loading socket io module
var io = require('socket.io').listen (server);

// When communication is established
io.on('connection', function (socket) {
s = socket;
// Execute updateSensors function every one second
setInterval (updateSensors, 1000) ;

F;

// Update the new temperature value

function updateSensors () {
temperatureReading = b.analogRead (temperature) ;
s.emit ("sensorsUpdate", '{"temperature":"' +
temperatureReading + '"}');
console.log("Updating Sensor") ;

}

// Displaying a console message for user feedback
server.listen(console.log("Server Running ..."));

The following code creates a new variable called temperature to refer to
your pin P9_39. You also need a variable to store your socket object; we call
it s.

// Create variables
var temperature = 'P9 39';
var s;

When communication is established, this code is executed. As you see, the
setInterval () function executes the updateSensors () function every
second for as long as your web server is running.

// When communication is established
io.on('connection', function (socket) ({
s = socket;
// Execute updateSensors function every one second
setInterval (updateSensors, 1000) ;

F

Chapter 15: Running Your Home Automation Web Server

As its name implies, updateSensors () reads the current value of the tem-
perature value and uses the emit () function to send that reading to your
web page, which is listening for the sensorsUpdate event to occur.

// Update the new temperature value
function updateSensors () {
temperatureReading = b.analogRead (temperature) ;
s.emit ("sensorsUpdate", '{"temperature":"' + temperatureReading +
[ll} ") ;

console.log("Updating Sensor");

Launching the web server for your
temperature monitoring

Simply save all three files and click Run in your Cloud9 IDE. Open your web
server. A page similar to the one shown in Figure 15-8 should appear.

—=
& clouds - Cloudy x Home Automation Webs: X |
<« C M [0192.1687.2:8388 9o s =
Home Automation Web Server
—
Figure 15-8: Temperature
Project 24°C 76°F
reading
inputs run-
ningona
BeagleBone Powered by BeagleBone
Black.
—

See whether the temperature is correct according to your common sense. We
don’t expect you to be able to pinpoint the temperature, but if the tempera-
ture reading is off, it’ll be really, really off. You should be able to notice that.

359

360 Part VI: Playing with the BeagleBone

Taking this project further

We don't think it's necessary to elaborate on
more outputs and sensors that you could con-
nect to the BeagleBone. This chapter explains
the three most important things for interacting
with the physical world: digital outputs and
analog (PWM) outputs and inputs. Whatever
ideas you have next are within your reach.

You could incorporate a PIR motion sensor
(described in Chapter 8) and create a simple
surveillance system for your home. A message
could appear on your web page, saying An
individual entered your room #
seconds ago!,and a buzzer could sound. In
the same fashion, you could have a PIR sensor

counting the number of people who go in and
out of your room, store, or office in a day. That's
interesting data.

The coolest thing about home automation is
that you can keep adding new things forever.
You could end up with a web page that pro-
vides loads of data about what's going on your
house, or you could have the BeagleBone turn
on several appliances, such as an air condi-
tioner or a sound system, from anywhere in
your house. This chapter is meant to be used as
your canvas; from this point, you should be fully
capable of throwing some ink into the painting.

Part VI
The Part of Tens

the
partof

Visit www . dummies . com/cheatsheet /beaglebone to be introduced to ten
extras software packages to install in your BeagleBone.

http://www.dummies.com/cheatsheet/beaglebone

In this part . . .

v~ Ten amazing projects for the BeagleBone

v Ten resources to give you a pleasant experience with the
BeagleBone

Chapter 16

Ten Amazing Projects for the
BeagleBone

In This Chapter
Discovering some extremely cool projects featuring the BeagleBone
Replicating some amazing projects

Getting the motivation you need to take on projects of your own

rle BeagleBone is an outstanding tool for so many programs because . . .
well, it has pretty much everything. It operates at a very high frequency;
it features all the most popular communications ports; it can be set to
consume very little energy; it can be programmed in a wide array of pro-
gramming languages. It isn’t an overstatement to say that the BeagleBone
offers boundless possibilities in many areas, from fast-reacting systems and
processing-heavy programs to low-consumption vehicles.

This book explores the virtually unlimited possibilities that the BeagleBone
has to offer. The BeagleBone is truly an outstanding device, capable of sig-
nificantly narrowing the gap between having an idea and actually building an
apparatus.

This chapter is here to stir your imagination. It suggests ten amazing projects
for you to consider. Each description includes a link where you can find infor-
mation about these projects. In some cases, the links provide instructions so
you can replicate the projects.

Underwater Exploration Robot

As its name suggests, OpenROV is a tiny yet awesome-looking (just look at
Figure 16-1!) underwater exploration robot. The OpenROV website is very
well organized and provides a great deal of information, such as where to buy
an OpenROV and how to assemble one yourself. All the code and instruc-
tions for building the robot are provided, and the company welcomes anyone
(including you!) to join its mission to explore the ocean.

364 Partvii: The Part of Tens

Figure 16-1:
OpenROV,
the under-

water explo-
ration robot.
|

Photo courtesy of OpenROV

On the website’s Documentation page is an extremely detailed guide to
making your own OpenROV, including how to assemble the chassis and how
to mount the motors, the camera, an Ethernet adapter, and all other neces-
sary electronics. You can download all the software from the same page

and add your own twist to the code. Visit www.openrov. com to find out
more. This project is also featured on the BeagleBoard website at http://
beagleboard.org/project/openrov.

Autonomous Sailboat to Tame the Seas

FASt (see Figure 16-2) stands for FEUP Autonomous Sailboat — an 8.2-foot
(2.5-meter) unmanned and fully autonomous sailing boat created by a group
that Luis was part of at the Faculty of Engineering of the University of Porto.

The sea is a harsh and unstable environment for operating robotic boats.
Even though sailing boats typically are slow vehicles, the data acquired from
the navigation sensors has to be read and processed quickly to actuate the
outputs so that the boat sails where it’s supposed to. At the same time, the
boat has to be able to make the appropriate maneuvers and choose the best
route to the destination. FASt automatically adjusts its sail and rudders by
reading data from sensors that measure the wind, water speed, orientation,
GPS satellites, and other sensors. A BeagleBone Black is the main brain of the
whole operation, running all the software that handles the sensors and actua-
tors, and making the navigation decisions in a clever way.

http://www.openrov.com
http://beagleboard.org/project/openrov
http://beagleboard.org/project/openrov

Chapter 16: Ten Amazing Projects for the BeagleBone 365

Figure 16-2:
FASt, the
autonomous
sailboat.
|

The great thing about sailing robots is that they’re full green devices; they
don’t require motors that eat up huge amounts of energy. Because its com-
puter is powered by solar cells and its electronic system is designed to
consume as little energy as possible, FASt can theoretically stay in the sea
forever, taking on many missions, from performing ocean sampling or sur-
veillance to tracking sea mammals. Interested? Take a look at the website at
www.roboticsailing.pt.

Autonomous Robot for BeagleBone Black

Jon Hoffman decided to start playing around with the BeagleBone Black and
ended up creating a robotic rover. It’s a very interesting ongoing project.
Hoffman’s blog includes step-by-step instructions that cover everything from
assembling the rover to coding it. The goal is to control the rover remotely,
as well as have it drive itself to a destination autonomously.

For such a task, the rover features five rangefinder sonars placed all around
it that precisely and quickly detect its position relative to the objects around
it. The rover also includes a Bluetooth adapter so that it can be controlled
remotely.

http://www.roboticsailing.pt

366 Part VII: The Part of Tens

This project is interesting and fun, and has many degrees of complexity. The
best part is that you can implement the basics — just having the rover drive
around a little bit can spark a great feeling of realization — and then add to
the project incrementally. Hoffman decided to add the sonars, and he still
keeps working to improve the rover with every blog post.

Check out this project at the BeagleBoard website at http://beagleboard.
org/project/FirstRobot. You can also visit Jon Hoffman’s blog at
http://myroboticadventure.blogspot.de.

BoneScript

When programming the BeagleBone, it’s quite probable that you use
BoneScript extensively. It allows you to use many useful capabilities to write
some interesting programs. By providing many intuitive, simple-to-use func-
tions, BoneScript makes it possible for even the newest programmers to
control complex components. We thought it would be interesting to let you
in on the BoneScript project itself so you can understand how Jason Kridner
created a language that brings simplicity to digital electronics.

BoneScript is an interesting — and ongoing — project that provides an excel-
lent platform for input/output programming. Because all its functions are
asynchronous, BoneScript is an excellent library in which to create applica-
tions that rely on fast responses to events. In addition, BoneScript provides
great support for applications that interact with the physical world and the
web at the same time.

To find out more about what’s happening behind the scenes for this pro-
gramming language, visit Kridner’s GitHub page at https://github.com/
jadonk/bonescript. This project is also featured on the BeagleBoard web-
site at http://beagleboard.org/project/bonescript.

Multimedia Center with Kodi

Kodi, formally named as XBMC, is a full-featured, award-winning multimedia
center that’s capable of running on several platforms and in several operating
systems. It’s an open-source entertainment hub that you could install on your
BeagleBone.

When you connect the BeagleBone to the television set through HDMI, watch-
ing videos alone or with your family becomes the easiest thing ever. Just sit
comfortably on the couch, and use Kodi’s remote-controlled user interface.

http://beagleboard.org/project/FirstRobot
http://beagleboard.org/project/FirstRobot
http://myroboticadventure.blogspot.de
https://github.com/jadonk/bonescript
https://github.com/jadonk/bonescript
http://beagleboard.org/project/bonescript

Chapter 16: Ten Amazing Projects for the BeagleBone 36 7

NG/
Vg‘“

(You can even use a smartphone as the remote control!) You can use Kodi
to play and view most videos, music, podcasts, and digital media in general
from local and network storage, as well as from the Internet.

The wiki and forums are full of helpful material to make sure you have an
enjoyable experience using Kodi, whether you want to develop for it or
simply use it. The website provides everything you need to get Kodi up and
running and to get the most out of it; if you’d like to get involved with the
project, you can see how at their website. Visit http://kodi.tv to find out
more. This project is also featured on the BeagleBoard website at http://
beagleboard.org/project/XBMC.

Kodi is quite a heavy application for the BeagleBone. Make sure that you have
very few other programs running to have a smooth experience.

BeagleBone Gaming Console

|

Figure 16-3:
BeagleBone
GamingCape.
|

Max Thrun decided to bring together many existing open-source BeagleBone
capes to create GamingCape (see Figure 16-3), a handheld game console

that features a BeagleBone Black and is reminiscent of the classic Nintendo
Game Boy.

L
:;,t;{._ir;’l’.l"_" !

Gk %

Photo courtesy of Max Thrun

http://kodi.tv
http://beagleboard.org/project/XBMC
http://beagleboard.org/project/XBMC

368 Partvit: The Part of Tens

GamingCape is truly a marvelous piece of work. Electronics, software, and a
little bit of materials knowledge have been brought together to create a hand-
held emulator that features several classic games for NES, Sega, and Game
Boy systems. It can even run the good old Doom because it has all the neces-
sary components: a color LCD, a joystick, and two thumb buttons, as well

as plugs for headphones and a microphone. Max Thrun, the creator of the
GamingCape, says, “Just drop in 4 AAA batteries and you’ll be playing your
favorite games diseretely-at-work in no time”.

Visit Thrun’s blog at http://bear24rw.blogspot.pt/2013/07/beagle
bone-gamingcape.html to find out more about this project.

BeagleBone As Super Nintendo

A guy named Andrew Henderson thought that it would be a good idea to turn
his BeagleBone into a Super Nintendo — and we couldn’t agree more. With
the BeagleBone Black, you have a chance to take a trip down Memory Lane
by creating your own game system.

The so-called BeagleSNES project is an entire Linux file-system image that
turns the board into a stand-alone console, enabling you to play game titles
for Super Nintendo by using an emulator and an HDMI port or an LCD3 cape.

Naturally, a Super Nintendo console and the BeagleBone Black have quite dif-
ferent hardware. The BeagleBone Black runs at 1 GHz, for example, whereas
the SNES runs at 3.58 MHz, which is much, much slower. This difference in
the frequency at which they run allows each hardware instruction that would
take place on the SNES to be emulated in the software of the BeagleBone
Black, even if the BeagleBone Black requires many instructions to translate
just one instruction from the SNES. Because the BeagleBone Black is much
faster, it has plenty of time to run the extra instructions.

The BeagleSNES website features some very neat trailers as well as complete
documentation and links to download all the source code. Whether you want
to hack the code to make your own thing or you just want to play some of
the old games you remember from years gone by, everything you need is at
http://beaglesnes.sourceforge.net/. This project is also featured
on the BeagleBoard website at http://beagleboard.org/project/
beaglesnes.

http://bear24rw.blogspot.pt/2013/07/beaglebone-gamingcape.html
http://bear24rw.blogspot.pt/2013/07/beaglebone-gamingcape.html
http://beaglesnes.sourceforge.net/
http://beagleboard.org/project/beaglesnes
http://beagleboard.org/project/beaglesnes

Chapter 16: Ten Amazing Projects for the BeagleBone 369

BeagleBone Cape for Drones

\\3

Ron and Traci Battles started their website as a simple hobbyist blog. Now
the site is a full-fledged business. The couple love to create products that
extend the capabilities of open-source platforms such as the BeagleBone.

One project, the BeagleDrone, is an autopilot project that uses a BeagleBone and
an Inertial Measurement Unit (IMU) cape. The IMU cape provides a three-axis
magnetometer, accelerometer, gyroscope, and barometer — everything neces-
sary for you to know the exact position of a device along a three-axis referential.

Additionally, two of the BeagleBone’s UARTs (Universal Asynchronous
Receiver/Transmitter) have connectors for external modules such as GPS
and telemetry. The BeagleDrone also features a voltage regulator, which
makes it possible for power to come from a Reverse Capacity (RC) battery,
keeping the voltage at 5V DC. Consequently, you can power the BeagleBone,
the communication modules, and any servo motors. All this hardware makes
the BeagleDrone a perfect device for any flying project in which you want to
invest your time and creativity.

The BeagleBone’s powerful 32-bit microcontroller and Linux’s extensive
libraries provide the foundation for this project and have very few limita-
tions, allowing your imagination to soar as high as your project (lame pun?).

You can check out this project at http://andicelabs.com/beagledrone.
The project is also featured on the BeagleBoard website at http://beagle
board.org/project/BeagleDrone.

You should drop by the Battles’ website — http://andicelabs.com —to
see more interesting stuff!

Desktop Five-Axis CNC Mill

A CNC (computer numerical control) mill is a machine that’s used to create
pretty much everything. It operates by cutting a piece of material to the
desired shape. CNC mills have been around for industrial purposes for a long
while, but over the past decade, there has been remarkable growth in people’s
desire to build things themselves. This growth has created a new market for
personal CNC mills that can sit on a desktop.

Normally, these machines cut material in the three translational axes of
motion: X, Y, and Z. Matt Hertel and his crew decided to go one step further
by creating Pocket NC (see Figure 16-4), a desktop five-axis CNC mill that
allows for the manufacture of complex parts. Among desktop CNC mills, five-
axis capability is quite an innovation.

http://andicelabs.com/beagledrone
http://beagleboard.org/project/BeagleDrone
http://beagleboard.org/project/BeagleDrone
http://andicelabs.com

370 Partvii: The Part of Tens

Figure 16-4:
Desktop
CNC mill.

Photo courtesy of Pocket NC

A BeagleBone Black handles the computational prowess of motion control,
running extremely precise software that decides how the Pocket NC operates
to cut the material to the desired shape. For the electronics part, Hertel’s
team designed a custom-made cape for the BeagleBone. The board runs a
Linux distribution specially created for this kind of job: LinuxCNC. Head over
to www.pocketnc. com if you want to find out more. This project is also fea-
tured on the BeagleBoard website at http://beagleboard.org/project/
pocketnc.

BeagleBone 3D Printer

Elias Bakken, Tom Andersson, and Jyvind Dahl at Intelligent Agent AS came
up with the phenomenal idea of creating a 3D printer featuring either the
BeagleBone or the BeagleBone Black. They named their printer Replicape.

Replicape is an open-source 3D printer cape for the BeagleBone. It’s
extremely fast; its source code can be altered for customization; and it pro-
vides access to the Internet.

The Replicape website provides a lot of documentation, including a wiki,
and many interesting videos. We suggest that you watch the short video at
www.thing-printer.com/product/replicape not only to hear about
this project from Bakken himself, but also to watch it in action. This project
is featured on the BeagleBoard website at http://beagleboard.org/
project/Replicape.

http://www.pocketnc.com
http://beagleboard.org/project/pocketnc
http://beagleboard.org/project/pocketnc
http://www.thing-printer.com/product/replicape
http://beagleboard.org/project/Replicape
http://beagleboard.org/project/Replicape

Chapter 17

Ten Resources and Tips for
BeagleBone Users

In This Chapter
Discovering where to buy components and parts for your projects
Finding places to get more information about the BeagleBone
Finding out where to get project ideas
Getting acquainted with the BeagleBoard community
Exploring the advantages of sharing your BeagleBone projects

' his chapter introduces you to ten useful resources that can help you get
the most out of your BeagleBone.

The first part of the chapter focuses on tips on getting started with digital
electronics — where to buy the required tools and components, for example.
Later in the chapter, we provide some guidance on how you can continue
learning and improving your skills as a BeagleBone programmer. This chapter
is the last chapter of BeagleBone For Dummies, but it shouldn’t be your last
experience with the BeagleBone. Your experience is just starting!

Finding Components and Parts

You can get electronic components for your projects in quite a few places. We
encourage you to purchase your components from local stores. Components
such as resistors, light-emitting diodes (LEDs), potentiometers, and motors
are quite standard, and any electronics store should have them.

As your projects grow and you require more specific components, however,
you may find it easier to locate them online. A simple online search can help
you find electronics stores that sell the exact component that you require.
Don’t forget that shipping costs and taxes affect the final price of your com-
ponents when you purchase them online. To save on shipping costs, it’s a
good idea to get them from somewhere close by when you can.

372 Partvii: The Part of Tens

When you do have to order from a store in a remote location, it isn’t a big
deal. Electrical components usually are very small; thus, shipping costs typi-
cally aren’t very high. Whatever component you need, there’s a good chance
that these sites have it:

v Sparkfun: www . sparkfun.com

v Farnell: http://farnell.com

v Radio Shack: www.radioshack.com

v Adafruit: www.adafruit.com

v Tigal: https://www.tigal.com

v Logic Supply: www.logicsupply.com

Acquiring Electronics Starter Kits

In many electronics stores, such as those mentioned in the preceding sec-
tion, you can find plenty of starter kits for electronics newcomers. Starter Kkits
are really great ideas because they save you the time and effort of sorting out
everything you need to get started with digital electronics. These kits come
in different varieties and prices, and the one that’s right for you depends on
how broad you want it to be. A good starter kit includes the following items:

v LEDs

v Resistors

v Potentiometers

v Jumpers

v Needle-nose pliers

v Servo motors

v Buzzers
Naturally, you can go for starter kits that feature many other useful tools
and components, such as wire-cutting and wire-stripping pliers; equipment

wires; and a soldering iron, stand, and glasses. The type of starter kit you get
depends on how far you want to go on your electronics trip.

You can also find BeagleBone Black starter kits. These kits feature a
BeagleBone Black and some useful components and capes to go with it. You
can get BeagleBone Black starter kits from Adafruit (www.adafruit.com/
product/703) and Logic Supply (www.logicsupply.com/components/
beaglebone/boards-cases-kits/bblk-kit).

http://www.sparkfun.com
http://farnell.com
http://www.radioshack.com
http://www.adafruit.com
https://www.tigal.com
http://www.logicsupply.com
http://www.adafruit.com/product/703
http://www.adafruit.com/product/703
http://www.logicsupply.com/components/beaglebone/boards-cases-kits/bblk-kit
http://www.logicsupply.com/components/beaglebone/boards-cases-kits/bblk-kit

Chapter 17: Ten Resources and Tips for BeagleBone Users

Protecting Your BeagleBone with a Case

Figure 17-1:

BeagleBone =

Black case
from Tigal.
|

A good way to keep your BeagleBone safe is to enclose it in a plastic case
specifically designed for the board (see Figure 17-1). Aside from protecting
the board from harmful things that can happen, such as a fall, a case also
helps prevent unconnected wires from creating a short circuit. (Short circuits
are quite hazardous to the board.)

Photo courtesy of Tigal

A case features slots that let you access both headers as well as the USB ports,
power jack, Ethernet jack, power buttons, Micro HDMI jack, and microSD card.
All the USR (user) LEDs are visible with your BeagleBone inside it.

Covers feature feet for mounting the board in slide-in wall slots and vents for
keeping the board cool. Also, a nice cover looks pretty neat, and most covers
are relatively inexpensive.

Attending Events and Workshops

Be on the lookout for nearby events and workshops, which cover all kinds of
topics: robotics, sensor networks, mobile communications, home automation,
and pretty much anything else you can imagine. Getting together with other
electronics enthusiasts gives you a chance to have fun and get some knowl-
edge from others. You can see some really cool projects or even go ahead and
present your own (and there’s also the possibility of free food and coffee).

Universities and schools often hold such events, and there are many inde-
pendent events, such as the popular Maker Faire and the events held by
Hackaday. If you ever have the opportunity to attend a Maker Faire or

373

374 Partvii: The Part of Tens

Hackaday event, we highly recommend the experience! Find a location near
you at http://makerfaire.comor https://hackaday.io/events.

Joining the BeagleBoard Community

The BeagleBoard community is a welcoming, active, and open group of
people with a common interest. The site includes a blog, a live chat, forums,
and videos featuring all kinds of tinkering, hacking, and developing. You can
jump right into this environment by visiting http://beagleboard.org/
Community.

The community page of BeagleBoard.org offers many ways for you to get
involved in the BeagleBoard community, including

v+ Finding solutions for problems you’re having with your board and help-
ing others come up with solutions to their problems

v Checking out interesting ideas from other people

v Showing off your own project

Interacting with the Community

The BeagleBoard community loves helping new users, but before asking
something, there are a few good practices that you should follow.

Asking the same questions over and over again, especially if you can find
answers with just a couple of clicks or an online search, is considered rude.
You should always try to get answers on your own before posting online.
Rooting out a problem without relying on others helps you gain more insight
into digital electronics and the BeagleBone. Plus, if you have a simple prob-
lem that could have been solved by a few minutes of troubleshooting or an
online search, the community may consider it rude that you posted the ques-
tion to the group.

You can visit http://beagleboard.org/support/faq for a collection of
some of the most frequently asked questions.

Here are some tips for getting help on two of the most common types of
questions:

v Hardware: Try posting a figure with your circuit diagram so others can
see exactly how you're wiring your project. Posting links to datasheets
when you mention particular components is also a good practice so that
the community members don’t have to search it by themselves.

http://makerfaire.com
https://hackaday.io/events
http://beagleboard.org/Community
http://beagleboard.org/Community
http://beagleboard.org/support/faq

Chapter 17: Ten Resources and Tips for BeagleBone Users 3 75

1 Software bugs: When you have a bug, don’t copy and paste your whole
code to a forum thread. Instead, use websites created specifically for
code sharing — such as the free http://pastebin.com/ — where you
can copy your code, select the code syntax according to the program-
ming language, and get a unique URL. Posting that link to the forum
thread makes it much easier for others to read your code and help you
with your problem.

Sharing Vour BeagleBone
Projects with Others

If you believe that your project is pretty neat, there are bound to be other
people who think the same thing about it. You can find those people by post-
ing your project online.

The Internet is a great asset for us electronics and computing enthusi-

asts. There are plenty of websites that can help you to share your project.
When you post your project, you can provide step-by-step instructions and
images so that others can try it. You'll receive comments — both good and
bad — and some people will ask questions or offer suggestions. Sharing a
project isn’t just about letting others see it. It’s also about getting advice from
other people and improving it with the help of everyone.

The following three websites are great places to post the details of your
project:

1 Beagleboard.org: http://beagleboard.org/Project

v+ Instructables: www.instructables.com

v Hackaday: http://hackaday.io

Improving by Failing

Electricity works at an atomic level. Many things are happening inside your
circuits that you just can’t see and can hardly visualize. Sure, you have
knowledge to back you up, but an LED can burn out just because you forget
to put a resistor in series with it. Your BeagleBone might even be severely
damaged by a short circuit caused by two random wires that you didn’t even
notice were 5V and GND.

Failing is often annoying, especially when you can’t figure out why something
didn’t work. But the good thing about failing is that if you can root out the

http://pastebin.com/
http://beagleboard.org/Project
http://www.instructables.com
http://hackaday.io

370 Partvi: The Part of Tens

issue, you have gained more knowledge than you would have if you'd suc-
ceeded on your first try. Failing enables you to gain insight into how the elec-
trical world works.

Failing means that you tried. Nowadays, access to most components is easy,
straightforward, and relatively cheap. Whenever you fail, don’t just throw the
project away and start over: try to understand the problem, find a solution,
and come up with an explanation based on what you observed. Search online
if need be. Sooner than you’d guess, you’ll be spouting loads of electrical
knowledge to your friends and family.

Looking for Project ldeas

Chapter 16 suggests some projects that we think are quite interesting, but
they're far from being the only ones out there that should spark your interest.
After all, we chose them based on our tastes, which may be different from yours.

You can check some more projects featuring a BeagleBone at these websites:

v Beagleboard.org: http://beagleboard.org/Project
v Instructables: www. instructables.com/howto/beaglebone
v Hackaday: http://hackaday.com
You should try out the projects that interest you most. These can also spark

your imagination to create something of your own. If you have an idea, don’t
be afraid to follow through with it.

Finding Out More about BeagleBone

This book only scratches the surface of electronics stuff that you can play
around with. Many functions are available other than those that we cover in

the example projects. You may even want to figure out how to program the
BeagleBone by using programming languages other than BoneScript and Python.

The following four websites are great resources to help you continue your
journey:
v Embedded Linux: http://elinux.org/BeagleBoard
1 BeagleBoard: http://beagleboard.org/Support/bonel0l
v Adafruit: https://learn.adafruit.com/category/beaglebone
v Derek Molloy: http://derekmolloy.ie/tag/beaglebone-2/

http://beagleboard.org/Project
http://www.instructables.com/howto/beaglebone
http://hackaday.com
http://elinux.org/BeagleBoard
http://beagleboard.org/Support/bone101
https://learn.adafruit.com/category/beaglebone
http://derekmolloy.ie/tag/beaglebone-2/

Appendix A
Troubleshooting

One frustrating thing about electronics and computation is that quite
often, things don’t work as they should. You find yourself angrily asking
“Why?!”, and you may even blame the BeagleBone for not doing what you
asked it to.

Then you find the source of the issue, and you bring your palm to your face
when you realize how simple the mistake was. You may even apologize to
your computer for having unjustly accused it of causing the problem.

This appendix describes some common issues and explains how to solve
them, and it provides a few tips and tricks on how to tackle problems that
aren’t included in these pages. We hope there won’t be many!

Common Sources of Errors

This section presents a few typical mistakes that even the most experienced
programmers and electronics enthusiasts often experience.

Issue:

The BeagleBone doesn’t power on. Its built-in light-emitting diodes (LEDs)
aren’t lighting up.

Possible causes:

v Not enough power or faulty USB cable/USB port. This may happen if
you have too many peripherals connected to the BeagleBone and you're
feeding it through a USB cable.

v You have a short circuit somewhere in your external wiring. A
short circuit causes the board to shut down to prevent any further
damage — but a short circuit always does some harm.

3 78 BeagleBone For Dummies

Solutions:

v Disconnect some peripherals; try a different USB cable or a different USB
port. If these remedies fail, connect an external DC power source that
can provide more current than a USB cable can.

v The problem might also be in your external DC power source, so if you
have another one, try it.

v Double-check your circuit to ensure that everything’s wired up correctly.
If your board went off immediately after establishing a connection, dis-
mantle that connection, and wire it correctly. If not, grab a multimeter,
and check the continuity. If there’s a short circuit, you hear the “beep” of
P a connection where it shouldn’t be.

You can read all about how to use a multimeter at www.dummies.com/
extras/beaglebone

v If none of the aforementioned solutions works, do a full power cycle.
Press your BeagleBone’s power button for about 10 seconds. It should
shut down and start over. This process isn’t the same as rebooting.

If all these attempts fail, perhaps contacting BeagleBoard.org support is the
way to go. The board may be damaged, and you may have to fill out an RMA
(Return Merchandise Application) form. This page should help you: http://
beagleboard.org/support.

Issue:
The BeagleBone is on, but you aren’t able to log in via Secure Shell (SSH).
Possible causes:

v Faulty USB/Ethernet cable.

v Your USB cable is power-only; it doesn’t feature pins for data transmis-
sion. In this case, the user LEDs of your BeagleBone light up as normal.

v The default IP to connect through Ethernet has changed, so you can’t
log in by typing beaglebone.

Solutions:

v To address the first two causes, attempt to establish the connection by
using other cables. Try to connect your Mini USB cable to other devices
to see whether it can establish a communication.

v If you can’t connect through an Ethernet cable, find the BeagleBone’s IP
address and type it in the terminal window or PuTTY.

http://www.dummies.com/extras/beaglebone
http://www.dummies.com/extras/beaglebone
http://beagleboard.org/support
http://beagleboard.org/support

Appendix A: Troubleshooting 3 79

There are several ways to list all the [P addresses in the network that
your computer is connected to:

¢ For Windows, you can install the Advanced IP Scanner (www .
advanced-ip-scanner.com). All you have to do is click the Scan
button.

e For Linux and Mac OS, you need to install nmap by using the com-
mand sudo apt-get install nmap. Then find your own IP
address in your network by typing ifconfig in the terminal window.
Below etho, look for inet addr. You should see a number with
four fields separated by dots. The first three fields are the same for
all devices connected in the same network. Thus, if your IP address
is something like 192.168.1.12, all other IP addresses have
the format 192.168.1.X. To find all IP addresses in that format,
type nmap 192.168.1.0/24 in the terminal window. This command
shows you all addresses on the network from 192.168.1.0 to
192.168.1.255. One of those addresses is the BeagleBone’s, and
that’s the IP you need to provide to connect to it.

Issue:
The BeagleBone crashed.
Solutions:

v Relax; it probably didn’t crash. It’s just too busy at the moment. Be
patient, and let it finish its tasks.

v If you're controlling the BeagleBone remotely, try pressing Ctrl+C to
terminate the currently running process. If you're running the Desktop
environment, terminate a few programs. Otherwise, wait for a while.

v If your patience has run out, perhaps it really did crash. Reboot the
BeagleBone by pressing the reboot button. It’s a button close to the
Ethernet dongle labeled RESET.

Things Not to Do

This section covers some things that you should avoid doing often, as they
can be hazardous to your board:

v Short-circuiting your board: Short circuits are the bane of all electronic
devices. Even though the BeagleBone features protection against short
circuits — it immediately shuts down — some harm is always done. A short
circuit happens whenever a voltage supply is connected directly to ground
without anything in between. Be careful about doing the following things:

http://www.advanced-ip-scanner.com
http://www.advanced-ip-scanner.com

380 BeagleBone For Dummies

¢ Connecting a 3.3V or 5V wire to a ground (GND) wire: This one
seems like something you wouldn’t do, but it can happen if you're
distracted and mix up your wires. Color coding helps you prevent
this problem.

® Misplacing a component: Plugging a resistor into the wrong hole
may be all it takes to have a 3.3V or 5V wire and GND with nothing
in between, causing a short circuit.

e Forgetting about pull-up resistors: A button doesn’t count as a com-
ponent to place between a voltage source and ground. When you
press a button and no pull-up resistor is present on your circuit, a
short circuit happens.

® Having random unconnected wires floating around: When you walk
past a black cat and break a mirror on a Friday the 13th, you may
have the bad luck of two unattended wires causing a short circuit.
It might seem like a long shot, but it can happen. It has happened.
Make sure to keep your floating wires in check (or avoid having
them at all).

1 Feeding the BeagleBone’s digital pins with more than 3.3V and the
Analog-to-Digital-Converters (ADCs) with more than 1.8V: Often, for
several applications, you will have 5V and 3.3V wires on your bread-
board. You need to pay extra attention in order to never connect any
of the 5V wires to the BeagleBone. Also, you have to keep in mind that
the ADCs can only stand voltages up to 1.8V, so you have to ensure that
the output voltage from the sensors you use don’t surpass this value.
Naturally, you have to be careful to not connect any of the 5V or 3.3V
wires to any of the ADCs as well.

v Turning power off abruptly: The BeagleBone is a computer. Usually,
you don’t turn off a computer by pressing the power button or removing
the battery or plug. The reason: The computer may be damaged when
it loses power unexpectedly. In the specific case of the BeagleBone,
abrupt power loss may corrupt the embedded MultiMediaCard (eMMC)
memory, which isn’t fun.

1 Powering off while installing or updating software: Never turn off the
BeagleBone when it’s installing software or updates. You'll be left with
half-processed operations that may lead to complications.

Miscellaneous

This section covers some useful things you can do on your BeagleBone to
have a smoother experience with it.

Appendix A: Troubleshooting 38’

Expanding the file system
on your microSD card

Initially, when you’re booting your operating system from your microSD card,
you won't get all the space that the card provides — probably not even close.
The reason is that you're still using an image of the operating system, so you
still have to expand the file system to get all the space your microSD card
claims to give you.

To do so, fire up a terminal window, and follow these steps:

1. Log in as the superuser by typing sudo su.
2. Check available volumes with the following command:

1ls -1 /dev/mmcb*

brw-rw---T 1 root floppy 179, 0 Jan 1 2000 /dev/mmcblk0
brw-rw---T 1 root floppy 179, 1 May 15 02:20 /dev/mmcblkOpl
brw-rw---T 1 root floppy 179, 2 Jan 1 2000 /dev/mmcblkOp2
brw-rw---T 1 root floppy 179, 8 Jan 1 2000 /dev/mmcblkl
brw-rw---T 1 root floppy 179, 16 Jan 1 2000 /dev/mmcblklboot0
brw-rw---T 1 root floppy 179, 24 Jan 1 2000 /dev/mmcblklbootl
brw-rw---T 1 root floppy 179, 9 Jan 1 2000 /dev/mmcblklpl
brw-rw---T 1 root floppy 179, 10 Jan 1 2000 /dev/mmcblklp2

3. Find your microSD card in the list, and examine its partitioning with
the following command:

fdisk /dev/mmcblk0

Most of the time, that number should be 0.

4. Type p.

You see various details about the size partitions on your SD card. For
our 16 GB card, for example, we see the following:

Disk /dev/mmcblk0: 16.0 GB, 16013852672 bytes

4 heads, 16 sectors/track, 488704 cylinders, total 31277056 sectors
Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x00000000

Device Boot Start End Blocks Id System
/dev/mmcblkOpl * 2048 198655 98304 e W95 FAT16
(LBA)

/dev/mmcblk0p2 198656 3481599 1641472 83 Linux

382 BeagleBone For Dummies

. Delete partition 2 by typing d and then typing 2.

You delete partition 2 to create a new one that enables you to use all the
space left in your SD card.

. Create a new partition by typing n for new, p for primary, and 2 for

partition 2.

. Press Enter or Return two times.

8. Type p again to see the new /dev/mmcblk0p2, with a lot more avail-

10.

11.

12.

13.

able space.

. To commit to the changes you made, type w.

If you're afraid that you messed up and want to start over, simply press
Ctrl+Z.

Reboot your BeagleBone with the reboot command.
The partitions are created, but you still need to expand the file system.
Log in as the superuser again by typing sudo su and then type df.

The df command shows the available space in your file system:

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 1582864 1499484 1308 100% /

udev 10240 0 10240 0% /dev

tmpfs 101700 640 101060 1% /run
/dev/mmcblk0p2 1582864 1499484 1308 100% /

)
Run the following command to expand the file system:

resize2fs /dev/mmcblk0p2

Type df again to see the fruits of your labor.

This command shows that you now have much more space available in
the file system:

Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 15270256 1501100 13133688 11% /

udev 10240 0 10240 0% /dev

tmpfs 101700 644 101056 1% /run
/dev/mmcblk0p2 15270256 1501100 13133688 11% /

(...)

Accessing external storage devices
when using the Linux Shell

Whenever you plug an external storage device, such as a USB key, into your
BeagleBone, you can easily access it through the Linux Shell. Well, Access
isn’t as easy as it would be in a desktop environment, but it’s no big deal.

Appendix A: Troubleshooting 383

WMBER
Q‘"
&

Simply change to the /media directory and list it as shown in the following
snippet. Remember to be logged in as root.

sudo su
cd /media
1s

Your external storage device should be listed. You can access the device and
use it as though it were a regular directory. You're free to browse its files,
copying, opening, and editing them as you like.

You may need to change the permissions by using the chmod command. This
command is discussed in Chapter 4.

384 BeagleBone For Dummies

Appendix B
Controlling BeagleBone's GPI0s

' his appendix offers a handy reference to controlling and accessing your
BeagleBone’s general purpose input/output (GPIOs) with the file system,
BoneScript, and Python.

Controlling the GPIO with the File System

You can use the following commands to control the GPIO with the file system.

Exporting a pin:

echo 40 > /sys/class/gpio/export

Setting a pin OUTPUT:
echo out > /sys/class/gpio/gpio40/direction

Writing a pin HIGH:

echo 1 > /sys/class/gpio/gpio40/value

Writing a pin LOW:
echo 0 > /sys/class/gpio/gpio40/value

Setting a pin INPUT:
echo in > /sys/class/gpio/gpio40/direction

Reading the value from an INPUT pin (returns 1 for HIGH and 0 for LOW):

cat /sys/class/gpio/gpio40/value

386 BeagleBone For Dummies

Controlling the GPIO with BoneScript

You can use the following BoneScript commands to control the GPIO.

Loading a BoneScript module:

var b = require ('bonescript') ;

Setting a pin OUTPUT:
b.pinMode ("P9 14", b.OUTPUT) ;

Writing a pin HIGH:
b.digitalWrite ("P9 14", b.HIGH);

Writing a pin LOW:
b.digitalWrite ("P9 14", b.LOW) ;

Setting a pin INPUT:
b.pinMode ("P8 11", b.INPUT) ;

Reading the value from a digital INPUT pin (returns HIGH or LOW):
b.digitalRead ("P8_11") ;
Setting a pin for pulse-width modulation (PWM) with 50 percent duty
cycle:
b.pinMode ('P9_14', b.OUTPUT) ;
b.analogWrite ('P9 _14', 0.5);
Reading the value from an analog INPUT pin (returns a value between 0
and 1):
b.analogRead ('P9 40') ;

Controlling the GPI0 with Python

You can use the following Python commands to control the GPIO.

Importing Adafruit’s BeagleBone Input Output Library:
import Adafruit BBIO.GPIO as GPIO

Setting a pin OUTPUT:
GPIO.setup("P9 14", GPIO.OUT)

Appendix B: Controlling BeagleBone's GPI0s

Writing a pin HIGH:
GPIO.output ("P9 14", GPIO.HIGH)

Writing a pin LOW:
GPIO.output ("PS 14", GPIO.LOW)

Setting a pin INPUT:
GPIO.setup("P8 11", GPIO.IN)

Reading the value from a digital INPUT pin (returns HIGH or LOW):
GPIO.input ("P8 11")

Setting a pin for PWM with 50 percent duty cycle:
import Adafruit BBIO.PWM as PWM
PWM.start ("P9_14", 50)

Setting an analog INPUT:
import Adafruit BBIO.ADC as ADC
ADC.setup ()

Reading the value from an analog INPUT pin (returns a value between 0
and 1):

analogReading = ADC.read ("P9 40")

387

388 BeagleBone For Dummies

Appendix C

Guide to the BeagleBone's GPI0s

e tables in this appendix provide you a quick way to see the signal name

' h

of each pin of your BeagleBone’s expansion headers. Throughout this
book, we use just a few general purpose input/output (GPIOs), but it’s impor-
tant to know that you can use the other GPIOs in your projects!

Table C-1 BeagleBone Expansion Header P8
Pin Signal Name
1 GND

2 GND

3 GPIO1_6

4 GPIO1_7

5 GPIO1_2

6 GPIO1_3

7 TIMER4

8 TIMER?

9 TIMERS

10 TIMERG

1 GPIO1_13

12 GPI01_12

13 EHRPWM2B
14 GPI00_26

15 GPIO1_15

16 GPIO1_14

17 GPI00_27

18 GPI02_1

(continued)

390 BeagleBone For Dummies

Table C-1 (continued)

Pin Signal Name
19 EHRPWM2A
2 GPIO1_31

21 GPI01_30

22 GPIO1_5

23 GPIO1_4

24 GPIO1_T1

25 GPI01_0

26 GPIO1_29

21 GPI02_22

28 GPI02_24

2 GPI02_23

30 GPI02_25

31 UART5_CTSN
32 UART5_RTSN
33 UART4_RTSN
34 UART3_RTSN
35 UART4_CTSN
36 UART3_CTSN
37 UART5_TXD
38 UART5_RXD
39 GPI02_12

40 GPI02_13

il GPI02_10

42 GPI02_11

43 GPI02_8

44 GPI02_9

45 GPI02_6

46 GPI02_7

Appendix C: Guide to the BeagleBone’s GPI0s 39 ’

Table C-2 BeagleBone Expansion Header P9
Pin Signal Name
1 GND

2 GND

3 VDD_3V3

4 VDD_3V3

5 VDD_5V

6 VDD_5V

7 SYS_5V

8 SYS_5V

9 PWR_BUT
10 SYS_RESETn
" UART4_RXD
12 GPIO1_28
13 UART4_TXD
14 EHRPWM1A
15 GPIOT1_16
16 EHRPWM1B
17 12C1_SCL
18 12C1_SDA
19 12C2_SCL
20 12C2_SDA
21 UART2_TXD
22 UART2_RXD
23 GPIO1_17
24 UART1_TXD
25 GPI03_21
26 UART1_RXD
27 GPI03_19
28 SPI1_CS0
29 SPI1_D0

30 SPI1_D1

31 SPIN_SCLK

(continued)

392 BeagleBone For Dummies

Table C-2 (continued)

Pin Signal Name
32 VDD_ADC
33 AIN4

34 GNDA_ADC
35 AING

36 AIN5

3 AIN2

38 AIN3

39 AINO

40 AINT

41 GPI03_20
42 GPI00_7

43 GND

44 GND

45 GND

46 GND

o Symbols and
Numerics ®

&& operator, 79

+ (anode) pin, 97

* (asterisk) wildcard, 70

— (cathode) pin, 97

{} (closing brace), 241

/ (forward slash), 52, 58

> (greater-than-sign), 64

% (modulo operation), 218

#1, 128, 185-186

? (question-mark) wildcard, 69-70
[]1 (square brackets) wildcard, 70-71
— (subtraction) operator, 76

+ (sum) operator, 76

~ (tilde), 52, 53, 58

3.3V wire, 380

5V DC power supply, 14-15

5V wire, 380

9V battery adapter, 113

Q (resistance), 91

o/ o

<a> tag, 294, 295
absolute path, 57-59

Index

adding
application shortcuts, 265-266
bookmarks, 281
buzzer, 333-335
capes, 129-132
headings to websites, 292-293
images to websites, 295-296
JavaScript to web pages, 341-342
LEDs, 333-335
plug-ins, 265
tabs in tabbed browsing, 281
taskbars, 266
titles to website, 291-292
adjusting
brightness with RGB LEDs, 162-167
desktop background, 270-271
directories, 55-57
hostname, 81-82
icon settings, 265
outputs with PWM, 349-354
password, 81-82
settings in web browsing, 282-283
text appearance, 301-302
alt attribute, 295
analog inputs, 168-170
analog sensors
about, 203-204
voltage for ADC, 204-205
wiring IR distance sensors, 205-207

accessing
BeagleBone with other devices, 346-347 writing code to measure distance,
external storage devices, 276, 382-383 208-209

terminals, 261-263 analogRead () function, 167, 170
accessories, 13-16 Analog-to-Digital Converter (ADC), 355, 380
Adafruit analogWrite () function, 166-167

about, 116 AND operator, 79

library, 186-187 Andersson, Tom (Thing-printer.com), 370

website, 372, 376 Andice Labs, 369
ADC (Analog-to-Digital Converter), 355, 380 anEvenDeeperFolder directory, 86
ADC () function, 219 anode (+) pin, 97

394

BeagleBone For Dummies

apostrophes, 218
append () function, 329
appliances, controlling, 347-348
application shortcuts, 265-266
Applications folder, 274
Applications menu (BeagleBone Black
desktop environment), 263
Applications menu icon (taskbar), 264
approximately equal to, 94
arrays, creating, 150
asterisk (*) wildcard, 70
attachInterrupt () function, 158, 160
attending events and workshops, 373-374
attributes
alt, 295
max, 351
min, 351
onchange, 351
src, 295
step, 351
type, 351
autocompleting commands, 84-85
Autonomous Robot for BeagleBone Black
project, 365-366
Autonomous Sailboat to Tame the Seas
project, 364-365
aux (auxiliary variable), 239

ofh o

backlight () function, 318
Bakken, Elias (Thing-printer.com), 370
base variable, 209
battery, 96-97
Battles’ (website), 369
baudrate parameter, 233
BBB. See BeagleBone Black
BeagleBoard
community for, 374-375
website, 366, 367, 368, 369, 370, 376
BeagleBoard xM, 12
BeagleBoard.org (website), 375, 376
BeagleBone. See also specific topics
about, 7-8
accessing with other devices, 346-347
accessories for, 13-16

connecting, 29-45
interfaces, 12
protecting, 373
recommended projects for, 363-370
researching, 376
sharing projects, 375
uses for, 13
versions, 8-12
wiring to UART, 230-231
BeagleBone 3D Printer project, 370
BeagleBone As Super Nintendo project, 368
BeagleBone Black. See also BeagleBone
accessing terminals, 261-263
accessories for, 16
booting Linux on, 26-27
booting up, 260-261
connecting peripherals, 256-260
connecting via serial over USB, 41-45
controlling remotely through SSH, 289
customizing, 267-271
desktop environment, 263-267
File Manager, 271-276
getting started, 255-256
interfaces, 12
logging off, 283-285
rebooting, 283-285
shutting down, 283-285
Task Manager, 277-278
using as a desktop computer,
255-285, 288
web browsing, 278-283
BeagleBone Cape for Drones project, 369
BeagleBone Gaming Console project,
367-368
BeagleBone GPS/GPRS Cape, 131
BeagleBone HD Camera Cape, 132
BeagleBone LCD Cape, 131-132
BeagleBone mikroBUS Cape, 130-131
BeagleBone Motor Cape, 130
BeagleBone Power Cape, 130
BeagleBone Proto Cape, 129
BeagleBone’s Analog-to-Digital Converter
(ADC), 204-205, 355, 380
BeagleSNES project, 368
bin directory, 53-54, 56
binary, 245-246

BitTorrent, 20
black box, 105
blank files, creating, 275
blinked.js demo, opening, 149-151
blinking
LEDs with BoneScript, 147-152
LEDs with Python, 183-189
onboard LEDs, 32-33, 141-147
Bluehost (website), 309
Blum, Richard (author)
Linux For Dummies, 9th Edition, 87
boards (website), 11
body, in HTML documents, 291
<body> tag, 291, 303, 340-341
BoneScript
about, 135-136, 153
adjusting brightness with RGB LEDs,
162-167
blinking LEDs with, 147-152
blinking onboard LEDs with, 141-147
Cloud9 IDE, 136-141
compared with Python, 182
controlling GPIOs with, 386
controlling LEDs with pushbuttons,
158-162
detecting movement with motion
sensors, 173-177
loading module, 143
project, 366
reading inputs, 154-158
sweeping servos with potentiometers,
167-173
BoneScript Library (website), 152
bonescript module, 343
BoneScript-specific programming tips
JavaScript callbacks, 249-250
loops, 248-249
bookmarks, adding and using, 281
boot directory, 56
booting up BeagleBone Black, 260-261
border property, 303
box model, 302-304
Boysen, Earl (author)
Electronics For Dummies, 105
breadboards, 16, 108-110
bright () function, 166

brightness, adjusting with RGB LEDs,
162-167
brightness-regulated LEDs, wiring circuits
for, 124
browsing, 31. See also web browsing
buffer, 233
bug, 241
building
projects. See project building
websites. See website building
burning, 245
buzzers
about, 113
adding, 333-335
trying out PWM with, 126-127
wiring, 334
writing code for, 335

o o

cables, 16
callback parameter
analogRead () function, 170
analogWrite () function, 167
digitalWrite () function, 145
pinMode () function, 144, 156
setInterval () function, 145
toggle () function, 161
callbacks
defined, 157
JavaScript, 249-250
camel case, 238-239
capacitors, 99-101
capes
adding, 129-132
defined, 107
Cascading Style Sheet (CSS)
about, 288, 300
color in, 300-301
repurposing, 340
styling HTML content with, 298-304
case, 16, 373
case-sensitivity, of JavaScript, 144
cat command, 63, 64
cathode (-) pin, 97
cd command, 55, 56-57, 58, 85

Index 395

396

BeagleBone For Dummies

changePosition () function, 351, 353
changeState () function, 341, 342
changing
brightness with RGB LEDs, 162-167
desktop background, 270-271
directories, 55-57
hostname, 81-82
icon settings, 265
outputs with PWM, 349-354
password, 81-82
settings in web browsing, 282-283
text appearance, 301-302
checking file types, 59-60
CHECK LATEST MAIL, 327, 332-333, 335
chmod command, 76
choosing
distributions, 18-22
files in Linux, 69-74
next mail, 327
previous mail, 326
screen savers, 268-269
Chromium, 278
circuit diagrams, 96-101
circuits
about, 89
basic example, 92-93
color coding, 101-102
datasheets, 105
electricity, 89-93
equations, 93-96
resistor color charts, 103-105
wiring, about, 340

wiring for blinking LEDs with BoneScript,

147-148
wiring for blinking LEDs with Python,
183-184

wiring for brightness-regulated LEDs, 124

wiring for LEDs, 115-117
wiring for pushbuttons, 120-121
wiring for reading pushbuttons with
Python, 190
working with, 96-105
clear command, 87
clear () function, 318
closing brace ({}), 241

Cloud9 IDE
about, 136-137
launching, 137-141
organizing files, 339
website, 137
code
completion of, as feature of Cloud9 IDE,
136
writing, about, 324-333
writing for analog inputs, 172
writing for blinking LEDs with Python,
184-189
writing for LCDs, 316-319
writing for LEDs and buzzers, 335
writing for motion sensors, 174-176
writing for pushbuttons, 156-157
writing for pushbuttons and LEDs,
160-161
writing for reading pushbuttons with
Python, 190-192
writing for RGB LEDs, 165-167, 200-203
writing to measure distance, 208-209
writing to read temperature, 212
writing to test UART, 231-234
writing with interrupts, 192-193
coding
about, 237
binary, 245-246
BoneScript-specific programming tips,
248-250
data storage, 245-246, 247-248
debugging, 241-245
hexadecimal, 247
programming tips, 237-241
Python-specific programming tips,
250-251

collaboration, as feature of Cloud9 IDE, 136

color coding, 101-102
colors
in CSS, 300-301
fading between, 202
commands
autocompleting, 84-85
cat, 63, 64
cd, 55, 56-57, 58, 85

Index 39 7

chmod, 76

clear, 87

echo, 63

file, 60, 69-70

git clone, 318

ifconfig, 346

1s, 53-54, 61

mkdir, 61, 64

mv, 68

purge, 80

recalling previous, 83-84

rm, 66-67

rmdir, 67

touch, 62-63
commenting, 142-143, 186, 240-241
common anode RGB LEDs, 163
common cathode RGB LEDs, 163
community, BeagleBoard, 374-375
components

about, 16

finding, 371-372

misplacing, 380
conductors, 90-91
configuring pins, 144, 187
connections

BeagleBone Black via serial over

USB, 41-45

blinking onboard LEDs, 32-33

DVI display, 258

keyboard, 258

Micro HDMI cable, 258

mouse, 258

Original BeagleBone via serial over

USB, 39-41

peripherals, 256-260

power, 260

router, 259

temperature sensors, 354-360

USB hub, 258

via SSH over Ethernet, 36-39

via SSH over USB, 33-36

via USB, 29-31
Console (Cloud9 IDE), 139
console. log function, 157
constants, 239-240
containers, customizing, 307-308

content, wrapping, 305
content property, 302
control LED () function, 226-228
controlling
appliances, 347-348
BeagleBone Black remotely through
SSH, 289
BeagleBone’s GPIOs, 385-387
general purpose input/output (GPIO),
118-119, 122, 124-127
LEDs with pushbuttons, 158-162
PWM output, 354
RGB LEDs with distance readings,
222-229
software, 77-81
copper wires, 92
copying files, 68-69
cosine () function, 209
count, 239
CPU Usage Minitor (taskbar), 264, 277-278
crashed BeagleBone, 379
creating
arrays, 150
blank files, 275
directories, 60-62
email, 216
folders, 140-141, 275
functions, 145-146, 217-229, 250
GUI, 341
icons on desktops, 269-270
.js file, 140-141
lists on websites, 296-297
loops, 150
permanent connections, 229
shell scripts, 128
text files, 62-65
time-dependent code, 250-251
variables, 143-144, 187
web servers, 344, 352-353, 357-359
your first website, 289-291
CSS (Cascading Style Sheet)
about, 288, 300
color in, 300-301
repurposing, 340
styling HTML content with, 298-304
Ctrl+C, 263

398

BeagleBone For Dummies

Ctrl+number, 281
Ctrl+Shift+Tab, 281
Ctrl+Tab, 281
current, 90-91
current message variable, 326, 327, 331
Customization menu, 278-279
customizing
BeagleBone Black, 267-271
container, 307-308
desktop appearance, 267-268
logos, 306-307
navigation bar, 306-307

o)) o

Dahl, @yvind (Thing-printer.com), 370
data storage, 245-246, 247-248
datasheets, 105
DC power connector, 9, 10
DC power supply, 96-97
DC voltage source, 96-97
debian folder, 274
Debugger (Cloud9 IDE), 140
debugging, 241-245
decompressing Linux distribution, 20-22
default pin state, setting, 144-145, 151
defaults, factory, 18-19
dependencies, 77
designing GUIs, 350-351
desktop computer, using BeagleBone Black
as, 255-285, 288
Desktop directory, 53-54
desktop environment (BeagleBone Black)
Applications menu, 263
multiple desktops, 266-267
taskbar, 263-266
Desktop Five-Axis CNC Mill project, 369-370
Desktop folder, 274
Desktop Pager plug-in, 267
desktops
changing backgrounds, 270-271
creating icons on, 269-270
customizing appearance, 267-268
destination variable, 215
detecting movement with motion
sensors, 173-177

dev directory, 56, 60
digital clock (taskbar), 264
digital electronics
about, 107
adding capes, 129-132
components and parts, 112-113
creating shell scripts, 128
general purpose input/output (GPIO),
113-127
tools, 108-111
digitalRead () function, 157
digitalWrite () function, 144-145, 146,
151, 176, 345
diodes, 97-99
directories
anEvenDeeperFolder, 86
bin, 53-54, 56
boot, 56
changing, 55-57
creating, 60-62
Desktop, 53-54
dev, 56, 60
etc, 56
home, 52, 56, 57
importantFiles, 68
1lib, 56
listing, 53-54
lost+found, 56
media, 56
mnt, 56
opt, 56
proc, 56
removing, 66-68
root, 56, 273, 276
sbin, 56
sys, b6
tmp, 56
usr, 56
var, 56
directory tree, 55
display, 15
displaying selected mail in LCD screen, 331
distance
controlling RGB LEDs with readings,
222-229
writing code to measure, 208-209

Index 399

distributions
decompressing Linux, 20-22
downloading, 19-20
selecting, 18-22
<divs tag, 305, 307-308, 340-341
dividing web pages, 305
downloading Linux distribution, 19-20
drag-and-drop functionality, as feature of
Cloud9 IDE, 136
drivers, installing, 30-31
dropping LEDs, 347-348
Dummies (website), 3
duty cycle, 123
DVI display, connecting, 258

oF o

echo command, 63
editing text files, 62-65
Editor (Cloud9 IDE), 138-139
electricity
about, 89-90
basic circuit example, 92-93
current, 90-91
resistance, 90-91
voltage, 90-91
water analogy, 91
Electronics For Dummies (McComb and
Boysen), 105
electronic starter kits, 372
Elinux (website), 87
 tag, 298
email
creating, 216
programming readers, 320-322
sending temperature readings by,
220-222
sending with Python, 213-216
Embedded Linux (website), 376
embedding style sheets, 298-299
emit () function, 342, 351, 359
eMMC memory, 9, 10, 11, 20, 258
equations, 93-96
error, common sources of, 377-379

establishing socket communication,
344-345
etc directory, 56
Ethernet
about, 9, 10
connecting via SSH over, 36-39
Linux prompt and, 50
Ethernet cable, 14
event message, 342
event name string, 342
events, attending, 373-374
executing toggle () function, 151
expanding file system, 381-382
expansion header P8, 389-390
expansion header P9, 391-392
exponent variable, 209
external storage devices, accessing, 276,
382-383

of o

- f option, 66-67
factory defaults, 18-19
fading
between colors, 202
RGB LEDs with Python, 197-203
failures, 375-376
Farnell (website), 372
FASt (FEUP Autonomous Sailboat), 364-365
feedparser.parse () function, 322
FEUP Autonomous Sailboat (FASt), 364-365
file command, 60, 69-70
File Manager
about, 271-272
accessing external storage devices, 276
creating blank files, 275
creating folders, 275
navigating, 272-275
opening folders in terminal, 275-276
starting, 272
file system
controlling GPIOs with, 385
expanding, 381-382
Linux, 52-77

4 00 BeagleBone For Dummies

<filename>, 53 append (), 329
files. See also folders attachInterrupt (), 158, 160
blank, 275 backlight (), 318
checking types, 59-60 bright (), 166
copying, 68-69 changePosition (), 351, 353
listing, 53-54 changeState (), 341, 342
opening, 289-290 clear(), 318
organizing, 289, 339 console.log, 157
removing, 66-68 control LED (), 226-228
renaming, 68-69 cosine (), 209
selecting in Linux, 69-74 creating, 145-146, 217-229, 250
finding digitalRead (), 157
components and parts, 371-372 digitalWrite (), 144-145, 146,
electronic starter kits, 372 151, 176, 345
words within web pages, 280 emit (), 342, 351, 359
5V DC power supply, 14-15 as feature of Cloud9 IDE, 136
5V wire, 380 feedparser.parse (), 322
flashing getElementById (), 343, 356
microSD card, 22-27 handleChangePosition (), 353
onboard eMMC, 27-28 handleChangeState (), 345
float () function, 218 io.connect (), 342
folders. See also files keep gate closed(), 188
creating, 140-141, 275 lcd.message (), 331
opening in terminals, 275-276 loop (), 249, 250
font-family property, 301, 302 mag.as_string(), 216
font-size property, 301 message (), 318
font-style property, 301 names for, 238-239
font-weight property, 301 output (), 188-189
for loop, 150, 151, 201, 329 pinMode (), 144, 156
formatting pow (), 208-209
HTML content, 291-297 print (), 192, 195-196
HTML documents, 298 printADC (), 170
formulas, for linear graphics, 213 printStatus(), 157
forward slash (/), 52, 58 PWM (), 219
framework, for home automation web raw_input (), 218
server, 338-340 readline (), 234
freq parameter, 167 read_temperature (), 222
Fritzing, 116 root (), 209
fs module, 343 rstrip (), 329
FTP, as feature of Cloud9 IDE, 136 send _email (), 221, 222
function call, 218 server.starttls (), 216
functions setInterval (), 145, 176, 249, 250, 358
absolute to percentage (), 225 setTimeout (), 249
ADC (), 219 sine (), 209
analogRead (), 167, 170 sleep (), 200

analogWrite (), 166-167 stmplib.SMTP (), 216

time.sleep (), 234, 250-251, 321
time time (), 332

time.time (), 251, 332-333

toggle (), 145-146, 151, 160, 161, 249
updateSensors (), 358-359
wait for edge, 192-193, 195

oG o

GamingCape, 367-368
Geany, 273
general purpose input/output (GPIO)
about, 113-114
controlling, 118-119, 122, 124-127, 385-387
expansion header P8, 389-390
expansion header P9, 391-392
how they work, 114-115
setting as inputs, 120-122
setting as outputs, 115-119
setting as PWM, 122-127
getElementById () function, 343, 356
git clone command, 318
GND (ground) wire, 380
GoDaddy (website), 309
Google Chrome, 31, 278
GPIO (general purpose input/output)
about, 113-114
controlling, 118-119, 122, 124-127, 385-387
expansion header P8, 389-390
expansion header P9, 391-392
how they work, 114-115
setting as inputs, 120-122
setting as outputs, 115-119
setting as PWM, 122-127
GPIO parameter
analogRead () function, 170
analogWrite () function, 166
digitalWrite () function, 145
output () function, 189
pinMode () function, 144, 156
setup function, 187
toggle () function, 160
wait for edge function, 192
GPS/GPRS Cape (BeagleBone), 131
graphical user interface (GUI)
creating, 341
designing, 350-351

greater-than-sign (>), 64
ground (GND) wire, 380
GUI (graphical user interface)
creating, 341
designing, 350-351

o o

<h1> tag, 300
Hackaday (website), 375, 376
handleChangePosition () function, 353
handleChangeState () function, 345
handler parameter, 161
hardware, 374
HD Camera Cape (BeagleBone), 132
HDMI-to-Micro HDMI cable, 15
<heads> tag, 291-292, 340-341, 341-342
headers
about, 9, 10
HTML documents, 291
headings, adding to websites, 292-293
height property, 295, 302
Henderson, Andrew (programmer), 368
Hertel, Matt (PocketNC), 369-370
hexadecimal numbers, 247, 301
Hoffman, Jon (blogger), 365-366
home automation web server
about, 337
accessing BeagleBone with other devices,
346-347
adjusting putputs with PWM, 349-354
connecting temperature sensors,
354-360
controlling appliances, 347-348
dropping LED, 347-348
framework, 338-340
running, 343-346
uses for, 337-338
writing web pages, 340-343
home directory, 52, 56, 57
/home/debian output, 52
HostGator (website), 309
hostname, changing, 81-82
<hr> tag, 298
HTML (Hypertext Markup Language)
about, 287-288
repurposing, 340

Index 4 0 7

402

BeagleBone For Dummies

HTML content
formatting, 291-297
styling with CSS, 298-304
HTML documents
formatting, 298
structuring, 290-291
HTML elements, styling, 304-309
<html> tag, 340-341
http module, 343
Hypertext Markup Language (HTML)
about, 287-288
repurposing, 340

o o

i, 239
-1 option, 66-67
IC (integrated circuit) chips, 101
icons

changing settings for, 265

creating on desktops, 269-270
icons, explained, 2-3
if statement, 182, 243-244
ifconfig command, 346
if...elif statement, 193-195
if...else statement, 166, 193-195
images, adding to websites, 295-296
. img file, 20
 tag, 295-296
importantFiles directory, 68
importing libraries, 186-187, 200, 215
indentation, 240-241
index, 239
initial conditions, setting, 201-202
initializing

PWM, 201-202

variables, 343
inputPin, 249
inputs

analog, 168-170

reading, 154-158

setting GPIOs as, 120-122
<insert comment> tag, 298
inserting

links in websites, 294

microSD card, 22-27

paragraphs in websites, 293

installed packages, 81
installing
drivers, 30-31
libraries, 183
operating system (0OS), 17-28
socket.io, 339
software, 78
Instructables (website), 375, 376
insulator, 91
integrated circuit (IC) chips, 101
interacting with BeagleBoard community,
374-375
interfaces, 12
interrupts
defined, 158
writing code with, 192-193
intervals, setting, 145
io.connect () function, 342
IR distance sensors, 205-207,
226, 229

°] °
3, 239
JavaScript
about, 135-136, 288, 342-343
adding to web pages, 341-342
callbacks, 249-250
case-sensitivity of, 144
joining BeagleBoard community, 374
Joul’s Law, 95
.js file, creating, 140-141
JSON.parse () method, 345, 353, 356
jumper wires, 111

oK o

k, 239
keep gate closed () function, 188
keyboard
about, 15
connecting, 258
shortcuts, 85-87, 281
virtual, 259
Kridner, Jason (BeagleBoard.org), 366

Index 403

of o

Languages section, 282
launching
Cloud9 IDE, 137-141
web server, 345-346, 354
web severs, 359
LCD Cape (BeagleBone), 131-132
LCD screen, displaying selected mail in, 331
lcd.message () function, 331
lcd rows, 331
LCDs, wiring up, 315-320
LEDs. See also RGB LEDs
about, 112
adding, 333-335
blinking with BoneScript, 147-152
blinking with Python, 183-189
controlling with pushbuttons, 158-162
dropping, 347-348
troubleshooting, 377-378
wiring, 159, 334
wiring circuits for, 115-117
writing code for, 335
<1lis> tag, 305
1ib directory, 56
libraries
importing, 186-187, 200, 215
installing, 183
time, 251
lightweight X11 desktop environment
(LXDE), 255, 262
linear graphics, formulas for, 213
links, inserting in websites, 294
Linux
about, 18, 49
autocompleting commands, 84-85
booting on BeagleBone Black, 26-27
changing hostname, 81-82
changing password, 81-82
connecting BeagleBone Black via serial
over USB in, 44-45
connecting Original BeagleBone via serial
over USB in, 40-41
connecting via SSH over Ethernet in, 38-39
connecting via SSH over USB in, 35-36
decompressing distribution, 20-22
decompressing Linux distribution in, 22

downloading distribution, 19-20
file system, 52-77
flashing microSD card in, 25-26
Linux prompt in, 50
managing software, 77-81
prompt, 49-51
rebooting, 82-83
recalling previous commands, 83-84
root superuser, 51-52
selecting files in, 69-74
shutting down, 82-83
Linux For Dummies, 9th Edition (Blum), 87
Linux shell, accessing external storage
devices with, 382-383
LinuxCNC, 370
listing files and directories, 53-54
lists, creating on websites, 296-297
loading
BoneScript module, 143
modules, 149, 343
local variables, 226
logging in, troubleshooting, 378-379
logging off BeagleBone Black, 283-285
Logic Supply (website), 372
logos, customizing, 306-307
Logout button (taskbar), 264
long-listing format, 54, 74-77
loop () function, 249, 250
LOOP_FREQ, 335
loops
about, 248-249
creating, 150
using, 187-188
lost+found directory, 56
1s command, 53-54, 61
LXDE (lightweight X11 desktop
environment), 255, 262

oM o

Mac, drivers in, 30
Mac OS X
connecting BeagleBone Black via serial
over USB in, 44-45
connecting Original BeagleBone via serial
over USB in, 40-41
connecting via SSH over Ethernet in, 38-39

404

BeagleBone For Dummies

Mac OS X (continued)
connecting via SSH over USB in, 35-36
decompressing Linux distribution in, 21
flashing microSD card in, 24-25
Linux prompt in, 50
mag.as_string() function, 216
MAIL CHECK FREQ constant, 321
mail data, 331
managing
appliances, 347-348
BeagleBone Black remotely through
SSH, 289
BeagleBone’s GPIOs, 385-387
general purpose input/output (GPIO),
118-119, 122, 124-127
LEDs with pushbuttons, 158-162
PWM output, 354
RGB LEDs with distance readings, 222-229
software, 77-81
margin property, 303
Maruch, Aahz (author)
Python For Dummies, 196
Maruch, Stef (author)
Python For Dummies, 196
max attribute, 351
McComb, Gordon (author)
Electronics For Dummies, 105
measurement, units of, 95-96
media directory, 56
Menus tab (Cloud9 IDE), 138
message () function, 318
Micro HDM], 9, 10, 11
Micro HDMI cable, connecting, 258
microSD card
about, 13-14
expanding file system with, 381-382
flashing, 22-27
inserting, 22-27
microSD card adapter and writer, 14
microSD card slot, 9, 10
Microsoft Windows
connecting BeagleBone Black via serial
over USB in, 42-43
connecting Original BeagleBone via serial
over USB in, 39-40
connecting via SSH over Ethernet in, 36-37

connecting via SSH over USB in, 34-35
decompressing Linux distribution in,
20-21
drivers in, 30
flashing microSD card in, 23-24
Linux prompt in, 50
Midnight Commander application, 78
mikroBUS Cape (BeagleBone), 130-131
milliseconds parameter, 145
min attribute, 351
Minimize-all button (taskbar), 264
misplacing components, 380
mkdir command, 61, 64
mnt directory, 56
mode parameter
pinMode () function, 144
setup function, 187
toggle () function, 161
wait for edge function, 192
modules, loading, 149, 343
modulo operation (%), 218
Molloy, Derek (website), 376
motion sensors, detecting movement with,
173-177
Motor Cape (BeagleBone), 130
mouse, 15, 258
movement, detecting with motion sensors,
173-177
Mozilla Firefox, 31
Multimedia Center with Kodi project,
366-367
multimeters, 16, 154
multiple desktops (BeagleBone Black
desktop environment), 266-267
multiple-line comments, 143, 186
multiplier, 103
mux parameter, 144
mv command, 68

o\l e

n, 239
naming conventions, 62
navigating

File Manager, 272-275

tabs in tabbed browsing, 281

Index 4 05

navigation bar, customizing, 306-307

network connection (taskbar), 264

9V battery adapter, 113

Node. js, 135-136, 339

number_ entries parameter, 327, 328,
329, 331

o() o

object, 143
Ohm’s Law, 93-94
 tag, 296-297
onboard eMMC, flashing, 27-28
onboard LEDs, blinking, 32-33, 141-147
onchange attribute, 351
opening
blinked.js demo, 149-151
files, 289-290
folders in terminals, 275-276
OpenROV, 363-364
operating system (OS)
flashing microSD card, 22-27
flashing onboard eMMC, 27-28
inserting microSD card, 22-27
installing, 17-28
Linux, 18
selecting distributions, 18-22
opt directory, 56
ordered lists, 296-297
organizing files, 289, 339
Original BeagleBone, 39-41. See also
BeagleBone
OS (operating system)
flashing microSD card, 22-27
flashing onboard eMMC, 27-28
inserting microSD card, 22-27
installing, 17-28
Linux, 18
selecting distributions, 18-22
output () function, 188-189
outputPin, 249
outputs
adjusting with PWM, 349-354
setting GPIOs as, 115-119
outputStatus, 343

o o

-p option, 61, 62
<p> tag, 293, 341
padding property, 303
paragraphs, inserting in websites, 293
parallel connections, 105
parameters
baudrate, 233
callback, 144, 145, 156, 161, 167, 170
freq, 167
GPIO, 144, 145, 156, 160, 166, 170, 187,
189, 192
handler, 161
milliseconds, 145
mode, 144, 161, 187, 192
mux, 144
number entries, 327, 328, 329, 331
port, 232
pullup, 144
slew, 144
state, 189, 342
value, 145, 167
parsing web feeds, 321
password, changing, 81-82
path module, 343
period, 123
peripherals, connecting, 256-260
permission denied error, 76
permissions, using, 74-77
pin state, setting, 188-189
pinMode () function, 144, 156
pins, configuring, 144, 187
plug-ins, adding and removing, 265
port, 338
port parameter, 232
potentiometers, sweeping servos with,
167-173
pow () function, 208-209
power (P)
about, 92
calculations for, 94
connecting, 260
troubleshooting, 377-378
turning off abruptly, 380

4006

BeagleBone For Dummies

Power button, 9, 10, 11
Power Cape (BeagleBone), 130
powering off, 380
PowerSwitch Tail Il (website), 347
print () function, 192, 195-196
printADC () function, 170
printStatus () function, 157
Privacy section, 282
proc directory, 56
processor, 8,9, 10
programming
about, 237-238
comments, 240-241
constants, 239-240
email readers, 320-322
as feature of Cloud9 IDE, 136
function names, 238-239
indentation, 240-241
variable names, 238-239
white space, 240-241
project building
about, 313
adding buzzer, 333-335
adding LED, 333-335
algorithms, 323-324
getting started, 313-314
programming email readers, 320-322
wiring pushbuttons, 322-323
wiring up LCDs, 315-320
writing code, 324-333
projects
ideas for, 376
recommended, 363-370
sharing, 375
properties
border, 303
content, 302
font-family, 301, 302
font-size, 301
font-style, 301
font-weight, 301
height, 295, 302
margin, 303
padding, 303
text-align, 301
text-decoration, 301

width, 295, 302

property, 143
protecting BeagleBone, 373
Proto Cape (BeagleBone), 129
publishing websites, 309
pull-down resistor, 121
pullup parameter, 144
pull-up resistors, 380
purge command, 80
pushbuttons
about, 113
controlling LEDs with, 158-162
reading with Python, 190-196
wiring, 154-156, 159, 322-323
wiring circuits for, 120-121
PuTTY application, 34-35, 36-37,
39-40, 42-43
pwd (print working directory), 52
PWM
adjusting outputs with, 349-354
controlling output, 354
initializing, 201-202
setting GPIOs as, 122-127
trying out with buzzers and servomotors,
126-127
PWM () function, 219
Python
about, 181-182, 197
analog sensors, 203-213
blinking LEDs with, 183-189
compared with BoneScript, 182
controlling GPIOs with, 386-387
creating functions, 217-229
fading RGB LEDs with, 197-203
feedparser, 322
installing libraries, 183
mixing up projects, 217-229
reading pushbuttons with, 190-196
sending email with, 213-216
tutorials, 196
universal asynchronous receiver/
transmitter (UART), 229-235
Python For Dummies (Maruch and Maruch),
196
Python-specific programming tips
creating functions, 250
creating time-dependent code,
250-251

Index 40 7

o() o

-

question-mark (?) wildcard, 69-70

o R o

- option, 66-67
Radio Shack (website), 372
RAM, 8§, 9, 10
raw_input () function, 218
RC (Reverse Capacity) battery, 369
reading
current mail, 327-330
inputs, 154-158
pushbuttons with Python, 190-196
readline () function, 234
read_temperature () function, 222
reboooting BeagleBone Black, 283-285
rebooting, 82-83
recalling previous commands, 83-84
relative path, 57-59
Remember icon, 2
removing
directories, 66—68
files, 66-68
plug-ins, 265
software, 80-81
renaming files, 68-69
repurposing previous HTML and CSS, 340
researching BeagleBone, 376
Reset button, 9, 10, 11
resistance (), 90-91
resistor color charts, 103-105
resistors, 97, 112
resources, 371-376
result variable, 209
return date, of latest mail, 327
Return Merchandise Application (RMA)
form, 378
Reverse Capacity (RC) battery, 369
RGB LEDs
about, 112
adjusting brightness with, 162-167
controlling with distance readings, 222-229
fading with Python, 197-203
wiring, 163-165, 198-200

rising edge, 192
rm command, 66—-67
RMA (Return Merchandise Application)
form, 378
rmdir command, 67
root directory, 56, 273, 276
root () function, 209
root superuser, 51-52
router, connecting, 259
rstrip () function, 329
running
scripts for LCD, 319-320
scripts to test UART, 234
software, 79
test scripts, 170
web server, 343-346
running programs (taskbar), 264
running scripts, 146-147, 151-152, 157-158,
161-162, 167, 173, 176-177, 189, 190-192,
203, 210, 212, 217, 222, 226, 229, 335

oS e

Santos, Rui (author), 3

saving current mail, 327-330

sbin directory, 56

screen savers, choosing, 268-269

ScreenLock button (taskbar), 264

<scripts> tag, 342, 356

scripts
running, about, 146-147, 151-152, 335
running for analog inputs, 173
running for blinking LEDs with Python, 189
running for LCD, 319-320
running for measuring distance, 210
running for motion sensors, 176-177
running for pushbuttons, 157-158
running for pushbuttons and LEDs, 161-162
running for reading pushbuttons with

Python, 190-192

running for reading temperature, 212
running for RGB LEDs, 167, 203, 226, 229
running for sending email, 217
running for sending temperature, 222
running to test UART, 234
writing, 351

408

BeagleBone For Dummies

scroll variable, 326
searching, for web pages, 279-280
secure shell (SSH)
connecting over Ethernet via, 36-39
connecting over USB via, 33-36
controlling BeagleBone Black remotely
through, 289
as feature of Cloud9 IDE, 136
troubleshooting, 378-379
selecting
distributions, 18-22
files in Linux, 69-74
next mail, 327
previous mail, 326
screen savers, 268-269
selector element, 300
send_email () function, 221, 222
sending
email with Python, 213-216
temperature readings by email, 220-222
sensor variable, 208
serial
connecting BeagleBone Black over USB
via, 41-45
connecting Original BeagleBone over USB
via, 39-41
serial header, 9, 10, 11
series connections, 105
server.starttls () function, 216
servo horn, 113
servomotors, 113, 126-127
servos, sweeping with potentiometers,
167-173
setInterval () function, 145, 176, 249,
250, 358
setTimeout () function, 249
setting(s)
changing for icons, 265
changing in web browsing, 282-283
default pin state, 144-145, 151
GPIOs as inputs, 120-122
GPIOs as outputs, 115-119
GPIOs as PWM, 122-127
initial conditions, 201-202
intervals, 145
pin state, 188-189

setup, 332
7-Zip application, 20-21
.shfile, 128
sharing BeagleBone projects, 375
shebang, 128, 185-186
shell scripts, creating, 128
short-circuit, 92, 379-380
Shortcut icons (taskbar), 264
shutdown command, 83
shutting down, 82-83, 283-285
sine () function, 209
single-line comments, 143, 186
sleep () function, 200
slew parameter, 144
socket communication, establishing,
344-345
socket.io, 339, 341-342, 344-345
software
about, 375
installing, 78
managing, 77-81
removing, 80-81
running, 79
updating, 79-80
soldering iron, 16
spam, 215
Sparkfun (website), 372
square brackets ([]) wildcard, 70-71
src attribute, 295
SSH (secure shell)
connecting over Ethernet via, 36-39
connecting over USB via, 33-36
controlling BeagleBone Black remotely
through, 289
as feature of Cloud9 IDE, 136
troubleshooting, 378-379
standard output, 64
starting File Manager, 272
state parameter, 189, 342
step attribute, 351
stmplib.SMTP () function, 216
string, 143
 tag, 298
structuring HTML documents,
290-291
style sheets, embedding, 298-299

Index 409

styling
HTML content with CSS, 298-304
HTML elements, 304-309
subtraction (-) operator, 76
sum (+) operator, 76
swapping variables, 202-203

sweeping servos with potentiometers,

167-173
switches, 113
sys directory, 56

o o

tabbed browsing, 280-281
tabs
adding in tabbed browsing, 281
navigating in tabbed browsing, 281
tags
<a>, 294, 295
<body>, 291, 303, 340-341
<div>, 305, 307-308, 340-341
, 298
<h1s, 300
<heads>, 291-292, 340-341, 341-342
<hrs, 298
<html>, 340-341
, 295-296
<insert comments, 298
<1lis, 305
, 296-297
<p>, 293, 341
<scripts>, 342, 356
<strongs>, 298
<titles, 291-292
<uls, 297, 305
Task Manager, 277-278
taskbar (BeagleBone Black desktop
environment), 263-266
taskbars, adding, 266

temperature readings, sending by email,

220-222
temperature sensors
connecting, 354-360
wiring, 210-211

temperature variable, 221
Terminal (Cloud9 IDE), 140
Terminal application, 24-25
terminals
accessing, 261-263
opening folders in, 275-276
test circuits, wiring, 168-169
test code, writing, 169-170
test scripts, running, 170
testing web pages, 308-309
text appearance, changing, 301-302
text files, creating, editing, and viewing,
62-65
text-align property, 301
text-decoration property, 301
3.3V wire, 380
Thrun, Max (blogger), 368
Tigal (website), 372
Tigal KG, 129
tilde (), 52, 53, 58
time library, 251
time-dependent code, creating, 250-251
time.sleep () function, 234, 250-251, 321
time_ stamp, 332
time_ time () function, 332
time.time () function, 251, 332-333
Tip icon, 2
<title> tag, 291-292
titles, adding to websites, 291-292
tmp directory, 56
tmp_data variable, 331
tmp/temp (temporary variable), 239
toggle () function, 145-146, 151, 160,
161, 249
tolerance, 104
tools
breadboards, 108-110
jumper wires, 111
Tools menu, 276
touch command, 62-63
transistors, 101
Trash folder, 274
troubleshooting, 377-379
type attribute, 351

4 ’ 0 BeagleBone For Dummies

olf o o/ o

UART (universal asynchronous receiver/ -v option, 61
transmitter) value parameter
about, 229-230 analogWrite () function, 167
running scripts to test, 234 digitalWrite () function, 145
uses for, 235 var directory, 56
wiring BeagleBone to, 230-231 variable resistors (potentiometers), 113
writing code to test, 231-234 variables
<uls> tag, 297, 305 base, 209
The Unarchiver application, 21 creating, 143-144, 187
underscores, 238-239 current message, 326, 327, 331
Underwater Exploration Robot project, destination, 215
363-364 exponent, 209
universal asynchronous receiver/ initializing, 343
transmitter (UART) names for, 238-239
about, 229-230 result, 209
running scripts to test, 234 scroll, 326
uses for, 235 sensor, 208
wiring BeagleBone to, 230-231 swapping, 202-203
writing code to test, 231-234 temperature, 221
Universal Feed Parser, 320 tmp_data, 331
Unix, 34 versions, 8-12
unordered lists, 297 viewing
updateSensors () function, 358-359 Applications menu, 263
updating software, 79-80 bookmarks, 281
USB GPIO pin layout, 114-115
connecting BeagleBone Black via serial text files, 62-65
over, 41-45 web pages, 293-294
connecting Original BeagleBone via serial virtual keyboard, 259
over, 39-41 voltage
connecting via SSH over, 33-36 about, 90-91
connections via, 29-31 for ADC, 204-205
Linux prompt and, 50 voltage source, 91
USB A-to-Mini B cable, 13
USB client, 9, 10
USB host, 9, 10 ¢ w ¢
USB hub, 16, 258 W (watts), 92
USB keyboard/mouse, 15 wait_ for edge function, 192-193, 195
USB-to-TTL serial cable, 16 Warning! icon, 2
User Boot button, 9, 10, 11 water analogy, 91
usr directory, 56 watts (W), 92

USR LEDs, 9, 10-11

Index 4 ’ 7

web browsing
about, 20, 278
adding bookmarks, 281
changing settings, 282-283
Customization menu, 278-279
finding words within web pages, 280
searching for web pages, 279-280
tabbed browsing, 280-281
using bookmarks, 281
Web Content section, 282
web feeds, parsing, 321
web pages
adding JavaScript to, 341-342
dividing, 305
finding words within, 280
searching for, 279-280
testing, 308-309
viewing, 293-294
writing, 340-343, 356-357
web servers. See also home automation
web server
creating, 344, 352-353, 357-359
launching, 345-346, 354, 359
launching for temperature
monitoring, 359
running, 343-346
website building
about, 287
adding headings, 292-293
adding images, 295-296
adding titles, 291-292
Cascading Style Sheet (CSS), 288
creating first website, 289-291
creating lists, 296-297
formatting HTML content, 291-297
formatting HTML documents, 298
getting started, 288-289
Hypertext Markup Language (HTML),
287-288
inserting links, 294
inserting paragraphs, 293
JavaScript, 288
publishing websites, 309
styling HTML content with CSS, 298-304
styling HTML elements, 304-309
viewing web pages, 293-294

websites

Adafruit, 372, 376

Andice Labs, 130, 369

Battles’, 369

BeagleBoard, 366, 367, 368, 369, 370, 376

BeagleBoard community, 374

BeagleBoard.org, 375, 376

BeagleBone Black accessories, 16

BeagleSNES project, 368

BitTorrent, 20

Bluehost, 309

boards, 11

BoneScript Library, 152

capes, 129

circuit design tools, 111

Cloud9 IDE, 137

distributions, 19

Dummies, 3

eLinux, 87, 130

Embedded Linux, 376

Farnell, 372

GoDaddy, 309

GPS/GPRS Cape (BeagleBone), 131

Hackaday, 375, 376

HD Camera Cape (BeagleBone), 132

Hoffman, Jon (blogger), 366

HostGator, 309

Instructables, 375, 376

Kodie, 367

Kridner, Jason, 366

LCD Cape (BeagleBone), 132

Linux information, 87

LinuxCNC, 370

Logic Supply, 372

mikroBUS, 131

Molloy, Derek, 376

multimeters, 154

OpenROV, 364

operating systems, 19

PowerSwitch Tail II, 347

Python tutorials, 196

Python’s feedparser, 322

Radio Shack, 372

Return Merchandise Application (RMA)
form, 378

412

BeagleBone For Dummies

websites (continued)
robotic sailing, 365
Santos, Rui (author), 3
Sparkfun, 372
Thrun, Max (blogger), 368
Tigal, 129, 372
time library documentation, 251
virtual keyboard, 259
w3schools, 301
while loop, 187-188, 202, 251, 331
while statement, 182
while True: loop, 208, 219, 220, 222, 233,
248-249, 321, 324, 332-333
white space, 240-241
width property, 295, 302
Win32 Disk Imager, 23
Windows (Microsoft)
connecting BeagleBone Black via serial
over USB in, 42-43
connecting Original BeagleBone via serial
over USB in, 39-40
connecting via SSH over Ethernet in,
36-37
connecting via SSH over USB in, 34-35
decompressing Linux distribution in,
20-21
drivers in, 30
flashing microSD card in, 23-24
Linux prompt in, 50
wiring
BeagleBone to UART, 230-231
buzzers, 334
circuits, 147-148, 183-184, 190, 340
circuits for brightness-regulated LEDs, 124
circuits for LEDs, 115-117
circuits for pushbuttons, 120-121

IR distance sensors, 205-207
LCDs, 315-320
LEDs, 159, 334
motion sensors, 174
pushbuttons, 154-156, 159, 322-323
RGB LEDs, 163-165, 198-200
temperature sensors, 210-211
test circuits, 168-169
workshops, attending, 373-374
workspace (Cloud9 IDE), 138
wrapping content, 305
writing
code, about, 324-333
code for analog inputs, 172
code for blinking LEDs with Python,
184-189
code for LCDs, 316-319
code for LED and buzzer, 335
code for motion sensors, 174-176
code for pushbuttons, 156-157
code for pushbuttons and LEDs, 160-161
code for reading pushbuttons with
Python, 190-192
code for RGB LEDs, 165-167, 200-203
code to measure distance, 208-209
code to read temperature, 212
code to test UART, 231-234
code with interrupts, 192-193
first line of HTML documents, 290
scripts, 351
test code, 169-170
web pages, 340-343, 356-357

oX o

.xz file, 20

About the Authors

Rui Santos is a popular electronics blogger known for sharing his knowledge
through step-by-step video tutorials and articles that anyone can follow. He
started studying electrical engineering in 2011, but his appetite for tinkering
with electronics dates to long before that. Even today, most of his knowledge
has been self-taught. He loves all things electronics. His work has been fea-
tured on Instructables (www. instructables.com) and Hackday (http://
hackaday.com). You can find his projects at http://randomnerdtutorials.com.

Luis Perestrelo has been passionate about all things electrical ever since

he started studying electrical engineering in 2011. Following his academic
success in his freshman year, he was invited to work as a teaching assistant
at his university in the areas of physics, math, and C programming. Luis is
crazy about embedded systems, and he enthusiastically works alongside his
colleagues and professors to build Autonomous Underwater Vehicles (AUVs)
and Autonomous Sailboats.

Dedication

For Sara. — Rui

For Bingo, Oscar, and Zukta. — Luis

Author’s Acknowledgments

We both want to thank Katie Mohr for giving us the opportunity to write this
book; to Charlotte Kughen and Kathy Simpson for their editing support; and
to Gerald Coley for offering his technical expertise.

Many thanks go to the Wiley Publishing team for their guidance through-
out each step. Thank you to the BeagleBoard Foundation, not only because
their work gave us something to write a book about, but also because both
of us have done great and fun projects using the BeagleBone. We also want
to acknowledge everyone who has developed software for the BeagleBone,
especially Adafruit for their extensive and powerful Python library.

— Rui Santos and Luis Perestrelo

I'd like to say thank you to my parents and sister for their endless support; to
my co-author Luis Perestrelo for accepting the invite to write this book; and
to all my friends who followed me through this entire chapter in my life and

heard me talking about the book nonstop. Thank you!

— Rui

http://www.instructables.com
http://hackaday.com
http://hackaday.com
http://randomnerdtutorials.com

[would like to thank my friends and family for providing support throughout
this entire journey, and for always caring about the progress and asking me
how the book was going. On that note, I'd like to send a special thanks to José
Francisco Valente for providing cool project ideas and suggestions for the
book and for bearing with me as I talked about it 24/7. Thanks also to Joao
Salgado and Marco Moreira for helping out with image editing and photogra-
phy in the initial chapters. Thank you to Rui Gomes, as well; 'm sure our col-
leagues will understand why. Saving the best for last, I would like to thank my
friend and co-author Rui Santos for inviting me to tag along for this ride.

I'd also like to thank the teachers and professors that have both taught me
and made me love digital electronics and embedded systems. Of special note
is my professor José Carlos Alves, who started by teaching me basic binary
algebra and ended up programming a BeagleBone side by side with me for
our autonomous sailboat; he continuously provided support for the book in
any way he could. You rock, Professor.

— Luis

Publisher’s Acknowledgments

Senior Acquisitions Editor: Katie Mohr Project Coordinator: Emily Benford
Project Editor: Charlotte Kughen Cover Image: Courtesy of Rui Santos
Copy Editor: Kathy Simpson

Technical Editor: Gerald Coley

Editorial Assistant: Claire Brock

Sr. Editorial Assistant: Cherie Case

Apple & Mac
iPad For Dummies,
6th Edition
978-1-118-72306-7

iPhone For Dummies,
7th Edition
978-1-118-69083-3

Macs All-in-One
For Dummies, 4th Edition
978-1-118-82210-4

OS X Mavericks
For Dummies
978-1-118-69188-5

Blogging & Social Media
Facebook For Dummies,
5th Edition
978-1-118-63312-0

Social Media Engagement
For Dummies
978-1-118-53019-1

WordPress For Dummies,
6th Edition
978-1-118-79161-5

Business

Stock Investing
For Dummies, 4th Edition
978-1-118-37678-2

Investing For Dummies,
6th Edition
978-0-470-90545-6

Personal Finance
For Dummies, 7th Edition
978-1-118-11785-9

QuickBooks 2014
For Dummies
978-1-118-72005-9

Small Business Marketing
Kit For Dummies,

3rd Edition
978-1-118-31183-7

Careers

Job Interviews
For Dummies, 4th Edition
978-1-118-11290-8

Job Searching with Social
Media For Dummies,

2nd Edition
978-1-118-67856-5

Personal Branding
For Dummies
978-1-118-11792-7

Resumes For Dummies,
6th Edition
978-0-470-87361-8

Starting an Etsy Business
For Dummies, 2nd Edition
978-1-118-59024-9

Diet & Nutrition

Belly Fat Diet For Dummies
978-1-118-34585-6

Mediterranean Diet
For Dummies
978-1-118-71525-3

Nutrition For Dummies,
5th Edition
978-0-470-93231-5

Digital Photograph
Digital SLR Photography
All-in-One For Dummies,
2nd Edition
978-1-118-59082-9

Digital SLR Video &
Filmmaking For Dummies
978-1-118-36598-4

Photoshop Elements 12
For Dummies
978-1-118-72714-0

Gardening

Herb Gardening

For Dummies, 2nd Edition
978-0-470-61778-6

Gardening with Free-Range
Chickens For Dummies
978-1-118-54754-0

Health

Boosting Your Immunity
For Dummies
978-1-118-40200-9

@ Available in print and e-book formats.

Diabetes For Dummies,
4th Edition
978-1-118-29447-5

Living Paleo For Dummies
978-1-118-29405-5

Big Data
Big Data For Dummies
978-1-118-50422-2

Data Visualization
For Dummies
978-1-118-50289-1

Hadoop For Dummies
978-1-118-60755-8

Language &
Foreign Language
500 Spanish Verbs
For Dummies
978-1-118-02382-2

English Grammar
For Dummies, 2nd Edition
978-0-470-54664-2

French All-in-One
For Dummies
978-1-118-22815-9

German Essentials
For Dummies
978-1-118-18422-6

[talian For Dummies,
2nd Edition
978-1-118-00465-4

Making Everything Easier’”

Making Everything Easier!”

500 Spanish
Verbs

DUN{MIE‘S

Available wherever books are sold

. For more information or to order direct visit www.dummies.com

Math & Science

Algebra | For Dummies,
2nd Edition
978-0-470-55964-2

Anatomy and Physiology
For Dummies, 2nd Edition
978-0-470-92326-9

Astronomy For Dummies,
3rd Edition
978-1-118-37697-3

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Chemistry For Dummies,
2nd Edition
978-1-118-00730-3

1001 Algebra Il Practice
Problems For Dummies
978-1-118-44662-1

Microsoft Office

Excel 2013 For Dummies
978-1-118-51012-4

Office 2013 All-in-One
For Dummies
978-1-118-51636-2

PowerPoint 2013
For Dummies
978-1-118-50253-2

Word 2013 For Dummies
978-1-118-49123-2

Music

Blues Harmonica
For Dummies
978-1-118-25269-7

Guitar For Dummies,
3rd Edition
978-1-118-11554-1

iPod & iTunes
For Dummies, 10th Edition
978-1-118-50864-0

Programming
Beginning Programming
with C For Dummies
978-1-118-73763-7

Excel VBA Programming
For Dummies, 3rd Edition
978-1-118-49037-2

Java For Dummies,
6th Edition
978-1-118-40780-6

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Buddhism For Dummies,
2nd Edition
978-1-118-02379-2

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Self-Help &
Relationships

Beating Sugar Addiction
For Dummies
978-1-118-54645-1

Meditation For Dummies,
3rd Edition
978-1-118-29144-3

Seniors

Laptops For Seniors
For Dummies, 3rd Edition
978-1-118-71105-7

Computers For Seniors
For Dummies, 3rd Edition
978-1-118-11553-4

iPad For Seniors
For Dummies, 6th Edition
978-1-118-72826-0

Social Security
For Dummies
978-1-118-20573-0

Smartphones & Tablets
Android Phones

For Dummies, 2nd Edition
978-1-118-72030-1

Nexus Tablets
For Dummies
978-1-118-77243-0

Samsung Galaxy S 4
For Dummies
978-1-118-64222-1

Samsung Galaxy Tabs
For Dummies
978-1-118-77294-2

Test Prep
ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

GRE For Dummies,
7th Edition
978-0-470-88921-3

Officer Candidate Tests
For Dummies
978-0-470-59876-4

Physician’s Assistant Exam
For Dummies
978-1-118-11556-5

Series 7 Exam For Dummies
978-0-470-09932-2

Windows 8
Windows 8.1 All-in-One

For Dummies
978-1-118-82087-2
Windows 8.1 For Dummies
978-1-118-82121-3

Windows 8.1 For Dummies,
Book + DVD Bundle
978-1-118-82107-7

@ Available in print and e-book formats.

Making Everything Easier!”

Windows 8.1
DUMMIES

Job Searching
with Social Media

Android Phones
DUMMIES

Learn to:

Available wherever books are sold. For more information or to order direct visit www.dummies.com

Take Dummies with you
everywhere you go!

Whether you are excited about e-books, want more from
the web, must have your mobile apps, or are swept up
in social media, Dummies makes everything easier.

Visit Us Like Us Follow Us Watch Us
Elg@l: DAL %@E‘ You @xm
e , s '1:
G ﬁﬁ Eﬁnﬁg TuheJlfe
bit.ly/JEOO on.fb.me/1f1ThNu bit.ly/ZDytkR bit.ly/gbOQHnN
Join Us Pin Us Circle Us Shop Us

Q=

linkd.in/1gurkMm bit.ly/16caOLd bit. Iy/1aQTuDQ

~\

[=]:5]
i

bit.ly/4dEp9

Leverage the Power

For Dummies is the global leader in the reference category and
one of the most trusted and highly regarded brands in the world.
No longer just focused on books, customers now have access to
the For Dummies content they need in the format they want. Let
us help you develop a solution that will fit your brand and help
you connect with your customers.

Advertising & Sponsorships

Connect with an engaged audience on a powerful multimedia site,
and position your message alongside expert how-to content.

Targeted ads - Video - Email marketing « Microsites « Sweepstakes sponsorship

FOMIES. 7.F g+ s TELE “ Shop for Books & More »
Making Everything Easier
DUMPFYER satigeuuroing ——

to Win it DUM-MIES L En}e:" for your chance towin $ 10, 000 4 ﬁ :

Business & Careers =—
Vislt the NEW For Dummles eLeaming Center > <

Computers & Software RESUMJ

Consumer Electronics [y = =

- f

Crafts & Hobbies

Education & Languages

Food & Drink

Health & Fitness DUMMIE‘S elearning Center

Home & Garden

From Windows 8 and Office 2010 to Digital Photography...

Internet & Social Media Start eLearning today! Register now 21 Million
Music & Creative Arts
e Leam someting New: JOb Searching) Mon.thly Page
Photography & Video Wf;:e;\s:‘;mi;’: vl eWS &

13 Million Unique

Personalize, Prin

Personal Finance

Relationships & Famil
: B g + Using a Person-to-Person Approach in Your Job Search

Religion & Spirituality « Searching Online Job Boards

« .Job Search: Pros and Cons of Online Social Networking www.DigitalSherpa.cl o o
Sports & Outdoors /

« How to Create Effective and Professional Online Profiles Increase Traffic w/O ISITOrS
Games Management. Free ConsY

Read more articles on Job Searching —
Application Managem®
www .manageengine.com
Manitor App Servers, Databases, ¥
Systems. Try Now!

[Go—— 2 Answering Tough Interview Questions
pi

«..ooiva Touch 3

For Dummiies is a registered trademark of John Wiley & Sons, Inc.

At home, at work, or on the go,
Dummies is here to help you
go digitall

From eLearning to e-books, test prep to test banks,
language learning to video training, mobile apps, and more,
Dummies makes learning easier.

E1 www.facebook.com/fordummies DUMM-IE S Cowme

A Wiley Brand

’ www.twitter.com/fordummies

http://www.facebook.com/fordummies
http://www.twitter.com/fordummies

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I: Getting Started with the BeagleBone
	Chapter 1: Introducing the BeagleBone
	Touring the Original BeagleBone and the BeagleBone Black
	Exploring Uses for the BeagleBone
	Accessorizing Your BeagleBone

	Chapter 2: Installing the Operating System
	Introducing Linux
	Selecting a Distribution
	Knowing the factory defaults on your BeagleBone
	Downloading your Linux distribution
	Decompressing your Linux distribution

	Flashing and Inserting Your microSD Card
	Flashing a microSD card in Windows
	Flashing a microSD card in Mac OS X
	Flashing a microSD card in Linux
	Inserting your microSD card

	Flashing the Onboard eMMC

	Chapter 3: Connecting Your BeagleBone
	Connecting via USB
	Installing drivers
	Browsing to your BeagleBone

	Blinking the onboard LEDs
	Connecting via SSH over USB
	Windows
	Mac OS X and Linux

	Connecting via SSH over Ethernet
	Windows
	Mac OS X and Linux

	Connecting the Original BeagleBone via Serial over USB
	Windows
	Mac OS X and Linux

	Connecting the BeagleBone Black via Serial over USB
	Windows
	Mac OS X and Linux

	Part II: Covering the Basics
	Chapter 4: Introducing the Linux Shell
	Examining the Prompt
	Introducing the root superuser
	Exploring the Linux File System
	Listing files and directories
	Understanding the directory tree
	Changing directories
	Understanding relative and absolute paths
	Checking file types
	Creating directories
	Creating, editing, and viewing text files
	Removing files and directories
	Copying and renaming files
	Selecting multiple files in Linux
	Using long-listing format and permissions

	Managing Software on Your BeagleBone
	Installing software
	Running software
	Updating software
	Removing software
	Seeing what’s installed on your BeagleBone

	Changing the Hostname and Password
	Shutting Down and Rebooting
	Commanding the Prompt Like a Jedi Master
	Recalling previous commands
	Autocompleting commands
	Using keyboard shortcuts
	Keeping everything clean

	Chapter 5: Designing Circuits
	Introducing Electricity
	Voltage, current, and resistance
	The water analogy
	A basic circuit example

	Examining the Equations
	Ohm’s Law
	Power calculations
	Joule’s Law
	Units of measurement

	Working with Circuits
	Circuit diagrams
	Color coding
	Resistor color charts
	Datasheets

	Chapter 6: Introducing Digital Electronics with the BeagleBone
	Looking for the Right Tools
	Breadboards
	Jumper wires

	Essential Components and Parts
	Getting to Know the GPIO
	Understanding How GPIOs Work
	Viewing the GPIO pins layout

	Setting GPIOs as Outputs
	Wiring the circuit for an LED
	Controlling the GPIO

	Setting GPIOs as Inputs
	Wiring the circuit for a pushbutton
	Controlling the GPIO

	Setting GPIOs as PWM
	Wiring the circuit for a brightness-regulated LED
	Controlling the GPIO

	Creating shell scripts
	Adding Capes to the BeagleBone
	BeagleBone Proto Cape
	BeagleBone Power Cape
	BeagleBone Motor Cape
	BeagleBone mikroBUS Cape
	BeagleBone GPS/GPRS Cape
	BeagleBone LCD Cape
	BeagleBone HD Camera Cape

	Part III: Programming with BoneScript
	Chapter 7: Introducing BoneScript
	Introducing JavaScript, Node.js, and BoneScript
	Introducing Cloud9 IDE
	Launching the Cloud9 IDE
	Exploring the Cloud9 IDE
	Creating a folder and .js file

	Blinking an Onboard LED with BoneScript
	Commenting
	Loading the BoneScript module
	Creating variables
	Configuring pins
	Setting the default pin state
	Setting an interval
	Creating a function
	Running the script

	Blinking More LEDs with BoneScript
	Wiring the circuit
	Opening the blinked.js demo
	Running the script

	Chapter 8: Experimenting with BoneScript
	Reading an Input
	Wiring a pushbutton
	Writing the code to read the state of a pushbutton
	Running the script to read the state of a pushbutton

	Controlling an LED with a Pushbutton
	Wiring an LED and a pushbutton
	Writing the code
	Running the script

	Adjusting the Brightness with an RGB LED
	Wiring the RGB LED
	Writing the code
	Running the script

	Sweeping a Servo with a Potentiometer
	Analog inputs
	Wiring everything together
	Writing the code to sweep a servo with a potentiometer
	Running the script to sweep a servo with a potentiometer

	Detecting Movement with a Motion Sensor
	Wiring the motion sensor
	Writing the code for motion detection
	Running the script for motion detection

	Part IV: Programming with Python
	Chapter 9: Introducing Python
	Getting Started with Python
	Making sure your libraries are up to date
	Installing the libraries

	Blinking an LED with Python
	Wiring the circuit for an LED
	Writing the code for an LED
	Running the script for blinking an LED

	Reading a Pushbutton with Python
	Wiring the circuit for a pushbutton
	Writing the code and running the script for a pushbutton
	Writing the code with interrupts
	Introducing if . . . else and if . . . elif statements
	Getting to know the print function

	Chapter 10: Experimenting with Python
	Fading an RGB LED with Python
	Wiring an RGB LED
	Writing the code for fading an RGB LED
	Running the script for fading an RGB LED

	Working with Analog Sensors
	Using the right voltage for the ADC
	Wiring an IR distance sensor
	Writing the code to measure distance
	Running the script to measure distance
	Wiring a temperature sensor
	Writing the code to read temperature
	Running the script to read temperature

	Sending an Email with Python
	Knowing the prerequisites
	Writing the code to send an email
	Running the script to send an email

	Mixing Up Projects and Creating Functions
	Creating a function with Python
	Sending temperature readings by email
	Controlling an RGB LED with distance readings

	Introducing UART
	Wiring the BeagleBone to an UART device
	Writing the code to test UART
	Running the script to test UART
	Understanding UART’s uses

	Chapter 11: Mastering the Art of Coding
	General Programming Tips
	Variables and function names
	Constants
	Comments, white space, and indentation

	Debugging
	Diving into Binary and Data Storage
	Binary
	Hexadecimal
	Data storage

	BoneScript-Specific Programming Tips
	Looping, looping, and more looping
	Understanding the importance of JavaScript callbacks

	Python-Specific Programming Tips
	Creating functions to clear up the mess
	Creating time-dependent code

	Part V: Turning Your BeagleBone into a Desktop Computer
	Chapter 12: Using Your BeagleBone Black as a Desktop Computer
	Getting Started
	Connecting the Peripherals and Booting Up
	Connecting a Micro HDMI cable or DVI display
	Connecting a USB hub, keyboard, and mouse
	Connecting to your router
	Connecting the power
	Booting up

	Accessing the Terminal
	Roaming the Desktop Environment
	Viewing the Applications menu
	Using the task bar
	Working with multiple desktops

	Customizing the BeagleBone
	Customizing the desktop appearance
	Choosing a screen saver
	Creating icons on the desktop
	Changing the desktop background

	Using the File Manager
	Navigating the File Manager
	Creating blank files
	Creating new folders
	Opening a folder in the terminal
	Accessing external storage devices

	Using the Task Manager
	Browsing the Web
	Using the Customization menu
	Searching for web pages
	Finding words within web pages
	Using tabbed browsing
	Adding and using bookmarks
	Changing settings

	Shutting Down, Rebooting, and Logging Off

	Chapter 13: Building Your Website
	Introducing HTML, CSS, and JavaScript
	Getting Started
	Using a BeagleBone Black as a desktop computer
	Controlling the BeagleBone remotely through SSH

	Creating Your First Website
	Organizing your files
	Opening a new file
	Writing the first line
	Structuring an HTML document

	Formatting Your HTML Content
	Adding a title
	Adding headings
	Inserting paragraphs
	Viewing your web page
	Inserting links
	Adding images
	Creating lists

	Formatting Your HTML Document
	Styling Your HTML Content with CSS
	Embedding a style sheet
	Knowing the basics of CSS
	Experimenting with colors
	Changing text appearance
	Understanding the box model

	Styling Your HTML Elements
	Wrapping up your content
	Dividing your web page
	Customizing your logo and navigation bar
	Customizing your container
	Testing your web page

	Publishing Your First Website

	Part VI: Playing with the BeagleBone
	Chapter 14: Building Your First Project
	Getting Started
	Wiring Up the LCD
	Wiring the LCD
	Writing the code for the LCD
	Running the script for the LCD

	Programming the Email Reader
	Putting It All Together
	Wiring the pushbuttons
	Understanding the concept
	Writing the code

	Adding the LED and Buzzer
	Wiring the LED and buzzer
	Writing the code for the LED and buzzer
	Running the script of the complete project

	Chapter 15: Running Your Home Automation Web Server
	Exploring What You Can Do
	Examining the Framework
	Installing socket.io
	Keeping your files organized
	Repurposing your previous HTML and CSS

	Wiring Your Circuit
	Writing Your Web Page
	Creating your GUI
	Adding JavaScript to your web page
	Explaining your main JavaScript

	Running Your Web Server
	Loading modules and initializing a variable
	Creating your web server
	Establishing socket communication
	Launching your web server

	Accessing Your BeagleBone with Another Device
	Dropping Your LED and Controlling an Appliance
	Adjusting Outputs with PWM
	Designing the GUI
	Writing your main script
	Creating your web server
	Launching the web server to control a PWM output

	Connecting a temperature sensor
	Writing your web page
	Creating your web server
	Launching the web server for your temperature monitoring

	Part VII: The Part of Tens
	Chapter 16: Ten Amazing Projects for the BeagleBone
	Underwater Exploration Robot
	Autonomous Sailboat to Tame the Seas
	Autonomous Robot for BeagleBone Black
	BoneScript
	Multimedia Center with Kodi
	BeagleBone Gaming Console
	BeagleBone As Super Nintendo
	BeagleBone Cape for Drones
	Desktop Five-Axis CNC Mill
	BeagleBone 3D Printer

	Chapter 17: Ten Resources and Tips for BeagleBone Users
	Finding Components and Parts
	Acquiring Electronics Starter Kits
	Protecting Your BeagleBone with a Case
	Attending Events and Workshops
	Joining the BeagleBoard Community
	Interacting with the Community
	Sharing Your BeagleBone Projects with Others
	Improving by Failing
	Looking for Project Ideas
	Finding Out More about BeagleBone

	Appendix A: Troubleshooting
	Common Sources of Errors
	Things Not to Do
	Miscellaneous
	Expanding the file system on your microSD card
	Accessing external storage devices when using the Linux Shell

	Appendix B: Controlling BeagleBone’s GPIOs
	Controlling the GPIO with the File System
	Controlling the GPIO with BoneScript
	Controlling the GPIO with Python

	Appendix C: Guide to the BeagleBone’s GPIOs
	Index
	About the Authors
	Wiley End User License Agreement

BeagleBone

