

549360ffirs.indd 02-07-2008 12:00 AM

549360ffirs.indd 02-07-2008 12:00 AM

 Exploring Arduino®

 Tools and Techniques for
Engineering Wizardry

 Jeremy Blum

549360ffirs.indd 02-07-2008 12:00 AM

 Exploring Arduino®: Tools and Techniques for Engineering Wizardry

 Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

 www.wiley.com

 Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

 Published simultaneously in Canada

 ISBN: 978-1-118-54936-0

 ISBN: 978-1-118-54948-3 (ebk)

 ISBN: 978-1-118-78616-1 (ebk)

 Manufactured in the United States of America

 10 9 8 7 6 5 4 3 2 1

 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107

or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or

authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood

Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be

addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http://www.wiley.com/go/permissions .

 Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with

respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including

without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or

promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional

services. If professional assistance is required, the services of a competent professional person should be sought.

Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or

Web site is referred to in this work as a citation and/or a potential source of further information does not mean that

the author or the publisher endorses the information the organization or website may provide or recommendations

it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-

peared between when this work was written and when it is read.

 For general information on our other products and services please contact our Customer Care Department within the

United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

 Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers

to media such as a CD or DVD that is not included in the version you purchased, you may download this material at

 http://booksupport.wiley.com . For more information about Wiley products, visit www.wiley.com .

 Library of Congress Control Number: 2013937652

 Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its

affi liates, in the United States and other countries, and may not be used without written permission. Arduino is a regis-

tered trademark of Arduino, LLC. All other trademarks are the property of their respective owners. John Wiley & Sons,

Inc. is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

549360ffirs.indd 02-07-2008 12:00 AM

 To my grandmother, whose lifelong curiosity and encouragement
inspires me to be a better person every day.

iv

549360ffirs.indd 02-07-2008 12:00 AM

 Acquisitions Editor
 Mary James

 Project Editor
 Jennifer Lynn

 Technical Editor
 Scott Fitzgerald

 Production Editor
 Daniel Scribner

 Copy Editor
 Keith Cline

 Editorial Manager
 Mary Beth Wakefi eld

 Freelancer Editorial Manager
 Rosemarie Graham

 Associate Director of Marketing
 David Mayhew

 Marketing Manager
 Ashley Zurcher

 Business Manager
 Amy Knies

 Production Manager
 Tim Tate

 Vice President and Executive Group
Publisher
 Richard Swadley

 Vice President and Executive
Publisher
 Neil Edde

 Associate Publisher
 Jim Minatel

 Project Coordinator, Cover
 Katie Crocker

 Compositor
 Cody Gates,

Happenstance Type-O-Rama

 Proofreader
 James Saturnio, Word One

 Indexer
 John Sleeva

 Cover Designer
 Ryan Sneed

 Cover Image
 Courtesy of Jeremy Blum

 Credits

 v

549360ffirs.indd 02-07-2008 12:00 AM

 About the Author

 Jeremy Blum recently received his Master’s degree in Electrical and Computer

Engineering from Cornell University, where he previously received his Bachelor’s

degree in the same fi eld. At Cornell, he oversaw the design and creation of

several sustainable buildings around the world and domestically through his

founding and leadership of Cornell University Sustainable Design, a nationally

recognized sustainable design organization that has been specifi cally lauded

by the CEO of the U.S. and World Green Building Councils. In that vein, Jeremy

has applied his passion for electrical engineering to design solar home energy

monitoring systems, revolutionary fi ber-optic LED lighting systems, and sun-

tracking smart solar panels. He is also responsible for helping to start a fi rst-of-

its-kind entrepreneurial co-working space that contributes to the development

of dozens of student start-ups (including some of his own creation) every year.

 Jeremy has designed award-winning prosthetic control methods, gesture-

recognition systems, and building-automation systems, among many other

things. He designed the electronics for the MakerBot Replicator 3D printers

(which are used by people around the world, and by notable organizations such

as NASA), and the prototype electronics and fi rmware for the MakerBot Digitizer

3D Scanner. As a researcher in the renowned Creative Machines Lab, he has

contributed to the creation of robots that can assemble themselves, self-learning

quadrupedal robots, and 3D printers that redefi ne personal manufacturing. He

has presented this research in peer-reviewed journals and at conferences as far

away as India.

 Jeremy produces YouTube videos that have introduced millions of people to

engineering and are among the most popular Arduino tutorials on the Internet.

He is well known within the international open source and “maker” communi-

ties for his development of open source hardware projects and tutorials that

549360ffirs.indd 02-07-2008 12:00 AM

vi About the Technical Editor

have been featured on the Discovery Channel, and have won several awards

and hack-a-thons. Jeremy was selected by the American Institute of Electrical

and Electronics Engineers as the 2012 New Face of Engineering.

 He offers engineering consulting services through his fi rm, Blum Idea Labs

LLC, and he teaches engineering and sustainability to young students in New

York City. Jeremy’s passion is improving people’s lives and our planet through

creative engineering solutions. You can learn more about Jeremy and his work

at his website: www.jeremyblum.com .

 About the Technical Editor

 Scott Fitzgerald is an artist and educator who has been using the Arduino plat-

form as a teaching tool and in his practice since 2006. He has taught physical

computing in the Interactive Telecommunications Program (ITP) of New York

University since 2005, introducing artists and designers to microcontrollers. Scott

works for the Arduino team, documenting new products and creating tutorials

to introduce people to the platform. He was technical editor of the second edi-

tion of Making Things Talk in 2011, and he authored the book that accompanies

the offi cial Arduino Starter Kit in 2012.

http://www.jeremyblum.com

 vii

549360ffirs.indd 02-07-2008 12:00 AM

 Acknowledgments

 First, I must thank my friends at Wiley publishing for helping to make this

possible: Mary James, for encouraging me to write this book in the fi rst place;

and Jennifer Lynn, for keeping me on track as I worked through writing all the

chapters. I also owe a big thanks to Scott Fitzgerald for his critical eye in the

technical editing of this book.

 Had it not been for the great folks at element14, I may never have gotten into

producing my Arduino Tutorial Series, a prelude to the book you are about

to read. Sabrina Deitch and Sagar Jethani, in particular, have been wonderful

partners with whom I’ve had the privilege to work.

 I wrote the majority of this book while simultaneously completing my Master’s

degree and running two companies, so I owe a tremendous amount of gratitude

to my professors and peers who put up with me while I tried to balance all of

my responsibilities.

 Finally, I want to thank my family, particularly my parents and my brother,

David, whose constant encouragement reminds me why I do the things I do.

549360ffirs.indd 02-07-2008 12:00 AM

 ix

549360ffirs.indd 02-07-2008 12:00 AM

Introduction xix

Part I Arduino Engineering Basics 1

Chapter 1 Getting Up and Blinking with the Arduino 3
Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19
Chapter 3 Reading Analog Sensors 41

Part II Controlling Your Environment 61

Chapter 4 Using Transistors and Driving Motors 63
Chapter 5 Making Sounds 91
Chapter 6 USB and Serial Communication 107
Chapter 7 Shift Registers 145

Part III Communication Interfaces 161

Chapter 8 The I2C Bus 163
Chapter 9 The SPI Bus 181
Chapter 10 Interfacing with Liquid Crystal Displays 199
Chapter 11 Wireless Communication with XBee Radios 221

Part IV Advanced Topics and Projects 255

Chapter 12 Hardware and Timer Interrupts 257
Chapter 13 Data Logging with SD Cards 277
Chapter 14 Connecting Your Arduino to the Internet 313

Appendix Deciphering the ATMega Datasheet and Arduino Schematics 341

Index 349

Contents at a Glance

549360ffirs.indd 02-07-2008 12:00 AM

 xi

549360ftoc.indd 02-07-2008 12:00 AM

Introduction xix

Part I Arduino Engineering Basics 1

Chapter 1 Getting Up and Blinking with the Arduino 3
Exploring the Arduino Ecosystem 4

Arduino Functionality 4

Atmel Microcontroller 6

Programming Interfaces 6

General I/O and ADCs 7

Power Supplies 7

Arduino Boards 8

Creating Your First Program 13
Downloading and Installing the Arduino IDE 13

Running the IDE and Connecting to the Arduino 14

Breaking Down Your First Program 16

Summary 18

Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation 19
Digital Outputs 20

Wiring Up an LED and Using Breadboards 20

Working with Breadboards 21

Wiring LEDs 22

Programming Digital Outputs 24

Using For Loops 25

Pulse-Width Modulation with analogWrite() 27
Reading Digital Inputs 29

Reading Digital Inputs with Pulldown Resistors 29

Working with “Bouncy” Buttons 32

Building a Controllable RGB LED Nightlight 35
Summary 39

Contents

xii Contents

549360ftoc.indd 02-07-2008 12:00 AM

Chapter 3 Reading Analog Sensors 41
Understanding Analog and Digital Signals 42

Comparing Analog and Digital Signals 43

Converting an Analog Signal to a Digital One 44

Reading Analog Sensors with the Arduino: analogRead() 45
Reading a Potentiometer 45

Using Analog Sensors 50

Working with Analog Sensors to Sense Temperature 52

Using Variable Resistors to Make Your Own Analog Sensors 54
Using Resistive Voltage Dividers 55

Using Analog Inputs to Control Analog Outputs 56

Summary 59

Part II Controlling Your Environment 61

Chapter 4 Using Transistors and Driving Motors 63
Driving DC Motors 65

Handling High-Current Inductive Loads 65

Using Transistors as Switches 66

Using Protection Diodes 67

Using a Secondary Power Source 68

Wiring the Motor 68

Controlling Motor Speed with PWM 70

Using an H-Bridge to Control DC Motor Direction 72

Building an H-bridge Circuit 73

Operating an H-bridge Circuit 76

Driving Servo Motors 80
Understanding the Difference Between Continuous Rotation

and Standard Servos 80

Understanding Servo Control 80

Controlling a Servo 85

Building a Sweeping Distance Sensor 86
Summary 90

Chapter 5 Making Sounds 91
Understanding How Speakers Work 92

The Properties of Sound 92

How a Speaker Produces Sound 94

Using tone() to Make Sounds 95
Including a Defi nition File 95

Wiring the Speaker 96

Making Sound Sequences 99

Using Arrays 99

Making Note and Duration Arrays 100

Completing the Program 101

Understanding the Limitations of the tone() Function 102

Building a Micro Piano 102
Summary 105

 Contents xiii

549360ftoc.indd 02-07-2008 12:00 AM

Chapter 6 USB and Serial Communication 107
Understanding the Arduino’s Serial Communication

Capabilities 108
Arduino Boards with an Internal or External FTDI

USB-to-Serial Converter 110

Arduino Boards with a Secondary USB-Capable

ATMega MCU Emulating a Serial Converter 112

Arduino Boards with a Single USB-Capable MCU 114

Arduino Boards with USB-Host Capabilities 114

Listening to the Arduino 115
Using print Statements 115

Using Special Characters 117

Changing Data Type Representations 119

Talking to the Arduino 119
Reading Information from a Computer or Other Serial Device 120

Telling the Arduino to Echo Incoming Data 120

Understanding the Differences Between Chars and Ints 121

Sending Single Characters to Control an LED 122

Sending Lists of Values to Control an RGB LED 125

Talking to a Desktop App 127
Talking to Processing 127

Installing Processing 128

Controlling a Processing Sketch from Your Arduino 129

Sending Data from Processing to Your Arduino 132

Learning Special Tricks with the Arduino Leonardo
(and Other 32U4-Based Arduinos) 134

Emulating a Keyboard 135

Typing Data into the Computer 135

Commanding Your Computer to Do Your Bidding 139

Emulating a Mouse 140

Summary 144

Chapter 7 Shift Registers 145
Understanding Shift Registers 146

Sending Parallel and Serial Data 147

Working with the 74HC595 Shift Register 148

Understanding the Shift Register Pin Functions 148

Understanding How the Shift Register Works 149

Shifting Serial Data from the Arduino 151

Converting Between Binary and Decimal Formats 154

Controlling Light Animations with a Shift Register 154
Building a “Light Rider” 154

Responding to Inputs with an LED Bar Graph 157

Summary 160

xiv Contents

549360ftoc.indd 02-07-2008 12:00 AM

Part III Communication Interfaces 161

Chapter 8 The I2C Bus 163
History of the I2C Bus 164
I2C Hardware Design 164

Communication Scheme and ID Numbers 165

Hardware Requirements and Pull-Up Resistors 167

Communicating with an I2C Temperature Probe 167
Setting Up the Hardware 168

Referencing the Datasheet 169

Writing the Software 171

Combining Shift Registers, Serial Communication,
and I2C Communications 173

Building the Hardware for a Temperature Monitoring System 173

Modifying the Embedded Program 174

Writing the Processing Sketch 177

Summary 180

Chapter 9 The SPI Bus 181
Overview of the SPI Bus 182
SPI Hardware and Communication Design 183

Hardware Confi guration 184

Communication Scheme 184

Comparing SPI to I2C 185
Communicating with an SPI Digital Potentiometer 185

Gathering Information from the Datasheet 186

Setting Up the Hardware 189

Writing the Software 190

Creating an Audiovisual Display Using
SPI Digital Potentiometers 193

Setting Up the Hardware 194

Modifying the Software 195

Summary 197

Chapter 10 Interfacing with Liquid Crystal Displays 199
Setting Up the LCD 200
Using the LiquidCrystal Library to Write to the LCD 203

Adding Text to the Display 204

Creating Special Characters and Animations 206

Building a Personal Thermostat 209
Setting Up the Hardware 210

Displaying Data on the LCD 211

Adjusting the Set Point with a Button 213

Adding an Audible Warning and a Fan 214

Bringing It All Together: The Complete Program 215

Taking This Project to the Next Level 219

Summary 219

 Contents xv

549360ftoc.indd 02-07-2008 12:00 AM

Chapter 11 Wireless Communication with XBee Radios 221
Understanding XBee Wireless Communication 222

XBee Radios 223

The XBee Radio Shield and Serial Connections 224

3.3V Regulator 226

Logic Level Shifting 226

Associate LED and RSSI LED 226

UART Selection Jumper or Switch 226

Hardware vs. Software Serial UART Connection Option 227

Confi guring Your XBees 228
Confi guring via a Shield or a USB Adapter 228

Programming Option 1: Using the Uno as a Programmer

(Not Recommended) 229

Programming Option 2: Using the SparkFun USB Explorer

(Recommended) 230

Choosing Your XBee Settings and Connecting Your XBee

to Your Host Computer 230

Confi guring Your XBee with X-CTU 231

Confi guring Your XBee with a Serial Terminal 235

Talking with Your Computer Wirelessly 236
Powering Your Remote Arduino 236

USB with a Computer or a 5V Wall Adapter 237

Batteries 237

Wall Power Adapters 239

Revisiting the Serial Examples: Controlling Processing

with a Potentiometer 239

Revisiting the Serial Examples: Controlling an RGB LED 243

Talking with Another Arduino: Building a Wireless Doorbell 246
System Design 246

Transmitter Hardware 247

Receiver Hardware 248

Transmitter Software 249

Receiver Software 250

Summary 252

Part IV Advanced Topics and Projects 255

Chapter 12 Hardware and Timer Interrupts 257
Using Hardware Interrupts 258

Knowing the Tradeoffs Between Polling and Interrupting 259

Ease of Implementation (Software) 260

Ease of Implementation (Hardware) 260

Multitasking 260

Acquisition Accuracy 261

Understanding the Arduino’s Hardware

Interrupt Capabilities 261

xvi Contents

549360ftoc.indd 02-07-2008 12:00 AM

Building and Testing a Hardware-Debounced

Button Interrupt Circuit 262

Creating a Hardware-Debouncing Circuit 262

Assembling the Complete Test Circuit 267

Writing the Software 267

Using Timer Interrupts 270
Understanding Timer Interrupts 270

Getting the Library 270

Executing Two Tasks Simultaneously(ish) 271

Building an Interrupt-Driven Sound Machine 272
Sound Machine Hardware 272

Sound Machine Software 273

Summary 275

Chapter 13 Data Logging with SD Cards 277
Getting Ready for Data Logging 278

Formatting Data with CSV Files 279

Preparing an SD Card for Data Logging 279

Interfacing the Arduino with an SD Card 284
SD Card Shields 284

SD Card SPI Interface 288

Writing to an SD Card 289

Reading from an SD Card 293

Using a Real-Time Clock 297
Understanding Real-Time Clocks 298

Using the DS1307 Real-Time Clock 298

Using the RTC Arduino Third-Party Library 299

Using the Real-Time Clock 300

Installing the RTC and SD Card Modules 300

Updating the Software 301

Building an Entrance Logger 305
Logger Hardware 306

Logger Software 307

Data Analysis 311

Summary 312

Chapter 14 Connecting Your Arduino to the Internet 313
The Web, the Arduino, and You 314

Networking Lingo 314

IP Address 314

Network Address Translation 315

MAC Address 316

HTML 316

HTTP 316

GET/POST 316

DHCP 316

DNS 317

 Contents xvii

549360ftoc.indd 02-07-2008 12:00 AM

Clients and Servers 317

Networking Your Arduino 317

Controlling Your Arduino from the Web 318
Setting Up the I/O Control Hardware 318

Designing a Simple Web Page 318

Writing an Arduino Server Sketch 320

Connecting to the Network and Retrieving an IP via DHCP 321

Replying to a Client Response 321

Putting It Together: Web Server Sketch 322

Controlling Your Arduino via the Network 326

Controlling Your Arduino over the Local Network 326

Using Port Forwarding to Control your Arduino

from Anywhere 327

Sending Live Data to a Graphing Service 329
Building a Live Data Feed on Xively 330

Creating a Xively Account 330

Creating a Data Feed 330

Installing the Xively and HttpClient Libraries 331

Wiring Up Your Arduino 332

Configuring the Xively Sketch and Running the Code 332

Displaying Data on the Web 335

Adding Feed Components 336

Adding an Analog Temperature Sensor 336

Adding Additional Sensor Readings to the Datastream 336

Summary 339

Appendix Deciphering the ATMega Datasheet
 and Arduino Schematics 341

Reading Datasheets 341
Breaking Down a Datasheet 341

Understanding Component Pin-outs 344

Understanding the Arduino Schematic 345

Index 349

 xix

549360flast.indd 02-07-2008 12:00 AM

 You have excellent timing. As I often like to say, “We’re living in the future.”

With the tools available to you today, many of which you’ll learn about in this

book, you have the opportunity and the ability to bend the physical world to

your whim. Until very recently, it has not been possible for someone to pick up

a microcontroller and have it controlling his or her world within minutes. As

you may have guessed, a microcontroller is a programmable platform that gives

you the power to defi ne the operation of complex mechanical, electrical, and

software systems using relatively simple commands. The possibilities are end-

less, and the Arduino microcontroller platform will become your new favorite

tool as you explore the world of electronics, programming, human-computer

interaction, art, control systems, and more. Throughout the course of this book,

you’ll use the Arduino to do everything from detecting motion to creating wire-

less control systems to communicating over the Internet.

 Whether you are completely new to any kind of engineering or are a seasoned

veteran looking to get started with embedded systems design, the Arduino is a

great place to start. Are you looking for a general reference for Arduino develop-

ment? This book is perfect for you, too. This book walks you through a number

of particular projects, but you’ll also fi nd it easy to return to the book for code

snippets, best practices, system schematics, and more. The electrical engineer-

ing, systems design, and programming practices that you’ll learn while reading

this book are widely applicable beyond the Arduino platform and will prepare

you to take on an array of engineering projects, whether they use the Arduino

or some other platform.

 Introduction

xx Introduction

549360flast.indd 02-07-2008 12:00 AM

 Who This Book Is For

 This book is for Arduino enthusiasts of all experience levels. Chapters build

upon each other, utilizing concepts and project components from previous chap-

ters to develop more complex ideas. But don’t worry. Whenever you face new,

complex ideas, a cross-reference reminds you where you fi rst encountered any

relevant building-block concepts so that you can easily refresh your memory.

 This book assumes that you have little or no previous experience working

with programming or electrical engineering. To facilitate readers of various

experience levels, the book features a number of optional sections and sidebars,

or short excerpts, that explain a particular concept in greater detail. Although

these sidebars are not obligatory for you to gain a good understanding of how

to use the Arduino, they do provide a closer look at technical topics for the

more curious reader.

 What You’ll Learn in This Book

 This book is not a recipe book. If you want to follow step-by-step instructions

that tell you exactly how to build a particular project without actually explain-

ing why you are doing what you are doing, this book is not for you. You can

think of this book as an introduction to electrical engineering, computer science,

product design, and high-level thinking using the Arduino as a vehicle to help

you experience these concepts in a hands-on manner.

 When building hardware components of the Arduino projects demonstrated

in this book, you’ll learn not just how to wire things together, but how to read

schematics, why particular parts are used for particular functions, and how to

read datasheets that will allow you to choose appropriate parts to build your

own projects. When writing software, I provide complete program code, but

you will fi rst be stepped through several iterative processes to create the fi nal

program. This will help to reinforce specifi c program functions, good code-

formatting practices, and algorithmic understanding.

 This book will teach physics concepts, algorithms, digital design principles,

and Arduino-specifi c programming concepts. It is my hope that working through

the projects in this book will not just make you a well-versed Arduino devel-

oper, but that it will also give you the skills you need to develop more-complex

electrical systems, and to pursue engineering endeavors in other fi elds, and

with different platforms.

 Introduction xxi

549360flast.indd 02-07-2008 12:00 AM

 Features Used in This Book

 The following features and icons are used in this book to help draw your atten-

tion to some of the most important or useful information in the book:

 WARNING Be sure to take heed when you see one of these asides. When par-
ticular steps could cause damage to your electronics if performed incorrectly,
you’ll see one of these asides.

 TIP These asides contain quick hints about how to perform simple tasks that
might prove useful for the task at hand.

 NOTE These asides contain additional information that may be of importance to
you, including links to videos and online material that will make it easier to follow
along with the development of a particular project.

 SAMPLE HEADING

 These asides go into additional depth about the current topic or a related topic.

 Getting the Parts

 Lucky for you, you can easily obtain the components you need to execute the

projects in this book. This book’s partner, Newark element14, has created kits

specially designed for the contents of this book. You can even use the coupon

code at the back of this book to get a discount!

 You should order the basic kit fi rst. You can then purchase add-on kits as you

progress through the book. Don’t want to buy a kit? Don’t worry. At the begin-

ning of each chapter, you’ll fi nd a detailed list of parts that you need to complete

that chapter. The companion website for this book, www.exploringarduino.com ,

also provides links to where you can fi nd the parts for each chapter.

 NOTE Did you already buy this book as a bundle from Newark? If so, you’re
good to go.

http://www.exploringarduino.com

xxii Introduction

549360flast.indd 02-07-2008 12:00 AM

 What You’ll Need

 In addition to the actual parts that you’ll use to build your Arduino projects,

there are a few other tools and materials that you’ll need on your Arduino

adventures. Most importantly, you’ll need a computer that is compatible with the

Arduino integrated development environment (IDE) (Mac OSX 10.4+, Windows

XP+, or a Linux Distro). I will provide instructions for all operating systems

when warranted.

 You may also want some additional tools that will be used throughout the book

to debug, assemble hardware, etc. These are not explicitly necessary to complete

the projects in this book. As you develop your electrical engineering skillset,

these tools will come in handy for other projects. I recommend the following:

 ■ A soldering iron and solder (Note: You will not need to solder to com-

plete the projects in this book, but you may wish to assemble your own

circuits on a protoboard, or you may wish to purchase shields that require

soldering assembly.)

 ■ A multimeter (This will be useful for debugging concepts within this

book, but is not explicitly required.)

 ■ A set of small screwdrivers

 ■ A hot glue gun

 Source Code and Digital Content

 The primary companion site for this book is www.exploringarduino.com , and it

is maintained by the author. You will fi nd code downloads for each chapter on

this site (along with videos, links, and other useful materials). Wiley also main-

tains a repository of digital content that accompanies this book at www.wiley.com .

Specifi cally for this book, the code download is on the Download Code tab at

 www.wiley.com/go/exploringarduino .

 You can also search for the book at www.wiley.com by ISBN (the ISBN for this

book is 978-1-118-54936-0) to fi nd the code.

 At the beginning of each chapter, you can fi nd the location of the major code

fi les for the chapter. Throughout each chapter, you can also fi nd references to

the names of code fi les as needed in listing titles and text.

 The code available at www.exploringarduino.com and www.wiley.com is

provided in compressed ZIP archives. After you download the code, just

decompress it with an appropriate compression tool.

 NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-54936-0.

http://www.exploringarduino.com
http://www.wiley.com
http://www.wiley.com/go/exploringarduino
http://www.wiley.com
http://www.exploringarduino.com
http://www.wiley.com

 Introduction xxiii

549360flast.indd 02-07-2008 12:00 AM

 Errata

 We make every effort to ensure that there are no errors in the text or in the code.

However, no one is perfect, and mistakes do occur. If you fi nd an error in this

book, such as a spelling mistake or faulty piece of code, we would be grateful

for your feedback. By sending in errata, you may save another reader hours of

frustration, and at the same time, you can help us provide even higher quality

information.

 To fi nd the errata page for this book, go to www.wiley.com/go/exploringarduino

and click the Errata link. On this page you can view all errata that has been

submitted for this book and posted by Wiley editors.

 Supplementary Material and Support

 During your adventures with your Arduino, you’ll inevitably have questions

and perhaps run into problems. One of the best parts about using the Arduino is

the excellent support community that you can fi nd on the Web. This extremely

active base of Arduino users will readily help you along your way. The follow-

ing are just a few resources that you’ll fi nd helpful on your journey:

 ■ Offi cial Arduino Reference

 www.arduino.cc/en/Reference/HomePage

 ■ My Arduino Tutorial Series

 www.jeremyblum.com/category/arduino-tutorials

 ■ adafruit Industries’ Arduino Tutorial Series

 learn.adafruit.com/category/learn-arduino

 ■ SparkFun’s Electronics Tutorials

 learn.sparkfun.com/tutorials

 ■ The Offi cial Arduino Forum

 www.arduino.cc/forum

 ■ The element14 Arduino Community

 www.element14.com/community/groups/arduino

 If you’ve exhausted all of those resources and still cannot solve your problem,

reach out to me on Twitter (@sciguy14); maybe I can help. You can also get in

touch with me directly via the contact page on my website (www.jeremyblum

.com/contact), but I generally don’t guarantee fast response times.

http://www.wiley.com/go/exploringarduino
http://www.arduino.cc/en/Reference/HomePage
http://www.jeremyblum.com/category/arduino-tutorials
http://www.arduino.cc/forum
http://www.element14.com/community/groups/arduino
http://www.jeremyblum.com/contact
http://www.jeremyblum.com/contact
http://www.jeremyblum.com/contact
http://www.jeremyblum.com/contact

xxiv Introduction

549360flast.indd 02-07-2008 12:00 AM

 What Is an Arduino?

 The best part about the Arduino prototyping platform is that it’s whatever you

want it to be. The Arduino could be an automatic plant-watering control system.

It can be a web server. It could even be a quadcopter autopilot.

 The Arduino is a microcontroller development platform paired with an intui-

tive programming language that you develop using the Arduino integrated

development environment (IDE). By equipping the Arduino with sensors, actua-

tors, lights, speakers, add-on modules (called shields), and other integrated

circuits, you can turn the Arduino into a programmable “brain” for just about

any control system.

 It’s impossible to cover everything that the Arduino is capable of, because the

possibilities are limited only by your imagination. Hence, this book serves as

a guide to get you acquainted with the Arduino’s functionality by executing a

number of projects that will give you the skills you need to develop your own

projects.

 You’ll learn more about the Arduino and the available variations of the board

in Chapter 1, “Getting Up and Blinking with the Arduino.” If you’re eager to

know all the inner workings of the Arduino, you’re in luck: It is completely

open source, and all the schematics and documentation are freely available on

the Arduino website. Appendix A, “Deciphering the ATMega Datasheet and

Arduino Schematics,” covers some of the Arduino’s technical specifi cations.

 An Open Source Platform

 If you’re new to the world of open source, you are in for a treat. This book does

not go into detail about the open source hardware movement, but it is worth

knowing a bit about the ideologies that make working with the Arduino so

wonderful. If you want a full rundown of what open source hardware is, check

out the offi cial defi nitions on the Open Source Hardware Association website

(www.oshwa.org/definition).

 NOTE Learn all about the open source movement from my TEDx Talk:
 www.jeremyblum.com/portfolio/tedx-cornell-university-2011/ .
You can also find this video on the Wiley website shown at the beginning of
this Introduction.

 Because the Arduino is open source hardware, all the design fi les, schematics,

and source code are freely available to everybody. Not only does this mean that

you can more easily hack the Arduino to serve a very particular function, but

you can also even integrate the Arduino platform into your designs, make and

http://www.oshwa.org/definition
http://www.jeremyblum.com/portfolio/tedx-cornell-university-2011

 Introduction xxv

549360flast.indd 02-07-2008 12:00 AM

sell Arduino clones, and use the Arduino software libraries in other projects.

Although this book focuses mostly on using offi cial Arduino hardware, you

could also use hundreds of Arduino derivative boards (often with particular

functions added on to them) to create the projects in this book.

 The Arduino open source license also permits commercial reuse of their designs

(so long as you don’t utilize the Arduino trademark on your designs). So, if you

use an Arduino to prototype an exciting project and you want to turn it into a

commercial product, you can do that. For example, you’ll read about products

like the MakerBot Replicator 3D printer, which uses electronics based on the

Arduino Mega platform (www.thingiverse.com/thing:16058). (Full disclosure:

I designed that motherboard.)

 Be sure to respect the licenses of the source code and hardware that you use

throughout this book. Some licenses require that you provide attribution to

the original author when you publish a design based on their previous work.

Others require that you always share improvements that you make under an

equivalent license. This sharing helps the community grow, and leads to all

the amazing online documentation and support that you’ll undoubtedly refer

to often during your Arduino adventures. All code examples that I’ve written

for this book (unless otherwise specifi ed) are licensed under the GNU General

Public License (GPL), enabling you to use them for anything you want.

 Beyond This Book

 Some of you might already be familiar with my popular series of YouTube

Arduino and electronics tutorials (www.youtube.com/sciguy14). I refer to them

throughout this book as a way to see more-detailed walkthroughs of the topics

covered here. If you’re curious about some of the remarkable things that you

can do with clever combinations of electronics, microcontrollers, computer sci-

ence, and creativity, check out my portfolio (www.jeremyblum.com/portfolio)

for a sampling of projects. Like Arduino, most of what I do is released via open

source licenses that allow you to easily duplicate my work for your own needs.

 I’m anxious to hear about what you do with the skills you acquire from this

book. I encourage you to share them with me and with the rest of the world.

Good luck on your Arduino adventures!

http://www.thingiverse.com/thing:16058
http://www.youtube.com/sciguy14
http://www.jeremyblum.com/portfolio

549360flast.indd 02-07-2008 12:00 AM

549360c01.indd 02-07-2008 12:00 AM

 In This Part

 Chapter 1: Getting Up and Blinking with the Arduino

 Chapter 2: Digital Inputs, Outputs, and Pulse-Width Modulation

 Chapter 3: Reading Analog Sensors

 P a r t

I
 Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 3

549360c01.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter:

 Arduino Uno

 USB cable

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, videos, and other digital content for this chapter can be

found at www.exploringarduino.com/content/ch1 .

In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 01 download and individu-

ally named according to the names throughout the chapter.

 Now that you have some perspective on the Arduino platform and its ca-

pabilities, it’s time to explore your options in the world of Arduino. In this

chapter, you examine the available hardware, learn about the programming

environment and language, and get your fi rst program up and running.

Once you have a grip on the functionality that the Arduino can provide,

you’ll write your fi rst program and get the Arduino to blink!

 C H A P T E R

1
 Getting Up and Blinking

with the Arduino

http://www.exploringarduino.com/content/ch1
http://www.wiley.com/go/exploringarduino

4 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 NOTE To follow along with a video that introduces the Arduino platform, visit
 www.jeremyblum.com/2011/01/02/arduino-tutorial-series-it-begins/ .
You can also find this video on the Wiley website shown at the beginning of this
chapter.

 Exploring the Arduino Ecosystem

 In your adventures with the Arduino, you’ll depend on three main components

for your projects:

 ■ The Arduino board itself

 ■ External hardware (including both shields and hand-made circuits, which

you’ll explore throughout this book)

 ■ The Arduino integrated development environment, or Arduino IDE

 All these system components work in tandem to enable you do just about

anything with your Arduino.

 You have a lot of options when it comes to Arduino development boards, but

this book focuses on using offi cial Arduino boards. Because the boards are all

designed to be programmable via the same IDE, you can generally use any of

the modern Arduino boards to complete the projects in this book with zero or

minor changes. However, when necessary, you’ll see caveats about using different

boards for various projects. The majority of the projects use the Arduino Uno.

 You start by exploring the basic functionality baked in to every Arduino board.

Then you examine the differences between each modern board so that you can

make an informed decision when choosing a board to use for your next project.

 Arduino Functionality
 All Arduino boards have a few key capabilities and functions. Take a moment

to examine the Arduino Uno (see Figure 1-1); it will be your base confi guration.

These are some key components that you’ll be concerning yourself with:

 ■ Atmel microcontroller

 ■ USB programming/communication interface(s)

 ■ Voltage regulator and power connections

 ■ Breakout I/O pins

 ■ Debug, Power, and RX/TX LEDs

 ■ Reset button

 ■ In-circuit serial programmer (ICSP) connector(s)

http://www.jeremyblum.com/2011/01/02/arduino-tutorial-series-it-begins

549360c01.indd 02-07-2008 12:00 AM

5
4

9
3

6
0

c0
1.in

d
d

0
2

-0
7-2

0
0

8
 12

:0
0
 A

M

USB connector

Reset button

7–12VDC input

Serial-to-USB circuitry

General I/O

Power and auxiliary pins

MCU programming
connector (ICSP)

Debug LED

Analog-to-digital converter (ADC) inputs

ATMega 328 MCU

 Figure 1-1: Arduino Uno components

Credit: Arduino, www.arduino.cc

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

6 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 Atmel Microcontroller

 At the heart of every Arduino is an Atmel microcontroller unit (MCU). Most

Arduino boards, including the Arduino Uno, use an AVR ATMega microcontroller.

The Arduino Uno in Figure 1-1 uses an ATMega 328p. The Due is an exception;

it uses an ARM Cortex microcontroller. This microcontroller is responsible for

holding all of your compiled code and executing the commands you specify. The

Arduino programming language gives you access to microcontroller peripherals,

including analog-to-digital converters (ADCs), general-purpose input/output

(I/O) pins, communication buses (including I2C and SPI), and serial interfaces.

All of this useful functionality is broken out from the tiny pins on the micro-

controller to accessible female headers on the Arduino that you can plug wires

or shields into. A 16 MHz ceramic resonator is wired to the ATMega’s clock

pins, which serves as the reference by which all program commands execute.

You can use the Reset button to restart the execution of your program. Most

Arduino boards come with a debug LED already connected to pin 13, which

enables you to run your fi rst program (blinking an LED) without connecting

any additional circuitry.

 Programming Interfaces

 Ordinarily, ATMega microcontroller programs are written in C or Assembly

and programmed via the ICSP interface using a dedicated programmer (see

Figure 1-2). Perhaps the most important characteristic of an Arduino is that

you can program it easily via USB, without using a separate programmer. This

functionality is made possible by the Arduino bootloader. The bootloader is

loaded onto the ATMega at the factory (using the ICSP header), which allows a

serial USART (Universal Synchronous/Asynchronous Receiver/Transmitter) to

load your program on the Arduino without using a separate programmer. (You

can learn more about how the bootloader functions in “The Arduino Bootloader

and Firmware Setup” sidebar.)

 In the case of the Arduino Uno and Mega 2560, a secondary microcontroller

(an ATMega 16U2 or 8U2 depending on your revision) serves as an interface

between a USB cable and the serial USART pins on the main microcontroller. The

Arduino Leonardo, which uses an ATMega 32U4 as the main microcontroller,

has USB baked right in, so a secondary microcontroller is not needed. In older

Arduino boards, an FTDI brand USB-to-serial chip was used as the interface

between the ATMega’s serial USART port and a USB connection.

 Chapter 1 ■ Getting Up and Blinking with the Arduino 7

549360c01.indd 02-07-2008 12:00 AM

 Figure 1-2: AVR ISP MKII programmer

 General I/O and ADCs

 The part of the Arduino that you’ll care the most about during your projects is

the general-purpose I/O and ADC pins. All of these pins can be individually

addressed via the programs you’ll write. All of them can serve as digital inputs

and outputs. The ADC pins can also act as analog inputs that can measure volt-

ages between 0 and 5V (usually from resistive sensors). Many of these pins are

also multiplexed to serve additional functions, which you will explore during

your projects. These special functions include various communication interfaces,

serial interfaces, pulse-width-modulated outputs, and external interrupts.

 Power Supplies

 For the majority of your projects, you will simply use the 5V power that is

provided over your USB cable. However, when you’re ready to untether your

project from a computer, you have other power options. The Arduino can accept

between 6V and 20V (7-12V recommend) via the direct current (DC) barrel jack

connector, or into the V
in

 pin. The Arduino has built-in 5V and 3.3V regulators:

 ■ 5V is used for all the logic on the board. In other words, when you toggle

a digital I/O pin, you are toggling it between 5V and 0V.

 ■ 3.3V is broken out to a pin to accommodate 3.3V shields and external

circuitry.

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.

A
ll

ri
gh

ts
 r

es
er

ve
d.

8 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 THE ARDUINO BOOTLOADER AND FIRMWARE SETUP

 A bootloader is a chunk of code that lives in a reserved space in the program
memory of the Arduino’s main MCU. In general, AVR microcontrollers are
programmed with an ICSP, which talks to the microcontroller via a serial
peripheral interface (SPI). Programming via this method is fairly straight-
forward, but necessitates the user having a hardware programmer such as
an STK500 or an AVR ISP MKII programmer (see Figure 1-2).

 When you first boot the Arduino board, it enters the bootloader, which
runs for a few seconds. If it receives a programming command from the
IDE over the MCU’s UART (serial interface) in that time period, it loads the
program that you are sending it into the rest of the MCU’s program memory.
If it does not receive a programming command, it starts running your most
recently uploaded sketch, which resides in the rest of the program memory.

 When you send an “upload” command from the Arduino IDE, it instructs
the USB-to-serial chip (an ATMega 16U2 or 8U2 in the case of the Arduino
Uno) to reset the main MCU, hence forcing it into the bootloader. Then, your
computer immediately begins to send the program contents, which the MCU
is ready to receive over its UART connection (facilitated by the USB-to-serial
converter).

 Bootloaders are great because they enable simple programming via USB
with no external hardware. However, they do have two downsides:

 ■ First, they take up valuable program space. If you have written a com-
plicated sketch, the approximately 2KB of space taken up by the boot-
loader might be really valuable.

 ■ Second, using a bootloader means that your program will always be
delayed by a few seconds at boot as the bootloader checks for a pro-
gramming request.

 If you have a programmer (or another Arduino that can be programmed to
act as a programmer), you can remove the bootloader from your ATMega and
program it directly by connecting your programmer to the ICSP header and
using the File ➭ Upload Using Programmer command from within the IDE.

 Arduino Boards
 This book cannot possibly cover all the available Arduino boards; there are many,

and manufacturers are constantly releasing new ones with various features. The

following section highlights some of the features in the offi cial Arduino boards.

 The Uno (see Figure 1-3) is the fl agship Arduino and will be used heavily

in this book. It uses a 16U2 USB-to-serial converter chip and an ATMega 328p

as the main MCU. It is available in both DIP and SMD versions (which defi nes

whether the MCU is removable).

 Chapter 1 ■ Getting Up and Blinking with the Arduino 9

549360c01.indd 02-07-2008 12:00 AM

 Figure 1-3: The Arduino Uno

 The Leonardo (see Figure 1-4) uses the 32U4 as the main microcontroller,

which has a USB interface built in. Therefore, it doesn’t need a secondary MCU

to perform the serial-to-USB conversion. This cuts down on the cost and enables

you to do unique things like emulate a joystick or a keyboard instead of a simple

serial device. You will learn how to use these features in Chapter 6, “USB and

Serial Communication.”

 Figure 1-4: The Arduino Leonardo

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

10 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 The Mega 2560 (see Figure 1-5) employs an ATMega 2560 as the main MCU,

which has 54 general I/Os to enable you to interface with many more devices.

The Mega also has more ADC channels, and has four hardware serial interfaces

(unlike the one serial interface found on the Uno).

 Figure 1-5: The Arduino Mega 2560

 Unlike all the other Arduino variants, which use 8-bit AVR MCUs, the Due

(see Figure 1-6) uses a 32-bit ARM Cortex M3 SAM3X MCU. The Due offers

higher-precision ADCs, selectable resolution pulse-width modulation (PWM),

Digital-to-Analog Converters (DACs), a USB host connector, and an 84 MHz

clock speed.

 Figure 1-6: The Arduino Due

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

 Chapter 1 ■ Getting Up and Blinking with the Arduino 11

549360c01.indd 02-07-2008 12:00 AM

 The Nano (see Figure 1-7) is designed to be mounted right into a breadboard

socket. Its small form factor makes it perfect for use in more fi nished projects.

 Figure 1-7: The Arduino Nano

 The Mega ADK (see Figure 1-8) is very similar to the Mega 2560, except that

it has USB host functionality, allowing it to connect to an Android phone so

that it can communicate with apps that you write.

 Figure 1-8: The Arduino Mega ADK

 The LilyPad (see Figure 1-9) is unique because it is designed to be sewn into

clothing. Using conductive thread, you can wire it up to sewable sensors, LEDs,

and more. To keep size down, you need to program it using an FTDI cable.

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 C
oo

ki
ng

 H
ac

ks
,

w
w
w
.
c
o
o
k
i
n
g
h
a
c
k
s
.
c
o
m

http://www.cookinghacks.com
http://www.cookinghacks.com
http://www.cookinghacks.com
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

12 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 Figure 1-9: The LilyPad Arduino

 As explained in this book’s introduction, the Arduino is open source hardware.

As a result, you can fi nd dozens and dozens of “Arduino compatible” devices

available for sale that will work just fi ne with the Arduino IDE and all the proj-

ects you’ll do in this book. Some of the popular third-party boards include the

Seeeduino, the Adafruit 32U4 breakout board, and the SparkFun Pro Mini Arduino

boards. Many third-party boards are designed for very particular applications, with

additional functionality already built into the board. For example, the ArduPilot

is an autopilot board for use in autonomous DIY quadcopters (see Figure 1-10).

You can even fi nd Arduino-compatible circuitry baked into consumer devices

like the MakerBot Replicator and Replicator 2 3D printers.

 Figure 1-10: Quadcopter and ArduPilot Mega controller

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 3
D

 R
ob

ot
ic

s,
 In

c.
,

w
w
w
.
3
d
r
o
b
o
t
i
c
s
.
c
o
m

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.3drobotics.com
http://www.3drobotics.com
http://www.3drobotics.com

 Chapter 1 ■ Getting Up and Blinking with the Arduino 13

549360c01.indd 02-07-2008 12:00 AM

 Creating Your First Program

 Now that you understand the hardware that you’ll be using throughout this

book, you can install the software and run your fi rst program. Start by down-

loading the Arduino software to your computer.

 Downloading and Installing the Arduino IDE
 Access the Arduino website at www.arduino.cc and download the newest ver-

sion of the IDE from the Download page (see Figure 1-11).

 Figure 1-11: The Arduino.cc Download page

 After completing the download, unzip it. Inside, you’ll fi nd the Arduino IDE.

New versions of the Windows IDE are available as an installer that you can

download and run, instead of downloading a ZIP fi le.

http://www.arduino.cc

14 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 Running the IDE and Connecting to the Arduino
 Now that you have the IDE downloaded and ready to run, you can connect the

Arduino to your computer via USB, as shown in Figure 1-12. Mac and Linux

machines install the drivers (mostly) automatically.

 If you are using OS X, the fi rst time you plug in an Uno or a Mega 2560, you

will get a notifi cation that a new network device has been added. Click the

Network Preferences button. In the new window, click Apply. Even though the

board will appear as “Not Confi gured” in the network device list, it will be

ready to use. Now, quit System Preferences.

 If you are using a modern Arduino on a Windows computer, you will prob-

ably need to install drivers. You can skip the following directions if you are not

using a Windows computer that needs to have drivers installed. If you installed

the IDE using the Windows installer, then these steps have been completed for

you. If you downloaded the ZIP on your Windows machine, then you will need

to follow the directions shown next.

 Figure 1-12: Arduino Uno connected to a computer via USB

 Chapter 1 ■ Getting Up and Blinking with the Arduino 15

549360c01.indd 02-07-2008 12:00 AM

 On your Windows computer, follow these steps to install the drivers (instruc-

tions adapted from the Arduino.cc website):

 1. Wait for the automatic install process to fail.

 2. Open the Start menu, right-click My Computer, and select Properties.

 3. Choose Device Manager.

 4. Look under Ports (COM and LPT) for the Arduino that you connected.

 5. Right-click it and choose Update Driver Software.

 6. Choose to browse your computer for software.

 7. Select the appropriate driver from the drivers directory of the Arduino

IDE that you just downloaded (not the FTDI drivers directory).

 8. Windows will now fi nish the driver installation.

 Now, launch the Arduino IDE. You’re ready to load your fi rst program onto

your Arduino. To ensure that everything is working as expected, you’ll load the

Blink example program, which will blink the onboard LED. Most Arduinos have

an LED connected to pin 13. Navigate to File ➭ Examples ➭ Basic, and click the

Blink program. This opens a new IDE window with the Blink program already

written for you. First, you’ll program the Arduino with this example sketch,

and then you’ll analyze the program to understand the important components

so that you can start to write your own programs in the next chapter.

 Before you load the program, you need to tell the IDE what kind of Arduino

you have connected and what port it is connected to. Go to Tools ➭ Board and

ensure that the right board is selected. This example uses the Uno, but if you

are using a different board, select that one (assuming that it also has an LED

connected to pin 13).

 The last step before programming is to tell the IDE what port your board is

connected to. Navigate to Tools ➭ Serial Port and select the appropriate port.

On Windows machines, this will be COM* , where * is some number representing

the serial port number.

 TIP If you have multiple serial devices attached to your computer, try unplugging
your board to see which COM port disappears from the menu; then plug it back in
and select that COM port.

 On Linux and Mac computers, the serial port looks something like /dev/tty

.usbmodem* or /dev/tty.usbserial* , where * is a string of alphanumeric

characters.

16 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 You’re fi nally ready to load your fi rst program. Click the Upload button () on

the top left of the IDE. The status bar at the bottom of the IDE shows a progress

bar as it compiles and uploads your program. When the upload completes, the

yellow LED on your Arduino should be blinking once per second. Congratulations!

You’ve just uploaded your fi rst Arduino program.

 Breaking Down Your First Program
 Take a moment to deconstruct the Blink program so that you understand the

basic structure of programs written for the Arduino. Consider Figure 1-13. The

numbered callouts shown in the fi gure correspond to the following list.

 Here’s how the code works, piece by piece:

 1. This is a multiline comment. Comments are important for documenting

your code. Everything you write between these symbols will not be com-

piled or even seen by your Arduino. Multiline comments start with /*

and end with */ . Multiline comments are generally used when you have

to say a lot (like the description of this program).

 2. This is a single-line comment. When you put // on any line, the compiler

ignores all text after that symbol on the same line. This is great for anno-

tating specifi c lines of code or for “commenting out” a particular line of

code that you believe might be causing problems.

 3. This code is a variable declaration. A variable is a place in the Arduino’s

memory that holds information. Variables have different types. In this

case, it’s of type int , which means it will hold an integer. In this case, an

integer variable called led is being set to the value of 13 , the pin that the

LED is connected to on the Arduino Uno. Throughout the rest of the pro-

gram, we can simply use led whenever we want to control pin 13. Setting

variables is useful because you can just change this one line if you hook

up your LED to a different I/O pin later on; the rest of the code will still

work as expected.

 4. void setup() is one of two functions that must be included in every

Arduino program. A function is a piece of code that does a specifi c task.

Code within the curly braces of the setup() function is executed once at

the start of the program. This is useful for one-time settings, such as setting

the direction of pins, initializing communication interfaces, and so on.

 Chapter 1 ■ Getting Up and Blinking with the Arduino 17

549360c01.indd 02-07-2008 12:00 AM

1

2

3

4

5

6
7
8
9

10

 Figure 1-13: The components of the Blink program

 5. The Arduino’s digital pins can function as input or outputs. To confi gure

their direction, use the command pinMode() . This command takes two

arguments. An argument gives commands information on how they should

operate. Arguments are placed inside the parentheses following a com-

mand. The fi rst argument to pinMode determines which pin is having its

direction set. Because you defi ned the led variable earlier in the program,

you are telling the command that you want to set the direction of pin 13.

The second argument sets the direction of the pin: INPUT or OUTPUT . Pins

are inputs by default, so you need to explicitly set them to outputs if you

want them to function as outputs. Because you want to light an LED, you

have set the led pin to an output (current is fl owing out of the I/O pin).

Note that you have to do this only one time. It will then function as an

output for the rest of the program, or until you change it to an input.

18 Part I ■ Arduino Engineering Basics

549360c01.indd 02-07-2008 12:00 AM

 6. The second required function in all Arduino programs is void loop() .

The contents of the loop function repeat forever as long as the Arduino

is on. If you want your Arduino to do something once at boot only, you

still need to include the loop function, but you can leave it empty.

 7. digitalWrite() is used to set the state of an output pin. It can set the pin

to either 5V or 0V. When an LED and resistor is connected to a pin, set-

ting it to 5V will enable you to light up the LED. (You learn more about

this in the next chapter.) The fi rst argument to digitalWrite() is the pin

you want to control. The second argument is the value you want to set

it to, either HIGH (5V) or LOW (0V). The pin remains in this state until it is

changed in the code.

 8. The delay() function accepts one argument: a delay time in milliseconds.

When calling delay() , the Arduino stops doing anything for the amount

of time specifi ed. In this case, you are delaying the program for 1000ms,

or 1 second. This results in the LED staying on for 1 second before you

execute the next command.

 9. Here, digitalWrite() is used to turn the LED off, by setting the pin state

to LOW .

 10. Again, we delay for 1 second to keep the LED in the off state before the

loop repeats and switches to the on state again.

 That’s all there is to it. Don’t be intimidated if you don’t fully understand

all the code yet. As you put together more examples in the following chapters,

you’ll become more and more profi cient at understanding program fl ow, and

writing your own code.

 Summary

 In this chapter you learned about the following:

 ■ All the components that comprise an Arduino board

 ■ How the Arduino bootloader allows you to program Arduino fi rmware

over a USB connection

 ■ The differences between the various available Arduino boards

 ■ How to connect and install the Arduino with your system

 ■ How to load and run your fi rst program

 19

549360c02.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter:

 Arduino Uno

 Small breadboard

 Jumper wires

 1 10kΩ resistor

 3 220Ω resistors

 USB cable

 Pushbutton

 5mm single-color LED

 5mm common-cathode RGB LED

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, videos, and other digital content for this chapter can be found

at www.exploringarduino.com/content/ch2 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 02 download and individu-

ally named according to the names throughout the chapter.

 C H A P T E R

2
 Digital Inputs, Outputs, and

Pulse-Width Modulation

http://www.exploringarduino.com/content/ch2
http://www.wiley.com/go/exploringarduino

20 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

 Blinking an LED is great, as you learned in the preceding chapter, but what

makes the Arduino microcontroller platform so useful is that the system is

equipped with both inputs and outputs. By combining both, your opportunities

are nearly limitless. For example, you can use a magnetic reed switch to play

music when your door opens, create an electronic lockbox, or build a light-up

musical instrument!

 In this chapter, you start to learn the skills you need to build projects like

these. You explore the Arduino’s digital input capabilities, learn about pullup

and pulldown resistors, and learn how to control digital outputs. Most Arduinos

do not have analog outputs, but it is possible to use digital pulse-width modula-

tion to emulate it in many scenarios. You learn about generating pulse-width

modulated signals in this chapter. You will also learn how to debounce digital

switches, a key skill when reading human input. By the end of the chapter, you

will be able to build and program a controllable RGB (Red, Green, Blue) LED

nightlight.

 NOTE You can follow along with a video as I teach you about digital inputs and
outputs, debouncing, and pulse-width modulation (PWM): www.jeremyblum.com/
2011/01/10/arduino-tutorial-2-now-with-more-blinky-things/ . You can
also find this video on the Wiley website shown at the beginning of this chapter.

 If you want to learn more about some of the basics of electrical engineering
touched on in this chapter, watch this video: www.jeremyblum.com/2011/01/17/
electrical-engineering-basics-in-arduino-tutorial-3/ . You can also
find this video on the Wiley website shown at the beginning of this chapter.

 Digital Outputs

 In Chapter 1, “Getting Up and Blinking with the Arduino,” you learned how to

blink an LED. In this chapter, you will further explore Arduino digital output

capabilities, including the following topics:

 ■ Setting pins as outputs

 ■ Wiring up external components

 ■ New programming concepts, including for loops and constants

 ■ Digital versus analog outputs and pulse-width modulation (PWM)

 Wiring Up an LED and Using Breadboards
 In Chapter 1, you learned how to blink the onboard LED, but what fun is that?

Now it is time to whip out the breadboard and wire up an external LED to pin

9 of your Arduino. Adding this external LED will be a stepping-stone towards

helping you to understand how to wire up more complex external circuits in

http://www.jeremyblum.com
http://www.jeremyblum.com/2011/01/17electrical-engineering-basics-in-arduino-tutorial-3/

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 21

549360c02.indd 02-07-2008 12:00 AM

the coming chapters. What’s more, pin 9 is PWM-enabled, which will enable

you to pursue the analog output examples later in this chapter.

 Working with Breadboards

 It is important to understand how breadboards work so that you can use them

effectively for the projects in this book. A breadboard is a simple prototyping

tool that easily allows you to wire up simple circuits without having to solder

together parts to a custom printed circuit board. First, consider the blue and

red lines that run the length of the board. The pins adjacent to these color-

coded lines are designed to be used as power and ground buses. All the red

pins are electrically connected, and are generally used for providing power. In

the case of most Arduinos and the projects in this book, this will generally be

at 5V. All the blue pins are electrically connected and are used for the ground

bus. All the vertically aligned pins are also connected in rows, with a division

in the middle to make it easy to mount integrated circuits on the breadboard.

Figure 2-1 highlights how the pins are electrically connected, with all the thick

lines representing connected holes.

Ground bus

Power bus
Prototyping area

Ground bus

Power bus

 Figure 2-1: Breadboard electrical connections

22 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

 Wiring LEDs

 LEDs will almost certainly be one of the most-used parts in your projects through-

out this book. LEDs are polarized; in other words, it matters in what direction

you hook them up. The positive lead is called the anode , and the negative lead

is called the cathode . If you look at the clear top of the LED, there will usually

be a fl at side on the lip of the casing. That side is the cathode. Another way to

determine which side is the anode and which is the cathode is by examining

the leads. The shorter lead is the cathode.

 As you probably already know, LED stands for light-emitting diode. Like all

diodes, LEDs allow current to fl ow in only one direction—from their anode to

their cathode. Because current fl ows from positive to negative, the anode of the

LED should be connected to the current source (a 5V digital signal in this case),

and the cathode should be connected to ground. The resistor can be inserted in

series on either side of the LED. Resistors are not polarized, and so you do not

have to worry about their orientation.

 You’ll wire the LED into pin 9 in series with a resistor. LEDs must always be

wired in series with a resistor to serve as a current limiter. The larger the resistor

value, the more it restricts the fl ow of current and the dimmer the LED glows.

In this scenario, you use a 220Ω resistor. Wire it up as shown in Figure 2-2.

 Figure 2-2: Arduino Uno wired to an LED

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 23

549360c02.indd 02-07-2008 12:00 AM

 OHM’S LAW AND THE POWER EQUATION

 The most important equation for any electrical engineer to know is Ohm’s
law. Ohm’s law dictates the relationship between voltage (measured in volts),
current (measured in amps), and resistance (measured in ohms or Ω) in a cir-
cuit. A circuit is a closed loop with a source of electrical energy (like a 9V bat-
tery) and a load (something to use up the energy, like an LED). Before delving
into the law, it is important to understand what each term means, at least at a
basic level:

 ■ Voltage represents the potential electrical difference between two points.

 ■ Current flows from a point of higher potential energy to lower potential
energy. You can think of current as a flow of water, and voltage as eleva-
tion. Water (or current) always flows from high elevation (higher volt-
age) to lower elevation (ground, or a lower voltage). Current, like water
in a river, will always follow the path of least resistance in a circuit.

 ■ Resistance , in this analogy, is representative of how easy it is for cur-
rent to flow. When the water (the current) is flowing through a narrow
pipe, less can pass through in the same amount of time as through a
larger pipe. The narrow pipe is equivalent to a high resistance value
because the water will have a harder time flowing through. The wider
pipe is equivalent to a low resistance value (like a wire) because cur-
rent can flow freely through it.

 Ohm’s law is defined as follows:

 V = IR

 Where V is Voltage difference in volts, I is Current in amps, and R is the
Resistance in ohms.

 In a circuit, all voltage gets used up, and each component offers up some
resistance that lowers the voltage. Knowing this, the above equation comes
in handy for things like figuring out what resistor value to match up with an
LED. LEDs have a predefined voltage drop across them and are designed to
operate at a particular current value. The larger the current through the
LED, the brighter the LED glows, up to a limit. For the most common LEDs,
the maximum current designed to go through an LED is 20milliamps (a mil-
liamp is 1/1000 of an amp and is typically abbreviated as mA). The voltage
drop across an LED is defined in its datasheet. A common value is around 2V.
Consider the LED circuit shown in Figure 2-3.

 Figure 2-3: Simple LED circuit
Continues

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

24 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

 You can use Ohm’s law to decide on a resistor value for this circuit.
Assume that this is a standard LED with 20mA forward current and a 2V
drop across it. Because the source voltage is 5V and it ends at ground, a
total of 5V must drop across this circuit. Since the LED has a 2V drop, the
other 3V must drop across the resistor. Knowing that you want approxi-
mately 20mA to flow through these components, you can find the resistor
value by solving for R:

 R = V/I

 Where V = 3V and I = 20mA.

 Solving for R, R = 3V / 0.02A = 150Ω. So, with a resistor value of 150Ω,
20mA flows through both the resistor and LED. As you increase the resis-
tance value, less current is allowed to flow through. 220Ω is a bit more than
150Ω, but still allows the LED to glow sufficiently bright, and is a very com-
monly available resistor value.

 Another useful equation to keep in mind is the power equation. The power
equation tells you how much power, in watts, is dissipated across a given
resistive component. Because increased power is associated with increased
heat dissipation, components generally have a maximum power rating. You
want to ensure that you do not exceed the maximum power rating for resis-
tors because otherwise they might overheat. A common power rating for
resistors is 1/8 of a watt (abbreviated as W, milliwatts as mW). The power
equation is as follows:

 P = IV

 Where P is power in watts, and I and V are still defined as the current and
voltage.

 For the resistor defined earlier with a voltage drop of 3V and a current of
20mA, P = 3V × 0.02A = 60mW, well under the resistor’s rating of 1/8W, or
125mW. So, you do not have to worry about the resistor overheating; it is well
within its operating limits.

 Programming Digital Outputs
 By default, all Arduino pins are set to inputs. If you want to make a pin an

output, you need to fi rst tell the Arduino how the pin should be confi gured.

In the Arduino programming language, the program requires two parts: the

 setup() and the loop() .

 As you learned in Chapter 1, the setup() function runs one time at the start

of the program, and the loop() function runs over and over again. Because

you’ll generally dedicate each pin to serve as either an input or an output, it is

continued

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 25

549360c02.indd 02-07-2008 12:00 AM

common practice to defi ne all your pins as inputs or outputs in the setup. You

start by writing a simple program that sets pin 9 as an output and turns it on

when the program starts.

 To write this program, use the pinMode() command to set the direction of

pin 9, and use digitalWrite() to make the output high (5V). See Listing 2-1.

 Listing 2-1: Turning on an LED—led.ino

 const int LED=9; //define LED for pin 9
 void setup()
 {
 pinMode (LED, OUTPUT); //Set the LED pin as an output
 digitalWrite(LED, HIGH); //Set the LED pin high
 }

 void loop()
 {
 //we are not doing anything in the loop!
 }

 Load this program onto your Arduino, wired as shown in Figure 2-2. In

this program, also notice that I used the const operator before defi ning the

pin integer variable. Ordinarily, you’ll use variables to hold values that may

change during program execution. By putting const before your variable dec-

laration, you are telling the compiler that the variable is “read only” and will

not change during program execution. All instances of LED in your program

will be “replaced” with 9 when they are called. When you are defi ning values

that will not change, using the const qualifi er is recommended. In some of the

examples later in this chapter, you will defi ne non-constant variables that may

change during program execution.

 You must specify the type for any variable that you declare. In the preceding

case, it is an integer (pins will always be integers), so you should set it as such.

You can now easily modify this sketch to match the one you made in Chapter 1

by moving the digitalWrite() command to the loop and adding some delays.

Experiment with the delay values and create different blink rates.

 Using For Loops
 It’s frequently necessary to use loops with changing variable values to adjust

parameters of a program. In the case of the program you just wrote, you can

implement a for loop to see how different blink rates impact your system’s

operation. You can visualize different blink rates by using a for loop to cycle

through various rates. The code in Listing 2-2 accomplishes that.

26 Part I ■ Arduino Engineering Basics

c02.indd 02-07-2008 12:00 AM

 Listing 2-2: LED with Changing Blink Rate—blink.ino

 const int LED=9; //define LED for Pin 9
 void setup()
 {
 pinMode (LED, OUTPUT); //Set the LED pin as an output
 }

 void loop()
 {
 for (int i=100; i<=1000; i=i+100)
 {
 digitalWrite(LED, HIGH);
 delay(i);
 digitalWrite(LED, LOW);
 delay(i);
 }
 }

 Compile the preceding code and load it onto your Arduino. What happens?

Take a moment to break down the for loop to understand how it works. The

for loop declaration always contains three semicolon-separated entries:

■ The fi rst entry sets the index variable for the loop. In this case, the index

variable is i and is set to start at a value of 100 .

■ The second entry specifi es when the loop should stop. The contents of

the loop will execute over and over again while that condition is true. <=

indicates less than or equal to. So, for this loop, the contents will continue

to execute as long as the variable i is still less than or equal to 1000 .

■ The fi nal entry specifi es what should happen to the index variable at the

end of each loop execution. In this case, i will be set to its current value

plus 100 .

 To better understand these concepts, consider what happens in two passes

through the for loop:

 1. 100 is less than or equal to 1000, so the loop contents execute.

 2. The LED is set high, and stays high for 100ms, the current value of i .

 3. The LED is set low, and stays low for 100ms, the current value of i .

 4. At the end of the loop, i is incremented by 100 , so it is now 200.

 5. 200 is less than or equal to 1000 , so the loop repeats again.

 6. The LED is set high, and stays high for 200ms, the current value of i .

 7. The LED is set low, and stays low for 200ms, the current value of i .

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 27

549360c02.indd 02-07-2008 12:00 AM

 8. At the end of the loop, i is incremented by 100 , so it is now 300 .

 9. This process repeats until i surpasses 1000 and the outer loop function

repeats, setting the i value back to 100 and starting the process again.

 Now that you’ve generated digital outputs from your Arduino, you’ll learn

about using PWM to create analog outputs from the I/O pins on your Arduino.

 Pulse-Width Modulation with analogWrite()

 So, you have mastered digital control of your pins. This is great for blinking

LEDs, controlling relays, and spinning motors at a constant speed. But what if

you want to output a voltage other than 0V or 5V? Well, you can’t—unless you

are using the digital-to-analog converter (DAC) pins on the Due or are using

an external DAC chip.

 However, you can get pretty close to generating analog output values by using

a trick called pulse-width modulation (PWM). Select pins on each Arduino can

use the analogWrite() command to generate PWM signals that can emulate a

pure analog signal when used with certain peripherals. These pins are marked

with a ~ on the board. On the Arduino Uno, Pins 3, 5, 6, 9, 10, and 11 are PWM

pins. If you’re using an Uno, you can continue to use the circuit from Figure 2-1

to test out the analogWrite() command with your LED. Presumably, if you

can decrease the voltage being dropped across the resistor, the LED should

glow more dimly because less current will fl ow. That is what you will try to

accomplish using PWM via the analogWrite() command. The analogWrite()

command accepts two arguments: the pin to control and the value to write to it.

 The PWM output is an 8-bit value. In other words, you can write values from

0 to 2 8 -1, or 0 to 255. Try using a similar for loop structure to the one you used

previously to cycle through varying brightness values (see Listing 2-3).

 Listing 2-3: LED Fade Sketch—fade.ino

 const int LED=9; //define LED for Pin 9
 void setup()
 {
 pinMode (LED, OUTPUT); //Set the LED pin as an output
 }

 void loop()
 {
 for (int i=0; i<256; i++)
 {
 analogWrite(LED, i);
 delay(10);

28 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

 }
 for (int i=255; i>=0; i--)
 {
 analogWrite(LED, i);
 delay(10);
 }
 }

 What does the LED do when you run this code? You should observe the LED

fading from off to on, then from on to off. Of course, because this is all in the

main loop, this pattern repeats ad infi nitum. Be sure to note a few differences

in this for loop. In the fi rst loop, i++ is just shorthand code to represent i=i+1 .

Similarly, i-- is functionally equivalent to i=i–1 . The fi rst for loop fades the

LED up, and the second loop fades it down.

 PWM control can be used in lots of circumstances to emulate pure analog con-

trol, but it cannot always be used when you actually need an analog signal. For

instance, PWM is great for driving direct current (DC) motors at variable speeds

(you experiment with this in later chapters), but it does not work well for driving

speakers unless you supplement it with some external circuitry. Take a moment

to examine how PWM actually works. Consider the graphs shown in Figure 2-4.

 Figure 2-4: PWM signals with varying duty cycles

 PWM works by modulating the duty cycle of a square wave (a signal that

switches on and off). Duty cycle refers to the percentage of time that a square

wave is high versus low. You are probably most familiar with square waves that

have a duty cycle of 50%—they are high half of the time, and low half of the time.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 29

549360c02.indd 02-07-2008 12:00 AM

 The analogWrite() command sets the duty cycle of a square wave depending

on the value you pass to it:

 ■ Writing a value of 0 with analogWrite() indicates a square wave with a

duty cycle of 0 percent (always low).

 ■ Writing a 255 indicates a square wave with a duty cycle of 100 percent

(always high).

 ■ Writing a 127 indicates a square wave with a duty cycle of 50 percent

(high half of the time, low half of the time).

 The graphs in Figure 2-4 show that for a signal with a duty cycle of 25 percent,

it is high 25 percent of the time, and low 75 percent of the time. The frequency

of this square wave, in the case of the Arduino, is about 490Hz. In other words,

the signal varies between high (5V) and low (0V) about 490 times every second.

 So, if you are not actually changing the voltage being delivered to an LED,

why do you see it get dimmer as you lower the duty cycle? It is really a result of

your eyes playing a trick on you! If the LED is switching on and off every 1ms

(which is the case with a duty cycle of 50 percent), it appears to be operating at

approximately half brightness because it is blinking faster than your eyes can

perceive. Therefore, your brain actually averages out the signal and tricks you

into believing that the LED is operating at half brightness.

 Reading Digital Inputs

 Now it is time for the other side of the equation. You’ve managed to successfully

 generate both digital and analog(ish) outputs. The next step is to read digital

inputs, such as switches and buttons, so that you can interact with your project

in real time. In this section, you learn to read inputs, implement pullup and

pulldown resistors, and debounce a button in software.

 Reading Digital Inputs with Pulldown Resistors
 You should start by modifying the circuit that you fi rst built from Figure 2-1.

Following Figure 2-5, you’ll add a pushbutton and a pulldown resistor con-

nected to a digital input pin.

 TIP Be sure to also connect the power and ground buses of the breadboard to
the Arduino. Now that you’re using multiple devices on the breadboard, that will
come in handy.

 Before you write the code to read from the pushbutton, it is important to

understand the signifi cance of the pulldown resistor used with this circuit. Nearly

30 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

all digital inputs use a pullup or pulldown resistor to set the “default state” of

the input pin. Imagine the circuit in Figure 2-5 without the 10kΩ resistor. In this

scenario, the pin would obviously read a high value when the button is pressed.

 But, what happens when the button is not being pressed? In that scenario, the

input pin you would be reading is essentially connected to nothing—the input

pin is said to be “fl oating.” And because the pin is not physically connected to

0V or 5V, reading it could cause unexpected results as electrical noise on nearby

pins causes its value to fl uctuate between high and low. To remedy this, the

pulldown resistor is installed as shown in Figure 2-5.

 Now, consider what happens when the button is not pressed with the pull-

down resistor in the circuit: The input pin will be connected through a 10kΩ

resistor to ground. While the resistor will restrict the fl ow of current, there

is still enough current fl ow to ensure that the input pin will read a low logic

value. 10kΩ is a fairly common pulldown resistor value. Larger values are said

to be weak pulldowns because it easier to overcome them, and smaller resistor

values are said to be strong pulldowns because it is easier for more current to fl ow

through them to ground. When the button is pressed, the input pin is directly

connected to 5V through the button.

 Now, the current has two options:

 ■ It can fl ow through a nearly zero resistance path to the 5V rail.

 ■ It can fl ow through a high resistance path to the ground rail.

 Figure 2-5: Wiring an Arduino to a button and an LED

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 31

549360c02.indd 02-07-2008 12:00 AM

 Recall from the previous sidebar on Ohm’s law and the power equation that

current will always follow the path of the least resistance in a circuit. In this

scenario, the majority of the current fl ows through the button, and a high logic

level is generated on the input pin, because that is the path of least resistance.

 NOTE This example uses a pulldown resistor, but you could also use a pullup
resistor by connecting the resistor to 5V instead of ground and by connecting the
other side of the button to ground. In this setup, the input pin reads a high-logic
value when the button is unpressed and a low-logic value when the button is being
pressed.

 Pulldown and pullup resistors are important because they ensure that the

button does not create a short circuit between 5V and ground when pressed

and that the input pin is never left in a fl oating state.

 Now it is time to write the program for this circuit! In this fi rst example, you

just have the LED stay on while the button is held down, and you have it stay

off when the button is released (see Listing 2-4).

 Listing 2-4: Simple LED Control with a Button—led_button.ino

 const int LED=9; //The LED is connected to pin 9
 const int BUTTON=2; //The Button is connected to pin 2

 void setup()
 {
 pinMode (LED, OUTPUT); //Set the LED pin as an output
 pinMode (BUTTON, INPUT); //Set button as input (not required)
 }

 void loop()
 {
 if (digitalRead(BUTTON) == LOW)
 {
 digitalWrite(LED, LOW);
 }
 else
 {
 digitalWrite(LED, HIGH);
 }
 }

 Notice here that the code implements some new concepts, including

 digitalRead and if / else statements. A new const int statement has been

added for the button pin. Further, this code defi nes the button pin as an input

in the setup function. This is not explicitly necessary, though, because pins

are inputs by default; it is shown for completeness. digitalRead() reads the

32 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

value of an input. In this case, it is reading the value of the BUTTON pin. If the

button is being pressed, digitalRead() returns a value of HIGH , or 1 . If it is not

being pressed, it returns LOW , or 0 . When placed in the if() statement, you’re

checking the state of the pin and evaluating if it matches the condition you’ve

declared. In this if() statement, you’re checking to see if the value returned by

 digitalRead() is LOW . The == is a comparison operator that tests whether the

fi rst item (digitalRead()) is equal to the second (LOW). If this is true (that is, the

button is not being pressed), the code inside the brackets executes, and the LED

set to LOW . If this is not true (the button is being pressed), the else statement is

executed, and the LED is turned HIGH .

 That’s it! Program your circuit with this code and confi rm that it works as

expected.

 Working with “Bouncy” Buttons
 When was the last time you had to hold a button down to keep a light on?

Probably never. It makes more sense to be able to click the button once to turn it

on and to click the button again to turn it off. This way, you do not have to hold

the button down to keep the light on. Unfortunately, this is not quite as easy as

you might fi rst guess. You cannot just look for the value of the switch to change

from low to high; you need to worry about a phenomenon called switch bouncing .

 Buttons are mechanical devices that operate as a spring-damper system. In

other words, when you push a button down, the signal you read does not just

go from low to high, it bounces up and down between those two states for a

few milliseconds before it settles. Figure 2-6 illustrates the expected behavior

next to the actual behavior you might see when probing the button using an

oscilloscope (though this fi gure was generated using a MATLAB script):

 Figure 2-6: Bouncing button effects.

 The button is physically pressed at the 25ms mark. You would expect the

button state to be immediately read as a high logic level as the graph on the left

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 33

549360c02.indd 02-07-2008 12:00 AM

shows. However, the button actually bounces up and down before settling, as

the graph on the right shows.

 If you know that the switch is going to do this, it is relatively straightforward

to deal with it in software. Next, you write switch-debouncing software that

looks for a button state change, waits for the bouncing to fi nish, and then reads

the switch state again. This program logic can be expressed as follows:

 1. Store a previous button state and a current button state (initialized

to LOW).

 2. Read the current button state.

 3. If the current button state differs from the previous button state, wait 5ms

because the button must have changed state.

 4. After 5ms, reread the button state and use that as the current button state.

 5. If the previous button state was low, and the current button state is high,

toggle the LED state.

 6. Set the previous button state to the current button state.

 7. Return to step 2.

 This is a perfect opportunity to explore using functions for the fi rst time.

 Functions are blocks of code that can accept input arguments, execute code

based on those arguments, and optionally return a result. Without realizing it,

you’ve already been using predefi ned functions throughout your programs. For

example, digitalWrite() is a function that accepts a pin and a state, and writes

that state to the given pin. To simplify your program, you can defi ne your own

functions to encapsulate actions that you do over and over again.

 Within the program fl ow (listed in the preceding steps) is a series of repeat-

ing steps that need to be applied to changing variable values. Because you’ll

want to repeatedly debounce the switch value, it’s useful to defi ne the steps for

debouncing as a function that can be called each time. This function will accept

the previous button state as an input and outputs the current debounced button

state. The following program accomplishes the preceding steps and switches

the LED state every time the button is pressed. You’ll use the same circuit as

the previous example for this. Try loading it onto your Arduino and see how

it works (see Listing 2-5).

 Listing 2-5: Debounced Button Toggling—debounce.ino

 const int LED=9; //The LED is connected to pin 9
 const int BUTTON=2; //The Button is connected to pin 2
 boolean lastButton = LOW; //Variable containing the previous
 //button state
 boolean currentButton = LOW; //Variable containing the current
 //button state

34 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

 boolean ledOn = false; //The present state of the LED (on/off)

 void setup()
 {
 pinMode (LED, OUTPUT); //Set the LED pin as an output
 pinMode (BUTTON, INPUT); //Set button as input (not required)
 }

 /*
 * Debouncing Function
 * Pass it the previous button state,
 * and get back the current debounced button state.
 */
 boolean debounce(boolean last)
 {
 boolean current = digitalRead(BUTTON); //Read the button state
 if (last != current) //if it's different…
 {
 delay(5); //wait 5ms
 current = digitalRead(BUTTON); //read it again
 }
 return current; //return the current value
 }

 void loop()
 {
 currentButton = debounce(lastButton); //read debounced state
 if (lastButton == LOW && currentButton == HIGH) //if it was pressed...
 {
 ledOn = !ledOn; //toggle the LED value
 }
 lastButton = currentButton; //reset button value

 digitalWrite(LED, ledOn); //change the LED state

 }

 Now, break down the code in Listing 2-5. First, constant values are defi ned

for the pins connected to the button and LED. Next, three Boolean variables are

declared. When the const qualifi er is not placed before a variable declaration,

you are indicating that this variable can change within the program. By defi n-

ing these values at the top of the program, you are declaring them as global
variables that can be used and changed by any function within this sketch.

The three Boolean variables declared at the top of this sketch are initialized as

well, meaning that they have been set to an initial value (LOW , LOW , and false

respectively). Later in the program, the values of these variables can be changed

with an assignment operator (a single equals sign: =).

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 35

549360c02.indd 02-07-2008 12:00 AM

 Consider the function defi nition in the preceding code: boolean debounce(boolean

last) . This function accepts a Boolean (a data type that has only two states: true/

false, high/low, on/off, 1/0) input variable called last and returns a Boolean

value representing the current debounced pin value. This function compares

the current button state with the previous (last) button state that was passed

to it as an argument. The != represents inequality and is used to compare the

present and previous button values in the if statement. If they differ, then the

button must have been pressed and the if statement will execute its contents.

The if statement waits 5ms before checking the button state again. This 5ms

gives suffi cient time for the button to stop bouncing. The button is then checked

again to ascertain its stable value. As you learned earlier, functions can optionally

return values. In the case of this function, the return current statement returns

the value of the current Boolean variable when the function is called. current

is a local variable—it is declared and used only within the debounce function.

When the debounce function is called from the main loop, the returned value

is written to the global currentButton variable that was defi ned at the top of the

sketch. Because the function was defi ned as debounce , you can call the function

by writing currentButton = debounce(lastButton) from within the setup or

 loop functions. currentButton will be set equal to the value that is returned by

the debounce function.

 After you’ve called the function and populated the currentButton variable,

you can easily compare it to the previous button state by using the if statement

in the code. The && is a logical operator that means “AND”. By joining two or

more equality statements with an && in an if statement, you are indicating

that the contents of the if statement block should execute only if both of the

equalities evaluate to true . If the button was previously LOW , and is now HIGH ,

you can assume that the button has been pressed, and you can invert the value

of the ledOn variable. By putting an ! in front of the ledOn variable, you reset

the variable to the opposite of whatever it currently is. The loop is fi nished off

by updating the previous button variable and writing the updated LED state.

 This code should change the LED state each time the button is pressed. If

you try to accomplish the same thing without debouncing the button, you will

fi nd the results unpredictable, with the LED sometimes working as expected

and sometimes not.

 Building a Controllable RGB LED Nightlight

 In this chapter, you have learned how to control digital outputs, how to read

debounced buttons, and how to use PWM to change LED brightness. Using

those skills, you can now hook up an RGB LED and a debounced button to cycle

36 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

through some colors for a controllable RGB LED nightlight. It’s possible to mix

colors with an RGB LED by changing the brightness of each color.

 In this scenario, you use a common cathode LED. That means that the LED has

four leads. One of them is a cathode pin that is shared among all three diodes,

while the other three pins connect to the anodes of each diode color. Wire that

LED up to three PWM pins through current-limiting resistors on the Arduino

as shown in the wiring diagram in Figure 2-7.

RGB LEDCurrent-limiting
resistors

Pulldown
resistor

Button

 Figure 2-7: Nightlight wiring diagram

 You can confi gure a debounced button to cycle through a selection of colors

each time you press it. To do this, it is useful to add an additional function to

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 37

549360c02.indd 02-07-2008 12:00 AM

set the RGB LED to the next state in the color cycle. In the following program

(see Listing 2-6), I have defi ned seven total color states, plus one off state for the

LED. Using the analogWrite() function, you can choose your own color-mixing

combinations. The only change to the loop() from the previous example is that

instead of fl ipping a single LED state, an LED state counter is incremented each

time the button is pressed, and it is reset back to zero when you cycle through

all the options. Upload this to your Arduino connected to the circuit you just

built and enjoy your nightlight. Modify the color states by changing the values

of analogWrite() to make your own color options.

 Listing 2-6: Toggling LED Nightlight—rgb_nightlight.ino

 const int BLED=9; //Blue LED on Pin 9
 const int GLED=10; //Green LED on Pin 10
 const int RLED=11; //Red LED on Pin 11
 const int BUTTON=2; //The Button is connected to pin 2

 boolean lastButton = LOW; //Last Button State
 boolean currentButton = LOW; //Current Button State
 int ledMode = 0; //Cycle between LED states

 void setup()
 {
 pinMode (BLED, OUTPUT); //Set Blue LED as Output
 pinMode (GLED, OUTPUT); //Set Green LED as Output
 pinMode (RLED, OUTPUT); //Set Red LED as Output
 pinMode (BUTTON, INPUT); //Set button as input (not required)
 }

 /*
 * Debouncing Function
 * Pass it the previous button state,
 * and get back the current debounced button state.
 */
 boolean debounce(boolean last)
 {
 boolean current = digitalRead(BUTTON); //Read the button state
 if (last != current) //if it's different...
 {
 delay(5); //wait 5ms
 current = digitalRead(BUTTON); //read it again
 }
 return current; //return the current value
 }

 /*
 * LED Mode Selection
 * Pass a number for the LED state and set it accordingly.
 */
 void setMode(int mode)

38 Part I ■ Arduino Engineering Basics

549360c02.indd 02-07-2008 12:00 AM

 {
 //RED
 if (mode == 1)
 {
 digitalWrite(RLED, HIGH);
 digitalWrite(GLED, LOW);
 digitalWrite(BLED, LOW);
 }
 //GREEN
 else if (mode == 2)
 {
 digitalWrite(RLED, LOW);
 digitalWrite(GLED, HIGH);
 digitalWrite(BLED, LOW);
 }
 //BLUE
 else if (mode == 3)
 {
 digitalWrite(RLED, LOW);
 digitalWrite(GLED, LOW);
 digitalWrite(BLED, HIGH);
 }
 //PURPLE (RED+BLUE)
 else if (mode == 4)
 {
 analogWrite(RLED, 127);
 analogWrite(GLED, 0);
 analogWrite(BLED, 127);
 }
 //TEAL (BLUE+GREEN)
 else if (mode == 5)
 {
 analogWrite(RLED, 0);
 analogWrite(GLED, 127);
 analogWrite(BLED, 127);
 }
 //ORANGE (GREEN+RED)
 else if (mode == 6)
 {
 analogWrite(RLED, 127);
 analogWrite(GLED, 127);
 analogWrite(BLED, 0);
 }
 //WHITE (GREEN+RED+BLUE)
 else if (mode == 7)
 {
 analogWrite(RLED, 85);
 analogWrite(GLED, 85);
 analogWrite(BLED, 85);
 }

 Chapter 2 ■ Digital Inputs, Outputs, and Pulse-Width Modulation 39

549360c02.indd 02-07-2008 12:00 AM

 //OFF (mode = 0)
 else
 {
 digitalWrite(RLED, LOW);
 digitalWrite(GLED, LOW);
 digitalWrite(BLED, LOW);
 }
 }

 void loop()
 {
 currentButton = debounce(lastButton); //read debounced state
 if (lastButton == LOW && currentButton == HIGH) //if it was pressed...
 {
 ledMode++; //increment the LED value
 }
 lastButton = currentButton; //reset button value
 //if you've cycled through the different options,
 //reset the counter to 0
 if (ledMode == 8) ledMode = 0;
 setMode(ledMode); //change the LED state
 }

 This might look like a lot of code, but it is nothing more than a conglomera-

tion of code snippets that you have already written throughout this chapter.

 How else could you modify this code? You could add additional buttons to

independently control one of the three colors. You could also add blink modes,

using code from Chapter 1 that blinked the LED. The possibilities are limitless.

 Summary

 In this chapter you learned about the following:

 ■ How a breadboard works

 ■ How to pick a resistor to current-limit an LED

 ■ How to wire an external LED to your Arduino

 ■ How to use PWM to write “analog” values to LEDs

 ■ How to read a pushbutton

 ■ How to debounce a pushbutton

 ■ How to use for loops

 ■ How to utilize pullup and pulldown resistors

549360c02.indd 02-07-2008 12:00 AM

 41

549360c03.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino Uno

 Small breadboard

 Jumper wires

 10kΩ potentiometer

 10kΩ resistor (× 2)

 220Ω resistor (× 3)

 USB cable

 Photoresistor

 TMP36 temperature sensor (or any other 5V analog sensor)

 5mm common-cathode RGB LED (All examples in this book use a common-

cathode RGB LED. If you use a common-anode RGB LED, you’ll need to

invert the LED control logic, connect the anode to the 5V, and connect

each of the cathode pins through resistors to I/O pins.)

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at

 www.exploringarduino.com/content/ch3 .

 C H A P T E R

3

 Reading Analog Sensors

http://www.exploringarduino.com/content/ch3

42 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 03 download and individu-

ally named according to the names throughout the chapter.

 The world around you is analog. Even though you might hear that the world

is “going digital,” the majority of observable features in your environment will

always be analog in nature. The world can assume an infi nite number of potential

states, whether you are considering the color of sunlight, the temperature of the

ocean, or the concentration of contaminants in the air. This chapter focuses on

developing techniques for discretizing these infi nite possibilities into palatable

digital values that can be analyzed with a microcontroller system like the Arduino.

 In this chapter, you will learn about the differences between analog and

digital signals and how to convert between the two, as well as a handful of the

analog sensors that you can interface with your Arduino. Using skills that you

acquired in the preceding chapter, you will add light sensors for automatically

adjusting your nightlight. You will also learn how to send analog data from

your Arduino to your computer via a USB-to-serial connection, which opens up

enormous possibilities for developing more complex systems that can transmit

environmental data to your computer.

 NOTE You can follow along with a video as I teach you about reading from analog
inputs: www.jeremyblum.com/2011/01/24/arduino-tutorial-4-analog-
inputs/ . You can also find this video on the Wiley website shown at the beginning
of this chapter.

 If you want to learn more about the differences between analog and digital sig-
nals, check out this video that explains each in depth: www.jeremyblum.com/
2010/06/20/lets-get-digital-or-analog/ . You can also find this video on the
Wiley website shown at the beginning of this chapter.

 Understanding Analog and Digital Signals

 If you want your devices to interface with the world, they will inevitably be

interfacing with analog data. Consider the projects you completed in the preced-

ing chapter. You used a switch to control an LED. A switch is a digital input—it

has only two possible states: on or off, high or low, 1 or 0, and so on. Digital

information (what your computer or the Arduino processes) is a series of binary

(or digital) data. Each bit has only has one of two values.

 The world around you, however, rarely expresses information in only two

ways. Take a look out the window. What do you see? If it’s daytime, you prob-

ably see sunlight, trees moving in the breeze, and maybe cars passing or people

walking around. All these things that you perceive cannot readily be classifi ed

http://www.wiley.com/go/exploringarduino
http://www.jeremyblum.com/2011/01/24/arduino-tutorial-4-analog-inputs
http://www.jeremyblum.com/2011/01/24/arduino-tutorial-4-analog-inputs
http://www.jeremyblum.com/2011/01/24/arduino-tutorial-4-analog-inputs
http://www.jeremyblum.com/2010/06/20/lets-get-digital-or-analog/

 Chapter 3 ■ Reading Analog Sensors 43

549360c03.indd 02-07-2008 12:00 AM

as binary data. Sunlight is not on or off; its brightness varies over the course of

a day. Similarly, wind does not just have two states; it gusts at different speeds

all the time.

 Comparing Analog and Digital Signals
 The graphs in Figure 3-1 show how analog and digital signals compare to each

other. On the left is a square wave that varies between only two values: 0 and

5 volts. Just like with the button that you used in the preceding chapter, this

signal is only a “logic high” or “logic low” value. On the right is part of a cosine

wave. Although its bounds are still 0 and 5 volts, the signal takes on an infi nite

number of values between those two voltages.

 Figure 3-1: Analog and digital signals

 Analog signals are those that cannot be discretely classifi ed; they vary within

a range, theoretically taking on an infi nite number of possible values within

that range. Think about sunlight as an example of an analog input you may

want to measure. Naturally, there is a reasonable range over which you might

measure sunlight. Often measured in lux, or luminous fl ux per unit area, you

can reasonably expect to measure values between 0 lux (for pitch black) and

130,000 lux in direct sunlight. If your measuring device were infi nitely accurate,

you could measure an infi nite number of values between those two. An indoor

setting might be 400 lux. If it were slightly brighter, it could be 401 lux, then 401.1

lux, then 401.11 lux, and so on. A computer system could never feasibly measure

an infi nite number of decimal places for an analog value because memory and

computer power must be fi nite values. If that’s the case, how can you interface

your Arduino with the “real world?” The answer is analog-to-digital convert-

ers (ADC), which can convert analog values into digital representations with a

fi nite amount of precision and speed.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

44 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 Converting an Analog Signal to a Digital One
 Suppose that you want to measure the brightness of your room. Presumably,

a good light sensor could produce a varying output voltage that changes with

the brightness of the room. When it is pitch black, the device would output 0V,

and when it’s completely saturated by light, it would output 5V, with values in

between corresponding to the varying amount of light. That’s all well and good,

but how do you go about reading those values with an Arduino to fi gure out

how bright the room is? You can use the Arduino’s analog-to-digital converter

(ADC) pins to convert analog voltage values into number representations that

you can work with.

 The accuracy of an ADC is determined by the resolution. In the case of the

Arduino Uno, there is a 10-bit ADC for doing your analog conversions. “10-bit”

means that the ADC can subdivide (or quantize) an analog signal into 2 10 dif-

ferent values. If you do the math, you’ll fi nd that 2 10 = 1024; hence, the Arduino

can assign a value from 0 to 1023 for any analog value that you give it. Although

it is possible to change the reference voltage, you’ll be using the default 5V

reference for the analog work that you do in this book. The reference voltage

determines the max voltage that you are expecting, and, therefore, the value

that will be mapped to 1023. So, with a 5V reference voltage, putting 0V on an

ADC pin returns a value of 0, 2.5V returns a value of 512 (half of 1023), and 5V

returns a value of 1023. To better understand what’s happening here, consider

what a 3-bit ADC would do, as shown in Figure 3-2.

 Figure 3-2: 3-bit analog quantization

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 3 ■ Reading Analog Sensors 45

549360c03.indd 02-07-2008 12:00 AM

 NOTE If you want to learn more about using your own reference voltage or
using a different internal voltage reference, check out the analogReference() page
on the Arduino website: www.arduino.cc/en/Reference/AnalogReference .

 A 3-bit ADC has 3 bits of resolution. Because 2 3 =8, there are 8 total logic lev-

els, from 0 to 7. Therefore, any analog value that is passed to a 3-bit ADC will

have to be assigned a value from 0 to 7. Looking at Figure 3-2, you can see that

voltage levels are converted to discrete digital values that can be used by the

microcontroller. The higher the resolution, the more steps that are available for

representing each value. In the case of the Arduino Uno, there are 1024 steps

rather than the 8 shown here.

 Reading Analog Sensors with the Arduino:
analogRead()

 Now that you understand how to convert analog signals to digital values,

you can integrate that knowledge into your programs and circuits. Different

Arduinos have different numbers of analog input pins, but you read them all

the same way, using the analogRead() command. First, you’ll experiment with

a potentiometer and a packaged analog sensor. Then, you’ll learn how voltage

dividers work, and how you can use them to make your own analog sensors

from devices that vary their resistance in response to some kind of input.

 Reading a Potentiometer
 The easiest analog sensor to read is a simple potentiometer (a pot, for short).

Odds are that you have tons of these around your home in your stereos, speakers,

thermostats, cars, and elsewhere. Potentiometers are variable voltage dividers

(discussed later in this chapter) that look like knobs. They come in lots of sizes

and shapes, but they all have three pins. You connect one of the outer pins to

ground, and the other to the 5V. Potentiometers are symmetrical, so it doesn’t

matter which side you connect the 5V and ground to. You connect the middle

pin to analog input 0 on your Arduino. Figure 3-3 shows how to properly hook

up your potentiometer to an Arduino.

 As you turn the potentiometer, you vary the voltage that you are feeding into

analog input 0 between 0V and 5V. If you want, you can confi rm this with a

multimeter in voltage measurement mode by hooking it up as shown Figure 3-4

and reading the display as you turn the knob. The red (positive) probe should

be connected to the middle pin, and the black (negative) probe should be con-

nected to whichever side is connected to ground. Note that your potentiometer

and multimeter might look different than shown here.

http://www.arduino.cc/en/Reference/AnalogReference

46 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 Figure 3-3: Potentiometer circuit

 Before you use the potentiometer to control another piece of hardware, use the

Arduino’s serial communication functionality to print out the potentiometer’s

ADC value on your computer as it changes. Use the analogRead() function

to read the value of the analog pin connected to the Arduino and the Serial

.println() function to print it to the Arduino IDE serial monitor. Start by writ-

ing and uploading the program in Listing 3-1 to your Arduino.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 3 ■ Reading Analog Sensors 47

549360c03.indd 02-07-2008 12:00 AM

 Figure 3-4: Multimeter measurement

 Listing 3-1: Potentiometer Reading Sketch—pot.ino

 //Potentiometer Reading Program

 const int POT=0; //Pot on analog pin 0
 int val = 0; //variable to hold the analog reading from the POT

 void setup()
 {
 Serial.begin(9600);
 }

 void loop()
 {
 val = analogRead(POT);
 Serial.println(val);
 delay(500);
 }

48 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 You’ll investigate the functionality of the serial interface more in later chapters.

For now, just be aware that the serial interface to the computer must be started in

the setup . Serial.begin() takes one argument that specifi es the communication

speed, or baud rate. The baud rate specifi es the number of bits being transferred

per second. Faster baud rates enable you to transmit more data in less time, but

can also introduce transmission errors in some communication systems. 9600

baud is a common value, and it’s what you use throughout this book.

 In each iteration through the loop, the val variable is set to the present value

that the ADC reports from analog pin 0. The analogRead() command requires

the number of the ADC pin to be passed to it. In this case, it’s 0 because that’s

what you hooked the potentiometer up to. You can also pass A0 , though the

 analogRead() function knows you must be passing it an analog pin number, so

you can pass 0 as shorthand. After the value has been read (a number between

 0 and 1023), Serial.println() prints that value over serial to the computer’s

serial terminal, followed by a “newline” that advances the cursor to the next

line. The loop then delays for half a second (so that the numbers don’t scroll by

faster than you can read them), and the process repeats.

 After loading this onto your Arduino, you’ll notice that the TX LED on your

Arduino is blinking every 500ms (at least it should be). This LED indicates that

your Arduino is transmitting data via the USB connection to the serial terminal

on your computer. You can use a variety of terminal programs to see what your

Arduino is sending, but the Arduino IDE conveniently has one built right in!

Click the circled button shown in Figure 3-5 to launch the serial monitor.

 Figure 3-5: Serial monitor button

 Chapter 3 ■ Reading Analog Sensors 49

549360c03.indd 02-07-2008 12:00 AM

 After launching the serial monitor, you should see a window with numbers

streaming by. Turn the dial and you’ll see the numbers go up and down to

correspond with the position of the potentiometer. If you turn it all the way in

one direction, the numbers should approach 0 , and if you turn it all the way

in the other direction, the numbers should approach 1023 . It will look like the

example shown in Figure 3-6.

 Figure 3-6: Incoming serial data

 NOTE If you’re getting funky characters, make sure that you have the baud rate
set correctly. Because you set it to 9600 in the code, you need to set it to 9600 in
this window as well.

 You’ve now managed to successfully turn a dial and make some numbers

change; pretty exciting, right? No? Well, this is the just the fi rst step. Next, you

learn about other types of analog sensors and how you can use the data from

analog sensors to control other pieces of hardware. For now, you use the familiar

LED, but in later chapters you use motors and other output devices to visualize

your analog inputs.

50 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 Using Analog Sensors
 Although potentiometers generate an analog voltage value on a pin, they aren’t

really sensors in the traditional sense. They “sense” your turning of the dial,

but that gets boring pretty quickly. The good news is that all kinds of sensors

generate analog output values corresponding to “real-world” action. Examples

of such include the following:

 ■ Accelerometers that detect tilting (many smartphones and tablets now

have these)

 ■ Magnetometers that detect magnetic fi elds (for making digital compasses)

 ■ Infrared sensors that detect distance to an object

 ■ Temperature sensors that can tell you about the operating environment

of your project

 Many of these sensors are designed to operate in a manner similar to the

potentiometer you just experimented with: You provide them with a power (VCC)

and ground (GND) connection, and they output an analog voltage between VCC

and GND on the third pin that you hook up to your Arduino’s ADC.

 For this next experiment, you get to choose what kind of analog sensor you

want to use. They all output a value between 0V and 5V when connected to

an Arduino, so they will all work the same for your purposes. Here are some

examples of sensors that you can use:

 ■ Sharp Infrared Proximity Sensor

 www.exploringarduino.com/parts/IR-Distance-Sensor

 Connector: www.exploringarduino.com/parts/JST-Wire

 The Sharp infrared distance sensors are popular for measuring the dis-

tance between your project and other objects. As you move farther from

the object you are aiming at, the voltage output decreases. Figure 5 in the

datasheet from the part webpage linked above shows the relationship

between voltage and measured distance.

 ■ TMP36 Temperature Sensor

 www.exploringarduino.com/parts/TMP36

 The TMP36 temperature sensor easily correlates temperature readings

in Celsius with voltage output levels. Since every 10mV corresponds to

1 ° C, you can easily create a linear correlation to convert from the voltage

you measure back to the absolute temperature of the ambient environ-

ment: ° C = [(Vout in mV) – 500]/10. The offset of –500 is for dealing with

temperatures below 0 ° C. The graph in Figure 3-7 (extracted from the

datasheet) shows this conversion.

http://www.exploringarduino.com/parts/IR-Distance-Sensor
http://www.exploringarduino.com/parts/JST-Wire
http://www.exploringarduino.com/parts/TMP36

 Chapter 3 ■ Reading Analog Sensors 51

549360c03.indd 02-07-2008 12:00 AM

 Figure 3-7: Voltage to Temperature Correlation

 ■ Triple Axis Analog Accelerometer

 www.exploringarduino.com/parts/TriAxis-Analog-Accelerometer

 Triple axis accelerometers are great for detecting orientation. Analog

accelerometers output an analog value corresponding to each axis of

movement: X, Y, and Z (each on a different pin). Using some clever math

(trigonometry and knowledge of gravity), you can use these voltage values

to ascertain the position of your project in 3D space! Importantly, many

of these sensors are 3.3V, so you will need to use the analogReference()

command paired with the AREF pin to set a 3.3V voltage reference to

enable you to get the full resolution out of the sensor.

 ■ Dual Axis Analog Gyroscope

 www.exploringarduino.com/parts/DualAxis-Analog-Gyroscope

 Gyroscopes, unlike accelerometers, are not affected by gravity. Their analog

output voltages fl uctuate in accordance with angular acceleration around

an axis. These prove particularly useful for detecting twisting motions.

For an example of a gyroscope in action with an Arduino, check out my

SudoGlove, a glove I designed that captures hand gestures to control

hardware like music synthesizers and RC cars: www.sudoglove.com . Like

accelerometers, be aware that many gyroscopes are 3.3V parts.

 Now that you’ve chosen a sensor, it’s time to put that sensor to use.

C
re

di
t:

 A
na

lo
g

D
ev

ic
es

, I
nc

.,
w
w
w
.
a
n
a
l
o
g
.
c
o
m

.

http://www.analog.com
http://www.analog.com
http://www.analog.com
http://www.exploringarduino.com/parts/TriAxis-Analog-Accelerometer
http://www.exploringarduino.com/parts/DualAxis-Analog-Gyroscope
http://www.sudoglove.com

52 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 Working with Analog Sensors to Sense Temperature

 This simple example uses the TMP36 temperature sensor mentioned in the

previous section. However, feel free to use any analog sensor you can get your

hands on. Experiment with one of the examples listed earlier, or fi nd your own.

(It should be 5V compliant if you are using the Arduino Uno.) The following

steps are basically the same for any analog sensor you might want to use.

 To begin, wire up your RGB LED as you did in the preceding chapter, and

wire the temperature sensor up to analog input 0 as shown in the Figure 3-8.

 Figure 3-8: Temperature sensor circuit

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 3 ■ Reading Analog Sensors 53

549360c03.indd 02-07-2008 12:00 AM

 Using this circuit, you’ll make a simple temperature alert system. The light

will glow green when the temperature is within an acceptable range, will turn

red when it gets too hot, and will turn blue when it gets too cold.

 First things fi rst, you need to ascertain what values you want to use as your

cutoffs. Using the exact same sketch from Listing 3-1, use the serial monitor to

fi gure out what analog values correspond to the temperature cutoffs you care

about. My room is about 20 ° C, which corresponds to an analog reading of about

 143 . These numbers might differ for you, so launch the sketch from before,

open the serial terminal, and take a look at the readings you are getting. You

can confi rm the values mathematically using the graph from Figure 3-7. In my

case, a value of 143/1023 corresponds to a voltage input of about 700mV. Deriving

from the datasheet, the following equation can be used to convert between the

temperature (° C) and the voltage (mV):

 Temperature(° C) × 10 = voltage (mV) – 500

 Plugging in the value of 700mV, you can confi rm that it equates to a tempera-

ture of 20 ° C. Using this same logic (or by simply observing the serial window

and picking a value), you can determine that 22 ° C is a digital value of 147 and

18 ° C is a digital value of 139 . Those values will serve as the cutoffs that will

change the color of the LED to indicate that it is too hot or too cold. Using the

 if statements, the digitalWrite function, and the analogRead function that

you have now learned about, you can easily read the temperature, determine

what range it falls in, and set the LED accordingly.

 NOTE Before you copy the code in Listing 3-2, try to write this yourself and see
whether you can make it work. After giving it a shot, compare it with the code here.
How did you do?

 Listing 3-2: Temperature Alert Sketch—tempalert.ino

 //Temperature Alert!
 const int BLED=9; //Blue LED on pin 9
 const int GLED=10; //Green LED on pin 10
 const int RLED=11; //Red LED on pin 11
 const int TEMP=0; //Temp Sensor is on pin A0

 const int LOWER_BOUND=139; //Lower Threshold
 const int UPPER_BOUND=147; //Upper Threshold

 int val = 0; //Variable to hold analog reading

 void setup()
 {
 pinMode (BLED, OUTPUT); //Set Blue LED as Output
 pinMode (GLED, OUTPUT); //Set Green LED as Output

54 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 pinMode (RLED, OUTPUT); //Set Red LED as Output
 }

 void loop()
 {
 val = analogRead(TEMP);

 if (val < LOWER_BOUND)
 {
 digitalWrite(RLED, LOW);
 digitalWrite(GLED, LOW);
 digitalWrite(BLED, HIGH);
 }
 else if (val > UPPER_BOUND)
 {
 digitalWrite(RLED, HIGH);
 digitalWrite(GLED, LOW);
 digitalWrite(BLED, LOW);
 }
 else
 {
 digitalWrite(RLED, LOW);
 digitalWrite(GLED, HIGH);
 digitalWrite(BLED, LOW);
 }
 }

 This code listing doesn’t introduce any new concepts; rather, it combines what

you have learned so far to make a system that uses both inputs and outputs

to interact with the environment. To try it out, squeeze the temperature sensor

with your fi ngers or exhale on it to heat it up. Blow on it to cool it down.

 Using Variable Resistors to Make Your Own Analog
Sensors

 Thanks to physics, tons of devices change resistance as a result of physical action.

For example, some conductive inks change resistance when squished or fl exed

(force sensors and fl ex sensors), some semiconductors change resistance when

struck by light (photoresistors), and some polymers change resistance when

heated or cooled (thermistors). These are just a few examples of components

that you can take advantage of to build your own analog sensors. Because these

sensors are changing resistance and not voltage, you need to create a voltage

divider circuit so that you can measure their resistance change.

 Chapter 3 ■ Reading Analog Sensors 55

549360c03.indd 02-07-2008 12:00 AM

 Using Resistive Voltage Dividers
 A resistive voltage divider uses two resistors to output a voltage that is some

fraction of the input voltage. The output voltage is a function directly related to

the value of the two resistors. So, if one of the resistors is a variable resistor, you

can monitor the change in voltage from the voltage divider that results from the

varying resistance. The size of the other resistor can be used to set the sensitivity

of the circuit, or you can use a potentiometer to make the sensitivity adjustable.

 First, consider a fi xed voltage divider and the equations associated with it, as

shown in Figure 3-9. A0 in the Figure 3-9 refers to analog pin 0 on the Arduino.

 Figure 3-9: Simple voltage divider circuit

 The equation for a voltage divider is as follows:

 Vout = Vin(R2/(R1 + R2))

 In this case, the voltage input is 5V, and the voltage output is what you’ll be

feeding into one of the analog pins of the Arduino. In the case where R1 and

R2 are matched (both 10kΩ for example), the 5V is divided by 2 to make 2.5V at

the analog input. Confi rm this by plugging values into the equation:

 Vout = 5V(10k/(10k + 10k)) = 5V × .5 = 2.5V

56 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 Now, suppose one of those resistors is replaced with a variable resistor, such

as a photoresistor. Photoresistors (see Figure 3-10) change resistance depend-

ing on the amount of light that hits them. In this case, I’ll opt to use a 200kΩ

photoresistor. When in complete darkness, its resistance is about 200kΩ; when

saturated with light, the resistance drops nearly to zero. Whether you choose

to replace R1 or R2 and what value you choose to make the fi xed resistor will

affect the scale and precision of the readings you receive. Try experimenting

with different confi gurations and using the serial monitor to see how your values

change. As an example, I will choose to replace R1 with the photoresistor, and

I’ll make R2 a 10kΩ resistor (see Figure 3-11). You can leave the RGB LED in place

for now, though you’ll only use one of the colors for this exercise.

 Figure 3-10: Photoresistor

 Load up your trusty serial printing sketch again (Listing 3-1) and try chang-

ing the lighting conditions over the photoresistor. Hold it up to a light and cup

it with your hands. Odds are, you aren’t going to be hitting the full range from

0 to 1023 because the variable resistor will never have a resistance of zero. Rather,

you can probably fi gure out the maximum and minimum values that you are

likely to receive. You can use the data from your photoresistor to make a more

intelligent nightlight. The nightlight should get brighter as the room gets darker,

and vice versa. Using your serial monitor sketch, pick the values that represent

when your room is at full brightness or complete darkness. In my case, I found

that a dark room has a value of around 200 and a completely bright room has

a value around 900 . These values will vary for you based upon your lighting

conditions, the resistor value you are using, and the value of your photoresistor.

 Using Analog Inputs to Control Analog Outputs
 Recall that you can use the analogWrite() command to set the brightness of an

LED. However, it is an 8-bit value; that is, it accepts values between 0 and 255

only, whereas the ADC is returning values as high as 1023. Conveniently, the

Arduino programming language has two functions that are useful for mapping

between two sets of values: the map() and constrain() functions. The map()

function looks like this:

 output = map(value, fromLow, fromHigh, toLow, toHigh)

C
re

di
t:

 e
le

m
en

t1
4,

 w
w
w
.
e
l
e
m
e
n
t
1
4
.
c
o
m

http://www.element14.com
http://www.element14.com
http://www.element14.com

 Chapter 3 ■ Reading Analog Sensors 57

549360c03.indd 02-07-2008 12:00 AM

 Figure 3-11: Photoresistor circuit

 value is the information you are starting with. In your case, that’s the most

recent reading from the analog input. fromLow and fromHigh are the input

boundaries. These are values you found to correspond to the minimum and

maximum brightness in your room. In my case, they were 200 and 900 . toLow
 and toHigh are the values you want to map them to. Because analogWrite()

expects value between 0 and 255 , you use those values. However, we want a

darker room to map to a brighter LED. Therefore, when the input from the ADC

is a low value, you want the output to the LED to be a high value, and vice versa.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

58 Part I ■ Arduino Engineering Basics

549360c03.indd 02-07-2008 12:00 AM

 Conveniently, the map function can handle this automatically; simply swap

the high and low values so that the low value is 255 and the high value is 0.

The map() function creates a linear mapping. For example, if your fromLow and

 fromHigh values are 200 and 900 , respectively, and your toLow and toHigh values

are 255 and 0 , respectively, 550 maps to 127 because 550 is halfway between

 200 and 900 and 127 is halfway between 255 and 0 . Importantly, however, the

 map() function does not constrain these values. So, if the photoresistor does

measure a value below 200 , it is mapped to a value above 255 (because you are

inverting the mapping). Obviously, you don’t want that because you can’t pass

a value greater than 255 to the analogWrite() function. You can deal with this

by using the constrain() function. The constrain() function looks like this:

 output = constrain(value, min, max)

 If you pass the output from the map function into the constrain function,

you can set the min to 0 and the max to 255 , ensuring that any numbers above or

below those values are constrained to either 0 or 255 . Finally, you can then use

those values to command your LED! Now, take a look at what that fi nal sketch

will look like (see Listing 3-3).

 Listing 3-3: Automatic Nightlight Sketch—nightlight.ino

 //Automatic Nightlight

 const int RLED=9; //Red LED on pin 9 (PWM)
 const int LIGHT=0; //Lght Sensor on analog pin 0
 const int MIN_LIGHT=200; //Minimum expected light value
 const int MAX_LIGHT=900; //Maximum Expected Light value
 int val = 0; //variable to hold the analog reading

 void setup()
 {
 pinMode(RLED, OUTPUT); //Set LED pin as output
 }

 void loop()
 {
 val = analogRead(LIGHT); //Read the light sensor
 val = map(val, MIN_LIGHT, MAX_LIGHT, 255, 0); //Map the light reading
 val = constrain(val, 0, 255); //Constrain light value
 analogWrite(RLED, val); //Control the LED
 }

 Chapter 3 ■ Reading Analog Sensors 59

549360c03.indd 02-07-2008 12:00 AM

 Note that this code reuses the val variable. You can alternatively use a dif-

ferent variable for each function call. In functions such as map() where val is

both the input and the output, the previous value of val is used as the input,

and its value is reset to the updated value when the function has completed.

 Play around with your nightlight. Does it work as expected? Remember, you

can adjust the sensitivity by changing the minimum and maximum bounds of

the mapping function or changing the fi xed resistor value. Use the serial monitor

to observe the differences with different settings until you fi nd one that works

the best. Can you combine this sketch with the color-selection nightlight that

you designed in the preceding chapter? Try adding a button to switch between

colors, and use the photoresistor to adjust the brightness of each color.

 Summary

 In this chapter you learned about the following:

 ■ The differences between analog and digital signals

 ■ How to convert analog signals to digital signals

 ■ How to read an analog signal from a potentiometer

 ■ How to display data using the serial monitor

 ■ How to interface with packaged analog sensors

 ■ How to create your own analog sensors

 ■ How to map and constrain analog readings to drive analog outputs

549360c03.indd 02-07-2008 12:00 AM

549360c04.indd 02-07-2008 12:00 AM

 P a r t

II
 Controlling Your Environment

 In This Part

 Chapter 4: Using Transistors and Driving Motors

 Chapter 5: Making Sounds

 Chapter 6: USB and Serial Communication

 Chapter 7: Shift Registers

549360c04.indd 02-07-2008 12:00 AM

 63

549360c04.indd 02-07-2008 12:00 AM

 C H A P T E R

4
 Using Transistors and

Driving Motors

 Parts You’ll Need for This Chapter:

 Arduino Uno

 USB cable

 9V battery

 9V battery clip

 5V L4940V5 linear regulator

 22uF electrolytic capacitor

 .1uF electrolytic capacitor

 1uF ceramic capacitor

 Blue LEDs (× 4)

 1kΩ resistors (× 4)

 PN2222 NPN BJT transistor

 Jumper wires

 Sharp GP2Y0A41SK0F IR distance sensor with cable

 Hot glue or tape

 Standard servo motor

 DC motor

64 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Breadboard

 Potentiometer

 SN754410 H-Bridge IC

 1N4004 Diode

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, videos, and other digital content for this chapter can be found

at www.exploringarduino.com/content/ch4 .

 The wiley.com code downloads for this chapter are found at www.wiley.com/

go/exploringarduino on the Download Code tab. The code is in the chapter 04

download and individually named according to the names throughout the chapter.

 You’re now a master of observing information from the world around you.

But how can you control that world? Blinking LEDs and automatically adjust-

ing nightlights are a good start, but you can do so much more. Using assorted

types of motors and actuators, and with the help of transistors, you can use your

Arduino to generate physical action in the real world. By pairing motors with

your Arduino, you can drive robots, build mechanical arms, add an additional

degree of freedom to distance sensors, and much more.

 In this chapter, you learn how to control inductive loads like direct current

(DC) motors, how to use transistors to switch high-current devices, and how

to interface with precision actuators (namely, servo motors). At the end of this

chapter, you build a sweeping distance sensor capable of identifying the loca-

tion of nearby obstacles. This sensor is perfect for mounting on a self-driving

robotic car, for example. Having completed this chapter, you’ll have all the skills

you need to build a machine that you can really interact with!

 NOTE If you want to learn all about motors and transistors, check out this video:
 www.jeremyblum.com/2011/01/31/arduino-tutorial-5-motors-and-
transistors/ . You can also find this video on the Wiley website shown at the
beginning of this chapter.

 WARNING In this chapter, you use a 9V battery so that you can power motors
that require more power than what the Arduino can provide. These voltages are
still not high enough to pose a danger to you, but if hooked up improperly, these
batteries can damage your electronics. As you make your way through the exer-
cises in this chapter, follow the diagrams and instructions carefully. Avoid short
circuits (connecting power directly to ground), and while you’ll be sharing the
ground line between power supplies, don’t try to connect two separate voltage
sources to each other. For example, don’t try to hook both the 9V supply and the
Arduino’s 5V supply into the same supply row on the breadboard.

http://www.exploringarduino.com/content/ch4
http://www.wiley.com
http://www.jeremyblum.com/2011/01/31/arduino-tutorial-5-motors-and-transistors
http://www.jeremyblum.com/2011/01/31/arduino-tutorial-5-motors-and-transistors
http://www.jeremyblum.com/2011/01/31/arduino-tutorial-5-motors-and-transistors

 Chapter 4 ■ Using Transistors and Driving Motors 65

549360c04.indd 02-07-2008 12:00 AM

 Driving DC Motors

 DC motors, which you can fi nd in numerous devices around your home, rotate

continuously when a DC voltage is applied across them. Such motors are com-

monly found as the driving motors in radio control (RC) cars, and as the motors

that make the discs spin in your DVD player. DC motors are great because they

come in a huge array of sizes and are generally very cheap. By adjusting the

voltage you apply to them, you can change their rotation speed. By reversing

the direction of the voltage applied to them, you can change their direction of

rotation as well. This is generally done using an H-bridge, which you learn

about later in this chapter.

 Brushed DC motors , such as the one you are using for this chapter, employ

stationary magnets and a spinning coil. Electricity is transferred to the coil

using “brushes,” hence the reason they are called brushed DC motors. Unlike

 brushless DC motors (such as stepper motors), brushed DC motors are cheap

and have easier speed control. However, brushed DC motors do not last as long

because the brushes can wear out over time. These motors work through an

inductive force. When current passes through the spinning coil, it generates a

magnetic fi eld that is either attracted to or repelled by the stationary magnets

depending on the polarity. By using the brushes to swap the polarity each half-

rotation, you can generate angular momentum. The exact same confi guration

can be used to create a generator if you manually turn the armature. This will

generate a fl uctuating magnetic fi eld that will, in turn, generate current. This is

how hydroelectric generators work—falling water turns the shaft, and a current

is produced. This capability to create current in the opposite direction is why

you will use a diode later in this chapter to ensure that the motor cannot send

current back into your circuit when it is forcibly turned.

 Handling High-Current Inductive Loads
 DC motors generally require more current than the Arduino’s built-in power

supply can provide, and they can create harmful voltage spikes due to their induc-

tive nature. To address this issue, you fi rst learn how to effectively isolate a DC

motor from your Arduino, and then how to power it using a secondary supply.

A transistor will allow the Arduino to switch the motor on and off safely, as well

as to control the speed using the pulse-width modulation (PWM) techniques

that you learned about in Chapter 3, “Reading Analog Sensors.” Reference the

schematic shown in Figure 4-1 as you learn about the various components that

go into connecting a DC motor to an Arduino with a secondary power supply.

Make sure you understand all of these concepts before you actually start wiring.

549360c04.indd 02-07-2008 12:00 AM

66 Part II ■ Controlling Your Environment

 Figure 4-1: DC motor control schematic

 Before you hook up your DC motor, it’s important to understand what all

these components are doing:

 ■ Q1 is an NPN bipolar-junction transistor (BJT) used for switching the

separate 9V supply to the motor. There are two types of BJTs, NPN and

PNP, which refer to the different semiconductor “doping” techniques

used to create the transistor. This book will focus on using NPN BJTs.

You can simplistically think of an NPN transistor as a voltage-controlled

switch that allows you to inhibit or allow current fl ow.

 ■ A 1kΩ resistor is used to separate the transistor’s base pin from the control

pin of the Arduino.

 ■ U1 is the DC motor.

 ■ C1 is for fi ltering noise caused by the motor.

 ■ D1 is a diode used to protect the power supply from reverse voltage

caused by the motor acting like an inductor.

 Using Transistors as Switches

 Transistors can do an exceptional number of tasks, from making amplifi ers to

making up the CPU inside your computer and smartphone. You can use a single

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

 Chapter 4 ■ Using Transistors and Driving Motors 67

549360c04.indd 02-07-2008 12:00 AM

transistor to make a simple electrically controlled switch. Every BJT has three

pins (see Figure 4-2): the emitter (E), the collector (C), and the base (B).

1E

2B

3C

C

B

E

 Figure 4-2: An NPN BJT

 Current fl ows in through the collector and out of the emitter. By modulating

the base pin, you can control whether current is permitted to fl ow. When a suf-

fi ciently high voltage is applied to the base, current is allowed to fl ow through

the transistor, and the motor spins as a result. The 5V generated by the Arduino

I/O pins more than suffi ces to turn on the transistor. By taking advantage of

PWM, you can control the speed of the motor by rapidly turning the transistor

on and off. Because the motor can maintain momentum, the duty of the cycle

of the PWM signal determines the motor’s speed. The transistor is essentially

connecting and disconnecting one terminal of the motor from the ground and

determining when a complete circuit can be made with the battery.

 Using Protection Diodes

 It is important to consider issues caused by DC motors acting like inductors.

(Inductors are electrical devices that store energy in their magnetic fi elds and

resist changes in current.) As the DC motor spins, energy is built up and stored

in the inductance of the motor coils. If power is instantaneously removed from

the motor, the energy is dissipated in the form of an inverted voltage spike,

which could prove harmful to the power supply. That’s where protection diodes

come in. By putting the diode across the motor, you ensure that the current

generated by the motor fl ows through the diode and that the reverse voltage

cannot exceed the forward voltage of the diode (because diodes allow current

to fl ow in one direction only). This will also absorb any current generated by

you forcibly turning the motor.

68 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Using a Secondary Power Source

 Note, as well, from the circuit diagram shown in Figure 4-1 that the power sup-

ply to the motor is 9V, instead of the usual 5V from the USB connection that

you’ve been using. For the purposes of this experiment, a 9V battery suffi ces,

but you could also use an AC-DC wall adapter. The reason for using a power

source separate from the Arduino’s built-in 5V supply is twofold:

 1. By using a separate supply, you reduce the chances that improper wiring

of a higher-power circuit could harm your Arduino.

 2. You can take advantage of higher current limits and higher voltages.

 Some DC motors can consume more current than the Arduino 5V supply can

source. Further, many motors are rated at voltages higher than 5V. Although they

might spin at 5V, you can reach their max speed at only 9V or 12V (depending

on the motor specifi cations).

 Note that you must connect the ground of both your secondary power supply

and the Arduino ground. This connection ensures a common reference point

between the voltage levels in the two parts of the circuit.

 Wiring the Motor

 Now that you understand the intricacies of controlling a brushed DC motor, it’s

time to get it wired up on your breadboard. Try to wire it by only referencing

the previous schematic (shown in Figure 4-1). After you’ve tried to assemble

the circuit using only the schematic, reference the graphical version shown in

Figure 4-3 to confi rm that you wired it correctly.

 It’s important to get good at reading electrical schematics without having to

look at a graphical layout. Did you wire it correctly? Remember to check for the

following as you wire up the circuit:

 1. Make sure that you’ve connected the ground from your 9V battery to the

ground from your Arduino. You might want to use the horizontal bus on

the breadboard to accomplish this, as shown in Figure 4-3.

 2. Make sure that the 9V supply is not connected to the 5V supply. In fact,

you don’t even need to wire the 5V supply to the breadboard.

 3. Make sure that the orientation of your transistor is correct. If you aren’t

using the same NPN BJT listed in the parts list for this chapter, reference

the datasheet to ensure that the emitter, base, and collector are connected

to the same pins. If they are not, adjust your wiring.

 Chapter 4 ■ Using Transistors and Driving Motors 69

549360c04.indd 02-07-2008 12:00 AM

Capacitor

Transistor
Battery

DC motor Diode

 Figure 4-3: DC Motor wiring

 4. Make sure that the orientation of the diode is correct. Current fl ows from

the side with no stripe to the side with the stripe. The stripe on the physi-

cal device matches the line in the schematic symbol. You use a ceramic

capacitor for this exercise, so the polarity doesn’t matter.

 Next up, it’s time to get this motor spinning. You might want to attach a piece

of tape or a wheel to the end of the motor so that you can more easily see the

speed at which it is spinning. Before you write the program, you can confi rm

that the circuit is working correctly by providing power to the Arduino over

the USB connection, plugging in the 9V battery, and connecting the transistor’s

base pin (after the resistor) directly to 5V from the Arduino. This simulates a

logic high command and should make the motor spin. Connecting that same

wire to ground will ensure that it does not spin. If this doesn’t work, check your

wiring before moving on to the next step: programming.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

70 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Controlling Motor Speed with PWM
 First up, you can use a program very similar to the one you used to adjust LED

brightness of your nightlight in Chapter 3 to adjust the speed of your motor. By

sending varying duty-cycle signals to the transistor, the current fl ow through

the motor rapidly starts and stops resulting in a change in velocity. Try out the

program in Listing 4-1 to repeatedly ramp the motor speed up and down.

 Listing 4-1: Automatic Speed Control—motor.ino

 //Simple Motor Speed Control Program

 const int MOTOR=9; //Motor on Digital Pin 9

 void setup()
 {
 pinMode (MOTOR, OUTPUT);
 }

 void loop()
 {
 for (int i=0; i<256; i++)
 {
 analogWrite(MOTOR, i);
 delay(10);
 }
 delay(2000);
 for (int i=255; i>=0; i--)
 {
 analogWrite(MOTOR, i);
 delay(10);
 }
 delay(2000);
 }

 If everything is hooked up correctly, this code should slowly ramp the motor

speed up, then back down again in a loop. Using these techniques, you could

easily make a simple roving robot.

 Next up, you can combine your new knowledge of DC motors with your

knowledge of analog sensors. Using a potentiometer, you can manually adjust

the motor speed. To begin, add a potentiometer to analog pin 0, as shown in

Figure 4-4. Note that you must connect the 5V pin from the Arduino to the

power rail on the breadboard if you want to connect the potentiometer to that

row on the board.

 Chapter 4 ■ Using Transistors and Driving Motors 71

549360c04.indd 02-07-2008 12:00 AM

Capacitor

Transistor
Battery

DC motor Diode Potentiometer

 Figure 4-4: Adding a potentiometer

 You can now modify the program to control the motor speed based on the

present setting of the potentiometer. With the potentiometer at zero, the motor

stops; with the potentiometer rotated fully, the motor runs at full speed. Recall

that the Arduino is running quite fast; it’s actually running through the loop

several thousand times every second! Therefore, you can simply check the

potentiometer speed each time through the loop and adjust the motor speed

after each check. It checks often enough that motor speed adjusts in real time

with the potentiometer. The code in Listing 4-2 does the trick. Create a new

sketch (or update your previous sketch to match this code) and upload it to your

Arduino from the integrated development environment (IDE).

 Listing 4-2: Adjustable Speed Control—motor_pot.ino

 //Motor Speed Control with a Pot

 const int MOTOR=9; //Motor on Digital Pin 9

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

72 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 const int POT=0; //POT on Analog Pin 0

 int val = 0;

 void setup()
 {
 pinMode (MOTOR, OUTPUT);
 }

 void loop()
 {
 val = analogRead(POT);
 val = map(val, 0, 1023, 0, 255);
 analogWrite(MOTOR, val);
 }

 A lot of this code should look familiar from your previous experience dealing

with analog sensors. Note that the constrain function is not required when

using a potentiometer, because you can use the entire input range, and the value

will never go below 0 or above 1023 . After uploading the code to your Arduino,

adjust the pot and observe the speed of the motor changing accordingly.

 Using an H-Bridge to Control DC Motor Direction
 So, you can change DC motor speed. This is great for making wheels on an

Arduino-controlled robot… as long as you only want it to drive forward. Any

useful DC motor needs to be able to spin in two directions. To accomplish this,

you can use a handy device called an H-bridge . The operation of an H-bridge

can best be explained with a diagram (see Figure 4-5).

 Figure 4-5: H-bridge operation

 Chapter 4 ■ Using Transistors and Driving Motors 73

549360c04.indd 02-07-2008 12:00 AM

 Can you fi gure out why it’s called an H-bridge? Notice that the motor in com-

bination with the four switches forms an uppercase H . Although the diagram

shows them as switches, the switching components are actually transistors,

similar to the ones you used in the previous exercise. Some additional circuitry,

including protection diodes, is also built in to the H-bridge integrated circuit.

 The H-bridge has four main states of operation: open, braking, forward, and

backward. In the open state, all the switches are open and the motor won’t spin.

In the forward state, two diagonally opposing switches are engaged, causing

current to fl ow from 9V, through the motor, and down to ground. When the

opposing switches are fl ipped, current then runs through the motor in the

opposite direction, causing it to spin in the opposite direction. If the H-bridge

is put in the braking state, all residual motion caused by momentum is ceased,

and the motor stops.

 CREATING SHORT CIRCUITS WITH H-BRIDGES

 Be aware of one extremely important consideration when using H-bridges.
What would happen if both switches on the left or both switches on the
right were closed? It would cause a direct short between 9V and ground.
If you’ve ever shorted a 9V battery before, you know that this is not some-
thing you want to do. A shorted battery heats up very quickly, and, in rare
circumstances, could burst or leak. Furthermore, a short could destroy
the H-bridge or other parts of the circuit. An H-bridge is a rare scenario
where you could potentially destroy a piece of hardware by programming
something wrong. For this experiment, you use SN754410 Quadruple Half-H
Driver. This chip has a built-in thermal shutdown that should kick in before a
short circuit destroys anything, but it’s still a good idea to be cautious.

 To ensure that you don’t blow anything up, always disable the chip before
flipping the states of any of the switches. This ensures that a short cannot be
created even when you quickly switch between motor directions. You’ll use
three control pins: one for controlling the top two gates, one for controlling
the bottom two gates, and one for enabling the circuit.

 Building an H-bridge Circuit

 With the preceding considerations in mind, it’s time to build the circuit. The

H-bridge chip you use is the SN754410 Quadruple Half-H driver. Two Half-H

drivers are combined into one Full-H driver, such as the one shown in Figure 4-5.

For this exercise, you just use two of the four Half-H drivers to drive one DC

motor. If you want to make an RC car, for example, you could use this chip to

control two DC motors (one for the left wheels and one for the right wheels).

Before you actually get it wired up, take a look at the pin-out and logic table

from the part’s datasheet (see Figure 4-6).

74 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Figure 4-6: H-bridge pin-out and logic table

 Pin numbering on integrated circuits (ICs) always starts at the top-left pin

and goes around the part counter-clockwise. Chips will always have some kind

of indicator to show which pin is Pin 1, so that you don’t plug the IC in upside-

down. On through-hole parts (which is what you will use exclusively in this

chapter), a half circle on one end of the chip indicates the top of the chip (where

Pin 1 is located). Some chips may have a small circle marked next to pin one on

the plastic casing in addition to, or instead of the half-circle.

 Let’s run through the pins and how you’ll be using them:

 ■ GND (Pins 4, 5, 12, & 13): The four pins in the middle connect to a shared

ground between your 9V and 5V supplies.

 ■ VCC2 (Pin 8): V
CC2

 supplies the motor current, so you connect it to 9V.

 ■ VCC1 (Pin 16): V
CC1

 powers the chip’s logic, so you connect it to 5V.

 ■ 1Y and 2Y (Pins 3 and 6): These are the outputs from the left driver. The

motor wires connect to these pins.

 ■ 1A and 2A (Pins 2 and 7): The states of the switches on the left are con-

trolled by these pins, so they are connected to I/O pins on the Arduino

for toggling.

 ■ 1,2EN (Pin 1): This pin is used to enable or disable the left driver. It is

connected to a PWM pin on the Arduino, so that speed can be controlled

dynamically.

 ■ 3Y and 4Y (Pins 11 and 14): These are the outputs from the right driver.

Because you are using the left driver only, you can leave these disconnected.

 ■ 3A and 4A (Pins 10 and 15): The states of the switches on the right are

controlled by these pins, but you are using only the left driver in this

example, so you can leave them disconnected.

Im
ag

e
us

ed
 w

ith
 p

er
m

is
si

on
 c

ou
rt

es
y

of

Te
xa

s
In

st
ru

m
en

ts
.

 Chapter 4 ■ Using Transistors and Driving Motors 75

549360c04.indd 02-07-2008 12:00 AM

 ■ 3,4EN (Pin 9): This pin is used to enable or disable the right driver. Because

you will not be using the right driver, you can disable it by connecting

this pin directly to GND.

 For reference, confi rm your wiring with Figure 4-7. Keep the potentiometer

wired as it was before.

H-bridge

Battery

DC motor

Potentiometer

 Figure 4-7: H-bridge wiring diagram

 You can confi rm that the circuit is working before you program it by hooking

up the enable pin to 5V, hooking up one of the A pins to ground, and the other A

pin to 5V. You can reverse direction by swapping what the A pins are connected to.

 WARNING You should disconnect the 9V battery while swapping the A pins to
ensure that you can’t possibly cause an accidental short circuit within the H-bridge.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

76 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Operating an H-bridge Circuit

 Next up, you write a program to control the motor’s direction and speed using

the potentiometer and the H-bridge. Setting the potentiometer in a middle range

stops the motor, setting the potentiometer in a range above the middle increases

the speed forward, and setting the potentiometer in a range below the middle

increases the speed backward. This is another perfect opportunity to employ

functions in your Arduino program. You can write a function to stop the motor,

one to cause it spin forward at a set speed, and one to cause it to spin backward

at a set speed. Ensure that you correctly disable the H-bridge at the beginning of

the function before changing the motor mode; doing so reduces the probability

that you will make a mistake and accidentally short out the H-bridge.

 Following the logic diagram from Figure 4-6, you can quickly fi gure out how

you need to control the pins to achieve the desired results:

 ■ To stop current fl ow through the device, set the enable pin low.

 ■ To set the switches for rotation in one direction, set one high, the other low.

 ■ To set switches for rotation in the opposite direction, swap which is high

and which is low.

 ■ To cause the motor to stop immediately, set both switches low.

 NOTE Always disable the current flow before changing the state of the switches
to ensure that a momentary short cannot be created as the switches flip.

 First, you should devise the functions that safely execute the previously

described motions. Create a new Arduino sketch and start by writing your

new functions:

 //Motor goes forward at given rate (from 0-255)
 void forward (int rate)
 {
 digitalWrite(EN, LOW);
 digitalWrite(MC1, HIGH);
 digitalWrite(MC2, LOW);
 analogWrite(EN, rate);
 }

 //Motor goes backward at given rate (from 0-255)
 void reverse (int rate)
 {
 digitalWrite(EN, LOW);
 digitalWrite(MC1, LOW);
 digitalWrite(MC2, HIGH);
 analogWrite(EN, rate);

 Chapter 4 ■ Using Transistors and Driving Motors 77

549360c04.indd 02-07-2008 12:00 AM

 }

 //Stops motor
 void brake ()
 {
 digitalWrite(EN, LOW);
 digitalWrite(MC1, LOW);
 digitalWrite(MC2, LOW);
 digitalWrite(EN, HIGH);
 }

 Note that at the beginning of each function the EN pin is always set low, and

then the MC1 and MC2 pins (Motor Control pins) are adjusted. When that is

done, the current fl ow can be reenabled. To vary the speed, just use the same

technique you did before. By using PWM, you can change the duty with which

the EN pin is toggled, thus controlling the speed. The rate variable must be

between 0 and 255. The main loop takes care of making the right rate from the

input potentiometer data.

 Next, consider the main program loop:

 void loop()
 {
 val = analogRead(POT);

 //go forward
 if (val > 562)
 {
 velocity = map(val, 563, 1023, 0, 255);
 forward(velocity);
 }

 //go backward
 else if (val < 462)
 {
 velocity = map(val, 461, 0, 0, 255);
 reverse(velocity);
 }

 //brake
 else
 {
 brake();
 }
 }

 In the main loop, the potentiometer value is read, and the appropriate func-

tion can be called based on the potentiometer value. Recall that analog inputs

78 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

are converted to digital values between 0 and 1023. Refer to Figure 4-8 to better

understand the control scheme and compare that with the preceding loop code.

 Figure 4-8: Motor control plan.

 When the potentiometer is within the 100 units surrounding the midpoint,

the brake function is called. As the potentiometer value increases from 562 to

 1023 , the speed forward increases. Similarly, the speed increases in the reverse

direction between potentiometer values of 462 and 0 . The map function should

look familiar to you from the previous chapter. Here, when determining the

reverse speed, note the order of the variables: 461 is mapped to 0 , and 0 is

mapped to 255 ; the map function can invert the mapping when the variables

are passed in descending order. Putting the loop together with the functions,

and the setup , you get a completed program that looks like the one shown in

Listing 4-3. Ensure that your program matches the one here and load it onto

your Arduino.

 Listing 4-3: H-Bridge Potentiometer Motor Control—hbridge.ino

 //Hbridge Motor Control
 const int EN=9; //Half Bridge 1 Enable
 const int MC1=3; //Motor Control 1
 const int MC2=2; //Motor Control 2
 const int POT=0; //POT on Analog Pin 0

 int val = 0; //for storing the reading from the POT
 int velocity = 0; //For storing the desired velocity (from 0-255)

 void setup()
 {
 pinMode(EN, OUTPUT);
 pinMode(MC1, OUTPUT);
 pinMode(MC2, OUTPUT);
 brake(); //Initialize with motor stopped
 }

 void loop()
 {
 val = analogRead(POT);

 //go forward
 if (val > 562)
 {

 Chapter 4 ■ Using Transistors and Driving Motors 79

549360c04.indd 02-07-2008 12:00 AM

 velocity = map(val, 563, 1023, 0, 255);
 forward(velocity);
 }

 //go backward
 else if (val < 462)
 {
 velocity = map(val, 461, 0, 0, 255);
 reverse(velocity);
 }

 //brake
 else
 {
 brake();
 }
 }

 //Motor goes forward at given rate (from 0-255)
 void forward (int rate)
 {
 digitalWrite(EN, LOW);
 digitalWrite(MC1, HIGH);
 digitalWrite(MC2, LOW);
 analogWrite(EN, rate);
 }

 //Motor goes backward at given rate (from 0-255)
 void reverse (int rate)
 {
 digitalWrite(EN, LOW);
 digitalWrite(MC1, LOW);
 digitalWrite(MC2, HIGH);
 analogWrite(EN, rate);
 }

 //Stops motor
 void brake ()
 {
 digitalWrite(EN, LOW);
 digitalWrite(MC1, LOW);
 digitalWrite(MC2, LOW);
 digitalWrite(EN, HIGH);
 }

 Does everything work as expected? If not, make sure that you wired up your

circuit correctly. As an additional challenge, grab a second DC motor and hook

it up to the other half of the H-bridge chip. You should be able to drive two

motors simultaneously with minimal effort.

80 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Driving Servo Motors

 DC motors serve as excellent drive motors, but they are not as ideal for precision

work because no feedback occurs. In other words, without using an external

encoder of some kind, you will never know the absolute position of a DC motor.

Servo motors, or servos, in contrast, are unique in that you command them to

rotate to a particular angular position and they stay there until you tell them

to move to a new position. This is important for when you need to move your

system to a known position. Examples include actuating door locks, moving

armatures to specifi c rotations, and precisely controlling the opening of an

aperture. In this section, you learn about servo motors and how to control them

from your Arduino.

 Understanding the Difference Between Continuous Rotation
and Standard Servos
 You can buy both standard and continuous rotation servos. Unmodifi ed servos

always have a fi xed range (usually from 0 to 180 degrees) because there is a

potentiometer in line with the drive shaft, which is used for reporting the pres-

ent position. Servo control is achieved by sending a pulse of a particular length.

The length of the pulse, in the case of a standard rotation servo, determines the

absolute position that the servo will rotate to. If you remove the potentiometer,

however, the servo is free to rotate continuously, and the pulse length sets the

speed of the motor instead.

 In this book, you use standard servos that rotate to an absolute position. You

can experiment with continuous rotation servos either by opening a standard

servo and carefully removing the potentiometer, or by buying premodifi ed

servos confi gured for continuous rotation.

 Understanding Servo Control
 Unlike their DC motor counterparts, servo motors have three pins: power (usu-

ally red), ground (usually brown or black), and signal (usually white or orange).

These wires are color-coded, typically in the same order, and generally look

like the ones shown in Figure 4-9. Some manufactures may use non-standard

ordering, so always be sure to check the datasheet to ensure you are wiring

the servo correctly.

 The coloring might vary slightly between servos, but the color schemes listed

previously are the most common. (Check the servo’s documentation if you’re

unsure.) Like DC motors, servos can draw quite a bit of a current (usually

 Chapter 4 ■ Using Transistors and Driving Motors 81

549360c04.indd 02-07-2008 12:00 AM

more than the Arduino can supply). Although you can sometimes run one or

two servos directly from the Arduino’s 5V supply, you learn here how to use a

separate power supply for the servos so that you have the option to add more

if you need to.

 Figure 4-9: Servo motors

 Servos have a dedicated control pin, unlike DC motors, that instructs them

what position to turn to. The power and ground lines of a servo should always

be connected to a steady power source.

 Servos are controlled using adjustable pulse widths on the signal line. For

a standard servo, sending a 1ms 5V pulse turns the motor to 0 degrees, and

sending a 2ms 5V pulse turns the motor to 180 degrees, with pulse lengths in

the middle scaling linearly. A 1.5ms pulse, for example, turns the motor to 90

degrees. Once a pulse has been sent, the servo turns to that position and stays

there until another pulse instruction is received. However, if you want a servo to

“hold” its position (resist being pushed on and try to maintain the exact position),

you just resend the command once every 20ms. The Arduino servo commands

that you will later employ take care of this for you. To better understand how

servo control works, study the timing diagram shown in Figure 4-10.

U
se

d
w

ith
 p

er
m

is
si

on
 fr

om
 P

ar
al

la
x

In
c.

 C
op

yr
ig

ht
 ©

 2
01

3
P

ar
al

la
x

In
c.

A

ll
ri

gh
ts

 r
es

er
ve

d.

82 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Figure 4-10: Servo motor timing diagram

 Note that in each of the examples in Figure 4-10 the pulse is sent every 20ms.

As the pulse length increases from 1ms to 2ms, the angle of rotation of the

motor (shown to the right of the pulse graph) increases from 0 to 180 degrees.

 As mentioned before, servos can draw more current than your Arduino may

be able to provide. However, most servos are designed to run at 5V, not 9V or

12V like a DC motor. Even though the voltage is the same as that of an Arduino,

you want to use a separate power source that can supply more current.

 To do this, you learn here how to use a 9V battery and a linear regulator to

generate a 5V supply from your 9V battery. A linear regulator is an extremely

simple device that generally has three pins: input voltage, output voltage, and

ground. The ground pin is connected to both the ground of the input supply

and to the ground of the output. In the case of linear-voltage regulators, the

input voltage always must be higher than the output voltage, and the output

voltage is set at a fi xed value depending on the regulator you use.

 The voltage drop between the input and the output is burned off as heat,

and the regulator takes care of ensuring that the output always remains the

same, even as the voltage of the input drops (in the case of a battery discharg-

ing over time). For these experiments, you use an L4940V5 5V voltage regulator.

It’s capable of supplying up to 1.5 amps at 5V. Figure 4-11 shows a schematic of

how to hook up the regulator.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

 Chapter 4 ■ Using Transistors and Driving Motors 83

549360c04.indd 02-07-2008 12:00 AM

 Figure 4-11: 5V Linear regulator schematic

 Note the capacitors on each side of the regulator. These are called decoupling
capacitors ; they are used to smooth out the voltage signal from each supply volt-

age by charging and discharging to oppose ripples in the voltage. Most linear

regulator datasheets include a suggested circuit that includes ideal values and

types for these capacitors based on your use case scenario. Also keep in mind

that the 5V rail created by this regulator should be kept separate from the 5V

power rail of the Arduino. Their grounds, however, should be tied together.

 Using all this information, it’s time to wire up a servo. Referencing Figure 4-12,

wire the servo, the 5V regulator, and the potentiometer. Leave the potentiometer

connected to analog pin 0, connect the servo control pin to pin 9, and ensure

that the 5V regulator supplies the servo’s power.

 While wiring, keep in mind a few important things. First, ensure that you

have the orientation of the regulator correct. With the metal tab on the side

farthest from you, connect the battery to the leftmost pin, the ground to the

center pin, and the servo’s power line to the right pin. Second, if using polarized

electrolytic capacitors (as in Figure 4-12), make sure to put them in the correct

direction. The stripe indicates the negative terminal and should be connected

to the common ground. Make sure that the pins don’t touch; otherwise, it could

cause a short. After you’re all wired up, move on to the next section to learn

how to program the servo controller.

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

84 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

Decoupling capacitors
Battery

5V regulator Potentiometer

Servo

 Figure 4-12: Servo experiment wiring diagram

 UNDERSTANDING LINEAR REGULATORS AND THE LIMITS OF
ARDUINO POWER SUPPLIES

 Why is it necessary to use an external power supply when certain items
require more current? There are few reasons. The I/O pins cannot supply
more than 40 milliamps (mA) each. Because a DC or servo motor can con-
sume hundreds of milliamps, the I/O pins are not capable of driving them
directly. Even if they were, you wouldn’t want to because of the damage that
can be caused by inductive voltage spikes.

 It makes sense that you need to use an external supply with a DC motor
because you need the higher voltage, but why does a servo need an external
supply if it is at the same voltage as the Arduino? The Arduino generates the
5V used for the logic either directly from the USB or by using a built-in linear
regulator with the DC barrel jack as the supply voltage. When you use USB,
a maximum of 500mA is available to the Arduino and all its peripherals,
because that is what the USB specification allows. When you use an external
supply of sufficient current, the built-in regulator can supply up to 1 amp to
the components on the 5V rail.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tiz

in
g.

 Chapter 4 ■ Using Transistors and Driving Motors 85

549360c04.indd 02-07-2008 12:00 AM

 Servos have a tendency to consume current in bursts as they turn. They
generally consume little current while stationary, and they consume several
hundred milliamps for a few milliseconds when they are actuated. These
current spikes can ripple on the 5V line, and can even be seen in other com-
ponents, like LEDs. By keeping the supply for the servo on a separate rail,
you ensure that this does not happen.

 Insufficient current for a servo might also cause it to behave erratically.
When you finish the final project for this chapter, try hooking the servo sup-
ply pin up to the built-in 5V rail. (Don’t worry; this won’t damage anything.)
When the servo is powered over USB, you may see the servo doing all kinds
of unexpected motions due to an insufficient current supply. Naturally, the
degree of this behavior depends on the specification of your particular servo.

 Controlling a Servo
 The Arduino IDE includes a built-in library that makes controlling servos a

breeze. A software library is a collection of code that is useful, but not always

needed in sketches. The Arduino IDE contains a number of libraries for com-

mon tasks. The servo library abstracts the timing routines you would need to

write out on your own for pulsing the servo pin. All you have to do is attach a

servo “object” to a particular pin and give it an angle to rotate to. The library

takes care of the rest, even setting the pin as an output. The simplest way to

test out the functionality of your servo is to map the potentiometer directly to

servo positions. Turning the potentiometer to 0 moves the servo to 0 degrees,

and moving it to 1023 moves the servo to 180 degrees. Create a new sketch with

the code from Listing 4-4 and load it onto your Arduino to see this functional-

ity in action.

 Listing 4-4: Servo Potentiometer Control—servo.ino

 //Servo Potentiometer Control

 #include <Servo.h>

 const int SERVO=9; //Servo on Pin 9
 const int POT=0; //POT on Analog Pin 0

 Servo myServo;
 int val = 0; //for storing the reading from the POT

 void setup()
 {
 myServo.attach(SERVO);

86 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 }

 void loop()
 {
 val = analogRead(POT); //Read Pot
 val = map(val, 0, 1023, 0, 179); //scale it to servo range
 myServo.write(val); //sets the servo
 delay(15); //waits for the servo
 }

 The include statement at the top of the program adds the functionality of

the servo library to your sketch. Servo myServo makes a servo object called

 myServo . In your code, whenever you want to tell the servo what to do, you’ll

refer to myServo . In setup() , attaching the servo initializes everything necessary

to control the servo. You can add multiple servos by calling the objects different

things and attaching a different pin to each one. In loop() , the pot is read, scaled

to an appropriate value for the servo control, and is then “written” to the servo

by pulsing the appropriate pin. The 15ms delay ensures that the servo reaches

its destination before you try to send it another command.

 Building a Sweeping Distance Sensor

 To wrap up this chapter, you apply your knowledge from the past few chapters

to build a light-up sweeping distance sensor. The system consists of an infrared

(IR) distance sensor mounted on a servo motor and four LEDs. As the servo motor

cycles, it pans the distance sensor around the room, allowing you to roughly

determine where objects are close and where they are far. The four LEDs cor-

respond to four quadrants of the sweep and change brightness depending on

how close an object is in that quadrant.

 Because IR light is a part of the electromagnetic spectrum that humans

cannot see, a system like this can be implemented to create “night vision.”

The IR distance sensor works by shining an IR LED and using some fairly

complex circuitry to calculate the angle at which that IR light returns to a

photo sensor mounted next to the IR LED. Using analog voltages created by

the IR photo sensor readings, the distance is calculated and converted to

an analog voltage signal that you can read into the microcontroller. Even if

the room is dark and you cannot see how close an object is, this sensor can

because it is using a wavelength of light that the human eye cannot detect.

 Different models of IR rangefi nders may have different interfaces. If you’re

using a rangefi nder that is different than the one used in this example, check

the datasheet to make sure it sends out a variable voltage as an output.

 Chapter 4 ■ Using Transistors and Driving Motors 87

549360c04.indd 02-07-2008 12:00 AM

 NOTE You can watch a demo video of the sweeping distance sensor online:
 www.exploringarduino.com/content/ch4 . You can also find this video on the
Wiley website shown at the beginning of this chapter.

 Start by hot-gluing your distance sensor to the top of a servo motor, as shown

in Figure 4-13. I like to use hot glue because it holds well and is fairly easy to

remove if you need to. However, you could also use super glue, putty, or tape

to get the job done.

 Figure 4-13: IR distance sensor mounted to the servo

 Next, hook your servo up to your Arduino, using the 5V regulator to power

it, just as you did before. The IR distance sensor replaces the potentiometer and

plugs into analog pin 0. Four LEDs plug into pins 3, 5, 6, and 11 through 1kΩ

resistors. The Arduino Uno has six total PWM pins, but pins 9 and 10 cannot

create PWM signals (using analogWrite) when you are using the servo library.

This is because the servo library uses the same hardware timer as the one used

to control PWM on those two pins. Hence, the other four PWM pins were chosen.

(If you want to do this project with more LEDs, either use the Arduino Mega

or implement a software PWM solution, something this book does not cover.)

Follow the wiring diagram in Figure 4-14 to confi rm that you have everything

wired up correctly. I chose to use blue LEDs, but you can use any color you want.

After you have it all wired up, consider taping it down, as shown in Figure 4-13.

http://www.exploringarduino.com/content/ch4

88 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

Decoupling
capacitors

Battery

5V regulator LEDs

Servo

IR distance
sensor

 Figure 4-14: Sweeping distance sensor wiring diagram

 The last step is to program the sensor. The system works in the following

manner: Rotate to a given position, measure the distance, convert it to a value

that can be used for the LED, change that LED’s brightness, move to the next

position, and so on, and so forth. Listing 4-5 shows the code to accomplish this.

Copy it into a new sketch and upload it to your Arduino.

 Listing 4-5: Sweeping Distance Sensor—sweep.ino

 //Sweeping Distance Sensor
 #include <Servo.h>

 const int SERVO =9; //Servo on Pin 9
 const int IR =0; //IR Distance Sensor on Analog Pin 0
 const int LED1 =3; //LED Output 1
 const int LED2 =5; //LED Output 2
 const int LED3 =6; //LED Output 3
 const int LED4 =11; //LED Output 4

 Servo myServo; //Servo Object
 int dist1 = 0; //Quadrant 1 Distance
 int dist2 = 0; //Quadrant 2 Distance
 int dist3 = 0; //Quadrant 3 Distance

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tiz

in
g.

 Chapter 4 ■ Using Transistors and Driving Motors 89

549360c04.indd 02-07-2008 12:00 AM

 int dist4 = 0; //Quadrant 4 Distance

 void setup()
 {
 myServo.attach(SERVO); //Attach the Servo
 pinMode(LED1, OUTPUT); //Set LED to Output
 pinMode(LED2, OUTPUT); //Set LED to Output
 pinMode(LED3, OUTPUT); //Set LED to Output
 pinMode(LED4, OUTPUT); //Set LED to Output
 }

 void loop()
 {
 //Sweep the Servo into 4 regions and change the LEDs
 dist1 = readDistance(15); //Measure IR Distance at 15 degrees
 analogWrite(LED1, dist1); //Adjust LED Brightness
 delay(300); //delay before next measurement

 dist2 = readDistance(65); //Measure IR Distance at 65 degrees
 analogWrite(LED2, dist2); //Adjust LED Brightness
 delay(300); //delay before next measurement

 dist3 = readDistance(115); //Measure IR Distance at 115 degrees
 analogWrite(LED3, dist3); //Adjust LED Brightness
 delay(300); //delay before next measurement

 dist4 = readDistance(165); //Measure IR Distance at 165 degrees
 analogWrite(LED4, dist4); //Adjust LED Brightness
 delay(300); //delay before next measurement
 }

 int readDistance(int pos)
 {
 myServo.write(pos); //Move to given position
 delay(600); //Wait for Servo to move
 int dist = analogRead(IR); //Read IR Sensor
 dist = map(dist, 50, 500, 0, 255); //scale it to LED range
 dist = constrain(dist, 0, 255); //Constrain it
 return dist; //Return scaled distance
 }

 The program employs a simple function that rotates the servo to the requested

degree, takes the distance measurement, scales it, and then returns it to the

 loop() . Which map you choose for the LED range depends on the setup of your

system. I found that the closest object I wanted to detect registered around 500 ,

and the farthest object was around 50 , so the map() was set accordingly. loop()

executes this function for each of the four LEDs, then repeats. When complete,

your system should function similarly to the one shown in the demo video

listed at the beginning of this section.

90 Part II ■ Controlling Your Environment

549360c04.indd 02-07-2008 12:00 AM

 Summary

 In this chapter you learned about the following:

 ■ DC motors use electromagnetic induction to create mechanical action

from changes in current.

 ■ Motors are inductive loads that must utilize proper protection and power

circuitry to interface safely with your Arduino.

 ■ DC motor speed and direction can be controlled with PWM and an H-bridge.

 ■ Servo motors enable precise positioning and can be controlled using the

Arduino Servo library.

 ■ A linear regulator can be used to create a secondary 5V supply from a

9V battery.

 ■ IR distance sensors return analog values representing distances detected

by bouncing infrared light off objects.

 ■ Code commenting is critical for easing debugging and sharing.

 91

549360c05.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino Uno

 USB cable

 Pushbuttons (× 5)

 10kΩ resistors (× 5)

 150Ω resistor

 Jumper wires

 Breadboard

 10KΩ potentiometer

 8Ω loudspeaker

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at

 www.exploringarduino.com/content/ch5 .

 The wiley.com code downloads for this chapter are found at www.wiley.com/

go/exploringarduino on the Download Code tab. The code is in the chapter 05

download and individually named according to the names throughout the chapter.

 C H A P T E R

5

 Making Sounds

http://www.exploringarduino.com/content/ch5
http://www.wiley.com/go/exploringarduino

92 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

 Humans have fi ve senses. As you might have guessed, you won’t be interfacing

your sense of taste with too many electronics; licking your Arduino is a poor

idea. Similarly, smell won’t generally come into play. In fact, if you can smell your

electronics, something is probably burning (and you should stop what you’re

doing). That just leaves the senses of touch, sight, and sound. You’ve already

interfaced with potentiometers and buttons that take advantage of your sense of

touch, and you’ve hooked up LEDs that interface with you sense of sight. Now,

what about your auditory senses? This chapter focuses on using the Arduino to

make sounds so that you can more easily gather feedback from your projects.

 You can generate sound with an Arduino in a number of ways. The simplest

method is to use the tone() function, which this chapter focuses on most heavily.

However, you can also use various shields that add more complex, music-playing

capabilities to Arduino with the help of some external processing. (Shields are

add-on boards that attach to the top of your Arduino to add specifi c function-

ality. You won’t use any in this chapter, but you’ll be using assorted shields in

some of the later chapters.) If you own the Arduino Due, you can use its true

digital-to-analog converter (DAC) to produce sounds.

 Understanding How Speakers Work

 Before you can make sounds with your Arduino, you need to understand what

sounds are and how humans perceive them. In this fi rst section, you learn about

how sound waves are generated, their properties, and how manipulation of

those properties can produce music, voices, and so on.

 The Properties of Sound
 Sound is transmitted through the air as a pressure wave. As an object such as

a speaker, a drum, or a bell vibrates, that object also vibrates the air around it.

As the air particles vibrate, they transfer energy to the particles around them,

vibrating these particles as well. In this fashion, a pressure wave is transferred

from the source to your eardrum, by creating a chain reaction of vibrating par-

ticles. So, why do you need to know this to understand how to make sounds

with your Arduino?

 You can control two properties of these vibrating particles with your Arduino:

frequency and amplitude. The frequency represents how quickly the air particles

vibrate back and forth, and the amplitude represents the magnitude of their

vibrations. In the physical sense, higher amplitude sounds are louder, and lower

amplitude sounds are quieter. High-frequency sounds are a higher pitch (like a

soprano), and low-frequency sounds are a lower pitch (like bass). Consider the

diagram in Figure 5-1, which shows sinusoidal representations of sound waves

of various amplitudes and frequencies.

 Chapter 5 ■ Making Sounds 93

549360c05.indd 02-07-2008 12:00 AM

 Figure 5-1: Sound waves of varying frequencies and amplitudes

 Figure 5-1 shows three piano notes: low, middle, and soprano C. Each one

shows the given frequencies at both low and high amplitudes. As an example,

to understand frequency and amplitude, focus on middle C. Middle C has a

frequency of 261.63 Hertz (Hz). In other words, a speaker, a guitar string, or

a piano string would complete 261.63 oscillations per second. By taking the

reciprocal of that value, you can fi nd the period of the wave, which is easy to

see in Figure 5-1. 1/261.63 equals 3.822 milliseconds, which is the width of one

complete oscillation in the graph. Using the Arduino, you can set that period

for a square wave and thus adjust the tone of the note.

 Importantly, the Arduino (excluding the Due’s true DAC) cannot actually

make a sinusoidal wave that you might observe in the real world. A square

wave is a digital periodic wave—it also oscillates between a high and a low

value, but it switches instantaneously, instead of slowly like a sine wave. This

still creates a pressure wave that results in sound, but it isn’t quite as “pretty”

sounding as a sinusoidal wave.

Im
ag

e
cr

ea
te

d
w

ith
 M

A
TL

A
B

.

94 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

 As for the amplitude, you can control that by changing the amount of the

current permitted to fl ow through the speaker. Using a potentiometer in-line

with the speaker, you can dynamically adjust the volume level of the speaker.

 How a Speaker Produces Sound
 Speakers, much like the motors that you learned about in the preceding chapter,

take advantage of electromagnetic forces to turn electricity into motion. Try

holding a piece of metal up to the rear of your speaker. Did you notice anything

interesting? The metal probably sticks to the rear of your speaker, because all

speakers have a sizeable permanent magnet mounted to the back. Figure 5-2

shows a cross section of a common speaker.

 Figure 5-2: Speaker cross section

 The permanent magnet is mounted behind the voice coil and pole piece shown

in the image. As you send a sinusoidal voltage signal (or a square wave in the

case of the Arduino) into the leads of the coil, the changing current induces a

magnetic fi eld that causes the voice coil and diaphragm to vibrate up and down

as the permanent magnet is attracted to and then repulsed by the magnetic

fi eld that you have generated. This back-and-forth vibration, in turn, vibrates

the air in front of the speaker, effectively creating a sound wave that can travel

to your eardrum.

G
N

U
 F

re
e

D
oc

um
en

ta
tio

n
Li

ce
ns

e

 Chapter 5 ■ Making Sounds 95

549360c05.indd 02-07-2008 12:00 AM

 Using tone() to Make Sounds

 The Arduino IDE includes a built-in function for easily making sounds of arbi-

trary frequencies. The tone() function generates a square wave of the selected

frequency on the output pin of your choice. The tone() function accepts three

arguments, though the last one is optional:

 ■ The fi rst argument sets the pin to generate the tone on.

 ■ The second argument sets the frequency of the tone.

 ■ The third (optional) argument sets the duration of the tone. If the third

argument is not set, the tone continues playing until you call noTone() .

 Because tone() uses one of the ATMega’s hardware timers, you can start a

tone and do other things with your Arduino while it continues to play sound

in the background.

 In the following sections, you learn how to play arbitrary sound sequences.

Once you’ve gotten that working, you can use tone() as a response to various

inputs (buttons, distance sensors, accelerometers, etc.). At the end of the chapter,

you build a simple fi ve-button piano that you can play.

 Including a Definition File
 When it comes to playing music, a defi nition fi le that maps frequencies to note

names proves useful. This makes it more intuitive to play simple musical clips.

For those familiar with reading sheet music, you know that notes are denoted

with letters representing their pitch. The Arduino IDE includes a header fi le

that correlates each of these notes with its respective frequency. Instead of dig-

ging through the Arduino install directory to fi nd it, just visit the Exploring

Arduino Chapter 5 webpage, and download the pitch fi le to your desktop

(www.exploringarduino.com/content/ch5). You’ll place it in your sketch direc-

tory after you’ve created it.

 Next, open your Arduino IDE and save the blank sketch that is automatically

created when you open the IDE. As you’ve probably already noticed, when you

save a sketch, it actually saves a folder with that name and places an .ino fi le

inside of that folder. By adding other fi les to that folder, you can include them in

your program, all while keeping your code better organized. Copy the pitches.h

fi le you saved to the desktop into the folder created by the IDE; then close the

Arduino IDE. Open your .ino fi le in the Arduino IDE and notice the two tabs

that now appear (see Figure 5-3).

http://www.exploringarduino.com/content/ch5

96 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

 Figure 5-3: Arduino IDE with a secondary header file

 Click the pitches.h tab to see the contents of the fi le. Notice that it’s just a list

of defi nition statements, which map human-readable names to given frequency

values. Simply having the header fi le in the IDE does not suffi ce, though. To

ensure that the compiler actually uses those defi nitions when compiling your

program for the Arduino, you need to tell the compiler to look for that fi le. Doing

so is easy. Just add this line of code to the top of your .ino fi le:

 #include "pitches.h" //Header file with pitch definitions

 To the compiler, this is essentially the same thing as copying and pasting the

contents of the header fi le into the top of your main fi le. However, this keeps

the fi le neater and easier for you to read. In the next sections, you write the code

for the rest of this fi le so that you can actually use the pitch defi nitions that you

have just imported.

 Wiring the Speaker
 Now that you have your pitches header fi le included, you’re ready to build a test

circuit and to write a simple program that can play some music. The electrical

setup is fairly simple and just involves hooking up a speaker to an output pin

of your Arduino. However, remember what you’ve learned in previous chapters

about current-limiting resistors.

 Just as with LEDs, you want to put a current-limiting resistor in series with

the speaker to ensure that you don’t try to draw too much current from one of

the Arduino’s I/O pins. As you learned previously, each I/O pin can supply only

a max of 40mA, so pick a resistor that prevents you from exceeding that. The

 Chapter 5 ■ Making Sounds 97

549360c05.indd 02-07-2008 12:00 AM

speaker that comes with this book’s kit has an internal resistance of 8Ω (as do

most loudspeakers that you can buy); this resistance comes from the windings

of wire that make up the electromagnet. Recall that Ohm’s law states that V =

IR. In this scenario, the I/O pin is outputting 5V, and you don’t want to exceed

40mA. Solving for R, you fi nd that the minimum resistance must be: R = 5V /

40mA = 125Ω. 8Ω is already accounted for by the speaker, so your in-line resistor

must be at least 125Ω – 8Ω = 117Ω. The nearest common resistor is 150Ω, so you

can use that. By adjusting that resistor value, you can change the volume of the

speaker. To make this as easy as possible, you can use a potentiometer in-line

with the 150Ω resistor, as shown in Figure 5-4. In the schematic, R1 is the 150Ω

resistor, and R2 is the potentiometer.

 Figure 5-4: Speaker wiring with volume adjustment knob

 Note that unlike in your previous usages of potentiometers this confi guration

uses only two pins: the middle (or wiper) pin goes to the speaker, and either one

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

98 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

of the end pins connects to the 150Ω resistor. When the knob is turned all the

way toward the unconnected terminal, the entire resistance of the potentiometer

is added to the series resistance of the 150Ω resistor, and the volume lowers.

When the knob is turned all the way toward the connected end terminal, it

adds no resistance to the series, and the speaker is at max volume. Referencing

the schematic in Figure 5-4, wire your speaker to the Arduino. Then, confi rm

your wiring using the diagram in Figure 5-5.

 Figure 5-5: Speaker wiring diagram

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 5 ■ Making Sounds 99

549360c05.indd 02-07-2008 12:00 AM

 Speakers do not have a polarity; you can connect them in either direction.

After wiring your speaker successfully, you’re ready to make music!

 Making Sound Sequences
 To play back some songs, you fi rst learn about using arrays to store multiple

values easily. You then implement a simple loop to iterate through the arrays

of notes and play them back on the speaker.

 Using Arrays

 An array is a sequence of values that are related in some way. By grouping them

together, it is an ideal format to iterate through. You can think of an array as a

numbered list. Each position has an index that indicates its location in the list,

and each index has a value that you want to store. You use an array here to store

the list of notes that you want to play, in the order that you want to play them.

 To ensure that the Arduino’s memory is properly managed, you need to

declare arrays with a known length. You can do this either by explicitly specify-

ing the number of items or by simply populating the array with all the values

you are interested in. For example, if you want to make an array that contains

four integer values, you could create it like this:

 int numbers[4];

 You can optionally initialize the values when you declare it. If you initialize

the values, specifying the length in the brackets is optional. If unspecifi ed, the

length is assumed to equal the number elements that you initialized:

 //Both of these are acceptable
 int numbers[4] = {-7, 0, 6, 234};
 int numbers[] = {-7, 0, 6, 234};

 Note that arrays are zero indexed. In other words, the fi rst number is at

position 0 , the second is at position 1 , and so forth. You can access the elements

in an array at any given index by putting the index of the relevant value in a

square bracket after the variable name. If you want to set the brightness of an

LED connected to pin 9 to the third entry in an array, for example, you can do

so like this:

 analogWrite(9,numbers[2]);

100 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

 Note that because numbering starts at zero, the index of 2 represents the third

value in the array. If you want to change one of the values of the array, you can

do so in a similar fashion:

 numbers[2] = 10;

 Next, you will use arrays (as shown in these examples) to create a structure

that can hold the sequence of notes that you want to play on your speaker.

 Making Note and Duration Arrays

 To store the info about the song you want to play, you can use two arrays of the

same length. The fi rst contains the list of pitches, and the second contains the

list of durations for which each note should play in milliseconds. You can then

iterate through the indices of these arrays and play back your tune.

 Using the meager musical skills that I’ve maintained from my music classes

back in high school, I’ve assembled a short and catchy tune:

 //Note Array
 int notes[] = {
 NOTE_A4, NOTE_E3, NOTE_A4, 0,
 NOTE_A4, NOTE_E3, NOTE_A4, 0,
 NOTE_E4, NOTE_D4, NOTE_C4, NOTE_B4, NOTE_A4, NOTE_B4, NOTE_C4, NOTE_D4,
 NOTE_E4, NOTE_E3, NOTE_A4, 0
 };

 //The Duration of each note (in ms)
 int times[] = {
 250, 250, 250, 250,
 250, 250, 250, 250,
 125, 125, 125, 125, 125, 125, 125, 125,
 250, 250, 250, 250
 };

 Note that both arrays are the same length: 20 items. Notice that some of the

notes are specifi ed as 0 . These are musical rests (unplayed beats). Each note pairs

with a duration from the second array. For those familiar with music theory,

note that I’ve made quarter notes 250ms and eighth notes 125ms. The song is

in “four-four” time, in musical terms.

 Try out this given note sequence, fi rst; then try to create your own!

 NOTE Listen to a recording of this tune, played by an Arduino:
 www.exploringarduino.com/content/ch5 . You can also find this
recording on the Wiley website shown at the beginning of this chapter.

http://www.exploringarduino.com/content/ch5

 Chapter 5 ■ Making Sounds 101

549360c05.indd 02-07-2008 12:00 AM

 Completing the Program

 The last step is to actually add playback functionality to the sketch. This can be

accomplished with a simple for loop that goes through each index in the array,

and plays the given note for the given duration. Since you presumably don’t

want to listen to this over and over again, you can put the playback functionality

in the setup() function so that it only happens once. You can restart playback

by hitting the Reset button. Listing 5-1 shows the complete playback program.

 Listing 5-1: Arduino Music Player—music.ino

 //Plays a song on a speaker

 #include "pitches.h" //Header file with pitch definitions

 const int SPEAKER=9; //Speaker Pin

 //Note Array
 int notes[] = {
 NOTE_A4, NOTE_E3, NOTE_A4, 0,
 NOTE_A4, NOTE_E3, NOTE_A4, 0,
 NOTE_E4, NOTE_D4, NOTE_C4, NOTE_B4, NOTE_A4, NOTE_B4, NOTE_C4, NOTE_D4,
 NOTE_E4, NOTE_E3, NOTE_A4, 0
 };

 //The Duration of each note (in ms)
 int times[] = {
 250, 250, 250, 250,
 250, 250, 250, 250,
 125, 125, 125, 125, 125, 125, 125, 125,
 250, 250, 250, 250
 };

 void setup()
 {
 //Play each note for the right duration
 for (int i = 0; i < 20; i++)
 {
 tone(SPEAKER, notes[i], times[i]);
 delay(times[i]);
 }
 }

 void loop()
 {
 //Press the Reset button to play again.
 }

102 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

 If you want to make your own music, make sure that the arrays remain of an

equal length and that you change the upper bound on the for() loop. Because

the tone() function can run in the background, it’s important to use the delay()

function. By delaying the code for an amount of time equal to the duration of the

note, you ensure that the Arduino doesn’t play the next note until the previous

not has fi nished playing for the time you specifi ed.

 Understanding the Limitations of the tone() Function
 The tone() function does have a few limitations to be aware of. Like the servo

library, tone() relies on a hardware timer that is also used by the board’s pulse-

width modulation (PWM) functionality. If you use tone() , PWM does not work

right on pins 3 and 11 (on boards other than the Mega).

 Also remember that the Arduino I/O pins are not digital-to-analog convert-

ers (DACs). Hence, they output only a square wave at the provided frequency,

not a sine wave. Although this suffi ces for making tones with a speaker, you’ll

fi nd it undesirable for playing back music. If you want to play back wave fi les,

your options include using a music-playing shield (such as the adafruit Wave

Shield or the SparkFun MP3 shield), implementing a DAC converter, or using the

built-in DAC available on the Arduino Due using the Due-only Audio library.

 The last limitation is that you can use the tone() function on only one pin

at a time, so it isn’t ideal for driving multiple speakers. If you want to drive

multiple speakers at the same time from a standard Arduino, you have to use

manual timer interrupt control, something you learn more about in Chapter 12,

“Hardware and Timer Interrupts.”

 NOTE To read a tutorial on advanced multispeaker control with an Arduino, visit
 www.jeremyblum.com/2010/09/05/driving-5-speakers-simultaneously-
with-an-arduino/ . You can also find this tutorial on the Wiley website shown at
the beginning of this chapter.

 Building a Micro Piano

 Playing back sequences of notes is great for adding audio feedback to projects

you’ve already created. For example, consider replacing or augmenting a green

confi rmation LED with a confi rmation sound. But, what if you want to dynami-

cally control the sound? To wrap up this chapter, you build a simple pentatonic

piano. The pentatonic scale consists of just fi ve notes per octave rather than the

usual seven. Interestingly, the notes of a pentatonic scale have minimal disso-

nance between pitches, meaning they always sound good together. So, it makes

a lot of sense to use pentatonic notes to make a simple piano.

http://www.jeremyblum.com/2010/09/05/driving-5-speakers-simultaneously-with-an-arduino
http://www.jeremyblum.com/2010/09/05/driving-5-speakers-simultaneously-with-an-arduino
http://www.jeremyblum.com/2010/09/05/driving-5-speakers-simultaneously-with-an-arduino

 Chapter 5 ■ Making Sounds 103

549360c05.indd 02-07-2008 12:00 AM

 NOTE The SudoGlove, among others things, is a control glove that can synthesize
music using the pentatonic scale. You can learn more about it at www.sudoglove.com .

 To make your Arduino piano, you use this pentatonic scale: C, D, E, G, A.

You can choose what octave to use based on your preference. I chose to use the

fourth octave from the header fi le.

 First, wire fi ve buttons up to your Arduino. As with the buttons in Chapter 2,

“Digital Inputs, Outputs, and Pulse-Width Modulation” you use 10kΩ pull-down

resistors with the buttons. In this scenario, you do not need to debounce the but-

tons because the note will be played only while the desired button is held down.

Wire the buttons as shown in Figure 5-6 and keep the speaker wired as you had

it previously.

 Figure 5-6: Micro piano wiring diagram

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

http://www.sudoglove.com

104 Part II ■ Controlling Your Environment

549360c05.indd 02-07-2008 12:00 AM

 The code for the piano is actually very simple. In each iteration through the

loop, each button is checked. So long as a button is pressed, a note is played. Here,

 tone() is used without a duration because the note will play as long as the button

is held. Instead, noTone() is called at the end of loop() to ensure that the speaker

stops making noise when all the buttons have been released. Because only a few

notes are needed, you can copy the values from the header fi le that you care about

directly into the main program fi le. In a new sketch, load up the code shown in

Listing 5-2 and upload it to your Arduino. Then, jam away on your piano!

 Listing 5-2: Pentatonic Micro Piano—piano.ino

 //Pentatonic Piano
 //C D E G A

 #define NOTE_C 262 //Hz
 #define NOTE_D 294 //Hz
 #define NOTE_E 330 //Hz
 #define NOTE_G 392 //Hz
 #define NOTE_A 440 //Hz

 const int SPEAKER=9; //Speaker on pin 9

 const int BUTTON_C=7; //Button pin
 const int BUTTON_D=6; //Button pin
 const int BUTTON_E=5; //Button pin
 const int BUTTON_G=4; //Button pin
 const int BUTTON_A=3; //Button pin

 void setup()
 {
 //No setup needed
 //Tone function sets outputs
 }

 void loop()
 {
 while (digitalRead(BUTTON_C))
 tone(SPEAKER, NOTE_C);
 while(digitalRead(BUTTON_D))
 tone(SPEAKER, NOTE_D);
 while(digitalRead(BUTTON_E))
 tone(SPEAKER, NOTE_E);
 while(digitalRead(BUTTON_G))
 tone(SPEAKER, NOTE_G);
 while(digitalRead(BUTTON_A))
 tone(SPEAKER, NOTE_A);

 //Stop playing if all buttons have been released
 noTone(SPEAKER);
 }

 Chapter 5 ■ Making Sounds 105

549360c05.indd 02-07-2008 12:00 AM

 Each while() loop will continuously call the tone() function at the appro-

priate frequency for as long as the button is held down. The button can be read

within the while() loop evaluation to avoid having to fi rst save the reading to

a temporary value. digitalRead() returns a Boolean “true” whenever a button

input goes high; the value can be evaluated directly by the while() loop. To

keep your code neater, you don’t need to use brackets for the contents of a loop

if the contents are only one line, as in this example. If you have multiple lines,

you must use curly brackets as you have in previous examples.

 NOTE To watch a demo video of the micro piano, visit www.exploringarduino.com/
content/ch5 . You can also find this video on the Wiley website shown at the begin-
ning of this chapter.

 Summary

 In this chapter you learned about the following:

 ■ Speakers create a pressure wave that travels through the air and is per-

ceived as sound by your ears.

 ■ Changing electric current induces a magnetic fi eld that can be used to

create sound from a speaker.

 ■ The tone() function can be used to generate sounds of arbitrary frequen-

cies and durations.

 ■ The Arduino programming language supports the use of arrays for iterat-

ing through sequences of data.

 ■ Speaker volume can be adjusted using a potentiometer in series with

a speaker.

http://www.exploringarduino.com

549360c05.indd 02-07-2008 12:00 AM

 107

549360c06.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino Uno

 Arduino Leonardo

 USB cable (A to B for Uno)

 USB cable (A to Micro B for Leonardo)

 LED

 RGB LED (common cathode)

 150Ω resistor

 220Ω resistor (× 3)

 10kΩ resistor (× 2)

 Pushbutton

 Photoresistor

 TMP36 temperature sensor

 Two-axis joystick (SparkFun, Parallax, or adafruit suggested)

 Jumper wires

 Breadboard

 Potentiometer

 C H A P T E R

6

 USB and Serial Communication

108 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at

 www.exploringarduino.com/content/ch6 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 06 download and individu-

ally named according to the names throughout the chapter.

 Perhaps the most important part of any Arduino is its capability to be pro-

grammed directly via a USB serial port. This feature enables you to program the

Arduino without any special hardware, such as an AVR ISP MKII. Ordinarily,

microcontrollers rely on a dedicated piece of external hardware (such as the

MKII) to serve as a programmer that connects between your computer and the

microcontroller you are trying to program. In the case of the Arduino, this pro-

grammer is essentially built into the board, instead of being a piece of external

hardware. What’s more, this gives you a direct connection to the ATMega’s

integrated Universal Synchronous/Asynchronous Receiver and Transmitter

(USART). Using this interface, you can send information between your host

computer and the Arduino, or between the Arduino and other serial-enabled

components (including other Arduinos).

 This chapter covers just about everything you could want to know about con-

necting an Arduino to your computer via USB and transmitting data between

the two. Different Arduinos have different serial capabilities, so this chapter

covers each of them, and you build sample projects with each serial commu-

nication technology to get yourself acquainted with how to take advantage of

them as best as possible. Note that, as a result of this, the parts list includes

several types of Arduinos. Depending on which Arduino you are trying to

learn about, you can pick and choose which sections to read, which examples

to explore, and which parts from the parts list you actually need for your

Arduino explorations.

 Understanding the Arduino’s Serial Communication
Capabilities

 As already alluded to in the introduction to this chapter, the different Arduino

boards offer lots of different serial implementations, both in terms of how the

hardware implements the USB-to-serial adapters and in terms of the software

support for various features. First, in this section, you learn about the various

serial communication hardware interfaces offered on different Arduino boards.

http://www.exploringarduino.com/content/ch6
http://www.wiley.com/go/exploringarduino

 Chapter 6 ■ USB and Serial Communication 109

549360c06.indd 02-07-2008 12:00 AM

 NOTE To learn all about serial communication, check out this tutorial:
 www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-
communication-and-processing/ . You can also find this tutorial on the
Wiley website shown at the beginning of this chapter.

 To begin, you need to understand the differences between serial and USB.

Depending on how old you are, you might not even remember serial (or techni-

cally, RS-232) ports, because they have been primarily replaced by USB. Figure 6-1

shows what a standard serial port looks like.

 Figure 6-1: Serial port

 The original Arduino boards came equipped with a serial port that you con-

nected to your computer with a 9-pin serial cable. Nowadays, few computers still

have these ports, although you can use adapters to make DB-9 (the type of 9-pin

connector) serial ports from USB ports. Microcontrollers like the ATMega328P

that you fi nd on the Arduino Uno have one hardware serial port. It includes a

transmit (TX) and receive (RX) pin that can be accessed on digital pins 0 and

1. As explained in the sidebar in Chapter 1, “Getting Up and Blinking with the

Arduino,” the Arduino is equipped with a bootloader that allows you to pro-

gram it over this serial interface. To facilitate this, those pins are “multiplexed”

(meaning that they are connected to more than one function); they connect,

indirectly, to the transmit and receive lines of your USB cable. However, serial

and USB are not directly compatible, so one of two methods is used to bridge

http://www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-communication-and-processing
http://www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-communication-and-processing
http://www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-communication-and-processing

110 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

the two. Option one is to use a secondary integrated circuit (IC) to facilitate

the conversion between the two (either on or off the Arduino board). This is

the type of interface present on an Uno, where an intermediary IC facilitates

USB-to-serial communication. Option two is to opt for a microcontroller that

has a USB controller built in (such as the Arduino Leonardo’s 32U4 MCU).

 Arduino Boards with an Internal or External FTDI USB-to-
Serial Converter
 As just explained, many Arduino boards (and Arduino clones) use a secondary

integrated circuit to facilitate the USB-to-serial conversion. The “FTDI” chip

is a popular chip that has just one function: convert between serial and USB.

When your computer connects to an FTDI chip, it shows up in your computer

as a “Virtual Serial Port” that you can access as if it was a DB9 port wired right

into your computer. Figure 6-2 shows the bottom of an Arduino Nano, which

utilizes an integrated FTDI chip.

FTDI chip

 Figure 6-2: Arduino Nano with integrated FTDI chip shown

 Chapter 6 ■ USB and Serial Communication 111

549360c06.indd 02-07-2008 12:00 AM

 NOTE For your computer to communicate with a FTDI serial-to-USB adapter, you
need to install drivers. You can find the most recent versions for Windows, OS X,
and Linux at www.ftdichip.com/Drivers/VCP.htm . This is also linked from the
Chapter 6 page on the Exploring Arduino website.

 On some boards, usually to reduce board size, the FTDI chip is external to the

main board, with a standardized 6-pin “FTDI connector” left for connecting to

either an FTDI cable (A USB cable with an FTDI chip built in to the end of the

cable) or a small FTDI breakout board. Figures 6-3 and 6-4 show these options.

 Figure 6-3: FTDI cable

 Figure 6-4: SparkFun FTDI adapter board

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

.

http://www.ftdichip.com/Drivers/VCP.htm
http://www.adafruit.com
http://www.adafruit.com
http://www.adafruit.com

112 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Using a board with a removable FTDI programmer is great if you are design-

ing a project that will not need to be connected to a computer via USB to run.

This will reduce cost if you are making several devices, and will reduce overall

size of the fi nished product.

 Following is a list of Arduino boards that use an onboard FTDI chip. Note,

new Arduino boards no longer use an FTDI chip, so most of these have been

discontinued. However, there are still many clones of these boards available

for purchase, so they are listed here for completeness:

 ■ Arduino Nano

 ■ Arduino Extreme

 ■ Arduino NG

 ■ Arduino Diecimila

 ■ Arduino Duemilanove

 ■ Arduino Mega (original)

 Following is a list of Arduino boards that use an external FTDI programmer:

 ■ Arduino Pro

 ■ Arduino Pro Mini

 ■ LilyPad Arduino

 ■ Arduino Fio

 ■ Arduino Mini

 ■ Arduino Ethernet

 Arduino Boards with a Secondary USB-Capable ATMega
MCU Emulating a Serial Converter
 The Arduino Uno was the fi rst board to introduce the use of an integrated circuit

other than the FTDI chip to handle USB-to-serial conversion. Functionally, it

works exactly the same way, with a few minor technical differences. Figure 6-5

shows the Uno’s 8U2 serial converter (now a 16U2 on newer revisions).

 Following is a brief list of the differences:

 ■ First, in Windows, boards with this new USB-to-serial conversion solu-

tion require a custom driver to be installed. This driver comes bundled

with the Arduino IDE when you download it. (Drivers are not needed

for OS X or Linux.)

 Chapter 6 ■ USB and Serial Communication 113

549360c06.indd 02-07-2008 12:00 AM

 ■ Second, the use of this second microcontroller unit (MCU) for the conver-

sion allowed a custom Arduino vendor ID and product ID to be reported

to the host computer when the board is connected. When an FTDI-based

board was connected to a computer, it just showed up as generic USB-serial

device. When an Arduino using a non-FTDI converter IC (an ATMega

8U2 in the case of early Arduino Unos, now a 16U2) is connected, it is

identifi ed to the computer as an Arduino.

Atmel 8U2
or 16U2 chip

 Figure 6-5: View of the Arduino Uno’s 8U2 serial converter chip

 ■ Lastly, because the secondary MCU is fully programmable (it’s running

a fi rmware stack called LUFA that emulates a USB-to-serial converter),

you can change its fi rmware to make the Arduino show up as something

different from a virtual serial port, such as a joystick, keyboard, or MIDI

device. If you were to make this sort of change, the USB-to-serial LUFA

fi rmware would not be loaded, and you would have to program the

Arduino directly using the in-circuit serial programmer with a device

like the AVR ISP MKII.

114 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Following is a list of Arduino boards that use an onboard secondary MCU

to handle USB-to-serial conversion:

 ■ Arduino Uno

 ■ Arduino Mega 2560

 ■ Arduino Mega ADK (based on 2560)

 ■ Arduino Due (can also be programmed directly)

 Arduino Boards with a Single USB-Capable MCU
 The Arduino Leonardo was the fi rst board to have only one chip that acts both

as the user-programmable MCU and as the USB interface. The Leonardo (and

similar Arduino boards) employs the ATMega 32U4 microcontroller, a chip

that has direct USB communication built in. This feature results in several new

features and improvements.

 First, board cost is reduced because fewer parts are required, and because

one less factory programming step is needed to produce the boards. Second,

the board can more easily be used to emulate USB devices other than a serial

port (such as a keyboard, mouse, or joystick). Third, the single ordinary USART

port on the ATMega does not have be multiplexed with the USB programmer,

so communication with the host computer and a secondary serial device (such

as a GPS unit) can happen simultaneously.

 Following is a list of Arduino boards that use a single USB-capable MCU:

 ■ Arduino Due (can also be programmed via secondary MCU)

 ■ LilyPad Arduino USB

 ■ Arduino Esplora

 ■ Arduino Leonardo

 ■ Arduino Micro

 Arduino Boards with USB-Host Capabilities
 Some Arduino boards can connect to USB devices as a host, enabling you to con-

nect traditional USB devices (keyboards, mice, Android phones) to an Arduino.

Naturally, there must be appropriate drivers to support the device you are con-

necting to. For example, you cannot just connect a webcam to an Arduino Due

and expect to be able to snap photos with no additional work. The Due presently

 Chapter 6 ■ USB and Serial Communication 115

549360c06.indd 02-07-2008 12:00 AM

supports a USB host class that enables you to plug a keyboard or mouse into

the Due’s on-the-go USB port to control it. The Arduino Mega ADK uses the

Android Open Accessory Protocol (AOA) to facilitate communication between

the Arduino and an Android device. This is primarily used for controlling

Arduino I/O from an application running on the Android device.

 Two Arduino boards that have USB-host capabilities are the Arduino Due

and the Arduino Mega ADK (based on Mega 2560).

 Listening to the Arduino

 The most basic serial function that you can do with an Arduino is to print to

the computer’s serial terminal. You’ve already done this in several of the previ-

ous chapters. In this section, you explore the functionality in more depth, and

later in the chapter you build some desktop apps that respond to the data you

send instead of just printing it to the terminal. This process is the same for all

Arduinos.

 Using print Statements
 To print data to the terminal, you only need to utilize three functions:

 ■ Serial.begin(baud_rate)

 ■ Serial.print("Message")

 ■ Serial.println("Message")

 where baud_rate and "Message" are variables that you specify.

 As you’ve already learned, Serial.begin() must be called once at the start

of the program in setup() to prepare the serial port for communication. After

you’ve done this, you can freely use Serial.print() and Serial.println()

functions to write data to the serial port. The only difference between the two

is that Serial.println() adds a carriage return at the end of the line (so that

the next thing printed will appear on the following line). To experiment with

this functionality, wire up a simple circuit with a potentiometer connected to

pin A0 on the Arduino, as shown in Figure 6-6.

116 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Figure 6-6: Potentiometer wiring diagram

 After wiring your potentiometer, load on the simple program shown in

Listing 6-1 that will read the value of the potentiometer and print it as both a

raw value and a percentage value.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 6 ■ USB and Serial Communication 117

549360c06.indd 02-07-2008 12:00 AM

 Listing 6-1: Potentiometer Serial Print Test Program—pot.ino

 //Simple Serial Printing Test with a Potentiometer

 const int POT=0; //Pot on analog pin 0

 void setup()
 {
 Serial.begin(9600); //Start serial port with baud = 9600
 }

 void loop()
 {
 int val = analogRead(POT); //Read potentiometer
 int per = map(val, 0, 1023, 0, 100); //Convert to percentage
 Serial.print("Analog Reading: ");
 Serial.print(val); //Print raw analog value
 Serial.print(" Percentage: ");
 Serial.print(per); //Print percentage analog value
 Serial.println("%"); //Print % sign and newline
 delay(1000); //Wait 1 second, then repeat
 }

 Using a combination of Serial.print() and Serial.println() statements,

this code prints both the raw and percentage values once per second. Note that

by our using Serial.println() only on the last line, each previous transmis-

sion stays on the same line.

 Open the serial monitor from the Arduino IDE and ensure that your baud

rate is set to 9600 to match the value set in the Arduino sketch. You should see

the values printing out once per second as you turn the potentiometer.

 Using Special Characters
 You can also transmit a variety of “special characters” over serial, which allow

you to change the formatting of the serial data you are printing. You indicate

these special characters with a slash escape character (\) followed by a com-

mand character. There are a variety of these special characters, but the two of

greatest interest are the tab and newline characters. To insert a tab character,

add a \t to the string. To insert a newline character, add a \n to the string. This

proves particularly useful if you want a newline to be inserted at the beginning

of a string, instead of at the end as the Serial.println() function does. If, for

some reason, you actually want to print \n or \t in the string, you can do so by

printing \\n or \\t , respectively. Listing 6-2 is a modifi cation of the previous

code to use these special characters to show data in a tabular format.

118 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Listing 6-2: Tabular Printing using Special Characters—pot_tabular.ino

 //Tabular serial printing test with a potentiometer

 const int POT=0; //Pot on analog pin 0

 void setup()
 {
 Serial.begin(9600); //Start Serial Port with Baud = 9600
 }

 void loop()
 {
 Serial.println("\nAnalog Pin\tRaw Value\tPercentage");
 Serial.println("--");
 for (int i = 0; i < 10; i++)
 {
 int val = analogRead(POT); //Read potentiometer
 int per = map(val, 0, 1023, 0, 100); //Convert to percentage

 Serial.print("A0\t\t");
 Serial.print(val);
 Serial.print("\t\t");
 Serial.print(per); //Print percentage analog value
 Serial.println("%"); //Print % sign and newline
 delay(1000); //Wait 1 second, then repeat
 }
 }

 As you turn the potentiometer, the output from this program should look

something like the results shown in Figure 6-7.

 Figure 6-7: Screenshot of serial terminal with tabular data

 Chapter 6 ■ USB and Serial Communication 119

549360c06.indd 02-07-2008 12:00 AM

 Changing Data Type Representations
 The Serial.print() and Serial.println() functions are fairly intelligent when

it comes to printing out data in the format you are expecting. However, you have

options for outputting data in various formats, including hexadecimal, octal,

and binary. Decimal-coded ASCII is the default format. The Serial.print()
 and Serial.println() functions have an optional second argument that speci-

fi es the print format. Table 6-1 includes examples of how you would print the

same data in various formats and how it would appear in your serial terminal.

 Table 6-1: Serial Data Type Options

 DATA TYPE EXAMPLE CODE SERIAL OUTPUT

 Decimal Serial.println(23); 23

 Hexadecimal Serial.println(23, HEX); 17

 Octal Serial.println(23, OCT) 27

 Binary Serial.println(23, BIN) 00010111

 Talking to the Arduino

 What good is a conversation with your Arduino if it’s only going in one direc-

tion? Now that you understand how the Arduino sends data to your computer,

let’s spend some time discussing how to send commands from your computer

to the Arduino. You’ve probably already noticed that the Arduino IDE serial

monitor has a text entry fi eld at the top, and a drop-down menu at the bottom.

Figure 6-8 highlights both.

 Figure 6-8: Screenshot of serial terminal highlighting text entry field and Line Ending
Options drop-down menu

120 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 First, make sure that the drop-down is set to Newline. The drop-down menu

determines what, if anything, is appended to end of your commands when you

send them to the Arduino. The examples in the following sections assume that

you have Newline selected, which just appends a \n to the end of anything

that you send from the text entry fi eld at the top of the serial monitor window.

 Unlike with some other terminal programs, the Arduino IDE serial monitor

sends your whole command string at one time (at the baud rate you specify)

when you press the Enter key or the Send button. This is in contrast to other

serial terminals like PuTTy (linked from this chapter’s digital content page at

 www.exploringarduino.com) that send characters as you type them.

 Reading Information from a Computer or Other Serial Device
 You start by using the Arduino IDE serial monitor to send commands manually

to the Arduino. Once that’s working, you’ll learn how to send multiple com-

mand values at once and how to build a simple graphical interface for sending

commands.

 It’s important to recall that the Arduino’s serial port has a buffer. In other

words, you can send several bytes of data at once and the Arduino will queue

them up and process them in order based on the content of your sketch. You

do not need to worry about sending data faster than your loop time, but you

do need to worry about sending so much data that it overfl ows the buffer and

information is lost.

 Telling the Arduino to Echo Incoming Data

 The simplest thing you can do is to have the Arduino echo back everything that

you send it. To accomplish this, the Arduino basically just needs to monitor its

serial input buffer and print any character that it receives. To do this, you need

to implement two new commands from the Serial object:

 ■ Serial.available() returns the number of characters (or bytes) that are

currently stored in the Arduino’s incoming serial buffer. Whenever it’s

more than zero, you will read the characters and echo them back to the

computer.

 ■ Serial.read() reads and returns the next character that is available in

the buffer.

 Note that each call to Serial.read() will only return 1 byte, so you need to

run it for as long as Serial.available() is returning a value greater than zero.

Each time Serial.read() grabs a byte, that byte is removed from the buffer,

as well, so the next byte is ready to be read. With this knowledge, you can now

write and load the echo program in Listing 6-3 on to your Arduino.

http://www.exploringarduino.com

 Chapter 6 ■ USB and Serial Communication 121

549360c06.indd 02-07-2008 12:00 AM

 Listing 6-3: Arduino Serial Echo Test—echo.ino

 //Echo every character

 char data; //Holds incoming character

 void setup()
 {
 Serial.begin(9600); //Serial Port at 9600 baud
 }

 void loop()
 {
 //Only print when data is received
 if (Serial.available() > 0)
 {
 data = Serial.read(); //Read byte of data
 Serial.print(data); //Print byte of data
 }
 }

 Launch the serial monitor and type anything you want into the text entry

fi eld. As soon as you press Send, whatever you typed is echoed back and dis-

played in the serial monitor. You have already selected to append a “newline”

to the end of each command, which will ensure that each response is on a new

line. That is why Serial.print() is used instead of Serial.println() in the

preceding sketch.

 Understanding the Differences Between Chars and Ints

 When you send an alphanumeric character via the serial monitor, you aren’t actu-

ally passing a “5”, or an “A”. You’re sending a byte that the computer interprets

as a character. In the case of serial communication, the ASCII character set is

used to represent all the letters, number, symbols, and special commands that

you might want to send. The base ASCII character set, shown in Figure 6-9, is a

7-bit set and contains a total of 128 unique characters or commands.

 When reading a value that you’ve sent from the computer, as you did in

Listing 6-3, the data must be read as a char type. Even if you are only expecting

to send numbers from the serial terminal, you need to read values as a character

fi rst, and then convert as necessary. For example, if you were to modify the code

to declare data as type int , sending a value of 5 would return 53 to the serial

monitor because the decimal representation of the character 5 is the number

53. You can confi rm this by looking at the ASCII reference table in Figure 6-9.

122 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Figure 6-9: ASCII table

 However, you’ll often want to send numeric values to the Arduino. So how

do you do that? You can do so in a few ways. First, you can simply compare the

characters directly. If you want to turn an LED on when you send a 1 , you can

compare the character values like this: if (Serial.read() == '1') . Note that

the single quotes around the '1' indicate that it should be treated like a character.

 A second option is to convert each incoming byte to an integer by subtracting

the zero-valued character, like this: int val = Serial.read() - '0' . However,

this doesn’t work very well if you intend to send numbers that are greater than 9,

because they will be multiple digits. To deal with this, the Arduino IDE includes

a handy function called parseInt() that attempts to extract integers from a

serial data stream. The examples that follow elaborate on these techniques.

 Sending Single Characters to Control an LED

 Before your dive into parsing larger strings of multiple-digit numbers, start by

writing a sketch that uses a simple character comparison to control an LED.

C
re

di
t:

 B
en

 B
or

ow
ie

c,
 w
w
w
.
b
e
n
b
o
r
o
w
i
e
c
.
c
o
m

.

http://www.benborowiec.com
http://www.benborowiec.com
http://www.benborowiec.com

 Chapter 6 ■ USB and Serial Communication 123

549360c06.indd 02-07-2008 12:00 AM

You’ll send a 1 to turn an LED on, and a 0 to turn it off. Wire an LED up to pin

9 of your Arduino as shown in Figure 6-10.

 Figure 6-10: Single LED connected to Arduino on pin 9

 As explained in the previous section, when only sending a single character,

the easier thing to do is to do a simple character comparison in an if statement.

Each time a character is added to the buffer, it is compared to a '0' or a '1' , and

the appropriate action is taken. Load up the code in Listing 6-4 and experiment

with sending a 0 or a 1 from the serial terminal.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

124 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Listing 6-4: Single LED Control using Characters—single_char_control.ino

 //Single Character Control of an LED

 const int LED=9;

 char data; //Holds incoming character

 void setup()
 {
 Serial.begin(9600); //Serial Port at 9600 baud
 pinMode(LED, OUTPUT);
 }

 void loop()
 {
 //Only act when data is available in the buffer
 if (Serial.available() > 0)
 {
 data = Serial.read(); //Read byte of data
 //Turn LED on
 if (data == '1')
 {
 digitalWrite(LED, HIGH);
 Serial.println("LED ON");
 }
 //Turn LED off
 else if (data == '0')
 {
 digitalWrite(LED, LOW);
 Serial.println("LED OFF");
 }
 }

 }

 Note that an else if statement is used instead of a simple else statement.

Because your terminal is also set to send a newline character with each trans-

mission, it’s critical to clear these from the buffer. Serial.read() will read in

the newline character, see that is not equivalent to a '0' or a '1' , and it will be

overwritten the next time Serial.read() is called. If just an else statement were

used, both '0' and '\n' would trigger turning the LED off. Even when sending

a '1' , the LED would immediately turn off again when the '\n' was received!

 Chapter 6 ■ USB and Serial Communication 125

549360c06.indd 02-07-2008 12:00 AM

 Sending Lists of Values to Control an RGB LED

 Sending a single command character is fi ne for controlling a single digital pin,

but what if you want to accomplish some more complex control schemes? This

section explores sending multiple comma-separate values to simultaneously

command multiple devices. To facilitate testing this, wire up a common cathode

RGB LED as shown in Figure 6-11.

 Figure 6-11: RGB LED connected to Arduino

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

126 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 To control this RGB LED, you send three separate 8-bit values (0–255) to set

the brightness of each LED color. For example, to set all the colors to full bright-

ness, you send “255,255,255” . This presents a few challenges:

 ■ You need to differentiate between numbers and commas.

 ■ You need to turn this sequence of characters into integers that you can

pass to analogWrite() functions.

 ■ You need to be able to handle the fact that values could be one, two, or

three digits.

 Thankfully, the Arduino IDE implements a very handy function for identifying

and extracting integers: Serial.parseInt() . Each call to this function waits until

a non-numeric value enters the serial buffer, and converts the previous digits

into an integer. The fi rst two values are read when the commas are detected,

and the last value is read when the newline is detected.

 To test this function for yourself, load the program shown in Listing 6-5 on

to your Arduino.

 Listing 6-5: RGB LED Control via Serial—list_control.ino

 //Sending Multiple Variables at Once

 //Define LED pins
 const int RED =11;
 const int GREEN =10;
 const int BLUE =9;

 //Variables for RGB levels
 int rval = 0;
 int gval = 0;
 int bval = 0;

 void setup()
 {
 Serial.begin(9600); //Serial Port at 9600 baud

 //Set pins as outputs
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);
 }

 void loop()
 {
 //Keep working as long as data is in the buffer
 while (Serial.available() > 0)

 Chapter 6 ■ USB and Serial Communication 127

549360c06.indd 02-07-2008 12:00 AM

 {
 rval = Serial.parseInt(); //First valid integer
 gval = Serial.parseInt(); //Second valid integer
 bval = Serial.parseInt(); //Third valid integer

 if (Serial.read() == '\n') //Done transmitting
 {
 //set LED
 analogWrite(RED, rval);
 analogWrite(GREEN, gval);
 analogWrite(BLUE, bval);
 }
 }
 }

 The program keeps looking for the three integer values until a newline is

detected. Once this happens, the values that were read are used to set the bright-

ness of the LEDs. To use this, open the serial monitor and enter three values

between 0 and 255 separated by a comma, like "200,30,180" . Try mixing all

kinds of pretty colors!

 Talking to a Desktop App

 Eventually, you’re bound to get bored of doing all your serial communication

through the Arduino serial monitor. Conveniently, just about any desktop pro-

gramming language you can think of has libraries that allow it to interface with

the serial ports in your computer. You can use your favorite desktop program-

ming language to write programs that send serial commands to your Arduino

and that react to serial data being transmitted from the Arduino to the computer.

 In this book, Processing is the desktop programming language of choice

because it is very similar to the Arduino language that you have already become

familiar with. In fact, the Arduino programming language is based on Processing!

Other popular desktop languages (that have well-documented serial commu-

nication libraries) include Python, PHP, Visual Basic, C, and more. First, you’ll

learn how to read transmitted serial data in Processing, and then you’ll learn

how you can use Processing to create a simple graphical user interface (GUI)

to send commands to your Arduino.

 Talking to Processing
 Processing has a fairly simple programming interface, and it’s similar to the

one you’ve already been using for the Arduino. In this section, you install

Processing, and then write a simple graphical interface to generate a graphical

128 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

output based on serial data transmitted from your Arduino. Once that’s work-

ing, you implement communication in the opposite direction to control your

Arduino from a GUI on your computer.

 Installing Processing

 First things fi rst, you need to install Processing on your machine. This is the

same process that you followed in the fi rst chapter to get the Arduino IDE

installed. Visit http://processing.org/download/ (or fi nd the download link

on the digital content page for this chapter on www.exploringarduino.com) and

download the compressed package for your operating system. Simply unzip it

to your preferred location and you are ready to go! Run the Processing applica-

tion, and you should see an IDE that looks like the one shown in Figure 6-12.

 Figure 6-12: The Processing IDE. Does it look familiar?

http://processing.org/download
http://www.exploringarduino.com

 Chapter 6 ■ USB and Serial Communication 129

549360c06.indd 02-07-2008 12:00 AM

 Controlling a Processing Sketch from Your Arduino

 For your fi rst experiment with Processing, you use a potentiometer connected

to your Arduino to control the color of a window on your computer. Wire up

your Arduino with a potentiometer, referencing Figure 6-6 again. You already

know the Arduino code necessary to send the analog values from the potenti-

ometer to your computer. The fact that you are now feeding the serial data into

Processing does not have any impact on the way you transmit it.

 Reference the code in Listing 6-6 and load it on to your Arduino. It sends an

updated value of the potentiometer to the computer’s serial port every 50 mil-

liseconds. The 50ms is important; if you were to send it as fast as possible, the

Processing sketch wouldn’t be able to handle it as quickly as you are sending it,

and you would eventually overfl ow the serial input buffer on your computer.

 Listing 6-6: Arduino Code to send Data to the Computer—pot_to_processing/arduino_
read_pot

 //Sending POT value to the computer

 const int POT=0; //Pot on analog pin 0

 int val; //For holding mapped pot value

 void setup()
 {
 Serial.begin(9600); //Start Serial
 }

 void loop()
 {
 val = map(analogRead(POT), 0, 1023, 0, 255); //Read and map POT
 Serial.println(val); //Send value
 delay(50); //Delay so we don't flood
 //the computer
 }

 Now comes the interesting part: writing a Processing sketch to do something

interesting with this incoming data. The sketch in Listing 6-7 reads the data

in the serial buffer and adjusts the brightness of a color on the screen of your

computer based on the value it receives. First, copy the code from Listing 6-7

into a new Processing sketch. You need to change just one important part. The

Processing sketch needs to know which serial port to expect data to arrive on.

This is the same port that you’ve been programming the Arduino from. In the

130 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

following listing, replace "COM3" with your serial port number. Remember that

on Linux and Mac it will look like /dev/ttyUSB0 , for example. You can copy the

exact name from within the Arduino IDE if you are unsure.

 port = new Serial(this, "COM3", 9600); //setup serial

 Listing 6-7: Processing Code to Read Data and Change Color on the Screen—pot_to_
processing/processing_display_color

 //Processing Sketch to Read Value and Change Color on the Screen

 //Import and initialize serial port library
 import processing.serial.*;
 Serial port;

 float brightness = 0; //For holding value from pot

 void setup()
 {
 size(500,500); //Window size
 port = new Serial(this, "COM3", 9600); //Set up serial
 port.bufferUntil('\n'); //Set up port to read until
 //newline
 }

 void draw()
 {
 background(0,0,brightness); //Updates the window
 }

 void serialEvent (Serial port)
 {
 brightness = float(port.readStringUntil('\n')); //Gets val
 }

 After you’ve loaded the code into your Processing IDE and set the serial

port properly, make sure that the Arduino serial monitor isn’t open. Only one

program on your computer can have access to the serial port at a time. Click

the Run button in the Processing IDE (the button in the top left of the window

with a triangle); when you do so, a small window will pop up (see Figure 6-13).

As you turn the potentiometer, you should see the color of the window change

from black to blue.

 Now that you’ve seen it working, let’s walk through the code to gain a better

understanding of how the Processing sketch is working. Unlike in Arduino,

the serial library is not imported automatically. By calling import processing

.serial.*; and Serial port; you are importing the serial library and mak-

ing a serial object called port .

 Chapter 6 ■ USB and Serial Communication 131

549360c06.indd 02-07-2008 12:00 AM

 Figure 6-13: Example windows from Processing sketch

 Like the Arduino, Processing has a setup() function that runs once at the

beginning of the sketch. In this sketch, it sets up the serial port and creates a

window of size 500 × 500 pixels with the command size(500,500) . The command

 port = new Serial(this, "COM3", 9600) tells Processing everything it needs

to know about creating the serial port. The instance (referred to as “port”) will

run in this sketch and communicate on COM3 (or whatever your serial port is)

at 9600 baud. The Arduino and the program on your computer must agree on

the speed at which they communicate; otherwise, you’ll get garbage characters.

 port.bufferUntil('\n') tells Processing to buffer the serial input and not do

anything with the information until it sees a newline character.

 Instead of loop() , Processing defi nes other special functions. This program uses

 draw() and serialEvent() . The draw() function is similar to Arduino’s loop() ;

it runs continuously and updates the display. The background() function sets the

color of the window by setting red, green, and blue values (the three arguments

of the function). In this case, the value from the potentiometer is controlling the

blue intensity, and red and green are set to 0 . You can change what color your pot

is adjusting simply by swapping which argument brightness is fi lling in. RGB

color values are 8-bit values ranging from 0 to 255 , which is why the potentiometer

is mapped to those values before being transmitted.

 serialEvent() is called whenever the bufferUntil() condition that you

specifi ed in the setup() is met. Whenever a newline character is received, the

 serialEvent() function is triggered. The incoming serial information is read

as a string with port.readStringUntil('\n') . You can think of a string as an

array of text. To use the string as a number, you must convert it to a fl oating-

point number with float() . This sets the brightness variable, changing the

background color of the application window.

 To stop the application and close the serial port, click the Stop button in the

Processing IDE; it’s the square located next to the Run button.

132 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 SUDOGLOVE PROCESSING DEBUGGER

 The SudoGlove is a control glove that drives RC cars and controls other
hardware. I developed a Processing debugging display that graphically
shows the values of various sensors. You can learn more about it here:
 www.sudoglove.com .

 Download the source code for the Processing display here:
 www.jeremyblum.com/2011/03/25/processing-based-sudoglove-
visual-debugger/ . You can also find this source code on the Wiley
website shown at the beginning of this chapter.

 Sending Data from Processing to Your Arduino

 The obvious next step is to do the opposite. Wire up an RGB LED to your

Arduino as shown in Figure 6-11 and load on the same program from earlier

that you used to receive a string of three comma-separated values for setting the

red, green, and blue intensities (Listing 6-5). Now, instead of sending a string

of three values from the serial monitor, you select a color using a color picker.

 Load and run the code in Listing 6-8 in Processing, remembering to adjust the

serial port number accordingly as you did with the previous sketch. Processing

sketches automatically load collateral fi les from a folder called “data” in the

sketch folder. The hsv.jpg fi le is included in the code download for this chapter.

Download it and place it in a folder named “data” in the same directory as your

sketch. Processing defaults to saving sketches in your Documents folder. The

structure will look similar to the one shown in Figure 6-14.

 Figure 6-14: Folder structure

 The image in the data folder will serve as the color selector.

http://www.sudoglove.com
http://www.jeremyblum.com/2011/03/25/processing-based-sudoglove-visual-debugger
http://www.jeremyblum.com/2011/03/25/processing-based-sudoglove-visual-debugger
http://www.jeremyblum.com/2011/03/25/processing-based-sudoglove-visual-debugger

 Chapter 6 ■ USB and Serial Communication 133

549360c06.indd 02-07-2008 12:00 AM

 Listing 6-8: Processing Sketch to Set Arduino RGB Colors— processing_control_RGB/
processing_control_RGB

 import processing.serial.*; //Import serial library
 PImage img; //Image object
 Serial port; //Serial port object

 void setup()
 {
 size(640,256); //Size of HSV image
 img = loadImage("hsv.jpg"); //Load in background image
 port = new Serial(this, "COM9", 9600); //Open serial port
 }

 void draw()
 {
 background(0); //Black background
 image(img,0,0); //Overlay image
 }

 void mousePressed()
 {
 color c = get(mouseX, mouseY); //Get the RGB color where mouse was
pressed
 String colors = int(red(c))+","+int(green(c))+","+int(blue(c))+"\n"; //
extract
 values from color
 print(colors); //Print colors for debugging
 port.write(colors); //Send values to Arduino
 }

 When you execute the program, you should see a screen like the one shown in

Figure 6-15 pop up. Click different colors and the RGB values will be transmitted

to the Arduino to control the RGB LED’s color. Note that the serial console also

displays the commands being sent to assist you in any debugging.

 After you’ve fi nished staring at all the pretty colors, look back at the code and

consider how it’s working. As before, the serial library is imported and a serial

object called port is created. A PImage object call img is also created. This will

hold the background image. In the setup() , the serial port is initialized, the

display window is set to the size of the image, and image is imported into the

image object by calling img = loadImage("hsv.jpg") .

 In the draw() function, the image is loaded in the window with image(img,0,0) .

 img is the image you want to draw in the window, and 0, 0 are coordinates where

the image will start to be drawn. 0,0 is the top left of the application window.

134 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Figure 6-15: Processing color selection screen

 Every time the mouse button is pressed, the mousePressed() function is called.

The color of the pixel where you clicked is saved to a color object named c . The

 get() method tells the application where to get the color from (in this case, the

location of the mouse’s X and Y position in the sketch). The sketch converts the

object c into a string that can be sent to the Arduino by converting to integers

representing red, green, and blue. These values are also printed to the Processing

console so that you can see what is being sent.

 Ensure that the Arduino is connected and programmed with the code from

Listing 6-5. Run the processing sketch (with the correct serial port specifi ed) and

click around the color map to adjust the color of the LED connected to your Arduino.

 Learning Special Tricks with the Arduino Leonardo
(and Other 32U4-Based Arduinos)

 The Leonardo, in addition to other Arduinos that implement MCUs that con-

nect directly to USB, has the unique ability to emulate nonserial devices such

as a keyboard or mouse. In this section you learn about using a Leonardo to

 Chapter 6 ■ USB and Serial Communication 135

549360c06.indd 02-07-2008 12:00 AM

emulate these devices. You need to be extremely careful to implement these

functions in a way that does not make reprogramming diffi cult. For example, if

you write a sketch that emulates a mouse and continuously moves your pointer

around the screen, you might have trouble clicking on the Upload button in the

Arduino IDE! In this section, you learn a few tricks that you can use to avoid

these circumstances.

 TIP If you get stuck with a board that’s too hard to program due to its keyboard or
mouse input, hold down the Reset button and release it while pressing the Upload
button in the Arduino IDE to reprogram it.

 When you fi rst connect a Leonardo to a Windows computer, you need to install

drivers, just as you did with the Arduino Uno in the fi rst chapter. Follow the

same directions at http://arduino.cc/en/Guide/ArduinoLeonardoMicro#toc8

for Leonardo-specifi c instructions. (These instructions are also linked from the

digital content page for this chapter from www.exploringarduino.com .)

 Emulating a Keyboard
 Using the Leonardo’s unique capability to emulate USB devices, you can easily

turn your Arduino into a keyboard. Emulating a keyboard allows you to easily

send key-combination commands to your computer or type data directly into

a fi le that is open on your computer.

 Typing Data into the Computer

 The Leonardo can emulate a USB keyboard, sending keystrokes and key com-

binations. This section explores how to use both concepts. First, you write a

simple program that records data from a few analog sensors into a comma-

separated-value (.csv) format that you can later open up with Excel or Google

spreadsheets to generate a graph of the values.

 Start by opening the text editor of your choice and saving a blank document

with a .csv extension. To do this, you can generally choose the fi le type in the

Save dialog, select “All Files,” and manually type the fi le name with the exten-

sion, such as “data.csv.” The demo video also shows how to create a .csv fi le.

 Next, create a simple circuit like the one shown in Figure 6-16. It will monitor

both light and temperature levels using analog sensors that you have already

seen in Chapter 3, “Reading Analog Sensors.” In addition to the sensors, the

circuit includes a button for turning the logging functionality on and off, and

an LED that will indicate whether it is currently logging data.

http://arduino.cc/en/Guide/ArduinoLeonardoMicro#toc8
http://www.exploringarduino.com

136 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

Indicator LED Temperature sensor PhotoresistorEnable button

 Figure 6-16: Temperature and light sensor circuit

 Using the same debouncing function that you implemented in Chapter 2,

“Digital Inputs, Outputs, and Pulse-Width Modulation,” you use the pushbutton

to toggle the logging mode on and off. While in logging mode, the Arduino polls

the sensors and “types” those values into your computer in a comma-separated

format once every second. An indicator LED remains illuminated while you are

logging data. Because you want the Arduino to be constantly polling the state

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 6 ■ USB and Serial Communication 137

549360c06.indd 02-07-2008 12:00 AM

of the button, you cannot use a delay() function to wait 1000ms between each

update. Instead, you use the millis() function, which returns the number of

milliseconds since the Arduino was last reset. You can make the Arduino send

data every time the millis() function returns a multiple of 1000ms, effectively

creating a nonblocking 1-second delay between transmissions. To do this, you

can use the modulo operator (%). Modulo returns the remainder of a division. If,

for example, you executed 1000%1000 , you would fi nd that the result is 0 because

1000/1000=1, with a remainder of 0. 1500%1000 , on the other hand, would return

500 because 1500/1000 is equal to 1, with a remainder of 500. If you take the

modulus of millis() with 1000 , the result is zero every time millis() reaches

a value that is a multiple of 1000. By checking this with an if() statement, you

can execute code once every second.

 Examine the code in Listing 6-9 and load it onto your Arduino Leonardo.

Ensure that you’ve selected “Arduino Leonardo” from the Tools > Board menu

in the Arduino IDE.

 Listing 6-9: Temperature and Light Data Logger—csv_logger.ino

 //Light and Temp Logger

 const int TEMP =0; //Temp sensor on analog pin 0
 const int LIGHT =1; //Light sensor on analog pin 1
 const int LED =3; //Red LED on pin 13
 const int BUTTON =2; //The button is connected to pin 2

 boolean lastButton = LOW; //Last button state
 boolean currentButton = LOW; //Current button state
 boolean running = false; //Not running by default
 int counter = 1; //An index for logged data entries

 void setup()
 {
 pinMode (LED, OUTPUT); //Set red LED as output
 Keyboard.begin(); //Start keyboard emulation
 }

 void loop()
 {
 currentButton = debounce(lastButton); //Read debounced state

 if (lastButton == LOW && currentButton == HIGH) //If it was pressed…
 running = !running; //Toggle running state

 lastButton = currentButton; //Reset button value

 if (running) //If logger is running

138 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 {
 digitalWrite(LED, HIGH); //Turn the LED on
 if (millis() % 1000 == 0) //If time is multiple
 //of 1000ms
 {
 int temperature = analogRead(TEMP); //Read the temperature
 int brightness = analogRead(LIGHT); //Read the light level
 Keyboard.print(counter); //Print the index number
 Keyboard.print(","); //Print a comma
 Keyboard.print(temperature); //Print the temperature
 Keyboard.print(","); //Print a comma
 Keyboard.println(brightness); //Print brightness, newline
 counter++; //Increment the counter
 }
 }
 else
 {
 digitalWrite(LED, LOW); //If logger not running, turn LED off
 }
 }

 /*
 * Debouncing Function
 * Pass it the previous button state,
 * and get back the current debounced button state.
 */
 boolean debounce(boolean last)
 {
 boolean current = digitalRead(BUTTON); //Read the button state
 if (last != current) //If it's different…
 {
 delay(5); //Wait 5ms
 current = digitalRead(BUTTON); //Read it again
 }
 return current; //Return the current
 //value
 }

 Before you test the data logger, let’s highlight some of the new functionality

that has been implemented in this sketch. Similarly to how you initialized the

serial communication, the keyboard communication is initialized by putting

 Keyboard.begin() in the setup() .

 Each time through loop() , the Arduino checks the state of the button and runs

the debouncing function that you are already familiar with. When the button

is pressed, the value of the running variable is inverted. This is accomplished

by setting it to its opposite with the ! operator.

 While the Arduino is in running mode, the logging step is executed only every

1000ms using the logic described previously. The keyboard functions work very

similarly to the serial functions. Keyboard.print() “types” the given string into

 Chapter 6 ■ USB and Serial Communication 139

549360c06.indd 02-07-2008 12:00 AM

your computer. After reading the two analog sensors, the Arduino sends the

values to your computer as keystrokes. When you use Keyboard.println() ,

the Arduino emulates pressing the Enter or Return key on your keyboard after

sending the given string. An incrementing counter and both analog values are

entered in a comma-separated format.

 Follow the demo video from this chapter’s web page to see this sketch in

action. Make sure that your cursor is actively positioned in a text document,

and then press the button to start logging. You should see the document begin

to populate with data. Hold your hand over the light sensor to change the value

or squeeze the temperature sensor to see the value increase. When you have

fi nished, press the button again to stop logging. After you save your fi le, you

can import it into the spreadsheet application of your choice and graph it over

time. This is shown in the demo video.

 NOTE To watch a demo video of the live temperature and light logger, visit
 www.exploringarduino.com/content/ch6 . You can also find this video on
the Wiley website shown at the beginning of this chapter.

 Commanding Your Computer to Do Your Bidding

 In addition to typing like a keyboard, you can also use the Leonardo to emu-

late key combinations. On Windows computers, pressing the Windows+L keys

locks the computer screen (On Linux, you can use Control+Alt+L). Using that

knowledge paired with a light sensor, you can have your computer lock auto-

matically when you turn the lights off. OS X uses the Control+Shift+Eject, or

Control+Shift+Power keys to lock the machine, which can’t be emulated by the

Leonardo because it cannot send an Eject or Power simulated button press. In

this example, you learn how to lock a Windows computer. You can continue to

use the same circuit shown in Figure 6-16, though only the light sensor will be

used in this example.

 Run the previous sketch at a few different light levels and see how the light

sensor reading changes. Using this information, you should pick a threshold

value below which you will want your computer to lock. (In my room, I found

that with the lights off the value was about 300 , and it was about 700 with the

lights on. So, I chose a threshold value of 500 .) When the light sensor value drops

below that value, the lock command will be sent to the computer. You might

want to adjust this value for your environment.

 Load the sketch in Listing 6-10 on to your Arduino. Just make sure you have

your threshold set to a reasonable value fi rst, by testing what light levels in your

room correspond to various analog levels. If you pick a poorly calibrated value,

it might lock your computer as soon as you upload it!

http://www.exploringarduino.com/content/ch6

140 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 Listing 6-10: Light-Based Computer Lock—lock_computer.ino

 //Locks your computer when you turn off the lights

 const int LIGHT =1; //Light sensor on analog pin 1
 const int THRESHOLD =500; //Brightness must drop below this level
 //to lock computer

 void setup()
 {
 Keyboard.begin();
 }

 void loop()
 {
 int brightness = analogRead(LIGHT); //Read the light level

 if (brightness < THRESHOLD)
 {
 Keyboard.press(KEY_LEFT_GUI);
 Keyboard.press('l');
 delay(100);
 Keyboard.releaseAll();
 }
 }

 After loading the program, try fl ipping the lights off. Your computer should

lock immediately. The following video demo shows this in action. This sketch

implements two new keyboard functions: Keyboard.press() and Keyboard

.releaseAll() . Running Keyboard.press() is equivalent to starting to hold a

key down. So, if you want to hold the Windows key and the L key down at the

same time, you run Keyboard.press() on each. Then, you delay for a short period

of time and run the Keyboard.releaseAll() function to let go of, or release,

the keys. Special keys are defi ned on the Arduino website: http://arduino.cc/

en/Reference/KeyboardModifiers . (This defi nition table is also linked from

the content page for this chapter at www.exploringarduino.com/content/ch6 .)

 NOTE To watch a demo video of the light-activated computer lock, visit
 www.exploringarduino.com/content/ch6 . You can also find this video
on the Wiley website shown at the beginning of this chapter.

 Emulating a Mouse
 Using a two-axis joystick and some pushbuttons, you can use an Arduino

Leonardo to make your own mouse! The joystick will control the mouse location,

and the buttons will control the left, middle, and right buttons of the mouse.

http://arduino.cc
http://www.exploringarduino.com/content/ch6
http://www.exploringarduino.com/content/ch6

 Chapter 6 ■ USB and Serial Communication 141

549360c06.indd 02-07-2008 12:00 AM

Just like with the keyboard functionality, the Arduino language has some great

functions built in that make it easy to control mouse functionality.

 First things fi rst, get your circuit set up with a joystick and some buttons as

shown in Figure 6-17. Don’t forget that your buttons need to have pull-down

resistors! The joystick will connect to analog pins 0 and 1. (Joysticks are actually

just two potentiometers hooked up to a knob.) When you move the joystick all

the way in the x direction, it maxes out the x potentiometer, and the same goes

for the y direction.

Joystick Left
mouse
button

Middle
mouse
button

Right
mouse
button

 Figure 6-17: Joystick Leonardo mouse circuit

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

142 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 The diagram shows a SparkFun joystick, but any will do. (In the video described

after the listing, I used a Parallax joystick.) Depending on the orientation of the

joystick, you might need to adjust the bounds of the map function or swap the

x/y in the code below.

 After you’ve wired the circuit, it’s time to load some code onto the Leonardo.

Load up the code in Listing 6-11 and play with the joystick and buttons; the

pointer on your screen should respond accordingly.

 Listing 6-11: Mouse Control Code for the Leonardo—mouse.ino

 // Make a Mouse!

 const int LEFT_BUTTON =4; //Input pin for the left button
 const int MIDDLE_BUTTON =3; //Input pin for the middle button
 const int RIGHT_BUTTON =2; //Input pin for the right button
 const int X_AXIS =0; //Joystick x-axis analog pin
 const int Y_AXIS =1; //Joystick y-axis analog pin

 void setup()
 {
 Mouse.begin();
 }

 void loop()
 {
 int xVal = readJoystick(X_AXIS); //Get x-axis movement
 int yVal = readJoystick(Y_AXIS); //Get y-axis movement

 Mouse.move(xVal, yVal, 0); //Move the mouse

 readButton(LEFT_BUTTON, MOUSE_LEFT); //Control left button
 readButton(MIDDLE_BUTTON, MOUSE_MIDDLE); //Control middle button
 readButton(RIGHT_BUTTON, MOUSE_RIGHT); //Control right button

 delay(5); //This controls responsiveness
 }

 //Reads joystick value, scales it, and adds dead range in middle
 int readJoystick(int axis)
 {
 int val = analogRead(axis); //Read analog value
 val = map(val, 0, 1023, -10, 10); //Map the reading

 if (val <= 2 && val >= -2) //Create dead zone to stop mouse
drift
 return 0;

 else //Return scaled value
 return val;

 Chapter 6 ■ USB and Serial Communication 143

549360c06.indd 02-07-2008 12:00 AM

 }

 //Read a button and issue a mouse command
 void readButton(int pin, char mouseCommand)
 {
 //If button is depressed, click if it hasn't already been clicked
 if (digitalRead(pin) == HIGH)
 {
 if (!Mouse.isPressed(mouseCommand))
 {
 Mouse.press(mouseCommand);
 }
 }
 //Release the mouse if it has been clicked.
 else
 {
 if (Mouse.isPressed(mouseCommand))
 {
 Mouse.release(mouseCommand);
 }
 }
 }

 This is defi nitely one of the more complicated sketches that have been covered

so far, so it’s worth stepping through it to both understand the newly introduced

functions and the program fl ow used to make the joystick mouse.

 Each of the button and joystick pins are defi ned at the top of the sketch, and

the mouse library is started in the setup. Each time through the loop, the joystick

values are read and mapped to movement values for the mouse. The mouse

buttons are also monitored and the button presses are transmitted if necessary.

 A readJoystick() function was created to read the joystick values and map

them. Each joystick axis has a range of 1024 values when read into the analog-to-

digital converter (ADC). However, mouse motions are relative. In other words,

passing a value of 0 to Mouse.move() for each axis will result in no movement

on that axis. Passing a positive value for the x-axis will move the mouse to the

right, and a negative value will move it to the left. The larger the value, the

more the mouse will move. Hence, in the readJoystick() function, a value of

0 to 1023 is mapped to a value of –10 to 10 . A small buffer value around 0 is

added where the mouse will not move. This is because even while the joystick

is in the middle position, the actual value may fl uctuate around 512 . By setting

the desired distance back to 0 after being mapped within a certain range, you

guarantee that the mouse will not move on its own while the joystick is not being

actuated. Once the values are ascertained, Mouse.move() is given the x and y

values to move the mouse. A third argument for Mouse.move() determines the

movement of the scroll wheel.

144 Part II ■ Controlling Your Environment

549360c06.indd 02-07-2008 12:00 AM

 To detect mouse clicks, the readButton() function was created so that it can

be repeated for each of the three buttons to detect. The function detects the cur-

rent state of the mouse with the Mouse.isPressed() command and controls the

mouse accordingly using the Mouse.press() and Mouse.release() functions.

 NOTE To watch a demo video of the joystick mouse controlling a computer
pointer, check out www.exploringarduino.com/content/ch6 . You can also find
this video on the Wiley website shown at the beginning of this chapter.

 Summary

 In this chapter you learned about the following:

 ■ Arduinos connect to your computer via a USB-to-serial converter.

 ■ Different Arduinos facilitate a USB-to-serial conversion using either dedi-

cated ICs or built-in USB functionality.

 ■ Your Arduino can print data to your computer via your USB serial

connection.

 ■ You can use special serial characters to format your serial printing with

newlines and tabs.

 ■ All serial data is transmitted as character that can be converted to integers

in a variety of ways.

 ■ You can send comma-separated integer lists and use integrated functions

to parse them into commands for your sketch.

 ■ You can send data from your Arduino to a Processing desktop application.

 ■ You can receive data from a Processing application on your desktop to

control peripherals connected to your Arduino.

 ■ An Arduino Leonardo can be used to emulate a keyboard or mouse.

http://www.exploringarduino.com/content/ch6

 145

549360c07.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino Uno

 USB cable (A to B for Uno)

 Red LEDs (× 8)

 Yellow LEDs (× 3)

 Green LEDs (× 5)

 220Ω resistors (× 8)

 SN74HC595N shift register DIP IC

 Sharp GP2Y0A41SK0F IR distance sensor with cable

 Jumper wires

 Breadboard

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, videos, and other digital content for this chapter can be found at

 www.exploringarduino.com/content/ch7 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 07 download and individu-

ally named according to the names throughout the chapter.

 C H A P T E R

7

 Shift Registers

http://www.exploringarduino.com/content/ch7
http://www.wiley.com/go/exploringarduino

146 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

 As you chug away building exciting new projects with your Arduino, you

might already be thinking: “What happens when I run out of pins?” Indeed,

one of the most common projects with the Arduino is using the platform to put

an enormous number of blinking LEDs on just about anything. Light up your

room! Light up your computer! Light up your dog! Okay, maybe not that last one.

 But there’s a problem. What happens when you want to start blinking 50 LEDs

(or controlling other digital outputs) but you’ve used up all of your I/O pins? That’s

where shift registers can come in handy. With shift registers, you can expand

the I/O capabilities of your Arduino without having to pay a whole lot more

for a more expensive microcontroller with additional I/O pins. In this chapter,

you’ll learn how shift registers work, and you’ll implement both the software

and hardware necessary to interface your Arduino with shift registers for the

purpose of expanding digital output capabilities of your Arduino. Completing

the exercises in this chapter will familiarize you with shift registers, and will

help you to make a more informed design decision when you are developing a

project with a large number of digital outputs.

 CHOOSING THE RIGHT ARDUINO FOR THE JOB

 This chapter, like most of the earlier chapters, uses the Arduino Uno as the
development platform. Any other Arduino will work just as well to complete
the exercises in this chapter, but it’s worth considering why you might want
to use one Arduino over another for a particular project you may be pursu-
ing. For example, you might already be wondering why you wouldn’t just use
an Arduino with more I/O pins, such as the Mega2560 or the Due. Of course,
that is a completely reasonable way to complete projects that require more
outputs. However, as an engineer, you should always be mindful of other
considerations when designing a new project. If you only need the process-
ing power of an Uno, but you need more digital outputs, for example, adding
a few shift registers will be considerably cheaper than upgrading your entire
platform, and will also be more compact. As a tradeoff, it will also require
you to write slightly more complex code, and it might necessitate more
debugging time to get it working right.

 Understanding Shift Registers

 A shift register is a device that accepts a stream of serial bits and simultaneously

outputs the values of those bits onto parallel I/O pins. Most often, these are

used for controlling large numbers of LEDs, such as the confi gurations found

 Chapter 7 ■ Shift Registers 147

549360c07.indd 02-07-2008 12:00 AM

in seven-segment displays or LED matrices. Before you dive into using a shift

register with your Arduino, consider the diagram in Figure 7-1, which shows

the inputs and outputs to a serial-to-parallel shift register. Variations to this

diagram throughout the chapter illustrate how various inputs affect the outputs.

 Figure 7-1: Shift register input/output diagram

 The eight circles represent LEDs connected to the eight outputs of the shift

register. The three inputs are the serial communication lines that connect the

shift register to the Arduino.

 Sending Parallel and Serial Data
 There are essentially two ways to send multiple bits of data. Recall that the

Arduino, like all microcontrollers, is digital; it only understands 1s and 0s.

So, if you want suffi cient data to control eight LEDs digitally (each one on or

off), you need to fi nd a way to transmit 8 total bits of information. In previ-

ous chapters, you did this in a parallel fashion by using the digitalWrite()

and analogWrite() commands to exert control over multiple I/O pins. For an

example of parallel information transmission, suppose that you were to turn

on eight LEDs with eight digital outputs; all the bits would be transmitted on

independent I/O pins at roughly the same time. In Chapter 6, “USB and Serial

148 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

Communication,” you learned about serial transmission, which transmits 1 bit

of data at time. Shift registers allow you to easily convert between serial and

parallel data transmission techniques. This chapter focuses on serial-to-parallel

shift registers, sometimes called serial in, parallel out (SIPO) shift registers.

With these handy devices, you can “clock in” multiple bytes of data serially,

and output them from the shift register in a parallel fashion. You can also chain

together shift registers, and thus control hundreds of digital outputs from just

three Arduino I/O pins.

 Working with the 74HC595 Shift Register
 The particular shift register you’ll be using is the 74HC595 shift register. Take

a look at the pin-out diagram from the datasheet shown in Figure 7-2.

 Figure 7-2: Shift register pin-out diagram

 Understanding the Shift Register Pin Functions

 Following is a breakdown of the shift register pin functions:

 ■ Pins Q
A

 through Q
H

 represent the eight parallel outputs from the shift

register (connected to the circles shown in Figure 7-1).

C
re

di
t:

 Im
ag

e
us

ed
 w

ith
 p

er
m

is
si

on
 c

ou
rt

es
y

of
 T

ex
as

 In
st

ru
m

en
ts

,
w
w
w
.
t
i
.
c
o
m

.

http://www.ti.com
http://www.ti.com
http://www.ti.com

 Chapter 7 ■ Shift Registers 149

549360c07.indd 02-07-2008 12:00 AM

 ■ VCC will connect to 5V.

 ■ GND will connect to a shared ground with the Arduino.

 ■ The SER pin is represented by the DATA input in Figure 7-1. This is the

pin where you will feed in 8 sequential bit values to set the values of the

parallel outputs.

 ■ The SRCLK pin is represented by the CLOCK pin in Figure 7-1. Every

time this pin goes high, the values in the shift register shift by 1 bit. It

will be pulsed eight times to pull in all the data that you are sending on

the data pin.

 ■ The RCLK pin is represented by the LATCH pin in Figure 7-1. Also known

as the register clock pin , the latch pin is used to “commit” your recently

shifted serial values to the parallel outputs all at once. This pin allows

you to sequentially shift data into the chip and have all the values show

up on the parallel outputs at the same time.

 You will not be using the SRCLR or OE pins in these examples, but you

might want to use them for your project, so it’s worth understanding what they

do. OE stands for output enable. The bar over the pin name indicates that it is

active low. In other words, when the pin is held low, the output will be enabled.

When it is held high, the output will be disabled. In these examples, this pin

will be connected directly to ground, so that the parallel outputs are always

enabled. You could alternatively connect this to an I/O pin of the Arduino to

simultaneously turn all the LEDs on or off. The SRCLR pin is the serial clear

pin. When pulled low, it empties the contents of the shift register. For your

purposes in this chapter, you tie it directly to 5V to prevent the shift register

values from being cleared.

 Understanding How the Shift Register Works

 The shift register is a synchronous device; it only acts on the rising edge of

the clock signal. Every time the clock signal transitions from low to high, all

the values currently stored in the eight output registers are shifted over one

position. (The last one is either discarded or output on the Q
H

 ’ pin if you are

cascading registers.) Simultaneously, the value currently on the DATA input

is shifted into the fi rst position. By doing this eight times, the present values

are shifted out and the new values are shifted into the register. The LATCH

pin is set high at the end of this cycle to make the newly shifted values appear

on the outputs. The fl owchart shown in Figure 7-3 further illustrates this

150 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

program fl ow. Suppose, for example, that you want to set every other LED

to the ON state (Q
A

 , Q
C
 , Q

E
 , Q

G
). Represented in binary, you want the output

of the parallel pins on the shift register to look like this: 10101010.

 Figure 7-3: Shifting a value into a shift register

 Chapter 7 ■ Shift Registers 151

549360c07.indd 02-07-2008 12:00 AM

 Now, follow the steps for writing to the shift register above. First, the LATCH

pin is set low so that the current LED states are not changed while new values

are shifted in. Then, the LED states are shifted into the registers in order on the

CLOCK edge from the DATA line. After all the values have been shifted in, the

LATCH pin is set high again, and the values are outputted from the shift register.

 Shifting Serial Data from the Arduino
 Now that you understand what’s happening behind the scenes, you can write

the Arduino code to control the shift register in this fashion. As with all your

previous experiments, you use a convenient function that’s built in to the Arduino

IDE to shift data into the register IC. You can use the shiftOut() function to

easily shift out 8 bits of data onto an arbitrary I/O pin. It accepts four parameters:

 ■ The data pin number

 ■ The clock pin number

 ■ The bit order

 ■ The value to shift out

 If, for example, you want to shift out the alternating pattern described in the

previous section, you could use the shiftOut() function as follows:

 shiftOut(DATA, CLOCK, MSBFIRST, B10101010);

 The DATA and CLOCK constants are set to the pin numbers for those lines.

 MSBFIRST indicates that the most signifi cant bit will be sent fi rst (the leftmost

bit when looking at the binary number to send). You could alternatively send

the data with the LSBFIRST setting, which would start by transmitting the bits

from the right side of the binary data. The fi nal parameter is the number to be

sent. By putting a capital B before the number, you are telling the Arduino IDE

to interpret the following numbers as a binary value rather than as a decimal

integer.

 Next, you build a physical version of the system that you just learned about

in the previous sections. First, you need to get the shift register wired up to

your Arduino:

 ■ The DATA pin will connect to pin 8.

 ■ The LATCH pin will connect to pin 9.

 ■ The CLOCK pin will connect to pin 10.

 Don’t forget to use current limiting resistors with your LEDs. Reference the

diagram shown in Figure 7-4 to set up the circuit.

152 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

 Figure 7-4: Eight LED shift register circuit diagram

 Now, using your understanding of how shift registers work, and your under-

standing of the shiftOut() function, you can use the code in Listing 7-1 to write

the alternating LED pattern to the attached LEDs.

 Listing 7-1: Alternating LED Pattern on a Shift Register—alternate.ino

 const int SER =8; //Serial output to shift register
 const int LATCH =9; //Shift register latch pin
 const int CLK =10; //Shift register clock pin

 void setup()

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 7 ■ Shift Registers 153

549360c07.indd 02-07-2008 12:00 AM

 {
 //Set pins as outputs
 pinMode(SER, OUTPUT);
 pinMode(LATCH, OUTPUT);
 pinMode(CLK, OUTPUT);

 digitalWrite(LATCH, LOW); //Latch low
 shiftOut(SER, CLK, MSBFIRST, B10101010); //Shift most sig. bit first
 digitalWrite(LATCH, HIGH); //Latch high - show pattern
 }

 void loop()
 {
 //Do nothing
 }

 Because the shift register will latch the values, you need to send them only

one time in the setup; they then stay at those values until you change them to

something else. This program follows the same steps that were shown graphi-

cally in Figure 7-3. The LATCH pin is set low, the 8 bits of data shifted in using

the shiftOut() function, and then the LATCH pin is set high again so that the

shifted values are output on the parallel output pins of the shift register IC.

 DAISY CHAINING SHIFT REGISTERS

 Getting eight digital outputs from three I/O pins is a pretty good tradeoff, but
what if you could get even more? You can! By daisy chaining multiple shift
registers together, you could theoretically add hundreds of digital outputs
to your Arduino using just three pins. If you do this, you’ll probably want to
use a beefier power supply than just USB. The current requirements of a few
dozen LEDs can add up very quickly.

 Recall from the pin-out in Figure 7-2 that there is an unused pin called
Q H ’. When the oldest value is shifted out of the shift register, it isn’t dis-
carded; it’s actually sent out on that pin. By connecting the Q H ’ to the DATA
pin of another shift register, and sharing the LATCH and CLOCK pins with the
first shift register, you can create a 16-bit shift register that controls twice
as many pins.

 You can keep adding more and more shift registers, each connected to the
last one, to add a crazy of number outputs to your Arduino. You can try this
out by hooking up another shift register as described and simply executing
the shiftOut() function in your code twice. (Each call to shiftOut() can
handle only 8 bits of information.)

154 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

 Converting Between Binary and Decimal Formats
 In Listing 7-1, the LED state information was written as a binary string of digits.

This string helps you visualize which LEDs will be turned on and off. However,

you can also write the pattern as a decimal value by converting between base2

(binary) and base10 (decimal) systems. Each bit in a binary number (starting

from the rightmost, or least signifi cant, bit) represents an increasing power of 2.

Converting binary representations to decimal representations is very straight-

forward. Consider the binary number from earlier displayed in Figure 7-5 with

the appropriate decimal conversion steps.

 Figure 7-5: Binary to decimal conversion

 The binary value of each bit represents an incrementing power of 2. In the

case of this number, bits 7, 5, 3, and 1 are high. So, to fi nd the decimal equiva-

lent, you add 2 7 , 2 5 , 2 3 , and 2 1 . The resulting decimal value is 170. You can prove

to yourself that this value is equivalent by substituting it into the code listed

earlier. Replace the shiftOut() line with this version:

 shiftOut(SER, CLK, MSBFIRST, 170);

 You should see the same result as when you used the binary notation.

 Controlling Light Animations with a Shift Register

 In the previous example, you built a static display with a shift register. However,

you’ll probably want to display more dynamic information on your LEDs. In

the next two examples, you use a shift register to control a lighting effect and

a physical bar graph.

 Building a “Light Rider”
 The light rider is a neat effect that makes it looks like the LEDs are chasing each

other back and forth. Continue to use the same circuit that you used previously.

The shiftOut() function is very fast, and you can use it to update the shift

 Chapter 7 ■ Shift Registers 155

549360c07.indd 02-07-2008 12:00 AM

register several thousand times per second. Because of this, you can quickly

update the shift register outputs to make dynamic lighting animations. Here,

you light up each LED in turn from left to right, then from right to left. Watch the

demo video linked at the end of this section to see this fi nished circuit in action.

 You fi rst want to fi gure out each animation state so that you can easily cycle

through them. For each time step, the LED currently illuminated turns off, and

the next light turns on. When the lights reach the end, the same thing happens

in reverse. The timing diagram in Figure 7-6 shows how the lights will look

for each time step and the decimal value required to turn that specifi c LED on.

 Figure 7-6: Light rider animation steps

156 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

 Recalling what you learned earlier in the chapter, convert the binary values

for each light step to decimal values that can easily be cycled through. Using a

 for loop, you can cycle through an array of each of these values and shift them

out to the shift register one at the time. The code in Listing 7-2 does just that.

 Listing 7-2: Light Rider Sequence Code—lightrider.ino

 //Make a light rider animation

 const int SER =8; //Serial output to shift register
 const int LATCH =9; //Shift register latch pin
 const int CLK =10; //Shift register clock pin

 //Sequence of LEDs
 int seq[14] = {1,2,4,8,16,32,64,128,64,32,16,8,4,2};

 void setup()
 {
 //Set pins as outputs
 pinMode(SER, OUTPUT);
 pinMode(LATCH, OUTPUT);
 pinMode(CLK, OUTPUT);
 }

 void loop()
 {
 for (int i = 0; i < 14; i++)
 {
 digitalWrite(LATCH, LOW); //Latch low - start sending
 shiftOut(SER, CLK, MSBFIRST, seq[i]); //Shift most sig. bit first
 digitalWrite(LATCH, HIGH); //Latch high - stop sending
 delay(100); //Animation speed
 }
 }

 By adjusting the value within the delay function, you can change the speed

of the animation. Try changing the values of the seq array to make different

pattern sequences.

 NOTE To watch a demo video of the light rider, check out www.exploringarduino
.com/content/ch7 . You can also find this video on the Wiley website shown at the
beginning of this chapter.

http://www.exploringarduino

 Chapter 7 ■ Shift Registers 157

549360c07.indd 02-07-2008 12:00 AM

 Responding to Inputs with an LED Bar Graph
 Using the same circuit but adding an IR distance sensor, you can make a bar

graph that responds to how close you get. To mix it up a bit more, try using

multiple LED colors. The circuit diagram in Figure 7-7 shows the circuit modi-

fi ed with different colored LEDs and an IR distance sensor.

 Figure 7-7: Distance-responsive bar graph

 Using the knowledge you already have from working with analog sensors

and the shift register, you should be able to make thresholds and set the LEDs

accordingly based on the distance reading. Figure 7-8 shows the decimal values

that correspond to each binary representation of LEDs.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

158 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

 Figure 7-8: Bar graph decimal representations

 As you discovered in Chapter 3, “Reading Analog Sensors,” the range of usable

values for the IR distance sensor is not the full 10-bit range. (I found that a max

value of around 500 worked for me, but your setup will probably differ.) Your

minimum might not be 0 either. It’s best to test the range of your sensor and fi ll

in appropriate values. You can place all the bar graph decimal representations

in an array of nine values. By mapping the IR distance sensor (and constraining

it) from 0 to 500 down to 0 to 8, you can quickly and easily assign distances to

bar graph confi gurations. The code in Listing 7-3 shows this method in action.

 Chapter 7 ■ Shift Registers 159

549360c07.indd 02-07-2008 12:00 AM

 Listing 7-3: Bar Graph Distance Control—bargraph.ino

 //A bar graph that responds to how close you are

 const int SER =8; //Serial output to shift register
 const int LATCH =9; //Shift register latch pin
 const int CLK =10; //Shift register clock pin
 const int DIST =0; //Distance sensor on analog pin 0

 //Possible LED settings
 int vals[9] = {0,1,3,7,15,31,63,127,255};

 //Maximum value provided by sensor
 int maxVal = 500;

 //Minimum value provided by sensor
 int minVal = 0;

 void setup()
 {
 //Set pins as outputs
 pinMode(SER, OUTPUT);
 pinMode(LATCH, OUTPUT);
 pinMode(CLK, OUTPUT);
 }

 void loop()
 {
 int distance = analogRead(DIST);
 distance = map(distance, minVal, maxVal, 0, 8);
 distance = constrain(distance,0,8);

 digitalWrite(LATCH, LOW); //Latch low - start sending
 shiftOut(SER, CLK, MSBFIRST, vals[distance]); //Send data, MSB first
 digitalWrite(LATCH, HIGH); //Latch high - stop sending
 delay(10); //Animation speed
 }

 Load the above program on to your Arduino, and move your hand back and

forth in front of the distance sensor—you should see the bar graph respond

by going up and down in parallel with your hand. If you fi nd that the graph

hovers too much at “all on” or “all off”, try adjusting the maxVal and minVal

values to better fi t the readings from your distance sensor. To test the values

you are getting at various distances, you can initialize a serial connection in

the setup() and call Serial.println(distance); right after you perform the

 analogRead(DIST); step.

160 Part II ■ Controlling Your Environment

549360c07.indd 02-07-2008 12:00 AM

 NOTE To watch a demo video of the distance responsive bar graph, visit
 www.exploringarduino.com/content/ch7 . You can also find this video on
the Wiley website shown at the beginning of this chapter.

 Summary

 In this chapter you learned about the following:

 ■ How a shift register works

 ■ The differences between serial and parallel data transmission

 ■ The differences between decimal and binary data representations

 ■ How to create animations using a shift register

http://www.exploringarduino.com/content/ch7

549360c08.indd 02-07-2008 12:00 AM

 P a r t

III
 Communication Interfaces

 In This Part

 Chapter 8: The I 2 C Bus

 Chapter 9: The SPI Bus

 Chapter 10: Interfacing with Liquid Crystal Displays

 Chapter 11: Wireless Communication with XBee Radios

549360c08.indd 02-07-2008 12:00 AM

 163

549360c08.indd 02-07-2008 12:00 AM

 C H A P T E R

8

 The I 2 C Bus

 Parts You’ll Need for This Chapter

 Arduino Uno

 USB cable (A to B for Uno)

 Red LED

 Yellow LEDs (× 3)

 Green LEDs (× 4)

 220Ω resistors (× 8)

 4.7kΩ resistors (× 2)

 SN74HC595N shift register DIP IC

 TC74A0-5.0VAT I2C temperature sensor

 Jumper wires

 Breadboard

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found

at www.exploringarduino.com/content/ch8 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 08 download and individu-

ally named according to the names throughout the chapter.

http://www.exploringarduino.com/content/ch8
http://www.wiley.com/go/exploringarduino

164 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 You’ve already learned how to connect both analog and digital inputs/outputs,

but what about more complicated devices? The Arduino can expand its capabilities

by interfacing with a variety of external components. Many integrated circuits

implement standardized digital communication protocols to facilitate communi-

cation between your microcontroller and a wide array of possible modules. This

chapter explores the I 2 C bus (pronounced “eye squared see” or “eye two see”).

 The I 2 C bus enables robust, high-speed, two-way communication between

devices while using a minimal number of I/O pins to facilitate communication.

An I 2 C bus is controlled by a master device (usually a microcontroller), and

contains one or more slave devices that receive information from the master.

In this chapter, you learn about the I 2 C protocol, and you implement it to com-

municate with a digital I 2 C temperature sensor capable of returning measure-

ments as degree values rather than as arbitrary analog values. You build upon

knowledge from previous chapters by combining what you learn in this chapter

to expand earlier projects.

 NOTE Follow the steps of this chapter with this tutorial video: www.jeremyblum
.com/2011/02/13/arduino-tutorial-7-i2c-and-processing/ . You can also
find this video on the Wiley website shown at the beginning of this chapter.

 History of the I 2 C Bus

 When it comes to communication protocols, understanding how the protocol

evolved over time makes it a lot easier to understand why it works the way it

does. The I 2 C protocol was invented by Phillips in the early 1980s to allow for

relatively low-speed communication between various ICs. The protocol was

standardized by the 1990s, and other companies quickly began to adopt the

protocol, releasing their own compatible chips. Generically, the protocol is known

as the “two-wire” protocol because two lines are used for communication, a

clock and data line. Although not all two-wire protocol devices have paid the

license fee to be called I 2 C devices, they are commonly all referred to as I 2 C.

This is similar to how Kleenex® is often used to refer to all tissues, even those

that aren’t manufactured by Kleenex®. If you fi nd a device that says it uses the

“two-wire” communication protocol, you can be fairly certain that it will work

in the ways described in this chapter.

 I 2 C Hardware Design

 Figure 8-1 shows a common reference setup for an I 2 C communication system.

Unlike previous digital communication that you’ve seen in this book, I 2 C is

unique in that multiple devices all share the same communication lines: a clock

http://www.jeremyblum

 Chapter 8 ■ The I2C Bus 165

549360c08.indd 02-07-2008 12:00 AM

signal (SCL) and a bidirectional data line used for sending information back

and forth between the master and the slaves (SDA). Notice, as well, that the I 2 C

bus requires pull-up resistors on both data lines.

 Figure 8-1: I 2 C reference hardware configuration

 Communication Scheme and ID Numbers
 The I 2 C bus allows multiple slave devices to share communication lines with

a single master device. In this chapter, the Arduino acts as the master device.

The bus master is responsible for initiating all communications. Slave devices

cannot initiate communications; they can only respond to requests that are

sent by the master device. Because multiple slave devices share the same com-

munication lines, it’s very important that only the master device can initiate

communication. Otherwise, multiple devices may try to talk at the same time

and the data would get garbled.

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

166 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 All commands and requests sent from the master are received by all devices

on the bus. Each I 2 C slave device has a unique 7-bit address, or ID number. When

communication is initiated by the master device, a device ID is transmitted. I 2 C

slave devices react to data on the bus only when it is directed at their ID number.

Because all the devices are receiving all the messages, each device on the I 2 C

bus must have a unique address. Some I 2 C devices have selectable addresses,

whereas others come from the manufacturer with a fi xed address. If you want

to have multiple numbers of the same device on one bus, you need to identify

components that are available with different IDs.

 Temperature sensors, for example, are commonly available with various pre-

programmed I 2 C addresses because it is common to want more than one on a

single I 2 C bus. In this chapter, you use the TC74 temperature sensor. A peek at

the TC74 datasheet reveals that it is available with a variety of different addresses.

Figure 8-2 shows an excerpt of the datasheet. In this chapter, you use TC74A0-

5.0VAT, which is the 5V, T0-220 version of the IC with an address of 1001000.

 Figure 8-2: TC74 address options

 You can purchase this particular IC with eight different ID numbers; hence,

you could put up to eight of them on one I 2 C bus and read each of them inde-

pendently. While you’re writing programs to interface with this temperature

sensor later in this chapter, make sure to be aware of the ID of the device you

ordered so that you send the right commands!

 Other I 2 C chips, such as the AD7414 and AD7415, have address select (AS)

pins that allow you to confi gure the I 2 C address of the device. Take a look at

the excerpt from the AD7414 datasheet in Figure 8-3.

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 8 ■ The I2C Bus 167

549360c08.indd 02-07-2008 12:00 AM

 Figure 8-3: AD7414 addressing

 As shown in Figure 8-3, the AD7414 is available in four versions, two with

an AS pin and two without. The versions with AS pins can each have three

possible ID numbers depending on whether the AS pin is left disconnected, is

tied to VCC, or is tied to GND.

 Hardware Requirements and Pull-Up Resistors
 You may have noticed in Figure 8-1 that the standard I 2 C bus confi guration

requires pull-up resistors on both the clock and data lines. The value for these

resistors depends on the slave devices and how many of them are attached. In

this chapter, you use 4.7kΩ resistors for both pull-ups; this is a fairly standard

value that will be specifi ed by many datasheets.

 Communicating with an I 2 C Temperature Probe

 The steps for communicating with different I 2 C devices vary based on the

requirements of the specifi c device. Thankfully, you can use the Arduino I 2 C

library to abstract away most of the diffi cult timing work. In this section of the

chapter, you talk to the I 2 C temperature sensor described earlier. You learn how

to interpret the datasheet information as you progress so that you can apply

these concepts to other I 2 C devices with relative ease.

 The basic steps for controlling any I 2 C device are as follows:

 1. Master sends a start bit.

 2. Master sends 7-bit slave address of device it wants to talk to.

 3. Master sends read (1) or write (0) bit depending on whether it wants to

write data into an I 2 C device’s register or if it wants to read from one of

the I 2 C device’s registers.

 4. Slave responds with an “acknowledge” or ACK bit (a logic low).

C
re

di
t:

 A
na

lo
g

D
ev

ic
es

, I
nc

.,
w
w
w
.
a
n
a
l
o
g
.
c
o
m

.

http://www.analog.com
http://www.analog.com
http://www.analog.com

168 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 5. In write mode, master sends 1 byte of information at a time, and slave

responds with ACKs. In read mode, master receives 1 of byte information

at a time and sends an ACK to the slave after each byte.

 6. When communication has been completed, the master sends a stop bit.

 Setting Up the Hardware
 To confi rm that your fi rst program works as expected, you can use the serial

monitor to print out temperature readings from an I 2 C temperature sensor to

your computer. Because this is a digital sensor, it prints the temperature in

degrees. Unlike the temperature sensors that you used in previous chapters,

you do not have to worry about converting an analog reading to an actual

temperature. How convenient! Now, wire a temperature senor to the Arduino

as shown in Figure 8-4.

 Figure 8-4: Temperature sensor

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 8 ■ The I2C Bus 169

549360c08.indd 02-07-2008 12:00 AM

 Note that the SDA and SCL pins are wired to pins A4 and A5, respectively.

Recall from earlier in the chapter that the SDA and SCL are the two pins used

for communicating with I 2 C devices—they carry data and clock signals, respec-

tively. You’ve already learned about multiplexed pins in previous chapters. On

the Arduino, pins A4 and A5 are multiplexed between the analog-to-digital

converter (ADC) and the hardware I 2 C interface. When you initialize the Wire

library in your code, those pins connect to the ATMega’s I 2 C controller, enabling

you to communicate with the Wire object to I 2 C devices via those pins. When

using the Wire library, you cannot use pins A4 and A5 as analog inputs because

they are reserved for communication with I 2 C devices.

 Referencing the Datasheet
 Next up, you need to write the software that instructs the Arduino to request

data from the I 2 C temperature sensor. The Arduino Wire library makes this

fairly easy. To use it properly, you need to know how to read the datasheet

to determine the communication scheme that this particular chip uses. Let’s

dissect the communication scheme presented in the datasheet using what you

already know about how I 2 C works. Consider the diagrams from the datasheet

shown in Figures 8-5 and 8-6.

 Figure 8-5: TC74 sensor communication scheme

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

170 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 Figure 8-6: TC74 register information

 You can both read from and write to this IC, as shown in the datasheet in

Figure 8-5. The TC74 has two registers, one that contains the current temperature in

Celsius and one that contains confi guration information about the chip (including

standby state and data-ready state). Table 4-1 of the datasheet shows this. You don’t

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 8 ■ The I2C Bus 171

549360c08.indd 02-07-2008 12:00 AM

need to mess with the confi guration info; you only want to read the temperature

from the device. Tables 4-3 and 4-4 within Figure 8-6 show how the temperature

information is stored within the 8-bit data register.

 The “Read Byte Format” section of Figure 8-5 outlines the process of reading

the temperature from the TC74:

 1. Send to the device’s address in write mode and write a 0 to indicate that

you want to read from the data register.

 2. Send to the device’s address in read mode and request 8 bits (1 byte) of

information from the device.

 3. Wait to receive all 8 bits of temperature information.

 Now that you understand the steps necessary to request information from

this device, you should be able to better understand how similar I 2 C devices

would also work. When it doubt, search the web for code examples that show

how to connect your Arduino to various I 2 C devices. Next up, you write the

code that executes the three steps outlined earlier.

 Writing the Software
 Arduino’s I 2 C communication library is called the Wire library. After you’ve

included it at the top of your sketch, you can easily write to and read from I 2 C

devices. As a fi rst step for your I 2 C temperature sensor system, load up the code

in Listing 8-1, which takes advantage of the functions built in to the Wire library.

See whether you can match up various Wire commands in the following code

with the steps outlined in the previous section.

 Listing 8-1: I 2 C Temperature Sensor Printing Code—read_temp.ino

 //Reads Temp from I2C temperature sensor
 //and prints it on the serial port

 //Include Wire I2C library
 #include <Wire.h>
 int temp_address = 72; //1001000 written as decimal number

 void setup()
 {
 //Start serial communication at 9600 baud
 Serial.begin(9600);

 //Create a Wire object
 Wire.begin();
 }

 void loop()

172 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 {
 //Send a request
 //Start talking to the device at the specified address
 Wire.beginTransmission(temp_address);
 //Send a bit asking for register zero, the data register
 Wire.write(0);
 //Complete Transmission
 Wire.endTransmission();

 //Read the temperature from the device
 //Request 1 Byte from the specified address
 Wire.requestFrom(temp_address, 1);
 //Wait for response
 while(Wire.available() == 0);
 //Get the temp and read it into a variable
 int c = Wire.read();

 //Do some math to convert the Celsius to Fahrenheit
 int f = round(c*9.0/5.0 +32.0);

 //Send the temperature in degrees C and F to the serial monitor
 Serial.print(c);
 Serial.print("C ");
 Serial.print(f);
 Serial.println("F");

 delay(500);
 }

 Consider how the commands in this program relate to previously mentioned

steps. Wire.beginTransmission() starts the communication with a slave device

with the given ID. Next, the Wire.write() command sends a 0 , indicating that

you want to be reading from the temperature register. You then send a stop bit

with the Wire.endTransmission() to indicate that you have fi nished writing to

the device. With the next three steps, the master reads from the slave I 2 C device.

Because you issue a Wire.requestFrom() command, the master will expect to

receive 1 byte of data back from the slave. The Wire.available() command

within the while() loop will block the program from executing the rest of the

code until data is available on the I 2 C line. This gives the slave device time to

respond. Finally, the 8-bit value is read into an integer variable with a Wire.

read() command.

 The program in Listing 8-1 also handles converting the Celsius temperature to

Fahrenheit, for those who are not metrically inclined. You can fi nd the formula

 Chapter 8 ■ The I2C Bus 173

549360c08.indd 02-07-2008 12:00 AM

for this conversion with a simple web search. I’ve chosen to round the result to

a whole number.

 Now, run the preceding code on your Arduino and open up the serial moni-

tor on your computer. You should see an output that looks something like that

shown in Figure 8-7.

 Figure 8-7: I 2 C temperature sensor serial output

 Combining Shift Registers, Serial Communication,
and I 2 C Communications

 Now that you have a simple I 2 C communication scheme set up with serial

printing, you can apply some of your knowledge from previous chapters to

do something more interesting. You use the shift register graph circuit from

Chapter 7, “Shift Registers,” along with a Processing desktop sketch to visualize

temperature in the real world and on your computer screen.

 Building the Hardware for a Temperature Monitoring
System
 First things fi rst, get the system wired up. You’re essentially just combining the

shift register circuit from the previous chapter with the I 2 C circuit from this

chapter. Your setup should look like Figure 8-8.

174 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 Figure 8-8: I 2 C temperature sensor with shift register bar graph (part of the TC74 has
been made transparent so you can see the wires that connect behind it)

 Modifying the Embedded Program
 You need to make two adjustments to the previous Arduino program to make

serial communication with Processing easier, and to implement the shift register

functionality. First, modify the print statements in the program you just wrote

to look like this:

 Serial.print(c);
 Serial.print("C,");

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 8 ■ The I2C Bus 175

549360c08.indd 02-07-2008 12:00 AM

 Serial.print(f);
 Serial.print("F.");

 Processing needs to parse the Celsius and Fahrenheit temperature data. By

replacing the spaces and carriage returns with commas and periods, you can

easily look for these delimiting characters and use them to parse the data.

 Next, you need to add the shift register code from the previous chapter, and

map the LED levels appropriately to the temperature range that you care about.

If you a need a refresher on the shift register code that you previously wrote,

take another look at Listing 7-3; much of the code from that program will be

reused here, with a few small tweaks. To begin, change the total number of

light variables from nine to eight. With this change, you always leave one LED

on as an indication that the system is working (the 0 value is eliminated from

the array). You need to accommodate for that change in the variable value map-

ping, and you need to map a range of temperatures to LED states. Check out the

complete code sample in Listing 8-2 to see how that is accomplished. I chose to

make my range from 24°C to 31°C (75°F to 88°F), but you can choose any range.

 Listing 8-2: I 2 C Temperature Sensors Code with Shift Register LEDs and Serial
Communication—temp_unit.ino

 //Reads temp from I2C temperature sensor
 //Show it on the LED bar graph, and show it in Processing

 //Include Wire I2C library
 #include <Wire.h>

 const int SER =8; //Serial Output to Shift Register
 const int LATCH =9; //Shift Register Latch Pin
 const int CLK =10; //Shift Register Clock Pin

 int temp_address = 72;

 //Possible LED settings
 int vals[8] = {1,3,7,15,31,63,127,255};

 void setup()
 {
 //Instantiate serial communication at 9600 bps
 Serial.begin(9600);

 //Create a Wire Object
 Wire.begin();

 //Set shift register pins as outputs
 pinMode(SER, OUTPUT);
 pinMode(LATCH, OUTPUT);

176 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 pinMode(CLK, OUTPUT);
 }

 void loop()
 {
 //Send a request
 //Start talking to the device at the specified address
 Wire.beginTransmission(temp_address);
 //Send a bit asking for register zero, the data register
 Wire.write(0);
 //Complete Transmission
 Wire.endTransmission();

 //Read the temperature from the device
 //Request 1 Byte from the specified address
 Wire.requestFrom(temp_address, 1);
 //Wait for response
 while(Wire.available() == 0);
 //Get the temp and read it into a variable
 int c = Wire.read();

 //Map the temperatures to LED settings
 int graph = map(c, 24, 31, 0, 7);
 graph = constrain(graph,0,7);

 digitalWrite(LATCH, LOW); //Latch low - start sending data
 shiftOut(SER, CLK, MSBFIRST, vals[graph]); //Send data, most
 //significant bit first
 digitalWrite(LATCH, HIGH); //Latch high - stop sending data

 //Do some math to convert the Celsius to Fahrenheit
 int f = round(c*9.0/5.0 +32.0);

 Serial.print(c);
 Serial.print("C,");
 Serial.print(f);
 Serial.print("F.");

 delay(500);
 }

 After loading this on to your Arduino, you can see the LEDs changing color

with the temperature. Try squeezing the temperature sensor with you fi nger-

tips to make the temperature go up. You should see a response in the LEDs.

Next, you write a Processing sketch that displays the temperature value on the

computer in an easy-to-read format.

 Chapter 8 ■ The I2C Bus 177

549360c08.indd 02-07-2008 12:00 AM

 Writing the Processing Sketch
 At this point, your Arduino is already transmitting easy-to-parse data to your

computer. All you need to do is write a Processing program that can interpret

it and display it in an attractive way.

 Because you’ll be updating text in real time, you need to fi rst learn how to

load fonts into Processing. Open Processing to create a new, blank sketch. Save

the sketch before continuing. Then, navigate to Tools > Create Font. You’ll get

a screen that looks like Figure 8-9.

 Figure 8-9: Processing font creator

 Pick your favorite font and choose a size. (I recommend a size around 200 for

this exercise.) After doing so, click OK. The font is then automatically gener-

ated and added to the “data” subfolder of your Processing sketch folder. The

Processing sketch needs to accomplish a few things:

 ■ Generate a graphical window on your computer showing the temperature

in both Celsius and Fahrenheit.

 ■ Read the incoming data from the serial port, parse it, and save the values

to local variables that can be displayed on the computer.

 ■ Continually update the display with the new values received over serial.

178 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 Copy the code from Listing 8-3 into your Processing sketch and adjust the

serial port name to the right value for your computer and the name of the font

you created. Then, ensure your Arduino is connected and click the Run icon

to watch the magic!

 Listing 8-3: Processing Sketch for Displaying Temperature Values—display_temp.pde

 //Displays the temperature recorded by an I2C temp sensor

 import processing.serial.*;
 Serial port;
 String temp_c = "";
 String temp_f = "";
 String data = "";
 int index = 0;
 PFont font;

 void setup()
 {
 size(400,400);
 //Change "COM9" to the name of the serial port on your computer
 port = new Serial(this, "COM9", 9600);
 port.bufferUntil('.');
 //Change the font name to reflect the name of the font you created
 font = loadFont("AgencyFB-Bold-200.vlw");
 textFont(font, 200);
 }

 void draw()
 {
 background(0,0,0);
 fill(46, 209, 2);
 text(temp_c, 70, 175);
 fill(0, 102, 153);
 text(temp_f, 70, 370);
 }

 void serialEvent (Serial port)
 {
 data = port.readStringUntil('.');
 data = data.substring(0, data.length() - 1);

 //Look for the comma between Celcius and Farenheit
 index = data.indexOf(",");
 //Fetch the C Temp
 temp_c = data.substring(0, index);
 //Fetch the F temp
 temp_f = data.substring(index+1, data.length());
 }

 Chapter 8 ■ The I2C Bus 179

549360c08.indd 02-07-2008 12:00 AM

 As in previous Processing examples that you’ve run, the sketch starts by

importing the serial library and setting up the serial port. In setup() , you are

defi ning the size of the display window, loading the font you just created, and

setting up the serial port to buffer until it receives a period. draw() fi lls the

background in black and prints out the Celsius and Fahrenheit values in two

colors. With the fill() command, you are telling Processing to make the next

element it adds to the screen that color (in RGB values). serialEvent() is called

whenever the bufferUntil() event is triggered. It reads the buffer into a string,

and then breaks it up based on the location of the comma. The two temperature

values are stored in variables that get printed out in the application window.

 When you execute the program, the output should look like the results shown

in Figure 8-10.

 Figure 8-10: Processing temperature display

 When you squeeze the sensor, the Processing display should update, and the

lights on your board should illuminate.

 NOTE To watch a demo video of the temperature monitoring hardware and
Processing system, check out www.exploringarduino.com/content/ch8 .
You can also find this video on the Wiley website shown at the beginning of this
chapter.

http://www.exploringarduino.com/content/ch8

180 Part III ■ Communication Interfaces

549360c08.indd 02-07-2008 12:00 AM

 Summary

 In this chapter you learned about the following:

 ■ I 2 C uses two data lines to enable digital communication between the Arduino

and multiple slave devices (so long as they have different addresses).

 ■ The Arduino Wire library can be used to facilitate communicate with I 2 C

devices connected to pins A4 and A5.

 ■ I 2 C communication can be employed alongside shift registers and serial

communication to create more complex systems.

 ■ You can create fonts in Processing to generate dynamically-updating

on-screen displays.

 ■ Processing can be used to display parsed serial data obtained from I 2 C

devices connected to the Arduino.

 181

549360c09.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino Uno

 USB cable (A to B for Uno)

 Red LED

 Yellow LED

 Green LED

 Blue LED

 100Ω resistors (× 4)

 Speaker

 Jumper wires

 Breadboard

 MCP4231 Digital SPI Potentiometer IC (× 2)

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at

 www.exploringarduino.com/content/ch9 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 09 download and individu-

ally named according to the names throughout the chapter.

 C H A P T E R

9

 The SPI Bus

http://www.exploringarduino.com/content/ch9
http://www.wiley.com/go/exploringarduino

182 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

 You’ve already learned about two important digital communication methods

available to you on the Arduino: the I 2 C bus and the serial UART bus. In this

chapter, you learn about the third digital communication method supported by

the Arduino hardware: The Serial Peripheral Interface bus (or SPI bus for short).

 Unlike the I 2 C bus, the SPI bus uses separate lines for sending and receiving

data, and it employs an additional line for selecting which slave device you are

talking to. This adds additional wires, but also eliminates the issue of needing

different slave device addresses. SPI is generally easier to get running than I 2 C

and can run at a faster speed. In this chapter, you use the Arduino’s built-in SPI

library and hardware to communicate with a digitally controllable potentiometer.

You use the potentiometer to control both LED brightness and speaker volume,

allowing you to make a simple audio/visual display.

 NOTE Follow the steps of this chapter with this tutorial video, www.jeremyblum
.com/2011/02/20/arduino-tutorial-8-spi-interfaces . You can also find
this video on the Wiley website shown at the beginning of this chapter.

 Overview of the SPI Bus

 Originally created by Motorola, the SPI bus is a full-duplex serial communica-

tion standard that enables simultaneous bidirectional communication between a

master device and one or more slave devices. Because the SPI protocol does not

follow a formal standard, it is common to fi nd SPI devices that operate slightly

different (the number of transmitted bits may differ, or the slave select line

might be omitted, among other things). This chapter focuses on implementing

the most commonly accepted SPI commands (which are the ones that are sup-

ported by the Arduino IDE).

 WARNING Bear in mind that SPI implementations can vary, so reading the
datasheet is extremely important.

 SPI can act in four main ways, which depend on the requirements of your

device. SPI devices are often referred to as slave devices . SPI devices are synchro-

nous, meaning that data is transmitted in sync with a shared clock signal (SCLK).

Data can be shifted into the slave device on either the rising or falling edge of

the clock signal (called the clock phase), and the SCLK default state can be set to

either high or low (called the clock polarity). Because there are two options for each,

you can confi gure the SPI bus in a total of four ways. Table 9-1 shows each of the

possibilities and the modes that they correspond to in the Arduino SPI library.

http://www.jeremyblum

 Chapter 9 ■ The SPI Bus 183

549360c09.indd 02-07-2008 12:00 AM

 Table 9-1: SPI Communication Modes

 SPI MODE CLOCK POLARITY CLOCK PHASE

 Mode 0 Low at Idle Data Capture on Clock Rising Edge

 Mode 1 Low at Idle Data Capture on Clock Falling Edge

 Mode 2 High at Idle Data Capture on Clock Falling Edge

 Mode 3 High at Idle Data Capture on Clock Rising Edge

 SPI Hardware and Communication Design

 The SPI system setup is relatively simple. Three pins are used for communicat-

ing between a master and all slave devices:

 ■ Shared/Serial Clock (SCLK)

 ■ Master Out Slave In (MOSI)

 ■ Master In Slave Out (MISO)

 Each slave device also requires an additional slave select (SS) pin. Hence, the

total number of I/O pins required on the master device will always be 3 + n ,

where n is the number of slave devices. Figure 9-1 shows an example SPI system

with two slave devices.

 Figure 9-1: SPI reference hardware configuration

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

184 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

 Hardware Configuration
 Four data lines, at a minimum, are present in any SPI system. Additional SS

lines are added for each slave device appended to the network. Before you learn

how to actually send and receive data to and from an SPI device, you need to

understand what these I/O lines do and how they should be wired. Table 9-2

describes these lines.

 Table 9-2: SPI Communication Lines

 SPI COMMUNICATION LINE DESCRIPTION

 MOSI Used for sending serial data from the master device
to a slave device.

 MISO Used for sending serial data from a slave device to
the master device.

 SCLK The signal by which the serial data is synchronized
with the receiving device, so it knows when to read
the input.

 SS A line indicating slave device selection. Pulling it low
means you are speaking with that slave device.

 Unlike with the I 2 C bus, pull-up resistors are not required, and communica-

tion is fully bidirectional. To wire an SPI device to the Arduino, all you have to

do is connect the MOSI, MISO, SCLK, and SS pins and you’ll be ready to use to

the SPI communication library.

 NAMING CONVENTIONS

 Because SPI is not a universal standard, some devices and manufacturers
may use different names for the SPI communication lines. Slave select is
sometimes referred to as chip select (CS), serial clock is sometimes just
called clock (CLK), MOSI and MISO pins on slave devices are sometimes
abbreviated to serial data in (SDI), and serial data out (SDO).

 Communication Scheme
 The SPI communication scheme is synced with the clock signal and depends on

the state of the SS line. Because all devices on the bus share the MOSI, MISO, and

SCLK lines, all commands sent from the master arrive at each slave. The SS pin

tells the slave whether it should ignore this data or respond to it. Importantly,

this means that you must make sure to only have one SS pin set low (the active

mode) at a time in any program that you write.

 Chapter 9 ■ The SPI Bus 185

549360c09.indd 02-07-2008 12:00 AM

 The basic process for communicating with an SPI device is as follows:

 1. Set the SS pin low for the device you want to communicate with.

 2. Toggle the clock line up and down at a speed less than or equal to the

transmission speed supported by the slave device.

 3. For each clock cycle, send 1 bit on the MOSI line, and receive 1 bit on the

MISO line.

 4. Continue until transmitting or receiving is complete, and stop toggling

the clock line.

 5. Return the SS pin to high state.

 Note that on every clock cycle a bit must be sent and received, but that bit does

not necessarily need to mean anything. For example, later in this chapter you will

use a digital potentiometer in a scenario in which the Arduino will send data but

does not need to receive anything back from the slave. So, it will clock data out

on the MOSI pin and will just ignore anything that comes back on the MISO pin.

 Comparing SPI to I 2 C

 Many kinds of devices, including accelerometers, digital potentiometers, and

displays, are available in both SPI and I 2 C versions. So how do you decide?

Table 9-3 lists some of the trade-offs between I 2 C and SPI. Ultimately, which

one you choose to use will depend on what you believe is easier to implement,

and best suited for your situation. Most beginners fi nd that they can get SPI

working more easily than I 2 C.

 Table 9-3: SPI and I2C Comparison

 SPI ADVANTAGES I 2 C ADVANTAGES

 Can operate at higher speeds Requires only two communication lines

 Generally easier to work with Built-in Arduino hardware support

 No pull-up resistors needed

 Built-in Arduino hardware support

 Communicating with an SPI Digital Potentiometer

 Now that you’ve got all the basics down, it’s time to actually implement what

you’ve learned. You’ll start by controlling LED brightness using a digital poten-

tiometer (a DigiPot for short). Specifi cally, you’ll use the Microchip MCP4231

103E Digital Potentiometer IC. (Several versions of this chip are available, each

with different potentiometer resistance values.) When looking for an integrated

186 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

circuit (IC) like this to use on your breadboard, you want to look for the dual

in-line package (DIP) version of the chip. Just a like a regular potentiometer, a

DigiPot has an adjustable wiper that determines the resistance between the wiper

terminal and one of the end terminals. The MCP4231 has two potentiometers

on one chip. Each pot has a resolution of 7 bits, resulting in 129 wiper positions,

(the extra position results from the chip’s direct taps to power or ground) which

vary the resistance between 0 and 10kΩ. First, you will use the DigiPot to adjust

LED brightness. After you get it working with LEDs, you will use it to control

speaker volume. When you fi nish, you will have a platform that you can use to

develop more complicated audio/visual projects.

 Gathering Information from the Datasheet
 First things fi rst, you always need to consult the datasheet. A quick Google

search for “MCP4231” will turn up the datasheet. You can also fi nd a link to

the datasheet from the Exploring Arduino website: www.exploringarduino.com/

content/ch9 . The datasheet answers the following questions:

 ■ What is the pin-out of the IC, and which pins are the control pins?

 ■ What is the resistance of the potentiometer in my chip?

 ■ Which SPI commands must be sent to control the two digital wipers?

 To help you reference this information, Figures 9-2 through 9-4 show some

of the key parts of this datasheet. First, take a look at the pin-out presented on

the fi rst page of the datasheet.

 Figure 9-2: MCP4231 Pin-out diagram

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

http://www.exploringarduino.com

 Chapter 9 ■ The SPI Bus 187

549360c09.indd 02-07-2008 12:00 AM

 The pin-out should usually be your fi rst step when getting ready to work

with a new device. Following is a breakdown of all the pins and their functions:

 ■ Pins P0A, P0W, and P0B: These are the pins for the fi rst digitally con-

trolled potentiometer.

 ■ Pins P1A, P1W, and P1B: These are the pins for the second digitally

controlled potentiometer.

 ■ VDD: Connects to your 5V supply.

 ■ VSS: Connects to ground.

 ■ CS: CS is the SS pin for the SPI interface, and the bar above it indicates that it

is active low. (0V means the chip is selected, and 5V means it is not selected.)

 ■ SDI and SDO: These pins correspond to serial data in and out, respec-

tively (a.k.a. MOSI and MISO).

 ■ SCK: This is the SPI clock line that was explained earlier in the chapter.

 ■ SHDN and WP: These stand for shut down and write protect, respectively.

For this chip, it is revealed later in the datasheet that the WP pin is actually

NC (not connected). You can ignore this pin. The SHDN pin is active low,

like the CS pin. When held low, the hardware “disconnects” the wiper

from the internal resistor network. You always want your potentiometer to

be active, so in these examples the SHDN pin is connected directly to 5V.

 The next thing worth considering is the resistance of the potentiometer and

wiper. Just like an ordinary potentiometer, there is a fi xed resistance between

the A and B terminals of each digital potentiometer. The wiper itself also has

a resistance that you should take into account. Consider the information from

the fi fth page of the datasheet (see Figure 9-3).

 Figure 9-3: MCP4231 AC/DC characteristics table

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

188 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

 First, note the resistance of the potentiometer, denoted by R
AB

 . Four available

variants of this chip are available, each with a different resistance value, ranging

from 5kΩ to 100kΩ. The devices themselves are marked with their variation.

In this chapter, you use the 103 variant, which has a resistance of about 10kΩ.

Importantly, DigiPots are generally not very accurate devices. You can see from

the datasheet that the actual resistance for your device may vary as much as

±20%! Also worth noting is the wiper resistance. The actual wiper pin has a

resistance somewhere between 75 and 160Ω. This can be signifi cant, especially

when driving a speaker or an LED.

 You also need to understand the SPI commands that you must to issue to the

device to control it. In the case of the MCP4231, you issue two commands to the

device: The fi rst specifi es the register to control (there is one register for each

DigiPot), and the second specifi es the value to set the potentiometer. Take a look at

the SPI communication specifi cation excerpted from the datasheet in Figure 9-4.

 Figure 9-4: MCP4231 SPI command formats

 You can see from the diagram that two command types are available: an 8-bit

command and a 16-bit command. The 8-bit command allows you to increment

the potentiometer with a single byte of communication, whereas the 16-bit com-

mand allows you to set the state of the potentiometer arbitrarily. To keep things

simple, focus on using the 16-bit command, because it offers more fl exibility.

Over the SPI bus, you transmit a memory address, a command (read, write,

increment, or decrement), and a data value (0–128).

 The datasheet also indicates the memory addresses associated with each

potentiometer. The value of potentiometer 0 is located in memory address 0, and

potentiometer 1 is located in memory address 1. Using this information, you

can construct the necessary command bytes for writing to each of the pots. To

write to potentiometer 0, you transmit 00000000 in binary, followed by a value

from 0 to 128. To write to potentiometer 1, you transmit 00010000 in binary

followed by a value from 0 to 128. Referencing Figure 9-4, the fi rst four digits

are the memory address, the next two are the command (00 means write), and

C
re

di
t:

 ©
 2

01
3

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y,
 In

c.

 Chapter 9 ■ The SPI Bus 189

549360c09.indd 02-07-2008 12:00 AM

the next 2 bits are the fi rst 2 data bits, which should always be 0 because the

potentiometer can only be as high as 128.

 This is all the information you need to wire the DigiPot correctly and to

send SPI commands to it from your Arduino. Now, you wire it up to control

the brightness of some LEDs.

 Setting Up the Hardware
 To fully fl esh out your knowledge of SPI communication, you’ll use two MCP44231

DigiPot ICs, for a total of four controllable potentiometer channels. Each one

is used to control the brightness of two LEDs by varying the series resistance

in-line with the LED. When used in this fashion, you need to use only two

terminals of each potentiometer. One end of each potentiometer connects to

the 5V rail (through a resistor), and the wiper pin connects to the anode of the

LED. Consider the schematic Figure 9-5, which shows this connection scheme.

 Figure 9-5: Potentiometer LED setup

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

190 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

 The cathode of the LED is connected to ground. When the wiper for the

potentiometer is digitally turned to its maximum value, current fl ows from the

5V rail, through the 100Ω resistor, through the wiper (which has a resistance of

~75Ω), then through the LED. Alternatively, when the wiper is turned all the way

down, current fl ows through the 100Ω resistor, through the entire resistance of

the potentiometer (10kilohms), through the wiper, and then through the LED.

Even when the potentiometer is turned all the way, the minimum resistance

in series with the LED will be 175Ω (enough to safely current-limit it). As the

DigiPots are adjusted, the resistance increases and decreases, changing the cur-

rent through the LED and, therefore, its brightness. This method of brightness

control can prove very useful if you have exhausted all of your pulse-width

modulation (PWM)-capable pins.

 Now, wire up the two digital potentiometers to the SPI bus and to the LEDs,

as shown in the previous schematic using the information from the datasheet

about the pin-out. On the Arduino Uno, pin 13 is SCK, pin 12 is MISO, and pin

11 is MOSI. Pin 10 is commonly used for SS, so use that for one of the chips.

For the other, use pin 9. After you have wired up everything, it should look

something like Figure 9-6. Remember that the SCK, MISO, and MOSI lines are

shared between both devices.

 Double-check that your wiring matches the wiring diagram, and then move

on to the next section, where you write the software that will control the LED

brightness.

 Writing the Software
 To confi rm that your wiring is working and that you can successfully use the

SPI library, you’ll write a simple program to simultaneously adjust the bright-

ness of all four LEDs using the four potentiometers on the two ICs.

 As with I 2 C, a convenient library is built right in to the Arduino IDE that

makes SPI communication very easy. All you need to do is import the library

and “write” data to the SPI bus using the integrated commands. Of course, you

also have to toggle the SS pins for whatever device you are controlling. So, pull-

ing together all the knowledge from earlier in this chapter, here are the steps

you need to complete to send a command to change the brightness of an LED

on one of the SPI digital potentiometers:

 1. Bring the SS pin for the chip low.

 2. Send the appropriate register/command byte to choose which potenti-

ometer you are going to write to.

 3. Send a value between 0 and 128 .

 4. Bring the SS pin for this chip high.

 Chapter 9 ■ The SPI Bus 191

549360c09.indd 02-07-2008 12:00 AM

 Figure 9-6: Potentiometer LED setup

 The code in Listing 9-1 executes all these steps and includes a function for

passing the SS pin, register byte, and command to a given chip via SPI. The SPI

.begin() command enables you to initialize the SPI interface on the hardware

SPI pins of the Arduino, and you can use SPI.transfer() to actually send data

over the SPI bus.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

192 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

 Listing 9-1: SPI Control of Multiple Digital Potentiometers—SPI_led.ino

 //Changes LED brightness using voltage input instead of PWM

 //Include SPI library
 #include <SPI.h>

 //When using the SPI library, you only have to worry
 //about picking your slave selects
 //By default, 11 = MOSI, 12 = MISO, 13 = CLK
 const int SS1=10; //Slave Select Chip 1
 const int SS2=9; //Slave Select Chip 2

 const byte REG0=B00000000; //Register 0 Write command
 const byte REG1=B00010000; //Register 1 Write command

 void setup()
 {
 //Set pin directions for SS
 pinMode(SS1, OUTPUT);
 pinMode(SS2, OUTPUT);

 //Initialize SPI
 SPI.begin();
 }

 //This will set 1 LED to the specififed level
 //Chip 1 (SS 10) Register 0 is Red
 //Chip 1 (SS 10) Resiter 1 is Yellow
 //Chip 2 (SS 9) Register 0 is Green
 //Chip 2 (SS 9) Register 1 is Blue
 void setLed(int SS, int reg, int level)
 {
 digitalWrite(SS, LOW); //Set the given SS pin low
 SPI.transfer(reg); //Choose the register to write to
 SPI.transfer(level); //Set the LED level (0-128)
 digitalWrite(SS, HIGH); //Set the given SS pin high again
 }

 void loop()
 {
 for (int i=0; i<=128; i++)
 {
 setLed(SS1, REG0, i);
 setLed(SS1, REG1, i);
 setLed(SS2, REG0, i);
 setLed(SS2, REG1, i);
 delay(10);
 }
 delay(300);
 for (int i=128; i>=0; i--)

 Chapter 9 ■ The SPI Bus 193

549360c09.indd 02-07-2008 12:00 AM

 {
 setLed(SS1, REG0, i);
 setLed(SS1, REG1, i);
 setLed(SS2, REG0, i);
 setLed(SS2, REG1, i);
 delay(10);
 }
 delay(300);
 }

 In Listing 9-1, SS for chip 1 is connected to pin 10, and SS for chip 2 is

connected to pin 9. You can cross reference this with the hardware connec-

tions that you made while wiring the system in the previous section. The

byte register values at the top of the fi le are the same binary sequences that

you determined from the datasheet earlier in this chapter. When you put a B

before a string of 0s and 1s when creating a byte variable, you are telling the

Arduino compiler that what follows is in binary format, and not the default

decimal format that you use elsewhere in your program. The setLed() func-

tion accepts an SS pin number, a register byte, and potentiometer level value.

This function uses the information to transmit the data to the appropriate

chip. In loop() , all the LEDs are ramped up, then back down again, with

short delays so that the transition does not occur so fast that you cannot see

it. When you load this onto your Arduino, you should observe all four lights

changing intensity in tandem as the potentiometers are all adjusted.

 NOTE To watch a demo video of the SPI digital potentiometer color adjuster,
visit www.exploringarduino.com/content/ch9 . You can also find this video on
the Wiley website shown at the beginning of this chapter.

 Now that you have this simple example working, you can move on to the

next section, where you increase the complexity of the system by turning it into

an audiovisual display.

 Creating an Audiovisual Display Using SPI Digital
Potentiometers

 Changing LED brightness is a good test to confi rm your understanding of SPI

communication, but it is also something that you can do with PWM. Next, you

integrate some technology that you cannot replicate with a PWM interface:

sound. As you learned in Chapter 5, “Making Sounds,” the Arduino IDE has a

tone library that allows you to easily produce square waves from any pin on the

Arduino to drive a speaker. Although this allows you to easily create a range of

frequencies, it does not allow you to change the volume of the audio, because

that is a function of the waveform’s amplitude. You have already learned how

http://www.exploringarduino.com/content/ch9

194 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

to put an ordinary potentiometer in series with a speaker to adjust its volume.

Now, you use the SPI DigiPot to adjust speaker volume digitally.

 NOTE Intentionally, this project is designed as a jumping-off point; you make
a simple audiovisual display that you can expand on in software to create much
more inspired projects. Get this example working first; then, see how you can
build upon it to make something truly personal. This exercise offers an ideal
opportunity to get creative with your Arduino.

 Setting Up the Hardware
 The setup here is similar to what you used to adjust LED brightness. In fact, to

keep things interesting, you keep three of the LEDs in place and replace one of

them with a speaker. However, for the speaker, one end of the digital potenti-

ometer connects through a resistor to an I/O pin of the Arduino that will adjust

the frequency of the speaker. The generated square wave passes through the

DigiPot, which then adds a series resistance, thus dropping the voltage to the

speaker, changing its amplitude. Remove one of the LEDs, put a speaker in its

place, and connect that DigiPot to an I/O pin on the Arduino, as shown in the

wiring diagram in Figure 9-7.

 Figure 9-7: Potentiometer LED setup

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 9 ■ The SPI Bus 195

549360c09.indd 02-07-2008 12:00 AM

 You might also want to consider adding some analog sensors to this later to

experiment with using light, movement, and sound to control the output from

your audiovisual display system.

 Modifying the Software
 To get started with this setup, make some simple modifi cations to your previ-

ous program for controlling the LEDs. Add a pin variable for the speaker, as

well as a variable to set to the frequency of the speaker. (You’ll have it change

throughout the program to keep things exciting.) Inside loop() , you can option-

ally add some iterators that increase the speaker frequency on each run through

the loop. You can use the exact same setLed() function as before to set the

speaker volume, but the name is now a bit misleading, so you might want to

rename the function for clarity. In the complete code shown in Listing 9-2, it

has been renamed to setReg() .

 Listing 9-2: LED and Speaker Volume SPI Digital Potentiometer Control—LED_speaker.ino

 //Changes LED brightness using voltage input instead of PWM
 //Controls speaker volume and tone

 //Include SPI library
 #include <SPI.h>

 const int SPEAKER=8; //Speaker Pin
 int freq = 100;

 //When using the SPI library, you only have to worry
 //about picking your slave selects
 //By default, 11 = MOSI, 12 = MISO, 13 = CLK
 const int SS1=10; //Slave Select Chip 1
 const int SS2=9; //Slave Select Chip 2

 const byte REG0=B00000000; //Register 0 Write command
 const byte REG1=B00010000; //Register 1 Write command

 void setup()
 {
 //Set pin directions for SS
 pinMode(SS1, OUTPUT);
 pinMode(SS2, OUTPUT);

 //Initialize SPI
 SPI.begin();
 }

 //This will set one pot to the specififed level
 //Chip 1 (SS 10) Register 0 is Red

196 Part III ■ Communication Interfaces

549360c09.indd 02-07-2008 12:00 AM

 //Chip 1 (SS 10) Resiter 1 is Yellow
 //Chip 2 (SS 9) Register 0 is Green
 //Chip 2 (SS 9) Register 1 is the Speaker
 void setReg(int SS, int reg, int level)
 {
 digitalWrite(SS, LOW); //Set the given SS pin low
 SPI.transfer(reg); //Choose the register to write to
 SPI.transfer(level); //Set the LED level (0-128)
 digitalWrite(SS, HIGH); //Set the given SS pin high again
 }

 void loop()
 {
 tone(SPEAKER, freq); //Set speaker to given frequency
 for (int i=0; i<=128; i++)
 {
 setReg(SS1, REG0, i);
 setReg(SS1, REG1, i);
 setReg(SS2, REG0, i);
 setReg(SS2, REG1, i);
 delay(10);
 }
 delay(300);
 for (int i=128; i>=0; i--)
 {
 setReg(SS1, REG0, i);
 setReg(SS1, REG1, i);
 setReg(SS2, REG0, i);
 setReg(SS2, REG1, i);
 delay(10);
 }
 delay(300);
 freq = freq+100;
 if (freq > 2000) freq = 100;

 }

 Load this program onto your Arduino, and in addition to the lights chang-

ing intensity, the speaker will change volume. On each cycle, the frequency

is incremented by 100Hz until it reaches 2000Hz. This is controlled by the if

statement at the end of loop() . The for loops that are controlling LED brightness

and volume do not need to change at all from what you wrote in Listing 9-1,

because speaker volume is being controlled by the same potentiometer action

that is controlling the LEDs.

 Chapter 9 ■ The SPI Bus 197

549360c09.indd 02-07-2008 12:00 AM

 This is just a starting point. You now have suffi cient knowledge to really make

this multimedia platform into something exciting. Here are some suggestions:

 ■ Correlate sound frequency and volume with sensor inputs (for example,

an infrared [IR] distance sensor can control the frequency of the speaker

based on movement in front of the unit).

 ■ Correlate LED intensity with a different metric such as temperature.

 ■ Add a debounced pushbutton to allow you to dynamically choose the

volume or frequency of the speaker.

 ■ Program light sequences that match up with simple music.

 NOTE To watch a demo video of the audiovisual platform in action:
 www.exploringarduino.com/content/ch9 . You can also find this video
on the Wiley website shown at the beginning of this chapter.

 Summary

 In this chapter you learned about the following:

 ■ The SPI bus uses two data lines, a clock line, and a slave select line. An

additional slave select line is added for each slave device, but the other

three lines are shared on the bus.

 ■ The Arduino SPI library can be used to facilitate easy communication

between the Arduino and slave devices.

 ■ You can talk to multiple SPI devices over the same bus lines by using

multiple SS pins.

 ■ You can control SPI potentiometers using the Arduino Library.

 ■ You learned how to dive deeper into understanding and working with

datasheets.

 ■ You learned how to simultaneously adjust speaker volume and frequency

using the tone library paired with an SPI digital potentiometer.

http://www.exploringarduino.com/content/ch9

549360c09.indd 02-07-2008 12:00 AM

 199

549360c10.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino Uno

 USB cable (A to B for Uno)

 Speaker

 Pushbuttons (× 2)

 Small DC fan

 16x2 character LCD

 4.7kΩ resistors (× 2)

 10kΩ resistors (× 2)

 150Ω resistor

 10kΩ potentiometer

 TC74A0-5.0VAT I2C temperature sensor

 Jumper wires

 Breadboard

 C H A P T E R

10
 Interfacing with

Liquid Crystal Displays

200 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found

at www.exploringarduino.com/content/ch10 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 10 download and individu-

ally named according to the names throughout the chapter.

 One of the best things about designing embedded systems is the fact that they

can operate independently of a computer. Up until now, you’ve been tethered to

the computer if you want to display any kind of information more complicated

than an illuminated LED. By adding a liquid crystal display (LCD) to your

Arduino, you can more easily display complex information (sensor values, tim-

ing information, settings, progress bars, etc.) directly on your Arduino project

without having to interface with the serial monitor through the computer.

 In this chapter, you learn how to connect an LCD to your Arduino, and you

learn how to use the Arduino LiquidCrystal library to write text and arbitrary

custom characters to your LCD. After you have the basics down, you add some

components from previous chapters to make a simple thermostat capable of

obtaining local temperature data, reporting it to you, and controlling a fan to

compensate for heat. An LCD will give you live information, a speaker will

alert you when the temperature is getting too hot, and the fan will turn on to

automatically cool you down.

 NOTE To watch a video tutorial about interfacing to an LCD, check out
 www.jeremyblum.com/2011/07/31/tutorial-13-for-arduino-liquid-
crystal-displays . You can also find this video on the Wiley website shown at
the beginning of this chapter.

 Setting Up the LCD

 To complete the examples in this chapter, you use a parallel LCD screen. These

are extremely common and come in all kinds of shapes and sizes. The most

common is a 16 × 2 character display with a single row of 16 pins (14 if it does not

have a backlight). In this chapter, you use a 16-pin LCD display that can show

a total of 32 characters (16 columns and 2 rows).

 If your display didn’t come with a 16-pin header already soldered on, you

need to solder one on so that you can easily install it in your breadboard. With

the header successfully soldered on, your LCD should look like the one shown

in Figure 10-1, and you can insert it into your breadboard.

 Next, you wire up your LCD to a breadboard and to your Arduino. All of these

parallel LCD modules have the same pin-out and can be wired in one of two

modes: 4-pin or 8-pin mode. You can accomplish everything you might want to

do using just 4 pins for communication; that’s how you’ll wire it up. There are also

http://www.exploringarduino.com/content/ch10
http://www.wiley.com/go/exploringarduino
http://www.jeremyblum.com/2011/07/31/tutorial-13-for-arduino-liquid-crystal-displays
http://www.jeremyblum.com/2011/07/31/tutorial-13-for-arduino-liquid-crystal-displays
http://www.jeremyblum.com/2011/07/31/tutorial-13-for-arduino-liquid-crystal-displays

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 201

549360c10.indd 02-07-2008 12:00 AM

pins for enabling the display, setting the display to command mode or character

mode, and for setting it to read/write mode. Table 10-1 describes all of these pins.

 Figure 10-1: LCD with Headers soldered on

 Table 10-1: Parallel LCD Pins

 PIN NUMBER PIN NAME PIN PURPOSE

 1 VSS Ground connection

 2 VDD +5V connection

 3 V0 Contrast adjustment (to potentiometer)

 4 RS Register selection (Character vs. Command)

 5 RW Read/write

 6 EN Enable

 7 D0 Data line 0 (unused)

 8 D1 Data line 1 (unused)

 9 D2 Data line 2 (unused)

 10 D3 Data line 3 (unused)

 11 D4 Data line 4

 12 D5 Data line 5

 13 D6 Data line 6

 14 D7 Data line 7

 15 A Backlight anode

 16 K Backlight cathode

202 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 Here’s a breakdown of the pin connections:

 ■ The contrast adjustment pin changes how dark the display is. It connects

to the center pin of a potentiometer.

 ■ The register selection pin sets the LCD to command or character mode,

so it knows how to interpret the next set of data that is transmitted via

the data lines. Based on the state of this pin, data sent to the LCD is either

interpreted as a command (for example, move the cursor) or characters

(for example, the letter a).

 ■ The RW pin is always tied to ground in this implementation, meaning

that you are only writing to the display and never reading from it.

 ■ The EN pin is used to tell the LCD when data is ready.

 ■ Data pins 4–7 are used for actually transmitting data, and data pins 0–3

are left unconnected.

 ■ You can illuminate the backlight by connecting the anode pin to 5V and

the cathode pin to ground if you are using an LCD with a built-in resistor

for the backlight. If you are not, you must put a current-limiting resistor

in-line with the anode or cathode pin. The datasheet for your device will

generally tell you if you need to do this.

 You can connect the communication pins of the LCD to any I/O pins on the

Arduino. In this chapter, they are connected as shown in Table 10-2.

 Table 10-2: Communication Pins Connections

 LCD PIN ARDUINO PIN NUMBER

 RS Pin 2

 EN Pin 3

 D4 Pin 4

 D5 Pin 5

 D6 Pin 6

 D7 Pin 7

 Reference the wiring diagram shown in Figure 10-2 and hook up your LCD

accordingly.

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 203

549360c10.indd 02-07-2008 12:00 AM

 Figure 10-2: LCD wired to breadboard and Arduino

 Now your LCD is ready for action! Once you get the code loaded in the next

section, you can start displaying text on the screen. The potentiometer will

adjust the contrast between the text and the background color of the screen.

 Using the LiquidCrystal Library to Write to the LCD

 The Arduino IDE includes the LiquidCrystal library, a set of functions that

makes it very easy to interface with the parallel LCD that you are using. The

 LiquidCrystal library has an impressive amount of functionality, including

blinking the cursor, automatically scrolling text, creating custom characters,

and changing the direction of text printing. This chapter does not cover every

function, but instead gives you the tools you need to understand to interface

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

204 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

with the display using the most important functions. You can fi nd descriptions

of the library functions and examples illustrating their use on the Arduino

website: http://arduino.cc/en/Reference/LiquidCrystal (also linked from

 www.exploringarduino.com/content/ch10).

 Adding Text to the Display
 In this fi rst example, you add some text and an incrementing number to the

display. This exercise demonstrates how to initialize the display, how to write

text, and how to move the cursor. First, include the LiquidCrystal library:

 #include <LiquidCrystal.h>

 Then, initialize an LCD object, as follows:

 LiquidCrystal lcd (2,3,4,5,6,7);

 The arguments for the LCD initialization represent the Arduino pins con-

nected to RS, EN, D4, D5, D6, and D7, in that order. In the setup, you call the

library’s begin() function to set up the LCD display with the character size.

(The one I’m using is a 16 × 2 display, but you might be using another size, such

as a 20 × 4.) The arguments for this command represent the number of columns

and the number of rows, respectively:

 lcd.begin(16, 2);

 After doing that, you can call the library’s print() and setCursor() com-

mands to print text to a given location on the display. For example, if you want

to print my name on the second line, you issue these commands:

 lcd.setCursor(0,1);
 lcd.print("Jeremy Blum");

 The positions on the screen are indexed starting with (0,0) in the top-left

position. The fi rst argument of setCursor() specifi es which column number,

and the second specifi es which row number. By default, the starting location is

(0,0). So, if you call print() without fi rst changing the cursor location, the text

starts in the top-left corner.

 WARNING The library does not check for strings that are too long. So, if you
try to print a string starting at position 0 that is longer than the number of charac-
ters in the row you are addressing, you might notice strange behavior. Make sure
to check that whatever you are printing will fit on the display!

http://arduino.cc/en/Reference/LiquidCrystal
http://www.exploringarduino.com/content/ch10

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 205

549360c10.indd 02-07-2008 12:00 AM

 Using this knowledge, you can now write a simple program that displays

some text on the fi rst row and that prints a counter that increments once every

second on the second row. Listing 10-1 shows the complete program to accom-

plish this. Load it on to your Arduino and confi rm that it works as expected. If

you don’t see anything, adjust the contrast with the potentiometer.

 Listing 10-1: LCD Text with an Incrementing Number—LCD_text.ino

 //LCD text with incrementing number

 //Include the library code:
 #include <LiquidCrystal.h>

 //Start the time at 0
 int time = 0;

 //Initialize the library with the numbers of the interface pins
 LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

 void setup()
 {
 //Set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 //Print a message to the LCD.
 lcd.print("Jeremy's Display");
 }

 void loop()
 {
 //Move cursor to second line, first position
 lcd.setCursor(0,1);
 //Print Current Time
 lcd.print(time);
 //Wait 1 second
 delay(1000);
 //Increment the time
 time++;
 }

 This program combines all the steps that you learned about earlier. The

library is fi rst included at the top of the program. A time variable is initial-

ized to 0 , so that it can be incremented once per second during the loop() . A

 LiquidCrysal object called lcd is created with the proper pins assigned based

on the circuit you’ve already wired up. In the setup, the LCD is confi gured as

having 16 columns and 2 rows, by calling lcd.begin(16,2) . Because the fi rst

line never changes, it can be written in the setup. This is accomplished with a

call to lcd.print() . Note that the cursor position does not need to be set fi rst,

206 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

because you want to the text to be printed to position (0,0) , which is already

the default starting location. In the loop, the cursor is always set back to posi-

tion (0,1) so that the number you print every second overwrites the previous

number. The display updates once per second with the incremented time value.

 Creating Special Characters and Animations
 What if you want to display information that cannot be expressed using normal

text? Maybe you want to add a Greek letter, a degree sign, or some progress

bars. Thankfully, the LiquidCrystal library supports the defi nition of custom

characters that can be written to the display. In the next example, you use this

capability to make an animated progress bar that scrolls across the display.

After that, you take advantage of custom characters to add a degree sign when

measuring and displaying temperature.

 Creating a custom character is pretty straightforward. If you take a close look

at your LCD, you’ll see that each character block is actually made up of a 5 × 8

grid of pixels. To create a custom character, you simply have to defi ne the value

of each of these pixels and send that information to the display. To try this out,

you make a series of characters that will fi ll the second row of the display with

an animated progress bar. Because each character space is 5 pixels wide, there

will be a total of fi ve custom characters: one with one column fi lled, one with

two columns fi lled, and so on.

 At the top of your sketch where you want to use the custom characters, cre-

ate a byte array with 1s representing pixels that will be turned on and with 0s

representing pixels that will be turned off. The byte array representing the char-

acter that fi lls the fi rst column (or the fi rst 20% of the character) looks like this:

 byte p20[8] = {
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 };

 I chose to call this byte array p20 , to represent that it is fi lling 20 percent of

one character block (the p stands for percent).

 In the setup() function, call the createChar() function to assign your byte

array to a custom character ID. Custom character IDs start at 0 and go up to 7, so

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 207

549360c10.indd 02-07-2008 12:00 AM

you can have a total of eight custom characters. To map the 20% character byte

array to custom character 0, type the following within your setup() function:

 lcd.createChar(0, p20);

 When you’re ready to write a custom character to the display, place the cursor

in the right location and use the library’s write() function with the ID number:

 lcd.write((byte)0);

 In the preceding line, (byte) casts, or changes, the 0 to a byte value. This is

necessary only when writing character ID 0 directly (without a variable that is

defi ned to 0), to prevent the Arduino compiler from throwing an error caused by

the variable type being ambiguous. Try removing the “byte cast” and observe

the error that the Arduino IDE displays. You can write other character IDs

without it, like this:

 lcd.write(1);

 Putting this all together, you can add the rest of the characters and put two

nested for() loops in your program loop to handle updating the progress bar.

The completed code looks like the code shown in Listing 10-2.

 Listing 10-2: LCD Updating Progress Bar Code—LCD_progress_bar.ino

 //LCD with Progress Bar

 //Include the library code:
 #include <LiquidCrystal.h>

 //Initialize the library with the numbers of the interface pins
 LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

 //Create the progress bar characters
 byte p20[8] = {
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 B10000,
 };

208 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 byte p40[8] = {
 B11000,
 B11000,
 B11000,
 B11000,
 B11000,
 B11000,
 B11000,
 B11000,
 };
 byte p60[8] = {
 B11100,
 B11100,
 B11100,
 B11100,
 B11100,
 B11100,
 B11100,
 B11100,
 };
 byte p80[8] = {
 B11110,
 B11110,
 B11110,
 B11110,
 B11110,
 B11110,
 B11110,
 B11110,
 };
 byte p100[8] = {
 B11111,
 B11111,
 B11111,
 B11111,
 B11111,
 B11111,
 B11111,
 B11111,
 };

 void setup()
 {
 //Set up the LCDs number of columns and rows:
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.print("Jeremy's Display");

 //Make progress characters
 lcd.createChar(0, p20);
 lcd.createChar(1, p40);

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 209

549360c10.indd 02-07-2008 12:00 AM

 lcd.createChar(2, p60);
 lcd.createChar(3, p80);
 lcd.createChar(4, p100);
 }

 void loop()
 {
 //Move cursor to second line
 lcd.setCursor(0,1);
 //Clear the line each time it reaches the end
 //with 16 " " (spaces)
 lcd.print(" ");

 //Iterate through each character on the second line
 for (int i = 0; i<16; i++)
 {
 //Iterate through each progress value for each character
 for (int j=0; j<5; j++)
 {
 lcd.setCursor(i, 1); //Move the cursor to this location
 lcd.write(j); //Update progress bar
 delay(100); //Wait
 }
 }
 }

 At the beginning of each pass through the loop, the 16-character-long string

of spaces is written to the display, clearing the progress bar before it starts again.

The outer for() loop iterates through all 16 positions. At each character posi-

tion, the inner for() loop keeps the cursor there and writes an incrementing

progress bar custom character to that location. The byte cast is not required here

because the ID 0 is defi ned by the j variable in the for() loop .

 NOTE To watch a demo video of the updating progress bar, visit
 www.exploringarduino.com/content/ch10 . You can also find this
video on the Wiley website shown at the beginning of this chapter.

 Building a Personal Thermostat

 Now, let’s make this display a bit more useful. To do so, you add the temperature

sensor from Chapter 8, “The I 2 C Bus,” a fan, and the speaker from Chapter 5,

“Making Sounds.” The display shows the temperature and the current fan state.

When it gets too hot, the speaker makes a noise to alert you, and the fan turns

on. When it gets suffi ciently cool again, the fan turns off. Using two pushbuttons

and the debounce code in Listing 2-5 in Chapter 2, “Digital Inputs, Outputs,

and Pulse-Width Modulation,” you add the ability to increment or decrement

the desired temperature.

http://www.exploringarduino.com/content/ch10

210 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 Setting Up the Hardware
 The hardware setup for this project is a conglomeration of previous projects. If

you want the fan to have some oomph, you can drive it with a transistor and

an external voltage supply (like the DC motor from Chapter 4, “DC Motors,

Transistors, and Servos”). A low-power DC fan hooked directly to a 5V I/O pin

will suffi ce to show that it spins when it should. It will be accelerating slowly

enough that you don’t need to worry too much about inductive spikes. If you

actually want it to make a breeze, use the same schematic that you used for

driving a DC motor in Chapter 4 (see Figure 4-1).

 To wire the project, leave the LCD and trim potentiometer in the same loca-

tion they were in for the previous example.

 The two buttons have one side connected to power; the other side is connected

to ground through 10kΩ pull-down resistors and to the Arduino.

 The speaker is connected to an I/O pin through a 150Ω resistor and to ground.

The frequency of the sound will be set in the program.

 You hook up the I 2 C temperature sensor exactly as you did in Chapter 8.

Placing it in front of the LCD’s contrast potentiometer allows you to conserve

some breadboard space and to fi t everything onto the same half-size bread-

board that you’ve been using so far. The diagram in Figure 10-3 shows the

complete wiring setup with everything you need to create this project. The

symbol for the TC74 temperature sensor has been made partially transparent

so that you can see the potentiometer behind it.

 Figure 10-3: LCD thermostat system

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 211

549360c10.indd 02-07-2008 12:00 AM

 Displaying Data on the LCD
 Having some parameters in place beforehand makes writing information to the

LCD screen easier. First, use degrees Celsius for the display, and second, assume

that you’ll always be showing two digits for the temperature. Once the software

is running, the LCD display will look something like Figure 10.4.

 Figure 10-4: LCD display

 The "Current:" and "Set:" strings are static; they can be written to the

screen once at the beginning and left there. Similarly, because the temperatures

are assumed to be two digits, you can statically place both " ° C" strings into the

correct locations. The current reading will be displayed in position (8,0) and

will be updated on every run through the loop() . The desired, or set, tempera-

ture will be placed in position (8,1) and updated every time a button is used

to adjust its value. The fan indicator in the lower right of the display will be at

position (15,1) . It should update to refl ect the fan’s state every time it changes.

 The degree symbol, fan off indicator, and fan on indicator are not part of the

LCD character set. Before using them in your sketch, you need to create them as

byte arrays at the beginning of your program, as shown in the following snippet.

 //Custom degree character
 byte degree[8] = {
 B00110,
 B01001,
 B01001,
 B00110,
 B00000,
 B00000,
 B00000,
 B00000,
 };

212 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 //Custom "fan on" indicator
 byte fan_on[8] = {
 B00100,
 B10101,
 B01110,
 B11111,
 B01110,
 B10101,
 B00100,
 B00000,
 };

 //Custom "fan off" indicator
 byte fan_off[8] = {
 B00100,
 B00100,
 B00100,
 B11111,
 B00100,
 B00100,
 B00100,
 B00000,
 };

 Writing these characters will be done in setup() . Move the cursor to the right

locations, and with the LCD library’s write() and print() functions, update

the screen, as shown in the following snippet.

 //Make custom characters
 lcd.createChar(0, degree);
 lcd.createChar(1, fan_off);
 lcd.createChar(2, fan_on);

 //Print a static message to the LCD
 lcd.setCursor(0,0);
 lcd.print("Current:");
 lcd.setCursor(10,0);
 lcd.write((byte)0);
 lcd.setCursor(11,0);
 lcd.print("C");
 lcd.setCursor(0,1);
 lcd.print("Set:");
 lcd.setCursor(10,1);
 lcd.write((byte)0);
 lcd.setCursor(11,1);
 lcd.print("C");
 lcd.setCursor(15,1);
 lcd.write(1);

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 213

549360c10.indd 02-07-2008 12:00 AM

 You also update the fan indicator and temperature values each time through

 loop() . You need to move the cursor to the right location each time before you

update these characters.

 Adjusting the Set Point with a Button
 In Chapter 2, you used a debounce() function. Here, you modify it slightly to

use it with multiple buttons. One button will increase the set point, and the

other will decrease it. You need to defi ne variables for holding the previous

and current button states:

 //Variables for debouncing
 boolean lastDownTempButton = LOW;
 boolean currentDownTempButton = LOW;
 boolean lastUpTempButton = LOW;
 boolean currentUpTempButton = LOW;

 You can modify the debounce() function to support multiple buttons. To

accomplish this, add a second argument that specifi es which button you want

to debounce:

 //A debouncing function that can be used by both buttons
 boolean debounce(boolean last, int pin)
 {
 boolean current = digitalRead(pin);
 if (last != current)
 {
 delay(5);
 current = digitalRead(pin);
 }
 return current;
 }

 In loop() , you want to check both buttons using the debounce() function,

change the set_temp variable as needed, and update the set value that is dis-

played on the LCD:

 //Debounce both buttons
 currentDownTempButton = debounce(lastDownTempButton, DOWN_BUTTON);
 currentUpTempButton = debounce(lastUpTempButton, UP_BUTTON);

 //Turn down the set temp
 if (lastDownTempButton == LOW && currentDownTempButton == HIGH)
 {
 set_temp--;
 }

214 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 //Turn up the set temp
 else if (lastUpTempButton == LOW && currentUpTempButton == HIGH)
 {
 set_temp++;
 }
 //Print the set temp
 lcd.setCursor(8,1);
 lcd.print(set_temp);
 //Update the button state with the current
 lastDownTempButton = currentDownTempButton;
 lastUpTempButton = currentUpTempButton;

 The preceding code snippet fi rst runs the debounce() function for each but-

ton, and then adjusts the set temperature variable if one of the buttons has been

pressed. Afterward, the temperature displayed on the LCD is updated, as are

the button state variables.

 Adding an Audible Warning and a Fan
 In this section, you add code to control the fan and the speaker. Although the

LCD showing you live information is nice, you’ll often fi nd it useful to have

an additional form of feedback to tell you when something is happening. For

example, the speaker beeps when the fan turns on. In this example, you use

 tone() paired with delay() and a notone() command. You could instead add a

duration argument to tone() to determine the duration of the sound. You want

to make sure that the tone plays only one time so (and does not beep forever

when above the set temperature).

 Using a state variable, you can detect when the speaker has beeped and thus

keep it from beeping again until after the temperature dips below the set tem-

perature and resets the state variable.

 When the fan turns on, an indicator changes on the LCD (represented by the

custom character you defi ned at the top of the program). The following code

snippet checks the temperature and controls the speaker, the fan indicator on

the LCD, and the fan:

 //If it's too hot!
 if (c >= set_temp)
 {
 //Check if the speaker has already beeped
 if (!one_time)
 {
 tone(SPEAKER, 400);
 delay(500);
 one_time = true;
 }

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 215

549360c10.indd 02-07-2008 12:00 AM

 //Turn off the speaker when it's done
 else
 {
 noTone(SPEAKER);
 }
 //Turn the Fan on and update display
 digitalWrite(FAN, HIGH);
 lcd.setCursor(15,1);
 lcd.write(2);
 }
 //If it's not too hot!
 else
 {
 //Make sure the speaker is off
 //reset the "one beep" variable
 //update the fan state and LCD display
 noTone(SPEAKER);
 one_time = false;
 digitalWrite(FAN, LOW);
 lcd.setCursor(15,1);
 lcd.write(1);
 }

 The one_time variable is used to make sure that the beep plays only one time

instead of continuously. Once the speaker has beeped for 500ms at 400Hz, the

variable is set to true and is reset to false only when the temperature drops

back below the desired temperature.

 Bringing It All Together: The Complete Program
 It’s time to bring all the parts together into a cohesive whole. You need to make

sure that you include the appropriate libraries, defi ne the pins, and initialize

the state variables at the top of the sketch. Listing 10-3 shows the complete pro-

gram. Load it on to your Arduino and compare your results to the demo video

showing the system in action.

 Listing 10-3: Personal Thermostat Program—LCD_thermostat.ino

 //Keep yourself cool! This is a thermostat.
 //This assumes temperatures are always two digits

 //Include Wire I2C library and set the address
 #include <Wire.h>
 #define TEMP_ADDR 72

 //Include the LCD library and initialize:
 #include <LiquidCrystal.h>

216 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 LiquidCrystal lcd(2, 3, 4, 5, 6, 7);

 //Custom degree character
 byte degree[8] = {
 B00110,
 B01001,
 B01001,
 B00110,
 B00000,
 B00000,
 B00000,
 B00000,
 };

 //Custom "fan on" indicator
 byte fan_on[8] = {
 B00100,
 B10101,
 B01110,
 B11111,
 B01110,
 B10101,
 B00100,
 B00000,
 };

 //Custom "fan off" indicator
 byte fan_off[8] = {
 B00100,
 B00100,
 B00100,
 B11111,
 B00100,
 B00100,
 B00100,
 B00000,
 };

 //Pin Connections
 const int SPEAKER =8;
 const int DOWN_BUTTON =9;
 const int UP_BUTTON =10;
 const int FAN =11;

 //Variables for debouncing
 boolean lastDownTempButton = LOW;
 boolean currentDownTempButton = LOW;
 boolean lastUpTempButton = LOW;
 boolean currentUpTempButton = LOW;

 int set_temp = 23; //The Default desired temperature
 boolean one_time = false; //Used for making the speaker beep only 1 time

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 217

549360c10.indd 02-07-2008 12:00 AM

 void setup()
 {
 pinMode(FAN, OUTPUT);

 //Create a wire object for the temp sensor
 Wire.begin();

 //Set up the LCD's number of columns and rows
 lcd.begin(16, 2);

 //Make custom characters
 lcd.createChar(0, degree);
 lcd.createChar(1, fan_off);
 lcd.createChar(2, fan_on);

 //Print a static message to the LCD
 lcd.setCursor(0,0);
 lcd.print("Current:");
 lcd.setCursor(10,0);
 lcd.write((byte)0);
 lcd.setCursor(11,0);
 lcd.print("C");
 lcd.setCursor(0,1);
 lcd.print("Set:");
 lcd.setCursor(10,1);
 lcd.write((byte)0);
 lcd.setCursor(11,1);
 lcd.print("C");
 lcd.setCursor(15,1);
 lcd.write(1);
 }

 //A debouncing function that can be used by multiple buttons
 boolean debounce(boolean last, int pin)
 {
 boolean current = digitalRead(pin);
 if (last != current)
 {
 delay(5);
 current = digitalRead(pin);
 }
 return current;
 }

 void loop()
 {
 //Get the Temperature
 Wire.beginTransmission(TEMP_ADDR); //Start talking
 Wire.write(0); //Ask for register zero
 Wire.endTransmission(); //Complete transmission
 Wire.requestFrom(TEMP_ADDR, 1); //Request 1 byte

218 Part III ■ Communication Interfaces

549360c10.indd 02-07-2008 12:00 AM

 while(Wire.available() == 0); //Wait for response
 int c = Wire.read(); //Get the temp in C
 lcd.setCursor(8,0); //Move the cursor
 lcd.print(c); //Print this new value

 //Debounce both buttons
 currentDownTempButton = debounce(lastDownTempButton, DOWN_BUTTON);
 currentUpTempButton = debounce(lastUpTempButton, UP_BUTTON);

 //Turn down the set temp
 if (lastDownTempButton== LOW && currentDownTempButton == HIGH)
 {
 set_temp--;
 }
 //Turn up the set temp
 else if (lastUpTempButton== LOW && currentUpTempButton == HIGH)
 {
 set_temp++;
 }
 //Print the set temp
 lcd.setCursor(8,1);
 lcd.print(set_temp);
 lastDownTempButton = currentDownTempButton;
 lastUpTempButton = currentUpTempButton;

 //It's too hot!
 if (c >= set_temp)
 {
 //So that the speaker will only beep one time...
 if (!one_time)
 {
 tone(SPEAKER, 400);
 delay(500);
 one_time = true;
 }
 //Turn off the speaker if it's done
 else
 {
 noTone(SPEAKER);
 }
 //Turn the fan on and update display
 digitalWrite(FAN, HIGH);
 lcd.setCursor(15,1);
 lcd.write(2);
 }
 //It't not to hot!
 else
 {
 //Make sure the speaker is off, reset the "one beep" variable
 //Update the fan state, and LCD display
 noTone(SPEAKER);

 Chapter 10 ■ Interfacing with Liquid Crystal Displays 219

549360c10.indd 02-07-2008 12:00 AM

 one_time = false;
 digitalWrite(FAN, LOW);
 lcd.setCursor(15,1);
 lcd.write(1);
 }
 }

 You no longer need to have the Arduino and components tethered to the

computer to see what the temperature is. If you like, you can plug in a battery

or wall power supply and place it anywhere in your room.

 NOTE To watch a demo video of this personal thermostat in action, check out
 www.exploringarduino.com/content/ch10 . You can also find this video on the
Wiley website shown at the beginning of this chapter.

 Taking This Project to the Next Level
 You could expand the functionality of this program in all kinds of ways. Here

are a few suggestions for further improvements you can make:

 ■ Add a transistor to the fan so that it can draw more current and move

more air.

 ■ Use pulse-width modulation (PWM) to control fan speed so that it changes

according to how far over the set temperature you are.

 ■ Add LED indicators that display visual alerts.

 ■ Make the speaker alert into a melody instead of a tone.

 ■ Add a light sensor and automatically adjust the backlight brightness of

the display using an SPI potentiometer from Chapter 9, “The SPI Bus,”

based on the brightness of the room.

 Summary

 In this chapter you learned about the following:

 ■ Parallel LCDs can be interfaced with the Arduino through a standard

wiring scheme.

 ■ You can create custom characters for your LCD by generating arbitrary

bitmaps.

 ■ You can modify your debounce function from Chapter 2 to debounce

multiple buttons.

 ■ You combine multiple sensors, motors, buttons, and displays into one

coherent project.

http://www.exploringarduino.com/content/ch10

549360c10.indd 02-07-2008 12:00 AM

 221

549360c11.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Two Arduinos (Unos and/or Leonardos recommended)

 USB cables for programming Arduinos

 Power supplies for each Arduino (optionally power over USB)

 SparkFun USB XBee Explorer

 XBee Series 1 radio (× 2)

 XBee shields (× 2)

 Pushbutton

 Piezo buzzer

 Common cathode RGB LED

 10KΩ resistor

 10KΩ potentiometer

 150Ω resistor

 220Ω resistors (× 3)

 Jumper wires

 Breadboards (× 2)

 C H A P T E R

11
 Wireless Communication with

XBee Radios

222 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at

 www.exploringarduino.com/content/ch11 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 11 download and individu-

ally named according to the names throughout the chapter.

 It’s time to untether! A common requirement in many microcontroller projects

is wireless connectivity. There are many ways to achieve wireless connectivity,

but one of the easiest methods with the Arduino is to use XBee radios, which

are produced by a company named Digi. XBees act as a wireless serial pass-

through, allowing you to use the serial printing and reading commands you’ve

already learned about. This chapter focuses only on XBee communication, but

does cover some of the caveats that you must understand when using any form

of wireless communication.

 XBees make it easy to communicate wirelessly between the Arduino and

your computer or between multiple Arduinos. In this chapter, you learn how

to facilitate both.

 NOTE To follow a video tutorial about using XBee radios, visit www.jeremyblum
.com/2011/02/27/arduino-tutorial-9-wireless-communication/ . You can
also find this video on the Wiley website shown at the beginning of this chapter.

 Understanding XBee Wireless Communication

 The name says it all: Wireless communication permits two or more devices to

talk to each other without wires tethering them together. Wireless transmitters

operate by transmitting data in the form of radio waves through free space

by a process of electromagnetic radiation at a particular frequency. Different

frequencies are used by different transmission technologies to prevent “crowd-

ing” of certain parts of the available electromagnetic spectrum. Governmental

agencies, such as the Federal Communications Commission (FCC) in the USA,

regulate this spectrum and publish rules specifying which frequencies can be

used for what. The XBee radio transmits data 2.4GHz. You might recognize this

frequency because many devices around your home use it. It falls within the

ISM (Industrial, Scientifi c, and Medical) band, a set of frequencies set aside for

unlicensed wireless communication use. Your WiFi router probably operates at

this frequency as well. The XBee modules use the IEEE 802.15.4 standard, which

specifi es a set of operating rules for wireless personal area networks (PANs).

 XBees are generally used in a PAN point-to-point or a point-to-multipoint

confi guration; Figure 11-1 shows examples of both. Point-to-point is useful when

you want to simply replace wired serial communication between two remote

units. Point-to-multipoint is often used for distributed sensor networks.

http://www.exploringarduino.com/content/ch11
http://www.wiley.com/go/exploringarduino
http://www.jeremyblum

 Chapter 11 ■ Wireless Communication with XBee Radios 223

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-1: PAN configurations

 XBee Radios
 XBee radios can communicate in an application programming interface (API) mode,

and a simple serial pass-through mode. In API mode, they can directly transmit

digital or analog I/O pin states. This enables you to have a microcontroller-free

weather station transmitter, for example. In this chapter, you use the XBees as a

simple serial pass-through. Serial data sent into one radio comes out of another

and vice versa. Using this method, you can use the XBees as a drop-in replace-

ment for a wired serial connection (either between two Arduinos or between an

Arduino and your computer).

 XBees have 20 pins and are, for the most part, pin compatible with each

other. This chapter uses Series 1 XBees, which use the 802.15.4 standard. They

are capable of point-to-point and point-to-multipoint communication, but they

do not implement the ZigBee standard, a mesh networking standard found in

Series 2/ZB XBee radios. If you aren’t sure what kind of XBees you have, you

probably have Series 1. They look like the ones in Figure 11-2.

 Figure 11-2: XBee Series 1 radios

C
re

di
t:

 S
pa

rk
Fu

n
[P

ho
to

gr
ap

he
r

Ju
an

 P
eñ

a]
,

w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

.

http://www.sparkfun.com
http://www.sparkfun.com
http://www.sparkfun.com

224 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 NOTE Series 1 and Series 2 modules are not compatible with each other. You
can use either one (as long as both radios are the same series), but I strongly rec-
ommend using Series 1 if you are just starting out. Series 1 modules require less
configuration and are a lot easier to set up.

 There are other differences in each series of XBee as well. There are Pro and

non-Pro versions of most XBee modules. The Pro versions are completely com-

patible with their non-Pro counterparts, but consume more power, cost more,

are slightly longer, and have a signifi cantly longer range (about 1 mile versus

300 feet). I recommend starting out with the cheaper, non-Pro version, and

upgrading later if you fi nd you need more range.

 Also, some radios are available in 2.4GHz and 900MHz versions. 900MHz

falls in another portion of the ISM band and is legal for personal use in some

countries, but not in others. 900MHz, because it is a lower frequency, achieves

better range and is better at penetrating walls. The 900MHz modules and 2.4GHz

modules cannot communicate with each other.

 Finally, the XBee modules come with various antenna options: built-in wire

antennas, trace antennas, chip antennas, and external antenna connectors. Pick

whichever option suits your needs; you can generally get better range with an

external antenna, but it will take up more space.

 This chapter uses non-Pro, Series 1, 2.4GHz XBees with chip antennas in

serial pass-through mode. Familiarize yourself with the module pin-out from

the datasheet shown in Figure 11-3.

 Most of the details will be abstracted away by the XBee shield (explained in

the next section), but you should be aware of the fact that the XBee is a 3.3V

module; it needs a 3.3V power supply.

 WARNING If you supply an XBee radio with 5V on the supply pin, you will ruin
the component.

 The XBee Radio Shield and Serial Connections
 In this chapter, you learn to use the XBee radio in conjunction with a shield

that makes it easy to connect the module to your Arduino. A number of XBee

Arduino shields are available, so my descriptions here are general so that they

apply to any shield you might use. All the shields essentially do the same thing,

but with some minor differences, as explained in this section. Figure 11-4 shows

examples of the most common XBee shields.

 Chapter 11 ■ Wireless Communication with XBee Radios 225

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-3: XBee series 1 pin-out

 Figure 11-4: Various XBee shields

 Most XBee shields implement a number of key features, as explained in detail

in the following sections.

C
re

di
t:

 D
ig

i I
nt

er
na

tio
na

l,
In

c.
, w
w
w
.
d
i
g
i
.
c
o
m

Credits: Arduino, www.arduino.cc; SparkFun
[Photographer Juan Peña], www.sparkfun.com;
Cooking Hacks, www.cooking-hacks.com

http://www.digi.com
http://www.digi.com
http://www.digi.com
http://www.arduino.cc
http://www.sparkfun.com
http://www.cooking-hacks.com

226 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 3.3V Regulator

 Most Arduinos (excluding the Due) operate at 5V logic levels; 0V indicates a

logical low, and 5V indicates a logical high. The XBee, however, operates at 3.3V

logic level, and it must be supplied with 3.3V power. Although the Arduino does

have a small 3.3V regulator onboard, it does not supply enough current for the

XBee, so most shields implement an LDO (low dropout) linear regulator that

drops the 5V supply down to 3.3V for feeding into the VCC pin of the XBee.

 Logic Level Shifting

 The UART TX and RX pins of the Arduino and the XBee need to be connected;

here too, however, you need to consider the fact that the XBee is a 3.3V part.

Data transmitted from the XBee to the Arduino does not need to be level shifted

(although some shields will do it anyways). This is because 3.3V is still above

the threshold to be read as a logical high by the Arduino RX I/O pin. The data

transmitted from the Arduino to the XBee, however, must be shifted down to

3.3V before it can be fed into the DI I/O pin of the XBee. Different shields use

different methods to accomplish this.

 Associate LED and RSSI LED

 Most shields have an “associate” LED that blinks whenever the XBee is powered

up and in use as a simple serial pass-though. It is generally used when running

the XBee in API mode, which you do not do in this chapter.

 The RSSI LED, also present on most XBee shields, lights up briefl y when data

is being received.

 UART Selection Jumper or Switch

 The XBee radio communicates with your Arduino via a serial Universal

Asynchronous Receiver/Transmitter (UART) connection (RX and TX). In the

case of the Arduinos other than the Mega and Due, there is only one available

UART that is duplexed to the USB serial connection that you use for commu-

nicating with your computer for programming and debugging. The Leonardo

(and similar boards) has just one UART, but it can be dedicated to the RX/TX

pins, because the USB programming interface connects to the microcontroller

unit (MCU) directly. In the case of the Uno, this raises a question: How can the

XBee module and your computer’s interface both be connected to the Arduino’s

single UART at the same time? When the shield is attached, the connection of

the RX and TX pins looks like the diagram shown in Figure 11-5.

 Chapter 11 ■ Wireless Communication with XBee Radios 227

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-5: Colliding UART communication lines

 Note the collision callout in Figure 11-5. Consider what would happen if both

the XBee and your computer tried to transmit data to the Arduino. How does the

Arduino know where the data is coming from? More importantly, what happens

if both try to transmit to the Arduino at the same time? The data will “collide,”

causing garbled data that cannot be properly interpreted by the Arduino.

 Because of this collision condition, and complexities regarding the drivers

for these I/O ports, you cannot program the Arduino or talk to it from your

computer while the XBee is connected to the Arduino’s serial port. You can deal

with this in two ways:

 ■ You can unplug the XBee shield every time you want to program your

Arduino.

 ■ You can use a jumper or switch on the XBee shield to switch whether or

not the XBee is connected through to the Arduino.
 When you want to program your Arduino, you need to either remove the

XBee shield, or be sure to set your shield’s jumper/switch so that the XBee is

disconnected.

 Hardware vs. Software Serial UART Connection Option

 In this chapter, you use only the “hardware” UART port of your Arduino to

communicate with your XBee (pins 0 and 1 on your Arduino). As explained

in the preceding section, these pins are also used for the USB connection to

228 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

your computer. Most shields only allow a connection between the XBee and

Arduino on the hardware serial UART port. If your shield supports it, you

can avoid unplugging your XBee to program to your Arduino by using the

 SoftwareSerial library. The library allows you to defi ne two arbitrary digital

pins on your Arduino to act as RX/TX pins for talking with your XBee. For

this to work, your XBee shield must have jumpers that enable you to choose

which Arduino pins the RX/TX lines from the XBee connection. The SparkFun

XBee shield has a switch that allows to you connect the RX/TX pins to pins

2 and 3 instead of pins 0 and 1. If your shield supports this, you can use the

 SoftwareSerial commands throughout this chapter in place of the traditional

 Serial commands when communicating with the XBee radio.

 Configuring Your XBees

 Before you can actually use your XBees, you need to confi gure them to talk to

each other. Out of the box, XBees can already talk to each other; they are set

to a default channel and are in broadcast mode. In other words, they send and

receive with any other similarly confi gured XBee within range. Although this

is okay, at some point you may want to use multiple XBee setups within range

of each other, change communication speed, or otherwise confi gure them in

a way unique to your setup. Here, you learn how to confi gure your XBees to

speak specifi cally to each other.

 Configuring via a Shield or a USB Adapter
 You can program XBees, just like you can program your Arduino, via a USB

serial connection. You can program an XBee in two ways. The fi rst option is

to use the USB-serial converter that is built in to your Arduino (via the FTDI

chip or 8U2/16U2 Atmel chip that was explained in Chapter 6, “USB and Serial

Communication”). The second option is to use a dedicated XBee USB adapter.

I strongly recommend getting an XBee USB adapter; it will make it easier to

handle communication between an Arduino and your computer later in this

chapter. In this chapter, I use the popular SparkFun XBee USB Explorer (see

Figure 11-6) to program the XBees.

 Chapter 11 ■ Wireless Communication with XBee Radios 229

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-6: SparkFun USB Explorer

 Programming Option 1: Using the Uno as a Programmer
(Not Recommended)

 I do not recommend using an Arduino Uno as the programmer for your XBee;

it you can damage your Arduino if you are not careful. If you want to program

your XBee using your Arduino, you need to deal with the problem of colliding

serial data that was explained in the preceding section. You will need to (care-

fully) physically remove the ATMega chip from the Arduino. This is possible

with the Uno, but not possible with the Uno SMD version or any other board

that has the ATMega chip soldered onto the board rather than in a socket.

 After removing the ATMega chip, attach the XBee shield and the XBee radio

and connect your Arduino to your computer via USB. Now, all serial commands

you send will go to the XBee rather than to your ATMega chip. (Check the spe-

cifi c documentation for your board to see whether you need to set a jumper or

switch for the communication to happen.)

C
re

di
t:

 S
pa

rk
Fu

n
[P

ho
to

gr
ap

he
r

Ju
an

 P
eñ

a]
,

w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

http://www.sparkfun.com
http://www.sparkfun.com
http://www.sparkfun.com

230 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 Programming Option 2: Using the SparkFun USB Explorer
(Recommended)

 Using an XBee-USB adapter is easy: Plug the XBee into the socket on the adapter,

connect it your computer with the USB cable, and you are ready to program. The

SparkFun board uses the same FTDI chip that older Arduinos used for serial-USB

communication. Later in the chapter, this adapter is used to facilitate wireless

communication between your computer and an Arduino with an XBee shield.

 Choosing Your XBee Settings and Connecting Your XBee to
Your Host Computer
 You have an enormous number of confi guration options for your XBees, and

covering all of them could constitute its own book. Here, we cover the most

important values that you need to confi gure:

 ■ ID: Personal area network (PAN) ID. All XBees that you want to talk to

each other must be assigned to the same PAN ID.

 ■ MY : My address. This is a unique address identifying each XBee within

a certain personal area network.

 ■ DL: Destination address. This is the unique address of the XBee that you

want this XBee to talk/listen to.

 ■ BD: Baud rate. The rate at which the radios communicate with. We will

use 9600 baud for this value, which is the default.

 These values are shown in Figure 11-7 for a two-XBee system using the values

that you will confi gure in the next step.

 Figure 11-7: XBee point-to-point system

XB
ee

 P
ho

to
 C

re
di

t:
 S

pa
rk

Fu
n

[P
ho

to
gr

ap
he

r
Ju

an
 P

eñ
a]

,
w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

http://www.sparkfun.com
http://www.sparkfun.com
http://www.sparkfun.com

 Chapter 11 ■ Wireless Communication with XBee Radios 231

549360c11.indd 02-07-2008 12:00 AM

 Note that the MY and DL values for each XBee are swapped with each other

because one XBee’s destination address is the other’s source address. (The ID

that I use in these examples for the PAN is 1234, but you can choose another

four-digit hex PAN ID if you desire.) The BD is set to 3, the default value. Instead

of setting it to the actual baud rate, you set it to a number that represents the

baud rate. The baud values are related to BD values follows:

 ■ 0: 1200 baud

 ■ 1: 2400 baud

 ■ 2: 4800 baud

 ■ 3: 9600 baud (Default)

 ■ 4: 19200 baud

 ■ 5: 38400 baud

 ■ 6: 57600 baud

 ■ 7: 115200 baud

 Connect your XBee to your computer using either of the two methods described

earlier. Make sure to insert the XBee in the right direction. After connecting it,

you need to identify the serial port that it is connected to. You can do this the

same way you did for the Arduino in Chapter 1, “Getting Up and Blinking with

the Arduino.” Note down what serial port the XBee connected to.

 Configuring Your XBee with X-CTU
 Next, you program your XBees with the values specifi ed in Figure 11-7. If you

are using Windows, you can use an application called X-CTU to do this using a

graphical interface. I recommend this method if you have access to a Windows

computer. If you don’t have a Windows computer, skip to the next section, where

you learn how to confi gure your XBees using a serial terminal in Linux or OS X.

 A quick Google search for “X-CTU” will return the most up-to-date download

link for the application from the Digi website. The installer is also linked from

the web page for the chapter: www.exploringarduino.com/content/ch11 . Find

a download link, then complete the following steps:

 1. Download the installer, install X-CTU, and launch the application. Once

launched, you should see a window like the one in Figure 11-8. A list of

available Com ports appears on the left side of the window.

http://www.exploringarduino.com/content/ch11

232 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-8: Main X-CTU window

 2. Select the Com port that your XBee explorer is connected to and click the

Test/Query button highlighted in Figure 11-8. If this is a new XBee that is

confi gured using default settings (a 9600 baud rate), the window shown

in Figure 11-9 should pop up confi rming the current confi guration info

has been read from the radio.

 Figure 11-9: X-CTU query confirmation

 Chapter 11 ■ Wireless Communication with XBee Radios 233

549360c11.indd 02-07-2008 12:00 AM

 3. Navigate to the Modem Confi guration screen and click the Read button to

display all the available confi guration options on your XBee and what they

are currently set to. The result should look something like Figure 11-10.

 Figure 11-10: X-CTU modem configuration

 4. Now, you set the PAN ID, source address, and destination address. You

can set many other confi guration options as well, but we focus on just these

settings in this book. To change a setting, just click it to make it editable.

Set the following:

 ID 1234

 DL 1001

 MY 1000

 5. Click the Write button at the top of the window to write these values into

your XBee. When you do this, those values should turn blue. Figure 11-11

highlights these values.

234 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-11: Settings written to XBee

 You have now confi gured your fi rst XBee! Now, carefully remove this XBee

from the USB explorer and install the other XBee. Perform the same steps previ-

ously listed with your second XBee, but switch the DL and MY values so that

the XBees talk to each other. Figure 11-12 shows the completed confi guration

for this second XBee.

 Figure 11-12: Settings written to second XBee

 Chapter 11 ■ Wireless Communication with XBee Radios 235

549360c11.indd 02-07-2008 12:00 AM

 Both of your XBees are now confi gured and ready for communication with

each other. By assigning them a nondefault PAN ID, you reduce the risk that

they will interfere with other XBee networks. If you’ve successfully confi gured

the radios, you can skip to the section “Talking with Your Computer Wirelessly.”

 Configuring Your XBee with a Serial Terminal
 If you don’t have Windows, you need to do your XBee confi guration through

a serial terminal, because X-CTU is Windows only. This process is the same

for both Linux and Mac machines. You use the “screen” application that comes

bundled with the system accessible. As in the fi rst chapter, use the Arduino

integrated development environment (IDE) to fi gure out what the device name

is for your USB-serial adapter when it is plugged it in. You can fi nd the name

by looking in the Tools menu, under “Serial Port.”

 After identifying the device name, open a terminal (you can fi nd the terminal

by searching for it in your system’s search box) and complete the following steps:

 1. In the terminal, enter the command screen /dev/ttyUSB6 9600 (replacing

 /dev/yytUSB6 with the name of your serial port) and press Enter.

 When you press Enter, a connection is initiated to the XBee serial terminal,

and the screen goes blank. Once connected to the radio, as you type the

commands, they will not appear in the terminal. The XBee does not echo

your text back to you.

 First, I explain the programming process, and then I provide a list of

commands to enter in the terminal. To program the XBee, you need to

complete these steps:

 a. Put the XBee in programming mode.

 b. Set the PAN ID (ATID).

 c. Set the source address (ATMY).

 d. Set the destination address (ATDL).

 e. Write the settings to the XBee’s nonvolatile memory (ATWR).

 Once you enter programming mode, entry of the other commands is time

sensitive. If you wait too long between entering commands, you’ll exit

programming mode and have to reenter it. This timeout happens after

only a few seconds, so try to be quick. Remember that as you type your

commands are not shown. Furthermore, after each command, a carriage

return is not added to the terminal, so you will be typing “on top of” your

previous commands. Steps 2-7 describe the commands you actually need

to enter into the terminal to program your XBee.

236 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 2. Type +++ and wait; do not press Enter. The terminal will reply with an

“ OK ” indicating that the XBee has entered programming mode.

 3. Type ATID1234 and press Enter. This sets the PAN ID to 1234.

 4. Type ATMY1000 and press Enter. This sets the source address to 1000.

 5. Type ATDL1001 and press Enter. This sets the destination address to 1001.

 6. Type ATWR and press Enter. This commits the settings that you just entered

to nonvolatile memory. Nonvolatile memory is not deleted when power

is removed from the XBee.

 7. If you want, you can confi rm that the values have been written by enter-

ing ATID , ATMY , or ATDL without numbers afterward and pressing Enter.

This prints the current values to the display.

 NOTE If at any time you are exited from the programming mode, you can reen-
ter it by typing +++ and picking up where you left off.

 After completing all the preceding steps, carefully replace the XBee with

your other module. Then, run through the same steps, but swap the values for

ATMY and ATDL so that the XBees are set up to talk to each other.

 Your XBees are now confi gured, and you’re ready to have them talk to each

other! If you’re having trouble with the confi guration, watch the video mentioned

at the beginning of this chapter; it walks through the confi guration steps visually.

 Talking with Your Computer Wirelessly

 Now that you know how to confi gure your XBees, it’s time to start using them.

First, you use them to replace the USB cable between your computer and your

Arduino. You cannot download programs to your Arduino via an XBee connec-

tion without hardware modifi cations, so you still upload and test your programs

via a USB connection. Then, you untether and replace the USB connection with

a wireless XBee connection.

 Powering Your Remote Arduino
 Your remote Arduino will not be connected to your computer via USB, so you

need to power it somehow. You have a few options for doing this, as described

in this section.

 Chapter 11 ■ Wireless Communication with XBee Radios 237

549360c11.indd 02-07-2008 12:00 AM

 USB with a Computer or a 5V Wall Adapter

 This connection method defeats the point of going wireless, but you can leave

the Arduino plugged into your computer via USB. The USB cable will provide

5V power to your Arduino, and the XBee will communicate with a separate USB

XBee Explorer plugged into a different USB port on your computer. This is fi ne

for testing your wireless communication, but is a bit silly for any practical appli-

cation. If you go this route, make sure to choose the serial port connected to the

USB Explorer to receive communication in the serial monitor or in Processing.

 You can also use the 5V USB connection with a wall adapter. This makes a

bit more sense because you are no longer tethered to same computer that you

are programming from. If you have a smartphone, you probably already have

one of these adapters; they are commonly used for charging iPhones, Android

devices, and other smartphones and tablets. Figure 11-13 shows a standard USB

wall adapter for U.S. outlets.

 Figure 11-13: 5V USB wall adapter

 Batteries

 You can also power the Arduino using batteries. One of the most popular meth-

ods is to use a 9V battery hooked into the direct current (DC) power jack or the

“Vin” input pin. Both of these inputs feed into the Arduino’s onboard linear 5V

regulator, which generates a clean 5V signal for your microcontroller and other

logic. Figure 11-14 shows an example of a 9V battery pack with an integrated

switch and DC power jack from adafruit.com .

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

http://www.adafruit.com
http://www.adafruit.com
http://www.adafruit.com

238 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-14: 9V battery pack

 9V batteries are expensive, so some people prefer to use a AA battery pack.

An average AA battery has a nominal voltage of 1.5V. Hence, it’s fairly common

to put four of these in series to generate about 6V total. Connecting four AA bat-

teries to the Vin pin or the barrel jack input of the Arduino sends power through

the voltage regulator, which has a small “dropout” voltage. (A dropout voltage

is the minimum voltage that must exist between the input and output voltages.)

On the Arduino, the 5V regulator has a dropout of approximately 1V (though

this varies with temperature and current consumption). The input from a AA

battery pack (with four batteries) is generally around 5.5V. With a 1V drop, you

can generally expect that the Arduino logic will be operating around 4.5V. The

ATMega is rated to run at this voltage (it can actually run all the way down to

1.8V), but you should be aware that all your logic will be operating at a slightly

lower voltage than when you are on USB.

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

http://www.adafruit.com
http://www.adafruit.com
http://www.adafruit.com

 Chapter 11 ■ Wireless Communication with XBee Radios 239

549360c11.indd 02-07-2008 12:00 AM

 Wall Power Adapters

 A third option for powering your remote Arduino is to use a wall adapter. These

plug into an ordinary outlet and have a barrel jack connector on the other end for

connecting to your Arduino. There are three important specifi cations you need

to check for when choosing a wall power adapter: the physical characteristics

of the jack, the supplied voltage, and the maximum current output capabilities.

 The Arduino requires a 2.1mm center-positive DC barrel jack plug. In other

words, the inside of the jack should be at a positive voltage, and the outside con-

tact should be connected to ground. This is generally indicated on the charger

by a symbol that looks like the one in Figure 11-15.

 Figure 11-15: Center-positive symbol

 Because the Arduino has a built-in voltage regulator, you can use any DC

voltage between 7V and 12V. This voltage will also be available on the Vin pin,

which can prove useful for powering higher-power devices such as motors.

 All DC wall adapters are also rated for the maximum current that they sup-

ply. The higher the current, the more things you will be able to power with it.

A 1-amp supply is fairly common and provides more than enough power for

your Arduino’s 5V regulated logic and some additional components.

 Revisiting the Serial Examples: Controlling Processing with
a Potentiometer
 At this point, you’re fi nally ready to start doing some wireless communication.

Because XBee is nothing more than a serial pass-through, you can start by test-

ing your setup with the examples you already created in Chapter 6. You need

to complete the following steps:

 1. Upload the sketch that allows you to change the color of a Processing

window using a potentiometer connected to your Arduino.

 Do this before you install the XBee shield on to your Arduino, because of

the shared UART complexities that were discussed earlier in the chapter.

240 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

If your shield has a jumper or switch to select whether or not the XBee is

connected to the UART, you can use that while programming. (Check the

documentation for your particular shield if you’re unsure.)

 The sketch that reads the pot and transmits it to the computer is repeated

in Listing 11-1 for your reference.

 Listing 11-1: Arduino Code to send Data to the Computer—pot_to_processing/arduino_
read_pot

 //Sending POT value to the computer

 const int POT=0; //Pot on analog pin 0

 int val; //For holding mapped pot value

 void setup()
 {
 Serial.begin(9600); //Start serial
 }

 void loop()
 {
 val = map(analogRead(POT), 0, 1023, 0, 255); //Read and map POT
 Serial.println(val); //Send value
 delay(50); //Delay so we don't
 //flood the computer
 }

 2. Unplug the Arduino from your computer and install the XBee shield along

with the XBee. Connect a potentiometer to analog input 0 as shown in the

wiring diagram in Figure 11-16.

 3. Power this Arduino using one of the methods described in the previous

section. I chose to use a USB cable with a wall power adapter, but any of

the methods described would work fi ne.

 4. Connect your XBee USB Explorer with the other programmed XBee

radio to your computer with a USB cable. (Alternatively, you can use

another Arduino board connected to an XBee Shield with the ATMega

chip removed.) If the radios are confi gured correctly, you should see the

RX light on the USB XBee Explorer fl ashing rapidly as it receives data.

 Chapter 11 ■ Wireless Communication with XBee Radios 241

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-16: Wiring diagram showing Arduino with XBee shield and potentiometer

 5. Before using this to control the Processing sketch, you can open a serial

monitor window from the Arduino IDE to see the input coming in through

your XBee. Select the serial port that your Explorer is connected to and

open the serial monitor to see the values streaming in (see Figure 11-17).

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

242 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-17: Wireless incoming data shown with the serial monitor

 6. After you have confi rmed that data is coming in, close the serial monitor

and run the Processing sketch to adjust the window’s color based on the

incoming data.

 Before starting the sketch, ensure that you have the proper serial port

selected. Listing 11-2 repeats the code.

 Listing 11-2: Processing Code to Read Data and Change Color on the Screen— pot_to_
processing/processing_display_color

 //Processing Sketch to Read Value and Change Color on the Screen

 //Import and initialize serial port library
 import processing.serial.*;
 Serial port;

 float brightness = 0; //For holding value from pot

 void setup()
 {
 size(500,500); //Window size
 port = new Serial(this, "COM3", 9600); //Set up serial
 port.bufferUntil('\n'); //Set up port to read
 //until newline
 }

 void draw()
 {

 Chapter 11 ■ Wireless Communication with XBee Radios 243

549360c11.indd 02-07-2008 12:00 AM

 background(0,0,brightness); //Updates the window
 }

 void serialEvent (Serial port)
 {
 brightness = float(port.readStringUntil('\n')); //Gets val
 }

 When you run the sketch, it should work just as it did when you were con-

nected directly to the Arduino with a USB cable. Run around your house or

offi ce (if you are using a battery pack) and control the colors on your screen.

 Revisiting the Serial Examples: Controlling an RGB LED
 You’ve now confi rmed that you can send data wirelessly from your Arduino

to the computer. Next, you use the RGB LED control sketch from Chapter 6 to

confi rm that you can wirelessly send commands from your computer to your

Arduino. After confi rming that you can successfully send data between your

Arduino and the computer wirelessly, you can design any number of exciting

applications; you’ll fi nd some ideas listed on the webpage for this chapter.

 Again, the fi rst step is to load the appropriate program (see Listing 11-3) on

to your Arduino. Use the same program that you used in chapter six. It accepts

a string of RGB values and sets an RGB LED accordingly.

 Listing 11-3: RGB LED Control via Serial— processing_control_RGB/list_control

 //Sending Multiple Variables at Once

 //Define LED Pins
 const int RED =11;
 const int GREEN =10;
 const int BLUE =9;

 //Variables for RGB levels
 int rval = 0;
 int gval = 0;
 int bval = 0;

 void setup()
 {
 Serial.begin(9600); //Serial port at 9600 baud

 //Set pins as outputs
 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);

244 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 pinMode(BLUE, OUTPUT);
 }

 void loop()
 {
 //Keep working as long as data is in the buffer
 while (Serial.available() > 0)
 {
 rval = Serial.parseInt(); //First valid integer
 gval = Serial.parseInt(); //Second valid integer
 bval = Serial.parseInt(); //Third valid integer

 if (Serial.read() == '\n') //Done transmitting
 {
 //set LED
 analogWrite(RED, rval);
 analogWrite(GREEN, gval);
 analogWrite(BLUE, bval);
 }
 }
 }

 Next, wire up the Arduino just as you did in Chapter 6 (with the addition of

the wireless shield and XBee radio), as shown in Figure 11-18.

 As in the previous section, connect your USB Explorer to your computer and

launch the Processing sketch, which is shown in Listing 11-4. Make sure you

put the hsv.jpg fi le into the data folder of the sketch, as you did in Chapter 6 (It

is included in the online code download). Before running the sketch, be sure

to set the serial port name to the correct value.

 Listing 11-4: Processing Sketch to Set Arduino RGB Colors —processing_control_RGB/
processing_control_RGB

 import processing.serial.*; //Import serial library
 PImage img; //Image object
 Serial port; //Serial port object

 void setup()
 {
 size(640,256); //Size of HSV image
 img = loadImage("hsv.jpg"); //Load in background image
 port = new Serial(this, "COM9", 9600); //Open serial port

 }

 void draw()
 {
 background(0); //Black background
 image(img,0,0); //Overlay image
 }

 Chapter 11 ■ Wireless Communication with XBee Radios 245

549360c11.indd 02-07-2008 12:00 AM

 void mousePressed()
 {
 color c = get(mouseX, mouseY); //Get the RGB color where mouse
 //was pressed
 String colors = int(red(c))+","+int(green(c))+","+int(blue(c))+"\n";
 //extract values from color
 print(colors); //Print colors for debugging
 port.write(colors); //Send values to Arduino
 }

 Figure 11-18: Arduino wired to XBee shield and RGB LED

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

246 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 When you run this sketch, the color picker should appear just as it did in

Chapter 6. Click a color. It will be transmitted to the remote Arduino, and the

RGB LED will become the color you’ve picked. The values transmitted should

show up in the Processing terminal as well. At this point, you’ve completely

tested that your XBees can communicate back and forth with a computer. In the

next section, you use the techniques that you developed here to communicate

directly between two Arduinos.

 Talking with Another Arduino: Building a Wireless
Doorbell

 Facilitating wireless communication between Arduinos is extremely useful.

You can use multiple Arduino nodes to create sensor networks, transmit con-

trol commands (for a radio-controlled [RC] car, for example), or to facilitate

remote monitoring of an electrical system. In this section, you use two Arduinos

equipped with XBees to make a doorbell for your home, apartment, or offi ce.

A remote Arduino at your door will respond to button presses from a visitor.

When a visitor “rings” the doorbell, your other Arduino will light up and make

sounds to indicate that you have a visitor. You might want to watch the video

demo of the system in action at www.exploringarduino.com/content/ch11 before

you build the project.

 System Design
 The system you’ll build consists of two Arduinos. Each will have an XBee shield

and a radio. One Arduino can be placed outside of your home or apartment for

people to press the button, and the other can be placed anywhere inside to alert

you when somebody rings the doorbell. The range of the two units depends

on the type of XBees, how many walls are between the two units, and other

environmental factors.

 Because just making a generic buzzer is boring, the receiving Arduino will

fl ash multicolor lights and alternate tones to get your attention. You can easily

customize the system to add your own sound effects. While the outdoor system

in this example will be a simple pushbutton, you could replace the pushbutton

with an IR sensor, light sensor, or occupancy sensor to automatically determine

when somebody is approaching.

 When designing a multifaceted system, it’s good engineering practice to devise

a high-level system design, such as the one shown in Figure 11-19. The level of

detail that you use when designing such a diagram is up to you. Designing

a simple diagram like the one shown here will help you to devise a plan for

building each part of the individual system.

http://www.exploringarduino.com/content/ch11

 Chapter 11 ■ Wireless Communication with XBee Radios 247

549360c11.indd 02-07-2008 12:00 AM

 Figure 11-19: Wireless doorbell system diagram

 Transmitter Hardware
 First, build the hardware for the doorbell component, which will be referred to

as the transmitter. You need a button with a pull-down resistor, connected to

a digital input on an Arduino with a mounted XBee shield (see Figure 11-20).

 Figure 11-20: Wireless doorbell transmitter Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

248 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 It doesn’t matter what kind of Arduino you use in your system, but it is

important to note that serial communication on boards like the Leonardo works

differently than on the Uno. The Leonardo and Micro have a single MCU to

control serial communication and program execution, whereas the Uno and

Mega have separate processors. To demonstrate these differences, I chose to use

a Leonardo for the transmitter. The circuit for either type of board is the same;

software differences are addressed next.

 Because the transmitter will presumably not be near a computer, choose one

of the power options from earlier in the chapter that doesn’t require power over

USB from a computer. In the video demo, I used a 9V battery connected to the

barrel jack connector. If you want this to be a bit more permanent, you might

want to power the circuit using a DC wall adapter.

 TIP If you are interested in making something a bit more polished, you could buy a
large, wired pushbutton and wire it through the wall to the Arduino on the other side.

 Receiver Hardware
 Next, build the component that will notify you when the transmitter’s button

is pressed. This will be your receiver. The hardware for this circuit consists of

an Arduino with an XBee shield and radio, an RGB LED, resistors, and a small

Piezo speaker. Follow the wiring diagram in Figure 11-21. Note that only the

red and green LEDs are used in the sketch, so adding a resistor for the blue LED

resistor is not necessary. You could also install a potentiometer in-line with the

speaker to make the volume adjustable.

 Figure 11-21: Wireless doorbell receiver

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 11 ■ Wireless Communication with XBee Radios 249

549360c11.indd 02-07-2008 12:00 AM

 You need to pick an Arduino and power supply. While any type of board

will work, I am using an Uno. I chose a USB cable connected to a wall adapter

for power. You could just as easily use a battery or a USB connection to your

computer. You can expand the functionality of the receiver by adding more

lights, motors, or controlling a Processing sketch on your computer.

 Transmitter Software
 Once your hardware is all set up, you need to write the software for both ends

of the system. Bear in mind that there are myriad ways to set up this commu-

nication scheme, and just one methodology is outlined here.

 For this setup, you have the transmitter sending a value every 50ms. It will

be '0' when the button is not pressed and '1' when the button is pushed. It’s

not necessary to debounce the button, because you are not looking for button

clicks; the receiver will ring as long as the transmitter button is held down.

 The code changes slightly depending on what kind of Arduino you are using.

In the case of the Arduino Uno (or any other Arduino that has a separate Atmel

or FTDI chip for handling serial communication), the main MCU UART con-

nection is shared between the USB port and the RX/TX pins (pins 0 and 1) on

the Arduino. If using an Uno or Mega (or any other Arduino with a separate

USB-serial chip), you need to remove the XBee shield to program the Arduino,

or adjust the jumpers/switch if your shield has that functionality. On these

boards, Serial refers to both USB and UART communication over pins 0 and 1.

 If you are using the Leonardo, or another Arduino that has USB communica-

tion integrated, you use Serial to talk over USB and Serial1 to talk over the

RX/TX pins. You do not need to remove an XBee shield to program a board

like the Leonardo because the UART is not shared. The code in Listing 11-5 is

written for the Leonardo and other similar Arduinos. If you are using an Uno-

based platform, replace references to Serial1 with Serial .

 Listing 11-5: Doorbell Transmitter—doorbell/transmitting_arduino

 //Code running on an Arduino to transmit the doorbell push

 const int BUTTON =12; //Button on pin 12

 void setup()
 {
 //NOTE: On the Leonardo, the RX/TX serial pins are
 //not multiplexed with USB like they are on Uno.
 //This sketch is written for the Leonardo (Serial1 = RX/TX pins)
 //If you are using the Uno, change Serial1 to Serial, here and below
 Serial1.begin(9600); //Start serial
 }

250 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 void loop()
 {
 Serial1.println(digitalRead(BUTTON)); //Send the button's state
 delay(50); //Small delay so we don't flood the receiver
 }

 In the setup, the serial port connected to the XBee starts to run at 9600 baud.

Every 50ms, the value of the digital input is read and printed out to the radio.

 digitalRead() can be placed directly inside of the println statement because

the output value doesn’t need to be used anywhere else in the program.

 Receiver Software
 The receiver software is more complicated than the transmitter program. The

example code provided in Listing 11-6 was written for an Arduino Uno. If you

are using a Leonardo-type board, replace Serial with Serial1 .

 This software needs to listen to the serial port, determine whether the remote

button is being pressed, and modulate light/sound while still listening for new

incoming data. The last part is what makes this program tricky; you need to

use a “nonblocking” technique so that program doesn’t have to call delay()

at any point. A blocking function is anything that prevents the system from

performing other tasks. delay() is an example of a blocking function. When it

is invoked, nothing else happens in the program until delay() has fi nished. If

you were to use a delay() statement in a communication scheme like this, you

would run into two problems: The receiver’s response to the transmitter’s signal

would not be instantaneous, and the input buffer could overfl ow because the

transmitter may be sending data at a rate faster than the receiver can read it.

 The goal is to have the light blink back and forth between red and green,

and to have the Piezo’s pitch go back and forth between two frequencies. You

can’t use a delay() for the reasons mentioned earlier. Instead of a delay() , you

use the millis() function, which returns the number of milliseconds since

the Arduino started running the sketch. The light and speaker switch at a rate

of once every 100ms. So, you store the time at which the previous switch was

made and look for a new millis() value to be at least 100ms greater than the

previous switch time. When that happens, you swap the pins for the LED and

adjust the frequency. Also in loop() , you check the serial buffer for a '0' or

 '1' and adjust the lights and sound accordingly.

 The setup() initializes the program’s values. To facilitate switching, you keep

track of the pin states of the LEDs. You also keep track of the current frequency

and the previous toggle time returned from millis() .

 Consider the code in Listing 11-6 and load it on to your receiving Arduino.

Before uploading the code, remember to set any necessary jumpers or remove

the XBee shield to program the board.

 Chapter 11 ■ Wireless Communication with XBee Radios 251

549360c11.indd 02-07-2008 12:00 AM

 Listing 11-6: Doorbell Receiver—doorbell/receiving_arduino

 //Code running on an Arduino to receive doorbell value

 const int RED =11; //Red LED on pin 11
 const int GREEN =10; //Green LED on pin 10
 const int SPEAKER =8; //Speaker on pin 8

 char data; //Char to hold incoming serial data
 int onLED = GREEN; //Initially on LED
 int offLED = RED; //Initially off LED
 int freq = 131; //Initial speaker frequency
 unsigned long prev_time = 0; //Timer for toggling the LED and speaker

 void setup()
 {
 Serial.begin(9600); //Start serial
 }

 void loop()
 {

 //Handle light and sound toggling
 //If 100ms have passed
 if (millis() >= prev_time + 100)
 {
 //Toggle the LED state
 if (onLED == GREEN)
 {
 onLED = RED;
 offLED = GREEN;
 }
 else
 {
 onLED = GREEN;
 offLED = RED;
 }
 //Toggle the frequency
 if (freq == 261){
 freq = 131;
 } else {
 freq = 261;
 }
 //Set the current time in ms to the
 //Previous time for the next trip through the loop
 prev_time = millis();
 }

 //Check if serial data is available
 if (Serial.available() > 0)
 {

252 Part III ■ Communication Interfaces

549360c11.indd 02-07-2008 12:00 AM

 //Read byte of data
 data = Serial.read();

 //If the button is pressed, play tone and turn LED on
 if (data == '1')
 {
 digitalWrite(onLED, HIGH);
 digitalWrite(offLED, LOW);
 tone(SPEAKER, freq);
 }
 //If the button is not pressed, turn the sound and light off
 else if (data == '0')
 {
 digitalWrite(onLED, LOW);
 digitalWrite(offLED, LOW);
 noTone(SPEAKER);
 }
 }
 }

 The fi rst if() statement in loop() checks the elapsed time since it last ran.

If it’s been at least 100ms, it’s time to switch the lights and frequency. By checking

the current states, you can alternate values for the light and frequency. You set the

 offLED when the other light gets turned on. At the end of the if() statement, the

previous time is set to the present time so that the process can be repeated.

 The second large if() statement in loop() checks incoming serial data. When

a '0' is received, everything gets turned off. When there is a '1' , the light and

speaker turn on according to the values set earlier in loop() .

 NOTE Watch a demo video of the wireless Arduino doorbell at www.explorin-
garduino.com/content/ch11 . You can also find this video on the Wiley website
shown at the beginning of this chapter.

 Summary

 In this chapter, you learned about the following:

 ■ There are a wide range of available XBee models.

 ■ You must convert between 5V and 3.3V logic levels to use an XBee with

most Arduinos.

 ■ You can confi gure XBee using either X-CTU on Windows, or the terminal

on Linux and Mac.

http://www.explorin-garduino.com/content/ch11
http://www.explorin-garduino.com/content/ch11
http://www.explorin-garduino.com/content/ch11

 Chapter 11 ■ Wireless Communication with XBee Radios 253

549360c11.indd 02-07-2008 12:00 AM

 ■ There are a variety of options for powering your Arduino that do not

require you to stay connected to your computer via USB.

 ■ You can communicate wirelessly between your computer and an Arduino

using XBees.

 ■ You can communicate wirelessly between two Arduinos using XBees.

 ■ The millis() function can be used with state variables to create “non-

blocking” code that implements time delays.

549360c11.indd 02-07-2008 12:00 AM

549360c12.indd 02-07-2008 12:00 AM

 P a r t

IV
 Advanced Topics and Projects

 In This Part

 Chapter 12: Hardware and Timer Interrupts

 Chapter 13: Datalogging with SD Cards

 Chapter 14: Connecting Your Arduino to the Internet

549360c12.indd 02-07-2008 12:00 AM

 257

549360c12.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino (Uno recommended)

 USB cables for programming Arduino

 Pushbutton

 Piezo buzzer

 Common cathode RGB LED

 10kΩ resistor

 100Ω resistor

 150Ω resistor

 220Ω resistors (× 3)

 10uF electrolytic capacitor

 74HC14 hex inverting Schmitt trigger IC

 Jumper wires

 Breadboard

 C H A P T E R

12

 Hardware and Timer Interrupts

258 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at www

.exploringarduino.com/content/ch12 .

 In addition, all code can be found at w w w.wiley.com/remtitle

.cgi?isbn=1118549368 on the Download Code tab. The code is in the chapter 12

download and individually named according to the names throughout the chapter.

 Up to this point, every Arduino program you’ve written has been synchro-

nous. This presents a few problems, namely that using delay() can preclude

your Arduino from doing other things. In the preceding chapter, you created

a software timer using millis() to avoid the synchronous blocking nature of

 delay() . In this chapter, you take this idea a step further by adding both timer

and hardware interrupts. Interrupts make it possible to execute code asynchro-

nously by triggering certain events (time elapsed, input state change, and so on).

Interrupts, as their name implies, allow you to stop whatever your Arduino is

currently doing, complete a different task, and then return to what the Arduino

was previously executing. In this chapter, you learn how to execute interrupts

when timed events occur or when input pins change state. You will use this

knowledge to build a “nonblocking” hardware interrupt system, as well as a

sound machine using timer interrupts.

 NOTE Follow a video tutorial about interrupts and hardware debouncing:
 www.jeremyblum.com/2011/03/07/arduino-tutorial-10-interrupts-and-
hardware-debouncing . You can also find this video on the Wiley website shown
at the beginning of this chapter.

 Using Hardware Interrupts

 Hardware interrupts are triggered depending on the state (or change in state), of

an input I/O pin. Hardware interrupts can be particularly useful if you want to

change some state variable within your code without having to constantly poll

the state of a button. In some previous chapters, you used a software debounce

routine along with a check for the button state each time through the loop. This

works great if the other content in your loop does not take a long time to execute.

 Suppose, however, that you want to run a procedure in your loop that takes

awhile. For example, perhaps you want to slowly ramp up the brightness of an

LED or the speed of a motor using a for() loop with some delay() statements.

If you want button presses to adjust the color or speed of such an LED fade, you

will miss any presses of the button that occur while the delay() is happening.

Ordinarily, human reaction time is slow enough that you can execute many

functions within the loop() of an Arduino program, and can poll a button once

every time you go through the loop without missing the button press. However,

when there are “slow” components to your code within the loop() , you risk

missing external inputs.

http://www.wiley.com/remtitle
http://www.jeremyblum.com/2011/03/07/arduino-tutorial-10-interrupts-and-hardware-debouncing
http://www.jeremyblum.com/2011/03/07/arduino-tutorial-10-interrupts-and-hardware-debouncing
http://www.jeremyblum.com/2011/03/07/arduino-tutorial-10-interrupts-and-hardware-debouncing

 Chapter 12 ■ Hardware and Timer Interrupts 259

549360c12.indd 02-07-2008 12:00 AM

 That’s where interrupts come in. Select pins on your Arduino (or all pins

on the Due) can function as external hardware interrupts. Hardware within

the ATMega knows the state of these pins and can report their values to your

code asynchronously. Hence, you can execute your main program, and have it

“interrupted” to run a special function whenever an external interrupt event

is detected. This interrupt can happen anywhere in the program’s execution.

Figure 12-1 shows what this process could look like in practice.

 Figure 12-1: How an external interrupt affects program flow

 Knowing the Tradeoffs Between Polling and Interrupting
 Hardware interrupts are an alternative to repeatedly polling external inputs

in loop() . They are not better or worse; instead, there are tradeoffs between

using the two. When designing a system, you must consider all your options

and choose the appropriate one for your application. This section describes the

260 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

main differences between polling inputs and using interrupts so that you can

decide for yourself which option is best for your particular project.

 Ease of Implementation (Software)

 Thanks to the excellent programming language that has been constructed for

the Arduino, attaching external interrupts in software is actually very straight-

forward. Using polling to detect inputs to the Arduino is still easier because

all you have to do is call digitalRead() . If you don’t need to use hardware

interrupts, don’t bother to use them over polling, because it does require you

to write a little more code.

 Ease of Implementation (Hardware)

 For most digital inputs, the hardware for an input that triggers via polling or

interrupting is exactly the same, because you are just looking for a state change

in the input. However, in one situation you need to adjust your hardware if you

are using an edge-triggered interrupt: bouncy inputs. As discussed in Chapter 2,

“Digital Inputs, Outputs, and Pulse-Width Modulation,” many buttons (some-

thing you will commonly want to use to trigger an input) bounce when you

press them. This can be a signifi cant problem because it will cause the interrupt

routine to trigger multiple times when you want it to trigger only once. What’s

worse, it is not possible to use the software debouncing function that you had

previously written because you cannot use a delay() in an interrupt routine.

Therefore, if you need to use a bouncy input with a hardware interrupt, you

need to fi rst debounce it with hardware. If your input does not bounce (like a

rotary encoder) you don’t have to worry, and your hardware will be no different

than it was with a polling setup.

 Multitasking

 One of the primary reasons for using interrupts is to enable pseudo-multitasking.

You can never achieve true multitasking on an Arduino because there is only

one microcontroller unit (MCU), and because it can execute only one command

at a time. However, because it executes commands so quickly, you can use inter-

rupts to “weave” tasks together so that they appear to execute simultaneously.

For instance, using interrupts, you can be dimming LEDs with delay() while

appearing to simultaneously respond to a button input that adjusts the fade speed

or color. When polling an external input, you can only read the input once you

get to a digitalRead() in your program loop, meaning that having “slower”

functions in your program could make it hard to effectively listen for an input.

 Chapter 12 ■ Hardware and Timer Interrupts 261

549360c12.indd 02-07-2008 12:00 AM

 Acquisition Accuracy

 For certain fast acquisition tasks, interrupting is an absolute necessity. For

example, suppose that you are using a rotary encoder. Rotary encoders are

commonly mounted on direct current (DC) motors and send a pulse to the

microcontroller every time some percentage of a revolution is completed. You

can use them to create a feedback system for DC motors that allows you to keep

track of their position, instead of just their speed. This enables you dynamically

adjust speed based on torque requirements or to keep track of how much a DC

motor has moved. However, you need to be absolutely sure that every pulse is

captured by the Arduino. These pulses are fairly short (much shorter than a

pulse created by you manually pushing a button) and can potentially be missed

if you check for them by polling within loop() . In the case of a rotary encoder

that triggers only once per revolution, missing a pulse causes your program to

believe that the motor is moving at half of its actual speed! To ensure that you

capture timing for important events like this, using a hardware input is a must.

If you are using a slowly changing input (like a button), polling might suffi ce.

 Understanding the Arduino’s Hardware Interrupt
Capabilities
 With most Arduino boards, you can use only certain pins as interrupts. Interrupts

are referred to by an ID number that corresponds to a particular pin. The excep-

tion is the Due, on which all the pins can act as interrupts, and you reference

them by pin number. If you are not using the Due, consult Table 12-1 to determine

what pins on your Arduino can act as interrupts and what ID number they are.

 Table 12-1: Available Hardware Interrupts on Various Arduinos

 BOARD INT 0 INT 1 INT 2 INT 3 INT 4 INT 5

 Uno, Ethernet Pin 2 Pin 3 - - - -

 Mega2560 Pin 2 Pin 3 Pin 21 Pin 20 Pin 19 Pin 18

 Leonardo Pin 3 Pin 2 Pin 0 Pin 1 - -

 These IDs are used in conjunction with attachInterrupt() . The fi rst argu-

ment is the ID (in the case of the boards in Table 12-1) or the pin number (in the

case of the Due). If, on the Uno, you want to attach an interrupt to physical pin

2 on the board, the fi rst argument of attachInterrupt() would be 0 because

pin 2 is attached to interrupt 0 on the Uno. The Uno (and other ATMega328-

based boards) support just two external interrupts, whereas the Mega and the

Leonardo support more external interrupts.

262 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 Hardware interrupts work by “attaching” interrupt pins to certain functions.

So, the second argument of attachInterrupt() is a function name. If you want

to toggle the state of a Boolean variable every time an interrupt is triggered,

you might write a function like this, which you pass to attachInterrupt() :

 void toggleLed()
 {
 var = !var;
 }

 When this function is called, the Boolean var is toggled to the opposite of its

previous state, and the rest of your program continues running where it left off.

 The fi nal argument passed to attachInterrupt() is the trigger mode. Arduino

interrupts can be triggered on LOW , CHANGE , RISING , or FALLING . (The Due can

also be triggered on HIGH .) CHANGE , RISING , and FALLING are the most common

things to trigger on because they cause an interrupt to execute exactly one time

when an external input changes state, like a button going from LOW to HIGH .

The transition from LOW to HIGH is RISING , and from HIGH to LOW is FALLING . It

is less common to trigger on LOW or HIGH because these cause the interrupt to

fi re continuously as long as that state is true, effectively blocking the rest of the

program from running.

 Building and Testing a Hardware-Debounced Button
Interrupt Circuit
 To test out your newfound knowledge, you construct a circuit with an RGB

LED and a hardware-debounced pushbutton. The LED fades up and down on

a selected color. When the button is pressed, the LED immediately changes the

fade color to another one, while using delay() to accomplish the fading.

 Creating a Hardware-Debouncing Circuit

 As you learned in the Chapter 2, most buttons actually “bounce” up and down

when you press them. This action presents a serious problem when you are

using hardware interrupts because it might cause an action to be triggered more

times than you intended. Luckily, you can debounce a button in hardware so

that you always get a clean signal going into your microcontroller.

 First, take a look at an ordinary button signal hooked up using a pull-up

resistor. Using a pull-up resistor instead of a pull-down does exactly what you

would expect: By default, the button state is pulled high by the resistor; when

the button is pressed, it connects ground to the I/O pin and input goes low.

 Chapter 12 ■ Hardware and Timer Interrupts 263

549360c12.indd 02-07-2008 12:00 AM

You use a pull-up circuit instead of a pull-down in this example and invert the

output later. Figure 12-2 shows the button signal being probed with an oscillo-

scope. When I press the button, it bounces up and down before fi nally settling

at a low state.

 Figure 12-2: Ordinary pushbutton bouncing before settling

 If you trigger an interrupt off this signal, it executes the interrupt function

three times in a row. But, using something called a resistor-capacitor network

(commonly called an RC circuit), you can prevent this.

 If you connect a capacitor across the terminal of the switch and a resistor in

series with the switch, it creates a resistor-capacitor network. While the switch

is not pressed, the capacitor charges through the resistors. When you push the

button, the capacitor starts to discharge, and the output goes high. If the button

bounces up and down for a few milliseconds, the resistors recharge the capacitor

while the switch momentarily opens, allowing it to maintain the voltage level

at the output. Through this process, you get a signal that transitions between

high and low only one time in a period determined by the values of the resis-

tor and capacitor. Such a circuit would look like the one shown in Figure 12-3.

264 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 Figure 12-3: Creating a debounce circuit: adding a capacitor and a resistor

 Adding the resistor in series with the switch (R2 in Figure 12-3) is not com-

pletely necessary; without it, the capacitor would discharge (almost) instantly

and would still be recharged quickly enough by R1. However, this rapid dis-

charge over the switch could damage cheap buttons. Including the 100Ω resis-

tor increases the discharge time and keeps all your components safe. This,

however, adds a discharge curve to your output. You can see this effect in the

oscilloscope in Figure 12-4.

 Figure 12-4: Signal bouncing removed with a RC circuit

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

 Chapter 12 ■ Hardware and Timer Interrupts 265

549360c12.indd 02-07-2008 12:00 AM

 The RC circuit that you just created will make a “curved” input signal to

the Arduino’s I/O pin. Our interrupt is looking for an edge, which is detected

when a shift from high to low or from low to high occurs at a certain speed.

The “sharpness” of this edge is called the hysteresis of the signal edge, and it

might not be sharp enough with the smoothing caused by the capacitor. You

can increase the sharpness of this falling signal with a Schmitt trigger. Schmitt
triggers are integrated circuits (ICs) that create a sharp edge when the input

signal surpasses a certain threshold. The output from the trigger can then be

fed right into the Arduino’s I/O pin. In this case, you use an inverting Schmitt

trigger, the 74HC14 IC. This chip has six separate inverting Schmitt triggers in

it, but you use only one. Inspect the datasheet image of the IC in Figure 12-5.

 Figure 12-5: Inverting Schmitt trigger pin-out

C
re

di
t:

 Im
ag

es
 c

ou
rt

es
y

of
 S

TM
ic

ro
el

ec
tr

on
ic

s.
 U

se
d

w
ith

 p
er

m
is

si
on

, w
w
w
.
s
t
.
c
o
m

.

http://www.st.com
http://www.st.com
http://www.st.com

266 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 The output from your debounce circuit will go through one of these inverting

Schmitt triggers before fi nally being fed into the Arduino. The resulting circuit

looks like Figure 12-6.

 Figure 12-6: Final step for creating a debounce circuit: adding an inverting Schmitt trigger

 Because this is an inverting trigger, the signal will also be fl ipped. So, when

the button is held down, the fi nal signal will be a logical high, and vice versa.

So, in the next step, when you write the code, you want to look for a rising edge

to detect when the button is fi rst pressed. The fi nal output signal looks like a

nice, clean, bounce-free signal (see Figure 12-7).

 Figure 12-7: Final output of debounce circuit

Im
ag

e
cr

ea
te

d
w

ith
 E

ag
le

.

 Chapter 12 ■ Hardware and Timer Interrupts 267

549360c12.indd 02-07-2008 12:00 AM

 You’ve now got a nice clean signal that you can feed into your hardware

interrupt function!

 Assembling the Complete Test Circuit

 From a schematic level, you now understand how to wire up a button debouncer.

For the tests that you’ll run momentarily, you use an RGB LED in tandem with

a button to test your hardware-debouncing and interrupt code. Wire up a com-

plete circuit as shown in the wiring diagram in Figure 12-8.

 Figure 12-8: Complete hardware interrupt wiring diagram

 Writing the Software

 It’s now time to write a simple program to test both your debouncing and the

hardware interrupt capabilities of the Arduino. The most obvious and useful

implementation of hardware interrupts on the Arduino is to allow you to listen

for external inputs even while running timed operations that use delay() . There

are many scenarios where this might happen, but a simple one occurs when

fading an LED using pulse-width modulation (PWM) via analogWrite() . In

this sketch, you have one of the three RGB LEDs always fading up and down

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

268 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

slowly from 0 to 255 and back again. Every time you press the button, the color

that is being faded immediately changes. This would not be possible using

polling because you would only be checking the button state after completing

a fade cycle; you would almost certainly miss the button press.

 First, you need to understand volatile variables. Whenever a variable will be

changing within an interrupt, it must be declared as volatile . This is necessary

to ensure that the compiler handles the variable correctly. To declare a variable

as volatile, simply add volatile before the declaration:

 volatile int selectedLED = 9;

 To ensure that your Arduino is listening for an interrupt, you use attachIn-

terrupt() in setup() . The inputs to the function are the ID of the interrupt (or

the pin number for the Due), the function that should be run when an interrupt

occurs, and the triggering mode (RISING , FALLING , and so on). In this program,

the button is connected to interrupt 0 (pin 2 on the Uno), it runs the swap()

function when triggered, and it triggers on the rising edge:

 attachInterrupt(0, swap, RISING);

 You need to write swap() and add it to your program; this is included in the

complete program code shown in Listing 12-1. That’s all you have to do! After

you’ve attached the interrupt and written your interrupt function, you can write

the rest of your program to do whatever you want. Whenever the interrupt is

triggered, the rest of program pauses, the interrupt function runs, and then your

program resumes where it left off. Because interrupts pause your program, they

are generally very short and do not contain delays of any kind. In fact, delay()
 does not even work inside of an interrupt-triggered function. Understanding

all of this, you can now write the following program to cycle through all the

LED colors and switch them based on your button press.

 Listing 12-1: Hardware Interrupts for Multitasking—hw_multitask.ino

 //Use Hardware-Debounced Switch to Control Interrupt

 //Button pins
 const int BUTTON_INT =0; //Interrupt 0 (pin 2 on the Uno)
 const int RED =11; //Red LED on pin 11
 const int GREEN =10; //Green LED on pin 10
 const int BLUE =9; //Blue LED on pin 9

 Chapter 12 ■ Hardware and Timer Interrupts 269

549360c12.indd 02-07-2008 12:00 AM

 //Volatile variables can change inside interrupts
 volatile int selectedLED = RED;

 void setup()
 {
 pinMode (RED, OUTPUT);
 pinMode (GREEN, OUTPUT);
 pinMode (BLUE, OUTPUT);
 //The pin is inverted, so we want to look at the rising edge
 attachInterrupt(BUTTON_INT, swap, RISING);
 }

 void swap()
 {
 //Turn off the current LED
 analogWrite(selectedLED, 0);
 //Then, choose a new one.
 if (selectedLED == GREEN)
 selectedLED = RED;
 else if (selectedLED == RED)
 selectedLED = BLUE;
 else if (selectedLED == BLUE)
 selectedLED = GREEN;
 }

 void loop()
 {
 for (int i = 0; i<256; i++)
 {
 analogWrite(selectedLED, i);
 delay(10);
 }
 for (int i = 255; i>= 0; i--)
 {
 analogWrite(selectedLED, i);
 delay(10);
 }
 }

 When you load this up, your RGB LED should start fading back and forth on

one color. Every time you press the button, a new color will take over, with the

same brightness as the previous color.

 NOTE You can watch a demo video of the Hardware Interrupted Arduino with
button debouncing at www.exploringarduino.com/content/ch12 . You can also
find this video on the Wiley website shown at the beginning of this chapter.

http://www.exploringarduino.com/content/ch12

270 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 Using Timer Interrupts

 Hardware interrupts are not the only kind of interrupt you can trigger on

an Arduino; there are also timer-based interrupts. The ATMega328 (the chip

used in the Uno) has three hardware timers, which you can use for all kinds

of different things. In fact, the default Arduino library already uses these tim-

ers to increment millis() , operate delay() , and enable PWM output with

 analogWrite() . Although not offi cially supported by the Arduino programming

language (yet), you can also take manual control of one of these timers to initi-

ate timed functions, generate arbitrary PWM signals on any pin, and more. In

this section, you learn how to use a third-party library (the TimerOne library)

to take manual control of the 16-bit Timer1 on the ATMega328-based Arduinos.

Similar libraries are available for doing these tricks on the Leonardo, and other

Arduino boards, but this section focuses on the Uno.

 N OT E Timer1 is used to enable PWM output on pins 9 and 10; so when you
use this library, you will be unable to run analogWrite() on those pins.

 Understanding Timer Interrupts
 Just like a timer on your watch, timers on the Arduino count up from zero,

incrementing with every clock cycle of the oscillating crystal that drives the

Arduino. Timer1 is a 16-bit timer, meaning that it can count up from zero to 2 16 -1,

or 65,535. Once that number is reached, it resets back to zero and starts counting

again. How quickly it reaches that number depends on the clock divider. With

no divider, the clock would go through 16 million cycles per second (16MHz),

and would overfl ow and reset this counter many times per second. However,

you can “divide” the clock, an approach taken by many underlying Arduino

functions and libraries. The TimerOne library abstracts away much of the com-

plexity of dealing with the timer, allowing you to simply set a trigger period.

Using the timer, a function can be triggered every set number of microseconds.

 Getting the Library
 To get started, download the TimerOne library, either from the Exploring Arduino

web page for this chapter or directly from https://code.google.com/p/arduino-

timerone/downloads . Unzip it (but keep it within a folder called TimerOne), and

copy it to your Arduino libraries folder. The default location of the folder will

differ based on your operating system:

 ■ Windows: Documents/Arduino/libraries

 ■ Mac: Documents/Arduino/libraries

 ■ Linux: /home/YOUR_USER_NAME/sketchbook/libraries

https://code.google.com/p/arduino-timerone/downloads
https://code.google.com/p/arduino-timerone/downloads
https://code.google.com/p/arduino-timerone/downloads

 Chapter 12 ■ Hardware and Timer Interrupts 271

549360c12.indd 02-07-2008 12:00 AM

 If the Arduino integrated development environment (IDE) was open when

you copied the TimerOne folder, make sure you restart it so that the library is

loaded. You are now ready to take control of Timer1 with your Arduino.

 Executing Two Tasks Simultaneously(ish)
 It’s important to keep in mind that there is no such thing as “true” simultaneous

execution on an Arduino. Interrupts merely make it seem like multiple things

are happening at the same time, by allowing you to switch between multiple

tasks extremely quickly. Using the TimerOne library you just installed, you

make an LED blink using the timer while you execute other functions within

 loop() . At the end of the chapter, you will execute serial print statements in

the main loop with delays, while using timer interrupts to control lights and

sounds simultaneously. To confi rm that the library is installed properly, you can

load the program shown in Listing 12-2 on to an Arduino Uno (with no other

components connected). It should blink the onboard LED connected to pin 13.

This LED will blink on and off every second and is controlled by the timer.

If you put any other code in loop() , it will appear to execute simultaneously.

 Listing 12-2: Simple Timer Interrupt Blink Test—timer1.ino

 //Using Timer Interrupts with the Arduino
 #include <TimerOne.h>
 const int LED=13;

 void setup()
 {
 pinMode(LED, OUTPUT);
 Timer1.initialize(1000000); //Set a timer of length 1000000
 //microseconds (1 second)
 Timer1.attachInterrupt(blinky); //Runs "blinky" on each
 //timer interrupt
 }

 void loop()
 {
 //Put any other code here.
 }

 //Timer interrupt function
 void blinky()
 {
 digitalWrite(LED, !digitalRead(LED)); //Toggle LED State
 }

272 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 When you call Timer1.initialize , you are setting the period of the timer in

microseconds. In this case, it has been set to trigger every 1 second. (There are a

million microseconds in 1 second.) When you run Timer1.attachInterrupt() ,

you can choose a function that will be executed every time the specifi ed period

elapses. Obviously, the function you call should take less time to execute than

the time between executions.

 Now that you can implement both timer and hardware interrupts, you can

develop hardware that takes advantage of both of them. You will do this in the

next section.

 Building an Interrupt-Driven Sound Machine

 To fi nalize and confi rm your understanding of hardware and timer interrupts,

you build a “sound machine” that enables you to step through and listen to

multiple octaves of each note on a musical major scale. The system uses a hard-

ware-debounced pushbutton interrupt to select the note played (C, A, B, and so

forth). A timer interrupt steps through all the octaves of the note in order until

the next note is selected with the push button. In loop() , you can run a simple

serial debugging interface that prints the current key and pitch to the screen

of your computer. The notes start at octave 2 (it doesn’t sound very good below

that) and go up toward octave 6.

 Computing the frequency of each octave is easy once you know the initial

frequency. Consider C, for example. C2, where we will be starting, has a fre-

quency of about 65Hz. To get to C3 (130Hz), multiply the frequency of C2 by

2. To get C4, multiply by 2 again, for 260Hz. The frequency of each step can be

computed as a power of 2 related to the initial frequency. Knowing this, you can

construct a timer interrupt that increases by the power of 2 with each time step.

 You can switch between notes in the same way you switched between LED

colors in the earlier example with the pushbutton. Assign base frequencies to

each note, and switch which base frequency is used for tone() every time the

button is pressed.

 Sound Machine Hardware
 The hardware setup here is very simple. Keep the debounced button wired as

you had it in the RGB LED example, and add a speaker to pin 12 through a 150Ω

resistor. I used a piezo speaker, but you can use a larger speaker as well. The

circuit should look the one shown in Figure 12-9.

 Chapter 12 ■ Hardware and Timer Interrupts 273

549360c12.indd 02-07-2008 12:00 AM

 Figure 12-9: Sound machine wiring diagram

 Sound Machine Software
 The software for the sound machine utilizes software and hardware interrupts

in addition to serial communication and tone() to control a speaker. Load the

code from Listing 12-3 on to your Arduino and press the button on the bread-

board to cycle through base frequencies. You can open the serial monitor to see

the frequency currently playing.

 Listing 12-3: Sound Machine Code—fun_with_sound.ino

 //Use Hardware and Timer Interrupts for Fun with Sound

 //Include the TimerOne library
 #include <TimerOne.h>

 //Button pins
 const int BUTTON_INT =0; //Interrupt 0 (pin 2 on the Uno)
 const int SPEAKER =12; //Speaker on pin 12

 //Music keys
 #define NOTE_C 65
 #define NOTE_D 73
 #define NOTE_E 82
 #define NOTE_F 87

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

274 Part IV ■ Advanced Topics and Projects

549360c12.indd 02-07-2008 12:00 AM

 #define NOTE_G 98
 #define NOTE_A 110
 #define NOTE_B 123

 //Volatile variables can change inside interrupts
 volatile int key = NOTE_C;
 volatile int octave_multiplier = 1;

 void setup()
 {
 //Set up serial
 Serial.begin(9600);

 pinMode (SPEAKER, OUTPUT);
 //The pin is inverted, so we want to look at the rising edge
 attachInterrupt(BUTTON_INT, changeKey, RISING);

 //Set up timer interrupt
 Timer1.initialize(500000); // (.5 seconds)
 Timer1.attachInterrupt(changePitch); //Runs "changePitch" on each
 //timer interupt
 }

 void changeKey()
 {
 octave_multiplier = 1;
 if (key == NOTE_C)
 key = NOTE_D;
 else if (key == NOTE_D)
 key = NOTE_E;
 else if (key == NOTE_E)
 key = NOTE_F;
 else if (key == NOTE_F)
 key = NOTE_G;
 else if (key == NOTE_G)
 key = NOTE_A;
 else if (key == NOTE_A)
 key = NOTE_B;
 else if (key == NOTE_B)
 key = NOTE_C;
 }

 //Timer interrupt function
 void changePitch()
 {
 octave_multiplier = octave_multiplier * 2;
 if (octave_multiplier > 16) octave_multiplier = 1;
 tone(SPEAKER,key*octave_multiplier);
 }

 void loop()

 Chapter 12 ■ Hardware and Timer Interrupts 275

549360c12.indd 02-07-2008 12:00 AM

 {
 Serial.print("Key: ");
 Serial.print(key);
 Serial.print(" Multiplier: ");
 Serial.print(octave_multiplier);
 Serial.print(" Frequency: ");
 Serial.println(key*octave_multiplier);
 delay(100);
 }

 You can easily fi nd the music keys defi ned at the beginning with a search on

the Internet. They are the frequencies of the second octave of those notes. Note

that the key and octave_multiplier must be declared as volatile integers because

they are going to be changed within interrupt routines. changeKey() is called

every time the button interrupt is triggered. It changes the octave’s base value

by moving from key to key. changePitch() calls tone() to set the frequency for

the speaker. It is triggered every .5 seconds by the timer interrupt. Each time

it is triggered, it doubles the frequency of the original note until it reaches 16

times its original frequency. It then loops back around and starts again at the

base frequency for the current note. Within loop() , the current key, multiplier,

and frequency are printed to the serial monitor every .1 seconds.

 NOTE To watch a demo video of the sound machine, check out
 www.exploringarduino.com/content/ch12 . You can also find this
video on the Wiley website shown at the beginning of this chapter.

 Summary

 In this chapter you learned about the following:

 ■ There are tradeoffs between polling inputs and using interrupts.

 ■ Different Arduinos have different interrupt capabilities. The Due can

interrupt on any I/O pin, but other Arduinos have particular interrupt-

enabled pins.

 ■ Buttons can be debounced in hardware using an RC circuit and a Schmitt

trigger.

 ■ The Arduino can be made to respond to inputs asynchronously by attach-

ing interrupt functions.

 ■ You can install a third-party timer library to add timer interrupt func-

tionality to the Arduino.

 ■ You can combine timer interrupts, hardware interrupts, and polling into

one program to enable pseudo-simultaneous code execution.

http://www.exploringarduino.com/content/ch12

549360c12.indd 02-07-2008 12:00 AM

 277

549360c13.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino (Uno recommended)

 USB cable

 Arduino power supply (DC, USB, or battery pack)

 IR distance sensor

 Real-time clock breakout (or self-assembled RTC circuit)

 SD card shield

 SD card

 Jumper wires

 Breadboard

 Computer with SD card reader

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found

at www.exploringarduino.com/content/ch13 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 13 download and individually

named according to the names throughout the chapter.

 C H A P T E R

13

 Data Logging with SD Cards

http://www.exploringarduino.com/content/ch13
http://www.wiley.com/go/exploringarduino

278 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 There are countless examples of Arduinos being used to log weather conditions,

atmospheric conditions from weather balloons, building entry data, electrical

loads in buildings, and much more. Given their small size, minimal power

consumption, and ease of interfacing with a vast array of sensors, Arduinos are

an obvious choice for building data loggers, which are devices that record and

store information over a period of time. Data loggers are often deployed into

all kinds of environments to collect environmental or user data and to store it

into some kind of nonvolatile memory, such as an SD card. In this chapter, you

learn everything you could want to know about interfacing with an SD card

from an Arduino. You learn how to both write data to a fi le and how to read

existing information off an SD card. You use a real-time clock to add accurate

timestamps to your data. You also learn briefl y about how to display the data

on your computer after you have retrieved it.

 NOTE To follow a video tutorial about data logging, check out www.jeremyblum
.com/2011/04/05/tutorial-11-for-arduino-sd-cards-and-datalogging/ .
You can also find this video on the Wiley website shown at the beginning of this chapter.

 NOTE To follow a more advanced tutorial about logging location from a GPS
receiver, check out www.jeremyblum.com/2012/07/16/tutorial-15-for-
arduino-gps-tracking/ . You can also find this video on the Wiley website shown
at the beginning of this chapter.

 Getting Ready for Data Logging

 Data logging systems are very simple. They generally consist of some kind of acqui-

sition system, such as analog sensors, to obtain data. They also contain some kind

of memory for storing sizeable quantities of that data over a long period of time.

 This chapter highlights a few common ways that you can use an SD card

with your Arduino to record useful data. However, there are many uses for data

logging. Here is a brief list of projects in which you could use it:

 ■ A weather station for tracking light, temperature, and humidity over time

 ■ A GPS tracker and logger that keeps a record of where you’ve been over

the course of a day

 ■ A temperature monitor for your desktop computer to report data about

what components are getting the hottest

 ■ A light logger that keeps track of when, and for how long, the lights are

left on in your home or offi ce

 Later in this chapter, you create a data logging system that uses an infrared

(IR) distance sensor to create a log of when people enter and exit a room.

http://www.jeremyblum
http://www.jeremyblum.com/2012/07/16/tutorial-15-for-arduino-gps-tracking
http://www.jeremyblum.com/2012/07/16/tutorial-15-for-arduino-gps-tracking
http://www.jeremyblum.com/2012/07/16/tutorial-15-for-arduino-gps-tracking

 Chapter 13 ■ Data Logging with SD Cards 279

549360c13.indd 02-07-2008 12:00 AM

 Formatting Data with CSV Files
 CSV, or comma-separated value, fi les will be the format of choice for storing

data with your SD card. CSV fi les are easy to implement with a microcontroller

platform and can easily be read and parsed by a wide range of desktop appli-

cations, making them well suited for this kind of task. A standard CSV fi le

generally looks something like this:

 Date,Time,Value1,Value2
 2013-05-15,12:00,125,255
 2013-05-15,12:30,100,200
 2013-05-15,13:00,110,215

 Rows are delimited by new lines, and columns are delimited by commas.

Because commas are used to distinguish columns of data, the main require-

ment is that your data cannot have commas within it. Furthermore, each row

should generally always have the same number of entries. When opened with

a spreadsheet program on your computer, the preceding CSV fi le would look

something like this.

 Table 13-1: An Imported CSV File

 DATE TIME VALUE1 VALUE2

 2013-05-15 12:00 125 255

 2013-05-15 12:30 100 200

 2013-05-15 13:00 110 215

 Because CSV fi les are just plain text, your Arduino can easily write to them

using familiar print() and println() -style commands. Conversely, Arduinos

can also parse CSV fi les with relative ease by looking for newline and com-

mand delimiters to fi nd the right information.

 Preparing an SD Card for Data Logging
 Before you start logging data with your Arduino, prepare the SD card you plan

to use. Which kind of SD card you use will depend on the kind of shield you are

using. Some will use full-size SD cards, others will use micro SD cards. Most

micro SD cards ship with an adapter that lets you plug them into standard-sized

SD card readers. To complete the exercises in this chapter, you need an SD card

reader for your computer (either built-in or external).

280 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Most new SD cards will already be properly formatted and ready to use with

an Arduino. If your card is not new, or already has things on it, fi rst format

the card in either FAT16 (sometimes just called FAT) or FAT32 format. Cards

less than or equal 2GB should be formatted as FAT16, and larger cards should

be formatted as FAT32. In this chapter, the examples use a 2GB micro SD card

formatted as FAT16. Note that formatting the card removes everything on it,

but doing so ensures that it is ready for use with your Arduino. If your SD card

is new, you can skip these steps and come back to complete them only if you

have issues accessing the card from the Arduino when you run the sketch later

in this chapter.

 Formatting your SD card from Windows is easy:

 1. Insert the SD card into your card reader; it should then appear in My

Computer (see Figure 13-1).

 Figure 13-1: SD card shown in My Computer

 2. Right-click the card (it will probably have a different name), and select

the Format option (see Figure 13-2). A window will appear with options

for formatting the card.

 Chapter 13 ■ Data Logging with SD Cards 281

549360c13.indd 02-07-2008 12:00 AM

 Figure 13-2: Format option selected

 3. Choose the fi le system type (FAT for cards 2GB and under, FAT32 for

larger cards), use the default allocation size, and choose a volume label.

(I chose LOG, but you can choose whatever you want.) Figure 13-3 shows

the confi guration for a 2GB card.

 Figure 13-3: Format option window

282 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 4. Click the Start button to format the SD card.

 On a Mac, the process is similarly straightforward:

 1. Use the Finder to locate and open the Disk Utility application.

 2. Click on the SD card in the left panel, and click on the Erase tab. Choose

MS-DOS(FAT) for the format.

 3. Click Erase. This will format the card as FAT16 regardless of its capacity.

(Macs cannot natively format cards as FAT32.)

 On Linux, you can format the card from the terminal. Most Linux distros

will mount the card automatically when you insert it:

 1. Insert the card, and a window should pop up showing the card.

 2. Open a terminal, and type in df to get a list of the mounted media. The

result should look like Figure 13-4.

 The last entry should be your SD card. On my system, it was mounted as

 /dev/mmcblk0p1 , but on yours, it might differ.

 Figure 13-4: Linux df command

 3. Unmount the card before you format it by using the umount command.

The argument will be the name of your SD card (see Figure 13-5).

 Chapter 13 ■ Data Logging with SD Cards 283

549360c13.indd 02-07-2008 12:00 AM

 Figure 13-5: Unmounting the SD card in Linux

 4. Format the card using the mkdosfs command. You may need to run the

command as a super user (using the sudo command). You will pass the

 -F fl ag, specifying to use a FAT fi le system. You can include either 16 or

 32 as the fl ag argument to choose FAT16 or FAT32. To format a card that

was mounted as /dev/mmcblk0p1, you use the command sudo mkdosfs

-F 16 /dev/mmcblk0p1 (see Figure 13-6).

 Figure 13-6: Formatting the SD card in Linux

284 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Your SD card should now be formatted and ready to go! You’re now ready to

start interfacing with the SD card via an SD card shield.

 Interfacing the Arduino with an SD Card

 SD cards, like the XBee radios that you used in Chapter 11, “Wireless Communication

with XBee Radios,” are 3.3V devices. Therefore, it’s important to connect to SD

cards through a shield that properly handles the logic level shifting and voltage

supply to your SD card. Furthermore, SD communication can be accomplished

using the serial peripheral interface (SPI) bus, something that you should already

be familiar with after having read Chapter 9, “The SPI Bus.” The Arduino language

comes with a handy library (the SD library) that abstracts away the lower-level

SPI communication and allows you to easily read and write fi les stored on your

SD card. You use this library throughout the chapter.

 SD Card Shields
 You have a tremendous number of options for adding data logging capabilities

to your Arduino. It is impossible to provide documentation for every shield

available, so this discussion keeps the examples general enough to apply to

most shields with SD card connection capabilities. This section identifi es some

of the more popular shields and the pros and cons of using each one.

 All shields have the following things in common:

 ■ They connect to SPI pins via either the 6-pin programming header or via

multiplexed digital pins. These are pins 11, 12, and 13 on the Uno, and

pins 50, 51, and 52 on Mega boards. The Leonardo’s SPI pins are located

on the in-circuit serial programming (ICSP) header only.

 ■ They designate a chip select (CS) pin, which may or may not be the default

CS pin (10 on non-Mega boards, 53 on Mega boards).

 ■ They supply 3.3V to the SD card and will level-shift the logic levels.

 Here’s a list of the most common shields:

 ■ Cooking Hacks Micro SD shield (www.exploringarduino.com/parts/
cooking-hacks-SD-shield) : This shield is used to illustrate the examples

in this chapter. This is the smallest shield of those listed here (not a full-

sized shield), and it can be connected to either a row of header pins (8–13

on the Uno), or to your Arduino’s ICSP 6-pin header. When connected

to pins 8–13, the default pin 10 is connected to CS. When connected to

the ISP header, the CS pin can be connected to any pin you want. This is

useful if you are utilizing another shield that requires the use of pin 10.

This board ships with a 2GB SD card (see Figure 13-7).

http://www.exploringarduino.com/parts/cooking-hacks-SD-shield
http://www.exploringarduino.com/parts/cooking-hacks-SD-shield

 Chapter 13 ■ Data Logging with SD Cards 285

549360c13.indd 02-07-2008 12:00 AM

 Figure 13-7: Cooking Hacks MicroSD shield

 ■ Offi cial Arduino Wireless SD shield (www.exploringarduino.com/parts/
arduino-wireless-shield) : This is the fi rst of several “offi cial” Arduino

shields with SD card support. This shield includes circuitry for adding

both an XBee radio and an SD card to your Arduino, making it easy to

combine lessons from this chapter with lessons from Chapter 11. On this

shield, the SD card CS pin is connected to pin 4 of the Arduino. You must

keep pin 10 as an output, and also specify that pin 4 is your CS when run-

ning your sketch with this shield (see Figure 13-8).

 Figure 13-8: Arduino Wireless SD shield

C
re

di
t:

 C
oo

ki
ng

 H
ac

ks
, w
w
w
.
c
o
o
k
i
n
g
-
h
a
c
k
s
.
c
o
m

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

http://www.cooking-hacks.com
http://www.cooking-hacks.com
http://www.cooking-hacks.com
http://www.cooking-hacks.com
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

286 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 ■ Offi cial Arduino Ethernet SD shield (www.exploringarduino.com/parts/
arduino-ethernet-shield) : The Arduino Ethernet shield allows your

Arduino to connect to a wired network. It implements an SD card interface,

as well, although its primary purpose is to allow for the storage of fi les

to be accessed over the network. Both the Ethernet controller and the SD

card are SPI devices on this shield; the Ethernet controller CS is connected

to pin 10, and the SD card CS is connected to pin 4 (see Figure 13-9).

 Figure 13-9: Arduino Ethernet SD shield

 ■ Offi cial Arduino Wi-Fi SD shield (www.exploringarduino.com/parts/
arduino-wifi-shield) : This shield also implements network connectivity,

but it takes advantage of a Wi-Fi radio to do so. For the same reasons as

the Ethernet shield, it also houses an SD card reader/writer. As with the

Ethernet shield, the Wi-Fi controller CS is pin 10, and the SD card CS is

pin 4. You must take care to not attempt to simultaneously enable both

devices; only one CS line can be active at a time (low logic level), as with

all SPI confi gurations (see Figure 13-10).

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.exploringarduino.com/parts/arduino-wifi-shield
http://www.exploringarduino.com/parts/arduino-wifi-shield

 Chapter 13 ■ Data Logging with SD Cards 287

549360c13.indd 02-07-2008 12:00 AM

 Figure 13-10: Arduino Wi-Fi SD shield

 ■ Adafruit data logging shield (www.exploringarduino.com/parts/

adafruit-data-logging-shield) : This shield is particularly well suited

to the experiments that you will be doing later in this chapter because it

includes both a real-time clock (RTC) chip and an SD card interface. This

shield connects the SD card to the default pin CS and connects a real-time

clock chip to the I 2 C bus (see Figure 13-11).

 Figure 13-11: Adafruit data logging shield

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

C
re

di
t:

 A
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.exploringarduino.com/parts/adafruit-data-logging-shield
http://www.exploringarduino.com/parts/adafruit-data-logging-shield
http://www.adafruit.com
http://www.adafruit.com
http://www.adafruit.com

288 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 ■ SparkFun MicroSD shield (www.exploringarduino.com/parts/spark-
fun-microSD-shield) : This shield is, like the Cooking Hacks shield, is a

minimalist shield that only has an SD card slot. However, it also has a

prototyping area to allow you to solder on additional components. It con-

nects the SD card’s CS pin to pin 8 on the Arduino, so you must specify

this when using the SD card library with this shield (see Figure 13-12).

 Figure 13-12: SparkFun MicroSD shield

 SD Card SPI Interface
 As mentioned earlier, your Arduino communicates with the SD card over an

SPI interface. This necessitates the use of a MOSI (master output, slave input),

MISO (master input, slave output), SCLK (serial clock), and CS (chip select) pin.

You use the SD card Arduino library to complete the following examples. It

assumes that you are using the hardware SPI pins on your Arduino and either

a default or custom CS pin. The SD card library must have the default CS pin

set as an output to function correctly, even if you are using a different CS pin.

In the case of the Uno, this is pin 10; in the case of the Mega, this is pin 53. The

following examples use the Uno with the default CS pin 10.

C
re

di
t:

 S
pa

rk
Fu

n
[P

ho
to

gr
ap

he
r

Ju
an

 P
eñ

a]
, w
w
w
.
s
p
a
r
k
f
u
n
.
c
o
m

http://www.exploringarduino.com/parts/spark-fun-microSD-shield
http://www.exploringarduino.com/parts/spark-fun-microSD-shield
http://www.exploringarduino.com/parts/spark-fun-microSD-shield
http://www.sparkfun.com
http://www.sparkfun.com
http://www.sparkfun.com

 Chapter 13 ■ Data Logging with SD Cards 289

549360c13.indd 02-07-2008 12:00 AM

 Writing to an SD Card
 First, you use the SD card library to write some sample data to your SD card.

Later in the chapter, you capture some sensor data and write that directly to the

SD card. The data is stored in a fi le called log.csv that you can later open up on

your computer. Importantly, if you formatted your card FAT16, the fi lenames

you use must be in 8.3 format. This means that the extension must be three

characters, and the fi lename must be eight characters or fewer.

 Ensure that your SD shield is mounted correctly to your Arduino and that

you have an SD card inserted. When mounted, the Cooking Hacks SD shield

looks like Figure 13-13. (The pins are inserted into pins 8–13, and the jumper is

on the right side when viewed from this angle.)

 Figure 13-13: Mounted SD card shield

 For the sake of debugging, you will take advantage of the reporting functional-

ity of many of the SD card functions. For example, to initialize communication

with an SD card, you call the following function in your setup:

 if (!SD.begin(CS_pin))
 {
 Serial.println("Card Failure");

290 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 return;
 }
 Serial.println("Card Ready");

 Note that instead of just calling SD.begin(CS_pin) , it is executed within an

 if statement. This tries to initialize the SD card and it returns a status. If it

returns true , the program moves on, and a success message is printed to the

serial terminal. If it returns false , a failure message is reported, and the return

command halts further execution of the program.

 You use a similar approach when you are ready to write a new line of data to

a log fi le. If you want to write “hello” to a new line in the fi le, the code would

look like this:

 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.println("hello");
 dataFile.close(); //Data isn't written until we close the connection!
 }
 else
 {
 Serial.println("Couldn't open log file");
 }

 This fi rst line creates a new fi le (or opens the fi le if it exists) called log.csv

on the SD card. If the fi le is opened/created successfully, the dataFile variable

will be true , and the write process will be initiated. If it is false , an error is

reported to the serial monitor. Writing new lines to a fi le is easy: Just execute

 dataFile.println() and pass what you want to write to a new line. You can

also use print() to prevent appending a newline character to the end. This is

sent to a buffer, and only actually added to the fi le once the close command is

called on the same File .

 Now, you can bring all this knowledge together into a simple program that will

create a log.csv fi le on your SD card and write a comma-separated timestamp

and phrase every 5 seconds. On each line of the CSV fi le, you record the current

time from millis() and a simple phrase. This might not seem very useful, but

it is an important step to test before you start adding actual measurements in

the coming examples. The code should look something like Listing 13-1.

 Listing 13-1: SD Card Write Test—write_to_sd.ino

 //Write to SD card

 #include <SD.h>

 Chapter 13 ■ Data Logging with SD Cards 291

549360c13.indd 02-07-2008 12:00 AM

 //Set by default for the SD card library
 //MOSI = pin 11
 //MISO = pin 12
 //SCLK = pin 13
 //We always need to set the CS Pin
 const int CS_PIN = 10;

 //We set this high to provide power
 const int POW_PIN =8;

 void setup()
 {
 Serial.begin(9600);
 Serial.println("Initializing Card");
 //CS pin is an output
 pinMode(CS_PIN, OUTPUT);

 //Card will draw power from pin 8, so set it high
 pinMode(POW_PIN, OUTPUT);
 digitalWrite(POW_PIN, HIGH);

 if (!SD.begin(CS_PIN))
 {
 Serial.println("Card Failure");
 return;
 }
 Serial.println("Card Ready");
 }

 void loop()
 {
 long timeStamp = millis();
 String dataString = "Hello There!";

 //Open a file and write to it.
 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.print(timeStamp);
 dataFile.print(",");
 dataFile.println(dataString);
 dataFile.close(); //Data isn't actually written until we
 //close the connection!

 //Print same thing to the screen for debugging
 Serial.print(timeStamp);
 Serial.print(",");
 Serial.println(dataString);
 }
 else

292 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 {
 Serial.println("Couldn't open log file");
 }
 delay(5000);
 }

 You want to note a few important things here, especially if you are not using

the same Cooking Hacks MicroSD card shield:

 ■ CS_PIN should be set to whatever pin you have your SD card CS hooked

up to. If it is not 10, you must also add pinMode(10, OUTPUT) within

 setup() ; otherwise, the SD library will not work.

 ■ This particular shield draws power from pin 8 (as opposed to being con-

nected directly to a 5V supply). Therefore, POW_PIN must be set as an

output and set HIGH in the setup function to power up the SD card shield.

 ■ Each time through the loop, the timestamp variable is updated with the

current time elapsed in milliseconds. It must be of type long because it

will generate a number larger than 16 bits (the standard size of an Arduino

integer type).

 As you saw earlier, the fi lename is opened for writing and data is appended

in a comma-separated format. The same data is also printed out to the serial

terminal for debugging purposes. This is not explicitly necessary, and you will

not use it once you have the logger “in the fi eld” taking data. However, it is use-

ful for confi rming that everything is working. If you open the serial terminal,

you should see something like Figure 13-14.

 Figure 13-14: SD Card debugging output

 Chapter 13 ■ Data Logging with SD Cards 293

549360c13.indd 02-07-2008 12:00 AM

 If you receive errors, make sure that your shield is plugged in, that the SD

card is inserted fully, and that the card has been properly formatted. You can

confi rm that the data is being written correctly by removing the SD card, insert-

ing it into your computer, and opening it up with a spreadsheet program (see

Figure 13-15). Note how the comma-separated data is automatically placed into

rows and columns based on the location of the delimiting commas and newlines.

 Figure 13-15: Logged data in a spreadsheet

 Reading from an SD Card
 Now it’s time to learn about reading from SD cards. This is not used quite as

commonly for data logging, but it can prove useful for setting program param-

eters. For instance, you could specify how frequently you want data to be logged.

That’s what you do next.

294 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Insert the SD card into your computer and create a new TXT fi le called speed

.txt on the SD card. In this fi le, simply enter the refresh time in milliseconds that

you want to use. In Figure 13-16, you can see that I set it to 1000ms, or 1 second.

 Figure 13-16: Creating the speed command file

 After choosing a desired refresh speed, save the fi le on the SD card and put

it back in your Arduino shield. You now modify your program to read this fi le,

extract the desired fi eld, and use it to set the refresh speed for data logging.

 To open a fi le for reading, you use the same SD.open command that you used

earlier, but you do not have to specify the FILE_WRITE parameter. Because the

 File class that you are using inherits from the stream class (just like the Serial

class), you can use many of the same useful commands, such as parseInt() ,

that you’ve used in previous chapters. To open and read the update speed from

the fi le, all you have to do is this:

 File commandFile = SD.open("speed.txt");
 if (commandFile)
 {
 Serial.println("Reading Command File");

 Chapter 13 ■ Data Logging with SD Cards 295

549360c13.indd 02-07-2008 12:00 AM

 while(commandFile.available())
 {
 refresh_rate = commandFile.parseInt();
 }
 Serial.print("Refresh Rate = ");
 Serial.print(refresh_rate);
 Serial.println("ms");
 }
 else
 {
 Serial.println("Could not read command file.");
 return;
 }

 This opens the fi le for reading and parses out any integers read. Because

you defi ned only one variable, it grabs that one and saves it to the refresh rate

variable, which would need to be defi ned earlier in the program. You can have

only one fi le open at a time, and it’s good practice to close a fi le when you’re

fi nished reading from, or writing to a card.

 You can now integrate this into your writing program from earlier to adjust

the recording speed based on your speed.txt fi le, as shown in Listing 13-2.

 Listing 13-2: SD Reading and Writing—sd_read_write.ino

 //SD read and write

 #include <SD.h>

 //Set by default for the SD card library
 //MOSI = pin 11
 //MISO = pin 12
 //SCLK = pin 13
 //We always need to set the CS pin
 const int CS_PIN =10;
 const int POW_PIN =8;

 //Default rate of 5 seconds
 int refresh_rate = 5000;

 void setup()
 {
 Serial.begin(9600);
 Serial.println("Initializing Card");
 //CS pin is an output
 pinMode(CS_PIN, OUTPUT);

 //Card will draw power from pin 8, so set it high
 pinMode(POW_PIN, OUTPUT);

296 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 digitalWrite(POW_PIN, HIGH);

 if (!SD.begin(CS_PIN))
 {
 Serial.println("Card Failure");
 return;
 }
 Serial.println("Card Ready");

 //Read the configuration information (speed.txt)
 File commandFile = SD.open("speed.txt");
 if (commandFile)
 {
 Serial.println("Reading Command File");

 while(commandFile.available())
 {
 refresh_rate = commandFile.parseInt();
 }
 Serial.print("Refresh Rate = ");
 Serial.print(refresh_rate);
 Serial.println("ms");
 commandFile.close(); //Close the file when finished
 }
 else
 {
 Serial.println("Could not read command file.");
 return;
 }
 }

 void loop()
 {
 long timeStamp = millis();
 String dataString = "Hello There!";

 //Open a file and write to it.
 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.print(timeStamp);
 dataFile.print(",");
 dataFile.println(dataString);
 dataFile.close(); //Data isn't actually written until we
 //close the connection!

 //Print same thing to the screen for debugging
 Serial.print(timeStamp);
 Serial.print(",");
 Serial.println(dataString);

 Chapter 13 ■ Data Logging with SD Cards 297

549360c13.indd 02-07-2008 12:00 AM

 }
 else
 {
 Serial.println("Couldn't open log file");
 }
 delay(refresh_rate);
 }

 When you now run this program, data should be written at the rate you

specify. Looking at the serial terminal confi rms this (see Figure 13-17).

 Figure 13-17: Data logging at rate specified by the command file

 Using a Real-Time Clock

 Nearly every data logging application will benefi t from the use of a real-time

clock. Using a real-time clock within your system allows you to timestamp

measurements so that you can more easily keep track of when certain events

occurred. In the previous section, you simply used the millis() function to

keep track of the time elapsed since the Arduino turned on. In this section, you

use a dedicated real-time clock integrated circuit to keep accurate time so that

when you save data to the SD card it corresponds to the time the data was taken.

298 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Understanding Real-Time Clocks
 Real-time clocks do exactly what their name implies. You set the time once, and

they keep very accurate time, even accounting for leap years and things of that

nature. This example uses the popular DS1307 real-time clock integrated circuit.

 Using the DS1307 Real-Time Clock

 The real-time clock communicates with your Arduino over an I 2 C connection

and connects to a coin cell battery that will allow it to keep time for several years.

A crystal oscillator connected to the real-time clock enables precision timekeep-

ing. To make things easier, I suggest using the Adafruit DS1307 breakout board

(www.exploringarduino.com/parts/adafruit-DS1307-breakout); it combines the

IC, the oscillator, a coin cell battery, a decoupling capacitor, and the I 2 C pull-up

resistors into a nice package that can easily be mounted on your Arduino (see

Figure 13-18).

 Figure 13-18: Real-time clock breakout mounted on an Arduino

 The rest of these instructions assume that you are using this breakout board.

However, you can just as easily assemble these components on a breadboard

and wire them directly to your Arduino. The crystal is a 32.768kHz unit, and

the I 2 C pull-up resistors are 2.2kilohms. The battery is a standard 3.0V coin cell.

If you choose to assemble it yourself, you can buy all these components and put

them on a breadboard as shown in Figure 13-19.

http://www.exploringarduino.com/parts/adafruit-DS1307-breakout
http://www.exploringarduino.com/parts/adafruit-DS1307-breakout

 Chapter 13 ■ Data Logging with SD Cards 299

549360c13.indd 02-07-2008 12:00 AM

 Figure 13-19: Real-time clock circuit assembled on breadboard

 Using the RTC Arduino Third-Party Library

 As in the preceding chapter, you again use a third-party library to extend the

Arduino’s capabilities. In this case, it’s to facilitate easy communication with

the real-time clock (RTC) chip. Unsurprisingly, the library is called RTClib . The

library was originally developed by JeeLabs, and was updated by Adafruit

Industries. A link to download the library can be found on the web page for

this chapter: www.exploringarduino.com/content/ch13 . Download the library

and add it to your Arduino user library folder, just as you did in the preceding

chapter. Make sure that the folder name has no dashes in it; underscores are okay.

 The library is easy to use. The fi rst time you run the example code, you use

the RTC.adjust function to automatically grab the current date/time from your

computer at the time of compilation and use that to set up the clock. From this

point on, the RTC runs autonomously, and you can obtain the current time/

date from it by executing the RTC.now() command. In the next section, you use

this functionality to enable real-time logging.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

http://www.exploringarduino.com/content/ch13

300 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Using the Real-Time Clock
 Now it is time to combine the SD card and real-time clock, along with the

RTC library that you just downloaded, to enable logging using actual time-

stamps. You update your sketch once again to use the RTC values rather than the

 millis values.

 Installing the RTC and SD Card Modules

 First, ensure that both your SD card shield and RTC are connected to your

Arduino. If you are using the Cooking Hacks SD shield and the Adafruit RTC

shield, it should look something like Figure 13-20.

 Figure 13-20: Arduino with mounted SD card and RTC breakout boards

 Chapter 13 ■ Data Logging with SD Cards 301

549360c13.indd 02-07-2008 12:00 AM

 Note that the last pin on the RTC is hanging off the Arduino; it is a square

wave generated by the RTC that you will not be using. In code, you need to

pull A2 to ground and A3 to 5V to ensure that the RTC breakout is powered.

If you assembled your own RTC circuit on a breadboard, your setup will look

a bit different.

 Updating the Software

 Now, you add the RTC functionality into the software. You need to add a few

things to your previous program to get the RTC integrated:

 ■ Include the RTC libraries

 ■ Power the RTC module

 ■ Initialize the RTC object

 ■ Set the RTC time using the computer time if it is unset

 ■ Write the actual timestamps to the log fi le

 Furthermore, in this code revision, I added a column header that is printed

every time the code starts. This way, even if you are appending to an existing

CSV fi le, you an easily fi nd each time that the log was restarted.

 WARNING If, when you run your program, you notice that it simply stops after a
short while, you may be running out of RAM. In most cases, this can be attributed
to strings that take up a large amount of RAM, especially within your Serial
.print and Serial.println statements. You can resolve this problem by
removing serial printing statements, or by telling the Arduino to store these strings
in flash memory instead of in RAM. You can store strings in flash memory by wrap-
ping the serial print string in F() , like this: Serial.println(F("Hello")); .
 This method was used Listing 13-3.

 The updated program is shown in Listing 13-3, using the RTC as a clock for

datalogging. It moves the majority of the strings into fl ash memory to save RAM

using the technique explained in the previous warning section.

 Listing 13-3: SD Reading and Writing with an RTC— sd_read_write_rtc.ino

 //SD read and write with RTC

 #include <SD.h> //For talking to SD Card
 #include <Wire.h> //For RTC
 #include "RTClib.h" //For RTC

 //Define pins

302 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 //SD card is on standard SPI pins
 //RTC is on Standard I2C Pins
 const int CS_PIN =10;
 const int SD_POW_PIN =8;
 const int RTC_POW_PIN =A3;
 const int RTC_GND_PIN =A2;

 //Default rate of 5 seconds
 int refresh_rate = 5000;

 //Define an RTC object
 RTC_DS1307 RTC;

 //Initialize strings
 String year, month, day, hour, minute, second, time, date;

 void setup()
 {
 Serial.begin(9600);
 Serial.println(F("Initializing Card"));

 //CS pin and pwr/gnd pins are outputs
 pinMode(CS_PIN, OUTPUT);
 pinMode(SD_POW_PIN, OUTPUT);
 pinMode(RTC_POW_PIN, OUTPUT);
 pinMode(RTC_GND_PIN, OUTPUT);

 //Setup power and ground pins for both modules
 digitalWrite(SD_POW_PIN, HIGH);
 digitalWrite(RTC_POW_PIN, HIGH);
 digitalWrite(RTC_GND_PIN, LOW);

 //Initiate the I2C bus and the RTC library
 Wire.begin();
 RTC.begin();

 //If RTC is not running, set it to the computer's compile time
 if (! RTC.isrunning())
 {
 Serial.println(F("RTC is NOT running!"));
 RTC.adjust(DateTime(__DATE__, __TIME__));
 }

 //Initialize SD card
 if (!SD.begin(CS_PIN))
 {
 Serial.println(F("Card Failure"));
 return;
 }
 Serial.println(F("Card Ready"));

 Chapter 13 ■ Data Logging with SD Cards 303

549360c13.indd 02-07-2008 12:00 AM

 //Read the configuration information (speed.txt)
 File commandFile = SD.open("speed.txt");
 if (commandFile)
 {
 Serial.println(F("Reading Command File"));

 while(commandFile.available())
 {
 refresh_rate = commandFile.parseInt();
 }
 Serial.print(F("Refresh Rate = "));
 Serial.print(refresh_rate);
 Serial.println(F("ms"));
 commandFile.close();
 }
 else
 {
 Serial.println(F("Could not read command file."));
 return;
 }

 //Write column headers
 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.println(F("\nNew Log Started!"));
 dataFile.println(F("Date,Time,Phrase"));
 dataFile.close(); //Data isn't actually written until we
 //close the connection!

 //Print same thing to the screen for debugging
 Serial.println(F("\nNew Log Started!"));
 Serial.println(F("Date,Time,Phrase"));
 }
 else
 {
 Serial.println(F("Couldn't open log file"));
 }

 }

 void loop()
 {
 //Get the current date and time info and store in strings
 DateTime datetime = RTC.now();
 year = String(datetime.year(), DEC);
 month = String(datetime.month(), DEC);
 day = String(datetime.day(), DEC);
 hour = String(datetime.hour(), DEC);
 minute = String(datetime.minute(), DEC);

304 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 second = String(datetime.second(), DEC);

 //Concatenate the strings into date and time
 date = year + "/" + month + "/" + day;
 time = hour + ":" + minute + ":" + second;

 String dataString = "Hello There!";

 //Open a file and write to it.
 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.print(date);
 dataFile.print(F(","));
 dataFile.print(time);
 dataFile.print(F(","));
 dataFile.println(dataString);
 dataFile.close(); //Data isn't actually written until we
 //close the connection!

 //Print same thing to the screen for debugging
 Serial.print(date);
 Serial.print(F(","));
 Serial.print(time);
 Serial.print(F(","));
 Serial.println(dataString);
 }
 else
 {
 Serial.println(F("Couldn't open log file"));
 }
 delay(refresh_rate);
 }

 The RTC library is imported by the sketch via #include "RTClib.h" and an

RTC object is created with RTC_DS1307 RTC; . The RTC is an I 2 C device, and relies

on the Wire library, so that needs to be included, too. This is the same library

you used in Chapter 8, “The I 2 C Bus.” In setup() , RTC.isrunning() checks to

see if the RTC is not already running. If it isn’t, the date and time are set based

on the compile time, determined by your computer’s clock. Once this is set, the

time will not be reset as long as the battery stays connected to the RTC. Also

in setup() , a column header is inserted into the log fi le, adding a note that the

logging has been restarted. This is useful for appending to the log fi le each time

you restart the system.

 During each pass through the loop, the datetime object is set to the current

date and time. You can then extract the year, month, hour, and so on from this

object and convert them to strings that you can concatenate into the date and

 Chapter 13 ■ Data Logging with SD Cards 305

549360c13.indd 02-07-2008 12:00 AM

 time variables. These variables are printed to the serial console and to the SD

card log fi le.

 After running this sketch on your Arduino for a little while, use your computer

to read the SD card and to open the log fi le; it should be populated with the date

and time and look something like Figure 13-21. Your spreadsheet software may

automatically change the dates into your local formatting.

 Figure 13-21: Spreadsheet output from RTC SD card test

 Building an Entrance Logger

 Now that you have all the basic skills down, you can put them to use to build an

entrance logger for your room. You use the distance sensor from some of your

previous projects to create a basic motion sensor that can keep track of when

people enter or exit through a doorway. The logger will keep track of the times

of these events on the SD card for you to review later.

306 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Logger Hardware
 All you need to do is to add an analog distance sensor to your existing setup.

If you’re using the same setup as me, you do not even need a breadboard; just

connect the proper wires to power, ground, and A0 (for the analog signal output

from the sensor). With everything attached, it should look like Figure 13-22.

 Figure 13-22: Entrance logger hardware

 For this to actually work well, you want to mount the IR distance sensor and

Arduino on a wall so that the IR beam cuts horizontally across the door. This

way, anybody walking through the door must pass in front of the IR distance

sensor. Don’t affi x anything to your wall until you’ve written the software in

the next step and uploaded it. I suggest using easily removable painters tape to

hold it to your wall so that you don’t damage anything. Once set up, the system

should look something like Figure 13-23.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 13 ■ Data Logging with SD Cards 307

549360c13.indd 02-07-2008 12:00 AM

 Figure 13-23: Entrance logger trained on a door

 Logger Software
 For the entrance logger, reading confi guration variables from the SD card is

not particularly useful, so you can remove those parts of the code. You want to

add some code to check the state of the distance and to see whether its readings

have changed drastically between pollings. If they have, you can assume that

something moved in front of the distance sensor and that somebody must have

entered or exited the room.

 You also need to choose a “change threshold.” For my setup, I found that an

analog reading change of more than 75 between pollings was a good indication

of movement. (Your setup will probably be different. It’s a good idea to check

the values of your system once you have the physical setup fi xed.) You want

to make sure you’re checking the distance sensor frequently enough that you

capture movement every time. However, it doesn’t make sense to run it so often

that you end up with millions of readings for a day’s worth of logging.

 I recommend that you write to the SD card every time movement is detected,

but that you only periodically write to the SD card when there is no movement.

This methodology strikes a good balance between storage space required and

accuracy. Because you care the most about having accurate timing for when

somebody passes the sensor, that detection is recorded with a higher temporal

resolution than when nothing is happening in front of the sensor. This technique

308 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

is implemented in Listing 13-4. The Arduino polls the distance sensor every

50ms (and writes a 1 to the “active” column every time movement is detected).

If movement is not being detected, it only writes a 0 to the “active” column once

every second (as opposed to every 50ms).

 Listing 13-4 shows the completed software for the entrance logger, given the

improvements just described.

 Listing 13-4: Entrance Logger Software—entrance_logger.ino

 //Logs Room Entrance Activity

 #include <SD.h> //For talking to SD Card
 #include <Wire.h> //For RTC
 #include "RTClib.h" //For RTC

 //Define pins
 //SD Card is on Standard SPI Pins
 //RTC is on Standard I2C Pins
 const int CS_PIN =10; //SS for SD Shield
 const int SD_POW_PIN =8; //Power for SD Shield
 const int RTC_POW_PIN =A3; //Used as digital output
 const int RTC_GND_PIN =A2; //Used as digital output
 const int IR_PIN =0; //Analog input 0

 //Define an RTC object
 RTC_DS1307 RTC;

 //Initialize strings
 String year, month, day, hour, minute, second, time, date;

 //Initialize distance variables
 int raw = 0;
 int raw_prev = 0;
 boolean active = false;
 int update_time = 0;

 void setup()
 {
 Serial.begin(9600);
 Serial.println(F("Initializing Card"));

 //CS pin, and pwr/gnd pins are outputs
 pinMode(CS_PIN, OUTPUT);
 pinMode(SD_POW_PIN, OUTPUT);
 pinMode(RTC_POW_PIN, OUTPUT);
 pinMode(RTC_GND_PIN, OUTPUT);

 //Setup power and ground pins for both modules
 digitalWrite(SD_POW_PIN, HIGH);

 Chapter 13 ■ Data Logging with SD Cards 309

549360c13.indd 02-07-2008 12:00 AM

 digitalWrite(RTC_POW_PIN, HIGH);
 digitalWrite(RTC_GND_PIN, LOW);

 //Initiate the I2C bus and the RTC library
 Wire.begin();
 RTC.begin();

 //If RTC is not running, set it to the computer's compile time
 if (! RTC.isrunning())
 {
 Serial.println(F("RTC is NOT running!"));
 RTC.adjust(DateTime(__DATE__, __TIME__));
 }

 //Initialize SD card
 if (!SD.begin(CS_PIN))
 {
 Serial.println(F("Card Failure"));
 return;
 }
 Serial.println(F("Card Ready"));

 //Write column headers
 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.println(F("\nNew Log Started!"));
 dataFile.println(F("Date,Time,Raw,Active"));
 dataFile.close(); //Data isn't actually written until we
 //close the connection!

 //Print same thing to the screen for debugging
 Serial.println(F("\nNew Log Started!"));
 Serial.println(F("Date,Time,Raw,Active"));
 }
 else
 {
 Serial.println(F("Couldn't open log file"));
 }

 }

 void loop()
 {
 //Get the current date and time info and store in strings
 DateTime datetime = RTC.now();
 year = String(datetime.year(), DEC);
 month = String(datetime.month(), DEC);
 day = String(datetime.day(), DEC);
 hour = String(datetime.hour(), DEC);

310 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 minute = String(datetime.minute(), DEC);
 second = String(datetime.second(), DEC);

 //Concatenate the strings into date and time
 date = year + "/" + month + "/" + day;
 time = hour + ":" + minute + ":" + second;

 //Gather motion data
 raw = analogRead(IR_PIN);
 //If the value changes by more than 75 between readings,
 //indicate movement.
 if (abs(raw-raw_prev) > 75)
 active = true;
 else
 active = false;
 raw_prev = raw;

 //Open a file and write to it.
 if (active || update_time == 20)
 {
 File dataFile = SD.open("log.csv", FILE_WRITE);
 if (dataFile)
 {
 dataFile.print(date);
 dataFile.print(F(","));
 dataFile.print(time);
 dataFile.print(F(","));
 dataFile.print(raw);
 dataFile.print(F(","));
 dataFile.println(active);
 dataFile.close(); //Data isn't actually written until we
 //close the connection!

 //Print same thing to the screen for debugging
 Serial.print(date);
 Serial.print(F(","));
 Serial.print(time);
 Serial.print(F(","));
 Serial.print(raw);
 Serial.print(F(","));
 Serial.println(active);
 }
 else
 {
 Serial.println(F("Couldn't open log file"));
 }
 update_time = 0;
 }
 delay(50);
 update_time++;
 }

 Chapter 13 ■ Data Logging with SD Cards 311

549360c13.indd 02-07-2008 12:00 AM

 Data Analysis
 After loading this code on to your Arduino, set it up at your door and let it run

for a while. When satisfi ed with the amount of data you have collected, put the

SD card in your computer and load the CSV fi le with your favorite spreadsheet

program. Assuming that you only logged over the course of one day, you can

now plot the time column against the activity column. Whenever there is no

activity, the activity line graph remains at zero. Whenever somebody enters or

exits the room, it jumps up to one, and you can see exactly when it happened.

 The procedure for creating a plot will vary with different graphing applica-

tions. To make it easy for you, I’ve created a preformatted online spreadsheet

that will do the plotting for you. You must have a Google account to use it.

Visit the web page for this chapter (www.exploringarduino.com/content/ch13)

and follow the link to the graph-generation spreadsheet. It will prompt you to

create a new spreadsheet in your Google Drive account. Once this completes,

just copy your data in place of where the template data is, and the graph will

update for you automatically. Figure 13-24 shows what a graph of data over a

few minutes might look like.

 Figure 13-24: Entrance logger data graphed over several minutes

http://www.exploringarduino.com/content/ch13

312 Part IV ■ Advanced Topics and Projects

549360c13.indd 02-07-2008 12:00 AM

 Summary

 In this chapter you learned about the following:

 ■ CSV fi les use newlines and commas as delimiters to easily store data in

a plain text format.

 ■ You can format an SD card in Windows, Mac, or Linux.

 ■ There are a plethora of available SD card shields, each with unique features.

 ■ You can use the SD Library to write to and read from a fi le on an SD card.

 ■ You can build an RTC and write software that utilizes it to insert timestamps.

 ■ You can overcome RAM limitations by storing strings in fl ash memory.

 ■ You can detect movement by looking for changing analog values produced

by a distance sensor.

 ■ You can graph data from a data logger using a spreadsheet on your

computer.

 313

549360c14.indd 02-07-2008 12:00 AM

 Parts You’ll Need for This Chapter

 Arduino (Uno recommended)

 USB cable

 Arduino Ethernet shield

 Photoresistor

 10kΩ resistor

 TMP36 temperature sensor

 RGB LED

 220Ω resistors (× 3)

 150Ω resistor

 Speaker or buzzer

 Ethernet cable

 Access to a wired router

 Jumper wires

 Breadboard

 C H A P T E R

14
 Connecting Your Arduino

to the Internet

314 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 CODE AND DIGITAL CONTENT FOR THIS CHAPTER

 Code downloads, video, and other digital content for this chapter can be found at www

.exploringarduino.com/content/ch14 .

 In addition, all code can be found at www.wiley.com/go/exploringarduino on

the Download Code tab. The code is in the chapter 14 download and individu-

ally named according to the names throughout the chapter.

 This is it, the fi nal frontier (and chapter). Short of launching your Arduino

into space, connecting it to the Internet is probably the closest that you will get

to making the whole world your playground. Internet connectivity, in general,

is an extremely complex topic; you could easily write entire volumes of books

about the best way to interface the Arduino with the “Internet of things,” as it is

now often called. Because it is infeasible to cover the multitude of ways you can

interface your Arduino with the web, this chapter focuses on imparting some

knowledge with regard to how network connectivity works with your Arduino

and how you can use the Arduino Ethernet shield to both serve up web pages

and to broadcast data to the web. Specifi cally, you learn about traversing your

network topology, how a web page is served, and how to use a third-party data

logging service to connect your Arduino to the “Internet of things.”

 The Web, the Arduino, and You

 Explaining all the workings of the web is a bit ambitious for one chapter in a

book, so for this chapter, you can essentially think of your Arduino’s relation

to the Internet using the diagram shown in Figure 14-1.

 First, you work only in the realm of your local network. When working within

your local network, you can talk to your Arduino via a web browser only if they

are both on the same local network. Then, you will explore ways in which you

can traverse your router to access functionality from your Arduino anywhere

in the world (or at least anywhere you can get an Internet connection).

 Networking Lingo
 Before you get your feet wet with networking your Arduino, let’s get some

lingo straight. The following are words, concepts, and abbreviations that you

will need to understand as you work through this chapter.

 IP Address

 An Internet Protocol (IP) address is a unique address that identifi es each device

that connects to the Internet. In the case of your home network, there are actu-

ally two kinds of IP addresses you need to worry about: the local IP address

and the global IP address. If your home or offi ce has a router (like the one in

http://www.wiley.com/go/exploringarduino

 Chapter 14 ■ Connecting Your Arduino to the Internet 315

549360c14.indd 02-07-2008 12:00 AM

Figure 14-1), everything within your local network has a local IP address that is

visible only to other devices within your network. Your router/modem has one

public-facing global IP addresses that is visible to the rest of the Internet. If you

want to get data between somewhere else on the Internet and a device behind

a router, you need to use Network Address Translation (NAT).

 Figure 14-1: A simplified view of the web and your local network

 Network Address Translation

 There are not enough IP addresses to have one for every device in the world.

Furthermore, users often do not want their computers and other networked

devices visible to the rest of the world. For this reason, routers are used to create

isolated networks of computers with local IP addresses. However, when you do

want one of these machines to be accessible from the rest of the Internet, you need

to use NAT through the router. This allows a remote device to send a request to

your router asking to talk to a device in your local network. When you connect

your Arduino to the larger web later in this chapter, you use a form of NAT.

316 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 MAC Address

 MAC addresses, unlike IP addresses, are globally unique. (Well, they are sup-

posed to be, but in practice they often are not.) MAC addresses are assigned to

every physical network interface and do not change. For instance, when you

buy a computer, the Wi-Fi module inside has a unique MAC address, and the

Ethernet adapter has a unique MAC address. This makes MAC addresses useful

for identifying physical systems on a network.

 HTML

 HTML, or Hypertext Markup Language, is the language of the web. To display

a web page from your Arduino, you will write some simple HTML that creates

buttons and sliders for sending data.

 HTTP

 HTTP, or Hypertext Transfer Protocol, defi nes the protocol for communicating

across the World Wide Web, and is most commonly used in browsers. HTTP

defi nes a set of header information that must be sent as part of a message across

the web. This header defi nes how a web page will display in addition to whether

the request was successfully received and acknowledged.

 GET/POST

 GET and POST defi ne two ways for transferring information to a remote web

server. If you’ve ever seen a URL that looks like www.jeremyblum.com/?s=arduino ,

you’ve seen a GET request. GET defi nes a series of variables following a ques-

tion mark in the URL. In this case, the variable s is being set to Arduino . When

the page receives this URL, it identifi es this variable, performs the search, and

returns the results page.

 A POST is very similar, but the information is not transmitted in a visible

medium through the URL. Instead, the same variables are transmitted transpar-

ently in the background. This is generally used to hide sensitive information

or to ensure that a page cannot be linked to if it contains unique information.

 DHCP

 DHCP, or Dynamic Host Confi guration Protocol, makes connecting devices to

your local network a breeze. Odds are that whenever you’ve connected to a Wi-Fi

(or wired) network you haven’t had to manually set an IP address at which the

router can connect to you. So, how does the router know to route packets to you?

http://www.jeremyblum.com/?s=arduino

 Chapter 14 ■ Connecting Your Arduino to the Internet 317

549360c14.indd 02-07-2008 12:00 AM

When you connect to the network, a DHCP request is initiated with the router

that allows the router to dynamically assign you an available IP address. This

makes network setup much easier because you don’t have to know about your

network confi guration to connect to it. However, it can make talking to your

Arduino a bit tougher because you need to fi nd out what IP it was assigned.

 DNS

 DNS stands for Domain Name System. Every website that you access on the

Internet has a unique IP address that is the location of the server on the web.

When you type in www.google.com , a DNS server looks at a table that informs

it of the IP address associated with that “friendly” URL. It then reports that IP

back to your computer’s browser, which can, in turn, talk to Google’s server. DNS

allows you to type in friendly names instead of remembering the IP addresses

of all your favorite websites. DNS is to websites as your phone’s contact list is

to phone numbers.

 Clients and Servers
 In this chapter, you learn about how to use the Ethernet shield to make the

Arduino act as either a client or a server. All devices connected to the Internet

are either clients or servers, though some actually fi ll both roles. A server does

as the name implies: When information is requested from it, it serves it up to

the requesting computer over the network. This information can come in many

forms; it could be a web page, database information, email, or a plethora of other

things. A client is the device that requests data, and obtains a response. When

you browse the Internet from your computer, your computer’s web browser is

acting as a client.

 Networking Your Arduino
 For all the examples in this chapter, you use your Arduino paired with the

offi cial Arduino Ethernet shield. There are multiple revisions of this shield, but

these examples are tested to work on the most recent version of the shield with

the WIZnet Ethernet controller chip. Signifi cantly older versions of the shield

used a different chip, and are not guaranteed to work with these examples. You

may also use the Arduino Ethernet, a single-board Arduino that combines the

Ethernet connectivity on to the Arduino board.

 TIP I have found that the Ethernet shield works more reliably than the Arduino
Ethernet.

http://www.google.com

318 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 Attach the Ethernet shield to your Arduino, and connect the shield’s Ethernet

port to an available Ethernet port on your home router using an Ethernet cable.

This should be an ordinary Ethernet crossover cable (nearly all cables will be

labeled as “crossover” on the sheathing). Connect the USB cable to your com-

puter and Arduino for programming. If your router is not near the computer

that you want to use for programming, program it fi rst, and then connect it to

the router. However, some of the examples depend on debugging information

shown via the serial monitor. If you want your system to operate without a

serial connection, you might want to connect it to an LCD for displaying the IP

address, which you will otherwise be displaying via the serial terminal later

in the chapter. You can use your knowledge from Chapter 10, “Liquid Crystal

Displays,” to print information to the LCD instead of the serial terminal if you

want; that is not covered in this chapter.

 Controlling Your Arduino from the Web

 First, you confi gure your Arduino to act as a web server. Using some HTML

forms, and the integrated Ethernet libraries, you have your Arduino automati-

cally connect to the network and serve a web page that you can access to control

some of its I/O pins. You expose buttons to the web interface for toggling the

colors in an RGB LED and controlling a speaker’s frequency. The program that

you write for this purpose is extensible, allowing you to add control of additional

devices as you become more comfortable working with the Arduino.

 Setting Up the I/O Control Hardware
 First, set up some test hardware connected to your Arduino server so that you

can control it from the web. For this example, you connect an RGB LED and a

piezo or ordinary speaker. Wire it up as shown in Figure 14-2. Recall that Pins

4, 10, 11, 12, and 13 are used for communication with the Ethernet chip and SD

card, so you cannot use those pins for general I/O. You connect your RGB LED

to pins 5, 6, and 7. The speaker connects to pin 3.

 Designing a Simple Web Page
 It’s useful to design a simple web page separately from the Arduino before try-

ing to get the Arduino to serve it up so that you can ensure that it looks the way

you want. Your web page will have simple buttons for toggling each LED, and

will have a slider for adjusting the frequency at which a speaker is playing. It

will use HTML form elements to render these components, and it will use the

HTTP GET protocol to send commands from the browser to the server. As you

design the website, it won’t actually be hooked up to a server, so interacting

with it will not elicit any action from the Arduino, or anything else.

 Chapter 14 ■ Connecting Your Arduino to the Internet 319

549360c14.indd 02-07-2008 12:00 AM

 Figure 14-2: Arduino server wired to RGB LED and speaker

 Open up your favorite text editor (I recommend Notepad++ for Windows

because it highlights and color codes your HTML when you save as an HTML

fi le) and create a new fi le with a .html extension. It doesn’t matter what you

name the fi le; test.html will work fi ne. This will be a very bare-bones website,

so do not worry about making this a fully “compliant” HTML website; it will

be missing some tags that are normally used, such as <body> and <head> . These

missing tags will not affect how the page is rendered in the browser. In your

new HTML fi le, enter the markup from Listing 14-1.

 Listing 14-1: HTML Form Page—server_form.html

 <form action='' method='get'>
 <input type='hidden' name='L' value='7' />
 <input type='submit' value='Toggle Red' />
 </form>

 <form action='' method='get'>
 <input type='hidden' name='L' value='6' />
 <input type='submit' value='Toggle Green' />
 </form>

 <form action='' method='get'>

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

320 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 <input type='hidden' name='L' value='5' />
 <input type='submit' value='Toggle Blue' />
 </form>

 <form action='' method='get'>
 <input type='range' name='S' min='0' max='1000' step='100' value='0'/>
 <input type='submit' value='Set Frequency' />
 </form>

 This HTML page includes four form elements. <form> specifies the

beginning of a form, and </form> specifi es the end. Within each form are

 <input /> tags that specify what data will be passed to the server when the

form is submitted. In the case of the LED toggle buttons, a variable called L will

be passed to the server via a GET method with a value equivalent to the I/O pin

number that you will be toggling. The empty action element in the form tag

indicates that the same page should be reloaded when the variable is passed to

the server. The hidden input specifi es that value will just be passed when the

Submit button is pressed. For the frequency slider, we are using a new HTML5

 input element called range . This will make a range slider. You can move the

slider (in increments of 100) to select a frequency that will be transmitted as

the value of a variable called S . In older browsers, this slider might render as

an input box rather than a slider, if they don’t yet support the range element.

To see what the page will look like, open it up with your favorite browser (I

recommend Google Chrome). In Chrome, you need to press Ctrl+O (Windows)

or Cmd+O (OSX) to get an Open dialog box. Open the HTML fi le you just made

in your browser (see Figure 14-3).

 Figure 14-3: Web page content test in Chrome.

 If you press any of the buttons, you should see a variable GET statement

appended to the address in your browser’s URL bar.

 Writing an Arduino Server Sketch
 Now, you need to take the HTML you’ve developed, and integrate it into a larger

Server sketch that will handle connecting to the network, responding to client

requests with the page you designed, and responding to GET statements from

the page forms.

 Chapter 14 ■ Connecting Your Arduino to the Internet 321

549360c14.indd 02-07-2008 12:00 AM

 Connecting to the Network and Retrieving an IP via DHCP

 Thanks to the wonders of DHCP, connecting to the network with the Arduino

Ethernet shield is a snap. Before showing you the code, let’s look at what is

going to happen. At the top of your program, you should include the serial

peripheral interface (SPI) and Ethernet libraries, defi ne the MAC address of your

Ethernet shield (it will be on a sticker on the shield), and create an instance of

 EthernetServer . Within the setup() , you begin an Ethernet session with the

MAC address you’ve defi ned and start the web server. You can optionally sup-

ply a static IP address when initiating the Ethernet session, but by leaving that

argument out, the Arduino will connect via DCHP and return the assigned IP

address via the serial terminal. You can then use that IP address to connect to

Arduino and view the web page it will be hosting.

 Replying to a Client Response

 The main loop is responsible for a number of actions. To handle moving through

all these various action states, a number of “state variables” are used throughout

the loop to keep track of what actions have been performed and what still needs

to happen for successful communication with the client to take place.

 The Arduino will always be checking for client connections (from your laptop,

for example) to the server. When a client connects, the Arduino replies with two

things: the HTTP response header and the HTML-formatted web page that was

requested. The response header tells your browser what kind of information is

about to be sent. When you have tried to visit a nonexistent web page, you’ve

probably gotten the dreaded “404 Response.” The 404 header indicates to the

browser that the server could not fi nd the requested page. A “200 Response,”

in contrast, indicates that the request has been received and that the HTML

will be transmitted to the browser. So, on the Arduino, you want to send a “200

Response” to the browser and follow that up with a defi nition of the Content-

Type (HTML, in this case). This complete header looks like this:

 HTTP/1.1 200 OK
 Content-Type: text/html

 This header must be followed by a blank line, then the content of your HTML

page that you wrote earlier. This same program is also used to reply to GET

requests. To identify GET requests, you need to look for the question mark char-

acter in the URL that specifi es what parameters have been selected and sent. If

the ? is found, the program waits until it receives a variable name. In the case

of the HTML you wrote earlier, the command for LED control is an L , and the

command for the speaker frequency adjustment is an S . Depending on which

of these is in the URL, the program parses integers out of the URL and controls

322 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

the peripheral accordingly. After this has happened, a break command is used

to exit the code from the connected client loop, and it starts listening for a new

client connection to do the whole process over again.

 Putting It Together: Web Server Sketch

 Given all the requirements listed in the previous sections, you can now construct

a server program for the Arduino. These programs tend to be fairly nontrivial

because they require the use of several state variables that track the interac-

tion between the client and server. The sketch in Listing 14-2 works great for

accomplishing the tasks of controlling an RGB LED and speaker. If you want

to add additional functionality with more GET variables, it should be fairly

straightforward to do so. The areas where you can insert this extra functional-

ity are called out in the code comments.

 Listing 14-2: Web Server Code—control_led_speaker.ino

 //Arduino Web Server
 //Some code adapted under MIT License from
 //http://bildr.org/2011/06/arduino-ethernet-pin-control/

 #include <Ethernet.h>
 #include <SPI.h>

 const int BLUE =5;
 const int GREEN =6;
 const int RED =7;
 const int SPEAKER =3;

 //For controlling LEDS and the speaker
 //If you want to control additional things, add variables to
 //control them here.
 int freq = 0;
 int pin;

 //Set to your MAC address!
 //It should be on your sticker. If you can't find it,
 //make one up, or use this one.
 byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x4A, 0xE0 };

 //Start the server on port 80
 EthernetServer server = EthernetServer(80); //port 80

 boolean receiving = false; //To keep track of whether we are
 //getting data.

 void setup()
 {
 Serial.begin(9600);

http://bildr.org/2011/06/arduino-ethernet-pin-control

 Chapter 14 ■ Connecting Your Arduino to the Internet 323

549360c14.indd 02-07-2008 12:00 AM

 pinMode(RED, OUTPUT);
 pinMode(GREEN, OUTPUT);
 pinMode(BLUE, OUTPUT);

 //Connect with DHCP
 if (!Ethernet.begin(mac))
 {
 Serial.println("Could not Configure Ethernet with DHCP.");
 return;
 }
 else
 {
 Serial.println("Ethernet Configured!");
 }

 //Start the server
 server.begin();
 Serial.print("Server Started.\nLocal IP: ");
 Serial.println(Ethernet.localIP());

 }

 void loop()
 {
 EthernetClient client = server.available();

 if (client)
 {

 //An HTTP request ends with a blank line
 boolean currentLineIsBlank = true;
 boolean sentHeader = false;

 while (client.connected())
 {
 if (client.available())
 {
 char c = client.read(); //Read from the incoming buffer

 if(receiving && c == ' ') receiving = false; //Done receiving
 if(c == '?') receiving = true; //Found arguments

 //This looks at the GET requests
 if(receiving)
 {
 //An LED command is specified with an L
 if (c == 'L')
 {
 Serial.print("Toggling Pin ");
 pin = client.parseInt();
 Serial.println(pin);

324 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 digitalWrite(pin, !digitalRead(pin));
 break;
 }
 //A speaker command is specified with an S
 else if (c == 'S')
 {
 Serial.print("Setting Frequency to ");
 freq = client.parseInt();
 Serial.println(freq);
 if (freq == 0)
 noTone(SPEAKER);
 else
 tone(SPEAKER, freq);
 break;
 }
 //Add similarly formatted else if statements here
 //TO CONTROL ADDITIONAL THINGS
 }

 //Print out the response header and the HTML page
 if(!sentHeader)
 {
 //Send a standard HTTP response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html\n");

 //Red toggle button
 client.println("<form action='' method='get'>");
 client.println("<input type='hidden' name='L' value='7' />");
 client.println("<input type='submit' value='Toggle Red' />");
 client.println("</form>");

 //Green toggle button
 client.println("<form action='' method='get'>");
 client.println("<input type='hidden' name='L' value='6' />");
 client.println("<input type='submit' value='Toggle Green' />");
 client.println("</form>");

 //Blue toggle button
 client.println("<form action='' method='get'>");
 client.println("<input type='hidden' name='L' value='5' />");
 client.println("<input type='submit' value='Toggle Blue' />");
 client.println("</form>");

 //Speaker frequency slider
 client.println("<form action='' method='get'>");
 client.print("<input type='range' name='S' min='0' max='1000'
 step='100' value='0'/>");
 client.println("<input type='submit' value='Set Frequency' />");
 client.println("</form>");

 Chapter 14 ■ Connecting Your Arduino to the Internet 325

549360c14.indd 02-07-2008 12:00 AM

 //Add additional forms forms for controlling more things here.

 sentHeader = true;
 }

 if (c == '\n' && currentLineIsBlank) break;

 if (c == '\n')
 {
 currentLineIsBlank = true;
 }
 else if (c != '\r')
 {
 currentLineIsBlank = false;
 }
 }
 }
 delay(5); //Give the web browser time to receive the data
 client.stop(); //Close the connection:
 }
 }

 This code executes all the functionality that was described in the previous

sections. Be sure to change the MAC address listed in this code to the MAC

address printed on the sticker on your Arduino shield. If you cannot locate that

address, it may still work with the wrong address; you can use the one that is

already listed in the code. Load it on to your Arduino and launch the serial

monitor. Ensure that your Arduino is plugged into your network and that your

router has DHCP enabled (most do). After a few seconds, the DHCP connection

should succeed, and you will see a message that informs you of the IP address

that it has been assigned (see Figure 14-4).

 Figure 14-4: DHCP IP acquisition confirmation via serial

326 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 In the case shown in Figure 14-4, the Arduino was assigned local IP address

192.168.0.9. This number will almost certainly differ on your network, so be sure

to check what it is! Note this IP address; you will now need to use it to access

the web interface that you have just launched.

 Controlling Your Arduino via the Network
 Now that the server code is running, and your Arduino is connected to the net-

work with a valid IP, you can access it with a browser and control it. First, you

do so over your local network, and then you learn how you can take advantage

of port forwarding in your router to access it from outside of your local network.

 Controlling Your Arduino over the Local Network

 To confi rm that the web interface is working properly, ensure that your computer

is attached to the same network as your Arduino (via Wi-Fi or Ethernet). Open

your favorite browser, and enter the IP address from the previous section into

the URL bar. This should open an interface that looks just like the HTML page

you created earlier. Try pressing the buttons to toggle the various LED colors

on and off. Move the slider and hit the frequency adjustment button to set the

frequency of the speaker. You should see and hear the Arduino responding. If

you’ve left the serial monitor open, you’ll also see it displaying debug info as it

receives commands. Notice the GET commands being passed to the Arduino

server through the browser’s URL bar (see Figure 14-5).

 Figure 14-5: Arduino control web page and serial debugging

 Chapter 14 ■ Connecting Your Arduino to the Internet 327

549360c14.indd 02-07-2008 12:00 AM

 After you’re satisfi ed with controlling the lights and sounds over the local

network, you can follow the steps in the next section to enable control from

anywhere in the world.

 NOTE To watch a demo video of the Arduino being controlled over a local net-
work, check out www.exploringarduino.com/content/ch14 . You can also find
this video on the Wiley website shown at the beginning of this chapter.

 Using Port Forwarding to Control your Arduino from Anywhere

 The steps in the previous section enable you to control your Arduino from

anywhere within your local network. This is because the IP address that you

are connecting to is a local address that sits behind your router. If you want to

control your Arduino from computers outside of your local network, you need

to take advantage of advanced technologies that will allow you to tunnel to

your device through your router from the outside world. To do this, you need

to implement three steps:

 1. Reserve the local DHCP address used by your Arduino.

 2. Forward an external port on your router to an internal port pointing at

your Arduino.

 3. Connect your router to a dynamic DNS updating service.

 WARNING The steps in this section are advanced and will differ (maybe dras-
tically) depending on what kind of router you have. I will generalize, but I also
assume some existing knowledge of router administration. I recommend search-
ing the web for instructions specific to your router for each of the steps listed. If
this is your first time logging in to your router’s administration panel, I don’t sug-
gest doing these steps; you could potentially mess up your network setup. Some
routers may not even support all the functions required to enable port forwarding
and dynamic DNS updating. If you are not familiar at all with network administra-
tion, stick to local web access for now.

 Logging In to Your Router

 First, log in to your router’s administration panel. The admin panel URL is the

gateway IP address for your network. In almost all home network confi gura-

tions, this is the fi rst three decimal-separated values of your Arduino’s local IP,

followed by a 1. If, for example, your Arduino’s IP was 192.168.0.9, your gateway

address is probably (but not necessarily) 192.168.0.1. Try typing that address

into your browser to see whether you get a login screen. Enter the login creden-

tials for your router admin page; these are not the same as your wireless login

http://www.exploringarduino.com/content/ch14

328 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

credentials. (If you never changed them from the default values, you might be

able to fi nd them in your router’s setup manual.)

 If that IP address does not work, you need to determine it manually. On

Windows, you can open a command prompt and type ipconfig . You want to

use the Default Gateway address for your active network connection. If you

are on a Mac, access System Preferences, go to Network, click the Advanced

button, go to the TCP/IP tab, and use the Router Address. If you are in Linux,

open a terminal, type route -n, and use the last Gateway Address listing that

is nonzero.

 Reserving Your Arduino’s DHCP Address

 Once in your router’s admin console, look for an option to reserve DHCP addresses.

By reserving a DHCP address, you are ensuring that every time a device with

a particular MAC address connects to the router it will be assigned the same

local IP. Reserved IP addresses are never given to clients with a MAC address

other than the specifi ed address, even if that reserved client is not presently

connected to the router. By reserving your Arduino’s DHCP IP address, you

ensure that you’ll always be able to forward web traffi c to it in the next step.

 Once you fi nd the option, reserve whatever IP address your Arduino is cur-

rently using by assigning it to the MAC address that you set in the sketch earlier.

Be sure to apply the setting, which may require restarting your router. You can

confi rm that this works by restarting your router and the Arduino and seeing

if your Arduino gets the same IP when it reconnects.

 You can also accomplish the same effect by giving your Arduino a static IP

(not using DHCP) in the sketch. The Arduino website describes how to do this:

 http://arduino.cc/en/Reference/EthernetIPAddress .

 Forwarding Port 80 to Your Arduino

 Now that you have an unchanging local IP address for your Arduino, you need

to pipe incoming web traffi c to that internal IP address. Port forwarding is the

act of listening for traffi c on a certain port of router and always forwarding

that traffi c to a specifi c internal IP address. Port 80 is the default port for HTTP

communication, so that is what you will use. Locate the right option in your

router administration panel and forward external port 80 to internal port 80

on the IP that you just assigned to your Arduino. If the router specifi es a range

for the ports, just make the range 80-80. Now, all traffi c to your router on port

80 will go to your Arduino.

 Using a Dynamic DNS Updating Service

 The last step is to fi gure out how to access your router from elsewhere in the

world. If you are working on a commercial network (or you pay a lot for your

home’s Internet connection), you might have a static global IP address. This

http://arduino.cc/en/Reference/EthernetIPAddress

 Chapter 14 ■ Connecting Your Arduino to the Internet 329

549360c14.indd 02-07-2008 12:00 AM

is rare for residential Internet connections, but still possible; check with your

Internet service provider (ISP). If that is the case, just type what is my ip into

Google, and it will tell you what your global IP is. If you know you have a static

IP, you can access that IP from anywhere in the world and traffi c on it should

forward to your Arduino. If you want, you can even buy a domain name and

set up your domain name’s DNS servers to point to that IP address.

 However, the odds are good that you have a dynamic global IP address. Your

ISP probably changes your IP once every few days or weeks. So, even if you

fi gure out what your global IP is today, and access your Arduino via this IP, it

might stop working tomorrow. There is a clever way around this, which is to

use dynamic IP services. These services run a small program on your router

that periodically checks your global IP address and reports it back to a remote

web server. This remote web server then updates a subdomain that you own

(such as myarduino.dyndns.org) to always point to your global IP, even when it

changes. DynDNS is a service that has software built in to most modern routers.

Search your router administration page to see which dynamic DNS services it

supports. Some are free; some charge a nominal yearly fee. You can follow the

setup instructions in your router’s admin panel to create an account with one of

these services and to connect it to your router. After doing this, you can access

your Arduino remotely, even with a dynamically changing global IP address.

In case your router does not support any dynamic DNS services, remember that

some also offer clients that will run on computers within your network rather

than on the router directly.

 Once you have determined your public IP address (or obtained a dynamically

updating URL), you can enter that into your browser, and you should connect

to your Arduino. Give the address to a friend so they can test remotely!

 Sending Live Data to a Graphing Service

 In the preceding section, you learned how to turn your Arduino into a web

server that exposed a web interface for controlling its I/O pins over the local

network or the Internet. However, an equally common reason for connecting

your Arduino to the Internet is to make networked sensor nodes. Sensor nodes

generally only transmit information, instead of listening for commands. Because,

in this scenario, the Arduino will be initializing a request out to a known entity

on the web (in this case you will use an online graphing service), you do not

have to fuss at all with forwarding IP addresses, memorizing the IP address,

and so forth.

 This section uses an online graphing interface called Xively (previously called

 Cosm) to facilitate the creation of live graphs with your Arduino.

330 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 Building a Live Data Feed on Xively
 For this example, you use the Xively web service to facilitate graphing of some

sensors hooked up to your Internet-enabled Arduino. By connecting to the

Xively site, you eliminate much of the hard work that you would ordinarily

need to do to display your data on the web.

 Creating a Xively Account

 To start, visit www.xively.com and sign up for a free account. Follow the link in

the confi rmation email you receive and log in to the website.

 Creating a Data Feed

 Once your account is set up, click the Develop button at the top of the page to

create a feed. Press the “+ Add Device” button. A screen like the one shown in

Figure 14-6 will prompt you to name your feed and add a description. You can

also choose to make your feed public or private.

 Figure 14-6: Xively feed addition

 Enter the requested details and then click Add Device. A new page will appear

with relevant connection information for your new feed. Leave this page open,

http://www.xively.com

 Chapter 14 ■ Connecting Your Arduino to the Internet 331

549360c14.indd 02-07-2008 12:00 AM

because you will need the information from this page when you confi gure your

Arduino sketch later in this section.

 Installing the Xively and HttpClient Libraries

 Xively provides a convenient Arduino library that makes it easier to get your

Arduino talking to the web through their service. The Xively library depends

on the HttpClient library, so you will need to download that as well. Both librar-

ies are available on GitHub, a popular code hosting website. Visit the following

two links and click the ZIP download button to download the code repositories:

 https://github.com/xively/xively-arduino and https://github.com/amcewen/

HttpClient . (These download links can also be found on the web page for this

chapter: www.exploringarduino.com/content/ch14 .) For now, save these ZIP fi les

on your desktop. Then complete the following steps:

 1. Unzip the fi les and rename the library folders so that they do not contain

dashes (GitHub adds dashes to the folder names automatically). I recom-

mend renaming the “HttpClient-master” folder to “HttpClient” and the

“Xively-Arduino-master” folder to “xively.”

 2. Move these folders to your Arduino libraries directory, as you did in

the “Getting the Library” section of Chapter 12, “Hardware and Timer

Interrupts.”

 3. Open the Arduino integrated development environment (IDE) (you’ll need

to restart it if it was open when you copied the libraries) and navigate to

File > Examples. Confi rm that you see “HttpClient” and “xively” in the

Examples list. This confi rms that the libraries were installed successfully.

 For your fi rst experiment with Xively, you’ll use their handy example sketch,

which broadcasts the state of one analog sensor to web. In the example menu

of your Arduino IDE, open the DatastreamUpload example under the “xively”

heading. This should open a new sketch. (This sketch is also included in the

code download package for this chapter.) Because you’ll be modifying the

example sketch, use the File > Save As option to save this sketch to your own

directory before continuing. A quick glance at the example fi le reveals that it

will be transmitting the analog value that is read by analog input pin 2:

 // Analog pin which we're monitoring (0 and 1 are used by the
 // Ethernet shield)
 int sensorPin = 2;

 Knowing this, you’ll wire up your Arduino accordingly in the next section,

with the Ethernet shield equipped. You’ll come back to this sketch once you’ve

wired your Arduino.

https://github.com/xively/xively-arduino
https://github.com/amcewen
http://www.exploringarduino.com/content/ch14

332 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 Wiring Up Your Arduino

 Next, wire an analog sensor to analog pin 2 of your Arduino. The example sketch

that you just downloaded is confi gured to read an analog input on analog pin 2

and broadcast it up to your Xively account. To keep things simple, grab a pho-

toresistor and 10k resistor and wire them to analog input 2 as a voltage divider,

just as you did in Chapter 3, “Reading Analog Sensors” (see Figure 14-7). Once

it’s wired up, plug your Arduino into the computer and your network.

 Figure 14-7: Arduino with Ethernet shield wired to photoresistor

 Configuring the Xively Sketch and Running the Code

 You’ve already installed the appropriate libraries and opened the example

sketch. You now need to confi gure, compile, and run the code on your Arduino.

First, you will confi gure the sketch to talk to the feed on your Xively account.

 You need to change only three values in the sketch to get it to work with your

Arduino and your Xively feed: the MAC address of your Arduino Ethernet Shield,

your Xively API key, and your Feed ID. The MAC address will be the same MAC

address that you used for previous examples. (As before, if you cannot fi nd your

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 14 ■ Connecting Your Arduino to the Internet 333

549360c14.indd 02-07-2008 12:00 AM

MAC address, just use the default one that comes in the example sketch.) Your

API key and Feed ID can be found on the Xively web page that you kept open

from before. Find the “API Keys” section (see Figure 14-8).

 Figure 14-8: Xively Feed and API Info

 This section provides the Feed ID (the fi rst number) and the API key (the second

number) to insert into your sketch. The following code snippets show the lines

of code that you will need to update with the appropriate values. Listing 14-3

shows an example of the complete sketch with all the values inserted (your

values will be different than the ones shown in the listing).

 Replace the MAC Address with your own:

 // MAC address for your Ethernet shield
 byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

 Replace the Xively API key with your own:

 // Your Xively key to let you upload data
 char xivelyKey[] = "YOUR_XIVELY_API_KEY";

 Replace the Feed ID (15552 in the example) with your own (yours may have

a different number of digits):

 // Finally, wrap the datastreams into a feed
 XivelyFeed feed(15552, datastreams, 1 /* number of datastreams */);

 Listing 14-3 shows the completed program.

334 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 Listing 14-3: Xively Datastream Upload—xively.ino

 #include <SPI.h>

 #include <Ethernet.h>

 #include <HttpClient.h>

 #include <Xively.h>

 // MAC address for your Ethernet shield

 byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x4A, 0xE0 };

 // Your Xively key to let you upload data

 char xivelyKey[] = "qkjXS1oUKqbCG-hqh3fw4WIsdvOSAKx4ZXZYSWhGUWdxcz0g";

 // Analog pin which we're monitoring (0 and 1 are used by the

 // Ethernet shield)

 int sensorPin = 2;

 // Define the strings for our datastream IDs

 char sensorId[] = "sensor_reading";

 XivelyDatastream datastreams[] = {

 XivelyDatastream(sensorId, strlen(sensorId), DATASTREAM_FLOAT),

 };

 // Finally, wrap the datastreams into a feed

 XivelyFeed feed(1242622121, datastreams, 1 /* number of datastreams */);

 EthernetClient client;

 XivelyClient xivelyclient(client);

 void setup() {

 // Put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("Starting single datastream upload to Xively...");

 Serial.println();

 while (Ethernet.begin(mac) != 1)

 {

 Serial.println("Error getting IP address via DHCP, trying again...");

 delay(15000);

 }

 }

 void loop() {

 int sensorValue = analogRead(sensorPin);

 datastreams[0].setFloat(sensorValue);

 Serial.print("Read sensor value ");

 Serial.println(datastreams[0].getFloat());

 Serial.println("Uploading it to Xively");

 int ret = xivelyclient.put(feed, xivelyKey);

 Chapter 14 ■ Connecting Your Arduino to the Internet 335

549360c14.indd 02-07-2008 12:00 AM

 Serial.print("xivelyclient.put returned ");

 Serial.println(ret);

 Serial.println();

 delay(15000);

 }

 Upload the code to your Arduino, and you’ll be ready to transmit. When your

Arduino connects for the fi rst time, the Xively server automatically adds the

feed to the web page you had open earlier.

 In the code, you’re creating an object that contains all the information of your

feed. This appears as an array, named datastreams[] . This contains the sensor

name and type (in this case, a fl oat). The feed gets wrapped into a XivelyFeed

object, which has the feed ID, the datastream information, and the number of

datastreams that are in the array.

 Displaying Data on the Web

 Once you start running the sketch on the Arduino, data will be transmitted

immediately. Open the serial monitor to observe the status of your transmissions.

If you do not see a return status of “200” in the serial monitor, you probably

copied the wrong API key or Feed ID. Check those values and try again. Once

you know that data is being properly transmitted, return to the Xively website;

the sensor_reading data stream should now be automatically updating every

15 seconds. Click on the sensor_reading link to see a live graph of the data

coming from your photoresistor. After the graph has been running for a while,

it may look something like Figure 14-9. (The serial monitor is also shown so you

can see how they match up.) That’s all there is to it. Your Arduino will continue

to communicate with and update your feed on the Xively server.

 Figure 14-9: Light data being displayed on Xively

336 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 Adding Feed Components
 Having one sensor feed to Xively is great, but what if you want to add more

sensors? Thankfully, adding additional data is quite easy! You add an analog

temperature sensor to your Arduino to complement the readings from your

light sensor. You could also add any other kind of sensor—even digital I 2 C

and SPI sensors.

 Adding an Analog Temperature Sensor

 Using the TMP36 temperature sensor that you used in Chapter 3, add a simple

analog temperature sensor to the circuit, as in Figure 14-10. This sensor will be

read by analog input 3.

 Figure 14-10: Adding a TMP36 temperature sensor

 Adding Additional Sensor Readings to the Datastream

 You now need to insert the data from this sensor into the stream of data that is sent

to the Xively server. Essentially, you just need to add an additional datastream to

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 14 ■ Connecting Your Arduino to the Internet 337

549360c14.indd 02-07-2008 12:00 AM

the code everywhere you see the fi rst datastream. You may also choose to rename

to the datastream IDs to something more understandable, like light_reading

and temp_reading . The code in Listing 14-4 should resemble the code you used

before, but is now writing two datastreams. Note that you still need to enter

in your API key, Feed ID, and MAC address from your previous program into

this code; otherwise, it will not work.

 Listing 14-4: Xively Datastream Upload Code Updated to Read Multiple Sensors—
xively2.ino

 #include <SPI.h>

 #include <Ethernet.h>

 #include <HttpClient.h>

 #include <Xively.h>

 // MAC address for your Ethernet shield

 byte mac[] = { 0x90, 0xA2, 0xDA, 0x00, 0x4A, 0xE0 };

 // Your Xively key to let you upload data

 char xivelyKey[] = "qkjXS1oUKqbCG-hqh3fw4WIsdvOSAKx4ZXZYSWhGUWdxcz0g";

 // Analog pin which we're monitoring (0 and 1 are used by the

 // Ethernet shield)

 int lightPin = 2; //Temperature sensor

 int tempPin = 3; //Light sensor

 // Define the strings for our datastream IDs

 char lightId[] = "light_reading";

 char tempId[] = "temp_reading";

 XivelyDatastream datastreams[] = {

 XivelyDatastream(lightId, strlen(lightId), DATASTREAM_FLOAT),

 XivelyDatastream(tempId, strlen(tempId), DATASTREAM_FLOAT),

 };

 // Finally, wrap the datastreams into a feed

 XivelyFeed feed(1242622121, datastreams, 2 /* number of datastreams */);

 EthernetClient client;

 XivelyClient xivelyclient(client);

 void setup() {

 // Put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println("Starting double datastream upload to Xively...");

 Serial.println();

 while (Ethernet.begin(mac) != 1)

338 Part IV ■ Advanced Topics and Projects

549360c14.indd 02-07-2008 12:00 AM

 {

 Serial.println("Error getting IP address via DHCP, trying again...");

 delay(15000);

 }

 }

 void loop() {

 int lightValue = analogRead(lightPin);

 datastreams[0].setFloat(lightValue);

 Serial.print("Read light value ");

 Serial.println(datastreams[0].getFloat());

 int tempValue = analogRead(tempPin);

 datastreams[1].setFloat(tempValue);

 Serial.print("Read temp value ");

 Serial.println(datastreams[1].getFloat());

 Serial.println("Uploading it to Xively");

 int ret = xivelyclient.put(feed, xivelyKey);

 Serial.print("xivelyclient.put returned ");

 Serial.println(ret);

 Serial.println();

 delay(15000);

 First, note that all previous references to sensor have been updated to light .

Now that you are transmitting information from two sensors, it is good coding

practice to differentiate between them properly. A tempId[] data stream was

added and inserted into the datastreams[] object. The XivelyFeed object defi -

nition was updated to indicate that there are now two datastreams instead of

one. Within the loop() , the lines that were previously printing sensor informa-

tion about the light sensor have been duplicated to print the same information

about the temperature sensor. Note that the light information is listed fi rst in

the datastreams object, so it is referenced as datastreams[0] . The temperature

information is listed second in the datastreams object, so it is referenced as

 datastreams[1] .

 When you run this code on your Arduino, the web interface automatically

updates itself to refl ect your new datastreams. You might want to delete your

old sensor_reading datastream, as light_reading is now being updated

instead. After several minutes of updates, your graphs should look something

like Figure 14-11.

 Chapter 14 ■ Connecting Your Arduino to the Internet 339

549360c14.indd 02-07-2008 12:00 AM

 Figure 14-11: Xively graphs for multiple sensors

 You have now successfully used your Arduino as both a webserver and a

client to a remote web service. Try adding digital sensors, visual feedback, and

more to make your system truly interactive.

 Summary

 In this chapter you learned about the following:

 ■ The Internet has a lot of acronyms. You learned the meanings of IP, DHCP,

DNS, MAC, and more.

 ■ You learned the differences between clients and servers.

 ■ You learned enough basic HTML to write a form for controlling your

Arduino over the web.

 ■ You ran a web server from your Arduino.

 ■ You can control I/O pins on your Arduino over the Internet.

 ■ You learned how to connect your Arduino to the Xively graphing server.

 ■ You learned how to display data from multiple sensors online.

549360c14.indd 02-07-2008 12:00 AM

 341

549360bapp01.indd 02-07-2008 12:00 AM

A P P E N D I X

 Deciphering the ATMega
Datasheet and Arduino

Schematics

 At the heart of all Arduinos is an Atmel microcontroller. This appendix does

not summarize the features of all the microcontrollers in all the Arduinos, but

it is a useful exercise to investigate an ATMega datasheet to get a better idea

about how it works. Further, taking a look at the open source schematics for the

Arduino Uno will make it easier to understand how an Arduino actually works.

 Reading Datasheets

 One of the most important skills that you can develop as an engineer is the

ability to read datasheets. Just about any electronic component that you can buy

has an associated datasheet that contains info about the technical limits of the

part, instructions on how to use its capabilities, and so forth.

 Breaking Down a Datasheet
 Consider the datasheet for the Atmel ATMega 328p, for instance. Recall that

the ATMega 328p is the microcontroller unit (MCU) used in the Arduino Uno

and many Arduino clones. Finding a datasheet can often be the trickiest part.

I recommend just doing a Google search for “ATMega 328p datasheet” and

looking for the fi rst PDF link from Atmel. The datasheets for the MCUs used

in the Arduinos can also be found on the hardware page for each board on the

342 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics

549360bapp01.indd 02-07-2008 12:00 AM

 www.Arduino.cc website. When you have the datasheet in hand, start by review-

ing the fi rst page (see Figure A-1). In most cases, the fi rst page tells you all you

need to know about the features of that MCU.

 Figure A-1: The first page of the ATMega 328p datasheet

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.
 A

ll
ri

gh
ts

 r
es

er
ve

d.

http://www.Arduino.cc

 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics 343

549360bapp01.indd 02-07-2008 12:00 AM

 From a quick glance at the datasheet, you can learn a considerable amount

about the microcontroller. You can ascertain that it has 32KB of programmable

fl ash memory, that it can be reprogrammed about 10,000 times, and that it can

operate from 1.8V to 5.5V (5V in the case of the Arduino). You can also learn

how many inputs/outputs (I/Os) it has, what special functions it has built in

(like hardware serial peripheral interface [SPI] and I 2 C interfaces), and what

resolution its analog-to-digital converter (ADC) is.

 NOTE This datasheet is actually hundreds of pages, and there could probably
be an entire book dedicated just to interpreting it, so I won’t go much further here.
However, throughout the remainder of this appendix, I do point out several more
important topics to look out for.

 Datasheets as long as this one generally have PDF bookmarks built in that

make it easier to fi nd what you’re looking for. Of particular interest for your

Arduino adventures may be information about I/O ports, the timers, and the

various hardware serial interfaces. As one more example, consider Figure 13-1

from the datasheet’s I/O section in the PDF, which is shown here as Figure A-2

for your convenience.

Cpin

Pxn

Rpu

Logic

See Figure
“General Digital I/O” for

Details

 Figure A-2: I/O pins diagram

 Diagrams like this one can be found throughout the datasheet, and can give

you a deeper insight into how your Arduino is actually working. In this example,

you can see that the I/O pins all have protection diodes to protect them from

excessively high or negative voltages. It’s also important to observe that there

is a known pin capacitance, which could have signifi cant implications when

trying to determine the rise and fall times when switching the value of a pin.

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.

A
ll

ri
gh

ts
 r

es
er

ve
d.

344 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics

549360bapp01.indd 02-07-2008 12:00 AM

 Understanding Component Pin-outs
 All datasheets will include the pin-out for the device in question, which clearly

illustrates the functions of each pin. Particularly for microcontrollers, pins may

have multiple functions, so understanding the pin-out can be critical for grasp-

ing what each pin can and cannot do. Consider the pin-out of the ATMega 328p

(see Figure A-3). Understanding the pin-out of the microcontroller at its heart

will make it easier to understand the Arduino Uno schematic, which you’ll look

at in the next section.

 Figure A-3: ATMega 328p DIP pin-out

 Note that the pin-out indicates how you can fi nd the pin number on the actual

chip. The half circle at the top of the pin-out corresponds to a similar half circle

on the actual integrated circuit. Look at the chip in your Arduino and you’ll

see this half circle; now you know that the pin immediately to its left is pin 1.

 You’ll also probably notice some abbreviations that you may not be familiar

with. They are defi ned here:

 ■ VCC refers to voltage supply to the chip. In the case of the Arduino, VCC

is 5V.

 ■ AVCC is a separate supply voltage for the ADC. For the Arduino, it is

also 5V.

 ■ AREF is broken out to a pin. So, you can choose an arbitrary voltage below

5V to act as the reference for the ADC if you desire.

 ■ GND is, of course, the ground connection.

C
re

di
t:

 ©
 2

01
3

A
tm

el
 C

or
po

ra
tio

n.
 A

ll
ri

gh
ts

 r
es

er
ve

d.

 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics 345

549360bapp01.indd 02-07-2008 12:00 AM

 The rest of the pins are all general-purpose I/O. Each is mapped to a unique

pin number in the Arduino software so that you don’t have to worry about the

port letter and number.

 The labels in parentheses represent alternative functions for each pin. For

example, pins PD0 and PD1 are also the Universal Synchronous/Asynchronous

Receiver/Transmitter (USART) Receive (RX) and Transmit (TX) pins, respec-

tively. Pins PB6 and PB7 are the crystal connection pins (XTAL). In the case of

the Arduino Uno, an external 16 MHz ceramic resonator is connected to these

pins, so you cannot use these for general-purpose I/O. If you have trouble

deciphering the pin labels, you can usually learn more about what they mean

by searching the rest of the datasheet for those terms. The Arduino website

has a diagram illustrating how the ATMega pins are connected to numbered

pins on the Arduino board. You can fi nd it at http://arduino.cc/en/Hacking/

PinMapping168 , and it is shown in Figure A-4.

 Figure A-4: Arduino ATMega Pin Mapping

 Understanding the Arduino Schematic

 Perhaps one of the best ways to learn about electrical design is to analyze the

schematics of existing products, such as the Arduino. Figure A-4 shows the

schematic for the Arduino Uno.

C
re

di
t:

 A
rd

ui
no

, w
w
w
.
a
r
d
u
i
n
o
.
c
c

http://arduino.cc/en/Hacking
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

346 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics

549360bapp01.indd 02-07-2008 12:00 AM

5
4

9
3

6
0

b
ap

p
0

1.in
d

d

0
2

-0
7-2

0
0

8
 12

:0
0
 A

M

GND

3X2 M

ICSP1

1
3
5

MISO2
SCK2

RESET2

RESET2
USBVCC

22R RN2A

22R RN3A

C
G

0
6

0
3

M
L

C
–

0
5

E

C
G

0
6

0
3

M
L

C
–

0
5

E

Z
2

Z
1

L
1

B
L

M
2

1

U
G

N
DP

$
1

P
$

2

P
$

1
U

S
B

P
$

2

USHIELD

RD–

RD+

100n
C7

GND
GND

GROUND

2 1
C8
1u

D–
XUSB1

X2

USB–B_TH

2
3
4

D+

8 1

5 4

F1

MF–MSMF050–2 500mA

2
4
6

GND

GND

GND

R
E

S
E

T

RESET C
D

1
2

0
6

–
S

0
1

5
7

5

T
S

4
2

0
3

1
–

1
6

0
R

–
T

R
–

7
2

6
0

ICSP

3X2 M

ZU4

GND

GND

GND

GND

CSTCE16M0V53–R0 16 MHZ
AREF

C
5

1
0

0
n

1

RESET–EN

XTAL2

XTAL1

R2

1M

+5V

U
S

B
 b

o
o

t
E

n

1
K

 R
N

2
D

5
4

+5V

C6
100n

+5V

1K RN2C

TX
YELLOW

RX
YELLOW

1K

6 3

RN2B
7 2

2

4
5

4 3

5 2 1

R
N

1
D

 1
0

K

D
2

G
N

D

GND

10
9

8

1
2
3
4
5

2 7

RN3B 22R

6
7

7

0
1
2
3
4
5
6

1

8
7
6
5
4
3
2

1

5
3

2

6
4

3 6

RN3B 22R

GND

GNDGNDArduino(TM) UNO Rev3

GND

GNDGNDGND
GND

+
7

13

1
K

R
N

2
A

L Y
E

L
L

O
W

8
1 1

1 2

12

3
3

PWRIN

D1

M7

PC1

47u

+ +

VIN 3

U1

NCP1117ST50T3G

X1

PWERSUPPLY_DC21MMX

PC2C2

47u100n

+5V

+5V

+5V

+5V
C4

100n 10X1F–H8.5

IOH
6X1F–H8.5

AD
8X1F–H8.5

IOL

13
12
11
6
5
4
3
2

IO7
IO6
IO5
IO4
IO3
IO2
IO1
IO0

28
27
26
25
24
23

AD5/SCL
AD4/SDA
AD3
AD2
AD1
AD0

AD5/SCL
AD4/SDA

AREF
GND

SCK
MISO
MOSI

SS19
18
17
16
15
14

(AIN1)PD7
(AIN1)PD7

(T1)PD5
(T0)PD4

(INT1)PD3
(INT0)PD2
(TXD)PD1
(RXD)PD0

(ADC5)PC5
(ADC4)PC4
(ADC3)PC3
(ADC2)PC2
(ADC1)PC1
(ADC0)PC0

(SCK)PB5
(MISO)PB4
(MOSI)PB3

(SS)PB2
(OC1)PB1

(ICP)PB04

5

13
12
11
10
9
8

TXLED
RXLED
M8RXD
M8TXD

7
6

14

22
23
25
26

21
20
19
18
17
16
15

PB7
PB6
PB5
PB4

MISO2
MOSI2
SCK2

(AIN2/PCINT11)PC2

(CTS/HWB/AIN6/TO/INT7)PD7
(RTS/AIN5/INT6)PD6

(XCK/AIN4/PCINT12)PD5
(INT5/AIN3)PD4
(TXD1/INT3)PD3

(RXD1/AIN1/INT2)PD2
(AIN0/INT1)PD1

(OC0B/INT0)PD0

(SS/PCINT0)PB0
(SCLK/PCINT1)PB1

(INT4/ICP1/CLK0)PC7
(OC1A/PCINT8)PC6
(PCINT9/OC1B)PC5

(PCINT10)PC4

(PCINT7/OC0A/OC1C)PB7

U3

(PCINT6)PB6
(PCINT5)PB5

(T1/PCINT4)PB4
(PD0/MISO/PCINT3)PB3
(PDI/MOSI/PCINT2)PB2

GND

UCAP
UVCC
D–
D+
UGND

PAD

ATMEGA16U2–MU(R)

XTAL1

AVCC

VCC

RESET(PC1/DW)

XTAL2(PC0)

3

27
31
30
29
28

TP_VUCAP
USBVCC
RD–
RD+
UGND

33

1

XT1

+5V

+5V

MOSI2

C
D

1
2

0
6

–
S

0
1

5
7

5

1
0

K
 R

N
1

C
6

3

32

4

24

2

R1
1M

XT1

XT2

G
N

D

Y
1

D
3

C
9

2
2

P

C
1

1

2
2

p

1
6

M
H

z2 1
2

AREF
AVCC
AGND

VCC
GND

ATMEGA328P–PU

M8RXD
1K RN4B
7 2

1K RN4A
8 1M8TXD

RESET

XTAL2

XTAL1

21
20
22

7
8

1

10

9

SS
IO9
IO8

SCL
SDA

4 5

3
RN4D 1K

RN4C 1K

6

GREEN

ON

4
2

U5B

+5V

+5VUSBVCC

T
1

F
D

N
3

4
0

P

SCK 5

6
–

GND

+
1

3
CMP

+5V

C1

100n

VIN

R
N

1
A

 1
0

K8
1

8
4

1
0

K
 R

N
1

B

2
7

G
A

T
E

_
C

M
D

+3V3 2

U5A

LMV358IDGKR

LMV358IDGKR

U2

IN OUT

IN OUT

GND NC/FB

ON/OFF

1

3

2

LP2985–33DBVR

2
X

2
 M

 –
 N

M

J
P

23
4

1
2

4

5 + 3V3

C3
+5V

RESET

POWER

8 x 1F–H8.5

+3V3

VIN

1u

–

1
2
3
4
5
6

8
9
10
11
12
13

7
8

6

1
2
3
4
5

 Figure A-5: Arduino Uno Rev 3 schematic Credit: Arduino, www.arduino.cc

http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc
http://www.arduino.cc

 Appendix ■ Deciphering the ATMega Datasheet and Arduino Schematics 347

549360bapp01.indd 02-07-2008 12:00 AM

 Can you match all the parts to the parts that you can see on your Arduino

Uno? Start with the main MCU (Part ZU4 in the schematic), the ATMega328p,

and all the breakout pins. Here, you can easily identify which ATMega ports/

pins map to the pins that are available to you in the integrated development

environment (IDE). Earlier in this appendix, you observed that PD0 and PD1

were connected to the USART TX and RX pins. In the Arduino schematic, you

can indeed confi rm that these pins connect to the corresponding pins on the

16U2 (8U2 on revisions 1 and 2) USB-to-Serial converter chip. You also know that

there is an LED connected (through a resistor) to pin 13 of the Arduino. In the

schematic, you can see that pin 13 is connected to pin PB5 on the ATMega. But

where is the LED? By using net names, you can indicate an electrical connec-

tion between two points on a schematic without actually drawing all the lines.

Having every wire shown in a schematic might get confusing very quickly. In

the case of PB5, you can see that the wire coming out of the MCU is labeled SCK ,

and that there is a similarly labeled wire at the top of the schematic feeding

through a buffer into a resistor and the familiar debug LED.

 Most schematics that you’ll fi nd are done in a style similar to this one, with

lots of labeled nets that connect without direct wires. Continue to analyze the

Arduino schematic until you understand where all the signals are going. See

how many components you can match to the actual board.

549360bapp01.indd 02-07-2008 12:00 AM

 349

549360bindex.indd 02-07-2008 12:00 AM

 = (assignment) operator, 34
 == (comparison) operator, 32
 && (logical) operator, 35
 3-bit analog quantization, 44–45
 3.3V power, 7
 5V power, 7, 82–84
 74HC595 shift register, 148–151

 A
 accelerometers, triple axis, 51
 actuators, servo motors, 80–86
 AD714 / AD715 I2C chips, 166–167
 Adafruit 32U4 breakout board, 12
 adafruit data logging shield, 287
 ADCs (analog-to-digital converters), 7,

43–45
 accuracy of, 44
 Arduino Due, 10
 Arduino Uno, 5
 Mega 2560, 10
 resolution, 44–45

 alternate.ino fi le, 152–153
 analog inputs, controlling analog outputs,

56–59
 analog outputs

 controlling with analog inputs, 56–59
 creating (See PWM (pulse-width

modulation))
 analog sensors

 creating, 54–59
 distance sensors, 50
 dual axis gyroscopes, 51

 magnetometers, 50
 potentiometers, reading, 45–49
 temperature sensors, 50–54
 triple axis accelerometers, 51

 analog signals, 42
 converting to digital, 43–45
 vs. digital signals, 43

 analog-to-digital converters. See ADCs
 analogRead() function, 45–48, 53–54
 analogWrite() function, 27–29, 39–41,

56–58
 animated progress bars, creating, 206–209
 anodes, 22
 API mode, XBee radios, 223
 Arduino boards. See also specifi c boards

 Arduino-compatible devices, 12
 components, 4–8
 controlling from the web, 318–329

 designing a simple web page, 318–320
 setting up I/O control hardware, 318
 via the network, 326–329
 writing a server sketch, 320–326

 overview of offi cial boards, 8–12
 serial communication capabilities,

108–115
 third-party, 12
 wireless communication, 236–246

 Arduino-compatible devices, 12
 Arduino Due

 components, 10
 hardware interrupts, 261–262
 microcontroller, 6

 Index

549360bindex.indd 02-07-2008 12:00 AM

350 Index ■ A–C

 Arduino ecosystem, 4
 Arduino Ethernet SD shield, 286
 Arduino Ethernet shield, 317–318, 321, 332.

 See also Internet connectivity
 Arduino IDE

 downloading, 13
 LiquidCrystal library, 203–209
 serial monitor, 119–127
 servos, controlling, 85–86
 “upload” command, 8

 Arduino Leonardo
 hardware interrupts, 261
 keyboards, emulating, 135–140
 microcontroller, 6, 9
 mouse, emulating, 140–144

 Arduino Nano, 11
 Arduino Uno

 ADC resolution, 44–45
 hardware interrupts, 261
 image of, 5
 microcontroller, 6
 as programmer for XBee radio, 229
 schematic, 347–349
 secondary microcontroller, 6

 Arduino Wi-Fi SD shield, 286–287
 Arduino Wireless SD shield, 285
 ArduPilot, 12
 arguments, 17
 assignment (=) operator, 34
 associate LED, 226
 ATMega microcontroller, 5, 6, 8

 datasheet, 343–347
 programming interface, 6

 Atmel microcontroller unit (MCU), 6.
 See also specifi c microcontrollers

 attachInterrupt() function, 261–262
 audio/visual display, creating with SPI

DigiPots, 193–197

 B
 B (base) pin, NPN BJT, 67
 backward state (H-bridge), 73
 bar graphs, LED

 monitoring temperatures, 173–179
 responding to inputs, 157–160

 bargraph.ino fi le, 159
 base (B) pin, NPN BJT, 67
 baud rate, 48, 49
 binary data type, 119
 binary format, converting to decimal, 154
 bipolar-junction transistor (BJT), 66–68

 BJT (bipolar-junction transistor), 66–68
 Blink program

 components, 16–18
 loading, 15–16

 blink.ino fi le, 26
 blocking functions, 250
 Boolean variables, 34–35
 bootloader, 6, 8
 bouncy buttons, 32–35
 braking state (H-bridge), 73
 breadboards, 21

 wiring
 DC motors, 68–69
 LCDs, 200–203

 brushed DC (direct current) motors
 controlling motor direction, 72–79
 controlling motor speed, 70–72
 high-current inductive loads, 65–70
 overview, 65
 schematic, 66

 brushless DC (direct current) motors, 65

 C
 C (collector) pin, NPN BJT, 67
 capacitors, decoupling, 83
 cathodes, 22, 36
 chars, 121–122
 clients, 317, 321–322
 clock line

 I2C bus, 165, 169
 SPI bus, 182, 183, 184–185

 clock phase, 182–183
 clock polarity, 182–183
 collector (C) pin, NPN BJT, 67
 comma-separated value fi les. See CSV

(comma-separated value) fi les
 comments, 16
 communication protocols

 I2C
 communicating with temperature

sensor, 167–173
 controlling I2C devices, 167–168
 hardware design, 164–167
 hardware requirements, 167
 history of, 164
 ID numbers, 165–167
 monitoring temperatures, 173–179
 vs. SPI, 185

 SPI
 adjusting speaker volume, 193–197
 communication scheme, 183, 184

549360bindex.indd 02-07-2008 12:00 AM

 Index ■ C–D 351

 controlling LED brightness, 185–193
 controlling SPI devices, 185
 hardware confi guration, 183–184
 vs. I2C, 185
 overview, 182–183

 comparison (==) operator, 32
 connecting to the Internet. See Internet

connectivity
 const operator, 25
 constrain() function, 56, 58–59
 constraining analog readings, 58–59
 continuous rotation servos, 80
 control pins, servos, 81
 control_led_speaker.ino fi le, 322–325
 Cooking Hacks MicroSD shield, 284–285,

289–292, 300
 cosine waves, 43
 Cosm. See Xively
 CSV (comma-separated value) fi les

 formatting data with, 279
 log.csv fi le, 289–291

 csv_logger.ino fi le, 137–138
 current-limiting resistors, 36
 custom characters, adding to LCDs, 206–209

 D
 daisy chaining shift registers, 153
 data line, I2C, 165, 169
 data logging

 CSV (comma-separated value) fi les, 279
 entrance logger example, 305–311
 real-time clock example, 297–305
 SD cards

 formatting, 279–284
 reading from, 293–297
 shields, 284–288
 SPI interface, 288
 writing to, 289–293

 uses, 278
 data type options, 119
 datasheets

 MCP4221 Digital Potentiometer, 186–189
 TC74 temperature sensor, 166–167,

169–171
 reading, 343–347

 DC (direct current) motors, 65, 80–86
 controlling motor direction, 72–79
 controlling motor speed, 70–72
 high-current inductive loads, 65–70
 as inductors, issues caused by, 67
 schematic, 66
 wiring, 69

 debounce() function, 213–214
 debounce.ino fi le, 33–34
 debouncing

 digital switches, 35–38
 hardware-debounced button interrupt

circuits, 262–269
 multiple buttons, 213–214

 debug LED, 5, 6
 decimal data type, 119
 decoupling capacitors, 83
 defi nition fi les, 95–96
 delay() function, 18, 214–215
 DHCP (Dynamic Host Confi guration

Protocol), 316–317
 reserving DHCP addresses, 328
 retrieving IP addresses, 321

 DigiPots, communicating with SPI bus,
185–193

 digital inputs, reading, 29–35
 digital outputs

 breadboards, 20–21, 23
 programming, 24–25
 wiring LEDs, 22

 digital signals
 vs. analog signals, 43
 converting analog signals to, 43–45

 digitalRead() command, 31–32
 digitalWrite() command, 25, 33
 diodes, protection diodes, 67
 direct current motors. See DC motors
 display_temp.pde fi le, 178
 distance sensors, 50

 entrance logger example, 305–311
 sweeping sensors, building, 86–89

 DNS (Domain Name System), 317
 dynamic updating services, 328–329

 doorbell/receiving_arduino ,
251–252

 doorbell/transmitting_arduino ,
249–250

 drivers, installing, 14–15
 driving motors

 direct current motors, 65–79
 servo motors, 80–86

 DS1307 real-time clock integrated circuit,
298–305

 dual axis gyroscopes, 51
 duty cycle, 28–29
 dynamic DNS updating services, 328–329
 Dynamic Host Confi guration Protocol. See

DHCP
 DynDNS, 329

352 Index ■ E–I

549360bindex.indd 02-07-2008 12:00 AM

 E
 E (emitter) pin, NPN BJT, 67
 echo.ino fi le, 121
 echoing incoming data, 120–121
 emitter (E) pin, NPN BJT, 67
 entrance logger example, 305–311
 entrance_logger.ino fi le, 308–310

 F
 fade.ino fi le, 27–28
 fi rmware setup, 8
 fl ash memory, and RAM limitations, 301
 fonts, loading into Processing sketch,

177–179
 for loops, 25–27
 forward state (H-bridge), 73
 frequencies, mapping to note names,

95–96
 friendly URLs, 317
 FTDI chip, 110–112
 fun_with_sound.ino fi le, 273–275
 functions, 17, 33. See also specifi c functions

 G
 general-purpose I/O pins. See pins
 GET requests, 316
 global IP (Internet Protocol) addresses,

314–315, 328–329
 global variables, 38
 graphs

 LED bar graphs
 monitoring temperatures, 173–179
 responding to inputs, 157–160

 live graphs, 329
 adding feed components, 336–339
 building data feeds, 330–335

 gyroscopes, dual axis, 51

 H
 H-bridges, 72–79
 hardware interrupts, 258–259

 Arduino capabilities, 261–262
 building hardware-debounced button

 interrupt circuit, 262–269
 interrupt-driven sound machine,

building, 272–275
 tradeoffs with polling, 259–261

 hbridge.ino fi le, 78–79
 headers, LCDs, 200–201
 hexadecimal data type, 119
 hsv.jpg fi le, 132, 133

 HTML (Hypertext Markup Language),
316, 318–320

 HttpClient libraries, installing, 331
 hw_multitask.ino fi le, 268–269
 Hypertext Markup Language (HTML) ,

316, 318–320
 hysteresis, 265

 I
 I/O pins. See pins
 I2C bus

 combinining with shift registers, 173–179
 communicating with temperature

sensor, 167–173
 communication scheme, 165–167
 controlling I2C devices, 167–168
 hardware design, 164–167
 hardware requirements, 167
 history of, 164
 ID numbers, 165–167
 monitoring temperatures, 173–179
 vs. SPI bus, 185
 Wire library, 169, 171

 ICSP (in-circuit serial programmer)
connectors, 5, 6, 8

 inductors, DC motors as, 67
 Industrial, Scientifi c, and Medical (ISM)

band, 222
 infrared distance sensors, 50

 entrance logger, 305–311
 sweeping sensors, 86–89

 initializing LCDs (liquid crystal
displays), 204

 Internet connectivity
 controlling the Arduino from the web,

318–329
 accessing via the network, 326–329
 designing a simple web page, 318–320
 setting up I/O control hardware, 318
 writing a server sketch, 320–326

 live graphs, creating, 329
 adding feed components, 336–339
 building data feeds, 330–335

 overview, 314–318
 Internet of things, 314. See also Internet

connectivity
 interrupts

 hardware interrupts, 258–259
 Arduino capabilities, 261–262
 hardware-debounced button interrupt

circuits, 262–269
 tradeoffs with polling, 259–261

549360bindex.indd 02-07-2008 12:00 AM

 Index ■ I–M 353

 interrupt-driven sound machine, 272–275
 timer interrupts, 270–272

 simultaneous task execution, 271–272
 TimerOne library, downloading,

270–271
 ints, 121–122
 IP (Internet Protocol) addresses, 314–315

 determining manually, 328
 global, 314–315, 328–329
 reserved, 328
 retrieving via DHCP, 321
 static, 328–329

 ipconfig command, 328
 ISM (Industrial, Scientifi c, and Medical)

band, 222

 K
 keyboards, emulating, 135–140

 L
 LCD_progress_bar.ino fi le, 207–209
 LCD_text.ino fi le, 205
 LCD_thermostat.ino fi le, 215–219
 LCDs (liquid crystal displays)

 cursor, moving, 204–206
 custom characters, adding, 206–209
 initializing, 204
 personal thermostat, creating, 209–219

 audible warning, adding, 214–215
 complete program, 215–219
 displaying data, 211–213
 expanding, 219
 fan, controlling, 214–215
 hardware setup, 210
 set point, adjusting, 213–214

 setting up, 200–203
 text, adding, 204–206

 led.ino fi le, 25
 led_button.ino fi le, 31
 LED_speaker.ino fi le, 195–196
 LEDs

 associate, 226
 bar graphs

 monitoring temperatures, 173–179
 reponding to inputs, 157–160

 controlling
 brightness, 185–193
 with lists of values, 125–127
 with single characters, 122–124

 hardware-debounced button interrupt
circuits, 262–269

 pulse-width modulation, 27–29
 RGB LED nightlight example, 35–39
 RSSI, 226
 sweeping distance sensor example,

86–89
 wiring, 22

 libraries
 HttpClient, 331
 LiquidCrystal, 203–209
 RTClib, 299–305
 SD, 284
 TimerOne, 270–272
 Wire, 169, 171
 Xively, 331

 light animations, controlling with shift
registers, 154–160

 lightrider.ino fi le, 156
 LilyPad Arduino, 11–12
 linear regulators

 5V supply, generating from 9V battery,
82–84

 Arduino power supply limits, 84
 Linux, formatting SD cards, 282–283
 liquid crystal displays. See LCDs
 LiquidCrystal library, 203–209

 adding custom characters to LCDs,
206–209

 adding text to LCDs, 204–206
 list_control.ino fi le, 126–127
 live graphs, creating, 329

 adding feed components, 336–339
 building data feeds, 330–335

 local networks, accessing Arduino over,
326–327

 local variables, 38
 lock_computer.ino fi le, 140
 log.csv fi le, 289–291
 logging data. See data logging
 logical (&&) operator, 35
 loop() function, 24, 37
 LUFA fi rmware stack, 113
 luminous fl ux per unit area, 43
 lux, 43

 M
 MAC addresses, 316, 321, 325, 328, 332–333
 Mac computers, formatting SD card,

280–282
 magnetometers, 50
 map() function, 56–59

549360bindex.indd 02-07-2008 12:00 AM

354 Index ■ M–P

 mapping
 analog readings, 56–59
 frequencies to note names, 95–96

 master devices
 I2C bus, 164–166, 167–168
 SPI bus, 183, 184–185

 MCP4231 Digital Potentiometer, 185–193
 datasheet, 186–189
 setting up hardware, 189–190
 writing software, 190–193

 MCUs (microcontroller units)
 Atmel, 6
 secondary USB-capable, 112–114
 single USB-capable, 114

 Mega 2560 board, 6, 10, 14, 261
 Mega ADK board, 11
 micro piano, building, 102–105
 microcontroller units. See MCUs
 microcontroller datasheets, 343–347
 motion sensors, 305–311
 motor.ino fi le, 70
 motor_pot.ino fi le, 71–72
 mouse, emulating, 140–144
 mouse.ino fi le, 142
 multiline comments, 16
 multiplexed pins, 109
 multitasking, interrupts and, 260
 music.ino fi le, 101

 N
 NAT (Network Address Translation), 315
 newline character, 117–118
 nightlight.ino fi le, 58
 nonblocking code, 250
 noTone() function, 95, 104, 214–215
 NPN bipolar-junction transistors, 66–68

 O
 octal data type, 119
 Ohm’s Law, 23–24, 31
 open state (H-bridge), 73

 P
 parallel LCDs (liquid crystal displays)

 cursor, moving, 204–206
 custom characters, adding, 206–209
 initializing, 204
 personal thermostat, creating, 209–219
 setting up, 200–203
 text, adding, 204–206

 pentatonic micro piano, 102–105

 personal thermostat, creating, 209–219
 audible warning, adding, 214–215
 complete program, 215–219
 displaying data, 211–213
 fan, controlling, 214–215
 functionality, expanding, 219
 hardware setup, 210
 set point, adjusting, 213–214

 photoresistors, 54–59
 piano.ino fi le, 104
 pinMode() command, 25
 pinMode() function, 17
 pins, 7

 ADC, 7
 BJTs, 67
 H-bridges, 74–75
 as interrupts, 261–262
 LCDs, 200–203
 MCP4231 Digital Potentiometer, 186–189
 multiplexed, 109
 SD card shields, 284
 servos, 80–84
 shift registers. See shift registers
 sweeping distance sensor, 87–88

 point-to-multipoint communication,
222–223

 point-to-point communication,
222–223, 230

 polling inputs, vs. hardware interrupts,
259–261

 port forwarding, 327–329
 POST requests, 316
 pot.ino fi le, 47, 117
 pot_tabular.ino fi le, 118
 pot_to_processing/arduino_read_pot ,

240
 pot_to_processing/processing_

display_color , 130, 242–243
 potentiometers

 DC motors, adjusting speed, 70–72, 76–79
 reading, 45–49
 serial printing, 116–118
 servo controls, 85–86
 SPI DigiPots

 communicating with, 185–193
 creating audio/visual display, 193–197

 power equation, 23–24, 31
 power supplies, 7

 limits of, 84
 precision actuators, 80–86
 pressure waves, 92–93

549360bindex.indd 02-07-2008 12:00 AM

 Index ■ P–S 355

 print() function, 115, 117, 119, 121,
138, 279

 printing to serial terminal, 115–119
 println() function, 279, 290
 Processing sketch

 installing, 128
 serial communication, 127–134
 temperature monitoring system, 173–179

 processing_control_RGB/list_control ,
243–244

 processing_control_RGB/processing_
control_RGB , 133, 244–245

 programming
 digital outputs, 27–29
 interfaces, 6–7

 progress bars, animated, 206–209
 protection diodes, 67
 proximity sensors, Sharp, 50
 pulldown resistors, 32–35
 pull-up resistors, 30, 31, 165, 167
 PWM (pulse-width modulation)

 with analogWrite() , 27–29
 DC motor speed, controlling, 70–72

 Q
 quantization, 44

 R
 RAM limitations, overcoming, 301
 RC circuits, debouncing buttons, 263–265
 read_temp.ino fi le, 171–172, 171–182
 readButton() function, 143
 reading

 digital inputs, 29–35
 potentiometers, 45–49
 from SD cards, 293–297

 readJoystick() function, 143
 real-time clock example, 297–305
 reference voltage, 44–45
 register clock pin, 149
 reserved IP (Internet Protocol) addresses,

328
 reset button, 5, 6
 resistance, 23–24
 resistive voltage dividers, 55–56
 resistors

 current-limiting, 36
 pulldown, 32–35
 pull-up, 30, 31, 165, 167

 resolution, ADCs, 44–45

 RGB LED nightlight
 adding light sensors, 56–59
 building, 38–42

 rgb_nightlight.ino fi le, 37–39
 routers, logging into, 327–328
 RSSI LED, 226
 RTC (real-time clock) chip, 299–305
 RTC.adjust function, 299
 RTC.isrunning() function, 304
 RTC.now() command, 299
 RTClib library, 299–305

 S
 Schmitt triggers, 265–266
 SCL line, I2C, 165, 169
 SD cards. See also data logging

 formatting, 279–284
 reading from, 293–297
 shields, 284–288
 SPI interface, 288
 writing to, 289–293

 SD library, 284
 sd_read_write.ino fi le, 295–297
 sd_read_write_rtc.ino fi le, 301–304
 SDA line, I2C, 165, 169
 secondary

 integrated circuits, 110, 112–114
 microcontrollers, 6, 112–114
 power sources, DC motors, 68

 sensors
 distance sensors, 50

 entrance logger, 305–311
 sweeping, building, 86–89

 dual axis gyroscopes, 51
 temperature, 50–54, 167–173
 triple axis accelerometers, 51

 serial communication. See also USB
communication

 Arduino boards, 108–115
 Arduino IDE serial monitor, 119–127
 data type options, 119
 printing to terminal, 115–119
 Processing sketch, 127–134
 vs. USB communication, 109–110

 serial in, parallel out (SIPO) shift registers.
 See serial-to-parallel shift registers

 serial monitor, 119–127
 displaying data, 46–49

 serial pass-through mode, XBee radios,
223

549360bindex.indd 02-07-2008 12:00 AM

356 Index ■ S–T

 Serial Peripheral Interface bus. See SPI bus
 serial terminal

 printing to, 115–119
 XBee radios, confi guring, 235–236

 serial-to-parallel shift registers, 147–148
 74HC595 register, 148–151
 converting between binary and decimal

formats, 154
 pin functions, 148–149
 shifting serial data, 151–153
 workings of, 149–151

 server_form.html fi le, 319–320
 servers, 317

 server sketch, 320–326
 servo.ino fi le, 85–86
 servos (servo motors), 80–86

 controlling with Arduino IDE, 85–86
 timing diagram, 82
 wiring, 80–84

 setCursor() function, 204–206
 setup() function, 16, 24
 Sharp infrared distance sensor, 50
 shields

 Arduino Ethernet shield, 317–318, 321,
332

 SD card shields, 284–288
 XBee radio shields, 224–228

 shift registers, 146–147
 74HC595 register, 148–151
 combining with I2C communication,

173–179
 converting between binary and decimal

formats, 154
 daisy chaining, 153
 light animations, controlling, 154–160
 pin functions, 148–149
 serial-to-parallel, 147–148
 shifting serial data, 151–153
 workings of, 149–151

 shiftOut() function, 151–154
 short circuits, with H-bridges, 73
 single-line comments, 16
 single_char_control.ino fi le, 124
 SIPO (serial in, parallel out) shift registers.

 See serial-to-parallel shift registers
 slave devices, 182

 I2C bus, 164–166, 167–168, 172
 SPI bus, 182, 183, 184–185

 sounds
 creating, 95–102

 audio/visual display, 193–197
 including defi nition fi les, 95–96
 playing back songs, 99–102
 wiring speakers, 96–99

 interrupt-driven sound machine, 272–275
 pentatonic micro piano, 102–105
 production process, 94
 properties, 92–94

 SparkFun MicroSD shield, 288
 SparkFun Pro Mini Arduino board, 12
 SparkFun XBee USB Explorer, 228–230
 speakers

 sound properties, 92–94
 sound-production process, 94
 wiring, 96–99

 special characters
 adding to LCDs, 206–209
 printing to terminal, 117–118

 SPI bus
 communicating with DigiPot

 adjusting speaker volume, 193–197
 controlling LED brightness, 185–193

 communication scheme, 183, 184
 hardware confi guration, 183–184
 vs. I2C bus, 185
 overview, 182–183
 SD card SPI interface, 288

 SPI_led.ino fi le, 192–193
 square waves, 43
 standard servos, 80
 static IP (Internet Protocol) addresses,

328–329
 strong pulldowns, 30
 SudoGlove, 103, 132
 sweep.ino fi le, 88–89
 sweeping distance sensor, 86–89
 switches

 bouncing, 32
 transistors as, 66–67

 T
 tab character, 117–118
 TC74 temperature sensor, 166, 169–171, 174
 temp_unit.ino fi le, 175–176
 tempalert.ino fi le, 53–54
 temperature monitoring system, 173–179

 building hardware, 173–174
 modifying embedded program, 174–176
 writing Processing sketch, 177–179

 temperature sensors, 50–54, 167–173

549360bindex.indd 02-07-2008 12:00 AM

 Index ■ T–Z 357

 terminal
 printing to, 115–119
 XBee radios, confi guring, 235–236

 text, adding to LCDs, 204–206
 thermostat, creating, 209–219

 audible warning, adding, 214–215
 complete program, 215–219
 displaying data, 211–213
 fan, controlling, 214–215
 functionality, expanding, 219
 hardware setup, 210
 set point, adjusting, 213–214

 third-party boards, 12
 timer interrupts, 270

 downloading TimerOne library, 270–271
 executing tasks simultaneously, 271–272
 interrupt-driven sound machine,

building, 272–275
 timer1.ino fi le, 271
 TimerOne Library, 270–272
 TMP36 temperature sensor, 50–51, 52–54
 tone() function, 95–102, 214–215, 273–275
 transistors

 NPN bipolar-junction transistors, 66–68
 as switches, 66–67

 triple axis accelerometers, 51
 two-wire protocol, 164. See also I2C bus

 U
 USB adapters, confi guring XBee radios,

228–230
 USB communication. See also serial

communication
 Arduino boards, 108–115
 ATMega MCU converters, 112–114
 FTDI converters, 110–112
 vs. serial communication, 109–110
 single USB-capable MCUs, 112–114
 USB-host capabilities, 114–115

 V
 variable voltage resistors

 photoresistors, 54–59
 potentiometers, 45–50

 volatile variables, 268
 voltage

 dividers
 potentiometers, reading, 45–50
 resistive, 55–56

 reference voltage, 44–45
 regulators, 7

 W
 weak pulldowns, 30, 32
 web pages, designing, 318–320
 Wire library, 169, 171
 Wire.available() command, 172
 Wire.beginTransmission() command, 172
 Wire.endTransmission() command, 172
 Wire.read() command, 172
 Wire.requestFrom() command, 172
 Wire.write() command, 172
 wireless communication. See XBee radios
 wireless doorbell, 246–252

 receiver hardware, 248–249
 receiver software, 250–252
 system design, 246–247
 transmitter hardware, 247–248
 transmitter software, 249–250

 wiring
 DC motors, 68–69
 LCDs, 200–203
 LEDs, 22
 speakers, 96–99

 write_to_sd.ino fi le, 290–292
 writing to SD cards, 289–293

 X
 X-CTU, confi guring XBee radios, 231–235
 XBee radios

 confi guring, 228–236
 settings, 230–231
 via shields, 228–230
 with a serial terminal, 235–236
 via USB adapters, 228–230
 with X-CTU, 231–235

 overview, 222–224
 Pro vs. non-Pro versions, 224
 remote Arduinos, 236–246

 controlling processing, 239–243
 controlling RGB LEDs, 243–246
 powering, 236–239

 shields, 224–228
 wireless doorbell, building, 246–252

 Xively, sending data to, 329
 adding feed components, 336–339
 building data feeds, 330–335

 xively.ino fi le, 334–335
 xively2.ino fi le, 337–338

 Z
 ZigBee standard, 223

 Parts You ’ ll Need for This Chapter:

 Arduino Uno or Adafruit METRO 328

 USB cable (Type A to B for Uno, Type A to Micro-B for METRO)

 Half-size or full-size breadboard

 Assorted jumper wires

 Pushbuttons (×2)

 1k Ω resistors (×4)

 10k Ω trim potentiometer

 5 mm Blue LEDs (×4)

 9V battery

 9V battery clip

 L7805CV 5V voltage regulator

 10 μ F 50V electrolytic capacitors (×2)

 TI L293D dual H-bridge motor driver

 12V (> 500 mA) DC wall adapter

 Sharp GP2Y0A21YK0F IR distance sensor with JST cable

 Standard 5V servo motor

 NEMA-17 bipolar stepper motor

 Hot glue or tape

 Circular “clock face” (This can be a blank CD, or just paper.)

 Driving Stepper and
Servo Motors

5

Exploring Arduino100

 Binder clip

 Popsicle stick

CODE AND DIGITAL CONTENT FOR THIS CHAPTER
 Code downloads, videos, and other digital content for this chapter can be found at:
exploringarduino.com/content2/ch5

 Code for this chapter can also be obtained from the Downloads tab on this
book ’ s Wiley web page:
wiley.com/go/exploringarduino2e

 In Chapter 4 , “Using Transistors and Driving DC Motors,” you mastered the art
of driving DC motors. DC motors serve as excellent drive motors, but they are not

recommended for precision work because they have no built-in feedback mechanism
and they are velocity-controlled rather than being position-controlled. Without using
an external encoder or positioning system of some kind, you will never know the
absolute position of a DC motor. In contrast, servo motors, or servos, are unique in
that you command them to rotate to an angular position and they stay there until
you tell them to move to a new position. This is important for when you need to
move your system to a known orientation. Examples include actuating door locks,
moving armatures to specifi c rotations, and precisely controlling the opening of
an aperture. Stepper motors are another kind of motor that “step” in precise incre-
ments; they ’ re perfect for building things like 3D printer gantries and precision
gauges and instruments. In this chapter, you will learn about both servo motors
and stepper motors. You ’ ll control both from your Arduino.

D i i S M t Driving Servo Motors
 Servo motors are very popular for hobbyist and professional robotics work. You ’ ll fi nd Servo motors are very popular for ho
them in all sorts of products from RC airplanes to Internet-controlled door locks. They
are available in a wide range of sizes and capabilities, with some modifi ed for contin-
uous rotation, and others designed for rotation over a small range with high torque.

 Understanding the Difference between Continuous Rotation
and Standard Servos
 You can buy both standard and continuous rotation servos. Unmodifi ed servos always
have a fi xed range (usually from 0 to 180 degrees) because there is a potentiometer in
line with the drive shaft, which is used for reporting the present position. Servo control
is achieved by sending a pulse of a particular length. In the case of a standard rotation
servo, the length of the pulse determines the absolute position that the servo will rotate

Driving Stepper and Servo Motors 101

to. If you remove the potentiometer, however, the servo is free to rotate continuously,
and the pulse length sets the speed of the motor instead.

 In this book, you use standard servos that rotate to an absolute position. You can
experiment with continuous rotation servos either by opening a standard servo and
carefully removing the potentiometer, or by buying premodifi ed servos confi gured for
continuous rotation.

 Understanding Servo Control
 Unlike their DC motor counterparts, servo motors have three pins: power (usually
red), ground (usually brown or black), and signal or control (usually white or orange).
These wires are color-coded, typically in the same order, and generally look like the
ones shown in Figure 5-1 . Some manufacturers may use non-standard ordering, so
always be sure to check the datasheet to ensure you are wiring the servo correctly.

 The color-coding might vary slightly between servos, but the color schemes just listed
are the most common. (Check the servo ’ s documentation if you ’ re unsure.) Like DC motors,
servos can draw quite a bit of a current (usually more than the Arduino can supply). Although
you can sometimes run one or two small servos directly from the Arduino ’ s 5V supply, you
will generate a separate 5V power supply for the servos so that you have the option to add
more if you need to (the same way you did for the 5V DC motors in the last chapter).

 Unlike DC motors, servos have a dedicated control pin that instructs them what
position to turn to. The power and ground lines of a servo should always be connected
to a steady power source.

WHITE/ORANGE - CONTROL

RED - POWER

BLACK/BROWN - GROUND

 Figure 5-1 : Servo motors

Exploring Arduino102

 Servos are controlled using adjustable pulse widths on the signal line. For a standard
servo, sending a 1 ms 5V pulse turns the motor to 0 degrees, and sending a 2 ms 5V
pulse turns the motor to 180 degrees, with pulse lengths in the middle scaling linearly.
A 1.5 ms pulse, for example, turns the motor to 90 degrees. Once a pulse has been
sent, the servo turns to that position and stays there until another pulse instruction is
received. However, if you want a servo to “hold” its position (resist being pushed on and
try to maintain the exact position), you just resend the command once every 20 ms. The
Arduino servo commands that you will later employ take care of this for you. To better
understand how servo control works, study the timing diagram shown in Figure 5-2 .

 Note that in each of the examples in Figure 5-2 , the pulse is sent every 20 ms. As the
pulse length increases from 1 ms to 2 ms, the angle of rotation of the motor (shown to
the right of the pulse graph) increases from 0 to 180 degrees.

6

4

2

VVo
lta

ge
(V

)
ol

ta
ge

 (V
)

Time (ms)

1 ms Pulses (0 degrees)
0 degrees

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

90

180 0

6

4

2

VVo
lta

ge
(V

)
ol

ta
ge

 (V
)

Time (ms)

1.25 ms Pulses (45 degrees)
45 degrees

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

909

180 0

6

4

2

VoVo
lta

ge
(V

)
lta

ge
 (V

)

Time (ms)

1.5 ms Pulses (90 degrees)
90 degrees

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

90

180 0

6

4

2

VoVo
lta

ge
(V

)
lta

ge
 (V

)

TTime (ms)ime (ms)

2 ms Pulses (180 degrees)
180 degrees

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

90909000

180 0

 Figure 5-2 : Servo motor timing diagram
 Created with MATLAB

Driving Stepper and Servo Motors 103

 As mentioned before, servos can draw more current than your Arduino may be able
to provide. Most servos are designed to run at 5V. Just like you did with the small 5V
DC motors that you used to build your roving car in the last chapter, you ’ ll want to
use a separate power source that can supply more current. To do this, you can employ
the same L7805CV 5V voltage regulator circuit that you designed in Chapter 4 , paired
with a 9V battery.

 NOTE Keep in mind that the 5V rail created by this regulator should be kept sep-
arate from the 5V power rail of the Arduino. Their grounds, however, should be tied
together to ensure that they are working off the same reference.

 Using all this information, it ’ s time to wire up a servo. Referencing Figure 5-3 , wire
the servo, the 5V regulator, and the potentiometer. Connect the potentiometer to analog
pin 0, connect the servo control pin to pin 9, and ensure that the 5V regulator ’ s output
supplies the servo ’ s power.

Servo

9V Battery

PotentiometerPotentiometer

5V Regulator

Decoupling CapsDecoupling Caps

 Figure 5-3 : Servo experiment wiring diagram
 Created with Fritzing

Exploring Arduino104

 While you’re wiring, keep a few important things in mind. First, recall what you
learned about wiring the regulator in the last chapter: with the metal tab on the side
farthest from you, connect the battery to the leftmost pin, the ground to the center
pin, and the servo ’ s power line to the rightmost pin. Second, if you’re using polar-
ized electrolytic capacitors (as in Figure 5-3), make sure to put them in the correct
direction. The stripe indicates the negative terminal and should be connected to the
common ground. Make sure that the pins don ’ t touch; otherwise, it could cause a
short. After you ’ re all wired up, move on to the next section to learn how to program
the servo controller.

 Controlling a Servo
 The Arduino IDE includes a built-in library that makes controlling servos a breeze. A
software library is a collection of code that is useful, but not always needed in sketches.
The Arduino IDE contains a number of libraries for common tasks. The servo library
abstracts the timing routines you would need to write out on your own for pulsing the
servo pin. All you have to do is attach a servo “object” to a particular pin and give it an
angle to rotate to. The library takes care of the rest, even setting the pin as an output.
The simplest way to test out the functionality of your servo is to map the potentiometer
directly to servo positions. Turning the potentiometer to 0 moves the servo to 0 degrees,
and moving it to 1023 moves the servo to 180 degrees. Create a new sketch with the
code from Listing 5-1 and load it onto your Arduino to see this functionality in action.

Li ti 5 1 Listing 5-1
 Servo potentiometer control—servo.ino Servo potenti
 //Servo Potentiometer Control
 #include <Servo.h>

 const int SERVO = 9; //Servo on Pin 9
 const int POT = 0; //POT on Analog Pin 0

 Servo myServo;
 int val = 0; //For storing the reading from the POT

 void setup()
 {
 //Attach the Servo Object
 myServo.attach(SERVO);
 }

Driving Stepper and Servo Motors 105

 void loop()
 {
 val = analogRead(POT); //Read Pot
 val = map(val, 0, 1023, 0, 179); //scale it to servo range
 myServo.write(val); //sets the servo
 delay(15); //waits for the servo
 }

 The include statement at the top of the program adds the functionality of the servo
library to your sketch. Servo myServo makes a servo object called myServo . In your
code, whenever you want to tell the servo what to do, you ’ ll refer to myServo . In setup() ,
attaching the servo initializes everything necessary to control the servo. You can add
multiple servos by calling the objects diff erent things and attaching a diff erent pin to
each one. In loop() , the pot is read, scaled to an appropriate value for the servo control,
and then “written” to the servo by pulsing the appropriate pin. The 15 ms delay ensures
that the servo reaches its destination before you try to send it another command.

B ildi S i Di t S Building a Sweeping Distance Sensor
 Now, you will combine your new servo skills with your knowledge from the past Now, you will combine your new servo skills with your kno
few chapters to build a light-up sweeping distance sensor. The system consists of an
infrared (IR) distance sensor mounted on a servo motor and four LEDs. As the servo
motor cycles, it pans the distance sensor around the room, allowing you to roughly
determine where objects are close and where they are far. The four LEDs correspond to
four quadrants of the sweep and change brightness depending on how close an object
is in that quadrant.

 Because IR light is a part of the electromagnetic spectrum that humans cannot see,
a system like this can be implemented to create “night vision.” The IR distance sensor
works by shining an IR LED and using some fairly complex circuitry to calculate the
angle at which that IR light returns to a photo sensor mounted next to the IR LED.
Using analog voltages created by the IR photo sensor readings, the distance is calculated
and converted to an analog voltage signal that you can read into the microcontroller.
Even if the room is dark and you cannot see how close an object is, this sensor can
because it is using a wavelength of light that the human eye cannot detect.

 Diff erent models of IR rangefi nders may have diff erent interfaces. If you ’ re using a
rangefi nder that is diff erent than the one used in this example, check the datasheet to
make sure it sends out a variable voltage as an output.

 NOTE You can watch a demo video of the sweeping distance sensor online, at
exploringarduino.com/content2/ch5 . You can also fi nd this video on the Wiley
website mentioned at the beginning of this chapter.

Exploring Arduino106

 Start by hot-gluing your distance sensor to the top of a servo motor, as shown in
Figure 5-4 . I like to use hot glue because it holds well and is easy to remove if you need
to. However, you could also use super glue, putty, or tape to get the job done.

 Next, hook your servo up to your Arduino, using the 5V regulator to power it, just
as you did before. The IR distance sensor replaces the potentiometer and plugs into
analog pin 0. Four LEDs plug into pins 3, 5, 6, and 11 through 1k Ω resistors. The
Arduino Uno has a total of six PWM pins, but pins 9 and 10 cannot create PWM sig-
nals (using analogWrite) when you are using the servo library. This is because the e
servo library uses the same hardware timer as the one used to control PWM on those
two pins. Hence, the other four PWM pins were chosen. (If you want to do this project
with more LEDs, you can either use the Arduino Mega or implement a software PWM
solution, something this book does not cover.) Follow the wiring diagram in Figure 5-5
to confi rm that you have everything wired up correctly. I chose to use blue LEDs,
but you can use any color you want. If your distance sensor wires are not connector-
ized, you should strip some insulation off the ends of the wires, twist them, and insert
them into the breadboard and Arduino. After you have it all wired up, consider taping
it down, as shown in Figure 5-4 .

 Figure 5-4 : IR distance sensor mounted to the servo

Driving Stepper and Servo Motors 107

 The last step is to program the sensor. The system works in the following manner:
rotate to a given position, measure the distance, convert it to a value that can be used for
the LED, change that LED ’ s brightness, move to the next position, and so on. Listing 5-2
shows the code to accomplish this. Copy it into a new sketch and upload it to your Arduino.

Li ti 5 2 Listing 5-2
 Sweeping distance sensor—sweep.inoSweeping dist
 //Sweeping Distance Sensor
 #include <Servo.h>

 const int SERVO =9; //Servo on Pin 9
 const int IR =0; //IR Distance Sensor on Analog Pin 0
 const int LED1 =3; //LED Output 1
 const int LED2 =5; //LED Output 2
 const int LED3 =6; //LED Output 3
 const int LED4 =11; //LED Output 4

Servo

9V Battery

5V Regulator

IR Distance
Sensor

Indicator LEDs

Current Limiting
Resistors

Decoupling Caps

 Figure 5-5 : Sweeping distance sensor wiring diagram
 Created with Fritzing

Exploring Arduino108

 Servo myServo; //Servo Object
 int dist1 = 0; //Quadrant 1 Distance
 int dist2 = 0; //Quadrant 2 Distance
 int dist3 = 0; //Quadrant 3 Distance
 int dist4 = 0; //Quadrant 4 Distance

 void setup()
 {
 myServo.attach(SERVO); //Attach the Servo
 pinMode(LED1, OUTPUT); //Set LED to Output
 pinMode(LED2, OUTPUT); //Set LED to Output
 pinMode(LED3, OUTPUT); //Set LED to Output
 pinMode(LED4, OUTPUT); //Set LED to Output
 }

 void loop()
 {
 //Sweep the Servo into 4 regions and change the LEDs
 dist1 = readDistance(15); //Measure IR Distance at 15 degrees
 analogWrite(LED1, dist1); //Adjust LED Brightness
 delay(300); //delay before next measurement

 dist2 = readDistance(65); //Measure IR Distance at 65 degrees
 analogWrite(LED2, dist2); //Adjust LED Brightness
 delay(300); //delay before next measurement

 dist3 = readDistance(115); //Measure IR Distance at 115 degrees
 analogWrite(LED3, dist3); //Adjust LED Brightness
 delay(300); //delay before next measurement
 dist4 = readDistance(165); //Measure IR Distance at 165 degrees
 analogWrite(LED4, dist4); //Adjust LED Brightness
 delay(300); //delay before next measurement
 }

 int readDistance(int pos)
 {
 myServo.write(pos); //Move to given position
 delay(600); //Wait for Servo to move
 int dist = analogRead(IR); //Read IR Sensor
 dist = map(dist, 50, 500, 0, 255); //scale it to LED range
 dist = constrain(dist, 0, 255); //Constrain it
 return dist; //Return scaled distance
 }

 The program employs a simple function that rotates the servo to the requested
degree, takes the distance measurement, scales it, and then returns it to the loop() .

Driving Stepper and Servo Motors 109

Which map you choose for the LED range depends on the setup of your system.
I found that the closest object I wanted to detect registered around 500 , and the
farthest object was around 50 , so the map() was set accordingly. loop() executes
this function for each of the four LEDs, then repeats. When complete, your system
should function similarly to the one shown in the demo video listed at the beginning
of this section.

U d t di d D i i St M t Understanding and Driving Stepper Motors
 I could easily write an entire book about the intricacies of choosing, building, driving, I could easily write an entire book about the intricacies of choosing, build
and integrating stepper motors. However, there are a lot of things to learn, so this
book will only focus on driving bipolar four-wire stepper motors. Stepper motors
are extremely versatile brushless DC motors that work by energizing coils of wire in
“phases” around a central, rotating permanent magnet. As these phases are turned on
and off in succession, a changing magnetic fi eld is generated that “pulls” the central
permanent magnet with it as it moves.

 A stepper motor moves one “step” at a time; the distance of the step is highly repeat-
able and defi ned by the electromechanical characteristics of the motor—the number
of coils/phases, the design of the rotor magnet, and so on. As a result, stepper motors
are excellent for tasks where accurate positioning is important. They also have high
torque at low speed, which is a major advantage over brushed DC motors. You ’ ll often
fi nd them in robots, industrial automation systems, 3D (and 2D) printers, CNC (com-
puter numerical control) gantries, and instrument panels.

 I am the Director of Engineering and the lead electrical engineer at Shaper Tools
(shapertools.com((), where we use stepper motors in our Origin handheld power tool
to enable responsive, real-time CNC positioning.

 Figures 5-6a and 5-6b show the NEMA-17 bipolar stepper motor that you ’ ll be
using shortly. Unipolar motors only energize each phase with one direction of
current flow. This makes it slightly easier to design drivers for them, but it means
that you can only ever get half of their conceivable drive torque! On the other hand,
bipolar motors (like the NEMA-17 stepper motor shown here) energize each phase
in both orientations, resulting in twice as much torque as unipolar configurations.
This necessitates the use of an H-bridge, but you ’ re already an expert on those from
the last chapter.

 NOTE NEMA-17 only defi nes the mounting template (size) of the stepper motor,
not the drive characteristics of the actual motor. NEMA-17 motors are available in a
huge array of power and torque ratings.

Exploring Arduino110

 Figure 5-6b : NEMA-17 Stepper Motor (Inside)
Credit: Adafruit, adafruit.com

 Figure 5-6a : NEMA-17 Stepper Motor (Outside)

Driving Stepper and Servo Motors 111

 How Bipolar Stepper Motors Work
 Bipolar stepper motors are a popular choice for getting maximal torque in a convenient
form factor. They employ two phases , each made of multiple coils wired together.
Each of these copper wire coils is wrapped around a soft metal core, creating a small
electromagnet that generates a magnetic fi eld when the current fl ows through the
copper wire. These coils are then placed in a circular pattern around the rotating,
permanent magnet core (Figure 5-6b shows eight coils). The coils attached to each
phase are alternated around the perimeter of the motor. Firing them in sequence pulls
the magnetized central core around in a circle.

 Figure 5-7 shows a simplifi ed illustration of how a bipolar stepper motor works.
The four wires coming out of your NEMA-17 stepper motor would be connected to the
four copper wires exiting from the end of each electromagnetic coil in the fi gure.

COIL2 A

COIL2 B
SSSSSS
NNNNN

SSSSSS
NNNNNN

COIL1 B

COIL1 A
1

COIL2 A

COIL2 B

COIL1 B

COIL1 A

2

SSSSSSSNNNNNN

COIL2 A

COIL2 B

COIL1 B

COIL1 A

3

Not Energized
No current flowing through coils.
Rotor can spin freely.

Energized
Current flows through coil 1, inducing a
magnetic field. Rotor locks in position.

Energized, Rotating
Current flows through coil 2, inducing a
new magnetic field. Permanent magnet
(shaft) rotates to align to it.

COIL2 A

COIL2 B
NNNNNN
SSSSS

SS NS NNNSS NNS N

COIL1 B

COIL1 A
4

COIL2 A

COIL2 B

COIL1 B

COIL1 A
5

SSSSS
NNNNNNN

COIL2 A

COIL2 B

COIL1 B

COIL1 A
6

Energized, Rotating
Current flows through coil 1 again, in
opposite direction from step 2. Magnetic
field direction now opposite of step 2.
Shaft rotates to align to it.Shaft rotates to align to it

Energized, Rotating
Current flows through coil 2, again, in
opposite direction from step 3. Magnetic
field direction now opposite of step 3.
Shaft rotates to align to it.Shaft rotates to align to it

Energized, Rotating
Step 2 repeats. Shaft rotates again,
returning to starting position.

 Figure 5-7 : Stepper motor movement fl ow chart

Exploring Arduino112

1. In the fi rst step, there is no current fl owing through any of the coils. As a result,
no magnetic fi elds are generated and the central magnet is not acted on by any
magnetic force. It can be turned freely.

2. The fi rst phase is energized, with current fl owing into COIL 1 A and out of COIL
1 B. This current fl owing through the coil around the soft metal cores generates
a magnetic fi eld that locks the central permanent magnet in place.

3. COIL 1 is turned off. COIL 2 is turned on, with current flowing from side B to
A. This results in a magnetic field oriented 90 degrees clockwise from the one
generated by COIL 1. The center permanent magnet is attracted to it (opposite
magnetic poles always attract each other), and it rotates to it as a result.

4. COIL 2 is turned off . COIL 1 is energized again. However, this time, current is
fl owing in the opposite direction through the coils (this is facilitated by driving
the coil with an H-bridge). The opposing direction of current fl ow means the
magnetic fi eld now points in a direction opposite from step 2. The center magnet
rotates to match it.

5. COIL 1 is turned off . COIL 2 is turned back on, opposite from the orientation
that was used in step 3. The center magnet rotates to match it.

6. The process repeats, with COIL 1 now energizing in the original current fl ow
direction.

 NOTE A lesson on the intricacies of classical electromagnetism is out of the scope of
this book. However, if you want to learn more about why running a current through
a coil around a metal core generates a magnetic fi eld, search online for “Maxwell
Equations” and “Ampere ’ s Law.”

HOW REAL STEPPERS COMPARE WITH THE SIMPLIFIED EXAMPLE

 Figure 5-7 shows a simplified example of how a bipolar stepper works. In this
example, there are only two coils for each motor phase (instead of the four shown
in Figure 5-6b). Furthermore, this example shows a simple central magnet with only
one north and one south pole. This example motor would only have a total of four
steps per rotation! Your NEMA-17 motor achieves 200 steps per rotation by having
more coils and a central magnet that has many alternating north and south poles at
each of the “bumps” that you can see in Figure 5-6b . As a result, that motor will only
move a small amount with each coil energizing. The example shown in Figure 5-7
will move a full 90 degrees when each sequential coil energizes.

Driving Stepper and Servo Motors 113

 Making Your Stepper Move
 Now that you understand what ’ s happening inside a stepper motor, you can build the
electronics necessary to drive one. You may have noticed in the previous descriptions
that a bipolar stepper motor is driven just like two brushed DC motors that you want
to drive bidirectionally. The only diff erence is that instead of the coils being in two
diff erent motors, they are both inside your stepper motor. Each coil needs to be driven
in two directions as described in Figure 5-7 . This can be accomplished using the same
H-bridge circuit that you used in the last chapter to drive the two DC motors on your
roving robot.

 There are two important deviations from your H-bridge circuit that you used
in the last chapter. First, your stepper motor is probably designed to be driven
at a voltage higher than 5V (check the datasheet to be sure). If you ’ ve ordered
the recommended NEMA-17 motor from Adafruit, then it should be driven at
12V. I recommend using a 12V DC wall adapter for this purpose. (Steppers use
a lot of power and will burn through batteries quickly.) Simply plug the DC wall
adapter into the barrel jack of the Arduino. The Arduino ’ s onboard voltage reg-
ulator will generate a 5V rail to power the microcontroller, as well as the logic
power input of the H-bridge. The VIN pin of the Arduino can be used to deliver
the 12V power from the wall adapter directly to the motor voltage pin of the
H-bridge (pin 8).

 The second change from the last chapter is that you can directly attach the enable
pins to logic HIGH (5V) (this will leave the driver always enabled). The stepper library
that you ’ ll use will ensure that the H-bridge switches are not engaged in a way that
can cause a short. Use the schematic in Figure 5-8 to wire up the H-bridge driver to
your Arduino.

 Were you able to wire it up using only the schematic? If you ’ re not sure which wire
from the stepper motor belongs to which phase, consult the datasheet or the website
where you bought it. If you still can ’ t fi gure it out, you can use a multimeter to quickly
determine the correct wires. Put your multimeter in ohmmeter or continuity test-
ing mode. Pick any two wires from the stepper motor. If those two wires have a low
resistance (<10 ohms), then they are two wires from the same phase. Repeat this as
necessary until you ’ ve found the two phase pairs. In each phase, it doesn ’ t matter which
side of the phase you put in which pin (as long as they are both on the same bridge of
the H-bridge chip). Reversing them will only reverse the default rotation direction
of the motor.

 Consult Figure 5-9 to confi rm that you ’ ve properly wired your stepper motor to
your Arduino.

Exploring Arduino114

D0
/R

X

D1
/T

X D2

D3
 P

W
M D4

D5
 P

W
M

D6
 P

W
M D7 D8

D9
 P

W
M

D1
0

PW
M

/S
S

D1
1

PW
M

/M
OS

I

D1
2/

M
IS

O

D1
3/

SC
K

RE
SE

T

RE
SE

T2

AR
EF

io
re

f

A0 A1 A2 A3 A4
/S

DA

A5
/S

CL

N/
C

GND

3V3

5V

VIN

Ar
du

in
o

Un
o

(R
ev

3)

Ar
du

in
o1

5V

5V
5V

IC
1

L2
93

D

M
1

ROB-08420

12
V

5V

COIL2_A

COIL2_B

CO
IL

1_
A

CO
IL

1_
B

CO
IL

1_
A

CO
IL

1_
B

CO
IL

1_
M

C2

L2
93

D

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

16 15 14 13 12 11 10 9

16 15 14 13 12 11 10 9

CO
IL

1_
M

C1

CO
IL

2_
A

CO
IL

2_
B

CO
IL

2_
M

C1

CO
IL

1_
M

C1

CO
IL

1_
M

C2

CO
IL

2_
M

C1

CO
IL

2_
M

C2

CO
IL

2_
M

C2

12
V

B D

C

A

 Fi
gu

re
 5

-8
 :

 St
ep

pe
r

m
ot

or
 w

ir
in

g
sc

he
m

at
ic

 Cr
ea

te
d

w
it

h
Fr

it
zi

ng

Driving Stepper and Servo Motors 115

 Now that your stepper is wired up, it ’ s time to make it move! You ’ ll start with a simple
back-and-forth sweep that illustrates how the stepper library works. Just like with the
servo library, you can import the stepper library to your sketch to enable easy control
of stepper motors. Copy the code in Listing 5-3 into a sketch to load onto your Arduino.
Before actually loading it on, make sure the 12V power is connected to your Arduino ’ s
barrel jack. Otherwise, the stepper won ’ t move correctly when the sketch starts.

Li ti 5 3 Listing 5-3
 Simple stepper control—stepper.inoSimple steppe
 //Simple Stepper Control with an H-Bridge

 #include <Stepper.h>

 //Motor Constants
 //Most NEMA-17 Motors have 200 steps/revolution
 const int STEPS_PER_REV = 200; //200 steps/rev

12V DC Wall Adapter
> 500 mA

 Figure 5-9 : Stepper motor wiring diagram
 Created with Fritzing

Exploring Arduino116

 //H-Bridge Pins
 const int COIL1_MC1 = 2; //COIL 1 Switch 1 Control
 const int COIL1_MC2 = 3; //COIL 1 Switch 2 Control
 const int COIL2_MC1 = 4; //COIL 2 Switch 1 Control
 const int COIL2_MC2 = 5; //COIL 2 Switch 2 Control

 // Initialize the stepper library - pass it the Switch control pins
 Stepper myStepper(STEPS_PER_REV, COIL1_MC1, COIL1_MC2, COIL2_MC1, COIL2_MC2);

 void setup()
 {
 //Set the stepper speed
 myStepper.setSpeed(60); // 60 RPM
 }

 void loop()
 {
 // step one revolution in one direction:
 myStepper.step(STEPS_PER_REV);
 delay(500);

 // step one revolution in the other direction:
 myStepper.step(-STEPS_PER_REV);
 delay(500);
 }

 Take a moment to understand this code. The #include <Stepper.h> statement
imports the stepper motor Arduino library. Next, a constant representing the number
of steps in one full rotation is created for easy reference later in the sketch. All the
H-bridge control pins are assigned accordingly. Stepper myStepper() creates a
stepper motor object called myStepper . You can change myStepper to any name
you want, if you reference it in place of myStepper later in the sketch. This object
constructor takes fi ve arguments: the number of steps in a full revolution, and the
four Arduino pins connected to the H-bridge controller. In the setup() function,
the myStepper object is set up with a default speed in rotations per minute (RPM).
When calling myStepper.step() later in the program, the library will take care of
driving the motor at that speed for the specifi ed number of steps. In the loop() ,
myStepper.step() takes just one argument that tells the stepper library to move that
stepper the specifi ed number of steps at the previously defi ned speed. The step()
function is “blocking,” meaning that the next command will not execute until the
stepper has fi nished the requested movement. In this program, the stepper should
do one full rotation forward, followed by one full rotation backward. It will repeat
this forever.

Driving Stepper and Servo Motors 117

 NOTE Is your motor just wiggling or not rotating? Check that the 12V supply
is plugged in and properly connected to the motor voltage pin of the H-bridge
chip. If it ’ s not plugged in, but the USB cable is, you ’ ll be feeding your stepper
insuffi cient voltage and it won ’ t move properly. If that ’ s not the issue, then check
the phase wiring; the wires from the same phase should be on the same side
of the H-bridge chip.

B ildi “O Mi t Ch h” Building a “One-Minute Chronograph”
 As you learned at the start of this chapter, stepper motors can be found in a wide As you learned at the start of this chapter, stepper motors can
range of products. For instance, you ’ ll often fi nd them in the analog dials of a car or
an airplane ’ s instrument panel. Along the same lines, you ’ ll use your new knowledge
of stepper motors to make an accurate chronograph, capable of running an incre-
menting timer for a precise amount of time. Stepper motors are well suited to this
project because they repeatedly move a fi xed amount with each step. Knowing the
number of steps in a full rotation, you can time their movement to ensure they
complete one full rotation in exactly the desired amount of time. Doing that with a
brushed DC motor would be impossible without some sort of feedback mechanism
to report position.

 Wiring and Building the Chronograph
 Your chronograph will need start and stop buttons, so add those to your existing stepper
motor drive circuit, as shown in Figure 5-10 .

 Is something missing in this diagram? Where are the pull-up resistors for the but-
tons? In this project, you ’ ll learn how to use an often underutilized feature of the
Arduino (and most microcontrollers). The ATmega microcontroller at the heart of
the Arduino has confi gurable I/O pin modes; you already know this because you ’ ve
learned how to use pinMode() to switch them between INPUT and OUTPUT . However,
there are actually additional settings available for these pins. Notably, you can set
pins to INPUT_PULLUP mode. Setting a pin to this mode will make it an input, and
enable a pull-up resistor inside the chip itself! This pull-up generally has a value some-
where between 20K Ω and 150K Ω , depending on the exact board that you are using—
consult the datasheet to be sure. Configuring a pin in this mode saves you from
having to use an external resistor. Just wire the button so it shorts to GND when
pressed, and that ’ s the entire circuit. The code you ’ ll use shortly enables the internal
pull-up in the setup() function.

Exploring Arduino118

 NOTE Using an internal pull-up works great for things like buttons, but it may
not be the best solution in all scenarios. The pull-up will not be activated until the
Arduino has executed the bootloader and started running your code. Thus, if that
pin is connected to some other integrated circuit that cannot have that pin in a
fl oating state (even for a few seconds), then you ’ ll want to use a hardware pull-up
resistor.

 Now that you have your circuit built, you can construct your actual chronograph face
and hand. Reference Figure 5-11 for a simple example of how to do this. I hot-glued a
blank CD to the face of the stepper (be sure not to get glue into the part that rotates).
I slid a Popsicle stick into a binder clip and clipped it onto the rotating motor shaft. I
then marked the seconds on the face of the “clock.” While the motor is unpowered, you
can manually turn the shaft to the “0” position so that the chronograph starts at the
correct point.

12V DC Wall Adapter
> 500 mA

 Figure 5-10 : Chronograph wiring diagram
 Created with Fritzing

Driving Stepper and Servo Motors 119

 Programming the Chronograph
 Writing the software for the chronograph will use much of what you ’ ve already learned.
Start with your stepper.ino as a baseline, and add to it. You ’ ll want to keep the parts at
the top: the #include statement, the STEPS_PER_REV defi nition, and the pin defi nitions.
In addition to that, add defi nitions for the START and STOP buttons (connected to pins 8
and 9, respectively). Next, you ’ ll also want to defi ne the number of milliseconds required
between each step. You want the chronograph to complete one full rotation in exactly
60 seconds. Given that 60 seconds is 60,000 milliseconds, you can divide 60,000 ms
by 200 steps to get 300 milliseconds per step. So, you ’ ll be instructing the stepper to
advance one step every 300 milliseconds. With all that, the top of your program should
look something like this:

 #include <Stepper.h>

 //Most NEMA-17 Motors have 200 steps/revolution
 const int STEPS_PER_REV = 200; //200 steps/rev

 Figure 5-11 : One-minute chronograph project

Exploring Arduino120

 //To do one rotation in a minute,
 //we need to know the milliseconds required between steps:
 //60 seconds * 1000ms / 200 steps = 300 ms/step
 const int MS_PER_STEP = 300;

 //H-Bridge Pins W
 const int COIL1_MC1 = 2; //COIL 1 Switch 1 Control
 const int COIL1_MC2 = 3; //COIL 1 Switch 2 Control
 const int COIL2_MC1 = 4; //COIL 2 Switch 1 Control
 const int COIL2_MC2 = 5; //COIL 2 Switch 2 Control

 //Button Pins
 const int START = 8; //Start Button
 const int STOP = 9; //Stop Button

 //Initialize the stepper library - pass it the Switch control pins
 Stepper chronograph(STEPS_PER_REV, COIL1_MC1, COIL1_MC2,
 COIL2_MC1, COIL2_MC2);

 That should look familiar. Note that the Stepper object is now called chronograph
instead of myStepper . In order to keep track of elapsed time, you ’ ll use the Arduinor
language ’ s millis() function to ensure you step once every 300 ms. The millis()
function takes no arguments, and just returns the amount of time in milliseconds since
the Arduino started running code. Thus, if you keep track of the value returned the
last time it was run, you can easily tell when 300 ms has elapsed. To do this, you use
global variables defi ned at the top of the code where you can store the times returned
by millis() . You ’ ll also need to use a global variable to keep track of how many steps
have been taken, so you can stop when you get to 200, or so you can reset the timer to
the correct location based on how far it has travelled. Initialize these global variables
anywhere at the top of your fi le (above the setup() function):

 //Tracking Variables
 unsigned long last_time = 0;
 unsigned long curr_time = 0;
 int steps_taken = 0;

 The time-tracking variables are unsigned longs because that is the variable type
that can hold the largest positive number in the Arduino language; as you might ima-
gine, the value returned by millis() can get quite large if the Arduino has been running
for a long time.

 In the setup() function, you should set the default speed for the stepper motor, as
you did in your last program. The exact value isn ’ t that important because you ’ ll only
be moving it one step at time (you ’ re setting the pace at 300 milliseconds per step).

Driving Stepper and Servo Motors 121

However, when you reset your chronograph, this value will control how quickly it
returns to the start position. Thus, I recommend something fast—somewhere bet-
ween 50 and 200 RPM. (The stepper will likely not be able to keep up if you try to
go faster than that.) Also, don ’ t forget to enable the pull-up resistors on your button
inputs in the setup function:

 void setup()
 {
 //Set the stepper speed high so each "tick" is fast
 chronograph.setSpeed(200); //200 RPM

 //Setup Pullups on Buttons
 pinMode(START, INPUT_PULLUP);
 pinMode(STOP, INPUT_PULLUP);
 }

 Finally, you ’ re ready to write the main loop. Here ’ s the general fl ow:

1. Wait until the START button is pressed. This can be accomplished by using a
one-line while() loop with a “ ; ” at the end. When a while() loop has no contents,
the Arduino will just endlessly check its conditions. As long as the conditions
in the loop defi nition are met, it won ’ t move on to the next line of code. The loop
should be checking for the START button to be pressed. You ’ re only waiting for it
to go LOW , so you don ’ t need to debounce it.

2. Once the START button has been pressed, get the current time from millis() and
save it to the last_time variable so you can compare against it in a future step.

3. Enter a while() loop that will keep going until one minute has elapsed, or until
the STOP button state has changed (been pressed).

◼ Get the current time with millis() and compare it to last_time . Once
the difference between the two has reached 300 ms, it ’ s time to move the
stepper motor by one step.

◼ Increment the step tracking variable, set last_time to the current time (so
you can repeat this loop), and step the motor by one step.

4. If the code is at this step, then it means a full minute has elapsed, or the
STOP button was pressed. If the STOP button was pressed, then return
the dial to the starting position. Reset the step counter to zero so the process
can begin again.

 Were you able to write all the logic for that on your own? Give it a shot and try to
debug it yourself, before reading through the completed code example that follows.

Exploring Arduino122

When you ’ re ready, compare what you ’ ve written to the program in Listing 5-4 , and
load it onto your Arduino. Remember to plug in the 12V wall adapter!

Li ti 5 4 Listing 5-4
 One-minute chronograph project—chronograph.inoOne minute ch
 //One Minute Chronograph with Start/Stop/Reset

 #include <Stepper.h>

 //Most NEMA-17 Motors have 200 steps/revolution
 const int STEPS_PER_REV = 200; //200 steps/rev

 //To do one rotation in a minute,
 //we need to know the milliseconds required between steps:
 //60 seconds * 1000ms /200 steps = 300 ms/step
 const int MS_PER_STEP = 300;

 //H-Bridge Pins
 const int COIL1_MC1 = 2; //COIL 1 Switch 1 Control
 const int COIL1_MC2 = 3; //COIL 1 Switch 2 Control
 const int COIL2_MC1 = 4; //COIL 2 Switch 1 Control
 const int COIL2_MC2 = 5; //COIL 2 Switch 2 Control

 //Button Pins
 const int START = 8; //Start Button
 const int STOP = 9; //Stop Button

 //Tracking Variables
 unsigned long last_time = 0;
 unsigned long curr_time = 0;
 int steps_taken = 0;

 //Initialize the stepper library - pass it the Switch control pins
 Stepper chronograph(STEPS_PER_REV, COIL1_MC1, COIL1_MC2, COIL2_MC1, COIL2_MC2);

 void setup()
 {
 //Set the stepper speed high so each "tick" is fast
 chronograph.setSpeed(200); //200 RPM

 //Setup Pullups on Buttons
 pinMode(START, INPUT_PULLUP);
 pinMode(STOP, INPUT_PULLUP);
 }

Driving Stepper and Servo Motors 123

 void loop()
 {
 //Endless Loop - wait here until start is pressed
 //The Semicolon after the while loop definitions keeps us
 //here until the condition is no longer met
 while(digitalRead(START) == HIGH);

 last_time = millis(); //Get the time when we started

 //Keep Going in this loop until stopped, or minute has elapsed
 while(digitalRead(STOP) == HIGH && steps_taken < STEPS_PER_REV)
 {
 curr_time = millis();

 //If enough time has passed, go one step
 if(curr_time - last_time >= MS_PER_STEP)
 {
 chronograph.step(1); //Move one step
 steps_taken++; //Increment the steps_taken variable
 last_time=curr_time; //Set the last time equal to the current time
 }
 }

 //If we get here, the stop button has been pressed or a minute elapsed.
 //If we didn't go the full rotation, return to start
 if (steps_taken < STEPS_PER_REV) chronograph.step(-steps_taken);
 //Reset the step tracker
 steps_taken = 0;

 }

 Your chronograph should now be fully functional! Press the START button to start
timing. The dial will advance through 360 degrees of rotation in exactly one minute.
If you press the STOP button, the chronograph will reset itself back to the start posi-
tion. Try experimenting with diff erent total times. Can you make a two-minute chro-
nograph? Can you turn it into a timer that counts down instead of up? What about
making a simple lap timer?

 NOTE You can watch a demo video of the One-Minute Chronograph project online,
at exploringarduino.com/content2/ch5 . You can also fi nd this video on the Wiley
website shown at the beginning of this chapter.

Exploring Arduino124

S Summary
 In this chapter, you learned the following:In this chapter, y

◼ Servo motors enable precise positioning and can be controlled using the Arduino
servo library.

◼ IR distance sensors return analog values representing distances detected by
bouncing infrared light off objects.

◼ Code commenting is critical for easing debugging and sharing.
◼ The Arduino has internal pull-up resistors than can be enabled on input pins.
◼ Stepper motors take advantage of electromagnetism to precisely step through

positions.
◼ You can use the millis() function to track elapsed time in your Arduino sketches.

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction�������������������
	Who This Book Is For
	What You’ll Learn in This Book
	Features Used in This Book
	Getting the Parts
	What You’ll Need
	Source Code and Digital Content
	Errata
	Supplementary Material and Support
	What Is an Arduino?
	An Open Source Platform
	Beyond This Book

	Part I Arduino Engineering Basics��
	Chapter 1 Getting Up and Blinking with the Arduino���
	Exploring the Arduino Ecosystem��������������������������������������
	Arduino Functionality����������������������������
	Atmel Microcontroller����������������������������
	Programming Interfaces�����������������������������
	General I/O and ADCs���������������������������
	Power Supplies���������������������

	Arduino Boards���������������������

	Creating Your First Program����������������������������������
	Downloading and Installing the Arduino IDE���
	Running the IDE and Connecting to the Arduino��
	Breaking Down Your First Program���������������������������������������

	Summary��������������

	Chapter 2 Digital Inputs, Outputs, and Pulse-Width Modulation��
	Digital Outputs����������������������
	Wiring Up an LED and Using Breadboards���
	Working with Breadboards�������������������������������
	Wiring LEDs������������������

	Programming Digital Outputs����������������������������������
	Using For Loops����������������������

	Pulse-Width Modulation with analogWrite()��
	Reading Digital Inputs�����������������������������
	Reading Digital Inputs with Pulldown Resistors���
	Working with “Bouncy” Buttons������������������������������������

	Building a Controllable RGB LED Nightlight���
	Summary��������������

	Chapter 3 Reading Analog Sensors���������������������������������������
	Understanding Analog and Digital Signals���
	Comparing Analog and Digital Signals���
	Converting an Analog Signal to a Digital One���

	Reading Analog Sensors with the Arduino: analogRead()��
	Reading a Potentiometer������������������������������
	Using Analog Sensors���������������������������
	Working with Analog Sensors to Sense Temperature���

	Using Variable Resistors to Make Your Own Analog Sensors���
	Using Resistive Voltage Dividers���������������������������������������
	Using Analog Inputs to Control Analog Outputs��

	Summary��������������

	Part II Controlling Your Environment���
	Chapter 4 Using Transistors and Driving Motors���
	Driving DC Motors������������������������
	Handling High-Current Inductive Loads��
	Using Transistors as Switches������������������������������������
	Using Protection Diodes������������������������������
	Using a Secondary Power Source�������������������������������������
	Wiring the Motor�����������������������

	Controlling Motor Speed with PWM���������������������������������������
	Using an H-Bridge to Control DC Motor Direction��
	Building an H-bridge Circuit�����������������������������������
	Operating an H-bridge Circuit������������������������������������

	Driving Servo Motors���������������������������
	Understanding the Difference Between Continuous Rotation and Standard Servos���
	Understanding Servo Control����������������������������������
	Controlling a Servo��������������������������

	Building a Sweeping Distance Sensor��
	Summary��������������

	Chapter 5 Making Sounds������������������������������
	Understanding How Speakers Work��������������������������������������
	The Properties of Sound������������������������������
	How a Speaker Produces Sound�����������������������������������

	Using tone() to Make Sounds����������������������������������
	Including a Definition File����������������������������������
	Wiring the Speaker�������������������������
	Making Sound Sequences�����������������������������
	Using Arrays�������������������
	Making Note and Duration Arrays��������������������������������������
	Completing the Program�����������������������������

	Understanding the Limitations of the tone() Function���

	Building a Micro Piano�����������������������������
	Summary��������������

	Chapter 6 USB and Serial Communication���
	Understanding the Arduino’s Serial Communication Capabilities��
	Arduino Boards with an Internal or External FTDI USB-to-Serial Converter���
	Arduino Boards with a Secondary USB-Capable ATMega MCU Emulating a Serial Converter��
	Arduino Boards with a Single USB-Capable MCU���
	Arduino Boards with USB-Host Capabilities��

	Listening to the Arduino�������������������������������
	Using print Statements�����������������������������
	Using Special Characters�������������������������������
	Changing Data Type Representations���

	Talking to the Arduino�����������������������������
	Reading Information from a Computer or Other Serial Device���
	Telling the Arduino to Echo Incoming Data��
	Understanding the Differences Between Chars and Ints���
	Sending Single Characters to Control an LED��
	Sending Lists of Values to Control an RGB LED��

	Talking to a Desktop App�������������������������������
	Talking to Processing����������������������������
	Installing Processing����������������������������
	Controlling a Processing Sketch from Your Arduino��
	Sending Data from Processing to Your Arduino���

	Learning Special Tricks with the Arduino Leonardo (and Other 32U4-Based Arduinos)��
	Emulating a Keyboard���������������������������
	Typing Data into the Computer������������������������������������
	Commanding Your Computer to Do Your Bidding��

	Emulating a Mouse������������������������

	Summary��������������

	Chapter 7 Shift Registers��������������������������������
	Understanding Shift Registers������������������������������������
	Sending Parallel and Serial Data���������������������������������������
	Working with the 74HC595 Shift Register��
	Understanding the Shift Register Pin Functions���
	Understanding How the Shift Register Works���

	Shifting Serial Data from the Arduino��
	Converting Between Binary and Decimal Formats��

	Controlling Light Animations with a Shift Register���
	Building a “Light Rider”�������������������������������
	Responding to Inputs with an LED Bar Graph���

	Summary��������������

	Part III Communication Interfaces��
	Chapter 8 The I²C Bus
	History of the I²C Bus
	I²C Hardware Design
	Communication Scheme and ID Numbers��
	Hardware Requirements and Pull-Up Resistors��

	Communicating with an I²C Temperature Probe
	Setting Up the Hardware������������������������������
	Referencing the Datasheet��������������������������������
	Writing the Software���������������������������

	Combining Shift Registers, Serial Communication, and I²C Communications
	Building the Hardware for a Temperature Monitoring System��
	Modifying the Embedded Program�������������������������������������
	Writing the Processing Sketch������������������������������������

	Summary��������������

	Chapter 9 The SPI Bus����������������������������
	Overview of the SPI Bus������������������������������
	SPI Hardware and Communication Design��
	Hardware Configuration�����������������������������
	Communication Scheme���������������������������

	Comparing SPI to I²C
	Communicating with an SPI Digital Potentiometer��
	Gathering Information from the Datasheet���
	Setting Up the Hardware������������������������������
	Writing the Software���������������������������

	Creating an Audiovisual Display Using SPI Digital Potentiometers���
	Setting Up the Hardware������������������������������
	Modifying the Software�����������������������������

	Summary��������������

	Chapter 10 Interfacing with Liquid Crystal Displays��
	Setting Up the LCD�������������������������
	Using the LiquidCrystal Library to Write to the LCD��
	Adding Text to the Display���������������������������������
	Creating Special Characters and Animations���

	Building a Personal Thermostat�������������������������������������
	Setting Up the Hardware������������������������������
	Displaying Data on the LCD���������������������������������
	Adjusting the Set Point with a Button��
	Adding an Audible Warning and a Fan��
	Bringing It All Together: The Complete Program���
	Taking This Project to the Next Level��

	Summary��������������

	Chapter 11 Wireless Communication with XBee Radios���
	Understanding XBee Wireless Communication��
	XBee Radios������������������
	The XBee Radio Shield and Serial Connections���
	3.3V Regulator���������������������
	Logic Level Shifting���������������������������
	Associate LED and RSSI LED���������������������������������
	UART Selection Jumper or Switch��������������������������������������
	Hardware vs. Software Serial UART Connection Option��

	Configuring Your XBees�����������������������������
	Configuring via a Shield or a USB Adapter��
	Programming Option 1: Using the Uno as a Programmer (Not Recommended)��
	Programming Option 2: Using the SparkFun USB Explorer (Recommended)��

	Choosing Your XBee Settings and Connecting Your XBee to Your Host Computer���
	Configuring Your XBee with X-CTU���������������������������������������
	Configuring Your XBee with a Serial Terminal���

	Talking with Your Computer Wirelessly��
	Powering Your Remote Arduino�����������������������������������
	USB with a Computer or a 5V Wall Adapter���
	Batteries����������������
	Wall Power Adapters��������������������������

	Revisiting the Serial Examples: Controlling Processing with a Potentiometer��
	Revisiting the Serial Examples: Controlling an RGB LED���

	Talking with Another Arduino: Building a Wireless Doorbell���
	System Design��������������������
	Transmitter Hardware���������������������������
	Receiver Hardware������������������������
	Transmitter Software���������������������������
	Receiver Software������������������������

	Summary��������������

	Part IV Advanced Topics and Projects���
	Chapter 12 Hardware and Timer Interrupts���
	Using Hardware Interrupts��������������������������������
	Knowing the Tradeoffs Between Polling and Interrupting���
	Ease of Implementation (Software)��
	Ease of Implementation (Hardware)��
	Multitasking�������������������
	Acquisition Accuracy���������������������������

	Understanding the Arduino’s Hardware Interrupt Capabilities��
	Building and Testing a Hardware-Debounced Button Interrupt Circuit���
	Creating a Hardware-Debouncing Circuit���
	Assembling the Complete Test Circuit���
	Writing the Software���������������������������

	Using Timer Interrupts�����������������������������
	Understanding Timer Interrupts�������������������������������������
	Getting the Library��������������������������
	Executing Two Tasks Simultaneously(ish)��

	Building an Interrupt-Driven Sound Machine���
	Sound Machine Hardware�����������������������������
	Sound Machine Software�����������������������������

	Summary��������������

	Chapter 13 Data Logging with SD Cards��
	Getting Ready for Data Logging�������������������������������������
	Formatting Data with CSV Files�������������������������������������
	Preparing an SD Card for Data Logging��

	Interfacing the Arduino with an SD Card��
	SD Card Shields����������������������
	SD Card SPI Interface����������������������������
	Writing to an SD Card����������������������������
	Reading from an SD Card������������������������������

	Using a Real-Time Clock������������������������������
	Understanding Real-Time Clocks�������������������������������������
	Using the DS1307 Real-Time Clock���������������������������������������
	Using the RTC Arduino Third-Party Library��

	Using the Real-Time Clock��������������������������������
	Installing the RTC and SD Card Modules���
	Updating the Software����������������������������

	Building an Entrance Logger����������������������������������
	Logger Hardware����������������������
	Logger Software����������������������
	Data Analysis��������������������

	Summary��������������

	Chapter 14 Connecting Your Arduino to the Internet���
	The Web, the Arduino, and You������������������������������������
	Networking Lingo�����������������������
	IP Address�����������������
	Network Address Translation����������������������������������
	MAC Address������������������
	HTML�����������
	HTTP�����������
	GET/POST���������������
	DHCP�����������
	DNS����������

	Clients and Servers��������������������������
	Networking Your Arduino������������������������������

	Controlling Your Arduino from the Web��
	Setting Up the I/O Control Hardware��
	Designing a Simple Web Page����������������������������������
	Writing an Arduino Server Sketch���������������������������������������
	Connecting to the Network and Retrieving an IP via DHCP��
	Replying to a Client Response������������������������������������
	Putting It Together: Web Server Sketch���

	Controlling Your Arduino via the Network���
	Controlling Your Arduino over the Local Network��
	Using Port Forwarding to Control your Arduino from Anywhere��

	Sending Live Data to a Graphing Service��
	Building a Live Data Feed on Xively��
	Creating a Xively Account��������������������������������
	Creating a Data Feed���������������������������
	Installing the Xively and HttpClient Libraries���
	Wiring Up Your Arduino�����������������������������
	Configuring the Xively Sketch and Running the Code���
	Displaying Data on the Web���������������������������������

	Adding Feed Components�����������������������������
	Adding an Analog Temperature Sensor��
	Adding Additional Sensor Readings to the Datastream��

	Summary��������������

	Appendix Deciphering the ATMega Datasheet and Arduino Schematics���
	Reading Datasheets�������������������������
	Breaking Down a Datasheet��������������������������������
	Understanding Component Pin-outs���������������������������������������

	Understanding the Arduino Schematic��

	Index������������
	Exploring Arduino 2e Preview

	Driving Servo Motors
	Understanding the Difference between Continuous Rotation and Standard Servos
	Understanding Servo Control
	Controlling a Servo

	Building a Sweeping Distance Sensor
	Understanding and Driving Stepper Motors
	How Bipolar Stepper Motors Work
	Making Your Stepper Move

	Building a “One-Minute Chronograph”
	Wiring and Building the Chronograph
	Programming the Chronograph

	Summary

	EULA

