

Raspberry Pi®
Projects

by Mike Cook, Jonathan Evans,
and Brock Craft

Raspberry Pi®
Projects

Raspberry Pi® Projects For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written
permission of the Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011,
fax (201) 748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and may not be
used without written permission. Raspberry Pi is a registered trademark of the Raspberry Pi Foundation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2015942453

ISBN 978‐1‐118‐76669‐9 (pbk); ISBN 978‐1‐118‐76672‐9 (ebk); ISBN 978‐1‐118‐76671‐2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Contents at a Glance
Introduction... 1

Part I: Getting Started with Raspberry Pi Projects.......... 5
Chapter 1: Getting to Know the Raspberry Pi... 7
Chapter 2: Setting Up Your Tools and Workbench.. 29
Chapter 3: Focusing on Technique... 47
Chapter 4: The Raspberry Family... 69

Part II: Working with LEDs and Switches..................... 79
Chapter 5: The Sauce Bottle Game... 81
Chapter 6: Stomp!... 93
Chapter 7: The Light Fantastic.. 115
Chapter 8: Games for the Light Fantastic.. 135

Part III: Developing Advanced Interfaces................... 155
Chapter 9: Advanced Interfaces.. 157
Chapter 10: Raspberry Pi in the Sky... 197
Chapter 11: Webcam and Computer Vision.. 233
Chapter 12: The Raspberry Jazz Glitter Trio... 263

Part IV: Making the Raspberry Pi Your
LEGO’s Magic Brick.. 277
Chapter 13: The Pi Meets LEGO.. 279
Chapter 14: The LEGO Dice Game.. 307
Chapter 15: LEGO Direct.. 335

Part V: Exploring RISC OS... 371
Chapter 16: Introducing RISC OS.. 373
Chapter 17: RISC OS Coding.. 391
Chapter 18: Transistor Tester... 417
Chapter 19: The General‐Purpose Input/Output Port in RISC OS............................. 441

Part VI: The Part of Tens... 451
Chapter 20: Ten Great LEGO Pi Projects... 453
Chapter 21: Ten Suppliers of Components and Tools... 457

Index... 461

Table of Contents
Introduction.. 1

About This Book... 1
Foolish Assumptions.. 2
Icons Used in This Book.. 3
Beyond the Book.. 3
Where to Go from Here.. 4

Part I: Getting Started with Raspberry Pi Projects........... 5

Chapter 1: Getting to Know the Raspberry Pi . 7
Getting a Raspberry Pi... 7
Discovering What You Can and Can’t Do with a Raspberry Pi................. 10
Getting Familiar with Your Raspberry Pi... 11
Selecting Your Accessories... 12
Setting Up Your Operating System... 15
Flashing Your SD Card... 16

Flashing an SD card in Windows... 16
Flashing an SD card on a Mac.. 17
Flashing an SD card in Linux... 19

Connecting Your Hardware... 20
Setting Up with Raspi‐config... 23
Starting Up the Desktop Environment... 25
Troubleshooting Your Raspberry Pi.. 27

Chapter 2: Setting Up Your Tools and Workbench 29
Getting Ready to Build Your Projects.. 29

Setting up your workspace.. 30
Keeping an eye on safety... 31

Assembling Your Tools.. 31
Electronics tools... 32
Physical building and fabrication tools... 36

Using Your Tools Safely and Effectively.. 38
Working with electricity... 38
Laying the foundation for your electronics work............................. 39
Soldering safely... 42

Getting Ready to Build Raspberry Pi LEGO Projects................................. 44

viii Raspberry Pi Projects For Dummies �

Chapter 3: Focusing on Technique . 47
Getting Around Your Raspberry Pi.. 47

Using the desktop environment.. 48
Using the File Manager... 50

Using the Command‐Line Interface.. 52
The command prompt... 52
The directory tree... 53
The file path... 56
Directories... 57
Files... 58

Programming Like a Pro.. 60
Python.. 60
IDLE... 62
C	... 64

Chapter 4: The Raspberry Family . 69
In the Beginning: Looking at the Evolution of the Raspberry Pi............... 69
Deciding Which Raspberry Pi to Buy... 71

Memory.. 71
General‐purpose input/output (GPIO)... 73
Video.. 74
Processor... 75

Figuring Out Which Raspberry Pi You Have... 75

Part II: Working with LEDs and Switches...................... 79

Chapter 5: The Sauce Bottle Game . 81
The Game... 81

Parts... 81
Schematic... 82
Construction.. 83
Testing.. 85

The Software... 86
Preparing the graphics... 87
The rules.. 88

Taking It Farther... 92

Chapter 6: Stomp! . 93
Getting Acquainted with the LED... 93
Stomp 1.. 96

Parts... 96
Schematic... 97
Design... 98
Construction.. 98
Software... 101
How it plays... 104

ix� Table of Contents

Stomp 2.. 105
Design... 106
Parts... 106
Schematic... 107
Construction.. 108
Software... 110

Chapter 7: The Light Fantastic . . 115
Introducing the Light Fantastic.. 116
The Circuit... 117

LEDs.. 117
Switches... 117
The PCB.. 119

Construction... 121
Connecting to the Raspberry Pi.. 124
Boxing the Light Fantastic... 125

Bringing It All to Life... 128
A bit of a show... 130
Things to try.. 134

Chapter 8: Games for the Light Fantastic . 135
Treasure Hunt... 136
Sliding Block Puzzle.. 140
Color Match... 144
Lights Out.. 149
Exploring a World of Possibilities.. 154

Part III: Developing Advanced Interfaces.................... 155

Chapter 9: Advanced Interfaces . 157
Converting Analog to Digital... 157

Considering the accuracy of analog‐to‐digital conversion............ 160
Making sense of a digital reading.. 161

Introducing the Analog‐to‐Digital Conversion Methods.......................... 162
The ramp method... 162
The successive approximation method... 163
The tracking method.. 164

Building an Analog‐to‐Digital Converter.. 165
Finding the parts you need.. 165
Constructing the circuit... 166
Writing the software... 171

Using a Potentiometer to Control the Breakdown Game........................ 182
Creating an Analog Temperature Sensor.. 187

Constructing the circuit... 189
Writing the software... 189

x Raspberry Pi Projects For Dummies �

Interfacing with an Analog‐to‐Digital Microchip....................................... 190
Assembling the parts you need.. 192
Constructing the circuit... 192
Writing the software... 192

Chapter 10: Raspberry Pi in the Sky . 197
Understanding the Cloud... 197

Connecting to the cloud... 197
Assembling the parts you need.. 198
Constructing the temperature sensor.. 198
Writing the software... 200

Storing Data in Google Docs from Your Raspberry Pi............................. 202
Creating a new Google Docs spreadsheet....................................... 203
Creating an authentication token... 204

Creating a Dashboard and Temperature Alerts Using PrivateEyePi...... 211
Creating a Database Logger.. 216

Understanding web servers and databases.................................... 217
Explaining HTML and server‐side scripting.................................... 218
Delving into database basics... 220
Installing MySQL, PHP, and Apache... 221
Creating the data logger... 221
Developing a sensor logger... 224
Creating a dynamic web page... 226

Chapter 11: Webcam and Computer Vision . 233
Setting Up the Webcam or Raspberry Pi Camera Module....................... 234

Taking a picture with a webcam... 235
Taking a picture with the Raspberry Pi camera module............... 235
Viewing pictures on the Raspberry Pi.. 236

Understanding Images... 236
Resolution.. 236
Color spaces.. 237
Color models... 237
Image file types... 238

Creating an Image File.. 238
Detecting Motion with a Webcam.. 242
Working with Image Recognition.. 245
Interpreting Color... 248
Building a Connect Four Game Using Computer Vision.......................... 251

Chapter 12: The Raspberry Jazz Glitter Trio . 263
Meeting the Gang.. 263

The lamp.. 264
The webcam.. 264

Testing the Webcam... 265

xi� Table of Contents

Hacking the Glitter Lamp... 266
Assembling the necessary parts... 267
Making the box.. 270
Adding the camera.. 271
Testing.. 272

Letting the Band Play... 273
Gathering the sounds... 273
Writing the software... 273
Playing variations on a theme... 276

Part IV: Making the Raspberry Pi Your
LEGO’s Magic Brick... 277

Chapter 13: The Pi Meets LEGO . 279
Exploring the MINDSTORMS Range... 279

Bluetooth messages... 281
Infrared messages... 291

Creating a Tug‐of‐War LEGO Robot.. 300
Going on from Here.. 305

Chapter 14: The LEGO Dice Game . . 307
Introducing the Dice Game.. 307
Understanding the Game Theory... 309
Detecting Dice... 311
Looking at the Playing Mechanism... 314

The dice... 314
The mechanism... 316

Writing the Code... 317
The EV3 code... 317
The Raspberry Pi code... 318

Customizing the Code.. 333

Chapter 15: LEGO Direct . 335
Creating a Reset Button for the Raspberry Pi... 335
Making Batteries Last Longer... 336
Using Connectors and Cables to Control

the LEGO Motors and Sensors.. 340
Reading and Commanding... 342

The motor lead.. 343
The sensor lead... 345

Rolling Your Own Motor Control.. 345
Making it move.. 346
Knowing where it is: Motor feedback... 349
Constructing the motor control system.. 350
Writing the software... 353

xii Raspberry Pi Projects For Dummies �

Listening to Sensors... 358
Touch sensors... 358
Advanced sensors... 360
The Raspberry Pi software.. 364

Part V: Exploring RISC OS.. 371

Chapter 16: Introducing RISC OS . 373
Knowing What Makes RISC OS Unique.. 374
Preparing for Action: Getting RISC OS... 375

The mouse... 376
The keyboard.. 376
The network.. 377

All Systems Go: Starting Up RISC OS.. 377
Taking a look around.. 378
Making your own space... 379
Saving and loading by dragging and dropping................................ 381
Focusing on file types... 382

Handling Graphics with !Paint and !Draw.. 383
!Paint... 384
!Draw... 385

Connecting to the Outside World... 387
Identifying the Resources That Are Already Installed............................. 388

Chapter 17: RISC OS Coding . 391
In the Beginning Was BASIC.. 391

Uppercase letters.. 392
Variable types... 392
Line numbers... 393
Indentation.. 393
Only one equal sign.. 393
Scope.. 394
Indirection... 394
Operating system calls... 395

Hello World.. 395
The past revisited... 395
Operating system modes... 396
The modern way of doing things.. 398

The Insult Generator.. 401
Looking at the main program.. 401
Smartening it up.. 405

Understanding Full Desktop Applications... 406

xiii� Table of Contents

Working with Graphics in RISC OS... 410
Modes and resolution.. 410
Lines and shapes.. 413
Images.. 414

Chapter 18: Transistor Tester . 417
Getting Acquainted with Transistors... 418
Configuring Transistors... 421

Measurement circuit.. 421
Switching configurations... 422

Designing the Circuit.. 425
Raspberry Pi interface circuit... 425
Test circuit... 427

Constructing the Circuit.. 428
Writing the Software.. 431

Testing the digital interface... 431
Setting the switches... 433
Transistor testing methodology... 435
Putting it all together... 436
Out to the desktop.. 440

Chapter 19: The General‐Purpose Input/Output Port
in RISC OS . 441

Using the GPIO Pins in RISC OS.. 441
Getting an LED to Blink.. 443
Mixing Languages... 446

Part VI: The Part of Tens.. 451

Chapter 20: Ten Great LEGO Pi Projects . 453
Panobot.. 453
MATLAB and Simulink... 454
Raspberry Pi LEGO Case.. 454
Book Reader.. 454
A Stop‐Motion LEGO Movie... 454
SriShooter.. 455
browserBot.. 455
BrickPi Remote Sentry Cannon... 455
LEGO Digital Clock.. 455
The Original LEGO MINDSTORMS.. 456

xiv Raspberry Pi Projects For Dummies �

Chapter 21: Ten Suppliers of Components and Tools 457
Farnell/Newark.. 457
RS Components... 457
Rapid Electronics.. 458
Mouser Electronics.. 458
Digi‐Key.. 458
Proxxon.. 458
Adafruit.. 459
SparkFun.. 459
Electronic Goldmine... 459
E.M.A. Model Supplies.. 459

Index.. 461

Introduction

R
aspberry Pi Projects For Dummies is designed for people who are looking
for something exciting to do with the Raspberry Pi. This book contains

projects to amaze and inspire you! It takes you into a world of switches,
lights, motors, home automation, and computer vision. It not only covers the
theory behind what you’re doing, but also gives you examples of putting that
theory into practice, so you can learn to work on your own projects and not
just blindly follow a list of instructions.

Sure, we could just give you a list of steps to follow. But we believe that you
should try to understand what you’re doing and why you’re doing it, and
that’s what this book is all about. With this book as a resource, we encourage
you to put your own stamp on projects, which is why many projects in this
book aren’t just cut‐and‐dried lists of things to do, but suggestions about how
you can customize the projects and make them your own.

About This Book
The projects in this book all make use of the computer language Python 2.
This book shows you how to use a wide variety of input and output devices,
from a simple switch to a webcam. You can explore LEDs and multicolored
LEDs, learn about a keypad matrix and see how they can be integrated to
become part of your code so you can make these devices do what you want.
Reach out with your Raspberry Pi and become part of the cloud or build your
own web server. This book shows you how.

The Raspberry Pi can interface with other electronic devices, and in this
book we show you how to interact with LEGO’s latest robotic MINDSTORMS
set, the EV3. You can send messages into the LEGO system or do your
own thing and control the MINDSTORMS peripherals directly from the
Raspberry Pi. Not only do we show you how these two systems interact, but
we also show you some projects you can make using the Raspberry Pi and
MINDSTORMS set together.

Linux is the staple operating system used in the Raspberry Pi world.
However, there is a major alternative operating system you can run for
just the price of another very small SD card, RISC OS. RISC OS is a mature,
well‐honed operating system, designed from the ground up to run on ARM

2 Raspberry Pi Projects For Dummies �

chips, and as such, it’s fast and compact. This book shows you how you can
explore the RISC OS and gives you a glimpse of another world.

A few final notes about the book: Sidebars (text in gray boxes) and Technical
Stuff paragraphs are skippable. Finally, within this book, you may note that
some web addresses break across two lines of text. If you’re reading this
book in print and want to visit one of these web pages, simply key in the web
address exactly as it’s noted in the text, pretending as though the line break
doesn’t exist. If you’re reading this as an e‐book, you’ve got it easy — just
click the web address to be taken directly to the web page.

Foolish Assumptions
In writing this book, we made a few assumptions about you:

✓✓ You have a Raspberry Pi. You could certainly read this book without
a Raspberry Pi, but you won’t get much out of it unless you have a
Raspberry Pi to play with.

✓✓ You have a computer other than the Raspberry Pi. You need a
computer to set up the Raspberry Pi. Note: We provide instructions on
how to set up your Pi, but this information isn’t the main thrust of the
book. If you need more information on setting up your Raspberry Pi, a
good companion book to this one is Raspberry Pi For Dummies, by Sean
McManus and Mike Cook (Wiley), which covers in much more detail
your first steps with this remarkable machine.

✓✓ Your Raspberry Pi has some connection to the Internet. It may not be
connected all the time, but you’re at least able to connect it for setting
up the libraries you need to install.

✓✓ You don’t mind voyaging into less charted waters and you have an
open mind on what constitutes computing and operating systems.

✓✓ You’re eager to begin exploring the world of physical computing.
Physical computing takes a fresh look at inputs and outputs to a computer.
The computer produces physical outputs — signals that make lights flash,
sounds play, or robots move. Inputs are more than just typing — they
include everything from simple push buttons to color sensors to webcams.

✓✓ You have access to some basic hand tools, like a small saw and drill
along with a soldering iron. If you don’t have these tools on hand, we
assume you have the money to buy them — or you have a friend or
family member whose toolkit you can raid!

✓✓ You don’t mind spending some money on the components you need
to make your projects. Most of these components aren’t very expensive,
but you’ll need to buy them (and we recommend sources in this book).

3� Introduction

Icons Used in This Book
In this book, we use a handful of icons (little pictures in the margins) to draw
your attention to key pieces of information. Here’s what those icons mean:

When we give you an especially useful bit of information — something that
can make your life with the Raspberry Pi easier or help you do something
faster — we mark it with the Tip icon.

You don’t need to commit this book to memory — it’s a resource for you to
turn to whenever you need it. But every once in a while, we tell you some-
thing so important that you’ll want to remember it. When we do, we mark it
with the Remember icon.

What can we say? We’re geeks. And as such, we sometimes get a little techni-
cal, telling you more than you really need to know to get the job done. When
we veer into the technical, we mark that text with the Technical Stuff icon.
If you’re short on time, you can skip anything marked with this icon without
missing anything critical to the task at hand.

You’re bound to come across some pitfalls on your journey with the
Raspberry Pi. We’ve walked this road before, so think of the Warning icon
as orange cones in the road, helping you steer clear of those tire‐destroying
potholes or open manhole covers.

Beyond the Book
In addition to the material in the print or e‐book you’re reading right now,
this product also comes with some access‐anywhere goodies on the web.
Check out the free Cheat Sheet at www.dummies.com/cheatsheet/
raspberrypiprojects for information on connecting the Arduino and the
Raspberry Pi, GPIO pin alternate functions, and powering other devices from
the Raspberry Pi.

Also, at www.dummies.com/extras/raspberrypiprojects, you can find
free bonus articles on topics like contact bounce and facial recognition.

Finally, throughout the book, we mention files that you can download
from the book’s companion website, www.dummies.com/go/
raspberrypiprojects.

http://www.dummies.com/cheatsheet/raspberrypiprojects
http://www.dummies.com/cheatsheet/raspberrypiprojects
http://www.dummies.com/extras/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

4 Raspberry Pi Projects For Dummies �

Where to Go from Here
If you’re a beginner, you can’t do better than starting at Chapter 1 and making
sure you have your Raspberry Pi and your workspace set up. Even if you’re
experienced, it’s worth reading the early chapters to pick up hints we’ve
gathered from our extensive experience. If you’re champing at the bit to start
playing with your Pi, feel free to dive into the parts of the book that interest
you most!

For Dummies can help you get started with lots of subjects. Visit
www.dummies.com to learn more and do more with For Dummies.

Getting Started with
Raspberry Pi Projects

Part I

http://www.dummies.com

In this part . . .
	 ✓	 Learn about your Raspberry Pi.

	 ✓	 Set up the hardware and operating system and your project‐
building workspace.

	 ✓	 Learn construction techniques.

	 ✓	 Understand the basics of programming.

	 ✓	 Install language extensions.

	 ✓	 Discover the Raspberry Pi family of computers.

Getting to Know the Raspberry Pi
In This Chapter

▶▶ Getting a Raspberry Pi

▶▶ Finding out what’s possible with your Raspberry Pi

▶▶ Connecting your Raspberry Pi

▶▶ Setting up your operating system

▶▶ Troubleshooting any problems

Y
ou probably wouldn’t have picked up this book if you hadn’t already
heard about the amazing, low‐cost computer for everyone, the

Raspberry Pi. Besides being inexpensive, what’s made the Raspberry Pi so
appealing is that it’s pretty easy to use. You can even change it to do things
its designers never dreamed of. Unlike most consumer electronics, tablets,
and desktop computers, the Raspberry Pi is designed to let you investigate
how it works and change how it operates by writing your own software
programs.

This is all possible because the Raspberry Pi uses an inexpensive but power-
ful processor and a free operating system, which is based upon the popular
Linux platform. In this chapter, we take a look at what you need to get going
and show you how to set it up.

We also tell you where to get a Raspberry Pi and the accessories you need
to run it. We explain how to set up the operating system, how to connect the
hardware, and what to do if you run into any problems along the way. Before
long, you’ll be able to make your Raspberry Pi say, “Hello, world!”

Getting a Raspberry Pi
If you’re interested in building projects with a Raspberry Pi, you probably
already have one. But if you don’t yet have your own Raspberry Pi, this is the
section for you! You’ll be glad to know that there are a few places you can
pick one up quickly and cheaply.

Chapter 1

8 Part I: Getting Started with Raspberry Pi Projects �

The Raspberry Pi comes in several versions: Model A is shown in Figure 1-1,
and Model B is shown in Figure 1-2. There are other versions of the
Raspberry Pi, though — Chapter 4 has a full rundown. The Model A and
Model B use the same kind of processor, but the Model A is cheaper and
uses less power; it has a single USB port and connections for your screen and
audio. Model B has everything Model A has, plus an additional USB port and
an Ethernet port for connecting to a network, so it costs a little more. For the
projects in this book, you’ll want to get a Model B.

The newest model as of this writing is the Raspberry Pi 2 Model B, which
replaced the Model B+, but we’ve kept all the projects in this book compat-
ible with Model B and later.

The Raspberry Pi Foundation (which is technically a UK charity, not a busi-
ness) created the Raspberry Pi. The Raspberry Pi Foundation licenses the
manufacture of the Raspberry Pi to the biggest names in electronics in the
UK, RS Components (www.rs‐components.com) and Farnell, which sup-
ports Raspberry Pi under the brand name element14 (www.element14.
com/community/community/raspberry‐pi). If you’re buying a
Raspberry Pi for personal or home use, Farnell’s outlet is CPC (order
from http://cpc.farnell.com). In the United States, you can also buy

Figure 1-1: 
Raspberry

Pi Model A.

Photograph courtesy of the Raspberry Pi Foundation

http://www.rs-components.com
http://www.element14.com/community/community/raspberry-pi
http://www.element14.com/community/community/raspberry-pi
http://cpc.farnell.com

9� Chapter 1: Getting to Know the Raspberry Pi

from Newark (www.newark.com), which is a part of Farnell, and Adafruit
(www.adafruit.com). These suppliers can provide you with everything
you need to get your Raspberry Pi up and going, but you can only buy from
them online.

If you simply can’t wait to get your hands on a Raspberry Pi, and you live in
the UK, you can also walk in to any Maplin electronics shop, where they’re
usually kept in stock. You’ll pay a bit more for the convenience of shopping in
a store, but you can get personal advice from the salespeople, which can be
pretty useful if you have questions. At the time of this writing, you can walk
into a Radio Shack in the United States and buy a Raspberry Pi starter kit, but
this may change because the company is restructuring.

You can also find the Raspberry Pi for sale on eBay. There are usually plenty
of listings for just a Raspberry Pi or for bundles that include all the accesso-
ries you need in order to hook it up.

If you decide to buy a Raspberry Pi on eBay, be sure to purchase from a repu-
table seller with plenty of good feedback. There are knock‐offs out there, and
they can’t be guaranteed to be manufactured to the same standards as the
real thing. We tend to think the cost savings isn’t worth the risk of buying
from eBay.

Figure 1-2: 
Raspberry

Pi Model B.

Photograph courtesy of the Raspberry Pi Foundation

http://www.newark.com
http://www.adafruit.com

10 Part I: Getting Started with Raspberry Pi Projects �

Discovering What You Can and Can’t
Do with a Raspberry Pi

This book shows you how to get going with Raspberry Pi projects. After
you’ve done some, you’ll have a pretty good idea of what’s possible. But
when you want to go a bit further with your ideas, it’s good to know what you
can realistically expect to achieve.

The first thing you see when you get up and running is a text‐based prompt
on the screen. You can do a lot of things just with text, but most people
prefer to launch the familiar graphical user interface (GUI), the desktop
environment you’re used to on any other computer. The operating system
supports all the things you’d want to do in a desktop system, including play-
ing games, browsing the web, word processing, using spreadsheets, editing
photos, and playing audio and video.

But that’s not where the Raspberry Pi really shines. The great things you
can do with the Pi come into play when you write your own programs
and hook it up to electronics or other objects in the real world using the
general‐purpose input/output (GPIO) connector. Your Pi is well suited for
this because these kinds of things don’t usually require the beefy processor
in your desktop or laptop. Using your Pi for things you may not do with your
usual computer is what makes it really fun — and that’s what this book is
all about!

The Raspberry Pi uses a Broadcom BCM2835 central processing unit (CPU)
and a VideoCore IV graphics processing unit (GPU) and shares the onboard
memory between them. Either 256MB or 512MB of onboard memory is
available. The CPU is an impressive piece of technology that enables fairly
complex computing power at an extremely low price. The trade‐off is that
the Pi is not nearly as powerful as the full‐fledged CPU in desktop and
laptop computers — it’s a bit slower, roughly comparable to the capabili-
ties of mainstream computers in the ’90s. You shouldn’t plan to do high‐
performance computing or run heavily graphics‐intensive applications like
gams or 3D modeling software — the Pi will run these, but they may be
unusably slow.

You probably won’t be replacing your main computer with a Pi, but you can
do a lot of experimentation with it that you may not try with your desktop or
laptop, and you can easily connect your Raspberry Pi to sensors and motors
in the real world, which we show you how to do in the projects in this book.
And if you make any big mistakes that damage your Pi, it doesn’t cost a lot to
get another one and start experimenting again!

11� Chapter 1: Getting to Know the Raspberry Pi

Getting Familiar with Your Raspberry Pi
The Raspberry Pi is about the size of a credit card and has all the compo-
nents that you need onboard so that you can connect it to a TV or display
and start using it. These connections are shown in Figure 1-3.

Going clockwise around the board from the top left, you’ll find the following
connections:

✓✓ General‐purpose input/output (GPIO) connector: This is a port for getting
electrical signals into and out of your Raspberry Pi, such as for reading
sensors and controlling motors. It’s composed of two parallel rows of pins
and is labeled P1 (for “Plug 1”). Different models of Raspberry Pi use these
pins slightly differently due to the way the pins are routed on the board.

Figure 1-3: 
Identifying

the parts
of the

Raspberry
Pi (in this
case, the

Model B).

12 Part I: Getting Started with Raspberry Pi Projects �

✓✓ Composite video output: This jack is used for connecting your
Raspberry Pi to a composite video (standard TV) connection using an
RCA cable.

✓✓ Audio output: This is a black 3.5mm jack on the upper right of the
board.

✓✓ USB port(s): These ports allow you to connect USB accessories (such as
a keyboard and mouse and external storage devices) to your board. The
Model A has only one USB port to reduce costs. The Model B has two
USB ports.

✓✓ Ethernet port (Model B only): This port is for connecting your
Raspberry Pi to an Ethernet network and for accessing the Internet.

✓✓ Camera serial interface (CSI) connector: This slim black connector
between the Ethernet jack and the HDMI output is for connecting a
small camera such as a webcam. CSI connectors are available from the
Raspberry Pi store.

✓✓ HDMI output: This port is used for sending digital video to a computer
monitor. The HDMI output also can route your audio, so you may not
need to use the audio output port.

✓✓ Power input: On the lower‐left side is the micro USB power socket.
The power is provided via a micro USB power supply that plugs into
this port.

✓✓ Display serial interface (DSI) connector: In the middle of the left side
of the board is a slim connector for connecting high‐speed displays. It’s
used for connecting a small LCD panel directly to your Raspberry Pi.
You can use it for touch‐based input as well!

Selecting Your Accessories
You probably have some of the important accessories lying around the
house already, which was exactly what its creators had in mind. You can
just use old stuff that’s gathering dust — you don’t have to buy anything,
which keeps the cost down. You don’t have to get all the accessories shown
in Figure 1-4 to complete the projects in this book. But at a bare minimum,
you’ll need a display and a keyboard to get things going. Here’s what you see
in Figure 1-4:

✓✓ Monitor: The Raspberry Pi’s onboard HDMI output allows you to con-
nect a high‐definition feed to just about any modern computer display. If
your display has an HDMI input, all you need is a cable between the two.

If your monitor doesn’t have an HDMI input, it probably supports DVI,
which has a larger, wider connector. You can buy adapters that convert

13� Chapter 1: Getting to Know the Raspberry Pi

from HDMI to DVI that will allow you to use your DVI monitor. You can
also use a VGA monitor (the VGA input contains three rows of holes),
though these aren’t officially supported. If you want to use VGA, make sure
to get an adapter that is specifically meant to work with a Raspberry Pi.

If you don’t want to use a computer display and you have an old TV, you
can use it as a display. Your Raspberry Pi has an RCA connection, which
allows you to use a composite video signal to a TV with a composite
video input. The picture won’t be as sharp as with a display, and text
can be hard to read, so we recommend using a monitor if you can.

✓✓ Ethernet cable: Some of the projects in this book require connect-
ing your Raspberry Pi to a network. For these projects, you’ll need an
Ethernet cable.

✓✓ Case: You can use your Raspberry Pi as is, right out of the box. It’s
pretty durable, but accidents happen, so lots of people have fun making
cool cases to protect the circuit board from spills and dust. Some cases
are even enhanced with glowing LEDs. The designer of the Raspberry Pi
logo, Paul Beech, has designed some cool cases — check out http://
shop.pimoroni.com to find them.

Figure 1-4: 
Key

accessories.

http://shop.pimoroni.com
http://shop.pimoroni.com

14 Part I: Getting Started with Raspberry Pi Projects �

✓✓ Mouse: Any USB mouse will work fine. The Model A only has one USB
port, so if you’re using a Model A, you’ll need to use a USB hub so that you
can plug in both your mouse and your keyboard. You can also plug your
mouse into your keyboard, if the keyboard has an extra USB port on it.

✓✓ Keyboard: There is a USB port on the Raspberry Pi circuit board, so you
can plug in a USB keyboard. If you have an older keyboard with a round
(PS/2) connector, you can use it, but you’ll need a small adapter plug to
convert between PS/2 and USB.

✓✓ SD card: Your Raspberry Pi doesn’t have a hard drive, so you’ll need to
use some kind of external storage. An onboard SD card slot is provided
for this purpose. When you plug in an SD card, your Raspberry Pi treats
it just like a hard drive. SD cards are pretty cheap, so go for one with at
least 8GB or 16GB of storage. SD cards have class numbers to indicate
how fast they can read and write data. We recommend you get a Class 6
SD card or better.

✓✓ USB hub: If you’re using a Model A Raspberry Pi, you may need a USB
hub to connect your keyboard and mouse (see the preceding bullet). If
you’re using a Model B, you don’t need a USB hub, but you’ll probably
want extra USB inputs into your Pi, because your keyboard and mouse
will take up the two USB ports. Make sure to get a USB hub that has its
own power source — the Raspberry Pi can provide only limited power
output via USB.

✓✓ USB memory stick (not shown): Memory sticks (also called memory keys
or flash drives) can provide a great deal of extra storage that is fast and
reliable. They’re also handy for moving files from another computer or
laptop to your Raspberry Pi.

✓✓ SD card writer (not shown): The Linux operating system for your
Raspberry Pi is stored on an SD card. You can buy SD cards with the
operating system already loaded, but you’ll probably want to write your
own at some point, so you need to make sure your computer has an SD
card slot. Most desktops and laptops have one these days, but if yours
doesn’t, you should get an SD card writer. It plugs into your USB port
and allows your computer to see what’s on the card and write files to it.

✓✓ Speakers (not shown): Your Raspberry Pi has a 3.5mm audio jack so you
can plug in headphones or external speakers. If you’re using the HDMI
connection and HDMI monitor as a display, the audio is sent over that
cable to your screen.

✓✓ Micro USB power supply (not shown): Your Raspberry Pi gets its power
via the micro USB connector on the side. You can use just about any power
charger that fits this port, but it needs to supply 700 milliamperes (mA)
of current (check the specifications printed on the side of the charger).
Most good mobile phone chargers will work fine, as long as they supply
5V 700mA (3.5 watts). We recommend a Raspberry Pi–compatible power
adapter, which should be available from the supplier of your Raspberry Pi.

15� Chapter 1: Getting to Know the Raspberry Pi

Setting Up Your Operating System
To do anything useful with your Raspberry Pi, you need to have an operat-
ing system. The operating system provides the basic functions like the GUI,
which most people know as the “desktop environment.” It also supports
reading and writing files, runs general‐purpose applications like your word
processor and web browser, and runs the programs you write for your
Raspberry Pi projects. Your Raspberry Pi uses the Linux operating system
to do this.

Your operating system is stored on an SD card, not on a hard drive like most
computers. When you turn on your Raspberry Pi, it reads the operating
system that’s on the SD card. If your card isn’t inserted, the Raspberry Pi
won’t be able to start up, so you need to get the operating system onto an SD
card before you can do anything else.

Selecting your Linux distribution
Because it’s an open project, many different
versions of Linux are out there in the wild.
These are referred to as Linux distributions (or
distros), and you can download them for free.
The different distributions are specialized for a
variety of purposes. Some are made to be as
bare bones as possible; others are optimized for
performance.

The Raspberry Pi Foundation has endorsed
a special distribution for beginners called
Raspbian Wheezy, which is a version of the
Debian Linux distribution. It includes a GUI
called the Lightweight X11 Desktop Environment
(LXDE). It also supports the programming
languages that you use to write code for the
projects in this book. Most of the projects use
a scripting language called Python; some use
a programming language called C. We assume
you’re using Raspbian Wheezy for the projects
in this book. (Tip: Your operating system is
on your SD card, so if you ever want to use
something other than Wheezy, you can load it
onto an SD card and pop it into the SD card slot.)

You need to download Raspbian Wheezy so
you can copy it to your card. The best place

to get it is from the Raspberry Pi website at
www.raspberrypi.org/downloads.
Click the Download ZIP button next to
Raspbian Debian Wheezy and save the file
on your system in a place that you can easily
find it. After you download Wheezy, you’ll need
to unzip the compressed file by clicking it.
(Note: If you have a Mac, you don’t need to
unzip the file before you create the SD card.
Just follow the instructions for Mac later in this
chapter.)

There is also a download file called NOOBS
(which stands for “new out of the box software”)
on the Raspberry Pi website, which you can use
to automate the process of creating an SD card.
It’s designed to be really easy to use. You just
download NOOBS, unzip it, and put it on your
SD card. NOOBS then manages the setup of
your Raspberry Pi automatically. Even though
NOOBS is supposed to be easy, problems
sometimes occur, requiring you to get another
program to format your SD card. We think it’s
simpler just to download the Raspbian Debian
Wheezy and create your SD card yourself in a
few easy steps.

http://www.raspberrypi.org/downloads

16 Part I: Getting Started with Raspberry Pi Projects �

Linux is a free operating system, unlike the ones used on Windows and Mac.
It’s an open‐source project, which means anyone can contribute to it — and
thousands of people do. The Linux Foundation (www.linuxfoundation.
org) coordinates these efforts and manages the standard Linux kernel (the
core code that makes it work). All you have to do is download a copy of the
operating system (see the nearby sidebar) and put it on your SD card.

You also can buy premade SD cards that already have the operating system
written onto them. With one of these cards, all you have to do is insert your
card and power up your Raspberry Pi. You can buy them from RS, element14,
Amazon, eBay, or other online outlets. If you already have one, skip to the
section on setting up your hardware, later in this chapter.

Flashing Your SD Card
Your operating system is made up of a bunch of files that are run from the
SD card itself. However, when you write the operating system’s files to the SD
card, they’re written in a special format that Linux can read. You can’t just
copy them over as you would with other kinds of files. The Linux distribution
you downloaded is in a special format called a disk image. And you flash the
disk image to the SD card using a special little program. The program you
need depends on whether you’re using Windows, Mac, or Linux.

Flashing an SD card in Windows
To create the image file in Windows, you use a special program called Image
Writer for Windows. It’s free and pretty easy to use. Just follow these steps:

1.	Insert your SD card into your computer’s SD card slot or, if you don’t
have one, into your SD card reader.

Take note of which drive letter is assigned to your SD card.

2.	Download the files at www.sourceforge.net/projects/win32
diskimager/files/latest/download.

If you want more information about Image Writer for Windows, go to
www.launchpad.net/win32‐image‐writer.

3.	Double‐click the file to extract it, click Extract All Files to unzip the
archive into a folder, and then open the folder.

Note: If the filename of the file you downloaded ends with .exe, when
you double‐click the file, an installation wizard may run.

You should see the list of extracted files. Make sure that you aren’t
looking at the zipped files.

http://www.linuxfoundation.org
http://www.linuxfoundation.org
http://www.sourceforge.net/projects/win32diskimager/files/latest/download
http://www.sourceforge.net/projects/win32diskimager/files/latest/download
https://www.launchpad.net/win32-image-writer

17� Chapter 1: Getting to Know the Raspberry Pi

4.	Click the file Win32DiskImager.exe to open it.

5.	Click the folder icon to the right of the long white box and navigate to
the Linux .img file you just unzipped; double‐click to select it.

This will put the file path into the long white box for you.

6.	From the Device menu, select the drive letter that your SD card has
been assigned.

Be absolutely sure you’ve got the correct drive selected — the one that
contains your SD card. Whatever drive you’ve chosen in the device menu
will be completely erased!

7.	After you’ve double‐checked that you’ve selected the right drive, click
the Write button to create the image file on your SD card.

Flashing an SD card on a Mac
On a Mac, you can use a simple script called RasPiWrite to do the work
of flashing your image file to your SD card. First, you create a folder that
RasPiWrite can use while it’s flashing your SD card. Then you use the
script to create your image file. You do some of this by typing commands
on the command line, using the Terminal program, which is found in your
Applications/Utilities folder.

You need your system password to be able to flash the SD card. Just follow
these steps:

1.	In your Documents folder, create a folder called SD Card Prep; in
the SD Card Prep folder, create a folder called RasPiWrite.

2.	Go to https://github.com/exaviorn/RasPiWrite to download
the zip file of RasPiWrite.

3.	Double‐click the file you downloaded and open the resulting folder.

4.	Drag the files in this folder to the RasPiWrite folder you created in
Step 1.

5.	Drag the zip file of your Linux distribution into your RasPiWrite
folder.

6.	Open the Terminal application, located in Applications/
Utilities, and type cd and then a space.

7.	Use the Finder to locate the SD Card Prep folder you created in
Step 1; make sure you can see both the Finder window and the
Terminal window, and then drag the RasPiWrite folder into the
Terminal window.

This places that path name of that folder into the command line for you.
(It’s easier than typing it all out.)

https://github.com/exaviorn/RasPiWrite

18 Part I: Getting Started with Raspberry Pi Projects �

8.	Press Return.

This switches you to the folder containing RasPiWrite.

9.	Type ls and press Return.

The list command produces a list of files in the RasPiWrite folder. You
use it later to tell RasPiWrite where to get the source files for your disk
image.

10.	Remove any external memory cards, USB sticks, or other pluggable
storage device from your system so that you don’t accidentally erase
them.

11.	Type sudo python raspiwrite.py to run RasPiWrite.

12.	Enter your system password.

You see a progress report as your script creates the disk image. If all goes
well, you should see a raspberry made of text characters.

13.	Insert your SD card into your Mac’s SD card slot or to an external
SD card writer and press Return.

14.	Follow the prompts to select the disk that corresponds to your
SD card.

You can double‐check to make sure you’ve selected the correct one by
ensuring that the disk’s size (listed in the size column) corresponds to
the size of your SD card. You don’t want to erase all the data on your
main hard drive!

15.	You’ll be asked if you want to download a distribution; because you
already did that, type N.

The program asks you to locate the disk image file.

16.	Scroll back up to where you used the ls command and copy the file-
name of the distribution; then scroll back down and paste this file-
name at the prompt and press Return.

The program extracts the image file and prepares it to upload onto your
SD card. It then asks you to confirm that you’re about to erase your SD
card. Be sure you’ve got the right SD card.

17.	Type accept to continue installing the image, and press Return.

The flash process can take a long time. You’ll see some dots on your screen
as the process continues. Depending on your system, it can take 30 minutes
or even up to an hour. You can use your computer for other things during
this process, but if you lose power or restart, you’ll have to start all over
again.

19� Chapter 1: Getting to Know the Raspberry Pi

If you’re presented with a message immediately after typing accept, there’s
a problem. Even though the message may say Transfer Complete, the
immediate response means that the transfer hasn’t been accomplished. This
sometimes happens if the image file isn’t located where you indicated it was
or if the distribution contains just an image file rather than an image file
within a folder of the same name. If it happens, create a folder with the same
name as the image file, drag the image file into it, and try again.

Flashing an SD card in Linux
If you’re using Linux, the process of flashing an SD card for your Raspberry
Pi is pretty straightforward. We assume you’re using Ubuntu, one of the most
popular Linux distributions. If you’re using another distribution, the following
steps will be very similar.

When you download the Raspbian Wheezy distribution, make sure you save
it where you can find it, such as in the Documents directory. Then follow
these steps to flash your SD card:

1.	Remove any external drives, USB keys, or other SD cards from
your system and insert the SD card you would like to flash for your
Raspberry Pi.

2.	Open a Terminal window.

This is located in the Applications menu under Accessories.

3.	Type sudo fdisk –l (the last character of this command is the letter l,
not the number 1).

This starts the fixed disk program, a tool you can use to manage, erase,
and separate disk drives into different logical partitions. It also shows
you which drives are available on your system.

4.	Locate your SD card in the device list.

The list gives details about each of the drives on your system, including
the size of each device in bytes and other details such as the number of
heads, sectors, cylinders, and so on. Find the device that most closely
matches the size of your SD card in bytes. For example, an 8GB SD card
will be listed as about 8,068MB. Take note of the name of that disk’s
directory. For example, on our system, the SD card is located in the direc-
tory: /dev/sdg.

5.	Use the cd command (“change directory”) to navigate to the directory
where you saved your Raspbian Wheezy distribution.

For example, if it’s in the Documents directory, type cd Documents and
press Enter.

20 Part I: Getting Started with Raspberry Pi Projects �

6.	Display the name of your Raspbian Wheezy image file by typing
ls *.img.

7.	To write the Raspbian Wheezy image to the SD card, use the dd
command.

Here’s what we would type on our system:

sudo dd if=mydistribution.img of=/dev/sdc bs=2M

You need to substitute the name of your distribution file where it says
mydistribution.img. Substitute the directory where your SD card is
located where it says /dev/sdc.

The sudo command stands for “super user do” and tells Linux that
you’re issuing the dd command as the administrator of the system. The
operating system assumes you know exactly what you’re doing, and
there are no protections for making any grave mistakes. The dd com-
mand is short for “data description,” but some people have joked that it
stands for “destroy disk” or “delete data,” because if you aren’t careful,
it can erase your system’s hard drive. When these two commands are
combined, you can imagine the consequences of making a mistake. So, be
sure you’ve typed everything precisely!

8.	Press Enter to start flashing the image file your SD card.

It should take about two or three minutes to do this operation. You won’t
see a progress update, but you may see the light next to your SD card
slot flickering. When it’s finished, you’ll be advised how much data was
copied and how long the operation took to complete. Pat yourself on the
back. You’re ready to fire up your Raspberry Pi!

Connecting Your Hardware
When you’ve got the essential accessories and the operating system, you can
set up your hardware. This is simply a matter of connecting the right bits
together. Figure 1-5 shows you how things are connected using a Raspberry
Pi Model B.

Follow these steps to set up your hardware:

1.	Locate the SD card slot on the bottom of your Raspberry Pi and insert
the newly flashed SD card snugly, with the label facing down.

The card will stick out from the side of the circuit board a little bit.

2.	Connect your computer monitor or TV to your Raspberry Pi.

If you’re using a monitor or TV with an HDMI connection, just connect
the two with an HDMI cable. If your monitor has a DVI connection

21� Chapter 1: Getting to Know the Raspberry Pi

instead, insert the HDMI cable into an HDMI‐to‐DVI adapter and then
plug it into your monitor. If you’re using a TV without an HDMI con-
nection, connect a yellow RCA connector cable to the round RCA jack
on the top of your Raspberry Pi and plug the other end into your TV’s
composite video input.

You may need to manually select which input your monitor or TV is
using. Check the manual if you aren’t sure how to do this. Also, make
sure the power to your display is switched on.

3.	Connect your USB hub into one of the two USB sockets on the right
side of your Raspberry Pi.

If you’re using a Raspberry Pi Model A, there will be only one socket.
Your hub should have a power adapter — plug it into an electrical socket.

4.	Plug your keyboard and mouse into the USB hub.

If you’re using a keyboard or a mouse with an older PS/2‐style connector,
you’ll need a PS/2‐to‐USB adapter. You can also connect them directly to
your Raspberry Pi’s remaining USB socket, but it’s a good idea to use the
hub, which has more available power.

Figure 1-5: 
Hooking

up all the
hardware.

22 Part I: Getting Started with Raspberry Pi Projects �

5.	Connect your audio.

If you’re using an HDMI monitor with audio, the audio will go through
your HDMI cable. If you’re using external speakers or a TV, your audio
output is the black 3.5mm socket on the top‐right edge of your Raspberry
Pi. Connect your speaker cable there.

6.	Connect to your network.

If you’re using a Model A, you can skip this step. There is no network con-
nection available for it.

If you’re using a Model B, connect an Ethernet cable to your Ethernet
socket on the right side of the board. When your operating systems starts
up, it will automatically connect to your home router, as long as it sup-
ports Dynamic Host Configuration Protocol (DHCP). (Most home routers
do.) If you have trouble connecting to the network, see your Internet
service provider’s instructions for setting up new devices using DHCP on
your home router. In rare cases, DHCP may be switched off.

7.	Connect your micro USB power supply to your power socket on the
bottom‐left corner of your board.

Some power supplies have standard‐size USB ports. You connect a
USB–to–micro USB adapter cable from the standard USB output on these
power adaptors to the micro USB input on your Raspberry Pi. There is no
power switch. To cycle the power, you remove the adapter plug and put
it back in, which is a little awkward. If you have an extension lead with a
switch, you can connect your power adapter and use the switch on the
lead to cycle to turn the power on and off more easily.

Don’t connect your Raspberry Pi to your computer’s USB port via a USB–
to–micro USB adapter cable. Your computer’s USB port isn’t designed to
deliver enough power for your Raspberry Pi, via the USB port.

When you power up your Raspberry Pi you should briefly see a rainbow‐
colored screen, which confirms that the hardware itself is working. Then the
Linux operating system on your SD card will start to run and you’ll see an ava-
lanche of text on your screen as all the various parts of the system are started.
It can be pretty fun to watch. This will take a little time to complete. When it’s
finished, you’ll be able to move on to setting up the system in the next section.

You’ll also see a little status light on the board next to the audio jack. The
PWR light should be on. When your Raspberry Pi accesses the SD card to
load the operating system, you’ll see the ACT light activated.

If you’re using an earlier Revision 1.0 board, the ACT light is labeled OK.

The FDX light indicates that you have a good Ethernet connection. The LNK
light will flash whenever there is network traffic on the wire. The 100 light
indicates a high‐speed (100 Mbit) Ethernet connection.

23� Chapter 1: Getting to Know the Raspberry Pi

Setting Up with Raspi‐config
Raspi‐config is a little program that automatically loads to help you to get
your Raspberry Pi ready to run, the first time you start up. It gives you a list
of the basic system options in case you want to change them. After it’s set up
the first time, it won’t run again unless you launch it manually. You use the
keyboard arrows to move up and down the menu of options and the left and
right arrows to select options. Pressing Enter confirms your selection.

The options in the menu change from time to time. You may encounter an
older version of the software with different menu items, but here’s a rundown
of what they are and what they do (as of this writing):

✓✓ Expand Filesystem: When you flash your SD card with your operating
system, it makes an exact copy (an “image”) of the Linux distribution
files, and the formatting of the disk itself is likely to be smaller than the
actual available space on your card. The image files don’t take up much
space, and if you have a large SD card, it will look like your SD card has
much less capacity than it actually does.

To overcome this problem, it’s very important to use this option to
expand your root file system to use all the available space on the card.
Otherwise, you could run out of room! When you press Enter with this
option, it runs immediately. The next time you start your Raspberry Pi,
the command will resize your file system to use all the available room.
This can take a few minutes; the screen won’t respond until it’s done.
After it’s finished, all the space will be available to you.

✓✓ Change User Password: Lets you set the password for the default user
of your Raspberry Pi, which is the user pi. You don’t need to change
this. If you do, make sure not to forget it because there’s no way to get it
back from the system!

✓✓ Enable Boot to Desktop/Scratch: You can use this option to make your
Raspberry Pi go straight into the graphical operating system at startup.
Otherwise, you have to start it manually (see the next section).

✓✓ Internationalization Options: This option takes you to a submenu
where you can configure several options depending on where you’re
located:

•	Change locale: Allows you to change your language and character
set. Leave this option alone if you want to use your Raspberry Pi in
English.

•	Change timezone: Tells your Raspberry Pi where you’re located.
Afterward, it detects the time from your Internet connection.

24 Part I: Getting Started with Raspberry Pi Projects �

•	Configure_keyboard: Allows you to select your keyboard model
and layout. When you press Enter, a long list of keyboards will be
displayed. If nothing seems to be happening, be patient. It can take
a few seconds for the list of keyboards to show up. Choose the one
you want to use and then select the keyboard layout you want to
use (for example, UK).

✓✓ Enable Camera: If you’ve purchased an optional Camera Module, this
menu allows you to set it up to work with your Raspberry Pi.

✓✓ Add to Rastrack: Racktrack allows you to add your Raspberry Pi to the
global map of users around the world. You can see all the other tracked
Raspberry Pis on their website at http://rastrack.co.uk.

✓✓ Overclock: Overclocking is a way of speeding up the CPU to perform cal-
culations faster than the manufacturer intended. The clock speed is the
heartbeat that determines how many instructions your CPU processes
per second. Manufacturers build in a bit of leeway to ensure that they
can guarantee the speed that your CPU is rated to. If you overclock your
CPU, your Raspberry Pi will run faster, but its lifespan may be reduced,
and it’s likely to run a bit hotter. If you change this setting and your
Raspberry Pi no longer works, hold down the Shift key when you power
up to return your Raspberry Pi to disable overclocking.

✓✓ Advanced Options: Advanced Options contains several settings that
are a bit more involved, so we don’t use them in this book. But they are
good to know. The options are as follows:

•	Overscan: Allows you to ensure that the picture is centered on
your monitor and uses the available room correctly. If you have a
black border around your image that you don’t want, disable this
option. Otherwise, you can leave it alone.

•	Hostname: Allows you to set the name of your Raspberry Pi net-
work. You probably won’t need to modify this.

•	Memory Split: Your onboard memory is shared between the CPU
and the GPU. Depending on what you’re doing with your Raspberry
Pi, your programs may use one or the other more intensively.
For example graphics and gaming programs make more intensive
demands on the GPU, so you can increase your Raspberry Pi’s per-
formance by giving more memory to the GPU. Raspbian Wheezy
uses 64MB to the GPU by default, and for most purposes this will
be fine. You can experiment with this setting to see what setting
works best for you.

•	SSH: Secure Shell (SSH) is a secure way of communicating between
computers using an encrypted connection, so that you can control
one computer from another one. Unless you’re familiar with this
feature, you can ignore this option.

http://rastrack.co.uk

25� Chapter 1: Getting to Know the Raspberry Pi

•	I2C: A communication protocol used by some external devices
and sensors. This option allows you to enable or disable the I2C
module so you can use these devices.

•	Serial: Allows you to enable or disable messages from the system
on the serial interface. You most likely won’t need to change this
unless you’re doing some kind of debugging.

•	Audio: Allows you to select whether audio is sent via the onboard
3.5mm audio jack or via the HDMI port. It’s set to auto by default,
which means your audio will be routed via HDMI only when an
HDMI screen is connected.

•	Update: From time to time, you may have to update Raspi‐config.
You’ll need an Internet connection to do this, but if you’re using a
recently download distribution, you should be up to date.

✓✓ About raspi‐config: This just describes what the Raspi‐config tool does.

When you’re finished making your selections, press the right arrow key twice
to get to the Finish option and press Enter. You may have to reboot your
Raspberry Pi, depending on the options you’ve selected.

If you want to use Raspi‐config later, you can start it by typing sudo
raspi‐config.

Starting Up the Desktop Environment
When you’ve finished configuring your Raspberry Pi with Raspi‐config, you’re
ready to start up. After you switch on your power, you may have to enter
your username and password, depending on your settings. For Raspbian
Wheezy, the username is pi and the password is raspberry. Make sure you
type these in lowercase.

After you log in, you’ll see the command prompt:

pi@raspberrypi ~ $

This means you’re up and running and you’ve logged into the operating
system. Give yourself a cheer!

It doesn’t like the graphical operating system you’re used to with a desktop
computer, but the command line is the direct connection to your Raspberry
Pi’s capabilities. You can execute all the main system commands and even do
programming using only the command line interface. In a sense, the graphical

26 Part I: Getting Started with Raspberry Pi Projects �

environment is just a way of prettying up the command line and make it
easier to use.

To get pretty, you launch the GUI, LXDE, by entering its startup command on
the command line. To fire it up, type startx. It will take a moment or two to
start up, and the screen will go blank for a bit. After startup, you should see
the LXDE and a lovely red raspberry logo on the desktop wallpaper, as shown
in Figure 1-6.

When you’ve got the desktop working, you can move on to learning about the
programming tools in Chapter 3 or dive straight into the projects, if you’re
familiar with programming.

We recommend you peruse through Chapter 2 to make sure your workbench
is set up for building the projects in this book. You’ll need a few tools to get
going on many of them, and it’s a good idea to set up your workspace before
you begin.

Figure 1-6: 
Starting up

the desktop
environ-

ment.

27� Chapter 1: Getting to Know the Raspberry Pi

Troubleshooting Your Raspberry Pi
Things don’t always go according to plan. Here are some common problems
and how you can try to solve them:

✓✓ No lights on your Raspberry Pi: This can happen if you forgot to con-
nect the micro USB power connector or if the power supply isn’t capable
of supplying your Raspberry Pi with enough power. Check that it’s rated
to at least 5V 700mA (3.5 watts).

✓✓ Only the red light comes on: Your Raspberry Pi has power, but it can’t
read the operating system on your SD card. First, make sure your SD
card is firmly inserted. Then check that you’ve correctly created the
disk image. If that doesn’t work, you can try testing your SD card on
another Raspberry Pi to see if you get the same problem. If all else fails,
try using a pre‐imaged SD card.

✓✓ No output on the monitor: Check your monitor connection and your
monitor’s power connection. Make sure that your monitor is turned on.
(Sounds silly, but we’ve all done this at least once!) Then check that
your monitor is using the correct input source. Use a button on the
front of the monitor to cycle through them or use the monitor’s remote
control.

✓✓ Inconsistent behavior or hang‐ups: Your Raspberry Pi uses power at
different amounts depending on what it’s doing. Make sure you have a
good power supply and that it isn’t overtaxed.

If you have a lot of peripherals connected to your Raspberry Pi, they
may be demanding power as well. If your power supply is right at
the limit of its capabilities and your processor needs extra power for
computing‐intensive tasks, it could exceed what’s available and cause
your Raspberry Pi to hang. This is particularly common if you try to
power your Raspberry Pi from a USB socket.

If these tips don’t fix the problems you’re experiencing, your next port
of call should be the user forums at the Raspberry Pi Foundation (www.
raspberrypi.org/forums). The user community there is extremely
knowledgeable and very helpful, particularly for beginners. Your problem
may already have been solved in the discussions there. If not, post your prob-
lem, describing exactly the trouble you’re having. More often than not, you’ll
get an answer within a few hours. Making it easy to experiment with your
Raspberry Pi is what the user community is all about!

http://www.raspberrypi.org/forums
http://www.raspberrypi.org/forums

28 Part I: Getting Started with Raspberry Pi Projects �

Setting Up Your Tools
and Workbench

In This Chapter
▶▶ Setting up a project‐building workspace

▶▶ Choosing the right tools for the job

▶▶ Selecting your accessories

▶▶ Using breadboards and soldering

▶▶ Finding out about Raspberry Pi LEGO projects

T
he first thing you need to do to get started with Raspberry Pi projects
is to get your workspace ready. You need a dedicated work area and

the right tools so that you can build the projects quickly and easily. In this
chapter, we explain how to create a good workspace with the right set of
tools for the projects in this book.

The project chapters assume that you have the basic workspace and tools
ready to go. After you dive into a project, it can be a drag to interrupt your
work to get some basic tool that you’ve overlooked. But if you have most
(or all) of the basics of your workspace covered, you won’t have to stop
what you’re doing to go get a hand tool or run to the hardware store.

Getting Ready to Build Your Projects
You can start working on Raspberry Pi projects almost anywhere, but it’s
best to have a dedicated spot in which to build them. Completing the projects
will take some time, so you want to choose a place where you can work com-
fortably and see what you’re doing. Generally, setting up and taking down
unfinished projects is a hassle — it takes more time and can introduce errors
if your connections come loose. You can avoid this problem by setting aside
a dedicated workspace.

Chapter 2

30 Part I: Getting Started with Raspberry Pi Projects �

Setting up your workspace
You need a dedicated area where you can build and test your projects —
especially the advanced ones in this book, which can take a few hours or
more. You have to connect all the components together, provide power, keep
the cables and connection wires organized, and do some light fabrication.
So, find a spot in your house, apartment, shed, garage, studio, or wherever,
where you and your work will be undisturbed and where you can make a bit
of a mess. The workspace in Figure 2-1 has all these things covered.

You don’t want to get interrupted by distractions hunting for parts, or not
having the right tools, so it’s important to get the work area ready. In our
experience, a good Raspberry Pi workspace has the following:

✓✓ A solid workbench or desk

✓✓ A comfortable chair

✓✓ Dry air and good ventilation (especially for evacuating soldering fumes)

Figure 2-1: 
A good

working
environment

and some
basic tools.

31� Chapter 2: Setting Up Your Tools and Workbench

✓✓ Plenty of power outlets, ideally at desk height

✓✓ Enough room for the screen, keyboard, and mouse, and some extra
workbench space for assembly and fabrication

✓✓ A nearby network connection or Wi‐Fi router

✓✓ Shelving and storage for projects you’re working on

✓✓ Small boxes and drawers for organizing parts and tools

The environment needs to be comfortable to work in for a long stretch. If it’s
too cold or too hot, too noisy, or filled with distractions, it’ll take you longer
to complete the work. Make yourself a sort of hideaway where you can stay
focused.

Your Raspberry Pi is a fine computer in its own right, but an extra computer
is sometimes useful during the project‐building process, so it’s good to have
room for a desktop or laptop computer on the workbench. Plus, you’ll want
to be able to hunt for references online, look up datasheets, and post ques-
tions to forums, so a reliable Internet connection is vital.

Keeping an eye on safety
A few of the projects in this book deal with low‐voltage electronics. Safety is
always a factor when working with electrical circuits. None of these projects
works with wall power, but you should always treat electronic projects as if
they could have potentially dangerous voltages. If children may roam around
your work area, take special precautions to keep them away. Little kids love
pulling on cords and cables and could easily drag everything off your desk
with one quick tug. A hot soldering iron left unattended could cause severe
burns, besides being a fire hazard.

It’s probably best to keep food and drink separate from your workbench.
Empty pizza boxes or soda cans may hide critical parts, and you can waste
time hunting for things. Accidentally spilled drinks don’t do good things for
live circuits.

Assembling Your Tools
You need some basic tools to build several of the projects in this book. The
tools basically fall into two categories: electronics tools and physical building
and fabrication tools. You can get most or all of these components from elec-
tronics retailers such as Radio Shack (in the United States) or Maplin (in the

32 Part I: Getting Started with Raspberry Pi Projects �

UK). Specialty electronics suppliers on the Internet also stock them and are
often cheaper, so hunt around at places like Farnell (www.farnell.com),
Newark (www.newark.com), Rapid Electronics (www.rapidonline.com),
and RS (www.rs‐components.com). Sometimes you can find good deals on
Amazon (www.amazon.com) and eBay (www.ebay.com), too.

Electronics tools
Here are the basic electronics tools you’ll want on your shopping list:

✓✓ A multimeter: A multimeter is an essential tool for most electronic
projects. You use it to perform basic tests to make sure that you have
good connections in your electrical circuits. With a multimeter, you
can measure the characteristics of an electrical circuit and trouble-
shoot why something may not be working. A multimeter is also handy
for testing and measuring individual electronic components. You
should have one on hand for testing and troubleshooting your proj-
ects. (See the following section, “Selecting a multimeter,” for more
information.)

✓✓ A breadboard and jumper wires: Some of the projects in this book
involve wiring up electrical components, LEDs, sensors, or actuators to
your Raspberry Pi. This can be as simple as one or two wires, but some
of the projects have many connections. A breadboard is a simple tool to
help you easily make all these electrical connections. You need jumper
wires to make connections when you’re using a breadboard. Wires come
in solid core and stranded versions (which contain many fine wires).
You need solid core jumper wires for working with breadboards.

✓✓ A soldering iron: A breadboard is ideal for temporary connections
and prototyping, but for some connections you’ll want something
more permanent. This is where a soldering iron comes in. You use a
soldering iron to make strong, permanent connections between elec-
tronic components. If you want to mount buttons onto an enclosure for
your project, you’ll probably want to solder wires to the buttons and
connect these to your Raspberry Pi. You can even build part of your
circuit on a breadboard and use soldered connections for switches or
sensors that are located some distance away. (See the upcoming sec-
tion, “Selecting a soldering iron and accessories,” for more information
on what to look for.)

✓✓ A power supply: None of the projects in this book requires a desktop
power supply, so this is optional. But for general electronics experiment-
ing, you’ll probably want to have a power supply on hand.

http://www.farnell.com
http://www.newark.com
http://www.rapidonline.com
http://www.rs-components.com
http://www.amazon.com
http://www.ebay.com

33� Chapter 2: Setting Up Your Tools and Workbench

Selecting a multimeter
A multimeter is an essential tool for testing, measuring, and diagnosing
problems in electronic circuits. You use a multimeter to measure several
basic attributes of your circuit, including:

✓✓ Continuity: Whether there is a good connection between two points

✓✓ Voltage: The measure of potential electromotive force in a circuit

✓✓ Current: The measure of the continuous, uniform flow of electrons
through an unbroken pathway in an electrical circuit

✓✓ Resistance: Opposition to the flow of current within a circuit

With a multimeter, you can also measure the voltage provided by batteries
and power supplies, and the characteristics of discrete electronic compo-
nents, such as resistors, capacitors, diodes, and transistors.

Different models have different features, and the more expensive ones have
advanced features you may not need. That said, there are two important
features to look for:

✓✓ Continuity with audio signal: Checking continuity — making sure that
the things you think are connected really are connected — is the task
you’ll use your multimeter for most often. You touch the two probes to
part of a circuit to see if they’re connected, and the multimeter screen
displays a confirmation. With cheap multimeters, you need to hold the
probes in place while looking at the screen, which can be annoying if
the probes slip off. It’s a pain to check continuity by holding leads on a
circuit while you’re also looking at the display. It’s much easier to just
poke around and listen for an audio signal. Meters with audio output
will beep when you test for good continuity so you don’t have to take
your attention away from the circuit. If you can, spend a little more for
a multimeter that has this feature.

✓✓ Auto‐ranging: Inexpensive multimeters require you to estimate the
range of measurement and set the dial accordingly. On auto‐ranging
multimeters, you don’t have to set the dial to select the range of mea-
surement that you’re reading. Auto‐ranging is particularly handy and
can be worth paying slightly more for.

Older multimeters used a needle and graduated scales for the display, but
modern ones use a digital readout. If you don’t already have a multimeter, we
recommend getting a digital one, like the one shown in Figure 2-2.

34 Part I: Getting Started with Raspberry Pi Projects �

Selecting a soldering iron and accessories
Many of the projects in this book can be built without soldering anything at
all, but you’ll need to do a little bit of soldering for some of the projects, so
it’s good to have a soldering iron on hand.

Soldering involves melting solder (a metal alloy that melts at about 700°F) and
allowing it to cool, creating a strong, conductive joint. You can solder wires
to each other and join wires to components. You can bond wires to circuit
prototyping boards such as perfboards and stripboards. Soldering secures
components in place, while creating a good electrical connection for a more
permanent, longer‐lasting project. You can also simply solder certain com-
ponents (like switches and displays) to wires that lead to your breadboard.
That way, you can mount them in a project box. On some projects, you may
want to move buttons or switches from the breadboard to the project enclo-
sure, which means you’ll need to solder extension wires on them.

Your soldering iron provides the heat for creating a soldered joint. Many
people have the impression that you melt solder onto the parts that you
want to connect, but this is actually backward. When soldering, you use a
soldering iron to heat up both the solder and the components that are being
joined together. When the components are hot enough, the solder will flow
onto them, at which point, you remove the tip of the soldering iron and, thus,

Figure 2-2: 
A digital

multimeter
is an

essential
diagnostic

tool.

35� Chapter 2: Setting Up Your Tools and Workbench

the heat supply. The solder cools rapidly and, if done correctly, forms a reli-
able bond.

Figure 2-3 shows a basic array of soldering tools. The key soldering tools you
need at your workbench are as follows:

✓✓ Soldering iron: Your main soldering tool. Irons can be very inexpensive,
but the professional ones can set you back hundreds. If you want to save
money, avoid the cheapest ones and aim for a soldering iron that’s at
the top end of the low‐range options. You’ll need one that supplies at
least 30 watts. A soldering iron with an adjustable temperature setting
can be useful if you need extra heat for large joints, but it’s not essential.

✓✓ Solder: A metal alloy you use to create soldered joints. There are both
leaded and lead‐free varieties. Some purists prefer leaded 60/40 solder
(60 percent tin, 40 percent lead), but lead is toxic, so unless you have a
particular need for it, we recommend you opt for the lead‐free variety,
with a rosin core. The rosin core melts and helps to clean the surfaces
you’re joining. Solder comes in a variety of diameters measured in stan-
dard wire gauge (SWG). For most electronics soldering needs, 18 SWG or
20 SWG diameter is ideal. You can use 22 SWG for detailed work.

Somewhat counterintuitively, as the wire gauge number goes higher, the
diameter of the wire gets smaller.

Figure 2-3: 
An

entry‐level
soldering
iron and

essential
accessories.

36 Part I: Getting Started with Raspberry Pi Projects �

✓✓ Extra soldering tips: Tips do the main work of the iron, directing the
heat in the right place. Tips come in a variety of shapes and sizes. For
most electronics work, you’ll need a cone‐shaped tip rather than a chisel
tip. Because they come into contact with molten metal and impurities,
tips can degrade over time, so it’s a good idea to get spares.

Different manufacturers have different tip‐mounting systems, so buy a
couple extra tips when you buy your iron to avoid having to hunt for the
right product later.

✓✓ Soldering stand: A device that holds the wand safely while it’s hot.
It may have a sponge for cleaning the tip. Soldering stands are often
included with soldering iron kits.

✓✓ Cellulose sponge and brass wire sponge: You use these to clean the
tip of your iron, which you do while the iron is hot. You can use either
a cellulose sponge or a brass wire sponge, depending on your prefer-
ence. The cellulose sponge can be any garden‐variety kitchen sponge
from the supermarket dipped in a bit of water and wrung out. Using a
moist sponge cools down the tip of the iron, which is something to avoid
because your iron will have to work harder to keep the tip at a constant
temperature, and contaminants can build up on the tip. The brass wire
sponge costs a little more, but it doesn’t cool down the tip of the iron
when you’re cleaning it and it doesn’t contaminate the tip. Using brass
wire also means that your tip will last longer.

✓✓ Desoldering tools: You use these tools to remove unwanted blobs of
solder from your work or disconnect wires, traces, or components that
you may have soldered together by accident. You can find both desol-
dering wick and soldering suckers. A soldering sucker is a spring‐loaded
pen that you can use to suck liquefied solder away from your work
piece. Desoldering wick is simply braided flat copper ribbon, which
you press against your work while heating it. Capillary action draws the
liquefied solder onto the braid and away from your work. We tend to
prefer wick, which is cheaper and usually more effective.

✓✓ Tip‐cleaning paste: Even with careful use, your tip may develop an
oxidation coating, especially if you don’t clean it regularly. This makes
it very difficult to coat the tip and control the way your solder flows.
Cleaning paste can help to remove oxidation and debris.

Physical building and fabrication tools
You also need some basic tools for light fabrication. Not all these tools are
essential, but often the one tool you don’t have is the one you need so you

37� Chapter 2: Setting Up Your Tools and Workbench

may want to stock up. Figure 2-4 shows some of the essential tools. We’ve
listed these roughly in order of importance, from most to least:

✓✓ A selection of precision screwdrivers: Both flathead and Phillips‐head
screwdrivers are essential.

✓✓ Helping hands: This is a small clamp with two alligator clips to hold
your work piece; it often comes with an integrated magnifying glass.
This tool is essential for gripping objects you’re working on — unless
you have three arms.

✓✓ Wire strippers: You use these for cutting and stripping the insulation
off of wires. They come in several different styles. Splurge a little here —
if they’re too cheap, they’ll produce poor results and be frustrating
to use.

✓✓ Angled side cutters: You use these for clipping component leads and
cutting wires.

✓✓ Needle‐nose pliers: Use these for holding fine objects. You should have
both small and large ones on hand.

✓✓ A task light with magnifier: Use these to provide direct illumination and
to make it easier to see fine work. Get one with a spring arm so that you
can place it right over your work, if necessary.

Figure 2-4: 
Some

essential
light fabri-

cation tools.

38 Part I: Getting Started with Raspberry Pi Projects �

✓✓ A box cutter/carpet knife with replaceable blades: Use this for cutting
sturdier materials.

✓✓ A cutting mat: You need this to protect your work surface.

✓✓ A Sharpie and a pencil: Use these for making cutting marks and
permanent marks. No workbench is complete without a Sharpie!

✓✓ Hand drill and small hand saw (not shown): For small projects, you
can probably use inexpensive hand tools, which you should be able to
get at your local hardware store. Power tools will also work, but they’re
generally more expensive.

Using Your Tools Safely and Effectively
When you’ve assembled all the tools and set up your workspace, you’ll
probably be eager to dive right in! But before you do, take a few minutes
to read the information in this section so you don’t hurt yourself or those
around you.

Working with electricity
In working with electronics, safety is critical. You should take basic precau-
tions to protect yourself. None of the projects in this book involves connect-
ing directly to the wall power, but you should use precautions anyway and
develop good safety habits. Even though you may only be working with low
DC voltages, it’s a good idea to follow some basic safety rules when working
with all electronic projects:

✓✓ Don’t touch metal contacts or leads in a live circuit.

✓✓ Don’t alter a live circuit. Always disconnect power before removing or
adding components to your Raspberry Pi or breadboard.

✓✓ Always test with one hand tied behind you back. Well, at least one
hand not on the work piece. If enough stray current flows between both
your hands, and across your heart, it can cause arrhythmia. That’s not
likely at the low DC voltages we’re working with here, but it’s best to be
safe and get into the habit.

✓✓ Sounds crazy, but don’t work barefoot. Maximize the resistance
between you and the floor by wearing good, rubber‐soled shoes. A
puddle of water is a great conductor, and you don’t want to be in one, if
something goes wrong.

39� Chapter 2: Setting Up Your Tools and Workbench

✓✓ Wear an antistatic wrist strap. Your Raspberry Pi is a tough little
computer, and if it’s in an enclosure it should be well protected.
However, it and other components are sensitive to wayward voltages,
including static electricity. Several thousand volts of static electric-
ity can build up on you, and you may not even know it, especially on
carpeted floors. If it does and you touch your hardware, you can fry it
in an instant. An inexpensive antistatic wrist strap will guard against
unexpected sparks by connecting you at all times to ground, which
diverts any electrical charge from building up on your body.

✓✓ When fabricating or soldering, wear light, comfortable safety glasses.
Wire offcuts can fly around the room when they’re clipped, and hot
solder can sometimes spit and splutter. You don’t want any molten
metal heading for your eyes.

Laying the foundation for your
electronics work
To quickly and easily connect your project circuits, start out by using a
breadboard. All the projects involving electronic circuits in this book can be
built on a breadboard. After testing on a breadboard, you can either put your
Raspberry Pi and your breadboard inside an enclosure or build your circuit
permanently on a stripboard or perfboard, which requires a bit of soldering.

Breadboards
A breadboard is a small block of plastic with lots of rows of holes into which
you can insert jumper wires and electronic components. Underneath the
holes are tiny metal strips forming springs, which grasp wires and the legs of
components that are inserted into the holes. Because the springs are metal,
if you connect wires or components to the same springs, they’re electrically
connected together.

Because breadboards use springs to hold the wires, you should always use
solid core wire on them. Stranded wire (which is composed of multiple tiny
wires) will get scrunched by the springs when you try to push them into the
holes on the breadboard. It’s a big pain to use stranded wire, so save yourself
the trouble.

In the main work area on the breadboard, the holes are typically organized
into rows of five and grouped into two columns. There is usually a trough
between the two columns of holes, which allows you to insert an integrated
circuit (IC) into the breadboard so that each of its legs is served by four
adjacent holes.

40 Part I: Getting Started with Raspberry Pi Projects �

Many breadboards have columns of holes running the full length of either
side of the board. These holes aren’t electrically connected to the main work
area, and they’re often labeled + (positive) and – (negative or “ground”) and
may be color coded. You use these as “rails” for power and ground. You’ll
often want to connect components to power or ground, so you usually need
lots of connections to them.

Breadboards come in various sizes, from small (with 400 contact points) to
large (with 830 points or more). You’ll want to have at least a small one on
hand for testing. If you run out of room, you can connect two breadboards
using the notches and fingers on the sides of the boards. But be warned:
There’s no standard for these, so they usually need to be from the same
manufacturer in order for you to connect them.

Stripboards and perfboards
Stripboards and perfboards are similar to breadboards — they have lots of
holes to connect things together — but they’re designed for permanent con-
nections that are soldered in place. Stripboards are coated with adhesive
strips of conductive copper that run underneath the holes. Electronic compo-
nents are soldered to the strips of copper, providing an electrical connection
and a strong physical bond. Perfboards have metallic pads that surround
each individual hole, into which you can solder parts and which you can
solder together to create electrical circuits.

Stripboards and perfboards come in a huge range of shapes and sizes (see
Figure 2-5), so if and when you’re ready to go for a more permanent solution,
shop around for the size and type you need.

Prototyping boards
A number of manufacturers offer a printed circuit board that has a prototyp-
ing area for soldering electrical components, plus a multi‐pin jack that you
connect to the GPIO socket on your Raspberry Pi. This makes it easy to build
circuits and experiment. Our favorite is the Humble Pi prototyping board,
available from Ciseco (http://shop.ciseco.co.uk). If you’re outside
the UK, you should be able to find it from other online retailers, like Amazon
(www.amazon.com).

This board stacks right on top of your Raspberry Pi to make a little sandwich,
as shown in Figure 2-6. It comes in a kit form and is easy to put together. You
simply solder the GPIO socket to the board. If you aren’t confident with your
soldering skills, this is a good kit to practice with, because it’s difficult to
damage it by making soldering mistakes.

http://shop.ciseco.co.uk
http://www.amazon.com

41� Chapter 2: Setting Up Your Tools and Workbench

Project boxes and housings
Many of the projects in this book are built on a breadboard because it’s a fast
and easy way to get going. If you want to protect the project, you can transfer
it to a dedicated enclosure.

Potential project housings are everywhere, and almost anything that can be
used as a small box will do. Electronics suppliers usually stock a range of
generic enclosures, in both metal and plastic. When selecting one of these,
make sure that you have the correct tools to fabricate your housing. If you’re
going to mount switches, buttons, or a display on the project box, you’ll need
to be able to cut through the material cleanly. It’s really difficult to drill a
hole into thick materials and metals without the right saws, drills, and bits,
so make sure to select a housing that you can work with.

Another source of project enclosures is one of the new and popular laser
cutting or 3D printing services, such as Pololu Robotics & Electronics
(www.pololu.com), Ponoko (www.ponoko.com), and Thingiverse (www.
thingiverse.com). You send off your design to them, and they’ll ship you
your finished custom laser‐cut design. Many of these companies also have
templates you can download for boxes and enclosures.

Figure 2-5: 
Mini and
full‐size

breadboards
and a piece

of strip-
board.

http://www.pololu.com
http://www.ponoko.com
http://www.thingiverse.com
http://www.thingiverse.com

42 Part I: Getting Started with Raspberry Pi Projects �

Soldering safely
When you’re first trying your hand at soldering, it’s a good idea to practice
on some throwaway stuff that you won’t mind messing up. It takes a while to
get the hang of soldering — how long it takes to heat up the solder, how to
flow it onto components, and how to make a good solder joint. You can use
a piece of stripboard to do a few test connections, without worrying about
damaging things on your project.

When soldering, follow these basic steps:

1.	Secure the main piece of the work (your stripboard, circuit board, or
other components) to your worktable, or use a pair of helping hands
to hold the piece.

2.	Unwind a bit of solder from your spool.

3.	Hold the iron as you would a pencil and place it in contact with the
elements that you’ll be soldering.

4.	After a moment, press the end of the unwound bit of solder against
the surfaces that you want to join.

This should be right near where the tip of the iron is heating up the com-
ponents. The solder should begin to melt and coat the components.

Figure 2-6: 
A Humble Pi
prototyping

board
stacked

on top of a
Raspberry

Pi.

Photograph courtesy of Humble Pi

43� Chapter 2: Setting Up Your Tools and Workbench

5.	After the surfaces are well coated, remove the solder you’re feeding
into the joint.

6.	Remove the iron and wait until the surfaces are cool.

7.	Examine the joint.

The joint should be shiny. On a stripboard or perfboard, the joint
should form a volcano shape around the wire that you’re soldering and
should be mechanically secure. It shouldn’t wiggle around if you press
against it.

Try not to take a long time to solder the joint — ideally, only a few seconds.
Excessive heat can damage the components, especially with sensitive compo-
nents such as transistors and ICs. You may not even know they’re damaged
until you realize that your project isn’t working and you have to track down
the problem!

Practice soldering on extra bits of wire or on resistors, because they’re cheap
and easy to work with and it doesn’t matter if you overheat them — you can
just throw them away after you’re finished practicing. If you have any elec-
tronics board lying around, you can practice your desoldering skills, too,
using a desoldering wick (see “Selecting a soldering iron and accessories,”
earlier in this chapter). Try to remove parts from the boards. You’ll quickly
see why it’s a good idea to get your soldering skills up to speed — taking
things off a circuit board is a lot harder than soldering things on!

Figure 2-7 shows an example of soldering components to a perfboard. When
you’re soldering, you apply the iron to the components and then flow the
solder into the heated area. You need to ensure that the components are hot
enough for the solder to adhere to them. You don’t heat the solder and drip it
onto the parts. The solder will liquefy around the components and coat them.
When they’re coated, remove the solder and the iron, and allow the parts to
cool. The result should be a strong connection that you can’t pull apart.

Figure 2-7: 
Soldering

compo-
nents to a

perfboard or
stripboard.

44 Part I: Getting Started with Raspberry Pi Projects �

Here are some soldering tips to keep in mind:

✓✓ Make sure your parts and surfaces are clean. In particular, make sure
you clean your soldering iron tip using a damp sponge.

✓✓ When you first use your soldering iron, and periodically thereafter,
coat the tip of your iron with a little solder — just enough to make
it shiny. This is called tinning and will make it easier to solder your
connections.

✓✓ Don’t overheat parts. You should heat the components just long enough
to make a good connection. If you apply too much heat, some sensitive
components could be damaged.

✓✓ Safety first. Make sure you aren’t soldering over your hands or another
part of your body. If the solder drops off your work, you could be
burned. Remember: Make sure to wear safety goggles — burning solder
can sometimes spit and fly in unexpected directions.

✓✓ Be careful not to breathe in the soldering fumes. Work in a well‐
ventilated area.

Getting Ready to Build Raspberry Pi
LEGO Projects

Chapters 13 through 15 use the LEGO MINDSTORMS system. LEGO has been
a popular toy for decades. Since the 1980s, it has produced a series of prod-
ucts that can interface with a computer and be programmatically controlled.
Recently, the company has produced products geared toward robotics
experimentation called MINDSTORMS. You can connect your Raspberry Pi to
this latest range of products. We use the MINDSTORMS system to quickly and
easily build complex projects. The modular building system makes the physi-
cal work of rigging up a robot or computer‐controlled object very easy.

The core of the MINDSTORMS system is the MINDSTORMS Intelligent Brick,
which contains the processor and memory required to do programmatic
control. You send programs to the Intelligent Brick, which can then execute
complex instructions, such as reading data from sensors or controlling motor
drive systems. The brick has several ports for input and output, along with
a display that you can program, as well as a number of buttons that can be
used for input that you can read with your Raspberry Pi.

Several kinds of MINDSTORMS systems have been developed over the years,
and the latest version is the MINDSTORMS EV3. If you plan on trying out
some of the LEGO projects, you’ll need to get the most recent version. You

45� Chapter 2: Setting Up Your Tools and Workbench

can buy the LEGO MINDSTORMS EV3 kit, which contains both the control
brick and a bunch of extras to build several projects. This kit is pretty expen-
sive (around $350), so if you want to save a little, you can just buy the control
brick, which is about half the cost of the full kit. You can sometimes find the
brick for sale on eBay at a lower price.

In Chapter 13, we provide more information on the EV3 system and using it
with your Raspberry Pi.

46 Part I: Getting Started with Raspberry Pi Projects �

Focusing on Technique
In This Chapter

▶▶ Getting acquainted with the Raspberry Pi operating system

▶▶ Using the desktop and the Linux shell

▶▶ Brushing up on programming

T
he easiest way to get know your Raspberry Pi is to play around with the
Raspbian Wheezy operating system and familiarize yourself with what

it can do. As soon as your Raspberry Pi finishes starting up, you can interact
with the operating system in two ways:

✓✓ From the command‐line interface, often referred to as the “shell”

✓✓ With the graphical user interface (GUI), the “desktop environment”
people are most familiar with, called Lightweight X11 Desktop
Environment (LXDE)

Raspberry Pi also has software to support writing your own software. The
two software programming environments we use in this book are Python
and C.

In this chapter, we cover the basics you need to know to use the Raspberry
Pi operating system using the command line and LXDE and show what you
need to know to get started writing programs in Python and C. We also show
you how to download and install new software to use when you’re writing
code.

Getting Around Your Raspberry Pi
If you haven’t yet set up your Raspberry Pi operating system, head back to
Chapter 1, which covers the details.

Chapter 3

48 Part I: Getting Started with Raspberry Pi Projects �

After you turn on your Raspberry Pi, you see a number of messages on the
screen as various parts of the operating system start up. When your operat-
ing system has finished starting up, you need to log in. The username is
pi and the password is raspberry. (Make sure you type both of these in
lowercase.)

If you’ve set up Raspi‐config to bypass logging in with the command line, you
start up into the LXDE. But you can access the command‐line environment run-
ning “underneath” LXDE at any time by double‐clicking the LXTerminal icon.

After you log in, you see the command‐line interface prompt:

pi@raspberrypi ~ $

The prompt is your Raspberry Pi’s way of telling you that it’s ready to accept
your commands. Anything you type after the $ is accepted as an instruction
to do something. Later in this chapter, we discuss using the command‐line
interface to interact with the operating system. For now, type startx and
press Enter to launch LXDE.

Using the desktop environment
The Raspberry Pi desktop environment, LXDE (refer to Figure 1‐6 in
Chapter 1), is an application that allows you to easily do all the things that
you can do with the command‐line shell. But because it’s a GUI, it’s easier
to interact with for many tasks. Like a regular desktop computer or laptop,
your Raspberry Pi comes with graphical applications that support common
computing tasks, like word processing, creating presentations, using spread-
sheets, browsing the web, and playing games.

Just as you see on the desktop of a Windows or Mac, you see several icons
on top of the background wallpaper (most likely, a giant red raspberry icon)
that provide quick access to the most commonly used programs. To launch
one of these programs, you double‐click the icon. The programs include the
following:

✓✓ Scratch: A programming language that can be used to create simple
programs, animations, and games.

✓✓ LXTerminal: A program that gives you access to the command‐line
interface. This tool is very handy — you’ll use it often when you’re
building the projects in this book.

✓✓ PI Store: An online store for finding and downloading software for your
Raspberry Pi.

49� Chapter 3: Focusing on Technique

✓✓ IDLE and IDLE3: Programs for creating software in Python. You use
these to write to applications in Chapters 5 through 15.

✓✓ Midori: A web browser.

✓✓ Debian Reference: A collection of web pages stored on your SD card
that gives you a quick reference to the Raspbian version of Linux. It’s
essentially a handbook for your Raspberry Pi.

✓✓ Wi‐Fi Config: A tool for setting up your Raspberry Pi to use a Wi‐Fi
network. It requires an external wireless dongle that you connect to
a USB port. We assume you’re using either a Wi‐Fi connection or an
Ethernet connection for the projects that connect to the Internet. If you
want to use a wireless connection, you need to set it up first with this
configuration tool.

✓✓ Python Games: A collection of fun games that demonstrate the
capabilities of the Python programming language.

Along the bottom of the LXDE is the taskbar, shown in Figure 3-1, which is
very much like the taskbar in Windows. You can usually access the taskbar
no matter what programs you’re running. It’s different from the taskbar at
the top of the Mac desktop, which is located at the top of the screen and
changes, depending on what program you’re running.

Figure 3-1: 
The LXDE

taskbar.

50 Part I: Getting Started with Raspberry Pi Projects �

The taskbar gives you quick access to the Programs menu, where you can
access other applications you may already be running. The leftmost icon in
the taskbar opens a menu containing a number of programs arranged in cat-
egories; it works like the Windows Start menu. You move your mouse over
the categories of programs you want to use, and submenus reveal the avail-
able applications.

In LXDE, you can have several different desktops, all running at the same
time. You can have many programs running on the different desktops, and
you can quickly switch between them using the window icons on the task-
bar. In practice, you probably won’t be using multiple desktops very much
because your Raspberry Pi just isn’t up to the job of running lots of program
simultaneously. However, to keep things consistent with beefier computers
that are the cousins of your Raspberry Pi, you still have the capability of
using multiple desktops, just like other Linux‐based systems.

Using the File Manager
You manage files on your Raspberry Pi and any connected storage devices
using the File Manager. The most common operations you need to do involve
opening, closing, saving, moving, copying, and deleting files. You open the
File Manager by clicking the File Manager icon, which is the second icon in
the taskbar, shown in Figure 3-2.

The menu items at the top of the window — File, Edit, Go, Bookmarks, View,
Tools, and Help — contain all the operations that you can perform on files on
your system. If you get lost while you’re working with your files or you can’t
figure out how to do something, these menus list all the functions you may
need to perform.

Like the Windows File Manager or the Mac Finder, you see a view of the files
and directories on your system (refer to Figure 3-2). You double‐click a folder
to open it and double‐click files to open them with their default programs.

The left side of the File Manager window contains a list of special types of
files and directories called Places. If you click one of these, the right pane
displays the directories and items that are in that Place. The standard Places
you see are as follows:

✓✓ pi folder: The pi folder is where you should store most of your files,
including files that you create for the projects in this book. If you try
to store files outside this folder, you’ll encounter problems, because
normal user accounts can save files only in this folder. You can create
any directories you need to in the pi folder to keep your projects
organized.

51� Chapter 3: Focusing on Technique

✓✓ Desktop folder: The Desktop folder contains anything you can see on
your desktop. Any file or folder you place on the desktop appears here.

✓✓ Rubbish Bin: The Rubbish Bin is a temporary holding area for directo-
ries and files you want to delete. You can highlight any file or folder and
press the Delete key to send that file or folder to the Rubbish Bin. If you
need the file or folder later, you can open the Rubbish Bin to get that file
(assuming you haven’t emptied the Rubbish Bin yet). After you’ve emp-
tied the Rubbish Bin, any files that you placed there will be permanently
deleted and you won’t be able to recover them.

✓✓ Applications folder: The Applications folder contains the same
items that are listed in the Programs menu.

Any connected external drives will also appear in Places. Click the triangular
Eject button to safely remove a drive from your system before you physically
disconnect the device.

Figure 3-2: 
The key
parts of
the File

Manager.

52 Part I: Getting Started with Raspberry Pi Projects �

Beneath the external drives is the Bookmarks pane, which contains a column
of frequently used directories and files. If you have any directories that you
use often, you can drag them into the pane. You can also add a bookmark
using the Bookmarks menu.

You may also notice other items in the Bookmarks pane, depending on
how your Raspberry Pi is configured and whether any additional drives are
connected.

Using the Command‐Line Interface
Underlying the LXDE is the command‐line interface. Unless you config-
ured your Raspberry Pi to automatically start up in LXDE, you were in the
interface, also called the shell, right after you turned on your system and
logged in.

When you’re in LXDE, you can access the shell by clicking the LXTerminal
icon. This opens a console in which you type your commands. You can even
have multiple shell consoles open at the same time.

If you exit the LXDE, you find yourself at the command line, but with no
desktop, no icons, and no use of the mouse. So, most people access the shell
from within the LXDE and use a console to do things using the command line.

In the shell, you type text instructions at the command‐line prompt. Your
Raspberry Pi faithfully executes your commands, such as running programs,
managing files, sending emails, and browsing the web. But like the commands
you type, all the interaction is strictly text based.

You can change the color and size of the text in the console and even
adjust the background color to suit your preferences. Just choose
Edit ➪ Preferences.

The easiest way to get familiar with the shell is to do a few things in the shell
and learn some basic commands. That’s what this section is all about.

The command prompt
The shell shows you it’s ready to do something by displaying the command‐
line prompt:

pi@raspberrypi ~ $

53� Chapter 3: Focusing on Technique

The prompt shows you your username followed by an at symbol (@), the
system name, a tilde (~), and the dollar sign ($), which means the system is
ready for input. The tilde means you’re in the “home” directory of the user
you’re currently logged in as, which by default is the user pi.

The default directory for each user account is often referred to as the user’s
“home directory” or “user directory,” which is the directory you see when
you open the File Manager. This can be a bit confusing because there also is a
system directory called “home,” which contains all the default directories for
the user accounts on your system. The home directory for each user account
is labeled with that person’s username and every one is stored in the system
home directory.

If you were in another directory, it would be shown here. The dollar sign
means you’re logged in as an ordinary user and not a superuser; if you were a
superuser, you would see a hash symbol (#).

The directory tree
Like your operating system, all the files and directories are stored on your
SD card. Linux users talk about organizing files into “directories,” rather than
“folders,” but they mean the same thing. They’re just containers to put your
files and other directories into. Just about any directory or file can be put into
other directories or files. But there are thousands of files on your Raspberry
Pi, so as with any Linux system, they’re organized in a sensible way.

Linux file systems are organized as a hierarchy. This hierarchy is often
thought of metaphorically as a tree, because a tree starts with a trunk from
which everything else branches off. Part of this directory tree is shown in
Figure 3-3.

At the top level is a single root directory (indicated by /), under which every-
thing else is organized. Within the root directory are 20 subdirectories in
which all your Raspberry Pi’s files are organized. The most important among
these subdirectories is your user folder, where all your files are stored. Your
user folder is called pi by default; when you open a console in LXTerminal,
you can look at all the files in your pi folder.

You do this with one of the most handy shell commands: list (ls). To show
the files in any directory, type the ls command at the command prompt
(what you need to type is shown in bold):

pi@raspberrypi ~ $ ls

54 Part I: Getting Started with Raspberry Pi Projects �

Then press Enter.

A listing of the directories in your home folder is displayed:

Desktop ocr_pi.png python_games
pi@raspberrypi ~ $

The shell prompt shows the default username before the at symbol, which is
why the prompt says pi@raspberrypi. If you change your user or log in with a
different username, it will show that name before the at symbol.

You see the command prompt again, indicating that the system is ready for
your next request. The names of directories are color‐coded in blue. If you
have any files in your home folder, they’re shown in purple.

You can take a look at one of the other directories using the ls command, as
well. Try listing the files in your python_games directory:

pi@raspberrypi ~ $ ls python_games

You see a long list of all the files and directories within the python_games
directory. Because it’s below the pi folder in the directory tree (refer to
Figure 3-3), it’s referred to as a subdirectory of your pi directory.

To see the full list of 20 Raspberry Pi directories stored in your root directory
(represented by a forward slash /), type the following:

pi@raspberrypi ~ $ ls /

Figure 3-3: 
Part of

the Linux
directory

tree.

55� Chapter 3: Focusing on Technique

A full list of the directories is displayed, along with the subdirectories that
are immediate subdirectories of the root.

Any Linux command can also be issued with a number of options. Options
are indicated by a dash and a letter or letters. For example, you can get fur-
ther details about a file listing with the long listing option (‐l), which formats
the output as a single list and provides further detailed information about
each file. Try it:

pi@raspberrypi ~ $ ls –l python_games

The resulting output shows each file or directory on a separate line and gives
details about who can access it, how large it is, and when it was last modi-
fied. There are dozens of options you can use with the ls command.

You can get more information about any of the Linux commands and their
options by using the Unix Programmer’s Manual, which is always available at
the command line by typing man and the name of the command. Try getting
information about the options available with the ls command:

pi@raspberrypi ~ $ man ls

A description of the ls command is provided, along with all its options. The
information is very detailed and is presented as several pages of text. You
use the up and down arrows to scroll through the text; you can skip forward
or backward a page by pressing the Page Up and Page Down keys on your
keyboard (the spacebar also works to skip forward). Type h to get help; to
quit the manual at any time, simply type q.

Just as with the File Manager in LXDE, you can manipulate files and folders in
the shell. Generally, using the File Manager to do these operations is easier,
but sometimes examining and working with the files in the shell is useful.

You’ll notice that above your pi directory is a directory called home. This
is a bit strange, because the pi directory is your home directory. That’s
because the default username is pi, and you are in the home directory for the
user pi. But along with your pi directory, the home directories of any other
user accounts are also located within the /home directory.

The commands you issue at the command prompt are executed from the
directory you’re located in. Remember: Your home directory is represented
with a tilde (~) in front of the dollar sign ($) prompt. You can move to
another directory with the change directory (cd) command. Try it:

pi@raspberrypi ~ $ cd python_games
pi@raspberrypi ~/python_games $

56 Part I: Getting Started with Raspberry Pi Projects �

You’re now within the python_games directory, and the prompt has
changed to show the directory you’re currently in: ~/python_games $.
Type ls, and you get the same listing of files and folders as shown earlier.

The pi directory is above python_games in the directory tree and is
referred to as its parent directory. To go back to the parent directory, type cd
with a space and then two dots after it:

pi@raspberrypi ~/python_games $ cd ..
pi@raspberrypi ~ $

The prompt now shows that you’re in your home directory (pi) with a tilde
(~). The two dots (..) are a sort of shorthand to tell the system to go up a
level without your having to type out the full name of the parent directory.
Keep going up the hierarchy, and you can go right up to the root directory
that everything branches off from.

The file path
To tell the system to do something with a file or directory, you either need to
be in the same directory as the file or folder you’re working with, or you need
to specify the file path of the file that you want to work with. The file path is
the full location of the file within the directory tree, separated by forward
slashes (/). For example, the file path of your python_games directory from
the root directory is

/home/pi/python_games

You can use the file path to work with files in any part of the system, no
matter where you’re currently located. For example, from your home direc-
tory, you can get information about a file in another directory with the file
(file) command.

To try this, change to your home directory. (If you aren’t in your home direc-
tory, you can get back to your home directory from anywhere, by typing cd
~.) From your home directory, you only need to specify the file path as you
would reach it, from home. Try it, by looking up the details about the cat.
png image file that is located in the subdirectory python_games:

pi@raspberrypi ~ $ file python_games/cat.png
python_games/cat.png PNG image data, 125 x 79, 8 bit color RGBA, non-interlaced

The system responds with details about the cat.png image file that is
located below your current home directory.

Just about any command can be used in this way. In fact, you already used
this with the ls command earlier.

57� Chapter 3: Focusing on Technique

Directories
You’ll want to organize your stuff into directories so you can find and use it.
Creating new directories is easy. Try creating a directory in your home direc-
tory called stuff with the make directory (mkdir) command:

pi@raspberrypi ~ $ mkdir stuff

If you do a directory listing, you see a new folder:

Desktop python_games stuff
pi@raspberrypi ~ $

You can easily make multiple directories by separating their names with a
space.

Because you’re currently in your home directory (pi), the stuff directory
was created in it. If you wanted to create a new directory in python_games,
you would need to move to that directory, or specify its file path when you
used the mkdir command. For example, you could create a stuff directory
in python_games even if you’re currently in your home directory by typing
the following:

pi@raspberrypi ~ $ mkdir python_games/stuff

To make sure it worked, you type:

pi@raspberrypi ~ $ ls python_games

Your new stuff folder will be listed (highlighted in blue) among the other
files and directories.

Getting rid of directories you don’t need is also important, and easy. Use the
remove directory (rmdir) command to delete the folder you just created in
python_games. Type the following:

pi@raspberrypi ~ $ rmdir python_games/stuff

A directory listing of the directory will confirm that stuff is gone.

Be careful when using the rmdir command. After you’ve deleted a directory,
there’s no way to easily recover it. To prevent a disaster, rmdir won’t delete
a directory unless it’s empty. You have to remove the contents of a directory
before deleting it (although there is a way around this: using the ‐‐ignore‐
if‐non‐empty option).

58 Part I: Getting Started with Raspberry Pi Projects �

Files
The file command shows you information about files in your directories.
You can also move and remove files from the system. To try it out, create a
dummy text file to play around with.

It’s easy to create new files from the command line. This is something you
may do when you’re writing short bit of text or you want to try out a quick
snippet of code. To create a new text file, you use a text editor.

There are legendary arguments in the Linux community about which is the
best command‐line text editor. One of the simplest and easiest editors is
nano (which is a version of its ancestor, pico). Create a new dummy file using
the nano editor by typing the following:

pi@raspberrypi ~ $ nano dummy.txt

The nano editor is a full‐screen text editor that takes up the entire
LXTerminal window while you’re using it, as shown in Figure 3-4.

Type in some text for your new file; it appears on the first line of the editor:

This is a dummy text file.

Along the bottom of the screen are the commands available to you. The ^
character means to use the Ctrl key on your keyboard, so to exit the editor
you press Ctrl+X. When you do so, you’re asked if you want to save the file.
In the status bar along the bottom of the screen, nano asks the following:

Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES)

Figure 3-4: 
Creating a
dummy file
in the nano

editor.

59� Chapter 3: Focusing on Technique

Because you want to save your changes, type y and press Enter to confirm.
Now, if you do a directory listing you’ll see your new dummy.txt file.

One of the most popular commands for reading files is the concatenate (cat)
command. You can use it to display the contents of any file on the screen.
Take a look at your dummy file by typing the following:

pi@raspberrypi ~ $ cat dummy.txt
This is a dummy text file.
pi@raspberrypi ~ $

You can use the cat command to display the contents of any file, but unless
it’s a text file, you’ll probably see gibberish on the screen.

Now you can move your shiny new dummy text file to the stuff folder. To
do so, use the move (mv) command. You follow the command by the name
of the file you want to move, a space, and the location where you want to put
the file. Move it to your stuff folder by typing the following:

pi@raspberrypi ~ $ mv dummy.txt stuff

Do a directory listing of stuff to confirm it’s there:

pi@raspberrypi ~ $ ls stuff
dummy.txt
pi@raspberrypi ~ $

Removing a file is just as easy as moving it. You use the remove (rm) com-
mand. Deleting files can be risky business, so one way to ensure you’re
removing the right file is to use the confirmation option (‐i) and set output
to verbose mode (‐v). You don’t have to use the ‐ sign before each option:

pi@raspberrypi ~ $ rm –iv stuff/dummy.txt
rm: remove regular file 'stuff/dummy.txt'?y
removed 'stuff/dummy.txt'
pi@raspberrypi ~ $

Type y to confirm the deletion. Your file has now been deleted, and you’ve
received confirmation. Safe and easy!

Be careful when using the rm command. After you’ve deleted a file, there’s
no way to easily recover it. This is a good reason to make the confirmation
option a habit.

60 Part I: Getting Started with Raspberry Pi Projects �

Programming Like a Pro
To get the most power and flexibility out of your Raspberry Pi, you’ll want to
write your own programs, which is what this book is all about! We use two
programming languages — Python and C — as a way to get you started with
your own Raspberry Pi projects. We cover these languages in this section,
and provide some basic tips on how to use text editors to write and update
your code.

Python
Python (named after the popular Monty Python comedy series) is a power-
ful programming language that is relatively easy to learn and is widely used
by big companies like Google and Amazon. It’s easy to use and, unlike many
programming languages, easy to read. We use Python for several of the proj-
ects in this book, so you need to know the basics, even if you’re only going to
copy the code we provide for you.

Python is an interpreted language, meaning that the code is written in a
manner that is easy for humans to read rather than in native machine code.
When the program is in the process of being executed, the Python command
interpreter translates it into machine code for your operating system. By con-
trast, C is a compiled language and uses a compiler to prepare your code in
advance for the operating system

To write programs in Python, you can simply create a text file using the com-
mands that Python understands and save the file with the filename suffix
.py. You don’t have to have the .py suffix, but it’s a good reminder that the
file is a Python program. You can run the program within the Linux shell at
the command prompt by sending your file to Python’s interpreter. The com-
mand interpreter (which is, itself, an application) reads through the code and
executes the instructions you’ve programmed. You do this by simply typing
python and then the filename.

Your Raspbian Wheezy distribution comes with a couple versions of Python:
versions 2.7 and 3. Python 3 contains a number of modifications of the
syntax and capabilities of Python 2.7, and programs written for it may not by
entirely compatible with Python 2.7. All the programs in this book are com-
patible with Python 2.7.

You can figure out which versions of Python you have from the command
line by typing python –V.

61� Chapter 3: Focusing on Technique

The classic way to start learning a programming language is to create a
simple program to print the phrase “Hello world!” The code to do this would
be the following:

print("Hello world!")

If you were to save this instruction in a text file called hello.py, you could
run it with Python’s command interpreter.

Refer to the “Files” section earlier in this chapter to review how to create a
text file from the command line.

To run the program with Python’s command interpreter, you would type the
following on the command line:

pi@raspberrypi ~ $ python hello.py
Hello world!
pi@raspberrypi ~ $

This statement tells your operating system to use the Python interpreter to
read through the file and follow the instructions. The result is printed on the
screen.

You can also use the interpreter (sometimes referred to as the shell) in inter-
active mode. Just as you can use the system shell to issue commands for the
system to act on, you also can use the Python shell to issue commands for
the Python interpreter. This can be a bit confusing, because both the system
shell and the Python shell are text based. When you’re using the desktop,
they’re in different windows.

To avoid confusion between the system shell and the Python shell, pay atten-
tion to the command prompt. If the prompt is pi@raspberrypi ~ $ (or
any other username before the @ symbol), you’re in the system shell. If the
prompt is >>>, you’re in the Python shell.

You open the Python shell by typing the following:

pi@raspberrypi ~ $ python3

You see version information followed by the interpreter’s prompt (>>>):

Python 3.2.3 (default, Mar 1 2014, 11:53:50)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

62 Part I: Getting Started with Raspberry Pi Projects �

Type the same command above and observe the output. Note that the
commands you type are case sensitive:

>>> print("Hello world!")
Hello world!
>>>

The shell executes your command. Then the prompt returns and is ready for
your next instruction. To leave the interpreter, press Ctrl+D.

IDLE
Writing programs as text files is very easy, but when your programs start to
get more complicated, it’s helpful to have a tool to support the code‐writing
process. In this book, we use a special programming application called IDLE
(short for Integrated DeveLopment Environment), which provides a sort of
sandbox where you can write code and test it to see if it works correctly.
IDLE is an interactive graphical editor, so you have all the benefits of using
your keyboard and mouse in LXDE.

There are two versions of IDLE on your Raspberry Pi. (IDLE3 is for Python
3, which is what you use for programs in this book.) Their icons are on the
desktop. Start the IDLE Python shell by clicking the IDLE icon. The display
looks much the same as the interactive shell (see the preceding section), as
shown in Figure 3-5.

Figure 3-5: 
Using

IDLE as an
interactive

Python
shell.

63� Chapter 3: Focusing on Technique

IDLE offers several benefits over a text editor:

✓✓ It checks that your code is correctly formatted.

✓✓ It highlights key commands.

✓✓ It checks your syntax.

By design, Python is picky about the position of text in your code and IDLE
checks this, too.

Try out the “Hello world!” program again, this time using the IDLE editor.
Type the following:

>>>print("Hello world!")

Then press Enter. Notice that as you type the program, key instructions are
highlighted in orange, and the text between quotes is made green. This is
handy if you forget to type commands in the correct case. For example, if you
type Print with a capital P, the command won’t turn orange, and you’ll know
you have a problem. Functions (such as print) are in purple; other known
terms (such as for) are in orange.

To create a runnable Python program in the shell, you change from interac-
tive mode to script mode. Change to script mode by choosing File ➪ New
Window. A blank window opens and is ready for your code, as shown in
Figure 3-6.

Figure 3-6: 
Using IDLE

to write
Python

programs.

64 Part I: Getting Started with Raspberry Pi Projects �

Start your program with a description of what it is. You enter this as a com-
ment on the first line, using a hash symbol (#). Anything after the hash symbol
is ignored by the interpreter, so it’s used for making remarks about your code.

New Python program
print("Hello world!")

Save your new program by choosing File ➪ Save As. Use the name hello-
world.py and save it in your home directory. You can run the program by
choosing Run ➪ Run Module. Alternatively, you can press F5.

You can also run this in a shell console by typing the following:

pi@raspberrypi ~ $ python helloworld.py

C
Some of the programs in this book are written in C. Unlike Python, C is a
compiled language, which means that the human‐readable code is converted
to machine code in advance and saved as a binary file. As with Python, you
can create code in a text editor and then run it from the command line.
Alternatively, you can use an integrated development environment (IDE) to
write your code; many people use one called Geany (see “Using apt‐get,” later
in this chapter).

Compiling C programs entails working with four kinds of files, each with a
different filename suffix. The suffix helps you determine what a file is without
having to open it. The file types are as follows:

Finding out more about Python
You know the basics you need for creating
the projects that use Python. Chapter 4 covers
important programming concepts for both C
and Python, but this book isn’t remotely big
enough to comprehensively cover how to
learn Python. For that, you can take a look at
Python For Dummies, by Stef Maruch and
Aahz Maruch (Wiley), which is an excellent,

in‐depth guide. The ultimate resource for
anything to do with learning and using Python
is the project’s website (www.python.org).
If you want to get started exploring what you
can do with Python, there are a number of
online learning tutorials at Codeacademy
(www.codeacademy.com) that provide
exercises and interactive help.

http://www.python.org
http://www.codeacademy.com

65� Chapter 3: Focusing on Technique

✓✓ Source code: The files you work with to write your code. Source code
filenames end in .c.

✓✓ Header files: Files that contain declarations of functions and references
to functions that may be outside the source code, and information for
the C compiler’s pre‐processor. Header filenames end with .h.

✓✓ Object files: The output of the compiler; they contain function definitions
in binary form, but they aren’t executable. Object filenames end in in .o.

✓✓ Binary files: Also called executables, these contain the runnable code
that is ready to be used. They don’t usually have a suffix. These are the
same .exe files on Windows systems.

When you finish writing the source code, you compile it, which generates a
binary file. You can then run this file from the command line.

Try using nano to write a quick “Hello world!” C program called (not so cre-
atively) hello.c, as shown in Figure 3-7. Create it in your /stuff directory so
that it isn’t jumbled with your other directories and files. Type the following:

cd stuff
pi@raspberrypi /stuff $ nano hello.c

The nano editor launches and is ready for your program. Type the following:

#include <stdio.h>
void main(int argc, char *argv[])
{
printf("Hello world!\n");
return;
}

Figure 3-7: 
Writing a

C program
using nano.

66 Part I: Getting Started with Raspberry Pi Projects �

The first thing you notice is that nano understands when you’re typing C
commands and highlights them in different colors for you.

In the first line, you instruct the compiler to use a header file called Standard
IO (stdio.h). Unlike Python, the hash symbol (#) is an instruction for the
compiler’s pre‐processor to use the standard external header file that han-
dles input and output.

The stdio.h header file is one of many built‐in header files that contain
common and useful functions. It has all the code needed to send your output
to the screen — that way you don’t have to write this! The pre‐compiler
knows where to find the built‐in set of header files on your system. It locates
them automatically when you compile your program. If you need to include
other header files when you compile your code, you usually need to place
these files in the same folder as your source‐code file.

The next section of your source code creates a function called main that does
the work of printing “Hello world!” It’s not important to understand exactly
how this works for now, because we’re focused on compiling the code. Save
the code by pressing Ctrl+X and typing y to save the changes.

Compiling and running your C code
On the command line, you can compile the code. Type the following:

gcc hello.c –o hello

After a very short delay, you see your command prompt again, and your file
is compiled. Do a directory listing to confirm it’s there:

pi@raspberrypi /stuff $ ls
hello hello.c
pi@raspberrypi /stuff $

Notice that the executable binary file is highlighted in green and the source
code is not. The gcc command launches a program called the GNU C com-
piler. (GNU is the open‐source software project that eventually led to the
creation of Linux.) The ‐o hello option indicates that the binary executable
file is to be called hello.

Now you can run your program. To do so, type the following:

pi@raspberrypi /stuff $./hello
Hello world!
pi@raspberrypi /stuff $

Congratulations! You’ve just written, compiled, and run your first C program!

You usually need to use the dot‐slash (./) to execute your programs.

67� Chapter 3: Focusing on Technique

You don’t need to know more about C to get the projects in this book run-
ning. C is one of the granddaddy programming languages, and learning it is a
huge topic. C For Dummies, by Dan Gookin (Wiley), is a great starting point.

You may want to use an IDE to write your C programs, just as you can with
Python, using IDLE. Geany is an IDE included with your Raspbian Wheezy dis-
tribution that many people use. To use it, you need to use a program called
apt‐get (see the following section).

Using apt‐get
Sometimes you need to install other libraries of code (also called packages)
or add new programs to your system. There’s an easy way to do this from the
command line using a tool called apt‐get. Apt‐get is a simple command line
interface tool for managing, downloading, and installing packages and updat-
ing source code for packages from their repositories on the Internet. To use
apt‐get to update source files, you must have your Raspberry Pi connected to
your network and have a connection to the Internet.

To install the Geany IDE, type the following:

pi@raspberrypi ~ $ sudo apt‐get install geany

The superuser do (sudo) command is required for certain operations that
need special privileges — in this case, accessing files in a directory that’s
only accessible to administrators. The next instruction launches apt‐get and
instructs it to install the Geany package on your system.

You see various status messages as apt‐get prepares for the installation,
checks the Internet for updates to the source files, downloads them, and
installs the program.

When it’s finished, you can find Geany in the Programming folder, as shown
in Figure 3-8. Installing other packages and code libraries is done in a similar
way. Geany is a very powerful IDE, and there is a lot to learn — too much to
explain here. You can find more information on the Raspberry Pi website.

Figure 3-8: 
The Geany

IDE is
installed in

your Pro
gramming

folder.

68 Part I: Getting Started with Raspberry Pi Projects �

When apt‐get is needed for the projects in later chapters, we provide instruc-
tions on which packages you need to download and how to install them.

Troubleshooting
You’ll be writing and copying a lot of code in the process of building these
projects. As you do, there’s always a chance that something can go wrong. In
the case of the projects that involve building something, the problem could be
with your software or your hardware. Here are a few things you should check:

✓✓ Your code: Make sure you type the code correctly. The color coding in
your IDE can help you make sure you haven’t introduced any errors. If
you cut and pasted or downloaded the code from this book’s companion
website, make sure there weren’t any typos introduced in the process.

✓✓ Your connections: If you aren’t able to download a file or can’t get
apt‐get to work, check your network connection. You may think you’re
online, but there could be a problem.

✓✓ For the projects that require physically building something, there
is likely to be a lot of wiring or soldering. Make sure none of your
connections came loose while you were working.

✓✓ The Raspberry Pi forums (www.raspberrypi.org/forums): The
Raspberry Pi forums are where the whole Raspberry Pi community
shares their knowledge, experience, problems, and solutions. Here, you
should be able to find the answer to your problem. Because Raspberry
Pi is aimed at newcomers to programming, people are very friendly on
the forums and no question is too basic. Newbies are welcome.

✓✓ Stack Overflow (www.stackoverflow.com): One of the best resources
you can find online. Here, thousands of experienced programmers who
have trouble with their code post their questions to the community.
People vote on the quality of answers, and the better answers rise to the
top of the list. You can search the forums for postings related to your
problem or post a new question about it. People within the community
will likely answer your question quickly.

http://www.raspberrypi.org/forums
http://www.stackoverflow.com

The Raspberry Family
In This Chapter

▶▶ Understanding the evolution of the Raspberry Pi

▶▶ Exploring the options of the general‐purpose input/output (GPIO) port

▶▶ Discovering the secrets of the revision number held in your Pi

▶▶ Finding the impact of your Raspberry Pi model on projects in this book

I
n the beginning was the Raspberry Pi, and all was good. Then the Pi
begat the revision 2 with more memory, which begat the Model A,

which begat . . . well, you get the idea. With all this begating, we want to
introduce you to what the Raspberry family looks like and how what you
have may affect the projects you want to do. In this chapter, we show you
how to understand the differences in the versions of Raspberry Pi that have
been produced. By looking at the memory, GPIO, and video and processor
variations that have been produced, you can see how the Raspberry Pi has
improved over the years.

In the Beginning: Looking at the
Evolution of the Raspberry Pi

The original Raspberry Pi, like so many firsts, did not need a qualifier to its
name, but it had one. It was known as the Raspberry Pi Model B. The second
version was known as the Model A. It’s impossible for end‐users to complete
their own upgrades, so the two versions are separate models.

The Model A has no Ethernet socket, only one USB connector, and typically
less memory; as a consequence, it’s about $10 cheaper than the Model B.
Also, the Model A consumes about one‐third less power than the Model B,
which can be important for battery‐powered standalone applications.

Chapter 4

70 Part I: Getting Started with Raspberry Pi Projects �

The Raspberry Pi Foundation, the creator of the Raspberry Pi, is a registered
charity with the aim of promoting computer literacy. They worked for many
years developing prototypes before they released anything. The original
Raspberry Pi 1 Model B set the benchmark for what a Raspberry Pi was, and
it’s great credit to the developers that each new variant on the Raspberry
Pi had improvements but did not break the compatibility with the previous
models.

One confusing aspect of the Raspberry Pi is that changes and improvements
to the Pi were not always accompanied by a change in name, so users are
never quite sure what they’re buying. We want to try to clear that confusion:
There have only been three basic named versions of the Raspberry Pi to
date — the original (or 1), the plus (+), and the 2. Given that there is a Model
A and a Model B variant for each model, that means there are six named
types of Raspberry Pi (see Table 4-1).

Table 4-1	 Named Types of Raspberry Pi
Name Release Date Memory Notes
Raspberry Pi
1 Model B

February 19, 2012 256MB The original Raspberry
Pi.

Raspberry
Pi 1 Model B
Revision 2

September 5, 2012 512MB Changes in the ther-
mal fuses on the USB.
Addition of unpopu-
lated connector P5 for
accessing more GPIO
pins. Three changes to
the GPIO pins on
connector P1.

Model B was first?
It might sound odd that the first Raspberry Pi
was the Model B (not the Model A), but here’s
the story behind that name: Most of the people
who made up the driving force behind the
Raspberry Pi grew up in the UK, where another
Cambridge‐designed computer — the BBC
computer, designed by Acorn Computers —
was ubiquitous in education. Originally, there
were two versions of the BBC computer: the

Model B, and a cut‐down version called the
Model A.

From the start, the makers of the Raspberry Pi
wanted to produce two models. They figured
that most people would want the Model B
version, as they did with the old BBC computer,
so that’s the one they produced first.

71� Chapter 4: The Raspberry Family

Name Release Date Memory Notes

Raspberry Pi
1 Model A

February 4, 2013 256MB The first cut‐down ver-
sion of the Raspberry Pi.

Raspberry Pi
1 Model B+

July 14, 2014 512MB More I/O pins than
previous models and a
micro SD card.

Raspberry Pi
1 Model A+

November 10,
2014

256MB Same number of I/O pins
as the B+.

Raspberry Pi
2 Model B+

February 2, 2015 1GB The first version with a
quad‐core processor.

Raspberry Pi
2 Model A+

Not expected
until sometime in
2016

Not known
as of this
writing

Cut‐down quad‐core
Raspberry Pi.

Deciding Which Raspberry Pi to Buy
Only immediately after the launch of a new version of the Raspberry Pi do
you have any choice in what to buy. With backward compatibility and no
change in price, there is little demand for older models. So your only real
choice is whether to get a Model A or a Model B. In most cases, this is a no‐
brainer — the Model B is the obvious choice. You should only buy a Model A
if you have some specific reason for doing so (for example, the cost, smaller
form factor, or lower power consumption).

Memory
The memory chip used on every Raspberry Pi 1 was in an unusual form factor
in the field of computers. It was the so‐called chip‐on‐chip system — the pro-
cessor chip had contacts on both sides (one set on the base to connect to
the printed circuit board, and another set on the top for the memory chip).
The memory chip was then soldered directly onto the processor chip to give
a very compact design, only 1mm thick. This technique is more usually found
in smartphones where space is at a premium. With the Raspberry Pi, it had
the unfortunate effect of limiting the amount of memory that could be fitted,
because this sort of memory chip was only available in a few memory sizes,
with 512MB being the biggest.

The latest Raspberry Pi 2 versions have discontinued that trend and allowed
a larger memory chip to be fitted. The Raspberry Pi 1 Model B+ and the
Raspberry Pi 2 Model B+ look almost identical from the top, but on the under-
side you can clearly see the separate memory (the large black block), as
shown in Figure 4-1 and Figure 4-2.

72 Part I: Getting Started with Raspberry Pi Projects �

Figure 4-1:
Raspberry
Pi 1 Model

B+ (left) and
Raspberry
Pi 2 Model
B+ (right),
top view.

Figure 4-2:
Raspberry
Pi 1 Model

B+ (left) and
Raspberry
Pi 2 Model
B+ (right),

bottom
view.

73� Chapter 4: The Raspberry Family

General‐purpose input/output (GPIO)
The plus models have 40‐pin dual‐row header pins to allow access to the
general‐purpose input/output (GPIO) port pins. Some of these pins are
needed to turn the processor into a computer system by accessing the SD
card and Ethernet and USB peripherals; others of the spare pins are brought
out for the user. The GPIO pins carry logic signals that the computer can con-
trol or read and are how you can get the Raspberry Pi to switch outputs and
sense inputs. Not all these pins are GPIO pins; there are several instances of
5V, 3V3, and ground. The pre‐plus models had only a 26‐pin connector and
fewer pins were brought out. Figure 4-3 shows the pin out of this connector.

Figure 4-3:
The GPIO

connector
pin out.

74 Part I: Getting Started with Raspberry Pi Projects �

With the exception of the original Issue 1 of the Raspberry Pi, the GPIO pins
have remained on the same physical pin of the connector through subse-
quent revisions.

Each GPIO pin can be switched inside the processor to perform a different
specialist function. This has led to some people designating these pins to
these functions, and then labeling the remaining pins as GPIO from 0 upward.
In our opinion, this is stupid because it adds an extra, pointless, totally arti-
ficial layer of obfuscation that you have to wade through. Another form of
confusion arises when some people label these pins with the physical pin
number on the connector. So, for example, they refer to pin 3 in the software
and that gets translated internally to GPIO 2. That’s a little more understand-
able, but it’s no substitute for referring to GPIO pins as what they are in the
processor.

Video
All models of the Raspberry Pi have high‐definition multimedia interface
(HDMI) video as a standard output. If you have a monitor that takes a VGA
connector, you’ll have to get an HDMI‐to‐VGA adaptor. If you have a normal
TV, you can connect the Raspberry Pi to it using the RCA connector.

This RCA connector seemed to have disappeared in the plus models and the
Issue 2, but it’s still there. It’s hidden in what looks like the audio jack, in a
TRRS (Tip, Ring, Ring, Sleeve) system. Not all TRRS leads are wired the same,
so you have to check if the wiring is compatible with the Raspberry Pi. Go
to www.raspberrypi‐spy.co.uk/2014/07/raspberry‐pi‐model‐b‐
3‐5mm‐audiovideo‐jack for details.

Connection choice
There is an almost bewildering number of
commercial boards, allowing you easy access
to the GPIO contacts. Also, there are many
designs you can make yourself. These designs
tend to fall into two broad categories: those that
mount a board directly on the Raspberry Pi’s
board, and those that connect to the connector
with ribbon cable.

Using a direct connector limits the size of the
attached board, whereas using ribbon cable
does not. However, the ribbon cable connector
is specific to the number of pins you have. A
26‐way ribbon connector won’t fit on a 40‐pin
header, whereas a 26‐way direct connector
will.

http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-model-b-3-5mm-audiovideo-jack
http://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-model-b-3-5mm-audiovideo-jack

75� Chapter 4: The Raspberry Family

Processor
There is a big leap in the performance of the Raspberry Pi when going to the
Raspberry Pi 2 from the Raspberry Pi 1. This is because of a change in the
processor chip. The Raspberry Pi 1 used a processor with an ARM6 core; the
Raspberry Pi 2 uses a processor with an ARM7 core. The difference between
these two processors, as far as performance is concerned, is mainly due
to the efficiency with which high‐level language instructions, like the C lan-
guage, can be translated into the machine code instructions the processor
actually performs. This performance difference is further boosted by the fact
there are four cores in the Raspberry Pi 2 processor, potentially allowing it to
run four independent processors at the same time. In addition, the ARM6 was
run at a 700 MHz clock speed, and the ARM7 runs at 900 MHz.

The processor in the Raspberry Pi 2 also has a larger level‐2 cache. This is
an area of very fast on‐chip memory where machine code instructions are
queued up waiting to be processed. Instructions are transferred to the on‐
chip memory from the slower off‐chip memory in bursts, which are more
efficient than single memory accesses, which can speed up processing, in
some cases considerably.

The bottom line: The Raspberry Pi 2 runs faster than the Raspberry Pi 1.
How much faster depends on many factors, but faster by one and a half to
six times is the sort of range you’re looking at. This definitely elevates the
Raspberry Pi into a useable replacement for a desktop machine.

When the Raspberry Pi 2 was launched, a lot was made about the backward
compatibility, but this didn’t apply to any code that accessed the GPIO
pins — all that kind of code stopped working. The reason was that in the new
architecture, all the peripherals — including the GPIO — were located at dif-
ferent addresses in the processor’s memory map. Fortunately, most users
access these peripherals through one of a number of libraries, so when the
library you used was updated, the original programs worked again. However,
because most libraries are maintained by individuals, some of the libraries
didn’t get updated. The situation is very fluid, so check to make sure that any
library you want to use has been updated for the Raspberry Pi 2. If it has, it
should work with both models of Raspberry Pi.

Figuring Out Which Raspberry
Pi You Have

You may not know exactly which Raspberry Pi you have. You can easily see
if you have a 26‐way or a 40‐way GPIO connector, but how can your program
tell which pins are available?

76 Part I: Getting Started with Raspberry Pi Projects �

In Linux, everything is a file, so there is a way of finding out exactly what you
have. Just go to a command‐line prompt and type the following:

cat /proc/cpuinfo

On a Raspberry Pi 1 system, you see the following:

Processor : 0
model name : ARMv6-compatible processor rev 7 (v6l)
Features : swp half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture : 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7

Hardware : BCM2708
Revision : 0010
Serial : 00000000a5fb87e8

The interesting thing is the revision number, which tells you a lot about your
Raspberry Pi. Table 4-2 tells you what the revision number means. The words
in parentheses are the factories where the Raspberry Pi boards were made.

Table 4-2	 Raspberry Pi Revision Numbers
Revision Number Raspberry Pi Version
0002 Model B Revision 1.0

0003 Model B Revision 1.0 + Fuses mod and D14 removed

0004 Model B Revision 2.0 256MB (Sony)

0005 Model B Revision 2.0 256MB (Qisda)

0006 Model B Revision 2.0 256MB (Egoman)

0007 Model A Revision 2.0 256MB (Egoman)

0008 Model A Revision 2.0 256MB (Sony)

0009 Model A Revision 2.0 256MB (Qisda)

000d Model B Revision 2.0 512MB (Egoman)

000e Model B Revision 2.0 512MB (Sony)

000f Model B Revision 2.0 512MB (Qisda)

0010 Model B+ Revision 2.0 512MB (Sony)

0011 Computer Module (Sony)

0012 Model A+ Revision 2.0 256MB (Sony)

77� Chapter 4: The Raspberry Family

You may notice that revision 0011 is the Computer Module, a Raspberry Pi
with a very different form factor. This is a Pi built on a small printed circuit
board (PCB) with all the connections brought out on PCB edge connectors.
This then plugs into a base board of your own design and is meant for indus-
trial or commercial applications. There is also a blank breakout board to do
your development on.

If you look at the CPU info on the Raspberry Pi 2 system, you see four proces-
sor blocks in much the same format as the Raspberry Pi 1 — one for each
core. The last three entries look like this:

Hardware : BCM2709
Revision : a01041
Serial : 000000001664c635

The revision number is in an entirely different format with different groups of
bits having specific meanings. A collection of bytes is known as a word, and
the processor in the Raspberry Pi uses words that are four bytes or 32 bits
long. Bit 23 in the revision word tells you if the revision number is in the old
format or the new. For a new format revision number, this bit will be a 1. The
interpretation of the revision number under the new format is given by split-
ting the word up into bytes in this manner:

SRRR MMMM PPPP TTTT TTTT VVVV

Where

✓✓ S is one bit giving the revision scheme (0 = old, 1 = new).

✓✓ RRR is three bits indicating the RAM size (0 = 256MB, 1 = 512MB, 2 =
1,024MB)

✓✓ MMMM is four bits giving the manufacturer (0 = Sony, 1 = Egoman, 2 =
Embest, 3 = Unknown, 4 = Embest).

✓✓ PPPP is four bits giving the processor (0 = 2835, 1 = 2836).

✓✓ TTTT TTTT is eight bits giving the type (0 = A, 1 = B, 2 = A+, 3 = B+, 4 = Pi
2 B, 5 = Alpha, 6 = Computer Module).

✓✓ VVVV is the four‐bit version or revision (0–15).

So, the hex number a01041 in the preceding readout gives the following bit
pattern when you write it out in binary:

1010 0000 0001 0000 0100 0001
SRRR MMMM PPPP TTTT TTTT VVVV

78 Part I: Getting Started with Raspberry Pi Projects �

For a quick hexadecimal‐to‐binary converter and a conversion table, check
out www.binaryhexconverter.com/hex‐to‐binary‐converter or
search the web for “convert hexadecimal to binary.”

So, breaking this down:

✓✓ S is 1, which means it’s the new revision scheme.

✓✓ R is 010, which is 2 in binary, and that means the RAM is 1,024MB.

✓✓ M is 0000, which is 0 in binary, and that means the manufacturer is Sony.

✓✓ P is 0001, which is 1 in binary, which means the processor is 2836.

✓✓ T is 0000 0100, which is 4 in binary, which means it’s a Raspberry Pi 2
Model B.

✓✓ V is 0001, which is 1 in binary, which means it’s version 1.

For information on how to read binary, check out www.dummies.com/
how‐to/content/digital‐electronics‐binary‐basics.html.

There is a warranty bit that gets set if you attempt to overclock the system.
This is to prevent people from overclocking the Raspberry Pi, breaking it,
and then claiming it was faulty. This warranty bit is bit 24, but when the
Raspberry Pi 2 was introduced, the faster clock and higher voltage required
for the processor’s core was automatically setting this bit, so the warranty
bit has been changed to bit 25 for the Raspberry Pi 2. If you’re buying a
Raspberry Pi secondhand, check this bit before parting with your cash.

For all the projects in this book, you can use any of the versions of the
Raspberry Pi. Newer models will run faster, but this shouldn’t have much
of an impact because physical computing is heavily involved with human
interaction. If you find that something runs too fast, a simple small sleep
command will throttle back the speed.

On the upside, faster speed is useful if you’re using graphics programs like
Gimp to prepare graphics for your programs. And a quad‐core machine holds
out the possibility of running several programs simultaneously at full speed.

http://www.binaryhexconverter.com/hex-to-binary-converter
http://www.dummies.com/how-to/content/digital-electronics-binary-basics.html
http://www.dummies.com/how-to/content/digital-electronics-binary-basics.html

Working with LEDs
and Switches

Part II

Label 4

Transparent
Sauce 2

Bottle
1

Mask 3

	

Find out how to recognize and deal with contact bounce in a free article
at www.dummies.com/extras/raspberrypiprojects.

http://www.dummies.com/extras/raspberrypiprojects

In this part . . .
	 ✓	 Make projects using LEDs and switches.

	 ✓	 Build a sauce bottle simulator.

	 ✓	 Construct a bug stomp simulator.

	 ✓	 Learn to drive the WS2812b multicolored LED.

	 ✓	 Hack a PCB to make the Light Fantastic interface.

	 ✓	 Program four full‐color games with the Light Fantastic.

The Sauce Bottle Game
In This Chapter

▶▶ Making a sauce bottle simulator

▶▶ Reading a digital input

▶▶ Creating realistic graphics

▶▶ Understanding the beginnings of the Pygame framework

T
he project in this chapter is just about the most fun you can have with a
single contact input. Whether you call it catsup, ketchup, or sauce, it’s a

thixotropic fluid, which means it changes its viscosity (runniness) according
to the agitation of the fluid.

 The Game
The game is simply an interactive sauce bottle where shaking can be sensed
by the Raspberry Pi. This is mirrored on the screen by a graphic of the same
bottle. However, on the screen, the sauce bottle can be seen to slowly empty
in response to the shaking. The idea is to get the bottle emptied in the short-
est possible time.

This game is a great introduction to the interaction of hardware and soft-
ware. Figure 5-1 shows the hardware bottle next to a monitor showing the
graphic bottle.

Parts
The parts you need for this project are simple, and you can substitute a wide
variety of objects if you don’t have exactly the same parts we use. Here are
the parts you need:

✓✓ Plastic sauce bottle: We used a Heinz Tomato Ketchup bottle, but you
could use another similar plastic bottle.

Chapter 5

82 Part II: Working with LEDs and Switches �

✓✓ 6½ feet (2 meters) of twin core cable: We used microphone shielded
cable.

✓✓ Tilt switch: The tilt switch consists of a metal ball in a small tube. When
the ball rolls down one end, it shorts out the two wires leading into it.

✓✓ 2 single‐pin header sockets: You can use any method of connecting to
the general‐purpose input/output (GPIO) pins.

✓✓ Hot melt glue: You’ll need a hot melt glue gun to apply this.

✓✓ Silicon sealant

Schematic
The schematic of this circuit (shown in Figure 5-2) is almost trivial, so it’s
easy to follow.

Always make a schematic whenever you make anything electronic, so you
have something to check your construction against.

It doesn’t matter which way around you wire the connections on the switch.
They just connect and disconnect the GPIO pin 2 to ground. This pin is
normally used for the I2C interface. On the board, it’s connected to a resis-
tor connected to the 3V3 supply. This is known as a pull‐up resistor. It
ensures that the logic level on this pin is normally a logic 1, unless the pin is
connected to ground, in which case it becomes a logic 0.

Figure 5-1: 
The finished

game.

83� Chapter 5: The Sauce Bottle Game

Construction
To build this project, follow these steps:

1.	Drill a hole in the top of the bottle for the wire to go in.

Our wire was 1.5mm in diameter so we drilled a 2mm hole.

2.	Push the wire through the hole into the bottle.

This step is critical. Pushing in the wire from the outside of the bottle is
easy. Pushing the wire through the hole from the inside of the bottle is
impossible.

3.	With silicon sealant, glue the tilt switch onto the small flexible mem-
brane on the bottle lid, which normally holds back the sauce.

Allow the sealant to set.

4.	After the sealant sets, wire the screened cable to the tilt switch, as
shown in Figure 5-3.

If you haven’t used screened cable before, just know that you need
to strip off the outer insulation and twist the screen wires together
between your fingers. Then tin them by applying a touch of solder, and
watch it soak in between the wires. Then trim off the screen a bit to
make it tidy. Now strip the inner insulation off the core, twist the wires
together, and tin them again. Then make the soldered joints with the
switch.

5.	Apply some hot glue over the tilt switch and run it around the base of
the cap.

Don’t overfill it or you’ll never get the screw bottle back on the cap.

6.	Screw the cap back onto the bottle and then put a blob of hot glue
where the cable comes out of the bottle to fix it.

Make sure you leave enough slack in the bottle to remove the cap if any
repairs are needed.

Figure 5-2: 
The sauce

bottle
schematic.

84 Part II: Working with LEDs and Switches �

7.	Attach the other end of the cable to your Raspberry Pi.

You can do this in a variety of different ways with various breakout
boards. Because there are only two wires, we used two single‐pin sock-
ets and shells and connected them directly to the GPIO connector, as
shown in Figure 5-4. We soldered the end of the cables to these two
wires and covered the joint with some heat‐shrink cable, but you can

Figure 5-3: 
Wiring the
screened

cable to the
tilt switch.

Figure 5-4: 
Connection
to the GPIO

pins.

85� Chapter 5: The Sauce Bottle Game

use insulating tape if you prefer. Then we carefully placed them on the
GPIO connectors before booting up the Raspberry Pi.

As a rule, you should never connect anything to your Raspberry Pi while
it’s powered up.

Testing
After you’ve assembled your project, it’s time to test the switch. In order to
access the GPIO pins, you need a special library. There are a few of these
around, but one of our favorites is WiringPi, by Gordon Henderson. There is a
Python front end, and it’s easy to install.

From the desktop open up a command‐line prompt, and type the following:

sudo apt-get install python-dev python-pip
sudo pip install wiringpi2

That should be it. You can test that it’s installed correctly by typing the
following:

sudo python
import wiringpi2
wiringpi2.piBoardRev()

You should see the revision number of your board. However, notice that you
have to use the sudo command to access things as the root user. You can
still program in the IDLE environment by opening it up and typing the follow-
ing from a command‐line prompt:

gksudo idle

Then everything you do is as a root user. Get into IDLE like this, open up a
new window from the file menu and then type the program in Listing 5-1.

This is a very simple program and shows the basis of reading a GPIO pin.
It starts off by importing an instance of the wiringpi2 library. Then there
is a little warning about being a root user. (If the program crashes on the
next instruction, it shows that you aren’t the root user.) Then the io.
wiringPiSetup() function is called, which initializes the library. This
sets up the pins to use some pin mapping that automatically takes care
of the swapping about of pins on this header, which has occurred in the
different editions of the board.

Here, GPIO 2 (or GPIO 0 on a Raspberry Pi 1 board) is on connector P1 on
pin 3, but it’s referred to as pin 8 in the software. It may sound complex, but
the point is that pin 8 will access the same pin on the GPIO connector no
matter what board revision of the Raspberry Pi you have.

86 Part II: Working with LEDs and Switches �

Then the io.pinMode(8,0) call makes this pin an input and finally
io.digitalRead(8) returns the logic value on this pin. A variable called
lastPin holds the previous value on the pin and prevents it from being
printed out if it hasn’t changed. Run the code and see how the pin state
changes with the tilt of the switch. If you don’t see any changes, check the
wiring and chase down your fault.

The Software
What makes this project really exciting is the combination of good graphics
and hardware. In the early days of computers, you had to write code for every
line and pixel displayed, but today you can work wonders with digital photo-
graphs and image manipulation packages.

In this section, we describe how you can make your own graphics — but
there is no need to do this if you don’t want to. You can simply download
our graphics from the book’s companion website (www.dummies.com/go/
raspberrypiprojects) if you want to copy exactly what we have.

The idea is that there is a picture of the empty sauce bottle and the software
fills it with sauce and then slowly empties it according to how you shake
the bottle. You do this by drawing a rectangle of translucent sauce over the
bottle and then removing or masking out areas where the sauce should not
go. Finally, the label and cap of the bottle are layered over the top to give the
illusion that the sauce is actually inside the bottle.

Listing 5-1:   Switch Test

#!/ #!/usr/bin/env python
"""
Sauce bottle switch test
"""
import wiringpi2 as io

print "if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetup()
io.pinMode(8,0) # Physical Pin P1,3 GPIO 2
print "Pin test - Ctrl C to quit"
lastPin = 0
while True :
 pin = io.digitalRead(8)
 if pin != lastPin:
 print "Pin now ", pin
 lastPin = pin

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

87� Chapter 5: The Sauce Bottle Game

Preparing the graphics
If you want to go it alone and make your own graphics to match your bottle,
you have to do a bit of playing about with a graphics application, like
Adobe Photoshop (on your desktop or laptop computer) or Gimp (on the
Raspberry Pi).

Here are the steps to preparing the graphics yourself:

1.	Using the best digital camera you have access to, take a photograph of
your bottle against a white background.

Make sure the bottle is at an angle of about 60 degrees.

2.	Save the picture as a high‐resolution PNG file.

Many cameras create JPGs, so you may have to export the image from
your camera and import it onto your computer and then save the image
as a PNG using an application like Photoshop.

All images in the following steps should be saved as PNGs because the
JPG image format does not support transparent masks. Also, working at
high resolution means any mistakes are minimized when you reduce the
picture size later.

3.	Remove any background surrounding the image and replace it with a
uniform flat gray.

4.	Save this image as your base image and call it Bottle.png.

5.	Make a copy of Bottle.png, and select the gray background.

6.	Invert the selection and make the selection transparent.

7.	Save the image and call it Mask.png.

8.	Make another copy of Bottle.png and paint the same color gray as
the background for all of the bottle except the label and the cap.

9.	Select the gray area and make it transparent.

10.	Save the resulting image as Label.png.

11.	Make copies of Bottle.png, Label.png, and Mask.png and place
them in another folder called Graphics.

12.	Reduce the image size of all three of the images in the Graphics
folder so that all three pictures are exactly 500 pixels wide.

13.	Copy the Graphics folder to the folder you want to have the game in
on the Raspberry Pi.

The trick is to layer these three images along with a rectangle of sauce to
build up the image of the half‐full sauce bottle, as shown in Figure 5-5.

88 Part II: Working with LEDs and Switches �

You start with the picture Bottle.png, which is the first to be drawn. Then
a rectangle of semitransparent sauce is drawn; the height of this rectangle
corresponds to how full the bottle is. This rectangle will cover areas outside
the bottle image, so in order to remove this, Mask.png is drawn on top of
it. This mask has a transparent area in the shape of the bottle, so it removes
any sauce outside this area. Finally, Label.png is drawn so it looks like it
isn’t being covered by the sauce, which gives the impression that the sauce
is inside the bottle. Drawing the sauce as a semitransparent color also adds
to this illusion because things like the light reflections off the bottle can still
be partly seen through the sauce on the bottom layer, and they’re fully seen
when the sauce retreats from those reflections. This gives the strong illusion
that the sauce is in the bottle.

The rules
The game itself is simple: The bottle starts off full of sauce, and on each
shake, a certain amount of sauce is removed and the picture is redrawn.
When the bottle is empty, that round of the game is over, and the time it took
to empty the bottle is displayed, with a record being kept of the fastest score.
There is one more feature that, although it sounds simple, does add quite a

Figure 5-5: 
Building up

the bottle
image.

89� Chapter 5: The Sauce Bottle Game

bit of code: the game reset, which is triggered by pressing the spacebar. The
game reset abandons any current run and refills the bottle.

The game uses the Pygame framework, which allows for easy handling of the
keyboard, pictures, and windows. It’s included in the standard Raspberry Pi
distribution. The code for the game is shown in Listing 5-2.

Listing 5-2:  The Sauce Bottle Game

#!/usr/bin/env python
"""
Sauce bottle game by Mike Cook
"""
import time, pygame, os, sys
import wiringpi2 as io

print "if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetup()
io.pinMode(8,0) # Physical Pin P1,3
pygame.init() # initialise graphics interface
os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("The Sauce Bottle")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT,pygame.MOUSEBUTTONDOWN])

screenWidth = 500
screenHeight = 542
screen = pygame.display.set_mode([screenWidth,screenHeight],0,32)

sBottle = pygame.image.load("Graphics/Bottle.png").convert_alpha()
sLabel = pygame.image.load("Graphics/Label.png").convert_alpha()
sMask = pygame.image.load("Graphics/Mask.png").convert_alpha()

define the colors to use
cBack =(60,60,60)
pygame.draw.rect(screen, cBack, (0,0,screenWidth, screenHeight),0)
cSauce = (166,30,0) # color of the sauce
returnKey = False ; restart = False

def main():
 global returnKey,restart
 print "Sauce bottle game by Mike Cook"
 full = 100.0 # percent the bottle is full
 highScore = 60.0 # Record time
 while True:
 drawScreen(full)
 print "shake when ready"
 start = time.time()
 while full > 0 :

(continued)

90 Part II: Working with LEDs and Switches �

Listing 5‑2 (continued)

 while io.digitalRead(8) == 0 and restart == False:
 checkForEvent()
 while io.digitalRead(8) !=0 and restart == False:
 checkForEvent()
 if restart == True :
 full = 0
 print "Reset"
 else :
 full = full - 5.0 #change this number for a faster / slower game
 if full < 0:
 full = 0
 drawScreen(full)
 drawScreen(full) # empty
 if restart == False:
 runTime = time.time() - start
 print"You took ",runTime," to empty the bottle"
 if runTime < highScore:
 print "A new record!"
 highScore = runTime
 print "The record is ",highScore
 else:
 drawScreen(100)
 print "return key for a new game"
 returnKey = False
 while returnKey == False :
 checkForEvent()
 returnKey = False
 restart = False
 full = 100.0

def drawScreen(p) : # draw to the screen
 screen.blit(sBottle,(0,0))
 sauce = pygame.Surface((425,p*4.53)) # maximum sauce
 sauce.set_alpha(170) # transparency of sauce
 sauce.fill(cSauce)
 screen.blit(sauce,(61,11+((100.0-p)*4.53)))
 screen.blit(sMask,(0,0))
 screen.blit(sLabel,(0,0))
 pygame.display.update()

def terminate(): # close down the program
 print ("Closing down please wait")
 pygame.quit() # close pygame
 sys.exit()

def checkForEvent(): # see if we need to quit
 global returnKey,restart
 event = pygame.event.poll()
 if event.type == pygame.QUIT :

91� Chapter 5: The Sauce Bottle Game

The best way to understand this is to look at the functions individually,
starting with the last one, checkForEvent, which looks to see if anything
has happened that the Pygame framework has picked up in the background.
For example, a QUIT event can be the user clicking the close box of the
window; if this occurs, the terminate function is called, shutting down
everything. Next are the KEYDOWN events, which are picked up if a key is
pressed. For example, the Escape key calls the same terminate function as
the close box click. The other keys that are of interest simply set variables
to indicate that they’ve been pressed. The way the code works is that this
checkForEvent function should be called constantly, as often as possible.
If you were in a loop and not calling it, then the program might have thought
to have hung. The last event is just for debugging, but we’ve left it in in case
you’re adding your own graphics. It simply prints out the x‐ and y‐coordinates
of where the mouse is clicked, which you need to know in order to align and
size the sauce rectangle correctly.

The drawScreen function is where all the graphics magic happens, it draws
the elements of bottle, sauce, mask, and label just as we describe in the pre-
ceding section. It takes in a variable, p, which is the percentage of how full
the bottle is, and uses this variable to calculate the size of the sauce rectan-
gle’s height. The width is fixed by the maximum extent of the visible area of
the bottle. The transparency is set as a value of 170; this is where 255 is fully
opaque. You may want to change this value and see how it looks. The rect-
angle is then drawn with the top representing the top level of the sauce.

Note that in Pygame’s windows, the (0,0) coordinate is at the top‐left corner
and the y value increases as you move down the window, which is the
opposite of more conventional systems.

 terminate()
 if event.type == pygame.KEYDOWN :
 if event.key == pygame.K_ESCAPE :
 terminate()
 if event.key == pygame.K_RETURN :
 returnKey = True
 if event.key == pygame.K_SPACE :
 restart = True
 if event.type == pygame.MOUSEBUTTONDOWN :
 print pygame.mouse.get_pos()

if __name__ == '__main__':
 main()

92 Part II: Working with LEDs and Switches �

The lines at the start of the listing initialize various aspects of the program.
It first sets up the hardware GPIO input. Then it sets up the Pygame system
and defines the window size. The window size must match your photographs’
size. Next the photos are loaded in and the colors are defined. Again, this is
an opportunity to change them if you like.

Finally, the main function actually plays the game. After setting initial variables
and printing out the title, it enters an infinite loop with the while True: line.
It then draws the picture of the bottle, prints out an invitation to start, and
makes a note of the current time so it can calculate the time taken to empty
the bottle. The code enters another loop, which repeats as long as the bottle
is not full with the while full > 0: line. This loop waits for the input to
be low and then to be high before removing a bit of the sauce. You can
change the amount it removes per shake to make the game longer or shorter.
When the bottle is empty, the run is over. The time taken is printed out and
checked to see if it’s a new fastest score. You can press Return to start again.

Note that the feedback is given in the Python console window, but the game
window must have the focus (be the top window) in order for the program to
“see” any key presses.

Taking It Farther
You can do even more with this project if you like. Here are some examples:

✓✓ You can add sound effects (maybe a squelch for each shake and a fan-
fare for finishing, with a special one for a new high score). Chapter 13
has a project that uses sound with Pygame so you can see how it’s done.

✓✓ You can make it so that the timing begins on the first shake of the bottle.

✓✓ You can add graphics of the sauce actually squirting out of the bottle.

✓✓ You can make the game a two‐player game where the players race each
other. To do this, you need two bottles and a bigger window.

✓✓ You can make the high score permanent by writing it to a file.

✓✓ When you get more advanced with handling hardware, you may want to
add some flashing red LEDs in the bottle that match the shaking.

What ever you do, there will be a whole lotta shakin’ goin’ on!

Stomp!
In This Chapter

▶▶ Driving LEDs directly from the Raspberry Pi

▶▶ Using all the GPIO outputs on a Raspberry Pi Model B+

▶▶ Making an addictive game of stomping out bugs

▶▶ Discovering modern multicolor LEDs with built‐in electronics

▶▶ Converting the bugs game to color

N
o matter how complex a project is, the first step is to get an LED
flashing. That flashing LED confirms that so much of your system is

operating, and then you have a platform to build on.

In this chapter, we show you how you can control LEDs from your Raspberry
Pi. There has recently been a big advance for people who want to use a lot of
LEDs in their projects: LEDs with built‐in controllers, allowing you to easily
create colorful projects. We show you how to take advantage of these LEDs in
your projects.

Getting Acquainted with the LED
The light emitting diode (LED) was first made available in the mid‐1960s and
emitted invisible infrared light. An application for LEDs was quickly found in
TV remote controls. LEDs work by exciting electrons in a crystal lattice; then,
as the electrons lose energy, they emit a photon of light. The wavelength
of this light depends on the crystal lattice material, so the drive for visible
colors was a drive to find and manufacture semiconductor materials other
than silicon and germanium.

An alloy of the metals gallium and arsenic allowed red LEDs to be produced,
which was followed slowly over the years by other colors. It wasn’t until the
1990s that it was possible to produce a material for blue LEDs. Then about

Chapter 6

94 Part II: Working with LEDs and Switches �

ten years later, you could get a hold of white ones, which work by having an
ultraviolet LED shining on a phosphor.

In electronics terms, the LED is a bit of a curiosity in that it isn’t a linear
device. That means that it doesn’t follow Ohm’s law, which says that the
current increases in proportion to the voltage. With an LED, the situation is
like the sauce bottle from Chapter 5: You increase the voltage and the cur-
rent doesn’t increase much; then a threshold is reached, after which a tiny
increase in voltage produces a very large increase in current. This means
that you can’t connect an LED directly to a voltage without it either not work-
ing or self‐destructing. You have to provide some form of current control,
and the simplest way of doing that is to use a resistor in series with the LED.

The value of the series resistor you need to use depends on two factors:

✓✓ The amount of current you want to push through the LED

✓✓ The voltage that is pushing this current

The more current you push through an LED, the brighter it will get. However,
there is a limit to how much the LED can take without being fried. For most
indicator LEDs, this is 20 mA. So, this is a normal design current to use, but
the increase in brightness with current is not proportional.

Well, the increase in brightness with current actually is proportional, but the
snag is that the eye doesn’t perceive brightness linearly, so the perceived dif-
ference between an LED current of 10 mA and 20 mA is not that it is twice as
bright but more like only one‐third as bright. It is a logarithmic relationship.
However, many modern LEDs are high efficiency, which means you can get
much brighter for the same amount of current or you can get just as bright
for less current.

Calculating the resistor value is simple, but it can be confusing at first.
Consider the circuit shown in Figure 6-1, which shows an LED and resistor
connected to a voltage source. If you take a meter and measure the voltage
across the resistor and the voltage across the LED, both readings will add up
to the voltage produced by the voltage source. This sort of thing is known as
a potential divider.

Now, you want the voltage across the LED to be enough to light it up. It has
to be the threshold voltage, known as the forward voltage drop. You find
this voltage quoted in the data sheet of the LED. (If you don’t have a data
sheet, you can guess it from the color or, even better, use a nominal resis-
tor of something like 510 R [ohms] and actually measure it with your meter.)
Normally, the forward voltage drop for each color LED is roughly the same,
with red having the lowest voltage and white having the highest.

95� Chapter 6: Stomp!

Once you know the voltage drop across the LED, what’s left of the voltage
from the supply (that is, the supply voltage minus the LED voltage) is what’s
across the resistor. If you know what current you want to let flow through the
resistor and you know what voltage is across it, you can rearrange Ohm’s law
and calculate what value the resistor should be. The circuit is a series circuit,
so whatever current is flowing through the resistor has to be flowing through
the LED, so you can calculate what resistor you need for what current. This
can be summarized in the following formula:

Resistance = (Supply Voltage – LED Voltage Drop) ÷ Required Current

When you do this, you’ll almost certainly get a value of resistance that is not
manufactured. Resistors come in a series of “standard” values, and in this
case you pick the standard value that is closest to but higher than the one
you calculated. This gives you slightly less current than you designed for, but
you won’t be able to tell the difference.

You’re deciding what current you want to flow and, hence, the brightness.
Given that, you calculate the resistance. The actual current is not very
critical — don’t get hung up on getting exact resistor values. Modern white
LEDs are very efficient, and you can get quite a bright output for a few mA,
so if you just want an indicator, you don’t need much current.

Figure 6-1: 
A basic LED

circuit.

96 Part II: Working with LEDs and Switches �

Stomp 1
This project uses LEDs connected directly to the GPIO port. It’s a ring of LEDs
to play a game we call Stomp. (If you’re in the UK, think of this as Stamp.)
You can see the finished unit on top of a Raspberry Pi in Figure 6-2.

Stomp is a game where lots of bugs are running around, and you have to
stomp on them when they pass under your foot. But if there isn’t one under
your foot when you stomp down, a new bug pops up. The object of the game
is to clear all the LEDs in as short a time as possible. The creatures are rep-
resented by a ring of white LEDs and the stomping foot by two red LEDs on
either side of the ring (red, of course, for blood). You do the actual stomping
on a momentary foot switch.

Parts
This project requires a lot of GPIO pins, so you need a Raspberry Pi Model B+,
a Raspberry Pi Model A+, a Raspberry Pi 2 Model B+, or a Raspberry Pi 2
Model A+ — in other words, you need a Raspberry Pi with a 40‐pin GPIO
header. If you have an earlier Pi, Stomp 2, later in this chapter, is for you —
it can be run on all models.

Figure 6-2: 
Stomp 1 LED

ring.

97� Chapter 6: Stomp!

Here’s what you need to make Stomp 1:

✓✓ A Raspberry Pi with a 40‐pin GPIO connector

✓✓ A 2½‐x‐3¾‐inch (60‐x‐95‐mm) stripboard

✓✓ Twenty‐four 3mm white LEDs

✓✓ Two 3mm red LEDs

✓✓ A foot‐operated momentary switch

✓✓ Twenty‐four R1 value resistors for the white LEDs (we used 330R)

✓✓ Two R2 value resistors for the red LEDs (we used 220R)

✓✓ A two‐pin header strip

✓✓ A two‐pin header socket

✓✓ A thin 0.5m flexible twin core cable

✓✓ A 40‐way surface mount header socket

Schematic
This is a simple circuit, but a lot of the impact requires a clean‐looking
board. That means we’ve done all the wiring on the underside of the board
to make the top side clutter free. You can even use surface mount resistors
on the underside of the board if you want, for the ultimate in anti‐clutter. The
basic schematic is shown in Figure 6-3.

Figure 6-3: 
The Stomp 1

schematic.

98 Part II: Working with LEDs and Switches �

You can see that the bulk of the circuit is simply an LED connected through
current limiting resistors connected to the GPIO pins repeated 24 times,
with a different GPIO pin for each LED. The association between the GPIO
pin and the LED was partly dictated by the physical layout and the need to
make the wires as short as possible, but it isn’t important because in soft-
ware the relationship is defined by a lookup table in the form of a list. The
two red LEDs can be driven from the same GPIO pin because you only ever
want to turn both of them on at the same time. Finally, the foot switch is
connected directly to GPIO 3, which has an onboard strong pull‐up resistor
so the switch can be on a long length of wire and not suffer from interference
pickup.

Design
The only thing to design here is the two values of the LEDs’ current limit-
ing resistor. The exact value will depend on the type of LEDs you have and
what current looks good. You don’t want to pull too much current directly
from the GPIO pins. Although 16 mA is the maximum you should draw per
pin, there is a rough 55 mA limit on the total current draw from the chip, so
we designed the white LED limiting resistor for 1.7 mA. With the 3V3 voltage
of the GPIO pins and the 3.0V forward voltage drop of the LEDs we had, this
give a resistor value of 330R. For the red LEDs, we gave them 7.5 mA each and
used 220R resistors, so they had a 1.7V forward voltage drop.

Check with the LEDs you have to see if the brightness is right before building
the circuit.

Construction
The circuit is simple, but if you want to copy exactly what we’ve done, you
need to take some care. We built the prototype on stripboard. Many begin-
ners think that you have to make as many connections as possible with the
strips, but this isn’t the case. It’s fine if some connections work out like that,
but don’t go overboard trying to make it work this way.

Our main design consideration was to get the LEDs to look as much like a
circle as possible, despite being laid out on a 0.1‐inch square grid. That was
our starting point. Then to fix it to the Pi, we used a twin‐row pin header
socket. It needs to mount on the underside of the stripboard, so we used a
surface mount socket. In fact, we didn’t have a 40‐pin strip so we cut down a
length of 52‐pin strip we had. A saw cut to the first waste socket and a quick
clean with a fine file were all that was needed.

99� Chapter 6: Stomp!

The circuit laid out is shown in Figure 6-4. We’ve numbered the columns and
rows of the stripboard so we could build up a cutting and wiring list for you
to follow. Note the position of the LEDs. There is a very subtle flat on the
cathode side of the LED, which is normally the lead that is the shorter of the
two. We recommend you make a note of which way around your LEDs are
before you get very far with the construction.

Construction should start on the underside of the board, which is shown in
Figure 6-5. This shows all the tracks you need to cut. Note that all but two
tracks are cut at the hole. A simple circular motion left and right, either side
of the hole, with a scalpel is all you need to cut the track. The two red LEDs
require a small strip being cut out of the track between the holes. Make
two cut lines as close together as possible, and peel off the copper track in
between.

On the book’s companion website (www.dummies.com/go/raspberry
piprojects), there is an image file of Figure 6-5 so that you can print it out
full size and lay your board over it. Then you can easily identify the columns
and rows. Instead of picking out tracks to cut from the diagram, we’ve pro-
duced a spreadsheet containing a list of tracks to cut. This spreadsheet also
contains a list of component placements and a list of wiring links.

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

R1

Cut on track side

2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 27 28 29 30 31 32 33 34 35 36 372516

Figure 6-4: 
The top side
of Stomp 1.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

100 Part II: Working with LEDs and Switches �

The first step is to cut the tracks on the underside of the board. This might
take about 30 minutes and requires a bit of concentration. After it was cut,
we used the continuity testing function on our multimeter to check that they
had been broken and there were no thin whiskers of copper still making a
contact.

Next, mount the 40‐pin header socket on the board. It should cover the
column with the cut tracks and have the small legs covering the track until it
almost reaches the hole. Make sure it’s placed evenly so the legs on each side
are the same distance away from the holes. Then tack one corner with a blob
of solder. Check again that it’s placed correctly because at this stage it’s easy
to correct any misalignment by simply melting the one joint. When you’re
satisfied that it’s straight, tack the leg on the other side and check again.

Next is the point of no return, solder all the remaining legs. Flip the board
over and solder all the resistors in place, and then carefully add the LEDs,
soldering them in one at a time. First, solder one LED and then look to see
that the LED stands straight up. If it’s crooked, place your iron on the joint
and push the top of the LED so it’s square and upright. Then you can solder
the second leg and snip off the excess wire. You have to make sure that the
LEDs are in the right holes, and that they’re the right way round. Finally, add
the small two‐pin header to the board.

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

718

Figure 6-5: 
The track

side of
Stomp 1.

101� Chapter 6: Stomp!

All that remains is to wire it up. We’ve devised the wiring so that it always
goes between two points on the board that already have a component in
them. We used thin 28 AWG insulated solid core wire for the wiring. Strip just
the smallest amount you can from the wire, no more that 2mm or so. Apply
your soldering iron to the solder on the component already on the board and
push the wire in. Beginners tend to strip too much insulation back. Be con-
strained, and always cut what you think is too little.

A list of the point‐to‐point connections is in the spreadsheet on the book’s
companion website. Also on the website is a multicolored diagram showing
all the wiring. This can look like a bit of a mess, but the colors should enable
you to pick out the connections one at a time. However, we think it’s best just
to use the wiring list. You can print it out and cross off each connection as
you make the link.

A two‐pin header strip is attached to the top end of the board. We made an
extension lead with thin flexible microphone wire and finished it off with a
two‐pin header socket.

Software
While working on another of our Raspberry Pis — one of the types with a
26‐way GPIO socket — we ran the following code and it froze out the key-
board and mouse. This is because it was playing about with GPIO pins that
shouldn’t be altered on earlier revisions, so we put a check in the code to
test that it was the right board before the code would run.

Basically, the presence of a bug is held in a list called critters. If a list value
contains a 1, that represents a bug; if it contains a 0, that means no bug. The
list is rotated each step, and the new list of LEDs is displayed. This gives the
appearance of the lights going around in circles. The program is shown in
Listing 6-1.

Listing 6-1:  Stomp 1 Game

#!/usr/bin/env python
Stomp 1
Author: Mike Cook

import time, random, sys, re
import wiringpi2 as io
from collections import deque

(continued)

102 Part II: Working with LEDs and Switches �

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "

numLEDs = 24
stompPos = 18
critters = deque([0 for i in range(0,numLEDs)])
direction = True # direction to run round the ring
#GPIO LED pin numbers for LEDS 0 to 23
pinLED = [20,21,19,26,13,5,11,7,17,4,18,15,14,22,23,24,25,27,8,10,9,6,12,16]
pinRed = 2 #GPIO
stompSwitch = 3 #GPIO
sTime = 0.2
random.seed()

def main():
 if getrevision() < 0x10:
 print"You can only run this on a Pi with a 40 pin GPIO connector"
 sys.exit()
 initGPIO()
 wipe()
 lastSwitch = 0
 print"Stomp on the bugs"
 while True:
 setup()
 startTime=time.time()
 while critters.count(0) != numLEDs:
 switch = io.digitalRead(stompSwitch)
 if lastSwitch != 0 and switch == 0:
 stomp = True
 if critters[stompPos] >0 :
 critters[stompPos] = 0
 else:
 critters[stompPos] = 1
 else:
 stomp = False
 showCritters(stomp)
 moveCritters(direction)
 lastSwitch = switch
 time.sleep(sTime)
 wipe()
 print "all gone in ",time.time() - startTime,"seconds"
 print"have another go"
 time.sleep(3)

def moveCritters(wayRound):
 global critters
 if wayRound:
 critters.rotate(1)
 else :
 critters.rotate(-1)

Listing 6-1 (continued)

103� Chapter 6: Stomp!

def showCritters(stamp):
 for p in range(0,numLEDs):
 io.digitalWrite(pinLED[p],critters[p])
 if stamp :
 io.digitalWrite(pinRed,1)
 else:
 io.digitalWrite(pinRed,0)

def setup():
 global critters,direction,stompPos
 for c in range(0,3):
 choice = random.randint(0, numLEDs -1)
 while critters[choice] != 0 :
 choice = random.randint(0, numLEDs -1)
 critters[choice] = 1
 if random.randint(0,1) == 0:
 direction = True
 stompPos = 19
 else:
 direction = False
 stompPos = 18

def wipe():
 for i in range(0, numLEDs):
 io.digitalWrite(pinLED[i],0)
 io.digitalWrite(pinRed,0)

def initGPIO():
 for i in range (0, numLEDs):
 io.pinMode(pinLED[i],1) # to output
 io.pinMode(stompSwitch,0) # to input
 io.pinMode(pinRed,1) # to output

def getrevision():
 revision = "unknown"
 with open('/proc/cmdline', 'r') as f:
 line = f.readline()
 try:
 m = re.search('bcm2708.boardrev=(0x[0123456789abcdef]*) ', line)
 revision = m.group(1)
 except:
 m = re.search('bcm2709.boardrev=(0x[0123456789abcdef]*) ', line)
 revision = m.group(1)
 return revision & 0xff

Main program logic follows:
if __name__ == '__main__':
 main()

104 Part II: Working with LEDs and Switches �

A fundamental requirement of the program is that a list should be able to be
quickly rotated, clockwise or counterclockwise. To do this, we used Python’s
double‐ended queue (deque) module, and initialized the empty critters list at
the start of the code. Each LED in the ring is numbered 0 to 23, and the GPIO
pin corresponding to the number is given in the pinLED list. Some global
variables are declared before entering the main function.

The first thing the function does is check to make sure the revision number is
large enough to have a 40‐pin GPIO connector (see Chapter 4). Then the GPIO
pins are initialized. (Because GPIO 3 has an external pull‐up resistor on the
board, there is no need to enable the software one.) Then the wipe function
turns off all the LEDs — both those in the ring and the red ones. Finally, an
infinite loop is entered that defines a game or round. In this loop, the setup
function defines the initial population of bugs by choosing three random
locations to place a 1 in the critters list. There is some code to make sure
that three different positions are chosen. Then the code chooses a direction
to march the bugs for this game and defines the stomp position for each
direction. You need to have the “killing field” located just in front of the boot,
or red LEDs as you may like to call them.

A record of the system time is made so that the time taken to squash all
the bugs can be printed out at the end. Then, a while loop plays the game,
continuing until the critters list is full of zeros. The game loop consists of
looking at the stomp switch and comparing it to what the switch state was
the last time around the loop. This ensures that only the first time the switch
is pressed counts as a stomp. The code then looks at the stomp position in
the critters list and removes a critter if there is a number 1 in this loca-
tion; otherwise, it adds a 1 to the list.

The showCritters function is called, which lights up the LEDs correspond-
ing to where the bugs are in the list. The red LEDs are also lit up if the stomp
switch has just been activated. Next, the moveCritters function is called,
which rotates the critters list. Finally, a delay is called; the sTime variable
set up at the start of the code defines how fast the game runs.

When all the bugs have been stomped on, the time taken to clear the ring is
printed and a new game is started.

How it plays
In practice, the game plays very well, with a good mixture of tension and
reaction. It takes some concentration to rid the circle of bugs. Sometimes we
didn’t keep our feet on the switch for long enough to register a stomp — we
were being far too jittery. All in all, a most enjoyable game — and it was
a surprise that we found it easer to clear a ring moving clockwise than
counterclockwise.

105� Chapter 6: Stomp!

You may want to take things further, like introducing a small random jitter
into the sleep delay to break up any rhythm a player builds up. You may want
to add sound effects or keep a high score. You could have more initial bugs
in the list or you could reverse the direction of rotation after a fixed time or
even after each stomp.

If you only have a Raspberry Pi Model B, you could modify the design to use
only 15 LEDs and an input.

Stomp 2
The Stomp 1 game with discrete LEDs is great, but you need a lot of GPIO
pins on your Raspberry Pi, and each LED is only one color. Plus, it takes a
bit of skill to make. Stomp 2 uses much more ready‐built components and is
a multicolor game. It’s slightly different from Stomp 1 in that it takes three
stomps to kill the bugs; each stomp on a bug changes its color, until the last
one removes it. In order to get a fine range of colors, you need to know how
you control the brightness of an LED (see the nearby sidebar).

Controlling brightness
Although the resistor value sets the maximum
brightness for an LED, it’s possible to control or
fade the brightness down from this maximum.
There are two ways of doing this:

✓✓ By altering the voltage of the supply:
Unfortunately this approach isn’t very sat-
isfactory, because of the nonlinear nature
of the LED’s current flow. Imagine you can
control the voltage smoothly between 0
and 5 volts. For the lower part of the range,
below the forward voltage drop, the LED will
not be lit. Then, as the voltage is increased
past this point, the LED will get brighter very
quickly. The increase in brightness will drop
off as the voltage approaches the maxi-
mum. So, the useful range of control over
the brightness is very small.

✓✓ By using pulse width modulation (PWM):
This approach simply involves flashing the
LED on and off very rapidly. If you do this
faster than 32 flashes per second, you can’t
see the LED flashing due to your persistence
of vision. The time you keep the LED on rela-
tive to the time it is off is known as the duty
cycle. Changing this duty cycle changes the
apparent brightness of the LED.

Many microcomputer chips have outputs that
can automatically generate the PWM signal
when you give it the duty cycle you want. The
chip in the Raspberry Pi has only two such
outputs, and one is used for the sound output,
so there is only one output free. So, although it’s
easy to fade one LED, it isn’t that easy to control
more than one without extra hardware.

106 Part II: Working with LEDs and Switches �

Design
The snag with using a lot of LEDs is that they can take a lot of current. Each
WS2812b (see “The WS2182b,” later in this chapter) can take about 66 mA,
and when you add that up for 24 of them, you get just over 1.5 amps. This is
way more than the Raspberry Pi can provide, even if you have a big power
supply. So, you need another 5V supply.

The other snag is that the Raspberry Pi is only a 3V3 system; ideally, the
LEDs need a 5V data signal, which is just outside the reach of the GPIO lines.
However, if the supply voltage is not 5V but just under at 4.8V, this is often
enough to allow the Pi’s GPIO pin to drive it directly, as long as you put the
data signal through a 470R series resistor. This improves the signal shape
by damping down ringing on the GPIO signal and preventing reflections on
the line.

The LEDs themselves can be driven with 3V3, but they aren’t as bright.
Besides, 3V3 external power supplies can be hard to come by. The better
solution to the driving problem is to use a level shifting circuit. This is a good
solution and is guaranteed to give you the best results.

Parts
Here are the parts you need for this game:

✓✓ Any Raspberry Pi

✓✓ A 2‐x‐½‐inch (48‐x‐12mm) stripboard

✓✓ A 24‐pixel WS2182b LED ring

✓✓ A foot‐operated momentary switch

✓✓ Two 5K6 resistors

✓✓ A two‐pin header strip

✓✓ A five‐pin header strip

✓✓ A two‐pin header socket

✓✓ A thin 0.5m twin core cable

✓✓ A 2.1mm power jack socket

✓✓ A 5V power supply with at least 2A capability

✓✓ A 2N7000 FET

✓✓ A push‐button switch

✓✓ Five header pin socket leads and shells

107� Chapter 6: Stomp!

The WS2812b
Recently, a component has been introduced that
is a game changer as far as hobby projects are
concerned. It’s the WS2812b or, as branded by
Adafruit Industries, the NeoPixel. This isn’t just
one LED but three in one package — a red one,
a green one, and a blue one. But what makes it
remarkable is that each package contains not
only the three LEDs but also a controller chip
that can alter the brightness of each LED. This
makes it possible to make an almost unlimited
range of colors by mixing these three primary
colors in varying amounts. What’s more, the
controllers are chainable — a serial output of
one device feeds into the serial input of the next
device. So, you can have several hundred LEDs,
all controlled from a single GPIO pin.

The big snag with using the WS2812b with the
Raspberry Pi is that the LED requires feeding
with a very precisely timed stream of data.
Normally, the interrupts that Linux gives to
any program would disrupt the timing, and the
system wouldn’t work. Fortunately, there is a
very clever way around this. Unfortunately, the
details are very complex and way outside the
range of this book. To the rescue comes Jeremy
Garff, who has produced a library along with a

Python wrapper that makes it very easy to use
these LEDs. Under the hood, it uses a DMA
channel, direct memory access, which allows
simple operations like moving memory from one
place to another without the intervention of the
computer’s processor. This, coupled with the
pulse width modulation (PWM) register and an
internal FIFO (first in, first out) memory buffer,
allows the precisely timed data stream to be
generated.

The WS2812b comes in many different
products. There are single individual surface
mount packages, or you can get them mounted
on a tiny PCB for easy soldering. They come in
ready‐built configurations like an 8‐x‐8 square
matrix or a ring of LEDs. The LED rings are
interesting — you can get a small 12‐LED ring,
a 16‐LED ring, or a 24‐LED ring. If you want to go
even bigger, you can get a ring quadrant so that
four together gives you a 60‐LED ring. You can
even get them in conventional 5mm and 10mm
LED packages.

For Stomp 2, we use a 24‐LED ring. These have
a 66mm outside diameter and are just about the
smallest diameter you can get 22 LEDs into.

Schematic
Figure 6-6 shows how this is put together. The level converter is mounted on
a small piece of stripboard and connects to the Raspberry Pi through header
socket leads. Make sure that your power jack socket matches your power
supply output lead.

The wiring is quite simple, and there is an additional switch on this version to
act as a reset button. We found it was easy for things to get out of hand with
this version of the game with far too many bugs being generated. So, instead
of quitting and restarting the program, we thought it would be a good idea
to have a simple push button to clear out all the bugs. You can leave out the
reset switch altogether if you want. It will have no effect being left open circuit.

108 Part II: Working with LEDs and Switches �

The 2N7000 FET acts as a noninverting level converter, boosting the 3V3
signal from the Raspberry Pi to a 5V signal for driving the LED’s controller.
The only GPIO pin you can use on the Pi is GPIO 18, because that’s the only
one capable of having the PWM register switched to it. The resistor values
aren’t too critical. Anything between 1K and 10K should be fine.

Construction
There is not too much to the construction — the only tricky bit may be
mounting the power jack on the stripboard. The thing is, it simply won’t fit
on the 0.1‐inch pitch of the holes. What we did was put a small router bit in
our drill and cut three slots in the stripboard so the connections would fit in.
If you don’t have a router bit, you can make do with some fine needle files to
cut the slots; use the point of the round one to get you started.

When the power jack fits snugly on the stripboard, the rest of the circuit
can be built around it. The layout we used is shown in Figure 6-7, and a pho-
tograph is shown in Figure 6-8. The power jack has three connections. You
need to use only the two in the middle; the one on the side is just used for
mechanical stability. Solder it to some tracks, but electrically don’t go any-
where with it.

Note that the copper strips run vertically. Make sure you get this right when
you cut your stripboard to size. The reset push button we used was a two‐
wire one. There is room to put a four‐connector switch here if you want.

Using opposite corners when wiring these is simplest. The board can be
wired to the GPIO connector any way you want. We used two six‐way shells
to make up a short connector between the GPIO header pins and the five‐pin
connector on the level shifting board.

Figure 6-6: 
The Stomp 2

schematic.

109� Chapter 6: Stomp!

Figure 6-7: 
The physical
layout of the
level shifting

board.

Figure 6-8: 
The level

shifting
board.

Finally, we stuck the board and LED ring to a piece of plywood with a gener-
ous helping of hot glue. A few coats of medium oak wood staining varnish
beforehand made the whole thing look a lot more upmarket than it sounds.
A photograph of the finished unit is shown in Figure 6-9.

110 Part II: Working with LEDs and Switches �

Figure 6-9: 
The finished

Stomp 2
game.

Software
Before you can start using these awesome WS2812b devices, you need to
download and install the library to drive them. Do this by typing the follow-
ing from the command line:

wget https://github.com/tdicola/rpi_ws281x/raw/master/python/dist/rpi_ws281x-
1.0.0-py2.7-linux-armv6l.egg

sudo easy_install rpi_ws281x-1.0.0-py2.7-linux-armv6l.egg

Note: armv6l ends in the letter l and not the number 1.

Then you need to connect the circuit and run the code in Listing 6-2.

Never plug anything into the Pi while it’s powered up. Always shut down,
disconnect the power, attach the device, and reconnect the power.

Listing 6-2:  Stomp 2 Game

#!/usr/bin/env python
Stomp 2
Author: Mike Cook

import time, random
import wiringpi2 as io
from collections import deque
from neopixel import *

111� Chapter 6: Stomp!

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "

numLEDs = 24
strip = Adafruit_NeoPixel(numLEDs,18,800000,5,False)
sTime = 0.2
critColor = [Color(0, 0, 0),Color(0, 0, 32),Color(0, 32, 0),Color(32, 32, 32)]
stompColor = Color(32, 0, 0)
stompPos = 12
stompSwitch = 3 ; resetSwitch = 2
critters = deque([0 for i in range(0,numLEDs)])
direction = True # direction to run round the ring

def main():
 initGPIO()
 strip.begin()
 wipe()
 lastSwitch = 0
 print"Stomp on the bugs - three stomps to kill"
 while True:
 setup()
 startTime=time.time()
 while critters.count(0) != numLEDs:
 if io.digitalRead(resetSwitch) == 0 :
 resetGame()
 switch = io.digitalRead(stompSwitch)
 if lastSwitch != 0 and switch == 0:
 stomp = True
 if critters[stompPos] >0 :
 critters[stompPos] -= 1
 else:
 critters[stompPos] = 3
 else:
 stomp = False
 showCritters(stomp)
 moveCritters(direction)
 lastSwitch = switch
 time.sleep(sTime)
 wipe()
 print "all gone in ",time.time() - startTime,"seconds"
 print"have another go"
 time.sleep(3)

def moveCritters(wayRound):
 global critters
 if wayRound:
 critters.rotate(1)
 else :
 critters.rotate(-1)

(continued)

112 Part II: Working with LEDs and Switches �

def showCritters(stamp):
 for p in range(0,numLEDs):
 strip.setPixelColor(p, critColor[critters[p]])
 if stamp :
 strip.setPixelColor(stompPos, stompColor)
 strip.show()

def setup():
 global critters,direction
 for c in range(0,3):
 choice = random.randint(0,23)
 while critters[choice] != 0 :
 choice = random.randint(0,23)
 critters[choice] = 3
 if random.randint(0,1) == 0:
 direction = True
 else:
 direction = False

def resetGame() :
 global critters
 for i in range(0,numLEDs):
 critters[i] = 0
 print"Game restarted"
 while io.digitalRead(resetSwitch) == 0:
 pass # wait until switch released

def wipe():
 for i in range(0,strip.numPixels()):
 strip.setPixelColor(i, Color(0, 0, 0))
 strip.show()

def initGPIO():
 io.pinMode(stompSwitch,0) # input
 io.pinMode(resetSwitch,0) # input

Main program logic follows:
if __name__ == '__main__':
 main()

The overall structure of the code is the same as the Stomp 1 game, but there
are some changes needed to drive the WS2812b LEDs. The driver builds up
data in a buffer, so whenever you want to change an LED’s color, you put the
data in the buffer with the setPixelColor method. Nothing will change
on the LEDs until you transfer that buffer out to the LEDs using the show

Listing 6-2 (continued)

113� Chapter 6: Stomp!

method of the library. The data buffer object is set up using the Adafruit_
NeoPixel call. The numbers in the call are explained in the files that came
with the library, if you’re interested, but it just tells the library how many
LEDs to drive, on what pin (you can’t change this), and on what frequency.
The False at the end allows you to invert the output signal in case you use
an inverting buffer as a level shifter.

The major change here is that the critters list holds a number, and that
number defines the color of the LED. Each time a bug is stomped on, this
number is decremented until it reaches 0. Because the LEDs can change
color, there is no need for a red stomp LED — you just set the LED at the
stomp position to red.

The two games are virtually identical to play, but these LEDs can be too
bright to look at directly. This is reflected in the color definitions, but you
may want to do what we did and add a diffuser over the LEDs. We used some
0.5mm styrene sheet and cut out a circle with scissors, but a sheet of white
paper works nearly as well. You may want to mark the stomp position if you
do that.

Have a stomping good time!

114 Part II: Working with LEDs and Switches �

The Light Fantastic
In This Chapter

▶▶ Building an illuminated button pad

▶▶ Making your first PCB hack

▶▶ Seeing stunning multicolor effects

▶▶ Exploring alternate color models

▶▶ Learning how a keyboard scanning matrix works

T
his project is about producing a universal 4‐x‐4 illuminated switch
matrix. Why? Because it’s a great base for so many projects with phy­

sical interfaces. This chapter shows you how to build and test it, as well as
produce a light show with it. In Chapter 8, we show you how to make four
games using this interface, as well as a whole host of other uses you can put
this to. A photograph of the final project is shown in Figure 7-1.

Chapter 7

Figure 7-1: 
The finished

Light
Fantastic.

116 Part II: Working with LEDs and Switches �

Introducing the Light Fantastic
This interface can be described as an undedicated controller. It consists of
16 push switches, each illuminated by an RGB LED. In Chapter 6, you see how
you can use LEDs and, in particular, a long strip of LEDs, all controlled by a
single Raspberry Pi pin. Those LEDs in the strip are also available in a normal
5mm LED package, and they’re used to create this project.

Before the availability of WS2812b LEDs, constructing a project like this was
complex. The multiplexing required meant that it couldn’t be done with a
Raspberry Pi, because of the time‐stealing nature of the Linux core. But with
this revolutionary LED, this project is comparatively easy.

There are many ways to build this project, but the one we show you here
is simple because it makes use of a readymade printed circuit board. This
printed circuit board wasn’t designed to use the WS2812b LEDs; instead, it
was designed to use the more conventional common anode or common cath­
ode RGB LEDs. We show you how to hack the printed circuit board in order
to take this new component.

Here are the components you need:

✓✓ Button Pad 4x4–LED Compatible (www.sparkfun.com/
products/7835)

✓✓ Button Pad 4x4–Breakout PCB (www.sparkfun.com/products/8033)

✓✓ 16 WS2812b 5mm LEDs

✓✓ 16 1N4148 or similar diodes

✓✓ 16 0.1uF ceramic capacitors

✓✓ 470R resistor

✓✓ 0.5 meter of 26‐way ribbon cable

✓✓ 26‐way IDC socket (or 40‐way if you’re using a Raspberry Pi Model B+)

✓✓ Four 15mm hexagonal M3 tapped pillars or spacers

✓✓ 13 M3 10mm pan‐head screws

✓✓ 12 M3 10mm countersunk screws

✓✓ 21 M3 hex nuts

For the enclosure we used:

✓✓ Scrap PCB boards for the side (you can also use ABS or thin plywood)

✓✓ 3mm ABS sheet for the base, top cover, and light baffle

✓✓ 200mm of 7mm (or so) angle aluminum

http://www.sparkfun.com/products/7835
http://www.sparkfun.com/products/7835
http://www.sparkfun.com/products/8033

117� Chapter 7: The Light Fantastic

The Circuit
There are two parts to the circuit of the Light Fantastic: One is for the
switches and is called a switch matrix; the other is for the switch illuminating
LED. We start with the LEDs.

LEDs
This is a very simple circuit. It consists of a single string of 16 WS2812b LEDs,
chained together, with the data output of one going into the data input of the
next. Each LED has a connection to a 5V and ground of a power supply. In
most cases, this can be driven directly off the general‐purpose input/output
(GPIO) pins of the Raspberry Pi, as long as the Pi’s power supply can handle
an extra amp of current. The only other component is a 0.1uF ceramic decou­
pling capacitor across the power supply of each LED. The circuit is shown
in Figure 7-2.

Note: Figure 7-2 shows just 4 of the 16 LEDs for clarity; the other 12 LEDs are
wired just the same between the broken doted lines.

Switches
The switch circuit is a bit more complex. It’s based around the 4 x 4 silicone
button pad sold by SparkFun Electronics, composed of 16 switch covers that
have a ring of conduction carbon at the base. The idea is that it fits over a
dual ring and spoke track on a PCB; when the cover is pressed, the conduct­
ing ring makes contact and shorts out the inner and outer PCB track rings,
completing a circuit.

Figure 7-2: 
The LED

schematic.

118 Part II: Working with LEDs and Switches �

In theory, you could just wire up each switch to a separate GPIO pin, but
when you use a lot of keys, you use a lot of inputs, so switches are often
arranged in a matrix, as shown in Figure 7-3. In a matrix, there are rows of
switch inputs feeding into column outputs. Each switch is isolated with a
diode. This component lets the electric current flow only one way; it’s impor­
tant to stop the production of phantom key presses when more than one
switch is pressed at once. You can see that although there are 16 switches,
only 8 GPIO pins are used. In general for a square matrix, the number of
switches you can have is the square of half the number of GPIO pins you use.
As you use more GPIO pins, the saving becomes greater.

The price you pay for this efficiency in hardware is that you need to be clever
with the software. Basically, the software scans the matrix. It puts one row
line high and the others low. Then it looks at each column input in turn, and
if an input is found with a logic 1 on it, you know what key is being pressed
on that first row. If nothing is found, then that row is made to output a 0 and
the next row is set high. Then the inputs are scanned again. This process is
repeated until the whole matrix has been scanned. Suppose switch SW9 is
pressed. Only when Row 3 is high will there be a high on Column 2.

Here’s a small trick to save time seeing if any key is being pressed: Put all
the rows high and then if you see a logic high on any column, you know that
some key is being pressed. Although this isn’t the only way to read a keypad
matrix like this one, it’s by far the most common and is the method used on
the board we’re going to hack.

Figure 7-3: 
A switch

matrix.

119� Chapter 7: The Light Fantastic

The PCB
In addition to reading switches in a matrix, you can light LEDs in a simi­
lar manner, and that’s what the board you’re going to hack was originally
designed to do. In each row, all the red LEDs are connected together, as are
the green and blue components of the RGB LEDs. This is shown in Figure 7-4,
along with the pin out of the RGB LEDs used. Also shown are the connector
numbers for the rows and columns. Note the switch matrix circuit in addition
to the LED circuit on the board. The switch row inputs are marked as S on
the connector pads labeled JP.

To convert this into a circuit suitable for the WS2812b LEDs, you need to cut
some tracks and add some links in order to convert it into the circuit shown
in Figure 7-5. Note how similar it is. What was the blue LED connection on the
original board will now be the positive 5V power line. For each row, the green
connection is the data input to the first LED, and the red connection is the
output from the last LED in the row. Each LED has its data output linked to
the data input of the next LED in the row with a wire link.

So, first, you need to make 25 cuts in the tracks of the PCB. The trick is
making the correct 25 cuts (see the X’s in Figure 7-6). These cuts should be
done with a sharp knife or scalpel. Make two cuts in the track close to each
other, and then use the blade to remove the small section of track between
the two cuts.

Figure 7-4: 
The original
LED matrix

circuit.

120 Part II: Working with LEDs and Switches �

Figure 7-5: 
The

modified
LED circuit.

Figure 7-6: 
PCB track

cuts.

121� Chapter 7: The Light Fantastic

The only tricky cut is the one on the data output of the first LED on row 1,
next to the label Switch 1. This must be between the LED and the track going
off to the connector. This is shown in detail in Figure 7-7.

Construction
The next step is to solder in all the diodes, which are marked on the board as
rectangles with a line at one end. Make sure this line coincides with the line
marked on the diode itself.

Now, normally you would insert the diode and solder the other side of the
board. However, in this board, the silicone rubber switches will be placed
on this track side of the board, so you want as little height on the joints on
this side as possible. The technique we used was to fit the diode, and then
trim off the lead on the track side flush with the level of the board with a pair
of side cutters. Then solder from the component side, letting the solder be
sucked down into the hole by capillary action. Be careful not to put too much
solder on the joint because you’ll get a dome on the wiring side. The silicone
rubber can take some distortion, but try to keep it to a minimum. Figure 7-8
shows the three steps in mounting the diodes.

Figure 7-7: 
Close‐up of
the bottom‐

left cut.

Figure 7-8: 
Soldering

the diodes
and track‐
side wires.

122 Part II: Working with LEDs and Switches �

At the next stage, you add the LEDs, pushing them through the other side of
the board to the diodes and bending the legs so that the LEDs lie as close as
possible to the board. Notice that there’s a very subtle flat on the side of the
LED that marks the data out connection. The data out and the ground con­
nections are also longer than the other two pins. It’s critical that the LEDs are
put in the board the right way around. You’ll see an exaggerated flat on one
side of the legend where the LEDs are to be inserted, as shown in Figure 7-9.

Notice the holes showing in Figure 7-9 with the component wires soldered
from the track side and the solder filling the hole but not seeping through.
Also, notice the two circles with interleaving spokes that surround the LEDs.
These are the two contacts of the switch; the conducting rubber ring on the
silicone cover makes contact between the inner and outer ring when the
switch is pressed. Keep your fingers off these rings or at least wipe them
down with a grease solvent before you fit the silicone cover.

Now that the LEDs are in place, you can wire up each row of LEDs so that the
data out of one LED goes into the data in of the next. We used some thin insu­
lated wire to do this. There are three links on each of the four rows.

Finally, you need to solder a ceramic capacitor across the middle two wires
of the LEDs. These wires are decoupling capacitors and ensure a smooth
power supply for each controller chip in the LEDs. We used a small surface
mount capacitor and held it close with fine tweezers while we soldered it
onto the pins. If you like, you can use small leaded capacitors — just make
sure you bend the leads so that they’re as short as possible when soldered
up. A photograph of this is shown in Figure 7-10.

Now the rows and columns can be commoned up to complete the circuit.
Figure 7-11 shows a diagram of these, as well as where they should be con­
nected to the Raspberry Pi’s GPIO pins.

Figure 7-9: 
The mount-

ing of the
LEDs.

123� Chapter 7: The Light Fantastic

Figure 7-10: 
Linking up
the LEDs.

Figure 7-11: 
Linking up
the board

connectors.

124 Part II: Working with LEDs and Switches �

Connecting to the Raspberry Pi
We decided to use a flying lead from the Light Fantastic board to the
Raspberry Pi through a ribbon cable. This allows you to easily attach and
detach it. If you have a Raspberry Pi Model B+, you’ll need a 40‐way IDC con­
nector; otherwise, you need a 26‐way one. Either way, you need about half
a yard of 26‐way ribbon cable; clamp it to the connector, ensuring that the
red wire on the cable is pierced by the connector marked with a triangle, as
shown in Figure 7-12. Now squeeze it up in the vice and add any strain relief
clamp that came with the connector. The red wire is now pin 1 on the GPIO
connector and will be the wire in the ribbon connector closest to the edge of
the Raspberry Pi board when you plug it in.

Having fitted the connector at one end, you can proceed to wire up the other
end to the Light Fantastic board; the connections are shown in Figure 7-13.
Strip back the individual wires and cut short those that aren’t used. Connect
them to the back of the PCB in Figure 7-11. Note the two 5V and two ground
connections — wire them both up to reduce any resistance from the con­
nectors. If you don’t have a spare amp in your Pi’s power supply, connect
an external 5V supply to the board and don’t connect the 5V on the ribbon
cable. When we were finished, we used a double‐sided foam pad to stick the
ribbon cable to the PCB and stop any mechanical strain from being put on
the individual joints.

To finish it off, we put the silicone cover over the LEDs. We fastened it to
the PCB with a nut and bolt in the center and middle positions. Don’t tighten
the nuts too tight, or the silicone will distort. Finally, we attached a 15mm
M3 tapped pillar to each corner of the board so that it stood up on the desk
while we tested it.

Figure 7-12: 
Clamping up

one end of
the ribbon

cable.

125� Chapter 7: The Light Fantastic

At this point, the electronic construction is complete, and you can use the
project just as it is. However, the project looks much better if you surround
it with a box. Also, the colors of the LEDs look so much stronger with a black
background, and putting light baffles between the keys stop colors from
interfering with each other. We describe one way of doing this in the next
section, but if you’re making this, you may want to skip to the testing stage to
see if it works before committing to making the box.

Boxing the Light Fantastic
The project looks much better if it’s finished off by putting it in a box. Not only
does it look neater, but there is much less glare and the buttons’ colors are
better defined. The trickiest part about putting a box around it is making the
top bezel. Although you can buy four 2 x 2 bezels for the switch cover, they’re
quite expensive, so we decided to make our own. It would’ve been simple to
laser‐cut some thin plywood, but we didn’t have access to a laser cutter. If you
do have access to one, there is a PDF on the book’s website (www.dummies.
com/go/raspberrypiprojects) that contains the cutting file.

We used this file to print out the size and position of the 16 square holes
and spray‐glue mounted it onto some 3mm‐thick ABS plastic sheet. Then we
used a drill to rough out the holes and a file to give them as neat an edge as
we could. It took us about four hours to do this, but a file and a drill is all
you need. The only file we had that fit the square holes was a triangular one.
Figure 7-14 shows our progress partway through the process.

Figure 7-13: 
The flying

lead to the
Raspberry Pi.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

126 Part II: Working with LEDs and Switches �

The final fitting process involves carefully enlarging the holes one at a time
and testing that the button tops slip snugly over the top.

Don’t be too worried about the straightness of the edges to the holes.
Visually, any small imperfections are masked by the contrast of the two
parts, and it looked a lot more precise than it actually was.

We made the base from exactly the same template as the top, only we didn’t
need to cut out the holes for the switches.

You can make the sides of the box from thin plywood if you like, but we used
some scrap fiberglass PCB material, which is strong and thin and machines
easily (although it will blunt your tools faster). We think it gives the box
a “geek tech” feel. We used strips 26mm wide so that the button tops pro­
truded just 2mm above the top bezel. These were mounted on the base by
some 50mm lengths of angle aluminum held in place by two pan‐head screws
and nuts (see Figure 7-15). The right side had this bracket offset so that the
ribbon cable could come out of the side; a small recess in the side was cut in
with a file to allow the ribbon cable to go underneath.

We applied a little epoxy to fix the nuts to the brackets so they could be fas­
tened without having access to the inside of the box. On the underside of the
top bezel, we fitted some strips of the same ABS plastic we used for the top
to shield the lit buttons from each other. They were held in place by model
airplane glue (see Figure 7-16). In the central strip, we put a small notch in
the center and each end to clear the head of the rubber key fixing screws.
Then we carefully painted the top bezel a flat matte black. If we had used ply­
wood for the sides, we would’ve painted them as well at this stage.

Figure 7-14: 
Cutting

out the top
bezel.

127� Chapter 7: The Light Fantastic

In theory, the next step is simple: Drill four holes in the base to take the pil­
lars of the PCB assembly. In practice, though, you don’t know exactly where
to drill them and still have the top bezel square. So, we removed the side
panel with the ribbon cable slot, put the bezel on the buttons, and aligned
everything nice and square. Then we put some hot glue around the base of
the two pillars; when it had set, we disassembled the sides and unscrewed
those pillars from the PCB. This left just the base with two pillars glued to it
in exactly the right place. Then we took a 2.2mm drill (a 2mm one will do if
you haven’t got a 2.2mm) and drilled through the pillars into the base. Then
we picked off the pillars and the hot glue and drilled out the hole to 3mm.

Figure 7-15: 
The side

brackets.

Figure 7-16: 
Light baffles

on the
underside of

the top.

128 Part II: Working with LEDs and Switches �

This meant that the two holes were in exactly the right place. So, we assem­
bled it again with screws through the base into the two pillars — only this
time, we left the opposite side off and repeated the glue and drill trick to get
the other two pillars in exactly the right place.

Finally, we assembled the box again, left both sides off, and tacked the top
bezel to the two remaining sides at the corners, again with hot glue. Then we
removed the two sides and the top bezel, now attached to each other, and
put a heavy glue fillet around the inside of the sides and top.

Make sure you leave a small unglued area for the other two sides to fit in.

Bringing It All to Life
Now you need to write some software to read the switches and light the
LEDs. If you’ve done the project in Chapter 6, you’ve installed the NeoPixel
Library; if not, turn back to Chapter 6 to see how that’s installed.

Because both the NeoPixel library and the reading of switches require access
to the GPIO, you need to be in root mode, so open IDLE with gksudo idle
from the command line. Then type in the code in Listing 7-1 to test them both.

Listing 7-1:  Switch and Lights Test

NeoPixel Light Fantastic
Switch & lights test
Author: Mike Cook
import time, random
import wiringpi2 as io
from neopixel import *

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "

pinList = [9,24,10,23,7,8,11,25] # pins for keyboard
LED strip configuration:
LED_COUNT = 16 # Number of LED pixels.
LED_PIN = 18 # GPIO pin connected to the pixels
LED_FREQ_HZ = 800000 # LED signal frequency in hertz
LED_DMA = 5 # DMA channel to use for generating signal
LED_INVERT = False # no need to invert on the Light Fantastic
strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT)

def main():
 initGPIO()
 strip.begin()
 print"Keyboard to LED test - Ctrl C to quit"
 print"pressing key will light up the LED"

129� Chapter 7: The Light Fantastic

 wipe() ; key = 1
 while True:
 while keyPressed() == False :
 pass
 newKey = getKey()
 if newKey != -1 :
 key = newKey
 wipe()
 while keyPressed(): # wait for release
 pass
 strip.setPixelColor(key, Color(255, 0, 0))
 x = key % 4
 y = key / 4
 print"key ",key," X=",x," Y=",y
 strip.show()

def initGPIO():
 for pin in range (0,4):
 io.pinMode(pinList[pin],0)
 io.pullUpDnControl(pinList[pin],1) # input enable pull down
 for pin in range(4,8):
 io.pinMode(pinList[pin],1) # output
 io.digitalWrite(pinList[pin],1) # all high

def keyPressed(): #is a key being pressed>?
 pressed = False
 for pin in range(0,4):
 if io.digitalRead(pinList[pin]):
 pressed = True
 return pressed

def getKey():
 key =-1 # -1 = no key
 for outPin in range(4,8):
 io.digitalWrite(pinList[outPin],0) # all low
 for outPin in range(4,8):
 io.digitalWrite(pinList[outPin],1)
 for read in range(0,4):
 if io.digitalRead(pinList[read]):
 key = ((outPin-4) * 4) + read
 io.digitalWrite(pinList[outPin],0) #remove active row
 for outPin in range(4,8):
 io.digitalWrite(pinList[outPin],1) # leave all high
 return key

def wipe():
 for i in range(0,strip.numPixels()):
 strip.setPixelColor(i, Color(0, 0, 0))
 strip.show()

Main program logic follows:
if __name__ == '__main__':
 main()

130 Part II: Working with LEDs and Switches �

The setting up of the NeoPixel library should be familiar to you if you read
Chapter 6; the difference here is that there are only 16 LEDs. The pinList
list is the GPIO pin numbers used for the switch matrix. The first four are
the input columns, and the last four are the output rows of the matrix. These
pins are initialized in the initGPIO function. Note that the inputs have their
pull‐down resistors activated so they’ll read a steady zero in the event of no
key being pressed. The row outputs are all set high in preparation for the
next function, keyPressed.

This function’s job is just to return a True if a key is being held down and
a False if it is not. It assumes that all the rows are high, which they will be
after that first function. It does this by initializing a variable pressed to be
False and then looking at each column in turn and setting this variable to
True if a logic 1 is seen on any of the input columns.

Although sometimes you just want any key indication, when the program
knows a key is being held down, it’s normal to want to know which key. This
is where the getKey function comes in. It starts off by setting all the row
outputs to 0. Then a for loop will put them high one at a time. Inside this
for loop is another for loop, which reads each column in turn. If a logic 1 is
detected, it sets a variable called key to be the index of this inner loop plus
four times the index of the outer loop — in other words, the key number.
Before the function exits, the code sets all the row outputs high (to a logic 1)
for the next time the keyPressed function is called.

The wipe function simply sets each pixel color to black. So, all that remains
is the main function. This calls the functions that initializes the key’s GPIO
pins and the LEDs and sets them all to black. Then it enters an infinite loop
where it waits until there is a key press; then it goes off to read the key, wipes
the LEDs, and waits for the key to be released. Then the LED corresponding
to the key being pressed is set to green and both the key number and its x‐
and y‐coordinates are printed out before the pixel buffer is transferred to the
LEDs with the strip.show function call.

Now, you may have spotted that we said the LED to light up would be green,
but we set this up with the line strip.setPixelColor(key, Color(255,
0, 0)), which, as you may expect from Chapter 6, would be red. It turns out,
for no explained reason we can tell, that the 5mm version of the WS2812b has
the red and green data packets swapped over when compared to the surface
mount package used in the LED strips and rings. So, you need to swap red
and green in the function call to get the color you expect.

A bit of a show
Now that we have everything working, we finish off this chapter with a bit of
a light show. Basically, it consists of eight sequences that you can use to turn
on the LEDs and a way of generating a random color. The LEDs turn on one

131� Chapter 7: The Light Fantastic

at a time with a small interval between them and then rapidly turn off. This
repeats until another key is pressed — the keys are looked at only after the
sequence ends, so you have to press a key and hold it until all the lights are
off before you can change the sequence.

For each sequence, there are two ways of generating the color: one changing
every four steps in the sequence and the other changing every step. The top
eight keys evoke the first changing method; the second eight keys evoke the
second step.

The way colors are generated here is worth a mention. If you want to gener­
ate a random color, setting the red, green, and blue components may seem
to be what you would want to do, but that’s not the case. Although it will pro­
duce random colors, they’ll mostly turn out to be fairly washed out.

What you need is another way of representing color. The red, green, blue
(RGB) method is often called a color cube, with each color component repre­
senting a coordinate in a cubic space. There are several other color models
as well; one popular one is known as hue, saturation, value (HSV). The hue
is what you would describe as the basic color; the saturation is how intense
that color is; and the value is the brightness of the color.

Saturation and value are quite different, although they sound like they may
be the same thing. If you were to deal with mixing paints, the hue would be
the basic pigment, and the saturation would depend on how much white you
added. For a fully saturated color, you would add no white, and for a pale,
washed‐out color, you would add a lot. Similarly, the value would be how
much black paint you added — no black for the full brightness and a lot for a
very dim, dark color. This representation of a color is often known as hex cone
space because the space bounded by these coordinates represents a hexago­
nal cone. We use a simple function to generate a full‐brightness, fully saturated
color that is very useful for generating a reasonable set of random colors.

The code for the light show is shown in Listing 7-2. Because this has the key
reading functions identical to those in Listing 7-1, to save space they aren’t
printed here — just copy the function from the previous listing you typed.

Listing 7-2:  The Light Fantastic Light Show

NeoPixel Light Fantastic
Light sequence
Author: Mike Cook

import time, random
import wiringpi2 as io
from neopixel import *

(continued)

132 Part II: Working with LEDs and Switches �

Listing 7‑2 (continued)
print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "
pinList = [9,24,10,23,7,8,11,25] # pins for keyboard
order =[[0,1,2,3,7,6,5,4,8,9,10,11,15,14,13,12],
 [0,4,1,5,8,2,12,3,9,6,13,7,10,14,11,15],
 [9,10,6,5,4,8,12,13,14,15,11,7,3,2,1,0],
 [12,9,6,3,0,5,10,15,4,8,13,14,11,7,2,1],
 [12,8,4,0,1,2,3,7,11,15,14,13,9,6,10,5],
 [0,8,1,9,2,10,3,11,7,15,6,14,5,13,4,12],
 [12,3,15,0,9,6,10,5,8,7,4,11,13,2,14,1],
 [12,15,0,3,8,11,4,7,13,1,14,2,9,6,5,10],]

strip = Adafruit_NeoPixel(16,18,800000,5,False)

def main():
 initGPIO()
 strip.begin()
 print"Use the light fantastic keyboard to:-"
 wipe() ; key = 1
 print"press key for demo ",
 print"press and hold until lights go out to change demo"
 while keyPressed() == False :
 pass
 while True:
 newKey = getKey()
 if newKey != 16 :
 print "New sequence ",newKey
 key = newKey
 wipe()
 while keyPressed(): # wait for release
 pass
 if key < 8:
 fill(key, True)
 elif key < 16:
 fill(key-8, False)

def initGPIO():
 # see Listing 7-1 for this function
def keyPressed():
 # see Listing 7-1 for this function
def getKey():
 # see Listing 7-1 for this function
def wipe():
 # see Listing 7-1 for this function

def colorH(angle): # Color returned H=angle, S=1, V=1
 while angle <0 : # get angle in range 0 to 255
 angle += 256
 while angle > 255:
 angle -=256
 if angle < 85:

133� Chapter 7: The Light Fantastic

 return Color(255 - angle * 3, angle * 3, 0)
 elif angle < 170:
 angle -= 85
 return Color(0, 255 - angle * 3, angle * 3)
 else:
 angle -= 170
 return Color(angle * 3, 0, 255 - angle * 3)

def fill(seq, col):
 startH = random.randint(0,360)
 incH = random.randint(7,35)
 color = colorH(startH)
 for i in range(0,strip.numPixels()):
 if col :
 if (i % 4) == 0 :
 color = colorH(random.randint(0,360))
 else:
 startH += incH
 color = colorH(startH)
 strip.setPixelColor(order[seq][i], color)
 strip.show()
 time.sleep(0.3)
 time.sleep(1.0)
 for i in range(0,strip.numPixels()):
 strip.setPixelColor(order[seq][i], Color(0, 0, 0))
 strip.show()
 time.sleep(0.05)

Main program logic follows:
if __name__ == '__main__':
 main()

The sequence is defined as a list of lists or two‐dimensional array called
order. This sets the order of what lights to turn on in any sequence.
Following that, the call to the Adafruit_NeoPixel function is the same
as the previous listing, except the parameters are placed in the call directly
leading to another saving of lines in the listing. The main function is very
similar to the previous listing, only this time, at the end, the fill function is
called. It’s called with the second parameter either True or False, depend­
ing on whether the key number is less than eight. This defines the color‐
changing strategy. The first parameter defines the sequence and, because
there are only eight of them, it’s kept below eight for key numbers above
seven by subtracting eight.

The functions fill and colorH are the new ones here. The fill function
does all the work driving the LEDs, and colorH does the setting of the color
given a number representing the angle H. To make matters simpler, angles
are given in 1/256th of a circle to match the resolution of the color in RGB
space.

134 Part II: Working with LEDs and Switches �

The fill function takes in two values: the sequence to use and the way to
change the color, either a random color in groups of four, or a chain of blend­
ing colors. The color is defined by the H or hue number and is first set to be
a random number; then the increment of this number (that is, the amount
it’s changed each time you want a new number) is set to a random number
between 7 and 35.

Next, a for loop steps through each position in the sequence in turn, and
sets the pixel color, updates the strip, and delays for a short time. Depending
on the way the color is changed, either the startH variable is incremented
or every fourth time around the loop a new color is set. The % operator gives
the reminder from a division, so i % 4 is zero every fourth loop.

Before that, the loop index is examined to see if the color needs changing; if it
does, it updates the colorH variable startH calls colorH function.

The colorH function may look a little strange, but it isn’t so bad when you
know what’s is doing. First, it ensures that the given angle is within the range
of 0 to 255. Then it splits the range of possible angles into three, representing
the three basic primary colors. Then it generates a color from this primary
color and the next one in the sequence. Note that there is always a color
component that is zero and a mix of the other two components. The times by
three in the color setting statement maps one‐third of the circle to the range
of the individual color components.

Things to try
You can tinker with this for variety. For example, you might alter the
sequence of lights or add more sequences. You can run the original demo
from the NeoPixel library. We’ve added some changes to this and incorpo­
rate reading the keyboard to select a sequence and also swapped the red
and green to make the colors to be as they were originally intended; that
listing can be found on the book’s website (www.dummies.com/go/
raspberrypiprojects). You could make it so that you show a whole frame
of pixels at once or show a sequence of them to make an animation like a
firework exploding. You could even read the sequence of frames from a file.

In the next chapter, we show you how to play some games with the
Light Fantastic.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

Games for the Light Fantastic
In This Chapter

▶▶ Making more projects with the Light Fantastic keypad

▶▶ Finding hidden treasure and learning the resistor color code

▶▶ Making a color sequence sliding block puzzle

▶▶ Trying your skill at matching colors

▶▶ Battling logic to get all the lights out

H
aving built the Light Fantastic in Chapter 7, you’re ready to have some
fun with it. This chapter presents four games, along with ideas for

variants and more complex puzzles. Each one is colorful fun.

If you haven’t built the Light Fantastic yet, be sure to turn back to Chapter 7.
You won’t get very far in this chapter otherwise.

A few notes before we begin: The Light Fantastic consists of illuminated push
buttons. Each one can be set to a range of colors too subtle for your eye to
distinguish. In scientific terms, this is known as better than a “just noticeable
difference.” The color of each LED is defined by writing a value of the red,
green, and blue components of the color into a buffer. When the buffer has
been set to what you want to display, it’s transferred to the LEDs with the
show call. The push buttons and LED positions should match up, as shown in
Figure 8-1.

The sequence numbers start at 0 and go to 15, but there is an alternative way
of describing a position: with a pair of x‐ and y‐coordinates. This is quite a
handy thing to do when you’re looking for an adjacent position rather than
just the next one in the sequence. In Figure 8-1, you can see how we can con-
vert a sequence number to x‐ and y‐coordinates and back again. You may not
have come across the % operation before, but in Python (and many other
languages), it’s the modulus operation. That means, “Do an integer division,
but just give the remainder.” Note that the divide operator (/) returns just
an integer; if the two numbers involved are integers, it throws away the
reminder.

Chapter 8

136 Part II: Working with LEDs and Switches �

Finally, in order to save on your fingers some functions that are the same
in all programs are not repeated. Instead, after the function definition is a
note saying where the function can be copied and pasted from. All these
programs require you to enter the IDLE editor by using gksudo idle from
a command‐line window. The programs interact with the user through the
Python console window, so keep that the active window (the one with the
keyboard focus). All the programs run in an infinite loop, so when you want
to quit one, press Ctrl+C. If that doesn’t appear to work, click with your
mouse on the Python console window to give it the keyboard focus.

Let the games begin!

Treasure Hunt
Treasure Hunt (see Figure 8-2) is a simple game with an educational motive.
A treasure has been hidden in one of the squares, and you have to find it. If
you guess right and press the right square, it flashes. If you press the wrong
square, the square lights up in a color that tells you how many squares you
are away, in terms of horizontal plus vertical distance (diagonal distances
don’t count).

Notice in the diagram that the distance of every square has a number in it.
On the Light Fantastic, there are only colors, so the colors that light up are
the distance numbers in the resistor color code colors. So in addition to play-
ing a game, you’re learning the resistor color code (well, at least up to six).

Resistors have their values marked in colored bands, with each color
representing a number. They are as follows:

Figure 8-1: 
Light

Fantastic
position

mapping.

137� Chapter 8: Games for the Light Fantastic

0 Black
1 Brown
2 Red
3 Orange
4 Yellow
5 Green
6 Blue
7 Violet
8 Gray
9 White

You need to learn these codes if you’re going to work with electronics.
Unfortunately, LEDs aren’t good at producing brown and orange, and brown
can be confused, exactly as it can be with real resistors. It’s easy enough to
fiddle around with the numbers if you don’t like our rendering of the colors.

The code for this game is given in Listing 8-1.

Figure 8-2: 
Treasure

Hunt.

Listing 8-1:   Treasure Hunt	

#!/usr/bin/env python
NeoPixel Light Fantastic
Treasure Hunt
Author: Mike Cook
#
import time, random
import wiringpi2 as io

from neopixel import *

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()

(continued)

138 Part II: Working with LEDs and Switches �

Listing 8‑1 (continued)

print"OK no crash" ; print" "

pinList = [9,24,10,23,7,8,11,25] # pins for keyboard
black=0, brown=1, red=2, orange=3, yellow=4, green=5, blue=6
distanceC = [Color(0,0,0), Color(45,139,0), Color(0,255,0),
 Color(120,255,0), Color(255,255,0), Color(200,0,0),
 Color(0,0,200)]
treasure = 0 # location of the treasure
strip = Adafruit_NeoPixel(16,18,800000,5,False)

def main():
 initGPIO()
 strip.begin()
 print"Treasure hunt - find the hidden treasure"
 print"pressing a key will show the distance to the treasure"
 wipe() ; key = -1
 while True:
 setBoard() # set up colors to use
 while key != treasure:
 while keyPressed() == False :
 pass
 newKey = getKey()
 if newKey != -1 :
 key = newKey
 while keyPressed(): # wait for release
 pass
 makeMove(key)
 print"puzzle complete - any key for new game"
 while keyPressed() == False :
 pass
 while keyPressed(): # wait for release
 pass
 time.sleep(0.5)
 print"play"

def initGPIO():
 # see Listing 7-1 for this function
def keyPressed():
 # see Listing 7-1 for this function
def getKey():
 # see Listing 7-1 for this function
def wipe():
 # see Listing 7-1 for this function

def setBoard():
 global treasure
 wipe()
 treasure = random.randint(0,15)
 #uncomment to cheat
 #print" treasure at",treasure

139� Chapter 8: Games for the Light Fantastic

The Colors are defined in a list called distanceC. For these 5mm packaged
versions of the WS2812b LEDs, the Color function takes in the color com-
ponents green, red, and blue. Note that black is defined even though it isn’t
used in this game, so all the other colors have a list index, which is the same
as the color’s value in the resistor color code. The main function sets up the
LEDs and the switches and prints the instructions to the console.

The setBoard function picks a random square to hide the treasure in. Note
that there are some cheat lines commented out with # that will show the
square number in the console and even light up the treasure square as a light
gray color.

When the main function has a key press, the key number is passed to the
makeMove function. This function first calculates the distance to the treasure
by adding up the x displacement and the y displacement; then it checks to
see if the move has found the treasure. If it has, the flashTreasure func-
tion is called. True to its name, it alternates the treasure square between
black (unlit) and magenta (a color not otherwise in the game).

 #strip.setPixelColor(treasure, Color(128, 128, 128))
 #strip.show()

def makeMove(move):
 distX = abs((move % 4) - (treasure % 4))
 distY = abs((move / 4) - (treasure / 4))
 distance = distX + distY
 if move != treasure:
 strip.setPixelColor(move, distanceC[distance])
 strip.show()
 else:
 print"found it"
 flashTreasure()

def flashTreasure():
 for i in range(0,7):
 strip.setPixelColor(treasure, Color(0,0,0))
 strip.show()
 time.sleep(0.3)
 strip.setPixelColor(treasure, Color(0,255,255))
 strip.show()
 time.sleep(0.3)

Main program logic follows:
if __name__ == '__main__':
 main()

140 Part II: Working with LEDs and Switches �

If the treasure hasn’t been found, the key you pressed is illuminated with a
color equal to the distance. The important point here is the use of a list to
define a color whose index is the distance color.

You can do more with this game if you like. For example, you could make
a more elaborate win celebration, maybe taking the elements of the demo
in Chapter 7. You could keep a total of the best score — that is, the fewest
moves. You could play the game with a time element, where the score is not
simply the number of moves it took you but a measure of the amount of time
it took. Because this is such a simple game, you could change it so that you
played a number of games — say, six — and it gave you an average score.
Finally, you could extend it to a Battleship type of game.

Sliding Block Puzzle
This game is a colorful twist on the sliding‐block puzzle game. Normally, you
have to get numbered squares into an ascending order, but here it’s much
trickier. You have to get the colors in the right sequence according to the H
value in the HSV color space (see Chapter 7). The correct color sequence is
shown at the start; then the colors are scrambled up. Normally, you would
have no chance of remembering 15 colors from just one showing, so here
there are two ways you can get a hint:

✓✓ Press the blank square, and all the colors that are not in the correct
order will blink. This is great for keeping track of how well you’re
doing.

✓✓ Press a key that is not in line horizontally or vertically with the blank
space. This move would normally be invalid, but here it’s a request to
repeat the display of the final sequence you’re aiming for.

In a normal move, if you press a key that’s adjacent to the blank space, it
swaps position as you would expect. However, if you press a key that’s on
the same column or row as the blank, all the colors are pushed up from
where you pressed into the blank space, and the blank appears where you
made the move.

Listing 8-2 shows the code for this game.

The code follows the overall structure of the previous game in terms of
initialization. Here, there are two lists: gameOrder defines the order you
have to arrange the colors in, and lightC defines the current colors. At this
initial stage, it’s set so that they’re all black.

141� Chapter 8: Games for the Light Fantastic

Listing 8-2:  Sliding Block Puzzle

#!/usr/bin/env python
NeoPixel Light Fantastic
Sliding block puzzle
Author: Mike Cook
#
import time, random
import wiringpi2 as io

from neopixel import *

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "

pinList = [9,24,10,23,7,8,11,25] # pins for keyboard
gameOrder =[0,1,2,3,4,5,6,7,8,9,10,11,12,13,15,14] # working order
lightC = [Color(0,0,0) for i in range(0,16)]
strip = Adafruit_NeoPixel(16,18,800000,5,False)

def main():
 initGPIO()
 strip.begin()
 print"Sliding block puzzle - get the lights in the right order"
 print"pressing the unlit block will blink blocks in the wrong place"
 print"pressing a key that does not result in a shift will show the right

order"
 wipe() ; key = 1
 while True:
 setBoard() # set up colors to use
 while not finished():
 while keyPressed() == False :
 pass
 newKey = getKey()
 if newKey != -1:
 key = newKey
 while keyPressed(): # wait for release
 pass
 makeMove(key)
 showSet()
 print"puzzle complete - any key for new game"
 while keyPressed() == False :
 pass
 while keyPressed(): # wait for release
 pass

def initGPIO():
 # see Listing 7-1 for this function
def keyPressed():
 # see Listing 7-1 for this function

(continued)

142 Part II: Working with LEDs and Switches �

Listing 8‑2 (continued)
def getKey():
 # see Listing 7-1 for this function
def wipe():
 # see Listing 7-1 for this function
def colorH(angle):
 # see Listing 7-2 for this function

def setBoard():
 global gameOrder,lightC
 random.shuffle(gameOrder) # mix up the board
 h = random.randint(0,255)
 hInc = random.randint(16,35)
 for i in range(0,15):
 lightC[i] = colorH(h)
 h += hInc
 showSol()

def showSol():
 for i in range(0,16):
 strip.setPixelColor(i, lightC[i])
 time.sleep(0.08)
 strip.show()
 time.sleep(1.0)
 showSet()

def showSet():
 for i in range(0,16):
 #print"game order ",gameOrder[i]
 strip.setPixelColor(i, lightC[gameOrder[i]])
 strip.show()

def finished():
 done = True
 for i in range(0,16):
 #print i," Game order ", gameOrder[i]
 if gameOrder[i] != i:
 done = False
 return done

def showCorrect(): #blink incorrect squares
 for blink in range (0,3):
 for i in range(0,16):
 if gameOrder[i] != i:
 strip.setPixelColor(i,Color(0,0,0))
 strip.show()
 time.sleep(0.5)
 showSet()
 time.sleep(0.3)

143� Chapter 8: Games for the Light Fantastic

def makeMove(move):
 if lightC[gameOrder[move]] == Color(0,0,0):
 #blank key pressed
 showCorrect()
 else:
 #print"not blank"
 x = move % 4
 y = move / 4
 blank = findBlank()
 if blank[0] == x:
 shuffle(4,blank[1],y,blank[2],move)
 elif blank[1] == y:
 shuffle(1,blank[0],x,blank[2],move)
 else:
 #print" no alignment with blank"
 wipe()
 showSol() # show what you are aiming for

def shuffle(incSize,distance,target,blankPos,move): #move into blank
 global gameOrder
 inc = incSize
 if distance > target:
 inc = -incSize
 while blankPos != move:
 temp = gameOrder[blankPos]
 gameOrder[blankPos] = gameOrder[blankPos + inc]
 gameOrder[blankPos + inc] = temp
 blankPos += inc

def findBlank():
 blank =(-1,-1,-1)
 for i in range(0,16):
 if lightC[gameOrder[i]] == Color(0,0,0):
 blank = (i % 4, i / 4, i)
 if blank == (-1,-1,-1):
 # this should never happen
 print"error blank not found"
 return blank

Main program logic follows:
if __name__ == '__main__':
 main()

The setBoard function first mixes up the gameOrder list, which defines the
initial startup position. Then the lightC list is populated by a succession of
colors defined by a randomly chosen initial h angle and incremented by a ran-
domly chosen value, incH. When that’s finished, the showSol function shows
the solution, by simply showing the pixels in the order of the lightC list.

144 Part II: Working with LEDs and Switches �

The while not finished( ): line calls the finished function, which
returns a true when the puzzle is complete. It does this by checking that the
gameOrder list matches the sequence 0 to 15. If any entry in the list fails, the
logic variable done is set to false, and it’s this variable that is returned by
the function.

So, assuming the puzzle is not complete, the main function waits for a key
press. When it gets one, it calls the makeMove function, which looks to see what
sort of move has been made. If it’s the blank key, it will call the showCorrect
function and blink the positions that don’t contain the correct color. It does that
by alternately blanking the pixels that don’t correspond to the right order and
then showing the current state of the board with the showSet function.

If the move wasn’t the blank key, it works out the x‐ and y‐coordinates of the
move key and then calls the findBlank function, which, as its name implies,
returns a tuple (a list of numbers in one variable) of the x‐ and y‐coordinates
of the blank space. If the blank space is at the same x value as the move, the
shuffle function is called. This takes the colors between the blank space
and the move and shuffles them up one. This function copes with moving the
colors along both the x‐axis and the y‐axis, depending on what’s needed. We
started out by writing two functions — one to shuffle in the x‐axis and the
other for the y‐axis — but they looked so similar. So we combined them into
one and let the axis be defined by the parameters passed to it. This make for
very efficient use of code, but it can be a bit tricky to follow at first.

If there is no alignment in either the x‐ or y‐coordinate between the blank
space and the move, this is an invalid move and the code responds by show-
ing the solution — that is, the sequence of colors you’re aiming for.

When the puzzle is complete, a message is output to the console. On pressing
any key, a new game is set up.

You can experiment with changing the range of numbers used for the incH
variable. Making it a small number makes the game much more difficult, with
blue colors starting to look very similar. Making this value too big means you
lose any sense of blending between adjacent colors.

Because this is a much longer game than the first one, we suggest that you
base any scoring on time rather than the number of moves made. You may
want to incorporate an “I give up” combination of keys.

Color Match
Mike Cook wrote this game specifically to annoy someone in an online forum.
He was using LEDs without any form of current control and claimed that
the intensity of the LEDs had not diminished in three months of continuous

145� Chapter 8: Games for the Light Fantastic

operation. It turned out he wasn’t measuring it in any way but claimed he
could tell by looking. Mike said he couldn’t remember the brightness over
three seconds let alone three months, so he designed this game to prove it.
This is a Light Fantastic version that deals not only with brightness but also
with color.

The way this game works is that the center four switches light up for just
over a second. Then all goes dark, and two seconds later the perimeter
lights are lit up and you have to press the one of the same color as the one
lit up in the center. Then the center color, the matching perimeter color, and
your guess, if different, flash. If you got it right, there is only one perimeter
light flashing — your choice. If you got it wrong, you can see the difference
between the color you chose and the central colors. Just to confirm things, a
console message is produced as well. If you want to have another look at the
colors, you can press one of the central four keys for a sneaky reminder.

The code for this program is shown in Listing 8-3.

Listing 8-3:  Color Match

#!/usr/bin/env python
NeoPixel Light Fantastic
Color Match
Author: Mike Cook
#
import time, random
import wiringpi2 as io

from neopixel import *

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "

pinList = [9,24,10,23,7,8,11,25] # pins for keyboard
colorOrder = [0,1,2,3,7,11,15,14,13,12,8,4]
colorRange = [Color(0,0,0) for i in range(0,12)]
strip = Adafruit_NeoPixel(16,18,800000,5,False)
cheat = False ; target = 0

def main():
 initGPIO()
 strip.begin()
 print"Color Match"
 print"the center four lights will flash a single color"
 print"then you press the match on the outside"
 wipe() ; key = 1

(continued)

146 Part II: Working with LEDs and Switches �

Listing 8‑3 (continued)

 while True:
 guess = True
 setBoard() # set up colors to choose from
 while guess:
 while keyPressed() == False :
 pass
 newKey = getKey()
 if newKey != -1:
 key = newKey
 while keyPressed(): # wait for release
 pass
 guess = makeMove(key)
 print"another go"
 time.sleep(1.5)

def initGPIO():
 # see Listing 7-1 for this function
def keyPressed():
 # see Listing 7-1 for this function
def getKey():
 # see Listing 7-1 for this function
def wipe():
 # see Listing 7-1 for this function
def colorH(angle):
 # see Listing 7-1 for this function

def setBoard():
 global colorRange,target
 wipe()
 h = random.randint(0,255)
 hInc = 8 # sets how hard it is
 for i in range(0,12):
 colorRange[i] = colorH(h)
 h += hInc
 target = random.randint(0,10)
 showReminder()
 if cheat :
 print target

def showSet():
 for i in range(0,12):
 strip.setPixelColor(colorOrder[i], colorRange[i])
 strip.show()

def showTarget():
 strip.setPixelColor(5, colorRange[target])
 strip.setPixelColor(6, colorRange[target])
 strip.setPixelColor(9, colorRange[target])

147� Chapter 8: Games for the Light Fantastic

 strip.setPixelColor(10, colorRange[target])
 strip.show()

def showReminder():
 wipe()
 time.sleep(0.4)
 showTarget()
 time.sleep(0.9)
 wipe()
 time.sleep(1.5)
 showSet()

def makeMove(move):
 guess = True
 if move == 5 or move == 6 or move == 9 or move == 10:
 showReminder()
 else:
 guess = False # flash guess and color and right color
 if colorOrder[target] == move:
 print"Yes right"
 else:
 print"No wrong"
 for t in range(0,6):
 wipe()
 time.sleep(0.2)
 strip.setPixelColor(move, colorRange[colorOrder.index(move)])
 strip.setPixelColor(colorOrder[target], colorRange[target])
 showTarget()
 time.sleep(0.4)
 return guess

Main program logic follows:
if __name__ == '__main__':
 main()

Again, following the same template as before, the colorOrder list has in it
the keypad’s numbers for the perimeter of the Light Fantastic display. The
colorRange list is used to hold the colors to display. The main function
starts by initializing things and printing out the instructions. The setBoard
function generates a range of colors to act as the potential target and then
chooses one of them at random. Although the initial point in the HSV color
space is chosen at random, the hInc or increment value is fixed. This effec-
tively controls the change between adjacent colors; a value in the listing is
one that we found to give a just noticeable difference over the whole range,
with blue color changes being the hardest to detect. Make this value bigger
for an easier game.

148 Part II: Working with LEDs and Switches �

After the colors have been defined, the setBoard function calls the show
Remainder function. This clears the key colors, shows the target color with
the showTarget function, wipes that, and then shows the colors around the
outside of the keypad with the showSet function.

After all that, back in the main function, the program looks for a key press.
There are two actions that can happen as a result of pressing a key: One is to
make a guess as to the correct color, and the other is to request a review of
the target color. This is decided in the makeMove function. If the move is one
of the central keys, it calls the showRemainder function just like at the end
of the setBoard function. Then it returns a True value to inform the main
function that this round has not yet finished.

If, however, your move is one of the outer keys, that’s taken as a valid
answer, and a check is made to see if the key you pressed is where the target
color was in the colorOrder list. Then your success in matching the color is
printed out to the console. Finally, the target color, your guess, and the cor-
rect result are flashed. Note that there are two lines that define your guess
and the correct color. These are:

 strip.setPixelColor(move, colorRange[colorOrder.index(move)])
 strip.setPixelColor(colorOrder[target], colorRange[target])

If you’re correct, these two lines will result in setting the same pixel number
to the same color. The use of colorOrder.index(move) is a reversal of
how you normally use lists. This returns a number that gives the position of
where the value of move is in the list.

There are a few things you can tinker with in this program. First, you can
alter the sleep delays so you have longer to wait before you see the choice of
colors. Unsurprisingly, the longer you have to wait, the harder the game. The
order of the color choice also is constantly increasing around the perimeter
in order of increasing H color value. You can scramble that by applying a
random shuffle to the colorOrder list.

Perhaps the biggest change you can make is in the generation of colors.
The eye is much less sensitive to the amounts of blue in a color than to red
or green. You could change the H increment value according to the initial
H starting point so that if H were clear of the blue content — that is, below
a value of 170 — then the hue increment could be smaller. You could
change the way the choice colors are generated so that it gets harder as
more and more correct answers are given and drops down to easy if a
mistake is made. Each degree of difficulty could be marked with a level
number. Then you could introduce an element of competition in how high
a level you can get.

149� Chapter 8: Games for the Light Fantastic

Lights Out
Lights Out is a fantastic puzzle. We normally implement it on a 3 x 3 grid, but
here it’s on the 4 x 4 grid of the Light Fantastic. The idea is to turn out all the
lights by pressing keys. The snag is that when you press one key, not only
is that key inverted but those surrounding it are also inverted. It basically
inverts a cross pattern of adjacent keys, but that’s clipped if the key is close
to the edge. This is shown in Figure 8-3.

The game works on two levels: First, it’s about getting all the lights out. But
when you get better, the aim is to get the lights out in the minimum number
of moves.

You can’t just generate any random collection of lights — it has to be a pat-
tern that is solvable. To do this is remarkably simple: You start off with a
finished representation of the board and make a number of random moves
to generate the start position. The number of moves it took to generate the
start position is the number of moves you need to get back to the end posi-
tion. Each move is fully reversible, so if you press a key twice, you get back
to your original position. That applies no matter what keys you press and
in what order. Any sequence of key presses is reversed by the same keys
in a different order. All you need to do in order to make sure you’re getting
the minimum number of moves when you’re setting up the board is not use
any key twice. You can set up a board that is solvable in any number of key
presses you like. It turns out that for one or two moves, it’s trivial but for
three or more moves it becomes increasingly difficult.

The code for the Lights Out game is shown in Listing 8-4.

You should be seeing a pattern in these programs by now. Many of the func-
tions have the same names but do different things, depending on the game.
This time, the state of the board is represented by the list lightC. This
needs checking to make sure they’re all out. One difference here is that you

Figure 8-3: 
Lights Out

logic.

150 Part II: Working with LEDs and Switches �

Listing 8-4  Lights Out

#!/usr/bin/env python
NeoPixel Light Fantastic
Lights Out
Author: Mike Cook
#
import time, random
import wiringpi2 as io

from neopixel import *

print"if program quits here start IDLE with 'gksudo idle' from command line"
io.wiringPiSetupGpio()
print"OK no crash" ; print" "

pinList = [9,24,10,23,7,8,11,25] # pins for keyboard
litColor = Color(255,0,0)
lightC = [Color(0,0,0) for i in range(0,16)]
strip = Adafruit_NeoPixel(16,18,800000,5,False)
cheat = True

def main():
 initGPIO()
 strip.begin()
 print"Lights Out - remove all the lights"
 print"pressing a key will invert the light and others surrounding it"
 playLevel = int(raw_input("Enter the level 3 to 8 "))
 if playLevel < 3 or playLevel > 8 :
 playLevel = random.randint(3,8)
 print"Setting level to ",playLevel
 wipe() ; key = 1
 while True:
 turn = 0
 print"this can be completed in",playLevel,"moves"
 setBoard(playLevel) # set up colors to use
 while not finished():
 while keyPressed() == False :
 pass
 newKey = getKey()
 if newKey != -1:
 key = newKey
 while keyPressed(): # wait for release
 pass
 makeMove(key,True)
 turn += 1
 print"You have had",turn,"turns"
 if turn > playLevel:
 print"taking more than you should"

151� Chapter 8: Games for the Light Fantastic

 if turn == playLevel:
 print"Well done - minimum number of turns"
 print"puzzle complete - any key for new game"
 while keyPressed() == False :
 pass
 while keyPressed(): # wait for release
 pass

def initGPIO():
 # see Listing 7-1 for this function
def keyPressed():
 # see Listing 7-1 for this function
def getKey():
 # see Listing 7-1 for this function
def wipe():
 # see Listing 7-1 for this function
def colorH(angle):
 # see Listing 7-1 for this function

def setBoard(level):
 global lightC,litColor
 for i in range(0,strip.numPixels()):
 lightC[i] = Color(0, 0, 0)
 h = random.randint(0,255)
 litColor = colorH(h)
 moves = [random.randint(0,15)]
 move = moves[0]
 makeMove(move,False)
 for m in range (0,level-1):
 while move in moves:
 move = random.randint(0,15)
 moves.extend([move])
 makeMove(move,False)
 showSet()
 if cheat :
 print moves

def showSet():
 for i in range(0,16):
 strip.setPixelColor(i, lightC[i])
 strip.show()

def finished():
 done = True
 for i in range(0,16):
 if lightC[i] != Color(0,0,0):
 done = False
 return done

(continued)

152 Part II: Working with LEDs and Switches �

Listing 8‑4 (continued)

def makeMove(move,play):
 toggleColor(move,play)
 y = move / 4
 if move -4 >= 0:
 toggleColor(move -4,play)
 if move +4 < 16:
 toggleColor(move +4,play)
 if ((move -1) / 4) == y:
 toggleColor(move -1,play)
 if ((move +1) / 4) == y:
 toggleColor(move +1,play)

def toggleColor(led,play):
 global lightC
 if play: # playing the game
 if lightC[led] == Color(0,0,0):
 lightC[led] = litColor
 strip.setPixelColor(led, litColor)
 else:
 strip.setPixelColor(led, Color(0,0,0))
 lightC[led] = Color(0,0,0)
 strip.show()
 time.sleep(0.2)
 else: # setup the board
 if lightC[led] == Color(0,0,0):
 lightC[led] = litColor
 else:
 lightC[led] = Color(0,0,0)

Main program logic follows:
if __name__ == '__main__':
 main()

need to type in the game level on the keyboard at the start of the game. Once
it’s set, it’ll be the same for all subsequent games.

The loop in the main function that plays the game prints a reminder as to
how many moves the board can be completed in. Then the setBoard func-
tion is the one that plays the reverse game to generate the starting position.
First, the lightC list is cleared. Then a random color for the game is chosen.
Next, a list of moves is generated. Notice that after the first move, the while
loop keeps generating random numbers until it finds one that is not in the list
of moves. This ensures that the same key is never used more than once. After
each unique move has been generated, the makeMove function is called. This
takes two parameters: one containing the move and the other containing a
logic variable that determines if the game is being played or set up.

153� Chapter 8: Games for the Light Fantastic

The makeMove function further identifies which positions need to be
inverted (or “toggled” as it’s called in electronics). These positions are the
move, and the positions above, below, left, and right if they’re places on the
board. Each one identified calls up the toggleColor function, which in the
setup phase simply sets the move position lightC list to the opposite of
what it is already. Finally, the setBoard function calls the showSet func-
tion to display the board. Then if the cheat variable has been set to true, it
prints out a list of moves you have to make.

When the main function has set up the game, the code loops reading the
keys and checking for completion. After each key press, a reminder is given
of how many turns you’ve had. Then when all the lights are out, a congratula-
tion message is printed if you did it in the minimum number of turns.

As always, there are a number of improvements and changes you can make
to this basic game. For example, you may want to add a reset button so you
can restart the same pattern if you’ve exceeded the minimum number of
turns and want another shot at the same pattern. You need to add an extra
list to permanently store the start position in order for this to work.

The biggest change you can make is to change the logic. One such change is
that you can restrict the keys you’re permitted to press to just the keys that
are currently lit. This changes the whole feel of the game.

When generating moves, to get to the starting position you need to filter out
those moves that land on a lit position. This is exactly the opposite of how
you would play the game. It needs to be opposite so your play can undo what
the setup has done.

In addition to restricting what can key be pressed, you could change the pat-
terns of inversions depending on the key pressed. For example, a corner key
could invert all four keys in the corner and a side middle key could invert the
whole row or column. This can be as asymmetrical as you want. As long as
the setup function follows the play logic, the whole concept will work. If you
make it too complex, though, you’ll have a hard time explaining the rules to
the players.

Finally, you could define an ending state to the board, which is not all the
lights out. Some of them could be, say, red. Then play in another color — say,
green — and have the red lights toggle between blue and red and the others
between green and off. Although it may sound complex, it’s exactly the same
game, just much harder to play.

154 Part II: Working with LEDs and Switches �

Exploring a World of Possibilities
There is no need to stop with these four games — there are a whole host of
uses you can put the Light Fantastic to. The options we present in this chap-
ter are just a few to give you some inspiration.

The Light Fantastic interface lends itself well to all sorts of variations of the
“Whack‐a‐Mole” game, where lights come on and you have to press the keys
as quickly as possible to turn them off. You could have some colors the
player should whack and other that the player shouldn’t.

You can also make a colorful version of a plumbing game where you have to
unblock a drain by maneuvering pipe blocks into place to make the water
flow.

How about a snake game that wraps around top and bottom, as well as left
and right, of the playing area?

Then there’s tic‐tac‐toe. Normally it’s played on a 3‐x‐3 grid, but there’s noth-
ing stopping you from using a 4‐x‐4 grid. In fact, how about four in a row?

Finally, you don’t have to stop at games. You can use the keys to control just
about anything, from media players to musical instruments. You have the
tools now. Let your imagination flow!

Developing Advanced
Interfaces

Part III

	

Find out about facial recognition in an article at www.dummies.com/extras/
raspberrypiprojects.

http://www.dummies.com/extras/raspberrypiprojects
http://www.dummies.com/extras/raspberrypiprojects

In this part . . .
	 ✓	 Find out how to read analog signals into the Raspberry Pi and

get analog‐to‐digital conversion techniques.

	 ✓	 Build a brick in the wall game control.

	 ✓	 Build a temperature measuring module.

	 ✓	 See how the Raspberry Pi can interact with the cloud and find
out about databases and web servers.

	 ✓	 Make a data logger.

	 ✓	 Make a computer vision monitored Connect Four game.

	 ✓	 Build the Raspberry Jazz Glitter Trio.

Advanced Interfaces
In This Chapter

▶▶ Converting analog to digital

▶▶ Building an analog‐to‐digital converter

▶▶ Using a potentiometer

▶▶ Creating an analog temperature sensor

▶▶ Interfacing with an analog‐to‐digital microchip

T
he Raspberry Pi general‐purpose input/output (GPIO) pins are capable of
detecting digital signals — either high or low. The problem is, the world

we live in is a lot less black‐and‐white than that. For example, what if you
want to detect light, sounds, temperature, or pressure? A digital signal isn’t
going to cut it. Instead, you need the ability to detect a range of electronic
signals, and that’s where analog signals come in.

One of the shortcomings of the Raspberry Pi is that it doesn’t have any analog
inputs. But you can easily solve this problem by using an analog‐to‐digital
converter. In this chapter, you build your own converter, learn about differ-
ent conversion methods, and write software for each. Toward the end of the
chapter, we look at a high‐precision analog‐to‐digital converter microchip.

Converting Analog to Digital
The Raspberry Pi’s digital inputs can detect binary signals, which are either
high or low represented by either 0V or 3.3V. However, an analog signal
consists of a range of voltages. A 5V analog sensor, for example, may output
voltages from 1.5V to 5V. An analog‐to‐digital converter (sometimes known
as ADC, A‐to‐D, or A/D) converts the variable voltage to a reading that can be
interpreted by the digital microprocessor or, in our case, the Raspberry Pi.

But how do you determine a variable voltage when all you have is a digital
input that has only two states?

Chapter 9

158 Part III: Developing Advanced Interfaces �

One method that is frequently used by microprocessors is to treat the analog
sensor like a resistor connected to a capacitor and time how long it takes
to charge up a capacitor. Capacitors don’t charge instantly; the amount of
time they take to charge varies depending on the voltage. Unfortunately, this
method isn’t very accurate on the Raspberry Pi, because the Linux operat-
ing system can’t accurately measure clock cycles, so your results would be
inaccurate. Additionally, this method works only on analog devices that act
as resistors like potentiometers, temperature sensors (thermistors), and
photocells.

Another method is to compare the analog voltage to a known reference volt-
age. Using a device called a comparator, we can determine if one voltage is
greater than the other. Even though you don’t know the analog voltage level,
the comparator will tell you when your reference voltage is greater than the
analog voltage. By comparing one voltage to the other, you can make a series
of calculated guesses to determine the analog voltage.

Figure 9-1 demonstrates how you can increase your known reference voltage
and perform series of tests using a comparator. When you receive a posi-
tive result from the comparator, you know the analog voltage is somewhere
between the current and previous levels.

Comparators are often associated with analog‐to‐digital conversion because
of their ability to compare two voltages. A comparator compares the voltage
of two inputs and outputs a digital signal indicating which is larger. Figure 9-2
shows a diagrammatic representation of the LM339 comparator, which has
four analog inputs and 14 pins in total — 8 inputs, 4 outputs, and 2 pins for
+VE and GND. (The LM339 is available from electronics stores or online, and

Figure 9-1: 
Use a

comparator
to compare

a known
voltage to

an unknown
voltage in

order to
determine

the
unknown

voltage.

159� Chapter 9: Advanced Interfaces

it’s very affordable.) The comparator is one of the components you use to
build an analog‐to‐digital converter later in this chapter.

The pulse width modulation (PWM) is the component that enables you to
vary the voltage going into the comparator, which makes the method shown
in Figure 9-1 possible on the Raspberry Pi. PWM works by regulating energy
using a succession of pulses, known as the pulse train. By increasing or
decreasing the pulse width, you can regulate energy flow. PWM is often used
to regulate the brightness of an LED by making the LED blink on and off at
different frequencies, which makes it look bright or dim. As long as it blinks
faster than the persistence of our vision, you don’t see it flickering. The
analog‐to‐digital converter uses PWM to alter the DC voltage of the reference
voltage going into the comparator.

Figure 9-3 shows how you can alter the voltage by changing the waveform of
the signal. If the average high state of the pulse train is high, then the voltage
will be high; if the average high state of the pulse train is low, then the DC
voltage will be low.

GPIO 18 on the Raspberry Pi can be configured for PWM. In order to create a
digital pulse train, you connect GPIO 18 to the positive end of a comparator
and a test voltage to the positive end of the comparator. When the test signal
is higher, the comparator will output a positive digital signal; when it’s lower,
the comparator will output a negative signal.

Figure 9-2:
A diagram

of the LM339
comparator

chip.

160 Part III: Developing Advanced Interfaces �

We will use a low‐pass filter on the PWM signal, which has a smoothing effect
and produces a DC output that is connected to the –VE side of the compara-
tor. The filter attenuates the high frequencies and lets through the lower
ones. A common method to create a low‐pass filter is to use a resistor and
a capacitor in series to smooth the signal. The test voltage is connected to
the +VE side of the comparator. As shown in Figure 9-4, the output from the
comparator tells us whether the test signal is greater or less than the PWM.
We can alter the DC current of the input using PWM from the Raspberry Pi,
which gives us a method of guessing the test voltage. Later in this chapter,
we examine three commonly used methods of guessing the test voltage. You
use PWM, a comparator, and a low‐pass filter to build an analog‐to‐digital
converter later in this chapter.

Considering the accuracy of analog‐to‐
digital conversion
The intersection of the analog voltage (A) and the reference voltage (B)
is approximate (refer to Figure 9-1). You can get very close to the analog
voltage reading, but you’ll never get the exact reading. Analog‐to‐digital

Figure 9-3:
Pulse width
modulation

can be used
to alter DC

current.

Figure 9-4:
Use a com-

parator to
convert the

PWM wave-
form into a

digital pulse
train.

161� Chapter 9: Advanced Interfaces

converters are usually described by their resolution, which represents the
range of readings they’re capable of producing. For example, an analog‐to‐
digital converter that has a resolution of 8 bits can produce a range of 256
readings (28 = 256). A 10‐bit converter has a resolution of 1,024 (210 = 1,024).
An analog signal is a range of electronic signals, so the higher the bit rating of
the converter, the bigger the range of analog signals it can support.

The resolution gives you the range of readings it can support, but it isn’t an
indication of the converter’s accuracy. The data sheet of most analog‐to‐
digital converters tells you the converter’s accuracy ratings, which describes
the potential variance between the analog signal and the digital reading.

These variances are usually given in the unit of least significant bits (LSBs).
The LSB is the rightmost bit of a number. For example, a 10‐bit number is
represented in binary as a ten‐digit number of ones and zeroes (for example,
1111111000). The three zeroes are the least significant bits. If a 10‐bit analog‐
to‐digital converter has an accuracy of 2 LSB, that means its actual accuracy
is 8 bits.

This explains an important difference between an analog‐to‐digital converter’s
resolution and its accuracy. The accuracy of an analog‐to‐digital converter is
nonlinear. The extent of the variance changes depending on the voltage. This
is called nonlinearity, meaning the accuracy is nonlinear to the voltage.

Another aspect of accuracy is repeatability. You see during the course of this
chapter that all the analog‐to‐digital converters and methods we use produce
a reading that is very close to the analog signal, but that reading is constantly
fluctuating. (We explore methods to minimize — or even eradicate — the inac-
curacy.) This constant change is called the analog‐to‐digital converter’s repeat-
ability. Any analog‐to‐digital converter can only give a reading of +/–1 LSB.

In this chapter, we compare the accuracy of different conversion methods
and make tradeoffs between conversion time, resolution, and the filter to
design an analog‐to‐digital converter that suits your need.

Making sense of a digital reading
You may be wondering, “What does the digital reading mean?” We’ve
explained that analog‐to‐digital converters can have different resolutions and
can produce readings within the range of the resolution. But what does a
reading of 524, for example, out of a possible 1,024 actually mean?

In order to make the reading meaningful, you need to understand its relation-
ship to the analog signal. One way to do this is to convert the reading into a
value representing the analog voltage. The analog‐to‐digital converter has a

162 Part III: Developing Advanced Interfaces �

maximum reference voltage. The reference voltage gives you a yardstick to
calculate the analog voltage value from the digital reading.

For example if a 10‐bit analog‐to‐digital converter has a reference voltage of
5V and produces a reading of 310, then the analog voltage is

(311 ÷ 1,024) × 5 = 1.519V

However, knowing the analog voltage doesn’t always mean that much. For
example, a potentiometer connected to a 10‐bit analog‐to‐digital converter
will produce a reading of 0 when turned all the way to the left and 1,023 when
turned all the way to the right. Having a reading between 0 and 1,023 for a
potentiometer probably makes more sense to you than a voltage from 0V
to 5V, for example. It all depends on what information you require from the
analog device.

Understanding the relationship between the digital data you receive from the
analog‐to‐digital converter back to the sensor is an important aspect of your
design.

Introducing the Analog‐to‐Digital
Conversion Methods

In this section, we introduce you to three commonly used methods for
analog‐to‐digital conversion. Later in the chapter, we walk you through each
method in greater detail.

Each of these methods uses a comparator to compare two voltages and make
a series of guesses to try to get as close as we can to discovering the analog
voltage.

The ramp method
If an analog sensor has a voltage of 1.75V and you compare it to a known
reference voltage that starts at 0V and increments until the reference voltage
is greater than the analog voltage, you know that the analog voltage is some-
where between the reading just before 1.75 and after 1.75. This method is
known as the ramp method.

The reference voltage in the ramp method starts at zero and increases
in small amounts until it’s greater than the analog voltage (shown as the

163� Chapter 9: Advanced Interfaces

trip point in Figure 9-5). To increase accuracy, you can make each step as
small as possible, but this adds to the amount of time needed to produce a
reading — taking smaller steps means doing more tests on the comparator,
which takes time.

The successive approximation method
The successive approximation method uses a series of calculated guesses
to home in on the answer. The starting point can be half of the maximum
voltage and is either increased or decreased depending on whether the com-
parator has tripped. The increment or decrement value is halved with each
guess, as shown in Figure 9-6. As with the ramp method, you can increase the
amount of guesses to get a more accurate result, which takes more time.

Successive approximation may look much faster than the ramp method
because you can get a very accurate answer in 8 guesses, whereas with the
ramp method you could make 1,023 guesses. But successive approxima-
tion requires more filtering time — the signal is changing so much between
guesses that the filter needs more time to settle. The ramp method takes
small increments in one direction, which enables the filter to produce an
accurate result with much less settling time. When designed with a fast and
accurate filter, successive approximation is faster than the ramp method.
Many analog‐to‐digital conversion chips (like the MCP3008, which we use
later in this chapter) use this method for conversion.

Figure 9-5:
 The ramp

method.

164 Part III: Developing Advanced Interfaces �

The tracking method
The tracking method uses the ramp method to determine the first value and
then tracks the analog voltage using the previous reading as a starting point
for the next search, as shown in Figure 9-7. The comparator tells you which
direction to search for the analog voltage. Using the previous reading as a
starting point reduces the number of steps you need to take. This method
is fast if the analog voltage doesn’t change very frequently (for example,
because you have a temperature sensor that changes fairly slowly over time).

Figure 9-6:
The

successive
approxima-

tion method.

Figure 9-7:
The tracking

method.

165� Chapter 9: Advanced Interfaces

Building an Analog‐to‐Digital Converter
In this section, you build an analog‐to‐digital converter and write the code for
each of the three conversion methods explained in the previous section. The
converter uses a comparator (refer to Figure 9-2) and pulse width modula-
tion on the Raspberry Pi, as explained earlier in this chapter, to convert the
analog signal to a digital reading on the Raspberry Pi.

Finding the parts you need
To make this project, you need the following parts:

✓✓ Five 3K3 ohm 0.5W carbon film resistors ±5 percent

✓✓ One 10k ohm 0.5W carbon film resistor ±5 percent

✓✓ One 1k ohm 0.5W carbon film resistor ±5 percent

✓✓ One 1uF/50V radial electrolytic capacitor

✓✓ Two 0.1uF/50V radial electrolytic capacitors

✓✓ One LM339 quad comparator (a device used to compare voltages and
output the result in a digital signal)

✓✓ One Humble PI prototyping board (a prototyping board for the
Raspberry Pi from CISECO) or one solderless breadboard (a prototyping
board where parts and wires can be connected by clipping them into the
board; used for prototyping electronics without having to solder parts
together)

✓✓ Three 2‐pin 0.2‐inch (5mm) screw terminals

✓✓ Assorted jumper wires for the prototyping board or for the solderless
breadboard (Note: If you’re using a breadboard, use male‐to‐male for
breadboard connections and male‐to‐female for connecting the bread-
board to the GPIO pins. Jumper wires usually come in packs of various
quantities, colors, and sizes. Any size will do for this project, but shorter
male‐to‐male [10cm] and longer male‐to‐female [20cm] are best.)

✓✓ One 10K breadboard trim potentiometer

All these parts are readily available from electronic stores or online. We use
a Humble PI breakout board from CISECO because it attaches right to the
Raspberry Pi GPIO header and has a center power rails and holes arranged in
threes, making it a very convenient layout. You can substitute it for a regular
prototype board with center rails or a solderless breadboard, but you’ll need
to make the necessary adjustments because a breadboard has the power
rails running down the outside and not down the center.

166 Part III: Developing Advanced Interfaces �

Since the release of the Raspberry Pi 2 A++, and B++ models, the shape of
the board has changed, so some breakout boards (like the Humble PI) no
longer fit the Raspberry Pi. However you can use an extra‐tall stacking header
Raspberry Pi that allows you to connect the Humble PI to the new shape of
the Raspberry Pi.

Constructing the circuit
The difficulty level of the prototype board construction will be difficult for
a complete beginner because there are around 50 solder points. If you’re a
total beginner, you may want to opt for the breadboard. However, even if
you’re a soldering novice, you should be able to construct this prototype.

As with all prototyping, make sure you understand each part before you
begin construction. This understanding will help you troubleshoot and test
different parts of the circuit during or after the build. Figure 9-8 is the circuit
diagram for the analog‐to‐digital converter.

Take note that in later revisions of the Raspberry Pi, GPIO 21 changed to
GPIO 27, but the Raspberry Pi pin number using the in code remains the
same.

Understanding the circuit
The left side of the circuit in Figure 9-8 controls the voltage going into pins
6, 8, and 10 of the comparator. You configure the Raspberry Pi pin 18 to
the PWM mode and adjust its value from 0 to 1,023. This variable voltage is
known as the reference voltage. This moves the voltage going into pins 6, 8,
and 10 in small increments from 0V to 5V. The 1uF capacitor and 10K resistor
are the low‐pass filter (refer to “Converting Analog to Digital,” earlier in this
chapter, for more details), which converts the PWM pulses into DC current.

The three analog inputs shown in Figure 9-8 can be connected to your analog
sensors. We only use one of the analog inputs in this chapter, but we’ve
designed the converter with three inputs to give you more options if you
need them for other projects. Later in this chapter, you test this circuit using
a potentiometer and a temperature sensor. The comparator compares the
voltages of the reference voltage to the analog voltage. When the compara-
tor pins 1, 14, and 13 flip from low to high, you know the reference voltage
is greater than the analog voltage. When this happens, the input pins on the
GPIO (pins 17, 21, and 4) go high. Each of these pins has a 3K3 pull‐up resis-
tor connected to it. Lastly, the comparator is powered by 5V going to pin 3
and is grounded on pin 12.

167� Chapter 9: Advanced Interfaces

Constructing the circuit
Figure 9-9 shows a grid of the Humble PI prototype board with the x‐ and
y‐coordinates of each connection. Each hole in the board is identified by the
row and column numbers given at the top and on the left side of the diagram.
The positive and negative center rails are labeled as + and –. For example,
there is an R1 resistor connected from position E5 to position +5. Table 9‐1
shows the position of every component, including jumper wires.

First, place all components onto the prototype board without solder. Double‐
check that they’re all in the right position and then begin soldering. Be care-
ful not to spill solder over to any adjacent holes. When all the components

Figure 9-8:
A circuit

diagram for
the analog‐

to‐digital
converter.

168 Part III: Developing Advanced Interfaces �

are soldered in place, solder in the jumper wires. We recommend placing the
jumper wires underneath the board and the electrical components above the
board, as shown in Figure 9-10. Some of the jumps can be completed just by
using solder to bridge two adjacent pads (for example, M3 to M4).

Figure 9-9:
Analog‐

to‐digital
prototype

board
schematic.

Table 9-1	 Analog‐to‐Digital Converter Components
Component From To
LM339 I11 H11

LM339 I12 H12

LM339 I13 H13

LM339 I14 H14

LM339 I15 H15

LM339 I16 H16

LM339 I17 H17

R1 +19 J19

R1 –20 K20

C1 –21 K21

Jumper K21 K20

Jumper K20 K19

Jumper M9 M8

169� Chapter 9: Advanced Interfaces

Component From To

R2 N4 N8

R3 J8 M8

Jumper I8 B14

Jumper M4 N3

C1 –4 L4

C2 –9 I9

Jumper B14 J9

LM339 pin 1 (GPIO17) C7 B3

LM339 pin 1 (R1) J11 D5

LM339 pin 2 (R2) K12 L8

LM339 pin 3 (5V) K9 K13

LM339 pin 4 (R1) K19 K14

LM339 pin 5 (GPIO18) J15 B4

LM339 pin 6 (R2) L3 J16

LM339 pin 7 (T2) (analog 1) L20 J17

LM339 pin 8 (R2) M3 G17

LM339 pin 9 (T3) (analog 2) L22 G16

LM339 pin 10 (R2) N3 G15

LM339 pin 11 (T3) (analog 3) L24 G14

LM339 pin 12 (GND) G13 ‐22

LM339 pin 13 (GPIO4) C5 B10

LM339 pin 13 (R1) G12 D7

LM339 pin 14 (R1) G11 D6

LM339 pin 14 (GPIO21) C6 B5

T1 (+3V) L14 B14

T1 (+5V) L16 B14

T2 (GND) L18 –24

Jumper G16 L22

PWR Center Rail (+3V) +26 B13

GND Center Rail (GND) –26 –VE

170 Part III: Developing Advanced Interfaces �

Before powering it up, use a circuit tester to test each connection. Circuit
testers can be bought or constructed using an LED circuit. Some multimeters
have a circuit tester built in. They consist of a battery connected to a light
or a buzzer that indicate when the circuit is closed. The tester has two leads
that, when joined, close the circuit and activate the light or buzzer. You can
use the circuit tester to test each connection of the analog‐to‐digital con-
verter. For example, the right side of the 10k resistor should be connected to
pins 6, 8, and 10 of the LM339 comparator. In order to test these connections,
place one of the circuit tester leads on the right side of the 10k resistor and
then touch pins 6, 8, and 10 of the comparator. Your circuit tester will indi-
cate if each of these three circuits is soldered correctly. Use this method to
test every connection.

The Humble PI can be powered by external power (refer to the pads on the
top‐right corner of the board), but we’ve chosen to power the board directly
from the Raspberry Pi by connecting the 3V (A13) to PWR and connecting
GND to the negative power rail (–).

The six screw terminals can be used to connect to an analog sensor. There is
a screw terminal for the three analog sensors — 5V, 3V, and GND — as shown
in Figure 9-9.

Figure 9-10:
The

Raspberry
Pi analog‐

to‐digital
converter.

171� Chapter 9: Advanced Interfaces

Connecting an analog sensor
Now that you have your analog‐to‐digital converter built, you can connect it
to an analog sensor. To start, connect it to a potentiometer (also known as a
pot or a trimpot). Connect the left pin of the trimpot to the 3V screw termi-
nal, the middle pin of the trimpot to the Analog 1 screw terminal, and pin 3 of
the trimpot to the GND screw terminal (see Figure 9-11).

Writing the software
In this section, you write code for each of the analog‐to‐digital conversion
methods explained earlier in this chapter. You use C code for the interfaces
because it’s faster than Python, but we also show you how to call a C pro-
gram from Python so you can write Python programs to interface with your
analog sensors.

Figure 9-11:
Connecting

a potenti-
ometer to

the analog‐
to‐digital

converter.

172 Part III: Developing Advanced Interfaces �

Software for the ramp method
The software for the ramp method is in Listing 9-1. Type the program in and
save it to a file called ramp.c.

	 Listing 9-1:  Analog‐to‐Digital C Program for the Ramp Method

/*
 * ramp.c
 * Raspberry Pi Projects For Dummies: Analog-to-Digital Converter
 * Ramp Method
 */

Installing WiringPi
You use a GPIO access library called WiringPi
to control the PWM and monitor the GPIO
digital pins. WiringPi was written by Gordon
Henderson and is a GPIO library for the
Raspberry Pi. You use it to control the GPIO
digital pins and PWM. You also use WiringPi’s
Serial Peripheral Interface (SPI) library later
in this chapter. For more details on WiringPi
you can visit Gordon’s webpage (www.
wiringpi.com).

To install WiringPi, type the following command
at the command prompt:

$ sudo apt-get install git-
core

If you get any errors here, make sure your Pi is
up to date with the latest versions of Raspbian:

$ sudo apt-get update
$ sudo apt-get upgrade

Install WiringPi:

$ cd ~
$ git clone git://git.drogon.
net/wiringPi

$ cd wiringPi
$./build

If you aren’t able to use git or you’re using
an operating system other than Raspbian or
Debian, you can follow the instructions to install
WiringPi. Go to https://git.drogon.
net/?p=wiringPi;a=summary. Then
look for the most recent (topmost) entry in the
shortlog, and click the rightmost link (marked
“snapshot”) for that entry.

This will download a tar.gz file with a name
like wiringPi‐98bcb20.tar.gz. Note
that the numbers and letters after wiringPi
(98bcb20, in this case) will probably be differ-
ent. They’re a unique identifier for each release.

Then enter the following command from the
Raspberry Pi command line:

tar xfz wiringPi-98bcb20.tar.
gz
cd wiringPi-98bcb20
./build

Remember: The actual filename will be differ-
ent. You have to check the name and adjust it
accordingly.

http://www.wiringpi.com
http://www.wiringpi.com
https://git.drogon.net/?p=wiringPi;a=summary
https://git.drogon.net/?p=wiringPi;a=summary

173� Chapter 9: Advanced Interfaces

#include <wiringPi.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

float to_volts(int reading, float analog_volts);

int main (int argc, char *argv[])
{
 int one_reading;
 int ramp, reading0, reading1, reading2;
 unsigned char gotReading0, gotReading1, gotReading2;
 const unsigned char A0 = 17, A1 = 21, A2 = 4, pwm = 18;

 if (argc!=2){
 printf ("usage : ramp [single_reading 1/0]\n");
 exit(1);
 }

 one_reading = atoi(argv[1]);

 if (wiringPiSetupGpio () == -1)
 exit (1);

 pinMode (A0,INPUT);
 pinMode (A1,INPUT);
 pinMode (A2,INPUT);
 pinMode (pwm, PWM_OUTPUT) ;
 pwmWrite(pwm, 0);
 delay(40);

 for (;;)
 {
 reading0 =-1;
 reading1 =-1;
 reading2 =-1;
 gotReading0 = 0;
 gotReading1 = 0;
 gotReading2 = 0;

 for (ramp = 0 ; ramp < 1024 ; ramp+=4) // in effect 8 bit
 {
 pwmWrite (pwm, ramp);
 delayMicroseconds(200);

 if(gotReading0 == 0 && digitalRead(A0)== 0){
 gotReading0 = 1;
 reading0 = ramp;
 }

(continued)

174 Part III: Developing Advanced Interfaces �

Listing 9‑1 (continued)

 if(gotReading1 == 0 && digitalRead(A1)== 0){
 gotReading1 = 1;
 reading1 = ramp;
 }

 if(gotReading2 == 0 && digitalRead(A2)== 0){
 gotReading2 = 1;
 reading2 = ramp;
 }
 if(gotReading0 && gotReading1 && gotReading2) break;
 }

 printf("Reading Ch0 = %d (%2.3fV) Ch1 = %d (%2.3fV) Ch2 = %d (%2.3fV)
 \n", reading0, to_volts(reading0,5), reading1, to_volts(reading1,5)
 , reading2, to_volts(reading2,5));

 if (one_reading) {
 return(0);
 }

 pwmWrite (pwm, 0);
 delay(40);
 }

 return 0 ;
}

float to_volts(int reading, float analog_volts)
{
 float volts;
 volts = ((float)reading / 1023) * analog_volts;
 return(volts);
}

The program sets GPIO 18 to PWM mode and then loops through each PWM
setting starting at 0 and ending at 1,023. To speed it up, we set it to increase
in steps of 4. Looping 256 times instead of 1,024 will make the program faster
but sacrifice 2 bits of resolution. With each loop cycle, you check the GPIO
digital pins to see if one of the comparators has flipped from low to high and,
if so, save the reading for that sensor. When all three sensor values have
been read or you reach the end of the loop, the program writes the results to
the screen and goes again into the loop to get the next reading.

Compile the program using the following command:

$ sudo gcc -o ./ramp ramp.c -l wiringPi

175� Chapter 9: Advanced Interfaces

You pass a parameter of 0 or 1 to the program that determines whether the
program will print only one reading or multiple readings. If it’s the latter, you
press Ctrl+C to quit. Now run the program from the command line using the
following command:

$./ramp 0

You see the output printed to the screen for each of the three analog chan-
nels. Adjust the trimpot by turning the knob left and right, and watch the
value of channel 0 move up and down. Then stop adjusting the potentiometer
and observe the results. Notice that even though the potentiometer is not
changing, the reading fluctuates. The spread between the minimum and maxi-
mum reading we get is about 8, as shown here:

Reading Ch0 = 540
Reading Ch0 = 536
Reading Ch0 = 544

Our goal is to try get to a steady reading with little to no fluctuation. One way
you can reduce the fluctuation is to refine the granularity of the PWM cycle.
The ramp.c program loops through 0 to 1,023 PWM setting in increments of
4 as per the following line of code:

for (ramp = 0 ; ramp < 1024 ; ramp+=4) // in effect 8 bit

It will loop 256 times, which equates to 8‐bit accuracy (28 = 256). With the
fluctuation, we’re losing around 3 bits, so our converter is, in effect, a 5‐bit
converter. You can improve this by taking smaller increments and increasing
the loop cycle to the full 1,024 settings available on the Raspberry Pi PWM.
Change the following line to:

for (ramp = 0 ; ramp < 1024 ; ramp+=1) // in effect 10 bit

Recompile and run the program. You should now see a more accurate result.
Our results are as follows:

Reading Ch0 = 197
Reading Ch0 = 198
Reading Ch0 = 199
Reading Ch0 = 202
Reading Ch0 = 197
Reading Ch0 = 197

The spread of the fluctuation is now 5. We’ve improved the accuracy of the
analog‐to‐digital converter, but we paid a price in time. The converter is now
half the speed it was originally, and it’s noticeable.

176 Part III: Developing Advanced Interfaces �

Another change you can make to improve accuracy is to adjust the settling
time given to the circuit with every change of the PWM cycle. The first of the
following two lines changes the PWM value and the second pauses the pro-
gram for 200 microseconds while the circuit settles.

pwmWrite (pwm, ramp);
delayMicroseconds(200);

Change the 200 to 500 and recompile and run again. Our results improved to
a spread of only 2. However, there is an even more noticeable degradation to
the performance of the conversion.

Reading Ch0 = 178
Reading Ch0 = 178
Reading Ch0 = 180

A third modification that could be made is to fine‐tune the low‐pass filter by
reducing the cut‐off frequency. The settling time is governed by the action
of the filter. Again, there’s a performance trade‐off to be made because the
lower the cut‐off frequency, the longer it takes for the resulting voltage to
ramp up to the final value. This would mean changing the 1uF capacitor
and the 10k resistor, which would require a change to the circuit, so for the
purposes of this chapter we won’t go into the different options here.

Software for the successive approximation method
Listing 9-2 is the code for the successive approximation method. The pro-
gram performs eight guesses at the analog voltage. With each guess, the com-
parator tells you if you’re higher or lower than the analog voltage, and then
the next guess is either increased or decreased by half the previous incre-
ment. With each guess, you home in on the answer. Type the program in and
save it to a file called succ.c.

	 Listing 9-2: � Analog‐to‐Digital C Program for the Successive
Approximation Method

/*
 * succ.c
 * Raspberry Pi Projects For Dummies: Analog-to-Digital Converter
 * Successive Approximation Method
 */
#include <wiringPi.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

177� Chapter 9: Advanced Interfaces

int successive(char ch);
float to_volts(int reading, float analog_volts);

int main (int argc, char *argv[]){
 int one_reading;
 int reading0, reading1, reading2 ;
 const unsigned char A0 = 17, A1 = 21, A2 = 4;

 if (argc!=2){
 printf ("usage : succ [single_reading 1/0]\n");
 exit(1);
 }

 one_reading = atoi(argv[1]);

 if (wiringPiSetupGpio () == -1)
 exit (1) ;

 pinMode (A0,INPUT);
 pinMode (A1,INPUT);
 pinMode (A2,INPUT);
 pinMode (18, PWM_OUTPUT) ;

 for (;;){
 reading0 =-1;
 reading1 =-1;
 reading2 =-1;
 reading0 = successive(A0);
 reading1 = successive(A1);
 reading2 = successive(A2);

 printf("Reading Ch0 = %d (%2.3fV) Ch1 = %d (%2.3fV) Ch2 = %d (%2.3fV) \n",
 reading0, to_volts(reading0,5), reading1, to_volts(reading1,5),
 reading2, to_volts(reading2,5));

 if (one_reading==1)
 return(0);
 }
 return 0 ;
}

int successive(char ch){
 int reading = 512; // start at the midpoint
 int x = 256,i,pwm = 18;
 for(i=0; i<8; i++){
 pwmWrite(pwm,reading);
 delayMicroseconds(3000); // settling time
 if(digitalRead(ch) == 0){
 reading=reading-x;
 }

(continued)

178 Part III: Developing Advanced Interfaces �

Listing 9‑2 (continued)
 else {
 reading=reading+x;
 }
 x=x/2; //narrow the search
 }
 return (reading);
}

float to_volts(int reading, float analog_volts)
{
 float volts;
 volts = ((float)reading / 1023) * analog_volts;
 return(volts);
}

Compile the program using the following command:

$ sudo gcc -o ./succ succ.c -l wiringPi

You pass a parameter of 0 or 1 to the program that determines whether the
program will print only one reading or successive readings. If it’s the latter,
you press Ctrl+C to quit. Now run the program from the command line using
the following command:

$./succ 0

Using this method, you can obtain the same result as the ramp method,
except with the ramp method you could potentially have to make 256 guesses
as opposed to 8 using this method. One major disadvantage of this method is
the settling time (3,000 microseconds) that the circuit needs before it takes a
new reading. This is due to the fact that we’re making large jumps in voltage
with each guess. The ramp method, however, increments the voltage in small
increments in the same direction so you can dramatically reduce the settling
time (75 microseconds).

Here’s is a comparison of the total potential settling time of each method:

Total settling time for the ramp method:

256 × 75 = 19,200 microseconds

Total settling time for the successive approximation method:

3,000 × 8 = 16,000 microseconds

179� Chapter 9: Advanced Interfaces

Even though the ramp method takes many more guesses, it’s only marginally
slower than successive approximation.

As with the ramp method, a number of factors will affect the accuracy of the
conversion. In the preceding section, we explain how you can fine‐tune the
settling time, the granularity of the PWM settings, and the low‐pass filter. The
same applies with this method.

You can increase or decrease the amount of guesses it makes by adjusting
the 8 in this form loop statement to your desired value:

for(i=0; i<8; i++){

Software for the tracking method
The tracking method starts by using the ramp method (or successive approx-
imation, it doesn’t matter which) to find and track the analog voltage. Then it
uses the previous reading as a starting point to search for the next reading.
This way, it can track the analog voltage and reduce the number of overall
readings, which can make this method faster than the other methods.

The software for the tracking method is shown in Listing 9-3. Type the
program and save it to a file called track.c.

	 Listing 9-3:  Analog‐to‐Digital C Program for the Tracking Method

/*
 * track.c
 * Raspberry Pi Projects For Dummies: Analog-to-Digital Converter
 * Tracking Method
 */

#include <wiringPi.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

// Declare functions
int track(char ch, int direction);

int main (int argc, char *argv[])
{
 int one_reading;
 int reading0 = 0, reading1 = 0, reading2 = 0;
 const unsigned char A0 = 17, A1 = 21, A2 = 4;

(continued)

180 Part III: Developing Advanced Interfaces �

Listing 9‑3 (continued)
 if (argc!=2 && argc!=3){
 printf ("usage : ramp [single_reading 1/0]\n");
 printf (" [previous_reading1 (0-1023) (optional)]\n");
 printf (" [previous_reading2 (0-1023) (optional)]\n");
 printf (" [previous_reading3 (0-1023) (optional)]\n");
 exit(1);
 }

 one_reading = atoi(argv[1]);
 if (argc>=3){
 reading0=atoi(argv[2]);
 }

if (argc>=4){
 reading1=atoi(argv[3]);
 }

if (argc>=5){
 reading2=atoi(argv[4]);
 }

 if (wiringPiSetupGpio () == -1)
 exit (1);

 pinMode (A0,INPUT);
 pinMode (A1,INPUT);
 pinMode (A2,INPUT);
 pinMode (18, PWM_OUTPUT) ;

 for (;;)
 {
 reading0 = track(A0, reading0);
 reading1 = track(A1, reading1);
 reading2 = track(A2, reading2);
 printf("Reading Ch0 = %d Ch1 = %d Ch2 = %d \n", reading0, reading1,reading2);
 if (one_reading==1)
 return(0);
 }
return(0);
}

int track(char ch, int reading)
{
 int gotReading, direction, digital_read;
 pwmWrite (18, reading);
 delayMicroseconds(4000);
 if (digitalRead(ch)==1){
 direction=1;
 }

181� Chapter 9: Advanced Interfaces

 else{
 direction=-1;
 }
 gotReading=0;
 while (!gotReading){
 reading=reading+direction;
 pwmWrite (18, reading);
 delayMicroseconds(500);
 digital_read=digitalRead(ch);
 if ((digital_read==1 && direction==-1) ||
 (digital_read==0 && direction==1)){
 gotReading=1;
 }
 if (reading<0){
 reading=0;
 gotReading=1;
 }
 if (reading>1024){
 reading=1023;
 gotReading=1;
 }
 }
 return(reading);
}

Compile the program using the following command:

$ sudo gcc -o ./track track.c -l wiringPi

The program takes up to four parameters. The first parameter determines
whether the program will print one reading and quit or continue forever
printing readings to the screen until you press Ctrl+C. The second to fourth
parameters are the starting points for each analog sensor (which is a value
between 0 and 1,023). You can use these parameters if you want to call this
program from a Python program where the Python program stores the previ-
ous reading and passes it to this program to obtain a new reading. This is
used in the Breakdown game, later in this chapter.

The program calls the track routine for each of the three analog sensors pass-
ing the previous reading as a parameter. The track routine first sets the PWM
cycle to the previous reading and tests the comparator. This determines
which direction you track to find the next reading. If the comparator is posi-
tive, the PWM cycle needs to increase until the comparator flips negative; if
the comparator is negative, the search heads in the other direction until the
comparator flips positive (refer Figure 9-7).

182 Part III: Developing Advanced Interfaces �

We set the wait time on the first read to 4,000 microseconds so you give the
circuit enough initial settling time. When the tracking starts, we decrease the
wait time to 500 microseconds because the changes between readings will be
smaller.

As with the other two methods, you can fine‐tune the accuracy by changing
the wait times, speeding it up by increasing the increment/decrement value
between readings and reducing the cut‐off frequency of the low‐pass filter.

Now that you’ve completed the software for the three methods, compare the
results and speeds of each method. Fine‐tune them using the parameters we
describe to try get the most accurate readings. In the next two sections, you
use the analog‐to‐digital converter on two different projects. The first project
uses a potentiometer to control the paddle of the Breakdown game. You use
the reading of the potentiometer to control the horizontal positioning of the
paddle. The more the reading fluctuates, the more unstable the paddle will
appear. Speed is also an important factor for the Breakdown game. You don’t
want the digital conversion to slow down the game and make it unplayable.

In the other project, you use the analog converter to read the temperature
from a thermistor (temperature sensor). In order to calculate the tempera-
ture, we need an accurate voltage reading across the sensor. In this project,
speed is less important, but accuracy is very important.

Using a Potentiometer to Control
the Breakdown Game

In this section, you use a potentiometer to control the paddle (or blocker)
of the Breakdown game, a legendary game from the 1970s. The objective is
quite simple: You use the blocker that moves left and right to deflect a ball
and send it back up to eliminate some more bricks. The objective is to clear
all the bricks.

Use the potentiometer circuit you construct earlier in this chapter to move
the paddle left and right. This shows a good visual representation of the
accuracy of your analog‐to‐digital converter. If your reading fluctuates, you
see the paddle jump or shake. If your analog‐to‐digital conversion takes too
long, the game will slow down and become unplayable. Use this game as an
exercise to determine which conversion method best suits the game’s needs.

Listing 9-4 is configured to call the ramp program you develop in the
“Software for the ramp method” section, earlier in this chapter. However, you

183� Chapter 9: Advanced Interfaces

can change it to call the successive approximation or tracking programs as
follows:

✓✓ If you want to change methods, then change the METHOD constant at the
top of the program to T for tracking or S for the successive approxima-
tion method.

✓✓ You can set the minimum and maximum boundaries of your analog
readings using the MIN_PADDLE and MAX_PADDLE variable settings
at the beginning of the program. Depending on which potentiometer
you’re using, you could have different boundaries within the 0 to 1,023
PWM range.

Type the following program in to a file called breakdown.py and save it in
your user directory of your Raspberry Pi. The program calls the analog‐to‐
digital conversion C programs, which should also be in your user directory.

	 Listing 9-4: � Breakdown Game Using a Potentiometer to Control
the Game Paddle

#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: breakdown game
using a potentiometer to control the paddle
for the Raspberry Pi
"""
import os
import sys
import subprocess
import re
import pygame

Color constants
BLACK = (0,0,0)
WHITE = (255,255,255)
YELLOW = (200,200,0)
BRICK_COLOR = (0,200,0)

Game State Constants
STATE_BEGIN = 0
STATE_PLAYING = 1
STATE_WON = 2
STATE_GAME_OVER = 3
PADDLE_DELAY=5
METHOD = "R"
MIN_PADDLE=0
MAX_PADDLE=850

(continued)

184 Part III: Developing Advanced Interfaces �

Listing 9‑4 (continued)
class breakdown:

 def get_paddle_position(bo):
 if METHOD=="T":
 output = subprocess.check_output(["~/track","1",str(bo.

reading)])
 elif METHOD=="R":
 output = subprocess.check_output(["~/ramp","1"])
 elif METHOD=="S":
 output = subprocess.check_output(["~/succ","1"])
 elif METHOD=="M":
 output = subprocess.check_output(["~/mcp3008", "1"])

 s = re.search("Ch0 =\s+([0-9a-f]+)", output)
 if s:
 x = (float(s.group(1))/float(MAX_PADDLE-MIN_PADDLE)*615)
 bo.reading = int(x)

 def display_message(bo,message,x,y):
 txt_format = bo.font.render(message,False, WHITE)
 bo.screen.blit(txt_format, (x,y))

 def run(bo):
 pygame.init()
 bo.screen = pygame.display.set_mode([640,480])
 pygame.display.set_caption("Raspberry Pi Projects For Dummies")
 bo.clock = pygame.time.Clock()
 bo.font = pygame.font.Font(None,30)
 bo.reset_game()
 while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit
 bo.clock.tick(50)
 bo.screen.fill([0,0,0])
 if bo.paddle_no>PADDLE_DELAY:
 bo.get_paddle_position()
 bo.paddle.left=bo.reading
 bo.paddle_no=0
 else:
 bo.paddle_no=bo.paddle_no+1
 #If you want to use the keyboard to control the paddle
 #uncomment the following lines
 keys = pygame.key.get_pressed()
 #if keys[pygame.K_LEFT]:
 # bo.paddle.left -= 5
 #if keys[pygame.K_RIGHT]:
 # bo.paddle.left += 5
 if keys[pygame.K_SPACE] and bo.state == STATE_BEGIN:

185� Chapter 9: Advanced Interfaces

 bo.ball_direction = [5,-5]
 bo.state = STATE_PLAYING
 elif keys[pygame.K_RETURN] and (bo.state == STATE_GAME_OVER

or bo.state == STATE_WON):
 bo.reset_game()
 if bo.state == STATE_PLAYING:
 bo.ball.left += bo.horizontal
 bo.ball.top += bo.vertical
 if bo.ball.left <= 0:
 bo.ball.left = 0
 bo.horizontal = -bo.horizontal
 elif bo.ball.left >= 624:
 bo.ball.left = 624
 bo.horizontal = -bo.horizontal
 if bo.ball.top < 0:
 bo.ball.top = 0
 bo.vertical = -bo.vertical
 elif bo.ball.top >= 464:
 bo.ball.top = 464
 bo.vertical = -bo.vertical
 for brick in bo.bricks:
 if bo.ball.colliderect(brick):
 bo.vertical = -bo.vertical
 bo.bricks.remove(brick)
 break
 if bo.ball.colliderect(bo.paddle):
 bo.ball.top = 442
 bo.vertical = -bo.vertical #If ball

hits the edge of the paddle send it back in the same direction
 if bo.ball.left < bo.paddle.left or

bo.ball.left > bo.paddle.left+45:
 bo.horizontal = -bo.

 horizontal
 elif bo.ball.top > bo.paddle.top:
 bo.state = STATE_GAME_OVER
 if len(bo.bricks) == 0:
 bo.state = STATE_WON
 elif bo.state == STATE_BEGIN:
 bo.ball.left = bo.paddle.left + bo.paddle.width / 2
 bo.ball.top = bo.paddle.top - bo.ball.height
 bo.display_message("PRESS SPACE TO START",180,200)
 elif bo.state == STATE_GAME_OVER:
 bo.display_message("GAME OVER - PRESS ENTER TO PLAY

AGAIN",100,200)
 elif bo.state == STATE_WON:
 bo.display_message("WINNER! PRESS ENTER TO PLAY

AGAIN",100,200)
 for brick in bo.bricks:

(continued)

186 Part III: Developing Advanced Interfaces �

Listing 9‑4 (continued)

 pygame.draw.rect(bo.screen, BRICK_COLOR, brick)
 pygame.draw.rect(bo.screen, YELLOW, bo.paddle)

 pygame.draw.circle(bo.screen, WHITE, (bo.ball.left + 8,
bo.ball.top + 8), 8)

 bo.display_message("Paddle Position: "
+str(bo.reading),200,10)

 pygame.display.flip()

 def reset_game(bo):
 bo.reading = 0
 bo.state = STATE_BEGIN
 bo.paddle = pygame.Rect(300,458,60,12)
 bo.ball = pygame.Rect(300,442,16,16)
 bo.vertical=-5
 bo.horizontal=5
 bo.paddle_no=0
 y = 35
 bo.bricks = []
 for i in range(7):
 x = 5
 for j in range(9):
 bo.bricks.append(pygame.Rect(x,y,60,12))
 x += 70
 y += 17

if __name__ == "__main__":
 breakdown().run()

To run the program, type startx from the Raspberry Pi command line and
open an LXTerminal window. At the command prompt, type the following
commands to start the game:

$ cd ~
$ python breakdown.py

The program will start up as shown in Figure 9-12. The paddle isn’t very
stable so you need to fine‐tune your analog‐to‐digital conversion methods
and experiment to find one that best suits the game. Your goal is to
find a conversion method that’s fast and that has an acceptable level of
fluctuation.

187� Chapter 9: Advanced Interfaces

Creating an Analog Temperature Sensor
In this section, you use the analog‐to‐digital converter you construct earlier
in this chapter to tell the temperature. The analog temperature sensor you
use is a TMP36, shown in Figure 9-13.

The TMP36 is a low‐voltage, centigrade temperature sensor. It provides an
analog voltage output that is linearly proportional to the temperature. It’s
very easy to use. Just connect 2.7 to 5.5 VDC, and it produces the analog
voltage on the output pin.

In this project, it’s important for your digital converter to produce an accu-
rate reading. Depending on how frequently you want to read the tempera-
ture, you can increase the settling time of the low‐pass filter of the converter
to improve accuracy. The speed of the conversion is probably less important
to you than it was with the Breakdown game. The software that you wrote
earlier in this chapter provides you with a reading between 0 and 1,023. You
can calculate the voltage using the following formula:

Analog Voltage = (Analog‐to‐Digital Reading ÷ 1,023) × 5

where Analog‐to‐Digital Reading is the reading from the analog‐to‐digital
converter and 5 is the reference voltage we’re using with the analog‐to‐digital
converter.

Figure 9-12: 
The

Breakdown
game being

controlled
by a poten-

tiometer
connected

to the
analog‐

to‐digital
converter.

188 Part III: Developing Advanced Interfaces �

The temperature formula for the TMP36 sensor is as follows:

Temperature = (Sensor Reading Millivolts – 500) ÷ 10

A volt is equal to 1,000 millivolts, so for our purposes, we use the following
formula:

Temperature = ([Analog Voltage × 1,000] – 500) ÷ 10

For example, if the analog‐to‐digital converter gives you a reading of 144, the
calculation is as follows:

Analog Voltage = (144 ÷ 1,023) × 5

Analog Voltage = 0.70381

Temperature = ([0.70381 × 1,000] – 500) ÷ 10

Temperature = 20.831°C

Figure 9-13: 
TMP36

thermistor.

189� Chapter 9: Advanced Interfaces

Constructing the circuit
Here are the parts you need to build this circuit:

✓✓ A TMP36 sensor: This is a wide‐range, low‐power (between 2.7V and
5.5V) temperature sensor that outputs an analog voltage that is propor-
tional to the ambient temperature.

✓✓ A solderless breadboard: A solderless breadboard is a prototyping
board where parts and wires can be connected by clipping them into
the board. It’s used for prototyping electronics without having to solder
parts together.

✓✓ Assorted jumper wires for a solderless breadboard: Use male‐to‐male
for breadboard connections and male‐to‐female for connecting the
breadboard to the GPIO pins. Jumper wires usually come in packs of
various quantities, colors, and sizes. Any size will do for this project, but
shorter male‐to‐male (10cm) and longer male‐to‐female (20cm) are best.

As per Figure 9-13, connect pin 1 (left) to 3V, pin 2 to the analog‐to‐digital
converter (refer to “Building an Analog‐to‐Digital Converter” section of this
chapter), and pin 3 (right) to ground.

Writing the software
Listing 9-5 is the Python software for the TMP36 that uses the successive
approximation method program built in the “Software for the successive
approximation method” section of this chapter.

	 Listing 9-5: � Python Code for the TMP36 Analog Sensor Using
an Analog‐to‐Digital Converter

#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: TMP36 thermistor
using successive approximation and an analog-to-
digital converter
for the Raspberry Pi
"""

(continued)

190 Part III: Developing Advanced Interfaces �

Listing 9‑5 (continued)
import os
import sys
import subprocess
import re

output = subprocess.check_output(["~/succ","1"])
s = re.search("Ch0 =\s+([0-9a-f]+)", output)
if s:
 x = float(s.group(1))
 analog_voltage=(x/1023)*5
 temperature = ((analog_voltage * 1000) - 500) / 10
 fahrenheit = temperature*1.8+32
 print "Temperature = " + str(round(temperature,2)) + "C " +

str(round(fahrenheit,2)) + "F"
else:
 print "Invalid reading"

Run the program and check that the reading is correct:

$ python tmp36.py
Temperature = 19.4C 66.93F

The program prints both Celsius and Fahrenheit temperature values. If your
reading is high, make sure that the reference voltage on the analog‐to‐digital
converter is exactly 5V. Use a multimeter to make sure that you’re get-
ting exactly 5V from pin 2 of the Raspberry Pi. When you have an accurate
reading, pinch the TMP36 with your fingers and watch the temperature rise
as the sensor warms up from your body heat.

Compare the results of the successive approximation method to the ramp
and tracking methods by changing the following line of code:

output = subprocess.check_output(["/home/succ","1"])

Change succ in the preceding line of code to ramp for the ramp method and
track for the tracking method.

Interfacing with an Analog‐to‐Digital
Microchip

In this section, you use a high‐precision analog‐to‐digital converter that per-
forms the digital conversion external to the Raspberry Pi. The microchip you
use is the MCP3008. It performs the analog‐to‐digital conversion and outputs

191� Chapter 9: Advanced Interfaces

a digital reading to the Raspberry Pi. The MCP3008 is an 8‐channel 10‐bit
converter and is capable of conversion rates of up to 200 kilo samples per
second (ksps), with a conversion time of 10 microseconds.

Figure 9-14 shows the pin allocation of the MCP3008 and how it maps to
the GPIO pins on the Raspberry Pi. Use the semicircular indentation on
the MCP3008 to orient yourself to the diagram. The eight pins down the
left side are eight analog inputs. And the pins down the right side provide
the chip with power, ground, a reference voltage, and the various connec-
tions required for the serial peripheral interface (SPI). The communication
between the Raspberry Pi and MCP3008 is handled by SPI, which is a full
duplex serial communication link. The Raspberry Pi supports the SPI proto-
col and has pins assigned for it on the Raspberry Pi GPIO header.

In this section, we show you how to interface a temperature sensor and a
potentiometer so you can compare the readings you get from the MCP3008
with the analog‐to‐digital converter you build earlier in this chapter.

Figure 9-14: 
Pin assign-

ment for the
MCP3008

and
Raspberry

Pi GPIO.

192 Part III: Developing Advanced Interfaces �

Assembling the parts you need
Here are the parts you need:

✓✓ An MCP3008: This is a high‐precision 10‐bit 8‐channel analog‐to‐digital
converter. You could also use the MCP3004, which has four analog
inputs instead of eight.

✓✓ A TMP36: This is a wide‐range, low‐power (between 2.7V and 5.5V) tem-
perature sensor that outputs an analog voltage that is proportional to
the ambient temperature.

✓✓ A 10K breadboard trim potentiometer

✓✓ A solderless breadboard: A solderless breadboard is a prototyping
board where parts and wires can be connected by clipping them into
the board. It’s used for prototyping electronics without having to solder
parts together.

✓✓ Assorted jumper wires for a solderless breadboard: Use male‐to‐male
for breadboard connections and male‐to‐female for connecting the
breadboard to the GPIO pins. Jumper wires usually come in packs of
various quantities, colors and sizes. Any size will do for this project, but
shorter male‐to‐male (10cm) and longer male‐to‐female (20cm) are best.

Constructing the circuit
Construct your circuit as shown in Figure 9-15. Be careful to orient the TMP36
thermistor the right way around (refer to Figure 9-13 for pin assignment).
The potentiometer in the diagram uses the middle put as the analog output.
The two outer pins of the potentiometer connect to +3.3V and Ground. The
temperature sensor is connected to channel 1, and the potentiometer is
connected to channel 0 of the MCP3008.

Writing the software
In order to enable SPI on the Raspberry Pi, you need to edit the following file
and comment out the spi‐bcm2708 line as shown in Figure 9-16.

From the Raspberry Pi commend line type the following:

sudo nano /etc/modprobe.d/raspi-blacklist.conf

193� Chapter 9: Advanced Interfaces

Figure 9-15: 
How to

connect the
MCP3008

to your
Raspberry

Pi GPIO.

Figure 9-16: 
Enable SPI

by removing
it from the

blacklist.

194 Part III: Developing Advanced Interfaces �

Press Ctrl+X, then press Y, and finally press Enter to save and exit. Then
reboot your Raspberry Pi by typing the following:

$ reboot

If you haven’t already installed the WiringPi library, refer to the “Installing
WiringPi” sidebar earlier in this chapter. You use the mcp3008 subroutine
within WiringPi to interface with the MCP3008 chip.

	 Listing 9-6: � C Code for a Potentiometer and Temperature Sensor
Connected to an MCP3008

/*
 * mcp3008.c
 * Raspberry Pi Projects For Dummies: MCP3008
 * Analog-to-Digital Converter
 * Potentiometer and temperature sensor
 */

#include <wiringPi.h>
#include <mcp3004.h>

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#define BASE 100
#define SPI_CHAN 0

int main (int argc, char *argv[]){
 int tmp,pot, one_reading;
 float analog_voltage, temperature, fahrenheit;

 if (argc!=2){
 printf ("usage : msp3008 [single_reading 1/0]\n");
 exit(1);
 }

 one_reading = atoi(argv[1]);

 mcp3004Setup (BASE, SPI_CHAN);
 while (1) {
 pot = analogRead (BASE+0);
 tmp = analogRead (BASE+1);
 analog_voltage=((float)tmp/1023)*3.3;
 temperature = ((analog_voltage * 1000) - 500) / 10;
 fahrenheit = temperature*1.8+32;
 printf ("Ch0 = %d Ch1 = %d Temperature = %2.2fC %2.2fF \n",
 pot, tmp, temperature, fahrenheit);
 if (one_reading) return(0);
 }
}

195� Chapter 9: Advanced Interfaces

The code obtains an analog reading from channels 0 and 1 and then calcu-
lates the temperature based on the analog reading in the tmp variable. For
more details regarding the theory behind the TMP36 sensor, please refer to
the “Creating an Analog Temperature Sensor” section, earlier in this chap-
ter. Compile and run the program from the Raspberry Pi command line as
follows:

$ gcc -o ./mcp3008 mcp3008.c -l wiringPi
$./mcp3008 0

The program should print to screen something similar to this:

Ch0=92 Ch1=216 Temperature = 19.68C 67.42F
Ch0=92 Ch1=216 Temperature = 19.68C 67.42F
Ch0=92 Ch1=216 Temperature = 19.68C 67.42F

The Ch0 and Ch1 values are the raw readings from the MCP3008 chip. These
readings are values in the range 0 to 1,023. The temperature is calculated
using the reading from Ch1.

If you created the Breakdown game (refer to “Using a Potentiometer to
Control the Breakdown Game,” earlier in this chapter), you can configure
the Breakdown game to use the potentiometer reading from the MCP3008.
Change the METHOD constant to M as follows:

$ cd /home
$ sudo nano breakdown.py

Edit the METHOD constant as follows:

METHOD = "S"

Exit and save by pressing Ctrl+X, pressing Y, and then pressing Enter.

196 Part III: Developing Advanced Interfaces �

Raspberry Pi in the Sky
In This Chapter

▶▶ Understanding the cloud

▶▶ Storing data in Google Docs from your Raspberry Pi

▶▶ Creating a dashboard and temperature alerts using PrivateEyePi

▶▶ Creating a database logger

S
ensors can generate enormous amounts of data that need to be stored,
monitored, and analyzed. In this chapter, we explore Internet service

providers that do just that. Later in the chapter, we show you how to log tem-
perature data into a database and view it through a web browser.

Understanding the Cloud
An abundance of services are available through the Internet that can be
used by the Raspberry Pi. Increasingly, we’re seeing everyday appliances
and sensors connecting to a network providing us with real‐time informa-
tion from and control over those devices. The Raspberry Pi is very good at
interfacing with sensors through the general‐purpose input/output (GPIO)
ports. Its small form factor, processing capability, and simple connectivity to
the Internet makes the Raspberry Pi the perfect fit for this new world of con-
nected devices called the Internet of Things.

Connecting to the cloud
Storing sensor data on the Internet requires a connection of some kind to
the service provider. Each service provider specifies how to connect to
its service and how to send sensor information. The service provider usu-
ally requires you to apply for an account or create a user profile, and some
charge a fee depending on what services you choose.

Chapter 10

198 Part III: Developing Advanced Interfaces �

In this chapter, we show you the following two free options for storing and
viewing sensor data on the Internet:

✓✓ Storing data in a Google Docs spreadsheet

✓✓ Creating an online dashboard and alerts using PrivateEyePi

For each of these projects, you use the DS18B20 temperature sensor to col-
lect temperature readings. In the next section, we describe how to interface
to the DS18B20 sensor that will be used for the basis of the temperature read-
ing you’ll send to each service provider.

Assembling the parts you need
In this project, you use the readily available DS18B20 temperature sensor.
Here are all the parts you need to construct your temperature sensor and
link it to your Raspberry Pi:

✓✓ A DS18B20: This sensor looks like a transistor, but it’s actually a highly
accurate one‐wire temperature sensor.

✓✓ A 4.7k ohm 0.5W carbon film resistor ±5 percent

✓✓ A solderless breadboard: A solderless breadboard is a prototyping
board where parts and wires can be connected by clipping them into
the board. It’s used for prototyping electronics without having to solder
parts together.

✓✓ A variety of jumper wires: You need male‐to‐male for breadboard con-
nections and male‐to‐female for connecting the breadboard to the GPIO
pins. Jumper wires usually come in packs of various quantities, colors,
and sizes. Although you need only 6 for this project, having 20 to 30 of
each should see you through most projects. Any size will do for this
project, but shorter male‐to‐male (10cm) and longer male‐to‐female
(20cm) are best.

Constructing the temperature sensor
Besides the power and ground connections, all you need to do is connect
the 4.7k ohm pull‐up resistor between the signal and power, as shown in
Figures 10-1 and 10-2.

Be sure to use pin 7 on the Raspberry Pi for the sensor connection. The soft-
ware you use to interface with the DS18B20 is hard‐coded for pin 7, so you
can’t use another pin for this sensor.

199� Chapter 10: Raspberry Pi in the Sky

Figure 10-1: 
A wiring

diagram for
a DS18B20

temperature
sensor

connected
to a

Raspberry Pi.

Figure 10-2: 
A bread­

board
diagram for
a DS18B20

temperature
sensor con­
nected to a

Raspberry Pi.

200 Part III: Developing Advanced Interfaces �

Writing the software
The software required to interface with the DS18B20 has already been writ-
ten and is built into your Raspberry Pi kernel. You’ll be using an application
called modprobe to retrieve the temperature value.

Log into your Raspberry Pi using the root user for this chapter so you don’t
run into permission issues during installations. If you don’t have a root user
or don’t know whether you have one, you can easily create one using the
following command:

sudo passwd root

It’s also a good idea to protect your Raspberry Pi by disabling root access
via Secure Shell (SSH). SSH can be used to connect to your Raspberry
Pi from a remote location. Edit the SSH configuration file by typing the
following command:

sudo nano /etc/ssh/sshd_config

Then look for a setting called PermitRootLogin and change it to no as
follows:

PermitRootLogin no

Save the file by pressing Ctrl+X, pressing Y, and pressing Enter. Then log out
or restart your Raspberry Pi and use the root user and password you just
created.

In the next few sections, you edit files on your Raspberry Pi. If you don’t
know how to work with editors on the Raspberry Pi, use Table 10-1 and
practice creating new files, editing content, and saving files.

At the Raspberry Pi command prompt, type the following two commands:

modprobe w1-gpio
modprobe w1-therm

One of the nice features of the DS18B20 sensor is that it has a unique number
that allows you to use multiple sensors and uniquely identify the tempera-
ture of each sensor. The preceding command interfaces with the sensor and
retrieves the temperature, which it then writes to a new directory on the
Raspberry Pi. This directory can be found in /sys/bus/w1/devices/. In
order to check whether this file was created, you can do a directory listing by
typing the following command:

ls /sys/bus/w1/devices/

201� Chapter 10: Raspberry Pi in the Sky

You should see a directory that correlates to the unique number of your
sensor. Every sensor has a unique number, so it won’t be the same as our
file, but it will be similar to this:

28-0000040be5b6

Take note of this number for use later in this chapter. If you don’t see a direc-
tory with lots of numbers and letters like this one, do the following:

1.	Check your circuit wiring.

2.	Make sure that you have the correct resistor.

You need to have a 4.7k ohm resistor (sometimes written as 4k7 ohm).
Check your resistor by looking at the colored bands on it. If there are four
bands, your resistor should have bands in this order: yellow, violet, red,
and gold. If there are five bands, look for: yellow; violet; black; brown; and
brown, red, gold, or silver for the fifth band.

3.	Feel the temperature gauge with your finger.

If it feels hot, you have it wired back to front.

If you see the new directory, navigate into it and view the contents of the
w1_slave file, which will contain the temperature value. (Remember to
replace our number with yours.)

cd /sys/bus/w1/devices/28-0000040be5b6
nano w1_slave

Table 10-1	 Useful File‐Editing Commands Using the nano Editor
Description Sample Linux Commands
Navigate to the desired directory cd /home

Create a new file nano newfile.py

Edit the file Use the keyboard to create the content
of the file.

Save the file Press Ctrl+X, press Y, and then press
Enter.

Create a new folder (directory) mkdir /home/temp

Copy the file cp newfile.py /home/temp

Change directory cd /home/temp

Delete the file rm newfile.py

202 Part III: Developing Advanced Interfaces �

You see the contents of the w1_slave file, which contains the temperature
data in Celsius. In our example (shown in Figure 10-3), the temperature is
20.812°C. Press Ctrl+X followed by N to exit.

Now that you’ve completed testing your circuit and you have the sensor
working, you can proceed to the next sections about interfacing with public
cloud service providers.

Storing Data in Google Docs
from Your Raspberry Pi

In this section, we send the temperature readings obtained from the tempera-
ture sensor you build in the last section to a Google Docs spreadsheet that
gives you access to your sensor data from anywhere on the Internet. The

Figure 10-3: 
The temper­
ature shown

in the
w1_slave
file that was

created by
modprobe.

203� Chapter 10: Raspberry Pi in the Sky

main prerequisite for sending data to Google Docs is having a Gmail address.
But we don’t recommend using your Raspberry Pi’s web browser (Midori)
because it’s very slow. Instead, use a computer or device that you normally
use for browsing the web.

Creating a new Google Docs spreadsheet
Using a PC or a device you normally use to browse the web (but not your
Raspberry Pi), go to https://docs.google.com/spreadsheet.

Enter three new column headings — Temperature, Date, and Unit — and give
the spreadsheet a name, as shown in Figure 10-4. Take note of the document
key that is contained in the URL. The URL will look something like this:

https://docs.google.com/spreadsheet/ccc?key=0Ah0775EeJVAAp0BkTEJha0RyUTBiOU13RS1
BVThKcmc#gid=0

The document key is the bold part of the preceding URL, which starts after
key= and ends before cmc#gid=0.

Figure 10-4: 
A new

spreadsheet
in Google

Docs.

https://docs.google.com/spreadsheet

204 Part III: Developing Advanced Interfaces �

Creating an authentication token
You’re using Google’s OAuth 2.0 for devices to authenticate your Raspberry
Pi to the Google spreadsheet service. For more details on OAuth 2.0 for
devices, go to https://developers.google.com/accounts/docs/
OAuth2ForDevices. The authentication process requires that you authorize
your Raspberry Pi to write data to Google Docs. Authorizing the Raspberry Pi
is a one‐time three‐step process.

Step 1: Creating a client ID
To create a client ID, start by using a web browser to navigate to https://
console.developers.google.com. Then follow these steps:

1.	Click Create Project.

The screen shown in Figure 10-5 appears, prompting you to enter a
project name and project ID.

Figure 10-5: 
Enter a proj­

ect name.

https://developers.google.com/accounts/docs/OAuth2ForDevices
https://developers.google.com/accounts/docs/OAuth2ForDevices
https://console.developers.google.com
https://console.developers.google.com

205� Chapter 10: Raspberry Pi in the Sky

2.	Enter the project name (as shown in Figure 10-5), and leave the project
ID whatever Google made up for you.

3.	Click Create.

A screen providing the menu options for your new project appears.

4.	Click APIs & Auth from the menu bar on the left, and then click
Credentials.

The screen shown in Figure 10-6 appears.

5.	Click the Create New Client ID button.

The screen shown in Figure 10-7 appears.

6.	Click the Installed Application radio button, and click the Create
Client ID button.

A screen showing your client ID and client secret appears. It looks like
Figure 10-8.

You use these two codes later in this section.

Figure 10-6: 
The

Credentials
menu

option.

206 Part III: Developing Advanced Interfaces �

Figure 10-7: 
Create a

new client
ID.

Figure 10-8: 
Client ID

and Client
Secret
codes.

207� Chapter 10: Raspberry Pi in the Sky

7.	Click the Consent Screen option in the menu on the left.

A screen showing your email address and a project name appears.

8.	Enter your email address in the Email Address field and enter a
description like “Temperature Log” in the Project Name field and
click Save.

Step 2: Initializing the token for your Raspberry Pi
You need to download and run the Python program that will log the tempera-
ture sensor values to the spreadsheet. The first time you run the program, it
prompts you to go to a URL and enter a code (see the next section), which,
when entered, gives the program access to the spreadsheet.

On the Raspberry Pi, log in as the root user and type the following commands:

$ cd /home
$ apt-get install python-gdata
$ git clone git://github.com/gadjetnut/rpipfd.git
$ cd rpipfd
$ git clone git://github.com/guyc/py-gaugette.git
$ ln -s py-gaugette/gaugette gaugette

This process downloads all the software you need. Three Python programs in
particular are important for understanding how the software works:

✓✓ templogger_gdocs.py: The main program that takes the temperature
reading from the sensor and sends it to the Google Docs spreadsheet.

✓✓ ds18b20.py: The interface program for the temperature sensor. It
contains a function called GetTemperature that takes two param-
eters: Fahrenheit and directory. When Fahrenheit is set to
True, this function returns a temperature reading in Fahrenheit.
When Fahrenheit is set to False, it returns a Celsius reading. The
directory parameter is the directory name of your DS18B20 that you
recorded in the “Constructing the temperature sensor” and “Writing the
software” sections, earlier in the chapter.

✓✓ gdocs.py: Contains the functionality to authenticate with Google Docs.
This was largely adapted from libraries developed by Guy Carpenter
(http://guy.carpenter.id.au/gaugette).

Before you run the temperature logger, you need to do some configuration.
At the command prompt of your Raspberry Pi, perform the following steps:

$ nano templogger_gdocs.py

http://guy.carpenter.id.au/gaugette

208 Part III: Developing Advanced Interfaces �

As shown in Figure 10-9, edit the following configurations:

✓✓ ds18b20_dir: Enter the unique directory for your DS18B20 sensor that
you took note of in the “Constructing the temperature sensor” section.

✓✓ client_id: Enter the client ID you obtained in the section “Step 1:
Creating a client ID.”

✓✓ client_secret: Enter the client secret you obtained in the section
“Step 1: Creating a client ID.”

✓✓ spreadsheet_key: Enter the spreadsheet key you obtained in the
“Creating a new Google Docs spreadsheet” section.

✓✓ fahrenheit: Set this to False if you want a Celsius reading; otherwise,
leave it set to True for a reading in Fahrenheit.

Press Ctrl+X, press Y, and then press Enter to save. Now run the database
logger from the command line using the following command:

$ python templogger_gdocs.py

You’re prompted to go to www.google.com/device and enter a code that
is displayed on the screen, as shown in Figure 10-10.

Figure 10-9: 
An example

of the
completed
configura­

tions.

http://www.google.com/device

209� Chapter 10: Raspberry Pi in the Sky

Step 3: Authenticating the token online
Open a web browser, go to www.google.com/device, and enter the code
given to you on your Raspberry Pi, as shown in Figure 10-11. Click the Allow
Access button. You should get the following message:

Success! You’ve authorized Project Default Service
Account. Please return to your device to continue.

Return to your Raspberry Pi, which automatically resumes and starts logging
temperature values to the spreadsheet. You see the temperature reading
written to the screen on the Raspberry Pi as follows:

Temperature of 73.06F logged
Temperature of 73.06F logged
Temperature of 73.06F logged

Finally, open the spreadsheet and check that the temperature values are
being recorded in the spreadsheet, as shown in Figure 10-12.

Figure 10-10: 
An authen­

tication
token has
to be vali­

dated online
before the
Raspberry

Pi is allowed
accessed
to Google

Docs.

http://www.google.com/device

210 Part III: Developing Advanced Interfaces �

Figure 10-11: 
Validate

your token
from the

Raspberry
Pi online.

Figure 10-12: 
The Google

Docs
spreadsheet
temperature

log popu­
lated by the

Raspberry
Pi.

211� Chapter 10: Raspberry Pi in the Sky

Creating a Dashboard and Temperature
Alerts Using PrivateEyePi

In this section, you create an online temperature dashboard and define rules
that will trigger email alerts to you based on the temperature reading. In
this section, the Raspberry Pi sends temperature readings to PrivateEyePi,
where you can view the temperature and a 24‐hour graph on your dashboard.
Additionally, each temperature reading is checked against a set of customiz-
able rules that allow you to create temperature email alerts.

Follow these steps:

1.	Go to www.privateeyepi.com, click the New User link, enter your
details, and click the Update button.

2.	Click the GPIO menu option and click Add.

The screen shown in Figure 10-13 appears.

3.	Type 7 in the Number field, enter a description in the Description
field, and click Update.

Figure 10-13: 
Configure
the GPIO

port on the
PrivateEyePi

website.

212 Part III: Developing Advanced Interfaces �

4.	Click the Location menu option.

The screen shown in Figure 10-14 appears.

5.	In the Description field, enter a description of the location of the
temperature sensor, and click Update.

6.	Download the software that will poll the sensor and send the values to
the PrivateEyePi web service.

If you completed the previous section, you can skip this step. Otherwise,
type the following command at the Raspberry Pi command prompt:

cd /home
git clone git://github.com/gadjetnut/rpipfd.git

The preceding commands download the software into the /home/
rpipfd directory.

7.	Edit the globals.py file in order to enter your username and
password that you used earlier on the PrivateEyePi website.

At the Raspberry Pi command prompt, type the following:

cd /home/rpipfd
nano globals.py

Figure 10-14: 
Configure
the loca­

tion of the
sensor.

213� Chapter 10: Raspberry Pi in the Sky

As shown in Figure 10-15, enter the user and the password in between
the quotes. The user is the email address you used in the signup process
from the PrivateEyePi website.

Page down until you see the DallasSensorNumber settings (see
Figure 10-16). You need to set the GPIO number to 7 in between
the brackets (for example, DallasSensorNumber(7)). Look for
DallasSensorDirectory and replace the numbers you see in the file
with your own numbers (refer to the “Constructing the temperature
sensor” section, earlier in this chapter), as shown in Figure 10-16.

If you want your temperature to be displayed in Fahrenheit instead of
Celsius, find the line that says Fahrenheit=False and change it to
Fahrenheit=True.

8.	Press Ctrl+X, press Y, and then press Enter to exit.

Now you’re ready to run the script and view the temperature on your
PrivateEyePi dashboard display. At the Raspberry Pi command prompt, type
the following:

cd /home/rpipfd
python templogger_pep.py

Figure 10-15: 
User and

password
for the

Private
EyePi

website.

214 Part III: Developing Advanced Interfaces �

Using a web browser, go to www.privateyepi.com and log in using your
email and password. You’re directed to your dashboard, where you see your
temperature displayed, as shown in Figure 10-17. You can switch on the
graph by selecting Settings from the dashboard and then selecting the Config
menu option.

You can create rules and actions for each of your sensors. This is useful
for creating a temperature sensor alert if the temperature reaches a certain
threshold or drops below a threshold. Follow these steps:

1.	From the dashboard, click Settings and then select the Rules option.

2.	Click the Add button and configure a rule and action as shown in
Figure 10-18.

In this example, we configured a rule to send an email when the tempera-
ture reading on GPIO 4 is between 0 and –10. (Your email details need to
be configured in the globals.py file.)

Alternatively, you could choose to send an email if the temperature
reaches or exceeds 30°C, for example, which may be an indication of a
fire or a problem with the heating system in your house.

Figure 10-16: 
Configure

your unique
sensor

number
and sensor

directory.

http://www.privateyepi.com

215� Chapter 10: Raspberry Pi in the Sky

Figure 10-17: 
The

PrivateEyePi
temperature

dashboard
with graph.

Figure 10-18: 
Define rules

in Private­
EyePi.

216 Part III: Developing Advanced Interfaces �

You can define as many rules as you need and you can also combine up
to three rules by clicking the AND drop‐down box on the right side of the
screen. For example, you may not want alerts during the day or you may
want them only on specific days of the week.

PrivateEyePi also has alarm system functionality for the Raspberry Pi so
you can configure alerts to be triggered only if the alarm is armed (refer
to www.projects.privateeyepi.com for more details).

For more details on how to configure PrivateEyePi rules and actions, visit
www.projects.privateeyepi.com.

Creating a Database Logger
Logging data to the cloud is one way to log data, but you may want to take
matters into your own hands and do it yourself. In the next section, you
develop your own data‐logging application and web page to display the data.
You install a database and web server on your Raspberry Pi and write some
code to log to the database and then some HTML and PHP code to view the
data. Figure 10-19 shows how all the components fit together.

In the next few sections, we cover topics about which entire books have been
written. Our intent here is to provide you with the tools you need to further
your knowledge in these areas. By following each of the upcoming sections,
you end up with a working database‐logging application. You can build on
these basics by modifying the code to add new functionality.

Use the Internet to search for more information. It’s a wonderful resource
for developers seeking knowledge on how to solve problems or in need of
reference material.

Figure 10-19: 
The interac­

tion of the
various

components
you build in

this section.

http://www.projects.privateeyepi.com
http://www.projects.privateeyepi.com

217� Chapter 10: Raspberry Pi in the Sky

Understanding web servers and databases
A web server contains the content (text, pictures, links, tables, and so on)
for a website. It sends the content to a web browser upon request from the
web browser. The content can be static or dynamic. Static content on a web
page does not change (like a book). Dynamic content changes automatically
over time, and the content usually comes from a content management system
(CMS) of sorts. An example of a website with dynamic content is a newspaper
website that is continuously updated with new stories.

In this section, you create a dynamic webpage that displays the temperature
and temperature log, as shown in Figure 10-20.

A database is used to store and query information (data). It’s capable of stor-
ing data and retrieving it at a rapid rate. In this section, we use a database to
log the temperature sensor data and return the data to the web page, which
displays the temperature data to the user (refer to Figure 10-20).

Figure 10-20: 
The web

page you’ll
build.

218 Part III: Developing Advanced Interfaces �

Explaining HTML and server‐side scripting
A web page is served from the web server to the browser using Hypertext
Markup Language, more commonly known as HTML. Your web browser inter-
prets the HTML and displays it. The web browser interprets the HTML and
translates it into graphics, text, links, and tables, but HTML is not a program-
ming language — it’s a markup language. There are, however, programming
languages that can run in the browser. JavaScript, for example, is a very pop-
ular development language that is inserted into the HTML code and executed
in the browser.

Many books have been written on each of these topics, most of which are
beyond the scope of this chapter, but here we share with you the fundamen-
tals of each that provide you with a platform to further your database knowl-
edge. Try to understand each line of code and experiment with your own
modifications.

For this project, you retrieve data from a database and send it to the web
browser as HTML. Programming languages that perform this function are
called server‐side languages because they reside and are executed on the
web server (refer to Figure 10-19). There are a number of reasons why you
want to perform this action on the server side and not on the client side (the
browser). The most important reason is security. It’s incredibly risky to
expose your data layer to the public Internet. Another reason to perform it
on the server side is that you don’t know what’s running on the client side,
so you can run into incompatibility issues with all the different operating sys-
tems, PCs, tablets, smartphones, and so on that use browsers. That’s why it’s
good practice to keep the client side as simple as possible (using HTML) and
do your database programming on the server side.

There are a number of server‐side scripting languages you could use (for
example, PHP, Perl, ASP, or JSP). You use Hypertext Preprocessor (PHP) in
this project. From the browser, you call a PHP file the same way you call an
HTML file, except it has a .php extension (for example, index.php instead
of index.html). Figure 10-19 shows interaction between the browser, web
and database servers, and PHP interpreter.

When a PHP file is requested, the web server passes the file to the PHP inter-
preter, which executes the PHP code and typically passes back HTML, which
the web server sends back to the browser to display. In Listing 10-1, you can
see an example of a PHP file that resides on the web server that displays
either Hello world or I love Raspberry Pi, depending on the result of
a random number. This demonstrates how PHP can create the dynamic web

219� Chapter 10: Raspberry Pi in the Sky

pages described earlier. Most of Listing 10-1 is normal HTML except the sec-
tions demarcated with <?php and ?> that mark the beginning and end of the
PHP code. You don’t need to type this program in, but we’ve provided it to
show you the difference between PHP and HTML. You code in PHP and HTML
later in this chapter.

Listing 10-1:  An Example of PHP Code That Resides on the Web Server

<!DOCTYPE html>
<html lang="en">
<head>
 <title>An example PHP application</title>
</head>
<body>
 <?php
 random_number=rand(1,2);
 if (random_number==1){
 echo "Hello world";
 }
 else {
 echo "I love Raspberry Pi";
 }
 ?>
 </body>
</html>

In Listing 10-2, you can see the HTML that was sent back to the browser.
Notice that the PHP code is not present anymore. Only the result (that is, I
love Raspberry Pi) was sent back to the browser. This is the basic prin-
ciple of how server-side scripting works. You build on this principle later in
this chapter when you use PHP to read and write to a database.

Listing 10-2:  The HTML That Is Sent to the Web Browser

<!DOCTYPE html>
<html lang="en">
<head>
 <title>An example PHP application</title>
</head>
<body>
 I love Raspberry Pi
</body>
</html>

220 Part III: Developing Advanced Interfaces �

Delving into database basics
You store the data from the sensor in a database. Think of a database as
a collection of lists of data. Each list is known as a table. Each table has a
number of columns, and each line item in the list is called a row (refer to
Figure 10-21).

A database can store and retrieve large amounts of data very quickly. In this
section, you create a new table called TemperatureLog that contains the
temperature values coming from the temperature sensor. In addition to the
temperature value, you store other information, such as date, time, and unit
of measure (Celsius or Fahrenheit). These data elements will be columns in
the table. The fourth column is a unique identifier for every row called temp_
id. It isn’t strictly required for this project, but it’s good practice to create a
unique identifier, called the primary key, for each row. We configure temp_id
to automatically increment every time a new row is inserted in the database.

The TemperatureLog table will have four columns: temp_id (primary
key), temperature, date/time, and unit_of_measure. Date and time
can be stored in the same column using the DateTime data type. Next, think
about how you’ll manipulate the data. This helps you understand which
columns need to be indexed. An index allows the database to find and sort
data very quickly. The ability to sort the temperature log by date and time is
important for reporting, so you’ll create an index on the date/time column.
Lastly, think about how to describe the content of each of the columns (for
example, alphanumeric, numeric, date/time, size, and so on). These are
called data types.

Figure 10-21: 
A depiction

of a tem­
perature log

database
table with
rows and
columns.

221� Chapter 10: Raspberry Pi in the Sky

Installing MySQL, PHP, and Apache
After you’ve done some basic database design planning, go ahead and create
the table. You’ll be installing Apache (a very popular web server), MySQL
(a database management system), and PHP (see the “Explaining HTML and
server-side scripting” section, earlier in this chapter). All are open-source
software and work very well on a Raspberry Pi.

You’ll be using the root user in this chapter so you don’t run into permission
problems. Start off by logging into your Raspberry Pi as the root user. At the
command prompt, type the following commands:

apt-get update
apt-get install apache2
apt-get install php5
apt-get install php5-mysql
apt-get install mysql-server mysql-client
apt-get install python-mysqldb

During the installation, you’ll be prompted to enter a password for the root
user in MySQL.

Creating the data logger
Now you’re ready to create the temperature log table. At the Raspberry Pi
command prompt, type the following:

$ mysql -u root -p

Enter the password you configured earlier during the installation. This will
take you into the command-line interpreter of MySQL. Here you can issue
SQL commands to MySQL. Standard Linux commands will no longer work
when you’re in the MySQL interpreter. Type exit or quit to return to the
Linux command prompt.

Next, create a new database by typing the following:

mysql> CREATE database sensor_logs;

Type in the USE command to tell MySQL that all subsequent commands will
relate to the temperature_log table:

mysql> USE sensor_logs;

222 Part III: Developing Advanced Interfaces �

Next, create a user and password, which you use again later, and assign all
privileges to that user.

We don’t recommend changing the username and password at this point
because we refer to the user “dblogger” with a password of “password” and
it’s also contained in the code. When you have it working, you can come back
and change the password and edit the code with the new password, if you
want.

Create the user and password as follows:

mysql> CREATE USER 'dblogger'@'localhost' IDENTIFIED BY 'password';
mysql> GRANT ALL PRIVILEGES ON sensor_logs.* TO 'dblogger'@'localhost';
mysql> FLUSH PRIVILEGES;
mysql> quit

Now log back in using the user you just created and create the new table:

mysql -u dblogger -p
mysql> USE sensor_logs;
mysql>CREATE TABLE temperature_log (temp_id INT NOT NULL AUTO_INCREMENT,
temperature DECIMAL(10,2), date DATETIME, unit_of_measure CHAR, PRIMARY
KEY (temp_id));

Check that the table was created successfully by typing the following:

mysql>SHOW TABLES;

As shown in Figure 10-22, you should see the new table listed in the database.

Last, create an index on the Date column so that you can search and sort
easily by date:

mysql>CREATE INDEX idx_date ON temperature_log(date);

Now make sure that you’re happy with the new table you’ve created (see
Figure 10-23):

mysql>SHOW COLUMNS IN temperature_log;

Log out of MySQL by typing quit.

If you made some mistakes and want to delete the table and start again, use
the DROP statement:

mysql>DROP TABLE temperature_logs;

223� Chapter 10: Raspberry Pi in the Sky

Figure 10-22: 
Results of

a SHOW
TABLES

command.

Figure 10-23: 
Column

view of the
tempera-
ture_log

table.

224 Part III: Developing Advanced Interfaces �

Be very careful with this command because there is no option to undo it and
you don’t get a warning message that all data in the table will be deleted.

Developing a sensor logger
The next step is to log data into the database from the temperature sensor
you built earlier. You accomplish this by using Structured Query Language
(SQL) syntax. SQL is made up of commands that closely resemble spoken
language. Here are some examples of SQL statements. The following SQL
statement will return the first name, surname (last name), and grade of all
students with a surname of Evans:

SELECT firstname, surname, grade FROM student WHERE surname = "Evans"

The following SQL statement creates a new row of data in the student table:

INSERT INTO student (firstname, surname, grade) VALUES ("Jonathan",
"Evans", "A");

The following SQL statement changes the grade of all students that have a
surname of Evans to B:

UPDATE student SET grade = "B" WHERE surname="Evans"

Notice the use of surname in the preceding WHERE clauses. Earlier in the
chapter, we describe how to create an index to sort data and how to make
searching data quicker. Surname would be an ideal candidate for an index.
If surname were not indexed, the database engine would scan through the
entire table looking for students with the surname of Evans. However, by cre-
ating an index on the surname column, the database engine will be able to
sort through and pull out the relevant records much more quickly. However,
don’t create an index on many columns because every index adds overhead
to the performance of the table. This is why planning your database tables,
fields, and indexes is important.

Your database logger application will use two SQL statements: an INSERT
statement to log the data and a SELECT statement to retrieve the data that
will be displayed on a web page.

You use a Python program called templogger_db.py to log the tempera-
ture readings to the database. If you didn’t download the chapter software
earlier, you need to download the software using the following commands:

$ git clone git://github.com/gadjetnut/rpipfd.git

225� Chapter 10: Raspberry Pi in the Sky

Edit the file and observe its contents by typing the following:

$ cd /home/rpipfd
$ nano templogger_db.py

Input the sensor directory name for your DS18B20 sensor (refer to the
“Constructing the temperature sensor” section, earlier in this chapter), as
shown in Figure 10-24.

Page down in the code and observe how the program works. The program
starts execution at def main(): by setting the poll interval to five seconds
(poll_interval = 5). This means you store a temperature reading in the
database every five seconds.

Next, you configure whether you want a Celsius or Fahrenheit temperature
to be stored (fahrenheit=True or False). The program then goes into
a loop that logs the temperature every five seconds. The program uses a
function in the ds18b20.py program called GetTemperature that will run
the modprobe application to obtain a reading from the sensor. If you’re inter-
ested in seeing how the sensor information is retrieved, edit ds18B20.py,
which is in the same directory as templogger_db.py.

Figure 10-24: 
Configure

your
DS18B20

sensor
number.

226 Part III: Developing Advanced Interfaces �

Next, the program logs temperature readings to the database using a
sequence of database commands: connect, create cursor, insert,
commit, and close. The MySQLdb.connect statement creates a new data-
base connection, where you pass to it the IP address of the database server
(localhost), the database user name (dblogger), the password (pass-
word), and the name of the database you want to open (sensor_logs).

Next, prepare a cursor object to execute the SQL statement, followed by
execution of the statement. The commit statement writes the data to the
database, and the close statement closes the database connection.

Exit and save by typing the following:

CTRL-x together, followed by pressing 'Y', then followed by pressing ENTER

Run the program:

$ python templogger_db.py

The program prints temperature readings to the screen and also writes those
values into the database. After the program has logged a few readings, quit
by pressing Ctrl+C. Go back into MySQL and view the data that has been
logged by typing the following commands:

$ mysql -u dblogger -p (then type the password)
$ mysql> USE sensor_logs;
$ mysql> select * from temperature_log;

The rows that were inserted into the database will be listed in a table, as
shown in Figure 10-25.

Creating a dynamic web page
In this section, you create a web page that displays the temperature log you
created in the previous section on a web page. In the “Installing MySQL,
PHP, and Apache” section of this chapter, you install PHP and Apache. You
use both in this section to create a web page to display your temperature
readings. Check that the Apache installation worked. Open a browser either
by typing startx and opening a browser on your Raspberry Pi, or by using
another PC connected to your network, and type in the IP address of your
Raspberry Pi as the URL.

You should see a web page that says It works!, as shown in Figure 10-26.

227� Chapter 10: Raspberry Pi in the Sky

You can find the IP address of your Raspberry Pi by typing the following:

/sbin/ifconfig

The output will look something like this:

wlan0 Link encap:Ethernet HWaddr d8:eb:97:18:16:ef
inet addr: 192.168.0.2 Bcast:192.168.0.255 Mask:255.255.255.0

Your IP address is the number provided after inet addr:, which in this
case is 192.168.0.2.

Now that you have your web server up and running, you work with the fol-
lowing two PHP files to retrieve and display the data on a web page:

✓✓ dbreader.php: Contains two functions: DisplayTemperatureLog
displays the temperature log, and DisplayTheLatestTemperature
displays the last temperature stored in the log.

✓✓ temptest.php: The second PHP file calls both of these functions and
displays the data that the functions return on a web page.

Figure 10-25: 
Tempera­

ture
readings

in the
database.

228 Part III: Developing Advanced Interfaces �

Later in this section, you create a nicer-looking web page using HTML that
reuses the dbreader.php, but be concerned with the functionality, not the
look. PHP files need to be located in the web server’s directory (/var/www),
so you need to copy both the files into that directory as follows:

$ cd /home/rpipfd
$ cp dbreader.php /var/www
$ cp temptest.php /var/www

Before you run these programs, edit them and observe their contents. At the
command line, type the following:

$ cd /home/rpipfd
$ nano dbreader.php

Read through the PHP code and you see similarities to the Python code you
used earlier to log temperature readings to the database. The syntax is very
different, but the essence of the database commands is the same. A new con-
nection to the database is made with the following statement:

$mysqli = new mysqli("localhost", "dblogger", "password", "sensor_logs");

Figure 10-26: 
The default

page
displayed

after you’ve
installed

Apache web
server.

229� Chapter 10: Raspberry Pi in the Sky

Read the database using the following statement:

$res = $mysqli->query("SELECT * FROM temperature_log ORDER BY date
DESC");

The preceding SQL statement returns all the temperature readings and sorts
them in descending order by date. This operation is very fast, even though
the table may contain millions of rows. The reason for the high speed at
which SQL can sort these rows goes back to the index you created on the
Date column. The rest of the function loops through all the records until
it reaches the num_rows_to_display value. The following section loops
through the data:

for ($row_no = 0; $row_no < $res->num_rows/
&& $row_no < $num_rows_to_display; $row_no++)
 {
 echo "<tr>";
 $res->data_seek($row_no);
 $row = $res->fetch_assoc();
 }

The echo statements send the HTML back to the web server and then on to
the web browser to get displayed. Press Ctrl+X, press N, and press Enter to
exit without saving.

Next, open the other PHP file that will call each of the two functions and
display the data on the web page:

$ cd /home/rpipfd
$ nano temptest.php

The contents of this program are very simple. All this program does is call
the two functions in dbreader.php and display the contents on the screen.
Press Ctrl+X, press N, and press Enter to exit without saving.

Now return to the browser you used earlier and type the following URL:

http://IPaddress/temptest.php

where IPaddress is the IP address of your Raspberry Pi.

The latest temperature and a table containing the temperatures over the past
calendar day will be displayed on the web page, as shown in Figure 10-27.

230 Part III: Developing Advanced Interfaces �

The data displayed in Figure 10-27 is accurate, but it doesn’t look very nice.
Next, we use more sophisticated HTML in index.php to make look and feel
more professional. index.php is the default file that the web server will look
for when it receives a request from a web browser. For example, you only
have to type http://ipaddress into your browser, and it will display this page.

Edit index.php and observe its contents. Look carefully for <?php and ?>,
which demarcate the start end of the PHP code that the PHP interpreter will
execute before sending the HTML back to the browser. At the beginning of
the file, you can see that we’re including dbreader.php, which contains the
two functions that are called later in the file in sections starting with <?php.
To make the web page look better, we’ve included a background picture that
is referred to on the line with the following code:

Unless you know how to code HTML, the content of the file isn’t easy to read
and won’t make much sense to you. Other than knowing the HTML basics,
you don’t need to know how to code HTML. Few people code HTML like you
would code PHP or Python. This is because there are graphical tools that are
much better suited to creating HTML than coding it in a code editor. The tool

Figure 10-27: 
The raw

data from
the data­

base log is
displayed on
a web page.

231� Chapter 10: Raspberry Pi in the Sky

that we used to create index.php is called SiteSpinner Pro, but a number of
other very good tools on the market will do the job.

Exit the file by pressing Ctrl+X, and pressing N to quit without saving. Copy
index.php and the picture file to the web server as follows:

$ cd /home/rpipfd
$ rm /var/www/index.html
$ cp index.php /var/www
$ cp RPIPFDTLBanner.png /var/www

Now return to your browser and navigate to the IP address of your Raspberry
Pi (http://ipaddress). You should see the final product, as shown in
Figure 10-28.

Figure 10-28: 
The final

temperature
log web

page.

232 Part III: Developing Advanced Interfaces �

Webcam and Computer Vision
In This Chapter

▶▶ Setting up a webcam or Raspberry Pi camera module

▶▶ Looking at images

▶▶ Creating image files

▶▶ Using a webcam to detect motion

▶▶ Looking at image recognition

▶▶ Interpreting color

▶▶ Making a Connect Four game using computer vision

I
n this chapter, we show you how to give your Raspberry Pi vision
using a webcam or the Pi Camera Module. Using image‐processing

techniques, you can use the Raspberry Pi to analyze images to identify
things like motion, colors, and shapes. Here, we show you how computer
images are created and how you can look into the images for information
about them.

Note: Throughout this chapter, we provide instructions and code for both
a webcam and the Raspberry Pi Camera module. We use the term camera
to refer to either your webcam or your Raspberry Pi camera. If you’re using
Secure Shell (SSH) and Putty to connect to your Raspberry Pi, you won’t be
able to do the sections of this chapter that require graphical views that aren’t
supported in SSH, but you can view images using FTP. Please ensure that
you’re on the latest Raspbian Wheezy image and have recently performed an
update:

$ sudo apt-get update
$ sudo apt-get upgrade

Chapter 11

234 Part III: Developing Advanced Interfaces �

Setting Up the Webcam or Raspberry Pi
Camera Module

Setting up a webcam is as easy as plugging it into the USB port on your
Raspberry Pi or an attached USB hub.

We strongly recommend that you use a powered USB hub for your webcam
because the Raspberry Pi can’t support much more than a keyboard and a
mouse on its own power supply.

You can check the compatibility of your webcam with the Raspberry Pi at
www.elinux.org/RPi_USB_Webcam. When you have your webcam plugged
in and you’ve powered up your Raspberry Pi, type the following commands
to see if your webcam is listed in the listing:

$ lsusb
$ ls /dev

You should see two listings similar to Figure 11-1. We’re using a Creative
Technology, Ltd., webcam (as shown by the first circle in Figure 11-1). In the
second listing, look for video0 (also circled in Figure 11-1). If you see both of
these, you know your webcam is working. If you don’t, try shutting down the
Raspberry Pi, unplugging the webcam, plugging it back in, and starting up again.

Figure 11-1: 
A listing
of USB

peripherals,
including
the USB

webcam.

http://www.elinux.org/RPi_USB_Webcam

235� Chapter 11: Webcam and Computer Vision

For a list of supported webcams go to www.elinux.org/RPi_USB_
Webcams.

If you have a Raspberry Pi camera module, make sure it’s connected and
you’ve switched on the camera module setting. You should have received
setup instructions with your camera; refer to www.raspberrypi.org/
camera for detailed instructions on installing the camera module.

Test your camera by typing one of the commands in the following sections,
position the camera toward yourself, smile, and press Enter. You should have
a wonderful portrait of yourself saved to a file called test.bmp. You use this
technique of taking pictures throughout this chapter.

Taking a picture with a webcam
To take a picture with a webcam, use the following command:

fswebcam -d /dev/video0 -q -r 1024x768 test.bmp

fswebcam is a utility that’s included in the Raspbian image. Take a close
look at the command to understand what each part does. The ‐d option is
the device name. (Earlier, we had you look for the video0 file in the /dev
directory.) The ‐q option is a quiet option that does not display any text to
the screen during operation. The ‐r option sets the resolution to 1,024 pixels
wide by 768 pixels tall. Finally, you gave it the filename test.bmp to save the
picture to.

For a full list of options, pass the ‐‐help option, and all the options will be
written to the screen:

$ fswebcam --help

Taking a picture with the Raspberry Pi
camera module
To take a picture with the Raspberry Pi camera module, use the following
command:

raspistill -o test.bmp -t 1 -w 1024 -h 768 -e bmp

http://www.elinux.org/RPi_USB_Webcams
http://www.elinux.org/RPi_USB_Webcams
http://www.raspberrypi.org/camera
http://www.raspberrypi.org/camera

236 Part III: Developing Advanced Interfaces �

raspistill is a utility written specifically for the Raspberry Pi camera.
The ‐o is for output, followed by the filename where we want the picture
to be stored (test.bmp). The ‐t is how many seconds it waits before taking
a picture (the default is 5 seconds). As you may have guessed, ‐w is the width
and ‐h is the height of the picture.

For a full list of options, pass the ‐‐help option, and all the options will be
written to the screen:

$ raspistill --help

Viewing pictures on the Raspberry Pi
Viewing pictures on the Raspberry Pi is best done through X, as follows:

$ startx

Then double‐click the lxTerminal icon on the desktop and enter the following
command that will view a picture:

$qinv -f test.bmp

qinv is a utility that displays images. If it isn’t installed, you can type the
following to install it:

$ sudo apt-get install qiv

Understanding Images
A picture may be worth a thousand words, but in this section, we use almost
a thousand words to describe images. Here, we explain, resolution, color
spaces, color models, and file types.

Resolution
Resolution is a term that’s usually associated with the dimensions and pixel
count of an image. Think of an image as a two‐dimensional matrix of pixels.
In the previous section, you created a 1,024 x 768 image using your camera.
Your picture contains 1,024 columns and 768 rows, and a total of 786,432
pixels (1,024 × 768 = 786,432).

237� Chapter 11: Webcam and Computer Vision

Resolution is often incorrectly used to determine the clarity of a picture, but
the image size does not determine its clarity. Instead, the number of dots per
inch (dpi) or an image’s spatial resolution is a better determinant of clarity.

For example, compare the 1,024 x 768 pictures created by a webcam to
the 1,024 x 768 pictures created by the Raspberry Pi camera module. The
Raspberry Pi camera is a 5‐megapixel camera, which means it can produce
images with 5 million pixels. The webcam was designed to produce images
that can be sent easily over the Internet. Even though you may be able to
get 1,024 x 768 resolution from the webcam, the clarity and sharpness of the
image doesn’t compare to the camera picture.

Color spaces
The number of colors, or color space, is measured in bits per pixel (bpp).
The higher the number of bits per pixel, the more colors it represents and
the larger the picture file. A 1‐bpp pixel can store 2 (21) colors (if you’re old
enough, you may remember monochrome monitors, which were 2‐bit), a 2‐bpp
pixel can store four (22) colors, and a 24‐bpp pixel can store a staggering
16,777,216 (224) colors. 24 bpp is also known as 24‐bit or true color. Deep color
(30/36/48‐bit) is measured in the billions of colors per pixel.

If you’re using a Raspberry Pi camera, the picture you took earlier was in
24‐bit. If you’re using a fairly cheap webcam like we are, it’s unlikely that the
webcam will support 24‐bit, but some of them can.

Color models
A color model is the mathematical method of representing the color. There
are a whole range of different color models, but a very popular one is the
RGB model, where a color is made up of different intensities of red, blue, and
green (known as channels). Another popular color model is hue, saturation,
and value (HSV) or hue, saturation, and lightness (HSL). You use the RGB and
HSV models throughout this chapter.

For each of these models, a pixel is described using three numbers (one
number per channel). For example the color red in a 24‐bit color space
would be represented by the following combination of red, blue, and green:
[255,0,0]. There are a total of 256 different shades of red, blue, and green that,
when blended together, produce a total of 16,777,216 (or 256 × 256 × 256)
colors. In Python, we call [255,0,0] a tuple (a number of values separated by
commas). The tuples are stored sequentially in the image file, one per pixel.

238 Part III: Developing Advanced Interfaces �

Image file types
Different file types have been created to store the multitude of image types;
BMP, JPG, and GIF are three popular ones. There are so many different file
types because of the massive range of color spaces, color models, and com-
pression algorithms. Every file type was designed with a particular goal in
mind. Some were created for image clarity, others were created for web
pages, and others were created especially for your webcam to make it easy to
share videos and pictures over the Internet. Our research for this book led us
to discover 78 different image file types, and we’re certain there are more we
didn’t find.

In this chapter, you start by using the BMP file format, mainly because its
simplicity makes it a great starting point for understanding how to create and
process image files. Later, you use a Python image library that shields you
from the complexities of each file type and gives you a powerful set of imag-
ing tools.

Check out the image file type comparison chart at http://en.wikipedia.
org/wiki/Comparison_of_graphics_file_formats.

Creating an Image File
Enough of the theory — let’s get on with writing some code and working
toward the goal of computer vision! In this section, you write some Python
code to create a BMP image file. You create an image at the lowest possible
level without the help of a camera, scanner, or image programming library.
You’re writing the bits and bytes into a file to create an image.

A BMP file is basically made of up two sections: a header and the image data.
The header describes the file type (24‐bit color space, RGB model, and so
on). Table 11‐1 shows the data that makes up the header.

As you can see from this table, you need to store data in very specific sizes
(2 and 4 bytes). This requires you to use data types that match both the size
of the data and the content of the data (character, string, or number). In
order to do this, it helps to understand data types in Python.

Also important is the type of the file. The file you create is known as a binary
file. A binary file is different from a text file that contains characters. The
binary file contains bits and bytes. When you write the Python program, it’s
important to write binary data into the file and not text data. You do this
using a byte array and a function called pack_into().

http://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats
http://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats

239� Chapter 11: Webcam and Computer Vision

Refer to the Python reference manual for how to interpret strings as
packed binary data: http://docs.python.org/2.7/library/struct.
html?highlight=pack_into#struct.Struct.pack_into.

Start by opening a new Python program in your home directory. At the
Raspberry Pi command prompt, type the following commands:

$ cd ~
$ nano createbmp.py

Then type the program code in Listing 11-1.

Table 11-1	 BMP File Header Information
Offset Size (Bytes) Description
0 2 The header field used to identify the type of BMP file.

2 4 The size of the BMP file in bytes.

6 2 Not used.

8 2 Not used.

10 4 The offset in bytes where the image data starts.

14 4 The size of the header.

18 4 The bitmap width in pixels.

22 4 The bitmap height in pixels.

26 2 The number of color planes.

28 2 The number of bits per pixel, which is the color depth of
the image. Typical values are 1, 4, 8, 16, 24, and 32.

30 4 The compression method being used.

34 4 The image size.

38 4 The horizontal resolution of the image
(pixels per meter).

42 4 The vertical resolution of the image (pixels per meter).

46 4 The number of colors in the color palette.

50 4 The number of important colors used, or 0 when every
color is important. Generally ignored.

http://docs.python.org/2.7/library/struct.html?highlight=pack_into
http://docs.python.org/2.7/library/struct.html?highlight=pack_into

240 Part III: Developing Advanced Interfaces �

Listing 11-1:  Create an Image File
#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: create a BMP image
For the Raspberry Pi
"""

import struct
from ctypes import *

def main():
 image_size=(1024*768*3)+54
 data = create_string_buffer(image_size)
 rt=struct.pack_into('<s',data,0,"B")
 rt=struct.pack_into('<s',data,1, "M")
 rt=struct.pack_into('<i',data,2, image_size)
 rt=struct.pack_into('<i',data,10, 54)
 rt=struct.pack_into('<i',data,14, 40)
 rt=struct.pack_into('<i',data,18, 640)
 rt=struct.pack_into('<i',data,22, 480)
 rt=struct.pack_into('<h',data,26, 1)
 rt=struct.pack_into('<h',data,28, 24)
 rt=struct.pack_into('<i',data,34, image_size)
 pcnt=54
 row_cnt=0
 color=0
 alt=0
 for x in range (0, 1024*768):
 if row_cnt>=1024:
 row_cnt=0
 color=color+1
 if color>=255: color=0
 rt=struct.pack_into(‘<B’,data,pcnt, color)
 rt=struct.pack_into(‘<B’,data,pcnt+1, 255‐color)
 rt=struct.pack_into(‘<B’,data,pcnt+2, 0)
 pcnt=pcnt+3
 row_cnt=row_cnt+1
 print str(len(data))+" bytes written to file"
 f=open('mypic.bmp', 'wb')
 f.write(data)
 f.close()

if __name__ == "__main__":
 main()

In the program in Listing 11.1, you start by creating a buffer of the size you
need. In this case, you create a 24‐bit image file. The image has 1,024 x 768
pixels, and each pixel is 3 bytes. The size of the header is 54 bytes. Next,
you use the create_string_buffer function to create a buffer into which

241� Chapter 11: Webcam and Computer Vision

we pack our binary data. The ten pack_into function calls create the
mandatory header file information. The first parameter in the pack_into
function call specifies the data type. There are three data types in the header:

✓✓ String, denoted by <s

✓✓ Integer (size 4), denoted by <i

✓✓ Short (an integer of size 2), denoted by <h

The second parameter of the pack_into function is the buffer into which
we’re packing the binary data. The third parameter is the offset (refer to
Table 11‐1), and the last parameter is the actual data itself that we’re storing
in the file.

The second part of the program (within the for loop) creates the image file
data. You can see it starts at position 54 after the header information, and it
loops for every pixel (1,024 x 768), writing 3 bytes per pixel (24 bits per pixel).
The BMP file format is stored in BGR, not RGB, so the blue value is packed
first, then the green, and finally the red. To make the image more interesting,
the color is incremented after every row and you reverse the green image
color (255‐color) to give a beautiful blue and green rainbow. We set the red
color to 0, so that’s why we see only blue and green in the image.

Figure 11-2 shows how the file is built from the bottom, left to right. This build
pattern is quite common for image file types, but it isn’t standard across all
image types.

Figure 11-2: 
The pixel

tuples
describe the

image in a
build pattern
that starts at
the bottom‐

left side of
the picture.

242 Part III: Developing Advanced Interfaces �

The last part of the program is the code that writes the data (f.write
(data)) into a file.

Save the file by pressing Ctrl+X, pressing Y, and then pressing Enter to save
and exit. Now run the program using the following command:

$ python createbmp.py

The program should print the number of bytes written:

2359350 bytes written to file

Detecting Motion with a Webcam
In this section, we introduce you to an image‐processing library for Python
called OpenCV. It allows you to work with most image types without having
to understand the complexity of the file formats and compression algorithms.
It also contains many advanced functions that allow you to process images
more easily.

In the following Python program, pictures are taken continuously by the
webcam. Each new image is compared to the previous image, and a differ-
ence in pixels between the two images is summed into a total, which is com-
pared to a threshold. If the pixel difference between the two images exceeds
the threshold, we conclude that there has been sufficient change in the
images to identify that a motion has taken place.

There are two variables you can use to fine‐tune the motion detector. The
first is the pixel difference threshold, and the second is the amount of pixels
that we sample. We don’t need to sample every pixel (which is good, because
this allows the program to run faster). We’ve set the pixel difference thresh-
old to 100,000 and the pixel sample to 3,000, which produced good results
for both a webcam and the camera module. We’ve dropped the resolution to
320 x 240, which also speeds up the program because the webcam can take
pictures faster at a lower resolution and there are fewer pixels to process.

Open a new Python program in your home directory. At the Raspberry Pi
command prompt, type the following commands:

$ sudo apt-get install libopencv-dev python-opencv
$ cd ~
$ nano motion.py

Then type the program code in Listing 11-2.

243� Chapter 11: Webcam and Computer Vision

Listing 11-2:  Python Code for a Webcam Motion Detector
#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: webcam motion detection
For the Raspberry Pi
"""
import cv2
import os
import struct

#Uncomment the following line if you are using a Pi Camera
#import picamera

import time

def main():
#if the pixel color difference between the images is
#greater than the threshold then motion is detected
threshold=100000

#set the number of pixels to compare
no_pixels=3000

diff=0
first=True
while True:

 #Uncomment these four lines if you are using a Raspberry Pi
 #camera module and comment out the fswebcam line below

 #camera = picamera.PiCamera()
 #camera.resolution = (320, 240)
 #camera.capture('current.jpg')
 #camera.close()

 os.system("fswebcam -d /dev/video0 -q -r 320x240 current.jpg")

 current_image = cv2.imread('current.jpg')
 if (first):
 prev_image=current_image
 first = False
 continue
 cnt=0
 diff=0
 width = current_image.shape[1]
 height = current_image.shape[0]
 for i in range(0, width):
 for j in range(0, height):
 cnt=cnt+1
 if cnt==(width*height)/no_pixels:

(continued)

244 Part III: Developing Advanced Interfaces �

Listing 11‑2 (continued)

 pixel1 = current_image[j][i]
 pixel2 = prev_image[j][i]
 diff=diff+abs((int)(pixel1[2])
 -(int)(pixel2[2]))
 diff=diff+abs((int)(pixel1[0])
 -(int)(pixel2[0]))
 diff=diff+abs((int)(pixel1[1])
 -(int)(pixel2[1]))
 cnt=0
 if diff>threshold:
 print "Motion detected:"+str(diff)+". . .resetting"
 first=True
 continue
 print "Difference:"+str(diff)
 prev_image=current_image

if __name__ == "__main__":
 main()

If you’re using a Pi Camera, you need to uncomment the import camera line
near the top of the program by removing the # at the beginning of the line.

The threshold and the pixel sample rate can be fine‐tuned with the two vari-
ables: threshold and no_pixels. As we mention earlier, we set them to
100,000 and 3,000, respectively. The first few lines of the main loop (start-
ing with while True:) are the code that takes a picture either using the
webcam or Raspberry Pi camera. Lines that are commented out start with
a #, which tells the Python interpreter not to execute these lines of code. If
you’re using the camera module, uncomment the four lines that start with
camera and comment out the fswebcam line.

After the picture has been taken, the following line of code loads the picture
into an OpenCV object that you can use to compare the pixels:

current_image = cv2.imread('current.jpg')

When there are two images to compare, the width and height of the image
are determined and the main processing loops start:

for i in range(0, width):
 for j in range(0, height):

245� Chapter 11: Webcam and Computer Vision

The next two lines are important because they give you access to the pixel
color tuples (three numbers describing the RGB colors) of every pixel in the
sample.

pixel1 = current_image[j][i]
pixel2 = prev_image[j][i]

The j and i variables are the y‐ and x‐axis coordinates of the image, respec-
tively. The pixel1 and pixel2 variables contain the color tuples of the pixel
at the j and i coordinate as shown here:

pixel1=[245,232,84]
pixel2=[230,220,75]

You can determine the difference between these two pixels by subtracting
the colors from each other and summing the absolute difference. In this
example, the difference would be 15 + 12 + 9 = 36. You do this for every pixel
in the sample, which produces a grand total difference, which is compared
to the threshold in the last if statement of the program. If the threshold is
exceeded, the program will print “Motion detected. . . .”

Working with Image Recognition
In this section, we create a Python script that can detect circles within an
image. You use this function extensively in the next section where it’s used to
detect the tokens of a Connect Four game. You want to detect not only circles
but also the color. We explain how to detect color in the previous section;
here, we build on that knowledge.

OpenCV has a library of feature detection functions that can be found at
http://docs.opencv.org/modules/imgproc/doc/feature_
detection.html.

You’re using the Hough Transform Circles technique that was invented
in 1959 by Paul Hough and later patented by the U.S. Atomic Energy
Commission. Luckily, you don’t need to do much programming because the
folks at OpenCV have already done all the hard work. We’ve found that the
routine is very good at detecting circles of common size, but we got less
accurate results detecting circles of different sizes in the same image. In a
Connect Four game, we only need to be able to detect tokens of the same
size, so it works very well for that purpose.

Start by finding some round objects of the same size, like Connect Four
tokens or coins, as shown in Figure 11-3. Create an image of the objects called
shapes.jpg using your webcam or Raspberry Pi camera (refer to “Setting
Up the Webcam or Raspberry Pi Camera Module”).

http://docs.opencv.org/modules/imgproc/doc/feature_detection.html
http://docs.opencv.org/modules/imgproc/doc/feature_detection.html

246 Part III: Developing Advanced Interfaces �

The program in Listing 11-3 processes the image you created and creates a
new image called detectedcircles.jpg. It also automatically displays the
new image, so make sure you’re within X and running an lxTerminal window.
To go into X, type the following command at the command prompt:

$ startx

Then double‐click the lxTerminal icon on the desktop and enter the following
command, which will create a new Python script:

$ cd ~
$ nano circles.py

Then type in the code in Listing 11-3.

Figure 11-3: 
Circle

detection
with

OpenCV.

247� Chapter 11: Webcam and Computer Vision

Listing 11-3:  Python Script to Detect Circles with OpenCV

#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: detect circles
For the Raspberry Pi
"""

import cv2.cv
import numpy as np

def main():
 img = cv2.imread('shapes.jpg',0)
 img = cv2.medianBlur(img,0)
 circles = cv2.HoughCircles (img,cv2.cv.CV_HOUGH_GRADIENT, 1,minDist=40,

param1=30, param2=20, minRadius=35, maxRadius=50)

 circles = np.uint16(np.around(circles))
 img = cv2.imread('shapes.jpg')
 for i in circles[0,:]:
 # draw the circles
 cv2.circle(img,(i[0],i[1]),i[2],(0,255,0),2)
 x=i[0]
 y=i[1]
 Red=img[i[1],i[0],[2]]
 Green=img[i[1],i[0],[1]]
 Blue=img[i[1],i[0],[0]]
 cv2.putText(img,str(int(Red))+","+str(int(Green))+","+/
 str(int(Blue)), (x-40,y), cv2.FONT_HERSHEY_SIMPLEX, /
 .5, 0)
 cv2.putText(img,"Found Circle", (x-50,y+30),/
 cv2.FONT_HERSHEY_SIMPLEX, .5, 0)
 cv2.imwrite('detectedcircles.jpg', img)
 cv2.imshow('detected circles',img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

if __name__ == "__main__":
 main()

Run the program from the command line, and a window similar to Figure 11-3
appears. For each circle that it detects, it draws a graphical circle around the
image and writes the text Found Circle and a number that corresponds to
the RGB color of the center pixel of the circle. The program likely won’t work
perfectly the first time you run it because there are a number of parameters
that fine‐tune the minimum spacing between circles, and minimum and maxi-
mum diameter.

248 Part III: Developing Advanced Interfaces �

If you get an AttributeError: rint, this is because it hasn’t detected any
circles. You’ll need to fine‐tune it.

The first two lines of the main program open the shapes.jpg image that is
located in the same directory as the program (≃) and convert it to an 8‐bit
black‐and‐white picture that is required by the HoughCircles function. The
third line contains the call to the HoughCircles function. There are three
parameters that you need to fine‐tune this function:

✓✓ minDist is the minimum distance you want between the center of each
of the circles.

✓✓ minRadius is the minimum radius you want for a circle.

✓✓ maxRadius is the maximum radius for a circle.

If the function finds circles that do not meet these criteria, it will exclude
them from the list. The next line creates an array (list) of all the circles and
stores it in a variable called circles. The next line opens the image again
and discards the previous black‐and‐white image. Then there is a for loop
that loops through each of the circles that were found by the HoughCircles
function and plots a graphical circle at the coordinates and with the radius
it detected. The program writes the RGB color code and Found Circle text
within each circle (refer to Figure 11-3).

If the program is not detecting the circles correctly, fine‐tune it by adjusting
the three parameters accordingly.

Interpreting Color
In the last two sections, we examine the RGB subcomponents of a pixel to
determine the color of a pixel. The RGB color model, however, is not best for
detecting color. A better version of the RGB color model is HSV, sometimes
called HSL. In the “Building a Connect Four Game Using Computer Vision”
section of this chapter, you need to be able to detect the red and yellow
colors of differing brightness. To the human eye, all the pieces in a Connect
Four game appear either red or yellow, but their brightness differs vastly
depending on the lighting conditions, shadows, and angle of the camera.
Using the RGB color model, the number ranges of different shades of the
same color differ substantially. However, using the HSV model, the hue (the
main representation of color) remains constant. The shadows will likely
affect the value or maybe the saturation.

We’ve modified Listing 11-3 to perform an HSV conversion and use it to dis-
tinguish between red and yellow circles in Listing 11-4. Instead of printing the
RGB color within the circle, it will now print the HSV values. Instead of print-
ing Found Circle, it will print the color interpretation of the red or yellow

249� Chapter 11: Webcam and Computer Vision

circle. If you have different color tokens in your image, fine‐tune color ranges
until you get accurate interpretations.

The program in Listing 11-4 processes the image you created and creates a
new image called detectedcircles.jpg (see Figure 11-4).

The program will also automatically display the new image, so make sure
you’re within X and running an lxTerminal window. To go into X, type the
following command at the command prompt:

$ startx

Then double‐click the lxTerminal icon on the desktop and enter the following
command to create a new Python script:

$ cd ~
$ nano circles2.py

Now type the code in Listing 11-4.

Figure 11-4: 
Circle

and color
detection

with
OpenCV.

250 Part III: Developing Advanced Interfaces �

Listing 11-4:  Python Script to Detect Circles and Red or Yellow Colors

#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: detect circles and color
For the Raspberry Pi
"""

import cv2.cv
import numpy as np

def rgb2hsv(r, g, b):
 r, g, b = r/255.0, g/255.0, b/255.0
 mx = max(r, g, b)
 mn = min(r, g, b)
 df = mx-mn
 if mx == mn:
 h = 0
 elif mx == r:
 h = (60 * ((g-b)/df) + 360) % 360
 elif mx == g:
 h = (60 * ((b-r)/df) + 120) % 360
 elif mx == b:
 h = (60 * ((r-g)/df) + 240) % 360
 if mx == 0:
 s = 0
 else:
 s = df/mx*100
 v = mx*100
 return h, s, v

def main():
 img = cv2.imread('shapes.jpg',0)
 img = cv2.medianBlur(img,0)
 circles = cv2.HoughCircles(img,cv2.cv.CV_HOUGH_GRADIENT,1,minDist=100 /
,param1=30,param2=60,minRadius=45,maxRadius=75)
 circles = np.uint16(np.around(circles))
 img = cv2.imread('shapes.jpg')
 for i in circles[0,:]:
 # draw the circles
 cv2.circle(img,(i[0],i[1]),i[2],(0,255,0),2)
 x=i[0]
 y=i[1]
 Red=img[i[1],i[0],[2]]
 Green=img[i[1],i[0],[1]]
 Blue=img[i[1],i[0],[0]]
 hsv=rgb2hsv(Red, Green, Blue)
 Hue=round(hsv[0])

251� Chapter 11: Webcam and Computer Vision

 Sat=round(hsv[1])
 Value=round(hsv[2])
 if ((Hue>=320) or (Hue>=0 and Hue <=25)) and (Sat>50):
 token="Red"
 elif (Hue>=30 and Hue<=60) and (Sat>50):
 token="Yellow"
 else:
 token="Blank"
 cv2.putText(img,str(int(Hue))+","+str(int(Sat))+","+str(int(/
Value)), (x-40,y), cv2.FONT_HERSHEY_SIMPLEX, .5, 0)
 cv2.putText(img,token, (x-30,y+30), cv2.FONT_HERSHEY_SIMPLEX,

.5, 0)
 cv2.imwrite('detectedcircles.jpg', img)
 cv2.imshow('detected circles',img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

if __name__ == "__main__":
 main()

The code explanation is the same as the code explanation in the “Working
with Image Recognition” section, except for the code starting at this line:

hsv=rgb2hsv(Red, Green, Blue)

This line calls the rgb2hsv function within the program with the RGB param-
eters. The function performs the mathematical conversion and returns the
HSV equivalent of the color. The next few if statements compare the HSV
values to the number ranges for red and yellow. If your tokens are a different
color, adjust these values until you get the correct readings for your colors.

Many color wheels are available online that will help you determine the RGB
and HSV values for all the colors in the color model. You can use sites like
www.colorizer.org to determine the color numbers for ranges of colors.

Building a Connect Four Game
Using Computer Vision

In this section, you use a webcam or Raspberry Pi camera to give your
Raspberry Pi a view of a real‐life Connect Four game. Using what you learned
in the previous sections of this chapter, you can detect the movement of
pieces and the color of each piece to give the Raspberry Pi enough informa-
tion to play against a human opponent. We’ve added speech to the program
so the Raspberry Pi can announce whose turn it is and which moves it wants
you to make for it.

http://www.colorizer.org

252 Part III: Developing Advanced Interfaces �

This section requires some coding that is more in depth than the rest of the
chapter. The code listing is quite long, but you can download it from www.
dummies.com/go/raspberrypiprojects. Let’s get started!

Start off by calibrating your webcam and the Connect Four grid. Fill most
of the positions on the grid with tokens and try to evenly space out the red
and yellow pieces (or whichever color tokens you have); leave some blank.
Position your webcam evenly in front of the grid and take some 640 x 480
pictures (refer to “Setting Up the Webcam or Raspberry Pi Camera Module,”
earlier in this chapter), until you’re satisfied that the grid occupies most of
the picture. Try to use a white or neutral background, and don’t use any
patterns that contain circles other than the grid within the picture. Run your
sample images through the program in Listing 11-4 until you have every
circle correctly identified (see Figure 11-5).

You need to fine‐tune these values in the HoughCircles function call:

✓✓ minDist is the minimum distance you want between the center of each
of the circles.

✓✓ minRadius is the minimum radius you want for a circle.

✓✓ maxRadius is the maximum radius for a circle.

Figure 11-5: 
A correctly
calibrated

Connect
Four grid

with all
pieces

identified
correctly.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

253� Chapter 11: Webcam and Computer Vision

After it’s calibrated, you’re ready to move on to the actual game itself. You
need to install OpenCV (if you haven’t done that already in the previous
sections):

$ sudo apt-get install libopencv-dev python-opencv

The program makes use of a program called mpg321 to play the MP3 files
that the computer uses to communicate with the player:

$ sudo apt-get install mpg321

Now code the program in Listing 11‐5 by typing the following:

$ cd ~
$ nano c4.py

Listing 11-5:  Connect Four Game Using Computer Vision

#!/usr/bin/env python
"""
Raspberry Pi Projects For Dummies: Connect Four Game Using Computer Vision
For the Raspberry Pi
"""

import cv2
import cv2.cv
import numpy as np
import struct
import math
import sys
import os
from operator import itemgetter, attrgetter

#Uncomment this line of you have a Pi Camera
#import picamera

import time
import random
global circles
global human_color
global computer_color

def rgb2hsv(r, g, b):
 r, g, b = r/255.0, g/255.0, b/255.0
 mx = max(r, g, b)
 mn = min(r, g, b)
 df = mx-mn
 if mx == mn:
 h = 0

(continued)

254 Part III: Developing Advanced Interfaces �

Listing 11‑5 (continued)

 elif mx == r:
 h = (60 * ((g-b)/df) + 360) % 360
 elif mx == g:
 h = (60 * ((b-r)/df) + 120) % 360
 elif mx == b:
 h = (60 * ((r-g)/df) + 240) % 360
 if mx == 0:
 s = 0
 else:
 s = df/mx*100
 v = mx*100
 return h, s, v

def calculate_a_move(c4grid):
 global human_color
 global computer_color
 max_found=0
 best_move=0
 #find best move for the computer
 #first we determine the max amount in row
 rt=check_for_4_in_a_row(c4grid)
 if rt[0]!=1:
 max_found=rt[2]
 for x in range (0,7):
 for y in range (0,6):
 if (y==5) or (c4grid[x,y]=="B" and/
 c4grid[x,y+1]!="B"):
 #Reevaluate if a disc in this position
 #will yield more in a row
 c4grid[x,y]=computer_color
 rt=check_for_4_in_a_row(c4grid)
 c4grid[x,y]=“B”
 if rt[0]==1:
 return(x+1)
 if rt[2]>max_found:
 max_found=rt[2]
 best_move=x+1
 #check if human needs to be blocked
 c4grid[x,y]=human_color
 rt=check_for_4_in_a_row(c4grid)
 c4grid[x,y]="B"
 if rt[0]==1:
 return(x+1)
 break

 if best_move==0:
 best_move=random.randint(1,7)
 return(best_move)

255� Chapter 11: Webcam and Computer Vision

def check_for_4_in_a_row (c4grid):
 max_found=0
 max_found2=0

 #look for vertical
 best_move = [0,0]
 for x in range (0,7):
 found=1
 max_found=1
 for y in range (1,6):
 if (c4grid[x,y]=="Y" or c4grid[x,y]=="R") and/
 c4grid[x,y]==c4grid[x,y-1]:
 found=found+1
 if c4grid[x,y]=="Y":
 max_found=max_found+1
 else:
 found=1
 if found==4:
 return([1,1,x,c4grid[x,y]])
 if max_found > 1:
 max_found2=max_found2+max_found

 #look for horizontal
 for y in range (0,6):
 found=1
 max_found=1
 for x in range (1,7):
 if (c4grid[x,y]=="Y" or c4grid[x,y]=="R") and/
 c4grid[x,y]==c4grid[x-1,y]:
 found=found+1
 if c4grid[x,y]=="Y":
 max_found=max_found+1
 else:
 found=1
 if found==4:
 return([1,2,y, c4grid[x,y]])
 if max_found > 1:
 max_found2=max_found2+max_found

 #look for diagonal bottom left top right
 startx=0-(6-4)
 for z in range (0,6):
 x=startx
 y=5
 max_found=1
 found=1
 while y>=1:
 if x>0 and x<=6-1:
 if (c4grid[x,y]=="Y" or c4grid[x,y]=="R") and/

(continued)

256 Part III: Developing Advanced Interfaces �

Listing 11‑5 (continued)

 c4grid[x+1,y-1]==c4grid[x,y]:
 found=found+1
 if c4grid[x,y]=="Y":
 max_found=max_found+1
 else:
 found=1
 if found==4:
 return([1,3,x,c4grid[x,y]])
 x=x+1
 y=y-1
 startx=startx+1

 if max_found > 1:
 max_found2=max_found2+max_found

 #look for diagonal bottom left top right
 startx=0-(6-4)
 for z in range (0,6):
 x=startx
 y=5
 max_found=1
 found=1
 while y>=1:
 if x>0 and x<=6-1:
 if (c4grid[x,y]=="Y" or c4grid[x,y]=="R") and/
 c4grid[x+1,y-1]==c4grid[x,y]:
 found=found+1
 if c4grid[x,y]=="Y":
 max_found=max_found+1
 else:
 found=1
 if found==4:
 return([1,3,x,c4grid[x,y]])
 x=x+1
 y=y-1
 startx=startx+1

 if max_found > 1:
 max_found2=max_found2+max_found

 #look for diagonal bottom right to top left
 startx=6+(6-4)
 for z in range (0,6):
 x=startx
 y=5
 max_found=1
 found=1
 while y>=1:
 if x>0 and x<=6-1:

257� Chapter 11: Webcam and Computer Vision

 if (c4grid[x,y]=="Y" or c4grid[x,y]=="R") and/
 c4grid[x-1,y-1]==c4grid[x,y]:
 found=found+1
 if c4grid[x,y]=="Y":
 max_found=max_found+1
 else:
 found=1
 if found==4:
 return([1,4,x,c4grid[x,y]])
 x=x-1
 y=y-1
 startx=startx-1

 if max_found > 1:
 max_found2=max_found2+max_found

 return([0,"",max_found2])

def check_for_new_move(prev_grid, c4grid):
 for x in range (0,7):
 y=0
 while y<=5 and prev_grid[x,y]=="B":
 y=y+1
 if y>0 and c4grid[x,y-1]<>"B":
 new_token=c4grid[x,y-1]
 return([x, new_token])
 return([0,""])

def process_image(new_game):
 global circles

 c4grid = np.empty((7, 6), dtype=object)
 no_empty_slots=0

 #If you are using a Raspberry Pi Camera
 camera = picamera.PiCamera()
 camera.resolution = (640, 480)
 camera.capture('c4grid.bmp')
 camera.close()

 #If you are using a webcam
 #os.system("fswebcam -d /dev/video0 -q -r 640x480 c4grid.bmp")

 if new_game:
 img = cv2.imread('c4grid.bmp',0)
 img = cv2.medianBlur(img,0)
 circles = cv2.HoughCircles(img, cv2.cv.CV_HOUGH_GRADIENT,/

1,40,param1=20/ ,param2=30, minRadius=25, maxRadius=50)
 circles = np.uint16(np.around(circles))
 img = cv2.imread('c4grid.bmp')

(continued)

258 Part III: Developing Advanced Interfaces �

Listing 11‑5 (continued)

 grid = []
 for i in circles[0,:]:
 x=i[0]
 y=i[1]
 Red=img[i[1],i[0],[2]]
 Green=img[i[1],i[0],[1]]
 Blue=img[i[1],i[0],[0]]
 hsv=rgb2hsv(Red, Green, Blue)
 Hue=round(hsv[0])
 Sat=round(hsv[1])
 Value=round(hsv[2])
 if ((Hue>=320) or (Hue>=0 and Hue <=25)) and (Sat>50):
 token="R"
 elif (Hue>=69 and Hue<=165) and (Sat>50):
 token="G"
 elif (Hue>=30 and Hue<=60) and (Sat>50):
 token="Y"
 else:
 token="B"
 no_empty_slots=no_empty_slots+1

 grid.append([0,0,x,y,token, img[i[1],i[0]]])

 temp = sorted(grid, key=itemgetter(2))

 xcounter=0
 prev=(int)(temp[0][2])
 for i in temp:
 if abs(prev-(int)(i[2]))>20:
 xcounter=xcounter+1
 i[0]=xcounter
 prev=(int)(i[2])

 temp = sorted(grid, key=itemgetter(0,3))
 ycounter=-1
 prev=(int)(temp[0][0])
 for i in temp:
 if prev<>(int)(i[0]):
 ycounter=0
 else:
 ycounter=ycounter+1
 i[1]=ycounter
 prev=(int)(i[0])

 for i in temp:
 x=i[0]
 y=i[1]
 if x>=0 and x <=6 and y>=0 and y<=5:
 c4grid[x, y]=i[4]

259� Chapter 11: Webcam and Computer Vision

 return(c4grid, no_empty_slots)

def wait_for_play(c4grid):

 prev_grid = c4grid
 no=0
 new_move_detected=False
 while not new_move_detected:
 rt=process_image(0)
 c4grid=rt[0]
 print "C4 Grid:"
 for y in range (0,6):

 print c4grid[0,y] , ",", c4grid[1,y],", /
" , c4grid[2,y],",",c4grid[3,y], ",",c4grid[4,y],",",c4grid[5,y],",",c4grid[6,y]

 rt=check_for_new_move(prev_grid, c4grid)
 if rt[1]!="":
 print "New move detected in column "+str(rt[0]+1)/
 + " color "+rt[1]
 prev_grid=np.copy(c4grid)
 new_move_detected=True
 return(c4grid)

def play_mp3(mp3_no):
 if (mp3_no>=1 and mp3_no<=7):
 mp3_file="slot"+str(mp3_no)+".mp3"
 elif mp3_no==8:
 mp3_file="mymove.mp3"
 elif mp3_no==9:
 mp3_file="yourmove.mp3"
 elif mp3_no==10:
 mp3_file="letsplay.mp3"
 elif mp3_no==11:
 mp3_file="youwin.mp3"
 elif mp3_no==12:
 mp3_file="letsplayagain.mp3"
 elif mp3_no==13:
 mp3_file="badluck.mp3"

 os.system('mpg321 -q '+mp3_file)

 return

def main():
 global human_color
 global computer_color

 humans_turn = True
 human_color="R"

(continued)

260 Part III: Developing Advanced Interfaces �

Listing 11‑5 (continued)

 computer_color="Y"
 new_game=True
 winner=False
 play_grid = np.empty((7, 6), dtype=object)

 while True:
 while new_game==True:
 rt = process_image(1)
 if rt[1]==7*6:
 new_game=False
 winner=False
 play_grid=rt[0]
 time.sleep(2)

 print "Empty grid detected, let's play!"
 play_mp3(10)
 play_mp3(9)

 while True:
 play_grid = wait_for_play(play_grid)
 rt = check_for_4_in_a_row(play_grid)
 if rt[0]==1:
 print "four in a row"
 if rt[3]==human_color:
 play_mp3(11)
 play_mp3(12)
 else:
 play_mp3(13)
 play_mp3(12)

 new_game=True
 humans_turn = True
 break;

 if not humans_turn:
 play_mp3(9)
 humans_turn=True
 else:
 play_mp3(8) # my move
 rt = calculate_a_move(play_grid)
 play_mp3(rt)
 humans_turn=False

if __name__ == "__main__":
 main()

261� Chapter 11: Webcam and Computer Vision

Starting at the main() section, there are a few variables you can change in
order to configure the color for the human and the color for the computer. If
you use colors other than red or yellow, do a search for R and Y and replace
with your colors. The game is programmed for the standard grid of seven
across by six down. The program then enters the main loop, which has two
sub loops: one for determining the start of a new game (that is, an empty
grid), and one for game play. Notice a number of play_mp3 function calls
throughout the program. These play the sounds for the Raspberry Pi to com-
municate with the human. You can download these files from www.dummies.
com/go/raspberrypiprojects. The computer moves are communicated
to the human who must perform the moves on the computer’s behalf. The
computer’s intelligence is limited to the following:

✓✓ Detecting a change in game state when a piece is dropped into the grid

✓✓ Determining whether the computer needs to block the human from
getting four in a row

✓✓ Determining the computer’s best move by calculating which move will
produce the most in a row for the computer.

The computer does not

✓✓ Detect whether an incorrect move has occurred. (You can cheat!)

✓✓ Think ahead more than one move (either for blocking or for its own
game strategy).

When an empty grid has occurred, the computer announces “Let’s play!” and
the main game play loop starts. The game play loop consists of the following
steps:

1.	Wait for a move to occur.

2.	Once a move has occurred, check for four in a row.

3.	Either tell the human to move or calculate a computer move.

Starting at the top of the program, here’s is an explanation of each function:

✓✓ rgb2hsv converts the RGB color model to HSV (see the “Interpreting
Color” section, earlier in this chapter).

✓✓ calculate_a_move determines the best move for the computer, which
includes either blocking the human or calculating a move that yields the
most tokens in a row for the computer.

✓✓ check_for_4_in_a_row scans the grid to determine whether there are
four tokens in a row vertically, horizontally, or diagonally. This function
also serves the calculate_a_move function by returning the maximum
number of tokens in a row for the computer for each possible move.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

262 Part III: Developing Advanced Interfaces �

✓✓ check_for_new_move scans through the grid in memory to determine
if it has changed.

✓✓ process_image is very similar to the calibration program you wrote
earlier. It’s responsible for taking a picture of the grid, finding the
circles, determining the color and position of each piece, and storing
the grid in memory. This function contains the HoughCircles function
that you need to change to match the values you calibrated earlier. The
HoughCircles function returns a long list of all circles, so this function
also sorts each circle by x‐ and y‐coordinate to determine its position in
the grid.

✓✓ wait_for_play loops and continuously checks for new moves. It also
prints the grid that the computer has in memory to the screen so you
can verify that the computer is “seeing” each piece correctly.

✓✓ play_mp3 plays each MP3 file using the mpg321 external program call.
If you’d prefer to see the move written to the screen and not spoken,
this would be a good place to replace the os.system call with a print
command. You can download these files from www.dummies.com/go/
raspberrypiprojects.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

The Raspberry Jazz Glitter Trio
In This Chapter

▶▶ Hacking a glitter lamp

▶▶ Attaching a webcam

▶▶ Reading an image

▶▶ Assigning sound

▶▶ Extracting pixel data

▶▶ Creating the band

T
his is a fun project that creates a free jazz trio inside your Raspberry Pi.
(Some people joke that free jazz got its name because no one would ever

pay for it. True, jazz is an acquired taste and a little goes a long way, but this
is a fascinating little project nevertheless.) The project points a webcam at a
glitter lamp, the kind that features glitter floating in a liquid. The camera acts
as a high‐resolution multicolor sensor. It uses the data gathered from the
glitter lamp to trigger the sounds for the project, thus creating free jazz.

Meeting the Gang
The photograph in Figure 12-1 shows our version of the Raspberry Pi jazz
glitter trio. Yours may be a bit different because of the exact materials you’re
able to gather, but it shows you what you’re aiming for.

It consists of two main components — a cheap webcam and a glitter lamp —
which we picked up from a home bargain/thrift store for less than $10 for the
pair. These are cheap, generic devices and are widely available online, includ-
ing on eBay.

Chapter 12

264 Part III: Developing Advanced Interfaces �

The lamp
The glitter lamp we chose was the smallest we could find. It’s about 5 inches
tall and contains silver glitter suspended in a liquid. When the lamp is still,
the glitter slowly floats up. When the lamp is turned upside down, a tilt
switch in the base triggers a circuit to start one minute of random pulsing of
three different colored light‐emitting diodes (LEDs), illuminating the glitter
from the lamp’s base. As the glitter drifts and tumbles, some pieces catch the
light from the LEDs and sparkle. Because the LEDs are in different positions,
different bits of glitter get illuminated with different colors.

In this project, you use this effect to trigger jazz sounds. Both the lamp and
the webcam are mounted in a box. The box includes a back shield so that
only the glitter is picked up and stray light is reduced. (Construction plans of
the box are included as part of the project.)

The webcam
Webcams come in all sorts of shapes, sizes, and resolutions. For this project,
get the cheapest one you can find. The resolution doesn’t matter much for

Figure 12-1:
The finished

Raspberry
Jazz Glitter

Trio.

265� Chapter 12: The Raspberry Jazz Glitter Trio

this project, so a low‐resolution webcam will do the trick. Here’s what to look
for in a webcam for this project:

✓✓ Compatibility: The most important thing is that the camera be sup-
ported by the Raspberry Pi’s Python‐based software, which usually
seems to support low‐cost generic cameras.

✓✓ Access to the interior of the webcam: You need to be able to physically
get into the camera so you can mount it. Look for a webcam with small
screws on the outside of the case rather than an all‐in‐one molded type
of case. You’re going to be hacking into the USB power lead to power the
glitter lamp’s LEDs.

✓✓ Manual focus: Make sure that the webcam has a manual‐focus lens. The
fixed‐focus types are hard to adjust for very small distances, which is
what you need for this project.

You can buy the webcam we used at http://uk.farnell.com/trust/
17003/webcam‐exis‐trust‐uk/dp/1860369. For a complete list of
Raspberry Pi USB webcams, check out www.elinux.org/RPi_USB_
Webcams.

Testing the Webcam
The first step is to test whether your webcam works and is supported by the
software. Create a directory for the project called glitter, either from the
desktop or by typing the following from your home directory (or wherever
you want to work):

mkdir glitter
cd glitter

Next, download the support files you need by typing the following:

sudo wget http://www.cl.cam.ac.uk/downloads/freshers/image_processing.tar.gz

To extract the files, you just type the following:

sudo tar -xf image_processing.tar.gz

This gives you the support software and some basic tutorial files on how
to use the software, but for the time being, ignore these and install the
Python libraries. First, navigate to the libraries directory. Then install the
libraries by typing the following two lines:

sudo cd library
sudo make install

http://uk.farnell.com/trust/17003/webcam-exis-trust-uk/dp/1860369
http://uk.farnell.com/trust/17003/webcam-exis-trust-uk/dp/1860369
http://www.elinux.org/RPi_USB_Webcams
http://www.elinux.org/RPi_USB_Webcams

266 Part III: Developing Advanced Interfaces �

This executes a script that moves all the files and the library code into the
necessary places in Python’s file system.

Now you’re ready to try out the camera. Create a file, using the code shown
in Listing 12-1, and store it in your glitter directory. Give it the title of
camTest.py, plug in your webcam, change the directory of the prompt to
the glitter directory, and run the file by typing the following:

python camTest.py

Listing 12-1:  Camera Test

from imgproc import *
import time

my_camera = Camera(320, 240)
my_image = my_camera.grabImage()
my_view = Viewer(my_image.width, my_image.height, "WebCam")
while True:
 my_view.displayImage(my_image)
 time.sleep(0.1)
 my_image = my_camera.grabImage()

Reading step‐by‐step through this listing gives you an idea of what’s going
on. First, you have to import the module that supports the webcam, as well
as the time module. Then you define an instance of the Camera class and say
what size you want it to be. Here, it’s only 320 x 240 pixels, so it’s not very
high resolution. (Later, you make this even smaller.) Next, the listing grabs an
image from what the camera is currently seeing and defines a view window
for later displaying this image on the screen. Last, the program goes into an
endless loop of displaying the image, sleeping (or delaying) for 0.1 second,
and then getting a new image.

The result of this listing is that you see the image from your webcam in the
top‐left corner of the screen. If this fails, your webcam is probably not sup-
ported by Raspberry Pi and you’ll have to get another one to do this project.

If your webcam works, check that you can focus to half an inch or so. If you
can’t, you may be able to adjust the lens when you take the camera apart.

Hacking the Glitter Lamp
You can set up your camera pointing to the glitter lamp and turn it on
manually — this will give you some idea of what the finished project will
sound like. However, by hacking the glitter lamp and the camera, you get a

267� Chapter 12: The Raspberry Jazz Glitter Trio

neat compact unit all powered off the USB connection, and you can easily
invert the lamp to get the glitter all mixed up again.

You may have to modify these instructions depending on how your lamp and
camera are constructed.

Note: At this point, you may want to skip to the software section, and get the
system going without doing any hardware hacking. Feel free to skip ahead
and come back to this section later.

Assembling the necessary parts
Besides a glitter lamp and a suitable webcam (covered earlier in this chap-
ter), here’s a list of the parts we used:

✓✓ ¼‐inch plywood or medium‐density fiberboard (MDF) to make the box —
two pieces measuring 3 x 5 inches and one piece measuring 3 x 2 inches

✓✓ ¾‐x‐16‐inch strip of pine for the box sides

✓✓ A tack switch with ¼‐inch plunger

✓✓ A 3‐inch length of ‐inch angle aluminum

✓✓ Matte black paint

✓✓ Four 18mm M3 tapped hexagonal pillars

✓✓ Ten 10mm pan‐head M3 screws

✓✓ Two M3 nuts

✓✓ Wood glue, hot glue, and connecting wire

The glitter lamp we bought is shown in Figure 12-2. It was powered by three
self‐contained coin cell batteries.

Except for the battery compartment, we could see no way into the lamp, so
eventually we resorted to drastic measures and cut all around the base with
a saw, leaving it looking a bit truncated, as shown in Figure 12-3.

This left the electronics in the other half of the lamp. In Figure 12-4, the
photograph on the left shows the circuit board in the plastic assembly, and
the photograph on the right shows the removed printed circuit board (PCB).
That long component on the top is the tilt switch; it consists of a small metal
ball inside a tube that makes a circuit between the two wire ends when the
lamp is tilted past a certain angle.

268 Part III: Developing Advanced Interfaces �

Figure 12-2:
Our original
glitter lamp.

Figure 12-3:
The glitter
portion of
the lamp.

269� Chapter 12: The Raspberry Jazz Glitter Trio

In this project, you need to remove the tilt switch and solder a normal push
button in its place. Extend the power wires by soldering two new wires to
the PCB, and then solder two other wires about 6 inches long to the connec-
tions where you removed the tilt switch. Bend the LEDs so that they point
up. You’re going to mount this under the lamp’s glitter section, as shown in
Figure 12-5.

Figure 12-4:
The elec-
tronics of
the lamp.

Figure 12-5:
The LEDs

mounted on
the base.

270 Part III: Developing Advanced Interfaces �

Making the box
Figure 12-6 shows the schematic of the box into which you’ll place the lamp
and webcam.

If your camera or glitter lamp are materially different from the ones we used,
you may have to modify these instructions to suit what you have.

To make the box, follow these steps:

1.	Cut two pieces of 5‐x‐3‐inch MDF or plywood.

2.	In the top piece, cut a 1½‐inch hole at one end to take the diameter of
the clear base of the glitter lamp, and then cut a tapered hole to which
the camera can be attached.

We did this by first drilling a 10mm hole and then enlarging it to 12mm by
drilling only partially through the wood. This allowed us to use the thick‐
domed plastic plug (which normally attaches the camera to its stand) to
attach the camera to the board.

3.	Drill a ‐inch hole for the tack switch to poke out of and four ‐inch
holes in each corner for the supporting pillar.

When we did this, we also clamped the base and top together so the
holes lined up.

4.	Cut a 2¾‐inch piece of ¼‐inch angled aluminum for the back screen
support, and drill two ‐inch holes ½‐inch from each side on both
faces of the aluminum.

Mark the holes on the top through the holes in the aluminum, so they line
up correctly.

5.	Cut part of a semicircle in the aluminum so you can get the back
screen close to the glitter lamp.

Figure 12-6:
The box

schematic.

271� Chapter 12: The Raspberry Jazz Glitter Trio

We used a round back file for this.

6.	Use ¾‐inch strip pine to make the sides, and glue them to the top.

7.	Use 18mm tapped pillars between the top and the base to hold it all
together.

8.	Cut a 3‐x‐2‐inch back screen from the wood and mount it on the alu-
minum angle with two screws and nuts. Then paint the whole thing
matte black.

You can use another color if you want, but black cuts down the stray
reflected light, especially from the back shield.

The idea is that the LEDs are placed under the large hole and the glitter
lamp is glued in the lid of the box. We used a small ring from the lower
part of the lamp that we cut off previously.

9.	Cut a chamfer (beveled edge) on the inside of the lamp’s ring with a
scalpel or sharp hobby knife so that it fits snugly over the ring sur-
rounding the LEDs. Push this ring onto the base of the lamp and screw
the box together.

10.	Using hot glue or silicon sealant, glue the lamp to the top of the box.

11.	When the glue or sealant has set, unfasten the box and apply another
fillet of glue to the underside.

12.	Put some glue on the base of the ring and again assemble the box so
the ring is secured in the right place, as shown in Figure 12-7.

Adding the camera
To take the camera apart, first we unscrewed the plastic plug that holds
the camera to its clip or stand. Then we unfastened the screws in the body.
(In the case of our camera, there were four small star‐head screws.)

Figure 12-7:
The lamp/

electronics
assembly.

272 Part III: Developing Advanced Interfaces �

You want to tap off the 5V and ground coming from the USB lead that powers
it with a pair of wires. You need to take this power to the LEDs in the box.
With the camera enclosure removed, you can see the red and black wires
carrying the USB power. Solder two new wires onto this and drill two 1mm
holes in the plastic case so these wires can pass out of the camera body.

You also have to drill two matching holes in the top of the box for them
to pass through. Reassemble the camera and, with the round plastic plug,
attach the camera to the top of the box and pass the wires through the lid.

Connect the two wires from the LED board to a tack switch with a ¼‐inch‐long
top and glue that in place in the center hole in the top. From the underside,
the wiring should look something like that shown in Figure 12-8.

Testing
After you have the hardware built, it doesn’t do any harm to give it a
quick test. You can plug it into your Raspberry Pi and run the program in
Listing 12-1 just to make sure that the camera still works. Then push the tack
switch that replaced the tilt switch and make sure that the LEDs pulse for
about a minute.

Figure 12-8:
The wiring

of the
project.

273� Chapter 12: The Raspberry Jazz Glitter Trio

Letting the Band Play
There are two more things you need before you can get a performance out of
this band: sound samples and software. The way these are brought together
determines how the project works. You need to define an array of pixels to
sample from the glitter image. When these points reach a certain brightness
and color, the sounds are triggered.

Gathering the sounds
First, you have to gather the sounds for the trio. We did a web search for
individual sounds for each instrument: sax, bass, and drums. There are
many free sound sample sites, but the one we found most useful was
www.freesound.org because you can search for specific sounds and listen
to them before downloading. We looked for short samples, mainly single
notes, from each of the three instruments. We got 16 samples for bass and
drums and 22 samples of the sax. (You can use more, but you’ll have to make
minor changes to the software if you do.)

We used Audacity (a free downloadable audio editor and recorder, available
at http://audacity.sourceforge.net) to top and tail each sample (that
is, to cut out any long silence at the beginning and end of the sample). Also,
while chopping the samples up, we converted them into a mono sample in
order to save memory space. This is a bit of an iterative process: After you
hear the results, you may want to go back and get different types of sounds.

Finally, after a bit of trial and error, we placed the samples in directories
at the same level as the code called sax, drums, and bass. Each sample is
called soundX.wav, where the X is replaced by a number, starting at 0 and
incrementing up to the biggest sample number.

Writing the software
The idea behind the code is that, from the image, 16 pixels in a 4 x 4 grid will
be monitored for color. When a bright red, green, or blue color is detected,
a sound is triggered. In the case of drums or bass each pixel monitored trig-
gers a fixed sample, but the sax triggering is slightly more complex. The sax
sound triggered depends on both the number of the pixel triggering it and an
offset. The offset is incremented on each sax trigger, and when it reaches a
limit, it resets back to 0. We found this approach necessary to introduce a bit
of variety into the music produced. (Although a repetitive drum and bass note
sounds fine, the sax, being a solo instrument, needs a bit of variety to keep it
interesting.)

http://www.freesound.org
http://audacity.sourceforge.net

274 Part III: Developing Advanced Interfaces �

Because you’re using only 16 pixels out of the whole image, you don’t need a
very big image. We used a 160‐x‐120‐pixel image. This still results in an image
of 19,200 pixels, which is quite a lot of memory for a small embedded proces-
sor, especially considering that you’re only interested in 16 of the pixels. Each
pixel has 3 bytes of memory associated with it — one each for the red, green,
and blue signals. To add a bit of interest, after a pixel triggers a sound, the
program draws an outline around that pixel so you can see what’s happening.
All this is done in the code shown in Listing 12-2.

Listing 12-2:  The Glitter Band

from imgproc import *
import time
import os, pygame, sys

pygame.init()
pygame.mixer.quit()
#pygame.mixer.init(frequency= 44100, size=8, channels = 8, buffer= 2048)
pygame.mixer.init()
print"loading Sound files"
samplesSax = [pygame.mixer.Sound("sax/sound"+str(i)+".wav") for i in range

(0, 22)]
samplesBass = [pygame.mixer.Sound("bass/sound"+str(i)+".wav") for i in range

(0, 16)]
samplesDrum = [pygame.mixer.Sound("drums/sound"+str(i)+".wav") for i in range

(0, 16)]
print"finished"
my_camera = Camera(160, 120)
my_image = my_camera.grabImage()
my_view = Viewer(my_image.width, my_image.height, "WebCam")
monX = [int(p * 32) for p in range(1,5)]
monY = [int(p * 24) for p in range(1,5)]
saxOffset = 0

def main():
 global my_image
 while True:
 my_image = my_camera.grabImage()
 for x in monX:
 for y in monY:
 surround(x,y,(0,0,0))
 #my_view.displayImage(my_image)
 #time.sleep(0.1)
 #print" "
 for x in monX :
 for y in monY :
 red, green, blue = my_image[x, y]
 if green > 248 :
 #print green," green at ", x, y

275� Chapter 12: The Raspberry Jazz Glitter Trio

 sampleSax(x,y)
 if red > 225 :
 sampleDrum(x,y)
 #print red," red at ", x, y
 if blue > 240 :
 sampleBass(x,y)
 #print blue," blue at ", x, y
 my_view.displayImage(my_image)

def sampleSax(x,y) :
 global saxOffset
 number = saxOffset + ((x / 32)-1) + (4 *((y /24)-1))
 samplesSax[number].play()
 surround(x,y-3, (0,255,0))
 saxOffset += 1
 if saxOffset >5 :
 saxOffset = 0
def sampleBass(x,y) :
 number = ((x / 32)-1) + (4 *((y /24)-1))
 samplesBass[number].play()
 surround(x+3,y, (0,0,255))
def sampleDrum(x,y) :
 number = ((x / 32)-1) + (4 *((y /24)-1))
 samplesDrum[number].play()
 surround(x-3, y, (255,0,0))

def surround(x, y, col):
 global my_image
 my_image[x-1,y] = col
 my_image[x-1,y+1] = col
 my_image[x-1,y-1] = col
 my_image[x,y+1] = col
 my_image[x,y-1] = col
 my_image[x+1,y] = col
 my_image[x+1,y+1] = col
 my_image[x+1,y-1] = col

if __name__ == '__main__':
 main()

The program uses the pygame module to handle the sound samples and starts
off by loading them in. This could take a few seconds, so a print statement
is used just to give the user the confidence that the program hasn’t crashed.
Each instrument is loaded into its own array. Then the camera is initialized, as
are the arrays containing the x‐ and y‐coordinates of the pixels to monitor.

The main function consists of an infinite loop that grabs an image, examines
the target pixels, and calls the functions to trigger the sounds. Note that
in this function, there are a number of print statements commented out with
a hash symbol (#). These will be skipped, but if you want to see the progress
of the program, simply remove the # from one or more of these lines.

276 Part III: Developing Advanced Interfaces �

Reading through the main function, you see that first an image is grabbed,
and then each target pixel is surrounded with a black outline. Then each of
the target pixels is examined in turn. The pixel values from the image are
extracted into the variables red, green, and blue. These variables are then
tested to see if they exceed a threshold value. If they do, the appropriate call
is made to a function that actually does the triggering. These thresholds were
derived from experimentation and have a bearing on the note density of the
music. Feel free to play around with these values.

The sample functions take the x‐ and y‐coordinates of the triggering pixel and
turn them into a number from 0 to 15. Then the appropriate sample number
is triggered. Also, the triggered pixel is surrounded by the trigger color. If one
pixel triggers more than one sound, it will be left surrounded with the last
color detected.

The result is that when you run the program, the image returned is such that
none of the pixels can trigger the notes. Then when the button is pressed,
the LEDs start pulsing and the sounds start being triggered. The degree of
change depends on how long it was since you last inverted the lamp. The
glitter moves fast at first, but quickly settles down into a slow, steady wan-
dering. If you leave it too long, all the glitter will float to the top and nothing
will be triggered. If you have trouble with sound being triggered with no LED
illumination, try moving the project out of direct light or arrange some sort of
top shade for it.

Playing variations on a theme
Now comes the interesting part: You can make variations on this code that
can change the whole project, hopefully for the better. Simply renaming
the sound samples, so they’re in a different order, can have an effect on the
music produced. Try adjusting the threshold values that cause the triggering
as well. Then you could define three different arrays of pixels to sample for
each instrument, or increase the number of samples for each instrument.

How about triggering a solo mode where the sax plays much longer phrases?
Another set of samples could be switched in order to do this. Better yet, why
stick with the traditional trio lineup? You can use any sounds you like, from
instruments to sound effects to longer phrase loops. Free jazz was never
quite so free!

Find out about the ev3dev language in a free article at www.dummies.com/
extras/raspberrypiprojects.

Making the Raspberry Pi Your
LEGO’s Magic Brick

Part IV

	

http://www.dummies.com/extras/raspberrypiprojects
http://www.dummies.com/extras/raspberrypiprojects

In this part . . .
	 ✓	 Connect the Raspberry Pi to LEGO MINDSTORMS.

	 ✓	 Build an infrared handset simulator.

	 ✓	 Build your own LEGO sensors.

	 ✓	 Use LEGO sensors and motors directly from the Raspberry Pi.

	 ✓	 Build an interactive luck‐free dice game.

The Pi Meets LEGO
In This Chapter

▶▶ Meeting the LEGO MINDSTORMS EV3 Intelligent Brick

▶▶ Sending messages to the brick using Bluetooth

▶▶ Having the brick send messages back to the Raspberry Pi

▶▶ Finding out about infrared remote‐control codes

▶▶ Making a Raspberry Pi–powered infrared transmitter

▶▶ Using the infrared transmitter to make a Tug‐of‐War LEGO Robot

L
EGO has been a popular toy since its invention in 1949, but it has never
been more popular than it is today. This is due, in part, to the LEGO

company’s continual development and ability to reinvent itself, just like the
toys it makes. LEGO Technic has always been a great way to learn the basics
of mechanical engineering, and lately, the MINDSTORMS series of robotic
construction has propelled it successfully into the new century. In this part,
we look at some of the ways you can enhance the latest MINDSTORMS set,
the EV3, by using the Raspberry Pi. In this chapter specifically, we explore
how the Raspberry Pi can communicate with the EV3 control brick.

Exploring the MINDSTORMS Range
The LEGO MINDSTORMS EV3 Intelligent Brick is the fourth incarnation of the
robot‐building concept, and, in keeping with the improvements in technol-
ogy, it’s the most sophisticated yet. Although the mechanical (plastic) parts
are compatible with earlier versions, the electronic control brick and the
sensors and motors it uses have limited compatibility.

The first system, called LEGO MINDSTORMS Robotics Invention System,
was launched in 1999. It was followed by the NXT in 2006 and the NXT 2.0 in
2009. Those two systems differ only in the parts supplied with the sets and
the software used on the control bricks. The control bricks themselves are
identical. Finally, the EV3 launched in 2013 using a much more powerful pro-
cessor with more memory and limited compatibility with previous systems.

Chapter 13

280 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The EV3 can be used with all the sensors of the NXT system, but nothing of
the original Robotics Invention System. These three controllers are shown in
Figure 13-1. For the purposes of this book, the original MINDSTORMS brick is
obsolete, so we concentrate on the EV3 system.

Programming the control brick has always involved using some sort of
graphics‐based language, with increasing sophistication through the LEGO
generations. The languages are based on the LabView graphical programming
language used widely in industry for software‐based instrumentation. If you
are new to the EV3 system, we suggest that you take time to get familiar with
the basic operation of it using the supplied software before exploring the
extensions that the Raspberry Pi makes possible.

Hackers have also developed several alternative text‐based programming
languages for the bricks. However, the EV3 system offers, for the first time,
the ability for third‐party systems to interact with the control brick instead of
overriding or replacing the native brick software. In this chapter, we explore
some of the ways you can use your Raspberry Pi with an unmodified EV3
system.

There are four basic ways to access the LEGO MINDSTORMS EV3 Intelligent
Brick:

✓✓ Wi‐Fi

✓✓ USB

✓✓ Bluetooth

✓✓ Infrared (IR)

Figure 13-1: 
The three

generations
of LEGO
control
bricks.

281� Chapter 13: The Pi Meets LEGO

Wi‐Fi and USB are interchangeable and are used for downloading programs to
the control brick and uploading data from it. Wi‐Fi requires the separate pur-
chase of a specific Wi‐Fi dongle.

When it comes to interacting with the Raspberry Pi, Bluetooth and IR are
the best ways to control or interact with a robot remotely. They allow much
more sophisticated programs to be written than would otherwise be possible
simply by using the brick’s graphical language alone. They also open up the
possibility of using hardware attached to the Pi to control the LEGO system.

Up to eight EV3 control bricks can communicate with each other by exchang-
ing messages over Bluetooth. However, this mechanism can also be used
to allow the Raspberry Pi to send and receive messages from the EV3 brick.
These messages can be programmed to trigger actions or to get data back
from the robot’s sensors. These messages can be controlled by a program
running on the Raspberry Pi; in this chapter, we show you how to use Python
to do this.

The EV3 set comes with a small handheld IR remote control that is capable
of sending some commands to the IR sensor. The remote control can trans-
mit on four different “channels” and can be picked up by the IR sensor. This
is a dual‐purpose sensor — it’s also capable of detecting the distance to an
object by detecting IR reflection off the object. The Raspberry Pi can be made
to generate IR messages and send them to the control brick from its own pro-
grams.

In the following sections, we cover Bluetooth and IR messages in greater
detail.

Bluetooth messages
The EV3’s language has a messaging block to send and receive messages.
Most of the flow control blocks in the LEGO language can use the reception of
a message to trigger the execution of a section of a program. So, it would be
very useful if you could send and receive these messages with the Raspberry
Pi. You need two things to do this:

✓✓ A Bluetooth interface on your Raspberry Pi

✓✓ Some knowledge of the message structure in order to make sense of the
messages

We cover these requirements in the following sections.

282 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Bluetooth Pi
The simplest way to give your Raspberry Pi Bluetooth capability is to fit it
with a Bluetooth USB dongle. It should be fitted directly to one of the Pi’s USB
sockets and not to a USB hub.

You can get a variety of different types of USB dongles, but the vast majority
use really only two chipsets. Unfortunately, only one of these chipsets will
work with the Raspberry Pi and, surprisingly, it’s the cheaper one! To find a
list of the increasingly large range of recommended devices, check out www.
elinux.org/RPi_USB_Bluetooth_adapters.

To see what type of dongle you have, plug in the dongle, boot up the
Raspberry Pi, and log in. From the command line, type the following:

lsusb

You see a list of devices attached to the USB ports. One of them should read
something like this:

Cambridge Silicon Radio, Ltd Bluetooth Dongle

If yours is a Broadcom or any other manufacturer, try to get a Cambridge one
because, as of this writing, the others may not work properly. That said, the
Linux software in the Raspberry Pi is constantly evolving, so try what you
have first, and if you have trouble, then get a Cambridge chip set.

To get started using your Bluetooth dongle, follow these steps:

1.	Install the necessary software by typing the following from a
command line:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install bluetooth bluez-utils blueman
sudo apt-get install python-serial

The first line gets a list of the latest packages, the second line installs
them, and the third line installs the Bluetooth‐specific applications.

2.	Reboot the system and type lsusb again, just to make sure things are
working.

Occasionally, a dongle won’t power up, so check to make sure it’s
working before you proceed.

3.	Type startx to get into the desktop.

You should see a Bluetooth icon in the bar at the bottom‐right of the
screen. If you don’t, look for it under the Preferences menu.

http://www.elinux.org/RPi_USB_Bluetooth_adapters
http://www.elinux.org/RPi_USB_Bluetooth_adapters

283� Chapter 13: The Pi Meets LEGO

4.	Click the Bluetooth icon.

The Bluetooth Devices dialog box appears (see Figure 13-2). You may
see several unknown devices listed in the dialog box. Don’t worry about
them — they aren’t real, but we haven’t found a way of getting rid of
them permanently.

5.	Turn on your EV3 brick and make sure the Bluetooth is enabled and
visible.

Don’t select the iPhone option. See the instructions that came with the
EV3 brick if you don’t know how to change the Bluetooth settings.

6.	In the Bluetooth Devices dialog box, click Search in the toolbar at the
top.

After a short time, the EV3 brick appears.

7.	Click the brick to highlight it and then click Setup in the toolbar.

8.	Choose the pairing option with a custom pass key, type 1234, and click
Continue or Forward.

The LEGO brick makes a sound and asks you to confirm the keys.

9.	Select the check box and press the middle button.

The brick and the Raspberry Pi should now be paired. You won’t have to
do this again.

10.	While you’re at it, pair up your computer or laptop and Raspberry Pi
as well.

It’s a very convenient way of swapping files between the two systems.

Figure 13-2: 
The

Bluetooth
Devices

dialog box.

284 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

11.	Right‐click the EV3 entry in the Bluetooth Devices dialog box and
select Connect to Serial Port.

You should get the following message:

Serial port connected to /dev/rfcomm0

This last step has to be done each time you boot up your Pi or when you
leave the desktop and return to it.

Now you can treat the Bluetooth dongle just like any other serial port in any
programs you write.

The anatomy of a message
Before you can send and receive messages, you have to know the format
they use. At the time of this writing, LEGO hasn’t published the message
specification, so we did a little snooping to see what it was. By looking at the
messaging blocks in the EV3 language, you can see that each message box
has a name and contents. The contents can be Boolean, text, or a number,
so the message must contain both the contents or payload and the message
box name. The results of the investigation are shown in Figure 13-3.

The message starts with two bytes that give the number of bytes in the rest
of the message. This, like all other two‐byte numbers in this system, are in
the little endian format, which means that the least significant byte of the
two‐byte number is first and the most significant byte is second.

If the numbers are arranged the other way round, that’s called big endian.
Much metaphorical blood has been spilled by proponents of the two systems
as to which is fundamentally better. We’re in the big endian camp ourselves,
but there you go.

The next two bytes are a message counter. When the bricks are talking
amongst themselves, the message counter doesn’t appear to change. The
same goes for the next two bytes, the message ID. Then there is a single byte
that gives the number of bytes in the mailbox name. The name then follows

Figure 13-3: 
The anat-
omy of a

message.

285� Chapter 13: The Pi Meets LEGO

as a null terminated string. Note that the number of bytes includes the null.
Finally, the next two bytes give the number of bytes in the payload, followed
by the payload or message itself.

Sending a message
In principle, it’s very easy to send a message to the EV3 brick. Just put toget
her a character list that matches the format we just described and then send
it character by character to the serial port. Take a look at that in practice
with Listing 13-1, which sends four text messages to a mailbox called “Brick.”

Listing 13-1:   Composing and Sending a Text Message

#!/usr/bin/env python
Compose a message for Lego Bluetooth
and send it - Mike Cook
import serial
import time

EV3 = serial.Serial('/dev/rfcomm0')
print "sending EV3 a Bluetooth message"

def main():
 for t in range(0,4) :
 m = messageG("Brick","See Me "+str(t))
 print "sending :- ", "See Me "+str(t)
 messageSend(m)
 time.sleep(2.0)
 EV3.close()
end of main

Function definitions
def messageSend(message):
 if EV3.isOpen() == True :
 for n in range(0, 2 + ord(message[0]) + (ord(message[1]) * 256)):
 EV3.write(message[n])

def messageG(boxName,message): # generate a text message
 length = len(boxName) + len(message) + 10
 btMessage = [chr(0) for temp in range (0,length)] # initial blank
 btMessage[2] = chr(1)
 # message ID
 btMessage[4] = chr(0x81)
 btMessage[5] = chr(0x9E)
 btMessage[6] = chr(len(boxName) + 1)
 btMessage[7:7+len(boxName)] = boxName
 payloadPointer = 8 + len(boxName)
 btMessage[payloadPointer] = chr((len(message) + 1) & 0xff)
 btMessage[payloadPointer + 1] = chr((len(message) + 1) >> 8)

(continued)

286 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The first thing this code does is open the Bluetooth serial port to the LEGO
brick. Then the main function composes four messages reading “See Me”
with a number appended. It generates a text message using the messageG
function, which first calculates the length of the message and initializes a
blank message containing all null characters. Then the message counter is
set to 1 and the message ID numbers are set. Then the sixth element in the
list is set to the length of the box name plus one (to accommodate the null at
the end) and the box name is inserted in the list from the seventh position.

Next, a variable called payloadPointer is calculated to give the position
of the last part of the message. This is an intermediate value and makes the
calculations that follow a little easer to write down. Then the length of the
message string is placed in the two bytes, giving the number of bytes in the
payload, and the text is inserted in the message just like the box name was.

Finally, the endpoint of the message is calculated and the first two bytes
of the message, giving the overall message length, are set. The complete
message is then returned from this function. All that remains to be done is to
send the message with the messageSend function, which writes the bytes
one by one to the serial port. Note that this function used the first two bytes
of the message to see how many bytes to send.

In order to test this, you need to put a simple program on the LEGO brick.
This program is shown in Figure 13-4.

Listing 13‑1 (continued)

 btMessage[payloadPointer + 2:len(message)] = message
 endPoint = payloadPointer + len(message) + 1
 btMessage[0] = chr((endPoint & 0xff))
 btMessage[1] = chr(endPoint >> 8)
 return btMessage
if __name__ == '__main__':
 main()

Figure 13-4: 
LEGO code

for receiving
messages.

287� Chapter 13: The Pi Meets LEGO

This program first turns on the Bluetooth system. Then, when a message
is updated, it makes a brief sound and displays the message. Run the code
on the LEGO brick first, followed by the Raspberry Pi python program, and
you’ll see the message displayed on the LEGO brick.

The payloads for the two types of message are very similar. A logical message
has a simple one‐byte payload of a zero for False or a one for True.
A numeric message is just four bytes that make up a floating point number.
Even if the number is an integer, it’s always encoded as a floating point
number. In order to send these other types of messages, we’ve written a func-
tion to generate them, shown in Listing 13-2. (You won’t need these two other
types of messages in the project later in this chapter, but if you ever need
them, this is how it’s done.) This code is very similar to the generate message
function messageG in the previous program, but it takes in a text string that
determines what sort of message is generated.

Listing 13-2:   Function for Generating All Three Message Types

import struct

def messageGuin(boxName,message, messageType): # generate any message
 mType = False
 if messageType == "text" :
 length = len(boxName) + len(message) + 10
 mType = True
 if messageType == "logic" :
 length = len(boxName) + 12
 mType = True
 if messageType == "number" :
 length = len(boxName) + 16
 mType = True
 if mType : # only go on if message type is valid
 btMessage = [chr(0) for temp in range (0,length)] # initial blank
 btMessage[2] = chr(1)
 # message ID
 btMessage[4] = chr(0x81)
 btMessage[5] = chr(0x9E)
 btMessage[6] = chr(len(boxName) + 1)
 btMessage[7:7+len(boxName)] = boxName
 payloadPointer = 8 + len(boxName)
 if messageType == "text" :
 btMessage[payloadPointer] = chr((len(message) + 1) & 0xff)
 btMessage[payloadPointer + 1] = chr((len(message) + 1) >> 8)
 btMessage[payloadPointer + 2:len(message)] = message
 endPoint = payloadPointer + len(message) + 1
 if messageType == "logic" :
 btMessage[payloadPointer] = chr(2)
 btMessage[payloadPointer + 1] = chr(0)

(continued)

288 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

First, the message type is checked and the appropriate length of blank message
is generated. Then the function proceeds as before until it comes to generating
the payload, where again different payloads are generated depending on the
message type. (We go into more detail about these other message types in the
next section.)

Receiving a message
Receiving a message is quite simple: You have to read the bytes in from the
serial port. The number of bytes you have to read is given in the first two
bytes you get. You have to wait until the serial port has at least two bytes in
the buffer, read them, and then you know how many more you have to read.

The more complex part is in decoding what you read, which involves split-
ting up the message into the two pieces of information it contains (known as
parsing): mailbox name and payload.

One important thing to realize is that you can’t tell from looking at the pay-
load what sort of message it is. That means you have to know in advance
what sort of message you’re expecting. One way to get around this problem
is to arrange things so that certain mailbox names always send the same sort
of data payload. Assigning mailbox names that match the data names makes
this more clear, although it isn’t required.

In the next example, we use the mailbox names Text, Logic, and Number
to deliver data of the same type as the name. If you look at Figure 13-5, you
see the LEGO EV3 code to send three types of messages, one after the other,
each having a different data type. You need to run this on your LEGO brick.

Listing 13‑2 (continued)

 if message == True :
 btMessage[payloadPointer + 2] = chr(1)
 endPoint = payloadPointer + 2
 if messageType == "number" :
 btMessage[payloadPointer] = chr(4)
 btMessage[payloadPointer + 1] = chr(0)
 btMessage[payloadPointer + 2:] = struct.pack('f',message)
 endPoint = payloadPointer + 4

 btMessage[0] = chr((endPoint & 0xff))
 btMessage[1] = chr(endPoint >> 8)
 return btMessage
 else :
 print "Message type is not one of text, logic or number"
 return "error"

289� Chapter 13: The Pi Meets LEGO

Note that you need the computer connected to the brick in order to get the
drop‐down menu to show the message sender’s name. You can’t see all of
this name on the screen when you make the brick’s program.

The messages are continuously sent and the data is the same each time it’s
sent. In order to receive this on your Raspberry Pi, you need to run the code
in Listing 13-3.

Figure 13-5: 
LEGO code
for sending
messages.

Listing 13-3:  Simple Message Receive

#!/usr/bin/env python
Simple receive of message by Mike Cook
import serial
import time
import struct

EV3 = serial.Serial('/dev/rfcomm0')
EV3.flushInput()
print "Receiving EV3 Bluetooth messages"
box = "Mail Box"

def main():
 while 1:
 rx = readMessage()
 decodeMessage(rx)
 EV3.close()

Function definitions
def readMessage():
 global box
 while EV3.inWaiting() <2 :# hold until message starts to arrive
 continue
 inMessage = EV3.read(2)

(continued)

290 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The main function repeatedly reads messages and decodes them. The
readMessage function reads in the bytes from the serial port and extracts
the mailbox name, which is used to set a global variable called box. It
also extracts the payload and returns it to the calling program. Then the
decodeMessage function uses the global variable box to decide how to
decode the payload. It also prints out the mailbox name and value of the
payload it received.

The readMessage function works just like the reverse of the generate mes-
sage function we saw in Listing 13-1. Bytes from the message are read into a
string called inMessage, and then the mailbox’s name string and payload
string are extracted from that. The decodeMessage function then handles
the payload string according to its type. A text message is simply printed out,

Listing 13‑3 (continued)

 messageBytes = ord(inMessage[0]) + (ord(inMessage[1]) *256)
 while EV3.inWaiting() < (messageBytes):
 continue
 inMessage = inMessage + EV3.read(messageBytes)
 box = inMessage[7 : 7 + ord(inMessage[6])-1]
 payloadPointer = 9 + ord(inMessage[6])
 message = inMessage[payloadPointer:]
 return message

def decodeMessage(payload) :
 print "Message from box",box,"is a",
 if box == "Text" :
 print "text message saying",
 print payload

 if box == "Logic" :
 print "logic message of",
 logic = False
 if ord(payload[0]) == 1 :
 logic = True
 print logic

 if box == "Number" :
 print "number with a value of",
 val = struct.unpack('f',payload)
 value = val[0] # to convert from a tuple
 print value
 print

if __name__ == '__main__':
 main()

291� Chapter 13: The Pi Meets LEGO

whereas a logic message sets a Boolean variable called logic, initially to
False. If it finds a one in the payload string, it changes the variable to True.

The numeric message is a little more complex to cope with. As we mention
before, it’s in a floating point format. In order to convert it into a number,
you have to use the struct functions. The struct.unpack function con-
verts the string given in the second parameter to a number type given in the
first parameter. Just to throw a curveball into the mix, this function returns
a tuple, even if the string contains only one value. Therefore, the next line
extracts a single floating point variable called value from the tuple.

If you run this code, you should see the messages being sent back from the
LEGO brick. Here’s an interesting experiment to do: Change the LEGO code
to send not the number 42 but the number 42.1. You may be surprised to
see that the number being read back on the Raspberry Pi is not 42.1, but
42.0999984741. This is to be expected. Many beginners are shocked to dis-
cover that floating point numbers are only an approximation. This can some-
times be masked by rounding when you print out the number, but it’s worth
remembering that if you want anything to be absolutely accurate, stick to
integer‐type variables.

Armed with this information, you can now pass information between the
brick and the Raspberry Pi. You can use this to gather data or control what
your LEGO creation does. In the next chapter, you see a full‐blown applica-
tion of control using message passing.

Infrared messages
The other way of getting information to the LEGO brick is by using infrared.
Unlike the Bluetooth system, however, IR is one‐way. That is, you can send
messages into the brick, but the brick can’t send information out.

The IR sensor can receive key presses generated from the handheld remote
that comes as part of the EV3 set. There are five push buttons and one four‐
position slider. The slider sets the channel it transmits on and has four posi-
tions. At the time of this writing, LEGO had not published the protocol for
this remote controller, so we had to do a bit of playing around with sensors
and an oscilloscope to reveal how it works.

The IR beam is modulated (turned on and off rapidly) at a rate of 38 KHz. This
is a common frequency for many TV remote control systems, although other
frequencies from 32 KHz to 42 KHz are used as well. This modulation allows
the amplifier at the receiving end to reject signals that are not modulated

292 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

and, therefore, not get swamped by interfering IR light from daylight or
artificial light. This technique of modulation gives the remote control a good
range.

The LEGO system works entirely on bursts of six IR pulses, and the data is
encoded by the length of the gap after each burst. For example, all messages
begin with a start bit that consists of a burst of six pulses of IR followed by a
gap equivalent to 39 pulses. Similarly, a logic one is six pulses followed by a 21‐
pulse gap, and a logic zero is six pulses followed by a 10‐pulse gap. At the end is
a stop bit, which is the same as the start bit. If a button is held down, the codes
repeat every 80 milliseconds (mS). This is summed up in Figure 13-6.

By using a good oscilloscope, we were able to map what was being produced
by each push button. We discovered that changing the channel slider switch
changes only a few of the bits in the code being sent. The horizontal bar
button on the EV3 remote produced a continuous stream of codes until it
was pressed again, whereas each of the other buttons produced one repeat-
ing code value when it was pressed and another when it was released. All the
release codes were the same for all the buttons in that channel.

Armed with this information, we can duplicate what the remote controller
produces directly from the Raspberry Pi, thus allowing programmatic control
of the production of the codes. To do this, you need to build a small IR trans-
mitter board and install and customize a software package.

The Raspberry Pi infrared transmitter
Peering into the smoked plastic cover of the EV3 remote controller shows
two infrared LEDs offset by about 45 degrees, as well as a small green LED
that comes on when it’s sending. Infrared LEDs take more current than

Figure 13-6: 
Infrared

code format.

293� Chapter 13: The Pi Meets LEGO

visible ones, and the forward voltage drop is so low that you can happily
power two LEDs in series from 5V.

We designed a simple circuit using one of the general‐purpose input/output
(GPIO) pins to switch a transistor to allow the LEDs to turn on and off. The
schematic is shown in Figure 13-7. When the GPIO pin is low, the transistor
is off and no current flows through the LEDs. When the GPIO pin is high, cur-
rent flows into the base of the transistor, turning it on. This means that cur-
rent can flow from the collector to the emitter of the transistor, allowing the
three LEDs all to turn on.

The resistor in series with each LED is important. It limits the current flowing to
a safe level. Note that R3, the resistor controlling the IR LEDs, is much smaller
than you normally see. This is because IR LEDs can take much more current
than visible ones. We made the R2 resistor quite high so the LED is not very
bright. Feel free to drop this to 220R if you want the visible LED brighter.

Here are the parts you need for this circuit (the component’s reference
number shown on the diagrams is in parentheses):

✓✓ Two 1K resistors (R1–R2)

✓✓ One 27R resistor (R3)

✓✓ One 2N2222 transistor or similar NPN transistor (T1)

✓✓ Two 5mm IR LEDs (L1–L2)

✓✓ One 2mm red LED (L3)

✓✓ One 11‐x‐5‐hole stripboard with strips running horizontally

Figure 13-7: 
A schematic

of the IR
sender
board.

294 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

We built this on a small piece of stripboard. The physical construction is
shown in Figure 13-8. There are four breaks in the copper strips on the
reverse side. Three you can break at a hole, but the fourth should be a break
between the holes. You can do this with a scalpel or sharp hobby knife.
Make two cuts as close as possible together and then peel the copper away
between the cuts.

Figure 13-8: 
The physical
layout of the

IR sender.

The three wires — 5V, Gnd, and GPIO 22 — were connected to the Raspberry
Pi’s GPIO plug through individual flying leads with pin header sockets on both
ends, although you can use any form of breakout board or connector to make
this connection. A photograph of the final board is shown in Figure 13-9.

Figure 13-9: 
The final

IR sender
board.

295� Chapter 13: The Pi Meets LEGO

Installing the Linux infrared remote control
Next, you have to install the Linux infrared remote control (LIRC) package
that will generate IR codes according to a configuration file. The LIRC has
been developed for people who want to control electronic consumer prod-
ucts, but the vast collection of ready‐defined protocols didn’t include the EV3
brick, so we had to design a custom file. The LIRC package has been designed
to both transmit and receive IR communications, but here you’re concerned
only with sending, so you don’t have to bother with the receiving side.

First, you have to get the package onto your machine. This is easily done by
typing the following:

sudo apt-get install lirc

Then when this is installed, you have to add the following two lines to the
/etc/modules file:

lirc_dev
lirc_rpi gpio_in_pin=23 gpio_out_pin=22

Note that you can do this from the desktop if you navigate to the etc direc-
tory and choose the Open Window as Root option. Then modify the /etc/
lirc/hardware.conf file to read like Listing 13-4.

Listing 13-4:   The Contents of /etc/lirc/hardware.conf

/etc/lirc/hardware.conf
#
Arguments which will be used when launching lircd
LIRCD_ARGS="--uinput"

#Don't start lircmd even if there seems to be a good config file
#START_LIRCMD=false

#Don't start irexec, even if a good config file seems to exist.
#START_IREXEC=false

#Try to load appropriate kernel modules
LOAD_MODULES=true

Run "lircd --driver=help" for a list of supported drivers.
DRIVER="default"
usually /dev/lirc0 is the correct setting for systems using udev
DEVICE="/dev/lirc0"
MODULES="lirc_rpi"

Default configuration files for your hardware if any
LIRCD_CONF=""
LIRCMD_CONF=""

296 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Finally, you have to change the /etc/lirc/lircd.conf to be like Listing 13-5.

Listing 13-5:   The Contents of /etc/lirc/lircd.conf

begin remote

 name Lego_EV3
 bits 16
 flags SPACE_ENC
 eps 30
 aeps 100
see text for note on frequency
 frequency 38000

 header 158 1026
 one 158 552
 zero 158 263
 ptrail 158
 gap 1206

 begin codes
EV3 remote codes
 beacon1 0x4006
 beacon2 0x5004
 beacon3 0x6002
 beacon4 0x7000
 release1 0x010E
 key1c1 0x8117
 key2c1 0x8124
 key3c1 0x8142
 key4c1 0x818E
 release2 0x110F
 key1c2 0x9116
 key2c2 0x9125
 key3c2 0x9143
 key4c2 0x918F
 release3 0x210C
 key1c3 0xA115
 key2c3 0xA126
 key3c3 0xA140
 key4c3 0xA18C
 release4 0x310D
 key1c4 0xB114
 key2c4 0xB127
 key3c4 0xB141
 key4c4 0xB18D
 end codes

end remote

297� Chapter 13: The Pi Meets LEGO

This last file controls the code and the format of the IR being sent. There are
lots of other ways of using IR to send messages, and LIRC can cope with most
of them. The first part defines the sort of code to produce with a flag saying
that it’s space encoded (that is, the space after the burst of pulses defines
what the data will be). The header, one, and zero are the format of the data,
with the time being defined in terms of microseconds. So, a one is a 158 uS
burst of IR followed by 552uS of gap, or nothing. This relates to the number of
pulses in the data format.

To get LIRC to accept the new control codes in this file, type the following in
at the command line:

sudo /etc/init.d/lirc stop
sudo /etc/init.d/lirc start

The frequency of the modulation is defined in the file, but when we tried it,
we got a frequency of 45.2 KHz despite setting it to 38 KHz. We had to put in
a frequency of 32,000 in order to get the 38 KHz out. It turns out that there
was an issue in the kernel on the Raspberry Pi, and it caused the timing to
be wrong. However, it was corrected at about the same time we found the
trouble. To check what version of kernel you have, type the following at the
command line:

uname -rv

If the answer is any earlier than

3.12.18+ #677 PREEMPT Mon Apr 28 22:45:00 BST 2014

you should update your kernel by typing the following and checking again:

sudo apt-get update
sudo rpi-update

The error in the kernel affects not only the frequency but also the accuracy
of the gaps. However, the transmitter still seemed to work with the uncor-
rected gaps.

The names we gave to each key are based on the number that is detected
by the EV3 brick. So, key1c3 is short for key 1 on channel 3. The code for
a key release is the word release followed by the channel number, and the
four beacon modes are defined by the word beacon followed by the channel
number. Feel free to change these names if something else makes more sense
to you. For example, the release key is detected as zero in the LEGO brick,
so you might want to label those keys K0c. Similarly, the beacon message
is seen as the key 9 by the brick. However, you might want to label the keys
after the keys on the remote like redTop, blueBottom, and so on.

298 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Driving the infrared codes
IR codes are produced from the command line, so if you want to use these
codes from some language, you should do it by calling the operating system.
A simple example of this is shown in Listing 13-6. This simply sends out a
beacon signal on channel 4.

You see that the os.system call takes a string with the irsend parameters
in it. Don’t be tempted to use the send continuous commands — they
don’t work by simply repeating the command as you may expect. Instead,
substitute other repeat codes in place of the commands.

In order to test this, you need a very simple LEGO model, as shown in
Figure 13-10. This is basically just the IR sensor mounted on a motor. If you
put into the brick the program shown in Figure 13-11, the sensor turns to
face the emitter board. It’s quite an eerie sensation — it feels like the robot
is alive. Test out this model using the supplied IR remote if you have
any trouble.

If that goes well, you can test out the other keys with the code in Listing 13-7,
which simply cycles through the key presses. Note that it shows how you can
change what the program sends by building up a command string.

The key names are held in a list called button, and the channel to use is
held in a variable called ch. These two strings are concatenated to a fixed
string to make up the command. To see this on the brick, put the program in
Figure 13-12 into the LEGO controller.

Now it’s time to do something fun with this setup.

Listing 13-6:   Infrared Beacon

#!/usr/bin/env python
'''
Sending IR Beacon message - by Mike Cook
'''
import time
import os

print "Sending Beacon message"
while 1 :
 os.system("irsend SEND_ONCE Lego_EV3 beacon4")
 time.sleep(0.08) # time between repeats

299� Chapter 13: The Pi Meets LEGO

Figure 13-10: 
The LEGO
model for

the tracker.

Figure 13-11: 
The LEGO

program for
the tracker.

300 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Listing 13-7:   Key Test Program

#!/usr/bin/env python
'''
IR test IR2
testing config file at
/etc/lirc/lircd.conf
Tests buttons
'''

import time
import os

os.system("sudo /etc/init.d/lirc stop")
os.system("sudo /etc/init.d/lirc start")

ch = "c3" # channel
button = ["key1", "key2", "key3", "key4"]
while 1 :
 for b in range(0,4) :
 os.system("irsend SEND_ONCE Lego_EV3 " +button[b]+ch)
 print"sent ",button[b]+ch
 time.sleep(0.8)
 os.system("irsend SEND_ONCE Lego_EV3 release"+ch)
 time.sleep(1.5)

Figure 13-12: 
A LEGO

program for
testing the
key codes.

Creating a Tug‐of‐War LEGO Robot
The Tug‐of‐War LEGO Robot is a fun way to incorporate a program on the
Raspberry Pi with action on a LEGO system. Basically, it’s a two‐player reac-
tion game, with the score being kept by a LEGO robot.

301� Chapter 13: The Pi Meets LEGO

Here’s how it works: The robot is placed on top of a long thin box on a line
drawn halfway across. The Raspberry Pi puts up the word Ready on the
screen. After a random interval, this changes to Go and a noise is generated.
The first player to react by pressing a keyboard key wins, and the LEGO
robot moves a small distance in the losing player’s direction. If a player
presses a key before the sound, he has jumped the gun and the other player
gets the robot to move for her. Eventually, the robot falls off the box and
indicates the winner. (The box should be only a few inches high to prevent
any damage to the robot. If you aren’t willing to risk any sort of a fall for your
robot, you can just tape a winning line on a table and place the robot on that
instead.)

We leave it up to you which robot to use. There are plenty of simple two‐
motor robots you can build. If you’re stuck for a design, use the TRACK3R
robot from your computer’s LEGO software. The box to click is called EV3
Getting Started, and it’s located at the bottom right of the main page. There is
no need to add all the tools — you just want the basic movement.

All that is required of the robot is that it be able to move in a straight line
backward and forward in response to the IR remote key press. Then program
it with the very simple program shown in Figure 13-13.

Figure 13-13: 
The LEGO

program for
the Tug‐of‐
War Robot.

302 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

You can change how far the robot moves in response to each key press very
easily by changing the number of degrees of movement. This affects the
length of time a game runs and depends on the physical size of the space
you have to run it in. You can also build in a handicap system by making the
robot move more in one direction than the other. This is useful in a kids‐
versus‐adults situation.

We put an extra condition to stop the motors when the release key was
detected. This shouldn’t have been necessary, but we found that, without it,
the motors sometimes hunted a little (made continuous small movements
left and right) when they were supposed to have stopped. Test it out with the
handheld remote before going on to controlling it with the Raspberry Pi.

Next, you have to program the Raspberry Pi to play the game and control the
robot. Before you start, you have to make sure you have a directory called
sounds in the same directory as this code, and that it contains an .ogg sound
file called gun. Despite the name, the file can be any short, sharp sound. The
code to play the game is shown in Listing 13-8 and is written in Python with
Pygame.

Listing 13-8:   The Tug‐of‐War Raspberry Pi Code

#!/usr/bin/env python
'''
 Lego-powered Tug-of-War
 Reaction Time Game By Mike Cook
'''
import time
import random
import os, pygame, sys

pygame.init() # initialize graphics interface
pygame.mixer.quit()
pygame.mixer.init(frequency=22050, size=-16, channels=2, buffer=512)
goSound = pygame.mixer.Sound("sounds/gun.ogg")

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Lego Tug of War Reaction Game")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])
cBackground =(0,255,255)
cText = (255,0,0)
textHeight = 38
font = pygame.font.Font(None, textHeight)

screenWidth = 350
screenHeight = 160
screen = pygame.display.set_mode([screenWidth,screenHeight],0)

303� Chapter 13: The Pi Meets LEGO

random.seed()
player1 = False # keyboard inputs
player2 = False
space = False

def main():
 global player1, player2, screen
 print "Tug of War"
 draw_screen()
 while True : # play the game
 updateWords(" ")
 while space == False :
 checkForEvent()
 updateWords("Ready")
 player1 = False
 player2 = False
 go = time.time() + 1.5 + (random.random() * 5)
 while go > time.time() :
 checkForEvent()
 # check for jump the gun
 if player1 == True or player2 == True :
 player1 = not(player1)
 player2 = not(player2)
 updateWords("Jumped the gun")
 time.sleep(2)
 else :
 updateWords("Go")
 goSound.play()
 while player1 == False and player2 == False and space == True:
 checkForEvent()
 if space == True :
 if player1 == True :
 updateWords("Player 1 wins")
 winner = "key1c1"
 else :
 updateWords("Player 2 wins")
 winner = "key2c1"
 os.system("irsend SEND_ONCE Lego_EV3 "+winner)
 time.sleep(0.08)
 os.system("irsend SEND_ONCE Lego_EV3 release1")
 time.sleep(2.0)
 checkForEvent() # remove losing player's key
 else :
 updateWords("Game ends")
 time.sleep(2)

def draw_screen():
 screen.fill(cBackground) # blank screen
 drawWords("Q - Player 1",10,2)

(continued)

304 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Listing 13‑8 (continued)

 drawWords("P - Player 2",10,30)
 drawWords("Space - New Game",10,60)
 updateWords("Ready")

def updateWords(words) :
 pygame.draw.rect(screen,cBackground, (0,100,screenWidth,textHeight), 0)
 drawWords(words,120,100)
 pygame.display.update()

def drawWords(words,x,y) :
 textSurface = pygame.Surface((len(words) * (textHeight / 2),textHeight))
 textRect = textSurface.get_rect()
 textRect.left = x
 textRect.top = y
 pygame.draw.rect(screen,cBackground, (x,y,len(words) * (textHeight
 /2),textHeight), 0)
 textSurface = font.render(words, True, cText, cBackground)
 screen.blit(textSurface, textRect)

#pygame house keeping
def terminate(): # close down the program
 print "Closing down please wait"
 pygame.quit() # close pygame
 sys.exit()

def checkForEvent(): # see if we need to quit
 global player1, player2, space
 event = pygame.event.poll()
 if event.type == pygame.KEYDOWN :
 if event.key == pygame.K_q :
 player1 = True
 if event.key == pygame.K_p :
 player2 = True
 if event.key == pygame.K_SPACE :
 space = not(space)
 if event.type == pygame.QUIT :
 terminate()

if __name__ == '__main__':
 main()

The main function is where all the action is, with the other functions supply-
ing support. Keyboard presses generate Pygame events, and there are three
you’re looking for here. The two players’ reaction keys — P and Q — are
placed at opposite ends of the keyboard for maximum separation, and the
spacebar is for stopping and starting the game. Before looking at the main
function, take a quick look around at the others.

305� Chapter 13: The Pi Meets LEGO

The draw_screen, drawWords, and updateWords functions are all con-
cerned with writing text into the Pygame window. The checkForEvent
function sets logic variables whenever one of the target keys is pressed and
monitors for a click in the close box of the window. If one is detected, the
terminate function is called and the program ends.

The main function is basically one big loop that starts by blanking out any
message from any previous game and then pauses until the spacebar is
pressed. This controls whether a round of the game will be played. If it is, the
window displays the word Ready and the players ready themselves to be the
first to react. The heart of the game is the following line:

go = time.time() + 1.5 + (random.random() * 5)

This sets up a random delay for a minimum of 1.5 seconds and a maximum of
6.5 seconds into the future. The random.random function returns a floating
point value so the time isn’t restricted to whole numbers of seconds. If you
want to change the range of the delays, change the number 5 to something
bigger or smaller.

A while loop holds until this time has expired, checking all the time that
no player has pressed early. If a player has pressed early, the other player
is declared the winner. Otherwise, the word Go appears on the screen and
the sound is generated. When the first player to react is detected, a mes-
sage saying who has won is placed in the window and the IR signal is sent to
move the LEGO robot. The losing player probably also reacted, so another
call to checkForEvent is made to remove that key from the events buffer. If
it isn’t removed, the losing player will be accused of jumping the gun in the
next round.

Going on from Here
You can do plenty more with this game if you want! For a start, there is a
small bug that shows itself if both players jump the gun: The first to do so is
declared the winner. You could conclude that the second player deserves to
lose, or you could change that situation to one you prefer.

Another change you may like to make is to add more sounds to the game,
like cheers and applause to mark one player winning. Or you may want
to keep track of how many rounds one player has won over the other and
declare a winner in the program’s window instead of having the robot fall off
a box. You could even make the robot do something when one player has
won, like perform a victory dance or fire off a red or blue ball, depending on
who has won.

306 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

You can do many other things with the IR message capability. When the
Raspberry Pi can command the IR control, you have many exciting possi
bilities. For example, how about making a joystick input on the GPIO pins of
the Pi and having that control the IR keys? Or why not make a graphics con-
sole where you have access to all the keys on all the channels on one screen?
You can even write a sequencer so you can send the IR commands in a long
but repeating sequence.

In the next chapter, we look at incorporating what we know about Bluetooth
messages to create a unique project.

The LEGO Dice Game
In This Chapter

▶▶ Learning about a dice game that involves skill, not luck

▶▶ Discovering how to use the color sensor to read a dice

▶▶ Constructing a LEGO robot to play a game

▶▶ Commanding the robot from your Raspberry Pi

▶▶ Integrating LEGO and Raspberry Pi using Python

T
his project plays a rather unusual dice game — unusual because it
involves skill, not luck. Players take turns trying to reduce a heap to

exactly nothing. The number removed from the heap each turn is indicated
by turning a dice with the required number on the top face. Now, here’s
the rub: You can’t use the same number as the previous player, nor can
you use the number that the previous player had on the bottom face. The
game as described here pits you against the computer, and by the power of
LEGO, the computer can actually place the dice with its turn number upper-
most. Confused? Don’t worry — we explain the game to you in detail in this
chapter.

Introducing the Dice Game
We first saw the dice game described in Ian Stewart’s book The Cow Maze.
It’s one of the few games that involve dice but no element of luck. In this
game, the top number on the dice is used to indicate by how much a target
number (or heap as we call it) should be reduced. The winner is the first to
reduce the heap to exactly zero or get the opponent to overshoot zero. What
makes this a game of skill is that, on any turn, the only numbers you can’t use
are the number already shown on the top of the dice and the number on the
bottom side of the dice. This restriction is what makes the game interesting.

Chapter 14

308 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The game is a two‐player game and can be played quite simply by two play-
ers, but in order to computerize the game, there are two major problems to
overcome:

✓✓ We need to get the computer to be able to sense which way up the dice
is placed.

✓✓ More difficult, we need to get the computer to place the dice in the right
position to indicate its own move.

This project has a rather novel way of solving both problems.

A dice has some interesting properties, and one of the more useful of these
is that opposite sides of a dice always add up to a total of 7. That’s the vital
piece of information you need to know in order to write a program for the
computer to be able to identify the complete orientation of the dice. In the
LEGO EV3, there is a color sensor that is capable of identifying seven different
colors, as well as no color at all. This is one more color than we actually need.

The playing mechanism is a bit more problematic. It needs to be able to turn
a dice through 90 degrees. Most robot arms don’t have the degrees of free-
dom to do this, so we had to come up with another solution. Instead of lifting
up the device, rotate it and then place it down. This solution throws the dice
but in such a way that we can control exactly what the top face will be. The
whole machine is shown in Figure 14-1.

Figure 14-1:
The dice

game
machine.

309� Chapter 14: The LEGO Dice Game

By working through the elements one at a time, you can make your own dice
game and even be able to beat it, while the game seems to be unbeatable to
all other players.

Understanding the Game Theory
This sort of game is known as a solved game. Given any starting position and
perfect play, a winner can be determined without actually playing the game.
In the case of the dice game, for any given size of heap, with any dice facing
uppermost, the current player is guaranteed to win or lose if he plays the
game correctly. Of course, it’s easy to lose and a bit harder to win, but the
point is that the outcome of the game is fixed given this information.

The combination of heap size and top dice number determines if the next
player can win. If he can, this is known as a winning position, and as long
as he makes the right moves, there is nothing an opponent can do to stop
him from winning. If the current heap size and top dice number indicate a
losing position, there is nothing a player can do to convert this into a win-
ning position, except by his opponent making a mistake and deviating from
perfect play.

Many games fall in this class. Examples include tic‐tac‐toe (called noughts
and crosses in the UK), checkers (called draughts in the UK), four in a row,
and nim, to name but a few.

The winning strategy for the dice game is formed by a complete analysis of
the game from every starting position and heap number. This may sound
like a daunting task, but it’s easy to build a table showing these results. For
example, if the heap is 1 and the current top dice number is 1 or 6, then this
is a losing position and any valid move must overshoot zero. However, if the
heap is 1 and the top dice is any other number but 1 and 6, the next player
can choose a value of 1 and win. This is a winning position. If, on the other
hand, the dice has 1 or 6 uppermost, the only move left to the next player
will force an overshoot of zero and, therefore, he has lost. This is a losing
position.

You can apply the same analysis for a heap of 2. For any combination of dice
positions, you find that all positions are winning by playing either a 2 to win
directly or, if a 2 is not available, playing a 1 will force the next player into
overshooting and thus losing. When you extend this to 7, you get a table
of moves shown in Table 14-1, which shows the size of the heap in each
column against the current dice top number in each row. The body of the
table shows the move. An L indicates that you’re in a losing position and it
doesn’t matter what you play; otherwise, it shows the number to play (that

310 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

is, the dice number to turn to the top) in order to win or maintain a winning
position. In some places, more than one number is shown; this means you
can play any of these numbers and still be in a winning position. Notice that
it doesn’t matter which way the dice is up because each line indicates two
opposite sides of the dice.

All well and good, but the heap can be any number you like so this playing
matrix must be extended. The next stage is to extend the table to heap sizes
up to 16, as shown in Table 14-2.

Table 14-2, along with Table 14-1, shows what to play for any position of the
dice for a heap from 1 to 16. Note how a heap size of 9 is a losing position no
matter what the state of the dice is. Now something very interesting happens
if we extend this analysis for the next nine heap sizes, shown in Table 14-3.

Table 14-2	 Analysis of the Moves for a Heap of 8 to 16
Heap Size
Dice Up

8 9 10 11 12 13 14 15 16

1 or 6 4 L 5 2, 3 3, 4 4 5 3 2, 3, 4

2 or 5 4 L 1 3 3, 4 4 L 3, 6 3, 4

3 or 4 L L 1, 5 2 L L 5 6 2

Table 14-1	 Analysis of the Moves for a Heap of 1 to 7
Heap Size
Dice Up

1 2 3 4 5 6 7

1 or 6 L 2 3 4 5 3 2, 3, 4

2 or 5 1 1 3 4 L 3, 6 3, 4, 6

3 or 4 1 1, 2 L L 5 6 2, 6

Table 14-3	 Analysis of the Moves for a Heap of 17 to 25
Heap Size
Dice Up

17 18 19 20 21 22 23 24 25

1 or 6 4 L 5 2, 3 3, 4 4 5 3 2, 3, 4

2 or 5 4 L 1 3 3, 4 4 L 3, 6 3, 4

3 or 4 L L 1, 5 2 L L 5 6 2

311� Chapter 14: The LEGO Dice Game

You see that this playing matrix is exactly the same as Table 14-2. When you
get a repeat pattern like this, you know it has to keep on repeating forever,
for every successive 9 increases in the heap size.

Why is this important? Well, given any heap size and current dice position,
you can repeatedly subtract 9 from the heap until you get into the range of
16 or less and then, if you can memorize the matrix, you know what to play. It
gives a surprisingly small number of moves to memorize given the apparent
complexity of the game, and you can cut this down even further by memo-
rizing only one number when you have the choice of two or three numbers.
This repeat also makes it much easer to implement the playing matrix for
programming into the computer.

So, analysis of this game reveals a playing strategy that is not obvious or sim-
plistic, but also is not very complex either.

Detecting Dice
In this section, we look at the detection of the dice state. There are a few
ways to do this, but the way we chose to do it is to use the EV3’s color detec-
tor. Each color returns a number. To make things simple, we used the color
numbers 1 to 6 to represent the dice numbers 1 to 6. The sensor also returns
a zero if nothing is in front of the sensor. Figure 14-2 shows how the dice
numbers relate to the colors, as well as the LEGO part numbers for the tiles
and dice body.

Figure 14-2:
Dice

numbers
and colors.

312 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The color sensor is positioned so that it can detect one of the dice sides.
If we know one side of the dice, we can calculate the other side because
opposite sides add up to 7. The dice is positioned on a rotating table. If it’s
rotated by 90 degrees clockwise, we can find two more dice sides. This is all
the information we need in order to calculate the numbers on the top and
bottom of the dice. Figure 14-3 shows a table of the clockwise sequence of the
side dice numbers for each top number.

Figure 14-3:
Dice side

number
sequence

for each top
number.

313� Chapter 14: The LEGO Dice Game

Note that complementary numbers — that is, dice numbers that add up to
7 — or, in other words, opposite sides of the dice, are simply the reverse
sequence. So, given two side numbers, we can use this information in a
lookup table to find the top number. This is illustrated in the simple Python
program shown in Listing 14-1.

Listing 14-1:  Finding a Top Dice Number

#!/usr/bin/env python
Look up dice orientation - By Mike Cook
 # side sequence
diceLookup = [[3, 5, 4, 2, 3], # for 1 on top
 [6, 3, 1, 4, 6], # for 2 on top
 [2, 6, 5, 1, 2], # for 3 on top
 [1, 5, 6, 2, 1], # for 4 on top
 [4, 1, 3, 6, 4], # for 5 on top
 [2, 4, 5, 3, 2]] # for 6 on top

print "Find top number by two side values"
while True :
 first = input('first number ')
 second = input('second number ')
 top = -1
 topTry = 0
 while top == -1 and topTry < 6:
 for n in range(0, 4):
 if diceLookup[topTry][n] == first and diceLookup[topTry][n+1]

== second :
 top = topTry + 1
 topTry += 1
 if top == -1 :
 print "numbers are not in clockwise sequence"
 else :
 print 'top of dice is ',top

This code uses a list of lists, or two‐dimensional array, to hold the sequence,
but notice how the last number in the list is the same as the first. This makes
the code easy by taking care of any wraparound when searching the list.
Given two numbers entered from the keyboard, the list is searched until the
two numbers are found next to each other in the list. When these two num-
bers are found, the row they’re found on gives you the top number of the
dice. The rows are numbered for 0 to 5 and the dice is numbered 1 to 6 so, in
fact, the real top number is the row number plus one.

314 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Looking at the Playing Mechanism
In this section, we take a look at the dice‐playing mechanism. The aim is to
place the dice with a new number on the top, a number that is the “right” one
according to the playing matrix. Now, the rules of the game preclude the use
of the current top or bottom number, so the mechanism only has to flip the
dice over on its side. The dice is on a rotating platform anyway, so that can
be used to move the dice into the throwing position and a motor can then
flick it off onto a static platform. If you get this landing platform right, the
dice will move only 90 degrees and not roll over any more.

The dice
The dice is the key to making the game. LEGO used to produce a whole series
of games that involved a dice. This series was discontinued in 2013 but is still
available from many outlets, as well as on popular auction sites. One of the
cheaper games, Magikus, provides an ideal dice along with the colored tiles
for the sides. You can also get the dice and colored tiles from online auction
sites, but we found a discount game that was cheaper than buying the sepa-
rate parts. The only snag is that the colored tiles don’t have the dot markings
found on dice.

To rectify this, we used a 3mm drill to mark the sides with dots by just drill-
ing the point of the bit in about 1mm. Then we used black paint to fill the
holes — all except the black tile, where we used white paint. This made it
easy for a human to see the dice number but didn’t interfere with the color
sensor’s output. Rather than use a fine brush, we used a solid wire from a
resistor to transfer a drop of paint into the recess left by the drill.

We found it convenient to clamp two blocks to the drill press so that the
drill was just 3mm in from the corner. Then each tile that needed a dot in the
corner was placed between the blocks, drilled, rotated, and drilled again. In
that way, all the corner dots could be drilled consistently. Then the blocks
were adjusted so that the “center side” dots could be drilled; finally, the
center dots were drilled. This arrangement, along with the dice side measure-
ments, is shown in Figure 14-4; a photograph of the finished dice is shown in
Figure 14-5.

315� Chapter 14: The LEGO Dice Game

Figure 14-4:
The dice

drilling mea-
surements.

Figure 14-5:
The finished

dice.

316 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The mechanism
All the parts for the rest of the mechanism can be found in the LEGO
MINDSTORMS EV3 set. The best way of documenting a LEGO model is with
step‐by‐step build instructions, but there are two problems with this:

✓✓ It will take up many more pages than this chapter has room for.

✓✓ Creating these instructions isn’t easy.

There is a free, official LEGO application called LEGO Digital Designer (LDD)
that allows you to make 3D interactive LEGO models. Once complete, LDD
can produce a construction sequence. The big snag with this approach is
that, although it works for a lot of models, technic beams, especially when
tilted, can be almost impossible to construct. The tolerances in the software
are much tighter than the hardware, so some models are impossible to
construct virtually. Also, sometimes the rotation tools simply don’t work or
rotate around a wholly unexpected axis.

The construction of the dice‐playing mechanism is shown in the digital
designer model as three separate parts, but they all fit together like the photo-
graph in Figure 14-1. Go to www.dummies.com/go/raspberrypiprojects
to download the digital model and generate your own step‐by‐step instruc-
tions. Note that there is the odd connecting peg that doesn’t fit in the model,
but these pegs are in the file and it’s quite obvious where they should go.

One important aspect of the design is the dice landing platform. We tried
many designs of this until we got it right. We found that the platform couldn’t
be horizontal because it gave too much roll to the dice and the dice ended
up being flipped more than 90 degrees. By angling the platform, it reduced
the tendency of the dice to roll, and the retaining bar at the top of the plat-
form stops the dice from rolling any more than is required. This produces
an almost perfect throw, but very, very occasionally the dice ends up in the
wrong orientation or bouncing off the platform altogether. Fortunately, for the
purposes of the game, there is a graphical representation of the dice on the
screen, which is always the last word in what the computer’s move should be.

One problem with the cables that connect the EV3 devices to the control
block is that they’re pretty stiff. This could be an issue with the medium
motor that has to be moved by the large motor to flick the dice. We replaced
this with a flexible ribbon cable connector, as described in Chapter 13.
Alternatively, we found that by lifting the robot and platform off the table a
bit higher, the throwing arm cable didn’t snag.

We tried putting some alignment strips on the rotating table to get the dice
into exactly the right position, but in the end it only interfered with the angle
at which the dice slipped off the table and changed the flipping character-
istics. So, your best bet is to place the dice as square on as you can to the
sensor. We’ve found this isn’t too critical in practice.

http://www.dummies.com/go/raspberrypiprojects

317� Chapter 14: The LEGO Dice Game

Writing the Code
The code for this project is in two parts: One part runs on the LEGO brick, and
its job is to report back the sensor readings and control the motors accord-
ing to messages sent to it by the Raspberry Pi. It’s the code on the Raspberry
Pi that controls the playing of the game and responds to the moves a player
makes and decides what move the computer should make. It also keeps track
of the score so it knows when a game is over. Finally, this code generates a
graphic representation of both the current state of the dice and the heap.

The EV3 code
The code that goes into the EV3 brick can be downloaded from www.
dummies.com/go/raspberrypiprojects, but it’s also shown in
Figure 14‑6. Basically, it’s a large loop that receives a message from the
Raspberry Pi via Bluetooth and displays that message on the screen. Then
a switch block is used to perform the appropriate actions and a message is
sent back to the Raspberry Pi with either some data or text saying the action
has been performed.

Figure 14-6:
The EV3

code for the
dice game.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

318 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The commands are relatively simple but still a bit more complex than they
could be in order to minimize the communications between the Raspberry
Pi and the control brick. Instead of continually asking the control brick to
report what the color the sensor sees, and the Raspberry Pi making the deci-
sion of whether the dice has been replaced or removed, the brick waits and
only sends a message back when the dice is in place or has been removed.

We found that the command names shouldn’t have spaces in them in order
to operate the switch block correctly. This technique proved to be very
successful.

Following are descriptions of all the commands. Note that these are all imple-
mented as text messages for simplicity:

✓✓ See: Simply reports the color seen by the color sensor and returns it
immediately.

✓✓ Twist: Rotates the dice platform clockwise by 90 degrees, so that
another side of the dice faces the color sensor. Sends back a message
indicating the color of that new side.

✓✓ Place_Dice: Waits until the dice is placed on the platform and then
returns a message showing the color reported by the color sensor.

✓✓ Remove_Dice: Waits until the dice has been removed (as determined by
the color sensor reading 0) and then sends a fixed text message saying
“Gone.”

✓✓ My_Move: Triggers the throwing of the dice onto the landing platform.
This command is the only one that does not return a message.

The Raspberry Pi code
The job of the code in the Raspberry Pi is to actually play the game and give
commands to the LEGO in order for it to read a player’s move and make
the computer’s move. It draws a graphical representation of the dice recon-
structed from the information given by the color sensor. It also displays the
heap number and graphically depicts it by drawing stacks of coins, with
the same number of coins as the heap size. This software keeps track of the
player’s move and works out the computer’s response. Finally, it adds some
sound effects to the game.

At the start of the game, you’re asked to remove the dice from the sensor
if it’s already on and replace it at the starting position. The computer then
generates a heap number based on this starting position. It generates a heap
with a value that is a winning position for you. This means if you play the
perfect game, you’ll win; otherwise, the first deviation from this perfect game
that you make will mean the computer will win.

319� Chapter 14: The LEGO Dice Game

Resources
Before you begin, you need some sound and graphics resources. These are
stored in directories called sounds and images at the same directory level
as the game code. For the sounds, you need the following files:

✓✓ laugh.ogg: Sound effect when the computer wins

✓✓ applause.ogg: Sound effect when you win

✓✓ ching.ogg: Sound effect when the heap is drawn

The graphics files are a bit more complex. First, you need the image of a coin
taken at an oblique angle. We photographed a euro 20‐cent piece and used a
graphics package to make the surroundings transparent. Then you need the
component parts to make up the image of the dice. We made an isometric
drawing of the top of the dice and its right‐hand side, for each number; we
also gave these sides the actual color of the LEGO dice tiles, so the drawn rep-
resentation matches closely the real dice. There is no need to have files for
the left‐hand side of the dice because you can reuse the right‐hand side draw-
ing simply by flipping the image horizontally when it’s drawn by the software.

The best way to create these dice components is to use a vector drawing
package, like Inkscape, and first draw a cube. Then draw grid lines on it and
make a copy of the top and side. Populate all nine locations of the dice dots
and remove the grid lines. Then copy these two elements six times each,
and delete the dots on each piece until you have the appropriate number
pattern showing. Then apply a flood fill of the matching color. Note that you
also need a dice graphic where the faces are unknown, for the start of the
game; we used texture patterns for this, but you could draw one with ques-
tion marks on each side. You need to use a PNG file format for these dice
elements because you need to make the background transparent. This can be
done with an online image editor such as www.online‐image‐editor.com
or any other graphics editor with these capabilities.

These parts are shown in Figure 14-7. Then we saved them individually from
the drawing package as PNG files and used an image editor to make the back-
grounds transparent. The images for the top of the dice should be called
t0.png to t6.png with the zero being the unknown top. Likewise the side
images should be called s0.png to s6.png. We made the dice tops 148 x 148
pixels and the disc sides 100 x 162 pixels, but the size isn’t critical. Also, the
coins were 90 x 44 pixels in size. If you don’t want to do this, all the graphics
and sound files are available for download from www.dummies.com/go/
raspberrypiprojects.

The code is written in Python and uses the Pygame extension library. Instead
of presenting it as one big lump of code, we’ll present it as a series of func-
tions. You should type these into the same file using your favorite Python
editor (we used IDLE). The listings should be assembled into the final file by
typing each listing in front of the previous listing, so we’re starting with the
bottom of the file and working up.

http://www.online-image-editor.com
http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

320 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The purpose of this code is to produce a graphics‐based interface to the
game, as shown in Figure 14-8. The program draws the representation of the
current size of the heap and draws the current state of the dice as under-
stood by the program. In the very odd occasion when the computer’s turn is
not executed correctly, the graphics of the intended move should always be
taken as the correct move.

So, let’s start writing the code by looking at some basic housekeeping func-
tions required by Pygame, shown in Listing 14-2.

Listing 14-2:  Dice Game: Housekeeping Functions

#pygame housekeeping
def terminate(): # close down the program
 print "Closing down please wait"
 EV3.close() # close the port
 pygame.quit() # close pygame
 sys.exit()

def checkForEvent(): # see if we need to quit
 event = pygame.event.poll()
 if event.type == pygame.QUIT :
 terminate()

if __name__ == '__main__':
 main()

Figure 14-7:
The

elements
of the dice

graphics.

321� Chapter 14: The LEGO Dice Game

These are almost standard and appear in a lot of our code — just two func-
tions. The first function is called when the program quits, closes open files,
and exits. The second function monitors for any events in the Pygame system
and acts on them. In this program, the only events we’re bothered about are
the shutdown or quit events, like the Escape key or a click in the close box of
the window.

Next comes the code for talking to the bricks. Listing 14-3 is for sending and
receiving messages, as well as generating message blocks.

Listing 14-3:  Dice Game: Talking to the LEGO Brick

Talking to the brick
def init(): #set up messages to the brick
 global see, twist, play, place, remove
 see = messageG("Brick","See")
 twist = messageG("Brick","Twist")
 play = messageG("Brick","My_Move")
 place = messageG("Brick","Place_Dice")
 remove = messageG("Brick", "Remove_Dice")

def readMessage() :
 n = 0
 while n < 2 :# hold until message starts to arrive

Figure 14-8:
The

graphics
window of
a game in
progress.

(continued)

322 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

 n = EV3.inWaiting()
 checkForEvent()
 inMessage = EV3.read(2)

 messageBytes = ord(inMessage[0]) + (ord(inMessage[1] .
) *256)
 while EV3.inWaiting() < (messageBytes):
 checkForEvent()
 inMessage = inMessage + EV3.read(messageBytes)
 payloadPointer = 9 + ord(inMessage[6])
 message = inMessage[payloadPointer:]
 return message

def messageSend(message):
 if EV3.isOpen() == True :
 for n in range(0, 2 + ord(message[0]) +
 (ord(message[1]) * 256)):
 EV3.write(message[n])
 else :
 print"Serial port not open"
def messageG(boxName,message): # generate a message
 length = len(boxName) + len(message) + 8
 btMessage = [chr(0) for temp in range (0,length)]
 # initial blank
 btMessage[2] = chr(1)
 # message ID
 btMessage[4] = chr(0x81)
 btMessage[5] = chr(0x9E)
 btMessage[6] = chr(len(boxName) + 1)
 btMessage[7:7+len(boxName)] = boxName
 payloadPointer = 8 + len(boxName)
 btMessage[payloadPointer] = chr((len(message) + 1) & 0xff)
 btMessage[payloadPointer + 1] = chr((len(message)+ 1)
 >> 8)
 btMessage[payloadPointer + 2:len(message)] = message
 endPoint = payloadPointer + len(message) + 1
 btMessage[0] = chr((endPoint & 0xff))
 btMessage[1] = chr(endPoint >> 8)
 return btMessage

Each of the commands that is going to be sent to the LEGO brick are defined
in the init function. This is done by calling the messageG function, which
generates the message block of data. Note that this takes in both the mes-
sage text and the name of the message box that it’s delivered to. For a full
explanation of the structure of a message, see the previous chapter. The
readMessage function is simplified in that here there is no interest in
retrieving the mailbox name; it just returns the payload in the form of a list
of characters.

The next block of code concerns the Pygame drawing functions and is shown
in Listing 14-4.

Listing 14-3 (continued)

323� Chapter 14: The LEGO Dice Game

Listing 14-4:  Dice Game: Screen‐Drawing Functions

Pygame graphic functions
def drawDice(top) :
 pygame.draw.rect(screen,cBackground, (0, 0, 150, 200), 0)
 screen.blit(diceTop[top],[0,0]) # draw dice
 screen.blit(diceSide[currentDice[0]],[48,48])
 screen.blit(pygame.transform.flip(diceSide
 [currentDice[3]] ,False,True),[0,48])
 pygame.display.update()

def drawHeap(size):
 chingSound.play()
 pygame.draw.rect(screen,cBackground, (194,50,400,215), 0)
 drawWords("HEAP " + str(size), 262, 10)
 x = [212, 334, 465]
 y = 220
 h = 0
 w = 0
 if size < 1 :
 return
 while size != 0 :
 screen.blit(coin,[x[h] + heapWobble[w],y])
 size -= 1
 w += 1
 h += 1
 if h > 2 :
 h = 0
 y -= 10
 pygame.display.update()

def blank_screen():
 screen.fill(cBackground) # blank screen
 pygame.display.update()

def drawFeedback(feedback) :
 pygame.draw.rect(screen,cBackground, (30,300,570,textHeight), 0)
 drawWords(feedback,30,300)
 pygame.display.update()

def drawWords(words,x,y) :
 textSurface = pygame.Surface((len(words) *
 (textHeight / 2),textHeight))
 textRect = textSurface.get_rect()
 textRect.left = x
 textRect.top = y
 pygame.draw.rect(screen,cBackground, (x,y,len(words)
 * (textHeight /2),textHeight), 0)
 textSurface = font.render(words, True, cText, cBackground)
 screen.blit(textSurface, textRect)

324 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The drawDice function takes in the number on the top of the dice and draws
an isometric view of the dice. It uses the global list currentDice to see what
numbers to draw for the sides. This list is updated whenever a new dice posi-
tion occurs. The drawHeap function takes in the heap size and draws the
word Heap along with its size in the playing window. It then goes on to draw
the heap as a stack of coins in three piles.

There is nothing significant about the three piles — it just makes them fit in
the window better. However, the stacks of coins are staggered for a bit of
visual interest. The same staggering is kept throughout a game so that when
a smaller number of coins are drawn, they appear to have been removed
from the top of each heap. The amount of displacement for each coin is held
in a list called heapWobble, and a new list is generated whenever a new heap
is generated.

The drawFeedback function is used to give the human player feedback on
the game’s progress. This is one line on the screen, and the function blanks
out any previous messages before writing the new one. This function calls
the drawWords function that handles the nitty‐gritty of rendering text onto
the bitmapped area of the window.

Next, we have the functions that handle the interaction between the game
and the LEGO control brick and act as an interface for hardware. These func-
tions deal with finding the current dice orientation and positioning the dice
for the computer’s move, as shown in Listing 14-5.

Listing 14-5:  Dice Game: Interacting with the Hardware

Interacting with hardware definitions
def getStartDice() : # read the sensor
 messageSend(see)
 face = readNumber()
 if face != 0 :
 drawFeedback("Please remove the dice")
 messageSend(remove)
 getAck()
 time.sleep(0.8)
 drawFeedback("Now replace it with start number")
 time.sleep(0.5)
 messageSend(place)
 return getTop(readNumber()) # get the top positions

def getTop(face) : # identifies the dice top number
 global currentDice
 currentDice[0] = face
 currentDice[2] = 7 - currentDice[0]
 time.sleep(1.0) # time for hand to clear

325� Chapter 14: The LEGO Dice Game

 messageSend(twist)
 face = readNumber()
 currentDice[1] = face
 currentDice[3] = 7 - currentDice[1]
 top = findTopFromSides(currentDice[0],currentDice[1])
 return top

def readNumber() :
 number = readMessage()
 dice = ord(number[0]) - 0x30
 return dice

def getAck():
 if(readMessage() == "Gone") :
 return True
 else :
 return False

def computerPlay(move) : # move dice into correct place
 twists = -1
 for t in range(0, 4) :
 if currentDice[t] == move :
 twists = t
 while twists != 0 :
 messageSend(twist)
 getAck() # not interested in the sensor
 adjustCurrentDice()
 time.sleep(0.25)
 twists -= 1
 messageSend(play) # throw the dice
 time.sleep(1) # wait until it is done

def adjustCurrentDice() :
 global currentDice
 tempDice = copy.deepcopy(currentDice)
 currentDice[0] = tempDice[1]
 currentDice[1] = tempDice[2]
 currentDice[2] = tempDice[3]
 currentDice[3] = tempDice[0]

def findTopFromSides(first, second):
 top = -1
 topTry = 0
 while top == -1 and topTry < 6:
 for n in range(0, 4):
 if diceLookup[topTry][n] == first and

diceLookup[topTry][n+1] == second :
 top = topTry + 1
 topTry += 1
 return top

326 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The getStartDice function is the procedure used at the start of the game.
If the dice is in front of the sensor, the game says it should be removed.
Then the dice needs to be placed in front of the sensor. This then becomes
the starting position. When the dice is in place, it returns the value acquired
from the next function, getTop, which passes the number of the face in front
of the sensor and updates the currentDice list. Then the dice platform is
rotated by 90 degrees, and the next face of the dice is read. Having acquired
the value of all four sides of the dice, the findTopFromSides function
finds the top number of the dice in the same way as we’ve already seen in
Listing 14-1. The readNumber function extracts a single‐digit number from
the text message, whereas the getAck function simply reads a message
returning true or false if it’s the string Gone. In this code, no use is made
of this returned value.

The last two functions to consider in this block are concerned with the
computer playing a move. The computerPlay function takes in a move
number to make. This number must then be maneuvered into the throwing
position, and the throwing command must be given. The function uses the
currentDice list to find out how many 90‐degree twists to give the dice plat-
form to bring it into the right place. After each twist, the currentDice list is
updated by the adjustCurrentDice function so that the correct dice sides
can be drawn after the throw. This is done simply by shifting the entries in
the list by one place to the left. Note the need to use the copy.deepcopy
function to get a temporary duplicate of the list.

The next block of code consists of the functions that play the game.
These functions, shown in Listing 14-6, set up the heap and make the
computer’s move.

Listing 14-6:  Dice Game: Setup and Play

Game playing definitions
def generateHeap(start) :
 global heapWobble
 total = 9 # impossible win start
 line = index[start] # the opening position line in the move table
 # now choose another total heap that is not a
 losing position
 while(moveMatrix[line][total] == 128) :
 total= random.randint(8, 16)
 # generate a winnable position
 total = total + (random.randint(1, 4) * 9)
 # pick a multiple of 9 of this
 for n in range(0,54):
 heapWobble[n] = random.randint(0,20) - 10
 return total

327� Chapter 14: The LEGO Dice Game

def computerMove(target, top):
 modTarget = target
 while modTarget > 16 : # reduce target to final table
 modTarget -= 9
 potMove = moveMatrix[index[top]][modTarget]
 moveToMake = potMove # gets overridden if
 not a dice number
 if potMove > 6 : # a potential move has a choice
 if potMove == 7 : #move is 2 or 3 or 4
 moveToMake = random.randint(2, 4)
 if potMove == 8 : # move is 2 or 3
 moveToMake = random.randint(2, 3)
 if potMove == 9 : # move is 3 or 4
 moveToMake = random.randint(3, 4)
 if potMove == 10 : # move is 3 or 6
 moveToMake = random.randint(3, 4)
 if moveToMake == 4 :
 moveToMake = 6
 if potMove == 11: # move is 3 or 4 or 6
 moveToMake = random.randint(3, 5)
 if moveToMake == 5:
 moveToMake = 6
 if potMove == 12 : # move is 1 or 2
 moveToMake = random.randint(1, 2)
 if potMove == 13 : # move is 2 or 6
 moveToMake = random.randint(1, 2)
 if moveToMake == 1 :
 moveToMake = 6
 if potMove == 14 : # move 1 or 5
 moveToMake = random.randint(1, 2)
 if moveToMake == 2 :
 moveToMake = 5
 if potMove == 128 : # losing move so select
 a random move
 moveToMake = random.randint(1, 6)
 #print "losing position for me" # uncomment to
 see if you are winning
 while moveToMake == top or moveToMake == 7-top :
 moveToMake = random.randint(1, 6)
 return moveToMake

Both these functions make use of the move matrix (refer to Tables 14‐1
through 14‐3). However, the computer version of this table has numbers in it
representing various things. A number between 1 and 6 indicates the move to
make; a number between 7 and 14 indicates there is a choice of moves, and
the specific number defines what those choices are; finally, a value of 128
shows that this is a losing position.

328 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The generateHeap function starts off assuming a heap of 9, which is a
totally unwinnable position no matter what number is currently on the top.
The code then generates a random number between 8 and 16 until it finds
one where the heap size and the current top number of the dice produces a
winnable position. Then this is multiplied by a random multiple of 9 to make
the heap bigger and add a bit of variety to the game. Finally, the function gen-
erates the heapWobble list for the staggering of the coin pile graphics.

The last function, computerMove, is where the computer’s move is worked
out. It takes in the current size of the heap and the current top number on the
dice. It then repeatedly subtracts 9 from the heap until it is 16 or less. Then it
looks up the potential move by extracting it from the two‐dimensional list of
the playing matrix. The first index decides what line on the table to use; this
depends on the top number. The second index is the reduced heap value.

Now that number is interpreted by a pile of if statements. For example, if
the number 10 is drawn from the moveMatrix table, that means the playing
number should be either 3 or 6. A random number between 3 and 4 is gener-
ated; if it turns out to be 4, the code sets the move to 6. If the number is 128,
that’s a losing position, so a random move is generated. This must still be
a legal move so while the moveToMake variable is an illegal move, random
numbers are repeatedly generated until a legal move is found.

The last function to consider is the main function. This is the loop that
defines the whole game. It’s implemented as a state machine — in other
words, there are a number of phases in play, setup, player move, computer
move, player win, computer win, and end of game, and each one of these
phases has a number in the variable gameState. This function is shown in
Listing 14-7.

Listing 14-7:  Dice Game: The Main Loop

def main():
 init() # Initialize variables
 blank_screen()
 drawDice(0)
 gameState = 0
 while True : # play the game
 checkForEvent()
 if gameState == 0 : # new game send out introduction
 drawWords("Take the last coin to win", 30,350)
 drawFeedback("Welcome to the dice game")
 time.sleep(1)
 drawFeedback("Put the dice on the sensor")
 move = 0
 move = getStartDice()
 lastMove = move

329� Chapter 14: The LEGO Dice Game

 drawDice(move)
 random.seed() # seed random number generator
 heap = generateHeap(move);
 drawHeap(heap)
 drawFeedback("Now make your first move")
 messageSend(remove)
 getAck()
 time.sleep(0.8)
 gameState = 1 # introduction over

 if gameState == 1 : # players move
 move= 0
 while move == 0 or move == lastMove or
move == 7-lastMove :
 while move < 1 or move > 6 :
 messageSend(place)
 move = getTop(readNumber())
 if move == lastMove or move == 7-lastMove :
 print"can't play this number"
 move = 0
 drawFeedback("You cannot use "+
str(lastMove)+" or "+ str(7 - lastMove)+ " . Try again")
 messageSend(remove)
 getAck()
 heap -= move
 drawDice(move)
 drawFeedback("Your move was "+ str(move))
 drawHeap(heap)
 time.sleep(1.5)
 if heap == 0 :
 gameState = 4 # player wins
 if heap < 0 :
 gameState = 5 # computer wins
 lastMove = move;
 if gameState == 1 : # if we are still playing
 gameState = 2 # computer's move next

 if gameState == 2 : # Computer's move
 move = computerMove(heap,lastMove)
 drawFeedback("My move of " + str(move))
 computerPlay(move) # play the move
 currentDice[0] = 7 - lastMove # bottom number is
 now in position 0
 drawDice(move)
 lastMove = move;
 heap -= move
 drawHeap(heap)
 time.sleep(2)
 if heap == 0 :
 gameState = 5

(continued)

330 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

 if heap < 0 :
 gameState = 4
 if heap > 0 :
 drawFeedback("Your move ")
 gameState = 1

 if gameState == 4 : # Player wins
 applauseSound.play()
 drawFeedback("WOW you won - well done")
 gameState = 6

 if gameState == 5 : #Computer wins
 laughSound.play()
 drawFeedback("I win again . . .")
 gameState = 6

 if gameState == 6 : # end of game
 time.sleep(3)
 drawFeedback('Have another go')
 time.sleep(2)
 gameState = 0

This is the longest function in the program, but it breaks up into a number
of small state sections, or game phases, so it’s best to consider them one at
a time.

For most of the game, the gameState variable will alternate from 1 to 2,
representing the player’s move or the computer’s move. Higher values rep-
resent the end of the game and the outcome, and they draw the appropriate
feedback and trigger the appropriate sound effects. A gameState variable
value of 0 represents the setup phase.

To kick things off, there are a few lines that do one‐off initialization. The init
function is called to set up the lists used as messages to the LEGO brick, the
window is cleared, and a blank dice is drawn. Then the while True loop
is an infinite loop that will repeatedly play all the moves of a game and play
multiple games.

If the gameState variable is a 0, then this is the setup phase of the game.
It makes sure that there is no dice in front of the sensor and then asks the
player to put the dice down in the starting position. It then reads the dice
and draws a picture of it. This starting dice state is used to generate a heap
size that is winnable by the player. The code then asks the player to make the
first move, and the gameState variable is set to 1.

The main purpose of the if gameState == 1 section is to get the player’s
move, but it must be a legal move (one that is not the same as the previous

Listing 14-7 (continued)

331� Chapter 14: The LEGO Dice Game

move or a use of the number the dice is sitting on). This is achieved by put-
ting the code into a while loop that keeps repeating until a legal move has
been made. When a move is made, that number is subtracted from the heap
and a check is made to see if the game is over. This is determined by looking
at the heap size. A heap size of 0 indicates the player has won; a negative heap
size indicates the computer has won. If neither of those two things has hap-
pened, then the gameState variable is advanced to 2, the computer’s move.

The computer works out its move by giving the current heap size and last
move to the computerMove function. The side dice face corresponding to
the computer’s move is then rotated into the correct place for throwing.
Then it’s thrown and the dice graphic is updated. Then the move is evalu-
ated by subtracting it from the heap to see if anyone has won. If not, the
gameState variable is set back to the player’s move value of 1.

The end of game values of the gameState variable print messages to the
screen and play sound effects depending on whether the player has won or
lost. A value of 4 indicates that the player has won, and a value of 5 shows
that the computer has won. These both change the state to the final value
of 6, which invites the player to play again and then sets the gameState
variable back to 0.

All that remains is the initialization of the variables, lookup tables, and load-
ing in of sound and graphics. This is shown in Listing 14-8.

Listing 14-8:  The Dice Game: Initialization

#!/usr/bin/env python
'''
 Lego powered Dice Game
 By Mike Cook
'''
import serial
import time
import random, copy
import os, pygame, sys
import struct

EV3 = serial.Serial('/dev/rfcomm0', timeout=1)
EV3.flushInput()

pygame.init() # initialise graphics interface
pygame.mixer.quit()
pygame.mixer.init(frequency=22050, size=-16,
 channels=2, buffer=512)
chingSound = pygame.mixer.Sound("sounds/ching.ogg")
applauseSound = pygame.mixer.Sound("sounds/applause.ogg")
laughSound = pygame.mixer.Sound("sounds/laugh.ogg")

(continued)

332 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

os.environ['SDL_VIDEO_WINDOW_POS'] = 'center'
pygame.display.set_caption("Lego Powered Dice Game")
pygame.event.set_allowed(None)
pygame.event.set_allowed([pygame.KEYDOWN,pygame.QUIT])
cBackground =(255,255,255)
cText = (255,0,0)
textHeight = 48
font = pygame.font.Font(None, textHeight)
screenWidth = 600
screenHeight = 400

screen = pygame.display.set_mode([screenWidth,screenHeight],0)

diceTop = [pygame.image.load("images/t"+str(num)+".png"
).convert_alpha() for num in range(0,7)]

diceSide = [pygame.image.load("images/s"+str(num)+".png"
).convert_alpha() for num in range(0,7)]

coin = pygame.image.load("images/coin.png").convert_alpha()

print "Lego Dice"
currentDice = [0 , 0, 0, 0]
heapWobble = [random.randint(0,20) - 10 for n in range(0,54)]
moveMatrix = [
[0, 128, 2, 3, 4, 5, 3, 7, 4, 128, 5, 8, 9, 4, 5, 3, 7],
[0, 1, 1, 3, 4, 128, 10, 11, 4, 128, 1, 3, 9, 4, 128, 10, 9],
[0, 1, 12, 128, 128, 5, 6, 13, 128, 128, 14, 2, 128, 128, 5, 6,2]
]

index = [0, 0, 1, 2, 2, 1, 0] # input the current state of the
dice to read what line on the move matrix to use

diceLookup = [[3, 5, 4, 2, 3], # side sequence for 1 on top
 [6, 3, 1, 4, 6], # for 2 on top
 [2, 6, 5, 1, 2], # for 3 on top
 [1, 5, 6, 2, 1], # for 4 on top
 [4, 1, 3, 6, 4], # for 5 on top
 [2, 4, 5, 3, 2]] # for 6 on top

see = "see"
twist = "twist"
play = "play"
place = "place"
remove = "remove"

Listing 14-8 (continued)

333� Chapter 14: The LEGO Dice Game

First, the Python modules needed are imported. Then the Bluetooth connec-
tion to the LEGO brick is established and the buffers are cleared out. Next
comes the Pygame initialization for the sound, window, text, and graphics.
Note that the graphics for the dice side and top are loaded into a list from
files in the images directory, whereas the coin is a single file.

Next come the definitions of the global variables that allow the playing of the
game. The moveMatrix list consists of three lists, each for use with a differ-
ent top face number. The values in the list of moves is coded as the move to
make if it’s between 1 and 6 or a number representing a choice of moves, or
the value 128 representing the state when there is no winning move to make
from this position. The zero at the start of the list is just a dummy value so
that the list index number and the current heap size match up.

The index list informs the code doing the move lookup which list of the three
to use given the current top state of the dice. The diceLookup list contains
the sequence of numbers on the side of the dice when rotated clockwise for
every top dice number. Note that the first and last numbers are the same so
that the code can be made simpler by not having to cope with wraparound.

Finally, the five strings that define the messages sent to the LEGO brick are
defined as global variables with dummy data. The init function will assign
the real data to it later. It can’t be done at this stage because it involves other
functions that can’t be called yet.

Play
All that remains is to play the game. It works even better if you can memorize
the playing matrix so that you can win every time and astound your friends.

Customizing the Code
Like all projects, you can customize this game to your heart’s content. Here
are some ideas you may want to implement.

The simplest modification is to change the sound effects. You could even
add some extra ones. For example, the computer can speak instructions for
your move and tell you when you’ve made an illegal move. You can record
all the numbers and get the move spoken. If you’re feeling adventurous, you
can write a function that takes several samples of numbers being spoken
and speaks the heap size. You’ll just have to record extra number parts like
“teen,” “twenty,” and so on.

334 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Another idea is to remove the coins one at a time from the heap to make
the animation a bit more interesting. You may even want to write a small
sequence where the top coin off each heap rises up and disappears off the
top of the screen. In fact, you don’t have to stick to coins — the heap could
be anything drawn in any arrangement you like. Remember, though, that if
you want to use random positions, you should use a heapWobble‐like list of
positions so that the heap doesn’t keep rearranging itself whenever anything
is removed from it.

If you really want to take it to another level, how about a LEGO robot that
scurries around the room to find the dice, picks it up, detects what it is, and
makes its own move? That would be a challenge, indeed, but we’re sure it can
be done somehow. If you manage to do that, email us the results!

LEGO Direct
In This Chapter

▶▶ Adding a reset button to your Raspberry Pi

▶▶ Saving on batteries for your EV3 brick

▶▶ Controlling the LEGO motor directly from your Raspberry Pi

▶▶ Reading the motor’s rotary sensors

▶▶ Revealing the secrets of the EV3’s sensors

▶▶ Accessing the LEGO peripherals without building anything

I
n the previous two chapters, we show you ways to communicate with
the LEGO MINDSTORMS EV3 Intelligent Brick. In this chapter, we get a lot

more hacky and look at controlling motors and reading sensors directly from
the Raspberry Pi.

You can make your own cables that are much more flexible than the official
cables, and we show you how in this chapter. Finally, when using the Raspberry
Pi with a LEGO system, you can save on battery power and customize your
project to your liking, and we cover all that in the pages that follow.

Creating a Reset Button
for the Raspberry Pi

A reset button on the Raspberry Pi may not seem obvious, and we never
needed one until we started playing around with Bluetooth, but it’s a great
idea for when everything is stuck. (Sure, you can just yank out the power
lead, but that isn’t really recommended because it could cause trouble with
your SD card.) Even though there is no reset button on the Raspberry Pi,
provision has been made for fitting one from revision 2 of the board. You can
see it in the form of two holes to the left of the HDMI socket — it’s very easy
to solder a two‐pin header there. The idea is that when these two lines are
shorted together, the Raspberry Pi’s processor is reset.

Chapter 15

336 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

You can use a jumper link to temporarily connect these two lines together
when needed, keeping the jumper on one pin for normal operation. However,
you can go for the deluxe method and wrap a tact push button’s wires around
a two‐pin header to produce an actual button. As an alternative, you can
solder a button directly into the two holes. Make sure you have a two‐wire
push button because there are many four‐wire ones out there. Figure 15-1
shows some photographs of this. On the right is a tact push button wired to a
two‐pin socket; on the left, it’s mounted on a two‐pin header soldered into the
Raspberry Pi’s board.

Making Batteries Last Longer
Having done a few projects using the LEGO EV3 system, we noticed that the
batteries didn’t last very long. In fact, during development, the brick would
often sit there doing nothing for long periods while we concentrated on the
Raspberry Pi aspect of the software. Turning the brick on and off takes some
time — about 30 seconds to power up and 45 seconds to power down — so
you tend not to do it too often. Although there are rechargeable batteries for
mobile use, static LEGO machines like the dice game in Chapter 14 can get
away with a tethered power supply.

The LEGO system runs off 6 AA batteries; at 1.5V each, that adds up to 9V.
All the solutions we found to this problem online involved some very ugly
soldering of wires directly onto the battery springs. We thought that this was
a bit too intrusive. Plus, it was difficult to swap between a power supply and
batteries. So, we wanted something that would look like a AA battery and
allow us to connect wires to it. While thinking, “What is about the size of a AA
battery?,” we came up with the answer: “A AA battery!”

The battery cover at the bottom of the EV3 brick has a small flange that
covers a U‐shaped hole in the body of the brick. This hole is just about long

Figure 15-1: 
Raspberry

Pi reset
buttons.

337� Chapter 15: LEGO Direct

enough to put a long‐reach 2.1mm power jack through, so all we had to do
was to attach a matching socket into something that was the same length as
a AA battery. However, it isn’t quite as easy as that because the spring that
holds the battery in place tends to apply a snapping force to the center of any
tube. After a few false starts, we hit upon the solution, shown in Figure 15-2.

All this system has to do is to connect the positive end of your external
power supply to the top‐right spring in the battery compartment and the
negative end to the top‐left spring. The basic idea is that a surface‐mount
power‐jack socket lines up with the center notch in the battery compartment
and attaches to the negative connector of the brick. It’s held in place by a
styrene tube, which fits around the narrow pip on the battery holder’s spring
positive connector. This pip is what causes trouble — it’s too narrow to allow
a stable fitting. The tube and the left‐hand side of the PCB fit around the pip,
preventing it from producing any sideways movement and holding the assem-
bly stable. The positive connection from the jack socket is wired to the full
battery’s body with a wire soldered to the body. Note the positive connection
is the main body of the battery with the negative connection just the end.

To make this project, you need the following parts:

✓✓ Two old dead AA batteries (the plastic‐covered type, not the painted
type)

✓✓ A surface‐mount 2.1mm power‐jack socket

✓✓ A 7mm x 30mm piece of single‐sided PCB material

Figure 15-2: 
The LEGO

brick battery
eliminator.

338 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

✓✓ A styrene tube with an outside diameter of 20mm x 11mm

✓✓ 70mm of 24‐gauge (or thicker) insulated wire

✓✓ A long‐reach 2.1mm power‐jack plug

✓✓ A small amount of epoxy resin

✓✓ A 9V regulated mains power supply (an SPS‐8041 or similar)

To build the battery eliminator, follow these steps:

1.	Take the two batteries and strip off all the plastic covers, leaving just
the bare metal.

2.	Using a small hacksaw, gently saw off the last 16mm of the negative
end of one of the batteries.

Make sure you catch the black stuff that comes out in a paper towel.
You’ll find that you’ve also sawed through a rod that runs down the
center of the battery.

The black stuff is a compressed paste of manganese dioxide with carbon
powder added for increased conductivity. The sticky stuff surrounding
the center negative electrode is composed of zinc powder in a gel con-
taining the potassium hydroxide electrolyte wrapped up in a layer of
cellulose or a synthetic polymer.

3.	Remove all the black stuff, leaving just the center electrode.

We did this by putting a small screwdriver in and scratching the black
stuff out. It comes out very easily.

Make sure you catch all the black stuff and don’t get it in your mouth.
Don’t dispose of this in the normal household garbage; instead, place it
in a resealable plastic bag and put it with your other dead batteries for
proper disposal.

4.	Bend down the central electrode rod until it nearly touches the case.

5.	Slip the piece of PCB material into the tube and push it as far in as it
will go.

6.	Solder the electrode rod to the PCB material.

7.	Take a small amount of epoxy resin and fix the PCB into the battery
case. Let it set for 24 hours.

8.	Make sure the surface mount socket lines up with the center of the
hole in the LEGO brick when the battery retaining spring is com-
pressed about halfway. Then solder the surface mount socket in place
on both sides.

9.	Solder an insulated wire from the center pin of this socket to the body
of the other whole battery.

339� Chapter 15: LEGO Direct

Clean up the area first with glass paper and make the joint quickly with
a soldering iron. Don’t allow the battery to heat up too much, and allow
it much longer than usual to cool down. The bulk of the battery means it
will absorb more heat before you can solder it.

10.	Cut 20mm of styrene tube and fit it over the PCB material. Then place
it in the battery holder.

The construction is shown in Figure 15-3. A photograph is shown in
Figure 15-4.

11.	Wire up a long 2.1mm power jack with the center pin as the positive
and attach it to your 9V power supply.

We used an SPS‐8041 selectable switch mode supply set to 9V for this. You
may want to cut off the small flange in the battery cover that covers up
the hole for the power jack, or you may want to leave your LEGO unmodi-
fied and just operate the brick with no back cover. The choice is yours.

Figure 15-3: 
The con-

struction of
the battery

clip.

340 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Now you can happily power your EV3 brick during development and quickly
change to batteries when needed.

Using Connectors and Cables to Control
the LEGO Motors and Sensors

If you want to have direct control of the LEGO motors and sensors, you have
to get electrical access to them. All the electronic components in the EV3
and NXT systems are connected to the control brick using a six‐way connec-
tor called an RJ12. The RJ12 is very similar to the RJ11 connector — the only
difference is that the RJ11 uses only four of the six wiring positions of an RJ12.
Sometimes an RJ12 connector is called a 6P6C RJ11; this stands for six posi-
tions and six connectors (whereas the normal RJ11 is a 6P4C connection).

Although these are both standard connectors in the electronics industry,
the LEGO designers added a small tweak to make things a bit difficult (or
as LEGO would probable say, to ensure the MINDSTORMS system was not
connected to things it should not be connected to). The RJ11 and RJ12 con-
nectors have a latch on the top to allow for the cable to be locked into the
socket. Normal connectors have this connector in the center, but the LEGO
system has it offset on the right side. There was an old RJ11 telephone con-
nector with an offset latch, but that was offset on the other side, so making
extra cables isn’t straightforward.

Figure 15-4: 
The battery

clip.

341� Chapter 15: LEGO Direct

RJ12 cables are normally crimped onto the connectors. You get a special
size‐6 core flat cable and strip off the outer insulation. Then you put the
insulated wire ends into a plug and crimp it with a special tool. This does
two things:

✓✓ It distorts a plastic bar to push against the wires and acts as a
mechanical clamp.

✓✓ It pushes the blades on the back of the plug’s contacts through the
plastic of the wire’s insulation to make a contact.

Done properly, this produces a good durable connection. The only snag is
that the double insulation tends to make the resulting cables a bit stiff, which
can sometimes cause problems when connecting parts that move.

There are several things you can do with the leads to improve them or allow
electrical access to the signals, some of them more straightforward than others:

✓✓ Hack an existing lead. This approach is perhaps the simplest one to
take. You have a lead with two ends, so you can simply cut it in half, and
you have two ends to solder your extension wires onto. If you want to
extend the cable to use more flexible wires, you can cut the cable close
to the connector and insert a length of stranded wires with thinner insu-
lation. Make sure you cover any exposed joints with insulating tape or,
better yet, a dab of liquid insulation tape.

✓✓ Use a normal RJ12 and crimp tool, but move the latch over to the
right side. We’ve seen this method advocated on some websites, but
we haven’t had much success with this technique ourselves. The idea is
that, after you’ve fitted the cable, you slice off the tab with a sharp knife
and glue it on the side using polystyrene model airplane glue, using an
existing socket as a guide so you get it in the right place. You have to be
very careful not to permanently glue the cable into the socket; plus, the
springiness of the latch is in question after the gluing.

✓✓ Get some real connectors. In our opinion, the best approach is to get
some real connectors, ones designed for the job. Unfortunately, there
isn’t a great deal of choice with suppliers — we could only find one
source, but they’re available on both sides of the Atlantic. In the United
States, go to www.mindsensors.com; in Europe, go to www.active‐
robots.com. Here, you can buy sockets and readymade leads, as well
as the plug connectors.

	However, if you’re going to make your own lead, you need a crimping
tool, and the only way we know of accommodating the offset latch is
to modify an existing crimping tool. Crimping tools can be quite expen-
sive, but if you choose the right one, it’s not only cheap but also easy
to modify.

http://www.mindsensors.com
http://www.active-robots.com
http://www.active-robots.com

342 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

	The LogiLink crimp tool is inexpensive and made from bright orange
plastic, so it’s simple to modify. It crimps four‐position, six‐position, and
eight‐position connectors. The two halves unscrew, and it’s compara-
tively easy to file a larger slot in the six‐position hole to accommodate
the offset latch. We used a small square needle file to do this. Figure 15-5
shows the slot filed away on the front piece. Note that you also need to
file the back piece. You have a connector of the right size in the LEGO
set, so it’s easy to file the crimper so that the plug fits in snugly.

	We found that the best wire to use was ribbon cable. The vast majority
of ribbon cable is 0.1‐inch pitch, but it’s too big for these connectors so
what you want is 1mm pitch cable. All you need to do is cut the cable
off square, insert it into the socket, insert the socket in the crimper, and
squeeze. For a bit of added resilience, we added a small spot of Gorilla
Glue to the cable underneath the clamping bar. We left this a few hours
to set before flexing the cable.

	Using this method, you can make flexible two‐ended cables of exactly
the right length for your model. Or you can make single‐ended cables for
attaching your LEGO parts to other electronics or your Raspberry Pi.

Reading and Commanding
There are basically two different sets of signals you can get on the LEGO
control brick:

✓✓ Sensors: You read information from these. They’re labeled A through D.

✓✓ Actuators or motors: You command these to move. They’re labeled 1
through 4.

Figure 15-5: 
Crimp tool

modification.

343� Chapter 15: LEGO Direct

Each has a different set of electrical connections. Figure 15-6 shows the
signals on the two types of LEGO peripherals. Note that this is oriented with
the latch on the underside. The colors used on a standard LEGO cable for
each wire are also shown in Figure 15-6.

The motor lead
The LEGO motor basically consists of two components:

✓✓ A geared motor capable of clockwise or counterclockwise rotation

✓✓ A rotary sensor giving pulses in response to the motor movement

The motor is geared, through a multigear train, so it turns many times before
the movement is transmitted to the outside world.

To get a motor to move, you apply a voltage across the Motor Power 1 and 2
lines. This should be 9V, but the voltage isn’t too critical. To make it reverse
direction, you need to swap the polarity of these two lines. To stop the
motor, you can do one of two things:

✓✓ Remove the power by removing the voltage from these lines. When
you do this, the motor will coast to a stop.

✓✓ Make the two power lines be the same voltage — either both 0V or
both 9V. This is not the same as disconnecting the voltage. Instead,
it’s like connecting the two motor wires together. This results in the
motor stopping very quickly by means of what is known as regenerative
breaking or flywheel breaking.

Figure 15-6: 
LEGO cable

signals.

344 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Flywheel breaking works because an electric motor that is turning is
actually acting like a generator and is producing a voltage that is in the
opposite direction of the voltage required to make the motor turn in that
direction. So, by connecting the two wires of the motor, you’re using
the voltage generated by the movement of the motor to try to drive the
motor backward. This is like a power shutdown and stops the motor
much faster than just letting it coast to a stop.

You may have noticed the two stop modes in the LEGO language — the
break at end can be true or false. This is a simple way of saying “stop
by coasting” or “stop by flywheel breaking.”

The other control the motor has in the LEGO language is the power. (This
used to be called speed, but power is a more accurate description.) You can
reduce the power sent to a motor and, thus, see a speed drop by very rapidly
turning the motor on and off. This happens hundreds of times a second. By
changing the relative time the motor is on and off (known as the duty cycle),
you can reduce the power fed into the motor.

For example, at 500 times a second, the motor is turned on and off every
0.002 second or 2 milliseconds (mS). If the motor is on for 1 mS and off for
1 mS, the power will only be 50 percent of full power. This rapid switching of
the motor and changing the duty cycle is known as pulse width modulation
(PWM) and is a common way of backing off the power on motors. Depending
on the mechanical load the motor is under, the speed will also drop. The
off part of the cycle is normally a flywheel breaking type rather than coast-
ing type.

The last part of the motor is the rotary sensors, which give feedback on the
actual movement of the motor. Applying power to the motor is great, but
it may be jammed up or one motor may actually spin faster than another
even if they’re given the same voltage. Each motor is fitted with a rotational
sensor. The sensor works similarly to a mouse with a ball: Any movement
rotates a disc with holes that block and unblock one of two infrared beams.
These beams produce pulses that can be related to the motor’s actual
movement.

The beams are quite accurate — you get one pulse for every degree of rota-
tion. In fact, there are two pulse outputs that are 90 degrees out of phase
with each other (known as a quadrature arrangement). By looking at which
pulse line changes first, you can also determine the direction of rotation.
These pulses on their own can be used to find how much a motor has moved,
even if it isn’t powered and is moved only by hand. However, the pulses can’t
be used to find the absolute position of the motor — only the relative motion
or how much it has moved.

345� Chapter 15: LEGO Direct

The sensor lead
The sensor leads, connecting to the sensor ports A through D, carry a very
different sort of signal. Pin 3 is ground and pin 4 is positive, and they carry
the power supply for the sensor. The new EV3 sensors communicate using
the serial RS485 protocol at normal TTL logic levels. Communication between
brick and sensor can be complex, as you see later in this chapter.

Rolling Your Own Motor Control
In order to control LEGO motors directly from the Raspberry Pi, you have
to convert the signals available on the Pi’s general‐purpose input/output
(GPIO) pins into signals suitable for driving the motor. The GPIO pins, when
used as outputs, can provide only a very small current (16 mA at 3.3V). The
LEGO motor needs a voltage of 9V at a current of 60 mA when under no
load, and up to 2,000 mA when it’s stalled. In order to make the motor turn
in either direction, any driving circuit needs to be able to swap the polarity
of the voltage on the motor’s wires. In order to get regenerative breaking, a
circuit needs to be able to connect the two wires from the motor together. A
circuit that can do this is called an H‐bridge circuit; it’s composed of two half
H‐bridges.

A half H‐bridge is simply what you get with a changeover switch (a switch that
can be connected to either one of two poles or positions). With each pole
connected to the two polarities of the motor’s power supply, you can make
an H‐bridge (as shown in Figure 15-7) using only switches.

The common connector of each switch is connection to one wire of the motor,
as you can see in Figure 15-7a — one switch is up and the other is down, so
the current flows through the motor and causes the motor to turn in a clock-
wise direction. If the two switches are reversed, so switch 1 is down and
switch 2 is up, the current flows through the motor in the opposite direction
and the motor rotates in the opposite direction, as shown in Figure 15-7b.
Finally, in Figure 15-7c, both switches are down and the two motor wires are

Figure 15-7: 
An H‐bridge

made from
switches.

346 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

connected together allowing regenerative breaking to occur. Note that this
would also happen if both switches were up; if they’re both connected to the
same voltage level, they’re in effect connected together.

Making it move
The only problem with an H‐bridge made from switches is that you would
have to physically switch them. You could use relays to make the contacts,
but there is a pure electronic method that does not involve any moving parts.
Fortunately, this is such a common circuit that many integrated circuits are
available with this configuration, so you don’t need to make one from indi-
vidual parts.

If you just want to control the direction of the motor, all you need is an H‐
bridge circuit. But if you want to control the power/speed of the motor,
you need to apply some PWM to the voltage. Unfortunately, the Raspberry
Pi is not very well endowed with PWM signals — there are just two on the
processor, and you can only get to both of them on the plus model’s GPIO
pins; the earlier models could access only one. These pins are also used for
generating sound so if you’re controlling a motor, the Raspberry Pi can’t
make any sound. Although each motor can have its own PWM control, with a
Raspberry Pi 2, there is a sneaky trick that will work with all models to con-
trol two motors with one PWM pin. The way this works is to use logic gates
to pass or block signals to the H‐bridge switches. The gates we’ve chosen to
use are called NAND gates (which stands for Not AND), and they’re among the
most common gates.

Logic gates have rules for what their output will be when presented with
all the possible different combinations of inputs. In words, an AND gate will
have a true output when input A and input B are true. A NOT gate has an
output that is not the input, so if the input is true, the output is false, and if
the input is false, the output is true. A NAND gate is an AND gate followed by
a NOT gate.

All this gets very wordy, and you can quickly become muddled, so it’s normal
to have a table that shows every possible combination of inputs and the
output results. This is known as a truth table; three such tables are shown in
Figure 15-8.

The AND gate has two inputs — A and B — so there are four different pos-
sible combinations, each with its own row in the table. The symbol for an
AND gate is shown below the table. Similarly, because the NOT function has
only one input, there are only two lines. Sometimes this function is called a
logic inverter or just an inverter for short. Finally, a NAND gate simply has the

347� Chapter 15: LEGO Direct

output of the AND gate inverted. Notice how the symbol for the NAND gate
takes the filled circle from the output of the inverter and combines it with the
body of the AND gate symbol.

Perhaps one of the more mind‐boggling aspects of digital logic is that, when
you have a NAND gate, everything else can be made up from this one func-
tion. That means that circuits that add up numbers, circuits that count,
circuits that remember . . . all the circuitry of your microprocessor or any
computer can be made up of NAND gates. No other functions are necessary.
However, showing you how this can happen would take up a whole
other book.

So, why do you need to know about NAND gates here? Well, we use them to
send PWM signals or not send them into the H‐bridge inputs to control the
motor. Figure 15-9 shows the motor‐activating part of an interface circuit for
the Raspberry Pi to control a LEGO motor. With this circuit, you can control
two motors. This circuit can also be used to control any sort of low‐power
DC motor.

The circuit consists of two interface circuits: the H‐bridge and the NAND gate.
In fact, the 74HC00 contains four NAND gates, and the SN754410 contains
two H‐bridge circuits (or, to be more accurate, it contains four [or quad] half
H‐bridge circuits). There are two supply voltages for this chip: One is for con-
trolling the logic signals, and the other is for driving the motor. The motor
supply can be anything up to 36V, but for a LEGO motor you should stick to
between 9V and 12V. The negative of the motor’s supply must be connected
to the ground connection of this circuit.

Figure 15-8: 
Logic truth

tables.

348 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The enable lines of the two H‐bridges are connected to the logic supply
so that they’re always on. You can apply the PWM to these lines, but then
power control is less effective because the motor will coast through the off
parts of the cycle. If you want, you can connect these enable lines to another
Raspberry Pi pin to shut down the motors altogether, but there isn’t much
reason for this because the other pins will allow you full control of the motor.

Each of the two control lines for the motor passes through an NAND gate,
which has the effect of “gating” the PWM signal. When the PWM signal is low,
both control lines to the H‐bridge are high, so the motor is in the breaking
mode irrespective of what state either of the control lines is in. However,
when one control line is high, and the other is low, the rapid PWM signal is
applied to the H‐bridge control input corresponding to the high motor con-
trol, with the other H‐bridge input being permanently high. This is exactly
what you need for power control, as well as directional control.

This circuit can drive the LEGO motors in the LEGO Technics and the LEGO
Power series, as well as the original MINDSTORMS motors. However, the
NXT and EV3 motors have another trick up their sleeves: built‐in rotational
feedback.

Note how the motor’s voltage is shown as 9V to 12V. The LEGO motor is
capable of being run at 12V. But even so, the H‐bridge circuit can cut the
applied voltage down by as much as 3V, so even supplying the bridge with
12V, the motor gets only a touch over 9V anyway. So, if you supply the drive
circuit with 12V, it will act like a very fresh battery; if you supply it with 9V, it
will act like a partly discharged battery.

Figure 15-9: 
A motor‐

activating
interface.

349� Chapter 15: LEGO Direct

Knowing where it is: Motor feedback
The built‐in sensor is known as an quadrature incremental rotary encoder, and
produces pulses, as shown in Figure 15-10. These signals are 90 degrees out
of phase from each other. By looking at the relative positions of the edges,
you can determine the direction of rotation.

Figure 15-10: 
Rotary

encoder
outputs.

350 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The sequence of levels you get from the sensor as it’s rotated is also shown
in Figure 15-10. Notice how, as the rotation proceeds, only one bit will change
at a time. This property in a code makes the code what is known as a Gray
code, named after its inventor, Frank Gray. To a certain extent, it’s self‐
correcting against contact bounce by having some forbidden transitions.
If you see one of these transitions, you know it’s an error and it’s a simple
matter to ignore in software.

To condition these signals into a form suitable for input to the Raspberry
Pi’s GPIO pins, a comparator or Schmitt trigger circuit is normally used. The
LM339 has four comparators in one package and also has an open collector
output, which means it can be simply pulled up to the 3V3 logic supply of the
Raspberry Pi with a resistor. The schematic of this buffer circuit is shown in
Figure 15-11.

This circuit can handle the rotation outputs for two motors. Each output is
connected through a 10K resistor to the positive comparator input to provide
some protection against interference pickup. All the comparator’s negative
inputs are connected together and set to a voltage that is halfway between
the two extremes of the signal. The sensor circuit in the motor is powered by
not 5V but 4.3V. We’re sure it would work fine with 5V, but it’s easy enough
to provide the correct voltage by simply passing it through a diode. Any
rectifying diode will do fine.

Constructing the motor control system
Building both aspects of the motor control system on one circuit board is
best, so we’ve have combined the two schematics (Figures 15-9 and 15-11).
Here are the parts you need:

✓✓ Four 10K resistors (R1–R4)

✓✓ Five 3K3 resistors (R5–R9)

✓✓ One 4K7 resistor (R10)

✓✓ Four 0.1uF ceramic capacitors (C1–C4)

✓✓ A 1N4001 or similar rectifying diode (D1)

✓✓ A 74HC00 quad two‐input NAND gate (IC1)

✓✓ An SN754410 quad half H‐bridge (IC2)

✓✓ An LM399 quad comparator (IC3)

✓✓ Two RJ12 six‐way sockets with offset latches (S1–S2)

✓✓ Stripboard

351� Chapter 15: LEGO Direct

Figure 15-11: 
The motor

sensor
interface.

352 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

✓✓ Connecting wire

✓✓ Two 14‐pin DIL IC sockets (optional)

✓✓ A 16‐pin DIL IC socket (optional)

✓✓ A 12‐way screw terminal strip, 0.2‐inch pitch

✓✓ A 4‐way screw terminal strip, 0.1‐inch pitch

The last two items can be combined as a 16‐way 0.2‐inch screw terminal strip
at the expense of having a larger stripboard.

The only component you may have trouble getting ahold of is the RJ12 socket;
you can get them from the same supplier you get the RJ12 plugs from. You
can dispense with them altogether if you cut a cable in half and solder the
wires directly onto the stripboard. If you do get a socket, you have the prob-
lem of mounting it on the stripboard. The trouble is that the socket is not on a
0.1‐inch grid, so there is a bit of work to mount it. Just follow these steps:

1.	Drill two 2.5mm mounting holes for the fixing lugs four and a half
holes apart.

Drilling the half‐space hole can be tricky.

2.	Run two rows of three holes together by putting a small router bit in
your drill.

3.	Remove the copper between the two slots with a scalpel.

4.	Before you push the socket into the board, smear a small spot of
Gorilla Glue to the base of each socket in order to provide a good
mechanical joint.

5.	Wrap thin wire around the protruding socket connectors.

The pin out of this socket as viewed from the underside is shown in
Figure 15-9. A photograph of the slots we cut in the stripboard are
shown in Figure 15-12.

Figure 15-12: 
Stripboard

preparation
for mounting

the RJ12
socket.

353� Chapter 15: LEGO Direct

The wires connecting this board to the Raspberry Pi’s GPIO pins are con-
nected on our board through screw connectors. In order to fit them onto
the board size we chose, we used two sizes of screw connectors, but for
economy you can eliminate these altogether and solder wires directly to the
stripboard.

A photograph of our board is shown in Figure 15-13. There is little point
showing the wiring because the stripboard isn’t used to make any
connections — it’s all wired up on the underside of the board.

Writing the software
Having built the interface board, you need some software to run it. This software
needs to have access to the GPIO pins. There are a few libraries to choose from,
but we chose WiringPi2 for Python. This is a port of Gordon Henderson’s C
library. It uses a syntax that will be familiar to any Arduino user. If you aren’t an
Arduino user, it takes just as much learning as any other library syntax.

So, the first thing to do is install it. From a command line, type the following:

sudo apt-get update
sudo apt-get install python-dev python-pip

When that has finished, type the following:

sudo pip install wiringpi2

That’s it. However, Linux now throws you a curveball in that you have to run
as root before it will allow you access to the GPIO pins. If you use IDLE to do
your Python development, you can run this as root. From the desktop, open
a command window and type the following:

gksudo idle

Figure 15-13: 
The motor

interface
board.

354 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The IDLE package opens and you can use it as normal.

The non‐real‐time aspects of Linux makes controlling a motor not as precise
as you may like, but you can still do a lot. You can apply the same PWM
signal to both motors, which comes out on GPIO 18. The other signals can
be connected to any GPIO pin, but keep the serial port pins (GPIO 14 and 15)
free for communicating with the sensors. We connected the board as shown
in Figure 15-14. The motors can be driven by the Python software shown in
Listing 15-1.

Listing 15-1:   Driving LEGO Motors

#!/usr/bin/env python
"""
Lego Motor Driver test 1 by Mike Cook June 2014
power (PWM) on GPIO 18 (12)
"""
import wiringpi2 as io
import time

mp = 18 # motor power pin (12)
a1 = 4 # motor A control 1 (7)
a2 = 17 # motor A control 2 (11)
b1 = 24 # motor B control 1 (18)
b2 = 22 # motor B control 2 (15)
ar1 = 7 # motor A rotational sensor 1 (26)
ar2 = 8 # motor A rotational sensor 2 (24)
br1 = 11 # motor B rotational sensor 1 (23)
br2 = 9 # motor B rotational sensor 2 (21)

Figure 15-14: 
Connecting

the motor
drive to the
Raspberry

Pi.

355� Chapter 15: LEGO Direct

(Continued)

motorControl = [(a1, a2), (b1,b2)]
print "Board Revision",io.piBoardRev()
print "If the program quits here start IDLE with 'gksudo idle' from the

command line"

def main() :
 pinInit() # define inputs and outputs
 print "Python motor control test"
 print "Ctrl C to quit"
 while True:
 allOff()
 motor ="q"
 motorToMove = 0
 while not(motor == "A" or motor == "B") :
 motor = raw_input("Motor to move A or B ")
 motor = motor.upper()
 if motor == "B" :
 motorToMove = 1
 turn = "s"
 directionToMove = 0
 while not(turn == "C" or turn == "A") :
 turn = raw_input("Clock wise (c) or anti clock wise (a) ")
 turn = turn.upper()
 if turn == "A" :
 directionToMove = 1
 power = -1
 while power < 0 or power > 100 :
 power = input("Power 0 to 100 ")
 pwm = 1024* (power / 100.0)
 io.pwmWrite(18,int(pwm))
 duration = -1
 while duration < 0 :
 duration = input("Time in seconds for motor to move ")
 print "Turning on motor", motor, "for",duration,"seconds"
 io.digitalWrite(motorControl[motorToMove][directionToMove],1)
 time.sleep(duration)
 io.digitalWrite(motorControl[motorToMove][directionToMove],0)
 print "Turning off motor", motor
 print

def allOff():
 io.digitalWrite(a1,0)
 io.digitalWrite(a2,0)
 io.digitalWrite(b1,0)
 io.digitalWrite(b2,0)
 io.pwmWrite(mp,0) # motor off

def pinInit():
 io.wiringPiSetupGpio()
 io.pinMode(ar1,0) # input

356 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Listing 15‑1 (continued)
 io.pinMode(ar2,0) # input
 io.pinMode(br1,0) # input
 io.pinMode(br2,0) # input
 io.pinMode(a1,1) # output
 io.pinMode(a2,1) # output
 io.pinMode(b1,1) # output
 io.pinMode(b2,1) # output
 io.pinMode(mp,2) # PWM mode
 io.pwmWrite(mp,0) # off to begin with

if __name__ == '__main__':
 main()

The code is reasonably straightforward. It starts by giving variable names to
pin numbers, which means you can change things around by simply changing
one line per pin. We’ve also defined the input pins here although they aren’t
used in this program. We do this so the pins are set in a known state for the
hardware in case they have been set to something else.

The pinInit function sets the library to use the GPIO numbering system
to address the pins and sets them up as inputs, outputs, and a PWM output.
Next, the code follows a series of user inputs to get the motor’s direction, the
power, and the length of time it should be on. Each one of these is in a while
loop that won’t exit until the user has made a valid choice. With the power
input, a percentage value (0 to 100) is converted into the 0 to 1,024 value
needed by the PWM signal. Note that unlike some other systems, full PWM is
achieved at a value of 1,024 and not 1,023.

What pins to write to for the motor control are defined in a tuple list called
motorControl. This is the clever part of the code. The motorToMove vari-
able picks the first or second tuple in the list, and the directionToMove
variable picks the first or second number in the tuple. So, the pin to set to
high to get the correct motor turning in the correct direction is returned by
the following:

motorControl[motorToMove][directionToMove]

This makes the actual setting of the correct pin much simpler than any long‐
winded collection of if statements.

We tested this with both our EV3 motors and NXT motors. Both would move
at 13 percent power but no lower, which is to be expected. We noticed that,
for a given power, the EV3 motor moved faster and made more noise than the
NXT motor.

The motor’s sensors can be read as well. We used a simple sketch to try this
out, as shown in Listing 15-2.

357� Chapter 15: LEGO Direct

Listing 15-2:  Reading the Motor’s Position Sensors

#!/usr/bin/env python
#!/usr/bin/env python
"""
Lego Motor Encoder input test
encoder 1 wired to GPIO 7 (pin 26) & 8 (pin 25)
encoder 2 wired to GPIO 11 (pin 23) & 9 (pin 21)
"""
import wiringpi2 as io
import time

motorId = ["A", "B"]
ar1 = 7 # motor A rotational sensor 1 (26)
ar2 = 8 # motor A rotational sensor 2 (24)
br1 = 11 # motor B rotational sensor 1 (23)
br2 = 9 # motor B rotational sensor 2 (21)

print "Board Revision",io.piBoardRev()
print "if the program quits here start IDLE with 'gksudo idle' from the

command line"
io.wiringPiSetupGpio()
io.pinMode(ar1,0) # input
io.pinMode(ar2,0) # input
io.pinMode(br1,0) # input
io.pinMode(br2,0) # input
print "Hi from Python"
lastEncoder = [-1,-1]
count = [0,0]
upCode = 2
downCode = 1
while True:
 port = [io.digitalRead(ar1)<<1 | io.digitalRead(ar2), @@ta
 io.digitalRead(br1)<<1 | io.digitalRead(br2)]
 for e in range (0,2) :
 encoder = port[e]
 if lastEncoder[e] != encoder and lastEncoder[e] == 0:
 if encoder == upCode:
 count[e] +=1
 elif encoder == downCode :
 count[e] -=1
 print "Motor",motorId[e]," moved ",count[0], count[1]
 lastEncoder[e] = encoder

This follows the same convention as before in defining the input pins. You
can move the motors by hand to make the encoders respond.

The endless loop combines the two sensors from each motor into a number
that ranges from 0 to 3, by using the shift operator (<<) and logical ORing
it with the other sensor using the bitwise OR operator (|) to get a two‐bit
number. This is put into a list called port. Then the current value of the
sensor number is compared to the last one, and if the last one was 0, a count

358 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

is incremented or decremented depending on whether the current sensor
number is 2 or 1. If the current sensor number is 3, this indicates that a tran-
sition has been missed and you can’t be sure what direction it has moved in,
so you do nothing with the count. This is part of the self‐correcting nature of
the Gray code. If the count has changed, then the new value of both counts is
printed out.

In Python, printing takes a comparatively long time, so if you can avoid print-
ing, you can cope with faster movement of the sensors.

Listening to Sensors
Communicating directly with LEGO sensors is not quite as easy as you may
hope. The EV3 sensors use two methods: one for the simple touch sensor
and the other for color, ultrasonic, Gyro, and IR sensors.

Touch sensors
The simplest sensor is the touch sensor. These are annoyingly different
for the NXT and EV3 kits. Basically, they both consist of a switch and 2K2
series resistor. In the NXT version, the resistor is connected between pins
1 and 2 — sensor to ground. In the EV3, the resistor is connected between
pins 6 and 4 — sensor and positive power rail. What’s annoying is that early
NXT touch sensors didn’t have pins 2 and 3 connected together, so they
won’t work with the EV3 brick unless you modify either the sensor or the
cable to short these two wires. Figure 15-15 shows how to wire up a LEGO
touch sensor to the Raspberry Pi for both types of sensors.

Figure 15-15: 
Wiring up

a touch
sensor.

359� Chapter 15: LEGO Direct

All you need to do to read the touch sensor is to set a GPIO pin as an input
and enable its pull‐down resistor for an EV3 touch sensor, or enable the
pull‐up resistor for an NXT touch sensor. Note that the I2C lines have strong
external pull‐up resistors on the Raspberry Pi board, which will override
any settings of the internal resistors. These are pins GPIO 0 and 1 on issue 1
boards and GPIO 2 and 3 on issue 2 boards. The code needed for reading this
sensor is shown in Listing 15-3, which is essentially a simple switch input.

Listing 15-3:  Reading a Touch Sensor

#!/usr/bin/env python
"""
Lego touch sensor test
"""
import wiringpi2 as io
import time

EV3touch = 10
NXTtouch = 25
print "if the program quits here start IDLE with 'gksudo idle' from the

command line"
io.wiringPiSetupGpio()
io.pinMode(EV3touch,0) # input
io.pinMode(NXTtouch,0) # input
io.pullUpDnControl(EV3touch,1) # pull down activated
io.pullUpDnControl(NXTtouch,2) # pull up activated
lastEV3state = -1
lastNXTstate = -1
print"Lego touch sensor reading"
while 1 :
 EV3state = io.digitalRead(EV3touch)
 NXTstate = io.digitalRead(NXTtouch)
 if EV3state != lastEV3state :
 print "EV3 sensor now at",EV3state
 if NXTstate != lastNXTstate :
 print "NXT sensor now at",NXTstate
 lastEV3state = EV3state
 lastNXTstate = NXTstate
 time.sleep(0.4)

The code will only print out the state of a sensor when it changes, which
prevents lots of the same numbers from scrolling up the screen.

360 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Advanced sensors
The advanced sensors that come with the EV3 kit are the color sensor, the IR
sensor, the EV3 Ultrasonic sensor, and the Gyro sensor. The last two are sup-
plied only in the Education Edition of the MINDSTORMS EV3 and not in the
Home Edition. Fortunately, you can buy the sensors separately and download
the “blocks” to use them with the Home EV3 software.

There is an NXT Ultrasonic sensor that will also work with the EV3 software,
but they’re very different inside and what we’re about to show you won’t
work with the NXT sensors.

The four advanced EV3 sensors communicate with the EV3 brick by serial
communications using standard 5V logic levels. This is slightly odd because
the EV3 brick is a 3V3 device, so there are buffers in the brick to cut down the
5V signal to a suitable level. However, there are no buffers that boost the 3V3
serial signal from the brick to the sensor. That means the sensors can cope
with this voltage, so that simplifies things somewhat. The reason it works is
because the Raspberry Pi is also a 3V3 system, so following LEGO’s example,
there is no need to boost the transmit signal — you just have to cut down the
5V incoming signal.

There is quite a lot of complication involved in the protocol of the brick talk-
ing to a sensor, but a lot of this is taken up by the LEGO brick auto‐identifying
a sensor when it’s plugged in. This has to also accommodate the older NXT
sensors, as well as third‐party sensors and sensors that haven’t even been
thought of yet. If you know what sensor you’re using, you can greatly simplify
the software needed to talk to the sensor.

The sensor sends out a list of information about itself, which identifies its
type, the modes it can operate in, the range of readings for each mode, and
even the baud rate it wants to communicate in. All this happens at the slow
rate of 2,400 bauds. When the brick has this information, it sends an acknowl-
edgement and the sensor then switches to its preferred baud rate. Then the
sensor sends data back continuously, with the brick sending an acknowl-
edgement byte at least every 300 mS. If the brick fails to do this, the sensor
reverts to the slow speed and starts sending its identification data again. This
little dance is summed up in Figure 15-16.

The sensor starts working in its default mode, which is Mode 0, the last one
to have its information sent to the brick. Any time the sensor is sending infor-
mation, the brick can command it to use another mode by sending it a com-
mand write message. The sensor continues in this mode until commanded
into another mode, or it resets due to a power down or not receiving a NACK
byte for 300 mS.

361� Chapter 15: LEGO Direct

There is a further complication: The brick can tweak its own baud rate to
match the sensor’s, which can be required because the sensor has no accu-
rate crystal clock. Unfortunately, there is no way to do this on the Raspberry
Pi because the baud rate is governed by dividing the fundamental clock fre-
quency of the processor, so there is little point in describing that process,
because there is nothing that can be done. We found that the sensors we
have work correctly with the Pi without any adjustment, despite their baud
rates being slightly off.

This information is sent back and forth in one of two ways: as a single byte or
as a data packet. When the information is a single byte, this byte has its top
two bits as zero, so they’re easily identifiable, whereas the start of packages
have one or both of these bits set.

A package consists of three parts: a message type, a payload, and a single‐
byte check sum (see Figure 15-17).

Figure 15-16: 
The sensor

initialization.

362 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

✓✓ Message type: The message type byte is complex and is split up into a
number of fields, as shown in Figure 15-18. The top two bits define the
message type, the next three define the payload length, and the last three
define the action. Note how the meaning of these last three bits changes
depending on what sort of message is being sent. When this is an info or
data message, these bits are simply the sensor’s current mode.

✓✓ Payload: The payload length indicates how long the body of the mes-
sage is going to be. This is not a simple number like the mode number;
instead, it’s an encoded value with the values shown in the diagram. The
other twist to this is that an info message byte will be followed immedi-
ately by a command byte, making these sorts of messages a byte longer
than any other message.

✓✓ Check sum: The check sum is calculated by performing an exclusive
OR operation with all the previous bytes and with the number 0xFF (or
255 in decimal). When the data arrives, you can calculate the value of
the check sum and see if it matches the value that is sent. If it doesn’t
match, you know there is an error; if it does match, there is much less
chance of there being an error. A simple check sum like this is not fool-
proof; you can get two or more errors that cancel out and give a false
good. Other more complex check sum algorithms do exist, but some-
thing simple like this is good enough most of the time.

To talk to the sensor with a Raspberry Pi instead of the EV3 brick, you need
to understand this message structure and be able to replicate it. But first you
have to connect the sensor and Pi together. The circuit to do this is shown
in Figure 15-19, and it’s pretty straightforward. The GPIO pins brought out to
the Raspberry Pi’s connector include two whose alternative functions include
a serial port; these two pins are GPIO 14 and 15. The transmit pin (TX) can
be connected directly to the sensor’s receive pin, but the 5V output from the
sensor needs to be cut down with a potential divider to bring it into the 3V3
range.

Figure 15-17: 
The

format of a
message
package.

363� Chapter 15: LEGO Direct

Figure 15-18: 
The first
byte in a

message.

Figure 15-19: 
The

Raspberry
Pi–LEGO

sensor
interface.

364 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

The parts list for this circuit follows:

✓✓ One 300R resistor (R1)

✓✓ One 1K resistor (R2)

✓✓ One 0.5mH inductor (optional)

✓✓ Two 0.1uF ceramic capacitors (C1, C2)

✓✓ Stripboard, 1 x 2 inches

✓✓ LEGO connector socket

✓✓ Four‐way 0.2‐inch pitch screw connector

If you’re eagle‐eyed, you may say, “That 300R resistor is too low. It should be
510R to get 5V down to 3V3.” And you would be right, if not for one hidden
fact: The sensor itself includes a 220R resistor in series with this line already,
so you only need to add another 300R to give, in effect, a 520R resistor for the
top of the potential divider. So, this circuit is suitable only for LEGO sensors,
not general‐purpose 5V serial inputs.

The only other thing that may surprise you about this circuit is the induc-
tor in the power line. In fact, you can do without it, but the Raspberry Pi will
reset every time you plug a sensor in. This is because the sudden inrush
of current to the sensor causes the 5V line on the Raspberry Pi to dip to a
point where the reset is triggered. What the inductor does is limit the sudden
inrush and prevent a reset. The actual value isn’t critical, and it can be abso-
lutely any value above that shown in the diagram. A series diode also does
the trick of preventing reset, but it reduces the voltage going to the sensor
and messes up the readings from the color sensor. Replace the inductor with
a piece of wire if you don’t mind the reset. We built this up on a small piece of
stripboard, as shown in Figure 15-20.

If you’re wondering where capacitors C1 and C2 are, they’re surface mount
capacitors mounted on the underside, but you can use a leaded capacitor if
you prefer.

The Raspberry Pi software
In order to successfully use a sensor directly with the Raspberry Pi, you have
to write a program to handle the initialization protocol. This mainly involves
writing a function that will read the serial port and split up what comes out
into individual messages. To start off, let’s look at how to read and display
the identification information coming from the sensor and display it.

365� Chapter 15: LEGO Direct

The Raspberry Pi’s serial port is used during the boot‐up process. So, to pre-
vent the sensor from interfering with the boot up, you must disable getty.
Here’s how:

1.	Use the File Manager to navigate to the directory /etc/.

2.	Choose Tools➪Open Current Folder as Root.

A new window appears.

3.	Right‐click the file inittab and choose Open with Leafpad.

4.	Now find the line that says the following, and comment it out by put-
ting a # in front of it:

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

5.	Save the file.

6.	To stop the Raspberry Pi from sending out data to the port, with the
root view in the File Manager go to the /boot/ directory and open
the cmdline.txt file.

7.	Find the line that says the following and delete it:

console=ttyAMA0,115200 kgdboc=ttyAMA0,115200

8.	Save the file and reboot the Pi.

9.	If you don’t have the Python serial module, install it from a command‐
line window by typing the following:

sudo apt-get install python-serial

Figure 15-20: 
The built

Raspberry
Pi–LEGO

sensor
interface.

366 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Now you’re all set to go. You can type in the code shown in Listing 15-4,
which will basically monitor the serial port until the sensor has finished
sending all its data and then send a byte command to trigger the sensor into
its high‐speed mode. Then it will write to the sensor the required operating
mode and milk the data by sending a NACK command every 230 mS and dis-
play the data package sent after that.

Listing 15-4:  Reading a Serial EV3 Sensor

#!/usr/bin/env python

Serial sensor by Mike Cook June 2014
Raspberry Pi serial sensor tested with the EV3 color sensor and IR sensor
It should also work with the EV Ultrasonic sensor (not the NXT one) and

the EV3 Gyro

import time
import serial

SYNC = 0x00 # Synchronization byte
ACK = 0x04 # Acknowledge byte
NACK = 0x02 # Not acknowledge byte

payloadLookup = [1, 2, 4, 8, 16, 32, 0, 0]
messageLength = 0
to fit max message plus command and checksum
message = [n for n in range(0,34)]

refreshTime = 0.230 # Rate to read data must be less than 300 mS
checkSumError = False
ser = serial.Serial('/dev/ttyAMA0', 2400, timeout =2)

def main() :
 print "Sensor read"
 setup()
 mode = 0 # sensor mode to use
 changeMode(mode)
 print "running in sensor mode",mode
 lastRefresh = time.time()
 while True :
 if time.time() - lastRefresh > refreshTime : # send NACK and look at data
 ser.write(chr(NACK))
 lastRefresh = time.time()
 ser.flushInput() # remove old data
 getMessage() # get the data
 if not checkSumError :
 printMessage() # view data message

def setup():
 global ser

367� Chapter 15: LEGO Direct

 print "initializing the sensor"
 while not(message[0] == 0x90 and message[1] == 0x80 and @@ta
 checkSumError == False) :
 getMessage()
 if ord(ser.read(1)) != ACK :
 print("not got an ACK");
 ser.write(chr(ACK)) # tell the sensor to go
 time.sleep(0.006) # give it time to finish sending the ACK
 ser.close()
 ser = serial.Serial('/dev/ttyAMA0', 57600, timeout =2)

def getMessage() : # parse input stream into message
 global checkSumError, messageLength
 checkSum = 0xff
 command = ord(ser.read(1))
 if command == 0x00 or command == 0xff : # color sensor sometimes @@ta
 throws these
 return
 message[0] = command
 if (command & 0xC0) == 0 : # single byte
 pass
 else : # multibyte message
 checkSum ^= command;
 payloadLength = payloadLookup[(command >> 3) & 7] # number bytes @@ta
 in message
 if(command & 0xC0) == 0x80 :
 payloadLength += 1 # info message has command byte following
 for n in range(1, payloadLength + 1) : # read in the message up to the

check sum
 message[n] = ord(ser.read(1))
 checkSum ^= message[n]
 # get check sum
 message[payloadLength + 1] = ord(ser.read(1))
 messageLength = payloadLength + 1
 if message[payloadLength + 1] != checkSum :
 checkSumError = True # check sum error
 else :
 checkSumError = False # check sum fine

def printMessage() : # not the check sum
 for n in range(0,messageLength) :
 print hex(message[n]),
 print

def changeMode(newMode):
 if newMode <= 5 and newMode >= 0 :
 sendMessage(0x44, 0x11) # command write
 for n in range(0,3) :
 sendMessage(0x43, newMode & 0x7) # command mode
 ser.write(chr(NACK));

(continued)

368 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Listing 15‑4 (continued)

def sendMessage(cmd, data):
 cSum = 0xff ^ cmd ^ data;
 ser.write(chr(cmd))
 ser.write(chr(data))
 ser.write(chr(cSum))

if __name__ == '__main__':
 main()

The main function starts off by calling the setup function, which reads what
the sensor is sending until the final message in the sequence. This is always
the data format of the sensor’s mode zero. Then the sensor should send an
ACK byte to say it’s ready to switch into sending the data. At this point, you
have 80 mS to reply with an ACK byte or the sensor will start sending its
data again. The setup function sends this and then sleeps for a short time
to allow the byte to be sent. Then the serial port is closed and opened again
using the faster speed before returning. Then the main function writes to
the sensor the mode you want to operate it in. By default, this is mode 0, but
if you want to change it, the code is provided to do so. Changing the mode
is simply done by sending three bytes — the command, mode number, and
check sum. We noticed that the LEGO brick sometimes sends this message a
few times, so this code sends it three times, followed by a NACK byte. This is
done in the functions changeMode and sendMessage. Notice that this last
function also generates the check sum by using ^ the exclusive OR operator.

The while loop runs forever. Here, the system timer is used so that once
every 230 mS (to give Linux a bit of slack when it steals time from you) the
Raspberry Pi keeps the sensor alive by giving a NACK byte, flushing the serial
buffer, and reading and printing out the next data message sent. This is done
because the sensor sends data continuously and not every NACK, so the
buffer will have old data in it. If you want to do something with data coming
faster, you can simply read the message as often as you need to.

The heart of the program is the getMessage function. This reads data a byte
at a time from the serial port and analyzes it to see how many bytes are in
the message. Then it goes on to read those bytes and calculate and verify
the check sum. This keeps the input data stream in sync. The result is a
sequence of data messages like this:

0xc0 0x48
0xc0 0x4a
0xc0 0x4c

369� Chapter 15: LEGO Direct

This is for an IR sensor running in mode 0 proximity and represents the
distance to an object in front of it. Most of the time, the data is in the second
byte, but in the case of reading the numbers from the IR remote, there are
four bytes; the one populated with the key number depends on the channel
the remote is set to. We didn’t get much joy from the angle measurement
seek mode, however, because the data returned seemed inconsistent.

It isn’t possible to print out the information messages as you go because
printing in Python takes a long time and you lose the synchronization
between the data coming in and the need to respond to it. We wrote a much
longer program that will print out and decode all the messages the sensor
sends and then, in effect, does what this program does. You can find that pro-
gram along with a text file of its output from the IR sensor on www.dummies.
com/go/raspberrypiprojects.

A commercial alternative
The best way to control the LEGO components
is not with a Raspberry Pi but with some other
real‐time microcontroller like the Arduino. The
people at Dexter Industries have taken what’s,
in effect, two Arduino processors on one board
and produced a controller specifically designed
to run with the Raspberry Pi. It’s called BrickPi.

The BrickPi fits completely over the top of the
Raspberry Pi board and even includes a top
and bottom plate with holes so that it can be
fitted into a LEGO model. As of this writing, it
can only talk to NXT sensors, but beta software
containing EV3 capability has been released.
It has example code for Java, Ruby, C, Python,

Scratch, and BlockyTalky along with a support
forum.

We had some slight difficulty installing the
system on our Pi, but we were given prompt
and helpful support from the administrators.
If you’re shy about using the soldering iron,
we highly recommend the BrickPi as an
alternative to the normal brick programming
environment. Sadly the motor movement is
not very accurate with the current software.
Check the forum pages for the latest updates:
www.dexterindustries.com/
forum/?forum=brickpi.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects
http://www.dexterindustries.com/forum/?forum=brickpi
http://www.dexterindustries.com/forum/?forum=brickpi

370 Part IV: Making the Raspberry Pi Your LEGO’s Magic Brick �

Exploring RISC OS
Part V

	

Find out about the Lorenz attractor in RISC OS in an article at
www.dummies.com/extras/raspberypiprojects.

http://www.dummies.com/extras/raspberypiprojects

In this part . . .
	 ✓	 Discover a great alternative to Linux.

	 ✓	 Write programs in the structured BBC BASIC.

	 ✓	 Make your own desktop applications with ease.

	 ✓	 Access the general‐purpose input/output (GPIO) from within
RISC OS.

	 ✓	 Build a transistor tester.

	 ✓	 Build your own accurate digital voltmeter (DVM).

Introducing RISC OS
In This Chapter

▶▶ Getting RISC OS up and running on your Raspberry Pi

▶▶ Finding your way around the desktop

▶▶ Getting RISC OS online

▶▶ Discovering the amazing preloaded applications that come with RISC OS

O
ne of the great things about the Raspberry Pi is that it’s so easy to
change the operating system: Just change the SD card! Several different

operating systems are available, but most of them are just another flavor of
Linux. However, RISC OS is unique, forged in the depths of time from almost
the start of personal computing in the 1980s and developed into the most
advanced operating system of the 1990s. Many of the things you take for
granted on a Linux, Windows, or Macintosh desktop first appeared in RISC OS
and inspired the two personal computing giants. So, take a step back into the
past and the future and explore the operating system made by the inventors
of the ARM chip. And be prepared for a blisteringly fast Raspberry Pi!

Chapter 16

Toto, we’re not in Kansas anymore
Once upon a time, Mary Goldring, a British
journalist, asked the head of Acorn Computers,
"So, do you make the chips in the computer?"

"No", came the reply, "we only put them
together."

That was one of those unsung moments when
the world shifted on its axis without anybody
noticing. It very possibly sparked the invention of
the ARM chip, the most widely used processor
on the planet. A very small group of people

got the go‐ahead to design an experimental
microprocessor, one that ran using much
simpler but smarter instruction. The machine
code instructions used in hundreds of programs
were analyzed to find out what programmers
actually needed as opposed to what the chip
designers gave them. Then a simpler and faster
processor architecture was designed. It was
sent off to the fabrication plant and almost
forgotten as a financial crisis overwhelmed
Acorn and threatened its existence.

(continued)

374 Part V: Exploring RISC OS �

When the chip arrived back, it sat unopened
in its packaging for a few days while the
demoralized engineers wondered if they
would even get paid at the end of the week.
Eventually, the chip was opened and tested
and, miraculously, found to work, with only
one minor change. This was totally unheard
of! The first iteration of a new processor
working? This chip was the first ARM chip,
which initially stood for “Acorn RISC Machine”
(where RISC stood for “Reduced Instruction
Set Computer”).

Although the hardware engineers made a few
refinements to the chip, the software people
looked at licensing a graphics‐based operating

system. The cheapest came with a fee larger
than their telephone number, so someone said,
"We could write one in a week," and a week
later the first version was running. It was called
Arthur.

Eventually, this grew into RISC OS. The latest
version is available for download for free onto
an SD card to run on the Raspberry Pi.

The RISC OS desktop, shown here, uses the
now familiar desktop or wimp system (short
for windows, icons, menus, and pointers)
along with the Acorn innervations of an icon
bar showing running programs and context‐
sensitive drop‐down menus.

(continued)

Knowing What Makes RISC OS Unique
The biggest difference between Linux and RISC OS is under the hood. Linux
is a preemptive multitasking system, whereas RISC OS is a cooperative multi-
tasking system.

375� Chapter 16: Introducing RISC OS

When the Linux operating system decides what bit of code, or thread, is
going to run, it also determines how long that code will run for. It doesn’t
matter if that code isn’t quite in a state to pause. The rug is pulled out from
underneath it, and control is passed back to Linux. The code has no control
over this, nor does the programmer. There are things you can do about allo-
cating thread priorities, but at the end of the day, the rug will be pulled.

RISC OS, on the other hand, has a cooperative approach. Control is passed
over to the next thread, or program, in the list of tasks, and this thread
continues to run until the code tells the operating system it’s ready to be
swapped out and the next task can be run. From our perspective, this is a
much more civilized way of going about things and gives the programmer the
choice over how much time to use before letting other tasks have a turn. So,
if you want or need all the processing power, you can have it, which makes
the operating system much more responsive.

Although the preemptive nature of Linux is fine in a multiuser system, in a
single‐user system like so many Raspberry Pis run in, it’s just a bit too “Big
Brother” for our liking. Debates run very passionately about this point, and
a lot depends on whether you like the protection given by preemptive multi-
tasking or you think it’s treating you like a child who needs supervision.

Preparing for Action: Getting RISC OS
The simplest way of getting RISC OS is to buy it on an SD card. You can get it
from www.riscosopen.org/content/sales along with some other RISC
OS goodies.

However, if you have a spare SD card, making your own is simple: First,
download the latest RISC OS image at www.raspberrypi.org/downloads.
Unlike the gigantic Linux distributions, RISC OS weighs in at a very trim
113MB (zipped). Unzipped, it inflates to 2GB. Next, you have to get it onto
an SD card. You can use any size SD card you like as long as it’s at least 2GB.
Note however, that anything over 2GB is no advantage because this is the
maximum you can use. This might sound like a restriction, but 2GB is almost
infinite in the world of RISC OS.

Installing RISC OS is the same as installing any other operating system on
the Raspberry Pi. There are lots of methods — the one that’s best for you
depends on the computer you have available. Your best bet is to go to
www.elinux.org/RPi_Easy_SD_Card_Setup and choose the option that
suits you. Alternatively, www.pilearn.com/Pages/Page1001.html gives
you a step‐by‐step guide for using the Mac to set up an SD card, with links to
information for a PC. (A word of warning: On that page, you find instructions

http://www.riscosopen.org/content/sales
http://www.raspberrypi.org/downloads
http://www.elinux.org/RPi_Easy_SD_Card_Setup
http://www.elinux.org/RPi_Easy_SD_Card_Setup
http://www.pilearn.com/Pages/Page1001.html

376 Part V: Exploring RISC OS �

for using a Raspberry Pi for making a card, but we haven’t been able to get
those instructions to work.)

If you need to set the over scan parameters in the config.txt file to make
the desktop fit your TV, use the same number for the left over scan as you
do for the right over scan. Similarly use the same number for the top over
scan as you do for the bottom over scan. Version 12a (the latest one as of
this writing) has a small bug that gives you an offset mouse pointer if you use
asymmetric stretches side to side or up and down.

The mouse
The mouse is somewhat unusual. It has three buttons:

✓✓ Left (select) button: The select button is used for the normal operation
of dragging and double‐clicking to run or open a file like all the other
operating systems.

✓✓ Right (adjust) button: The adjust button normally performs some sort
of variation on the select button operations. For example, dragging a
window with the adjust button doesn’t bring it to the front; you can drag
a window behind another one with the adjust button. With the adjust
button, you can select several files at once. Clicking the adjust button
adds an icon to the group selected. It also deselects selected files with-
out deselecting all of them.

✓✓ Middle (menu) button: The menu button brings up a drop‐down menu.
The menu that’s brought up is dependent on where the pointer is when
the middle button is clicked; it’s known as context sensitive. The middle
button is the biggest hurdle for a newcomer to get over; other operating
systems don’t reinforce the menu button mindset so beginners can trip
up over this. When in doubt, try the menu button.

RISC OS is best used with a mouse equipped with a center scroll knob that dou-
bles as a button. If you don’t have this kind of mouse, there is a program you can
install that simulates the middle mouse button when you press the Windows
key on the keyboard. It’s in the Utilities folder and is called !WinMenu.

The keyboard
A wide variety of keyboards can be used with the Raspberry Pi, and not all of
them are the standard PC type. When you first power up RISC OS, the system
is set for the default British keyboard, which isn’t too dissimilar from the U.S.
keyboard — the only real difference is that Shift+3 gives you £ instead of #.
(You can change this later if you want.)

377� Chapter 16: Introducing RISC OS

It’s best if your keyboard has a row of function keys from F1 to F12. These
are used a lot more on RISC OS than on other systems. Many keyboards don’t
have that many function keys, but the keys F12 and F10 are important in RISC
OS. F10 is the break key. F12 is involved in a lot of tasks: By itself, pressing
F12 takes you into the command‐line mode; Pressing Ctrl+F12 brings up a
task window; and pressing Ctrl+Shift+F12 shuts down the system (although
you can do this from the desktop if you prefer).

The network
The network connection used to be disabled by default, but on the latest
release (which as of this writing was version 12a), the network connection
is enabled. It requires a network to be connected into the Ethernet socket;
unfortunately, there is no support for a wireless interface (as of this writing).

The network connection is described as “Ethernet over USB,” but it’s actu-
ally the Ethernet socket. In our setup, we connected the Ethernet port to
a Mac laptop. Then we opened System Preferences, clicked Sharing, and
enabled Internet Sharing to share our Wi‐Fi connection with our Thunderbolt
Ethernet. This will also work on non‐Thunderbolt‐enabled systems. You can
do the same sort of thing with a PC or have a direct cable connection to your
router if you prefer.

All Systems Go: Starting Up RISC OS
Insert the RISC OS SD card into your Raspberry Pi and power up the Pi. Unlike
with Linux, you’ll be at the desktop in about 15 seconds — be prepared for
that kind of speed up! The first time only, you get a progress bar as the fonts
are scanned, and then a web browser window from NetSurf pops up with a
“Welcome to RISC OS” page held in an internal file.

Now just look at the window. Along the bottom runs what is called the icon
bar, a familiar thing on desktops (but remember that RISC OS had them first!).
On the left are icons concerned with storage; on the right are icons indicating
which programs are running. At startup, there are just two icons, and those
are always there: One is an icon of a monitor and is used to set the monitor
resolution; the other is a raspberry (in the old days, it was an acorn), which
is used to control the system. A left click brings up a task window showing
how much memory is allocated to each task. You can drag the red bars and
change the allocated memory.

378 Part V: Exploring RISC OS �

Scroll to the bottom of the window. The sixth line from the bottom says
“RAM disc.” Click and drag out a red bar to something like 400K. As you
release the mouse button, a new icon appears on the left side saying “RAM.”
This is a temporary fast storage area that uses some of the system’s memory
to look like a mass storage device. Anything put in it will disappear when the
Pi is switched off, but it saves wear and tear on the SD memory (and in the
old days was much faster than a floppy disk).

If you click the raspberry with the center button, a menu appears. One of the
choices is to shut down. This is what you do before turning off the power. In
sharp contrast to Linux, it’s almost instantaneous. You see a window inviting
you to restart, but you can just turn off the power knowing that all the files
have been closed correctly.

Taking a look around
Click the Apps icon on the left of the icon bar. A window with some very
basic applications in it appears. Double‐click !SciCalc, and the icon of a cal-
culator appear on the right side of the icon bar. Left‐click that icon to see the
calculator. On the top right of the calculator frame, you see a square. Click
that square to see the calculator’s other functions.

The anatomy of a window is shown in Figure 16-1. It has the close icon as a
cross, as you may expect. However, there are some other things that you
may not expect. For example, there is an Iconise button, which will turn the
whole window into a small icon you can drag around the desktop, useful for
quickly clearing some space on the desktop. You also have a Back button.
Unlike most other operating systems (in which anywhere you click a window,
it comes bounding up to the front like an overeager puppy), a RISC OS
window only comes to the front when you click its title bar. The Back button
puts it firmly in its place.

Try clicking the Back button and then drag the window by its title bar but
hold down the right mouse button. The window gets dragged as you would
expect, but when you encounter another window, it’s dragged behind that. It
looks odd if you aren’t used to it.

Now move your mouse over the calculator window and press the middle
mouse button. You see a drop‐down menu. Move to the bottom entry, Help,
and left‐click. A document window appears, telling you all about the work-
ings of the calculator. You can explore other options in this menu as well.
For example, the View option allows you to toggle between the compact and
expanded view of the calculator; the Edit option allows you to copy the calcu-
lator’s results to the clipboard.

379� Chapter 16: Introducing RISC OS

Point at the calculator icon on the bottom icon bar and click the middle
mouse button again. This time a menu pops up, and the top entry is Info.
This is consistent in all applications; Info tells you a bit about the program.
(You can also access the Help here exactly as you could with the application
window menu.)

The Choices entry brings up another window (shown in Figure 16-2). The
choices are self‐explanatory, but look at the icon to the right of where it says
Base Decimal. This is a drop‐down list icon. Click it for a list of available
number bases. Note that there are radio buttons for choosing from a number
of options and check boxes for selecting many options.

Double‐click the !Help icon in the Apps window. Now every time you hover
your pointer over some aspect of the window, a pop‐up contextual help mes-
sage appears. This is very useful when you’re first learning RISC OS. You’ll
know when you’ve learned the basics because this pop‐up help message
becomes really annoying.

This is the basic way of interacting with a RISC OS application. You may
get a bit muddled at first because you’re used to another OS, but it quickly
becomes second nature.

Making your own space
In this section, you create some folders of your own. This will illustrate the
unique way RISC OS has of handling saving.

Figure 16-1:
The

Calculator
window and

its parts.

380 Part V: Exploring RISC OS �

At the bottom left of the icon bar, you see the icon of an SD card. This is the
SD card from which you’re running RISC OS. Left‐click the icon and you see
the basic root window of the filing system. Its path name is displayed as the
window’s title: SDFS::RISCOSpi.$. SDFS stands for “SD card filing system”;
RISCOSpi is the name of the SD card; $ is the top level. Note the double
colons (::) separate the filing system type from the name of the volume it’s
currently using. The dot (.) is used to separate folders.

Unlike in Linux, there is no root user, super user, or any other form of user —
there is just you. If you double‐click the Apps folder, you open the same
window you did when you clicked Apps in the icon bar. In fact, they’re one
and the same thing, except the one from the icon bar is protected (you can’t
add or delete anything from it). The Apps folder you opened from the root
window has the path name in the window’s title.

It’s time to make some space for your own work. Middle‐click the root
window and scroll down to New Directory. Move to the right and in the text
box, type the name of your new directory folder. We used the name Mike,
but you probably want to pick something a bit more personal. When you’ve
finished, press Return or click OK, and that directory will appear in the root
window. Double‐click it to open your blank window and keep it open while
you work through the next section.

Figure 16-2:
Calculator

options.

381� Chapter 16: Introducing RISC OS

Saving and loading by dragging
and dropping
Saving and loading files are the operations that may be most different from
all the other computer desktops that came after RISC OS. Most computers
use a mini filing system list to identify files. Some systems allow you to load
a file by dragging its icon onto the application icon, but RISC OS takes this a
whole step further.

Follow these steps for saving a file:

1.	In the Apps window, double‐click !Edit.

The !Edit icon appears on the icon bar.

2.	Left‐click the !Edit icon.

A blank text window pops up.

3.	Click inside the window.

You see the red “focus” cursor.

4.	Type a few words.

The title bar will say <untitled> *. The asterisk informs you that the file’s
contents have not been saved. You’re now going to save the file in your
own folder that you created in the preceding section.

5.	Click the menu button and choose Save or press F3.

A window appears like the one you saw when you created your folder,
except this window has a default name already in it.

6.	Press the backspace key until you clear the default name and type
Text_test but do not press the Return key.

7.	Drag the text file icon above the name Text_test and drop the icon
into your folder.

A text icon appears and your text window has the file’s path name in it.

8.	Type a few more characters.

You see the asterisk (*) in the title bar again, indicating you have
unsaved data. Updating your file now is very easy.

9.	Click the menu button, choose Save, and click OK.

The filename has the full path name of the file in it, without an asterisk.

382 Part V: Exploring RISC OS �

If you want to create a new file with the updates you’ve made, just add
characters to the filename. If you want to save the file somewhere else,
simply drag and drop the icon in the save box into the folder you want to
keep it in.

These actions are summarized in Figure 16-3.

Here’s a unique trick: Type in and save another text file. Then drag that file’s
icon into the text window of the first file. Bingo! The contents of the new
file are added to the old file! You can imagine how easy this makes adding
standard paragraphs to things you type. Many applications work like this —
merging data directly into a file you’re working on by drag and drop. Some
applications do this with images or other types of data. Of course, the addi-
tion has to make sense — for example, dragging a JPG image into a text file
won’t work (well, other than dumping the bytes of that file and looking at it
as a text file, which you might want to do).

Focusing on file types
Most operating systems identify the type of file by an explicit extension to
the filename. Typically, a text file would have the extension .txt. In RISC OS,
things are slightly different. Here’s how:

✓✓ Each file has a type, but the file type is hidden inside the file.

✓✓ The file type determines what sort of icon is shown for the file.

✓✓ The file type is a three‐digit hexadecimal number, but many file types are
enumerated — that is, they have an associated word with the file type.

Figure 16-3:
Saving a

file.

383� Chapter 16: Introducing RISC OS

If you menu‐click the Text_test file you created in the preceding section,
and move your pointer onto File “Text_test” and then move it down to Set
Type and then move it along to the text box, you see the file type shown as
“Text.” Press the backspace key here and type the word BASIC and press
Return. Immediately, you see the icon change. It’s the same file, but now the
computer treats it differently if you click it. Don’t click it now; instead, go
back and set the file type to FFF, and it’s a text icon again. The file type Text
is represented by FFF; you can type either to set the file type.

You can reload the file into an edit window by dragging it onto the !Edit icon
or by double‐clicking it.

Handling Graphics with
!Paint and !Draw

Two of the staples of any computer system, !Paint and !Draw have been in the
RISC OS since the beginning. !Paint handles bitmap graphics; !Draw handles
vector graphics. Although they may seem a bit clunky by today’s standards,

What the !
In RISC OS, you see many icons whose names
begin with an exclamation point (pronounced
pling). These are applications or programs you
can run with a simple double‐click. However,
like most superheroes, they have a secret
identity: They’re just folders. In your folder,
click the menu button and create a folder called
noApp. It appears with the normal folder icon.
Now menu‐click the folder and choose Dir.
“noApp”➪Rename and press the backspace
key to put an exclamation point (!) at the start
of the name. The icon changes to the default
application icon. If you double‐click it, you
get — not surprisingly — an error box saying it
has failed to find a file called !Run.

So, how do you reveal an application’s secret
identity as a folder? Simply hold down the Shift
key while you double‐click the icon, and it
opens like a folder. You can do this to see inside

!Edit or !SciCalc. This tip makes it easy to build
your own desktop clickable applications by
gathering together all the files you need under
one folder.

Hold down the Shift key and double‐click your
noApp icon, and the empty folder opens. Now
use the text editor to type This file is no help
and save the file in the open folder under the
name !Help. Now close the folder and close the
folder containing the noApp application. Open
the folder containing the noApp application
again, menu‐click it, go to the second item (App
“!noApp”) and then choose Help. Your unhelp-
ful Help file will be shown.

Simple, understandable structures like this
make RISC OS refreshing. Other operating
systems require you to have access to special
tools to do things like this. But not RISC OS!

384 Part V: Exploring RISC OS �

they have the great advantage of being understood formats by most RISC OS
applications. In fact, !Paint plays a vital part in the whole construction of the
desktop world.

!Paint
A !Paint file is called a sprite file, and it can hold one or several images or
sprites. The most common use for sprites is making desktop icons. There
are a number of different types of sprites, mainly differentiated by the
number of colors they contain. The majority of desktop icons have only 16
colors, reflecting their early origins, but you can have sprites with 2, 4, 16,
256, 32,000, and 16 million colors. The color selection window changes to
reflect the color choice. The higher color depths are suitable for photo-
graphs, although a passable photograph can be rendered in 256 colors.

The drawing tools are as you would expect: single pixels (pencil), spray can,
brushstrokes, camera (copy block), scissors (move block), hand (shift whole
sprite), as well as a selection of solid and line shapes. One thing you may not
find in other packages is the way the colors are applied — they can be simply
set, or they can be the result of a logic operation between the working color
and the color already in the background.

As a quick example, follow these steps:

1.	Double‐click the !Paint icon in the Resources apps window.

The !Paint icon appears on the icon bar.

2.	Open the Diversions folder.

3.	Hold down the Shift key and double‐click the !Patience icon.

4.	Drag the !Sprites22 file onto the !Paint icon in the icon bar.

You see a window with two sprites: a large sprite and a small sprite.
The larger one is only 34 pixels square, and the smaller one is 18 pixels
square.

5.	Double‐click the larger sprite.

You see a colors palette and the sprite along with the paint tools.

6.	Menu‐click this sprite and select the zoom option. Repeatedly click the
up arrow next to the first box to get an enlarged view.

These windows are shown in Figure 16-4.

385� Chapter 16: Introducing RISC OS

Create your own sprite by left‐clicking the !Paint icon on the icon bar. The
Create New Sprite window appears with an invitation to set the parameters,
including the size. The window defaults to a sprite the size of the whole
screen, but you can use the arrows or type directly in the boxes to get any
size you want. The sprite shown in Figure 16-5 is a high‐resolution sprite we
made to show the effects of various logic operations on filled circles. Notice
how the color selection is controlled by three sliders. It has the option of
control by RGB (that is additive color — red, green, and blue). It can also use
the subtractive color model of CMYK (cyan, magenta, yellow, and black) or
the HSV (hue, saturation, and value) color space.

!Draw
Whereas !Paint uses individual pixels, !Draw is a vector drawing tool. Here a
drawing is made up of lines, and all that’s stored are the parameters of those

Figure 16-4:
The

!Patience
sprite icon.

386 Part V: Exploring RISC OS �

lines. This makes !Draw files very small compared with the larger bitmaps.
!Draw files are very good with splines (curves), allowing you to enter a spline
by clicking and dragging. Then you can edit the control points of the curve by
first selecting the curve with a right‐click to show all the control points. Then
you can drag the control points around again with the right (adjust) mouse
button.

Producing a good vector drawing takes some skill, but one of !Draw’s major
uses is collating sprite, text, and line drawings. To add a text file or sprite
image, simply drag the icon into the drawing or save the object by dragging
the save box into the !Draw window. They can then be manipulated and
composed.

There are some comprehensive online tutorials on these packages. For how
to use the basic tools in !Draw, check out www.riscos.com/support/
users/userguide6/draw/chap02.htm. For some interesting ways to
design patterns, look at http://homepages.nildram.co.uk/~riscos/
tutorial/pattern_tut. And for a rundown of the tools you get in !Paint,
check out www.riscos.com/support/users/userguide6/paint/
chap02.htm.

Figure 16-5: 
A high color

resolution
sprite.

http://www.riscos.com/support/users/userguide6/draw/chap02.htm
http://www.riscos.com/support/users/userguide6/draw/chap02.htm
http://homepages.nildram.co.uk/~riscos/tutorial/pattern_tut
http://homepages.nildram.co.uk/~riscos/tutorial/pattern_tut
http://www.riscos.com/support/users/userguide6/paint/chap02.htm
http://www.riscos.com/support/users/userguide6/paint/chap02.htm

387� Chapter 16: Introducing RISC OS

Connecting to the Outside World
If your network is not configured, double‐click the !Configure icon on the
desktop. A folder with lots of applications in it opens. You should notice
something strange: These applications don’t start with an exclamation
point — they’re presented differently.

To configure your network connection, follow these steps:

1.	Single‐click the Network icon.

The Network Configuration window appears.

2.	Click the Internet icon.

The Internet Configuration window appears.

3.	Click the Enable TCP box and then click the Interfaces icon.

The Interfaces window appears.

4.	Click the Ethernet over USB check box and then click the Configure
button next to it.

The USB 0:Ethernet over USB window appears.

5.	Click the Via DHCP radio button and click Set.

6.	Click Save in the Network Configuration window and agree to the
restart request.

If you couldn’t before, you should now be able to browse the web using
!NetSurf.

When we tested this out, an entire web page loaded in about 5 seconds,
whereas the best that Midori could do under Linux, loading the same page, was
15 seconds.

When you’re online, there are a number of interesting things you can down-
load. !Store is already installed on the desktop; it takes you to a source of
applications, both paid for and free. There are a number of utilities and
games worth looking at. Open the application details window and click an
application for a description of it. Some names used can be quite cryptic
or require a knowledge of RISC OS history in order for it to make sense. For
example, Hatari is an Atari emulator, whereas Rise of the Triad is a first
person shoot‐’em‐up game, a bit like Doom. For Rise of the Tria, you need
!UnixHome to be run first; you can find it at www.riscos.info/packages/
SupportDetails.html.

http://www.riscos.info/packages/SupportDetails.html
http://www.riscos.info/packages/SupportDetails.html

388 Part V: Exploring RISC OS �

When you download something, make sure that you have a window open
where you want to store the application so you can drag it in.

Most online software comes in a compressed format. The format of choice
is called Spark. Double‐clicking the file opens the archive just like a normal
window. You can run many applications directly from this compressed
archive window. However, if the application needs to write anything back to
the application’s folder, this will fail, so it’s best to drag the icons you need
out of the archive into your own folder before you run them.

Identifying the Resources
That Are Already Installed

Many resources come already installed on the SD image, many of which
would’ve cost you quite a bit of money when RISC OS was in its heyday. The
highlight of these resources is the Programmers Reference Manual (PRM),
in the Documents.Books folder. This five‐volume set cost more than a hun-
dred bucks in the ’90s, but here you get them as a set of PDFs for free. The
books cover all the operating system calls for all sections of the machine;
they aren’t exactly light reading, but they do contain all sorts of vital informa-
tion. (Although you can get PDF readers for the Raspberry Pi, you may want
to transfer the PDFs to your computer because there you’ll be able to search
the PDFs much more efficiently.)

Many authors have released their work under Creative Commons licenses.
We recommend you look at PipeDream, a fully integrated office suite of word
processor, database, spreadsheet, and charting package all in the same
window. The application itself is in the Apps folder, and a full set of tutorials
is in the Documents folder.

Check out the high‐quality vector graphics examples in the Documents.
Images folder and the games in the Diversions folder. These aren’t the
most exciting things you’ll ever see, but the Tetris clone !Blocks is as addic-
tive as it ever was, and !Meteors was retro when the OS was new. Perhaps
the oddest diversion is !Madness — it slowly nudges all the open windows
around the screen and is meant as a demonstration of interapplication mes-
saging. (Just make sure you read the Help file to find out how to stop it before
running.) Finally, we have to mention !SignalBox, a graphically spectacular
simulation of the Exeter West train station, shown in Figure 16-6.

389� Chapter 16: Introducing RISC OS

The Utilities folder contains !ChangeFSI, which is a great way to convert
images between JPG and sprite formats. However, it isn’t just limited to
JPGs — it also handles a wide variety of input graphics file formats (see the
Formats file, located inside the application, inside the Documents folder).
The application is also capable of a number of image processing functions
like histogram equalization, gamma correction, and sharpening.

Shift+click to open an application.

The FSI part of the name !ChangeFSI comes from the Floyd‐Stenberg method
of dithering, a way of showing high‐resolution images on a lower‐resolution
screen by using an error diffusion technique.

There are many other delights to explore in the RISC OS distribution. You
may not understand them all — we don’t ourselves — but over time you can
get to know them. People who explore all that RISC OS has to offer tend to
grow to love this operating system.

Figure 16-6:
!Signal Box,
a graphical
simulation.

390 Part V: Exploring RISC OS �

RISC OS Coding
In This Chapter

▶▶ Finding out about BBC BASIC

▶▶ Seeing how to code in a desktop environment

▶▶ Experiencing the awesome speed of BASIC

▶▶ Generating 17th‐century insults from the desktop

▶▶ Shattering desktop illusions

▶▶ Putting images through a kaleidoscopic ringer

A RISC OS system is easy to program. Not only can you run simple
programs, but you can also build complete desktop applications with-

out too much bother. Unlike Linux, the operating system is almost static — it
doesn’t change very often and code you write tends to have a remarkable
shelf life. This is because most of the changes in the operating system main-
tain an unprecedented degree of backward compatibility.

In this chapter, we show you how to go about writing code, starting off with
the simple “Hello world!” program. Then we move on to a desktop insulting
machine and graphics modes, and end up mangling bits of images by symmet-
ric reflections. Along the way, we point you toward some great simple demos
as you see how to bend this operating system to do what you want to do.

In the Beginning Was BASIC
Once upon a time, all home computers came with a built‐in language. In the
vast majority of cases, this language was some version of BASIC. These days,
BASIC has developed a reputation for being unstructured and producing
spaghetti code (code that jumps all over the place using the infamous GOTO
instruction, making it almost impossible to follow).

Acorn BASIC, or BBC BASIC as it’s known, is different. Yes, it still has the
GOTO command (as does the C language), but just like the C language, you

Chapter 17

392 Part V: Exploring RISC OS �

never need to use it. The latest version of BBC BASIC, called BASIC V, is dif-
ferent. It’s structured. In fact, it contains most of the same sort of control
structures as languages like C and Python. There is error handling, and it even
uses pointers and indirection in a much simpler way than C. Although it has
retained the subroutines of traditional versions of BASIC, those subroutines
are rarely used; instead, it has functions or procedures just like Python and C.

BASIC V also has a few tricks up its sleeve. It has error handling, something
that no other version of BASIC has. Also, you can drop into machine code
any time you want in a program. This means that you can write the majority
of your program in a high‐level language and drop into machine code when
you need the speed for a certain section. (However, there is little need for
that with the blistering speed you get from the Raspberry Pi.) You can also
fully interact with the machine’s operating system using a process known as
software interrupt (SWI), which allows you to write any desktop application
entirely in BASIC. Code written in BASIC tends not to become obsolete under
new revisions of the operating system or the hardware. Programs we wrote
in 1982 on a BBC Model B work just as well on the Raspberry Pi — the only
difference is that they run at lightning speed now.

The BASIC language was once the first exposure most people got to a com-
puter language, but you may be arriving here from another route. You
could’ve started on Scratch, learned C or Python, and now find yourself
learning BASIC. If so, you’ve gotten a good start — you already know about
programming structures and flow. Inevitably, there are differences among the
languages, but most of them are cosmetic. In this section, we provide a quick
rundown of the major differences you see.

Uppercase letters
Most modern computer languages are case sensitive and this version of
BASIC is no exception. However, in the early days of computing, everything
was done in uppercase characters mainly because the mechanical teleprint-
ers used for computer terminals didn’t have lowercase characters. So, BASIC
was designed with uppercase commands. Nowadays, a program written in all
uppercase seems like it’s shouting at you. Variables and function names can
still be in lowercase, but it’s common to see them in uppercase, too.

Variable types
In C, each variable is declared with a type (the sort of data it holds). In
Python, this is still true, but the language does backward somersaults to hide
this fact from you, which is a pity because often you need to know what type
you’re dealing with.

393� Chapter 17: RISC OS Coding

With this version of BASIC, the variable type is built into the name. If you just
have a name, you have a floating point variable. If the name ends in a percent
symbol (%), it’s an integer variable. If the name ends in a dollar sign ($), it’s a
string variable.

Incidentally BASIC has some of the simplest‐to‐use and most‐comprehensive
string handling routines of any language we’ve come across.

Line numbers
Line numbers are absent in languages like Python and C, but most BASIC
programs are written with line numbers. Most of the time, you don’t have to
use line numbers if you don’t want to. Not having line numbers prevents you
from actually using the dreaded GOTO command anyway. There are only two
occasions when you may want to legitimately use line numbers: in error han-
dling and when restoring the pointer for reading DATA statements.

Indentation
In Python, indentation is the hidden builder of structure. (You and your
friends can debate whether this is a good thing or a bad thing.) In C, indenta-
tion is mainly decorative (although there is some debate about its use and
the style you write the language in). C is a lot more relaxed than Python.

With BASIC, indentation is almost unheard of. Most of the code is written
from the first column, which can be a shame because indentation can make
things much easer to follow. You can use indentation just as you do in C,
to aid the readability of the code, although indentation isn’t used nearly as
much as it should be.

Only one equal sign
Most languages use a single equal sign for an assignment operator and a
double equal sign for a comparison operator (used in an if statement).
This causes all sorts of problems for beginners and causes if statements to
apparently not work.

With BASIC, there is only one equal sign used for both sorts of operations, so
it’s much simpler to learn (although if you’re used to other languages, you
may be a little confused at first).

394 Part V: Exploring RISC OS �

Scope
In C, variables are valid only when they’re used in the function they’re
defined in. If they’re defined outside of any function, then they’re global and
accessible by all functions. In Python, it’s roughly the same except if you
want to alter a global variable in a function, you have to declare it as global at
the start of the function.

In traditional BASIC, there is no scope to variables at all, but in this current
version there is. Variables can be declared as local in a function, but by
default they’re all global. This is the opposite of what other languages do as a
default, but it’s better than nothing.

Indirection
C is strong on pointers, but this version of BASIC has indirection operators,
which essentially are the same thing. Suppose you have a variable called P%.
As noted earlier, the % means it’s an integer. If you just use P% in a statement,
you get the value stored in that variable, as it should be. However, each vari-
able is stored in the computer’s memory, and you can access the contents of
the memory byte‐by‐byte using the indirection operator question mark (?).
This is most useful when dealing with arrays, which can then be treated as
arbitrary memory allocations.

Check out the following operation:

A% = P%?2

This operation will assign to the variable A% the contents of the memory byte
two bytes along from the memory pointed at by P%. The ! operator does the
same thing, but it deals with four‐byte chunks of memory.

Note that this works on both sides of an equal sign. So, to clear the byte one
address away from the memory pointed by P%, you would use the following:

P%?1 = 0

This is much easer to use than the pointer system used by C. And it’s a much
more flexible arrangement that the PEEK and POKE instructions used in other
implementations of BASIC.

395� Chapter 17: RISC OS Coding

Operating system calls
There are several ways that a BASIC program can interact with the operating
system, but the main one is the SYS command, which transfers a string to the
operating system interpreter. Many of these commands are in the form of SWI
calls, instructions that cause a subroutine to be executed in exactly the same
way as an interrupt service routine is evoked by a hardware signal. So an SWI
call causes the SWI handler routine to be called, and in RISC OS, it causes
specific operating system functions to be called depending on the word that
follows the SWI. So, it acts as a sort of pseudo machine code instruction.

The upshot of this is that you can easily invoke a myriad of operating system
calls. These are detailed in the Programmers Reference Manual (PRM), along
with the other ways of affecting the system.

Most things to do with the display can be manipulated by visual display
unit (VDU) commands, which send bytes to the display engine to display
onscreen as ASCII characters. However, the nonprinting ASCII characters
control various aspects of the display, like the screen origin or the color.
The other two system calls are OS_Byte and OS_Word; these take in either
a single byte or word to perform operations. There is nearly always an SWI
equivalent of these calls.

Hello World
When computers were first appearing in retail outlets, they would sit on dis-
play showing nothing but the BASIC prompt. A popular pastime for kids was
to type in some sort of variation of this and then run away:

10 PRINT "Hello World"
20 GOTO 10

The hapless sales clerk had no clue what to do as the message filled the
screen. (The message often contained some sort of expletive, and the sales
clerk hadn’t a clue how to stop it.)

The past revisited
You can re‐create this world very simply on your fancy desktop operating
system. Simply follow these steps:

396 Part V: Exploring RISC OS �

1.	Press F12.

The whole screen scrolls up and an asterisk (*) appears at the bottom of
the screen. This is the command‐line prompt.

2.	Type BASIC and press Return.

You see the BASIC prompt of >.

3.	Type the following two lines.

10 PRINT "Hello World"
20 GOTO 10

4.	Type RUN and press Return.

Your message fills the screen so fast that it looks like it has stopped.

5.	Press the Escape key to restore the BASIC prompt.

At this point, you can type LIST to see a listing of the program or NEW to
wipe the old code so you can type in another one. If you type SAVE name,
that saves the code (where name is the name you want to call the file
containing the program). Type LOAD name to load code from the current
directory. Finally, type QUIT to leave BASIC and go back to the operating
system prompt.

Operating system modes
In RISC OS, there are basically three different modes the computer can
operate in:

✓✓ Command mode: The asterisk (*) prompt; the computer boots up into
this mode.

✓✓ BASIC mode: The old BASIC mode with a > prompt.

✓✓ Desktop mode: The familiar desktop.

You can switch between these modes quite simply. Figure 17-1 shows how
these modes operate. Basically, you can swap modes in either a desktop
window or the full screen. The keys needed to enter and exit these modes are
shown next to the connecting lines. The modes are hierarchical in the sense
that they “remember” the mode that called them, so when a mode is exited,
the mode before the call is restored.

This quick transfer into and out of the desktop is in stark contrast with Linux,
where when the desktop is exited, the whole thing restarts afresh when you
return. With RISC OS, when you go back to the desktop, everything is where
you left it.

397� Chapter 17: RISC OS Coding

When you close a task window, you’re given the opportunity to save it. This
allows you to look again at your session or incorporate things like a list of
modules in other texts.

BASIC mode
This is how the very first Acorn computers booted up. The idea is that there
is a single BASIC program you’re working on and the commands deal with
that. Most of the commands have a shortcut ending in a full stop to save you
typing, and they’re all in uppercase. These commands are the most useful:

✓✓ RUN: Runs the current program.

✓✓ LIST: Prints the current program. (You can use the shortcut L instead
of typing LIST.)

✓✓ LIST 40: Prints just line 40. (You can use any other number here or
even a range of numbers separated by a comma.)

✓✓ PRINT variableName: Prints the value of the variable.

✓✓ RENUMBER: Renumbers the program in increments of ten.

✓✓ HELP: Takes you to Help documentation on all the commands. Just type
HELP and it tells you about the current program. Type HELP A, and you
get a list of all BASIC commands starting with the letter A. Type HELP
ABS and you get a description of that particular command.

✓✓ QUIT: Exits BASIC.

Figure 17-1: 
RISC OS
modes.

398 Part V: Exploring RISC OS �

Command mode
There are many commands, but the most useful are the following:

✓✓ *CAT: Catalogue or list the current directory. In Linux, this is ls.

✓✓ *DIR: Change the current directory. In Linux, this is cd.

✓✓ *DESKTOP: Go back to the desktop.

✓✓ *QUIT: Go back to the calling program.

✓✓ *BASIC: Enter BASIC mode.

✓✓ *HELP: Get help with commands. Help will give you a hierarchical help.
Typing *help along with one or more keywords will bring different levels
of help. For example, typing *help modules gives you a list of modules,
typing *help FileSwitch gives you a list of file switch commands, and
*help any command will give more information on the command. This is
a handy function when you’re stuck.

Directory path names are similar to those in Linux except directories are sepa-
rated by a dot (.) not the slash (/) that Linux uses. Note that when you’re at
the command‐line prompt, you don’t have to use the asterisk (*) in front of the
command, but in other environments like BASIC, prefixing a command with an
asterisk marks it out for sending to the operating system command line.

There are many more commands — the PRM tells you what most of them are.
However, this system is extensible, and there are ways to add your own com-
mands with relocatable modules.

Desktop mode
In desktop mode, you can write code in a desktop editor like !Edit. There are
other editors that you can use, like !StrongED and our favorite, !Zap. These
often have enhancements when writing BASIC, like automatic coloration of
keywords and renumbering facilities.

The modern way of doing things
The command line BASIC is not used very much these days. Life is so much
easier when you use a graphics editor. It has all the functions you may
expect and quite a few more. However, copy and paste don’t work like other
functions — they’re menu options.

The RISC OS distribution comes with two editors, the simple !Edit (covered
in Chapter 16) and the very powerful !StrongED. We’ve never really liked
!StrongED — there was a bit too much to do in order to get it to work the way

399� Chapter 17: RISC OS Coding

we wanted. Our favorite editor is !Zap, and it’s still available through !Store for
free. Installation is slightly more complex than normal. Just follow these steps:

1.	With an Internet connection, double‐click the !Store application.

2.	Click the Catalogue icon.

3.	Locate !Zap in the PlingStore applications window.

It’s the last one in the list at the moment. Select it by clicking the name.

4.	Click the download icon.

A box appears telling you that you aren’t logged in. You can ignore this. If
you log in, the !Store application records what you’ve downloaded so you
don’t download anything twice.

5.	Double‐click the !Configure icon on the desktop.

A configuration window appears.

6.	Click the Boot icon in the configuration window.

The Boot sequence window appears.

7.	Choose the Install option by clicking it and then dragging the !Boot
file from the zap archive window into the BootMerge window.

8.	Click Merge to start the process.

It takes a few minutes.

9.	Drag the !Zap fie into the Apps folder at the top level.

You’re done.

Now double‐click the !Zap icon to run the program and put it on the icon bar.
Menu‐click it and choose Create➪New File➪&FFB Basic, and a new window
appears. In that window, type the code in Listing 17-1.

Note: There is no need to type the line numbers or the colon — these will
appear as soon as you start typing. If the line number increments are not 10,
don’t worry — after you’ve typed it in, choose Mode➪BASIC➪Renumber.

Listing 17-1:  Hello Again

 10 : A%=0
 20 : PRINT "Hello for the ";A%;" time"
 30 : A% += 1
 40 : GOTO 20

400 Part V: Exploring RISC OS �

Now you need to run it. You can do this from !Zap by choosing
Mode➪BASIC➪Run Program➪Run Then Quit. A window opens and the
program is run in it. Press Escape to end, and then press any other key to
get back to the desktop. You see that the program prints about 300 lines a
second. (Eat your heart out, Linux Python!) We did a quick test and timed the
number of lines printed out over 30 seconds. BASIC produced 293.7 lines per
second and Python printed 6.2 lines per second.

From !Zap’s Mode menu, you can get all sorts of useful things to happen.
There is a renumber function and numerous run options. One of the most
useful is the simple Drop into BASIC. Here, a window opens and you have
the BASIC prompt (>). If you then type RUN, the program will run as you
might expect. However, any syntax error is accompanied by a line number.
Suppose an error message says there is an unknown variable at line 250 and
you type LIST 250 to see the line. What do you do if that line contains many
variables? How do you know which one is wrong? Just print them out one
at a time. Type P and then use the cursor keys to maneuver up to the line,
and use the copy key (on the keyboard, it says End) to copy the variable
name. Then press Return, and the value of the variable will be printed out.
However, if it says “Error Unknown Variable,” then you know that’s the one
that’s wrong.

Use the cursor method of copying to avoid making a mistake in typing what
you think is the name of the variable rather than what really is the name.

You can also use the same technique for editing a line. Move the cursor up to
the line you want to change and use the copy key to copy part of it. Then use
the normal keys to type in the bit you want to change. Finally, press Return
to put that line back into the text. This is often faster than returning to the
desktop, although you need to save the file if you want those changes to be
permanent.

Although BASIC and Python are both interpreted languages, BASIC has a
few tricks up its sleeve. A Python program is just a simple text file whereas
in BASIC it’s a tokenized file. This means that all the BASIC instructions,
like PRINT and WHILE, are compressed into a single byte or token, making
it much quicker for the interpreter to know what instruction needs to be
performed. Then the BASIC interpreter itself is so small that it fits inside the
high‐speed on‐chip memory or cache of the ARM processor, making it much
faster to run. The cache is special on‐chip memory that runs as fast as the
processor, something that doesn’t happen with all kinds of memory.

So when you save a BASIC file, you aren’t saving a text file — you’re saving a
file where all the BASIC instructions are compressed. If you want to see what
this looks like, in !Zap choose the Mode➪BASTXT. You see the strings you

401� Chapter 17: RISC OS Coding

typed in, and your variable names, as well as some other strange symbols. To
convert your BASIC program into real text, choose File➪Dump to Text, and a
new copy of the file in text form will be produced.

The Insult Generator
The insult generator is one step up from “Hello World.” It isn’t a difficult
concept to grasp, but it shows you more of the fundamentals involved with
writing and arranging code in a system. The idea is simple: The program gen-
erates insults by simply choosing a random word or phrase from two files.
One contains nouns and the other contains adjectives. It prints out:

You random adjective random noun

And then repeats on any key press. To set this up, create a new directory
and call it Insult. Then menu‐click the !Zap icon and choose Create➪New
File➪&FEB Obey.

Into that file, type the following:

| Boot file for Insulter
Set Insult1$Dir <Obey$Dir>
IconSprites <Obey$Dir>.!Sprites

Save the file under the name !Boot in your Insult directory. The first line
starts with a | and is treated as a comment. The second line sets a system
variable, with the path name to where the file currently is when it’s run.
The final line tells the desktop to look at a file called !Sprites to find what
icons to use. This file is not present at the moment, so nothing will happen,
but you may get an error message, so just ignore it for the moment. Now
double‐click this !Boot file; again, nothing will appear to happen, but the
path name will be set.

Looking at the main program
Now for the meat of the program, this is shown in Listing 17-2 and is the
BASIC program that actually does stuff. When you’ve typed it in, save it in a
file called Insult1.

There is no need to type the line numbers or the colon — the editor will put
those in for you.

402 Part V: Exploring RISC OS �

Listing 17-2:  The Insult Generator

 10 : REM Insulter plain BASIC version
 20 : REM Version 0.5 By Mike Cook
 30 : REM Freeware
 40 :
 50 : MxL%=300
 60 : MxI%=200
 70 : MxN%=100
 80 : DIM Ins$(MxI%),Inn$(MxN%)
 90 : PRINT"Insult Generator - Escape to quit"
 100 :
 110 : PROCreadInsults
 120 : PRINT"Any key for an insult":PRINT
 130 : REPEAT
 140 : A% = RND(100)
 150 : B% = ADVAL(-1)
 160 : UNTIL B%<>0
 170 : A$=GET$: REM dummy read
 180 : WHILE(TRUE)
 190 : PROC_Insult
 200 : PRINT:PRINT"More?"
 210 : A$=GET$
 220 : PRINT
 230 : ENDWHILE
 240 : END
 250 :
 260 : DEF FNread
 270 : LOCAL x$,A%
 280 : x$=""
 290 : REPEAT
 300 : A%=BGET#F%
 310 : IF A%>&1F THEN x$=x$+CHR$(A%)
 320 : UNTIL A%<&20 OR LEN(x$)>250
 330 : =x$
 340 :
 350 : DEF PROCreadInsults
 360 : Insults%=0
 370 : F%=OPENIN("<Insult1$Dir>.adjective")
 380 : REPEAT
 390 : Ins$(Insults%)=FNread
 400 : Insults%+=1
 410 : UNTIL Insults%=MxI% OR EOF#F%
 420 : Insults%-=1
 430 : CLOSE #F%
 440 :
 450 : F%=OPENIN("<Insult1$Dir>.nouns")
 460 : names%=0
 470 : REPEAT
 480 : Inn$(names%)=FNread
 490 : names%+=1

403� Chapter 17: RISC OS Coding

 500 : UNTIL names%=MxN% OR EOF#F%
 510 : CLOSE #F%
 520 : names%-=1
 530 : ENDPROC
 540 :
 550 : DEF PROC_Insult
 560 : PRINT "You "+Ins$(RND(Insults%))+", "+Ins$(RND(Insults%))+
 ", "+Inn$(RND(names%))+"."
 570 : ENDPROC

The main program runs until line 240. The rest of the listing consists
of function and procedure definitions. Line 80 has the dimension state-
ment that defines two string arrays. You’re going to fill them up by read-
ing the words out of a text file. This is done with the PROCreadInsults
procedure.

This is a bit more complex than it could be, but the way we’ve done it here
makes the text files containing the insult words a lot more simple to prepare.
In effect, the insulting words file consists of plain text, with a new, selectable
insult on every line, so it could be one word or a few. This means that the
program has to read individual bytes out of the file and build up the words to
put into the insult arrays. This is done by the function FNread, which returns
a string comprising one line of the text file.

The colon (:) operator is used to mean a new line, despite it not being on
a physical new line. It’s often used to shorten listings or group commands
together.

The files are opened using the path name given by the system variable,
which was set when you double‐clicked the !Boot file, plus the actual file
name (adjective or nouns). This then reads in all the word files. The
final procedure (PROCinsult) prints out the random words that make up
the insult.

Lines 130 to 160 need a bit of explanation. This is a crafty way of initializing
the random number generator. By constantly generating random numbers in
the random time it takes for the user to hit the first key, you’re assured of a
new starting point every time for the random number generator.

All we need now before we can test this is to generate the two text files of
words. So, on the !Zap icon, choose Menu➪Create➪New File➪&FFF Text and
enter some adjectives shown in Listing 17-3 and save the file as adjective.
Then repeat this using Listing 17-4 and save the file as nouns.

404 Part V: Exploring RISC OS �

Listing 17-3:  Adjective File Contents

artless
bawdy
beslubbering
bootless
brutish
churlish
cockered
clouted
craven
currish
dankish
dissembling
droning
errant
fawning

Listing 17-4:  Noun File Contents

baggage
barnacle
bladder
boar pig
bugbear
bum bailey
canker blossom
clack dish
clotpole
coxcomb
codpiece
death token
dewberry
flap dragon
flax wench
flirt gill
foot licker
fustilarian
giglet
gudgeon
haggard
harpy

You need to press Return after the last word in each of these files.
There are much longer versions of the files at www.dummies.com/go/
raspberrypiprojects.

Having everything in place, you can now run the insult generator by double‐
clicking the Insult1 BASIC icon. If you get errors, go back into the editor
and correct them. Make sure that it’s running correctly before proceeding to
the next stage.

http://www.dummies.com/go/raspberrypiprojects
http://www.dummies.com/go/raspberrypiprojects

405� Chapter 17: RISC OS Coding

Smartening it up
You can’t do much about the actual output, but you can present a better
view of this program to the desktop. You had to double‐click the !Boot file
before you ran the program. These next steps will give you a program‐like
icon to double‐click.

First, you have to create an icon to represent your program. We made a rep-
resentation of a well‐known cartoon character who is known for his insults:

1.	Load up !Paint and click the icon bar icon of !Paint.

A new window invites you to create a new sprite.

2.	Choose the 256 color mode, set the size as 32 x 32 pixels, set the name
as !Insult, and click OK.

3.	Menu‐click over the now blank icon in the window with the !Insult
title, and select a zoom of 11 to 1 in the magnify window.

4.	Again, menu‐click and choose Paint➪Show Tools and Paint➪Show
Colors.

5.	Now use the pencil tool to input your artwork.

Figure 17-2 shows you an enlarged view of what we have. We’re sure you
can work out the colors of this yellow‐skinned blue‐shirt‐wearing fellow,
from the grayscale picture.

6.	Save this sprite file under the name of !Sprites in the Insult
directory.

Now you need a file to direct operations when the folder is double‐
clicked.

7.	Create an Obey file from !Zap (choose Create➪New File➪&FEB Obey),
type the following into the file, and save it as !Run:

| Run file for Insult1
WimpSlot -min 32k -max 32k
Set Insult1$Dir <Obey$Dir>
Run <Insult1$Dir>.Insult1 %*0

This is the sequence of commands that are needed for running the pro-
gram. The first line is a comment you used in the !Boot file and could
be omitted. The next line allocates some memory for the program to run
it — in this case, no less than 32K and no more than 32K. Next, there is
the setting of the path name, just like the !Boot file. This is done again
just in case this system variable has been overridden by some other pro-
gram. Finally, the last line runs the basic program.

406 Part V: Exploring RISC OS �

8.	Rename the Insult directory !Insult.

9.	Close the directory that contains it, and open it again.

You should have your new icon ready to double‐click. It isn’t a true
desktop application, but it has all the outward appearances of such. You
may like to include a !Help text file in the directory (see Chapter 16).

The insults themselves have a rather 17th‐century restoration comedy sound
to them. You may want to have more colloquial words in your lists. The
longer the lists, the more varied the results. Lines 50 to 70 define the maxi-
mum number of each type of word, and those are easily changed.

Understanding Full Desktop Applications
At www.dummies.com/go/raspberrypiprojects, you can find not only
the finished code for !Insult but also a “real” desktop version called !Insulter.
!Insulter’s icon appears on the icon bar, the output is in a movable window
that you can iconize, and it happily multitasks with the rest of the desktop. It

Figure 17-2: 
The insult

icon.

http://www.dummies.com/go/raspberrypiprojects

407� Chapter 17: RISC OS Coding

uses exactly the same function as this example, but there is a lot more “wimp
stuff” hung round it. (Wimp is short for “windows, icons, menus, pointers.”
Wimp stuff is the fundamentals of any desktop‐type application, no matter
what the operating system.)

Any desktop application is written in what is known as an event‐driven style.
Events are things that happen. For example, a user clicks a box, a window
control, or a scroll bar, or performs a menu click. This event is notified to the
program, and the program deals with it as appropriate to the application. An
event could also be that some other program wants to send your program a
message, or you want to send another program a message.

On the other hand, you could get a null event — nothing has happened. That
doesn’t necessarily mean there is nothing to do. You could advance an ani-
mation, do a bit more of a long calculation, or check input/output ports for
any activity.

The act of asking the operating system for an event is the way that the whole
cooperative multitasking thing works. If you ask for an event, the operating
system takes the opportunity to switch to other tasks because, after all, your
program has nothing to do at the moment or it’s your program’s choice,
at this point, to relinquish control for another task. If you never ask for an
event, nothing else gets a look in, just like the way the simple !Insult program
ran — while that was running, nothing else on the desktop would work.

This may look complex, but this “wimp stuff” is virtually the same from pro-
gram to program so you can reuse a lot of it, at least the structure. The heart
of it is the wimp poll system, a loop that’s in lines 510 to 610 of !Insulter. The
program calls Wimp_Poll and, in doing so, informs the operating system of
any events it isn’t interested in. When this call is returned, the program gets
back a number that indicates what, if any, events have occurred. A case state-
ment then decides what has occurred and responds to those events of interest.
Table 17-1 shows all the results you can get back from Wimp_Poll.

This whole wimp business is covered in Volume 3 of the PRM.

Other things can help you with window definitions. Instead of specifying
every element of a window, you can read them off a file. The files can be cre-
ated by a graphics program so you can build up each window from the desk-
top by clicking, dragging, and using tick boxes. The original program that did
this was called !ResEdit, but it won’t work with the new OS, so now there is
one called !TemplEd and another called !WinEdit. These are both found ready
to be installed at the path Programming/DrWimp/Utils of the RISC OS
installation.

408 Part V: Exploring RISC OS �

Many of the windows can even be copied from other applications and then
customized with these programs. In fact, many elements of the wimp system
can originate from other applications, like the sprites.

The other thing that needs to be set up is the memory that defines the menu
structure. This is done in PROCsetupmenu and consists of simply filling
memory with numbers. These numbers are interpreted as menu items. Again,
the PRM tells you which numbers mean what. In this example, there are only
two menu items: one that opens the information window, a standard part of
any application, and another to quit the application.

You can see the process of “wimpifying” an application in Figure 17-3. It
shows you the basic steps and flow of an event‐driven desktop application.

Table 17-1	 Wimp Poll Codes
Code Reason
0 Null_Reason_Code

1 Redraw_Window_Request

2 Open_Window_Request

3 Close_Window_Request

4 Pointer_Leaving_Window

5 Pointer_Entering_Window

6 Mouse_Click

7 User_Drag_Box

8 Key_Pressed

9 Menu_Selection

10 Scroll_Request

11 Lose_Caret

12 Gain_Caret

13 Poll word non‐zero

14–16 reserved

17 User_Message

18 User_Message_Recorded

19 User_Message_Acknowledge

409� Chapter 17: RISC OS Coding

You see a lot of use of the word indirection operator (!) in the !Insulter exam-
ple. It’s mainly used to fill and read blocks of memory that are used to pass
information back and forth between BASIC and the operating system. So,
when Wimp_Poll is called, a pointer to a memory space is passed to it — in
this case, by the variable q%. Notice how earlier this had been dimensioned
as an array, with a DIM statement. This is filled in by the operating system in

Figure 17-3: 
Wimpi­
fication

of an
application.

410 Part V: Exploring RISC OS �

a manner that depends on what event occurred. For more information about
wimp programming, see the Documents/Books directory.

DrWimp is a tool that attempts to automate this process. It’s included in
the distribution and is found in the programming directory. There are blank
applications for you to customize and plenty of examples to look at in the
Examples directory; there are also tutorials online. There are other such
tools online that do this as well.

Working with Graphics in RISC OS
When it comes to graphics, RISC OS has a lot of legacy to cope with. Early
machines had very limited amounts of memory and there were various com-
promises that could be made regarding resolution, the number of pixels,
and pixel depth (the number of colors each pixel could be). This was done
by defining graphics modes, a preset set of compromises. Although that
memory restriction no long applies, the use of modes are still around and are
often still convenient to use, in a non–desktop application context.

Modes and resolution
Although different modes had different resolutions, an attempt was made to
have some sort of mode independency in the software. Things were arranged
so that the drawing coordinates were larger than the actual resolution so
that drawings look approximately the same no matter what mode you were
in. It was just that some modes looked much more chunky than others, but
the chunky modes had more colors. Basically, the range of coordinates the
software worked on was 0 to 1,279 for the x‐axis and 0 to 1,023 for the y‐axis.
This has been now overtaken by the new hardware, and you can get real
pixel resolution much greater than this.

As more advanced Acorn machines were introduced, the number of modes
multiplied. Eventually, the mode became not a single number but a string of
parameters. These give the x and y resolution, the color mode, the relation-
ship between pixels and screen coordinates, and the frame rate. If you menu‐
click the display icon in the bottom‐right corner of the icon bar, you see
what mode your desktop is set to. On the Raspberry Pi, all the named modes
default to a 64‐color display of various resolutions.

You can get an idea of this if you type in the program in Listing 17-5. This
draws a fan of lines in each mode up to mode 53.

411� Chapter 17: RISC OS Coding

Listing 17-5:  Mode Tester

 10 : REM Mode tester by Mike Cook
 20 : FOR M% = 0 TO 53
 30 : MODE M%
 40 : PROC_Size
 50 : FOR N% = 0 TO 90
 60 : GCOL N%
 70 : MOVE 0,0
 80 : Th = RAD(N%)
 90 : X% = Xmax%*COS(Th)
 100 : Y% = Ymax%*SIN(Th)
 110 : DRAW X%,Y%
 120 : NEXT N%
 130 : GCOL 255, 255, 255
 140 : PRINT TAB(0,20); "Mode ";M%;" Resolution ";XLim%;" by ";YLim%
 150 : PRINT "Coordinates ";Xmax%;" by ";Ymax%
 160 : A$ = GET$
 170 : NEXT M%
 180 : END
 190 :
 200 : DEF PROC_Size : REM get the screen size
 210 : SYS"OS_ReadModeVariable",-1,4 TO ,,Xfact%
 220 : SYS"OS_ReadModeVariable",-1,5 TO ,,Yfact%
 230 : SYS"OS_ReadModeVariable",-1,11 TO ,,XLim%
 240 : SYS"OS_ReadModeVariable",-1,12 TO ,,YLim%
 250 : Xmax%=XLim%<<Xfact%
 260 : Ymax%=YLim%<<Yfact%
 270 : VDU 5
 280 : ENDPROC

If you run this program, you see that most of the modes look the same on the
screen. The program uses a system call to read data about the screen mode.
The lim% variables are the actual number of pixels, and the fact% variables
are the multiplication factor between the drawing coordinates and actual
pixels, expressed as a power of two. So, by shifting the number of pixels
on the screen to the left by the multiplication factor, you get the maximum
coordinate size for each axis.

To get a taste of what it used to look like, download an application called
GraphTask from www.armclub.org.uk/free. This application emulates
the old modes in a graphics task window. If you double‐click it to get its icon
on the icon bar and then drag the mode tester file into it, you see the modes
as they used to look. Note, however, that the system calls that read the
screen mode variables apply to the whole screen, so the values for resolu-
tion and coordinates will not reflect the mode. Despite this, GraphTask can
be a very handy utility to have around, and it comes with lots of interesting

http://www.armclub.org.uk/free

412 Part V: Exploring RISC OS �

examples. One of the examples in this package is called Rope. We used this
as a starting point to illustrate something rather interesting that you can do.
Our more readable version of Rope is shown in Listing 17-6.

Listing 17-6:  Rope

 10 : REM >Rope
 20 : MODE 0
 30 : CLG:CLS
 40 : OFF : REM Turn off flashing text cursor
 50 : OSCLI "POINTER 1"
 60 : N=10: L=700: E=0.7: g=0.2: D=L/N
 70 : DIM V(N),W(N),P(N),Q(N)
 80 : REPEAT
 90 : MOUSE X,Y,B:MOVE X,Y
 100 : FOR I=1 TO N
 110 : x=P(I)-X+V(I)*E:y=Q(I)-Y+W(I)*E
 120 : d=D/SQR(x*x+y*y+.4)
 130 : X+=x*d:P(I)=X:Y+=y*d
 140 : Q(I)=Y:d=d/2-.5:V(I)+=x*d
 150 : W(I)+=y*d-g:V(I-1)-=x*d:W(I-1)-=y*d+g
 160 : NEXT
 170 : WAIT
 180 : CLG
 190 : FOR I=1 TO N
 200 : DRAW P(I),Q(I)
 210 : NEXT
 220 : UNTIL 0

Run this program and you see a rope dangling off the end of the mouse
pointer. Move your mouse and see how it dangles and moves. This is
an example of Mode 0 graphics. Try also dragging the program file into
GraphTask and see how the movement is not quite so free.

Next remove the MODE command in line 20, either by deleting the line or by
putting a REM at the start of the line. (This is known as commenting out a line.)
Now run it again. Note that the line is finer and the movement is more fluid.
This is because you’re now using the native screen graphics mode. Finally, as a
piece of magic, you’re going to break the illusion of a desktop. Remove or com-
ment out lines 30 and 180. These clear the screen between drawing each itera-
tion of the rope’s movement. Double‐click the program file and twirl the rope
around the whole desktop. Figure 17-4 is what it looked like when we did it.

413� Chapter 17: RISC OS Coding

This sort of thing is not supposed to happen. Other operating systems go
to great lengths to prevent it. RISC OS is much freer, and if you want this to
happen you can do it very easily. You have to go to a bit more trouble to
restrain the graphics and restore the illusion.

Lines and shapes
As you can see in the last couple of listings BASIC has MOVE and DRAW func-
tions to create a line. You just move to the starting point and draw to the
ending point to produce a line. There is also a single pixel plot instruction
called PLOT. With these fundamental actions, you can draw everything. The
MOVE and DRAW functions are combined in the LINE function, where you
specify the start and the end of the line you want to draw.

Shapes come in two varieties — outlined and filled — and allow you to draw
rectangles, circles, and ellipses.

However, all these drawing commands are just special cases of the general‐
purpose PLOT command, confusingly the same name as the single‐pixel plot
function. This one takes in three numbers: a plotting mode and x‐ and y‐
coordinates. Where the shape being plotted needs more than a single pair of
coordinates, PLOT uses the previous positions of the graphics cursor to fill in
the missing values. The plotting mode number is quite complex — it consists
of a single byte, where the top five bits define the drawing operation and the
bottom three bits define how it will be drawn. Basically, these different ways

Figure 17-4: 
Lashing the

desktop.

414 Part V: Exploring RISC OS �

of drawing are how the coordinates are interpreted, absolute on the screen
or relative to the last coordinates. Also, it defines if the operation is a draw or
a move, and if it uses the current foreground color, background color, or logi-
cal inverse of the color already on the screen.

For a full list of plot commands see www.bbcbasic.co.uk/bbcbasic/
manual. This is a good place to see all the commands BASIC can offer. There
are also downloadable documents with these BASIC commands explained.

Images
BASIC is capable of plotting images. There are two main formats that are
handled directly: sprites and JPGs. The &E8 to &EF PLOT commands handle
the drawing and plotting of sprite formatted images or bitmaps. However, all
image handling is also included in the “Sprite Extended Modules” covered in
Section 107 in Volume 5 of the PRM.

At www.dummies.com/go/raspberrypiprojects, you can find an appli-
cation we’ve written called !Tiler, which takes an image in the form of a sprite
and reflects it in a number of ways in a kaleidoscope‐like manner. The result
is an image that is a 4 x 4 copy of the original image, so four times larger
in each dimension. Each 2 x 2 block is a reflection of the original sprite.
However, in a bit of a mind‐boggling stretch, the original image may be
reflected along a diagonal in a number of different ways. Figure 17-5 shows
the way that the sprites can be reflected.

Basically, you can split a rectangle along one of two diagonal lines.
Reflections can be made on a diagonal from bottom left to upper right, known
as a positive line (or P for short). The part of the sprite reflected can be
above this line (known as U for upper part or L for lower part).

Figure 17-5: 
Methods of

reflection
for !Tiler.

http://www.bbcbasic.co.uk/bbcbasic/manual
http://www.bbcbasic.co.uk/bbcbasic/manual
http://www.dummies.com/go/raspberrypiprojects

415� Chapter 17: RISC OS Coding

The reflection could also occur on the opposite diagonal — from the upper
right to lower left of the sprite. This is known as a negative line (or N for
short). Again, the part of the sprite above or below this can be used for the
reflection.

Thus, this gives four extra modes, as well as the simple reflection mode:

✓✓ 8 Fold PU: Positive slope, use above the line, or upper, part of the image

✓✓ 8 Fold NU: Negative slope, use above the line, or upper, part of the
image

✓✓ 8 Fold NL: Negative slope, use below the line, or lower, part of the image

✓✓ 8 Fold PL: Positive slope, use below the line, or lower, part of the image

✓✓ 4 Fold: Just the original sprite reflected

When you’ve created an image you like, you can save it or try it out as a
background image on your desktop. If you want to make it permanent fea-
ture of your desktop, menu‐click anywhere on the desktop and choose Save
and click OK. Figure 17-6 shows an example of what it produces. The origi-
nal image was a part of the Midget drawing in the Documents/Images/
Artworks directory.

Figure 17-6: 
!Tiler

output.

416 Part V: Exploring RISC OS �

Transistor Tester
In This Chapter

▶▶ Understanding how a transistor works

▶▶ Finding out about NPN and PNP transistors

▶▶ Discovering how to control I2C devices from RISC OS

▶▶ Building a fully functional, small‐signal transistor tester

▶▶ Writing software to control and analyze the measurement made on the transistor

▶▶ Getting a desktop application version of the software

T
his project is perhaps one of the most useful things we’ve ever made
(if we do say so ourselves). Not only does it test to see if a transistor is

working, but it tells you its gain and even what the pin out is. This is great
not only for trawling through transistors recovered from recycled boards,
but also for saving you the time of looking through data sheets and trying to
identify the specific packaging version of any transistor that you have. This
is a valuable working tool that we come back to again and again during the
course of constructing electronic equipment. It also serves as a good exam-
ple of using the I2C bus to construct a stand‐alone piece of equipment.

The transistor tester project consists of four basic aspects:

✓✓ You need to understand what you’re going to measure and why.

✓✓ You need a means of configuring the transistor’s wiring to achieve a test
circuit.

✓✓ You need a way of taking measurements on the transistor and getting
them back into the computer.

✓✓ You need software to take the measurements, analyze them, and display
the results.

We cover all these subjects in this chapter.

Chapter 18

418 Part V: Exploring RISC OS �

Getting Acquainted with Transistors
Transistors are the foundation of modern electronics. All devices contain
transistors in one form or another. Although patented as early as 1925, the
first working transistor was not made until 1947. In the 1950s, transistors
became commercially available, and the word transistor was synonymous
with the word radio. In fact, radios were described by the number of transis-
tors they contained. A five‐transistor radio was a common standard. Today,
a microprocessor chip like the one in the Raspberry Pi contains billions of
transistors, all fabricated on a single chip.

But what is a transistor? A better name for it would be a valve (except the
thermionic vacuum valve was in common use almost 50 years before the
first transistor, so that name was already taken) because it does accurately
describe what a transistor does. With a valve of any type, a large flow of
something is controlled by a small amount of something else. So, you can
control the water flow into your house with a few turns of a screw. Similarly,
a transistor uses a small flow of electricity to control a much larger flow of
electricity. We call the flow of electricity current.

In essence, a transistor consists of a three‐layer sandwich of two different
types of material — N‐type and P‐type semiconductors. The semiconductor
bit means that the material is partway between an insulator and a conductor.
What makes these two types of semiconductor different is the way electric-
ity is carried in them. In N‐type material, electrical conduction is mainly by
means of negative charge carriers; in P‐type material, it’s mainly by means of
positive charge carriers.

At this point, beginners are often confused and ask, “What direction does
current flow?” The answers to that question, while all true, depend on the
substance through which the electricity is flowing, and have different levels
of complexity:

✓✓ It doesn’t matter. This answer is the simplest. It simply doesn’t matter
in which direction the current flows. Often, a question of direction arises
because beginners think that direction matters. “But what if the current
flows through this resistor first?” they say. Flow is taken as a whole,
through a whole circuit. The current flowing into a simple resistor is the
same as the current flowing out of it. A resistor by itself does not “use
up” current or reduce voltage.

✓✓ From positive to negative. Positive‐to‐negative flow is called conven-
tional current flow. It helps to think of a flow direction even though the
direction doesn’t matter, so this direction is what we use in this book
and what all electrical and electronics books use.

419� Chapter 18: Transistor Tester

✓✓ From negative to positive. Flow from negative to positive is sometimes
wrongly considered to be the correct direction. This is because, in most
solid materials, the majority of charge carriers are negative electrons
and they do flow in that direction. The “conventional” explanation for
this is that earlier experimenters didn’t know which way current flowed,
so they guessed (and guessed wrong). Actually, early experimenters did
know which way current flowed, but they were studying current flow in
liquids where most charge is carried by positive ions. In other words,
they were studying a P‐type material, although such a term was not
known at the time.

There are two types of transistors, defined by what types of material make
up the “filling” and “bread” of the “sandwich”: NPN transistors and PNP
transistors.

✓✓ NPN transistors: NPN transistors (see Figure 18-1) are the most common
type of transistor today. As the name implies, there are two layers of
N‐type material with a “filling” of P‐type material. Each layer is brought
out to a separate wire to give the three connections of a transistor — the
collector, emitter, and base. If we make a small current flow through the
base/emitter junction, a larger current will be forced to flow from the col-
lector to the emitter.

The ratio of the two currents — that is, the collector‐to‐emitter current,
over the base‐to‐emitter current — defines the gain of the transistor.
This is sometimes called the amplification factor, but it’s important to
understand that the input current itself does not get amplified. Instead,
the input current causes a much larger current to flow in the output. As
the input current increases, the output current increases by the same
factor. It’s a bit like a mechanical pantograph where one action causes a
much larger secondary action. Note that you can only get an output cur-
rent up to what your power supply can provide.

The symbol of a transistor is shown in Figure 18-1. An important thing to
note is the arrow on the emitter. Here, it points out of the symbol, which
means it’s an NPN transistor. A diagram with that arrow pointing the
other way means it’s a PNP transistor.

Figure 18-1: 
A basic

NPN
transistor.

420 Part V: Exploring RISC OS �

✓✓ PNP transistors: When transistors first became available, they were
nearly all PNP transistors because they were easier to make using the
technology available at the time. A PNP transistor is sometimes known
as an “upside‐down transistor” because it’s used just like an NPN tran-
sistor, but the supply voltages are inverted when compared to an NPN
transistor. Figure 18-2 shows the two types of transistors in action.

There are three ways of connecting a transistor. Here we look at just the
most common way of using a transistor, called a common emitter circuit. In
a common emitter circuit, the emitter is connected to the common point
between input and output (that is, both the input and the output have a
common point, and that’s the emitter). The less often used configurations are
the common collector circuit (sometimes called an emitter follower circuit)
and the common base circuit.

Note that because the transistor is a symmetrical three‐layer sandwich, you
should be able to swap the collector and emitter and have the same sand-
wich. A transistor wired up with its emitter and base swapped over will still
function as a transistor.

Resistors are used to limit the current flow over a wide range of voltages.
In the circuit on the left in Figure 18-2, the NPN transistor conducts more
collector‐to‐emitter current as the input voltage increases. However, if you
look at the voltage on the collector, the more current that flows, the lower
that voltage will be. It has to be that way because, in order to make more
current flow through the resistor, it has to, in effect, reduce the resistance

Figure 18-2: 
Transistors

in action.

421� Chapter 18: Transistor Tester

between the collector and the emitter. Sometimes we say that this circuit is
a signal inverter because a high voltage in at the base results in a low voltage
out at the collector.

On the right side of Figure 18-2 is a PNP transistor. Note that the emitter here
is connected to the positive rail. So, in order to get a current to flow between
the emitter and the base, the base has to be a lower voltage than the emitter.
Therefore, to turn off the transistor, the base needs to be up to the rail; to
turn it on, it has to be a low voltage. There is still the signal inversion — a low
voltage on Vin still gives a high voltage on the collector. The transistor works
just the same, only upside down.

If you think of the transistor as a switch, it’s between the collector and emit-
ter, controlled by a voltage on the base. Then you can think of the NPN as a
bottom switch — it turns on the load (puts current through the load resistor)
by connecting it to ground. On the other hand, the PNP transistor is a top
switch — it turns on the load by connecting it to the positive supply rail.

Configuring Transistors
In this project, I use a simple but effective means of testing a transistor: First,
with no base current applied, measure the collector current. Then apply a
voltage to the base resistor and measure the collector current again. If the
collector current increases in the second reading, it’s a good transistor and
you can calculate the gain from the ratio of collector current to base current.

Measurement circuit
Measuring current involves measuring the voltage across a known resistor
value. Then, by making a calculation using Ohm’s law, you can work out the
current. This is how most current measurements work. Therefore, you have
to wire up the transistor under test in a way that you can measure the two
currents (see Figure 18-3).

The base resistor and the collector resistor have been split into two resistors
in order to measure the current. This has been done to keep the voltages pro-
duced within the limits of the chip we’re going to use for the measurements.
The collector and base resistors are very different: One is 220R (ohms) and
the other is 220K (thousand ohms). Note that the transistor is tested under
very small currents, the base resistor and a 5V supply means the base cur-
rent is only 10uA. Small currents are where transistors are at their best. The
gain will tend to drop off as the base current increases.

422 Part V: Exploring RISC OS �

Switching configurations
If you just implemented the circuit in Figure 18-3, it would be simple enough
to make the tester, but we wanted to find out not only the gain but also the
pin‐out of the transistor. In order to do that, you must measure the gain with
every combination of wiring for the transistor pins. That means each of the
inputs connectors, which hold the transistor under test, must be capable of
being switched to be a collector, an emitter, or a base, in a common emitter
mode for both PNP and NPN transistors.

That’s quite a lot to get your head around in one go, especially if you look
ahead at the schematics for this project shown later in this chapter. So we’ll
break it down into steps.

The 74HC4066 (which you use in the circuit shown in Figure 18-9) is a quad
bilateral switch. The “quad” bit means there are four in one package, and
the “bilateral” bit means current can flow in both directions. So, in effect,
this looks like a simple on/off switch that can be controlled by a logic‐level
input. This is exactly what you need to switch the input pins of the transistor
under test to the four basic positions in the circuit — base, collector, 5V, and
ground.

Figure 18-4 shows what that switching arrangement should look like. We’ve
labeled each switch with an S prefix number and the transistor’s input con-
nector with a simple number.

Figure 18-3: 
The test

circuit.

423� Chapter 18: Transistor Tester

Switches S0 to S2 connect 5V to either of the three input connectors, and S13
to S15 do the same for the ground. To the left, S7 to S9 connect any of the
three transistor connectors to a resistor; likewise, the switches S10 to S12 do
the same, albeit a different value of resistor. The other end of these resistors
must be capable of being switched to either 5V or ground to cope with the
possibility of having an NPN or a PNP transistor.

This scheme does carry a bit of danger in that, for example, if switches S1
and S14 were to be closed at the same time, there would be a short circuit
across the supply and things might melt. Likewise, S3 and S4 should never
be on at the same time, nor should switches S5 and S6, S0 and S13, or S2 and
S15. You have to make sure that only certain combinations of switches are on
at any one time.

For an NPN transistor with the base on connector 1, the emitter on connector 2,
and the collector on connector 3, in order to have this transistor configured
correctly for a gain measurement, switches S3, S5, S7, S12, and S14 must be
turned on while all the other switches are off. This is shown in Figure 18-5.

If you set the switches like this and measure the currents, and you see a gain,
then you have an idea that you have a working NPN transistor with the “base,
emitter, collector” configuration. What you have to do is go through each
valid configuration and write down the states of the switches. We’ve done
this, and the result is shown in Figure 18-6.

Figure 18-4: 
Required

switch-
ing of the

three input
connectors.

424 Part V: Exploring RISC OS �

There are six different combinations of input pins for each of the two types
of transistor, giving 12 combinations in all. Each switch is either a 0 for off or
a 1 for on. Note how switches S3 and S5 are on for every combination of NPN
transistor and off for every combination of PNP transistor. Also, note how S5
is always the opposite of S6 and likewise for S3 and S4; to do otherwise would
cause a short as we mention earlier. These then are the set of combinations
for the switches for each measurement. The combination whose measure-
ments makes sense tells you the pin out of the transistor.

Figure 18-6: 
Switch
states

for each
transistor

configura-
tion.

Figure 18-5: 
Switch

states for
an NPN

transistor
with “base,

emitter,
collector”

pin out.

425� Chapter 18: Transistor Tester

Designing the Circuit
When designing a circuit, it’s always best to start with a block diagram, one
that shows the broad functions and how they interrelate. The transistor
tester’s block diagram is shown in Figure 18-7.

On the left, there is the I2C connecting both the analog‐to‐digital (A/D) con-
verter and the digital outputs to the Raspberry Pi. The A/D converter is then
connected to the resistors in the test circuit, and the test circuit itself is con-
nected to the analog switches. Because there are only 8 output lines from
the I2C digital chip we used, these lines are expanded up to 16 by means of a
multiplexer (an addressable latch, to be precise).

The I2C bus is a simple system of connecting many devices to the same pins.
Each device has a unique address to use for communication. In theory, up to
128 can be used on the one bus. In practice, this is normally fewer than ten
or so devices. There has to be a pull‐up resistor on each of the two lines of
the bus. It’s built into the hardware design of the Raspberry Pi, so there is no
need to add them to anything you attach to this bus. It also copes with the
3V3‐to‐5V conversion. Devices can be powered with 5V, but the data signals
themselves can be 3V3, forming a neat interface.

Raspberry Pi interface circuit
The circuit of the transistor tester is simpler to understand if it’s split into
two parts. The first part is the I2C interface from the Raspberry Pi and is
shown in Figure 18-8.

The interface circuit consists of two chips: PCF8591 (the A/D converter) and
PCF8574A (the digital input/output). If you’ve read Raspberry Pi For Dummies,
you know we used the PCF8591 for some projects in that book as well. It’s a
versatile chip offering a four‐input A/D converter and a single D/A output.

Figure 18-7: 
Transistor

tester block
diagram.

426 Part V: Exploring RISC OS �

We won’t be using the D/A output in this project, but we will be using all four
analog inputs. There is a mode that this chip can operate in, in which you can
configure the inputs into two differential pairs of inputs. A differential A/D
converter is one that measures the difference in voltage between two inputs.
If input 0 is a higher voltage than input 1, the difference has a positive value;
if it’s the other way around, it has a negative value. The same applies for
inputs 2 and 3: If 2 is higher, it’s positive; otherwise, it reads negative. This
is exactly what you need to measure the current in the base and collector
circuits because when they’re configured for a PNP transistor, these currents
are negative; they’re positive for an NPN transistor.

All the external address lines on these two chips are connected to ground,
which makes the actual I2C address of each device their base, or lowest
address. Note that there are two types of the digital input/output chip — the
PCF8574 and the PCF8574A. They’re identical chips, but they have a differ-
ent base address. If you use a PCF8574, you have to alter the software; this
change is just one line, though.

Figure 18-8: 
The

Raspberry
Pi–to–I2C
interface

circuit

427� Chapter 18: Transistor Tester

The capacitors C1 to C3 are decoupling capacitors and should be fitted as
close to the chips as possible. The value of C1 isn’t critical, but C2 and C3
must be of the ceramic type.

Test circuit
The test circuit part of the project is shown in Figure 18-9; the component
numbering leads on from the previous schematic. There are two 74LS259
addressable latch chips, and four 74HC4066 bilateral switches. Each chip
should have a 0.1uF capacitor soldered across the power and ground as close
to the chip as possible. (These are omitted from the schematic to make the
wiring look less cluttered, which is a standard practice for some schematics.)

Note that output 3 (pin 7 of IC1 in Figure 18-6) is not used and so does not
appear in Figure 18-9.

Figure 18-9: 
Test circuit
schematic.

428 Part V: Exploring RISC OS �

The other thing to note is that the test connector is shown three times, again to
keep the wiring from being cluttered. There is only one connector, and pin 1 on
the real connector should be connected to the three instances of pin 1 shown in
the schematic. This sort of thing in a schematic is known as intersheet connec-
tions, and it’s often used to make wiring less cluttered, although some people
take it too far and have hardly any connecting wires shown at all.

The idea of the 74LS259 addressable latch is that the number of the output you
want to change is placed on the select lines — pins 1, 2, and 3 — as a binary
number. The logic level you want to set that output to is placed on pin 13, the
data input. Then that value is transferred to the addressed output when pin 14,
the enable line, is taken low and then high again. You see that the input pins to
both latches are wired together apart from the enable, pin 14. This is so we can
trigger the two latches independently.

There could be a problem if the wrong switches are turned on, so we’ve made
use of pin 15, the clear input. This sets all the output latches to 0 and turns
all the switches off. However, on powering up, the outputs of the 74LS259
could be at any state, so it would be good if you could arrange the clear input
to be low on power up, because it may be some time before the software has
a chance to do anything. Although you don’t know the state of the 74LS259
outputs, you do know the power‐up state of the PCF8574A’s outputs — they’re
high. There is no magic about this — it’s just that it says so in the data sheet.
Unfortunately, this is opposite of what you want. Therefore, we’ve put in a
transistor, Q1, to invert the power‐up state of the PCF8574A’s, ensuring that
all the switches power up in a state of being turned off.

The 74HC4066 can be replaced with other chips of the same type, like the
CD4066. It’s the 4066 part that defines the function. There are subtle differ-
ences between these different chips, but they mainly concern the on resis-
tance of the switch. For this application, it’s very small compared to the other
resistances in the circuit. IC5 handles switches S0 to S4, IC6 handles switches
S5 to S8, and so on. Resistors R3 to R6 are the series resistors used to mea-
sure the currents in the base and collector.

Constructing the Circuit
We built the circuit on stripboard in a small plastic box. Before you start
you need to gather the parts. Component reference numbers are shown in
parentheses.

✓✓ One 47uF electrolytic capacitor (C1)

✓✓ Eight 0.1uF ceramic capacitors (C2–C9)

✓✓ One 47K resistor, ¼ or watt (R1)

429� Chapter 18: Transistor Tester

✓✓ One 10K resistor, ¼ or watt (R2)

✓✓ Two 220K resistors, ¼ or watt (R3–R4)

✓✓ Two 220R resistors, ¼ or watt (R5–R6)

✓✓ One PCF8574A–I2C digital I/O (IC1)

✓✓ One PCF8591–I2C A/D (IC2)

✓✓ Two 74LS259–octal addressable latches (IC3–IC4)

✓✓ Four 74HC4066–quad bilateral switches (IC5–IC8)

✓✓ One BC183 or similar general‐purpose NPN transistor (Q1)

✓✓ Three miniature crocodile/alligator clips (test connector)

✓✓ One 0.1‐inch pitch stripboard, with 4‐x‐2‐inch strips running vertically

✓✓ Ten M2 10mm screws, washers, and nuts

✓✓ One plastic box measuring at least 2¼ x 4 inches

✓✓ One 8‐pin two‐row 0.1‐inch header socket

✓✓ One 4‐pin single‐row 0.1‐inch header socket

✓✓ One 4‐pin single‐row header pins plug

✓✓ One 6‐inch four‐core cable

✓✓ Four 14‐pin DIL sockets (optional)

✓✓ Four 16‐pin DIL sockets (optional)

We always use IC sockets in our projects. They’re very handy for fault find-
ing, and the ICs are reusable on other projects. They also make the testing
easy in that you can plug in the chips one at a time for testing the circuit, as
we describe later in this chapter. However, you can save a bit of money if you
solder them directly onto the stripboard.

We found a 2¼‐x‐4 ‐inch plastic box and trimmed our stripboard to suit.
Then we drilled four holes in the corners of the stripboard and the box to
fasten the two together. We fitted the sockets and cut the tracks between
the pins on each side of the IC and also on the tracks between ICs. Most of
the wiring was done on the underside of the board. This is just about the
minimum space you can use. You may want to use a bigger box and piece of
stripboard to give yourself a bit more room. The finished project is shown in
Figure 18-10.

To allow hot plugging, you need to first connect the ground and positive
supply and then finally the signals. If you look at something like an SD card or
a USB memory stick, you’ll see some connections longer than the others. As
you plug it in, the longer connections get made first.

430 Part V: Exploring RISC OS �

The I2C connector back to the Raspberry Pi is in the center‐right of the board.
We cut a small square hole in the top of the lid to get access to the pins.

The test connector is made up of three miniature alligator/crocodile clips.
These are just about an inch long. We drilled two M2 holes in the back end
of each one, and mounted them on the box lid as close together as we could
without their touching. You can see the connections to the back of these
screws in Figure 18-10. In Figure 18-11, you can see them from the top; this
shows how you can connect a transistor to them. The most vital thing is
that you label each clip 1 to 3, because the software is going to tell you what
number clip is what connection on the transistor.

We used a polarized pin header for the lead back to the Raspberry Pi. You
may want to solder a lead straight in. At the Pi end, we used a twin row
socket just four connectors long on each side (eight connectors in all) and
fitted them over the end of the Pi’s P1 plug. Because we need only four con-
nections, there isn’t much point in getting a full‐width connector, but you
have to be careful to get the pins aligned.

Figure 18-10: 
The

transistor
tester circuit

board.

431� Chapter 18: Transistor Tester

Writing the Software
Having built the hardware, it’s now time to look at the software to drive it
and perform the analysis of the results. Get the interface working one bit at
a time. This is where sockets come in. Just plug in IC1, connect to the Pi, and
power up.

Never plug something into the Raspberry Pi when it’s powered up unless the
thing you’re plugging in is designed for hot plugging, like a USB connector.

Testing the digital interface
Now, if you have a system with just IC1 fitted, type Listing 18-1 to test out the
digital interface.

Listing 18-1:  Testing the I2C Interface

 10 : REM> I2C Test digital out
 20 : PRINT"I2C BUS OUTPUT"
 30 : PRINT"Binary count to device at &70"
 40 : PRINT"By Mike Cook"
 50 : DIM PBK% 3
 60 : REPEAT
 70 : FOR A%=0 TO 255

Figure 18-11: 
The test

transistor
clips.

(continued)

432 Part V: Exploring RISC OS �

 80 : ?PBK%=A%
 90 : SYS "IIC_Control",&70,PBK%,1
 100 : TIME = 0: REPEAT : UNTIL TIME > 1
 110 : NEXT
 120 : UNTIL FALSE

This sends a binary count to the digital output pins of IC1. To test that it’s
getting there, wire up an LED and a 1K resistor, put the positive end to 5V,
and touch the negative end on each of the outputs in turn. At output 0, you
should see the LED blink rapidly. As you touch the higher outputs, the LED
will blink increasingly slowly.

The line that actually outputs data to the I2C lines is line 90 (page 977 in
Volume 1 of the PRM tells you all about it). Note that it’s called IIC, which is
an alternate name for the I2C bus that was more popular at the time the oper-
ating system was written.

The first parameter passed to it is the address. This is a full 8‐bit address
with the least significant bit determining if it’s a read (=1) or a write (=0)
operation. The next points to a block of memory (4 bytes) that contains the
data to transfer. In our case, we dimensioned the variable PBK% to point to
4 bytes of memory. Line 50 says three, but that’s the highest byte number
to use and we start at zero. The final parameter is the length of the block in
bytes. This is one, because we only want to send the one byte. The block is
set up with the loop variable in line 80, using the indirection operation ques-
tion mark (?).

Line 100 is a 10mS delay. Try removing this line and you see that most of the
outputs are flashing so fast that they look like they’re on all the time.

Now if you have sockets on your circuit, you can test the analog input, power
down, fit IC2, power back up, and run the program in Listing 18-2.

Listing 18-2:  Analog Input Test

 10 : REM> I2C Test analogue input
 20 : PRINT"I2C BUS Analogue Input"
 30 : PRINT"Read an A/D device at &90"
 40 : PRINT"By Mike Cook"
 50 : DIM PBK% 3
 60 : ?PBK% = 0
 70 : SYS "IIC_Control",&90,PBK%,1
 80 : REPEAT
 90 : SYS "IIC_Control",&91,PBK%,1
 100 : PRINT "Reading ";?PBK%
 110 : TIME = 0:REPEAT : UNTIL TIME >50
 120 : UNTIL FALSE

Listing 18‑1 (continued)

433� Chapter 18: Transistor Tester

The program sets up the PCF8591 to just read analog input 0, which is done
by writing 0 to the control register (line 70). Then there is an endless loop
that reads the value from the analog results register (line 90), which prints
it out and then has a half‐second delay before repeating. In line 90, note that
the least significant bit of the address is set to 1, meaning it is a read opera-
tion. The memory block PBK% is reused so that it receives the data from the
I2C bus, with the indirection operator (?) being used to fetch the actual byte
at this address for the print statement.

When you run this, you see numbers being printed out. If you touch a ground
wire onto pin 1 of IC2, you should see this number go to 0. If you touch the
pin with your finger, you should see the numbers change randomly, and if
you touch a wire between pin 1 and the 5V line (pin 16), the number should
go to 255, the maximum.

Setting the switches
Having tested the two I2C devices, it’s time to plug in the rest of the ICs and
consider what we need to do to test a transistor. Figure 18-6 showed what
states you need to set each switch to in order to get the correct configura-
tions. This showed the switches from left to right. But in order to turn those
switches into numbers, we need to reverse that order so that bit 0 of the
number controls switch 0 and bit 15 of the number controls switch 15. So we
simply reverse the bit pattern and turn it into a number. Using hex makes
things so much simpler, as shown in Figure 18-12.

This is for the first line, where the transistor is an NPN with a pin out of emit-
ter, base, collector, and yields a hexadecimal value of &3124. This process
needs to be repeated for each line in the table and transferred into an array.

Now BBC BASIC has a neat way of handling sets of numbers like this, one that
we think is far better than C or Python: the DATA statement. This is a line that
contains a sequence of numbers or strings. To get that into an array, there is
a READ statement that takes the next value and puts it into the variable that
accompanies the READ statement. This is way more efficient and flexible than
assigning each array element individually, which is what you have to do in
other languages if you want to redefine the contents of an array.

Figure 18-12: 
Switch state

to a hex
number.

434 Part V: Exploring RISC OS �

The configuration list along with switch states to test for that configuration
are shown in Listing 18-3.

Listing 18-3:  Initializing the Configuration and Switch Arrays

 REM Initialise switch pattern
 DEF PROC_SPinit
 LOCAL A%
 FOR A%=0 TO 11
 READ Lead$(A%),Config%(A%)
 NEXT
 DATA ebc,&3128,cbe,&8528,ecb,&2A28,ceb,&4628,bce,&88A8,bec,&50A8
 DATA ebc,&1151,cbe,&0554,ecb,&0A51,ceb,&0652,bce,&08D4,bec,&10D2
 ENDPROC

Notice how the READ statement has two array variables: a string for the pin
out and a number for the switching configuration. It’s in a FOR loop, and
the loop variable is used as the array index. When data is exhausted from
one DATA statement, the program automatically looks to the next DATA
statement.

Having acquired the number that defines the switch configuration, you have
to use it to set the switches. That means driving the two addressable latches
to have the switch states on their outputs correspond to this number.
Figure 18-9 showed you what the schematic of the latches is, it does not help
a programmer very much to know what to do. So, in Figure 18-13 you can see
a programmer’s view of the addressable latches.

This gives the view of the individual bits of the I2C digital interface and how
they drive the addressable latch. Bit 4 is the clear input. When it’s high, all
the bits in the latch are cleared — that is, set to zero. This is very handy for
quickly turning off all the switches when you’re changing configurations. You
need to do this so that in moving from one configuration to another you don’t
accidentally turn on a forbidden combination of switches that would cause a
short circuit.

Analog readings
When it comes to making the voltage
measurements that allow you to determine
the currents in base and collector, you need to
set the PCF8591’s configuration register to be
two differential inputs. This is done by setting
bits 4 and 5 in the control register. The channel

number in this mode is set by just bit 0. So, to
read the collector current, first write the hex
value &30 into the control register and then
read the value, and for the base current write
&31 into the control register and read the
results.

435� Chapter 18: Transistor Tester

So, to set up any one switch, you have to set bits 0 to 2 to the least significant
three bits of the address you want to write to. Put the data you want to write
onto bit 7. Then pulse bit 6 if the most significant bit of the address you want
to write to is 1; otherwise, pulse bit 5 if it is a 0. This involves you in a little
piece of numeric gymnastics using bit shifts.

Transistor testing methodology
As we mention earlier, a transistor will work with its emitter and collector
swapped over — the difference being that when it’s wrong, the gain is smaller.
Therefore, when testing a transistor, you need to make a note of the gain for
each configuration. You must also guard against the case where the transistor
has a short between collector and emitter. That initially may look like it has
a high gain, so for a good transistor, you need to see that you don’t have this
high gain when you remove any base current. If you do this, and you still have
a high gain, you know you have a faulty transistor. Similarly, a current read-
ing of 0 in the collector when you do have base current also indicates that the
transistor is faulty.

Figure 18-13: 
A program-
mer’s view

of the
addressable

latches.

436 Part V: Exploring RISC OS �

As you test each configuration, you need to keep a record of the configura-
tion if the gain you just measured is greater than any gain you previously
measured. So, at the end of looking at all the combinations, you have the
combination that gives the maximum gain. However, if the maximum gain is
less than two or you reached the end of the combinations with no maximum
gain set, then you know it’s a faulty transistor.

Putting it all together
Let’s see how all this comes together and produce a program to test our
transistor. The listing for this is shown in Listing 18-4. Note that this is just a
simple BASIC program at the moment, not a desktop application.

Listing 18-4:  The Transistor Tester Program

 10 : REM>IICtt
 20 : PRINT"IIC Transistor Tester"
 30 : PRINT"By Mike Cook"
 40 : DIM PBS% 4,PBK% 8,Lead$(12),Config%(12)
 50 : AA%=&90 : REM Analogue Chip Address
 60 : DA%=&70 : REM Digital Chip Address for 8594A - &40 for 8574
 70 : PRINT"8574 chip at ";~DA%;" and 8591 chip at ";~AA%
 80 : PROC_SPinit
 90 :
 100 : REPEAT
 110 : MGain%=0
 120 : LC%=12
 130 : PRINT
 140 : PRINT SPC(15);"Ic Ib Gain"
 150 : FOR A%=0 TO 11
 160 : IF A%<6 THEN Type$="NPN" ELSE Type$="PNP"
 170 : Gain%=0
 180 : REM First test with no base current
 190 : PROC_Mulout(Config%(A%) EOR &18)
 200 : IF DeviceD%=FALSE THEN PRINT"IIC Digital chip not responding":END
 210 : PRINT Type$;" ";Lead$(A%);" ";
 220 : PROC_AIN
 230 : IF DeviceA%=FALSE THEN PRINT"IIC Analogue chip not responding":END
 240 : IF ABS(col%)<5 THEN
 250 : PROC_Mulout(Config%(A%))
 260 : PROC_Analyse
 270 : ELSE
 280 : PRINT"Not Valid"
 290 : ENDIF
 300 : IF Gain%>MGain% THEN MGain%=Gain%:LC%=A%:Atype$=Type$
 310 : NEXT
 320 : REM Disconnect transistor

437� Chapter 18: Transistor Tester

 330 : PROC_Rsm
 340 : PRINT
 350 : IF LC%=12 OR MGain%<2 THEN
 360 : PRINT"Faulty transistor"
 370 : ELSE
 380 : PRINT"This is a ";Atype$;" transistor, pinout "Lead$(LC%);" Gain

";MGain%
 390 : ENDIF
 400 : PRINT"Press any key for another test"
 410 : A$=GET$
 420 : UNTIL FALSE
 430 :
 440 : DEF PROC_Analyse
 450 : PROC_AIN
 460 : Ic=((5*col%)/256)/220
 470 : Ib=((5*bas%)/256)/220000
 480 : IF Ib<>0 AND Ic<>0 THEN Gain%=Ic/Ib
 490 : PRINT ;Ic;" ";Ib;" ";Gain%
 500 : ENDPROC
 510 :
 520 : DEF FNtc(N%)
 530 : IF N%>&7F THEN N%=&FFFFFF00 OR N%
 540 : =N%
 550 :
 560 : DEF PROC_Rsm
 570 : ?PBK%=&FF
 580 : SYS "XIIC_Control",DA%,PBK%,1 TO ;Fl
 590 : ENDPROC
 600 :
 610 : DEF PROC_Mulout(N%)
 620 : LOCAL A%,B%,C%,M%
 630 : PROC_Rsm
 640 : FOR A%=0 TO 15
 650 : B%=N% AND 1
 660 : N%=N%>>1
 670 : M%=B%<<7 OR A% OR &60
 680 : ?PBK%=M%
 690 : SYS "XIIC_Control",DA%,PBK%,1 TO ;Fl
 700 : C%=M%
 710 : IF A%>7 THEN C%=C% AND &BF ELSE C%=C% AND &DF
 720 : ?PBK%=C%
 730 : SYS "XIIC_Control",DA%,PBK%,1 TO ;Fl
 740 : ?PBK%=M%
 750 : SYS "XIIC_Control",DA%,PBK%,1 TO ;Fl
 760 : NEXT
 770 : IF (Fl AND 1) =1 THEN DeviceD%=FALSE ELSE DeviceD%=TRUE
 780 : ENDPROC
 790 :
 800 : DEF PROC_AIN

(continued)

438 Part V: Exploring RISC OS �

Listing 18‑4 (continued)

 810 : LOCAL Fl,B%
 820 : ?PBS%=&30
 830 : REM Set up the control register
 840 : SYS "XIIC_Control",AA%,PBS%,1 TO ;Fl
 850 : SYS "XIIC_Control",AA% OR 1,PBK%,2 TO ;Fl
 860 : bas%=PBK%?1
 870 : ?PBS%=&31
 880 : SYS "XIIC_Control",AA%,PBS%,1 TO ;Fl
 890 : SYS "XIIC_Control",AA% OR 1,PBK%,2 TO ;Fl
 900 : IF (Fl AND 1) =1 THEN DeviceA%=FALSE ELSE DeviceA%=TRUE
 910 : col%=PBK%?1
 920 : col%=FNtc(col%)
 930 : bas%=FNtc(bas%)
 940 : ENDPROC
 950 :
 960 : REM Initialise switch pattern
 970 : DEF PROC_SPinit
 980 : LOCAL A%
 990 : FOR A%=0 TO 11
 1000 : READ Lead$(A%),Config%(A%)
 1010 : NEXT
 1020 : DATA ebc,&3128,cbe,&8528,ecb,&2A28,ceb,&4628,bce,&88A8,bec,&50A8
 1030 : DATA ebc,&1151,cbe,&0554,ecb,&0A51,ceb,&0652,bce,&08D4,bec,&10D2
 1040 : ENDPROC

This will test a transistor attached to the hardware and print out the results
in terms of transistor type, pin out, and gain. Lines 50 and 60 define the
addresses of the two I2C devices. If you set the external address lines or
get a PCF8574 instead of a PCF8574A, then you only have to change the
address here.

The infinite loop of the main program goes from line 100 to line 420. It prints
out the result of testing each configuration as it goes and finally comes up
with a result. Because the first six configurations are for NPN transistors, the
current transistor type is easily set; this is done in line 160.

Next, the transistor is tested for the current configuration, but with the base
resistor switched to the common line. This is the test without any base cur-
rent. This is done by simply exclusive ORing the configuration number with
&18, which controls the two base switches, S3 and S4. It inverts the state of
those bits so that where it would normally be set for a current source (high
for PNP or low for NPN), it’s switched to the same potential as the emitter.
This is done in line 160.

Then, at line 250, the normal configuration is set and the transistor’s readings
are made and analyzed. This is repeated for all 12 configurations, and
the transistor is disconnected. Then the conclusions are printed, and the

439� Chapter 18: Transistor Tester

program waits on a user pressing a key before doing it all again. To quit this
program, press the Escape key.

Let’s look more closely at some of the procedures that do the hard work.
Line 560 is the start of the very short procedure Rsm (reset switch matrix).
Its job is to write all 1s to the digital interface, thus triggering the latch’s clear
line. Notice that the SYS call has an X in front of it. This is a trick you can use
in programming for the desktop. It means, “Don’t throw an error if something
goes wrong.” This is to allow the calling program to handle any error, the TO;F1
at the end of the call is telling the computer to put the error byte into a vari-
able F1. It isn’t used in this procedure, but it’s in the multiplex output proce-
dure (Mulout).

This procedure takes in a number and outputs it to the multiplexed address-
able latch. This is the numeric gymnastics we mention earlier. It writes the
number passed to it one bit at a time in a FOR loop starting at line 640. The
least significant bit of the number is put into the variable B%, and then the
number is shifted one place to the right to move the next bit into the least
significant bit for next time around the loop.

The variable M% in line 670 is used to gather the bits you need to write to the
digital output. First, the bit you want to write is shifted up seven places to
the left. To put it into bit 7, this is the logically ORed with the loop counter
(which is the latch address), as well as the number &60, which sets the two
data latches high. This is then written to the digital output. Then the appro-
priate data latch is set to low and again this is sent out to the device. Finally,
the first number is written to the output again. This ensures that the data and
address is stable on the latch inputs before the enable line is sent low and
then high. The procedure also used the error flag F1 to set a variable that
tells if the analog device is actually present.

The procedure AIN (analog in) sets the channel to read and then reads it.
Note that when reading the data back, the byte we’re interested in is the
second byte. Hence, line 860 uses the ?1 indirection operator (meaning one
byte away from that pointed to by the variable).

The function tc may look odd. It just takes in a number and converts it from
the 8‐bit signed value received from the A/D converter into a 32‐bit signed
value that BASIC uses.

When this code is run, it produces an output like the following:

IIC Transistor Tester
By Mike Cook
8574 chip at 70 and 8591 chip at 90

 Ic Ib Gain
NPN ebc 0 0 0

(continued)

440 Part V: Exploring RISC OS �

NPN cbe Not Valid
NPN ecb 0 0 0
NPN ceb Not Valid
NPN bce 0 0 0
NPN bec Not Valid
PNP ebc -2.752130682E-3 -9.232954547E-6 298
PNP cbe -1.775568182E-4 -9.854403409E-6 18
PNP ecb Not Valid
PNP ceb 0 0 0
PNP bce Not Valid
PNP bec 0 0 0

This is a PNP transistor, pinout ebc Gain 298

Note the two lines with a gain are configurations where the collector and
emitter are swapped over. However, you can see the drastic reduction in gain
for the “wrong” pin out.

Out to the desktop
Now that listing is all well and good, but it isn’t a desktop multitasking appli-
cation. The code for that is too long to print here, but it’s downloadable at
www.dummies.com/go/raspberrypiprojects. Just like the example in
the last chapter, the listing shown here is the working part of the code. All
the rest is wimp stuff.

Figure 18-14 shows a portion of the screen while it’s running. You just need to
click the Test box to run a new test, and the window displays the gain, tran-
sistor type, and pin out. Happy testing!

Figure 18-14: 
The desktop

transistor
application.

http://www.dummies.com/go/raspberrypiprojects

The General‐Purpose Input/Output
Port in RISC OS

In This Chapter
▶▶ Seeing how to access the GPIO pins under RISC OS

▶▶ Making an LED blink

▶▶ Mixing BASIC and machine code

I
n this chapter, we show you how to use the GPIO pins under RISC OS. We
present the obligatory flashing LED, a sort of “Hello world!” for hardware.

We also tell you how to speed up output using machine code embedded into
the BASIC program. Finally, we show you how to read a GPIO input.

When you know the fundamentals of using the GPIO from RISC OS, you can
handle any interfacing project. After reading this chapter, you may want
to try to write the programs for the projects in Chapters 5 and 6 in BBC
BASIC instead of the Python we used. Have fun using this hidden side of the
Raspberry Pi!

Using the GPIO Pins in RISC OS
In the last chapter, we look at using the I2C bus, which occupies just two
of the pins of the GPIO connector. Both the Raspberry Pi Model A and the
Raspberry Pi Model B have 17 pins available to control or monitor things,
whereas the Raspberry Pi Model B+ and Raspberry Pi 2 Model B+ have
28 pins. However, in order to talk to these pins under RISC OS, you have
to resort to a little trickery.

The GPIO port is described on page 89 of the Broadcom BCM2835 ARM
Peripherals reference manual (www.raspberrypi.org/wp‐content/
uploads/2012/02/BCM2835‐ARM‐Peripherals.pdf), which may seem
overwhelming at first, but when you break it down isn’t so difficult.

Chapter 19

http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

442 Part V: Exploring RISC OS �

To read or write physical logic levels on those pins you read or write to
memory locations within the chip. These special memory locations are con-
nected to logic circuits that eventually appear as signals on the GPIO lines.
The Raspberry Pi is made from an advanced chip, so there are many options
and modes that the GPIO pins can operate in, which can be very confusing
at first.

Each GPIO pin is capable of being switched between various hardware
peripherals inside the chip. Each pin can be switched to being an input or
an output, but there are six other alternative options for each pin, although
not all the options are actually connected to anything. GPIO pin 18 is one pin
with more alternate functions than most. A diagram of how the GPIO pins are
switched, and GPIO 18 in particular, is shown in Figure 19-1.

This diagram may look complex, but it’s a simplification of how every pin is
wired up. The only difference between this pin and the others is what extra
circuitry, associated with the ALT (alternative) functions, it’s connected to.
In a move whose reason is perhaps known only to the chip designers, the
switch positions and the alternative function numbers do not match up. So,
when the switch is in, say, position 4, as defined by the alternate function
register bits for that pin, it is said to be in the ALT 0 position.

On the end of each pin are two switches allowing the pin to be pulled up,
pulled down, or not connected to either resistor. Pulling a pin gives a default
input level, if needed, for the pin. Note that the resistor values are not very
precisely defined, because it’s difficult to fabricate accurate resistor values
in a silicon integrated circuit (IC). All input pins must be driven to one logic
level or the other, and using an internal pull‐up or pull‐down resistor is the
simplest way to do this.

Figure 19-1: 
GPIO pin 18,

alternate
functions.

443� Chapter 19: The General‐Purpose Input/Output Port in RISC OS

Most of the time, someone is kind enough to provide a library to sort these
registers and functions into manageable proportions. There are several
libraries for GPIO manipulation under Linux; each language has a choice
of more than one. Things are slightly more complex under RISC OS for two
reasons:

✓✓ The operating system remaps the address of these registers.

✓✓ The area of memory allocated to these registers is accessible only when
the processor is running in supervisor mode, and you can only enter
that from machine code. Fortunately, using machine code is easy to do
from BASIC.

There is a GPIO library, implemented as a relocatable module (RM), from a
user who goes by the name of Tank, at www.tankstage.co.uk/software.
html. RMs are the way RISC OS extends its operating system. Over the years,
the number of modules has grown, and most of the operating system updates
are now performed by adding RMs. This is the equivalent of libraries or driv-
ers in Linux. You can see what modules are already loaded by opening a task
window (menu‐click the raspberry icon) and type modules. You can save this
window or scroll up and down.

Getting an LED to Blink
Time to get practical. Here, we start off by blinking an LED. Every project
we’ve worked on that uses a microcontroller starts off by blinking an LED.
At the same time, you can control the speed of the blinking by a GPIO input.
Follow these steps:

1.	Attach the cathode (negative end) of an LED to a ground pin, connect
the anode to a 220R resistor, and connect the other end of the resistor
to a GPIO pin.

A photograph and diagram of this are shown in Figure 19-2. Although
the pin out labels in this figure are for a revision 2 or later board, the
only pins used are unchanged on any board revision. We used single‐
pin header sockets to connect to the pins, and we soldered the LED
and resistor between two of them. We used GPIO 17 for the LED output
and a single wire connected between GPIO 4 and ground for the speed
control input.

2.	Download and unpack the GPIO module from www.tankstage.
co.uk/software.html.

http://www.tankstage.co.uk/software.html
http://www.tankstage.co.uk/software.html
http://www.tankstage.co.uk/software.html
http://www.tankstage.co.uk/software.html

444 Part V: Exploring RISC OS �

3.	Double‐click the file called GPIO.

This loads in the RM and adds extra software interrupt (SWI) calls to
the operating system. You only need to do this once per boot‐up. If you
fail to do it, an error window will appear, telling you that there is an
unknown SWI in any program in which you try to use the GPIO calls.
Correctly loading this module results in no visible feedback.

4.	Now create a BASIC file and enter the program shown in Listing 19-1.

Figure 19-2: 
Connecting

an LED to
the GPIO

pins.

Listing 19-1:  LED Blinking

 10 : REM GPIO blink
 20 : PRINT"Blink an LED"
 30 : PRINT"By Mike Cook"
 40 : PinOut%=17
 50 : PinIn%=4
 60 : SYS "GPIO_WriteMode", PinOut%,1 :REM Make output
 70 : SYS "GPIO_WriteMode", PinIn%,&18 :REM Make input with pull up
 80 : PRINT "Using GPIO ";PinOut%;" for the LED and ";PinIn%;" for speed

control"
 90 : PRINT:PRINT"Escape to end"
 100 : REPEAT
 110 : SYS "GPIO_WriteData", PinOut%,1
 120 : PROC_Delay
 130 : SYS "GPIO_WriteData", PinOut%,0
 140 : PROC_Delay
 150 : UNTIL FALSE
 160 :
 170 : DEF PROC_Delay
 180 : T% = TIME + 10
 190 : SYS"GPIO_ReadData",PinIn% TO A%

445� Chapter 19: The General‐Purpose Input/Output Port in RISC OS

 200 : IF A% = 0 THEN T% = T% + 30
 210 : REPEAT: UNTIL TIME>T%
 220 : ENDPROC

Lines 40 and 50 define what GPIO pins to use for the LED and speed con-
trol. The operating system call in line 60 then sets the output, and line
70 sets the speed control as an input. Note that the first three bits of the
number set the alternate mode switch, and the next two bits define if
there is a pull‐up resistor switched in and if it’s a pull‐up or pull‐down.

It’s much easier to define bit patterns like this in hexadecimal, because
you can see the bit pattern almost directly. The number we used here is
the hexadecimal value 18, which corresponds to the binary bit pattern
11000.

Finally, an infinite loop is entered that sets the output pin first to a 1 and
then to a 0. This is called toggling. In between each of those operations,
a delay procedure is called. This slows down the program so that you
can actually see the blink. Otherwise, it blinks too fast and you think the
LED is on all the time. The delay procedure sets the variable T% to a time
0.1 second ahead of the current time (line 180). Then line 190 reads the
value on the input pin and puts it into the variable A%. If this pin is at 0
(that is, it’s grounded), then an extra 0.3 second (or 30 centiseconds) is
added to T%. The rest of the procedure then keeps checking the current
time until it exceeds the variable T% when it will return.

5.	Save the file and then double‐click it to run.

You should now have a happily blinking LED. Connect a wire between
GPIO pin 4 and ground, and note how the blink rate slows down. Press
the Escape key to stop it and try altering the numbers in the delay
function.

6.	If you have access to an oscilloscope or a frequency counter, remove
lines 120 and 140 and run the code again.

Look at the frequency, and you see that you can change the state of the
LED every 48 microseconds (uS) or so. Although that is by no means the
fastest it can go, this is an interpreted language and there is quite a lot
of instruction needed to change just a single GPIO line.

Note that this pulse train is not totally steady. This is because of inter-
rupts going off to do things like updating the system TIME variable and
looking at the keyboard input. But it’s much steadier than the equivalent
program running under Linux.

446 Part V: Exploring RISC OS �

Mixing Languages
One of the biggest advantages of the RISC OS version of BASIC is that you
can drop into machine code any time you need to make something go faster.
Machine code is the raw language of the processor, so it executes at maxi-
mum speed. It isn’t difficult to learn, but it is different.

The processor has 16 registers — R0 through R15 — or internal memory loca-
tions, to play about with. R15 is used as the program counter, so generally
you don’t use that. Registers R14 and R13 also have special uses with this
operating system, as the return address storage and stack pointer, respec-
tively, so you should avoid them. All the others are up for general use. You
can also load and store registers in memory, but many of the machine code
functions you may be writing don’t involve that.

A good introduction to machine code programming is given in Appendix A
of Volume 4 of the Programmers Reference Manual (PRM), which is already
in the documentation directory of the RISC OS distribution. Alternatively, an
up‐to‐date version is online at www.riscos.com/support/developers/
prm/asm.html.

You use machine code from BASIC a bit like an assembler. You program in
mnemonics, and when you run the program, BASIC turns this into machine
code and places it into memory. For forward referencing (referring to memory
location labels the assembler has not seen yet), you need the assembler to
make two passes. This is done with a FOR loop and suppressing the errors
during the first pass with the OPT call. You can save that memory block the
machine code has been assembled into and load it into future programs if
you like. But by far the simplest method is to run it in the same program
because assembly is very quick and happens one time only.

As an example of using machine code, we’ve taken the LED blinking code, with
no delays, and turned it into machine code version shown in Listing 19-2.

Listing 19-2:  Simple Machine Code Blink

 10 : REM GPIO Speed Test
 20 : PRINT"GPIO Speed Test"
 30 : PRINT"By Mike Cook"
 40 : PRINT"How fast can machine code flash an LED:-"
 50 : Pin%=17
 60 : SYS "GPIO_WriteMode", Pin%,1 :REM Make output
 70 : PRINT"Using GPIO ";Pin%
 80 : DIM CODE% 255
 90 : FOR A%=0 TO 3 STEP 3

http://www.riscos.com/support/developers/prm/asm.html
http://www.riscos.com/support/developers/prm/asm.html

447� Chapter 19: The General‐Purpose Input/Output Port in RISC OS

 100 : P% = CODE%
 110 : [
 120 : OPT A%
 130 : .entry
 140 : MOV R8,#&300000 :REM Change for longer time
 150 : .loop
 160 : MOV R0,#Pin%
 170 : MOV R1,#1
 180 : SWI "GPIO_WriteData"
 190 : MOV R0,#Pin%
 200 : MOV R1,#0
 210 : SWI "GPIO_WriteData"
 220 : SUBS R8,R8,#1
 230 : BNE loop
 240 : MOVS PC,R14 : REM return to BASIC
 250 :]
 260 : NEXT
 270 : REPEAT
 280 : PRINT "This will flash for 5 seconds"
 290 : PRINT "Any key to continue - escape to quit now"
 300 : A$ = GET$
 310 : CALL entry
 320 : UNTIL FALSE

This is still using the system calls that the GPIO module gives, but this time
they’re called from machine code. This means that they aren’t interpreted
by the BASIC language. You can’t stop a machine code loop with the Escape
key. We’ve written this program so that it loops for a fixed number of cycles
before returning to BASIC. This takes about five seconds.

When calling an SWI from machine code, the parameters are passed and
returned in the registers, using R0 for the first parameters, R1 for the next,
and so on. When the SWI returns, R0 will contain the first returned value,
R1 the second, and so on. Most calls have only one or two parameters. This
explains why R0 needs to be loaded with the pin number to write to just
before every call, because the value in R0 is overridden by the call itself
when it exits.

Note that you can use variables set up in BASIC in your machine code, so the
pin number to output to is what has been set up before. However, once the
code is assembled, any further changes in that variable will not be recog-
nized. Register R8 has a big number in it — it is the number of cycles to flash
the LED before ending. After each flash, line 220 decrements this number and
if it hasn’t reached 0, it jumps back to the “loop” label.

448 Part V: Exploring RISC OS �

When you run this, you see that the LED looks like it’s permanently on, but a
bit dimmer than before. If you look at this pin with an oscilloscope, you see
that it’s rapidly turning on and off. Figure 19-3 shows a screenshot from our
oscilloscope.

Basically, an oscilloscope gives you a graph of voltage against time. You can
see that the pin is spending 780 nS high and then going low for about the
same amount of time, which gives a frequency of 673kHz. The SWI is still
doing a lot of work behind the scenes, and the absolute maximum speed you
could toggle that pin is about 20MHz with the right software. Of course, at
that speed, there is no time to do anything else.

In Tank’s download, there is an application called !GPIOconfig. If you click
that application, you get a graphic representation of the GPIO connector,
which will change depending on whether you’re using a Model B or a Model
B+. Pins are shown outlined in red for inputs or green for outputs, and, rather
cleverly, the center of the pin is filled in for a logic 1 and gray for a logic 0.
The GPIO pins are already set up after running the last program, so you can
see the link being connected and disconnected on pin 4 and, by clicking pin
17, you can make the LED turn on and off. A menu‐click on any pin will bring
up a small menu allowing you to select the mode of operation for the pin.
Figure 19-4 shows this application for a Model B+.

Figure 19-3: 
The GPIO

pin running
Listing 19-2.

449� Chapter 19: The General‐Purpose Input/Output Port in RISC OS

Figure 19-4: 
!GPIOconfig

graphic
GPIO

monitoring.

450 Part V: Exploring RISC OS �

The Part of Tens
Part VI

	

Find ten great online Raspberry Pi resources in a free article at
www.dummies.com/extras/raspberrypiprojects.

http://www.dummies.com/extras/raspberrypiprojects

In this part . . .
	 ✓	 Find ten great LEGO Raspberry Pi projects from around the

Internet.

	 ✓	 Find out about ten reliable suppliers of tools and components
and learn about different classes of suppliers.

Ten Great LEGO Pi Projects
In This Chapter

▶▶ Uncovering useful and interesting LEGO contraptions

▶▶ Using LEGO bricks with commercial software

▶▶ Bringing your old RXC brick back to life

L
EGO bricks are great mechanical prototyping tools. They allow you to
explore mechanical design with the minimum of tooling and construc-

tion. Although some people see them as nothing more than children’s toys,
those who know better see working with LEGO bricks as an exciting and
quick way to give a physical side to your electronic projects.

Panobot
Created by Andrew Mulholland, the Panobot (http://pi.gbaman.
info/?p=174) allows the Raspberry Pi to take a series of pictures using
the Raspberry Pi camera. These pictures can then be stitched together to
produce spectacular panoramic pictures. The Panobot works by moving
the camera both up and down and left and right. It’s run by a Python script,
which allows you to set how wide the panorama should be and how many
elevation pictures to take. After the images are taken, you download them to
a laptop and stitch them together into one image using the application Hugin
(http://hugin.sourceforge.net).

Andrew is a teacher in Northern Island who formed a robotics club at his
school. The club won the FLL Northern Ireland Technical Design Award
in 2012 and came in first in the category in the UK‐wide PA Consulting
Raspberry Pi competition. A photograph taken with the Panobot won the
2014 Adafruit Raspberry Pi photograph competition for Andrew as well.

Chapter 20

http://pi.gbaman.info/?p=174
http://pi.gbaman.info/?p=174
http://hugin.sourceforge.net

454 Part VI: The Part of Tens �

MATLAB and Simulink
Not so much a single project but a whole bunch of projects using the
Simulink package of the MATLAB language, this is a two‐wheel balanc-
ing, edge‐following, and obstacle‐avoiding robot (http://makerzone.
mathworks.com/lego). It can even balance on a ball, all from LEGO.
MATLAB isn’t free — a home license costs $149 as of this writing.

Raspberry Pi LEGO Case
There are lots of takes on producing a case for your Raspberry Pi using LEGO
bricks. This may not be the most high‐tech project you’ll come across, but
it’s simple, fun, and practical! You can be creative and make your own unique
case, or you can copy a case someone else has made — just search the web
for images using the keywords “Raspberry Pi case.” We particularly like the
one at www.raspberrypi‐spy.co.uk/2012/06/my‐raspberry‐pi‐
lego‐case.

Book Reader
With a handful of LEGO bricks, a Raspberry Pi, and a Raspberry Pi camera,
you can make a book reader. The camera takes photographs of the pages
of the book and, using optical character recognition software, converts it
into a text file. A LEGO contraption turns the pages of the book, and you can
even use some free text‐to‐speech software to read the book out loud. This
project requires a BrickPi (www.dexterindustries.com/BrickPi) for
the control. Find out more at http://makezine.com/projects/lego‐
bookreader‐digitize‐books‐with‐mindstorms‐and‐raspberry‐pi.

A Stop‐Motion LEGO Movie
Be the next Nick Parker — make your own LEGO movie using the Raspberry
Pi! You can create your own original film, or re‐create a popular film or sport-
ing event. During the FIFA World Cup 2014, England’s goals were success-
fully reproduced by stop‐motion LEGO (http://gu.com/p/3q643/stw).
Matches involving the United States have also been reproduced in LEGO.
You can find the project code and worksheets at www.raspberrypi.org/
learning/push‐button‐stop‐motion.

http://makerzone.mathworks.com/lego
http://makerzone.mathworks.com/lego
http://www.raspberrypi-spy.co.uk/2012/06/my-raspberry-pi-lego-case
http://www.raspberrypi-spy.co.uk/2012/06/my-raspberry-pi-lego-case
http://www.dexterindustries.com/BrickPi
http://makezine.com/projects/lego-bookreader-digitize-books-with-mindstorms-and-raspberry-pi
http://makezine.com/projects/lego-bookreader-digitize-books-with-mindstorms-and-raspberry-pi
http://gu.com/p/3q643/stw
http://www.raspberrypi.org/learning/push-button-stop-motion
http://www.raspberrypi.org/learning/push-button-stop-motion

455� Chapter 20: Ten Great LEGO Pi Projects

SriShooter
Using your mouse, a BrickPi, and the Raspberry Pi, you can control a ball‐
shooting robot to freak out your family. You can find the materials you need
at www.dexterindustries.com/BrickPi/projects/shooter.

browserBot
browserBot is a web‐browser‐controlled robot using the BrickPi. You can
control it from any computer, phone, or tablet connected to the same net-
work, with only a few lines of code. This is a great beginner’s project using
the dedicated Raspberry Pi extension controller board. Find out more at
www.dexterindustries.com/BrickPi/projects/browserbot.

BrickPi Remote Sentry Cannon
Using the Raspberry Pi camera with a gun sight overlay, this project employs
a Python program to aim and fire a LEGO cannon via a network connection.
Jasper Hayler‐Goodall put this together using a BrickPi interface and the
SriShooter to locate a target and fire. This just uses one axis of rotation to
steer the robot and has a Pygame interface, which introduces a bit of lag into
the video feedback. It isn’t a perfect project, which means that it’s ripe for
improvement! Check it out along with Jasper’s camera‐feed remote‐control
vehicle, at http://topshed.tumblr.com.

LEGO Digital Clock
Hans Anderson designed a digital clock where the numbers are displayed
on the face of Rubik’s Cube–like blocks. Then blogger dwalton76 took it
and wrote a version to use with the Raspberry Pi using Python and the
BrickPi. The results are quite stunning. You can find out more at http://
programmablebrick.blogspot.co.uk/2014/06/lego‐digital‐
clock.html.

http://www.dexterindustries.com/BrickPi/projects/shooter
http://www.dexterindustries.com/BrickPi/projects/browserbot
http://topshed.tumblr.com
http://programmablebrick.blogspot.co.uk/2014/06/lego-digital-clock.html
http://programmablebrick.blogspot.co.uk/2014/06/lego-digital-clock.html
http://programmablebrick.blogspot.co.uk/2014/06/lego-digital-clock.html

456 Part VI: The Part of Tens �

The Original LEGO MINDSTORMS
The original LEGO MINDSTORMS RCX kit has not been forgotten! This proj-
ect shows you how to program it using your Raspberry Pi and a language
called NQC. NQC stands for Not Quite C. It’s a simple C‐like language that
you can use to program the original LEGO control brick using the USB IR
tower of the 2.0 version of the kit or the serial IR interface of the earlier ones.
There are still lots of projects online for the older system. Go to http://
minordiscoveries.wordpress.com/2014/01/20/using‐nqc‐on‐a‐
raspberry‐pi‐to‐program‐a‐lego‐mindstorms‐rcx‐brick to find
out how to recompile the NQC compiler, as well as how to get the base
software on the brick. This project may be a bit involved, but it’s worth it to
bring your old controller back to life with the Raspberry Pi!

http://minordiscoveries.wordpress.com/2014/01/20/using-nqc-on-a-raspberry-pi-to-program-a-lego-mindstorms-rcx-brick
http://minordiscoveries.wordpress.com/2014/01/20/using-nqc-on-a-raspberry-pi-to-program-a-lego-mindstorms-rcx-brick
http://minordiscoveries.wordpress.com/2014/01/20/using-nqc-on-a-raspberry-pi-to-program-a-lego-mindstorms-rcx-brick

Ten Suppliers of Components
and Tools

In This Chapter
▶▶ Understanding the difference between a manufacturer, a distributor, and a supplier

▶▶ Finding hobbyist‐friendly resources

▶▶ Discovering the big five worldwide distributors

N
o matter what project you undertake, you need the right components,
the right tools, and the idea. Most of this book is about the idea, but

components and tools are vital for any project’s success, and that’s where
this chapter comes in.

Farnell/Newark
Farnell (known as Newark in the United States) is a major distributor and
partner of the Raspberry Pi Foundation. It has a vast range of parts, but it
does tend to charge top price, and some one‐off delivery charges on some
items are high. You can start shopping at www.farnell.com or www.
newark.com. A subsidiary of Farnell, called CPC, handles most hobby
orders. Next‐day delivery ensures minimum disruption to your projects.

Farnell also runs element14, a forum for developers and hobbyists, with
web events, video tutorials, and webinars. You can find out more at
www.element14.com.

RS Components
RS Components is the other major UK distributor. It used to be known as
Radio Spares (not to be confused with Radio Shack in the United States). RS
Components is hobbyist friendly and carries a great range of stock. Along

Chapter 21

http://www.farnell.com
http://www.newark.com
http://www.newark.com
http://www.element14.com

458 Part VI: The Part of Tens �

with Farnell, it oversees the production and distribution of the Raspberry Pi.
Find out more at www.rs‐online.com.

Rapid Electronics
Rapid (www.rapidonline.com) tends to have some parts that are a lot
cheaper than Farnell/Newark and RS Components, and it also has a spe-
cialized education section. Rapid’s website is more hobbyist friendly, and
although it doesn’t have as wide a range as some distributors, it’s worth
looking at.

Mouser Electronics
Mouser (www.mouser.com) is another major distributor, bigger in the United
States than in the UK, but still accessible worldwide. It has a wide range of
items in stock and offers free shipping in the UK on orders over £50.

Digi‐Key
The last of the big five major distributors, Digi‐Key (www.digikey.com)
ships product to more than 170 countries worldwide from a single location in
Thief River Falls, Minnesota. It has a wide range of products and easily acces-
sible data sheets, along with a good search section.

Proxxon
Proxxon (www.proxxon.com) is a German manufacturer of small, high‐
precision tools. Its tools aren’t the cheapest, but they’re the best we’ve come
across. Often, small tools are just cut‐down versions of larger ones, but
Proxxon understand that, as you go smaller, you have to push up the preci-
sion of the tool. One of this book’s authors, Mike Cook, couldn’t be without
his bench drill press, bench circular saw, and disc sander. They’re made for
light work and are ideal for model making and prototyping.

http://www.rs-online.com
http://www.rapidonline.com
http://www.mouser.com
http://www.digikey.com
http://www.proxxon.com

459� Chapter 21: Ten Suppliers of Components and Tools

Adafruit
Adafruit (www.adafruit.com), founded by the now legendary Limor Fried
(one of the founders of the open‐source movement), is a strange hybrid of
supplier and designer of hobbyist‐friendly boards and sub systems. It sup-
plies its own designs, taking advantage of whatever interesting components
come on the market. Adafruit has produced a number of Raspberry Pi expan-
sion boards, which it calls plates. It also organizes competitions and has regu-
lar live podcasts with a strong learning/teaching bias. Adafruit is based in the
United States but has distributors in many countries.

SparkFun
SparkFun (www.sparkfun.com) is another hybrid supplier/designer like
Adafruit, with its own manufacturing facility. As its name implies, SparkFun is
enthusiastic and puts the fun into the subject. It offers a great many breakout
boards, which are small PCB boards with a surface‐mounted IC with easy
soldered or breadboard access to the chips. Mainly a U.S.‐based company,
SparkFun has some worldwide distributors.

Electronic Goldmine
Electronic Goldmine (www.goldmine‐elec‐products.com) specializes
in surplus components and equipment and is a veritable treasure trove of
electronic delights. This is the sort of place you don’t so much go looking for
something specific, but instead look through its catalog and think, “Ooh, I
could use that for. . . .”

E.M.A. Model Supplies
Electronic components are important, but so is the enclosure you put them
in. Companies like E.M.A. (www.ema‐models.co.uk) supply parts for
making the mechanical components of a project, from sheet plastic to plastic
beams, screws to glue, as well as a few tools.

http://www.adafruit.com
http://www.sparkfun.com
http://www.goldmine-elec-products.com
http://www.ema-models.co.uk

460 Part VI: The Part of Tens �

Straight talk about pricing
The main problem with components and
tools is that consumer electronics have given
people the wrong idea about cost. In the past,
it was always cheaper to make something
yourself. Unfortunately, electronics doesn’t
work like that today. The process needed
to make integrated circuits is, by and large,
the same no matter how complex the circuit
is; but when you go to buy one, you’ll see a
vast range of prices. This range of prices is
mainly due to how new a device is, where
the manufacturers are trying to cover their
development cost, what the yield is (how
many actually work off the end of the line),
and last but no means least, the number you
want to buy. When buying parts, quantity is
everything.

Now, we’re not talking about the quantities that
the average hobbyist may buy. We’re talking
about industrial quantities that are measured in
the millions of parts. Sure, there are small price
breaks (sometimes for 10 or 100 of a single part),
but most manufacturers won’t get out of bed for
anything less than half a million. This is where

distributors come in. They buy in bulk and sell to
smaller buyers, taking a cut.

The last in the chain are the suppliers, which
are different from distributors in that they’re
specifically geared toward hobbyists. By and
large, suppliers sell you quality parts. But the
new players on the block are the many suppli-
ers on sites like eBay. They may have prices
that look too good to be true — and in some
cases, they are. A lot of these suppliers have
limited quantities of end‐of‐line stock picked up
for next to nothing, or even access to the reject
bin of manufacturers, so you don’t always get
what you think, or the supply is limited. You
can get some bargains, but you can also end
up with junk. You can even find yourself with
some fakes, where the chip actually looks fine
but nothing is inside. Buying from less‐than‐
reputable sites is a gamble, and there is little
chance of getting your money back if anything
goes wrong. You can’t go wrong with the sup-
pliers we mention in this chapter, but when you
start shopping elsewhere, do your research
and be prepared to get what you paid for it.

• Symbols •
> prompt, 396
>>> prompt, 61
* (asterisk), 396
@ (at symbol), 53
: (colon), 403
$ (dollar sign), 53, 55
. (dot), 380, 398
./ (dot-slash), 66
:: (double colons), 380
= (equal sign), in BASIC, 393
/ (forward slash), 53, 54, 56, 398
(hash symbol), 53, 64, 66, 273
| (OR operator), 356
! (pling), 383, 409
? (question mark), 432
<< (shift operator), 356
~ (tilde), 53, 55

• A •
About Raspi-config option,

Raspi-config, 25
accessories, selecting, 12–14
accuracy, of analog-to-digital conversion,

160–161
Acorn BASIC, 391–392
ACT light, 22
active-robots.com (website), 341
Adafruit (website), 9, 459
Adafruit_NeoPixel function, 133
Add to Rastrack option,

Raspi-config, 24
adjustCurrentDice function, 326

adjusting voltage, 105
advanced interfaces, 157–195
Advanced Option, Raspi-config,

24–25
advanced sensors, 360–364
Amazon (website), 32, 40
amplification factor, 419
analog readings, 434
analog sensors, connecting, 171
analog temperature sensor,

creating, 187–190
analog-to-digital conversions

about, 157–162
building converters, 165–182
methods for, 162–164

analog-to-digital microchip, interfacing
with, 190–195

AND gate, 346–348
Anderson, Hans (developer), 455
angled side cutters, 37
Apache, installing, 221
applause.ogg file, 319
Applications folder, 51
Apps folder, 380, 388
apt-get, 67–68
Arduino, 369
ARM6 core, 75
assembling tools, 31–38
asterisk (*), 396
at symbol (@), 53
Audacity (website), 273
audio jack, 14
audio output, 11, 12
authentication tokens, creating,

204–210

Index

462 Raspberry Pi Projects For Dummies �

• B •
band, 273–276
BASIC

about, 391–392
compared with Python, 400
equal sign, 393
indentation, 393
indirection, 394
line numbers, 393
operating system calls, 395
scope, 394
uppercase letters, 392
variable types, 392–393

*BASIC command, Command mode, 398
BASIC mode, 396, 397
BASIC V, 392
battery eliminator, building, 338–340
battery life, extending, 336–340
BBC BASIC, 391–392
Beech, Paul (designer), 13
behavior, troubleshooting, 27
binary files, 65
blinking LEDs (light-emitting diodes),

443–445
Bluetooth, accessing LEGO

MINDSTORMS EV3 Intelligent
Brick via, 280–281, 281–291

Bluetooth USB dongle, 282
BMP file format, 238, 239
bonus articles (website), 3
Book Reader project, 454
!Boot file, 401, 403, 405–406
box cutter, 38
boxing Light Fantastic project, 125–128
brass wire sponge, 36
breadboard, 32, 39–40, 41, 192
Breakdown game, controlling with

potentiometer, 182–187
BrickPi, 369, 454
BrickPi Remote Sentry Cannon

project, 455

brightness, controlling, 105
Broadcom BCM2835 ARM Peripherals

reference manual (website), 441
Broadcom BCM2835 central processing

unit (CPU), 10
browserBot project, 455
building

analog temperature sensor, 187–190
analog-to-digital converter, 165–182
authentication tokens, 204–210
battery eliminator, 338–340
circuit, 428–431
client ID, 204–207
Connect Four game, 251–262
dashboard alerts using PrivateEyePi,

211–216
data loggers, 221–224
database loggers, 216–231
dynamic web pages, 226–231
folders in RISC OS, 379–380
Google Docs spreadsheets, 203
image files, 238–242
Light Fantastic project, 121–128
Reset buttons, 335–336
of Sauce Bottle project, 83–85
sensor loggers, 224–226
Stomp! project, 98–101, 108–110
temperature alerts using PrivateEyePi,

211–216
temperature sensor, 198–199
Tug-of-War LEGO Robot, 300–305

• C •
C, 64–68
C For Dummies (Gookin), 67
C language, 391–392
cables, controlling LEGO motors

and sensors with connectors
and, 340–342

calculate_a_move function, 261
camera. See vision

463463� Index

Camera class, 266
camera serial interface (CSI)

connector, 11, 12
Carpenter, Guy (developer), 207
carpet knife, 38
case, 13
cat command, 59
*CAT command, Command mode, 398
cd command, 55
cellulose sponge, 36
Change User Password option,

Raspi-config, 23
!ChangeFSI, 389
Cheat Sheet (website), 3
check_for_4_in_a_row function, 261
checkForEvent function, 91, 305
check_for_new_move function, 262
checksum, 362
ching.ogg file, 319
choosing

accessories, 12–14
connections, 74
Linux distribution, 15
multimeter, 33–34
soldering iron, 34–36

circuit
for analog temperature sensor, 189
for analog-to-digital microchip

interface, 192
for building analog-to-digital converter,

166–171
constructing, 428–431
designing, 425–428
Light Fantastic project, 117–121

Ciseco (website), 40
client ID, creating, 204–207
client side, 218
client_id, 208
client_secret, 208
close command, 226
cloud

about, 197
connecting to, 197–198

constructing temperature sensor,
198–199

parts for temperature sensor, 198
software for temperature sensor,

200–202
CMYK (cyan, magenta, yellow, and

black), 385
code

customizing, 333–334
RISC OS, 391–415
writing for LEGO Dice game, 317–333

Codeacademy (website), 64
colon (:), 403
color, interpreting, 248–251
Color function, 139
Color Match game, 144–148
color models, 237
color spaces, 237
colorH function, 133–134
Colorizer (website), 251
Command mode, 396, 398
command prompt, 52–53
command-line interface, 52–59
commands
*BASIC, Command mode, 398
cat, 59
*CAT, Command mode, 398
cd, 55
close, 226
commit, 226
connect, 226
create cursor command, 226
*DESKTOP, Command mode, 398
*DIR, Command mode, 398
&E8, 414
&EF, 414
file, 56, 58–59
GOTO, 391–392
HELP, BASIC mode, 397
*HELP, Command mode, 398
insert, 226
in LEGO Direct project, 342–345
LIST, BASIC mode, 397

464 Raspberry Pi Projects For Dummies �

commands (continued)
LIST 40, BASIC mode, 397
ls, 53, 55, 56
mkdir, 57
mv, 59
My_Move, 318
Place_Dice, 318
print, 262, 273
PRINT variableName, BASIC

mode, 397
QUIT, BASIC mode, 397
*QUIT, Command mode, 398
Remove_Dice, 318
RENUMBER, BASIC mode, 397
rm, 59
rmdir, 57
RUN, BASIC mode, 397
See, 318
send continuous, 298
SHOW TABLES, 223
sudo, 20, 67
SYS, 395
Twist, 318
visual display unit (VDU), 395

commit command, 226
companion website, 3
comparator, 158–159
compatibility, webcam, 234, 265
compiled language, 60
components, suppliers of, 457–460
composite video output, 11, 12
computerMove function, 328, 331
computerPlay function, 326
!Configure icon, 387–388
configuring

network connection, 387–388
transistors, 421–424

connect command, 226
Connect Four game, building, 251–262
connecting

analog sensors, 171
choosing connections, 74

controlling LEGO motors and sensors
with cables and connections,
340–342

hardware, 20–22
to Raspberry Pi, 124–125

controlling
Breakdown game with potentiometer,

182–187
brightness, 105
graphics with !Draw, 385–386
graphics with !Paint, 383–385
LEGO motors and sensors with

connectors and cables, 340–342
conventional current flow, 418
conversions, analog-to-digital

about, 157–162
building converters, 165–182
methods for, 162–164

copy.deepcopy function, 326
cost

components and tools, 460
LEGO MINDSTORMS, 45
MATLAB, 454

create cursor command, 226
create_string_buffer function,

240–241
creating

analog temperature sensor, 187–190
analog-to-digital converter, 165–182
authentication tokens, 204–210
battery eliminator, 338–340
circuit, 428–431
client ID, 204–207
Connect Four game, 251–262
dashboard alerts using PrivateEyePi,

211–216
data loggers, 221–224
database loggers, 216–231
dynamic web pages, 226–231
folders in RISC OS, 379–380
Google Docs spreadsheets, 203
image files, 238–242

465465� Index

Light Fantastic project, 121–128
Reset buttons, 335–336
of Sauce Bottle project, 83–85
sensor loggers, 224–226
Stomp! project, 98–101, 108–110
temperature alerts using PrivateEyePi,

211–216
temperature sensor, 198–199
Tug-of-War LEGO Robot, 300–305

Creative Technology, Ltd., 234
CSI (camera serial interface) connector,

11, 12
current

defined, 418
measuring, 421–422

currentDice function, 324
customizing code, 333–334
cutting mat, 38
cyan, magenta, yellow, and black

(CMYK), 385

• D •
dashboard alerts, creating using

PrivateEyePi, 211–216
data, storing in Google Docs, 202–210
data loggers, creating, 221–224
DATA statement, 433
data types, 220
database loggers, creating, 216–231
databases

about, 217
basics of, 220

dbreader.php, 227–231
Debian Reference, 49
decodeMessage function, 290
deep color, 237
designing

circuits, 425–428
Stomp! project, 98, 106

desktop applications, full, 406–410
*DESKTOP command, Command

mode, 398

desktop environment
starting, 25–26
using, 48–50

Desktop folder, 51
Desktop mode, 396, 398
desoldering tools, 36
detecting

dice, 311–313
motion with webcams, 242–245

Digi-Key (website), 458
digital, converting analog to, 157–162
digital interface, testing, 431–433
digital readings, 161–162
DIM statement, 409
*DIR command, Command mode, 398
directories, 57
directory tree, 53–56
display serial interface (DSI) connector,

11, 12
Diversions folder, 388
Documents folder, 19, 388
dollar sign ($), 53, 55
dongle, 282
dot (.), 380, 398
dot-slash (./), 66
double colons (::), 380
downloading Raspbian Wheezy, 15
dragging and dropping, in RISC OS,

381–382
!Draw, managing graphics with, 385–386
DRAW function, 413
drawDice function, 324
drawFeedback function, 324
drawHeap function, 324
drawScreen function, 91, 305
drawWords function, 305
driving infrared codes, 298–300
DROP statement, 222
DrWimp tool, 410
DS18B20, 198
ds18b20_dir, 208
ds18b20.py, 207

466 Raspberry Pi Projects For Dummies �

DSI (display serial interface) connector,
11, 12

dynamic web pages, creating, 226–231

• E •
&E8 command, 414
eBay (website), 32
!Edit, 398
&EF command, 414
electricity, working with, 38–39
Electronic Goldmine (website), 459
element14 (website), 8
E.M.A. Model Supplies (website), 459
Enable Boot to Desktop/Scratch option,

Raspi-config, 23
Enable Camera option, Raspi-config, 24
equal sign (=), in BASIC, 393
Ethernet cable, 13
Ethernet port, 11, 12
EV3 (LEGO MINDSTORMS), 279–280
EV3 code, writing for LEGO Dice game,

317–318
event-driven style, 407
Expand Filesystem option,

Raspi-config, 23
extending battery life, 336–340

• F •
fahrenheit, 208
Farnell (website), 8, 32, 265, 457
FDX light, 22
file command, 56, 58–59
File Manager, using, 50–52
file path, 56
files

about, 58–59
applause.ogg, 319
binary, 65
!Boot, 401, 403, 405–406
ching.ogg, 319
Formats, 389

header, 65
laugh.ogg, 319
object, 65
saving in RISC OS, 381–382
!Sprites, 401
types of for images, 238
types of in RISC OS, 382–383

fill function, 133–134
findBlank function, 144
findTopFromSides function, 326
finished function, 144
flash drives, 14
flashing SD cards, 16–20
flashTreasure function, 139
Floyd-Stenberg method, 389
flywheel breaking, 343–344
FNread function, 403
folders
Applications, 51
Apps, 380, 388
Desktop, 51
Diversions, 388
Documents, 19, 388
pi, 50
Utilities, 389

folders, creating in RISC OS, 379–380
for loop, 130, 134, 241, 248, 434, 446
Formats file, 389
forward referencing, 446
forward slash (/), 53, 54, 56, 398
forward voltage drop, 94
freesound.org (website), 273
functions
Adafruit_NeoPixel, 133
adjustCurrentDice, 326
calculate_a_move, 261
check_for_4_in_a_row, 261
checkForEvent, 91, 305
check_for_new_move, 262
Color, 139
colorH, 133–134
computerMove, 328, 331

467467� Index

computerPlay, 326
copy.deepcopy, 326
create_string_buffer, 240–241
currentDice, 324
decodeMessage, 290
DRAW, 413
drawDice, 324
drawFeedback, 324
drawHeap, 324
drawScreen, 91, 305
drawWords, 305
fill, 133–134
findBlank, 144
findTopFromSides, 326
finished, 144
flashTreasure, 139
FNread, 403
generateHeap, 328
getAck, 326
getKey, 130
getMessage, 368
getStartDice, 326
GetTemperature, 207
getTop, 326
HoughCircles, 248, 252, 262
init, 322, 330, 333
initGPIO, 130
io.wiringPiSetup(), 85
keyPressed, 130
LINE, 413
main, 92, 144, 147, 152, 153, 261, 286,

304, 328, 368
makeMove, 144, 148, 152
messageG, 322
messageSend, 286
MOVE, 413
moveCritters, 104
pack_into(), 238, 241
pinInit, 356
play_mp3, 262
PLOT, 413
process_image, 262

readMessage, 290, 322
readNumber, 326
rgb2hsv, 251, 261
setBoard, 143, 147–148, 152, 153
setup, 104, 368
showCorrect, 144
showCritters, 104
showRemainder, 148
showSet, 144, 148
showSol, 143
showTarget, 148
shuffle, 144
strip.show, 130
struct s, 291
terminate, 91, 305
toggleColor, 153
updateWords, 305
wait_for_play, 262

• G •
games, for Light Fantastic project,

135–153
gdocs.py, 207
general-purpose input/output (GPIO)

connector
about, 10, 11, 73–74
pins in RISC OS, 441–443
in RISC OS, 441–449

generateHeap function, 328
getAck function, 326
getKey function, 130
getMessage function, 368
getStartDice function, 326
GetTemperature function, 207
getTop function, 326
GIF file format, 238
glitter lamp

about, 264
hacking, 266–272

Google (website), 209
Google Docs, storing data in, 202–210

468 Raspberry Pi Projects For Dummies �

Gookin, Dan (author)
C For Dummies, 67

GOTO command, 391–392
GPIO (general-purpose input/output)

connector
about, 10, 11, 73–74
pins in RISC OS, 441–443
in RISC OS, 441–449

!GPIOconfig, 448
graphics

managing with !Draw, 385–386
managing with !Paint, 383–385
preparing for Sauce Bottle project,

87–88
in RISC OS, 410–415

graphics editors, 398–401
GraphTask (website), 411
Gray, Frank (inventor), 350

• H •
hacking glitter lamp, 266–272
hand drill, 38
hand saw, 38
hang-ups, troubleshooting, 27
hardware, connecting, 20–22
hash symbol (#), 53, 64, 66, 273
Hayler-Goodall, Jasper (developer), 455
H-bridge circuit, 345
HDMI output, 11, 12
header files, 65
heap, 307
Hello World

about, 395
graphics editors, 398–401
operating system modes, 396–398
recreating, 395–396

HELP command, BASIC mode, 397
*HELP command, Command

mode, 398
Helping Hands, 37
Henderson, Gordon (developer), 353

hexadecimal-to-binary converter
(website), 78

“home directory,” 53
Hough, Paul (inventor), 245
Hough Transform Circles, 245
HoughCircles function, 248, 252, 262
HSL (hue, saturation, and lightness)

color space, 237, 248
HSV (hue, saturation, and value) color

space, 237, 385
HTML, 218–219
hue, saturation, and lightness (HSL)

color space, 237, 248
hue, saturation, and value (HSV) color

space, 237, 385
Hugin, 453
Hypertext Preprocessor (PHP), 218

• I •
icons

desktop environment, 48
explained, 3
lxTerminal, 246

identifying installed resources, 388–389
IDLE (Integrated DeveLopment

Environment), 49, 62–64
if statement, 328, 356, 393
images

color models, 237
color spaces, 237
creating, 238–242
file types, 238
recognition of, 245–248
resolution, 236–237
RISC OS, 414–415
taking with Raspberry Pi camera

module, 235–236
taking with webcams, 235
viewing on Raspberry Pi, 236

indentation, in BASIC, 393
index, 220

469469� Index

indirection, in BASIC, 394
Infrared (IR), accessing LEGO

MINDSTORMS EV3 Intelligent Brick
via, 280–281, 291–300

init function, 322, 330, 333
initGPIO function, 130
initializing tokens, 207–209
insert command, 226
INSERT statement, 224
installing

Apache, 221
Linux infrared remote control (LRC),

295–297
MySQL, 221
PHP, 221
WiringPi, 172

insult generator
about, 401
main program, 401–404
presentation of, 405–406

!Insulter, 406
integer data type, 241
Integrated DeveLopment Environment

(IDLE), 49, 62–64
interfaces

advanced, 157–195
with analog-to-digital microchip,

190–195
Internationalization Options,

Raspi-config, 23–24
Internet resources

active-robots.com, 341
Adafruit, 9, 459
Amazon, 32, 40
Audacity, 273
Bluetooth USB dongles, 282
bonus articles, 3
book companion website, 3
Book Reader project, 454
BrickPi, 454
BrickPi Remote Sentry Cannon

project, 455

Broadcom BCM2835 ARM Peripherals
reference manual, 441

browserBot project, 455
cases, 13
Cheat Sheet, 3
Ciseco, 40
Codeacademy, 64
Colorizer, 251
connectors, 341
designing patterns, 386
Digi-Key, 458
eBay, 32
Electronic Goldmine, 459
element14, 8
E.M.A. Model Supplies, 459
Farnell, 8, 32, 457
Google, 209
GraphTask, 411
hexadecimal-to-binary converter, 78
Hugin, 453
image file type comparisons, 238
IR sensor, 369
LEGO Digital Clock project, 455
LEGO MINDSTORMS projects, 456
Linux Foundation, 16
MATLAB and Simulink project, 454
mindsensors.com, 341
Mouser Electronics, 458
Newark, 9, 32, 457
OAuth 2.0, 204
online tutorials for !Draw, 386
OpenCV, 245
Panobot, 453
plot commands, 414
Pololu Robotics & Electronics, 41
Ponoko, 41
PrivateEyePi, 211
Programmers Reference Manual

(PRM), 446
Proxxon, 458
Python reference manual, 239
Rapid Electronics, 32, 458

470 Raspberry Pi Projects For Dummies �

Internet resources (continued)
Raspberry Pi, 24
Raspberry Pi forums, 68
Raspberry Pi Foundation, 8, 27
Raspberry Pi LEGO Case project, 454
Raspberry Pi USB webcams, 265
Raspbian Wheezy, 15
RISC OS, 375
Rise of the Triad, 387
RS Components, 8, 32, 457–458
SparkFun, 459
SriShooter project, 455
Stack Overflow, 68
Stop-Motion LEGO Movie project, 454
supported webcams, 235
Tank, 443
Thingiverse, 41
!Tiler, 414
tools in !Paint, 386
WiringPi, 172

interpreted language, 60
interpreting color, 248–251
io.wiringPiSetup() function, 85
IR (Infrared), accessing LEGO

MINDSTORMS EV3 Intelligent Brick
via, 280–281, 291–300

IR codes, driving, 298–300

• J •
Jazz project

about, 263–265
adding camera, 271–272
band, 273–276
gathering sounds, 273
hacking glitter lamp, 266–272
making box, 270–271
parts, 267–269
playing variations, 276
software, 273–276
testing, 272
testing webcam, 265–266

JPG file format, 238
jumper wires, 32, 189, 192, 198

• K •
key release, 297
keyboard

about, 13, 14
RISC OS, 376–377

keyPressed function, 130

• L •
languages, mixing, 446–449
laugh.ogg file, 319
launching programs, 48
LDD (LEGO Digital Designer), 316
LEDs (light-emitting diodes)

about, 93–95
blinking, 443–445
Light Fantastic project, 117

LEGO Dice game
about, 307–309
customizing code, 333–334
detecting dice, 311–313
EV3 code, 317–318
playing mechanism, 314–316
Raspberry Pi code, 318–333
theory of, 309–311
writing code, 317–333

LEGO Digital Clock project, 455
LEGO Digital Designer (LDD), 316
LEGO Direct project

about, 335
advanced sensors, 360–364
commanding, 342–345
controlling LEGO motors and sensors

with connectors and cables, 340–342
creating Reset buttons, 335–336
extending battery life, 336–340
listening to sensors, 358–369
Raspberry Pi software, 364–369

471471� Index

reading, 342–345
rolling motor control, 345–358
touch sensors, 358–359

LEGO MINDSTORMS, 44–45,
279–300, 456

LEGO Pi projects, recommended,
453–456

LEGO Technic, 279
Light Fantastic project

about, 115–116
boxing, 125–128
circuit, 117–121
Color Match game, 144–148
connecting to Raspberry Pi, 124–125
construction, 121–128
games for, 135–153
LEDs, 117
lighting, 128–134
Lights Out game, 149–153
PCB, 119–121
Sliding Block Puzzle game, 140–144
switches, 117–118
Treasure Hunt game, 136–140

light-emitting diodes (LEDs)
about, 92–95, 93–95
blinking, 443–445
Light Fantastic project, 117

lights
Light Fantastic project, 128–134
troubleshooting, 27

Lights Out game, 149–153
Lightweight X11 Desktop Environment

(LXDE), 15
lim% variable, 411
LINE function, 413
line numbers, in BASIC, 393
lines, RISC OS, 413–414
Linux distribution

flashing SD cards in, 19–20
selecting, 15

Linux Foundation (website), 16
Linux infrared remote control (LRC),

installing, 295–297

LIST 40 command, BASIC mode, 397
LIST command, BASIC mode, 397
listening to sensors, 358–369
LNK light, 22
logic gates, 346
loop variable, 434
LRC (Linux infrared remote control),

installing, 295–297
ls command, 53, 55, 56
LXDE (Lightweight X11 Desktop

Environment), 15, 26
LXTerminal, 48
lxTerminal icon, 246

• M •
machine code, 60
Macs, flashing SD cards on, 17–19
magnifier, 37
main function, 92, 144, 147, 152, 153, 261,

286, 304, 328, 368
makeMove function, 144, 148, 152
managing

Breakdown game with potentiometer,
182–187

brightness, 105
graphics with !Draw, 385–386
graphics with !Paint, 383–385
LEGO motors and sensors with

connectors and cables, 340–342
manual focus, for webcam, 265
markup language, 218
Maruch, Stef (author)

Python For Dummies, 64
MATLAB project, 454
McManus, Sean (author)

Raspberry Pi For Dummies, 425
MCP3008, 190–195
measuring current, 421–422
memory keys

about, 14
options for, 71–72

message type byte, 362

472 Raspberry Pi Projects For Dummies �

messageG function, 322
messageSend function, 286
Micro USB power supply, 14
Midori, 49
mindsensors.com (website), 341
mixing languages, 446–449
mkdir command, 57
models, 8, 9, 70–71. See also Raspberry

Pi, evolution of
modes, RISC OS, 410–413
modulated, 291
monitor

about, 12–13
troubleshooting, 27

motion, detecting with webcams,
242–245

motor feedback, 349–350
motors, rolling control, 345–348
mouse

about, 13, 14
RISC OS, 376

Mouser Electronics (website), 458
MOVE function, 413
moveCritters function, 104
Mulholland, Andrew (developer), 453
multimeter, 32, 33–34
mv command, 59
My_Move command, 318
MySQL, installing, 221
MySQLdb.connect statement, 226

• N •
NAND gate, 346–348
navigating Raspberry Pi, 47–52
needle-nose pliers, 37
negative line, 415
network

configuring connection, 387–388
RISC OS, 377

“new out of the box software”
(NOOBS), 15

Newark (website), 9, 32, 457
nonlinearity, in analog-to-digital

conversion, 161
NOOBS (“new out of the box

software”), 15
NOT gate, 346
NPN transistors, 419
null event, 407
NXT Ultrasonic sensor, 360
NXT/NXT 2.0 (LEGO MINDSTORMS),

279–280

• O •
OAuth 2.0, 204
object files, 65
OpenCV, 245, 253
operating system

calls in BASIC, 395
modes for Hello World, 396–398
setting up, 15–16

OR operator (|), 356
Overclock option, Raspi-config, 24
overclocking, 24

• P •
P% variable, 394
pack_into() function, 238, 241
!Paint, managing graphics with, 383–385
Panobot project, 453
Parker, Nick (developer), 454
parsing, 288
parts

for analog-to-digital microchip
interface, 192

for building analog-to-digital converter,
165–166

for Jazz project, 267–269
for Sauce Bottle project, 81–82
for Stomp! project, 96–97, 106
for temperature sensor, 198

473473� Index

payload length, 362
PCB (printed circuit board)

about, 77
Light Fantastic project, 119–121

PCF8574A, 425–426
PCF8591, 425–426
perfboards, 40
PHP, installing, 221
physical building and fabrication

tools, 36–38
pi folder, 50
PI Store, 48
pictures

color models, 237
color spaces, 237
creating, 238–242
file types, 238
recognition of, 245–248
resolution, 236–237
RISC OS, 414–415
taking with Raspberry Pi camera

module, 235–236
taking with webcams, 235
viewing on Raspberry Pi, 236

pinInit function, 356
pins, general-purpose input/output

(GPIO) connector, 441–443
Place_Dice command, 318
play_mp3 function, 262
pling (!), 383, 409
PLOT function, 413
PNP transistors, 420–421
Pololu Robotics & Electronics

(website), 41
Ponoko (website), 41
positive line, 414
potential divider, 94
potentiometer, controlling Breakdown

game with, 182–187
power input, 11, 12
power supply, 32

preparing
to build projects, 29–31
to build Raspberry Pi LEGO projects,

44–45
graphics for Sauce Bottle project, 87–88

pricing
components and tools, 460
LEGO MINDSTORMS, 45
MATLAB, 454

primary key, 220
print command, 262, 273
PRINT variableName command, BASIC

mode, 397
printed circuit board (PCB)

about, 77
Light Fantastic project, 119–121

PrivateEyePi, creating dashboard and
temperature alerts using, 211–216

PRM (Programmers Reference Manual),
388, 446

process_image function, 262
processor, options for, 75
PROCreadInsults procedure, 403
Programmers Reference Manual (PRM),

388, 446
programming, 60–68
programs, launching, 48
project boxes and housings, 41
projects, preparing to build, 29–31. See

also specific projects
prototyping boards, 40
Proxxon (website), 458
pulse train, 159
pulse width modulation (PWM), 105
Putty, 233
PWM (pulse width modulation), 105
PWR light, 22
Python, 15, 60–62, 64, 400
Python For Dummies (Maruch), 64
Python Games, 49
python_games directory, 56

474 Raspberry Pi Projects For Dummies �

• Q •
quadrature arrangement, 344
quadrature incremental rotary

encoder, 349
question mark (?), 432
QUIT command, BASIC mode, 397
*QUIT command, Command mode, 398

• R •
ramp method, 162–163, 172–176
Rapid Electronics (website), 32, 458
Raspberry Pi. See also specific topics

components of, 11–12
connecting hardware, 20–22
connecting to, 124–125
evolution of, 69–71
flashing SD cards, 16–20
forums, 68
getting a, 7–9
interface circuit, 425–427
navigating, 47–52
revision numbers, 76
selecting accessories, 12–14
setting up operating system, 15–16
setting up Raspi-config, 23–25
software, 364–369
starting desktop environment, 25–26
troubleshooting, 27
uses for, 10
website, 24
which to buy, 71–75
which you have, 75–78

Raspberry Pi camera module
setting up, 234–236
taking pictures with, 235–236

Raspberry Pi code, writing for LEGO Dice
game, 318–333

Raspberry Pi For Dummies
(McManus), 425

Raspberry Pi Foundation (website), 8, 27

Raspberry Pi LEGO Case project, 454
Raspberry Pi LEGO projects, preparing

to build, 44–45
Raspbian Wheezy, 15
Raspi-config, setting up, 23–25
RCA connector, 74
READ statement, 434
reading, in LEGO Direct project, 342–345
readMessage function, 290, 322
readNumber function, 326
receiving messages, 288–291
recreating Hello World, 395–396
regenerative breaking, 343–344
Remember icon, 3
Remove_Dice command, 318
RENUMBER command, BASIC mode, 397
repeatability, in analog-to-digital

conversion, 161
!ResEdit, 407
Reset buttons, creating, 335–336
resistor, 95, 198
resolution

of images, 236–237
RISC OS, 410–413

resources
identifying installed, 388–389
for LEGO Dice game, 319–333

revision numbers, 76
RGB model, 237, 248
rgb2hsv function, 251, 261
RISC OS

about, 373–374
BASIC, 391–395
coding, 391–415
dragging and dropping in, 381–382
file types, 382–383
full desktop applications, 406–410
general-purpose input/output (GPIO)

connector in, 441–449
getting, 375–377
graphics in, 410–415
Hello World, 395–401

475475� Index

identifying installed resources, 388–389
images, 414–415
insult generator, 401–406
keyboard, 376–377
lines, 413–414
modes, 410–413
mouse, 376
network, 377
resolution, 410–413
saving files, 381–382
shapes, 413–414
starting, 377–383
uniqueness of, 374–375
website, 375

Rise of the Triad, 387
RJ11 connector, 340
RJ12 connector, 340–341
rm command, 59
rmdir command, 57
Robotics Invention System (LEGO

MINDSTORMS), 279
rolling motor control, 345–348
RS Components (website), 8, 32, 457–458
Rubbish Bin, 51
rules, for Sauce Bottle project, 88–92
RUN command, BASIC mode, 397

• S •
safety

with soldering, 42–44
workspace, 31

samples, top and tail, 273
saturation, compared with value, 131
Sauce Bottle project

about, 81
construction, 83–85
parts, 81–82
preparing graphics, 87–88
rules, 88–92
schematic, 82–83
software, 86–92
testing, 85–86

saving files in RISC OS, 381–382
schematic

for Sauce Bottle project, 82–83
Stomp! project, 97–98, 107–108

scope, of BASIC, 394
Scratch, 48
screwdrivers, 37
SD card writer, 14
SD cards

about, 13, 14
flashing, 16–20

secret identity, 383
Secure Shell (SSH), 233
See command, 318
SELECT statement, 224
selecting

accessories, 12–14
connections, 74
Linux distribution, 15
multimeter, 33–34
soldering iron, 34–36

send continuous commands, 298
sending Bluetooth messages, 285–288
sensor lead, 345
sensor loggers, developing, 224–226
sensors

advanced, 360–364
listening to, 358–369
touch, 358–359

server-side language, 218
server-side scripting, 218–219
setBoard function, 143, 147–148,

152, 153
setPixelColor method, 112
setting switches, 433–435
setup

operating system, 15–16
Raspberry Pi camera module, 234–236
Raspi-config, 23–25
webcam, 234–236
workspace, 30–31

setup function, 104, 368
shapes, RISC OS, 413–414

476 Raspberry Pi Projects For Dummies �

shift operator (<<), 356
short data type, 241
SHOW TABLES command, 223
showCorrect function, 144
showCritters function, 104
showRemainder function, 148
showSet function, 144, 148
showSol function, 143
showTarget function, 148
shuffle function, 144
!SignalBox, 388–389
Simulink project, 454
SiteSpinner Pro, 231
Sliding Block Puzzle game, 140–144
software

for analog temperature sensor, 189–190
for analog-to-digital microchip

interface, 192–195
for building analog-to-digital

converters, 171–182
for Jazz project, 273–276
Raspberry Pi, 364–369
for Sauce Bottle project, 86–92
for Stomp! project, 101–104, 110–113
for temperature sensor, 200–202
for Transistor Tester project, 431–440

soldering iron
about, 32
safety with, 42–44
selecting, 34–36

soldering stand, 36
solderless breadboard, 189, 192, 198
source code, 65
spaghetti code, 391
Spark, 388
SparkFun (website), 459
speakers, 14
spreadsheet_key, 208
spreadsheets, creating Google Docs, 203
!Sprites file, 401
SriShooter project, 455
SSH (Secure Shell), 233

Stack Overflow (website), 68
starting

desktop environment, 25–26
RISC OS, 377–383

statements
DATA, 433
DIM, 409
DROP, 222
if, 328, 356, 393
INSERT, 224
MySQLdb.connect, 226
READ, 434
SELECT, 224

Stomp! project
about, 93
construction, 98–101, 108–110
controlling brightness, 105
design, 98, 106
how it plays, 104–105
LEDs, 93–95
parts, 96–97, 106
schematic, 97–98, 107–108
software, 101–104, 110–113
WS2812b, 107

Stop-Motion LEGO Movie project, 454
!Store, 387, 399
storing data in Google Docs, 202–210
string data type, 241
stripboards, 40, 41
strip.show function, 130
!StrongED, 398–399
struct functions, 291
successive approximation method,

163–164, 176–179
sudo command, 20, 67
suppliers, of components and tools,

457–460
switches

Light Fantastic project, 117–118
setting, 433–435

switching configurations, 422–424
SYS command, 395

477477� Index

• T •
table, 220
Tank (website), 443
task light, 37
Technical Stuff icon, 3
technique

about, 47
navigating Raspberry Pi, 47–52
programming, 60–68

temperature alerts, creating using
PrivateEyePi, 211–216

temperature sensor
constructing, 198–199
parts for, 198
software for, 200–202

!TempIEd, 407
templogger_gdocs.py, 207
temptest.php, 227–231
Terminal program, 17–19
terminate function, 91, 305
test circuit, 427–428
testing

digital interface, 431–433
Jazz project, 272
of Sauce Bottle project, 85–86
transistors, 435–440
webcam, 265–266

Thingiverse (website), 41
tilde (~), 53, 55
!Tiler, 414
Tip icon, 3
tip-cleaning paste, 36
TMP36 sensor, 189, 192
toggleColor function, 153
tools

assembling, 31–38
physical building and fabrication,

36–38
suppliers of, 457–460
using safely and effectively, 38–44

top and tail samples, 273
touch sensors, 358–359
TRACK3R robot, 301
tracking method, 164, 179–182
Transistor Tester project

about, 417
configuring transistors, 421–424
constructing circuit, 428–431
designing circuits, 425–428
outputting to desktop, 440
software, 431–440
testing transistors, 435–440
transistors, 418–421

transistors
about, 418–421
configuring, 421–424
testing, 435–440

Treasure Hunt game, 136–140
troubleshooting

programming, 68
Raspberry Pi, 27

true color, 237
Tug-of-War LEGO Robot, creating,

300–305
tuple, 237, 245
Twist command, 318
.txt file extension, 382–383

• U •
!UnixHome, 387
updateWords function, 305
uppercase letters, in BASIC, 392
USB, accessing LEGO MINDSTORMS EV3

Intelligent Brick via, 280–281
USB dongle, 282
USB hub, 13, 14
USB memory stick, 14
USB port, 11, 12
“user directory,” 53
Utilities folder, 389

478 Raspberry Pi Projects For Dummies �

• V •
value, compared with saturation, 131
valve. See transistors
variables

in BASIC, 392–393
lim%, 411
loop, 434
P%, 394

VDU (visual display unit) commands, 395
video, options for, 74
VideoCore IV graphics processing unit

(GPU), 10
viewing pictures on Raspberry Pi, 236
vision

about, 233
building Connect Four game, 251–262
creating image files, 238–242
detecting motion with webcams,

242–245
image recognition, 245–248
images, 236–238
interpreting color, 248–251
setting up webcam, 234–236

visual display unit (VDU) commands, 395
voltage, adjusting, 105

• W •
wait_for_play function, 262
Warning! icon, 3
web servers

about, 217
Farnell, 265
freesound.org, 273

webcams. See also vision
about, 264–265
access to interior of, 265
compatibility, 265
detecting motion with, 242–245
manual focus for, 265
setting up, 234–236

taking pictures with, 235
testing, 265–266

websites
active-robots.com, 341
Adafruit, 9, 459
Amazon, 32, 40
Audacity, 273
Bluetooth USB dongles, 282
bonus articles, 3
book companion website, 3
Book Reader project, 454
BrickPi, 454
BrickPi Remote Sentry Cannon

project, 455
Broadcom BCM2835 ARM Peripherals

reference manual, 441
browserBot project, 455
cases, 13
Cheat Sheet, 3
Ciseco, 40
Codeacademy, 64
Colorizer, 251
connectors, 341
designing patterns, 386
Digi-Key, 458
eBay, 32
Electronic Goldmine, 459
element14, 8
E.M.A. Model Supplies, 459
Farnell, 8, 32, 457
Google, 209
GraphTask, 411
hexadecimal-to-binary converter, 78
Hugin, 453
image file type comparisons, 238
IR sensor, 369
LEGO Digital Clock project, 455
LEGO MINDSTORMS projects, 456
Linux Foundation, 16
MATLAB and Simulink project, 454
mindsensors.com, 341
Mouser Electronics, 458

479479� Index

Newark, 9, 32, 457
OAuth 2.0, 204
online tutorials for !Draw, 386
OpenCV, 245
Panobot, 453
plot commands, 414
Pololu Robotics & Electronics, 41
Ponoko, 41
PrivateEyePi, 211
Programmers Reference Manual

(PRM), 446
Proxxon, 458
Python reference manual, 239
Rapid Electronics, 32, 458
Raspberry Pi, 24
Raspberry Pi forums, 68
Raspberry Pi Foundation, 8, 27
Raspberry Pi LEGO Case project, 454
Raspberry Pi USB webcams, 265
Raspbian Wheezy, 15
RISC OS, 375
Rise of the Triad, 387
RS Components, 8, 32, 457–458
SparkFun, 459
SriShooter project, 455
Stack Overflow, 68
Stop-Motion LEGO Movie project, 454
supported webcams, 235
Tank, 443
Thingiverse, 41
!Tiler, 414

tools in !Paint, 386
WiringPi, 172

WHERE clause, 224
while loop, 104, 152, 305, 331, 368
while True loop, 330
Wi-Fi, accessing LEGO MINDSTORMS EV3

Intelligent Brick via, 280–281
Wi-Fi Config, 49
Wimp (“windows, icons, menus,

pointers”), 407
Windows, flashing SD cards in, 16–17
“windows, icons, menus, pointers”

(Wimp), 407
!WinEdit, 407
!WinMenu, 376
wire strippers, 37
WiringPi, installing, 172
workspace

about, 29
assembling tools, 31–38
preparing to build projects, 29–31
preparing to build Raspberry Pi LEGO

projects, 44–45
safety, 31
setting up, 30–31
using tools safely and effectively, 38–44

WS2812b, 107

• Z •
!Zap, 398–401

Notes

Notes

Notes

About the Authors
Mike Cook: Mike has been making electronic things since he was at school.
Former Lecturer in Physics at Manchester Metropolitan University, he wrote
more than 300 computing and electronics articles in the pages of computer
magazines for 20 years starting in the 1980s. Leaving the university after
21 years when the Physics Department closed down, he got a series of proper
jobs where he designed digital TV set‐top boxes and access control systems.
Now retired and freelancing, he spends his days surrounded by wires,
exhibiting at maker fairs, and patrolling the forums as Grumpy Mike.

Jonathan Evans: Jonathan has a lifelong interest in computers and electron-
ics. Captivated by the microcomputer age in the 1980s, he taught himself how
to program a computer and quickly learned the marriage between computers
and electronics. He has gone on to become a distinguished IT professional
with more than 20 years of experience. His passion for creation and innovation
combines perfectly with the Raspberry Pi phenomenon. In his spare time, he
enjoys exploring projects to make the Raspberry Pi relevant to everyday life.
He enjoys sharing his ideas at http://projects.privateeyepi.com,
where he continues to explore the endless possibilities of this computing
platform.

Brock Craft: Brock is a lecturer in creative coding in the Department of
Computing at Goldsmiths, University of London, and a senior tutor at the
Royal College of Art. He is a specialist in physical computing, data visualiza-
tion, and the Internet of Things. Brock’s background is in the field of human–
computer interaction; he has more than a decade of experience making
interactive things that people can use, explore, and play with. When he isn’t
teaching and learning, Brock likes to make interactive stuff and digital art.

Dedication
To my sons, Alec and Graham. I am very proud of them both. As different as
chalk and cheese while being the same as peas in a pod.

� —Mike Cook

For Joann, Gabriella, and Jemma.

� —Jonathan Evans

For Barbara and Eleanor.

� —Brock Craft

http://projects.privateeyepi.com

Authors’ Acknowledgments
I would like to thank Brock Craft and Jonathan Evans for their contributions
to this book. I would also like to thank the staff at John Wiley & Sons for all
their help, encouragement, cajoling, and cooperation, especially Craig Smith,
Katie Mohr, Linda Morris, and Elizabeth Kuball.

� —Mike Cook

Thanks to my wonderful family for allowing me the space to dedicate time to
this book. Thanks also to the talented staff at Wiley, in particular Craig Smith,
who spotted me and converted me from blogger to writer. Full credit to my
two co‐authors, especially Mike, who provided technical assistance with
Chapter 9: Advanced Interfaces and whose idea spawned the Connect Four
section in Chapter 11: Webcam and Computer Vision.

� —Jonathan Evans

Putting this book together has been a long and rewarding process. It would
not have been possible without the support of my family, colleagues, and
friends, to whom I owe a tremendous debt of gratitude. I also thank my many
students, whose questions have inspired me to come up with all kinds of new
projects and ideas. Finally, I acknowledge the tireless work of my co‐authors,
with whom I’ve had the great pleasure to collaborate.

� —Brock Craft

Publisher’s Acknowledgments

Senior Acquisitions Editor: Katie Mohr

Project Editor: Elizabeth Kuball

Copy Editor: Elizabeth Kuball

Technical Editor: Daniel Soltis

Production Editor: Vinitha Vikraman

Cover Image: © Mike Cook

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part I Getting Started with Raspberry Pi Projects
	Chapter 1 Getting to Know the Raspberry Pi
	Getting a Raspberry Pi
	Discovering What You Can and Can’t Do with a Raspberry Pi
	Getting Familiar with Your Raspberry Pi
	Selecting Your Accessories
	Setting Up Your Operating System
	Flashing Your SD Card
	Flashing an SD card in Windows
	Flashing an SD card on a Mac
	Flashing an SD card in Linux

	Connecting Your Hardware
	Setting Up with Raspi‐config
	Starting Up the Desktop Environment
	Troubleshooting Your Raspberry Pi

	Chapter 2 Setting Up Your Tools and Workbench
	Getting Ready to Build Your Projects
	Setting up your workspace
	Keeping an eye on safety

	Assembling Your Tools
	Electronics tools
	Physical building and fabrication tools

	Using Your Tools Safely and Effectively
	Working with electricity
	Laying the foundation for your electronics work
	Soldering safely

	Getting Ready to Build Raspberry Pi LEGO Projects

	Chapter 3 Focusing on Technique
	Getting Around Your Raspberry Pi
	Using the desktop environment
	Using the File Manager

	Using the Command‐Line Interface
	The command prompt
	The directory tree
	The file path
	Directories
	Files

	Programming Like a Pro
	Python
	IDLE
	C

	Chapter 4 The Raspberry Family
	In the Beginning: Looking at the Evolution of the Raspberry Pi
	Deciding Which Raspberry Pi to Buy
	Memory
	General‐purpose input/output (GPIO)
	Video
	Processor

	Figuring Out Which Raspberry Pi You Have

	Part II Working with LEDs and Switches
	Chapter 5 The Sauce Bottle Game
	The Game
	Parts
	Schematic
	Construction
	Testing

	The Software
	Preparing the graphics
	The rules

	Taking It Farther

	Chapter 6 Stomp!
	Getting Acquainted with the LED
	Stomp 1
	Parts
	Schematic
	Design
	Construction
	Software
	How it plays

	Stomp 2
	Design
	Parts
	Schematic
	Construction
	Software

	Chapter 7 The Light Fantastic
	Introducing the Light Fantastic
	The Circuit
	LEDs
	Switches
	The PCB

	Construction
	Connecting to the Raspberry Pi
	Boxing the Light Fantastic

	Bringing It All to Life
	A bit of a show
	Things to try

	Chapter 8 Games for the Light Fantastic
	Treasure Hunt
	Sliding Block Puzzle
	Color Match
	Lights Out
	Exploring a World of Possibilities

	Part III Developing Advanced Interfaces
	Chapter 9 Advanced Interfaces
	Converting Analog to Digital
	Considering the accuracy of analog‐to‐digital conversion
	Making sense of a digital reading

	Introducing the Analog‐to‐Digital Conversion Methods
	The ramp method
	The successive approximation method
	The tracking method

	Building an Analog‐to‐Digital Converter
	Finding the parts you need
	Constructing the circuit
	Writing the software

	Using a Potentiometer to Control the Breakdown Game
	Creating an Analog Temperature Sensor
	Constructing the circuit
	Writing the software

	Interfacing with an Analog‐to‐Digital Microchip
	Assembling the parts you need
	Constructing the circuit
	Writing the software

	Chapter 10 Raspberry Pi in the Sky
	Understanding the Cloud
	Connecting to the cloud
	Assembling the parts you need
	Constructing the temperature sensor
	Writing the software

	Storing Data in Google Docs from Your Raspberry Pi
	Creating a new Google Docs spreadsheet
	Creating an authentication token

	Creating a Dashboard and Temperature Alerts Using PrivateEyePi
	Creating a Database Logger
	Understanding web servers and databases
	Explaining HTML and server‐side scripting
	Delving into database basics
	Installing MySQL, PHP, and Apache
	Creating the data logger
	Developing a sensor logger
	Creating a dynamic web page

	Chapter 11 Webcam and Computer Vision
	Setting Up the Webcam or Raspberry Pi Camera Module
	Taking a picture with a webcam
	Taking a picture with the Raspberry Pi camera module
	Viewing pictures on the Raspberry Pi

	Understanding Images
	Resolution
	Color spaces
	Color models
	Image file types

	Creating an Image File
	Detecting Motion with a Webcam
	Working with Image Recognition
	Interpreting Color
	Building a Connect Four Game Using Computer Vision

	Chapter 12 The Raspberry Jazz Glitter Trio
	Meeting the Gang
	The lamp
	The webcam

	Testing the Webcam
	Hacking the Glitter Lamp
	Assembling the necessary parts
	Making the box
	Adding the camera
	Testing

	Letting the Band Play
	Gathering the sounds
	Writing the software
	Playing variations on a theme

	Part IV Making the Raspberry Pi Your LEGO’s Magic Brick
	Chapter 13 The Pi Meets LEGO
	Exploring the MINDSTORMS Range
	Bluetooth messages
	Infrared messages

	Creating a Tug‐of‐War LEGO Robot
	Going on from Here

	Chapter 14 The LEGO Dice Game
	Introducing the Dice Game
	Understanding the Game Theory
	Detecting Dice
	Looking at the Playing Mechanism
	The dice
	The mechanism

	Writing the Code
	The EV3 code
	The Raspberry Pi code

	Customizing the Code

	Chapter 15 LEGO Direct
	Creating a Reset Button for the Raspberry Pi
	Making Batteries Last Longer
	Using Connectors and Cables to Control the LEGO Motors and Sensors
	Reading and Commanding
	The motor lead
	The sensor lead

	Rolling Your Own Motor Control
	Making it move
	Knowing where it is: Motor feedback
	Constructing the motor control system
	Writing the software

	Listening to Sensors
	Touch sensors
	Advanced sensors
	The Raspberry Pi software

	Part V Exploring RISC OS
	Chapter 16 Introducing RISC OS
	Knowing What Makes RISC OS Unique
	Preparing for Action: Getting RISC OS
	The mouse
	The keyboard
	The network

	All Systems Go: Starting Up RISC OS
	Taking a look around
	Making your own space
	Saving and loading by dragging and dropping
	Focusing on file types

	Handling Graphics with !Paint and !Draw
	!Paint
	!Draw

	Connecting to the Outside World
	Identifying the Resources That Are Already Installed

	Chapter 17 RISC OS Coding
	In the Beginning Was BASIC
	Uppercase letters
	Variable types
	Line numbers
	Indentation
	Only one equal sign
	Scope
	Indirection
	Operating system calls

	Hello World
	The past revisited
	Operating system modes
	The modern way of doing things

	The Insult Generator
	Looking at the main program
	Smartening it up

	Understanding Full Desktop Applications
	Working with Graphics in RISC OS
	Modes and resolution
	Lines and shapes
	Images

	Chapter 18 Transistor Tester
	Getting Acquainted with Transistors
	Configuring Transistors
	Measurement circuit
	Switching configurations

	Designing the Circuit
	Raspberry Pi interface circuit
	Test circuit

	Constructing the Circuit
	Writing the Software
	Testing the digital interface
	Setting the switches
	Transistor testing methodology
	Putting it all together
	Out to the desktop

	Chapter 19 The General‐Purpose Input/Output Port in RISC OS
	Using the GPIO Pins in RISC OS
	Getting an LED to Blink
	Mixing Languages

	Part VI The Part of Tens
	Chapter 20 Ten Great LEGO Pi Projects
	Panobot
	MATLAB and Simulink
	Raspberry Pi LEGO Case
	Book Reader
	A Stop‐Motion LEGO Movie
	SriShooter
	browserBot
	BrickPi Remote Sentry Cannon
	LEGO Digital Clock
	The Original LEGO MINDSTORMS

	Chapter 20 Ten Suppliers of Components and Tools
	Farnell/Newark
	RS Components
	Rapid Electronics
	Mouser Electronics
	Digi‐Key
	Proxxon
	Adafruit
	SparkFun
	Electronic Goldmine
	E.M.A. Model Supplies

	Index
	EULA

