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1 Which incidentally is what we requested our animal book cover be, but O’Reilly felt it wouldn’t translate well
into line art. I respectfully disagree, but a brown trout is a fair compromise.

Preface Or: What Are You Getting
Yourself Into Here?

Hello adventurous reader, welcome to our book! At this point, I assume that you’re
either interested in learning more about the wonders of stream processing or hoping
to spend a few hours reading about the glory of the majestic brown trout. Either way,
I salute you! That said, those of you in the latter bucket who don’t also have an
advanced understanding of computer science should consider how prepared you are
to deal with disappointment before forging ahead; caveat piscator, and all that.

To set the tone for this book from the get go, I wanted to give you a heads up about a
couple of things. First, this book is a little strange in that we have multiple authors,
but we’re not pretending that we somehow all speak and write in the same voice like
we’re weird identical triplets who happened to be born to different sets of parents.
Because as interesting as that sounds, the end result would actually be less enjoyable
to read. Instead, we’ve opted to each write in our own voices, and we’ve granted the
book just enough self-awareness to be able to make reference to each of us where
appropriate, but not so much self-awareness that it resents us for making it only into
a book and not something cooler like a robot dinosaur with a Scottish accent.1

As far as voices go, there are three you’ll come across:

Tyler
That would be me. If you haven’t explicitly been told someone else is speaking,
you can assume that it’s me, because we added the other authors somewhat late in
the game, and I was basically like, “hells no” when I thought about going back
and updating everything I’d already written. I’m the technical lead for the Data
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2 Or DataPLS, pronounced Datapals—get it?

Figure P-1. The cover that could have been...

Processing Languages ands Systems2 group at Google, responsible for Google
Cloud Dataflow, Google’s Apache Beam efforts, as well as Google-internal data
processing systems such as Flume, MillWheel, and MapReduce. I’m also a found‐
ing Apache Beam PMC member.

Slava
Slava was a long-time member
of the MillWheel team at Goo‐
gle, and later an original mem‐
ber of the Windmill team that
built MillWheel’s successor, the
heretofore unnamed system
that powers the Streaming
Engine in Google Cloud Data‐
flow. Slava is the foremost
expert on watermarks and time
semantics in stream processing
systems the world over, period.
You might find it unsurprising
then that he’s the author of
Chapter 3, Watermarks.

Reuven
Reuven is at the bottom of this
list because he has more expe‐
rience with stream processing
than both Slava and me com‐
bined and would thus crush us
if he were placed any higher. Reuven has created or led the creation of nearly all
of the interesting systems-level magic in Google’s general-purpose stream pro‐
cessing engines, including applying an untold amount of attention to detail in
providing high-throughput, low-latency, exactly-once semantics in a system that
nevertheless utilizes fine-grained checkpointing. You might find it unsurprising
that he’s the author of Chapter 5, Exactly-Once and Side Effects. He also happens
to be an Apache Beam PMC member.

Navigating This Book
Now that you know who you’ll be hearing from, the next logical step would be to find
out what you’ll be hearing about, which brings us to the second thing I wanted to

viii | Preface Or: What Are You Getting Yourself Into Here?



mention. There are conceptually two major parts to this book, each with four chap‐
ters, and each followed up by a chapter that stands relatively independently on its
own.

The fun begins with Part I, The Beam Model (Chapters 1–4), which focuses on the
high-level batch plus streaming data processing model originally developed for Goo‐
gle Cloud Dataflow, later donated to the Apache Software Foundation as Apache
Beam, and also now seen in whole or in part across most other systems in the indus‐
try. It’s composed of four chapters:

• Chapter 1, Streaming 101, which covers the basics of stream processing, establish‐
ing some terminology, discussing the capabilities of streaming systems, distin‐
guishing between two important domains of time (processing time and event
time), and finally looking at some common data processing patterns.

• Chapter 2, The What, Where, When, and How of Data Processing, which covers in
detail the core concepts of robust stream processing over out-of-order data, each
analyzed within the context of a concrete running example and with animated
diagrams to highlight the dimension of time.

• Chapter 3, Watermarks (written by Slava), which provides a deep survey of tem‐
poral progress metrics, how they are created, and how they propagate through
pipelines. It ends by examining the details of two real-world watermark imple‐
mentations.

• Chapter 4, Advanced Windowing, which picks up where Chapter 2 left off, diving
into some advanced windowing and triggering concepts like processing-time
windows, sessions, and continuation triggers.

Between Parts I and II, providing an interlude as timely as the details contained
therein are important, stands Chapter 5, Exactly-Once and Side Effects (written by
Reuven). In it, he enumerates the challenges of providing end-to-end exactly-once
(or effectively-once) processing semantics and walks through the implementation
details of three different approaches to exactly-once processing: Apache Flink,
Apache Spark, and Google Cloud Dataflow.

Next begins Part II, Streams and Tables (Chapters 6–9), which dives deeper into the
conceptual and investigates the lower-level “streams and tables” way of thinking
about stream processing, recently popularized by some upstanding citizens in the
Apache Kafka community but, of course, invented decades ago by folks in the data‐
base community, because wasn’t everything? It too is composed of four chapters:

• Chapter 6, Streams and Tables, which introduces the basic idea of streams and
tables, analyzes the classic MapReduce approach through a streams-and-tables
lens, and then constructs a theory of streams and tables sufficiently general to
encompass the full breadth of the Beam Model (and beyond).

Preface Or: What Are You Getting Yourself Into Here? | ix



• Chapter 7, The Practicalities of Persistent State, which considers the motivations
for persistent state in streaming pipelines, looks at two common types of implicit
state, and then analyzes a practical use case (advertising attribution) to inform
the necessary characteristics of a general state management mechanism.

• Chapter 8, Streaming SQL, which investigates the meaning of streaming within
the context of relational algebra and SQL, contrasts the inherent stream and table
biases within the Beam Model and classic SQL as they exist today, and proposes a
set of possible paths forward toward incorporating robust streaming semantics in
SQL.

• Chapter 9, Streaming Joins, which surveys a variety of different join types, ana‐
lyzes their behavior within the context of streaming, and finally looks in detail at
a useful but ill-supported streaming join use case: temporal validity windows.

Finally, closing out the book is Chapter 10, The Evolution of Large-Scale
Data Processing, which strolls through a focused history of the MapReduce lineage of
data processing systems, examining some of the important contributions that have
evolved streaming systems into what they are today.

Takeaways
As a final bit of guidance, if you were to ask me to describe the things I most want
readers to take away from this book, I would say this:

• The single most important thing you can learn from this book is the theory of
streams and tables and how they relate to one another. Everything else builds on
top of that. No, we won’t get to this topic until Chapter 6. That’s okay; it’s worth
the wait, and you’ll be better prepared to appreciate its awesomeness by then.

• Time-varying relations are a revelation. They are stream processing incarnate: an
embodiment of everything streaming systems are built to achieve and a powerful
connection to the familiar tools we all know and love from the world of batch.
We won’t learn about them until Chapter 8, but again, the journey there will help
you appreciate them all the more.

• A well-written distributed streaming engine is a magical thing. This arguably
goes for distributed systems in general, but as you learn more about how these
systems are built to provide the semantics they do (in particular, the case studies
from Chapters 3 and 5), it becomes all the more apparent just how much heavy
lifting they’re doing for you.

• LaTeX/Tikz is an amazing tool for making diagrams, animated or otherwise. A
horrible, crusty tool with sharp edges and tetanus, but an incredible tool none‐
theless. I hope the clarity the animated diagrams in this book bring to the com‐
plex topics we discuss will inspire more people to give LaTeX/Tikz a try (in
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“Figures” on page xii, we provide for a link to the full source for the animations
from this book).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Online Resources
There are a handful of associated online resources to aid in your enjoyment of this
book.

Preface Or: What Are You Getting Yourself Into Here? | xi



Figures
All the of the figures in this book are available in digital form on the book’s website.
This is particularly useful for the animated figures, only a few frames of which appear
(comic-book style) in the non-Safari formats of the book:

• Online index: http://www.streamingbook.net/figures
• Specific figures may be referenced at URLs of the form:

http://www.streamingbook.net/fig/<FIGURE-NUMBER>
For example, for Figure 2-5: http://www.streamingbook.net/fig/2-5

The animated figures themselves are LaTeX/Tikz drawings, rendered first to PDF,
then converted to animated GIFs via ImageMagick. For the more intrepid among
you, full source code and instructions for rendering the animations (from this book,
the “Streaming 101” and “Streaming 102” blog posts, and the original Dataflow
Model paper) are available on GitHub at http://github.com/takidau/animations. Be
warned that this is roughly 14,000 lines of LaTeX/Tikz code that grew very organi‐
cally, with no intent of ever being read and used by others. In other words, it’s a
messy, intertwined web of archaic incantations; turn back now or abandon all hope ye
who enter here, for there be dragons.

Code Snippets
Although this book is largely conceptual, there are are number of code and psuedo-
code snippets used throughout to help illustrate points. Code for the more functional
core Beam Model concepts from Chapters 2 and 4, as well as the more imperative
state and timers concepts in Chapter 7, is available online at http://github.com/taki
dau/streamingbook. Since understanding semantics is the main goal, the code is pro‐
vided primarily as Beam PTransform/DoFn implementations and accompanying unit
tests. There is also a single standalone pipeline implementation to illustrate the delta
between a unit test and a real pipeline. The code layout is as follows:

src/main/java/net/streamingbook/BeamModel.java
Beam PTransform implementations of Examples 2-1 through 2-9 and
Example 4-3, each with an additional method returning the expected output
when executed over the example datasets from those chapters.

src/test/java/net/streamingbook/BeamModelTest.java
Unit tests verifying the example PTransforms in BeamModel.java via generated
datasets matching those in the book.

src/main/java/net/streamingbook/Example2_1.java
Standalone version of the Example 2-1 pipeline that can be run locally or using a
distributed Beam runner.
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src/main/java/net/streamingbook/inputs.csv
Sample input file for Example2_1.java containing the dataset from the book.

src/main/java/net/streamingbook/StateAndTimers.java
Beam code implementing the conversion attribution example from Chapter 7
using Beam’s state and timers primitives.

src/test/java/net/streamingbook/StateAndTimersTest.java
Unit test verifying the conversion attribution DoFns from StateAndTimers.java.

src/main/java/net/streamingbook/ValidityWindows.java
Temporal validity windows implementation.

src/main/java/net/streamingbook/Utils.java
Shared utility methods.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Streaming Systems by Tyler Akidau,
Slava Chernyak, and Reuven Lax (O’Reilly). Copyright 2018 O’Reilly Media, Inc.,
978-1-491-98387-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
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Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://www.oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/streaming-systems.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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PART I

The Beam Model





CHAPTER 1

Streaming 101

Streaming data processing is a big deal in big data these days, and for good reasons;
among them are the following:

• Businesses crave ever-more timely insights into their data, and switching to
streaming is a good way to achieve lower latency

• The massive, unbounded datasets that are increasingly common in modern busi‐
ness are more easily tamed using a system designed for such never-ending vol‐
umes of data.

• Processing data as they arrive spreads workloads out more evenly over time,
yielding more consistent and predictable consumption of resources.

Despite this business-driven surge of interest in streaming, streaming systems long
remained relatively immature compared to their batch brethren. It’s only recently that
the tide has swung conclusively in the other direction. In my more bumptious
moments, I hope that might be in small part due to the solid dose of goading I origi‐
nally served up in my “Streaming 101” and “Streaming 102” blog posts (on which the
first few chapters of this book are rather obviously based). But in reality, there’s also
just a lot of industry interest in seeing streaming systems mature and a lot of smart
and active folks out there who enjoy building them.

Even though the battle for general streaming advocacy has been, in my opinion, effec‐
tively won, I’m still going to present my original arguments from “Streaming 101”
more or less unaltered. For one, they’re still very applicable today, even if much of
industry has begun to heed the battle cry. And for two, there are a lot of folks out
there who still haven’t gotten the memo; this book is an extended attempt at getting
these points across.
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1 For completeness, it’s perhaps worth calling out that this definition includes both true streaming as well as
microbatch implementations. For those of you who aren’t familiar with microbatch systems, they are stream‐
ing systems that use repeated executions of a batch processing engine to process unbounded data. Spark
Streaming is the canonical example in the industry.

To begin, I cover some important background information that will help frame the
rest of the topics I want to discuss. I do this in three specific sections:

Terminology
To talk precisely about complex topics requires precise definitions of terms. For
some terms that have overloaded interpretations in current use, I’ll try to nail
down exactly what I mean when I say them.

Capabilities
I remark on the oft-perceived shortcomings of streaming systems. I also propose
the frame of mind that I believe data processing system builders need to adopt in
order to address the needs of modern data consumers going forward.

Time domains
I introduce the two primary domains of time that are relevant in data processing,
show how they relate, and point out some of the difficulties these two domains
impose.

Terminology: What Is Streaming?
Before going any further, I’d like to get one thing out of the way: what is streaming?
The term streaming is used today to mean a variety of different things (and for sim‐
plicity I’ve been using it somewhat loosely up until now), which can lead to misun‐
derstandings about what streaming really is or what streaming systems are actually
capable of. As a result, I would prefer to define the term somewhat precisely.

The crux of the problem is that many things that ought to be described by what they
are (unbounded data processing, approximate results, etc.), have come to be
described colloquially by how they historically have been accomplished (i.e., via
streaming execution engines). This lack of precision in terminology clouds what
streaming really means, and in some cases it burdens streaming systems themselves
with the implication that their capabilities are limited to characteristics historically
described as “streaming,” such as approximate or speculative results.

Given that well-designed streaming systems are just as capable (technically more so)
of producing correct, consistent, repeatable results as any existing batch engine, I pre‐
fer to isolate the term “streaming” to a very specific meaning:

Streaming system
A type of data processing engine that is designed with infinite datasets in mind.1
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2 Readers familiar with my original “Streaming 101” article might recall that I rather emphatically encouraged
the abandonment of the term “stream” when referring to datasets. That never caught on, which I initially
thought was due to its catchiness and pervasive existing usage. In retrospect, however, I think I was simply
wrong. There actually is great value in distinguishing between the two different types of dataset constitutions:
tables and streams. Indeed, most of the second half of this book is dedicated to understanding the relationship
between those two.

If I want to talk about low-latency, approximate, or speculative results, I use those
specific words rather than imprecisely calling them “streaming.”

Precise terms are also useful when discussing the different types of data one might
encounter. From my perspective, there are two important (and orthogonal) dimen‐
sions that define the shape of a given dataset: cardinality and constitution.

The cardinality of a dataset dictates its size, with the most salient aspect of cardinality
being whether a given dataset is finite or infinite. Here are the two terms I prefer to
use for describing the coarse cardinality in a dataset:

Bounded data
A type of dataset that is finite in size.

Unbounded data
A type of dataset that is infinite in size (at least theoretically).

Cardinality is important because the unbounded nature of infinite datasets imposes
additional burdens on data processing frameworks that consume them. More on this
in the next section.

The constitution of a dataset, on the other hand, dictates its physical manifestation.
As a result, the constitution defines the ways one can interact with the data in ques‐
tion. We won’t get around to deeply examining constitutions until Chapter 6, but to
give you a brief sense of things, there are two primary constitutions of importance:

Table
A holistic view of a dataset at a specific point in time. SQL systems have tradi‐
tionally dealt in tables.

Stream2

An element-by-element view of the evolution of a dataset over time. The Map‐
Reduce lineage of data processing systems have traditionally dealt in streams.

We look quite deeply at the relationship between streams and tables in Chapters 6, 8,
and 9, and in Chapter 8 we also learn about the unifying underlying concept of time-
varying relations that ties them together. But until then, we deal primarily in streams
because that’s the constitution pipeline developers directly interact with in most data
processing systems today (both batch and streaming). It’s also the constitution that
most naturally embodies the challenges that are unique to stream processing.
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On the Greatly Exaggerated Limitations of Streaming
On that note, let’s next talk a bit about what streaming systems can and can’t do, with
an emphasis on can. One of the biggest things I want to get across in this chapter is
just how capable a well-designed streaming system can be. Streaming systems have
historically been relegated to a somewhat niche market of providing low-latency,
inaccurate, or speculative results, often in conjunction with a more capable batch sys‐
tem to provide eventually correct results; in other words, the Lambda Architecture.

For those of you not already familiar with the Lambda Architecture, the basic idea is
that you run a streaming system alongside a batch system, both performing essen‐
tially the same calculation. The streaming system gives you low-latency, inaccurate
results (either because of the use of an approximation algorithm, or because the
streaming system itself does not provide correctness), and some time later a batch
system rolls along and provides you with correct output. Originally proposed by
Twitter’s Nathan Marz (creator of Storm), it ended up being quite successful because
it was, in fact, a fantastic idea for the time; streaming engines were a bit of a letdown
in the correctness department, and batch engines were as inherently unwieldy as
you’d expect, so Lambda gave you a way to have your proverbial cake and eat it too.
Unfortunately, maintaining a Lambda system is a hassle: you need to build, provision,
and maintain two independent versions of your pipeline and then also somehow
merge the results from the two pipelines at the end.

As someone who spent years working on a strongly consistent streaming engine, I
also found the entire principle of the Lambda Architecture a bit unsavory. Unsurpris‐
ingly, I was a huge fan of Jay Kreps’ “Questioning the Lambda Architecture” post
when it came out. Here was one of the first highly visible statements against the
necessity of dual-mode execution. Delightful. Kreps addressed the issue of repeatabil‐
ity in the context of using a replayable system like Kafka as the streaming intercon‐
nect, and went so far as to propose the Kappa Architecture, which basically means
running a single pipeline using a well-designed system that’s appropriately built for
the job at hand. I’m not convinced that notion requires its own Greek letter name, but
I fully support the idea in principle.

Quite honestly, I’d take things a step further. I would argue that well-designed stream‐
ing systems actually provide a strict superset of batch functionality. Modulo perhaps
an efficiency delta, there should be no need for batch systems as they exist today. And
kudos to the Apache Flink folks for taking this idea to heart and building a system
that’s all-streaming-all-the-time under the covers, even in “batch” mode; I love it.
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Batch and Streaming Efficiency Differences
One which I propose is not an inherent limitation of streaming systems, but simply a
consequence of design choices made in most streaming systems thus far. The effi‐
ciency delta between batch and streaming is largely the result of the increased bun‐
dling and more efficient shuffle transports found in batch systems. Modern batch
systems go to great lengths to implement sophisticated optimizations that allow for
remarkable levels of throughput using surprisingly modest compute resources.
There’s no reason the types of clever insights that make batch systems the efficiency
heavyweights they are today couldn’t be incorporated into a system designed for
unbounded data, providing users flexible choice between what we typically consider
to be high-latency, higher-efficiency “batch” processing and low-latency, lower-
efficiency “streaming” processing. This is effectively what we’ve done at Google with
Cloud Dataflow by providing both batch and streaming runners under the same uni‐
fied model. In our case, we use separate runners because we happen to have two inde‐
pendently designed systems optimized for their specific use cases. Long term, from an
engineering perspective, I’d love to see us merge the two into a single system that
incorporates the best parts of both while still maintaining the flexibility of choosing
an appropriate efficiency level. But that’s not what we have today. And honestly,
thanks to the unified Dataflow Model, it’s not even strictly necessary; so it may well
never happen.

The corollary of all this is that broad maturation of streaming systems combined with
robust frameworks for unbounded data processing will in time allow for the relega‐
tion of the Lambda Architecture to the antiquity of big data history where it belongs.
I believe the time has come to make this a reality. Because to do so—that is, to beat
batch at its own game—you really only need two things:

Correctness
This gets you parity with batch. At the core, correctness boils down to consistent
storage. Streaming systems need a method for checkpointing persistent state over
time (something Kreps has talked about in his “Why local state is a fundamental
primitive in stream processing” post), and it must be well designed enough to
remain consistent in light of machine failures. When Spark Streaming first
appeared in the public big data scene a few years ago, it was a beacon of consis‐
tency in an otherwise dark streaming world. Thankfully, things have improved
substantially since then, but it is remarkable how many streaming systems still
try to get by without strong consistency.
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3 If you’re unfamiliar with what I mean when I say exactly-once, it’s referring to a specific type of consistency
guarantee that certain data processing frameworks provide. Consistency guarantees are typically bucketed
into three main classes: at-most-once processing, at-least-once processing, and exactly-once processing. Note
that the names in use here refer to the effective semantics as observed within the outputs generated by the
pipeline, not the actual number of times a pipeline might process (or attempt to process) any given record.
For this reason, the term effectively-once is sometimes used instead of exactly-once, since it’s more representa‐
tive of the underlying nature of things. Reuven covers these concepts in much more detail in Chapter 5.

To reiterate—because this point is important: strong consistency is required for
exactly-once processing,3 which is required for correctness, which is a require‐
ment for any system that’s going to have a chance at meeting or exceeding the
capabilities of batch systems.  Unless you just truly don’t care about your results, I
implore you to shun any streaming system that doesn’t provide strongly consis‐
tent state. Batch systems don’t require you to verify ahead of time if they are
capable of producing correct answers; don’t waste your time on streaming sys‐
tems that can’t meet that same bar.

If you’re curious to learn more about what it takes to get strong consistency in a
streaming system, I recommend you check out the MillWheel, Spark Streaming,
and Flink snapshotting papers. All three spend a significant amount of time dis‐
cussing consistency. Reuven will dive into consistency guarantees in Chapter 5,
and if you still find yourself craving more, there’s a large amount of quality infor‐
mation on this topic in the literature and elsewhere.

Tools for reasoning about time
This gets you beyond batch. Good tools for reasoning about time are essential for
dealing with unbounded, unordered data of varying event-time skew. An increas‐
ing number of modern datasets exhibit these characteristics, and existing batch
systems (as well as many streaming systems) lack the necessary tools to cope with
the difficulties they impose (though this is now rapidly changing, even as I write
this). We will spend the bulk of this book explaining and focusing on various fac‐
ets of this point.

To begin with, we get a basic understanding of the important concept of time
domains, after which we take a deeper look at what I mean by unbounded, unor‐
dered data of varying event-time skew. We then spend the rest of this chapter
looking at common approaches to bounded and unbounded data processing,
using both batch and streaming systems.

Event Time Versus Processing Time
To speak cogently about unbounded data processing requires a clear understanding
of the domains of time involved. Within any data processing system, there are typi‐
cally two domains of time that we care about:
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Event time
This is the time at which events actually occurred.

Processing time
This is the time at which events are observed in the system.

Not all use cases care about event times (and if yours doesn’t, hooray! your life is eas‐
ier), but many do. Examples include characterizing user behavior over time, most
billing applications, and many types of anomaly detection, to name a few.

In an ideal world, event time and processing time would always be equal, with events
being processed immediately as they occur. Reality is not so kind, however, and the
skew between event time and processing time is not only nonzero, but often a highly
variable function of the characteristics of the underlying input sources, execution
engine, and hardware. Things that can affect the level of skew include the following:

• Shared resource limitations, like network congestion, network partitions, or
shared CPU in a nondedicated environment

• Software causes such as distributed system logic, contention, and so on
• Features of the data themselves, like key distribution, variance in throughput, or

variance in disorder (i.e., a plane full of people taking their phones out of air‐
plane mode after having used them offline for the entire flight)

As a result, if you plot the progress of event time and processing time in any real-
world system, you typically end up with something that looks a bit like the red line in
Figure 1-1.
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4 Since the original publication of “Streaming 101,” numerous individuals have pointed out to me that it would
have been more intuitive to place processing time on the x-axis and event time on the y-axis. I do agree that
swapping the two axes would initially feel more natural, as event time seems like the dependent variable to
processing time’s independent variable. However, because both variables are monotonic and intimately
related, they’re effectively interdependent variables. So I think from a technical perspective you just have to
pick an axis and stick with it. Math is confusing (especially outside of North America, where it suddenly
becomes plural and gangs up on you).

Figure 1-1. Time-domain mapping. The x-axis represents event-time completeness in the
system; that is, the time X in event time up to which all data with event times less than X
have been observed. The y-axis4 represents the progress of processing time; that is, nor‐
mal clock time as observed by the data processing system as it executes.

In Figure 1-1, the black dashed line with slope of 1 represents the ideal, where pro‐
cessing time and event time are exactly equal; the red line represents reality. In this
example, the system lags a bit at the beginning of processing time, veers closer toward
the ideal in the middle, and then lags again a bit toward the end. At first glance, there
are two types of skew visible in this diagram, each in different time domains:

Processing time
The vertical distance between the ideal and the red line is the lag in the
processing-time domain. That distance tells you how much delay is observed (in
processing time) between when the events for a given time occurred and when
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5 This result really shouldn’t be surprising (but was for me, hence why I’m pointing it out), because we’re effec‐
tively creating a right triangle with the ideal line when measuring the two types of skew/lag. Maths are cool.

they were processed. This is the perhaps the more natural and intuitive of the two
skews.

Event time
The horizontal distance between the ideal and the red line is the amount of
event-time skew in the pipeline at that moment. It tells you how far behind the
ideal (in event time) the pipeline is currently.

In reality, processing-time lag and event-time skew at any given point in time are
identical; they’re just two ways of looking at the same thing.5 The important takeaway
regarding lag/skew is this: Because the overall mapping between event time and pro‐
cessing time is not static (i.e., the lag/skew can vary arbitrarily over time), this means
that you cannot analyze your data solely within the context of when they are observed
by your pipeline if you care about their event times (i.e., when the events actually
occurred). Unfortunately, this is the way many systems designed for unbounded data
have historically operated. To cope with the infinite nature of unbounded datasets,
these systems typically provide some notion of windowing the incoming data. We
discuss windowing in great depth a bit later, but it essentially means chopping up a
dataset into finite pieces along temporal boundaries. If you care about correctness
and are interested in analyzing your data in the context of their event times, you can‐
not define those temporal boundaries using processing time (i.e., processing-time
windowing), as many systems do; with no consistent correlation between processing
time and event time, some of your event-time data are going to end up in the wrong
processing-time windows (due to the inherent lag in distributed systems, the online/
offline nature of many types of input sources, etc.), throwing correctness out the win‐
dow, as it were. We look at this problem in more detail in a number of examples in
the sections that follow, as well as the remainder of the book.

Unfortunately, the picture isn’t exactly rosy when windowing by event time, either. In
the context of unbounded data, disorder and variable skew induce a completeness
problem for event-time windows: lacking a predictable mapping between processing
time and event time, how can you determine when you’ve observed all of the data for
a given event time X? For many real-world data sources, you simply can’t. But the vast
majority of data processing systems in use today rely on some notion of complete‐
ness, which puts them at a severe disadvantage when applied to unbounded datasets.

I propose that instead of attempting to groom unbounded data into finite batches of
information that eventually become complete, we should be designing tools that
allow us to live in the world of uncertainty imposed by these complex datasets. New
data will arrive, old data might be retracted or updated, and any system we build
should be able to cope with these facts on its own, with notions of completeness being
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a convenient optimization for specific and appropriate use cases rather than a seman‐
tic necessity across all of them.

Before getting into specifics about what such an approach might look like, let’s finish
up one more useful piece of background: common data processing patterns.

Data Processing Patterns
At this point, we have enough background established that we can begin looking at
the core types of usage patterns common across bounded and unbounded data pro‐
cessing today. We look at both types of processing and, where relevant, within the
context of the two main types of engines we care about (batch and streaming, where
in this context, I’m essentially lumping microbatch in with streaming because the dif‐
ferences between the two aren’t terribly important at this level).

Bounded Data
Processing bounded data is conceptually quite straightforward, and likely familiar to
everyone. In Figure 1-2, we start out on the left with a dataset full of entropy. We run
it through some data processing engine (typically batch, though a well-designed
streaming engine would work just as well), such as MapReduce, and on the right side
end up with a new structured dataset with greater inherent value.

Figure 1-2. Bounded data processing with a classic batch engine. A finite pool of
unstructured data on the left is run through a data processing engine, resulting in corre‐
sponding structured data on the right.

Though there are of course infinite variations on what you can actually calculate as
part of this scheme, the overall model is quite simple. Much more interesting is the
task of processing an unbounded dataset. Let’s now look at the various ways unboun‐
ded data are typically processed, beginning with the approaches used with traditional
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batch engines and then ending up with the approaches you can take with a system
designed for unbounded data, such as most streaming or microbatch engines.

Unbounded Data: Batch
Batch engines, though not explicitly designed with unbounded data in mind, have
nevertheless been used to process unbounded datasets since batch systems were first
conceived. As you might expect, such approaches revolve around slicing up the
unbounded data into a collection of bounded datasets appropriate for batch
processing.

Fixed windows
The most common way to process an unbounded dataset using repeated runs of a
batch engine is by windowing the input data into fixed-size windows and then pro‐
cessing each of those windows as a separate, bounded data source (sometimes also
called tumbling windows), as in Figure 1-3. Particularly for input sources like logs, for
which events can be written into directory and file hierarchies whose names encode
the window they correspond to, this sort of thing appears quite straightforward at
first blush because you’ve essentially performed the time-based shuffle to get data into
the appropriate event-time windows ahead of time.

In reality, however, most systems still have a completeness problem to deal with
(What if some of your events are delayed en route to the logs due to a network parti‐
tion? What if your events are collected globally and must be transferred to a common
location before processing? What if your events come from mobile devices?), which
means some sort of mitigation might be necessary (e.g., delaying processing until
you’re sure all events have been collected or reprocessing the entire batch for a given
window whenever data arrive late).

Figure 1-3. Unbounded data processing via ad hoc fixed windows with a classic batch
engine. An unbounded dataset is collected up front into finite, fixed-size windows of
bounded data that are then processed via successive runs a of classic batch engine.
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Sessions
This approach breaks down even more when you try to use a batch engine to process
unbounded data into more sophisticated windowing strategies, like sessions. Sessions
are typically defined as periods of activity (e.g., for a specific user) terminated by a
gap of inactivity. When calculating sessions using a typical batch engine, you often
end up with sessions that are split across batches, as indicated by the red marks in
Figure 1-4. We can reduce the number of splits by increasing batch sizes, but at the
cost of increased latency. Another option is to add additional logic to stitch up ses‐
sions from previous runs, but at the cost of further complexity.

Figure 1-4. Unbounded data processing into sessions via ad hoc fixed windows with a
classic batch engine. An unbounded dataset is collected up front into finite, fixed-size
windows of bounded data that are then subdivided into dynamic session windows via
successive runs a of classic batch engine.

Either way, using a classic batch engine to calculate sessions is less than ideal. A nicer
way would be to build up sessions in a streaming manner, which we look at later on.

Unbounded Data: Streaming
Contrary to the ad hoc nature of most batch-based unbounded data processing
approaches, streaming systems are built for unbounded data. As we talked about ear‐
lier, for many real-world, distributed input sources, you not only find yourself dealing
with unbounded data, but also data such as the following:

• Highly unordered with respect to event times, meaning that you need some sort
of time-based shuffle in your pipeline if you want to analyze the data in the con‐
text in which they occurred.

• Of varying event-time skew, meaning that you can’t just assume you’ll always see
most of the data for a given event time X within some constant epsilon of time Y.

There are a handful of approaches that you can take when dealing with data that have
these characteristics. I generally categorize these approaches into four groups: time-
agnostic, approximation, windowing by processing time, and windowing by event
time.
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Let’s now spend a little bit of time looking at each of these approaches.

Time-agnostic
Time-agnostic processing is used for cases in which time is essentially irrelevant; that
is, all relevant logic is data driven. Because everything about such use cases is dictated
by the arrival of more data, there’s really nothing special a streaming engine has to
support other than basic data delivery. As a result, essentially all streaming systems in
existence support time-agnostic use cases out of the box (modulo system-to-system
variances in consistency guarantees, of course, if you care about correctness). Batch
systems are also well suited for time-agnostic processing of unbounded data sources
by simply chopping the unbounded source into an arbitrary sequence of bounded
datasets and processing those datasets independently. We look at a couple of concrete
examples in this section, but given the straightforwardness of handling time-agnostic
processing (from a temporal perspective at least), we won’t spend much more time on
it beyond that.

Filtering.    A very basic form of time-agnostic processing is filtering, an example of
which is rendered in Figure 1-5. Imagine that you’re processing web traffic logs and
you want to filter out all traffic that didn’t originate from a specific domain. You
would look at each record as it arrived, see if it belonged to the domain of interest,
and drop it if not. Because this sort of thing depends only on a single element at any
time, the fact that the data source is unbounded, unordered, and of varying event-
time skew is irrelevant.

Figure 1-5. Filtering unbounded data. A collection of data (flowing left to right) of vary‐
ing types is filtered into a homogeneous collection containing a single type.

Inner joins.    Another time-agnostic example is an inner join, diagrammed in
Figure 1-6. When joining two unbounded data sources, if you care only about the
results of a join when an element from both sources arrive, there’s no temporal ele‐
ment to the logic. Upon seeing a value from one source, you can simply buffer it up in
persistent state; only after the second value from the other source arrives do you need
to emit the joined record. (In truth, you’d likely want some sort of garbage collection
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policy for unemitted partial joins, which would likely be time based. But for a use
case with little or no uncompleted joins, such a thing might not be an issue.)

Figure 1-6. Performing an inner join on unbounded data. Joins are produced when
matching elements from both sources are observed.

Switching semantics to some sort of outer join introduces the data completeness
problem we’ve talked about: after you’ve seen one side of the join, how do you know
whether the other side is ever going to arrive or not? Truth be told, you don’t, so you
need to introduce some notion of a timeout, which introduces an element of time.
That element of time is essentially a form of windowing, which we’ll look at more
closely in a moment.

Approximation algorithms
The second major category of approaches is approximation algorithms, such as
approximate Top-N, streaming k-means, and so on. They take an unbounded source
of input and provide output data that, if you squint at them, look more or less like
what you were hoping to get, as in Figure 1-7. The upside of approximation algo‐
rithms is that, by design, they are low overhead and designed for unbounded data.
The downsides are that a limited set of them exist, the algorithms themselves are
often complicated (which makes it difficult to conjure up new ones), and their
approximate nature limits their utility.

Figure 1-7. Computing approximations on unbounded data. Data are run through a
complex algorithm, yielding output data that look more or less like the desired result on
the other side.
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It’s worth noting that these algorithms typically do have some element of time in their
design (e.g., some sort of built-in decay). And because they process elements as they
arrive, that time element is usually processing-time based. This is particularly impor‐
tant for algorithms that provide some sort of provable error bounds on their approxi‐
mations. If those error bounds are predicated on data arriving in order, they mean
essentially nothing when you feed the algorithm unordered data with varying event-
time skew. Something to keep in mind.

Approximation algorithms themselves are a fascinating subject, but as they are essen‐
tially another example of time-agnostic processing (modulo the temporal features of
the algorithms themselves), they’re quite straightforward to use and thus not worth
further attention, given our current focus.

Windowing
The remaining two approaches for unbounded data processing are both variations of
windowing. Before diving into the differences between them, I should make it clear
exactly what I mean by windowing, insomuch as we touched on it only briefly in the
previous section. Windowing is simply the notion of taking a data source (either
unbounded or bounded), and chopping it up along temporal boundaries into finite
chunks for processing. Figure 1-8 shows three different windowing patterns.

Figure 1-8. Windowing strategies. Each example is shown for three different keys, high‐
lighting the difference between aligned windows (which apply across all the data) and
unaligned windows (which apply across a subset of the data).

Let’s take a closer look at each strategy:

Fixed windows (aka tumbling windows)
We discussed fixed windows earlier. Fixed windows slice time into segments with
a fixed-size temporal length. Typically (as shown in Figure 1-9), the segments for
fixed windows are applied uniformly across the entire dataset, which is an exam‐
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6 We look at aligned fixed windows in detail in Chapter 2, and unaligned fixed windows in Chapter 4.
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across a third windowing time domain: tuple-based windowing (i.e., windows whose sizes are counted in
numbers of elements). However, tuple-based windowing is essentially a form of processing-time windowing
in which elements are assigned monotonically increasing timestamps as they arrive at the system. As such, we
won’t discuss tuple-based windowing in detail any further.

ple of aligned windows. In some cases, it’s desirable to phase-shift the windows
for different subsets of the data (e.g., per key) to spread window completion load
more evenly over time, which instead is an example of unaligned windows
because they vary across the data.6

Sliding windows (aka hopping windows)
A generalization of fixed windows, sliding windows are defined by a fixed length
and a fixed period. If the period is less than the length, the windows overlap. If
the period equals the length, you have fixed windows. And if the period is greater
than the length, you have a weird sort of sampling window that looks only at sub‐
sets of the data over time. As with fixed windows, sliding windows are typically
aligned, though they can be unaligned as a performance optimization in certain
use cases. Note that the sliding windows in Figure 1-8 are drawn as they are to
give a sense of sliding motion; in reality, all five windows would apply across the
entire dataset.

Sessions
An example of dynamic windows, sessions are composed of sequences of events
terminated by a gap of inactivity greater than some timeout. Sessions are com‐
monly used for analyzing user behavior over time, by grouping together a series
of temporally related events (e.g., a sequence of videos viewed in one sitting). Ses‐
sions are interesting because their lengths cannot be defined a priori; they are
dependent upon the actual data involved. They’re also the canonical example of
unaligned windows because sessions are practically never identical across differ‐
ent subsets of data (e.g., different users).

The two domains of time we discussed earlier (processing time and event time) are
essentially the two we care about.7 Windowing makes sense in both domains, so let’s
look at each in detail and see how they differ. Because processing-time windowing
has historically been more common, we’ll start there.

Windowing by processing time.    When windowing by processing time, the system
essentially buffers up incoming data into windows until some amount of processing
time has passed. For example, in the case of five-minute fixed windows, the system
would buffer data for five minutes of processing time, after which it would treat all of
the data it had observed in those five minutes as a window and send them down‐
stream for processing.
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Figure 1-9. Windowing into fixed windows by processing time. Data are collected into
windows based on the order they arrive in the pipeline.

There are a few nice properties of processing-time windowing:

• It’s simple. The implementation is extremely straightforward because you never
worry about shuffling data within time. You just buffer things as they arrive and
send them downstream when the window closes.

• Judging window completeness is straightforward. Because the system has perfect
knowledge of whether all inputs for a window have been seen, it can make per‐
fect decisions about whether a given window is complete. This means there is no
need to be able to deal with “late” data in any way when windowing by processing
time.

• If you’re wanting to infer information about the source as it is observed,
processing-time windowing is exactly what you want. Many monitoring scenar‐
ios fall into this category. Imagine tracking the number of requests per second
sent to a global-scale web service. Calculating a rate of these requests for the pur‐
pose of detecting outages is a perfect use of processing-time windowing.

Good points aside, there is one very big downside to processing-time windowing: if
the data in question have event times associated with them, those data must arrive in
event-time order if the processing-time windows are to reflect the reality of when those
events actually happened. Unfortunately, event-time ordered data are uncommon in
many real-world, distributed input sources.

As a simple example, imagine any mobile app that gathers usage statistics for later
processing. For cases in which a given mobile device goes offline for any amount of
time (brief loss of connectivity, airplane mode while flying across the country, etc.),
the data recorded during that period won’t be uploaded until the device comes online
again. This means that data might arrive with an event-time skew of minutes, hours,
days, weeks, or more. It’s essentially impossible to draw any sort of useful inferences
from such a dataset when windowed by processing time.
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As another example, many distributed input sources might seem to provide event-
time ordered (or very nearly so) data when the overall system is healthy. Unfortu‐
nately, the fact that event-time skew is low for the input source when healthy does not
mean it will always stay that way. Consider a global service that processes data collec‐
ted on multiple continents. If network issues across a bandwidth-constrained trans‐
continental line (which, sadly, are surprisingly common) further decrease bandwidth
and/or increase latency, suddenly a portion of your input data might begin arriving
with much greater skew than before. If you are windowing those data by processing
time, your windows are no longer representative of the data that actually occurred
within them; instead, they represent the windows of time as the events arrived at the
processing pipeline, which is some arbitrary mix of old and current data.

What we really want in both of those cases is to window data by their event times in a
way that is robust to the order of arrival of events. What we really want is event-time
windowing.

Windowing by event time.    Event-time windowing is what you use when you need to
observe a data source in finite chunks that reflect the times at which those events
actually happened. It’s the gold standard of windowing. Prior to 2016, most data pro‐
cessing systems in use lacked native support for it (though any system with a decent
consistency model, like Hadoop or Spark Streaming 1.x, could act as a reasonable
substrate for building such a windowing system). I’m happy to say that the world of
today looks very different, with multiple systems, from Flink to Spark to Storm to
Apex, natively supporting event-time windowing of some sort.

Figure 1-10 shows an example of windowing an unbounded source into one-hour
fixed windows.

Figure 1-10. Windowing into fixed windows by event time. Data are collected into win‐
dows based on the times at which they occurred. The black arrows call out example data
that arrived in processing-time windows that differed from the event-time windows to
which they belonged.

The black arrows in Figure 1-10 call out two particularly interesting pieces of data.
Each arrived in processing-time windows that did not match the event-time windows
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to which each bit of data belonged. As such, if these data had been windowed into
processing-time windows for a use case that cared about event times, the calculated
results would have been incorrect. As you would expect, event-time correctness is
one nice thing about using event-time windows.

Another nice thing about event-time windowing over an unbounded data source is
that you can create dynamically sized windows, such as sessions, without the arbi‐
trary splits observed when generating sessions over fixed windows (as we saw previ‐
ously in the sessions example from “Unbounded Data: Streaming” on page 14), as
demonstrated in Figure 1-11.

Figure 1-11. Windowing into session windows by event time. Data are collected into ses‐
sion windows capturing bursts of activity based on the times that the corresponding
events occurred. The black arrows again call out the temporal shuffle necessary to put
the data into their correct event-time locations.

Of course, powerful semantics rarely come for free, and event-time windows are no
exception. Event-time windows have two notable drawbacks due to the fact that win‐
dows must often live longer (in processing time) than the actual length of the window
itself:

Buffering
Due to extended window lifetimes, more buffering of data is required. Thank‐
fully, persistent storage is generally the cheapest of the resource types most data
processing systems depend on (the others being primarily CPU, network band‐
width, and RAM). As such, this problem is typically much less of a concern than
you might think when using any well-designed data processing system with
strongly consistent persistent state and a decent in-memory caching layer. Also,
many useful aggregations do not require the entire input set to be buffered (e.g.,
sum or average), but instead can be performed incrementally, with a much
smaller, intermediate aggregate stored in persistent state.

Completeness
Given that we often have no good way of knowing when we’ve seen all of the data
for a given window, how do we know when the results for the window are ready
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to materialize? In truth, we simply don’t. For many types of inputs, the system
can give a reasonably accurate heuristic estimate of window completion via
something like the watermarks found in MillWheel, Cloud Dataflow, and Flink
(which we talk about more in Chapters 3 and 4). But for cases in which absolute
correctness is paramount (again, think billing), the only real option is to provide
a way for the pipeline builder to express when they want results for windows to
be materialized and how those results should be refined over time. Dealing with
window completeness (or lack thereof) is a fascinating topic but one perhaps best
explored in the context of concrete examples, which we look at next.

Summary
Whew! That was a lot of information. If you’ve made it this far, you are to be com‐
mended! But we are only just getting started. Before forging ahead to looking in
detail at the Beam Model approach, let’s briefly step back and recap what we’ve
learned so far. In this chapter, we’ve done the following:

• Clarified terminology, focusing the definition of “streaming” to refer to systems
built with unbounded data in mind, while using more descriptive terms like
approximate/speculative results for distinct concepts often categorized under the
“streaming” umbrella. Additionally, we highlighted two important dimensions of
large-scale datasets: cardinality (i.e., bounded versus unbounded) and constitu‐
tion (i.e., table versus stream), the latter of which will consume much of the sec‐
ond half of the book.

• Assessed the relative capabilities of well-designed batch and streaming systems,
positing streaming is in fact a strict superset of batch, and that notions like the
Lambda Architecture, which are predicated on streaming being inferior to batch,
are destined for retirement as streaming systems mature.

• Proposed two high-level concepts necessary for streaming systems to both catch
up to and ultimately surpass batch, those being correctness and tools for reason‐
ing about time, respectively.

• Established the important differences between event time and processing time,
characterized the difficulties those differences impose when analyzing data in the
context of when they occurred, and proposed a shift in approach away from
notions of completeness and toward simply adapting to changes in data over
time.

• Looked at the major data processing approaches in common use today for boun‐
ded and unbounded data, via both batch and streaming engines, roughly catego‐
rizing the unbounded approaches into: time-agnostic, approximation,
windowing by processing time, and windowing by event time.
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Next up, we dive into the details of the Beam Model, taking a conceptual look at how
we’ve broken up the notion of data processing across four related axes: what, where,
when, and how. We also take a detailed look at processing a simple, concrete example
dataset across multiple scenarios, highlighting the plurality of use cases enabled by
the Beam Model, with some concrete APIs to ground us in reality. These examples
will help drive home the notions of event time and processing time introduced in this
chapter while additionally exploring new concepts such as watermarks.
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1 If you’re fortunate enough to be reading the Safari version of the book, you have full-blown time-lapse anima‐
tions just like in “Streaming 102”. For print, Kindle, and other ebook versions, there are static images with a
link to animated versions on the web.

CHAPTER 2

The What, Where, When, and How
of Data Processing

Okay party people, it’s time to get concrete!

Chapter 1 focused on three main areas: terminology, defining precisely what I mean
when I use overloaded terms like “streaming”; batch versus streaming, comparing the
theoretical capabilities of the two types of systems, and postulating that only two
things are necessary to take streaming systems beyond their batch counterparts: cor‐
rectness and tools for reasoning about time; and data processing patterns, looking at
the conceptual approaches taken with both batch and streaming systems when pro‐
cessing bounded and unbounded data.

In this chapter, we’re now going to focus further on the data processing patterns from
Chapter 1, but in more detail, and within the context of concrete examples. By the
time we’re finished, we’ll have covered what I consider to be the core set of principles
and concepts required for robust out-of-order data processing; these are the tools for
reasoning about time that truly get you beyond classic batch processing.

To give you a sense of what things look like in action, I use snippets of Apache Beam
code, coupled with time-lapse diagrams1 to provide a visual representation of the
concepts. Apache Beam is a unified programming model and portability layer for
batch and stream processing, with a set of concrete SDKs in various languages (e.g.,
Java and Python). Pipelines written with Apache Beam can then be portably run on
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any of the supported execution engines (Apache Apex, Apache Flink, Apache Spark,
Cloud Dataflow, etc.).

I use Apache Beam here for examples not because this is a Beam book (it’s not), but
because it most completely embodies the concepts described in this book. Back when
“Streaming 102” was originally written (back when it was still the Dataflow Model
from Google Cloud Dataflow and not the Beam Model from Apache Beam), it was
literally the only system in existence that provided the amount of expressiveness nec‐
essary for all the examples we’ll cover here. A year and a half later, I’m happy to say
much has changed, and most of the major systems out there have moved or are mov‐
ing toward supporting a model that looks a lot like the one described in this book. So
rest assured that the concepts we cover here, though informed through the Beam
lens, as it were, will apply equally across most other systems you’ll come across.

Roadmap
To help set the stage for this chapter, I want to lay out the five main concepts that will
underpin all of the discussions therein, and really, for most of the rest of Part I. We’ve
already covered two of them.

In Chapter 1, I first established the critical distinction between event time (the time
that events happen) and processing time (the time they are observed during process‐
ing). This provides the foundation for one of the main theses put forth in this book: if
you care about both correctness and the context within which events actually occur‐
red, you must analyze data relative to their inherent event times, not the processing
time at which they are encountered during the analysis itself.

I then introduced the concept of windowing (i.e., partitioning a dataset along tempo‐
ral boundaries), which is a common approach used to cope with the fact that
unbounded data sources technically might never end. Some simpler examples of win‐
dowing strategies are fixed and sliding windows, but more sophisticated types of win‐
dowing, such as sessions (in which the windows are defined by features of the data
themselves; for example, capturing a session of activity per user followed by a gap of
inactivity) also see broad usage.

In addition to these two concepts, we’re now going to look closely at three more:

Triggers
A trigger is a mechanism for declaring when the output for a window should be
materialized relative to some external signal. Triggers provide flexibility in choos‐
ing when outputs should be emitted. In some sense, you can think of them as a
flow control mechanism for dictating when results should be materialized.
Another way of looking at it is that triggers are like the shutter-release on a cam‐
era, allowing you to declare when to take a snapshots in time of the results being
computed.
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Triggers also make it possible to observe the output for a window multiple times
as it evolves. This in turn opens up the door to refining results over time, which
allows for providing speculative results as data arrive, as well as dealing with
changes in upstream data (revisions) over time or data that arrive late (e.g.,
mobile scenarios, in which someone’s phone records various actions and their
event times while the person is offline and then proceeds to upload those events
for processing upon regaining connectivity).

Watermarks
A watermark is a notion of input completeness with respect to event times. A
watermark with value of time X makes the statement: “all input data with event
times less than X have been observed.” As such, watermarks act as a metric of
progress when observing an unbounded data source with no known end. We
touch upon the basics of watermarks in this chapter, and then Slava goes super
deep on the subject in Chapter 3.

Accumulation
An accumulation mode specifies the relationship between multiple results that
are observed for the same window. Those results might be completely disjointed;
that is, representing independent deltas over time, or there might be overlap
between them. Different accumulation modes have different semantics and costs
associated with them and thus find applicability across a variety of use cases.

Also, because I think it makes it easier to understand the relationships between all of
these concepts, we revisit the old and explore the new within the structure of answer‐
ing four questions, all of which I propose are critical to every unbounded data pro‐
cessing problem:

• What results are calculated? This question is answered by the types of transfor‐
mations within the pipeline. This includes things like computing sums, building
histograms, training machine learning models, and so on. It’s also essentially the
question answered by classic batch processing

• Where in event time are results calculated? This question is answered by the use
of event-time windowing within the pipeline. This includes the common exam‐
ples of windowing from Chapter 1 (fixed, sliding, and sessions); use cases that
seem to have no notion of windowing (e.g., time-agnostic processing; classic
batch processing also generally falls into this category); and other, more complex
types of windowing, such as time-limited auctions. Also note that it can include
processing-time windowing, as well, if you assign ingress times as event times for
records as they arrive at the system.

• When in processing time are results materialized? This question is answered by
the use of triggers and (optionally) watermarks. There are infinite variations on
this theme, but the most common patterns are those involving repeated updates
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strictly forbidden in O’Reilly publications <winky-smiley/>.

(i.e., materialized view semantics), those that utilize a watermark to provide a sin‐
gle output per window only after the corresponding input is believed to be com‐
plete (i.e., classic batch processing semantics applied on a per-window basis), or
some combination of the two.

• How do refinements of results relate? This question is answered by the type of
accumulation used: discarding (in which results are all independent and distinct),
accumulating (in which later results build upon prior ones), or accumulating and
retracting (in which both the accumulating value plus a retraction for the previ‐
ously triggered value(s) are emitted).

We look at each of these questions in much more detail throughout the rest of the
book. And, yes, I’m going to run this color scheme thing into the ground in an
attempt to make it abundantly clear which concepts relate to which question in the
What/Where/When/How idiom. You’re welcome <winky-smiley/>.2

Batch Foundations: What and Where
Okay, let’s get this party started. First stop: batch processing.

What: Transformations
The transformations applied in classic batch processing answer the question: “What
results are calculated?” Even though you are likely already familiar with classic batch
processing, we’re going to start there anyway because it’s the foundation on top of
which we add all of the other concepts.

In the rest of this chapter (and indeed, through much of the book), we look at a single
example: computing keyed integer sums over a simple dataset consisting of nine val‐
ues. Let’s imagine that we’ve written a team-based mobile game and we want to build
a pipeline that calculates team scores by summing up the individual scores reported
by users’ phones. If we were to capture our nine example scores in a SQL table named
“UserScores,” it might look something like this:

> SELECT * FROM UserScores ORDER BY EventTime;
------------------------------------------------
| Name  | Team  | Score | EventTime | ProcTime |
------------------------------------------------
| Julie | TeamX |     5 |  12:00:26 | 12:05:19 |
| Frank | TeamX |     9 |  12:01:26 | 12:08:19 |
| Ed    | TeamX |     7 |  12:02:26 | 12:05:39 |
| Julie | TeamX |     8 |  12:03:06 | 12:07:06 |
| Amy   | TeamX |     3 |  12:03:39 | 12:06:13 |
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| Fred  | TeamX |     4 |  12:04:19 | 12:06:39 |
| Naomi | TeamX |     3 |  12:06:39 | 12:07:19 |
| Becky | TeamX |     8 |  12:07:26 | 12:08:39 |
| Naomi | TeamX |     1 |  12:07:46 | 12:09:00 |
------------------------------------------------

Note that all the scores in this example are from users on the same team; this is to
keep the example simple, given that we have a limited number of dimensions in our
diagrams that follow. And because we’re grouping by team, we really just care about
the last three columns:

Score

The individual user score associated with this event

EventTime

The event time for the score; that is, the time at which the score occurred

ProcTime

The processing for the score; that is, the time at which the score was observed by
the pipeline

For each example pipeline, we’ll look at a time-lapse diagram that highlights how the
data evolves over time. Those diagrams plot our nine scores in the two dimensions of
time we care about: event time in the x-axis, and processing time in the y-axis.
Figure 2-1 illustrates what a static plot of the input data looks like.

Figure 2-1. Nine input records, plotted in both event time and processing time

Subsequent time-lapse diagrams are either animations (Safari) or a sequence of
frames (print and all other digital formats), allowing you to see how the data are pro‐
cessed over time (more on this shortly after we get to the first time-lapse diagram).
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Preceding each example is a short snippet of Apache Beam Java SDK pseudocode to
make the definition of the pipeline more concrete. It is pseudocode in the sense that I
sometime bend the rules to make the examples clearer, elide details (like the use of
concrete I/O sources), or simplify names (the trigger names in Beam Java 2.x and ear‐
lier are painfully verbose; I use simpler names for clarity). Beyond minor things like
those, it’s otherwise real-world Beam code (and real code is available on GitHub for
all examples in this chapter).

If you’re already familiar with something like Spark or Flink, you should have a rela‐
tively easy time understanding what the Beam code is doing. But to give you a crash
course in things, there are two basic primitives in Beam:

PCollections

These represent datasets (possibly massive ones) across which parallel transfor‐
mations can be performed (hence the “P” at the beginning of the name).

PTransforms

These are applied to PCollections to create new PCollections. PTransforms
may perform element-wise transformations, they may group/aggregate multiple
elements together, or they may be a composite combination of other PTrans
forms, as depicted in Figure 2-2.

Figure 2-2. Types of transformations

For the purposes of our examples, we typically assume that we start out with a pre-
loaded PCollection<KV<Team, Integer>> named “input” (that is, a PCollection
composed of key/value pairs of Teams and Integers, where the Teams are just some‐
thing like Strings representing team names, and the Integers are scores from any
individual on the corresponding team). In a real-world pipeline, we would’ve
acquired input by reading in a PCollection<String> of raw data (e.g., log records)
from an I/O source and then transforming it into a PCollection<KV<Team, Inte
ger>> by parsing the log records into appropriate key/value pairs. For the sake of
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clarity in this first example, I include pseudocode for all of those steps, but in subse‐
quent examples, I elide the I/O and parsing.

Thus, for a pipeline that simply reads in data from an I/O source, parses team/score
pairs, and calculates per-team sums of scores, we’d have something like that shown in
Example 2-1.

Example 2-1. Summation pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
  input.apply(Sum.integersPerKey());

Key/value data are read from an I/O source, with a Team (e.g., String of the team
name) as the key and an Integer (e.g., individual team member scores) as the value.
The values for each key are then summed together to generate per-key sums (e.g.,
total team score) in the output collection.

For all the examples to come, after seeing a code snippet describing the pipeline that
we’re analyzing, we’ll then look at a time-lapse diagram showing the execution of that
pipeline over our concrete dataset for a single key. In a real pipeline, you can imagine
that similar operations would be happening in parallel across multiple machines, but
for the sake of our examples, it will be clearer to keep things simple.

As noted previously, Safari editions present the complete execution as an animated
movie, whereas print and all other digital formats use a static sequence of key frames
that provide a sense of how the pipeline progresses over time. In both cases, we also
provide a URL to a fully animated version on www.streamingbook.net.

Each diagram plots the inputs and outputs across two dimensions: event time (on the
x-axis) and processing time (on the y-axis). Thus, real time as observed by the pipe‐
line progresses from bottom to top, as indicated by the thick horizontal black line that
ascends in the processing-time axis as time progresses. Inputs are circles, with the
number inside the circle representing the value of that specific record. They start out
light gray, and darken as the pipeline observes them.

As the pipeline observes values, it accumulates them in its intermediate state and
eventually materializes the aggregate results as output. State and output are repre‐
sented by rectangles (gray for state, blue for output), with the aggregate value near the
top, and with the area covered by the rectangle representing the portions of event
time and processing time accumulated into the result. For the pipeline in
Example 2-1, it would look something like that shown in Figure 2-3 when executed
on a classic batch engine.
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Figure 2-3. Classic batch processing

Because this is a batch pipeline, it accumulates state until it’s seen all of the inputs
(represented by the dashed green line at the top), at which point it produces its single
output of 48. In this example, we’re calculating a sum over all of event time because
we haven’t applied any specific windowing transformations; hence the rectangles for
state and output cover the entirety of the x-axis. If we want to process an unbounded
data source, however, classic batch processing won’t be sufficient; we can’t wait for the
input to end, because it effectively never will. One of the concepts we want is win‐
dowing, which we introduced in Chapter 1. Thus, within the context of our second
question—“Where in event time are results calculated?”—we’ll now briefly revisit
windowing.

Where: Windowing
As discussed in Chapter 1, windowing is the process of slicing up a data source along
temporal boundaries. Common windowing strategies include fixed windows, sliding
windows, and sessions windows, as demonstrated in Figure 2-4.
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Figure 2-4. Example windowing strategies. Each example is shown for three different
keys, highlighting the difference between aligned windows (which apply across all the
data) and unaligned windows (which apply across a subset of the data).

To get a better sense of what windowing looks like in practice, let’s take our integer
summation pipeline and window it into fixed, two-minute windows. With Beam, the
change is a simple addition of a Window.into transform, which you can see highligh‐
ted in Example 2-2.

Example 2-2. Windowed summation code

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES)))
  .apply(Sum.integersPerKey());

Recall that Beam provides a unified model that works in both batch and streaming
because semantically batch is really just a subset of streaming. As such, let’s first exe‐
cute this pipeline on a batch engine; the mechanics are more straightforward, and it
will give us something to directly compare against when we switch to a streaming
engine. Figure 2-5 presents the result.
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Figure 2-5. Windowed summation on a batch engine

As before, inputs are accumulated in state until they are entirely consumed, after
which output is produced. In this case, however, instead of one output, we get four: a
single output, for each of the four relevant two-minute event-time windows.

At this point we’ve revisited the two main concepts that I introduced in Chapter 1: the
relationship between the event-time and processing-time domains, and windowing.
If we want to go any further, we’ll need to start adding the new concepts mentioned at
the beginning of this section: triggers, watermarks, and accumulation.

Going Streaming: When and How
We just observed the execution of a windowed pipeline on a batch engine. But, ide‐
ally, we’d like to have lower latency for our results, and we’d also like to natively han‐
dle unbounded data sources. Switching to a streaming engine is a step in the right
direction, but our previous strategy of waiting until our input has been consumed in
its entirety to generate output is no longer feasible. Enter triggers and watermarks.

When: The Wonderful Thing About Triggers Is Triggers Are Wonderful
Things!
Triggers provide the answer to the question: “When in processing time are results
materialized?” Triggers declare when output for a window should happen in process‐
ing time (though the triggers themselves might make those decisions based on things
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3 And indeed, we did just that with the original triggers feature in Beam. In retrospect, we went a bit overboard.
Future iterations will be simpler and easier to use, and in this book I focus only on the pieces that are likely to
remain in some form or another.

that happen in other time domains, such as watermarks progressing in the event-time
domain, as we’ll see in a few moments). Each specific output for a window is referred
to as a pane of the window.

Though it’s possible to imagine quite a breadth of possible triggering semantics,3 con‐
ceptually there are only two generally useful types of triggers, and practical applica‐
tions almost always boil down using either one or a combination of both:

Repeated update triggers
These periodically generate updated panes for a window as its contents evolve.
These updates can be materialized with every new record, or they can happen
after some processing-time delay, such as once a minute. The choice of period for
a repeated update trigger is primarily an exercise in balancing latency and cost.

Completeness triggers
These materialize a pane for a window only after the input for that window is
believed to be complete to some threshold. This type of trigger is most analogous
to what we’re familiar with in batch processing: only after the input is complete
do we provide a result. The difference in the trigger-based approach is that the
notion of completeness is scoped to the context of a single window, rather than
always being bound to the completeness of the entire input.

Repeated update triggers are the most common type of trigger encountered in
streaming systems. They are simple to implement and simple to understand, and they
provide useful semantics for a specific type of use case: repeated (and eventually con‐
sistent) updates to a materialized dataset, analogous to the semantics you get with
materialized views in the database world.

Completeness triggers are less frequently encountered, but provide streaming seman‐
tics that more closely align with those from the classic batch processing world. They
also provide tools for reasoning about things like missing data and late data, both of
which we discuss shortly (and in the next chapter) as we explore the underlying
primitive that drives completeness triggers: watermarks.

But first, let’s start simple and look at some basic repeated update triggers in action.
To make the notion of triggers a bit more concrete, let’s go ahead and add the most
straightforward type of trigger to our example pipeline: a trigger that fires with every
new record, as shown in Example 2-3.
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Example 2-3. Triggering repeatedly with every record

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
                .triggering(Repeatedly(AfterCount(1))));
  .apply(Sum.integersPerKey());

If we were to run this new pipeline on a streaming engine, the results would look
something like that shown in Figure 2-6.

Figure 2-6. Per-record triggering on a streaming engine

You can see how we now get multiple outputs (panes) for each window: once per cor‐
responding input. This sort of triggering pattern works well when the output stream
is being written to some sort of table that you can simply poll for results. Any time
you look in the table, you’ll see the most up-to-date value for a given window, and
those values will converge toward correctness over time.

One downside of per-record triggering is that it’s quite chatty. When processing
large-scale data, aggregations like summation provide a nice opportunity to reduce
the cardinality of the stream without losing information. This is particularly noticea‐
ble for cases in which you have high-volume keys; for our example, massive teams
with lots of active players. Imagine a massively multiplayer game in which players are
split into one of two factions, and you want to tally stats on a per-faction basis. It’s
probably unnecessary to update your tallies with every new input record for every
player in a given faction. Instead, you might be happy updating them after some
processing-time delay, say every second, or every minute. The nice side effect of using
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processing-time delays is that it has an equalizing effect across high-volume keys or
windows: the resulting stream ends up being more uniform cardinality-wise.

There are two different approaches to processing-time delays in triggers: aligned
delays (where the delay slices up processing time into fixed regions that align across
keys and windows) and unaligned delays (where the delay is relative to the data
observed within a given window). A pipeline with aligned delays might look like
Example 2-4, the results of which are shown in Figure 2-7.

Example 2-4. Triggering on aligned two-minute processing-time boundaries

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(AlignedDelay(TWO_MINUTES)))
  .apply(Sum.integersPerKey());

Figure 2-7. Two-minute aligned delay triggers (i.e., microbatching)

This sort of aligned delay trigger is effectively what you get from a microbatch
streaming system like Spark Streaming. The nice thing about it is predictability; you
get regular updates across all modified windows at the same time. That’s also the
downside: all updates happen at once, which results in bursty workloads that often
require greater peak provisioning to properly handle the load. The alternative is to
use an unaligned delay. That would look something Example 2-5 in Beam. Figure 2-8
presents the results.
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Example 2-5. Triggering on unaligned two-minute processing-time boundaries

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(UnalignedDelay(TWO_MINUTES))
  .apply(Sum.integersPerKey());

Figure 2-8. Two-minute unaligned delay triggers

Contrasting the unaligned delays in Figure 2-8 to the aligned delays in Figure 2-6, it’s
easy to see how the unaligned delays spread the load out more evenly across time.
The actual latencies involved for any given window differ between the two, some‐
times more and sometimes less, but in the end the average latency will remain essen‐
tially the same. From that perspective, unaligned delays are typically the better choice
for large-scale processing because they result in a more even load distribution over
time.

Repeated update triggers are great for use cases in which we simply want periodic
updates to our results over time and are fine with those updates converging toward
correctness with no clear indication of when correctness is achieved. However, as we
discussed in Chapter 1, the vagaries of distributed systems often lead to a varying
level of skew between the time an event happens and the time it’s actually observed by
your pipeline, which means it can be difficult to reason about when your output
presents an accurate and complete view of your input data. For cases in which input
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completeness matters, it’s important to have some way of reasoning about complete‐
ness rather than blindly trusting the results calculated by whichever subset of data
happen to have found their way to your pipeline. Enter watermarks.

When: Watermarks
Watermarks are a supporting aspect of the answer to the question: “When in process‐
ing time are results materialized?” Watermarks are temporal notions of input com‐
pleteness in the event-time domain. Worded differently, they are the way the system
measures progress and completeness relative to the event times of the records being
processed in a stream of events (either bounded or unbounded, though their useful‐
ness is more apparent in the unbounded case).

Recall this diagram from Chapter 1, slightly modified in Figure 2-9, in which I
described the skew between event time and processing time as an ever-changing
function of time for most real-world distributed data processing systems.

Figure 2-9. Event-time progress, skew, and watermarks

That meandering red line that I claimed represented reality is essentially the water‐
mark; it captures the progress of event-time completeness as processing time pro‐
gresses. Conceptually, you can think of the watermark as a function, F(P) → E, which
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4 More accurately, the input to the function is really the state at time P of everything upstream of the point in
the pipeline where the watermark is being observed: the input source, buffered data, data actively being pro‐
cessed, and so on; but conceptually it’s simpler to think of it as a mapping from processing time to event time.

takes a point in processing time and returns a point in event time.4 That point in
event time, E, is the point up to which the system believes all inputs with event times
less than E have been observed. In other words, it’s an assertion that no more data
with event times less than E will ever be seen again. Depending upon the type of
watermark, perfect or heuristic, that assertion can be a strict guarantee or an educated
guess, respectively:

Perfect watermarks
For the case in which we have perfect knowledge of all of the input data, it’s pos‐
sible to construct a perfect watermark. In such a case, there is no such thing as
late data; all data are early or on time.

Heuristic watermarks
For many distributed input sources, perfect knowledge of the input data is
impractical, in which case the next best option is to provide a heuristic water‐
mark. Heuristic watermarks use whatever information is available about the
inputs (partitions, ordering within partitions if any, growth rates of files, etc.) to
provide an estimate of progress that is as accurate as possible. In many cases,
such watermarks can be remarkably accurate in their predictions. Even so, the
use of a heuristic watermark means that it might sometimes be wrong, which will
lead to late data. We show you about ways to deal with late data soon.

Because they provide a notion of completeness relative to our inputs, watermarks
form the foundation for the second type of trigger mentioned previously: complete‐
ness triggers. Watermarks themselves are a fascinating and complex topic, as you’ll see
when you get to Slava’s watermarks deep dive in Chapter 3. But for now, let’s look at
them in action by updating our example pipeline to utilize a completeness trigger
built upon watermarks, as demonstrated in Example 2-6.

Example 2-6. Watermark completeness trigger

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()))
  .apply(Sum.integersPerKey());

Now, an interesting quality of watermarks is that they are a class of functions, mean‐
ing there are multiple different functions F(P) → E that satisfy the properties of a
watermark, to varying degrees of success. As I noted earlier, for situations in which
you have perfect knowledge of your input data, it might be possible to build a perfect
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5 Note that I specifically chose to omit the value of 9 from the heuristic watermark because it will help me to
make some important points about late data and watermark lag. In reality, a heuristic watermark might be just
as likely to omit some other value(s) instead, which in turn could have significantly less drastic effect on the
watermark. If winnowing late-arriving data from the watermark is your goal (which is very valid in some
cases, such as abuse detection, for which you just want to see a significant majority of the data as quickly as
possible), you don’t necessarily want a heuristic watermark rather than a perfect watermark. What you really
want is a percentile watermark, which explicitly drops some percentile of late-arriving data from its calcula‐
tions. See Chapter 3.

watermark, which is the ideal situation. But for cases in which you lack perfect
knowledge of the inputs or for which it’s simply too computationally expensive to cal‐
culate the perfect watermark, you might instead choose to utilize a heuristic for defin‐
ing your watermark. The point I want to make here is that the given watermark
algorithm in use is independent from the pipeline itself. We’re not going to discuss in
detail what it means to implement a watermark here (Slava does that in Chapter 3).
For now, to help drive home this idea that a given input set can have different water‐
marks applied to it, let’s take a look at our pipeline in Example 2-6 when executed on
the same dataset but using two distinct watermark implementations (Figure 2-10): on
the left, a perfect watermark; on the right, a heuristic watermark.

In both cases, windows are materialized as the watermark passes the end of the win‐
dow. The perfect watermark, as you might expect, perfectly captures the event-time
completeness of the pipeline as time progresses. In contrast, the specific algorithm
used for the heuristic watermark on the right fails to take the value of 9 into account,5

which drastically changes the shape of the materialized outputs, both in terms of out‐
put latency and correctness (as seen by the incorrect answer of 5 that’s provided for
the [12:00, 12:02) window).

The big difference between the watermark triggers from Figure 2-10 and the repeated
update triggers we saw in Figures 2-6 through 2-8 is that the watermarks give us a way
to reason about the completeness of our input. Until the system materializes an output
for a given window, we know that the system does not yet believe the inputs to be
complete. This is especially important for use cases in which you want to reason
about a lack of data in the input, or missing data.
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Figure 2-10. Windowed summation on a streaming engine with perfect (left) and heuris‐
tic (right) watermarks
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A great example of a missing-data use case is outer joins. Without a notion of com‐
pleteness like watermarks, how do you know when to give up and emit a partial join
rather than continue to wait for that join to complete? You don’t. And basing that
decision on a processing-time delay, which is the common approach in streaming
systems that lack true watermark support, is not a safe way to go, because of the vari‐
able nature of event-time skew we spoke about in Chapter 1: as long as skew remains
smaller than the chosen processing-time delay, your missing-data results will be cor‐
rect, but any time skew grows beyond that delay, they will suddenly become incorrect.
From this perspective, event-time watermarks are a critical piece of the puzzle for
many real-world streaming use cases which must reason about a lack of data in the
input, such as outer joins, anomaly detection, and so on.

Now, with that said, these watermark examples also highlight two shortcomings of
watermarks (and any other notion of completeness), specifically that they can be one
of the following:

Too slow
When a watermark of any type is correctly delayed due to known unprocessed
data (e.g., slowly growing input logs due to network bandwidth constraints), that
translates directly into delays in output if advancement of the watermark is the
only thing you depend on for stimulating results.

This is most obvious in the left diagram of Figure 2-10, for which the late arriv‐
ing 9 holds back the watermark for all the subsequent windows, even though the
input data for those windows become complete earlier. This is particularly appa‐
rent for the second window, [12:02, 12:04), for which it takes nearly seven
minutes from the time the first value in the window occurs until we see any
results for the window whatsoever. The heuristic watermark in this example
doesn’t suffer the same issue quite so badly (five minutes until output), but don’t
take that to mean heuristic watermarks never suffer from watermark lag; that’s
really just a consequence of the record I chose to omit from the heuristic water‐
mark in this specific example.

The important point here is the following: Although watermarks provide a very
useful notion of completeness, depending upon completeness for producing out‐
put is often not ideal from a latency perspective. Imagine a dashboard that con‐
tains valuable metrics, windowed by hour or day. It’s unlikely you’d want to wait a
full hour or day to begin seeing results for the current window; that’s one of the
pain points of using classic batch systems to power such systems. Instead, it
would be much nicer to see the results for those windows refine over time as the
inputs evolve and eventually become complete.

Too fast
When a heuristic watermark is incorrectly advanced earlier than it should be, it’s
possible for data with event times before the watermark to arrive some time later,

Going Streaming: When and How | 43



6 Which isn’t to say there aren’t use cases that care primarily about correctness and not so much about latency;
in those cases, using an accurate watermark as the sole driver of output from a pipeline is a reasonable
approach.

creating late data. This is what happened in the example on the right: the water‐
mark advanced past the end of the first window before all the input data for that
window had been observed, resulting in an incorrect output value of 5 instead of
14. This shortcoming is strictly a problem with heuristic watermarks; their heu‐
ristic nature implies they will sometimes be wrong. As a result, relying on them
alone for determining when to materialize output is insufficient if you care about
correctness.

In Chapter 1, I made some rather emphatic statements about notions of completeness
being insufficient for most use cases requiring robust out-of-order processing of
unbounded data streams. These two shortcomings—watermarks being too slow or
too fast—are the foundations for those arguments. You simply cannot get both low
latency and correctness out of a system that relies solely on notions of completeness.6

So, for cases for which you do want the best of both worlds, what’s a person to do?
Well, if repeated update triggers provide low-latency updates but no way to reason
about completeness, and watermarks provide a notion of completeness but variable
and possible high latency, why not combine their powers together?

When: Early/On-Time/Late Triggers FTW!
We’ve now looked at the two main types of triggers: repeated update triggers and
completeness/watermark triggers. In many case, neither of them alone is sufficient,
but the combination of them together is. Beam recognizes this fact by providing an
extension of the standard watermark trigger that also supports repeated update trig‐
gering on either side of the watermark. This is known as the early/on-time/late trig‐
ger because it partitions the panes that are materialized by the compound trigger into
three categories:

• Zero or more early panes, which are the result of a repeated update trigger that
periodically fires up until the watermark passes the end of the window. The panes
generated by these firings contain speculative results, but allow us to observe the
evolution of the window over time as new input data arrive. This compensates
for the shortcoming of watermarks sometimes being too slow.

• At most one on-time pane, which is the result of the completeness/watermark
trigger firing after the watermark passes the end of the window. This firing is spe‐
cial because it provides an assertion that the system now believes the input for
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7 And, as we know from before, this assertion is either guaranteed, in the case of a perfect watermark being
used, or an educated guess, in the case of a heuristic watermark.

this window to be complete.7 This means that it is now safe to reason about miss‐
ing data; for example, to emit a partial join when performing an outer join.

• Zero or more late panes, which are the result of another (possibly different)
repeated update trigger that periodically fires any time late data arrive after the
watermark has passed the end of the window. In the case of a perfect watermark,
there will always be zero late panes. But in the case of a heuristic watermark, any
data the watermark failed to properly account for will result in a late firing. This
compensates for the shortcoming of watermarks being too fast.

Let’s see how this looks in action. We’ll update our pipeline to use a periodic
processing-time trigger with an aligned delay of one minute for the early firings, and
a per-record trigger for the late firings. That way, the early firings will give us some
amount of batching for high-volume windows (thanks to the fact that the trigger will
fire only once per minute, regardless of the throughput into the window), but we
won’t introduce unnecessary latency for the late firings, which are hopefully some‐
what rare if we’re using a reasonably accurate heuristic watermark. In Beam, that
looks Example 2-7 (Figure 2-11 shows the results).

Example 2-7. Early, on-time, and late firings via the early/on-time/late API

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()
        .withEarlyFirings(AlignedDelay(ONE_MINUTE))
        .withLateFirings(AfterCount(1))))
  .apply(Sum.integersPerKey());
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Figure 2-11. Windowed summation on a streaming engine with early, on-time, and late
firings
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This version has two clear improvements over Figure 2-10:

• For the “watermarks too slow” case in the second window, [12:02, 12:04): we now
provide periodic early updates once per minute. The difference is most stark in
the perfect watermark case, for which time-to-first-output is reduced from
almost seven minutes down to three and a half; but it’s also clearly improved in
the heuristic case, as well. Both versions now provide steady refinements over
time (panes with values 7, 10, then 18), with relatively minimal latency between
the input becoming complete and materialization of the final output pane for the
window.

• For the “heuristic watermarks too fast” case in the first window, [12:00, 12:02):
when the value of 9 shows up late, we immediately incorporate it into a new, cor‐
rected pane with value of 14.

One interesting side effect of these new triggers is that they effectively normalize the
output pattern between the perfect and heuristic watermark versions. Whereas the
two versions in Figure 2-10 were starkly different, the two versions here look quite
similar. They also look much more similar to the various repeated update version
from Figures 2-6 through 2-8, with one important difference: thanks to the use of the
watermark trigger, we can also reason about input completeness in the results we
generate with the early/on-time/late trigger. This allows us to better handle use cases
that care about missing data, like outer joins, anomaly detection, and so on.

The biggest remaining difference between the perfect and heuristic early/on-time/late
versions at this point is window lifetime bounds. In the perfect watermark case, we
know we’ll never see any more data for a window after the watermark has passed the
end of it, hence we can drop all of our state for the window at that time. In the heuris‐
tic watermark case, we still need to hold on to the state for a window for some
amount of time to account for late data. But as of yet, our system doesn’t have any
good way of knowing just how long state needs to be kept around for each window.
That’s where allowed lateness comes in.

When: Allowed Lateness (i.e., Garbage Collection)
Before moving on to our last question (“How do refinements of results relate?”), I’d
like to touch on a practical necessity within long-lived, out-of-order stream process‐
ing systems: garbage collection. In the heuristic watermarks example in Figure 2-11,
the persistent state for each window lingers around for the entire lifetime of the
example; this is necessary to allow us to appropriately deal with late data when/if they
arrive. But while it would be great to be able to keep around all of our persistent state
until the end of time, in reality, when dealing with an unbounded data source, it’s
often not practical to keep state (including metadata) for a given window indefinitely;

Going Streaming: When and How | 47



we’ll eventually run out of disk space (or at the very least tire of paying for it, as the
value for older data diminishes over time).

As a result, any real-world out-of-order processing system needs to provide some way
to bound the lifetimes of the windows it’s processing. A clean and concise way of
doing this is by defining a horizon on the allowed lateness within the system; that is,
placing a bound on how late any given record may be (relative to the watermark) for
the system to bother processing it; any data that arrives after this horizon are simply
dropped. After you’ve bounded how late individual data may be, you’ve also estab‐
lished precisely how long the state for windows must be kept around: until the water‐
mark exceeds the lateness horizon for the end of the window. But in addition, you’ve
also given the system the liberty to immediately drop any data later than the horizon
as soon as they’re observed, which means the system doesn’t waste resources process‐
ing data that no one cares about.

Measuring Lateness
It might seem a little odd to be specifying a horizon for handling late data using the
very metric that resulted in the late data in the first place (i.e., the heuristic water‐
mark). And in some sense it is. But of the options available, it’s arguably the best. The
only other practical option would be to specify the horizon in processing time (e.g.,
keep windows around for 10 minutes of processing time after the watermark passes
the end of the window), but using processing time would leave the garbage collection
policy vulnerable to issues within the pipeline itself (e.g., workers crashing, causing
the pipeline to stall for a few minutes), which could lead to windows that didn’t
actually have a chance to handle late data that they otherwise should have. By specify‐
ing the horizon in the event-time domain, garbage collection is directly tied to the
actual progress of the pipeline, which decreases the likelihood that a window will miss
its opportunity to handle late data appropriately.

Note however, that not all watermarks are created equal. When we speak of water‐
marks in this book, we generally refer to low watermarks, which pessimistically
attempt to capture the event time of the oldest unprocessed record the system is aware
of. The nice thing about dealing with lateness via low watermarks is that they are
resilient to changes in event-time skew; no matter how large the skew in a pipeline
may grow, the low watermark will always track the oldest outstanding event known to
the system, providing the best guarantee of correctness possible.

In contrast, some systems may use the term “watermark” to mean other things. For
example, watermarks in Spark Structured Streaming are high watermarks, which opti‐
mistically track the event time of the newest record the system is aware of. When deal‐
ing with lateness, the system is free to garbage collect any window older than the high
watermark adjusted by some user-specified lateness threshold. In other words, the
system allows you to specify the maximum amount of event-time skew you expect to
see in your pipeline, and then throws away any data outside of that skew window.
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This can work well if skew within your pipeline remains within some constant delta,
but is more prone to incorrectly discarding data than low watermarking schemes.

Because the interaction between allowed lateness and the watermark is a little subtle,
it’s worth looking at an example. Let’s take the heuristic watermark pipeline from
Example 2-7/Figure 2-11 and add in Example 2-8 a lateness horizon of one minute
(note that this particular horizon has been chosen strictly because it fits nicely into
the diagram; for real-world use cases, a larger horizon would likely be much more
practical):

Example 2-8. Early/on-time/late firings with allowed lateness

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1))
               .withAllowedLateness(ONE_MINUTE))
 .apply(Sum.integersPerKey());

The execution of this pipeline would look something like Figure 2-12, in which I’ve
added the following features to highlight the effects of allowed lateness:

• The thick black line denoting the current position in processing time is now
annotated with ticks indicating the lateness horizon (in event time) for all active
windows.

• When the watermark passes the lateness horizon for a window, that window is
closed, which means that all state for the window is discarded. I leave around a
dotted rectangle showing the extent of time (in both domains) that the window
covered when it was closed, with a little tail extending to the right to denote the
lateness horizon for the window (for contrasting against the watermark).

• For this diagram only, I’ve added an additional late datum for the first window
with value 6. The 6 is late, but still within the allowed lateness horizon and thus is
incorporated into an updated result with value 11. The 9, however, arrives
beyond the lateness horizon, so it is simply dropped.
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Figure 2-12. Allowed lateness with early/on-time/late firings

Two final side notes about lateness horizons:

• To be absolutely clear, if you happen to be consuming data from sources for
which perfect watermarks are available, there’s no need to deal with late data, and
an allowed lateness horizon of zero seconds will be optimal. This is what we saw
in the perfect watermark portion of Figure 2-10.

• One noteworthy exception to the rule of needing to specify lateness horizons,
even when heuristic watermarks are in use, would be something like computing
global aggregates over all time for a tractably finite number of keys (e.g., comput‐
ing the total number of visits to your site over all time, grouped by web browser
family). In this case, the number of active windows in the system is bounded by
the limited keyspace in use. As long as the number of keys remains manageably
low, there’s no need to worry about limiting the lifetime of windows via allowed
lateness.

Practicality sated, let’s move on to our fourth and final question.

How: Accumulation
When triggers are used to produce multiple panes for a single window over time, we
find ourselves confronted with the last question: “How do refinements of results
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8 You might note that there should logically be a fourth mode: discarding and retracting. That mode isn’t terri‐
bly useful in most cases, so I don’t discuss it further here.

9 In retrospect, it probably would have been clearer to choose a different set of names that are more oriented
toward the observed nature of data in the materialized stream (e.g., “output modes”) rather than names
describing the state management semantics that yield those data. Perhaps: discarding mode → delta mode,
accumulating mode → value mode, accumulating and retracting mode → value and retraction mode? How‐
ever, the discarding/accumulating/accumulating and retracting names are enshrined in the 1.x and 2.x line‐
ages of the Beam Model, so I don’t want to introduce potential confusion in the book by deviating. Also, it’s
very likely accumulating modes will blend into the background more with Beam 3.0 and the introduction of
sink triggers; more on this when we discuss SQL in Chapter 8.

relate?” In the examples we’ve seen so far, each successive pane is built upon the one
immediately preceding it. However, there are actually three8 different modes of accu‐
mulation:9

Discarding
Every time a pane is materialized, any stored state is discarded. This means that
each successive pane is independent from any that came before. Discarding mode
is useful when the downstream consumer is performing some sort of accumula‐
tion itself; for example, when sending integers into a system that expects to
receive deltas that it will sum together to produce a final count.

Accumulating
As in Figures 2-6 through 2-11, every time a pane is materialized, any stored state
is retained, and future inputs are accumulated into the existing state. This means
that each successive pane builds upon the previous panes. Accumulating mode is
useful when later results can simply overwrite previous results, such as when
storing output in a key/value store like HBase or Bigtable.

Accumulating and retracting
This is like accumulating mode, but when producing a new pane, it also produces
independent retractions for the previous pane(s). Retractions (combined with the
new accumulated result) are essentially an explicit way of saying “I previously
told you the result was X, but I was wrong. Get rid of the X I told you last time,
and replace it with Y.” There are two cases for which retractions are particularly
helpful:

• When consumers downstream are regrouping data by a different dimension,
it’s entirely possible the new value may end up keyed differently from the
previous value and thus end up in a different group. In that case, the new
value can’t just overwrite the old value; you instead need the retraction to
remove the old value

• When dynamic windows (e.g., sessions, which we look at more closely in a
few moments) are in use, the new value might be replacing more than one
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previous window, due to window merging. In this case, it can be difficult to
determine from the new window alone which old windows are being
replaced. Having explicit retractions for the old windows makes the task
straightforward. We see an example of this in detail in Chapter 8.

The different semantics for each group are somewhat clearer when seen side-by-side.
Consider the two panes for the fourth window (the one with event-time range [12:06,
12:08)) in Figure 2-11 (the one with early/on-time/late triggers). Table 2-1 shows
what the values for each pane would look like across the three accumulation modes
(with accumulating mode being the specific mode used in Figure 2-11 itself).

Table 2-1. Comparing accumulation modes using the fourth window from Figure 2-11
 Discarding Accumulating Accumulating & Retracting

Pane 1: inputs=[3] 3 3 3

Pane 2: inputs=[8, 1] 9 12 12, –3

Value of final normal pane 9 12 12

Sum of all panes 12 15 12

Let’s take a closer look at what’s happening:

Discarding
Each pane incorporates only the values that arrived during that specific pane. As
such, the final value observed does not fully capture the total sum. However, if
you were to sum all of the independent panes themselves, you would arrive at a
correct answer of 12. This is why discarding mode is useful when the down‐
stream consumer itself is performing some sort of aggregation on the material‐
ized panes.

Accumulating
As in Figure 2-11, each pane incorporates the values that arrived during that spe‐
cific pane, plus all of the values from previous panes. As such, the final value
observed correctly captures the total sum of 12. If you were to sum up the indi‐
vidual panes themselves, however, you’d effectively be double-counting the inputs
from pane 1, giving you an incorrect total sum of 15. This is why accumulating
mode is most useful when you can simply overwrite previous values with new
values: the new value already incorporates all of the data seen thus far.

Accumulating and retracting
Each pane includes both a new accumulating mode value as well as a retraction
of the previous pane’s value. As such, both the last value observed (excluding
retractions) as well as the total sum of all materialized panes (including retrac‐
tions) provide you with the correct answer of 12. This is why retractions are so
powerful.
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Example 2-9 demonstrates discarding mode in action, illustrating the changes we
would make to Example 2-7:

Example 2-9. Discarding mode version of early/on-time/late firings

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AtCount(1))
               .discardingFiredPanes())
  .apply(Sum.integersPerKey());

Running again on a streaming engine with a heuristic watermark would produce out‐
put like that shown in Figure 2-13.

Figure 2-13. Discarding mode version of early/on-time/late firings on a streaming engine

Even though the overall shape of the output is similar to the accumulating mode ver‐
sion from Figure 2-11, note how none of the panes in this discarding version overlap.
As a result, each output is independent from the others.

If we want to look at retractions in action, the change would be similar, as shown in
Example 2-10. Figure 2-14 depicts the results.
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Example 2-10. Accumulating and retracting mode version of early/on-time/late firings

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AtCount(1))
               .accumulatingAndRetractingFiredPanes())
  .apply(Sum.integersPerKey());

Figure 2-14. Accumulating and retracting mode version of early/late firings on a stream‐
ing engine

Because the panes for each window all overlap, it’s a little tricky to see the retractions
clearly. The retractions are indicated in red, which combines with the overlapping
blue panes to yield a slightly purplish color. I’ve also horizontally shifted the values of
the two outputs within a given pane slightly (and separated them with a comma) to
make them easier to differentiate.

Figure 2-15 combines the final frames of Figures 2-11 (heuristic only), 2-13, and 2-14
side-by-side, providing a nice visual contrast of the three modes.
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Figure 2-15. Side-by-side comparison of accumulation modes

As you can imagine, the modes in the order presented (discarding, accumulating,
accumulating and retracting) are each successively more expensive in terms of stor‐
age and computation costs. To that end, choice of accumulation mode provides yet
another dimension for making trade-offs along the axes of correctness, latency, and
cost.

Summary
With this chapter complete, you now understand the basics of robust stream process‐
ing and are ready to go forth into the world and do amazing things. Of course, there
are eight more chapters anxiously waiting for your attention, so hopefully you won’t
go forth like right now, this very minute. But regardless, let’s recap what we’ve just
covered, lest you forget any of it in your haste to amble forward. First, the major con‐
cepts we touched upon:

Event time versus processing time
The all-important distinction between when events occurred and when they are
observed by your data processing system.

Windowing
The commonly utilized approach to managing unbounded data by slicing it
along temporal boundaries (in either processing time or event time, though we
narrow the definition of windowing in the Beam Model to mean only within
event time).

Triggers
The declarative mechanism for specifying precisely when materialization of out‐
put makes sense for your particular use case.

Watermarks
The powerful notion of progress in event time that provides a means of reason‐
ing about completeness (and thus missing data) in an out-of-order processing
system operating on unbounded data.
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Accumulation
The relationship between refinements of results for a single window for cases in
which it’s materialized multiple times as it evolves.

Second, the four questions we used to frame our exploration:

• What results are calculated? = transformations.
• Where in event time are results calculated? = windowing.
• When in processing time are results materialized? = triggers plus watermarks.
• How do refinements of results relate? = accumulation.

Third, to drive home the flexibility afforded by this model of stream processing
(because in the end, that’s really what this is all about: balancing competing tensions
like correctness, latency, and cost), a recap of the major variations in output we were
able to achieve over the same dataset with only a minimal amount of code change:

 

Integer summation
Example 2-1 / Figure 2-3

Integer summation
Fixed windows batch

Example 2-2 / Figure 2-5

Integer summation
Fixed windows streaming

Repeated per-record trigger
Example 2-3 / Figure 2-6

 

Integer summation
Fixed windows streaming

Repeated aligned-delay trigger
Example 2-4 / Figure 2-7

Integer summation
Fixed windows streaming

Repeated unaligned-delay trigger
Example 2-5 / Figure 2-8

Integer summation
Fixed windows streaming

Heuristic watermark trigger
Example 2-6 / Figure 2-10
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Integer summation
Fixed windows streaming
Early/on-time/late trigger

Discarding
Example 2-9 / Figure 2-13

Integer summation
Fixed windows streaming
Early/on-time/late trigger

Accumulating
Example 2-7 / Figure 2-11

Integer summation
Fixed windows streaming
Early/on-time/late trigger

Accumulating and Retracting
Example 2-10 / Figure 2-14

All that said, at this point, we’ve really looked at only one type of windowing: fixed
windowing in event time. As we know, there are a number of dimensions to window‐
ing, and I’d like to touch upon at least two more of those before we call it a day with
the Beam Model. First, however, we’re going to take a slight detour to dive deeper into
the world of watermarks, as this knowledge will help frame future discussions (and be
fascinating in and of itself). Enter Slava, stage right...
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CHAPTER 3

Watermarks

So far, we have been looking at stream processing from the perspective of the pipeline
author or data scientist. Chapter 2 introduced watermarks as part of the answer to the
fundamental questions of where in event-time processing is taking place and when in
processing time results are materialized. In this chapter, we approach the same ques‐
tions, but instead from the perspective of the underlying mechanics of the stream
processing system. Looking at these mechanics will help us motivate, understand, and
apply the concepts around watermarks. We discuss how watermarks are created at the
point of data ingress, how they propagate through a data processing pipeline, and
how they affect output timestamps. We also demonstrate how watermarks preserve
the guarantees that are necessary for answering the questions of where in event-time
data are processed and when it is materialized, while dealing with unbounded data.

Definition
Consider any pipeline that ingests data and outputs results continuously. We wish to
solve the general problem of when it is safe to call an event-time window closed,
meaning that the window does not expect any more data. To do so we would like to
characterize the progress that the pipeline is making relative to its unbounded input.

One naive approach for solving the event-time windowing problem would be to
simply base our event-time windows on the current processing time. As we saw in
Chapter 1, we quickly run into trouble—data processing and transport is not instan‐
taneous, so processing and event times are almost never equal. Any hiccup or spike in
our pipeline might cause us to incorrectly assign messages to windows. Ultimately,
this strategy fails because we have no robust way to make any guarantees about such
windows.
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Another intuitive, but ultimately incorrect, approach would be to consider the rate of
messages processed by the pipeline. Although this is an interesting metric, the rate
may vary arbitrarily with changes in input, variability of expected results, resources
available for processing, and so on. Even more important, rate does not help answer
the fundamental questions of completeness. Specifically, rate does not tell us when we
have seen all of the messages for a particular time interval. In a real-world system,
there will be situations in which messages are not making progress through the sys‐
tem. This could be the result of transient errors (such as crashes, network failures,
machine downtime), or the result of persistent errors such as application-level fail‐
ures that require changes to the application logic or other manual intervention to
resolve. Of course, if lots of failures are occurring, a rate-of-processing metric might
be a good proxy for detecting this. However a rate metric could never tell us that a
single message is failing to make progress through our pipeline. Even a single such
message, however, can arbitrarily affect the correctness of the output results.

We require a more robust measure of progress. To arrive there, we make one funda‐
mental assumption about our streaming data: each message has an associated logical
event timestamp. This assumption is reasonable in the context of continuously arriv‐
ing unbounded data because this implies the continuous generation of input data. In
most cases, we can take the time of the original event’s occurrence as its logical event
timestamp. With all input messages containing an event timestamp, we can then
examine the distribution of such timestamps in any pipeline. Such a pipeline might
be distributed to process in parallel over many agents and consuming input messages
with no guarantee of ordering between individual shards. Thus, the set of event time‐
stamps for active in-flight messages in this pipeline will form a distribution, as illus‐
trated in Figure 3-1.

Messages are ingested by the pipeline, processed, and eventually marked completed.
Each message is either “in-flight,” meaning that it has been received but not yet com‐
pleted, or “completed,” meaning that no more processing on behalf of this message is
required. If we examine the distribution of messages by event time, it will look some‐
thing like Figure 3-1. As time advances, more messages will be added to the “in-
flight” distribution on the right, and more of those messages from the “in-flight” part
of the distribution will be completed and moved into the “completed” distribution.
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Figure 3-1. Distribution of in-flight and completed message event times within a stream‐
ing pipeline. New messages arrive as input and remain “in-flight” until processing for
them completes. The leftmost edge of the “in-flight” distribution corresponds to the oldest
unprocessed element at any given moment.

There is a key point on this distribution, located at the leftmost edge of the “in-flight”
distribution, corresponding to the oldest event timestamp of any unprocessed mes‐
sage of our pipeline. We use this value to define the watermark:
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1 Note the additional mention of monotonicity; we have not yet discussed how to achieve this. Indeed the dis‐
cussion thus far makes no mention of monotonicity. If we considered exclusively the oldest in-flight event
time, the watermark would not always be monotonic, as we have made no assumptions about our input. We
return to this discussion later on.

The watermark is a monotonically1 increasing timestamp of the oldest work not yet
completed.

There are two fundamental properties that are provided by this definition that make
it useful:

Completeness
If the watermark has advanced past some timestamp T, we are guaranteed by its
monotonic property that no more processing will occur for on-time (nonlate
data) events at or before T. Therefore, we can correctly emit any aggregations at
or before T. In other words, the watermark allows us to know when it is correct
to materialize a window.

Visibility
If a message is stuck in our pipeline for any reason, the watermark cannot
advance. Furthermore, we will be able to find the source of the problem by exam‐
ining the message that is preventing the watermark from advancing.

Source Watermark Creation
Where do these watermarks come from? To establish a watermark for a data source,
we must assign a logical event timestamp to every message entering the pipeline from
that source. As Chapter 2 informs us, all watermark creation falls into one of two
broad categories: perfect or heuristic. To remind ourselves about the difference
between perfect and heuristic watermarks, let’s look at Figure 3-2, which presents the
windowed summation example from Chapter 2.
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Figure 3-2. Windowed summation with perfect (left) and heuristic (right) watermarks
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2 To be precise, it’s not so much that the number of logs need be static as it is that the number of logs at any
given time be known a priori by the system. A more sophisticated input source composed of a dynamically
chosen number of inputs logs, such as Pravega, could just as well be used for constructing a perfect water‐
mark. It’s only when the number of logs that exist in the dynamic set at any given time is unknown (as in the
example in the next section) that one must fall back on a heuristic watermark.

Notice that the distinguishing feature is that perfect watermarks ensure that the
watermark accounts for all data, whereas heuristic watermarks admit some late-data
elements.

After the watermark is created as either perfect or heuristic, watermarks remain so
throughout the rest of the pipeline. As to what makes watermark creation perfect or
heuristic, it depends a great deal on the nature of the source that’s being consumed.
To see why, let’s look at a few examples of each type of watermark creation.

Perfect Watermark Creation
Perfect watermark creation assigns timestamps to incoming messages in such a way
that the resulting watermark is a strict guarantee that no data with event times less
than the watermark will ever be seen again from this source. Pipelines using perfect
watermark creation never have to deal with late data; that is, data that arrive after the
watermark has advanced past the event times of newly arriving messages. However,
perfect watermark creation requires perfect knowledge of the input, and thus is
impractical for many real-world distributed input sources. Here are a couple of exam‐
ples of use cases that can create perfect watermarks:

Ingress timestamping
A source that assigns ingress times as the event times for data entering the system
can create a perfect watermark. In this case, the source watermark simply tracks
the current processing time as observed by the pipeline. This is essentially the
method that nearly all streaming systems supporting windowing prior to 2016
used.

Because event times are assigned from a single, monotonically increasing source
(actual processing time), the system thus has perfect knowledge about which
timestamps will come next in the stream of data. As a result, event-time progress
and windowing semantics become vastly easier to reason about. The downside,
of course, is that the watermark has no correlation to the event times of the data
themselves; those event times were effectively discarded, and the watermark
instead merely tracks the progress of data relative to its arrival in the system.

Static sets of time-ordered logs
A statically sized2 input source of time-ordered logs (e.g., an Apache Kafka topic
with a static set of partitions, where each partition of the source contains monot‐
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onically increasing event times) would be a relatively straightforward source atop
which to create a perfect watermark. To do so, the source would simply track the
minimum event time of unprocessed data across the known and static set of
source partitions (i.e., the minimum of the event times of the most recently read
record in each of the partitions).

Similar to the aforementioned ingress timestamps, the system has perfect knowl‐
edge about which timestamps will come next, thanks to the fact that event times
across the static set of partitions are known to increase monotonically. This is
effectively a form of bounded out-of-order processing; the amount of disorder
across the known set of partitions is bounded by the minimum observed event
time among those partitions.

Typically, the only way you can guarantee monotonically increasing timestamps
within partitions is if the timestamps within those partitions are assigned as data
are written to it; for example, by web frontends logging events directly into
Kafka. Though still a limited use case, this is definitely a much more useful one
than ingress timestamping upon arrival at the data processing system because the
watermark tracks meaningful event times of the underlying data.

Heuristic Watermark Creation
Heuristic watermark creation, on the other hand, creates a watermark that is merely
an estimate that no data with event times less than the watermark will ever be seen
again. Pipelines using heuristic watermark creation might need to deal with some
amount of late data. Late data is any data that arrives after the watermark has
advanced past the event time of this data. Late data is only possible with heuristic
watermark creation. If the heuristic is a reasonably good one, the amount of late data
might be very small, and the watermark remains useful as a completion estimate. The
system still needs to provide a way for the user to cope with late data if it’s to support
use cases requiring correctness (e.g., things like billing).

For many real-world, distributed input sources, it’s computationally or operationally
impractical to construct a perfect watermark, but still possible to build a highly accu‐
rate heuristic watermark by taking advantage of structural features of the input data
source. Following are two example for which heuristic watermarks (of varying qual‐
ity) are possible:

Dynamic sets of time-ordered logs
Consider a dynamic set of structured log files (each individual file containing
records with monotonically increasing event times relative to other records in the
same file but with no fixed relationship of event times between files), where the
full set of expected log files (i.e., partitions, in Kafka parlance) is not known at
runtime. Such inputs are often found in global-scale services constructed and
managed by a number of independent teams. In such a use case, creating a per‐

Source Watermark Creation | 65



fect watermark over the input is intractable, but creating an accurate heuristic
watermark is quite possible.

By tracking the minimum event times of unprocessed data in the existing set of
log files, monitoring growth rates, and utilizing external information like net‐
work topology and bandwidth availability, you can create a remarkably accurate
watermark, even given the lack of perfect knowledge of all the inputs. This type
of input source is one of the most common types of unbounded datasets found at
Google, so we have extensive experience with creating and analyzing watermark
quality for such scenarios and have seen them used to good effect across a num‐
ber of use cases.

Google Cloud Pub/Sub
Cloud Pub/Sub is an interesting use case. Pub/Sub currently makes no guarantees
on in-order delivery; even if a single publisher publishes two messages in order,
there’s a chance (usually small) that they might be delivered out of order (this is
due to the dynamic nature of the underlying architecture, which allows for trans‐
parent scaling up to very high levels of throughput with zero user intervention).
As a result, there’s no way to guarantee a perfect watermark for Cloud Pub/Sub.
The Cloud Dataflow team has, however, built a reasonably accurate heuristic
watermark by taking advantage of what knowledge is available about the data in
Cloud Pub/Sub. The implementation of this heuristic is discussed at length as a
case study later in this chapter.

Consider an example where users play a mobile game, and their scores are sent to our
pipeline for processing: you can generally assume that for any source utilizing mobile
devices for input it will be generally impossible to provide a perfect watermark. Due
to the problem of devices that go offline for extended periods of time, there’s just no
way to provide any sort of reasonable estimate of absolute completeness for such a
data source. You can, however, imagine building a watermark that accurately tracks
input completeness for devices that are currently online, similar to the Google
Pub/Sub watermark described a moment ago. Users who are actively online are likely
the most relevant subset of users from the perspective of providing low-latency
results anyway, so this often isn’t as much of a shortcoming as you might initially
think.

With heuristic watermark creation, broadly speaking, the more that is known about
the source, the better the heuristic, and the fewer late data items will be seen. There is
no one-size-fits-all solution, given that the types of sources, distributions of events,
and usage patterns will vary greatly. But in either case (perfect or heuristic), after a
watermark is created at the input source, the system can propagate the watermark
through the pipeline perfectly. This means perfect watermarks will remain perfect
downstream, and heuristic watermarks will remain strictly as heuristic as they were
when established. This is the benefit of the watermark approach: you can reduce the
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3 Note that by saying “flow through the system,” I don’t necessarily imply they flow along the same path as nor‐
mal data. They might (as in Apache Flink), but they might also be transmitted out-of-band (as in MillWheel/
Cloud Dataflow).

complexity of tracking completeness in a pipeline entirely to the problem of creating
a watermark at the source.

Watermark Propagation
So far, we have considered only the watermark for the inputs within the context of a
single operation or stage. However, most real-world pipelines consist of multiple
stages. Understanding how watermarks propagate across independent stages is
important in understanding how they affect the pipeline as a whole and the observed
latency of its results.

Pipeline Stages
Different stages are typically necessary every time your pipeline groups data together
by some new dimension. For example, if you had a pipeline that consumed raw data,
computed some per-user aggregates, and then used those per-user aggregates to com‐
pute some per-team aggregates, you’d likely end up with a three-stage pipeline:

• One consuming the raw, ungrouped data
• One grouping the data by user and computing per-user aggregates
• One grouping the data by team and computing per-team aggregates

We learn more about the effects of grouping on pipeline shapes in Chapter 6.

Watermarks are created at input sources, as discussed in the preceding section. They
then conceptually flow through the system as data progress through it.3 You can track
watermarks at varying levels of granularity. For pipelines comprising multiple distinct
stages, each stage likely tracks its own watermark, whose value is a function of all the
inputs and stages that come before it. Therefore, stages that come later in the pipeline
will have watermarks that are further in the past (because they’ve seen less of the
overall input).

We can define watermarks at the boundaries of any single operation, or stage, in the
pipeline. This is useful not only in understanding the relative progress that each stage
in the pipeline is making, but for dispatching timely results independently and as
soon as possible for each individual stage. We give the following definitions for the
watermarks at the boundaries of stages:
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• An input watermark, which captures the progress of everything upstream of that
stage (i.e., how complete the input is for that stage). For sources, the input water‐
mark is a source-specific function creating the watermark for the input data. For
nonsource stages, the input watermark is defined as the minimum of the output
watermarks of all shards/partitions/instances of all of its upstream sources and
stages.

• An output watermark, which captures the progress of the stage itself, and is
essentially defined as the minimum of the stage’s input watermark and the event
times of all nonlate data active messages within the stage. Exactly what “active”
encompasses is somewhat dependent upon the operations a given stage actually
performs, and the implementation of the stream processing system. It typically
includes data buffered for aggregation but not yet materialized downstream,
pending output data in flight to downstream stages, and so on.

One nice feature of defining an input and output watermark for a specific stage is that
we can use these to calculate the amount of event-time latency introduced by a stage.
Subtracting the value of a stage’s output watermark from the value of its input water‐
mark gives the amount of event-time latency or lag introduced by the stage. This lag
is the notion of how far delayed behind real time the output of each stage will be. As
an example, a stage performing 10-second windowed aggregations will have a lag of
10 seconds or more, meaning that the output of the stage will be at least that much
delayed behind the input and real time. Definitions of input and output watermarks
provide a recursive relationship of watermarks throughout a pipeline. Each subse‐
quent stage in a pipeline delays the watermark as necessary, based on event-time lag
of the stage.

Processing within each stage is also not monolithic. We can segment the processing
within one stage into a flow with several conceptual components, each of which con‐
tributes to the output watermark. As mentioned previously, the exact nature of these
components depends on the operations the stage performs and the implementation of
the system. Conceptually, each such component serves as a buffer where active mes‐
sages can reside until some operation has completed. For example, as data arrives, it is
buffered for processing. Processing might then write the data to state for later delayed
aggregation. Delayed aggregation, when triggered, might write the results to an out‐
put buffer awaiting consumption from a downstream stage, as shown in Figure 3-3.
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Figure 3-3. Example system components of a streaming system stage, containing buffers
of in-flight data. Each will have associated watermark tracking, and the overall output
watermark of the stage will be the minimum of the watermarks across all such buffers.

We can track each such buffer with its own watermark. The minimum of the water‐
marks across the buffers of each stage forms the output watermark of the stage. Thus
the output watermark could be the minimum of the following:

• Per-source watermark—for each sending stage.
• Per-external input watermark—for sources external to the pipeline
• Per-state component watermark—for each type of state that can be written
• Per-output buffer watermark—for each receiving stage

Making watermarks available at this level of granularity also provides better visibility
into the behavior of the system. The watermarks track locations of messages across
various buffers in the system, allowing for easier diagnosis of stuckness.

Understanding Watermark Propagation
To get a better sense for the relationship between input and output watermarks and
how they affect watermark propagation, let’s look at an example. Let’s consider gam‐
ing scores, but instead of computing sums of team scores, we’re going to take a stab at
measuring user engagement levels. We’ll do this by first calculating per-user session
lengths, under the assumption that the amount of time a user stays engaged with the
game is a reasonable proxy for how much they’re enjoying it. After answering our
four questions once to calculate sessions lengths, we’ll then answer them a second
time to calculate average session lengths within fixed periods of time.

To make our example even more interesting, lets say that we are working with two
datasets, one for Mobile Scores and one for Console Scores. We would like to perform
identical score calculations via integer summation in parallel over these two inde‐
pendant datasets. One pipeline is calculating scores for users playing on mobile devi‐
ces, whereas the other is for users playing on home gaming consoles, perhaps due to
different data collection strategies employed for the different platforms. The impor‐
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tant point is that these two stages are performing the same operation but over differ‐
ent data, and thus with very different output watermarks.

To begin, let’s take a look at Example 3-1 to see what the abbreviated code for what
the first section of this pipeline might be like.

Example 3-1. Calculating session lengths

PCollection<Double> mobileSessions = IO.read(new MobileInputSource())
  .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
               .triggering(AtWatermark())
               .discardingFiredPanes())
  .apply(CalculateWindowLength());

PCollection<Double> consoleSessions = IO.read(new ConsoleInputSource())
  .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
               .triggering(AtWatermark())
               .discardingFiredPanes())
  .apply(CalculateWindowLength());

Here, we read in each of our inputs independently, and whereas previously we were
keying our collections by team, in this example we key by user. After that, for the first
stage of each pipeline, we window into sessions and then call a custom PTransform
named CalculateWindowLength. This PTransform simply groups by key (i.e., User)
and then computes the per-user session length by treating the size of the current win‐
dow as the value for that window. In this case, we’re fine with the default trigger
(AtWatermark) and accumulation mode (discardingFiredPanes) settings, but I’ve
listed them explicitly for completeness. The output for each pipeline for two particu‐
lar users might look something like Figure 3-4.
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Figure 3-4. Per-user session lengths across two different input pipelines

Because we need to track data across multiple stages, we track everything related to
Mobile Scores in red, everything related to Console Scores in blue, while the water‐
mark and output for Average Session Lengths in Figure 3-5 are yellow.

We have answered the four questions of what, where, when, and how to compute indi‐
vidual session lengths. Next we’ll answer them a second time to transform those ses‐
sion lengths into global session-length averages within fixed windows of time. This
requires us to first flatten our two data sources into one, and then re-window into
fixed windows; we’ve already captured the important essence of the session in the
session-length value we computed, and we now want to compute a global average of
those sessions within consistent windows of time over the course of the day.
Example 3-2 shows the code for this.
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Example 3-2. Calculating session lengths

PCollection<Double> mobileSessions = IO.read(new MobileInputSource())
  .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
               .triggering(AtWatermark())
               .discardingFiredPanes())
  .apply(CalculateWindowLength());

PCollection<Double> consoleSessions = IO.read(new ConsoleInputSource())
  .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
               .triggering(AtWatermark())
               .discardingFiredPanes())
  .apply(CalculateWindowLength());
  
PCollection<Float> averageSessionLengths = PCollectionList
  .of(mobileSessions).and(consoleSessions)
  .apply(Flatten.pCollections())
  .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))
               .triggering(AtWatermark())
  .apply(Mean.globally());

If we were to see this pipeline in action, it would look something like Figure 3-5. As
before, the two input pipelines are computing individual session lengths for mobile
and console players. Those session lengths then feed into the second stage of the
pipeline, where global session-length averages are computed in fixed windows.
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Figure 3-5. Average session lengths of mobile and console gaming sessions (continued
next)
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Let’s walk through some of this example, given that there’s a lot going on. The two
important points here are:

• The output watermark for each of the Mobile Sessions and Console Sessions
stages is at least as old as the corresponding input watermark of each, and in real‐
ity a little bit older. This is because in a real system computing answers takes
time, and we don’t allow the output watermark to advance until processing for a
given input has completed.

• The input watermark for the Average Session Lengths stage is the minimum of
the output watermarks for the two stages directly upstream.

The result is that the downstream input watermark is an alias for the minimum com‐
position of the upstream output watermarks. Note that this matches the definitions
for those two types of watermarks earlier in the chapter. Also notice how watermarks
further downstream are further in the past, capturing the intuitive notion that
upstream stages are going to be further ahead in time than the stages that follow
them.

One observation worth making here is just how cleanly we were able to ask the ques‐
tions again in Example 3-1 to substantially alter the results of the pipeline. Whereas
before we simply computed per-user session lengths, we now compute two-minute
global session-length averages. This provides a much more insightful look into the
overall behaviors of the users playing our games and gives you a tiny glimpse of the
difference between simple data transformations and real data science.

Even better, now that we understand the basics of how this pipeline operates, we can
look more closely at one of the more subtle issues related to asking the four questions
over again: output timestamps.

Watermark Propagation and Output Timestamps
In Figure 3-5, I glossed over some of the details of output timestamps. But if you look
closely at the second stage in the diagram, you can see that each of the outputs from
the first stage was assigned a timestamp that matched the end of its window.
Although that’s a fairly natural choice for output timestamps, it’s not the only valid
choice. As you know from earlier in this chapter, watermarks are never allowed to
move backward. Given that restriction, you can infer that the range of valid time‐
stamps for a given window begins with the timestamp of the earliest nonlate record in
the window (because only nonlate records are guaranteed to hold a watermark up)
and extends all the way to positive infinity. That’s quite a lot of options. In practice,
however, there tend to be only a few choices that make sense in most circumstances:
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4 The start of the window is not a safe choice from a watermark correctness perspective because the first ele‐
ment in the window often comes after the beginning of the window itself, which means that the watermark is
not guaranteed to have been held back as far as the start of the window.

End of the window4

Using the end of the window is the only safe choice if you want the output time‐
stamp to be representative of the window bounds. As we’ll see in a moment, it
also allows the smoothest watermark progression out of all of the options.

Timestamp of first nonlate element
Using the timestamp of the first nonlate element is a good choice when you want
to keep your watermarks as conservative as possible. The trade-off, however, is
that watermark progress will likely be more hindered, as we’ll also see shortly.

Timestamp of a specific element
For certain use cases, the timestamp of some other arbitrary (from the system’s
perspective) element is the right choice. Imagine a use case in which you’re join‐
ing a stream of queries to a stream of clicks on results for that query. After per‐
forming the join, some systems will find the timestamp of the query to be more
useful; others will prefer the timestamp of the click. Any such timestamp is valid
from a watermark correctness perspective, as long as it corresponded to an ele‐
ment that did not arrive late.

Having thought a bit about some alternate options for output timestamps, let’s look at
what effects the choice of output timestamp can have on the overall pipeline. To make
the changes as dramatic as possible, in Example 3-3 and Figure 3-6, we’ll switch to
using the earliest timestamp possible for the window: the timestamp of the first non‐
late element as the timestamp for the window. 

Example 3-3. Average session lengths pipeline, that output timestamps for session
windows set at earliest element

PCollection<Double> mobileSessions = IO.read(new MobileInputSource())
  .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
               .triggering(AtWatermark())
               .withTimestampCombiner(EARLIEST)
               .discardingFiredPanes())
  .apply(CalculateWindowLength());

PCollection<Double> consoleSessions = IO.read(new ConsoleInputSource())
  .apply(Window.into(Sessions.withGapDuration(Duration.standardMinutes(1)))
               .triggering(AtWatermark())
               .withTimestampCombiner(EARLIEST)
               .discardingFiredPanes())
  .apply(CalculateWindowLength());
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PCollection<Float> averageSessionLengths = PCollectionList
  .of(mobileSessions).and(consoleSessions)
  .apply(Flatten.pCollections())
  .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))
               .triggering(AtWatermark())
  .apply(Mean.globally());

Figure 3-6. Average session lengths for sessions that are output at the timestamp of the
earliest element (continued next)
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To help call out the effect of the output timestamp choice, look at the dashed lines in
the first stages showing what the output watermark for each stage is being held to.
The output watermark is delayed by our choice of timestamp, as compared to Figures
3-7 and 3-8, in which the output timestamp was chosen to be the end of the window.
You can see from this diagram that the input watermark of the second stage is thus
subsequently also delayed.
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Figure 3-7. Comparison of watermarks and results with different choice of window out‐
out timestamps. The watermarks in this figure correspond to output timestamps at the
end of the session windows (i.e., Figure 3-5).

Figure 3-8. In this figure, the watermarks are at the beginning of the session windows
(i.e., Figure 3-6). We can see that the watermark line in this figure is more delayed, and
the resulting average session lengths are different.
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As far as differences in this version compared to Figure 3-7, two are worth noting:

Watermark delay
Compared to Figure 3-5, the watermark proceeds much more slowly in
Figure 3-6. This is because the output watermark for the first stage is held back to
the timestamp of the first element in every window until the input for that win‐
dow becomes complete. Only after a given window has been materialized is the
output watermark (and thus the downstream input watermark) allowed to
advance.

Semantic differences
Because the session timestamps are now assigned to match the earliest nonlate
element in the session, the individual sessions often end up in different fixed
window buckets when we then calculate the session-length averages in the next
stage. There’s nothing inherently right or wrong about either of the two options
we’ve seen so far; they’re just different. But it’s important to understand that they
will be different as well as have an intuition for the way in which they’ll be differ‐
ent so that you can make the correct choice for your specific use case when the
time comes.

The Tricky Case of Overlapping Windows
One additional subtle but important issue regarding output timestamps is how to
handle sliding windows. The naive approach of setting the output timestamp to the
earliest element can very easily lead to delays downstream due to watermarks being
(correctly) held back. To see why, consider an example pipeline with two stages, each
using the same type of sliding windows. Suppose that each element ends up in three
successive windows. As the input watermark advances, the desired semantics for slid‐
ing windows in this case would be as follows:

• The first window completes in the first stage and is emitted downstream.
• The first window then completes in the second stage and can also be emitted

downstream.
• Some time later, the second window completes in the first stage… and so on.

However, if output timestamps are chosen to be the timestamp of the first nonlate
element in the pane, what actually happens is the following:

• The first window completes in the first stage and is emitted downstream.
• The first window in the second stage remains unable to complete because its

input watermark is being held up by the output watermark of the second and
third windows upstream. Those watermarks are rightly being held back because
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5 The percentile watermark triggering scheme described here is not currently implemented by Beam; however,
other systems such as MillWheel implement this.

the earliest element timestamp is being used as the output timestamp for those
windows.

• The second window completes in the first stage and is emitted downstream.
• The first and second windows in the second stage remain unable to complete,

held up by the third window upstream.
• The third window completes in the first stage and is emitted downstream.
• The first, second, and third windows in the second stage are now all able to com‐

plete, finally emitting all three in one swoop.

Although the results of this windowing are correct, this leads to the results being
materialized in an unnecessarily delayed way. Because of this, Beam has special logic
for overlapping windows that ensures the output timestamp for window N+1 is
always greater than the end of window N.

Percentile Watermarks
So far, we have concerned ourselves with watermarks as measured by the minimum
event time of active messages in a stage. Tracking the minimum allows the system to
know when all earlier timestamps have been accounted for. On the other hand, we
could consider the entire distribution of event timestamps for active messages and
make use of it to create finer-grained triggering conditions.

Instead of considering the minimum point of the distribution, we could take any per‐
centile of the distribution and say that we are guaranteed to have processed this per‐
centage of all events with earlier timestamps.5

What is the advantage of this scheme? If for the business logic “mostly” correct is suf‐
ficient, percentile watermarks provide a mechanism by which the watermark can
advance more quickly and more smoothly than if we were tracking the minimum
event time by discarding outliers in the long tail of the distribution from the water‐
mark. Figure 3-9 shows a compact distribution of event times where the 90th percen‐
tile watermark is close to the 100th percentile. Figure 3-10 demonstrates a case where
the outlier is further behind, so the 90th percentile watermark is significantly ahead of
the 100th percentile. By discarding the outlier data from the watermark, the percentile
watermark can still keep track of the bulk of the distribution without being delayed
by the outliers.
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Figure 3-9. Normal-looking watermark histogram

Figure 3-10. Watermark histogram with outliers

Figure 3-11 shows an example of percentile watermarks used to draw window bound‐
aries for two-minute fixed windows. We can draw early boundaries based on the per‐
centile of timestamps of arrived data as tracked by the percentile watermark.
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Figure 3-11. Effects of varying watermark percentiles. As the percentile increases, more
events are included in the window: however, the processing time delay to materialize the
window also increases.

Figure 3-11 shows the 33rd percentile, 66th percentile, and 100th percentile (full) water‐
mark, tracking the respective timestamp percentiles in the data distribution. As
expected, these allow boundaries to be drawn earlier than tracking the full 100th per‐
centile watermark. Notice that the 33rd and 66th percentile watermarks each allow ear‐
lier triggering of windows but with the trade-off of marking more data as late. For
example, for the first window, [12:00, 12:02), a window closed based on the 33rd per‐
centile watermark would include only four events and materialize the result at 12:06
processing time. If we use the 66th percentile watermark, the same event-time window
would include seven events, and materialize at 12:07 processing time. Using the 100th

percentile watermark includes all ten events and delays materializing the results until
12:08 processing time. Thus, percentile watermarks provide a way to tune the trade-
off between latency of materializing results and precision of the results.
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Processing-Time Watermarks
Until now, we have been looking at watermarks as they relate to the data flowing
through our system. We have seen how looking at the watermark can help us identify
the overall delay between our oldest data and real time. However, this is not enough
to distinguish between old data and a delayed system. In other words, by only exam‐
ining the event-time watermark as we have defined it up until now, we cannot distin‐
guish between a system that is processing data from an hour ago quickly and without
delay, and a system that is attempting to process real-time data and has been delayed
for an hour while doing so.

To make this distinction, we need something more: processing-time watermarks. We
have already seen that there are two time domains in a streaming system: processing
time and event time. Until now, we have defined the watermark entirely in the event-
time domain, as a function of timestamps of the data flowing through the system.
This is an event-time watermark. We will now apply the same model to the
processing-time domain to define a processing-time watermark.

Our stream processing system is constantly performing operations such as shuffling
messages between stages, reading or writing messages to persistent state, or triggering
delayed aggregations based on watermark progress. All of these operations are per‐
formed in response to previous operations done at the current or upstream stage of
the pipeline. Thus, just as data elements “flow” through the system, a cascade of oper‐
ations involved in processing these elements also “flows” through the system.

We define the processing-time watermark in the exact same way as we have defined
the event-time watermark, except instead of using the event-time timestamp of oldest
work not yet completed, we use the processing-time timestamp of the oldest opera‐
tion not yet completed. An example of delay to the processing-time watermark could
be a stuck message delivery from one stage to another, a stuck I/O call to read state or
external data, or an exception while processing that prevents processing from com‐
pleting.

The processing-time watermark, therefore, provides a notion of processing delay sep‐
arate from the data delay. To understand the value of this distinction, consider the
graph in Figure 3-12 where we look at the event-time watermark delay.

We see that the data delay is monotonically increasing, but there is not enough infor‐
mation to distinguish between the cases of a stuck system and stuck data. Only by
looking at the processing-time watermark, shown in Figure 3-13, can we distinguish
the cases.
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Figure 3-12. Event-time watermark increasing. It is not possible to know from this infor‐
mation whether this is due to data buffering or system processing delay.

Figure 3-13. Processing-time watermark also increasing. This indicates that the system
processing is delayed.

In the first case (Figure 3-12), when we examine the processing-time watermark delay
we see that it too is increasing. This tells us that an operation in our system is stuck,
and the stuckness is also causing the data delay to fall behind. Some real-world exam‐
ples of situations in which this might occur are when there is a network issue pre‐
venting message delivery between stages of a pipeline or if a failure has occurred and
is being retried. In general, a growing processing-time watermark indicates a problem
that is preventing operations from completing that are necessary to the system’s func‐
tion, and often involves user or administrator intervention to resolve.

In this second case, as seen in Figure 3-14, the processing-time watermark delay is
small. This tells us that there are no stuck operations. The event-time watermark
delay is still increasing, which indicates that we have some buffered state that we are
waiting to drain. This is possible, for example, if we are buffering some state while
waiting for a window boundary to emit an aggregation, and corresponds to a normal
operation of the pipeline, as in Figure 3-15.
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Figure 3-14. Event-time watermark delay increasing, processing-time watermark stable.
This is an indication that data are buffered in the system and waiting to be processed,
rather than an indication that a system operation is preventing data processing from
completing.

Figure 3-15. Watermark delay for fixed windows. The event-time watermark delay
increases as elements are buffered for each window, and decreases as each window’s
aggregate is emitted via an on-time trigger, whereas the processing-time watermark sim‐
ply tracks system-level delays (which remain relatively steady in a healthy pipeline).

Therefore, the processing-time watermark is a useful tool in distinguishing system
latency from data latency. In addition to visibility, we can use the processing-time
watermark at the system-implementation level for tasks such as garbage collection of 
temporary state (Reuven talks more about an example of this in Chapter 5).

Case Studies
Now that we’ve laid the groundwork for how watermarks ought to behave, it’s time to
take a look at some real systems to understand how different mechanisms of the
watermark are implemented. We hope that these shed some light on the trade-offs
that are possible between latency and correctness as well as scalability and availability
for watermarks in real-world systems.
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Case Study: Watermarks in Google Cloud Dataflow
There are many possible approaches to implementing watermarks in a stream pro‐
cessing system. Here, we present a quick survey of the implementation in Google
Cloud Dataflow, a fully managed service for executing Apache Beam pipelines on
Google Cloud Platform resources.

Dataflow stripes (shards) each of the data processing steps in its data processing
graph across multiple physical workers by splitting the available keyspace of each
stage into key ranges and assigning each range to a worker. Whenever a GroupByKey
operation with distinct keys is encountered, data must be shuffled to corresponding
keys.

Figure 3-16 depicts a logical representation of the processing graph with a GroupBy
Key.

Figure 3-16. A GroupByKey step consumes data from another DoFn. This means that
there is a data shuffle between the keys of the first step and the keys of the second step.

Whereas the physical assignment of key ranges to workers might look like
Figure 3-17.

Figure 3-17. Key ranges of both steps are assigned (striped) across the available workers.
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6 For more information on Flink watermarks, see the Flink documentation on the subject.

In the watermark propagation section, we discussed that the watermark is maintained
for multiple subcomponents of each step. Dataflow keeps track of the per-range
watermarks of each of these components. Watermark aggregation then involves com‐
puting the minimum of each watermark across all ranges, ensuring that the following
guarantees are met:

• All ranges must be reporting a watermark. If a watermark is not present for a
range, we cannot advance the watermark, because a range not reporting must be
treated as unknown.

• Ensure that the watermark is monotonically increasing. Because late data is pos‐
sible, we must not update the watermark if it would cause the watermark to move
backward.

Google Cloud Dataflow performs aggregation via a centralized aggregator agent. We
can shard this agent for efficiency. From a correctness standpoint, the watermark
aggregator serves as a “single source of truth” about the watermark.

Ensuring correctness in distributed watermark aggregation poses certain challenges.
It is paramount that watermarks are not advanced prematurely because advancing the
watermark prematurely will turn on-time data into late data. Specifically, as physical
assignments are actuated to workers, the workers maintain leases on the persistent
state attached to the key ranges, ensuring that only a single worker may mutate the
persistent state for a key. To guarantee watermark correctness, we must ensure that
each watermark update from a worker process is admitted into the aggregate only if
the worker process still maintains a lease on its persistent state; therefore, the water‐
mark update protocol must take state ownership lease validation into account.

Case Study: Watermarks in Apache Flink
Apache Flink is an open source stream processing framework for distributed, high-
performing, always-available, and accurate data streaming applications. It is possible
to run Beam programs using a Flink runner. In doing so, Beam relies on the imple‐
mentation of stream processing concepts such as watermarks within Flink. Unlike
Google Cloud Dataflow, which implements watermark aggregation via a centralized
watermark aggregator agent, Flink performs watermark tracking and aggregation in-
band.6

To understand how this works, let’s look at a Flink pipeline, as shown in Figure 3-18.
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Figure 3-18. A Flink pipeline with two sources and event-time watermarks propagating
in-band

In this pipeline data is generated at two sources. These sources also both generate
watermark “checkpoints” that are sent synchronously in-band with the data stream.
This means that when a watermark checkpoint from source A for timestamp “53” is
emitted, it guarantees that no nonlate data messages will be emitted from source A
with timestamp behind “53”. The downstream “keyBy” operators consume the input
data and the watermark checkpoints. As new watermark checkpoints are consumed,
the downstream operators’ view of the watermark is advanced, and a new watermark
checkpoint for downstream operators can be emitted.

This choice to send watermark checkpoints in-band with the data stream differs from
the Cloud Dataflow approach that relies on central aggregation and leads to a few
interesting trade-offs.

Following are some advantages of in-band watermarks:

Reduced watermark propagation latency, and very low-latency watermarks
Because it is not necessary to have watermark data traverse multiple hops and
await central aggregation, it is possible to achieve very low latency more easily
with the in-band approach.

No single point of failure for watermark aggregation
Unavailability in the central watermark aggregation agent will lead to a delay in
watermarks across the entire pipeline. With the in-band approach, unavailability
of part of the pipeline cannot cause watermark delay to the entire pipeline.

Inherent scalability
Although Cloud Dataflow scales well in practice, more complexity is needed to
achieve scalability with a centralized watermark aggregation service versus
implicit scalability with in-band watermarks.
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Here are some advantages of out-of-band watermark aggregation:

Single source of “truth”
For debuggability, monitoring, and other applications such as throttling inputs
based on pipeline progress, it is advantageous to have a service that can vend the
values of watermarks rather than having watermarks implicit in the streams, with
each component of the system having its own partial view.

Source watermark creation
Some source watermarks require global information. For example, sources might
be temprarily idle, have low data rates, or require out-of-band information about
the source or other system components to generate the watermarks. This is easier
to achieve in a central service. For an example see the case study that follows on
source watermarks for Google Cloud Pub/Sub.

Case Study: Source Watermarks for Google Cloud Pub/Sub
Google Cloud Pub/Sub is a fully managed real-time messaging service that allows you
to send and receive messages between independent applications. Here, we discuss
how to create a reasonable heuristic watermark for data sent into a pipeline via Cloud
Pub/Sub.

First, we need to describe a little about how Pub/Sub works. Messages are published
on Pub/Sub topics. A particular topic can be subscribed to by any number of Pub/Sub
subscriptions. The same messages are delivered on all subscriptions subscribed to a
given topic. The method of delivery is for clients to pull messages off the subscription,
and to ack the receipt of particular messages via provided IDs. Clients do not get to
choose which messages are pulled, although Pub/Sub does attempt to provide oldest
messages first, with no hard guarantees around this.

To build a heuristic, we make some assumptions about the source that is sending data
into Pub/Sub. Specifically, we assume that the timestamps of the original data are
“well behaved”; in other words, we expect a bounded amount of out-of-order time‐
stamps on the source data, before it is sent to Pub/Sub. Any data that are sent with
timestamps outside the allowed out-of-order bounds will be considered late data. In
our current implementation, this bound is at least 10 seconds, meaning reordering of
timestamps up to 10 seconds before sending to Pub/Sub will not create late data. We
call this value the estimation band. Another way to look at this is that when the pipe‐
pline is perfectly caught up with the input, the watermark will be 10 seconds behind
real time to allow for possible reorderings from the source. If the pipeline is backlog‐
ged, all of the backlog (not just the 10-second band) is used for estimating the water‐
mark.

What are the challenges we face with Pub/Sub? Because Pub/Sub does not guarantee
ordering, we must have some kind of additional metadata to know enough about the
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backlog. Luckily, Pub/Sub provides a measurement of backlog in terms of the “oldest
unacknowledged publish timestamp.” This is not the same as the event timestamp of
our message, because Pub/Sub is agnostic to the application-level metadata being sent
through it; instead, this is the timestamp of when the message was ingested by Pub/
Sub.

This measurement is not the same as an event-time watermark. It is in fact the
processing-time watermark for Pub/Sub message delivery. The Pub/Sub publish
timestamps are not equal to the event timestamps, and in the case that historical
(past) data are being sent, it might be arbitrarily far away. The ordering on these time‐
stamps might also be different because, as mentioned earlier, we allow a limited
amount of reordering.

However, we can use this as a measure of backlog to learn enough information about
the event timestamps present in the backlog so that we can create a reasonable water‐
mark as follows.

We create two subscriptions to the topic containing the input messages: a base sub‐
scription that the pipeline will actually use to read the data to be processed, and a
tracking subscription, which is used for metadata only, to perform the watermark esti‐
mation.

Taking a look at our base subscription in Figure 3-19, we see that messages might
arrive out of order. We label each message with its Pub/Sub publish timestamp “pt”
and its event-time timestamp “et.” Note that the two time domains can be unrelated.

Figure 3-19. Processing-time and event-time timestamps of messages arriving on a
Pub/Sub subscription

Some messages on the base subscription are unacknowledged forming a backlog.
This might be due to them not yet being delivered or they might have been delivered
but not yet processed. Remember also that pulls from this subscription are dis‐
tributed across multiple shards. Thus, it is not possible to say just by looking at the
base subscription what our watermark should be.
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The tracking subscription, seen in Figure 3-20, is used to effectively inspect the back‐
log of the base subscription and take the minimum of the event timestamps in the
backlog. By maintaining little or no backlog on the tracking subscription, we can
inspect the messages ahead of the base subsciption’s oldest unacknowledged message.

Figure 3-20. An additional “tracking” subscription receiving the same messages as the
“base” subscription

We stay caught up on the tracking subscription by ensuring that pulling from this
subscription is computationally inexpensive. Conversely, if we fall sufficiently behind
on the tracking subscription, we will stop advancing the watermark. To do so, we
ensure that at least one of the following conditions is met:

• The tracking subscription is sufficiently ahead of the base subscription. Suffi‐
ciently ahead means that the tracking subscription is ahead by at least the estima‐
tion band. This ensures that any bounded reorder within the estimation band is
taken into account.

• The tracking subscription is sufficiently close to real time. In other words, there
is no backlog on the tracking subscription.

We acknowledge the messages on the tracking subscription as soon as possible, after
we have durably saved metadata about the publish and event timestamps of the mes‐
sages. We store this metadata in a sparse histogram format to minimize the amount
of space used and the size of the durable writes.

Finally, we ensure that we have enough data to make a reasonable watermark esti‐
mate. We take a band of event timestamps we’ve read from our tracking subscription
with publish timestamps newer than the oldest unacknowledged of the base subscrip‐
tion, or the width of the estimation band. This ensures that we consider all event
timestamps in the backlog, or if the backlog is small, the most recent estimation band,
to make a watermark estimate.

Finally, the watermark value is computed to be the minimum event time in the band.
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This method is correct in the sense that all timestamps within the reordering limit of
10 seconds at the input will be accounted for by the watermark and not appear as late
data. However, it produces possibly an overly conservative watermark, one that
advances “too slowly” in the sense described in Chapter 2. Because we consider all
messages ahead of the base subscription’s oldest unacknowledged message on the
tracking subscription, we can include event timestamps in the watermark estimate for
messages that have already been acknowledged.

Additionally, there are a few heuristics to ensure progress. This method works well in
the case of dense, frequently arriving data. In the case of sparse or infrequent data,
there might not be enough recent messages to build a reasonable estimate. In the case
that we have not seen data on the subscription in more than two minutes (and there’s
no backlog), we advance the watermark to near real time. This ensures that the water‐
mark and the pipeline continue to make progress even if no more messages are forth‐
coming.

All of the above ensures that as long as source data-event timestamp reordering is
within the estimation band, there will be no additional late data. 

Summary
At this point, we have explored how we can use the event times of messages to give a
robust definition of progress in a stream processing system. We saw how this notion
of progress can subsequently help us answer the question of where in event time pro‐
cessing is taking place and when in processing time results are materialized. Specifi‐
cally, we looked at how watermarks are created at the sources, the points of data
ingestion into a pipeline, and then propagated throughout the pipeline to preserve
the essential guarantees that allow the questions of where and when to be answered.
We also looked at the implications of changing the output window timestamps on
watermarks. Finally, we explored some real-world system considerations when build‐
ing watermarks at scale.

Now that we have a firm footing in how watermarks work under the covers, we can
take a dive into what they can do for us as we use windowing and triggering to
answer more complex queries in Chapter 4.
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CHAPTER 4

Advanced Windowing

Hello again! I hope you enjoyed Chapter 3 as much as I did. Watermarks are a fasci‐
nating topic, and Slava knows them better than anyone on the planet. Now that we
have a deeper understanding of watermarks under our belts, I’d like to dive into some
more advanced topics related to the what, where, when, and how questions. 

We first look at processing-time windowing, which is an interesting mix of both where
and when, to understand better how it relates to event-time windowing and get a
sense for times when it’s actually the right approach to take. We then dive into some
more advanced event-time windowing concepts, looking at session windows in detail,
and finally making a case for why generalized custom windowing is a useful (and sur‐
prisingly straightforward) concept by exploring three different types of custom win‐
dows: unaligned fixed windows, per-key fixed windows, and bounded sessions
windows.

When/Where: Processing-Time Windows
Processing-time windowing is important for two reasons:

• For certain use cases, such as usage monitoring (e.g., web service traffic QPS), for
which you want to analyze an incoming stream of data as it’s observed,
processing-time windowing is absolutely the appropriate approach to take.

• For use cases for which the time that events happened is important (e.g., analyz‐
ing user behavior trends, billing, scoring, etc.), processing-time windowing is
absolutely the wrong approach to take, and being able to recognize these cases is
critical.
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As such, it’s worth gaining a solid understanding of the differences between
processing-time windowing and event-time windowing, particularly given the preva‐
lence of processing-time windowing in many streaming systems today.

When working within a model for which windowing as a first-class notion is strictly
event-time based, such as the one presented in this book, there are two methods that
you can use to achieve processing-time windowing:

Triggers
Ignore event time (i.e., use a global window spanning all of event time) and use
triggers to provide snapshots of that window in the processing-time axis.

Ingress time
Assign ingress times as the event times for data as they arrive, and use normal
event-time windowing from there on. This is essentially what something like
Spark Streaming 1.x does.

Note that the two methods are more or less equivalent, although they differ slightly in
the case of multistage pipelines: in the triggers version, a multistage pipeline will slice
the processing-time “windows” independently at each stage, so, for example, data in
window N for one stage might instead end up in window N–1 or N+1 in the follow‐
ing stage; in the ingress-time version, after a datum is incorporated into window N, it
will remain in window N for the duration of the pipeline due to synchronization of
progress between stages via watermarks (in the Cloud Dataflow case), microbatch
boundaries (in the Spark Streaming case), or whatever other coordinating factor is
involved at the engine level.

As I’ve noted to death, the big downside of processing-time windowing is that the
contents of the windows change when the observation order of the inputs changes. To
drive this point home in a more concrete manner, we’re going to look at these three
use cases: event-time windowing, processing-time windowing via triggers, and
processing-time windowing via ingress time.

Each will be applied to two different input sets (so six variations total). The two
inputs sets will be for the exact same events (i.e., same values, occurring at the same
event times), but with different observation orders. The first set will be the observa‐
tion order we’ve seen all along, colored gray; the second one will have all the values
shifted in the processing-time axis as in Figure 4-1, colored purple. You can simply
imagine that the purple example is another way reality could have happened if the
winds had been blowing in from the east instead of the west (i.e., the underlying set
of complex distributed systems had played things out in a slightly different order).
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Figure 4-1. Shifting input observation order in processing time, holding values, and
event-times constant

Event-Time Windowing
To establish a baseline, let’s first compare fixed windowing in event time with a heu‐
ristic watermark over these two observation orderings. We’ll reuse the early/late code
from Example 2-7/Figure 2-10 to get the results shown in Figure 4-2. The lefthand
side is essentially what we saw before; the righthand side is the results over the second
observation order. The important thing to note here is that even though the overall
shape of the outputs differs (due to the different orders of observation in processing
time), the final results for the four windows remain the same: 14, 18, 4, and 12.
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Figure 4-2. Event-time windowing over two different processing-time orderings of the
same inputs

Processing-Time Windowing via Triggers
Let’s now compare this to the two processing-time methods just described. First, we’ll
try the triggers method. There are three aspects to making processing-time “window‐
ing” work in this manner:
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Windowing
We use the global event-time window because we’re essentially emulating
processing-time windows with event-time panes.

Triggering
We trigger periodically in the processing-time domain based on the desired size
of the processing-time windows.

Accumulation
We use discarding mode to keep the panes independent from one another, thus
letting each of them act like an independent processing-time “window.”

The corresponding code looks something like Example 4-1; note that global window‐
ing is the default in Beam, hence there is no specific override of the windowing
strategy.

Example 4-1. Processing-time windowing via repeated, discarding panes of a global
event-time window

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.triggering(Repeatedly(AlignedDelay(TWO_MINUTES)))
               .discardingFiredPanes())
  .apply(Sum.integersPerKey());

When executed on a streaming runner against our two different orderings of the
input data, the results look like Figure 4-3. Here are some interesting notes about this
figure:

• Because we’re emulating processing-time windows via event-time panes, the
“windows” are delineated in the processing-time axis, which means their effective
width is measured on the y-axis instead of the x-axis.

• Because processing-time windowing is sensitive to the order that input data are
encountered, the results for each of the “windows” differs for each of the two
observation orders, even though the events themselves technically happened at
the same times in each version. On the left we get 12, 18, 18, whereas on the right
we get 7, 36, 5.
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Figure 4-3. Processing-time “windowing” via triggers, over two different processing-time
orderings of the same inputs

Processing-Time Windowing via Ingress Time
Lastly, let’s look at processing-time windowing achieved by mapping the event times
of input data to be their ingress times. Code-wise, there are four aspects worth men‐
tioning here:

Time-shifting
When elements arrive, their event times need to be overwritten with the time of
ingress. We can do this in Beam by providing a new DoFn that sets the timestamp
of the element to the current time via the outputWithTimestamp method.
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Windowing
Return to using standard event-time fixed windowing.

Triggering
Because ingress time affords the ability to calculate a perfect watermark, we can
use the default trigger, which in this case implicitly fires exactly once when the
watermark passes the end of the window.

Accumulation mode
Because we only ever have one output per window, the accumulation mode is
irrelevant.

The actual code might thus look something like that in Example 4-2.

Example 4-2. Processing-time windowing via repeated, discarding panes of a global
event-time window

PCollection<String> raw = IO.read().apply(ParDo.of(
  new DoFn<String, String>() {
    public void processElement(ProcessContext c) {
      c.outputWithTimestmap(new Instant());
    }
  });
PCollection<KV<Team, Integer>> input =
  raw.apply(ParDo.of(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.info(FixedWindows.of(TWO_MINUTES))
  .apply(Sum.integersPerKey());

Execution on a streaming engine would look like Figure 4-4. As data arrive, their
event times are updated to match their ingress times (i.e., the processing times at
arrival), resulting in a rightward horizontal shift onto the ideal watermark line. Here
are some interesting notes about this figure:

• As with the other processing-time windowing example, we get different results
when the ordering of inputs changes, even though the values and event times for
the input stay constant.

• Unlike the other example, the windows are once again delineated in the event-
time domain (and thus along the x-axis). Despite this, they aren’t bonafide event-
time windows; we’ve simply mapped processing time onto the event-time
domain, erasing the original record of occurrence for each input and replacing it
with a new one that instead represents the time the datum was first observed by
the pipeline.

• Despite this, thanks to the watermark, trigger firings still happen at exactly the
same time as in the previous processing-time example. Furthermore, the output
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values produced are identical to that example, as predicted: 12, 18, 18 on the left,
and 7, 36, 5 on the right.

• Because perfect watermarks are possible when using ingress time, the actual
watermark matches the ideal watermark, ascending up and to the right with a
slope of one.

Figure 4-4. Processing-time windowing via the use of ingress time, over two different
processing-time orderings of the same inputs

Although it’s interesting to see the different ways you can implement processing-time
windowing, the big takeaway here is the one I’ve been harping on since the first chap‐
ter: event-time windowing is order-agnostic, at least in the limit (actual panes along
the way might differ until the input becomes complete); processing-time windowing
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is not. If you care about the times at which your events actually happened, you must use
event-time windowing or your results will be meaningless. I will get off my soapbox
now.

Where: Session Windows
Enough with processing-time windowing. Let’s now go back to tried-and-true event-
time windowing, but now we’re going to look at one of my favorite features: the
dynamic, data-driven windows called sessions.

Sessions are a special type of window that captures a period of activity in the data that
is terminated by a gap of inactivity. They’re particularly useful in data analysis
because they can provide a view of the activities for a specific user over a specific
period of time during which they were engaged in some activity. This allows for the
correlation of activities within the session, drawing inferences about levels of engage‐
ment based on the lengths of the sessions, and so on.

From a windowing perspective, sessions are particularly interesting in two ways:

• They are an example of a data-driven window: the location and sizes of the win‐
dows are a direct consequence of the input data themselves, rather than being
based on some predefined pattern within time, as are fixed and sliding windows.

• They are also an example of an unaligned window; that is, a window that does not
apply uniformly across the data, but instead only to a specific subset of the data
(e.g., per user). This is in contrast to aligned windows like fixed and sliding win‐
dows, which typically apply uniformly across the data.

For some use cases, it’s possible to tag the data within a single session with a common
identifier ahead of time (e.g., a video player that emits heartbeat pings with quality-
of-service information; for any given viewing, all of the pings can be tagged ahead of
time with a single session ID). In this case, sessions are much easier to construct
because it’s basically just a form of grouping by key.

However, in the more general case (i.e., where the actual session itself is not known
ahead of time), the sessions must be constructed from the locations of the data within
time alone. When dealing with out-of-order data, this becomes particularly tricky.

Figure 4-5 shows an example of this, with five independent records grouped together
into session windows with a gap timeout of 60 minutes. Each record starts out in a
60-minute window of its own (a proto-session). Merging together overlapping proto-
sessions yields the two larger session windows containing three and two records,
respectively.
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Figure 4-5. Unmerged proto-session windows, and the resultant merged sessions

They key insight in providing general session support is that a complete session win‐
dow is, by definition, a composition of a set of smaller, overlapping windows, each
containing a single record, with each record in the sequence separated from the next
by a gap of inactivity no larger than a predefined timeout. Thus, even if we observe
the data in the session out of order, we can build up the final session simply by merg‐
ing together any overlapping windows for individual data as they arrive.

To look at this another way, consider the example we’ve been using so far. If we spec‐
ify a session timeout of one minute, we would expect to identify two sessions in the
data, delineated in Figure 4-6 by the dashed black lines. Each of those sessions cap‐
tures a burst of activity from the user, with each event in the session separate by less
than one minute from at least one other event in the session.
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Figure 4-6. Sessions we want to compute

To see how the window merging works to build up these sessions over time as events
are encountered, let’s look at it in action. We’ll take the early/late code with retrac‐
tions enabled from Example 2-10 and update the windowing to build sessions with a
one-minute gap duration timeout instead. Example 4-3 illustrates what this looks like.

Example 4-3. Early/on-time/late firings with session windows and retractions

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(Sessions.withGapDuration(ONE_MINUTE))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1)))
               .accumulatingAndRetractingFiredPanes())
  .apply(Sum.integersPerKey());

Executed on a streaming engine, you’d get something like that shown in Figure 4-7
(note that I’ve left in the dashed black lines annotating the expected final sessions for
reference).

Where: Session Windows | 105



Figure 4-7. Early and late firings with session windows and retractions on a streaming
engine

There’s quite a lot going on here, so I’ll walk you through some of it:

• When the first record with value 5 is encountered, it’s placed into a single proto-
session window that begins at that record’s event time and spans the width of the
session gap duration; for example, one minute beyond the point at which that
datum occurred. Any windows we encounter in the future that overlap this win‐
dow should be part of the same session and will be merged into it as such.

• The second record to arrive is the 7, which similarly is placed into its own proto-
session window, given that it doesn’t overlap with the window for the 5.

• In the meantime, the watermark has passed the end of the first window, so the
value of 5 is materialized as an on-time result just before 12:06. Shortly thereafter,
the second window is also materialized as a speculative result with value 7, right
as processing time hits 12:06.

• We next observe a pair of records 3 and 4, the proto-sessions for which overlap.
As a result, they are merged together, and by the time the early trigger for 12:07
fires, a single window with value 7 is emitted.

• When the 8 arrives shortly thereafter, it overlaps with both of the windows with
value 7. All three are thus merged together, forming a new combined session with
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1 As far as I know, Apache Flink is the only other system to support custom windowing to the extent that Beam
does. And to be fair, its support extends even beyond that of Beam’s, thanks to the ability to provide a custom
window evictor. Head asplode.

value 22. When the watermark then passes the end of this session, it materializes
both the new session with value 22 as well as retractions for the two windows of
value 7 that were previously emitted, but later incorporated into it.

• A similar dance occurs when the 9 arrives late, joining the proto-session with
value 5 and session with value 22 into a single larger session of value 36. The 36
and the retractions for the 5 and 22 windows are all emitted immediately by the
late data trigger.

This is some pretty powerful stuff. And what’s really awesome is how easy it is to
describe something like this within a model that breaks apart the dimensions of
stream processing into distinct, composable pieces. In the end, you can focus more
on the interesting business logic at hand, and less on the minutiae of shaping the data
into some usable form.

If you don’t believe me, check out this blog post describing how to manually build up
sessions on Spark Streaming 1.x (note that this is not done to point fingers at them;
the Spark folks had just done a good enough job with everything else that someone
actually bothered to go to the trouble of documenting what it takes to build a specific
variety of sessions support on top of Spark 1.x; you can’t say the same for most other
systems out there). It’s quite involved, and they’re not even doing proper event-time
sessions, or providing speculative or late firings, or retractions.

Where: Custom Windowing
Up until now, we’ve talked primarily about predefined types of windowing strategies:
fixed, sliding, and sessions. You can get a lot of mileage out of standard types of win‐
dows, but there are plenty of real-world use cases for which being able to define a
custom windowing strategy can really save the day (three of which we’re about to see
now).

Most systems today don’t support custom windowing to the degree that it’s supported
in Beam,1 so we focus on the Beam approach. In Beam, a custom windowing strategy
consists of two things:

Window assignment
This places each element into an initial window. At the limit, this allows every
element to be placed within a unique window, which is very powerful.

Where: Custom Windowing | 107

http://bit.ly/2sXe3vJ
http://bit.ly/2sXe3vJ


(Optional) window merging
This allows windows to merge at grouping times, which makes it possible for
windows to evolve over time, which we saw in action earlier with session win‐
dows.

To give you a sense for how simple windowing strategies really are, and also how use‐
ful custom windows support can be, we’re going to look in detail at the stock imple‐
mentations of fixed windows and sessions in Beam and then consider a few real-
world use cases that require custom variations on those themes. In the process, we’ll
see both how easy it is to create a custom windowing strategy, and how limiting the
lack of custom windowing support can be when your use case doesn’t quite fit into
the stock approaches.

Variations on Fixed Windows
To begin, let’s look at the relatively simple strategy of fixed windows. The stock fixed-
windows implementation is as straightforward as you might imagine, and consists of
the following logic:

Assignment
The element is placed into the appropriate fixed-window based on its timestamp
and the window’s size and offset parameters.

Merging
None.

An abbreviated version of the code looks like Example 4-4.

Example 4-4. Abbreviated FixedWindows implementation

public class FixedWindows extends WindowFn<Object, IntervalWindow> {
  private final Duration size;
  private final Duration offset;
  public Collection<IntervalWindow> assignWindow(AssignContext c) {
    long start = c.timestamp().getMillis() - c.timestamp()
                   .plus(size)
                   .minus(offset)
                   .getMillis() % size.getMillis();
    return Arrays.asList(IntervalWindow(new Instant(start), size));
  }
}

Keep in mind that the point of showing you the code here isn’t so much to teach you
how to write windowing strategies (although it’s nice to demystify them and call out
how simple they are). It’s really to help contrast the comparative ease and difficulty of
supporting some relatively basic use cases, both with and without custom windowing,
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respectively. Let’s consider two such use cases that are variations on the fixed-
windows theme now.

Unaligned fixed windows
One characteristic of the default fixed-windows implementation that we alluded to
previously is that windows are aligned across all of the data. In our running example,
the window from noon to 1 PM for any given team aligns with the corresponding
windows for all other teams, which also extend from noon to 1 PM. And in use cases
for which you want to compare like windows across another dimension, such as
between teams, this alignment is very useful. However, it comes at a somewhat subtle
cost. All of the active windows from noon to 1 PM become complete at around the
same time, which means that once an hour the system is hit with a massive load of
windows to materialize.

To see what I mean, let’s look at a concrete example (Example 4-5). We’ll begin with a
score summation pipeline as we’ve used in most examples, with fixed two-minute
windows, and a single watermark trigger.

Example 4-5. Watermark completeness trigger (same as Example 2-6)

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()))
  .apply(Sum.integersPerKey());

But in this instance, we’ll look at two different keys (see Figure 4-8) from the same
dataset in parallel. What we’ll see is that the outputs for those two keys are all aligned,
on account of the windows being aligned across all of the keys. As a result, we end up
with N panes being materialized every time the watermark passes the end of a win‐
dow, where N is the number of keys with updates in that window. In this example,
where N is 2, that’s maybe not too painful. But when N starts to order in the thou‐
sands, millions, or more, that synchronized burstiness can become problematic.
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2 And I’m not actually aware of any such systems at this time.

Figure 4-8. Aligned fixed windows

In circumstances for which comparing across windows is unnecessary, it’s often more
desirable to spread window completion load out evenly across time. This makes sys‐
tem load more predictable, which can reduce the provisioning requirements for han‐
dling peak load. In most systems, however, unaligned fixed windows are only
available if the system provides support for them out of the box.2 But with custom-
windowing support, it’s a relatively trivial modification to the default fixed-windows
implementation to provide unaligned fixed-windows support. What we want to do is
continue guaranteeing that the windows for all elements being grouped together (i.e.,
the ones with the same key) have the same alignment, while relaxing the alignment
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3 This naturally implies the use of keyed data, but because windowing is intrinsically tied to grouping by key
anyway, that restriction isn’t particularly burdensome.

restriction across different keys. The code changes to the default fixed-windowing
strategy and looks something like Example 4-6.

Example 4-6. Abbreviated UnalignedFixedWindows implementation

public class UnalignedFixedWindows
    extends WindowFn<KV<K, V>, IntervalWindow> {
  private final Duration size;
  private final Duration offset;
  public Collection<IntervalWindow> assignWindow(AssignContext c) {
    long perKeyShift = hash(c.element().key()) % size.getMillis();
    long start = perKeyShift + c.timestamp().getMillis()
                   - c.timestamp()
                      .plus(size)
                      .minus(offset)
                      .getMillis() % size.getMillis();
    return Arrays.asList(IntervalWindow(new Instant(start), size));
  }
}

With this change, the windows for all elements with the same key are aligned,3 but the
windows for elements with different keys will (typically) be unaligned, thus spreading
window completion load out at the cost of also making comparisons across keys
somewhat less meaningful. We can switch our pipeline to use our new windowing
strategy, illustrated in Example 4-7.

Example 4-7. Unaligned fixed windows with a single watermark trigger

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(UnalignedFixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()))
  .apply(Sum.integersPerKey());

And then you can see what this looks like in Figure 4-9 by comparing different fixed-
window alignments across the same dataset as before (in this case, I’ve chosen a maxi‐
mal phase shift between the two alignments to most clearly call out the benefits, given
that randomly chosen phases across a large number of keys will result in similar
effects).
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Figure 4-9. Unaligned fixed windows

Note how there are no instances where we emit multiple panes for multiple keys
simultaneously. Instead, the panes arrive individually at a much more even cadence.
This is another example of being able to make trade-offs in one dimension (ability to
compare across keys) in exchange for benefits in another dimension (reduced peak
resource provisioning requirements) when the use case allows. Such flexibility is criti‐
cal when you’re trying to process massive quantities of data as efficiently as possible.

Let’s now look at a second variation on fixed windows, one which is more intrinsically
tied to the data being processed.
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4 And it’s not critical that the element itself know the window size; you could just as easily look up and cache
the appropriate window size for whatever the desired dimension is; for example, per-user.

Per-element/key fixed windows
Our second example comes courtesy of one of the early adopters of Cloud Dataflow.
This company generates analytics data for its customers, but each customer is allowed
to configure the window size over which it wants to aggregate its metrics. In other
words, each customer gets to define the specific size of its fixed windows.

Supporting a use case like this isn’t too difficult as long the number of available win‐
dow sizes is itself fixed. For example, you could imagine offering the option of choos‐
ing 30-minute, 60-minute, and 90-minute fixed windows and then running a separate
pipeline (or fork of the pipeline) for each of those options. Not ideal, but not too hor‐
rible. However, that rapidly becomes intractable as the number of options increases,
and in the limit of providing support for truly arbitrary window sizes (which is what
this customer’s use case required) is entirely impractical.

Fortunately, because each record the customer processes is already annotated with
metadata describing the desired size of window for aggregation, supporting arbitrary,
per-user fixed-window size was as simple as changing a couple of lines from the stock
fixed-windows implementation, as demonstrated in Example 4-8.

Example 4-8. Modified (and abbreviated) FixedWindows implementation that supports
per-element window sizes

public class PerElementFixedWindows<T extends HasWindowSize>
    extends WindowFn<T, IntervalWindow> {
  private final Duration offset;
  public Collection<IntervalWindow> assignWindow(AssignContext c) {
    long perElementSize = c.element().getWindowSize();
    long start = perKeyShift + c.timestamp().getMillis()
                   - c.timestamp()
                      .plus(size)
                      .minus(offset)
                      .getMillis() % size.getMillis();
    return Arrays.asList(IntervalWindow(
        new Instant(start), perElementSize));
  }
}

With this change, each element is assigned to a fixed window with the appropriate
size, as dictated by metadata carried around in the element itself.4 Changing the pipe‐
line code to use this new strategy is again trivial, as shown in Example 4-9.

Where: Custom Windowing | 113



Example 4-9. Per-element fixed-window sizes with a single watermark trigger

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(new PerElementFixedWindows())
               .triggering(AfterWatermark()))
  .apply(Sum.integersPerKey());

And then looking at this pipeline in action (Figure 4-10), it’s easy to see that the ele‐
ments for Key A all have two minutes as their window size, whereas the elements for
Key B have one-minute window sizes.

Figure 4-10. Per-key custom-sized fixed windows

This really isn’t something you would ever reasonably expect a system to provide to
you; the nature of where window size preferences are stored is too use-case specific
for it to make sense to try to build into a standard API. Nevertheless, as exhibited by

114 | Chapter 4: Advanced Windowing

http://streamingbook.net/fig/4-10


this customer’s needs, use cases like this do exist. That’s why the flexibility provided
by custom windowing is so powerful.

Variations on Session Windows
To really drive home the usefulness of custom windowing, let’s look at one final
example, which is a variation on sessions. Session windowing is understandably a bit
more complex than fixed windows. Its implementation consists of the following:

Assignment
Each element is initially placed into a proto-session window that begins at the
element’s timestamp and extends for the gap duration.

Merging
At grouping time, all eligible windows are sorted, after which any overlapping
windows are merged together.

An abbreviated version of the sessions code (hand merged together from a number of
helper classes) looks something like that shown in Example 4-10.

Example 4-10. Abbreviated Sessions implementation

public class Sessions extends WindowFn<Object, IntervalWindow> {
  private final Duration gapDuration;
  public Collection<IntervalWindow> assignWindows(AssignContext c) {
    return Arrays.asList(
      new IntervalWindow(c.timestamp(), gapDuration));
  }
  public void mergeWindows(MergeContext c) throws Exception {
    List<IntervalWindow> sortedWindows = new ArrayList<>();
    for (IntervalWindow window : c.windows()) {
      sortedWindows.add(window);
    }
    Collections.sort(sortedWindows);
    List<MergeCandidate> merges = new ArrayList<>();
    MergeCandidate current = new MergeCandidate();
    for (IntervalWindow window : sortedWindows) {
      if (current.intersects(window)) {
        current.add(window);
      } else {
        merges.add(current);
        current = new MergeCandidate(window);
      }
    }
    merges.add(current);
    for (MergeCandidate merge : merges) {
      merge.apply(c);
    }
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  }
}

As before, the point of seeing the code isn’t so much to teach you how custom win‐
dowing functions are implemented, or even what the implementation of sessions
looks like; it’s really to show the ease with which you can support new use via custom
windowing.

Bounded sessions
One such custom use case I’ve come across multiple times is bounded sessions: ses‐
sions that are not allowed to grow beyond a certain size, either in time, element
count, or some other dimension. This can be for semantic reasons, or it can simply be
an exercise in spam protection. However, given the variations in types of limits (some
use cases care about total session size in event time, some care about total element
count, some care about element density, etc.), it’s difficult to provide a clean and con‐
cise API for bounded sessions. Much more practical is allowing users to implement
their own custom windowing logic, tailored to their specific use case. An example of
one such use case, in which session windows are time-limited, might look something
like Example 4-11 (eliding some of the builder boilerplate we’ll utilize here).

Example 4-11. Abbreviated Sessions implementation

public class BoundedSessions extends WindowFn<Object, IntervalWindow> {
  private final Duration gapDuration;
  private final Duration maxSize;
  public Collection<IntervalWindow> assignWindows(AssignContext c) {
    return Arrays.asList(
      new IntervalWindow(c.timestamp(), gapDuration));
  }
  private Duration windowSize(IntervalWindow window) {
    return window == null
      ? new Duration(0)
      : new Duration(window.start(), window.end());
  }
  public void mergeWindows(MergeContext c) throws Exception {
    List<IntervalWindow> sortedWindows = new ArrayList<>();
    for (IntervalWindow window : c.windows()) {
      sortedWindows.add(window);
    }
    Collections.sort(sortedWindows);
    List<MergeCandidate> merges = new ArrayList<>();
    MergeCandidate current = new MergeCandidate();
    for (IntervalWindow window : sortedWindows) {
      MergeCandidate next = new MergeCandidate(window);
      if (current.intersects(window)) {
        current.add(window);
        if (windowSize(current.union) <= (maxSize - gapDuration))
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          continue;
        // Current window exceeds bounds, so flush and move to next
        next = new MergeCandidate();
      }
      merges.add(current);
      current = next;
    }
    merges.add(current);
    for (MergeCandidate merge : merges) {
      merge.apply(c);
    }
  }
}

As always, updating our pipeline (the early/on-time/late version of it, from
Example 4-3, in this case) to use this custom windowing strategy is trivial, as you can
see in Example 4-12.

Example 4-12. Early, on-time, and late firings via the early/on-time/late API

PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(BoundedSessions
                       .withGapDuration(ONE_MINUTE)
                       .withMaxSize(THREE_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1)))
               .accumulatingAndRetractingFiredPanes())
  .apply(Sum.integersPerKey());

And executed over our running example, it might then look something like
Figure 4-11.
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Figure 4-11. Session windows bounded to three minutes in length

Note how the large session with value 36 that spanned [12:00.26, 12:05.20), or nearly
five minutes of time, in the unbounded sessions implementation from Figure 4-7 now
ends up broken apart into two shorter sessions of length 2 minutes and 2 minutes 53
seconds.

Given how few systems provide custom windowing support today, it’s worth pointing
out how much more effort would be required to implement such a thing using a sys‐
tem that supported only an unbounded sessions implementation. Your only real
recourse would be to write code downstream of the session grouping logic that
looked at the generated sessions and chopped them up if they exceed the length limit.
This would require the ability to decompose a session after the fact, which would
obviate the benefits of incremental aggregation (something we look at in more detail
in Chapter 7), increasing cost. It would also eliminate any spam protection benefits
one might hope to gain by limiting session lengths, because the sessions would first
need to grow to their full sizes before being chopped or truncated.
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One Size Does Not Fit All
We’ve now looked at three real-world use cases, each of which was a subtle variation
on the stock types of windowing typically provided by data processing systems:
unaligned fixed windows, per-element fixed windows, and bounded sessions. In all
three cases, we saw how simple it was to support those use cases via custom window‐
ing and how much more difficult (or expensive) it would be to support those use
cases without it. Though custom windowing doesn’t see broad support across the
industry as yet, it’s a feature that provides much needed flexibility for balancing
trade-offs when building data processing pipelines that need to handle complex, real-
world use cases over massive amounts of data as efficiently as possible. 

Summary
Advanced windowing is a complex and varied topic. In this chapter, we covered three
advanced concepts:

Processing-time windows
We saw how this relates to event-time windowing, calling out the places where it’s
inherently useful and, most important, identifying those where it’s not by specifi‐
cally highlighting the stability of results that event-time windowing affords us.

Session windows
We had our first introduction to the dynamic class of merging window strategies
and seeing just how much heavy lifting the system does for us in providing such a
powerful construct that you can simply drop into place.

Custom windows
Here, we looked at three real-world examples of custom windows that are diffi‐
cult or impossible to achieve in systems that provide only a static set of stock
windowing strategies but relatively trivial to implement in a system with custom-
windowing support:

• Unaligned fixed windows, which provide a more even distribution of outputs
over time when using a watermark trigger in conjunction with fixed win‐
dows.

• Per-element fixed windows, which provide the flexibility to dynamically
choose the size of fixed windows per element (e.g., to provide customizable
per-user or per-ad-campaign window sizes), for greater customization of the
pipeline semantics to the use case at hand.

• Bounded-session windows, which limit how large a given session may grow;
for example, to counteract spam attempts or to place a bound on the latency
for completed sessions being materialized by the pipeline.
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After deep diving through watermarks in Chapter 3 with Slava and taking a broad
survey of advanced windowing here, we’ve now gone well beyond the basics of robust
stream processing in multiple dimensions. With that, we conclude our focus on the
Beam Model.

Up next is Reuven’s Chapter 5 on consistency guarantees, exactly-once processing,
and side effects, after which we begin our journey into Part II, Streams and Tables
with Chapter 6.
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CHAPTER 5

Exactly-Once and Side Effects

We now shift from discussing programming models and APIs to the systems that
implement them. A model and API allows users to describe what they want to com‐
pute. Actually running the computation accurately at scale requires a system—usually
a distributed system.

In this chapter, we focus on how an implementing system can correctly implement
the Beam Model to produce accurate results. Streaming systems often talk about
exactly-once processing; that is, ensuring that every record is processed exactly one
time. We will explain what we mean by this, and how it might be implemented.

As a motivating example, this chapter focuses on techniques used by Google Cloud
Dataflow to efficiently guarantee exactly-once processing of records. Toward the end
of the chapter, we also look at techniques used by some other popular streaming sys‐
tems to guarantee exactly once.

Why Exactly Once Matters
It almost goes without saying that for many users, any risk of dropped records or data
loss in their data processing pipelines is unacceptable. Even so, historically many
general-purpose streaming systems made no guarantees about record processing—all
processing was “best effort” only. Other systems provided at-least-once guarantees,
ensuring that records were always processed at least once, but records might be dupli‐
cated (and thus result in inaccurate aggregations); in practice, many such at-least-
once systems performed aggregations in memory, and thus their aggregations could
still be lost when machines crashed. These systems were used for low-latency, specu‐
lative results but generally could guarantee nothing about the veracity of these results.

As Chapter 1 points out, this led to a strategy that was coined the Lambda Architec‐
ture—run a streaming system to get fast, but inaccurate results. Sometime later (often
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after end of day), a batch system runs to get the correct answer. This works only if the
data stream is replayable; however, this was true for enough data sources that this
strategy proved viable. Nonetheless, many people who tried this experienced a num‐
ber of issues with the Lambda Architecture:

Inaccuracy
Users tend to underestimate the impact of failures. They often assume that a
small percentage of records will be lost or duplicated (often based on experi‐
ments they ran), and are shocked on that one bad day when 10% (or more!) of
records are lost or are duplicated. In a sense, such systems provide only “half ” a
guarantee—and without a full one, anything is possible.

Inconsistency
The batch system used for the end-of-day calculation often has different data
semantics than the streaming system. Getting the two pipelines to produce com‐
parable results proved more difficult than initially thought.

Complexity
By definition, Lambda requires you to write and maintain two different codeba‐
ses. You also must run and maintain two complex distributed systems, each with
different failure modes. For anything but the simplest of pipelines, this quickly
becomes overwhelming.

Unpredictability
In many use cases, end users will see streaming results that differ from the daily
results by an uncertain amount, which can change randomly. In these cases, users
will stop trusting the streaming data and wait for daily batch results instead, thus
destroying the value of getting low-latency results in the first place.

Latency
Some business use cases require low-latency correct results, which the Lambda
Architecture does not provide by design.

Fortunately, many Beam runners can do much better. In this chapter, we explain how
exactly-once stream processing helps users count on accurate results and avoid the
risk of data loss while relying on a single codebase and API. Because a variety of
issues that can affect a pipeline’s output are often erroneously conflated with exactly-
once guarantees, we first explain precisely which issues are in and out of scope when
we refer to “exactly once” in the context of Beam and data processing.

Accuracy Versus Completeness
Whenever a Beam pipeline processes a record for a pipeline, we want to ensure that
the record is never dropped or duplicated. However, the nature of streaming pipelines
is such that records sometimes show up late, after aggregates for their time windows
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1 In fact, no system we are aware of that provides at-least once (or better) is able to guarantee this, including all
other Beam runners.

2 Dataflow also provides an accurate batch runner; however, in this context we are focused on the streaming
runner.

have already been processed. The Beam SDK allows the user to configure how long
the system should wait for late data to arrive; any (and only) records arriving later
than this deadline are dropped. This feature contributes to completeness, not to accu‐
racy: all records that showed up in time for processing are accurately processed
exactly once, whereas these late records are explicitly dropped.

Although late records are usually discussed in the context of streaming systems, it’s
worth noting that batch pipelines have similar completeness issues. For example, a
common batch paradigm is to run a job at 2 AM over all the previous day’s data.
However, if some of yesterday’s data wasn’t collected until after 2 AM, it won’t be pro‐
cessed by the batch job! Thus, batch pipelines also provide accurate but not always
complete results.

Side Effects
One characteristic of Beam and Dataflow is that users inject custom code that is exe‐
cuted as part of their pipeline graph. Dataflow does not guarantee that this code is run
only once per record,1 whether by the streaming or batch runner. It might run a given
record through a user transform multiple times, or it might even run the same record
simultaneously on multiple workers; this is necessary to guarantee at-least-once pro‐
cessing in the face of worker failures. Only one of these invocations can “win” and
produce output further down the pipeline.

As a result, nonidempotent side effects are not guaranteed to execute exactly once; if
you write code that has side effects external to the pipeline, such as contacting an out‐
side service, these effects might be executed more than once for a given record. This
situation is usually unavoidable because there is no way to atomically commit Data‐
flow’s processing with the side effect on the external service. Pipelines do need to
eventually send results to the outside world, and such calls might not be idempotent.
As you will see later in the chapter, often such sinks are able to add an extra stage to
restructure the call into an idempotent operation first.

Problem Definition
So, we’ve given a couple of examples of what we’re not talking about. What do we mean
then by exactly-once processing? To motivate this, let’s begin with a simple streaming
pipeline,2 shown in Example 5-1.
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3 The Dataflow optimizer groups many steps together and adds shuffles only where they are needed.

Example 5-1. A simple streaming pipeline

Pipeline p = Pipeline.create(options);
// Calculate 1-minute counts of events per user.
PCollection<..> perUserCounts = 
      p.apply(ReadFromUnboundedSource.read())
       .apply(new KeyByUser())
       .Window.<..>into(FixedWindows.of(Duration.standardMinutes(1)))
       .apply(Count.perKey());
// Process these per-user counts, and write the output somewhere.
perUserCounts.apply(new ProcessPerUserCountsAndWriteToSink());
// Add up all these per-user counts to get 1-minute counts of all events.
perUserCounts.apply(Values.<..>create())
             .apply(Count.globally())
             .apply(new ProcessGlobalCountAndWriteToSink());
p.run();

This pipeline computes two different windowed aggregations. The first counts how
many events came from each individual user over the course of a minute, and the sec‐
ond counts how many total events came in each minute. Both aggregations are writ‐
ten to unspecified streaming sinks.

Remember that Dataflow executes pipelines on many different workers in parallel.
After each GroupByKey (the Count operations use GroupByKey under the covers), all
records with the same key are processed on the same machine following a process
called shuffle. The Dataflow workers shuffle data between themselves using Remote
Procedure Calls (RPCs), ensuring that records for a given key all end up on the same
machine.

Figure 5-1 shows the shuffles that Dataflow creates for the pipeline in Example 5-1.3

The Count.perKey shuffles all the data for each user onto a given worker, whereas the
Count.globally shuffles all these partial counts to a single worker to calculate the
global sum.

Figure 5-1. Shuffles in a pipeline
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For Dataflow to accurately process data, this shuffle process must ensure that every
record is shuffled exactly once. As you will see in a moment, the distributed nature of
shuffle makes this a challenging problem.

This pipeline also both reads and writes data from and to the outside world, so Data‐
flow must ensure that this interaction does not introduce any inaccuracies. Dataflow
has always supported this task—what Apache Spark and Apache Flink call end-to-end
exactly once—for sources and sinks whenever technically feasible.

The focus of this chapter will be on three things:

Shuffle
How Dataflow guarantees that every record is shuffled exactly once.

Sources
How Dataflow guarantees that every source record is processed exactly once.

Sinks
How Dataflow guarantees that every sink produces accurate output.

Ensuring Exactly Once in Shuffle
As just explained, Dataflow’s streaming shuffle uses RPCs. Now, any time you have
two machines communicating via RPC, you should think long and hard about data
integrity. First of all, RPCs can fail for many reasons. The network might be interrup‐
ted, the RPC might time out before completing, or the receiving server might decide
to fail the call. To guarantee that records are not lost in shuffle, Dataflow employs
upstream backup. This simply means that the sender will retry RPCs until it receives
positive acknowledgment of receipt. Dataflow also ensures that it will continue retry‐
ing these RPCs even if the sender crashes. This guarantees that every record is deliv‐
ered at least once.

Now, the problem is that these retries might themselves create duplicates. Most RPC
frameworks, including the one Dataflow uses, provide the sender with a status indi‐
cating success or failure. In a distributed system, you need to be aware that RPCs can
sometimes succeed even when they have appeared to fail. There are many reasons for
this: race conditions with the RPC timeout, positive acknowledgment from the server
failing to transfer even though the RPC succeeded, and so on. The only status that a
sender can really trust is a successful one.

An RPC returning a failure status generally indicates that the call might or might not
have succeeded. Although specific error codes can communicate unambiguous fail‐
ure, many common RPC failures, such as Deadline Exceeded, are ambiguous. In the

Ensuring Exactly Once in Shuffle | 125



4 Batch pipelines also need to guard against duplicates in shuffle. However the problem is much easier to solve
in batch, which is why historical batch systems did do this and streaming systems did not. Streaming runtimes
that use a microbatch architecture, such as Spark Streaming, delegate duplicate detection to a batch shuffler.

case of streaming shuffle,4 retrying an RPC that really succeeded means delivering a
record twice! Dataflow needs some way of detecting and removing these duplicates.

At a high level, the algorithm for this task is quite simple (see Figure 5-2): every mes‐
sage sent is tagged with a unique identifier. Each receiver stores a catalog of all identi‐
fiers that have already been seen and processed. Every time a record is received, its
identifier is looked up in this catalog. If it is found, the record is dropped as a dupli‐
cate. Because Dataflow is built on top of a scalable key/value store, this store is used
to hold the deduplication catalog.

Figure 5-2. Detecting duplicates in shuffle

Addressing Determinism
Making this strategy work in the real world requires a lot of care, however. One
immediate wrinkle is that the Beam Model allows for user code to produce nondeter‐
ministic output. This means that a ParDo can execute twice on the same input record
(due to a retry), yet produce different output on each retry. The desired behavior is
that only one of those outputs will commit into the pipeline; however, the nondeter‐
minism involved makes it difficult to guarantee that both outputs have the same
deterministic ID. Even trickier, a ParDo can output multiple records, so each of these
retries might produce a different number of outputs!

So, why don’t we simply require that all user processing be deterministic? Our experi‐
ence is that in practice, many pipelines require nondeterministic transforms. And all
too often, pipeline authors do not realize that the code they wrote is nondeterminis‐
tic. For example, consider a transform that looks up supplemental data in Cloud Big‐
table in order to enrich its input data. This is a nondeterministic task, as the external
value might change in between retries of the transform. Any code that relies on cur‐
rent time is likewise not deterministic. We have also seen transforms that need to rely
on random number generators. And even if the user code is purely deterministic, any
event-time aggregation that allows for late data might have nondeterministic inputs.
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5 A lot of care is taken to make sure this checkpointing is efficient; for example, schema and access pattern opti‐
mizations that are intimately tied to the characteristics of the underlying key/value store.

Dataflow addresses this issue by using checkpointing to make nondeterministic pro‐
cessing effectively deterministic. Each output from a transform is checkpointed,
together with its unique ID, to stable storage before being delivered to the next stage.5

Any retries in the shuffle delivery simply replay the output that has been checkpoin‐
ted—the user’s nondeterministic code is not run again on retry. To put it another way,
the user’s code may be run multiple times but only one of those runs can “win.” Fur‐
thermore, Dataflow uses a consistent store that allows it to prevent duplicates from
being written to stable storage.

Performance
To implement exactly-once shuffle delivery, a catalog of record IDs is stored in each
receiver key. For every record that arrives, Dataflow looks up the catalog of IDs
already seen to determine whether this record is a duplicate. Every output from step
to step is checkpointed to storage to ensure that the generated record IDs are stable.

However, unless implemented carefully, this process would significantly degrade
pipeline performance for customers by creating a huge increase in reads and writes.
Thus, for exactly-once processing to be viable for Dataflow users, that I/O has to be
reduced, in particular by preventing I/O on every record.

Dataflow achieves this goal via two key techniques: graph optimization and Bloom
filters.

Graph Optimization
The Dataflow service runs a series of optimizations on the pipeline graph before exe‐
cuting it. One such optimization is fusion, in which the service fuses many logical
steps into a single execution stage. Figure 5-3 shows some simple examples.

Figure 5-3. Example optimizations: fusion
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All fused steps are run as an in-process unit, so there’s no need to store exactly-once
data for each of them. In many cases, fusion reduces the entire graph down to a few
physical steps, greatly reducing the amount of data transfer needed (and saving on
state usage, as well).

Dataflow also optimizes associative and commutative Combine operations (such as
Count and Sum) by performing partial combining  locally before sending the data to
the main grouping operation, as illustrated in Figure 5-4. This approach can greatly
reduce the number of messages for delivery, consequently also reducing the number
of reads and writes.

Figure 5-4. Example optimizations: combiner lifting

Bloom Filters
The aforementioned optimizations are general techniques that improve exactly-once
performance as a byproduct. For an optimization aimed strictly at improving exactly-
once processing, we turn to Bloom filters.

In a healthy pipeline, most arriving records will not be duplicates. We can use that
fact to greatly improve performance via Bloom filters, which are compact data struc‐
tures that allow for quick set-membership checks. Bloom filters have a very interest‐
ing property: they can return false positives but never false negatives. If the filter says
“Yes, the element is in the set,” we know that the element is probably in the set (with a
probability that can be calculated). However, if the filter says an element is not in the
set, it definitely isn’t. This function is a perfect fit for the task at hand.

The implementation in Dataflow works like this: each worker keeps a Bloom filter of
every ID it has seen. Whenever a new record ID shows up, it looks it up in the filter. If
the filter returns false, this record is not a duplicate and the worker can skip the more
expensive lookup from stable storage. It needs to do that second lookup only if the
Bloom filter returns true, but as long as the filter’s false-positive rate is low, that step is
rarely needed.

Bloom filters tend to fill up over time, however, and as that happens, the false-positive
rate increases. We also need to construct this Bloom filter anew any time a worker
restarts by scanning the ID catalog stored in state. Helpfully, Dataflow attaches a sys‐
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6 This is not the custom user-supplied timestamp used for windowing. Rather this is a deterministic
processing-time timestamp that is assigned by the sending worker.

7 Some care needs to be taken to ensure that this algorithm works. Each sender must guarantee that the system
timestamps it generates are strictly increasing, and this guarantee must be maintained across worker restarts.

8 In theory, we could dispense with startup scans entirely by lazily building the Bloom filter for a bucket only
when a threshold number of records show up with timestamps in that bucket.

tem timestamp to each record.6 Thus, instead of creating a single Bloom filter, the ser‐
vice creates a separate one for every 10-minute range. When a record arrives,
Dataflow queries the appropriate filter based on the system timestamp.7 This step pre‐
vents the Bloom filters from saturating because filters are garbage-collected over time,
and it also bounds the amount of data that needs to be scanned at startup.8

Figure 5-5 illustrates this process: records arrive in the system and are delegated to a
Bloom filter based on their arrival time. None of the records hitting the first filter are
duplicates, and all of their catalog lookups are filtered. Record r1 is delivered a sec‐
ond time, so a catalog lookup is needed to verify that it is indeed a duplicate; the same
is true for records r4 and r6. Record r8 is not a duplicate; however, due to a false
positive in its Bloom filter, a catalog lookup is generated (which will determine that
r8 is not a duplicate and should be processed).

Figure 5-5. Exactly-once Bloom filters

Garbage Collection
Every Dataflow worker persistently stores a catalog of unique record IDs it has seen.
As Dataflow’s state and consistency model is per-key, in reality each key stores a cata‐
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9 At the time of this writing, a new, more-flexible API called SplittableDoFn is available for Apache Beam.
10 We assume that nobody is maliciously modifying the bytes in the file while we are reading it.

log of records that have been delivered to that key. We can’t store these identifiers for‐
ever, or all available storage will eventually fill up. To avoid that issue, you need
garbage collection of acknowledged record IDs.

One strategy for accomplishing this goal would be for senders to tag each record with
a strictly increasing sequence number in order to track the earliest sequence number
still in flight (corresponding to an unacknowledged record delivery). Any identifier in
the catalog with an earlier sequence number could then be garbage-collected because
all earlier records have already been acknowledged.

There is a better alternative, however. As previously mentioned, Dataflow already tags
each record with a system timestamp that is used for bucketing exactly-once Bloom
filters. Consequently, instead of using sequence numbers to garbage-collect the
exactly-once catalog, Dataflow calculates a garbage-collection watermark based on
these system timestamps (this is the processing-time watermark discussed in Chap‐
ter 3). A nice side benefit of this approach is that because this watermark is based on
the amount of physical time spent waiting in a given stage (unlike the data water‐
mark, which is based on custom event times), it provides intuition on what parts of
the pipeline are slow. This metadata is the basis for the System Lag metric shown in
the Dataflow WebUI.

What happens if a record arrives with an old timestamp and we’ve already garbage-
collected identifiers for this point in time? This can happen due to an effect we call
network remnants, in which an old message becomes stuck for an indefinite period of
time inside the network and then suddenly shows up. Well, the low watermark that
triggers garbage collection won’t advance until record deliveries have been acknowl‐
edged, so we know that this record has already been successfully processed. Such net‐
work remnants are clearly duplicates and are ignored.

Exactly Once in Sources
Beam provides a source API for reading data into a Dataflow pipeline.9 Dataflow
might retry reads from a source if processing fails and needs to ensure that every
unique record produced by a source is processed exactly once.

For most sources Dataflow handles this process transparently; such sources are deter‐
ministic. For example, consider a source that reads data out of files. The records in a
file will always be in a deterministic order and at deterministic byte locations, no mat‐
ter how many times the file is read.10 The filename and byte location uniquely identify
each record, so the service can automatically generate unique IDs for each record. 
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11 Again note that the SplittableDoFn API has different methods for this.

12 Using the requiresDedupping override.

Another source that provides similar determinism guarantees is Apache Kafka; each
Kafka topic is divided into a static set of partitions, and records in a partition always
have a deterministic order. Such deterministic sources will work seamlessly in Data‐
flow with no duplicates.

However, not all sources are so simple. For example, one common source for Data‐
flow pipelines is Google Cloud Pub/Sub. Pub/Sub is a nondeterministic source: multi‐
ple subscribers can pull from a Pub/Sub topic, but which subscribers receive a given
message is unpredictable. If processing fails Pub/Sub will redeliver messages but the
messages might be delivered to different workers than those that processed them
originally, and in a different order. This nondeterministic behavior means that Data‐
flow needs assistance for detecting duplicates because there is no way for the service
to deterministically assign record IDs that will be stable upon retry. (We dive into a
more detailed case study of Pub/Sub later in this chapter.)

Because Dataflow cannot automatically assign record IDs, nondeterministic sources
are required to inform the system what the record IDs should be. Beam’s Source API
provides the UnboundedReader.getCurrentRecordId11 method. If a source provides
unique IDs per record and notifies Dataflow that it requires deduplication,12 records
with the same ID will be filtered out.

Exactly Once in Sinks
At some point, every pipeline needs to output data to the outside world, and a sink is
simply a transform that does exactly that. Keep in mind that delivering data externally
is a side effect, and we have already mentioned that Dataflow does not guarantee
exactly-once application of side effects. So, how can a sink guarantee that outputs are
delivered exactly once?

The simplest answer is that a number of built-in sinks are provided as part of the
Beam SDK. These sinks are carefully designed to ensure that they do not produce
duplicates, even if executed multiple times. Whenever possible, pipeline authors are
encouraged to use one of these built-in sinks.

However, sometimes the built-ins are insufficient and you need to write your own.
The best approach is to ensure that your side-effect operation is idempotent and
therefore robust in the face of replay. However, often some component of a side-effect
DoFn is nondeterministic and thus might change on replay. For example, in a win‐
dowed aggregation, the set of records in the window can also be nondeterministic!
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13 Note that these determinism boundaries might become more explicit in the Beam Model at some point. Other
Beam runners vary in their ability to handle nondeterministic user code.

Specifically, the window might attempt to fire with elements e0, e1, e2, but the
worker crashes before committing the window processing (but not before those ele‐
ments are sent as a side effect). When the worker restarts, the window will fire again,
but now a late element e3 shows up. Because this element shows up before the win‐
dow is committed, it’s not counted as late data, so the DoFn is called again with ele‐
ments e0, e1, e2, e3. These are then sent to the side-effect operation. Idempotency
does not help here, because different logical record sets were sent each time.

There are other ways nondeterminism can be introduced. The standard way to
address this risk is to rely on the fact that Dataflow currently guarantees that only one
version of a DoFn’s output can make it past a shuffle boundary.13

A simple way of using this guarantee is via the built-in Reshuffle transform. The pat‐
tern presented in Example 5-2 ensures that the side-effect operation always receives a
deterministic record to output.

Example 5-2. Reshuffle example

c.apply(Window.<..>into(FixedWindows.of(Duration.standardMinutes(1))))
 .apply(GroupByKey.<..>.create())
 .apply(new PrepareOutputData())
 .apply(Reshuffle.<..>of())
 .apply(WriteToSideEffect());

The preceding pipeline splits the sink into two steps: PrepareOutputData and Write
ToSideEffect. PrepareOutputData outputs records corresponding to idempotent
writes. If we simply ran one after the other, the entire process might be replayed on
failure, PrepareOutputData might produce a different result, and both would be writ‐
ten as side effects. When we add the Reshuffle in between the two, Dataflow guaran‐
tees this can’t happen.

Of course, Dataflow might still run the WriteToSideEffect operation multiple times.
The side effects themselves still need to be idempotent, or the sink will receive dupli‐
cates. For example, an operation that sets or overwrites a value in a data store is idem‐
potent, and will generate correct output even if it’s run several times. An operation
that appends to a list is not idempotent; if the operation is run multiple times, the
same value will be appended each time.

While Reshuffle provides a simple way of achieving stable input to a DoFn, a GroupBy
Key works just as well. However, there is currently a proposal that removes the need
to add a GroupByKey to achieve stable input into a DoFn. Instead, the user could
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annotate WriteToSideEffect with a special annotation, @RequiresStableInput, and
the system would then ensure stable input to that transform.

Use Cases
To illustrate, let’s examine some built-in sources and sinks to see how they implement
the aforementioned patterns.

Example Source: Cloud Pub/Sub
Cloud Pub/Sub is a fully managed, scalable, reliable, and low-latency system for deliv‐
ering messages from publishers to subscribers. Publishers publish data on named
topics, and subscribers create named subscriptions to pull data from these topics.
Multiple subscriptions can be created for a single topic, in which case each subscrip‐
tion receives a full copy of all data published on the topic from the time of the sub‐
scription’s creation. Pub/Sub guarantees that records will continue to be delivered
until they are acknowledged; however, a record might be delivered multiple times.

Pub/Sub is intended for distributed use, so many publishing processes can publish to
the same topic and many subscribing processes can pull from the same subscription.
After a record has been pulled, the subscriber must acknowledge it within a certain
amount of time, or that pull expires and Pub/Sub will redeliver that record to another
of the subscribing processes.

Although these characteristics make Pub/Sub highly scalable, they also make it a
challenging source for a system like Dataflow. It’s impossible to know which record
will be delivered to which worker, and in which order. What’s more, in the case of
failure, redelivery might send the records to different workers in different orders!

Pub/Sub provides a stable message ID with each message, and this ID will be the
same upon redelivery. The Dataflow Pub/Sub source will default to using this ID for
removing duplicates from Pub/Sub. (The records are shuffled based on a hash of the
ID, so that repeated deliveries are always processed on the same worker.) In some
cases, however, this is not quite enough. The user’s publishing process might retry
publishes, and as a result introduce duplicates into Pub/Sub. From that service’s per‐
spective these are unique records, so they will get unique record IDs. Dataflow’s
Pub/Sub source allows the user to provide their own record IDs as a custom attribute.
As long as the publisher sends the same ID when retrying, Dataflow will be able to
detect these duplicates.

Beam (and therefore Dataflow) provides a reference source implementation for Pub/
Sub. However, keep in mind that this is not what Dataflow uses but rather an imple‐
mentation used only by non-Dataflow runners (such as Apache Spark, Apache Flink,
and the DirectRunner). For a variety of reasons, Dataflow handles Pub/Sub internally
and does not use the public Pub/Sub source.
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Example Sink: Files
The streaming runner can use Beam’s file sinks (TextIO, AvroIO, and any other sink
that implements FileBasedSink) to continuously output records to files. Example 5-3
provides an example use case.

Example 5-3. Windowed file writes

c.apply(Window.<..>into(FixedWindows.of(Duration.standardMinutes(1))))
 .apply(TextIO.writeStrings().to(new MyNamePolicy()).withWindowedWrites());

The snippet in Example 5-3 writes 10 new files each minute, containing data from
that window. MyNamePolicy is a user-written function that determines output file‐
names based on the shard and the window. You can also use triggers, in which case
each trigger pane will be output as a new file.

This process is implemented using a variant on the pattern in Example 5-3. Files are
written out to temporary locations, and these temporary filenames are sent to a sub‐
sequent transform through a GroupByKey. After the GroupByKey is a finalize trans‐
form that atomically moves the temporary files into their final location. The
pseudocode in Example 5-4 provides a sketch of how a consistent streaming file sink
is implemented in Beam. (For more details, see FileBasedSink and WriteFiles in
the Beam codebase.)

Example 5-4. File sink

c
  // Tag each record with a random shard id.
  .apply("AttachShard", WithKeys.of(new RandomShardingKey(getNumShards())))
  // Group all records with the same shard.
  .apply("GroupByShard", GroupByKey.<..>())
  // For each window, write per-shard elements to a temporary file. This is the 
  // non-deterministic side effect. If this DoFn is executed multiple times, it will
  // simply write multiple temporary files; only one of these will pass on through 
  // to the Finalize stage.
  .apply("WriteTempFile", ParDo.of(new DoFn<..> {
    @ProcessElement
     public void processElement(ProcessContext c, BoundedWindow window) {
       // Write the contents of c.element() to a temporary file.
       // User-provided name policy used to generate a final filename.
      c.output(new FileResult()).
    }
  }))
  // Group the list of files onto a singleton key.
  .apply("AttachSingletonKey", WithKeys.<..>of((Void)null))
  .apply("FinalizeGroupByKey", GroupByKey.<..>create())
  // Finalize the files by atomically renaming them. This operation is idempotent. 
  // Once this DoFn has executed once for a given FileResult, the temporary file  

134 | Chapter 5: Exactly-Once and Side Effects



14 As long as you properly handle the failure when the source file no longer exists.
15 Due to the global nature of the service, BigQuery does not guarantee that all duplicates are removed. Users

can periodically run a query over their tables to remove any duplicates that were not caught by the streaming
insert API. See the BigQuery documentation for more information.

  // is gone, so any further executions will have no effect. 
  .apply("Finalize", ParDo.of(new DoFn<..>, Void> {
    @ProcessElement
     public void processElement(ProcessContext c)  {
       for (FileResult result : c.element()) { 
         rename(result.getTemporaryFileName(), result.getFinalFilename());
       }
}}));

You can see how the nonidempotent work is done in WriteTempFile. After the Group
ByKey completes, the Finalize step will always see the same bundles across retries.
Because file rename is idempotent,14 this give us an exactly-once sink.

Example Sink: Google BigQuery
Google BigQuery is a fully managed, cloud-native data warehouse. Beam provides a
BigQuery sink, and BigQuery provides a streaming insert API that supports
extremely low-latency inserts. This streaming insert API allows you to tag inserts
with a unique ID, and BigQuery will attempt to filter duplicate inserts with the same
ID.15 To use this capability, the BigQuery sink must generate statistically unique IDs
for each record. It does this by using the java.util.UUID package, which generates
statistically unique 128-bit IDs.

Generating a random universally unique identifier (UUID) is a nondeterministic
operation, so we must add a Reshuffle before we insert into BigQuery. After we do
this, any retries by Dataflow will always use the same UUID that was shuffled. Dupli‐
cate attempts to insert into BigQuery will always have the same insert ID, so Big‐
Query is able to filter them. The pseudocode shown in Example 5-5 illustrates how
the BigQuery sink is implemented.

Example 5-5. BigQuery sink

// Apply a unique identifier to each record
c
 .apply(new DoFn<> {
  @ProcessElement
  public void processElement(ProcessContext context) {
   String uniqueId = UUID.randomUUID().toString();
   context.output(KV.of(ThreadLocalRandom.current().nextInt(0, 50),
                                     new RecordWithId(context.element(), uniqueId)));
 }
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16 Resilient Distributed Datasets; Spark’s abstraction of a distributed dataset, similar to PCollection in Beam.

})
// Reshuffle the data so that the applied identifiers are stable and will not change.
.apply(Reshuffle.<Integer, RecordWithId>of())
// Stream records into BigQuery with unique ids for deduplication.
.apply(ParDo.of(new DoFn<..> {
   @ProcessElement
   public void processElement(ProcessContext context) {
     insertIntoBigQuery(context.element().record(), context.element.id());
   }
 });

Again we split the sink into a nonidempotent step (generating a random number),
followed by a step that is idempotent. 

Other Systems
Now that we have explained Dataflow’s exactly once in detail, let us contrast this with
some brief overviews of other popular streaming systems. Each implements exactly-
once guarantees in a different way and makes different trade-offs as a result.

Apache Spark Streaming
Spark Streaming uses a microbatch architecture for continuous data processing.
Users logically deal with a stream object; however, under the covers, Spark represents
this stream as a continuous series of RDDs.16 Each RDD is processed as a batch, and
Spark relies on the exactly-once nature of batch processing to ensure correctness; as
mentioned previously, techniques for correct batch shuffles have been known for
some time. This approach can cause increased latency to output—especially for deep
pipelines and high input volumes—and often careful tuning is required to achieve
desired latency.

Spark does assume that operations are all idempotent and might replay the chain of
operations up the current point in the graph. A checkpoint primitive is provided,
however, that causes an RDD to be materialized, guaranteeing that history prior to
that RDD will not be replayed. This checkpoint feature is intended for performance
reasons (e.g., to prevent replaying an expensive operation); however, you can also use
it to implement nonidempotent side effects.

Apache Flink
Apache Flink also provides exactly-once processing for streaming pipelines but does
so in a manner different than either Dataflow or Spark. Flink streaming pipelines
periodically compute consistent snapshots, each representing the consistent point-in-
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17 These sequence numbers are per connection and are unrelated to the snapshot epoch number.
18 Only for nonidempotent sinks. Completely idempotent sinks do not need to wait for the snapshot to com‐

plete.
19 Specifically, Flink assumes that the mean time to worker failure is more than the time to snapshot; otherwise,

the pipeline would be unable to make progress.

time state of an entire pipeline. Flink snapshots are computed progressively, so there
is no need to halt all processing while computing a snapshot. This allows records to
continue flowing through the system while taking a snapshot, alleviating some of the
latency issues with the Spark Streaming approach.

Flink implements these snapshots by inserting special numbered snapshot markers
into the data streams flowing from sources. As each operator receives a snapshot
marker, it executes a specific algorithm allowing it to copy its state to an external
location and propagate the snapshot marker to downstream operators. After all oper‐
ators have executed this snapshot algorithm, a complete snapshot is made available.
Any worker failures will cause the entire pipeline to roll back its state from the last
complete snapshot. In-flight messages do not need to be included in the snapshot. All
message delivery in Flink is done via an ordered TCP-based channel. Any connection
failures can be handled by resuming the connection from the last good sequence
number;17 unlike Dataflow, Flink tasks are statically allocated to workers, so it can
assume that the connection will resume from the same sender and replay the same
payloads.

Because Flink might roll back to the previous snapshot at any time, any state modifi‐
cations not yet in a snapshot must be considered tentative. A sink that sends data to
the world outside the Flink pipeline must wait until a snapshot has completed, and
then send only the data that is included in that snapshot. Flink provides a notifySnap
shotComplete callback that allows sinks to know when each snapshot is completed,
and send the data onward. Even though this does affect the output latency of Flink
pipelines,18 this latency is introduced only at sinks. In practice, this allows Flink to
have lower end-to-end latency than Spark for deep pipelines because Spark introdu‐
ces batch latency at each stage in the pipeline.

Flink’s distributed snapshots are an elegant way of dealing with consistency in a
streaming pipeline; however, a number of assumptions are made about the pipeline.
Failures are assumed to be rare,19 as the impact of a failure (rolling back to the previ‐
ous snapshot) is substantial. To maintain low-latency output, it is also assumed that
snapshots can complete quickly. It remains to be seen whether this causes issues on
very large clusters where the failure rate will likely increase, as will the time needed to
complete a snapshot.

Implementation is also simplified by assuming that tasks are statically allocated to
workers (at least within a single snapshot epoch). This assumption allows Flink to
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provide a simple exactly-once transport between workers because it knows that if a
connection fails, the same data can be pulled in order from the same worker. In con‐
trast, tasks in Dataflow are constantly load balanced between workers (and the set of
workers is constantly growing and shrinking), so Dataflow is unable to make this
assumption. This forces Dataflow to implement a much more complex transport
layer in order to provide exactly-once processing.

Summary
In summary, exactly-once data processing, which was once thought to be incompati‐
ble with low-latency results, is quite possible—Dataflow does it efficiently without
sacrificing latency. This enables far richer uses for stream processing.

Although this chapter has focused on Dataflow-specific techniques, other streaming
systems also provide exactly-once guarantees. Apache Spark Streaming runs stream‐
ing pipelines as a series of small batch jobs, relying on exactly-once guarantees in the
Spark batch runner. Apache Flink uses a variation on Chandy Lamport distributed
snapshots to get a running consistent state and can use these snapshots to ensure
exactly-once processing. We encourage you to learn about these other systems, as
well, for a broad understanding of how different stream-processing systems work! 
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CHAPTER 6

Streams and Tables

You have reached the part of the book where we talk about streams and tables. If you
recall, back in Chapter 1, we briefly discussed two important but orthogonal dimen‐
sions of data: cardinality and constitution. Until now, we’ve focused strictly on the car‐
dinality aspects (bounded versus unbounded) and otherwise ignored the constitution
aspects (stream versus table). This has allowed us to learn about the challenges
brought to the table by the introduction of unbounded datasets, without worrying too
much about the lower-level details that really drive the way things work. We’re now
going to expand our horizons and see what the added dimension of constitution
brings to the mix.

Though it’s a bit of a stretch, one way to think about this shift in approach is to com‐
pare the relationship of classical mechanics to quantum mechanics. You know how in
physics class they teach you a bunch of classical mechanics stuff like Newtonian
theory and so on, and then after you think you’ve more or less mastered that, they
come along and tell you it was all bunk, and classical physics gives you only part of
the picture, and there’s actually this other thing called quantum mechanics that really
explains how things work at a lower level, but it didn’t make sense to complicate mat‐
ters up front by trying to teach you both at once, and...oh wait...we also haven’t fully
reconciled everything between the two yet, so just squint at it and trust us that it all
makes sense somehow? Well this is a lot like that, except your brain will hurt less
because physics is way harder than data processing, and you won’t have to squint at
anything and pretend it makes sense because it actually does come together beauti‐
fully in the end, which is really cool.

So, with the stage appropriately set, the point of this chapter is twofold:

• To try to describe the relationship between the Beam Model (as we’ve described it
in the book up to this point) and the theory of “streams and tables” (as popular‐
ized by Martin Kleppmann and Jay Kreps, among others, but essentially originat‐
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1 If you didn’t go to college for computer science and you’ve made it this far in the book, you are likely either 1)
my parents, 2) masochistic, or 3) very smart (and for the record, I’m not implying these groups are necessarily
mutually exclusive; figure that one out if you can, Mom and Dad! <winky-smiley/>).

ing out of the database world). It turns out that stream and table theory does an
illuminating job of describing the low-level concepts that underlie the Beam
Model. Additionally, a clear understanding of how they relate is particularly
informative when considering how robust stream processing concepts might be
cleanly integrated into SQL (something we consider in Chapter 8).

• To bombard you with bad physics analogies for the sheer fun of it. Writing a
book is a lot of work; you have to find little joys here and there to keep you going.

Stream-and-Table Basics Or: a Special Theory of Stream
and Table Relativity
The basic idea of streams and tables derives from the database world. Anyone famil‐
iar with SQL is likely familiar with tables and their core properties, roughly summar‐
ized as: tables contain rows and columns of data, and each row is uniquely identified
by some sort of key, either explicit or implicit.

If you think back to your database systems class in college,1 you’ll probably recall the
data structure underlying most databases is an append-only log. As transactions are
applied to a table in the database, those transactions are recorded in a log, the con‐
tents of which are then serially applied to the table to materialize those updates. In
streams and tables nomenclature, that log is effectively the stream.

From that perspective, we now understand how to create a table from a stream: the
table is just the result of applying the transaction log of updates found in the stream.
But how do we create a stream from a table? It’s essentially the inverse: a stream is a
changelog for a table. The motivating example typically used for table-to-stream con‐
version is materialized views. Materialized views in SQL let you specify a query on a
table, which itself is then manifested by the database system as another first-class
table. This materialized view is essentially a cached version of that query, which the
database system ensures is always up to date as the contents of the source table evolve
over time. Perhaps unsurprisingly, materialized views are implemented via the
changelog for the original table; any time the source table changes, that change is log‐
ged. The database then evaluates that change within the context of the materialized
view’s query and applies any resulting change to the destination materialized view
table.
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2 And note that in some cases, the tables themselves can accept time as a query parameter, allowing you to peer
backward in time to snapshots of the table as it existed in the past.

Combining these two points together and employing yet another questionable phys‐
ics analogy, we arrive at what one might call the Special Theory of Stream and Table
Relativity:

Streams → tables
The aggregation of a stream of updates over time yields a table.

Tables → streams
The observation of changes to a table over time yields a stream.

This is a very powerful pair of concepts, and their careful application to the world of
stream processing is a big reason for the massive success of Apache Kafka, the ecosys‐
tem that is built around these underlying principles. However, those statements
themselves are not quite general enough to allow us to tie streams and tables to all of
the concepts in the Beam Model. For that, we must go a little bit deeper.

Toward a General Theory of Stream and Table Relativity
If we want to reconcile stream/table theory with everything we know of the Beam
Model, we’ll need to tie up some loose ends, specifically:

• How does batch processing fit into all of this?
• What is the relationship of streams to bounded and unbounded datasets?
• How do the four what, where, when, how questions map onto a streams/tables

world?

As we attempt to do so, it will be helpful to have the right mindset about streams and
tables. In addition to understanding them in relation to each other, as captured by the
previous definition, it can be illuminating to define them independent of each other.
Here’s a simple way of looking at it that will underscore some of our future analyses:

• Tables are data at rest.
This isn’t to say tables are static in any way; nearly all useful tables are continu‐
ously changing over time in some way. But at any given time, a snapshot of the
table provides some sort of picture of the dataset contained together as a whole.2

In that way, tables act as a conceptual resting place for data to accumulate and be
observed over time. Hence, data at rest.

• Streams are data in motion.
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3 Note that no guarantees are made about the keys of two successive records observed by a single mapper,
because no key-grouping has occurred yet. The existence of the key here is really just to allow keyed datasets
to be consumed in a natural way, and if there are no obvious keys for the input data, they’ll all just share what
is effectively a global null key.

Whereas tables capture a view of the dataset as a whole at a specific point in time,
streams capture the evolution of that data over time. Julian Hyde is fond of saying
streams are like the derivatives of tables, and tables the integrals of streams,
which is a nice way of thinking about it for you math-minded individuals out
there. Regardless, the important feature of streams is that they capture the inher‐
ent movement of data within a table as it changes. Hence, data in motion.

Though tables and streams are intimately related, it’s important to keep in mind that
they are very much not the same thing, even if there are many cases in which one
might be fully derived from the other. The differences are subtle but important, as
we’ll see.

Batch Processing Versus Streams and Tables
With our proverbial knuckles now cracked, let’s start to tie up some loose ends. To
begin, we tackle the first one, regarding batch processing. At the end, we’ll discover
that the resolution to the second issue, regarding the relationship of streams to boun‐
ded and unbounded data, will fall out naturally from the answer for the first. Score
one for serendipity.

A Streams and Tables Analysis of MapReduce
To keep our analysis relatively simple, but solidly concrete, as it were, let’s look at how
a traditional MapReduce job fits into the streams/tables world. As alluded to by its
name, a MapReduce job superficially consists of two phases: Map and Reduce. For
our purposes, though, it’s useful to look a little deeper and treat it more like six:

MapRead
This consumes the input data and preprocesses them a bit into a standard key/
value form for mapping.

Map
This repeatedly (and/or in parallel) consumes a single key/value pair3 from the
preprocessed input and outputs zero or more key/value pairs.

MapWrite
This clusters together sets of Map-phase output values having identical keys and
writes those key/value-list groups to (temporary) persistent storage. In this way,
the MapWrite phase is essentially a group-by-key-and-checkpoint operation.
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4 Calling the inputs to a batch job “static” might be a bit strong. In reality, the dataset being consumed can be
constantly changing as it’s processed; that is, if you’re reading directly from an HBase/Bigtable table within a
timestamp range in which the data aren’t guaranteed to be immutable. But in most cases, the recommended
approach is to ensure that you’re somehow processing a static snapshot of the input data, and any deviation
from that assumption is at your own peril.

ReduceRead
This consumes the saved shuffle data and converts them into a standard key/
value-list form for reduction.

Reduce
This repeatedly (and/or in parallel) consumes a single key and its associated
value-list of records and outputs zero or more records, all of which may option‐
ally remain associated with that same key.

ReduceWrite
This writes the outputs from the Reduce phase to the output datastore.

Note that the MapWrite and ReduceRead phases sometimes are referred to in aggre‐
gate as the Shuffle phase, but for our purposes, it’s better to consider them independ‐
ently. It’s perhaps also worth noting that the functions served by the MapRead and
ReduceWrite phases are more commonly referred to these days as sources and sinks.
Digressions aside, however, let’s now see how this all relates to streams and tables.

Map as streams/tables
Because we start and end with static4 datasets, it should be clear that we begin with a
table and end with a table. But what do we have in between? Naively, one might
assume that it’s tables all the way down; after all, batch processing is (conceptually)
known to consume and produce tables. And if you think of a batch processing job as
a rough analog of executing a classic SQL query, that feels relatively natural. But let’s
look a little more closely at what’s really happening, step by step.

First up, MapRead consumes a table and produces something. That something is con‐
sumed next by the Map phase, so if we want to understand its nature, a good place to
start would be with the Map phase API, which looks something like this in Java:

void map(KI key, VI value, Emit<KO, VO> emitter);

The map call will be repeatedly invoked for each key/value pair in the input table. If
you think this sounds suspiciously like the input table is being consumed as a stream
of records, you’d be right. We look more closely at how the table is being converted
into a stream later, but for now, suffice it to say that the MapRead phase is iterating
over the data at rest in the input table and putting them into motion in the form of a
stream that is then consumed by the Map phase.
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5 Note that grouping a stream by key is importantly distinct from simply partitioning that stream by key, which
ensures that all records with the same key end up being processed by the same machine but doesn’t do any‐
thing to put the records to rest. They instead remain in motion and thus continue on as a stream. A grouping
operation is more like a partition-by-key followed by a write to the appropriate group for that partition, which
is what puts them to rest and turns the stream into a table.

Next up, the Map phase consumes that stream, and then does what? Because the map
operation is an element-wise transformation, it’s not doing anything that will halt the
moving elements and put them to rest. It might change the effective cardinality of the
stream by either filtering some elements out or exploding some elements into multi‐
ple elements, but those elements all remain independent from one another after the
Map phase concludes. So, it seems safe to say that the Map phase both consumes a
stream as well as produces a stream.

After the Map phase is done, we enter the MapWrite phase. As I noted earlier, the
MapWrite groups records by key and then writes them in that format to persistent
storage. The persistent part of the write actually isn’t strictly necessary at this point as
long as there’s persistence somewhere (i.e., if the upstream inputs are saved and one
can recompute the intermediate results from them in cases of failure, similar to the
approach Spark takes with Resilient Distributed Datasets [RDDs]). What is important
is that the records are grouped together into some kind of datastore, be it in memory,
on disk, or what have you. This is important because, as a result of this grouping
operation, records that were previously flying past one-by-one in the stream are now
brought to rest in a location dictated by their key, thus allowing per-key groups to
accumulate as their like-keyed brethren and sistren arrive. Note how similar this is to
the definition of stream-to-table conversion provided earlier: the aggregation of a
stream of updates over time yields a table. The MapWrite phase, by virtue of grouping
the stream of records by their keys, has put those data to rest and thus converted the
stream back into a table.5 Cool!

We’re now halfway through the MapReduce, so, using Figure 6-1, let’s recap what
we’ve seen so far.

We’ve gone from table to stream and back again across three operations. MapRead
converted the table into a stream, which was then transformed into a new stream by
Map (via the user’s code), which was then converted back into a table by MapWrite.
We’re going to find that the next three operations in the MapReduce look very simi‐
lar, so I’ll go through them more quickly, but I still want to point out one important
detail along the way.
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Figure 6-1. Map phases in a MapReduce. Data in a table are converted to a stream and
back again.

Reduce as streams/tables
Picking up where we left off after the MapWrite phase, ReduceRead itself is relatively
uninteresting. It’s basically identical to MapRead, except that the values being read are
singleton lists of values instead of singleton values, because the data stored by Map‐
Write were key/value-list pairs. But it’s still just iterating over a snapshot of a table to
convert it into a stream. Nothing new here.

And even though it sounds like it might be interesting, Reduce in this context is really
just a glorified Map phase that happens to receive a list of values for each key instead
of a single value. So it’s still just mapping single (composite) records into zero or
more new records. Nothing particularly new here, either.

ReduceWrite is the one that’s a bit noteworthy. We know already that this phase must
convert a stream to a table, given that Reduce produces a stream and the final output
is a table. But how does that happen? If I told you it was a direct result of key-
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6 One giant difference, from an implementation perspective at least, being that ReduceWrite, knowing that keys
have already been grouped together by MapWrite, and further knowing that Reduce is unable to alter keys for
the case in which its outputs remain keyed, can simply accumulate the outputs generated by reducing the val‐
ues for a single key in order to group them together, which is much simpler than the full-blown shuffle imple‐
mentation required for a MapWrite phase.

7 Another way of looking at it is that there are two types of tables: updateable and appendable; this is the way
the Flink folks have framed it for their Table API. But even though that’s a great intuitive way of capturing the
observed semantics of the two situations, I think it obscures the underlying nature of what’s actually happen‐
ing that causes a stream to come to rest as a table; that is, grouping.

grouping the outputs from the previous phase into persistent storage, just like we saw
with MapWrite, you might believe me, until you remembered that I noted earlier that
key-association was an optional feature of the Reduce phase. With that feature
enabled, ReduceWrite is essentially identical to MapWrite.6 But if that feature is dis‐
abled and the outputs from Reduce have no associated keys, what exactly is happen‐
ing to bring those data to rest?

To understand what’s going on, it’s useful to think again of the semantics of a SQL
table. Though often recommended, it’s not strictly required for a SQL table to have a
primary key uniquely identifying each row. In the case of keyless tables, each row that
is inserted is considered to be a new, independent row (even if the data therein are
identical to one or more extant rows in the table), much as though there were an
implicit AUTO_INCREMENT field being used as the key (which incidentally, is
what’s effectively happening under the covers in most implementations, even though
the “key” in this case might just be some physical block location that is never exposed
or expected to be used as a logical identifier). This implicit unique key assignment is
precisely what’s happening in ReduceWrite with unkeyed data. Conceptually, there’s
still a group-by-key operation happening; that’s what brings the data to rest. But lack‐
ing a user-supplied key, the ReduceWrite is treating each record as though it has a
new, never-before-seen key, and effectively grouping each record with itself, resulting
again in data at rest.7

Take a look at Figure 6-2, which shows the entire pipeline from the perspective of
stream/tables. You can see that it’s a sequence of TABLE → STREAM → STREAM →
TABLE → STREAM → STREAM → TABLE. Even though we’re processing bounded
data and even though we’re doing what we traditionally think of as batch processing,
it’s really just streams and tables under the covers.
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Figure 6-2. Map and Reduce phases in a MapReduce, viewed from the perspective of
streams and tables
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Reconciling with Batch Processing
So where does this leave us with respect to our first two questions?

1. Q: How does batch processing fit into stream/table theory?
A: Quite nicely. The basic pattern is as follows:

a. Tables are read in their entirety to become streams.
b. Streams are processed into new streams until a grouping operation is hit.
c. Grouping turns the stream into a table.
d. Steps a through c repeat until you run out of stages in the pipeline.

2. Q: How do streams relate to bounded/unbounded data?
A: As we can see from the MapReduce example, streams are simply the in-
motion form of data, regardless of whether they’re bounded or unbounded.

Taken from this perspective, it’s easy to see that stream/table theory isn’t remotely at
odds with batch processing of bounded data. In fact, it only further supports the idea
I’ve been harping on that batch and streaming really aren’t that different: at the end of
the of day, it’s streams and tables all the way down.

With that, we’re well on our way toward a general theory of streams and tables. But to
wrap things up cleanly, we last need to revisit the four what/where/when/how ques‐
tions within the streams/tables context, to see how they all relate.

What, Where, When, and How in a Streams and Tables
World
In this section, we look at each of the four questions and see how they relate to
streams and tables. We’ll also answer any questions that may be lingering from the
previous section, one big one being: if grouping is the thing that brings data to rest,
what precisely is the “ungrouping” inverse that puts them in motion? More on that
later. But for now, on to transformations.

What: Transformations
In Chapter 3, we learned that transformations tell us what the pipeline is computing;
that is, whether it’s building models, counting sums, filtering spam, and so on. We
saw in the earlier MapReduce example that four of the six stages answered what
questions:

• Map and Reduce both applied the pipeline author’s element-wise transformation
on each key/value or key/value-list pair in the input stream, respectively, yielding
a new, transformed stream.
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• MapWrite and ReduceWrite both grouped the outputs from the previous stage
according to the key assigned by that stage (possibly implicitly, in the optional
Reduce case), and in doing so transformed the input stream into an output table.

Viewed in that light, you can see that there are essentially two types of what trans‐
forms from the perspective of stream/table theory:

Nongrouping
These operations (as we saw in Map and Reduce) simply accept a stream of
records and produce a new, transformed stream of records on the other side.
Examples of nongrouping transformations are filters (e.g., removing spam mes‐
sages), exploders (i.e., splitting apart a larger composite record into its constitu‐
ent parts), and mutators (e.g., divide by 100), and so on.

Grouping
These operations (as we saw in MapWrite and ReduceWrite) accept a stream of
records and group them together in some way, thereby transforming the stream
into a table. Examples of grouping transformations are joins, aggregations,
list/set accumulation, changelog application, histogram creation, machine learn‐
ing model training, and so forth.

To get a better sense for how all of this ties together, let’s look at an updated version of
Figure 2-2, where we first began to look at transformations. To save you jumping
back there to see what we were talking about, Example 6-1 contains the code snippet
we were using.

Example 6-1. Summation pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
  input.apply(Sum.integersPerKey());

This pipeline is simply reading in input data, parsing individual team member scores,
and then summing those scores per team. The event-time/processing-time visualiza‐
tion of it looks like the diagram presented in Figure 6-3.
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Figure 6-3. Event-time/processing-time view of classic batch processing

Figure 6-4 depicts a more topological view of this pipeline over time, rendered from a
streams-and-tables perspective.

Figure 6-4. Streams and tables view of classic batch processing

In the streams and tables version of this visualization, the passage of time is manifes‐
ted by scrolling the graph area downward in the processing-time dimension (y-axis)
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8 Though as we can clearly see from this example, it’s not just a streaming thing; you can get the same effect
with a batch system if its state tables are world readable.

9 This is particularly painful if a sink for your storage system of choice doesn’t exist yet; building proper sinks
that can uphold consistency guarantees is a surprisingly subtle and difficult task.

as time advances. The nice thing about rendering things this way is that it very clearly
calls out the difference between nongrouping and grouping operations. Unlike our
previous diagrams, in which I elided all initial transformations in the pipeline other
than the Sum.integersByKey, I’ve included the initial parsing operation here, as well,
because the nongrouping aspect of the parsing operation provides a nice contrast to
the grouping aspect of the summation. Viewed in this light, it’s very easy to see the
difference between the two. The nongrouping operation does nothing to halt the
motion of the elements in the stream, and as a result yields another stream on the
other side. In contrast, the grouping operation brings all the elements in the stream to
rest as it adds them together into the final sum. Because this example was running on
a batch processing engine over bounded data, the final results are emitted only after
the end of the input is reached. As we noted in Chapter 2 this example is sufficient for
bounded data, but is too limiting in the context of unbounded data because the input
will theoretically never end. But is it really insufficient?

Looking at the new streams/tables portion of the diagram, if all we’re doing is calcu‐
lating sums as our final results (and not actually transforming those sums in any
additional way further downstream within the pipeline), the table we created with
our grouping operation has our answer sitting right there, evolving over time as new
data arrive. Why don’t we just read our results from there?

This is exactly the point being made by the folks championing stream processors as a
database8 (primarily the Kafka and Flink crews): anywhere you have a grouping oper‐
ation in your pipeline, you’re creating a table that includes what is effectively the out‐
put values of that portion of the stage. If those output values happen to be the final
thing your pipeline is calculating, you don’t need to rematerialize them somewhere
else if you can read them directly out of that table. Besides providing quick and easy
access to results as they evolve over time, this approach saves on compute resources
by not requiring an additional sink stage in the pipeline to materialize the outputs,
yields disk savings by eliminating redundant data storage, and obviates the need for
any engineering work building the aforementioned sink stages.9 The only major cav‐
eat is that you need to take care to ensure that only the data processing pipeline has
the ability to make modifications to the table. If the values in the table can change out
from under the pipeline due to external modification, all bets are off regarding con‐
sistency guarantees.

A number of folks in the industry have been recommending this approach for a while
now, and it’s being put to great use in a variety of scenarios. We’ve seen MillWheel
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10 This also means that if you place a value into multiple windows—for example, sliding windows—the value
must conceptually be duplicated into multiple, independent records, one per window. Even so, it’s possible in
some cases for the underlying system to be smart about how it treats certain types of overlapping windows,
thus optimize away the need for actually duplicating the value. Spark, for example, does this for sliding win‐
dows.

customers within Google do the same thing by serving data directly out of their
Bigtable-based state tables, and we’re in the process of adding first-class support for
accessing state from outside of your pipeline in the C++–based Apache Beam equiva‐
lent we use internally at Google (Google Flume); hopefully those concepts will make
their way to Apache Beam proper someday soon, as well.

Now, reading from the state tables is great if the values therein are your final results.
But, if you have more processing to perform downstream in the pipeline (e.g., imag‐
ine our pipeline was actually computing the top scoring team), we still need some
better way to cope with unbounded data, allowing us to transform the table back into
a stream in a more incremental fashion. For that, we’ll want to journey back through
the remaining three questions, beginning with windowing, expanding into triggering,
and finally tying it all together with accumulation.

Where: Windowing
As we know from Chapter 3, windowing tells us where in event time grouping occurs.
Combined with our earlier experiences, we can thus also infer it must play a role in
stream-to-table conversion because grouping is what drives table creation. There are
really two aspects of windowing that interact with stream/table theory:

Window assignment
This effectively just means placing a record into one or more windows.

Window merging
This is the logic that makes dynamic, data-driven types of windows, such as ses‐
sions, possible.

The effect of window assignment is quite straightforward. When a record is concep‐
tually placed into a window, the definition of the window is essentially combined with
the user-assigned key for that record to create an implicit composite key used at
grouping time.10 Simple.

For completeness, let’s take another look at the original windowing example from
Chapter 3, but from a streams and tables perspective. If you recall, the code snippet
looked something like Example 6-2 (with parsing not elided this time).
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Example 6-2. Summation pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES)))
  .apply(Sum.integersPerKey());

And the original visualization looked like that shown in Figure 6-5.

Figure 6-5. Event-time/processing-time view of windowed summation on a batch engine

And now, Figure 6-6 shows the streams and tables version.

What, Where, When, and How in a Streams and Tables World | 155

http://streamingbook.net/fig/6-5


Figure 6-6. Streams and tables view of windowed summation on a batch engine

As you might expect, this looks remarkably similar to Figure 6-4, but with four
groupings in the table (corresponding to the four windows occupied by the data)
instead of just one. But as before, we must wait until the end of our bounded input is
reached before emitting results. We look at how to address this for unbounded data in
the next section, but first let’s touch briefly on merging windows.

Window merging
Moving on to merging, we’ll find that the effect of window merging is more compli‐
cated than window assignment, but still straightforward when you think about the
logical operations that would need to happen. When grouping a stream into windows
that can merge, that grouping operation has to take into account all of the windows
that could possibly merge together. Typically, this is limited to windows whose data
all have the same key (because we’ve already established that windowing modifies
grouping to not be just by key, but also key and window). For this reason, the system
doesn’t really treat the key/window pair as a flat composite key, but rather as a hier‐
archical key, with the user-assigned key as the root, and the window a child compo‐
nent of that root. When it comes time to actually group data together, the system first
groups by the root of the hierarchy (the key assigned by the user). After the data have
been grouped by key, the system can then proceed with grouping by window within
that key (using the child components of the hierarchical composite keys). This act of
grouping by window is where window merging happens.

What’s interesting from a streams and tables perspective is how this window merging
changes the mutations that are ultimately applied to a table; that is, how it modifies
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the changelog that dictates the contents of the table over time. With nonmerging win‐
dows, each new element being grouped results in a single mutation to the table (to
add that element to the group for the element’s key+window). With merging win‐
dows, the act of grouping a new element can result in one or more existing windows
being merged with the new window. So, the merging operation must inspect all of the
existing windows for the current key, figure out which windows can merge with this
new window, and then atomically commit deletes for the old unmerged windows in
conjunction with an insert for the new merged window into the table. This is why
systems that support merging windows typically define the unit of atomicity/paralle‐
lization as key, rather than key+window. Otherwise, it would be impossible (or at
least much more expensive) to provide the strong consistency needed for correctness
guarantees. When you begin to look at it in this level of detail, you can see why it’s so
nice to have the system taking care of the nasty business of dealing with window
merges. For an even closer view of window merging semantics, I refer you to section
2.2.2 of “The Dataflow Model”.

At the end of the day, windowing is really just a minor alteration to the semantics of
grouping, which means it’s a minor alteration to the semantics of stream-to-table
conversion. For window assignment, it’s as simple as incorporating the window into
an implicit composite key used at grouping time. When window merging becomes
involved, that composite key is treated more like a hierarchical key, allowing the sys‐
tem to handle the nasty business of grouping by key, figuring out window merges
within that key, and then atomically applying all the necessary mutations to the corre‐
sponding table for us. Hooray for layers of abstraction!

All that said, we still haven’t actually addressed the problem of converting a table to a
stream in a more incremental fashion in the case of unbounded data. For that, we
need to revisit triggers.

When: Triggers
We learned in Chapter 3 that we use triggers to dictate when the contents of a window
will be materialized (with watermarks providing a useful signal of input completeness
for certain types of triggers). After data have been grouped together into a window,
we use triggers to dictate when that data should be sent downstream. In streams/
tables terminology, we understand that grouping means stream-to-table conversion.
From there, it’s a relatively small leap to see that triggers are the complement to
grouping; in other words, that “ungrouping” operation we were grasping for earlier.
Triggers are what drive table-to-stream conversion.

In streams/tables terminology, triggers are special procedures applied to a table that
allow for data within that table to be materialized in response to relevant events. Sta‐
ted that way, they actually sound suspiciously similar to classic database triggers. And
indeed, the choice of name here was no coincidence; they are essentially the same
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thing. When you specify a trigger, you are in effect writing code that then is evaluated
for every row in the state table as time progresses. When that trigger fires, it takes the
corresponding data that are currently at rest in the table and puts them into motion,
yielding a new stream.

Let’s return to our examples. We’ll begin with the simple per-record trigger from
Chapter 2, which simply emits a new result every time a new record arrives. The code
and event-time/processing-time visualization for that example is shown in
Example 6-3. Figure 6-7 presents the results.

Example 6-3. Triggering repeatedly with every record

PCollection<String>> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn()); 
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(AfterCount(1))));
  .apply(Sum.integersPerKey());

Figure 6-7. Per-record triggering on a streaming engine

As before, new results are materialized every time a new record is encountered. Ren‐
dered in a streams and tables type of view, this diagram would look like Figure 6-8.
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Figure 6-8. Streams and tables view of windowed summation with per-record triggering
on a streaming engine

An interesting side effect of using per-record triggers is how it somewhat masks the
effect of data being brought to rest, given that they are then immediately put back
into motion again by the trigger. Even so, the aggregate artifact from the grouping
remains at rest in the table, as the ungrouped stream of values flows away from it.

To get a better sense of the at-rest/in-motion relationship, let’s skip forward in our
triggering examples to the basic watermark completeness streaming example from
Chapter 2, which simply emitted results when complete (due to the watermark pass‐
ing the end of the window). The code and event-time/processing-time visualization
for that example are presented in Example 6-4 (note that I’m only showing the heu‐
ristic watermark version here, for brevity and ease of comparison) and Figure 6-9
illustrates the results.

Example 6-4. Watermark completeness trigger

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()))
  .apply(Sum.integersPerKey());
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Figure 6-9. Event-time/processing-time view of windowed summation with a heuristic
watermark on a streaming engine

Thanks to the trigger specified in Example 6-4, which declares that windows should
be materialized when the watermark passes them, the system is able to emit results in
a progressive fashion as the otherwise unbounded input to the pipeline becomes
more and more complete. Looking at the streams and tables version in Figure 6-10, it
looks as you might expect.
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Figure 6-10. Streams and tables view of windowed summation with a heuristic water‐
mark on a streaming engine

In this version, you can see very clearly the ungrouping effect triggers have on the
state table. As the watermark passes the end of each window, it pulls the result for that
window out of the table and sets it in motion downstream, separate from all the other
values in the table. We of course still have the late data issue from before, which we
can solve again with the more comprehensive trigger shown in Example 6-5.

Example 6-5. Early, on-time, and late firings via the early/on-time/late API

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1))))
  .apply(Sum.integersPerKey());

The event-time/processing-time diagram looks like Figure 6-11.
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Figure 6-11. Event-time/processing-time view of windowed summation on a streaming
engine with early/on-time/late trigger

Whereas the streams and tables version looks like that shown in Figure 6-12.
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Figure 6-12. Streams and tables view of windowed summation on a streaming engine
with early/on-time/late trigger

This version makes even more clear the ungrouping effect triggers have, rendering an
evolving view of the various independent pieces of the table into a stream, as dictated
by the triggers specified in Example 6-6.

The semantics of all the concrete triggers we’ve talked about so far (event-time,
processing-time, count, composites like early/on-time/late, etc.) are just as you would
expect when viewed from the streams/tables perspective, so they aren’t worth further
discussion. However, we haven’t yet spent much time talking about what triggers look
like in a classic batch processing scenario. Now that we understand what the underly‐
ing streams/tables topology of a batch pipeline looks like, this is worth touching upon
briefly.

At the end of the day, there’s really only one type of trigger used in classic batch sce‐
narios: one that fires when the input is complete. For the initial MapRead stage of the
MapReduce job we looked at earlier, that trigger would conceptually fire for all of the
data in the input table as soon as the pipeline launched, given that the input for a

What, Where, When, and How in a Streams and Tables World | 163

http://streamingbook.net/fig/6-12
http://streamingbook.net/fig/6-12


11 Note that this high-level conceptual view of how things work in batch pipelines belies the complexity of effi‐
ciently triggering an entire table of data at once, particularly when that table is sizeable enough to require a
plurality of machines to process. The SplittableDoFn API recently added to Beam provides some insight into
the mechanics involved.

batch job is assumed to be complete from the get go.11 That input source table would
thus be converted into a stream of individual elements, after which the Map stage
could begin processing them.

For table-to-stream conversions in the middle of the pipeline, such as the Reduce‐
Read stage in our example, the same type of trigger is used. In this case, however, the
trigger must actually wait for all of the data in the table to be complete (i.e., what is
more commonly referred to as all of the data being written to the shuffle), much as
our example batch pipelines in Figures 6-4 and 6-6 waited for the end of the input
before emitting their final results.

Given that classic batch processing effectively always makes use of the input-data-
complete trigger, you might ask what any custom triggers specified by the author of
the pipeline might mean in a batch scenario. The answer here really is: it depends.
There are two aspects worth discussing:

Trigger guarantees (or lack thereof)
Most existing batch processing systems have been designed with this lock-step
read-process-group-write-repeat sequence in mind. In such circumstances, it’s
difficult to provide any sort of finer-grained trigger abilities, because the only
place they would manifest any sort of change would be at the final shuffle stage of
the pipeline. This doesn’t mean that the triggers specified by the user aren’t hon‐
ored, however; the semantics of triggers are such that it’s possible to resort to
lower common denominators when appropriate.

For example, an AfterWatermark trigger is meant to trigger after the watermark
passes the end of a window. It makes no guarantees how far beyond the end of
the window the watermark may be when it fires. Similarly, an AfterCount(N)
trigger only guarantees that at least N elements have been processed before trig‐
gering; N might very well be all of the elements in the input set.

Note that this clever wording of trigger names wasn’t chosen simply to accom‐
modate classic batch systems within the model; it’s a very necessary part of the
model itself, given the natural asynchronicity and nondeterminism of triggering.
Even in a finely tuned, low-latency, true-streaming system, it’s essentially impos‐
sible to guarantee that an AfterWatermark trigger will fire while the watermark is
precisely at the end of any given window, except perhaps under the most
extremely limited circumstances (e.g., a single machine processing all of the data
for the pipeline with a relatively modest load). And even if you could guarantee
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12 And yes, if you blend batch and streaming together you get Beam, which is where that name came from origi‐
nally. For reals.

13 This is why you should always use an Oxford comma.

it, what really would be the point? Triggers provide a means of controlling the
flow of data from a table into a stream, nothing more.

The blending of batch and streaming
Given what we’ve learned in this writeup, it should be clear that the main seman‐
tic difference between batch and streaming systems is the ability to trigger tables
incrementally. But even that isn’t really a semantic difference, but more of a
latency/throughput trade-off (because batch systems typically give you higher
throughput at the cost of higher latency of results).

This goes back to something I said in “Batch and Streaming Efficiency Differ‐
ences” on page 7: there’s really not that much difference between batch and
streaming systems today except for an efficiency delta (in favor of batch) and a
natural ability to deal with unbounded data (in favor of streaming). I argued then
that much of that efficiency delta comes from the combination of larger bundle
sizes (an explicit compromise of latency in favor of throughput) and more effi‐
cient shuffle implementations (i.e., stream → table → stream conversions). From
that perspective, it should be possible to provide a system that seamlessly integra‐
tes the best of both worlds: one which provides the ability to handle unbounded
data naturally but can also balance the tensions between latency, throughput, and
cost across a broad spectrum of use cases by transparently tuning the bundle
sizes, shuffle implementations, and other such implementation details under the
covers.

This is precisely what Apache Beam already does at the API level.12 The argument
being made here is that there’s room for unification at the execution-engine level,
as well. In a world like that, batch and streaming will no longer be a thing, and
we’ll be able to say goodbye to both batch and streaming as independent concepts
once and for all. We’ll just have general data processing systems that combine the
best ideas from both branches in the family tree to provide an optimal experience
for the specific use case at hand. Some day.

At this point, we can stick a fork in the trigger section. It’s done. We have only one
more brief stop on our way to having a holistic view of the relationship between the
Beam Model and streams-and-tables theory: accumulation.

How: Accumulation
In Chapter 2, we learned that the three accumulation modes (discarding, accumulat‐
ing, accumulating and retracting13) tell us how refinements of results relate when a
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14 Note that in the case of merging windows, in addition to merging the current values for the two windows to
yield a merged current value, the previous values for those two windows would need to be merged, as well, to
allow for the later calculation of a merged delta come triggering time.

window is triggered multiple times over the course of its life. Fortunately, the rela‐
tionship to streams and tables here is pretty straightforward:

• Discarding mode requires the system to either throw away the previous value for
the window when triggering or keep around a copy of the previous value and
compute the delta the next time the window triggers.14 (This mode might have
better been called Delta mode.)

• Accumulating mode requires no additional work; the current value for the win‐
dow in the table at triggering time is what is emitted. (This mode might have bet‐
ter been called Value mode.)

• Accumulating and retracting mode requires keeping around copies of all previ‐
ously triggered (but not yet retracted) values for the window. This list of previous
values can grow quite large in the case of merging windows like sessions, but is
vital to cleanly reverting the effects of those previous trigger firings in cases
where the new value cannot simply be used to overwrite a previous value. (This
mode might have better been called Value and Retractions mode.)

The streams-and-tables visualizations of accumulation modes add little additional
insight into their semantics, so we won’t investigate them here.

A Holistic View of Streams and Tables in the Beam Model
Having addressed the four questions, we can now take a holistic view of streams and
tables in a Beam Model pipeline. Let’s take our running example (the team scores cal‐
culation pipeline) and see what its structure looks like at the streams-and-table level.
The full code for the pipeline might look something like Example 6-6 (repeating
Example 6-5).

Example 6-6. Our full score-parsing pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1))))
  .apply(Sum.integersPerKey());
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Breaking that apart into stages separated by the intermediate PCollection types
(where I’ve used more semantic “type” names like Team and User Score than real
types for clarity of what is happening at each stage), you would arrive at something
like that depicted in Figure 6-13.

Figure 6-13. Logical phases of a team score summation pipeline, with intermediate PCol‐
lection types

When you actually run this pipeline, it first goes through an optimizer, whose job is
to convert this logical execution plan into an optimized, physical execution plan.
Each execution engine is different, so actual physical execution plans will vary
between runners. But a believable strawperson plan might look something like
Figure 6-14.
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Figure 6-14. Theoretical physical phases of a team score summation pipeline, with inter‐
mediate PCollection types
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There’s a lot going on here, so let’s walk through all of it. There are three main differ‐
ences between Figures 6-13 and 6-14 that we’ll be discussing:

Logical versus physical operations
As part of building a physical execution plan, the underlying engine must convert
the logical operations provided by the user into a sequence of primitive opera‐
tions supported by the engine. In some cases, those physical equivalents look
essentially the same (e.g., Parse), and in others, they’re very different.

Physical stages and fusion
It’s often inefficient to execute each logical phase as a fully independent physical
stage in the pipeline (with attendant serialization, network communication, and
deserialization overhead between each). As a result, the optimizer will typically
try to fuse as many physical operations as possible into a single physical stage.

Keys, values, windows, and partitioning
To make it more evident what each physical operation is doing, I’ve annotated
the intermediate PCollections with the type of key, value, window, and data par‐
titioning in effect at each point.

Let’s now walk through each logical operation in detail and see what it translated to in
the physical plan and how they all relate to streams and tables:

ReadFromSource

Other than being fused with the physical operation immediately following it
(Parse), not much interesting happens in translation for ReadFromSource. As far
as the characteristics of our data at this point, because the read is essentially con‐
suming raw input bytes, we basically have raw strings with no keys, no windows,
and no (or random) partitioning. The original data source can be either a table
(e.g., a Cassandra table) or a stream (e.g., RabbitMQ) or something a little like
both (e.g., Kafka in log compaction mode). But regardless, the end result of read‐
ing from the input source is a stream.

Parse

The logical Parse operation also translates in a relatively straightforward manner
to the physical version. Parse takes the raw strings and extracts a key (team ID)
and value (user score) from them. It’s a nongrouping operation, and thus the
stream it consumed remains a stream on the other side.

Window+Trigger

This logical operation is spread out across a number of distinct physical opera‐
tions. The first is window assignment, in which each element is assigned to a set
of windows. That happens immediately in the AssignWindows operation, which is
a nongrouping operation that simply annotates each element in the stream with
the window(s) it now belongs to, yielding another stream on the other side.
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The second is window merging, which we learned earlier in the chapter happens
as part of the grouping operation. As such, it gets sunk down into the GroupMer
geAndCombine operation later in the pipeline. We discuss that operation when we
talk about the logical Sum operation next.

And finally, there’s triggering. Triggering happens after grouping and is the way
that we’ll convert the table created by grouping back into a stream. As such, it
gets sunk into its own operation, which follows GroupMergeAndCombine.

Sum

Summation is really a composite operation, consisting of a couple pieces: parti‐
tioning and aggregation. Partitioning is a nongrouping operation that redirects
the elements in the stream in such a way that elements with the same keys end up
going to the same physical machine. Another word for partitioning is shuffling,
though that term is a bit overloaded because “Shuffle” in the MapReduce sense is
often used to mean both partitioning and grouping (and sorting, for that matter).
Regardless, partitioning physically alters the stream in a way that makes it group‐
able but doesn’t do anything to actually bring the data to rest. As a result, it’s a
nongrouping operation that yields another stream on the other side.

After partitioning comes grouping. Grouping itself is a composite operation.
First comes grouping by key (enabled by the previous partition-by-key opera‐
tion). Next comes window merging and grouping by window, as we described
earlier. And finally, because summation is implemented as a CombineFn in Beam
(essentially an incremental aggregation operation), there’s combining, where
individual elements are summed together as they arrive. The specific details are
not terribly important for our purposes here. What is important is the fact that,
since this is (obviously) a grouping operation, our chain of streams now comes to
rest in a table containing the summed team totals as they evolve over time.

WriteToSink

Lastly, we have the write operation, which takes the stream yielded by triggering
(which was sunk below the GroupMergeAndCombine operation, as you might
recall) and writes it out to our output data sink. That data itself can be either a
table or stream. If it’s a table, WriteToSink will need to perform some sort of
grouping operation as part of writing the data into the table. If it’s a stream, no
grouping will be necessary (though partitioning might still be desired; for exam‐
ple, when writing into something like Kafka).

The big takeaway here is not so much the precise details of everything that’s going on
in the physical plan, but more the overall relationship of the Beam Model to the
world of streams and tables. We saw three types of operations: nongrouping (e.g.,
Parse), grouping (e.g., GroupMergeAndCombine), and ungrouping (e.g., Trigger). The
nongrouping operations always consumed streams and produced streams on the
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other side. The grouping operations always consumed streams and yielded tables.
And the ungrouping operations consumed tables and yielded streams. These insights,
along with everything else we’ve learned along the way, are enough for us to formu‐
late a more general theory about the relationship of the Beam Model to streams and
tables.

A General Theory of Stream and Table Relativity
Having surveyed how stream processing, batch processing, the four what/where/
when/how questions, and the Beam Model as a whole relate to stream and table
theory, let’s now attempt to articulate a more general definition of stream and table
relativity.

A general theory of stream and table relativity:

• Data processing pipelines (both batch and streaming) consist of tables, streams,
and operations upon those tables and streams.

• Tables are data at rest, and act as a container for data to accumulate and be
observed over time.

• Streams are data in motion, and encode a discretized view of the evolution of a
table over time.

• Operations act upon a stream or table and yield a new stream or table. They are
categorized as follows:
— stream → stream: Nongrouping (element-wise) operations

Applying nongrouping operations to a stream alters the data in the stream
while leaving them in motion, yielding a new stream with possibly different
cardinality.

— stream → table: Grouping operations
Grouping data within a stream brings those data to rest, yielding a table that
evolves over time.
— Windowing incorporates the dimension of event time into such groupings.
— Merging windows dynamically combine over time, allowing them to

reshape themselves in response to the data observed and dictating that key
remain the unit of atomicity/parallelization, with window being a child
component of grouping within that key.

— table → stream: Ungrouping (triggering) operations
Triggering data within a table ungroups them into motion, yielding a stream
that captures a view of the table’s evolution over time.
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— Watermarks provide a notion of input completeness relative to event time,
which is a useful reference point when triggering event-timestamped data,
particularly data grouped into event-time windows from unbounded
streams.

— The accumulation mode for the trigger determines the nature of the
stream, dictating whether it contains deltas or values, and whether retrac‐
tions for previous deltas/values are provided.

— table → table: (none)
There are no operations that consume a table and yield a table, because it’s not
possible for data to go from rest and back to rest without being put into
motion. As a result, all modifications to a table are via conversion to a stream
and back again.

What I love about these rules is that they just make sense. They have a very natural
and intuitive feeling about them, and as a result they make it so much easier to
understand how data flow (or don’t) through a sequence of operations. They codify
the fact that data exist in one of two constitutions at any given time (streams or
tables), and they provide simple rules for reasoning about the transitions between
those states. They demystify windowing by showing how it’s just a slight modification
of a thing everyone already innately understands: grouping. They highlight why
grouping operations in general are always such a sticking point for streaming
(because they bring data in streams to rest as tables) but also make it very clear what
sorts of operations are needed to get things unstuck (triggers; i.e., ungrouping opera‐
tions). And they underscore just how unified batch and stream processing really are,
at a conceptual level.

When I set out to write this chapter, I wasn’t entirely sure what I was going to end up
with, but the end result was much more satisfying than I’d imagined it might be. In
the chapters to come, we use this theory of stream and table relativity again and again
to help guide our analyses. And every time, its application will bring clarity and
insight that would otherwise have been much harder to gain. Streams and tables are
the best.

Summary
In this chapter, we first established the basics of stream and table theory. We first
defined streams and tables relatively:

streams → tables
The aggregation of a stream of updates over time yields a table.

tables → streams
The observation of changes to a table over time yields a stream.
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We next defined them independently:

• Tables are data at rest.
• Streams are data in motion.

We then assessed the classic MapReduce model of batch computation from a streams
and tables perspective and came to the conclusion that the following four steps
describe batch processing from that perspective:

1. Tables are read in their entirety to become streams.
2. Streams are processed into new streams until a grouping operation is hit.
3. Grouping turns the stream into a table.
4. Steps 1 through 3 repeat until you run out of operations in the pipeline.

From this analysis, we were able to see that streams are just as much a part of batch
processing as they are stream processing, and also that the idea of data being a stream
is an orthogonal one from whether the data in question are bounded or unbounded.

Next, we spent a good deal of time considering the relationship between streams and
tables and the robust, out-of-order stream processing semantics afforded by the
Beam Model, ultimately arriving at the general theory of stream and table relativity
we enumerated in the previous section. In addition to the basic definitions of streams
and tables, the key insight in that theory is that there are four (really, just three) types
of operations in a data processing pipeline:

stream → stream
Nongrouping (element-wise) operations

stream → table
Grouping operations

table → stream
Ungrouping (triggering) operations

table → table
(nonexistent)

By classifying operations in this way, it becomes trivial to understand how data flow
through (and linger within) a given pipeline over time.

Finally, and perhaps most important of all, we learned this: when you look at things
from the streams-and-tables point of view, it becomes abundantly clear how batch
and streaming really are just the same thing conceptually. Bounded or unbounded, it
doesn’t matter. It’s streams and tables from top to bottom.

</bad-physics-jokes>
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CHAPTER 7

The Practicalities of Persistent State

Why do people write books? When you factor out the joy of creativity, a certain fond‐
ness for grammar and punctuation, and perhaps the occasional touch of narcissism,
you’re basically left with the desire to capture an otherwise ephemeral idea so that it
can be revisited in the future. At a very high level, I’ve just motivated and explained
persistent state in data processing pipelines.

Persistent state is, quite literally, the tables we just talked about in Chapter 6, with the
additional requirement that the tables be robustly stored in a media relatively
immune to loss. Stored on local disk counts, as long as you don’t ask your Site Relia‐
bility Engineers. Stored on a replicated set of disks is better. Stored on a replicated set
of disks in distinct physical locations is better still. Stored in memory once definitely
doesn’t count. Stored in replicated memory across multiple machines with UPS
power backup and generators onsite maybe does. You get the picture.

In this chapter, our objective is to do the following:

• Motivate the need for persistent state within pipelines
• Look at two forms of implicit state often found within pipelines
• Consider a real-world use case (advertising conversion attribution) that lends

itself poorly to implicit state, use that to motivate the salient features of a general,
explicit form of persistent state management

• Explore a concrete manifestation of one such state API, as found in Apache Beam

Motivation
To begin, let’s more precisely motivate persistent state. We know from Chapter 6 that
grouping is what gives us tables. And the core of what I postulated at the beginning of
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this chapter was correct: the point of persisting these tables is to capture the other‐
wise ephemeral data contained therein. But why is that necessary?

The Inevitability of Failure
The answer to that question is most clearly seen in the case of processing unbounded
input data, so we’ll start there. The main issue is that pipelines processing unbounded
data are effectively intended to run forever. But running forever is a far more
demanding Service-Level Objective than can be achieved by the environments in
which these pipelines typically execute. Long-running pipelines will inevitably see
interruptions thanks to machine failures, planned maintenance, code changes, and
the occasional misconfigured command that takes down an entire cluster of produc‐
tion pipelines. To ensure that they can resume where they left off when these kinds of
things happen, long-running pipelines need some sort of durable recollection of
where they were before the interruption. That’s where persistent state comes in.

Let’s expand on that idea a bit beyond unbounded data. Is this only relevant in the
unbounded case? Do batch pipelines use persistent state, and why or why not? As
with nearly every other batch-versus-streaming question we’ve come across, the
answer has less to do with the nature of batch and streaming systems themselves
(perhaps unsurprising given what we learned in Chapter 6), and more to do with the
types of datasets they historically have been used to process.

Bounded datasets by nature are finite in size. As a result, systems that process boun‐
ded data (historically batch systems) have been tailored to that use case. They often
assume that the input can be reprocessed in its entirety upon failure. In other words,
if some piece of the processing pipeline fails and if the input data are still available, we
can simply restart the appropriate piece of the processing pipeline and let it read the
same input again. This is called reprocessing the input.

They might also assume failures are infrequent and thus optimize for the common
case by persisting as little as possible, accepting the extra cost of recomputation upon
failure. For particularly expensive, multistage pipelines, there might be some sort of
per-stage global checkpointing that allows for more efficiently resuming execution
(typically as part of a shuffle), but it’s not a strict requirement and might not be
present in many systems.

Unbounded datasets, on the other hand, must be assumed to have infinite size. As a
result, systems that process unbounded data (historically streaming systems) have
been built to match. They never assume that all of the data will be available for
reprocessing, only some known subset of it. To provide at-least-once or exactly-once
semantics, any data that are no longer available for reprocessing must be accounted
for in durable checkpoints. And if at-most-once is all you’re going for, you don’t need
checkpointing.
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1 For some definition of “forever,” typically at least “until we successfully complete execution of our batch pipe‐
line and no longer require the inputs.”

At the end of the day, there’s nothing batch- or streaming-specific about persistent
state. State can be useful in both circumstances. It just happens to be critical when
processing unbounded data, so you’ll find that streaming systems typically provide
more sophisticated support for persistent state.

Correctness and Efficiency
Given the inevitability of failures and the need to cope with them, persistent state can
be seen as providing two things:

• A basis for correctness in light of ephemeral inputs. When processing bounded
data, it’s often safe to assume inputs stay around forever;1 with unbounded data,
this assumption typically falls short of reality. Persistent state allows you to keep
around the intermediate bits of information necessary to allow processing to
continue when the inevitable happens, even after your input source has moved
on and forgotten about records it gave you previously.

• A way to minimize work duplicated and data persisted as part of coping with fail‐
ures. Regardless of whether your inputs are ephemeral, when your pipeline expe‐
riences a machine failure, any work on the failed machine that wasn’t
checkpointed somewhere must be redone. Depending upon the nature of the
pipeline and its inputs, this can be costly in two dimensions: the amount of work
performed during reprocessing, and the amount of input data stored to support
reprocessing.
Minimizing duplicated work is relatively straightforward. By checkpointing par‐
tial progress within a pipeline (both the intermediate results computed as well as
the current location within the input as of checkpointing time), it’s possible to
greatly reduce the amount of work repeated when failures occur because none of
the operations that came before the checkpoint need to be replayed from durable
inputs. Most commonly, this involves data at rest (i.e., tables), which is why we
typically refer to persistent state in the context of tables and grouping. But there
are persistent forms of streams (e.g., Kafka and its relatives) that serve this func‐
tion, as well.
Minimizing the amount of data persisted is a larger discussion, one that will con‐
sume a sizeable chunk of this chapter. For now, at least, suffice it to say that, for
many real-world use cases, rather than remembering all of the raw inputs within
a checkpoint for any given stage in the pipeline, it’s often practical to instead
remember some partial, intermediate form of the ongoing calculation that con‐
sumes less space than all of the original inputs (for example, when computing a
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mean, the total sum and the count of values seen are much more compact than
the complete list of values contributing to that sum and count). Not only can
checkpointing these intermediate data drastically reduce the amount of data that
you need to remember at any given point in the pipeline, it also commensurately
reduces the amount of reprocessing needed for that specific stage to recover from
a failure.
Furthermore, by intelligently garbage-collecting those bits of persistent state that
are no longer needed (i.e., state for records which are known to have been pro‐
cessed completely by the pipeline already), the amount of data stored in persis‐
tent state for a given pipeline can be kept to a manageable size over time, even
when the inputs are technically infinite. This is how pipelines processing
unbounded data can continue to run effectively forever, while still providing
strong consistency guarantees but without a need for complete recall of the origi‐
nal inputs to the pipeline.

At the end of the day, persistent state is really just a means of providing correctness
and efficient fault tolerance in data processing pipelines. The amount of support
needed in either of those dimensions depends greatly upon the natures of the inputs
to the pipeline and the operations being performed. Unbounded inputs tend to
require more correctness support than bounded inputs. Computationally expensive
operations tend to demand more efficiency support than computationally cheap
operations.

Implicit State
Let’s now begin to talk about the practicalities of persistent state. In most cases, this
essentially boils down to finding the right balance between always persisting every‐
thing (good for consistency, bad for efficiency) and never persisting anything (bad for
consistency, good for efficiency). We’ll begin at the always-persisting-everything end
of the spectrum, and work our way in the other direction, looking at ways of trading
off complexity of implementation for efficiency without compromising consistency
(because compromising consistency by never persisting anything is the easy way out
for cases in which consistency doesn’t matter, and a nonoption, otherwise). As before,
we use the Apache Beam APIs to concretely ground our discussions, but the concepts
we discuss are applicable across most systems in existence today.

Also, because there isn’t much you can do to reduce the size of raw inputs, short of
perhaps compressing the data, our discussion centers around the ways data are per‐
sisted within the intermediate state tables created as part of grouping operations
within a pipeline. The inherent nature of grouping multiple records together into
some sort of composite will provide us with opportunities to eke out gains in effi‐
ciency at the cost of implementation complexity.
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2 Recall that Beam doesn’t currently expose these state tables directly; you must trigger them back into a stream
to observe their contents as a new PCollection.

Raw Grouping
The first step in our exploration, at the always-persisting-everything end of the spec‐
trum, is the most straightforward implementation of grouping within a pipeline: raw
grouping of the inputs. The grouping operation in this case is typically akin to list
appending: any time a new element arrives in the group, it’s appended to the list of
elements seen for that group.

In Beam, this is exactly what you get when you apply a GroupByKey transform to a
PCollection. The stream representing that PCollection in motion is grouped by key
to yield a table at rest containing the records from the stream,2 grouped together as
lists of values with identical keys. This shows up in the PTransform signature for
GroupByKey, which declares the input as a PCollection of K/V pairs, and the output
as a collection of K/Iterable<V> pairs:

class GroupByKey<K, V> extends PTransform<
    PCollection<KV<K, V>>, PCollection<KV<K, Iterable<V>>>>>

Every time a trigger fires for a key+window in that table, it will emit a new pane for
that key+window, with the value being the Iterable<V> we see in the preceding sig‐
nature.

Let’s look at an example in action in Example 7-1. We’ll take the summation pipeline
from Example 6-5 (the one with fixed windowing and early/on-time/late triggers)
and convert it to use raw grouping instead of incremental combination (which we
discuss a little later in this chapter). We do this by first applying a GroupByKey trans‐
formation to the parsed user/score key/value pairs. The GroupByKey operation per‐
forms raw grouping, yielding a PCollection with key/value pairs of users and
Iterable<Integer> groups of scores. We then sum up all of the Integers in each
iterable by using a simple MapElements lambda that converts the Iterable<Integer>
into an IntStream<Integer> and calls sum on it.

Example 7-1. Early, on-time, and late firings via the early/on-time/late API

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> groupedScores = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1))))
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  .apply(GroupBy.<String, Integer>create());
PCollection<KV<Team, Integer>> totals = input
  .apply(MapElements.via((KV<String, Iterable<Integer>> kv) ->
    StreamSupport.intStream(
      kv.getValue().spliterator(), false).sum()));

Looking at this pipeline in action, we would see something like that depicted in
Figure 7-1.

Figure 7-1. Summation via raw grouping of inputs with windowing and early/on-time/
late triggering. The raw inputs are grouped together and stored in the table via the
GroupByKey transformation. After being triggered, the MapElements lambda sums the
raw inputs within a single pane together to yield per-team scores.

Comparing this to Figure 6-10 (which was using incremental combining, discussed
shortly), it’s clear to see this is a lot worse. First, we’re storing a lot more data: instead
of a single integer per window, we now store all the inputs for that window. Second, if
we have multiple trigger firings, we’re duplicating effort by re-summing inputs we
already added together for previous trigger firings. And finally, if the grouping opera‐
tion is the point at which we checkpoint our state to persistent storage, upon machine
failure we again must recompute the sums for any retriggerings of the table. That’s a
lot of duplicated data and computation. Far better would be to incrementally com‐
pute and checkpoint the actual sums, which is an example of incremental combining.
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Incremental Combining
The first step in our journey of trading implementation complexity for efficiency is
incremental combining. This concept is manifested in the Beam API via the
CombineFn class. In a nutshell, incremental combining is a form of automatic state
built upon a user-defined associative and commutative combining operator (if you’re
not sure what I mean by these two terms, I define them more precisely in a moment).
Though not strictly necessary for the discussion that follows, the important parts of
the CombineFn API look like Example 7-2.

Example 7-2. Abbreviated CombineFn API from Apache Beam

class CombineFn<InputT, AccumT, OutputT> {
    // Returns an accumulator representing the empty value.
    AccumT createAccumulator();

    // Adds the given input value into the given accumulator
    AccumT addInput(AccumT accumulator, InputT input);

    // Merges the given accumulators into a new, combined accumulator
    AccumT mergeAccumulators(Iterable<AccumT> accumulators);

    // Returns the output value for the given accumulator
    OutputT extractOutput(AccumT accumulator);
}

A CombineFn accepts inputs of type InputT, which can be combined together into
partial aggregates called accumulators, of type AccumT. These accumulators them‐
selves can also be combined together into new accumulators. And finally, an accumu‐
lator can be transformed into an output value of type OutputT. For something like an
average, the inputs might be integers, the accumulators pairs of integers (i.e.,
Pair<sum of inputs, count of inputs>), and the output a single floating-point
value representing the mean value of the combined inputs.

But what does all this structure buy us? Conceptually, the basic idea with incremental 
combining is that many types of aggregations (sum, mean, etc.) exhibit the following
properties:

• Incremental aggregations possess an intermediate form that captures the partial
progress of combining a set of N inputs more compactly than the full list of those
inputs themselves (i.e., the AccumT type in CombineFn). As discussed earlier, for
mean, this is a sum/count pair. Basic summation is even simpler, with a single
number as its accumulator. A histogram would have a relatively complex accu‐
mulator composed of buckets, where each bucket contains a count for the num‐
ber of values seen within some specific range. In all three cases, however, the
amount of space consumed by an accumulator that represents the aggregation of
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3 Or, as my colleague Kenn Knowles points out, if you take the definition as being commutativity across sets,
the three-parameter version of commutativity is actually sufficient to also imply associativity: COMBINE(a, b,
c) == COMBINE(a, c, b) == COMBINE(b, a, c) == COMBINE(b, c, a) == COMBINE(c, a, b) == COM

BINE(c, b, a). Math is fun.

N elements remains significantly smaller than the amount of space consumed by
the original N elements themselves, particularly as the size of N grows.

• Incremental aggregations are indifferent to ordering across two dimensions:
— Individual elements, meaning:

COMBINE(a, b) == COMBINE(b, a)

— Groupings of elements, meaning:
COMBINE(COMBINE(a, b), c) == COMBINE(a, COMBINE(b, c))

These properties are known as commutativity and associativity, respectively. In
concert,3 they effectively mean that we are free to combine elements and partial
aggregates in any arbitrary order and with any arbitrary subgrouping. This allows
us to optimize the aggregation in two ways:

Incrementalization
Because the order of individual inputs doesn’t matter, we don’t need to buffer
all of the inputs ahead of time and then process them in some strict order
(e.g., in order of event time; note, however, that this remains independent of
shuffling elements by event time into proper event-time windows before
aggregating); we can simply combine them one-by-one as they arrive. This
not only greatly reduces the amount of data that must be buffered (thanks to
the first property of our operation, which stated the intermediate form was a
more compact representation of partial aggregation than the raw inputs
themselves), but also spreads the computation load more evenly over time
(versus aggregating a burst of inputs all at once after the full input set has
been buffered).

Parallelization
Because the order in which partial subgroups of inputs are combined doesn’t
matter, we’re free to arbitrarily distribute the computation of those sub‐
groups. More specifically, we’re free to spread the computation of those sub‐
groups across a plurality of machines. This optimization is at the heart of
MapReduce’s Combiners (the genesis of Beam’s CombineFn).
MapReduce’s Combiner optimization is essential to solving the hot-key prob‐
lem, where some sort of grouping computation is performed on an input
stream that is too large to be reasonably processed by a single physical
machine. A canonical example is breaking down high-volume analytics data
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(e.g., web traffic to a popular website) across a relatively low number of
dimensions (e.g., by web browser family: Chrome, Firefox, Safari, etc.). For
websites with a particularly high volume of traffic, it’s often intractable to cal‐
culate stats for any single web browser family on a single machine, even if
that’s the only thing that machine is dedicated to doing; there’s simply too
much traffic to keep up with. But with an associative and commutative oper‐
ation like summation, it’s possible to spread the initial aggregation across
multiple machines, each of which computes a partial aggregate. The set of
partial aggregates generated by those machines (whose size is now many of
orders magnitude smaller than the original inputs) might then be further
combined together on a single machine to yield the final aggregate result.
As an aside, this ability to parallelize also yields one additional benefit: the
aggregation operation is naturally compatible with merging windows. When
two windows merge, their values must somehow be merged, as well. With
raw grouping, this means merging the two full lists of buffered values
together, which has a cost of O(N). But with a CombineFn, it’s a simple com‐
bination of two partial aggregates, typically an O(1) operation.

For the sake of completeness, consider again Example 6-5, shown in Example 7-3,
which implements a summation pipeline using incremental combination.

Example 7-3. Grouping and summation via incremental combination, as in
Example 6-5

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(
                 AfterWatermark()
                   .withEarlyFirings(AlignedDelay(ONE_MINUTE))
                   .withLateFirings(AfterCount(1))))
  .apply(Sum.integersPerKey());

When executed, we get what we saw in Figure 6-10 (shown here in Figure 7-2). Com‐
pared to Figure 7-1, this is clearly a big improvement, with much greater efficiency in
terms of amount of data stored and amount of computation performed.
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Figure 7-2. Grouping and summation via incremental combination. In this version,
incremental sums are computed and stored in the table rather than lists of inputs, which
must later be summed together independently.

By providing a more compact intermediate representation for a grouping operation,
and by relaxing requirements on ordering (both at the element and subgroup levels),
Beam’s CombineFn trades off a certain amount of implementation complexity in
exchange for increases in efficiency. In doing so, it provides a clean solution for the
hot-key problem and also plays nicely with the concept of merging windows.

One shortcoming, however, is that your grouping operation must fit within a rela‐
tively restricted structure. This is all well and good for sums, means, and so on, but
there are plenty of real-world use cases in which a more general approach, one which
allows precise control over trade-offs of complexity and efficiency, is needed. We’ll
look next at what such a general approach entails.

Generalized State
Though both of the implicit approaches we’ve looked at so far have their merits, they
each fall short in one dimension: flexibility. The raw grouping method requires you to
always buffer up the raw inputs to the grouping operation before processing the
group in whole, so there’s no way to partially process some of the data along the way;
it’s all or nothing. The incremental combining approach specifically allows for partial
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processing but with the restriction that the processing in question be commutative
and associative and happen as records arrive one-by-one.

If we want to support a more generalized approach to streaming persistent state, we
need something more flexible. Specifically, we need flexibility in three dimensions:

• Flexibility in data structures; that is, an ability to structure the data we write and
read in ways that are most appropriate and efficient for the task at hand. Raw
grouping essentially provides an appendable list, and incremental combination
essentially provides a single value that is always written and read in its entirety.
But there are myriad other ways in which we might want to structure our persis‐
tent data, each with different types of access patterns and associated costs: maps,
trees, graphs, sets, and so on. Supporting a variety of persistent data types is criti‐
cal for efficiency.
Beam supports flexibility in data types by allowing a single DoFn to declare multi‐
ple state fields, each of a specific type. In this way, logically independent pieces of
state (e.g., visits and impressions) can be stored separately, and semantically dif‐
ferent types of state (e.g., maps and lists) can be accessed in ways that are natural
given their types of access patterns.

• Flexibility in write and read granularity; that is, an ability to tailor the amount
and type of data written or read at any given time for optimal efficiency. What
this boils down to is the ability to write and read precisely the necessary amount
of data at any given point of time: no more, and no less (and in parallel as much
as possible).
This goes hand in hand with the previous point, given that dedicated data types
allow for focused types of access patterns (e.g., a set-membership operation that
can use something like a Bloom filter under the covers to greatly minimize the
amount of data read in certain circumstances). But it goes beyond it, as well; for
example, allowing multiple large reads to be dispatched in parallel (e.g., via
futures).
In Beam, flexibly granular writes and reads are enabled via datatype-specific APIs
that provide fine-grained access capabilities, combined with an asynchronous
I/O mechanism that allows for writes and reads to be batched together for effi‐
ciency.

• Flexibility in scheduling of processing; that is, an ability to bind the time at which
specific types of processing occur to the progress of time in either of the two time
domains we care about: event-time completeness and processing time. Triggers
provide a restricted set of flexibility here, with completeness triggers providing a
way to bind processing to the watermark passing the end of the window, and
repeated update triggers providing a way to bind processing to periodic progress
in the processing-time domain. But for certain use cases (e.g., certain types of
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4 And indeed, timers are the underlying feature used to implement most of the completeness and repeated
updated triggers we discussed in Chapter 2 as well as garbage collection based on allowed lateness.

joins, for which you don’t necessarily care about input completeness of the entire
window, just input completeness up to the event-time of a specific record in the
join), triggers are insufficiently flexible. Hence, our need for a more general solu‐
tion.
In Beam, flexible scheduling of processing is provided via timers.4 A timer is a
special type of state that binds a specific point in time in either supported time
domain (event time or processing time) with a method to be called when that
point in time is reached. In this way, specific bits of processing can be delayed
until a more appropriate time in the future.

The common thread among these three characteristics is flexibility. A specific subset
of use cases are served very well by the relatively inflexible approaches of raw group‐
ing or incremental combination. But when tackling anything outside their relatively
narrow domain of expertise, those options often fall short. When that happens, you
need the power and flexibility of a fully general-state API to let you tailor your uti‐
lization of persistent state optimally.

To think of it another way, raw grouping and incremental combination are relatively
high-level abstractions that enable the pithy expression of pipelines with (in the case
of combiners, at least) some good properties for automatic optimizations. But some‐
times you need to go low level to get the behavior or performance you need. That’s
what generalized state lets you do.

Case Study: Conversion Attribution
To see this in action, let’s now look at a use case that is poorly served by both raw
grouping and incremental combination: conversion attribution. This is a technique
that sees widespread use across the advertising world to provide concrete feedback on
the effectiveness of advertisements. Though relatively easy to understand, its some‐
what diverse set of requirements doesn’t fit nicely into either of the two types of
implicit state we’ve considered so far.

Imagine that you have an analytics pipeline that monitors traffic to a website in con‐
junction with advertisement impressions that directed traffic to that site. The goal is
to provide attribution of specific advertisements shown to a user toward the achieve‐
ment of some goal on the site itself (which often might lie many steps beyond the ini‐
tial advertisement landing page), such as signing up for a mailing list or purchasing
an item.
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Figure 7-3 shows an example set of website visits, goals, and ad impressions, with one
attributed conversion highlighted in red. Building up conversion attributions over an
unbounded, out-of-order stream of data requires keeping track of impressions, visits,
and goals seen so far. That’s where persistent state comes in.

Figure 7-3. Example conversion attribution

In this diagram, a user’s traversal of various pages on a website is represented as a
graph. Impressions are advertisements that were shown to the user and clicked,
resulting in the user visiting a page on the site. Visits represent a single page viewed
on the site. Goals are specific visited pages that have been identified as a desired desti‐
nation for users (e.g., completing a purchase, or signing up for a mailing list). The
goal of conversion attribution is to identify ad impressions that resulted in the user
achieving some goal on the site. In this figure, there is one such conversion highligh‐
ted in red. Note that events might arrive out of order, hence the event-time axis in the
diagram and the watermark reference point indicating the time up to which input is
believed to be correct.

A lot goes into building a robust, large-scale attribution pipeline, but there are a few
aspects worth calling out explicitly. Any such pipeline we attempt to build must do
the following:
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5 Thanks to the nature of web browsing, the visit trails we’ll be analyzing are trees of URLs linked by HTTP
referrer fields. In reality, they would end up being directed graphs, but for the sake of simplicity, we’ll assume
each page on our website has incoming links from exactly one other referring page on the site, thus yielding a
simpler tree structure. Generalizing to graphs is a natural extension of the tree-based implementation, and
only further drives home the points being made.

Handle out-of-order data
Because the website traffic and ad impression data come from separate systems,
both of which are implemented as distributed collection services themselves, the
data might arrive wildly out of order. Thus, our pipeline must be resilient to such
disorder.

Handle high volumes of data
Not only must we assume that this pipeline will be processing data for a large
number of independent users, but depending upon the volume of a given ad
campaign and the popularity of a given website, we might need to store a large
amount of impression and/or traffic data as we attempt to build evidence of attri‐
bution. For example, it would not be unheard of to store 90 days worth of visit,
impression, and goal tree5 data per user to allow us to build up attributions that
span multiple months’ worth of activity.

Protect against spam
Given that money is involved, correctness is paramount. Not only must we
ensure that visits and impressions are accounted for exactly once (something
we’ll get more or less for free by simply using an execution engine that supports
effectively-once processing), but we must also guard our advertisers against spam
attacks that attempt to charge advertisers unfairly. For example, a single ad that is
clicked multiple times in a row by the same user will arrive as multiple impres‐
sions, but as long as those clicks occur within a certain amount of time of one
another (e.g., within the same day), they must be attributed only once. In other
words, even if the system guarantees we’ll see every individual impression once,
we must also perform some manual deduplication across impressions that are
technically different events but which our business logic dictates we interpret as
duplicates.

Optimize for performance
Above all, because of the potential scale of this pipeline, we must always keep an
eye toward optimizing the performance of our pipeline. Persistent state, because
of the inherent costs of writing to persistent storage, can often be the perfor‐
mance bottleneck in such a pipeline. As such, the flexibility characteristics we
discussed earlier will be critical in ensuring our design is as performant as
possible.
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Conversion Attribution with Apache Beam
Now that we understand the basic problem that we’re trying to solve and have some 
of the important requirements squarely in mind, let’s use Beam’s State and Timers
API to build a basic conversion attribution transformation. We’ll write this just like
we would any other DoFn in Beam, but we’ll make use of state and timer extensions
that allow us to write and read persistent state and timer fields. Those of you that
want to follow along in real code can find the full implementation on GitHub.

Note that, as with all grouping operations in Beam, usage of the State API is scoped to
the current key and window, with window lifetimes dictated by the specified allowed
lateness parameter; in this example, we’ll be operating within a single global window.
Parallelism is linearized per key, as with most DoFns. Also note that, for simplicity,
we’ll be eliding the manual garbage collection of visits and impressions falling outside
of our 90-day horizon that would be necessary to keep the persisted state from grow‐
ing forever.

To begin, let’s define a few POJO classes for visits, impressions, a visit/impression
union (used for joining), and completed attributions, as shown in Example 7-4.

Example 7-4. POJO definitions of Visit, Impression, VisitOrImpression, and Attribution
objects

@DefaultCoder(AvroCoder.class)
class Visit {
    @Nullable private String url;
    @Nullable private Instant timestamp;
    // The referring URL. Recall that we’ve constrained the problem in this
    // example to assume every page on our website has exactly one possible
    // referring URL, to allow us to solve the problem for simple trees
    // rather than more general DAGs.
    @Nullable private String referer;
    @Nullable private boolean isGoal;

    @SuppressWarnings("unused")
    public Visit() {
    }

    public Visit(String url, Instant timestamp, String referer,
                 boolean isGoal) {
 this.url = url;
 this.timestamp = timestamp;
 this.referer = referer;
 this.isGoal = isGoal;
    }

    public String url() { return url; }
    public Instant timestamp() { return timestamp; }
    public String referer() { return referer; }
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    public boolean isGoal() { return isGoal; }

    @Override
    public String toString() {
        return String.format("{ %s %s from:%s%s }", url, timestamp, referer,
                             isGoal ? " isGoal" : "");
    }
}

@DefaultCoder(AvroCoder.class)
class Impression {
    @Nullable private Long id;
    @Nullable private String sourceUrl;
    @Nullable private String targetUrl;
    @Nullable private Instant timestamp;

    public static String sourceAndTarget(String source, String target) { 
        return source + ":" + target;
    }

    @SuppressWarnings("unused")
    public Impression() {
    }

    public Impression(Long id, String sourceUrl, String targetUrl,
                      Instant timestamp) {
        this.id = id;
 this.sourceUrl = sourceUrl;
 this.targetUrl = targetUrl;
 this.timestamp = timestamp;
    }

    public Long id() { return id; }
    public String sourceUrl() { return sourceUrl; }
    public String targetUrl() { return targetUrl; }
    public String sourceAndTarget() {
        return sourceAndTarget(sourceUrl, targetUrl);
    }
    public Instant timestamp() { return timestamp; }

    @Override
    public String toString() {
 return String.format("{ %s source:%s target:%s %s }",
                             id, sourceUrl, targetUrl, timestamp);
    }
}

@DefaultCoder(AvroCoder.class)
class VisitOrImpression {
    @Nullable private Visit visit;
    @Nullable private Impression impression;
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    @SuppressWarnings("unused")
    public VisitOrImpression() {
    }

    public VisitOrImpression(Visit visit, Impression impression) {
 this.visit = visit;
 this.impression = impression;
    }

    public Visit visit() { return visit; }
    public Impression impression() { return impression; }
}

@DefaultCoder(AvroCoder.class)
class Attribution {
    @Nullable private Impression impression;
    @Nullable private List<Visit> trail;
    @Nullable private Visit goal;

    @SuppressWarnings("unused")
    public Attribution() {
    }

    public Attribution(Impression impression, List<Visit> trail, Visit goal) {
 this.impression = impression;
 this.trail = trail;
 this.goal = goal;
    }

    public Impression impression() { return impression; }
    public List<Visit> trail() { return trail; }
    public Visit goal() { return goal; }

    @Override
    public String toString() {
 StringBuilder builder = new StringBuilder();
 builder.append("imp=" + impression.id() + " " + impression.sourceUrl());
 for (Visit visit : trail) {
     builder.append(" → " + visit.url());
 }
 builder.append(" → " + goal.url());
 return builder.toString();
    }
}

We next define a Beam DoFn to consume a flattened collection of Visits and
Impressions, keyed by the user. In turn, it will yield a collection of Attributions. Its
signature looks like Example 7-5.
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Example 7-5. DoFn signature for our conversion attribution transformation

class AttributionFn extends DoFn<KV<String, VisitOrImpression>, Attribution>

Within that DoFn, we need to implement the following logic:

1. Store all visits in a map keyed by their URL so that we can easily look them up
when tracing visit trails backward from a goal.

2. Store all impressions in a map keyed by the URL they referred to, so we can iden‐
tify impressions that initiated a trail to a goal.

3. Any time we see a visit that happens to be a goal, set an event-time timer for the
timestamp of the goal. Associated with this timer will be a method that performs
goal attribution for the pending goal. This will ensure that attribution only hap‐
pens once the input leading up to the goal is complete.

4. Because Beam lacks support for a dynamic set of timers (currently all timers
must be declared at pipeline definition time, though each individual timer can be
set and reset for different points in time at runtime), we also need to keep track of
the timestamps for all of the goals we still need to attribute. This will allow us to
have a single attribution timer set for the minimum timestamp of all pending
goals. After we attribute the goal with the earliest timestamp, we set the timer
again with the timestamp of the next earliest goal.

Let’s now walk through the implementation in pieces. First up, we need to declare
specifications for all of our state and timer fields within the DoFn. For state, the speci‐
fication dictates the type of data structure for the field itself (e.g., map or list) as well
as the type(s) of data contained therein, and their associated coder(s); for timers, it
dictates the associated time domain. Each specification is then assigned a unique ID
string (via the @StateID/@TimerId annotations), which will allow us to dynamically
associate these specifications with parameters and methods later on. For our use case,
we’ll define (in Example 7-6) the following:

• Two MapState specifications for visits and impressions
• A single SetState specification for goals
• A ValueState specification for keeping track of the minimum pending goal

timestamp
• A Timer specification for our delayed attribution logic
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Example 7-6. State field specifications

class AttributionFn extends DoFn<KV<String, VisitOrImpression>, Attribution> {
    @StateId("visits")
    private final StateSpec<MapState<String, Visit>> visitsSpec =
 StateSpecs.map(StringUtf8Coder.of(), AvroCoder.of(Visit.class));

    // Impressions are keyed by both sourceUrl (i.e., the query) and targetUrl
    // (i.e., the click), since a single query can result in multiple impressions.
    // The source and target are encoded together into a single string by the
    // Impression.sourceAndTarget method.
    @StateId("impressions")
    private final StateSpec<MapState<String, Impression>> impSpec =
 StateSpecs.map(StringUtf8Coder.of(), AvroCoder.of(Impression.class));

    @StateId("goals")
    private final StateSpec<SetState<Visit>> goalsSpec =
 StateSpecs.set(AvroCoder.of(Visit.class));

    @StateId("minGoal")
    private final StateSpec<ValueState<Instant>> minGoalSpec =
 StateSpecs.value(InstantCoder.of());

    @TimerId("attribution")
    private final TimerSpec timerSpec =
 TimerSpecs.timer(TimeDomain.EVENT_TIME);

... continued in Example 7-7 below ...

Next up, we implement our core @ProcessElement method. This is the processing
logic that will run every time a new record arrives. As noted earlier, we need to record
visits and impressions to persistent state as well as keep track of goals and manage the
timer that will bind our attribution logic to the progress of event-time completeness
as tracked by the watermark. Access to state and timers is provided via parameters
passed to our @ProcessElement method, and the Beam runtime invokes our method
with appropriate parameters indicated by @StateId and @TimerId annotations. The
logic itself is then relatively straightforward, as demonstrated in Example 7-7.

Example 7-7. @ProcessElement implementation

... continued from Example 7-6 above ...

@ProcessElement
public void processElement(
        @Element KV<String, VisitOrImpression> kv,
 @StateId("visits") MapState<String, Visit> visitsState,
 @StateId("impressions") MapState<String, Impression> impressionsState,
 @StateId("goals") SetState<Visit> goalsState,

Generalized State | 193



 @StateId("minGoal") ValueState<Instant> minGoalState,
 @TimerId("attribution") Timer attributionTimer) {
    Visit visit = kv.getValue().visit();
    Impression impression = kv.getValue().impression();

    if (visit != null) {
 if (!visit.isGoal()) {
     LOG.info("Adding visit: {}", visit);
     visitsState.put(visit.url(), visit);
 } else {
     LOG.info("Adding goal (if absent): {}", visit);
     goalsState.addIfAbsent(visit);
     Instant minTimestamp = minGoalState.read();
     if (minTimestamp == null || visit.timestamp().isBefore(minTimestamp)) {
                LOG.info("Setting timer from {} to {}",
                         Utils.formatTime(minTimestamp),
                         Utils.formatTime(visit.timestamp()));
                attributionTimer.set(visit.timestamp());
  minGoalState.write(visit.timestamp());
     }
     LOG.info("Done with goal");
 }
    }
    if (impression != null) {
        // Dedup logical impression duplicates with the same source and target URL.
 // In this case, first one to arrive (in processing time) wins. A more
 // robust approach might be to pick the first one in event time, but that
        // would require an extra read before commit, so the processing-time
        // approach may be slightly more performant.
        LOG.info("Adding impression (if absent): {} → {}",
                 impression.sourceAndTarget(), impression);
 impressionsState.putIfAbsent(impression.sourceAndTarget(), impression);
    }
}

... continued in Example 7-8 below ...

Note how this ties back to our three desired capabilities in a general state API:

Flexibility in data structures
We have maps, a set, a value, and a timer. They allow us to efficiently manipulate
our state in ways that are effective for our algorithm.

Flexibility in write and read granularity
Our @ProcessElement method is called for every single visit and impression we
process. As such, we need it to be as efficient as possible. We take advantage of
the ability to make fine-grained, blind writes only to the specific fields we need.
We also only ever read from state within our @ProcessElement method in the
uncommon case of encountering a new goal. And when we do, we read only a
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single integer value, without touching the (potentially much larger) maps and
list.

Flexibility in scheduling of processing
Thanks to timers, we’re able to delay our complex goal attribution logic (defined
next) until we’re confident we’ve received all the necessary input data, minimiz‐
ing duplicated work and maximizing efficiency.

Having defined the core processing logic, let’s now look at our final piece of code, the
goal attribution method. This method is annotated with an @TimerId annotation to
identify it as the code to execute when the corresponding attribution timer fires. The
logic here is significantly more complicated than the @ProcessElement method:

1. First, we need to load the entirety of our visit and impression maps, as well as our
set of goals. We need the maps to piece our way backward through the attribution
trail we’ll be building, and we need the goals to know which goals we’re attribut‐
ing as a result of the current timer firing, as well as the next pending goal we
want to schedule for attribution in the future (if any).

2. After we’ve loaded our state, we process goals for this timer one at a time in a
loop, repeatedly:

• Checking to see if any impressions referred the user to the current visit in the
trail (beginning with the goal). If so, we’ve completed attribution of this goal
and can break out of the loop and emit the attribution trail.

• Checking next to see if any visits were the referrer for the current visit. If so,
we’ve found a back pointer in our trail, so we traverse it and start the loop over.

• If no matching impressions or visits are found, we have a goal that was reached
organically, with no associated impression. In this case, we simply break out of
the loop and move on to the next goal, if any.

3. After we’ve exhausted our list of goals ready for attribution, we set a timer for the
next pending goal in the list (if any) and reset the corresponding ValueState
tracking the minimum pending goal timestamp.

To keep things concise, we first look at the core goal attribution logic, shown in
Example 7-8, which roughly corresponds to point 2 in the preceding list.

Example 7-8. Goal attribution logic

... continued from Example 7-7 above ...

private Impression attributeGoal(Visit goal,
     Map<String, Visit> visits,
     Map<String, Impression> impressions,
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     List<Visit> trail) {
    Impression impression = null;
    Visit visit = goal;
    while (true) {
        String sourceAndTarget = Impression.sourceAndTarget(
            visit.referer(), visit.url());
        LOG.info("attributeGoal: visit={} sourceAndTarget={}",
                 visit, sourceAndTarget);
 if (impressions.containsKey(sourceAndTarget)) {
     LOG.info("attributeGoal: impression={}", impression);
     // Walked entire path back to impression. Return success.
     return impressions.get(sourceAndTarget);
 } else if (visits.containsKey(visit.referer())) {
     // Found another visit in the path, continue searching.
     visit = visits.get(visit.referer());
     trail.add(0, visit);
 } else {
     LOG.info("attributeGoal: not found");
     // Referer not found, trail has gone cold. Return failure.
     return null;
 }
    }
}

... continued in Example 7-9 below ...

The rest of the code (eliding a few simple helper methods), which handles initializing
and fetching state, invoking the attribution logic, and handling cleanup to schedule
any remaining pending goal attribution attempts, looks like Example 7-9.

Example 7-9. Overall @TimerId handling logic for goal attribution

... continued from Example 7-8 above ...

@OnTimer("attribution")
public void attributeGoal(
        @Timestamp Instant timestamp,
 @StateId("visits") MapState<String, Visit> visitsState,
 @StateId("impressions") MapState<String, Impression> impressionsState,
 @StateId("goals") SetState<Visit> goalsState,
 @StateId("minGoal") ValueState<Instant> minGoalState,
 @TimerId("attribution") Timer attributionTimer,
 OutputReceiver<Attribution> output) {
    LOG.info("Processing timer: {}", Utils.formatTime(timestamp));

    // Batch state reads together via futures.
    ReadableState<Iterable<Map.Entry<String, Visit> > > visitsFuture
        = visitsState.entries().readLater();
    ReadableState<Iterable<Map.Entry<String, Impression> > > impressionsFuture
        = impressionsState.entries().readLater();
    ReadableState<Iterable<Visit>> goalsFuture = goalsState.readLater();
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    // Accessed the fetched state.
    Map<String, Visit> visits = buildMap(visitsFuture.read());
    Map<String, Impression> impressions = buildMap(impressionsFuture.read());
    Iterable<Visit> goals = goalsFuture.read();

    // Find the matching goal
    Visit goal = findGoal(timestamp, goals);

    // Attribute the goal
    List<Visit> trail = new ArrayList<>();
    Impression impression = attributeGoal(goal, visits, impressions, trail);
    if (impression != null) {
 output.output(new Attribution(impression, trail, goal));
 impressions.remove(impression.sourceAndTarget());
    }
    goalsState.remove(goal);

    // Set the next timer, if any.
    Instant minGoal = minTimestamp(goals, goal);
    if (minGoal != null) {
 LOG.info("Setting new timer at {}", Utils.formatTime(minGoal));
 minGoalState.write(minGoal);
 attributionTimer.set(minGoal);
    } else {
 minGoalState.clear();
    }
}

This code block ties back to the three desired capabilities of a general state API in
very similar ways as the @ProcessElement method, with one noteworthy difference:

Flexibility in write and read granularity
We were able to make a single, coarse-grained read up front to load all of the data
in the maps and set. This is typically much more efficient than loading each field
separately, or even worse loading each field element by element. It also shows the
importance of being able to traverse the spectrum of access granularities, from
fine-grained to coarse-grained.

And that’s it! We’ve implemented a basic conversion attribution pipeline, in a way
that’s efficient enough to be operated at respectable scales using a reasonable amount
of resources. And importantly, it functions properly in the face of out-of-order data.
If you look at the dataset used for the unit test in Example 7-10, you can see it
presents a number of challenges, even at this small scale:
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• Tracking and attributing multiple distinct conversions across a shared set of
URLs.

• Data arriving out of order, and in particular, goals arriving (in processing time)
before visits and impressions that lead to them, as well as other goals which
occurred earlier.

• Source URLs that generate multiple distinct impressions to different target URLs.
• Physically distinct impressions (e.g., multiple clicks on the same advertisement)

that must be deduplicated to a single logical impression.

Example 7-10. Example dataset for validating conversion attribution logic

private static TestStream<KV<String, VisitOrImpression>> createStream() {
    // Impressions and visits, in event-time order, for two (logical) attributable
    // impressions and one unattributable impression.
    Impression signupImpression = new Impression(
 123L, "http://search.com?q=xyz",
 "http://xyz.com/", Utils.parseTime("12:01:00"));
    Visit signupVisit = new Visit(
 "http://xyz.com/", Utils.parseTime("12:01:10"),
 "http://search.com?q=xyz", false/*isGoal*/);
    Visit signupGoal = new Visit(
 "http://xyz.com/join-mailing-list", Utils.parseTime("12:01:30"),
 "http://xyz.com/", true/*isGoal*/);

    Impression shoppingImpression = new Impression(
 456L, "http://search.com?q=thing",
 "http://xyz.com/thing", Utils.parseTime("12:02:00"));
    Impression shoppingImpressionDup = new Impression(
 789L, "http://search.com?q=thing",
 "http://xyz.com/thing", Utils.parseTime("12:02:10"));
    Visit shoppingVisit1 = new Visit(
 "http://xyz.com/thing", Utils.parseTime("12:02:30"),
 "http://search.com?q=thing", false/*isGoal*/);
    Visit shoppingVisit2 = new Visit(
 "http://xyz.com/thing/add-to-cart", Utils.parseTime("12:03:00"),
 "http://xyz.com/thing", false/*isGoal*/);
    Visit shoppingVisit3 = new Visit(
 "http://xyz.com/thing/purchase", Utils.parseTime("12:03:20"),
 "http://xyz.com/thing/add-to-cart", false/*isGoal*/);
    Visit shoppingGoal = new Visit(
 "http://xyz.com/thing/receipt", Utils.parseTime("12:03:45"),
 "http://xyz.com/thing/purchase", true/*isGoal*/);

    Impression unattributedImpression = new Impression(
 000L, "http://search.com?q=thing",
 "http://xyz.com/other-thing", Utils.parseTime("12:04:00"));
    Visit unattributedVisit = new Visit(
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 "http://xyz.com/other-thing", Utils.parseTime("12:04:20"),
 "http://search.com?q=other thing", false/*isGoal*/);

    // Create a stream of visits and impressions, with data arriving out of order.
    return TestStream.create(
 KvCoder.of(StringUtf8Coder.of(), AvroCoder.of(VisitOrImpression.class)))
 .advanceWatermarkTo(Utils.parseTime("12:00:00"))
 .addElements(visitOrImpression(shoppingVisit2, null))
 .addElements(visitOrImpression(shoppingGoal, null))
 .addElements(visitOrImpression(shoppingVisit3, null))
 .addElements(visitOrImpression(signupGoal, null))
 .advanceWatermarkTo(Utils.parseTime("12:00:30"))
 .addElements(visitOrImpression(null, signupImpression))
 .advanceWatermarkTo(Utils.parseTime("12:01:00"))
 .addElements(visitOrImpression(null, shoppingImpression))
 .addElements(visitOrImpression(signupVisit, null))
 .advanceWatermarkTo(Utils.parseTime("12:01:30"))
 .addElements(visitOrImpression(null, shoppingImpressionDup))
 .addElements(visitOrImpression(shoppingVisit1, null))
 .advanceWatermarkTo(Utils.parseTime("12:03:45"))
 .addElements(visitOrImpression(null, unattributedImpression))
 .advanceWatermarkTo(Utils.parseTime("12:04:00"))
 .addElements(visitOrImpression(unattributedVisit, null))
 .advanceWatermarkToInfinity();
}

And remember, we’re working here on a relatively constrained version of conversion
attribution. A full-blown impelementation would have additional challenges to deal
with (e.g., garbage collection, DAGs of visits instead of trees). Regardless, this pipe‐
line provides a nice contrast to the oftentimes insufficiently flexible approaches pro‐
vided by raw grouping an incremental combination. By trading off some amount of
implementation complexity, we were able to find the necessary balance of efficiency,
without compromising on correctness. Additionally, this pipeline highlights the more
imperative approach towards stream processing that state and timers afford (think C
or Java), which is a nice complement to the more functional approach afforded by
windowing and triggers (think Haskell).

Summary
In this chapter, we’ve looked closely at why persistent state is important, coming to
the conclusion that it provides a basis for correctness and efficiency in long-lived
pipelines. We then looked at the two most common types of implicit state encoun‐
tered in data processing systems: raw grouping and incremental combination. We
learned that raw grouping is straightforward but potentially inefficient and that incre‐
mental combination greatly improves efficiency for operations that are commutative
and associative. Finally, we looked a relatively complex, but very practical use case
(and implementation via Apache Beam Java) grounded in real-world experience, and
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used that to highlight the important characteristics needed in a general state
abstraction:

• Flexibility in data structures, allowing for the use of data types tailored to specific
use cases at hand.

• Flexibility in write and read granularity, allowing the amount of data written and
read at any point to be tailored to the use case, minimizing or maximizing I/O as
appropriate.

• Flexibility in scheduling of processing, allowing certain portions of processing to be
delayed until a more appropriate point in time, such as when the input is believed
to be complete up to a specific point in event time.
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CHAPTER 8

Streaming SQL

Let’s talk SQL. In this chapter, we’re going to start somewhere in the middle with the
punchline, jump back in time a bit to establish additional context, and finally jump
back to the future to wrap everything up with a nice bow. Imagine Quentin Tarantino
held a degree in computer science and was super pumped to tell the world about the
finer points of streaming SQL, and so he offered to ghostwrite this chapter with me;
it’s sorta like that. Minus the violence.

What Is Streaming SQL?
I would argue that the answer to this question has eluded our industry for decades. In
all fairness, the database community has understood maybe 99% of the answer for
quite a while now. But I have yet to see a truly cogent and comprehensive definition
of streaming SQL that encompasses the full breadth of robust streaming semantics.
That’s what we’ll try to come up with here, although it would be hubris to assume
we’re 100% of the way there now. Maybe 99.1%? Baby steps.

Regardless, I want to point out up front that most of what we’ll discuss in this chapter
is still purely hypothetical as of the time of writing. This chapter and the one that fol‐
lows (covering streaming joins) both describe an idealistic vision for what streaming
SQL could be. Some pieces are already implemented in systems like Apache Calcite,
Apache Flink, and Apache Beam. Many others aren’t implemented anywhere. Along
the way, I’ll try to call out a few of the things that do exist in concrete form, but given
what a moving target that is, your best bet is to simply consult the documentation for
your specific system of interest.

On that note, it’s also worth highlighting that the vision for streaming SQL presented
here is the result of a collaborative discussion between the Calcite, Flink, and
Beam communities. Julian Hyde, the lead developer on Calcite, has long pitched his
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1 What I mean by “valid relation” here is simply a relation for which the application of a given operator is well
formed. For example, for the SQL query SELECT x FROM y, a valid relation y would be any relation containing
an attribute/column named x. Any relation not containing a such-named attribute would be invalid and, in
the case of a real database system, would yield a query execution error.

vision for what streaming SQL might look like. In 2016, members of the Flink com‐
munity integrated Calcite SQL support into Flink itself, and began adding streaming-
specific features such as windowing constructs to the Calcite SQL dialect. Then, in
2017, all three communities began a discussion to try to come to agreement on what
language extensions and semantics for robust stream processing in Calcite SQL
should look like. This chapter attempts to distill the ideas from that discussion down
into a clear and cohesive narrative about integrating streaming concepts into SQL,
regardless of whether it’s Calcite or some other dialect.

Relational Algebra
When talking about what streaming means for SQL, it’s important to keep in mind
the theoretical foundation of SQL: relational algebra. Relational algebra is simply a
mathematical way of describing relationships between data that consist of named,
typed tuples. At the heart of relational algebra is the relation itself, which is a set of
these tuples. In classic database terms, a relation is something akin to a table, be it a
physical database table, the result of a SQL query, a view (materialized or otherwise),
and so on; it’s a set of rows containing named and typed columns of data.

One of the more critical aspects of relational algebra is its closure property: applying
any operator from the relational algebra to any valid relation1 always yields another
relation. In other words, relations are the common currency of relational algebra, and
all operators consume them as input and produce them as output.

Historically, many attempts to support streaming in SQL have fallen short of satisfy‐
ing the closure property. They treat streams separately from classic relations, provid‐
ing new operators to convert between the two, and restricting the operations that can
be applied to one or the other. This significantly raises the bar of adoption for any
such streaming SQL system: would-be users must learn the new operators and under‐
stand the places where they’re applicable, where they aren’t, and similarly relearn the
rules of applicability in this new world for any old operators. What’s worse, most of
these systems still fall short of providing the full suite of streaming semantics that we
would want, such as support for robust out-of-order processing and strong temporal
join support (the latter of which we cover in Chapter 9). As a result, I would argue
that it’s basically impossible to name any existing streaming SQL implementation that
has achieved truly broad adoption. The additional cognitive overhead and restricted
capabilities of such streaming SQL systems have ensured that they remain a niche
enterprise.
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2 Much credit to Julian Hyde for this name and succinct rendering of the concept.

To change that, to truly bring streaming SQL to the forefront, what we need is a way
for streaming to become a first-class citizen within the relational algebra itself, such
that the entire standard relational algebra can apply naturally in both streaming and
nonstreaming use cases. That isn’t to say that streams and tables should be treated as
exactly the same thing; they most definitely are not the same, and recognizing that
fact lends clarity to understanding and power to navigating the stream/table relation‐
ship, as we’ll see shortly. But the core algebra should apply cleanly and naturally to
both worlds, with minimal extensions beyond the standard relational algebra only in
the cases where absolutely necessary.

Time-Varying Relations
To cut to the chase, the punchline I referred to at the beginning of the chapter is this:
the key to naturally integrating streaming into SQL is to extend relations, the core
data objects of relational algebra, to represent a set of data over time rather than a set
of data at a specific point in time. More succinctly, instead of point-in-time relations,
we need time-varying relations.2

But what are time-varying relations? Let’s first define them in terms of classic rela‐
tional algebra, after which we’ll also consider their relationship to stream and table
theory.

In terms of relational algebra, a time-varying relation is really just the evolution of a
classic relation over time. To understand what I mean by that, imagine a raw dataset
consisting of user events. Over time, as users generate new events, the dataset contin‐
ues to grow and evolve. If you observe that set at a specific point in time, that’s a clas‐
sic relation. But if you observe the holistic evolution of the set over time, that’s a time-
varying relation.

Put differently, if classic relations are like two-dimensional tables consisting of
named, typed columns in the x-axis and rows of records in the y-axis, time-varying
relations are like three-dimensional tables with x- and y-axes as before, but an addi‐
tional z-axis capturing different versions of the two-dimensional table over time. As
the relation changes, new snapshots of the relation are added in the z dimension.

Let’s look at an example. Imagine our raw dataset is users and scores; for example,
per-user scores from a mobile game as in most of the other examples throughout the
book. And suppose that our example dataset here ultimately ends up looking like this
when observed at a specific point in time, in this case 12:07:

12:07> SELECT * FROM UserScores;
-------------------------
| Name  | Score | Time  |
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-------------------------
| Julie | 7     | 12:01 |
| Frank | 3     | 12:03 |
| Julie | 1     | 12:03 |
| Julie | 4     | 12:07 |
-------------------------

In other words, it recorded the arrivals of four scores over time: Julie’s score of 7 at
12:01, both Frank’s score of 3 and Julie’s second score of 1 at 12:03, and, finally, Julie’s
third score of 4 at 12:07 (note that the Time column here contains processing-time
timestamps representing the arrival time of the records within the system; we get into
event-time timestamps a little later on). Assuming these were the only data to ever
arrive for this relation, it would look like the preceding table any time we observed it
after 12:07. But if instead we had observed the relation at 12:01, it would have looked
like the following, because only Julie’s first score would have arrived by that point:

12:01> SELECT * FROM UserScores;
-------------------------
| Name  | Score | Time  |
-------------------------
| Julie | 7     | 12:01 |
-------------------------

If we had then observed it again at 12:03, Frank’s score and Julie’s second score would
have also arrived, so the relation would have evolved to look like this:

12:03> SELECT * FROM UserScores;
-------------------------
| Name  | Score | Time  |
-------------------------
| Julie | 7     | 12:01 |
| Frank | 3     | 12:03 |
| Julie | 1     | 12:03 |
-------------------------

From this example we can begin to get a sense for what the time-varying relation for
this dataset must look like: it would capture the entire evolution of the relation over
time. Thus, if we observed the time-varying relation (or TVR) at or after 12:07, it
would thus look like the following (note the use of a hypothetical TVR keyword to sig‐
nal that we want the query to return the full time-varying relation, not the standard
point-in-time snapshot of a classic relation):

12:07> SELECT TVR * FROM UserScores;
---------------------------------------------------------
|       [-inf, 12:01)       |       [12:01, 12:03)      |
| ------------------------- | ------------------------- |
| | Name  | Score | Time  | | | Name  | Score | Time  | |
| ------------------------- | ------------------------- |
| |       |       |       | | | Julie | 7     | 12:01 | |
| |       |       |       | | |       |       |       | |
| |       |       |       | | |       |       |       | |
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| |       |       |       | | |       |       |       | |
| ------------------------- | ------------------------- |
---------------------------------------------------------
|       [12:03, 12:07)      |       [12:07, now)        |
| ------------------------- | ------------------------- |
| | Name  | Score | Time  | | | Name  | Score | Time  | |
| ------------------------- | ------------------------- |
| | Julie | 7     | 12:01 | | | Julie | 7     | 12:01 | |
| | Frank | 3     | 12:03 | | | Frank | 3     | 12:03 | |
| | Julie | 1     | 12:03 | | | Julie | 1     | 12:03 | |
| |       |       |       | | | Julie | 4     | 12:07 | |
| ------------------------- | ------------------------- |
---------------------------------------------------------

Because the printed/digital page remains constrained to two dimensions, I’ve taken
the liberty of flattening the third dimension into a grid of two-dimensional relations.
But you can see how the time-varying relation essentially consists of a sequence of
classic relations (ordered left to right, top to bottom), each capturing the full state of
the relation for a specific range of time (all of which, by definition, are contiguous).

What’s important about defining time-varying relations this way is that they really
are, for all intents and purposes, just a sequence of classic relations that each exist
independently within their own disjointed (but adjacent) time ranges, with each
range capturing a period of time during which the relation did not change. This is
important, because it means that the application of a relational operator to a time-
varying relation is equivalent to individually applying that operator to each classic
relation in the corresponding sequence. And taken one step further, the result of indi‐
vidually applying a relational operator to a sequence of relations, each associated with
a time interval, will always yield a corresponding sequence of relations with the same
time intervals. In other words, the result is a corresponding time-varying relation.
This definition gives us two very important properties:

• The full set of operators from classic relational algebra remain valid when applied
to time-varying relations, and furthermore continue to behave exactly as you’d
expect.

• The closure property of relational algebra remains intact when applied to time-
varying relations.

Or more succinctly, all the rules of classic relational algebra continue to hold when
applied to time-varying relations. This is huge, because it means that our substitution
of time-varying relations for classic relations hasn’t altered the parameters of the
game in any way. Everything continues to work the way it did back in classic rela‐
tional land, just on sequences of classic relations instead of singletons. Going back to
our examples, consider two more time-varying relations over our raw dataset, both
observed at some time after 12:07. First a simple filtering relation using a WHERE
clause:
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12:07> SELECT TVR * FROM UserScores WHERE Name = "Julie";
---------------------------------------------------------
|       [-inf, 12:01)       |       [12:01, 12:03)      |
| ------------------------- | ------------------------- |
| | Name  | Score | Time  | | | Name  | Score | Time  | |
| ------------------------- | ------------------------- |
| |       |       |       | | | Julie | 7     | 12:01 | |
| |       |       |       | | |       |       |       | |
| |       |       |       | | |       |       |       | |
| ------------------------- | ------------------------- |
---------------------------------------------------------
|       [12:03, 12:07)      |       [12:07, now)        |
| ------------------------- | ------------------------- |
| | Name  | Score | Time  | | | Name  | Score | Time  | |
| ------------------------- | ------------------------- |
| | Julie | 7     | 12:01 | | | Julie | 7     | 12:01 | |
| | Julie | 1     | 12:03 | | | Julie | 1     | 12:03 | |
| |       |       |       | | | Julie | 4     | 12:07 | |
| ------------------------- | ------------------------- |
---------------------------------------------------------

As you would expect, this relation looks a lot like the preceding one, but with Frank’s
scores filtered out. Even though the time-varying relation captures the added dimen‐
sion of time necessary to record the evolution of this dataset over time, the query
behaves exactly as you would expect, given your understanding of SQL.

For something a little more complex, let’s consider a grouping relation in which we’re
summing up all the per-user scores to generate a total overall score for each user:

12:07> SELECT TVR Name, SUM(Score) as Total, MAX(Time) as Time 
       FROM UserScores GROUP BY Name;
---------------------------------------------------------
|       [-inf, 12:01)       |       [12:01, 12:03)      |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| |       |       |       | | | Julie | 7     | 12:01 | |
| |       |       |       | | |       |       |       | |
| ------------------------- | ------------------------- |
---------------------------------------------------------
|       [12:03, 12:07)      |       [12:07, now)        |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| | Julie | 8     | 12:03 | | | Julie | 12    | 12:07 | |
| | Frank | 3     | 12:03 | | | Frank | 3     | 12:03 | |
| ------------------------- | ------------------------- |
---------------------------------------------------------

Again, the time-varying version of this query behaves exactly as you would expect,
with each classic relation in the sequence simply containing the sum of the scores for
each user. And indeed, no matter how complicated a query we might choose, the
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results are always identical to applying that query independently to the commensu‐
rate classic relations composing the input time-varying relation. I cannot stress
enough how important this is!

All right, that’s all well and good, but time-varying relations themselves are more of a
theoretical construct than a practical, physical manifestation of data; it’s pretty easy to
see how they could grow to be quite huge and unwieldy for large datasets that change
frequently. To see how they actually tie into real-world stream processing, let’s now 
explore the relationship between time-varying relations and stream and table theory.

Streams and Tables
For this comparison, let’s consider again our grouped time-varying relation that we
looked at earlier:

12:07> SELECT TVR Name, SUM(Score) as Total, MAX(Time) as Time
       FROM UserScores GROUP BY Name;
---------------------------------------------------------
|       [-inf, 12:01)       |       [12:01, 12:03)      |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| |       |       |       | | | Julie | 7     | 12:01 | |
| |       |       |       | | |       |       |       | |
| ------------------------- | ------------------------- |
---------------------------------------------------------
|       [12:03, 12:07)      |       [12:07, now)        |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| | Julie | 8     | 12:03 | | | Julie | 12    | 12:07 | |
| | Frank | 3     | 12:03 | | | Frank | 3     | 12:03 | |
| ------------------------- | ------------------------- |
---------------------------------------------------------

We understand that this sequence captures the full history of the relation over time.
Given our understanding of tables and streams from Chapter 6, it’s not too difficult to
understand how time-varying relations relate to stream and table theory.

Tables are quite straightforward: because a time-varying relation is essentially a
sequence of classic relations (each capturing a snapshot of the relation at a specific
point in time), and classic relations are analogous to tables, observing a time-varying
relation as a table simply yields the point-in-time relation snapshot for the time of
observation.

For example, if we were to observe the previous grouped time-varying relation as a
table at 12:01, we’d get the following (note the use of another hypothetical keyword,
TABLE, to explicitly call out our desire for the query to return a table):
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12:01> SELECT TABLE Name, SUM(Score) as Total, MAX(Time) as Time
       FROM UserScores GROUP BY Name;
-------------------------
| Name  | Total | Time  |
-------------------------
| Julie | 7     | 12:01 |
-------------------------

And observing at 12:07 would yield the expected:

12:07> SELECT TABLE Name, SUM(Score) as Total, MAX(Time) as Time
       FROM UserScores GROUP BY Name;
-------------------------
| Name  | Total | Time  |
-------------------------
| Julie | 12    | 12:07 |
| Frank | 3     | 12:03 |
-------------------------

What’s particularly interesting here is that there’s actually support for the idea of
time-varying relations within SQL, even as it exists today. The SQL 2011 standard
provides “temporal tables,” which store a versioned history of the table over time (in
essence, time-varying relations) as well as an AS OF SYSTEM TIME construct that
allows you to explicitly query and receive a snapshot of the temporal table/time-
varying relation at whatever point in time you specified. For example, even if we per‐
formed our query at 12:07, we could still see what the relation looked like back at
12:03:

12:07> SELECT TABLE Name, SUM(Score) as Total, MAX(Time) as Time
       FROM UserScores GROUP BY Name AS OF SYSTEM TIME ‘12:03’;
-------------------------
| Name  | Total | Time  |
-------------------------
| Julie | 8     | 12:03 |
| Frank | 3     | 12:03 |
-------------------------

So there’s some amount of precedent for time-varying relations in SQL already. But I
digress. The main point here is that tables capture a snapshot of the time-varying
relation at a specific point in time. Most real-world table implementations simply
track real time as we observe it; others maintain some additional historical informa‐
tion, which in the limit is equivalent to a full-fidelity time-varying relation capturing
the entire history of a relation over time.

Streams are slightly different beasts. We learned in Chapter 6 that they too capture the
evolution of a table over time. But they do so somewhat differently than the time-
varying relations we’ve looked at so far. Instead of holistically capturing snapshots of
the entire relation each time it changes, they capture the sequence of changes that
result in those snapshots within a time-varying relation. The subtle difference here
becomes more evident with an example.
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3 Note that the Sys.Undo name used here is riffing off the concise undo/redo nomenclature from Apache Flink,
which I think is a very clean way to capture the ideas of retraction and nonretraction rows.

As a refresher, recall again our baseline example TVR query:

12:07> SELECT TVR Name, SUM(Score) as Total, MAX(Time) as Time
       FROM UserScores GROUP BY Name;
---------------------------------------------------------
|       [-inf, 12:01)       |       [12:01, 12:03)      |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| |       |       |       | | | Julie | 7     | 12:01 | |
| |       |       |       | | |       |       |       | |
| ------------------------- | ------------------------- |
---------------------------------------------------------
|       [12:03, 12:07)      |       [12:07, now)        |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| | Julie | 8     | 12:03 | | | Julie | 12    | 12:07 | |
| | Frank | 3     | 12:03 | | | Frank | 3     | 12:03 | |
| ------------------------- | ------------------------- |
---------------------------------------------------------

Let’s now observe our time-varying relation as a stream as it exists at a few distinct
points in time. At each step of the way, we’ll compare the original table rendering of
the TVR at that point in time with the evolution of the stream up to that point. To see
what stream renderings of our time-varying relation look like, we’ll need to introduce
two new hypothetical keywords:

• A STREAM keyword, similar to the TABLE keyword I’ve already introduced, that
indicates we want our query to return an event-by-event stream capturing the
evolution of the time-varying relation over time. You can think of this as apply‐
ing a per-record trigger to the relation over time.

• A special Sys.Undo3 column that can be referenced from a STREAM query, for the 
sake of identifying rows that are retractions. More on this in a moment.
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Thus, starting out from 12:01, we’d have the following:

                                          12:01> SELECT STREAM Name, 
12:01> SELECT TABLE Name,                          SUM(Score) as Total,
         SUM(Score) as Total,                      MAX(Time) as Time,
         MAX(Time) as Time                         Sys.Undo as Undo
       FROM UserScores GROUP BY Name;            FROM UserScores GROUP BY Name;
-------------------------                 --------------------------------
| Name  | Total | Time  |                 | Name  | Total | Time  | Undo |
-------------------------                 --------------------------------
| Julie | 7     | 12:01 |                 | Julie | 7     | 12:01 |      |
-------------------------                 ........ [12:01, 12:01] ........

The table and stream renderings look almost identical at this point. Mod the Undo
column (discussed in more detail in the next example), there’s only one difference:
whereas the table version is complete as of 12:01 (signified by the final line of dashes
closing off the bottom end of the relation), the stream version remains incomplete, as
signified by the final ellipsis-like line of periods marking both the open tail of the
relation (where additional data might be forthcoming in the future) as well as the
processing-time range of data observed so far. And indeed, if executed on a real
implementation, the STREAM query would wait indefinitely for additional data to
arrive. Thus, if we waited until 12:03, three new rows would show up for the STREAM
query. Compare that to a fresh TABLE rendering of the TVR at 12:03:

                                          12:01> SELECT STREAM Name, 
12:03> SELECT TABLE Name,                          SUM(Score) as Total,
         SUM(Score) as Total,                      MAX(Time) as Time,
         MAX(Time) as Time                         Sys.Undo as Undo
       FROM UserScores GROUP BY Name;            FROM UserScores GROUP BY Name;
-------------------------                 --------------------------------
| Name  | Total | Time  |                 | Name  | Total | Time  | Undo |
-------------------------                 --------------------------------
| Julie | 8     | 12:03 |                 | Julie | 7     | 12:01 |      |
| Frank | 3     | 12:03 |                 | Frank | 3     | 12:03 |      |
-------------------------                 | Julie | 7     | 12:03 | undo |
                                          | Julie | 8     | 12:03 |      |
                                          ........ [12:01, 12:03] ........

Here’s an interesting point worth addressing: why are there three new rows in the
stream (Frank’s 3 and Julie’s undo-7 and 8) when our original dataset contained only
two rows (Frank’s 3 and Julie’s 1) for that time period? The answer lies in the fact that
here we are observing the stream of changes to an aggregation of the original inputs;
in particular, for the time period from 12:01 to 12:03, the stream needs to capture two
important pieces of information regarding the change in Julie’s aggregate score due to
the arrival of the new 1 value:

• The previously reported total of 7 was incorrect.
• The new total is 8.
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4 Now, in this example, it’s not too difficult to figure out that the new value of 8 should replace the old value of
7, given that the mapping is 1:1. But we’ll see a more complicated example later on when we talk about ses‐
sions that is much more difficult to handle without having retractions as a guide.

That’s what the special Sys.Undo column allows us to do: distinguish between normal 
rows and rows that are a retraction of a previously reported value.4

A particularly nice feature of STREAM queries is that you can begin to see how all of
this relates to the world of classic Online Transaction Processing (OLTP) tables: the
STREAM rendering of this query is essentially capturing a sequence of INSERT and
DELETE operations that you could use to materialize this relation over time in an
OLTP world (and really, when you think about it, OLTP tables themselves are essen‐
tially time-varying relations mutated over time via a stream of INSERTs, UPDATEs, and
DELETEs).

Now, if we don’t care about the retractions in the stream, it’s also perfectly fine not to
ask for them. In that case, our STREAM query would look like this:

12:01> SELECT STREAM Name,
         SUM(Score) as Total,
         MAX(Time) as Time
       FROM UserScores GROUP BY Name;
------------------------- 
| Name  | Total | Time  |
------------------------- 
| Julie | 7     | 12:01 | 
| Frank | 3     | 12:03 |
| Julie | 8     | 12:03 |
.... [12:01, 12:03] .....

But there’s clearly value in understanding what the full stream looks like, so we’ll go
back to including the Sys.Undo column for our final example. Speaking of which, if
we waited another four minutes until 12:07, we’d be greeted by two additional rows in
the STREAM query, whereas the TABLE query would continue to evolve as before:

                                          12:01> SELECT STREAM Name, 
12:07> SELECT TABLE Name,                          SUM(Score) as Total,
         SUM(Score) as Total,                      MAX(Time) as Time,
         MAX(Time) as Time                         Sys.Undo as Undo
       FROM UserScores GROUP BY Name;            FROM UserScores GROUP BY Name;
-------------------------                 --------------------------------
| Name  | Total | Time  |                 | Name  | Total | Time  | Undo |
-------------------------                 --------------------------------
| Julie | 12    | 12:07 |                 | Julie | 7     | 12:01 |      |
| Frank | 3     | 12:03 |                 | Frank | 3     | 12:03 |      |
-------------------------                 | Julie | 7     | 12:03 | undo |
                                          | Julie | 8     | 12:03 |      |
                                          | Julie | 8     | 12:07 | undo |
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5 And indeed, this is a key point to remember. There are some systems that advocate treating streams and tables
as identical, claiming that we can simply treat streams like never-ending tables. That statement is accurate
inasmuch as the true underlying primitive is the time-varying relation, and all relational operations may be
applied equally to any time-varying relation, regardless of whether the actual physical manifestation is a
stream or a table. But that sort of approach conflates the two very different types of views that tables and
streams provide for a given time-varying relation. Pretending that two very different things are the same
might seem simple on the surface, but it’s not a road toward understanding, clarity, and correctness.

                                          | Julie | 12    | 12:07 |      |
                                          ........ [12:01, 12:07] ........

And by this time, it’s quite clear that the STREAM version of our time-varying relation
is a very different beast from the table version: the table captures a snapshot of the
entire relation at a specific point in time, whereas the stream captures a view of the
individual changes to the relation over time.5 Interestingly though, that means that the
STREAM rendering has more in common with our original, table-based TVR
rendering:

12:07> SELECT TVR Name, SUM(Score) as Total, MAX(Time) as Time
       FROM UserScores GROUP BY Name;
---------------------------------------------------------
|       [-inf, 12:01)       |       [12:01, 12:03)      |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| |       |       |       | | | Julie | 7     | 12:01 | |
| |       |       |       | | |       |       |       | |
| ------------------------- | ------------------------- |
---------------------------------------------------------
|       [12:03, 12:07)      |       [12:07, now)        |
| ------------------------- | ------------------------- |
| | Name  | Total | Time  | | | Name  | Total | Time  | |
| ------------------------- | ------------------------- |
| | Julie | 8     | 12:03 | | | Julie | 12    | 12:07 | |
| | Frank | 3     | 12:03 | | | Frank | 3     | 12:03 | |
| ------------------------- | ------------------------- |
---------------------------------------------------------

Indeed, it’s safe to say that the STREAM query simply provides an alternate rendering of
the entire history of data that exists in the corresponding table-based TVR query. The
value of the STREAM rendering is its conciseness: it captures only the delta of changes
between each of the point-in-time relation snapshots in the TVR. The value of the
sequence-of-tables TVR rendering is the clarity it provides: it captures the evolution of
the relation over time in a format that highlights its natural relationship to classic
relations, and in doing so provides for a simple and clear definition of relational
semantics within the context of streaming as well as the additional dimension of time
that streaming brings.
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6 Here referring to tables in the sense of tables that can vary over time; that is, the table-based TVRs we’ve been
looking at.

7 This one courtesy Julian Hyde.

Another important aspect of the similarities between the STREAM and table-based TVR
renderings is the fact that they are essentially equivalent in the overall data they
encode. This gets to the core of the stream/table duality that its proponents have long
preached: streams and tables6 are really just two different sides of the same coin. Or
to resurrect the bad physics analogy from Chapter 6, streams and tables are to time-
varying relations as waves and particles are to light:7 a complete time-varying relation
is both a table and a stream at the same time; tables and streams are simply different
physical manifestations of the same concept, depending upon the context.

Now, it’s important to keep in mind that this stream/table duality is true only as long
as both versions encode the same information; that is, when you have full-fidelity
tables or streams. In many cases, however, full fidelity is impractical. As I alluded to
earlier, encoding the full history of a time-varying relation, no matter whether it’s in
stream or table form, can be rather expensive for a large data source. It’s quite com‐
mon for stream and table manifestations of a TVR to be lossy in some way. Tables
typically encode only the most recent version of a TVR; those that support temporal
or versioned access often compress the encoded history to specific point-in-time
snapshots, and/or garbage-collect versions that are older than some threshold. Simi‐
larly, streams typically encode only a limited duration of the evolution of a TVR,
often a relatively recent portion of that history. Persistent streams like Kafka afford
the ability to encode the entirety of a TVR, but again this is relatively uncommon,
with data older than some threshold typically thrown away via a garbage-collection
process.

The main point here is that streams and tables are absolutely duals of one another,
each a valid way of encoding a time-varying relation. But in practice, it’s common for
the physical stream/table manifestations of a TVR to be lossy in some way. These
partial-fidelity streams and tables trade off a decrease in total encoded information
for some benefit, usually decreased resource costs. And these types of trade-offs are
important because they’re often what allow us to build pipelines that operate over
data sources of truly massive scale. But they also complicate matters, and require a
deeper understanding to use correctly. We discuss this topic in more detail later on
when we get to SQL language extensions. But before we try to reason about SQL
extensions, it will be useful to understand a little more concretely the biases present
in both the SQL and non-SQL data processing approaches common today.
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Looking Backward: Stream and Table Biases
In many ways, the act of adding robust streaming support to SQL is largely an exer‐
cise in attempting to merge the where, when, and how semantics of the Beam Model
with the what semantics of the classic SQL model. But to do so cleanly, and in a way
that remains true to the look and feel of classic SQL, requires an understanding of
how the two models relate to each other. Thus, much as we explored the relationship
of the Beam Model to stream and table theory in Chapter 6, we’ll now explore the
relationship of the Beam Model to the classic SQL model, using stream and table
theory as the underlying framework for our comparison. In doing so, we’ll uncover
the inherent biases present in each model, which will provide us some insights in how
to best marry the two in a clean, natural way.

The Beam Model: A Stream-Biased Approach
Let’s begin with the Beam Model, building upon the discussion in Chapter 6. To
begin, I want to discuss the inherent stream bias in the Beam Model as it exists today
relative to streams and tables.

If you think back to Figures 6-11 and 6-12, they showed two different views of the
same score-summation pipeline that we’ve used as an example throughout the book:
in Figure 6-11 a logical, Beam-Model view, and in Figure 6-12 a physical, streams and
tables–oriented view. Comparing the two helped highlight the relationship of the
Beam Model to streams and tables. But by overlaying one on top of the other, as I’ve
done in Figure 8-1, we can see an additional interesting aspect of the relationship: the
Beam Model’s inherent stream bias.
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Figure 8-1. Stream bias in the Beam Model approach
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In this figure, I’ve drawn dashed red lines connecting the transforms in the logical
view to their corresponding components in the physical view. The thing that stands
out when observed this way is that all of the logical transformations are connected by
streams, even the operations that involve grouping (which we know from Chapter 6
results in a table being created somewhere). In Beam parlance, these transformations
are PTransforms, and they are always applied to PCollections to yield new
PCollections. The important takeaway here is that PCollections in Beam are
always streams. As a result, the Beam Model is an inherently stream-biased approach
to data processing: streams are the common currency in a Beam pipeline (even batch
pipelines), and tables are always treated specially, either abstracted behind sources
and sinks at the edges of the pipeline or hidden away beneath a grouping and trigger‐
ing operation somewhere in the pipeline.

Because Beam operates in terms of streams, anywhere a table is involved (sources,
sinks, and any intermediate groupings/ungroupings), some sort of conversion is nec‐
essary to keep the underlying table hidden. Those conversions in Beam look some‐
thing like this:

• Sources that consume tables typically hardcode the manner in which those tables
are triggered; there is no way for a user to specify custom triggering of the table
they want to consume. The source may be written to trigger every new update to
the table as a record, it might batch groups of updates together, or it might pro‐
vide a single, bounded snapshot of the data in the table at some point in time. It
really just depends on what’s practical for a given source, and what use case the
author of the source is trying to address.

• Sinks that write tables typically hardcode the manner in which they group their
input streams. Sometimes, this is done in a way that gives the user a certain
amount of control; for example, by simply grouping on a user-assigned key. In
other cases, the grouping might be implicitly defined; for example, by grouping
on a random physical partition number when writing input data with no natural
key to a sharded output source. As with sources, it really just depends on what’s
practical for the given sink and what use case the author of the sink is trying to
address.

• For grouping/ungrouping operations, in contrast to sources and sinks, Beam pro‐
vides users complete flexibility in how they group data into tables and ungroup
them back into streams. This is by design. Flexibility in grouping operations is
necessary because the way data are grouped is a key ingredient of the algorithms
that define a pipeline. And flexibility in ungrouping is important so that the
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8 Though there are a number of efforts in flight across various projects that are trying to simplify the specifica‐
tion of triggering/ungrouping semantics. The most compelling proposal, made independently within both the
Flink and Beam communities, is that triggers should simply be specified at the outputs of a pipeline and auto‐
matically propagated up throughout the pipeline. In this way, one would describe only the desired shape of
the streams that actually create materialized output; the shape of all other streams in the pipeline would be
implicitly derived from there.

application can shape the generated streams in ways that are appropriate for the
use case at hand.8

However, there’s a wrinkle here. Remember from Figure 8-1 that the Beam Model
is inherently biased toward streams. As a result, although it’s possible to cleanly
apply a grouping operation directly to a stream (this is Beam’s GroupByKey opera‐
tion), the model never provides first-class table objects to which a trigger can be
directly applied. As a result, triggers must be applied somewhere else. There are
basically two options here:

Predeclaration of triggers
This is where triggers are specified at a point in the pipeline before the table
to which they are actually applied. In this case, you’re essentially prespecify‐
ing behavior you’d like to see later on in the pipeline after a grouping opera‐
tion is encountered. When declared this way, triggers are forward-
propagating.

Post-declaration of triggers
This is where triggers are specified at a point in the pipeline following the
table to which they are applied. In this case, you’re specifying the behavior
you’d like to see at the point where the trigger is declared. When declared this
way, triggers are backward-propagating.

Because post-declaration of triggers allows you to specify the behavior you want
at the actual place you want to observe it, it’s much more intuitive. Unfortunately,
Beam as it exists today (2.x and earlier) uses predeclaration of triggers (similar to
how windowing is also predeclared).

Even though Beam provides a number of ways to cope with the fact that tables are
hidden, we’re still left with the fact that tables must always be triggered before they
can be observed, even if the contents of that table are really the final data that you
want to consume. This is a shortcoming of the Beam Model as it exists today, one
which could be addressed by moving away from a stream-centric model and toward
one that treats both streams and tables as first-class entities.

Let’s now look at the Beam Model’s conceptual converse: classic SQL.
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9 Though, of course, a single SQL query has vastly more expressive power than a single MapReduce, given the
far less-confining set of operations and composition options available.

The SQL Model: A Table-Biased Approach
In contrast to the Beam Model’s stream-biased approach, SQL has historically taken a
table-biased approach: queries are applied to tables, and always result in new tables.
This is similar to the batch processing model we looked at in Chapter 6 with Map‐
Reduce,9 but it will be useful to consider a concrete example like the one we just
looked at for the Beam Model.

Consider the following denormalized SQL table:

UserScores (user, team, score, timestamp)

It contains user scores, each annotated with the IDs of the corresponding user and
their corresponding team. There is no primary key, so you can assume that this is an
append-only table, with each row being identified implicitly by its unique physical
offset. If we want to compute team scores from this table, we could use a query that
looks something like this:

    SELECT team, SUM(score) as total
    FROM UserScores
    GROUP BY team;

When executed by a query engine, the optimizer will probably break this query down
into roughly three steps:

1. Scanning the input table (i.e., triggering a snapshot of it)
2. Projecting the fields in that table down to team and score
3. Grouping rows by team and summing the scores

If we look at this using a diagram similar to Figure 8-1, it would look like Figure 8-2.

The SCAN operation takes the input table and triggers it into a bounded stream that
contains a snapshot of the contents of that table at query execution time. That stream
is consumed by the SELECT operation, which projects the four-column input rows
down to two-column output rows. Being a nongrouping operation, it yields another
stream. Finally, that two-column stream of teams and user scores enters the GROUP BY
and is grouped by team into a table, with scores for the same team SUM’d together,
yielding our output table of teams and their corresponding team score totals.
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Figure 8-2. Table bias in a simple SQL query

This is a relatively simple example that naturally ends in a table, so it really isn’t suffi‐
cient to highlight the table-bias in classic SQL. But we can tease out some more evi‐
dence by simply splitting the main pieces of this query (projection and grouping) into
two separate queries:

    SELECT team, score
    INTO TeamAndScore
    FROM UserScores;

    SELECT team, SUM(score) as total
    INTO TeamTotals
    FROM TeamAndScore
    GROUP BY team;

In these queries, we first project the UserScores table down to just the two columns
we care about, storing the results in a temporary TeamAndScore table. We then group
that table by team, summing up the scores as we do so. After breaking things out into
a pipeline of two queries, our diagram looks like that shown in Figure 8-3.
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Figure 8-3. Breaking the query into two to reveal more evidence of table bias
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If classic SQL exposed streams as first-class objects, you would expect the result from
the first query, TeamAndScore, to be a stream because the SELECT operation consumes
a stream and produces a stream. But because SQL’s common currency is tables, it
must first convert the projected stream into a table. And because the user hasn’t speci‐
fied any explicit key for grouping, it must simply group keys by their identity (i.e.,
append semantics, typically implemented by grouping by the physical storage offset
for each row).

Because TeamAndScore is now a table, the second query must then prepend an addi‐
tional SCAN operation to scan the table back into a stream to allow the GROUP BY to
then group it back into a table again, this time with rows grouped by team and with
their individual scores summed together. Thus, we see the two implicit conversions
(from a stream and back again) that are inserted due to the explicit materialization of
the intermediate table.

That said, tables in SQL are not always explicit; implicit tables can exist, as well. For
example, if we were to add a HAVING clause to the end of the query with the GROUP BY
statement, to filter out teams with scores less than a certain threshold, the diagram
would change to look something like Figure 8-4.
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Figure 8-4. Table bias with a final HAVING clause
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10 Note that we’re speaking conceptually here; there are of course a multitude of optimizations that can be
applied in actual execution; for example, looking up specific rows via an index rather than scanning the entire
table.

With the addition of the HAVING clause, what used to be the user-visible TeamTotals
table is now an implicit, intermediate table. To filter the results of the table according
to the rules in the HAVING clause, that table must be triggered into a stream that can be
filtered and then that stream must be implicitly grouped back into a table to yield the
new output table, LargeTeamTotals.

The important takeaway here is the clear table bias in classic SQL. Streams are always
implicit, and thus for any materialized stream a conversion from/to a table is
required. The rules for such conversions can be categorized roughly as follows:

Input tables (i.e., sources, in Beam Model terms)
These are always implicitly triggered in their entirety at a specific point in time10

(generally query execution time) to yield a bounded stream containing a snap‐
shot of the table at that time. This is identical to what you get with classic batch
processing, as well; for example, the MapReduce case we looked at in Chapter 6.

Output tables (i.e., sinks, in Beam Model terms)
These tables are either direct manifestations of a table created by a final grouping
operation in the query, or are the result of an implicit grouping (by some unique
identifier for the row) applied to a query’s terminal stream, for queries that do
not end in a grouping operation (e.g., the projection query in the previous exam‐
ples, or a GROUP BY followed by a HAVING clause). As with inputs, this matches the
behavior seen in classic batch processing.

Grouping/ungrouping operations
Unlike Beam, these operations provide complete flexibility in one dimension
only: grouping. Whereas classic SQL queries provide a full suite of grouping
operations (GROUP BY, JOIN, CUBE, etc.), they provide only a single type of implicit
ungrouping operation: trigger an intermediate table in its entirety after all of the
upstream data contributing to it have been incorporated (again, the exact same
implicit trigger provided in MapReduce as part of the shuffle operation). As a
result, SQL offers great flexibility in shaping algorithms via grouping but essen‐
tially zero flexibility in shaping the implicit streams that exist under the covers
during query execution.

Materialized views
Given how analogous classic SQL queries are to classic batch processing, it might be
tempting to write off SQL’s inherent table bias as nothing more than an artifact of
SQL not supporting stream processing in any way. But to do so would be to ignore
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11 It’s been brought to my attention multiple times that the “MATERIALIZED” aspect of these queries is just an
optimization: semantically speaking, these queries could just as easily be replaced with generic CREATE VIEW
statements, in which case the database might instead simply rematerialize the entire view each time it is refer‐
enced. This is true. The reason I use the MATERIALIZED variant here is that the semantics of a materialized
view are to incrementally update the view table in response to a stream of changes, which is indicative of the
streaming nature behind them. That said, the fact that you can instead provide a similar experience by re-
executing a bounded query each time a view is accessed provides a nice link between streams and tables as
well as a link between streaming systems and the way batch systems have been historically used for processing
data that evolves over time. You can either incrementally process changes as they occur or you can reprocess
the entire input dataset from time to time. Both are valid ways of processing an evolving table of data.

the fact that databases have supported a specific type of stream processing for quite
some time: materialized views. A materialized view is a view that is physically materi‐
alized as a table and kept up to date over time by the database as the source table(s)
evolve. Note how this sounds remarkably similar to our definition of a time-varying
relation. What’s fascinating about materialized views is that they add a very useful
form of stream processing to SQL without significantly altering the way it operates,
including its inherent table bias.

For example, let’s consider the queries we looked at in Figure 8-4. We can alter those
queries to instead be CREATE MATERIALIZED VIEW11 statements:

    CREATE MATERIALIZED VIEW TeamAndScoreView AS
    SELECT team, score
    FROM UserScores;

    CREATE MATERIALIZED VIEW LargeTeamTotalsView AS
    SELECT team, SUM(score) as total
    FROM TeamAndScoreView
    GROUP BY team
    HAVING SUM(score) > 100;

In doing so, we transform them into continuous, standing queries that process the
updates to the UserScores table continuously, in a streaming manner. Even so, the
resulting physical execution diagram for the views looks almost exactly the same as it
did for the one-off queries; nowhere are streams made into explicit first-class objects
in order to support this idea of streaming materialized views. The only noteworthy
change in the physical execution plan is the substitution of a different trigger: SCAN-
AND-STREAM instead of SCAN, as illustrated in Figure 8-5.
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Figure 8-5. Table bias in materialized views
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12 Though it’s probably fair to say that SQL’s table bias is likely an artifact of SQL’s roots in batch processing.

What is this SCAN-AND-STREAM trigger? SCAN-AND-STREAM starts out like a SCAN trigger,
emitting the full contents of the table at a point in time into a stream. But instead of
stopping there and declaring the stream to be done (i.e., bounded), it continues to
also trigger all subsequent modifications to the input table, yielding an unbounded
stream that captures the evolution of the table over time. In the general case, these
modifications include not only INSERTs of new values, but also DELETEs of previous
values and UPDATEs to existing values (which, practically speaking, are treated as a
simultaneous DELETE/INSERT pair, or undo/redo values as they are called in Flink).

Furthermore, if we consider the table/stream conversion rules for materialized views,
the only real difference is the trigger used:

• Input tables are implicitly triggered via a SCAN-AND-STREAM trigger instead of a
SCAN trigger. Everything else is the same as classic batch queries.

• Output tables are treated the same as classic batch queries.
• Grouping/ungrouping operations function the same as classic batch queries, with

the only difference being the use of a SCAN-AND-STREAM trigger instead of a SNAP
SHOT trigger for implicit ungrouping operations.

Given this example, it’s clear to see that SQL’s inherent table bias is not just an artifact
of SQL being limited to batch processing:12 materialized views lend SQL the ability to
perform a specific type of stream processing without any significant changes in
approach, including the inherent bias toward tables. Classic SQL is just a table-biased
model, regardless of whether you’re using it for batch or stream processing.

Looking Forward: Toward Robust Streaming SQL
We’ve now looked at time-varying relations, the ways in which tables and streams
provide different renderings of a time-varying relation, and what the inherent biases
of the Beam and SQL models are with respect to stream and table theory. So where
does all of this leave us? And perhaps more to the point, what do we need to change
or add within SQL to support robust stream processing? The surprising answer is:
not much if we have good defaults.

We know that the key conceptual change is to replace classic, point-in-time relations
with time-varying relations. We saw earlier that this is a very seamless substitution,
one which applies across the full breadth of relational operators already in existence,
thanks to maintaining the critical closure property of relational algebra. But we also
saw that dealing in time-varying relations directly is often impractical; we need the
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ability to operate in terms of our two more-common physical manifestations: tables
and streams. This is where some simple extensions with good defaults come in.

We also need some tools for robustly reasoning about time, specifically event time.
This is where things like timestamps, windowing, and triggering come into play. But
again, judicious choice of defaults will be important to minimize how often these
extensions are necessary in practice.

What’s great is that we don’t really need anything more than that. So let’s now finally
spend some time looking in detail at these two categories of extensions: stream/table
selection and temporal operators.

Stream and Table Selection
As we worked through time-varying relation examples, we already encountered the
two key extensions related to stream and table selection. They were those TABLE and
STREAM keywords we placed after the SELECT keyword to dictate our desired physical
view of a given time-varying relation:

12:07> SELECT TABLE Name,                 12:01> SELECT STREAM Name
         SUM(Score) as Total,                      SUM(Score) as Total,                      
         MAX(Time)                                 MAX(Time) 
       FROM UserScores                           FROM UserScores
       GROUP BY Name;                            GROUP BY Name;
-------------------------                 -------------------------
| Name  | Total | Time  |                 | Name  | Total | Time  |
-------------------------                 -------------------------
| Julie | 12    | 12:07 |                 | Julie | 7     | 12:01 |
| Frank | 3     | 12:03 |                 | Frank | 3     | 12:03 |
-------------------------                 | Julie | 8     | 12:03 |
                                          | Julie | 12    | 12:07 |
                                          ..... [12:01, 12:07] ....

These extensions are relatively straightforward and easy to use when necessary. But
the really important thing regarding stream and table selection is the choice of good
defaults for times when they aren’t explicitly provided. Such defaults should honor
the classic, table-biased behavior of SQL that everyone is accustomed to, while also
operating intuitively in a world that includes streams. They should also be easy to
remember. The goal here is to help maintain a natural feel to the system, while also
greatly decreasing the frequency with which we must use explicit extensions. A good
choice of defaults that satisfies all of these requirements is:

• If all of the inputs are tables, the output is a TABLE.
• If any of the inputs are streams, the output is a STREAM.

What’s additionally important to call out here is that these physical renderings of a
time-varying relation are really only necessary when you want to materialize the TVR
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13 For some use cases, capturing and using the current processing time for a given record as its event time going
forward can be useful (for example, when logging events directly into a TVR, where the time of ingress is the
natural event time for that record).

in some way, either to view it directly or write it to some output table or stream.
Given a SQL system that operates under the covers in terms of full-fidelity time-
varying relations, intermediate results (e.g., WITH AS or SELECT INTO statements) can
remain as full-fidelity TVRs in whatever format the system naturally deals in, with no
need to render them into some other, more limited concrete manifestation.

And that’s really it for stream and table selection. Beyond the ability to deal in streams
and tables directly, we also need some better tools for reasoning about time if we want
to support robust, out-of-order stream processing within SQL. Let’s now look in
more detail about what those entail.

Temporal Operators
The foundation of robust, out-of-order processing is the event-time timestamp: that
small piece of metadata that captures the time at which an event occurred rather than
the time at which it is observed. In a SQL world, event time is typically just another
column of data for a given TVR, one which is natively present in the source data
themselves.13 In that sense, this idea of materializing a record’s event time within the
record itself is something SQL already handles naturally by putting a timestamp in a
regular column.

Before we go any further, let’s look at an example. To help tie all of this SQL stuff
together with the concepts we’ve explored previously in the book, we resurrect our
running example of summing up nine scores from various members of a team to
arrive at that team’s total score. If you recall, those scores look like Figure 8-6 when
plotted on X = event-time/Y = processing-time axes.

Figure 8-6. Data points in our running example

228 | Chapter 8: Streaming SQL



If we were to imagine these data as a classic SQL table, they might look something
like this, ordered by event time (left-to-right in Figure 8-6):

12:10> SELECT TABLE *, Sys.MTime as ProcTime
       FROM UserScores ORDER BY EventTime;
------------------------------------------------
| Name  | Team  | Score | EventTime | ProcTime |
------------------------------------------------
| Julie | TeamX |     5 |  12:00:26 | 12:05:19 |
| Frank | TeamX |     9 |  12:01:26 | 12:08:19 |
| Ed    | TeamX |     7 |  12:02:26 | 12:05:39 |
| Julie | TeamX |     8 |  12:03:06 | 12:07:06 |
| Amy   | TeamX |     3 |  12:03:39 | 12:06:13 |
| Fred  | TeamX |     4 |  12:04:19 | 12:06:39 |
| Naomi | TeamX |     3 |  12:06:39 | 12:07:19 |
| Becky | TeamX |     8 |  12:07:26 | 12:08:39 |
| Naomi | TeamX |     1 |  12:07:46 | 12:09:00 |
------------------------------------------------

If you recall, we saw this table way back in Chapter 2 when I first introduced this
dataset. This rendering provides a little more detail on the data than we’ve typically
shown, explicitly highlighting the fact that the nine scores themselves belong to seven
different users, each a member of the same team. SQL provides a nice, concise way to
see the data laid out fully before we begin diving into examples.

Another nice thing about this view of the data is that it fully captures the event time
and processing time for each record. You can imagine the event-time column as
being just another piece of the original data, and the processing-time column as being
something supplied by the system (in this case, using a hypothetical Sys.MTime col‐
umn that records the processing-time modification timestamp of a given row; that is,
the time at which that row arrived in the source table), capturing the ingress time of
the records themselves into the system.

The fun thing about SQL is how easy it is to view your data in different ways. For
example, if we instead want to see the data in processing-time order (bottom-to-top
in Figure 8-6), we could simply update the ORDER BY clause:

12:10> SELECT TABLE *, Sys.MTime as ProcTime
       FROM UserScores ORDER BY ProcTime;
-----------------------------------------------
| Name  | Team  | Score | EventTime | ProcTime |
-----------------------------------------------
| Julie | TeamX |     5 |  12:00:26 | 12:05:19 |
| Ed    | TeamX |     7 |  12:02:26 | 12:05:39 |
| Amy   | TeamX |     3 |  12:03:39 | 12:06:13 |
| Fred  | TeamX |     4 |  12:04:19 | 12:06:39 |
| Julie | TeamX |     8 |  12:03:06 | 12:07:06 |
| Naomi | TeamX |     3 |  12:06:39 | 12:07:19 |
| Frank | TeamX |     9 |  12:01:26 | 12:08:19 |
| Becky | TeamX |     8 |  12:07:26 | 12:08:39 |
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| Naomi | TeamX |     1 |  12:07:46 | 12:09:00 |
------------------------------------------------

As we learned earlier, these table renderings of the data are really a partial-fidelity
view of the complete underlying TVR. If we were to instead query the full table-
oriented TVR (but only for the three most important columns, for the sake of brevity),
it would expand to something like this:

12:10> SELECT TVR Score, EventTime, Sys.MTime as ProcTime
       FROM UserScores ORDER BY ProcTime;
-----------------------------------------------------------------------
|         [-inf, 12:05:19)         |       [12:05:19, 12:05:39)       | 
| -------------------------------- | -------------------------------- | 
| | Score | EventTime | ProcTime | | | Score | EventTime | ProcTime | |
| -------------------------------- | -------------------------------- |
| -------------------------------- | |     5 |  12:00:26 | 12:05:19 | |
|                                  | -------------------------------- |
|                                  |                                  |
-----------------------------------------------------------------------
|       [12:05:39, 12:06:13)       |       [12:06:13, 12:06:39)       | 
| -------------------------------- | -------------------------------- | 
| | Score | EventTime | ProcTime | | | Score | EventTime | ProcTime | |
| -------------------------------- | -------------------------------- |
| |     5 |  12:00:26 | 12:05:19 | | |     5 |  12:00:26 | 12:05:19 | |
| |     7 |  12:02:26 | 12:05:39 | | |     7 |  12:02:26 | 12:05:39 | |
| -------------------------------- | |     3 |  12:03:39 | 12:06:13 | |
|                                  | -------------------------------- |
-----------------------------------------------------------------------
|       [12:06:39, 12:07:06)       |       [12:07:06, 12:07:19)       |
| -------------------------------- | -------------------------------- |
| | Score | EventTime | ProcTime | | | Score | EventTime | ProcTime | |
| -------------------------------- | -------------------------------- |
| |     5 |  12:00:26 | 12:05:19 | | |     5 |  12:00:26 | 12:05:19 | |
| |     7 |  12:02:26 | 12:05:39 | | |     7 |  12:02:26 | 12:05:39 | |
| |     3 |  12:03:39 | 12:06:13 | | |     3 |  12:03:39 | 12:06:13 | |
| |     4 |  12:04:19 | 12:06:39 | | |     4 |  12:04:19 | 12:06:39 | |
| -------------------------------- | |     8 |  12:03:06 | 12:07:06 | |
|                                  | -------------------------------- |
-----------------------------------------------------------------------
|       [12:07:19, 12:08:19)       |       [12:08:19, 12:08:39)       | 
| -------------------------------- | -------------------------------- | 
| | Score | EventTime | ProcTime | | | Score | EventTime | ProcTime | |
| -------------------------------- | -------------------------------- |
| |     5 |  12:00:26 | 12:05:19 | | |     5 |  12:00:26 | 12:05:19 | |
| |     7 |  12:02:26 | 12:05:39 | | |     7 |  12:02:26 | 12:05:39 | |
| |     3 |  12:03:39 | 12:06:13 | | |     3 |  12:03:39 | 12:06:13 | |
| |     4 |  12:04:19 | 12:06:39 | | |     4 |  12:04:19 | 12:06:39 | |
| |     8 |  12:03:06 | 12:07:06 | | |     8 |  12:03:06 | 12:07:06 | |
| |     3 |  12:06:39 | 12:07:19 | | |     3 |  12:06:39 | 12:07:19 | |
| -------------------------------- | |     9 |  12:01:26 | 12:08:19 | |
|                                  | -------------------------------- |
|                                  |                                  |
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-----------------------------------------------------------------------
|       [12:08:39, 12:09:00)       |         [12:09:00, now)          |
| -------------------------------- | -------------------------------- |
| | Score | EventTime | ProcTime | | | Score | EventTime | ProcTime | |
| -------------------------------- | -------------------------------- |
| |     5 |  12:00:26 | 12:05:19 | | |     5 |  12:00:26 | 12:05:19 | |
| |     7 |  12:02:26 | 12:05:39 | | |     7 |  12:02:26 | 12:05:39 | |
| |     3 |  12:03:39 | 12:06:13 | | |     3 |  12:03:39 | 12:06:13 | |
| |     4 |  12:04:19 | 12:06:39 | | |     4 |  12:04:19 | 12:06:39 | |
| |     8 |  12:03:06 | 12:07:06 | | |     8 |  12:03:06 | 12:07:06 | |
| |     3 |  12:06:39 | 12:07:19 | | |     3 |  12:06:39 | 12:07:19 | |
| |     9 |  12:01:26 | 12:08:19 | | |     9 |  12:01:26 | 12:08:19 | |
| |     8 |  12:07:26 | 12:08:39 | | |     8 |  12:07:26 | 12:08:39 | |
| -------------------------------- | |     1 |  12:07:46 | 12:09:00 | |
|                                  | -------------------------------- |
-----------------------------------------------------------------------

That’s a lot of data. Alternatively, the STREAM version would render much more com‐
pactly in this instance; thanks to there being no explicit grouping in the relation, it
looks essentially identical to the point-in-time TABLE rendering earlier, with the addi‐
tion of the trailing footer describing the range of processing time captured in the
stream so far, plus the note that the system is still waiting for more data in the stream
(assuming we’re treating the stream as unbounded; we’ll see a bounded version of the
stream shortly):

12:00> SELECT STREAM Score, EventTime, Sys.MTime as ProcTime FROM UserScores;
--------------------------------
| Score | EventTime | ProcTime |
--------------------------------
|     5 |  12:00:26 | 12:05:19 |
|     7 |  12:02:26 | 12:05:39 |
|     3 |  12:03:39 | 12:06:13 |
|     4 |  12:04:19 | 12:06:39 |
|     8 |  12:03:06 | 12:07:06 |
|     3 |  12:06:39 | 12:07:19 |
|     9 |  12:01:26 | 12:08:19 |
|     8 |  12:07:26 | 12:08:39 |
|     1 |  12:07:46 | 12:09:00 |
........ [12:00, 12:10] ........

But this is all just looking at the raw input records without any sort of transforma‐
tions. Much more interesting is when we start altering the relations. When we’ve
explored this example in the past, we’ve always started with classic batch processing
to sum up the scores over the entire dataset, so let’s do the same here. The first exam‐
ple pipeline (previously provided as Example 6-1) looked like Example 8-1 in Beam.
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Example 8-1. Summation pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals =
  input.apply(Sum.integersPerKey());

And rendered in the streams and tables view of the world, that pipeline’s execution
looked like Figure 8-7.

Figure 8-7. Streams and tables view of classic batch processing

Given that we already have our data placed into an appropriate schema, we won’t be
doing any parsing in SQL; instead, we focus on everything in the pipeline after the
parse transformation. And because we’re going with the classic batch model of
retrieving a single answer only after all of the input data have been processed, the
TABLE and STREAM views of the summation relation would look essentially identical
(recall that we’re dealing with bounded versions of our dataset for these initial, batch-
style examples; as a result, this STREAM query actually terminates with a line of dashes
and an END-OF-STREAM marker):
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12:10> SELECT TABLE SUM(Score) as Total, MAX(EventTime),
       MAX(Sys.MTime) as "MAX(ProcTime)" FROM UserScores GROUP BY Team;
------------------------------------------
| Total | MAX(EventTime) | MAX(ProcTime) |
------------------------------------------
|    48 |       12:07:46 |      12:09:00 |
------------------------------------------

12:00> SELECT STREAM SUM(Score) as Total, MAX(EventTime),
       MAX(Sys.MTime) as "MAX(ProcTime)" FROM UserScores GROUP BY Team;
------------------------------------------
| Total | MAX(EventTime) | MAX(ProcTime) |
------------------------------------------
|    48 |       12:07:46 |      12:09:00 |
------ [12:00, 12:10] END-OF-STREAM ------

More interesting is when we start adding windowing into the mix. That will give us a
chance to begin looking more closely at the temporal operations that need to be
added to SQL to support robust stream processing.

Where: windowing
As we learned in Chapter 6, windowing is a modification of grouping by key, in
which the window becomes a secondary part of a hierarchical key. As with classic
programmatic batch processing, you can window data into more simplistic windows
quite easily within SQL as it exists now by simply including time as part of the GROUP
BY parameter. Or, if the system in question provides it, you can use a built-in win‐
dowing operation. We look at SQL examples of both in a moment, but first, let’s
revisit the programmatic version from Chapter 3. Thinking back to Example 6-2, the
windowed Beam pipeline looked like that shown in Example 8-2.

Example 8-2. Summation pipeline

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES)))
  .apply(Sum.integersPerKey());

And the execution of that pipeline (in streams and tables rendering from Figure 6-5),
looked like the diagrams presented in Figure 8-8.
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Figure 8-8. Streams and tables view of windowed summation on a batch engine

As we saw before, the only material change from Figure 8-7 to 8-8 is that the table
created by the SUM operation is now partitioned into fixed, two-minute windows of
time, yielding four windowed answers at the end rather than the single global sum
that we had previously.

To do the same thing in SQL, we have two options: implicitly window by including
some unique feature of the window (e.g., the end timestamp) in the GROUP BY state‐
ment, or use a built-in windowing operation. Let’s look at both.

First, ad hoc windowing. In this case, we perform the math of calculating windows
ourselves in our SQL statement:

12:10> SELECT TABLE SUM(Score) as Total, 
         "[" || EventTime / INTERVAL '2' MINUTES || ", " || 
           (EventTime / INTERVAL '2' MINUTES) + INTERVAL '2' MINUTES ||
           ")" as Window, 
         MAX(Sys.MTime) as "MAX(ProcTime)"
       FROM UserScores
       GROUP BY Team, EventTime / INTERVAL '2' MINUTES;
------------------------------------------------
| Total | Window               | MAX(ProcTime) |
------------------------------------------------
| 14    | [12:00:00, 12:02:00) | 12:08:19      |
| 18    | [12:02:00, 12:04:00) | 12:07:06      |
| 4     | [12:04:00, 12:06:00) | 12:06:39      |
| 12    | [12:06:00, 12:08:00) | 12:09:00      |
------------------------------------------------
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14 Maths are easy to get wrong.

We can also achieve the same result using an explicit windowing statement such as
those supported by Apache Calcite:

12:10> SELECT TABLE SUM(Score) as Total,
         TUMBLE(EventTime, INTERVAL '2' MINUTES) as Window,
         MAX(Sys.MTime) as 'MAX(ProcTime)' 
       FROM UserScores
       GROUP BY Team, TUMBLE(EventTime, INTERVAL '2' MINUTES);
------------------------------------------------
| Total | Window               | MAX(ProcTime) |
------------------------------------------------
| 14    | [12:00:00, 12:02:00) | 12:08:19      |
| 18    | [12:02:00, 12:04:00) | 12:07:06      |
| 4     | [12:04:00, 12:06:00) | 12:06:39      |
| 12    | [12:06:00, 12:08:00) | 12:09:00      |
------------------------------------------------

This then begs the question: if we can implicitly window using existing SQL con‐
structs, why even bother supporting explicit windowing constructs? There are two
reasons, only the first of which is apparent in this example (we’ll see the other one in
action later on in the chapter):

1. Windowing takes care of the window-computation math for you. It’s a lot easier
to consistently get things right when you specify basic parameters like width and
slide directly rather than computing the window math yourself.14

2. Windowing allows the concise expression of more complex, dynamic groupings
such as sessions. Even though SQL is technically able to express the every-
element-within-some-temporal-gap-of-another-element relationship that defines
session windows, the corresponding incantation is a tangled mess of analytic
functions, self joins, and array unnesting that no mere mortal could be reasona‐
bly expected to conjure on their own.

Both are compelling arguments for providing first-class windowing constructs in
SQL, in addition to the ad hoc windowing capabilities that already exist.

At this point, we’ve seen what windowing looks like from a classic batch/classic rela‐
tional perspective when consuming the data as a table. But if we want to consume the
data as a stream, we get back to that third question from the Beam Model: when in
processing time do we materialize outputs?

When: triggers
The answer to that question, as before, is triggers and watermarks. However, in the
context of SQL, there’s a strong argument to be made for having a different set of
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defaults than those we introduced with the Beam Model in Chapter 3: rather than
defaulting to using a single watermark trigger, a more SQL-ish default would be to
take a cue from materialized views and trigger on every element. In other words, any
time a new input arrives, we produce a corresponding new output.

A SQL-ish default: per-record triggers.    There are two compelling benefits to using
trigger-every-record as the default:

Simplicity
The semantics of per-record updates are easy to understand; materialized views
have operated this way for years.

Fidelity
As in change data capture systems, per-record triggering yields a full-fidelity
stream rendering of a given time-varying relation; no information is lost as part
of the conversion.

The downside is primarily cost: triggers are always applied after a grouping opera‐
tion, and the nature of grouping often presents an opportunity to reduce the cardin‐
ality of data flowing through the system, thus commensurately reducing the cost of
further processing those aggregate results downstream. Even so, the benefits in clarity
and simplicity for use cases where cost is not prohibitive arguably outweigh the cog‐
nitive complexity of defaulting to a non-full-fidelity trigger up front.

Thus, for our first take at consuming aggregate team scores as a stream, let’s see what
things would look like using a per-record trigger. Beam itself doesn’t have a precise
per-record trigger, so, as demonstrated in Example 8-3, we instead use a repeated
AfterCount(1) trigger, which will fire immediately any time a new record arrives.

Example 8-3. Per-record trigger

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(AfterCount(1)))
  .apply(Sum.integersPerKey());

A streams and tables rendering of this pipeline would then look something like that
depicted in Figure 8-9.
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Figure 8-9. Streams and tables view of windowed summation on a streaming engine
with per-record triggering

An interesting side effect of using per-record triggers is how it somewhat masks the
effect of data being brought to rest because they are then immediately put back into
motion again by the trigger. Even so, the aggregate artifact from the grouping remains
at rest in the table, as the ungrouped stream of values flows away from it.

Moving back to SQL, we can see now what the effect of rendering the corresponding
time-value relation as a stream would be. It (unsurprisingly) looks a lot like the
stream of values in the animation in Figure 8-9:

12:00> SELECT STREAM SUM(Score) as Total, 
         TUMBLE(EventTime, INTERVAL '2' MINUTES) as Window,
         MAX(Sys.MTime) as 'MAX(ProcTime)'' 
       FROM UserScores
       GROUP BY Team, TUMBLE(EventTime, INTERVAL '2' MINUTES);
------------------------------------------------
| Total | Window               | MAX(ProcTime) |
------------------------------------------------
| 5     | [12:00:00, 12:02:00) | 12:05:19      |
| 7     | [12:02:00, 12:04:00) | 12:05:39      |
| 10    | [12:02:00, 12:04:00) | 12:06:13      |
| 4     | [12:04:00, 12:06:00) | 12:06:39      |
| 18    | [12:02:00, 12:04:00) | 12:07:06      |
| 3     | [12:06:00, 12:08:00) | 12:07:19      |
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| 14    | [12:00:00, 12:02:00) | 12:08:19      |
| 11    | [12:06:00, 12:08:00) | 12:08:39      |
| 12    | [12:06:00, 12:08:00) | 12:09:00      |
................ [12:00, 12:10] ................

But even for this simple use case, it’s pretty chatty. If we’re building a pipeline to pro‐
cess data for a large-scale mobile application, we might not want to pay the cost of
processing downstream updates for each and every upstream user score. This is
where custom triggers come in.

Watermark triggers.    If we were to switch the Beam pipeline to use a watermark trig‐
ger, for example, we could get exactly one output per window in the stream version of
the TVR, as demonstrated in Example 8-4 and shown in Figure 8-10.

Example 8-4. Watermark trigger

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark())
  .apply(Sum.integersPerKey());

Figure 8-10. Windowed summation with watermark triggering
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To get the same effect in SQL, we’d need language support for specifying a custom
trigger. Something like an EMIT <when> statement, such as EMIT WHEN WATERMARK
PAST <column>. This would signal to the system that the table created by the aggrega‐
tion should be triggered into a stream exactly once per row, when the input water‐
mark for the table exceeds the timestamp value in the specified column (which in this
case happens to be the end of the window).

Let’s look at this relation rendered as a stream. From the perspective of understanding
when trigger firings occur, it’s also handy to stop relying on the MTime values from the
original inputs and instead capture the current timestamp at which rows in the
stream are emitted:

12:00> SELECT STREAM SUM(Score) as Total,
         TUMBLE(EventTime, INTERVAL '2' MINUTES) as Window,
         CURRENT_TIMESTAMP as EmitTime
       FROM UserScores
       GROUP BY Team, TUMBLE(EventTime, INTERVAL '2' MINUTES)
       EMIT WHEN WATERMARK PAST WINDOW_END(Window);
-------------------------------------------
| Total | Window               | EmitTime |
-------------------------------------------
| 5     | [12:00:00, 12:02:00) | 12:06:00 |
| 18    | [12:02:00, 12:04:00) | 12:07:30 |
| 4     | [12:04:00, 12:06:00) | 12:07:41 |
| 12    | [12:06:00, 12:08:00) | 12:09:22 |
............. [12:00, 12:10] ..............

The main downside here is the late data problem due to the use of a heuristic water‐
mark, as we encountered in previous chapters. In light of late data, a nicer option
might be to also immediately output an update any time a late record shows up, using
a variation on the watermark trigger that supported repeated late firings, as shown in
Example 8-5 and Figure 8-11.

Example 8-5. Watermark trigger with late firings

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(AfterWatermark()
                   .withLateFirings(AfterCount(1))))
  .apply(Sum.integersPerKey());
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Figure 8-11. Windowed summation with on-time/late triggering

We can do the same thing in SQL by allowing the specification of two triggers:

• A watermark trigger to give us an initial value: WHEN WATERMARK PAST <column>,
with the end of the window used as the timestamp <column>.

• A repeated delay trigger for late data: AND THEN AFTER <duration>, with a <dura
tion> of 0 to give us per-record semantics.

Now that we’re getting multiple rows per window, it can also be useful to have
another two system columns available: the timing of each row/pane for a given win‐
dow relative to the watermark (Sys.EmitTiming), and the index of the pane/row for a
given window (Sys.EmitIndex, to identify the sequence of revisions for a given row/
window):

12:00> SELECT STREAM SUM(Score) as Total,
         TUMBLE(EventTime, INTERVAL '2' MINUTES) as Window,
         CURRENT_TIMESTAMP as EmitTime,
         Sys.EmitTiming, Sys.EmitIndex 
       FROM UserScores
       GROUP BY Team, TUMBLE(EventTime, INTERVAL '2' MINUTES)
       EMIT WHEN WATERMARK PAST WINDOW_END(Window)
         AND THEN AFTER 0 SECONDS;
----------------------------------------------------------------------------
| Total | Window               | EmitTime | Sys.EmitTiming | Sys.EmitIndex |
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----------------------------------------------------------------------------
| 5     | [12:00:00, 12:02:00) | 12:06:00 | on-time        | 0             |
| 18    | [12:02:00, 12:04:00) | 12:07:30 | on-time        | 0             |
| 4     | [12:04:00, 12:06:00) | 12:07:41 | on-time        | 0             |
| 14    | [12:00:00, 12:02:00) | 12:08:19 | late           | 1             |
| 12    | [12:06:00, 12:08:00) | 12:09:22 | on-time        | 0             |
.............................. [12:00, 12:10] ..............................

For each pane, using this trigger, we’re able to get a single on-time answer that is
likely to be correct, thanks to our heuristic watermark. And for any data that arrives
late, we can get an updated version of the row amending our previous results.

Repeated delay triggers.    The other main temporal trigger use case you might want is
repeated delayed updates; that is, trigger a window one minute (in processing time)
after any new data for it arrive. Note that this is different than triggering on aligned
boundaries, as you would get with a microbatch system. As Example 8-6 shows, trig‐
gering via a delay relative to the most recent new record arriving for the window/row
helps spread triggering load out more evenly than a bursty, aligned trigger would. It
also does not require any sort of watermark support. Figure 8-12 presents the results.

Example 8-6. Repeated triggering with one-minute delays

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(FixedWindows.of(TWO_MINUTES))
               .triggering(Repeatedly(UnalignedDelay(ONE_MINUTE)))
  .apply(Sum.integersPerKey());
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Figure 8-12. Windowed summation with repeated one-minute-delay triggering

The effect of using such a trigger is very similar to the per-record triggering we
started out with but slightly less chatty thanks to the additional delay introduced in
triggering, which allows the system to elide some number of the rows being pro‐
duced. Tweaking the delay allows us to tune the volume of data generated, and thus
balance the tensions of cost and timeliness as appropriate for the use case.

Rendered as a SQL stream, it would look something like this:

12:00> SELECT STREAM SUM(Score) as Total,
         TUMBLE(EventTime, INTERVAL '2' MINUTES) as Window,
         CURRENT_TIMESTAMP as EmitTime,
         Sys.EmitTiming, SysEmitIndex
       FROM UserScores
       GROUP BY Team, TUMBLE(EventTime, INTERVAL '2' MINUTES)
       EMIT AFTER 1 MINUTE;
----------------------------------------------------------------------------
| Total | Window               | EmitTime | Sys.EmitTiming | Sys.EmitIndex |
----------------------------------------------------------------------------
| 5     | [12:00:00, 12:02:00) | 12:06:19 | n/a            | 0             |
| 10    | [12:02:00, 12:04:00) | 12:06:39 | n/a            | 0             |
| 4     | [12:04:00, 12:06:00) | 12:07:39 | n/a            | 0             |
| 18    | [12:02:00, 12:04:00) | 12:08:06 | n/a            | 1             |
| 3     | [12:06:00, 12:08:00) | 12:08:19 | n/a            | 0             |
| 14    | [12:00:00, 12:02:00) | 12:09:19 | n/a            | 1             |
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| 12    | [12:06:00, 12:08:00) | 12:09:22 | n/a            | 1             |
.............................. [12:00, 12:10] ..............................

Data-driven triggers.    Before moving on to the final question in the Beam Model, it’s
worth briefly discussing the idea of data-driven triggers. Because of the dynamic way
types are handled in SQL, it might seem like data-driven triggers would be a very nat‐
ural addition to the proposed EMIT <when> clause. For example, what if we want to
trigger our summation any time the total score exceeds 10? Wouldn’t something like
EMIT WHEN Score > 10 work very naturally?

Well, yes and no. Yes, such a construct would fit very naturally. But when you think
about what would actually be happening with such a construct, you essentially would
be triggering on every record, and then executing the Score > 10 predicate to decide
whether the triggered row should be propagated downstream. As you might recall,
this sounds a lot like what happens with a HAVING clause. And, indeed, you can get the
exact same effect by simply prepending HAVING Score > 10 to the end of the query.
At which point, it begs the question: is it worth adding explicit data-driven triggers?
Probably not. Even so, it’s still encouraging to see just how easy it is to get the desired
effect of data-driven triggers using standard SQL and well-chosen defaults.

How: accumulation

So far in this section, we’ve been ignoring the Sys.Undo column that I introduced
toward the beginning of this chapter. As a result, we’ve defaulted to using accumulat‐
ing mode to answer the question of how refinements for a window/row relate to one
another. In other words, any time we observed multiple revisions of an aggregate row,
the later revisions built upon the previous revisions, accumulating new inputs
together with old ones. I opted for this approach because it matches the approach
used in an earlier chapter, and it’s a relatively straightforward translation from how
things work in a table world.

That said, accumulating mode has some major drawbacks. In fact, as we discussed in
Chapter 2, it’s plain broken for any query/pipeline with a sequence of two or more
grouping operations due to over counting. The only sane way to allow for the con‐
sumption of multiple revisions of a row within a system that allows for queries con‐
taining more than one serial grouping operation is if it operates by default in
accumulating and retracting mode. Otherwise, you run into issues where a given input
record is included multiple times in a single aggregation due to the blind incorpora‐
tion of multiple revisions for a single row.

So, when we come to the question of incorporating accumulation mode semantics
into a SQL world, the option that fits best with our goal of providing an intuitive and
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15 It’s sufficient for retractions to be used by default and not simply always because the system only needs the
option to use retractions. There are specific use cases; for example, queries with a single grouping operation
whose results are being written into an external storage system that supports per-key updates, where the sys‐
tem can detect retractions are not needed and disable them as an optimization.

natural experience is if the system uses retractions by default under the covers.15 As
noted when I introduced the Sys.Undo column earlier, if you don’t care about the
retractions (as in the examples in this section up until now), you don’t need to ask for
them. But if you do ask for them, they should be there.

Retractions in a SQL world.    To see what I mean, let’s look at another example. To moti‐
vate the problem appropriately, let’s look at a use case that’s relatively impractical 
without retractions: building session windows and writing them incrementally to a
key/value store like HBase. In this case, we’ll be producing incremental sessions from
our aggregation as they are built up. But in many cases, a given session will simply be
an evolution of one or more previous sessions. In that case, you’d really like to delete
the previous session(s) and replace it/them with the new one. But how do you do
that? The only way to tell whether a given session replaces another one is to compare
them to see whether the new one overlaps the old one. But that means duplicating
some of the session-building logic in a separate part of your pipeline. And, more
important, it means that you no longer have idempotent output, and you’ll thus need
to jump through a bunch of extra hoops if you want to maintain end-to-end exactly-
once semantics. Far better would be for the pipeline to simply tell you which sessions
were removed and which were added in their place. This is what retractions give you.

To see this in action (and in SQL), let’s modify our example pipeline to compute ses‐
sion windows with a gap duration of one minute. For simplicity and clarity, we go
back to using the default per-record trigger. Note that I’ve also shifted a few of the
data points within processing time for these session examples to make the diagram
cleaner; event-time timestamps remain the same. The updated dataset looks like this
(with shifted processing-time timestamps highlighted in yellow):

12:00> SELECT STREAM Score, EventTime, Sys.MTime as ProcTime 
       FROM UserScoresForSessions;
--------------------------------
| Score | EventTime | ProcTime |
--------------------------------
|     5 |  12:00:26 | 12:05:19 |
|     7 |  12:02:26 | 12:05:39 |
|     3 |  12:03:39 | 12:06:13 |
|     4 |  12:04:19 | 12:06:46 |  # Originally 12:06:39
|     3 |  12:06:39 | 12:07:19 |
|     8 |  12:03:06 | 12:07:33 |  # Originally 12:07:06
|     8 |  12:07:26 | 12:08:13 |  # Originally 12:08:39
|     9 |  12:01:26 | 12:08:19 |
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|     1 |  12:07:46 | 12:09:00 |
........ [12:00, 12:10] ........

To begin with, let’s look at the pipeline without retractions. After it’s clear why that
pipeline is problematic for the use case of writing incremental sessions to a key/value
store, we’ll then look at the version with retractions.

The Beam code for the nonretracting pipeline would look something like
Example 8-7. Figure 8-13 shows the results.

Example 8-7. Session windows with per-record triggering and accumulation but no
retractions

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(Sessions.withGapDuration(ONE_MINUTE))
               .triggering(Repeatedly(AfterCount(1))
               .accumulatingFiredPanes())
  .apply(Sum.integersPerKey());

Figure 8-13. Session window summation with accumulation but no retractions

And finally, rendered in SQL, the output stream would look like this:
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12:00> SELECT STREAM SUM(Score) as Total,
         SESSION(EventTime, INTERVAL '1' MINUTE) as Window,
         CURRENT_TIMESTAMP as EmitTime
       FROM UserScoresForSessions
       GROUP BY Team, SESSION(EventTime, INTERVAL '1' MINUTE);
-------------------------------------------
| Total | Window               | EmitTime |
-------------------------------------------
| 5     | [12:00:26, 12:01:26) | 12:05:19 |
| 7     | [12:02:26, 12:03:26) | 12:05:39 |
| 3     | [12:03:39, 12:04:39) | 12:06:13 |
| 7     | [12:03:39, 12:05:19) | 12:06:46 |
| 3     | [12:06:39, 12:07:39) | 12:07:19 |
| 22    | [12:02:26, 12:05:19) | 12:07:33 |
| 11    | [12:06:39, 12:08:26) | 12:08:13 |
| 36    | [12:00:26, 12:05:19) | 12:08:19 |
| 12    | [12:06:39, 12:08:46) | 12:09:00 |
............. [12:00, 12:10] ..............

The important thing to notice in here (in the animation as well as the SQL rendering)
is what the stream of incremental sessions looks like. From our holistic viewpoint, it’s
pretty easy to visually identify in the animation which later sessions supersede those
that came before. But imagine receiving elements in this stream one by one (as in the
SQL listing) and needing to write them to HBase in a way that eventually results in
the HBase table containing only the two final sessions (with values 36 and 12). How
would you do that? Well, you’d need to do a bunch of read-modify-write operations
to read all of the existing sessions for a key, compare them with the new session,
determine which ones overlap, issue deletes for the obsolete sessions, and then finally
issue a write for the new session—all at significant additional cost, and with a loss of
idempotence, which would ultimately leave you unable to provide end-to-end,
exactly-once semantics. It’s just not practical.

Contrast this then with the same pipeline, but with retractions enabled, as demon‐
strated in Example 8-8 and depicted in Figure 8-14.

Example 8-8. Session windows with per-record triggering, accumulation, and retractions

PCollection<String> raw = IO.read(...);
PCollection<KV<Team, Integer>> input = raw.apply(new ParseFn());
PCollection<KV<Team, Integer>> totals = input
  .apply(Window.into(Sessions.withGapDuration(ONE_MINUTE))
               .triggering(Repeatedly(AfterCount(1))
               .accumulatingAndRetractingFiredPanes())
  .apply(Sum.integersPerKey());
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16 Note that it’s a little odd for the simple addition of a new column in the SELECT statement to result in a new
rows appearing in a query. A fine alternative approach would be to require Sys.Undo rows to be filtered out
via a WHERE clause when not needed.

Figure 8-14. Session window summation with accumulation and retractions

And, lastly, in SQL form. For the SQL version, we’re assuming that the system is using
retractions under the covers by default, and individual retraction rows are then mate‐
rialized in the stream any time we request the special Sys.Undo column.16 As I
described originally, the value of that column is that it allows us to distinguish retrac‐
tion rows (labeled undo in the Sys.Undo column) from normal rows (unlabeled in the
Sys.Undo column here for clearer contrast, though they could just as easily be labeled
redo, instead):

12:00> SELECT STREAM SUM(Score) as Total,
         SESSION(EventTime, INTERVAL '1' MINUTE) as Window,
         CURRENT_TIMESTAMP as EmitTime,
         Sys.Undo as Undo
       FROM UserScoresForSessions
       GROUP BY Team, SESSION(EventTime, INTERVAL '1' MINUTE);
--------------------------------------------------
| Total | Window               | EmitTime | Undo |
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17 Note that this triviality applies only in cases for which eventual consistency is sufficient. If you need to always
have a globally coherent view of all sessions at any given time, you must 1) be sure to write/delete (via tomb‐
stones) each session at its emit time, and 2) only ever read from the HBase table at a timestamp that is less
than the output watermark from your pipeline (to synchronize reads against the multiple, independent
writes/deletes that happen when sessions merge). Or better yet, cut out the middle person and serve the ses‐
sions from your state tables directly.

--------------------------------------------------
| 5     | [12:00:26, 12:01:26) | 12:05:19 |      |
| 7     | [12:02:26, 12:03:26) | 12:05:39 |      |
| 3     | [12:03:39, 12:04:39) | 12:06:13 |      |
| 3     | [12:03:39, 12:04:39) | 12:06:46 | undo |
| 7     | [12:03:39, 12:05:19) | 12:06:46 |      |
| 3     | [12:06:39, 12:07:39) | 12:07:19 |      |
| 7     | [12:02:26, 12:03:26) | 12:07:33 | undo |
| 7     | [12:03:39, 12:05:19) | 12:07:33 | undo |
| 22    | [12:02:26, 12:05:19) | 12:07:33 |      |
| 3     | [12:06:39, 12:07:39) | 12:08:13 | undo |
| 11    | [12:06:39, 12:08:26) | 12:08:13 |      |
| 5     | [12:00:26, 12:01:26) | 12:08:19 | undo |
| 22    | [12:02:26, 12:05:19) | 12:08:19 | undo |
| 36    | [12:00:26, 12:05:19) | 12:08:19 |      |
| 11    | [12:06:39, 12:08:26) | 12:09:00 | undo |
| 12    | [12:06:39, 12:08:46) | 12:09:00 |      |
................. [12:00, 12:10] .................

With retractions included, the sessions stream no longer just includes new sessions,
but also retractions for the old sessions that have been replaced. With this stream, it’s
trivial17 to properly build up the set of sessions in HBase over time: you simply write
new sessions as they arrive (unlabeled redo rows) and delete old sessions as they’re
retracted (undo rows). Much better!

Discarding mode, or lack thereof.    With this example, we’ve shown how simply and nat‐
urally you can incorporate retractions into SQL to provide both accumulating mode
and accumulating and retracting mode semantics. But what about discarding mode?

For specific use cases such as very simple pipelines that partially aggregate high-
volume input data via a single grouping operation and then write them into a storage
system, which itself supports aggregation (e.g., a database-like system), discarding
mode can be extremely valuable as a resource-saving option. But outside of those rel‐
atively narrow use cases, discarding mode is confusing and error-prone. As such, it’s
probably not worth incorporating directly into SQL. Systems that need it can provide
it as an option outside of the SQL language itself. Those that don’t can simply provide
the more natural default of accumulating and retracting mode, with the option to
ignore retractions when they aren’t needed.
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18 To be clear, they’re not all hypothetical. Calcite has support for the windowing constructs described in this
chapter.

Summary
This has been a long journey but a fascinating one. We’ve covered a ton of informa‐
tion in this chapter, so let’s take a moment to reflect on it all.

First, we reasoned that the key difference between streaming and nonstreaming data
processing is the added dimension of time. We observed that relations (the founda‐
tional data object from relational algebra, which itself is the basis for SQL) themselves
evolve over time, and from that derived the notion of a TVR, which captures the evo‐
lution of a relation as a sequence of classic snapshot relations over time. From that
definition, we were able to see that the closure property of relational algebra remains
intact in a world of TVRs, which means that the entire suite of relational operators
(and thus SQL constructs) continues to function as one would expect as we move
from a world of point-in-time snapshot relations into a streaming-compatible world
of TVRs.

Second, we explored the biases inherent in both the Beam Model and the classic SQL
model as they exist today, coming to the conclusion that Beam has a stream-oriented
approach, whereas SQL takes a table-oriented approach.

And finally, we looked at the hypothetical language extensions needed to add support
for robust stream processing to SQL,18 as well as some carefully chosen defaults that
can greatly decrease the need for those extensions to be used:

Table/stream selection
Given that any time-varying relation can be rendered in two different ways (table
or stream), we need the ability to choose which rendering we want when materi‐
alizing the results of a query. We introduced the TABLE, STREAM, and TVR key‐
words to provide a nice explicit way to choose the desired rendering.

Even better is not needing to explicitly specify a choice, and that’s where good
defaults come in. If all the inputs are tables, a good default is for the output to be
a table, as well; this gives you the classic relational query behavior everyone is
accustomed to. Conversely, if any of the inputs are streams, a reasonable default
is for the output to be a stream, as well.

Windowing
Though you can declare some types of simple windows declaratively using exist‐
ing SQL constructs, there is still value in having explicit windowing operators:
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• Windowing operators encapsulate the window-computation math.
• Windowing allows the concise expression of complex, dynamic groupings

like sessions.

Thus, the addition of simple windowing constructs for use in grouping can help
make queries less error prone while also providing capabilities (like sessions) that
are impractical to express in declarative SQL as it exists today.

Watermarks
This isn’t so much a SQL extension as it is a system-level feature. If the system in
question integrates watermarks under the covers, they can be used in conjunc‐
tion with triggers to generate streams containing a single, authoritative version of
a row only after the input for that row is believed to be complete. This is critical
for use cases in which it’s impractical to poll a materialized view table for results,
and instead the output of the pipeline must be consumed directly as a stream.
Examples are notifications and anomaly detection.

Triggers
Triggers define the shape of a stream as it is created from a TVR. If unspecified,
the default should be per-record triggering, which provides straightforward and
natural semantics matching those of materialized views. Beyond the default,
there are essentially two main types of useful triggers:

• Watermark triggers, for yielding a single output per window when the inputs
to that window are believed to be complete.

• Repeated delay triggers, for providing periodic updates.

Combinations of those two can also be useful, especially in the case of heuristic
watermarks, to provide the early/on-time/late pattern we saw earlier.

Special system columns
When consuming a TVR as a stream, there are some interesting metadata that
can be useful and which are most easily exposed as system-level columns. We
looked at four:

Sys.MTime

The processing time at which a given row was last modified in a TVR.

Sys.EmitTiming

The timing of the row emit relative to the watermark (early, on-time, late).
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19 Note that the definition of “index” becomes complicated in the case of merging windows like sessions. A rea‐
sonable approach is to take the maximum of all of the previous sessions being merged together and increment
by one.

Sys.EmitIndex

The zero-based index of the emit version for this row.19

Sys.Undo

Whether the row is a normal row or a retraction (undo). By default, the sys‐
tem should operate with retractions under the covers, as is necessary any
time a series of more than one grouping operation might exist. If the
Sys.Undo column is not projected when rendering a TVR as a stream, only
normal rows will be returned, providing a simple way to toggle between
accumulating and accumulating and retracting modes.

Stream processing with SQL doesn’t need to be difficult. In fact, stream processing in
SQL is quite common already in the form of materialized views. The important pieces
really boil down to capturing the evolution of datasets/relations over time (via time-
varying relations), providing the means of choosing between physical table or stream
representations of those time-varying relations, and providing the tools for reasoning
about time (windowing, watermarks, and triggers) that we’ve been talking about
throughout this book. And, critically, you need good defaults to minimize how often
these extensions need to be used in practice.
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CHAPTER 9

Streaming Joins

When I first began learning about joins, it was an intimidating topic; LEFT, OUTER,
SEMI, INNER, CROSS: the language of joins is expressive and expansive. Add on top of
that the dimension of time that streaming brings to the table, and you’re left with
what appears to be a challengingly complex topic. The good news is that joins really
aren’t the frightening beast with nasty, pointy teeth that they might initially appear to
be. As is the case with so many other complex topics, after you understand the central
ideas and themes of joins, the broader landscape that’s built on top of these basics
suddenly becomes so much more accessible. So please join me now as we explore the
fascinating topic of...well, joins.

All Your Joins Are Belong to Streaming
What does it mean to join two datasets? We understand intuitively that joins are just
a specific type of grouping operation: by joining together data that share some prop‐
erty (i.e., key), we collect together some number of previously unrelated individual
data elements into a group of related elements. And as we learned in Chapter 6,
grouping operations always consume a stream and yield a table. Knowing these two
things, it’s only a small leap to then arrive at the conclusion that forms the basis for
this entire chapter: at their hearts, all joins are streaming joins.

What’s great about this fact is that it actually makes the topic of streaming joins that
much more tractable. All of the tools we’ve learned for reasoning about time within
the context of streaming grouping operations (windowing, watermarks, triggers, etc.)
continue to apply in the case of streaming joins. What’s perhaps intimidating is that
adding streaming to the mix seems like it could only serve to complicate things. But
as you’ll see in the examples that follow, there’s a certain elegant simplicity and consis‐
tency to modeling all joins as streaming joins. Instead of feeling like there are a con‐
founding multitude of different join approaches, it becomes clear that nearly all types
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of joins really boil down to minor variations on the same pattern. In the end, that
clarity of insight helps makes joins (streaming or otherwise) much less intimidating.

To give us something concrete to reason about, let’s consider a number of different
types of joins as they’re applied to the following datasets, conveniently named Left
and Right to match the common nomenclature:

12:10> SELECT TABLE * FROM Left;        12:10> SELECT TABLE * FROM Right;
--------------------                    --------------------
| Num | Id | Time  |                    | Num | Id | Time  |
--------------------                    --------------------
| 1   | L1 | 12:02 |                    | 2   | R2 | 12:01 |
| 2   | L2 | 12:06 |                    | 3   | R3 | 12:04 |
| 3   | L3 | 12:03 |                    | 4   | R4 | 12:05 |
--------------------                    --------------------

Each contains three columns:

Num

A single number.

Id

A portmanteau of the first letter in the name of the corresponding table (“L” or
“R”) and the Num, thus providing a way to uniquely identify the source of a given
cell in join results.

Time

The arrival time of the given record in the system, which becomes important
when considering streaming joins.

To keep things simple, note that our initial datasets will have strictly unique join keys.
When we get to SEMI joins, we’ll introduce some more complicated datasets to high‐
light join behavior in the presence of duplicate keys.

We first look at unwindowed joins in a great deal of depth because windowing often
affects join semantics in only a minor way. After we exhaust our appetite for unwin‐
dowed joins, we then touch upon some of the more interesting points of joins in a
windowed context.

Unwindowed Joins
It’s a popular myth that streaming joins over unbounded data always require window‐
ing. But by applying the concepts we learned in Chapter 6, we can see that’s simply
not true. Joins (both windowed and unwindowed) are simply another type of group‐
ing operation, and grouping operations yield tables. Thus, if we want to consume the
table created by an unwindowed join (or, equivalently, joins within a single global
window covering all of time) as a stream, we need only apply an ungrouping (or
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1 From a conceptual perspective, at least. There are many different ways to implement each of these types of
joins, some of which are likely much more efficient than performing an actual FULL OUTER join and then fil‐
tering down its results, especially when the rest of the query and the distribution of the data are taken into
consideration.

trigger) operation that isn’t of the “wait until we’ve seen all the input” variety. Win‐
dowing the join into a nonglobal window and using a watermark trigger (i.e., a “wait
until we’ve seen all the input in a finite temporal chunk of the stream” trigger) is
indeed one option, but so is triggering on every record (i.e., materialized view seman‐
tics) or periodically as processing time advances, regardless of whether the join is
windowed or not. Because it makes the examples easy to follow, we assume the use of
an implicit default per-record trigger in all of the following unwindowed join exam‐
ples that observe the join results as a stream.

Now, onto joins themselves. ANSI SQL defines five types of joins: FULL OUTER, LEFT
OUTER, RIGHT OUTER, INNER, and CROSS. We look at the first four in depth, and discuss
the last only briefly in the next paragraph. We also touch on two other interesting, but
less-often encountered (and less well supported, at least using standard syntax) varia‐
tions: ANTI and SEMI joins.

On the surface, it sounds like a lot of variations. But as you’ll see, there’s really only
one type of join at the core: the FULL OUTER join. A CROSS join is just a FULL OUTER
join with a vacuously true join predicate; that is, it returns every possible pairing of a
row from the left table with a row from the right table. All of the other join variations
simply reduce down to some logical subset of the FULL OUTER join.1 As a result, after
you understand the commonality between all the different join types, it becomes a lot
easier to keep them all in your head. It also makes reasoning about them in the con‐
text of streaming all that much simpler.

One last note here before we get started: we’ll be primarily considering equi joins
with at most 1:1 cardinality, by which I mean joins in which the join predicate is an
equality statement and there is at most one matching row on each side of the join.
This keeps the examples simple and concise. When we get to SEMI joins, we’ll expand
our example to consider joins with arbitrary N:M cardinality, which will let us
observe the behavior of more arbitrary predicate joins.

FULL OUTER
Because they form the conceptual foundation for each of the other variations, we first
look at FULL OUTER joins. Outer joins embody a rather liberal and optimistic interpre‐
tation of the word “join”: the result of FULL OUTER–joining two datasets is essentially
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2 Again, ignoring what happens when there are duplicate join keys; more on this when we get to SEMI joins.

the full list of rows in both datasets,2 with rows in the two datasets that share the same
join key combined together, but unmatched rows for either side included unjoined.

For example, if we FULL OUTER–join our two example datasets into a new relation
containing only the joined IDs, the result would look something like this:

12:10> SELECT TABLE 
         Left.Id as L, 
         Right.Id as R,
       FROM Left FULL OUTER JOIN Right
       ON L.Num = R.Num;
---------------
| L    | R    |
---------------
| L1   | null | 
| L2   | R2   |
| L3   | R3   |
| null | R4   |
---------------

We can see that the FULL OUTER join includes both rows that satisfied the join predi‐
cate (e.g., “L2, R2” and “L3, R3”), but it also includes partial rows that failed the
predicate (e.g., “L1, null” and “null, R4”, where the null is signaling the unjoined
portion of the data).

Of course, that’s just a point-in-time snapshot of this FULL OUTER–join relation, taken
after all of the data have arrived in the system. We’re here to learn about streaming
joins, and streaming joins by definition involve the added dimension of time. As we
know from Chapter 8, if we want to understand how a given dataset/relation changes
over time, we want to speak in terms of time-varying relations (TVRs). So to best
understand how the join evolves over time, let’s look now at the full TVR for this join
(with changes between each snapshot relation highlighted in yellow):

12:10> SELECT TVR
         Left.Id as L,
         Right.Id as R,
       FROM Left FULL OUTER JOIN Right
       ON L.Num = R.Num;
-------------------------------------------------------------------------
|  [-inf, 12:01)  |  [12:01, 12:02) |  [12:02, 12:03) |  [12:03, 12:04) |
| --------------- | --------------- | --------------- | --------------- |
| | L    | R    | | | L    | R    | | | L    | R    | | | L    | R    | |
| --------------- | --------------- | --------------- | --------------- |
| --------------- | | null | R2   | | | L1   | null | | | L1   | null | | 
|                 | --------------- | | null | R2   | | | null | R2   | |
|                 |                 | --------------- | | L3   | null | |
|                 |                 |                 | --------------- |

256 | Chapter 9: Streaming Joins



-------------------------------------------------------------------------
|  [12:04, 12:05) |  [12:05, 12:06) |  [12:06, 12:07) |
| --------------- | --------------- | --------------- |
| | L    | R    | | | L    | R    | | | L    | R    | |
| --------------- | --------------- | --------------- |
| | L1   | null | | | L1   | null | | | L1   | null | |
| | null | R2   | | | null | R2   | | | L2   | R2   | |
| | L3   | R3   | | | L3   | R3   | | | L3   | R3   | |
| --------------- | | null | R4   | | | null | R4   | |
|                 | --------------- | --------------- |
-------------------------------------------------------

And, as you might then expect, the stream rendering of this TVR would capture the
specific deltas between each of those snapshots:

12:00> SELECT STREAM 
         Left.Id as L,
         Right.Id as R, 
         CURRENT_TIMESTAMP as Time,
         Sys.Undo as Undo
       FROM Left FULL OUTER JOIN Right
       ON L.Num = R.Num;
------------------------------
| L    | R    | Time  | Undo |
------------------------------
| null | R2   | 12:01 |      |
| L1   | null | 12:02 |      |
| L3   | null | 12:03 |      |
| L3   | null | 12:04 | undo |
| L3   | R3   | 12:04 |      |
| null | R4   | 12:05 |      |
| null | R2   | 12:06 | undo |
| L2   | R2   | 12:06 |      |
....... [12:00, 12:10] .......

Note the inclusion of the Time and Undo columns, to highlight the times when given
rows materialize in the stream, and also call out instances when an update to a given
row first results in a retraction of the previous version of that row. The undo/retrac‐
tion rows are critical if this stream is to capture a full-fidelity view of the TVR over
time.

So, although each of these three renderings of the join (table, TVR, stream) are dis‐
tinct from one another, it’s also pretty clear how they’re all just different views on the
same data: the table snapshot shows us the overall dataset as it exists after all the data
have arrived, and the TVR and stream versions capture (in their own ways) the evo‐
lution of the entire relation over the course of its existence.

With that basic familiarity of FULL OUTER joins in place, we now understand all of the
core concepts of joins in a streaming context. No windowing needed, no custom trig‐
gers, nothing particularly painful or unintuitive. Just a per-record evolution of the
join over time, as you would expect. Even better, all of the other types of joins are just
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variations on this theme (conceptually, at least), essentially just an additional filtering
operation performed on the per-record stream of the FULL OUTER join. Let’s now look
at each of them in more detail.

LEFT OUTER
LEFT OUTER joins are a just a FULL OUTER join with any unjoined rows from the right
dataset removed. This is most clearly seen by taking the original FULL OUTER join and
graying out the rows that would be filtered. For a LEFT OUTER join, that would look
like the following, where every row with an unjoined left side is filtered out of the
original FULL OUTER join:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left LEFT OUTER JOIN Right          FROM Left LEFT OUTER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L1   | null |                          | null | R2   | 12:01 |      |
| L2   | R2   |                          | L1   | null | 12:02 |      |
| L3   | R3   |                          | L3   | null | 12:03 |      |
| null | R4   |                          | L3   | null | 12:04 | undo |
---------------                          | L3   | R3   | 12:04 |      |
                                         | null | R4   | 12:05 |      |
                                         | null | R2   | 12:06 | undo |
                                         | L2   | R2   | 12:06 |      |
                                         ....... [12:00, 12:10] .......

To see what the table and stream would actually look like in practice, let’s look at the
same queries again, but this time with the grayed-out rows omitted entirely:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left LEFT OUTER JOIN Right          FROM Left LEFT OUTER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L1   | null |                          | L1   | null | 12:02 |      |
| L2   | R2   |                          | L3   | null | 12:03 |      |
| L3   | R3   |                          | L3   | null | 12:04 | undo |
---------------                          | L3   | R3   | 12:04 |      |
                                         | L2   | R2   | 12:06 |      |
                                         ....... [12:00, 12:10] .......
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RIGHT OUTER
RIGHT OUTER joins are the converse of a left join: all unjoined rows from the left data‐
set in the full outer join are right out, *cough*, removed:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left RIGHT OUTER JOIN Right         FROM Left RIGHT OUTER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L1   | null |                          | null | R2   | 12:01 |      |
| L2   | R2   |                          | L1   | null | 12:02 |      |
| L3   | R3   |                          | L3   | null | 12:03 |      |
| null | R4   |                          | L3   | null | 12:04 | undo |
---------------                          | L3   | R3   | 12:04 |      |
                                         | null | R4   | 12:05 |      |
                                         | null | R2   | 12:06 | undo |
                                         | L2   | R2   | 12:06 |      |
                                         ....... [12:00, 12:10] .......

And here we see how the queries rendered as the actual RIGHT OUTER join would
appear:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left RIGHT OUTER JOIN Right         FROM Left RIGHT OUTER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L2   | R2   |                          | null | R2   | 12:01 |      |
| L3   | R3   |                          | L3   | R3   | 12:04 |      |
| null | R4   |                          | null | R4   | 12:05 |      |
---------------                          | null | R2   | 12:06 | undo |
                                         | L2   | R2   | 12:06 |      |
                                         ....... [12:00, 12:10] .......

INNER
INNER joins are essentially the intersection of the LEFT OUTER and RIGHT OUTER joins.
Or, to think of it subtractively, the rows removed from the original FULL OUTER join
to create an INNER join are the union of the rows removed from the LEFT OUTER and
RIGHT OUTER joins. As a result, all rows that remain unjoined on either side are absent
from the INNER join:
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                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left INNER JOIN Right               FROM Left INNER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L1   | null |                          | null | R2   | 12:01 |      |
| L2   | R2   |                          | L1   | null | 12:02 |      |
| L3   | R3   |                          | L3   | null | 12:03 |      |
| null | R4   |                          | L3   | null | 12:04 | undo |
---------------                          | L3   | R3   | 12:04 |      |
                                         | null | R4   | 12:05 |      |
                                         | null | R2   | 12:06 | undo |
                                         | L2   | R2   | 12:06 |      |
                                         ....... [12:00, 12:10] .......

And again, more succinctly rendered as the INNER join would look in reality:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left INNER JOIN Right               FROM Left INNER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L2   | R2   |                          | L3   | R3   | 12:04 |      |
| L3   | R3   |                          | L2   | R2   | 12:06 |      |
---------------                          ....... [12:00, 12:10] .......

Given this example, you might be inclined to think retractions never play a part in
INNER join streams because they were all filtered out in this example. But imagine if
the value in the Left table for the row with a Num of 3 were updated from “L3” to
“L3v2” at 12:07. In addition to resulting in a different value on the left side for our
final TABLE query (again performed at 12:10, which is after the update to row 3 on the
Left arrived), it would also result in a STREAM that captures both the removal of the
old value via a retraction and the addition of the new value:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM LeftV2 INNER JOIN Right             FROM LeftV2 INNER JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                           ------------------------------
| L    | R    |                           | L    | R    | Time  | Undo |
---------------                           ------------------------------
| L2   | R2   |                           | L3   | R3   | 12:04 |      |
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| L3v2 | R3   |                           | L2   | R2   | 12:06 |      |
---------------                           | L3   | R3   | 12:07 | undo | 
                                          | L3v2 | R3   | 12:07 |      |
                                          ....... [12:00, 12:10] .......

ANTI
ANTI joins are the obverse of the INNER join: they contain all of the unjoined rows. Not
all SQL systems support a clean ANTI join syntax, but I’ll use the most straightforward
one here for clarity:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left ANTI JOIN Right                FROM Left ANTI JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          -------------------------------
| L    | R    |                          | L    |    R | Time  | Undo |
---------------                          ------------------------------
| L1   | null |                          | null | R2   | 12:01 |      |
| L2   | R2   |                          | L1   | null | 12:02 |      |
| L3   | R3   |                          | L3   | null | 12:03 |      |
| null | R4   |                          | L3   | null | 12:04 | undo |
---------------                          | L3   | R3   | 12:04 |      |
                                         | null | R4   | 12:05 |      |
                                         | null | R2   | 12:06 | undo |
                                         | L2   | R2   | 12:06 |      |
                                         ....... [12:00, 12:10] .......

What’s slightly interesting about the stream rendering of the ANTI join is that it ends
up containing a bunch of false-starts and retractions for rows which eventually do
end up joining; in fact, the ANTI join is as heavy on retractions as the INNER join is
light. The more concise versions would look like this:

                                         12:00> SELECT STREAM Left.Id as L, 
12:10> SELECT TABLE                               Right.Id as R,
         Left.Id as L,                            Sys.EmitTime as Time, 
         Right.Id as R                            Sys.Undo as Undo 
       FROM Left ANTI JOIN Right               FROM Left ANTI JOIN Right
       ON L.Num = R.Num;                        ON L.Num = R.Num;
---------------                          ------------------------------
| L    | R    |                          | L    | R    | Time  | Undo |
---------------                          ------------------------------
| L1   | null |                          | null | R2   | 12:01 |      |
| null | R4   |                          | L1   | null | 12:02 |      |
---------------                          | L3   | null | 12:03 |      | 
                                         | L3   | null | 12:04 | undo |
                                         | null | R4   | 12:05 |      |
                                         | null | R2   | 12:06 | undo |
                                         ....... [12:00, 12:10] .......
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SEMI
We now come to SEMI joins, and SEMI joins are kind of weird. At first glance, they
basically look like inner joins with one side of the joined values being dropped. And,
indeed, in cases for which the cardinality relationship of <side-being-kept>:<side-
being-dropped> is N:M with M ≤ 1, this works (note that we’ll be using kept=Left,
dropped=Right for all the examples that follow). For example, on the Left and Right
datasets we’ve used so far (which had cardinalities of 0:1, 1:0, and 1:1 for the joined
data), the INNER and SEMI join variations look identical:

12:10> SELECT TABLE            12:10> SELECT TABLE
  Left.Id as L                   Left.Id as L
FROM Left INNER JOIN           FROM Left SEMI JOIN
Right ON L.Num = R.Num;        Right ON L.Num = R.Num;
---------------                ---------------
| L    | R    |                | L    | R    |
---------------                ---------------
| L1   | null |                | L1   | null |
| L2   | R2   |                | L2   | R2   |
| L3   | R3   |                | L3   | R3   |
| null | R4   |                | null | R4   |
---------------                ---------------

However, there’s an additional subtlety to SEMI joins in the case of N:M cardinality
with M > 1: because the values on the M side are not being returned, the SEMI join
simply predicates the join condition on there being any matching row on the right,
rather than repeatedly yielding a new result for every matching row.

To see this clearly, let’s switch to a slightly more complicated pair of input relations
that highlight the N:M join cardinality of the rows contained therein. In these rela‐
tions, the N_M column states what the cardinality relationship of rows is between the
left and right sides, and the Id column (as before) provides an identifier that is
unique for each row in each of the input relations:

12:15> SELECT TABLE * FROM LeftNM;    12:15> SELECT TABLE * FROM RightNM;
---------------------                 ---------------------
| N_M | Id  |  Time |                 | N_M | Id  |  Time |
---------------------                 ---------------------
| 1:0 | L2  | 12:07 |                 | 0:1 | R1  | 12:02 |
| 1:1 | L3  | 12:01 |                 | 1:1 | R3  | 12:14 |
| 1:2 | L4  | 12:05 |                 | 1:2 | R4A | 12:03 |
| 2:1 | L5A | 12:09 |                 | 1:2 | R4B | 12:04 |
| 2:1 | L5B | 12:08 |                 | 2:1 | R5  | 12:06 |
| 2:2 | L6A | 12:12 |                 | 2:2 | R6A | 12:11 |
| 2:2 | L6B | 12:10 |                 | 2:2 | R6B | 12:13 |
---------------------                 ---------------------
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With these inputs, the FULL OUTER join expands to look like these:

                                       12:00> SELECT STREAM
                                                COALESCE(LeftNM.N_M, 
12:15> SELECT TABLE                                      RightNM.N_M) as N_M, 
         COALESCE(LeftNM.N_M,                     LeftNM.Id as L,
                  RightNM.N_M) as N_M,            RightNM.Id as R, 
         LeftNM.Id as L,                        Sys.EmitTime as Time, 
         RightNM.Id as R,                         Sys.Undo as Undo
       FROM LeftNM                            FROM LeftNM 
         FULL OUTER JOIN RightNM                FULL OUTER JOIN RightNM
         ON LeftNM.N_M = RightNM.N_M;           ON LeftNM.N_M = RightNM.N_M;
---------------------                  ------------------------------------
| N_M | L    | R    |                  | N_M | L    | R    | Time  | Undo |
---------------------                  ------------------------------------
| 0:1 | null | R1   |                  | 1:1 | L3   | null | 12:01 |      |
| 1:0 | L2   | null |                  | 0:1 | null | R1   | 12:02 |      |
| 1:1 | L3   | R3   |                  | 1:2 | null | R4A  | 12:03 |      |
| 1:2 | L4   | R4A  |                  | 1:2 | null | R4B  | 12:04 |      |
| 1:2 | L4   | R4B  |                  | 1:2 | null | R4A  | 12:05 | undo |
| 2:1 | L5A  | R5   |                  | 1:2 | null | R4B  | 12:05 | undo |
| 2:1 | L5B  | R5   |                  | 1:2 | L4   | R4A  | 12:05 |      |
| 2:2 | L6A  | R6A  |                  | 1:2 | L4   | R4B  | 12:05 |      |
| 2:2 | L6A  | R6B  |                  | 2:1 | null | R5   | 12:06 |      |
| 2:2 | L6B  | R6A  |                  | 1:0 | L2   | null | 12:07 |      |
| 2:2 | L6B  | R6B  |                  | 2:1 | null | R5   | 12:08 | undo |
---------------------                  | 2:1 | L5B  | R5   | 12:08 |      |
                                       | 2:1 | L5A  | R5   | 12:09 |      |
                                       | 2:2 | L6B  | null | 12:10 |      |
                                       | 2:2 | L6B  | null | 12:11 | undo |
                                       | 2:2 | L6B  | R6A  | 12:11 |      |
                                       | 2:2 | L6A  | R6A  | 12:12 |      |
                                       | 2:2 | L6A  | R6B  | 12:13 |      |
                                       | 2:2 | L6B  | R6B  | 12:13 |      |
                                       | 1:1 | L3   | null | 12:14 | undo |
                                       | 1:1 | L3   | R3   | 12:14 |      |
                                       .......... [12:00, 12:15] ..........

As a side note, one additional benefit of these more complicated datasets is that the
multiplicative nature of joins when there are multiple rows on each side matching the
same predicate begins to become more clear (e.g., the “2:2” rows, which expand from
two rows in each the inputs to four rows in the output; if the dataset had a set of “3:3”
rows, they’d expand from three rows in each of the inputs to nine rows in the output,
and so on).

But back to the subtleties of SEMI joins. With these datasets, it becomes much clearer
what the difference between the filtered INNER join and the SEMI join is: the INNER
join yields duplicate values for any of the rows where the N:M cardinality has M > 1,
whereas the SEMI join doesn’t (note that I’ve highlighted the duplicate rows in the
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INNER join version in red, and included in gray the portions of the full outer join that
are omitted in the respective INNER and SEMI versions):

12:15> SELECT TABLE                       12:15> SELECT TABLE
         COALESCE(LeftNM.N_M,                      COALESCE(LeftNM.N_M,
                  RightNM.N_M) as N_M,                      RightNM.N_M) as N_M,
         LeftNM.Id as L                            LeftNM.Id as L
       FROM LeftNM INNER JOIN RightNM            FROM LeftNM SEMI JOIN RightNM
       ON LeftNM.N_M = RightNM.N_M;              ON LeftNM.N_M = RightNM.N_M;
---------------------                     ---------------------
| N_M | L    | R    |                     | N_M | L    | R    |
---------------------                     ---------------------
| 0:1 | null | R1   |                     | 0:1 | null | R1   |
| 1:0 | L2   | null |                     | 1:0 | L2   | null |
| 1:1 | L3   | R3   |                     | 1:1 | L3   | R3   |
| 1:2 | L4   | R5A  |                     | 1:2 | L4   | R5A  |
| 1:2 | L4   | R5B  |                     | 1:2 | L4   | R5B  |
| 2:1 | L5A  | R5   |                     | 2:1 | L5A  | R5   |
| 2:1 | L5B  | R5   |                     | 2:1 | L5B  | R5   |
| 2:2 | L6A  | R6A  |                     | 2:2 | L6A  | R6A  |
| 2:2 | L6A  | R6B  |                     | 2:2 | L6A  | R6B  |
| 2:2 | L6B  | R6A  |                     | 2:2 | L6B  | R6A  |
| 2:2 | L6B  | R6B  |                     | 2:2 | L6B  | R6B  |
---------------------                     ---------------------

Or, rendered more succinctly:

12:15> SELECT TABLE                       12:15> SELECT TABLE
         COALESCE(LeftNM.N_M,                      COALESCE(LeftNM.N_M,
                  RightNM.N_M) as N_M,                      RightNM.N_M) as N_M,
         LeftNM.Id as L                            LeftNM.Id as L
       FROM LeftNM INNER JOIN RightNM            FROM LeftNM SEMI JOIN RightNM
       ON LeftNM.N_M = RightNM.N_M;              ON LeftNM.N_M = RightNM.N_M;
-------------                             -------------
| N_M | L   |                             | N_M | L   |
-------------                             -------------
| 1:1 | L3  |                             | 1:1 | L3  |
| 1:2 | L4  |                             | 1:2 | L4  |
| 1:2 | L4  |                             | 2:1 | L5A |
| 2:1 | L5A |                             | 2:1 | L5B |
| 2:1 | L5B |                             | 2:2 | L6A |
| 2:2 | L6A |                             | 2:2 | L6B |
| 2:2 | L6A |                             -------------
| 2:2 | L6B |
| 2:2 | L6B |
-------------

The STREAM renderings then provide a bit of context as to which rows are filtered out
—they are simply the later-arriving duplicate rows (from the perspective of the col‐
umns being projected):
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12:00> SELECT STREAM                        12:00> SELECT STREAM
         COALESCE(LeftNM.N_M,                        COALESCE(LeftNM.N_M,
                  RightNM.N_M) as N_M,                        RightNM.N_M) as N_M,
         LeftNM.Id as L                              LeftNM.Id as L
         Sys.EmitTime as Time,                       Sys.EmitTime as Time,
         Sys.Undo as Undo,                           Sys.Undo as Undo,
       FROM LeftNM INNER JOIN RightNM              FROM LeftNM SEMI JOIN RightNM
       ON LeftNM.N_M = RightNM.N_M;                ON LeftNM.N_M = RightNM.N_M;
------------------------------------        ------------------------------------
| N_M | L    | R    | Time  | Undo |        | N_M | L    | R    | Time  | Undo |
------------------------------------        ------------------------------------
| 1:1 | L3   | null | 12:01 |      |        | 1:1 | L3   | null | 12:01 |      |
| 0:1 | null | R1   | 12:02 |      |        | 0:1 | null | R1   | 12:02 |      |
| 1:2 | null | R4A  | 12:03 |      |        | 1:2 | null | R4A  | 12:03 |      |
| 1:2 | null | R4B  | 12:04 |      |        | 1:2 | null | R4B  | 12:04 |      |
| 1:2 | null | R4A  | 12:05 | undo |        | 1:2 | null | R4A  | 12:05 | undo |
| 1:2 | null | R4B  | 12:05 | undo |        | 1:2 | null | R4B  | 12:05 | undo |
| 1:2 | L4   | R4A  | 12:05 |      |        | 1:2 | L4   | R4A  | 12:05 |      |
| 1:2 | L4   | R4B  | 12:05 |      |        | 1:2 | L4   | R4B  | 12:05 |      |
| 2:1 | null | R5   | 12:06 |      |        | 2:1 | null | R5   | 12:06 |      |
| 1:0 | L2   | null | 12:07 |      |        | 1:0 | L2   | null | 12:07 |      |
| 2:1 | null | R5   | 12:08 | undo |        | 2:1 | null | R5   | 12:08 | undo |
| 2:1 | L5B  | R5   | 12:08 |      |        | 2:1 | L5B  | R5   | 12:08 |      |
| 2:1 | L5A  | R5   | 12:09 |      |        | 2:1 | L5A  | R5   | 12:09 |      |
| 2:2 | L6B  | null | 12:10 |      |        | 2:2 | L6B  | null | 12:10 |      |
| 2:2 | L6B  | null | 12:10 | undo |        | 2:2 | L6B  | null | 12:10 | undo |
| 2:2 | L6B  | R6A  | 12:11 |      |        | 2:2 | L6B  | R6A  | 12:11 |      |
| 2:2 | L6A  | R6A  | 12:12 |      |        | 2:2 | L6A  | R6A  | 12:12 |      |
| 2:2 | L6A  | R6B  | 12:13 |      |        | 2:2 | L6A  | R6B  | 12:13 |      |
| 2:2 | L6B  | R6B  | 12:13 |      |        | 2:2 | L6B  | R6B  | 12:13 |      |
| 1:1 | L3   | null | 12:14 | undo |        | 1:1 | L3   | null | 12:14 | undo |
| 1:1 | L3   | R3   | 12:14 |      |        | 1:1 | L3   | R3   | 12:14 |      |
.......... [12:00, 12:15] ..........        .......... [12:00, 12:15] ..........

And again, rendered succinctly:

12:00> SELECT STREAM                        12:00> SELECT STREAM
         COALESCE(LeftNM.N_M,                        COALESCE(LeftNM.N_M,
                  RightNM.N_M) as N_M,                        RightNM.N_M) as N_M,
         LeftNM.Id as L                              LeftNM.Id as L
         Sys.EmitTime as Time,                       Sys.EmitTime as Time,
         Sys.Undo as Undo,                           Sys.Undo as Undo,
       FROM LeftNM INNER JOIN RightNM              FROM LeftNM SEMI JOIN RightNM
       ON LeftNM.N_M = RightNM.N_M;                ON LeftNM.N_M = RightNM.N_M;
----------------------------                ----------------------------
| N_M | L   | Time  | Undo |                | N_M | L   | Time  | Undo |
----------------------------                ----------------------------
| 1:2 | L4  | 12:05 |      |                | 1:2 | L4  | 12:05 |      |
| 1:2 | L4  | 12:05 |      |                | 2:1 | L5B | 12:08 |      |
| 2:1 | L5B | 12:08 |      |                | 2:1 | L5A | 12:09 |      |
| 2:1 | L5A | 12:09 |      |                | 2:2 | L6B | 12:11 |      |
| 2:2 | L6B | 12:11 |      |                | 2:2 | L6A | 12:12 |      |
| 2:2 | L6A | 12:12 |      |                | 1:1 | L3  | 12:14 |      |
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3 From a conceptual perspective, at least. There are, of course, many different ways to implement each of these
types of joins, some of which might be much more efficient than performing an actual FULL OUTER join and
then filtering down its results, depending on the rest of the query and the distribution of the data.

| 2:2 | L6A | 12:13 |      |                ...... [12:00, 12:15] ......
| 2:2 | L6B | 12:13 |      |
| 1:1 | L3  | 12:14 |      |
...... [12:00, 12:15] ......      

As we’ve seen over the course of a number of examples, there’s really nothing special
about streaming joins. They function exactly as we might expect given our knowledge
of streams and tables, with join streams capturing the history of the join over time as
it evolves. This is in contrast to join tables, which simply capture a snapshot of the
entire join as it exists at a specific point in time, as we’re perhaps more accustomed.

But, even more important, viewing joins through the lens of stream-table theory has
lent some additional clarity. The core underlying join primitive is the FULL OUTER
join, which is a stream → table grouping operation that collects together all the joined
and unjoined rows in a relation. All of the other variants we looked at in detail (LEFT
OUTER, RIGHT OUTER, INNER, ANTI, and SEMI) simply add an additional layer of filter‐
ing on the joined stream following the FULL OUTER join.3

Windowed Joins
Having looked at a variety of unwindowed joins, let’s next explore what windowing
adds to the mix. I would argue that there are two motivations for windowing your
joins:

To partition time in some meaningful way
An obvious case is fixed windows; for example, daily windows, for which events
that occurred in the same day should be joined together for some business reason
(e.g., daily billing tallies). Another might be limiting the range of time within a
join for performance reasons. However, it turns out there are even more sophisti‐
cated (and useful) ways of partitioning time in joins, including one particularly
interesting use case that no streaming system I’m aware of today supports
natively: temporal validity joins. More on this in just a bit.

To provide a meaningful reference point for timing out a join
This is useful for a number of unbounded join situations, but it is perhaps most
obviously beneficial for use cases like outer joins, for which it is unknown a pri‐
ori if one side of the join will ever show up. For classic batch processing (includ‐
ing standard interactive SQL queries), outer joins are timed out only when the
bounded input dataset has been fully processed. But when processing unbounded
data, we can’t wait for all data to be processed. As we discussed in Chapters 2 and
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3, watermarks provide a progress metric for gauging the completeness of an
input source in event time. But to make use of that metric for timing out a join,
we need some reference point to compare against. Windowing a join provides
that reference by bounding the extent of the join to the end of the window. After
the watermark passes the end of the window, the system may consider the input
for the window complete. At that point, just as in the bounded join case, it’s safe
to time out any unjoined rows and materialize their partial results.

That said, as we saw earlier, windowing is absolutely not a requirement for streaming
joins. It makes a lot of sense in a many cases, but by no means is it a necessity.

In practice, most of the use cases for windowed joins (e.g., daily windows) are rela‐
tively straightforward and easy to extrapolate from the concepts we’ve learned up
until now. To see why, we look briefly at what it means to apply fixed windows to
some of the join examples we already encountered. After that, we spend the rest of
this chapter investigating the much more interesting (and mind-bending) topic of
temporal validity joins, looking first in detail at what I mean by temporal validity win‐
dows, and then moving on to looking at what joins mean within the context of such
windows.

Fixed Windows
Windowing a join adds the dimension of time into the join criteria themselves. In
doing so, the window serves to scope the set of rows being joined to only those con‐
tained within the window’s time interval. This is perhaps more clearly seen with an
example, so let’s take our original Left and Right tables and window them into five-
minute fixed windows:

12:10> SELECT TABLE *,                     12:10> SELECT TABLE *,
       TUMBLE(Time, INTERVAL '5' MINUTE)          TUMBLE(Time, INTERVAL '5' MINUTE)
       as Window FROM Left;                       as Window FROM Right
-------------------------------------      -------------------------------------
| Num | Id | Time  | Window         |      | Num | Id | Time  | Window         |
-------------------------------------      -------------------------------------
| 1   | L1 | 12:02 | [12:00, 12:05) |      | 2   | R2 | 12:01 | [12:00, 12:05) |
| 2   | L2 | 12:06 | [12:05, 12:10) |      | 3   | R3 | 12:04 | [12:00, 12:05) |
| 3   | L3 | 12:03 | [12:00, 12:05) |      | 4   | R4 | 12:05 | [12:05, 12:10) |
-------------------------------------      -------------------------------------

In our previous Left and Right examples, the join criterion was simply Left.Num =
Right.Num. To turn this into a windowed join, we would expand the join criteria to
include window equality, as well: Left.Num = Right.Num AND Left.Window =

Right.Window. Knowing that, we can already infer from the preceding windowed
tables how our join is going to change (highlighted for clarity): because the L2 and R2
rows do not fall within the same five-minute fixed window, they will not be joined
together in the windowed variant of our join.
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And indeed, if we compare the unwindowed and windowed variants side-by-side as
tables, we can see this clearly (with the corresponding L2 and R2 rows highlighted on
each side of the join):

                                 12:10> SELECT TABLE 
                                          Left.Id as L,
                                          Right.Id as R,
                                          COALESCE(
                                            TUMBLE(Left.Time, INTERVAL '5' MINUTE),
                                            TUMBLE(Right.Time, INTERVAL '5' MINUTE)
12:10> SELECT TABLE                       ) AS Window
         Left.Id as L,                  FROM Left
         Right.Id as R,                   FULL OUTER JOIN Right 
       FROM Left                          ON L.Num = R.Num AND 
         FULL OUTER JOIN Right              TUMBLE(Left.Time, INTERVAL '5' MINUTE) =
         ON L.Num = R.Num;                  TUMBLE(Right.Time, INTERVAL '5' MINUTE);
---------------                  --------------------------------
| L    | R    |                  | L    | R    | Window         |
---------------                  --------------------------------
| L1   | null |                  | L1   | null | [12:00, 12:05) |
| L2   | R2   |                  | null | R2   | [12:00, 12:05) |
| L3   | R3   |                  | L3   | R3   | [12:00, 12:05) |
| null | R4   |                  | L2   | null | [12:05, 12:10) |
---------------                  | null | R4   | [12:05, 12:10) |
                                 --------------------------------

The difference is also readily apparent when comparing the unwindowed and win‐
dowed joins as streams. As I’ve highlighted in the example that follows, they differ
primarily in their final rows. The unwindowed side completes the join for Num = 2,
yielding a retraction for the unjoined R2 row in addition to a new row for the comple‐
ted L2, R2 join. The windowed side, on the other hand, simply yields an unjoined L2
row because L2 and R2 fall within different five-minute windows:

                                 12:10> SELECT STREAM 
                                          Left.Id as L,
                                          Right.Id as R,
                                          Sys.EmitTime as Time,
                                          COALESCE(
                                            TUMBLE(Left.Time, INTERVAL '5' MINUTE),
12:10> SELECT STREAM                        TUMBLE(Right.Time, INTERVAL '5' MINUTE)
         Left.Id as L,                    ) AS Window,
         Right.Id as R,                 Sys.Undo as Undo
         Sys.EmitTime as Time,          FROM Left
         Sys.Undo as Undo                 FULL OUTER JOIN Right
       FROM Left                          ON L.Num = R.Num AND
         FULL OUTER JOIN Right              TUMBLE(Left.Time, INTERVAL '5' MINUTE) =
         ON L.Num = R.Num;                  TUMBLE(Right.Time, INTERVAL '5' MINUTE);
------------------------------   -----------------------------------------------
| L    | R    | Time  | Undo |   | L    | R    | Time  | Window         | Undo |
------------------------------   -----------------------------------------------
| null | R2   | 12:01 |      |   | null | R2   | 12:01 | [12:00, 12:05) |      |
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| L1   | null | 12:02 |      |   | L1   | null | 12:02 | [12:00, 12:05) |      |
| L3   | null | 12:03 |      |   | L3   | null | 12:03 | [12:00, 12:05) |      |
| L3   | null | 12:04 | undo |   | L3   | null | 12:04 | [12:00, 12:05) | undo |
| L3   | R3   | 12:04 |      |   | L3   | R3   | 12:04 | [12:00, 12:05) |      |
| null | R4   | 12:05 |      |   | null | R4   | 12:05 | [12:05, 12:10) |      |
| null | R2   | 12:06 | undo |   | L2   | null | 12:06 | [12:05, 12:10) |      |
| L2   | R2   | 12:06 |      |   ............... [12:00, 12:10] ................
....... [12:00, 12:10] .......

And with that, we now understand the effects of windowing on a FULL OUTER join. By
applying the rules we learned in the first half of the chapter, it’s then easy to derive the
windowed variants of LEFT OUTER, RIGHT OUTER, INNER, ANTI, and SEMI joins, as well.
I will leave most of these derivations as an exercise for you to complete, but to give a
single example, LEFT OUTER join, as we learned, is just the FULL OUTER join with null
columns on the left side of the join removed (again, with L2 and R2 rows highlighted
to compare the differences):

                                 12:10> SELECT TABLE 
                                          Left.Id as L,
                                          Right.Id as R,
                                          COALESCE(
                                            TUMBLE(Left.Time, INTERVAL '5' MINUTE),
                                            TUMBLE(Right.Time, INTERVAL '5' MINUTE)
12:10> SELECT TABLE                       ) AS Window
         Left.Id as L,                  FROM Left
         Right.Id as R,                   LEFT OUTER JOIN Right 
       FROM Left                          ON L.Num = R.Num AND 
         LEFT OUTER JOIN Right              TUMBLE(Left.Time, INTERVAL '5' MINUTE) =
         ON L.Num = R.Num;                  TUMBLE(Right.Time, INTERVAL '5' MINUTE);
---------------                  --------------------------------
| L    | R    |                  | L    | R    | Window         |
---------------                  --------------------------------
| L1   | null |                  | L1   | null | [12:00, 12:05) |
| L2   | R2   |                  | L2   | null | [12:05, 12:10) |
| L3   | R3   |                  | L3   | R3   | [12:00, 12:05) |
---------------                  --------------------------------

By scoping the region of time for the join into fixed five-minute intervals, we chop‐
ped our datasets into two distinct windows of time: [12:00, 12:05) and [12:05,
12:10). The exact same join logic we observed earlier was then applied within those
regions, yielding a slightly different outcome for the case in which the L2 and R2 rows
fell into separate regions. And at a basic level, that’s really all there is to windowed
joins.

Temporal Validity
Having looked at the basics of windowed joins, we now spend the rest of the chapter look‐
ing at a somewhat more advanced approach: temporal validity windowing.
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4 Note that the example data and the temporal join use case motivating it are lifted almost wholesale from
Julian Hyde’s excellent “Streams, joins, and temporal tables” document.

Temporal validity windows
Temporal validity windows apply in situations in which the rows in a relation effec‐
tively slice time into regions wherein a given value is valid. More concretely, imagine
a financial system for performing currency conversions.4 Such a system might con‐
tain a time-varying relation that captured the current conversion rates for various
types of currency. For example, there might be a relation for converting from differ‐
ent currencies to Yen, like this:

12:10> SELECT TABLE * FROM YenRates;
--------------------------------------
| Curr | Rate | EventTime | ProcTime |
--------------------------------------
| USD  | 102  | 12:00:00  | 12:04:13 |
| Euro | 114  | 12:00:30  | 12:06:23 |
| Yen  | 1    | 12:01:00  | 12:05:18 |
| Euro | 116  | 12:03:00  | 12:09:07 |
| Euro | 119  | 12:06:00  | 12:07:33 |
--------------------------------------

To highlight what I mean by saying that temporal validity windows “effectively slice
time into regions wherein a given value is valid,” consider only the Euro-to-Yen con‐
version rates in that relation:

12:10> SELECT TABLE * FROM YenRates WHERE Curr = "Euro";
--------------------------------------
| Curr | Rate | EventTime | ProcTime |
--------------------------------------
| Euro | 114  | 12:00:30  | 12:06:23 |
| Euro | 116  | 12:03:00  | 12:09:07 |
| Euro | 119  | 12:06:00  | 12:07:33 |
--------------------------------------

From a database engineering perspective, we understand that these values don’t mean
that the rate for converting Euros to Yen is 114 ¥/€ at precisely 12:00, 116 ¥/€ at 12:03,
119 ¥/€ at 12:06, and undefined at all other times. Instead, we know that the intent of
this table is to capture the fact that the conversion rate for Euros to Yen is undefined
until 12:00, 114 ¥/€ from 12:00 to 12:03, 116 ¥/€ from 12:03 to 12:06, and 119 ¥/€
from then on. Or drawn out in a timeline:
        Undefined              114 ¥/€                116 ¥/€              119 ¥/€
|----[-inf, 12:00)----|----[12:00, 12:03)----|----[12:03, 12:06)----|----[12:06, now)----→

Now, if we knew all of the rates ahead of time, we could capture these regions explic‐
itly in the row data themselves. But if we instead need to build up these regions incre‐
mentally, based only upon the start times at which a given rate becomes valid, we
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have a problem: the region for a given row will change over time depending on the
rows that come after it. This is a problem even if the data arrive in order (because
every time a new rate arrives, the previous rate changes from being valid forever to
being valid until the arrival time of the new rate), but is further compounded if they
can arrive out of order. For example, using the processing-time ordering in the pre‐
ceding YenRates table, the sequence of timelines our table would effectively represent
over time would be as follows:
Range of processing time | Event-time validity timeline during that range of processing-time
=========================|==============================================================================
                         |
                         |      Undefined
        [-inf, 12:06:23) | |--[-inf, +inf)---------------------------------------------------------→
                         |
                         |      Undefined          114 ¥/€
    [12:06:23, 12:07:33) | |--[-inf, 12:00)--|--[12:00, +inf)--------------------------------------→
                         |
                         |      Undefined          114 ¥/€                              119 ¥/€
    [12:07:33, 12:09:07) | |--[-inf, 12:00)--|--[12:00, 12:06)---------------------|--[12:06, +inf)→
                         |
                         |      Undefined          114 ¥/€            116 ¥/€           119 ¥/€
         [12:09:07, now) | |--[-inf, 12:00)--|--[12:00, 12:03)--|--[12:03, 12:06)--|--[12:06, +inf)→

Or, if we wanted to render this as a time-varying relation (with changes between each
snapshot relation highlighted in yellow):
12:10> SELECT TVR * FROM YenRatesWithRegion ORDER BY EventTime;
---------------------------------------------------------------------------------------------
|              [-inf, 12:06:23)               |            [12:06:23, 12:07:33)             |
| ------------------------------------------- | ------------------------------------------- |
| | Curr | Rate |  Region        | ProcTime | | | Curr | Rate |  Region        | ProcTime | |
| ------------------------------------------- | ------------------------------------------- |
| ------------------------------------------- | | Euro | 114  | [12:00, +inf)  | 12:06:23 | |
|                                             | ------------------------------------------- |
---------------------------------------------------------------------------------------------
|            [12:07:33, 12:09:07)             |              [12:09:07, +inf)               |
| ------------------------------------------- | ------------------------------------------- |
| | Curr | Rate |  Region        | ProcTime | | | Curr | Rate |  Region        | ProcTime | |
| ------------------------------------------- | ------------------------------------------- |
| | Euro | 114  | [12:00, 12:06) | 12:06:23 | | | Euro | 114  | [12:00, 12:03) | 12:06:23 | |
| | Euro | 119  | [12:06, +inf)  | 12:07:33 | | | Euro | 116  | [12:03, 12:06) | 12:09:07 | |
| ------------------------------------------- | | Euro | 119  | [12:06, +inf)  | 12:07:33 | |
|                                             | ------------------------------------------- |
---------------------------------------------------------------------------------------------

What’s important to note here is that half of the changes involve updates to multiple
rows. That maybe doesn’t sound so bad, until you recall that the difference between
each of these snapshots is the arrival of exactly one new row. In other words, the
arrival of a single new input row results in transactional modifications to multiple
output rows. That sounds less good. On the other hand, it also sounds a lot like the
multirow transactions involved in building up session windows. And indeed, this is
yet another example of windowing providing benefits beyond simple partitioning of
time: it also affords the ability to do so in ways that involve complex, multirow trans‐
actions.
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5 It’s a partial implementation because it only works if the windows exist in isolation, as in Figure 9-1. As soon
as you mix the windows with other data, such as the joining examples below, you would need some mecha‐
nism for splitting the data from the shrunken window into two separate windows, which Beam does not cur‐
rently provide.

To see this in action, let’s look at an animation. If this were a Beam pipeline, it would
probably look something like the following:

PCollection<Currency, Decimal> yenRates = ...;
PCollection<Decimal> validYenRates = yenRates
    .apply(Window.into(new ValidityWindows())
    .apply(GroupByKey.<Currency, Decimal>create());

Rendered in a streams/tables animation, that pipeline would look like that shown in
Figure 9-1.

Figure 9-1. Temporal validity windowing over time

This animation highlights a critical aspect of temporal validity: shrinking windows.
Validity windows must be able to shrink over time, thereby diminishing the reach of
their validity and splitting any data contained therein across the two new windows.
See the code snippets on GitHub for an example partial implementation.5

In SQL terms, the creation of these validity windows would look something like the
following (using a hypothetical VALIDITY_WINDOW construct), viewed as a table:
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12:10> SELECT TABLE 
         Curr,
         MAX(Rate) as Rate,
         VALIDITY_WINDOW(EventTime) as Window
       FROM YenRates 
       GROUP BY
         Curr,
         VALIDITY_WINDOW(EventTime)
       HAVING Curr = "Euro";
--------------------------------
| Curr | Rate | Window         |
--------------------------------
| Euro | 114  | [12:00, 12:03) |
| Euro | 116  | [12:03, 12:06) |
| Euro | 119  | [12:06, +inf)  |
--------------------------------

Validity Windows in Standard SQL
Note that it’s possible to describe validity windows in standard SQL using a three-way
self-join:

SELECT
  r1.Curr,
  MAX(r1.Rate) AS Rate,
  r1.EventTime AS WindowStart,
  r2.EventTime AS WIndowEnd
FROM YenRates r1
LEFT JOIN YenRates r2
  ON r1.Curr = r2.Curr
     AND r1.EventTime < r2.EventTime
LEFT JOIN YenRates r3
  ON r1.Curr = r3.Curr
     AND r1.EventTime < r3.EventTime 
     AND r3.EventTime < r2.EventTime
WHERE r3.EventTime IS NULL
GROUP BY r1.Curr, WindowStart, WindowEnd
HAVING r1.Curr = 'Euro';

Thanks to Martin Kleppmann for pointing this out.

Windowed Joins | 273



Or, perhaps more interestingly, viewed as a stream:

12:00> SELECT STREAM
         Curr,
         MAX(Rate) as Rate,
         VALIDITY_WINDOW(EventTime) as Window,
         Sys.EmitTime as Time,
         Sys.Undo as Undo,
       FROM YenRates
       GROUP BY
         Curr,
         VALIDITY_WINDOW(EventTime) 
       HAVING Curr = "Euro";
--------------------------------------------------
| Curr | Rate | Window         | Time     | Undo |
--------------------------------------------------
| Euro | 114  | [12:00, +inf)  | 12:06:23 |      |
| Euro | 114  | [12:00, +inf)  | 12:07:33 | undo |
| Euro | 114  | [12:00, 12:06) | 12:07:33 |      | 
| Euro | 119  | [12:06, +inf)  | 12:07:33 |      |
| Euro | 114  | [12:00, 12:06) | 12:09:07 | undo | 
| Euro | 114  | [12:00, 12:03) | 12:09:07 |      |
| Euro | 116  | [12:03, 12:06) | 12:09:07 |      |
................. [12:00, 12:10] .................

Great, we have an understanding of how to use point-in-time values to effectively
slice up time into ranges within which those values are valid. But the real power of
these temporal validity windows is when they are applied in the context of joining
them with other data. That’s where temporal validity joins come in.

Temporal validity joins
To explore the semantics of temporal validity joins, suppose that our financial appli‐
cation contains another time-varying relation, one that tracks currency-conversion
orders from various currencies to Yen:

12:10> SELECT TABLE * FROM YenOrders;
----------------------------------------
| Curr | Amount | EventTime | ProcTime |
----------------------------------------
| Euro | 2      | 12:02:00  | 12:05:07 |
| USD  | 1      | 12:03:00  | 12:03:44 |
| Euro | 5      | 12:05:00  | 12:08:00 |
| Yen  | 50     | 12:07:00  | 12:10:11 |
| Euro | 3      | 12:08:00  | 12:09:33 |
| USD  | 5      | 12:10:00  | 12:10:59 |
----------------------------------------
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And for simplicity, as before, let’s focus on the Euro conversions:

12:10> SELECT TABLE * FROM YenOrders WHERE Curr = "Euro";
----------------------------------------
| Curr | Amount | EventTime | ProcTime |
----------------------------------------
| Euro | 2      | 12:02:00  | 12:05:07 |
| Euro | 5      | 12:05:00  | 12:08:00 |
| Euro | 3      | 12:08:00  | 12:09:33 |
----------------------------------------

We’d like to robustly join these orders to the YenRates relation, treating the rows in
YenRates as defining validity windows. As such, we’ll actually want to join to the
validity-windowed version of the YenRates relation we constructed at the end of the
last section:

12:10> SELECT TABLE
         Curr,
         MAX(Rate) as Rate,
         VALIDITY_WINDOW(EventTime) as Window
       FROM YenRates
       GROUP BY
         Curr,
         VALIDITY_WINDOW(EventTime)
       HAVING Curr = "Euro";
--------------------------------
| Curr | Rate | Window         |
--------------------------------
| Euro | 114  | [12:00, 12:03) |
| Euro | 116  | [12:03, 12:06) |
| Euro | 119  | [12:06, +inf)  |
--------------------------------

Fortunately, after we have our conversion rates placed into validity windows, a win‐
dowed join between those rates and the YenOrders relation gives us exactly what we
want:

12:10> WITH ValidRates AS
         (SELECT
            Curr,
            MAX(Rate) as Rate,
            VALIDITY_WINDOW(EventTime) as Window
          FROM YenRates
          GROUP BY
            Curr,
            VALIDITY_WINDOW(EventTime))
       SELECT TABLE
         YenOrders.Amount as "E",
         ValidRates.Rate as "Y/E", 
         YenOrders.Amount * ValidRates.Rate as "Y",
         YenOrders.EventTime as Order, 
         ValidRates.Window as "Rate Window"
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       FROM YenOrders FULL OUTER JOIN ValidRates 
         ON YenOrders.Curr = ValidRates.Curr
           AND WINDOW_START(ValidRates.Window) <= YenOrders.EventTime
           AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
       HAVING Curr = "Euro";
-------------------------------------------
| E | Y/E | Y   | Order  | Rate Window    |
-------------------------------------------
| 2 | 114 | 228 | 12:02  | [12:00, 12:03) |
| 5 | 116 | 580 | 12:05  | [12:03, 12:06) |
| 3 | 119 | 357 | 12:08  | [12:06, +inf)  |
-------------------------------------------

Thinking back to our original YenRates and YenOrders relations, this joined relation
indeed looks correct: each of the three conversions ended up with the (eventually)
appropriate rate for the given window of event time within which their correspond‐
ing order fell. So we have a decent sense that this join is doing what we want in terms
of providing us the eventual correctness we want.

That said, this simple snapshot view of the relation, taken after all the values have
arrived and the dust has settled, belies the complexity of this join. To really under‐
stand what’s going on here, we need to look at the full TVR. First, recall that the
validity-windowed conversion rate relation was actually much more complex than
the previous simple table snapshot view might lead you to believe. For reference,
here’s the STREAM version of the validity windows relation, which better highlights the
evolution of those conversion rates over time:

12:00> SELECT STREAM
         Curr,
         MAX(Rate) as Rate,
         VALIDITY_WINDOW(EventTime) as Window,
         Sys.EmitTime as Time,
         Sys.Undo as Undo,
       FROM YenRates
       GROUP BY
         Curr,
         VALIDITY_WINDOW(EventTime)
       HAVING Curr = "Euro";
--------------------------------------------------
| Curr | Rate | Window         | Time     | Undo |
--------------------------------------------------
| Euro | 114  | [12:00, +inf)  | 12:06:23 |      |
| Euro | 114  | [12:00, +inf)  | 12:07:33 | undo |
| Euro | 114  | [12:00, 12:06) | 12:07:33 |      | 
| Euro | 119  | [12:06, +inf)  | 12:07:33 |      |
| Euro | 114  | [12:00, 12:06) | 12:09:07 | undo | 
| Euro | 114  | [12:00, 12:03) | 12:09:07 |      |
| Euro | 116  | [12:03, 12:06) | 12:09:07 |      |
................. [12:00, 12:10] .................
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As a result, if we look at the full TVR for our validity-windowed join, you can see that
the corresponding evolution of this join over time is much more complicated, due to
the out-of-order arrival of values on both sides of the join:
12:10> WITH ValidRates AS
         (SELECT
            Curr,
            MAX(Rate) as Rate,
            VALIDITY_WINDOW(EventTime) as Window
          FROM YenRates
          GROUP BY
            Curr,
            VALIDITY_WINDOW(EventTime))
       SELECT TVR
         YenOrders.Amount as "E",
         ValidRates.Rate as "Y/E", 
         YenOrders.Amount * ValidRates.Rate as "Y",
         YenOrders.EventTime as Order,
         ValidRates.Window as "Rate Window"
       FROM YenOrders FULL OUTER JOIN ValidRates 
         ON YenOrders.Curr = ValidRates.Curr
           AND WINDOW_START(ValidRates.Window) <= YenOrders.EventTime
           AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
       HAVING Curr = "Euro";
-------------------------------------------------------------------------------------------
|              [-inf, 12:05:07)              |            [12:05:07, 12:06:23)            |
| ------------------------------------------ | ------------------------------------------ |
| | E | Y/E | Y   | Order | Rate Window    | | | E | Y/E | Y   | Order | Rate Window    | |
| ------------------------------------------ | ------------------------------------------ |
| ------------------------------------------ | | 2 |     |     | 12:02 |                | |
|                                            | ------------------------------------------ |
-------------------------------------------------------------------------------------------
|            [12:06:23, 12:07:33)            |            [12:07:33, 12:08:00)            |
| ------------------------------------------ | ------------------------------------------ |
| | E | Y/E | Y   | Order | Rate Window    | | | E | Y/E | Y   | Order | Rate Window    | |
| ------------------------------------------ | ------------------------------------------ |
| | 2 | 114 | 228 | 12:02 | [12:00, +inf)  | | | 2 | 114 | 228 | 12:02 | [12:00, 12:06) | |
| ------------------------------------------ | |   | 119 |     |       | [12:06, +inf)  | |
|                                            | ------------------------------------------ |
-------------------------------------------------------------------------------------------
|            [12:08:00, 12:09:07)            |            [12:09:07, 12:09:33)            |
| ------------------------------------------ | ------------------------------------------ |
| | E | Y/E | Y   | Order | Rate Window    | | | E | Y/E | Y   | Order | Rate Window    | |
| ------------------------------------------ | ------------------------------------------ |
| | 2 | 114 | 228 | 12:02 | [12:00, 12:06) | | | 2 | 114 | 228 | 12:02 | [12:00, 12:03) | |
| | 5 | 114 | 570 | 12:05 | [12:00, 12:06) | | | 5 | 116 | 580 | 12:05 | [12:03, 12:06) | |
| |   | 119 |     |       | [12:06, +inf)  | | |   | 119 |     | 12:08 | [12:06, +inf)  | |
| ------------------------------------------ | ------------------------------------------ |
-------------------------------------------------------------------------------------------
|               [12:09:33, now)              |
| ------------------------------------------ |
| | E | Y/E | Y   | Order | Rate Window    | |
| ------------------------------------------ |
| | 2 | 114 | 228 | 12:02 | [12:00, 12:03) | |
| | 5 | 116 | 580 | 12:05 | [12:03, 12:06) | |
| | 3 | 119 | 357 | 12:08 | [12:06, +inf)  | |
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| ------------------------------------------ |
----------------------------------------------

In particular, the result for the 5 € order is originally quoted at 570 ¥ because that
order (which happened at 12:05) originally falls into the validity window for the 114
¥/€ rate. But when the 116 ¥/€ rate for event time 12:03 arrives out of order, the result
for the 5 € order must be updated from 570 ¥ to 580 ¥. This is also evident if you
observe the results of the join as a stream (here I’ve highlighted the incorrect 570 ¥ in
red, and the retraction for 570 ¥ and subsequent corrected value of 580 ¥ in blue):

12:00> WITH ValidRates AS
         (SELECT
            Curr,
            MAX(Rate) as Rate,
            VALIDITY_WINDOW(EventTime) as Window
          FROM YenRates
          GROUP BY
            Curr,
            VALIDITY_WINDOW(EventTime))
       SELECT STREAM
         YenOrders.Amount as "E",
         ValidRates.Rate as "Y/E", 
         YenOrders.Amount * ValidRates.Rate as "Y",
         YenOrders.EventTime as Order,
         ValidRates.Window as "Rate Window",
         Sys.EmitTime as Time,
         Sys.Undo as Undo
       FROM YenOrders FULL OUTER JOIN ValidRates 
         ON YenOrders.Curr = ValidRates.Curr
           AND WINDOW_START(ValidRates.Window) <= YenOrders.EventTime
           AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
       HAVING Curr = “Euro”;
------------------------------------------------------------
| E | Y/E | Y   | Order | Rate Window    | Time     | Undo | 
------------------------------------------------------------
| 2 |     |     | 12:02 |                | 12:05:07 |      |
| 2 |     |     | 12:02 |                | 12:06:23 | undo |
| 2 | 114 | 228 | 12:02 | [12:00, +inf)  | 12:06:23 |      |
| 2 | 114 | 228 | 12:02 | [12:00, +inf)  | 12:07:33 | undo |
| 2 | 114 | 228 | 12:02 | [12:00, 12:06) | 12:07:33 |      |
|   | 119 |     |       | [12:06, +inf)  | 12:07:33 |      |
| 5 | 114 | 570 | 12:05 | [12:00, 12:06) | 12:08:00 |      |
| 2 | 114 | 228 | 12:02 | [12:00, 12:06) | 12:09:07 | undo |
| 5 | 114 | 570 | 12:05 | [12:00, 12:06) | 12:09:07 | undo |
| 2 | 114 | 228 | 12:02 | [12:00, 12:03) | 12:09:07 |      |
| 5 | 116 | 580 | 12:05 | [12:03, 12:06) | 12:09:07 |      |
|   | 119 |     |       | [12:06, +inf)  | 12:09:33 | undo |
| 3 | 119 | 357 | 12:08 | [12:06, +inf)  | 12:09:33 |      |
...................... [12:00, 12:10] ......................

It’s worth calling out that this is a fairly messy stream due to the use of a FULL OUTER
join. In reality, when consuming conversion orders as a stream, you probably don’t
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care about unjoined rows; switching to an INNER join helps eliminate those rows. You
probably also don’t care about cases for which the rate window changes, but the
actual conversion value isn’t affected. By removing the rate window from the stream,
we can further decrease its chattiness:

12:00> WITH ValidRates AS
         (SELECT
            Curr,
            MAX(Rate) as Rate,
            VALIDITY_WINDOW(EventTime) as Window
          FROM YenRates
          GROUP BY
            Curr,
            VALIDITY_WINDOW(EventTime))
       SELECT STREAM
         YenOrders.Amount as "E",
         ValidRates.Rate as "Y/E", 
         YenOrders.Amount * ValidRates.Rate as "Y",
         YenOrders.EventTime as Order,
         ValidRates.Window as "Rate Window",
         Sys.EmitTime as Time,
         Sys.Undo as Undo
       FROM YenOrders INNER JOIN ValidRates 
         ON YenOrders.Curr = ValidRates.Curr
           AND WINDOW_START(ValidRates.Window) <= YenOrders.EventTime
           AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
       HAVING Curr = "Euro";
-------------------------------------------
| E | Y/E | Y   | Order | Time     | Undo |
-------------------------------------------
| 2 | 114 | 228 | 12:02 | 12:06:23 |      |
| 5 | 114 | 570 | 12:05 | 12:08:00 |      |
| 5 | 114 | 570 | 12:05 | 12:09:07 | undo |
| 5 | 116 | 580 | 12:05 | 12:09:07 |      |
| 3 | 119 | 357 | 12:08 | 12:09:33 |      |
............. [12:00, 12:10] ..............

Much nicer. We can now see that this query very succinctly does what we originally
set out to do: join two TVRs for currency conversion rates and orders in a robust way
that is tolerant of data arriving out of order. Figure 9-2 visualizes this query as an ani‐
mated diagram. In it, you can also very clearly see the way the overall structure of
things change as they evolve over time.
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Figure 9-2. Temporal validity join, converting Euros to Yen with per-record triggering

Watermarks and temporal validity joins.    With this example, we’ve highlighted the first
benefit of windowed joins called out at the beginning of this section: windowing a
join allows you to partition that join within time for some practical business need. In
this case, the business need was slicing time into regions of validity for our currency
conversion rates.

Before we call it a day, however, it turns out that this example also provides an oppor‐
tunity to highlight the second point I called out: the fact that windowing a join can
provide a meaningful reference point for watermarks. To see how that’s useful, imag‐
ine changing the previous query to replace the implicit default per-record trigger with
an explicit watermark trigger that would fire only once when the watermark passed
the end of the validity window in the join (assuming that we have a watermark avail‐
able for both of our input TVRs that accurately tracks the completeness of those rela‐
tions in event time as well as an execution engine that knows how to take those
watermarks into consideration). Now, instead of our stream containing multiple out‐
puts and retractions for rates arriving out of order, we could instead end up with a
stream containing a single, correct converted result per order, which is clearly even
more ideal than before:

12:00> WITH ValidRates AS
         (SELECT
            Curr,
            MAX(Rate) as Rate,
            VALIDITY_WINDOW(EventTime) as Window
          FROM YenRates
          GROUP BY
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            Curr,
            VALIDITY_WINDOW(EventTime))
       SELECT STREAM
         YenOrders.Amount as "E",
         ValidRates.Rate as "Y/E", 
         YenOrders.Amount * ValidRates.Rate as "Y",
         YenOrders.EventTime as Order,
         Sys.EmitTime as Time,
         Sys.Undo as Undo
       FROM YenOrders INNER JOIN ValidRates 
         ON YenOrders.Curr = ValidRates.Curr
           AND WINDOW_START(ValidRates.Window) <= YenOrders.EventTime
           AND YenOrders.EventTime < WINDOW_END(ValidRates.Window)
       HAVING Curr = "Euro"
       EMIT WHEN WATERMARK PAST WINDOW_END(ValidRates.Window);
-------------------------------------------
| E | Y/E | Y   | Order | Time     | Undo |
-------------------------------------------
| 2 | 114 | 228 | 12:02 | 12:08:52 |      |
| 5 | 116 | 580 | 12:05 | 12:10:04 |      |
| 3 | 119 | 357 | 12:08 | 12:10:13 |      |
............. [12:00, 12:11] ..............

Or, rendered as an animation, which clearly shows how joined results are not emitted
into the output stream until the watermark moves beyond them, as demonstrated in
Figure 9-3.

Figure 9-3. Temporal validity join, converting Euros to Yen with watermark triggering

Either way, it’s impressive to see how this query encapsulates such a complex set of
interactions into a clean and concise rendering of the desired results.
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Summary
In this chapter, we analyzed the world of joins (using the join vocabulary of SQL)
within the context of stream processing. We began with unwindowed joins and saw
how, conceptually, all joins are streaming joins at the core. We saw how the founda‐
tion for essentially all of the other join variations is the FULL OUTER join, and dis‐
cussed the specific alterations that occur as part of LEFT OUTER, RIGHT OUTER, INNER,
ANTI, SEMI, and even CROSS joins. In addition, we saw how all of those different join
patterns interact in a world of TVRs and streams.

We next moved on to windowed joins, and learned that windowing a join is typically
motivated by one or both of the following benefits:

• The ability to partition the join within time for some business need
• The ability to tie results from the join to the progress of a watermark

And, finally, we explored in depth one of the more interesting and useful types of
windows with respect to joining: temporal validity windows. We saw how temporal
validity windows very naturally carve time into regions of validity for given values,
based only on the specific points in time where those values change. We learned that
joins within validity windows require a windowing framework that supports win‐
dows that can split over time, which is something no existing streaming system today
supports natively. And we saw how concisely validity windows allowed us to solve the
problem of joining TVRs for currency conversion rates and orders together in a
robust, natural way.

Joins are often one of the more intimidating aspects of data processing, streaming or
otherwise. However, by understanding the theoretical foundation of joins and how
straightforwardly we can derive all the different types of joins from that basic founda‐
tion, joins become a much less frightening beast, even with the additional dimension
of time that streaming adds to the mix.
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1 Which means I’m skipping a ton of the academic literature around stream processing, because that’s where
much of it started. If you’re really into hardcore academic papers on the topic, start from the references in
“The Dataflow Model” paper and work backward. You should be able to find your way pretty easily.

CHAPTER 10

The Evolution of Large-Scale
Data Processing

You have now arrived at the final chapter in the book, you stoic literate, you. Your
journey will soon be complete!

To wrap things up, I’d like you to join me on a brief stroll through history, starting
back in the ancient days of large-scale data processing with MapReduce and touching
upon some of the highlights over the ensuing decade and a half that have brought
streaming systems to the point they’re at today. It’s a relatively lightweight chapter in
which I make a few observations about important contributions from a number of
well-known systems (and a couple maybe not-so-well known), refer you to a bunch
of source material you can go read on your own should you want to learn more, all
while attempting not to offend or inflame the folks responsible for systems whose
truly impactful contributions I’m going to either oversimplify or ignore completely
for the sake of space, focus, and a cohesive narrative. Should be a good time.

On that note, keep in mind as you read this chapter that we’re really just talking about
specific pieces of the MapReduce/Hadoop family tree of large-scale data processing
here. I’m not covering the SQL arena in any way shape or form1; we’re not talking
HPC/supercomputers, and so on. So as broad and expansive as the title of this chap‐
ter might sound, I’m really focusing on a specific vertical swath of the grand universe
of large-scale data processing. Caveat literatus, and all that.
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Also note that I’m covering a disproportionate amount of Google technologies here.
You would be right in thinking that this might have something to do with the fact that
I’ve worked at Google for more than a decade. But there are two other reasons for it:
1) big data has always been important for Google, so there have been a number of
worthwhile contributions created there that merit discussing in detail, and 2) my
experience has been that folks outside of Google generally seem to enjoy learning
more about the things we’ve done, because we as a company have historically been
somewhat tight-lipped in that regard. So indulge me a bit while I prattle on exces‐
sively about the stuff we’ve been working on behind closed doors.

To ground our travels in concrete chronology, we’ll be following the timeline in
Figure 10-1, which shows rough dates of existence for the various systems I discuss.

Figure 10-1. Approximate timeline of systems discussed in this chapter

At each stop, I give a brief history of the system as best I understand it and frame its
contributions from the perspective of shaping streaming systems as we know them
today. At the end, we recap all of the contributions to see how they’ve summed up to
create the modern stream processing ecosystem of today.

MapReduce
We begin the journey with MapReduce (Figure 10-2).
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2 Certainly, MapReduce itself was built upon many ideas that had been well known before, as is even explicitly
stated in the MapReduce paper. That doesn’t change the fact that MapReduce was the system that tied those
ideas together (along with some of its own) to create something practical that solved an important and emerg‐
ing problem better than anyone else before ever had, and in a way that inspired generations of data-
processing systems that followed.

3 To be clear, Google was most certainly not the only company tackling data processing problems at this scale at
the time. Google was just one among a number of companies involved in that first generation of attempts at
taming massive-scale data processing.

Figure 10-2. Timeline: MapReduce

I think it’s safe to say that large-scale data processing as we all know it today got its
start with MapReduce way back in 2003.2 At the time, engineers within Google were
building all sorts of bespoke systems to tackle data processing challenges at the scale
of the World Wide Web.3 As they did so, they noticed three things:

Data processing is hard
As the data scientists and engineers among us well know, you can build a career
out of just focusing on the best ways to extract useful insights from raw data.

Scalability is hard
Extracting useful insights over massive-scale data is even more difficult yet.

Fault-tolerance is hard
Extracting useful insights from massive-scale data in a fault-tolerant, correct way
on commodity hardware is brutal.

After solving all three of these challenges in tandem across a number of use cases,
they began to notice some similarities between the custom systems they’d built. And
they came to the conclusion that if they could build a framework that took care of the
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4 And to be clear, MapReduce actually built upon the Google File System, GFS, which itself solved the scalabil‐
ity and fault-tolerance issues for a specific subset of the overall problem.

latter two issues (scalability and fault-tolerance), it would make focusing on the first
issue a heck of a lot simpler. Thus was born MapReduce.4

The basic idea with MapReduce was to provide a simple data processing API centered
around two well-understood operations from the functional programming realm:
map and reduce (Figure 10-3). Pipelines built with that API would then be executed
on a distributed systems framework that took care of all the nasty scalability and
fault-tolerance stuff that quickens the hearts of hardcore distributed-systems engi‐
neers and crushes the souls of the rest of us mere mortals.

Figure 10-3. Visualization of a MapReduce job

We already discussed the semantics of MapReduce in great detail back in Chapter 6,
so we won’t dwell on them here. Simply recall that we broke things down into six dis‐
crete phases (MapRead, Map, MapWrite, ReduceRead, Reduce, ReduceWrite) as part
of our streams and tables analysis, and we came to the conclusion in the end that
there really wasn’t all that much different between the overall Map and Reduce pha‐
ses; at a high-level, they both do the following:

• Convert a table to a stream
• Apply a user transformation to that stream to yield another stream
• Group that stream into a table

After it was placed into service within Google, MapReduce found such broad applica‐
tion across a variety of tasks that the team decided it was worth sharing its ideas with
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Figure 10-4. The MapReduce paper, published
at OSDI 2004

Figure 10-5. Marián Dvorský’s “History of
massive-scale sorting experiments” blog post

the rest of the world. The result was the MapReduce paper, published at OSDI 2004
(see Figure 10-4).

In it, the team described in detail
the history of the project, design of
the API and implementation, and
details about a number of different
use cases to which MapReduce had
been applied. Unfortunately, they
provided no actual source code, so
the best that folks outside of Google
at the time could do was say, “Yes,
that sounds very nice indeed,” and
go back to building their bespoke
systems.

Over the course of the decade that
followed, MapReduce continued to

undergo heavy development within Google, with large amounts of time invested in
making the system scale to unprecedented levels. For a more detailed account of
some of the highlights along that journey, I recommend the post “History of massive-
scale sorting experiments at Google” (Figure 10-5) written by our official MapReduce
historian/scalability and performance wizard, Marián Dvorský.

But for our purposes here, suffice it
to say that nothing else yet has
touched the magnitude of scale
achieved by MapReduce, not even
within Google. Considering how
long MapReduce has been around,
that’s saying something; 14 years is
an eternity in our industry.

From a streaming systems perspec‐
tive, the main takeaways I want to
leave you with for MapReduce are
simplicity and scalability. Map‐
Reduce took the first brave steps
toward taming the unruly beast
that is massive-scale data process‐
ing, exposing a simple and straight‐
forward API for crafting powerful
data processing pipelines, its aus‐
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terity belying the complex distributed systems magic happening under the covers to
allow those pipelines to run at scale on large clusters of commodity hardware. 

Hadoop
Next in our list is Hadoop (Figure 10-6). Fair warning: this is one of those times
where I will grossly oversimplify the impact of a system for the sake of a focused nar‐
rative. The impact Hadoop has had on our industry and the world at large cannot be
overstated, and it extends well beyond the relatively specific scope I discuss here.

Figure 10-6. Timeline: Hadoop

Hadoop came about in 2005, when Doug Cutting and Mike Cafarella decided that the
ideas from the MapReduce paper were just the thing they needed as they built a dis‐
tributed version of their Nutch webcrawler. They had already built their own version
of Google’s distributed filesystem (originally called NDFS for Nutch Distributed File
System, later renamed to HDFS, or Hadoop Distributed File System), so it was a nat‐
ural next step to add a MapReduce layer on top after that paper was published. They
called this layer Hadoop.

The key difference between Hadoop and MapReduce was that Cutting and Cafarella
made sure the source code for Hadoop was shared with the rest of the world by open
sourcing it (along with the source for HDFS) as part of what would eventually
become the Apache Hadoop project. Yahoo’s hiring of Cutting to help transition the
Yahoo webcrawler architecture onto Hadoop gave the project an additional boost of
validity and engineering oomph, and from there, an entire ecosystem of open source
data processing tools grew. As with MapReduce, others have told the history of
Hadoop in other fora far better than I can; one particularly good reference is Marko
Bonaci’s “The history of Hadoop,” itself originally slated for inclusion in a print book
(Figure 10-7).
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Figure 10-7. Marko Bonaci’s “The history of
Hadoop”

The main point I want you to take
away from this section is the mas‐
sive impact the open source ecosys‐
tem that flowered around Hadoop
had upon the industry as a whole.
By creating an open community in
which engineers could improve and
extend the ideas from those early
GFS and MapReduce papers, a
thriving ecosystem was born, yield‐
ing dozens of useful tools like Pig,
Hive, HBase, Crunch, and on and
on. That openness was key to incu‐
bating the diversity of ideas that
exist now across our industry, and
it’s why I’m pigeonholing Hadoop’s

open source ecosystem as its single most important contribution to the world of
streaming systems as we know them today.

Flume
We now return to Google territory to talk about the official successor to MapReduce
within Google: Flume ([Figure 10-8] sometimes also called FlumeJava in reference to
the original Java version of the system, and not to be confused with Apache Flume,
which is an entirely different beast that just so happens to share the same name).

Figure 10-8. Timeline: Flume
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The Flume project was founded by Craig Chambers when the Google Seattle office
opened in 2007. It was motivated by a desire to solve some of the inherent shortcom‐
ings of MapReduce, which had become apparent over the first few years of its success.
Many of these shortcomings revolved around MapReduce’s rigid Map → Shuffle →
Reduce structure; though refreshingly simple, it carried with it some downsides:

• Because many use cases cannot be served by the application of a single Map‐
Reduce, a number of bespoke orchestration systems began popping up across
Google for coordinating sequences of MapReduce jobs. These systems all served
essentially the same purpose (gluing together multiple MapReduce jobs to create
a coherent pipeline solving a complex problem). However, having been devel‐
oped independently, they were naturally incompatible and a textbook example of
unnecessary duplication of effort.

• What’s worse, there were numerous cases in which a clearly written sequence of
MapReduce jobs would introduce inefficiencies thanks to the rigid structure of
the API. For example, one team might write a MapReduce that simply filtered out
some number of elements; that is, a map-only job with an empty reducer. It
might be followed up by another team’s map-only job doing some element-wise
enrichment (with yet another empty reducer). The output from the second job
might then finally be consumed by a final team’s MapReduce performing some
grouping aggregation over the data. This pipeline, consisting of essentially a sin‐
gle chain of Map phases followed by a single Reduce phase, would require the
orchestration of three completely independent jobs, each chained together by
shuffle and output phases materializing the data. But that’s assuming you wanted
to keep the codebase logical and clean, which leads to the final downside…

• In an effort to optimize away these inefficiencies in their MapReductions, engi‐
neers began introducing manual optimizations that would obfuscate the simple
logic of the pipeline, increasing maintenance and debugging costs.

Flume addressed these issues by providing a composable, high-level API for describ‐
ing data processing pipelines, essentially based around the same PCollection and
PTransform concepts found in Beam, as illustrated in Figure 10-9.
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5 Not unlike the query optimizers long used in the database world.

Figure 10-9. High-level pipelines in Flume (image credit: Frances Perry)

These pipelines, when launched, would be fed through an optimizer5 to generate a
plan for an optimally efficient sequence of MapReduce jobs, the execution of which
was then orchestrated by the framework, which you can see illustrated in
Figure 10-10.

Figure 10-10. Optimization from a logical pipeline to a physical execution plan

Perhaps the most important example of an automatic optimization that Flume can
perform is fusion (which Reuven discussed a bit back in Chapter 5), in which two
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logically independent stages can be run in the same job either sequentially
(consumer-producer fusion) or in parallel (sibling fusion), as depicted in
Figure 10-11.

Figure 10-11. Fusion optimizations combine successive or parallel operations together
into the same physical operation

Fusing two stages together eliminates serialization/deserialization and network costs,
which can be significant in pipelines processing large amounts of data.

Another type of automatic optimization is combiner lifting (see Figure 10-12), the
mechanics of which we already touched upon in Chapter 7 when we talked about
incremental combining. Combiner lifting is simply the automatic application of mul‐
tilevel combine logic that we discussed in that chapter: a combining operation (e.g.,
summation) that logically happens after a grouping operation is partially lifted into
the stage preceding the group-by-key (which by definition requires a trip across the
network to shuffle the data) so that it can perform partial combining before the
grouping happens. In cases of very hot keys, this can greatly reduce the amount of
data shuffled over the network, and also spread the load of computing the final aggre‐
gate more smoothly across multiple machines.
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6 Noogler == New + Googler == New hires at Google

Figure 10-13. FlumeJava paper

Figure 10-12. Combiner lifting applies partial aggregation on the sender side of a group-
by-key operation before completing aggregation on the consumer side

As a result of its cleaner API and automatic optimizations, Flume Java was an instant
hit upon its introduction at Google in early 2009. Following on the heels of that suc‐
cess, the team published the paper titled “Flume Java: Easy, Efficient Data-Parallel
Pipelines” (see Figure 10-13), itself an excellent resource for learning more about the
system as it originally existed.

Flume C++ followed not too much
later in 2011, and in early 2012
Flume was introduced into Noo‐
gler6 training provided to all new
engineers at Google. That was the
beginning of the end for Map‐
Reduce.

Since then, Flume has been migra‐
ted to no longer use MapReduce as
its execution engine; instead, it uses
a custom execution engine, called
Dax, built directly into the frame‐
work itself. By freeing Flume itself
from the confines of the previously
underlying Map → Shuffle → Reduce structure of MapReduce, Dax enabled new opti‐
mizations, such as the dynamic work rebalancing feature described in Eugene Kirpi‐
chov and Malo Denielou’s “No shard left behind” blog post (Figure 10-14).
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Figure 10-14. “No shard left behind” post

Though discussed in that post in
the context of Cloud Dataflow,
dynamic work rebalancing (or liq‐
uid sharding, as it’s colloquially
known at Google) automatically
rebalances extra work from strag‐
gler shards to other idle workers in
the system as they complete their
work early. By dynamically reba‐
lancing the work distribution over
time, it’s possible to come much
closer to an optimal work distribu‐
tion than even the best educated

initial splits could ever achieve. It also allows for adapting to variations across the
pool of workers, where a slow machine that might have otherwise held up the com‐
pletion of a job is simply compensated for by moving most of its tasks to other work‐
ers. When liquid sharding was rolled out at Google, it recouped significant amounts
of resources across the fleet.

One last point on Flume is that it was also later extended to support streaming
semantics. In addition to the batch Dax backend, Flume was extended to be able to
execute pipelines on the MillWheel stream processing system (discussed in a
moment). Most of the high-level streaming semantics concepts we’ve discussed in this
book were first incorporated into Flume before later finding their way into Cloud
Dataflow and eventually Apache Beam.

All that said, the primary thing to take away from Flume in this section is the intro‐
duction of a notion of high-level pipelines, which enabled the automatic optimization
of clearly written, logical pipelines. This enabled the creation of much larger and
complex pipelines, without the need for manual orchestration or optimization, and
all while keeping the code for those pipelines logical and clear.

Storm
Next up is Apache Storm (Figure 10-15), the first real streaming system we cover.
Storm most certainly wasn’t the first streaming system in existence, but I would argue
it was the first streaming system to see truly broad adoption across the industry, and
for that reason we give it a closer look here.
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Figure 10-16. “History of Apache Storm and
lessons learned”

Figure 10-15. Timeline: Storm

Storm was the brainchild of Nathan
Marz, who later chronicled the his‐
tory of its creation in a blog
post titled “History of Apache
Storm and lessons learned”
(Figure 10-16). The TL;DR version
of it is that Nathan’s team at the
startup employing him then, Back‐
Type, had been attempting to pro‐
cess the Twitter firehose using a
custom system of queues and
workers. He came to essentially the
same realization that the Map‐
Reduce folks had nearly a decade
earlier: the actual data processing portion of their code was only a tiny amount of the
system, and building those real-time data processing pipelines would be a lot easier if
there were a framework doing all the distributed system’s dirty work under the cov‐
ers. Out of that was born Storm.

The interesting thing about Storm, in comparison to the rest of the systems we’ve
talked about so far, is that the team chose to loosen the strong consistency guarantees
found in all of the other systems we’ve talked about so far as a way of providing lower
latency. By combining at-most once or at-least once semantics with per-record pro‐
cessing and no integrated (i.e., no consistent) notion of persistent state, Storm was
able to provide much lower latency in providing results than systems that executed
over batches of data and guaranteed exactly-once correctness. And for a certain type
of use cases, this was a very reasonable trade-off to make.
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7 As an aside, I also highly recommend reading Martin Kleppmann’s “A Critique of the CAP Theorem” for very
nice analysis of the shortcomings of the CAP theorem itself, as well as a more principled alternative way of
looking at the same problem.

Figure 10-17. “How to beat the CAP theorem”

Unfortunately, it quickly became clear that people really wanted to have their cake
and eat it, too. They didn’t just want to get their answers quickly, they wanted to have
both low-latency results and eventual correctness. But such a thing was impossible 
with Storm alone. Enter the Lambda Architecture.

Given the limitations of Storm, shrewd engineers began running a weakly consistent
Storm streaming pipeline alongside a strongly consistent Hadoop batch pipeline. The
former produced low-latency, inexact results, whereas the latter produced high-
latency, exact results, both of which would then be somehow merged together in the
end to provide a single low-latency, eventually consistent view of the outputs. We
learned back in Chapter 1 that the Lambda Architecture was Marz’s other brainchild,
as detailed in his post titled “How to beat the CAP theorem” (Figure 10-17).7

I’ve already spent a fair amount of
time harping on the shortcomings
of the Lambda Architecture, so I
won’t belabor those points here.
But I will reiterate this: the Lambda
Architecture became quite popular,
despite the costs and headaches
associated with it, simply because it
met a critical need that a great
many businesses were otherwise
having a difficult time fulfilling:
that of getting low-latency, but
eventually correct results out of
their data processing pipelines.

From the perspective of the evolu‐
tion of streaming systems, I argue that Storm was responsible for first bringing low-
latency data processing to the masses. However, it did so at the cost of weak
consistency, which in turn brought about the rise of the Lambda Architecture, and
the years of dual-pipeline darkness that followed.
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Figure 10-18. Heron paper

But hyperbolic dramaticism aside,
Storm was the system that gave the
industry its first taste of low-
latency data processing, and the
impact of that is reflected in the
broad interest in and adoption of
streaming systems today.

Before moving on, it’s also worth
giving a shout out to Heron. In
2015, Twitter (the largest known
user of Storm in the world, and the
company that originally fostered
the Storm project) surprised the
industry by announcing it was
abandoning the Storm execution engine in favor of a new system it had developed in
house, called Heron. Heron aimed to address a number of performance and main‐
tainability issues that had plagued Storm, while remaining API compatible, as
detailed in the company’s paper titled “Twitter Heron: Stream Processing at Scale”
(Figure 10-18). Heron itself was subsequently open sourced (with governance moved
to its own independent foundation, not an existing one like Apache). Given the con‐
tinued development on Storm, there are now two competing variants of the Storm
lineage. Where things will end up is anyone’s guess, but it will be exciting to watch.

Spark
Moving on, we now come to Apache Spark (Figure 10-19). This is another section in
which I’m going to greatly oversimplify the total impact that Spark has had on the
industry by focusing on a specific portion of its contributions: those within the realm
of stream processing. Apologies in advance.
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Figure 10-19. Timeline: Spark

Spark got its start at the now famous AMPLab in UC Berkeley around 2009. The
thing that initially fueled Spark’s fame was its ability to oftentimes perform the bulk
of a pipeline’s calculations entirely in memory, without touching disk until the very
end. Engineers achieved this via the Resilient Distributed Dataset (RDD) idea, which
basically captured the full lineage of data at any given point in the pipeline, allowing
intermediate results to be recalculated as needed on machine failure, under the
assumptions that a) your inputs were always replayable, and b) your computations
were deterministic. For many use cases, these preconditions were true, or at least true
enough given the massive gains in performance users were able to realize over stan‐
dard Hadoop jobs. From there, Spark gradually built up its eventual reputation as
Hadoop’s de facto successor.

A few years after Spark was created, Tathagata Das, then a graduate student in the
AMPLab, came to the realization that: hey, we’ve got this fast batch processing engine,
what if we just wired things up so we ran multiple batches one after another, and used
that to process streaming data? From that bit of insight, Spark Streaming was born. 

What was really fantastic about Spark Streaming was this: thanks to the strongly con‐
sistent batch engine powering things under the covers, the world now had a stream
processing engine that could provide correct results all by itself without needing the
help of an additional batch job. In other words, given the right use case, you could
ditch your Lambda Architecture system and just use Spark Streaming. All hail Spark
Streaming!

The one major caveat here was the “right use case” part. The big downside to the orig‐
inal version of Spark Streaming (the 1.x variants) was that it provided support for
only a specific flavor of stream processing: processing-time windowing. So any use
case that cared about event time, needed to deal with late data, and so on, couldn’t be
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handled out of the box without a bunch of extra code being written by the user to
implement some form of event-time handling on top of Spark’s processing-time win‐
dowing architecture. This meant that Spark Streaming was best suited for in-order
data or event-time-agnostic computations. And, as I’ve reiterated throughout this
book, those conditions are not as prevalent as you would hope when dealing with the
large-scale, user-centric datasets common today.

Another interesting controversy that surrounds Spark Streaming is the age-old
“microbatch versus true streaming” debate. Because Spark Streaming is built upon
the idea of small, repeated runs of a batch processing engine, detractors claim that
Spark Streaming is not a true streaming engine in the sense that progress in the sys‐
tem is gated by the global barriers of each batch. There’s some amount of truth there.
Even though true streaming engines almost always utilize some sort of batching or
bundling for the sake of throughput, they have the flexibility to do so at much finer-
grained levels, down to individual keys. The fact that microbatch architectures pro‐
cess bundles at a global level means that it’s virtually impossible to have both low per-
key latency and high overall throughput, and there are a number of benchmarks that
have shown this to be more or less true. But at the same time, latency on the order of
minutes or multiple seconds is still quite good. And there are very few use cases that
demand exact correctness and such stringent latency capabilities. So in some sense,
Spark was absolutely right to target the audience it did originally; most people fall in
that category. But that hasn’t stopped its competitors from slamming this as a massive
disadvantage for the platform. Personally, I see it as a minor complaint at best in most
cases.

Shortcomings aside, Spark Streaming was a watershed moment for stream process‐
ing: the first publicly available, large-scale stream processing engine that could also
provide the correctness guarantees of a batch system. And of course, as previously
noted, streaming is only a very small part of Spark’s overall success story, with impor‐
tant contributions made in the space of iterative processing and machine learning, its
native SQL integration, and the aforementioned lightning-fast in-memory perfor‐
mance, to name a few.

If you’re curious to learn more about the details of the original Spark 1.x architecture,
I highly recommend Matei Zaharia’s dissertation on the subject, “An Architecture for
Fast and General Data Processing on Large Clusters” (Figure 10-20). It’s 113 pages of
Sparky goodness that’s well worth the investment.
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Figure 10-20. Spark dissertation

As of today, the 2.x variants of
Spark are greatly expanding upon
the semantic capabilities of Spark
Streaming, incorporating many
parts of the model described in this
book, while attempting to simplify
some of the more complex pieces.
And Spark is even pushing a new
true streaming architecture, to try
to shut down the microbatch nay‐
sayer arguments. But when it first
came on the scene, the important
contribution that Spark brought to
the table was the fact that it was the
first publicly available stream pro‐
cessing engine with strong consis‐
tency semantics, albeit only in the

case of in-order data or event-time-agnostic computation.

MillWheel
Next we discuss MillWheel, a project that I first dabbled with in my 20% time after
joining Google in 2008, later joining the team full time in 2010 (Figure 10-21).

Figure 10-21. Timeline: MillWheel

MillWheel is Google’s original, general-purpose stream processing architecture, and
the project was founded by Paul Nordstrom around the time Google’s Seattle office
opened. MillWheel’s success within Google has long centered on an ability to provide
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low-latency, strongly consistent processing of unbounded, out-of-order data. Over
the course of this book, we’ve looked at most of the bits and pieces that came together
in MillWheel to make this possible:

• Reuven discussed exactly-once guarantees in Chapter 5. Exactly-once guarantees
are essential for correctness.

• In Chapter 7 we looked at persistent state, the strongly consistent variations of
which provide the foundation for maintaining that correctness in long-running
pipelines executing on unreliable hardware.

• Slava talked about watermarks in Chapter 3. Watermarks provide a foundation
for reasoning about disorder in input data.

• Also in Chapter 7, we looked at persistent timers, which provide the necessary
link between watermarks and the pipeline’s business logic.

It’s perhaps somewhat surprising then to note that the MillWheel project was not ini‐
tially focused on correctness. Paul’s original vision more closely targeted the niche
that Storm later espoused: low-latency data processing with weak consistency. It was
the initial MillWheel customers, one building sessions over search data and another
performing anomaly detection on search queries (the Zeitgeist example from the
MillWheel paper), who drove the project in the direction of correctness. Both had a
strong need for consistent results: sessions were used to infer user behavior, and
anomaly detection was used to infer trends in search queries; the utility of both
decreased significantly if the data they provided were not reliable. As a result, Mill‐
Wheel’s direction was steered toward one of strong consistency.

Support for out-of-order processing, which is the other core aspect of robust stream‐
ing often attributed to MillWheel, was also motivated by customers. The Zeitgeist
pipeline, as a true streaming use case, wanted to generate an output stream that iden‐
tified anomalies in search query traffic, and only anomalies (i.e., it was not practical
for consumers of its analyses to poll all the keys in a materialized view output table
waiting for an anomaly to be flagged; consumers needed a direct signal only when
anomalies happened for specific keys). For anomalous spikes (i.e., increases in query
traffic), this is relatively straightforward: when the count for a given query exceeds
the expected value in your model for that query by some statistically significant
amount, you can signal an anomaly. But for anomalous dips (i.e., decreases in query
traffic), the problem is a bit trickier. It’s not enough to simply see that the number of
queries for a given search term has decreased, because for any period of time, the
observed number always starts out at zero. What you really need to do in these cases
is wait until you have reason to believe that you’ve seen a sufficiently representative
portion of the input for a given time period, and only then compare the count against
your model.
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True Streaming
“True streaming use case” bears a bit of explanation. One recent trend in streaming
systems is to try to simplify the programming models to make them more accessible
by limiting the types of use cases one can address. For example, at the time of writing,
both Spark’s Structured Streaming and Apache Kafka’s Kafka Streams systems limit
themselves to what I refer to in Chapter 8 as “materialized view semantics,” essentially
repeated updates to an eventually consistent output table. Materialized view seman‐
tics are great when you want to consume your output as a lookup table: any time you
can just lookup a value in that table and be okay with the latest result as of query time,
materialized views are a good fit. They are not, however, particularly well suited for
use cases in which you want to consume your output as a bonafide stream. I refer to
these as true streaming use cases, with anomaly detection being one of the better
examples.

As we’ll discuss shortly, there are certain aspects of anomaly detection that make it
unsuitable for pure materialized view semantics (i.e., record-by-record processing
only), specifically the fact that it relies on reasoning about the completeness of the
input data to accurately identify anomalies that are the result of an absence of data (in
addition to the fact that polling an output table to see if an anomaly signal has arrived
is not an approach that scales particularly well). True streaming use cases are thus the
motivation for features like watermarks (Preferably low watermarks that pessimisti‐
cally track input completeness, as described in Chapter 3, not high watermarks that
track the event time of the newest record the system is aware of, as used by Spark
Structured Streaming for garbage collecting windows, since high watermarks are
more prone to incorrectly throwing away data as event time skew varies within the
pipeline) and triggers. Systems that omit these features do so for the sake of simplicity
but at the cost of decreased ability. There can be great value in that, most certainly,
but don’t be fooled if you hear such systems claim these simplifications yield equiva‐
lent or even greater generality; you can’t address fewer use cases and be equally or
more general.

The Zeitgeist pipeline first attempted to do this by inserting processing-time delays
before the analysis logic that looked for dips. This would work reasonably decently
when data arrived in order, but the pipeline’s authors discovered that data could, at
times, be greatly delayed and thus arrive wildly out of order. In these cases, the
processing-time delays they were using weren’t sufficient, because the pipeline would
erroneously report a flurry of dip anomalies that didn’t actually exist. What they
really needed was a way to wait until the input became complete.

Watermarks were thus born out of this need for reasoning about input completeness
in out-of-order data. As Slava described in Chapter 3, the basic idea was to track the
known progress of the inputs being provided to the system, using as much or as little
data available for the given type of data source, to construct a progress metric that
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8 For the record, written primarily by Sam McVeety with help from Reuven and bits of input from the rest of us
on the author list; we shouldn’t have alphabetized that author list, because everyone always assumes I’m the
primary author on it, even though I wasn’t.

Figure 10-22. MillWheel paper

could be used to quantify input completeness. For simpler input sources like a stati‐
cally partitioned Kafka topic with each partition being written to in increasing event-
time order (such as by web frontends logging events in real time), you can compute a
perfect watermark. For more complex input sources like a dynamic set of input logs, a
heuristic might be the best you can do. But either way, watermarks provide a distinct
advantage over the alternative of using processing time to reason about event-time
completeness, which experience has shown serves about as well as a map of London
while trying to navigate the streets of Cairo.

So thanks to the needs of its customers, MillWheel ended up as a system with the
right set of features for supporting robust stream processing on out-of-order data. As
a result, the paper titled “MillWheel: Fault-Tolerant Stream Processing at Internet
Scale”8 (Figure 10-22) spends most of its time discussing the difficulties of providing
correctness in a system like this, with consistency guarantees and watermarks being
the main areas of focus. It’s well worth your time if you’re interested in the subject.

Not long after the MillWheel paper
was published, MillWheel was inte‐
grated as an alternative, streaming
backend for Flume, together often
referred to as Streaming Flume.
Within Google today, MillWheel is
in the process of being replaced by
its successor, Windmill (the execu‐
tion engine that also powers Cloud
Dataflow, discussed in a moment),
a ground-up rewrite that incorpo‐
rates all the best ideas from Mill‐
Wheel, along with a few new ones
like better scheduling and dispatch, and a cleaner separation of user and system code.

However, the big takeaway for MillWheel is that the four concepts listed earlier
(exactly-once, persistent state, watermarks, persistent timers) together provided the
basis for a system that was finally able to deliver on the true promise of stream pro‐
cessing: robust, low-latency processing of out-of-order data, even on unreliable com‐
modity hardware.
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9 Kafka Streams and now KSQL are of course changing that, but those are relatively recent developments, and
I’ll be focusing primarily on the Kafka of yore.

Kafka
We now come to Kafka (Figure 10-23). Kafka is unique among the systems discussed
in this chapter in that it’s not a data processing framework,9 but instead a transport
layer. Make no mistake, however: Kafka has played one of the most influential roles in
advancing stream processing out of all the system’s we’re discussing here.

Figure 10-23. Timeline: Kafka

If you’re not familiar with it, Kafka is essentially a persistent streaming transport,
implemented as a set of partitioned logs. It was developed originally at LinkedIn by
such industry luminaries as Neha Narkhede and Jay Kreps, and its accolades include
the following:

• Providing a clean model of persistence that packaged that warm fuzzy feeling of
durable, replayable input sources from the batch world in a streaming friendly
interface.

• Providing an elastic isolation layer between producers and consumers.
• Embodying the relationship between streams and tables that we discussed in

Chapter 6, revealing a foundational way of thinking about data processing in
general while also providing a conceptual link to the rich and storied world of
databases.
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• As a side effect of all of the above, not only becoming the cornerstone of a major‐
ity of stream processing installations across the industry, but also fostering the
stream-processing-as-databases and microservices movements.

They must get up very early in the morning.

Of those accolades, there are two that stand out most to me. The first is the applica‐
tion of durability and replayability to stream data. Prior to Kafka, most stream pro‐
cessing systems used some sort of ephemeral queuing system like Rabbit MQ or even
plain-old TCP sockets to send data around. Durability might be provided to some
degree via upstream backup in the producers (i.e., the ability for upstream producers
of data to resend if the downstream workers crashed), but oftentimes the upstream
data was stored ephemerally, as well. And most approaches entirely ignored the idea
of being able to replay input data later in cases of backfills or for prototyping, devel‐
opment, and regression testing.

Kafka changed all that. By taking the battle-hardened concept of a durable log from
the database world and applying it to the realm of stream processing, Kafka gave us
all back that sense of safety and security we’d lost when moving from the durable
input sources common in the Hadoop/batch world to the ephemeral sources preva‐
lent at the time in the streaming world. With durability and replayability, stream pro‐
cessing took yet another step toward being a robust, reliable replacement for the ad
hoc, continuous batch processing systems of yore that were still being applied to
streaming use cases.

As a streaming system developer, one of the more interesting visible artifacts of the
impact that Kafka’s durability and replayability features have had on the industry is
how many of the stream processing engines today have grown to fundamentally rely
on that replayability to provide end-to-end exactly-once guarantees. Replayability is
the foundation upon which end-to-end exactly-once guarantees in Apex, Flink, Kafka
Streams, Spark, and Storm are all built. When executing in exactly-once mode, each
of those systems assumes/requires that the input data source be able to rewind and
replay all of the data up until the most recent checkpoint. When used with an input
source that does not provide such ability (even if the source can guarantee reliable
delivery via upstream backup), end-to-end exactly-once semantics fall apart. That
sort of broad reliance on replayability (and the related aspect of durability) is a huge
testament to the amount of impact those features have had across the industry.

The second noteworthy bullet from Kafka’s resume is the popularization of stream
and table theory. We spent the entirety of Chapter 6 discussing streams and tables as
well as much of Chapters 8 and 9. And for good reason. Streams and tables form the
foundation of data processing, be it the MapReduce family tree of systems, the enor‐
mous legacy of SQL database systems, or what have you. Not all data processing
approaches need speak directly in terms of streams and tables but conceptually
speaking, that’s how they all operate. And as both users and developers of these sys‐
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10 While I recommend the book as the most comprehensive and cohesive resource, you can find much of the
content from it scattered across O’Reilly’s website if you just search around for Kreps’ articles. Sorry, Jay...

Figure 10-24. I ❤ Logs

tems, there’s great value in understanding the core underlying concepts that all of our
systems build upon. We all owe a collective thanks to the folks in the Kafka commu‐
nity who helped shine a broader light on the streams-and-tables way of thinking.

If you’d like to learn more about
Kafka and the foundations it’s built
on, I ❤ Logs by Jay Kreps (O’Reilly;
Figure 10-24) is an excellent
resource.10 Additionally, as cited
originally in Chapter 6, Kreps and
Martin Kleppmann have a pair of
articles (Figure 10-25) that I highly
recommend for reading up on the
origins of streams and table theory.

Kafka has made huge contributions
to the world of stream processing,
arguably more than any other sin‐
gle system out there. In particular,
the application of durability and
replayability to input and output
streams played a big part in helping
move stream processing out of the
niche realm of approximation tools
and into the big leagues of general
data processing. Additionally, the
theory of streams and tables, popu‐

larized by the Kafka community, provides deep insight into the underlying mechanics
of data processing in general. 
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Figure 10-25. Martin’s post (left) and Jay’s post (right)

Cloud Dataflow
Cloud Dataflow (Figure 10-26) is Google’s fully managed, cloud-based data process‐
ing service. Dataflow launched to the world in August 2015. It was built with the
intent to take the decade-plus of experiences that had gone into building MapReduce,
Flume, and MillWheel, and package them up into a serverless cloud experience.

Figure 10-26. Timeline: Cloud Dataflow

Although the serverless aspect of Cloud Dataflow is perhaps its most technically chal‐
lenging and distinguishing factor from a systems perspective, the primary contribu‐
tion to streaming systems that I want to discuss here is its unified batch plus
streaming programming model. That’s all the transformations, windowing, water‐
marks, triggers, and accumulation goodness we’ve spent most of the book talking
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11 As with many broad generalizations, this one is true in a specific context, but belies the underlying complexity
of reality. As I alluded to in Chapter 1, batch systems go to great lengths to optimize the cost and runtime of
data processing pipelines over bounded datasets in ways that stream processing engines have yet to attempt to
duplicate. To imply that modern batch and streaming systems only differ in one small way is a sizeable over‐
simplification in any realm beyond the purely conceptual.

about. And all of them, of course, wrapped up the what/where/when/how way of
thinking about things.

The model first arrived back in Flume, as we looked to incorporate the robust out-of-
order processing support in MillWheel into the higher-level programming model
Flume afforded. The combined batch and streaming approach available to Googlers
internally with Flume was then the basis for the fully unified model included in Data‐
flow.

The key insight in the unified model—the full extent of which none of us at the time
even truly appreciated—is that under the covers, batch and streaming are really not
that different: they’re both just minor variations on the streams and tables theme. As
we learned in Chapter 6, the main difference really boils down to the ability to incre‐
mentally trigger tables into streams; everything else is conceptually the same.11 By
taking advantage of the underlying commonalities of the two approaches, it was pos‐
sible to provide a single, nearly seamless experience that applied to both worlds. This
was a big step forward in making stream processing more accessible.

In addition to taking advantage of the commonalities between batch and streaming,
we took a long, hard look at the variety of use cases we’d encountered over the years at
Google and used those to inform the pieces that went into the unified model. Key
aspects we targeted included the following:

• Unaligned, event-time windows such as sessions, providing the ability to concisely
express powerful analytic constructs and apply them to out-of-order data.

• Custom windowing support, because one (or even three or four) sizes rarely fit all.
• Flexible triggering and accumulation modes, providing the ability to shape the way

data flow through the pipeline to match the correctness, latency, and cost needs
of the given use case.

• The use of watermarks for reasoning about input completeness, which is critical
for use cases like anomalous dip detection where the analysis depends upon an
absence of data.

• Logical abstraction of the underlying execution environment, be it batch, micro‐
batch, or streaming, providing flexibility of choice in execution engine and
avoiding system-level constructs (such as micro-batch size) from creeping into
the logical API.
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Figure 10-27. Dataflow Model paper

Taken together, these aspects provided the flexibility to balance the tensions between
correctness, latency, and cost, allowing the model to be applied across a wide breadth
of use cases.

Given that you’ve just read an
entire book covering the finer
points of the Dataflow/Beam
Model, there’s little point in trying
to retread any those concepts here.
However, if you’re looking for a
slightly more academic take on
things as well as a nice overview of
some of the motivating use cases
alluded to earlier, you might find
our 2015 Dataflow Model paper
worthwhile (Figure 10-27).

Though there are many other com‐
pelling aspects to Cloud Dataflow,
the important contribution from
the perspective of this chapter is its
unified batch plus streaming programming model. It brought the world a comprehen‐
sive approach to tackling unbounded, out-of-order datasets, and in a way that pro‐
vided the flexibility to make the trade-offs necessary to balance the tensions between
correctness, latency, and cost to match the requirements for a given use case.

Flink
Flink (Figure 10-28) burst onto the scene in 2015, rapidly transforming itself from a
system that almost no one had heard of into one of the powerhouses of the streaming
world, seemingly overnight.
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Figure 10-29. Chandy-Lamport snapshots

Figure 10-28. Timeline: Flink

There were two main reasons for Flink’s rise to prominence:

• Its rapid adoption of the Dataflow/Beam programming model, which put it in the
position of being the most semantically capable fully open source streaming sys‐
tem on the planet at the time.

• Followed shortly thereafter by its highly efficient snapshotting implementation
(derived from research in Chandy and Lamport’s original paper “Distributed
Snapshots: Determining Global States of Distributed Systems” [Figure 10-29]),
which gave it the strong consistency guarantees needed for correctness.

Reuven covered Flink’s consistency
mechanism briefly in Chapter 5,
but to reiterate, the basic idea is
that periodic barriers are propaga‐
ted along the communication paths
between workers in the system. The
barriers act as an alignment mecha‐
nism between the various dis‐
tributed workers producing data
upstream from a consumer. When
the consumer receives a given bar‐
rier on all of its input channels (i.e.,
from all of its upstream producers),
it checkpoints its current progress
for all active keys, at which point it
is then safe to acknowledge pro‐

cessing of all data that came before the barrier. By tuning how frequently barriers are
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Figure 10-30. “Extending the Yahoo! Stream‐
ing Benchmark”

sent through the system, it’s possible to tune the frequency of checkpointing and thus
trade off increased latency (due to the need for side effects to be materialized only at
checkpoint times) in exchange for higher throughput.

The simple fact that Flink now had
the capability to provide exactly-
once semantics along with native
support for event-time processing
was huge at the time. But it wasn’t
until Jamie Grier published his arti‐
cle titled “Extending the Yahoo!
Streaming Benchmark”
(Figure 10-30) that it became clear
just how performant Flink was. In
that article, Jamie described two
impressive achievements:

1. Building a prototype Flink
pipeline that achieved greater
accuracy than one of Twitter’s
existing Storm pipelines
(thanks to Flink’s exactly-once
semantics) at 1% of the cost of
the original.

2. Updating the Yahoo! Streaming Benchmark to show Flink (with exactly-once)
achieving 7.5 times the throughput of Storm (without exactly-once). Further‐
more, Flink’s performance was shown to be limited due to network saturation;
removing the network bottleneck allowed Flink to achieve almost 40 times the
throughput of Storm.

Since then, numerous other projects (notably, Storm and Apex) have all adopted the
same type of consistency mechanism.
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Figure 10-31. “Savepoints: Turning Back
Time”

With the addition of a snapshotting
mechanism, Flink gained the
strong consistency needed for end-
to-end exactly-once. But to its
credit, Flink went one step further,
and used the global nature of its
snapshots to provide the ability to
restart an entire pipeline from any
point in the past, a feature known
as savepoints (described in the
“Savepoints: Turning Back Time”
post by Fabian Hueske and Michael
Winters [Figure 10-31]). The save‐
points feature took the warm fuzzi‐
ness of durable replay that Kafka
had applied to the streaming trans‐
port layer and extended it to cover
the breadth of an entire pipeline.
Graceful evolution of a long-

running streaming pipeline over time remains an important open problem in the
field, with lots of room for improvement. But Flink’s savepoints feature stands as one
of the first huge steps in the right direction, and one that remains unique across the
industry as of this writing.

If you’re interested in learning more about the system constructs underlying Flink’s
snapshots and savepoints, the paper “State Management in Apache Flink”
(Figure 10-32) discusses the implementation in good detail.
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Figure 10-32. “State Management in Apache
Flink”

Beyond savepoints, the Flink com‐
munity has continued to innovate,
including bringing the first practi‐
cal streaming SQL API to market
for a large-scale, distributed stream
processing engine, as we discussed
in Chapter 8.

In summary, Flink’s rapid rise to
stream processing juggernaut can
be attributed primarily to three
characteristics of its approach: 1)
incorporating the best existing ideas
from across the industry (e.g.,
being the first open source adopter
of the Dataflow/Beam Model), 2)
bringing its own innovations to the
table to push forward the state of
the art (e.g., strong consistency via snapshots and savepoints, streaming SQL), and 3)
doing both of those things quickly and repeatedly. Add in the fact that all of this is
done in open source, and you can see why Flink has consistently continued to raise the
bar for streaming processing across the industry.

Beam
The last system we talk about is Apache Beam (Figure 10-33). Beam differs from
most of the other systems in this chapter in that it’s primarily a programming model,
API, and portability layer, not a full stack with an execution engine underneath. But
that’s exactly the point: just as SQL acts as a lingua franca for declarative data process‐
ing, Beam aims to be the lingua franca for programmatic data processing. Let’s
explore how.
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Figure 10-33. Timeline: Beam

Concretely, Beam is composed a number of components:

• A unified batch plus streaming programming model, inherited from Cloud Data‐
flow where it originated, and the finer points of which we’ve spent the majority of
this book discussing. The model is independent of any language implementations
or runtime systems. You can think of this as Beam’s equivalent to SQL’s relational
algebra.

• A set of SDKs (software development kits) that implement that model, allowing
pipelines to be expressed in terms of the model in idiomatic ways for a given lan‐
guage. Beam currently provides SDKs in Java, Python, and Go. You can think of
these as Beam’s programmatic equivalents to the SQL language itself.

• A set of DSLs (domain specific languages) that build upon the SDKs, providing
specialized interfaces that capture pieces of the model in unique ways. Whereas
SDKs are required to surface all aspects of the model, DSLs can expose only those
pieces that make sense for the specific domain a DSL is targeting. Beam currently
provides a Scala DSL called Scio and an SQL DSL, both of which layer on top of
the existing Java SDK.

• A set of runners that can execute Beam pipelines. Runners take the logical pipe‐
line described in Beam SDK terms, and translate them as efficiently as possible
into a physical pipeline that they can then execute. Beam runners exist currently
for Apex, Flink, Spark, and Google Cloud Dataflow. In SQL terms, you can think
of these runners as Beam’s equivalent to the various SQL database implementa‐
tions, such as Postgres, MySQL, Oracle, and so on.

The core vision for Beam is built around its value as a portability layer, and one of the
more compelling features in that realm is its planned support for full cross-language
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Figure 10-34. Powerful and modular I/O

portability. Though not yet fully complete (but landing imminently), the plan is for
Beam to provide sufficiently performant abstraction layers between SDKs and run‐
ners that will allow for a full cross-product of SDK × runner matchups. In such a
world, a pipeline written in a JavaScript SDK could seamlessly execute on a runner
written in Haskell, even if the Haskell runner itself had no native ability to execute
JavaScript code.

As an abstraction layer, the way that Beam positions itself relative to its runners is
critical to ensure that Beam actually brings value to the community, rather than intro‐
ducing just an unnecessary layer of abstraction. The key point here is that Beam aims
to never be just the intersection (lowest common denominator) or union (kitchen
sink) of the features found in its runners. Instead, it aims to include only the best
ideas across the data processing community at large. This allows for innovation in
two dimensions:

Innovation in Beam
Beam might include API sup‐
port for runtime features that
not all runners initially sup‐
port. This is okay. Over time,
we expect many runners will
incorporate such features into
future versions; those that
don’t will be a less-attractive
runner choice for use cases
that need such features.

An example here is Beam’s
SplittableDoFn API for writing
composable, scalable sources
(described by Eugene Kirpichov in his post “Powerful and modular I/O connec‐
tors with Splittable DoFn in Apache Beam” [Figure 10-34]). It’s both unique and
extremely powerful but also does not yet see broad support across all runners for
some of the more innovative parts like dynamic work rebalancing. Given the
value such features bring, however, we expect that will change over time.

Innovation in runners
Runners might introduce runtime features for which Beam does not initially pro‐
vide API support. This is okay. Over time, runtime features that have proven
their usefulness will have API support incorporated into Beam.

An example here is the state snapshotting mechanism in Flink, or savepoints,
which we discussed earlier. Flink is still the only publicly available streaming sys‐
tem to support snapshots in this way, but there’s a proposal in Beam to provide
an API around snapshots because we believe graceful evolution of pipelines over
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12 There’s an additional subtlety here that’s worth calling out: even as runners adopt new semantics and tick off
feature checkboxes, it’s not the case that you can blindly choose any runner and have an identical experience.
This is because the runners themselves can still vary greatly in their runtime and operational characteristics.
Even for cases in which two given runners implement the same set of semantic features within the Beam
Model, the way they go about executing those features at runtime is typically very different. As a result, when
building a Beam pipeline, it’s important to do your homework regarding various runners, to ensure that you
choose a runtime platform that serves your use case best.

time is an important feature that will be valuable across the industry. If we were
to magically push out such an API today, Flink would be the only runtime system
to support it. But again, that’s okay. The point here is that the industry as a whole
will begin to catch up over time as the value of these features becomes clear.12

And that’s better for everyone.

By encouraging innovation within both Beam itself as well as runners, we hope to
push forward the capabilities of the entire industry at a greater pace over time,
without accepting compromises along the way. And by delivering on the promise of
portability across runtime execution engines, we hope to establish Beam as the com‐
mon language for expressing programmatic data processing pipelines, similar to how
SQL exists today as the common currency of declarative data processing. It’s an ambi‐
tious goal, and as of writing, we’re still a ways off from seeing it fully realized, but
we’ve also come a long way so far.

Summary
We just took a whirlwind tour through a decade and a half of advances in data pro‐
cessing technology, with a focus on the contributions that made streaming systems
what they are today. To summarize one last time, the main takeaways for each system
were:

MapReduce—scalability and simplicity
By providing a simple set of abstractions for data processing on top of a robust
and scalable execution engine, MapReduce allowed data engineers to focus on
the business logic of their data processing needs rather than the gnarly details of
building distributed systems resilient to the failure modes of commodity
hardware.

Hadoop—open source ecosystem
By building an open source platform on the ideas of MapReduce, Hadoop created
a thriving ecosystem that expanded well beyond the scope of its progenitor and
allowed a multitude of new ideas to flourish.
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Flume—pipelines, optimization
By coupling a high-level notion of logical pipeline operations with an intelligent
optimizer, Flume made it possible to write clean and maintainable pipelines
whose capabilities extended beyond the Map → Shuffle → Reduce confines of
MapReduce, without sacrificing any of the performance theretofore gained by
contorting the logical pipeline via hand-tuned manual optimizations.

Storm—low latency with weak consistency
By sacrificing correctness of results in favor of decreased latency, Storm brought
stream processing to the masses and also ushered in the era of the Lambda
Architecture, where weakly consistent stream processing engines were run along‐
side strongly consistent batch systems to realize the true business goal of low-
latency, eventually consistent results.

Spark—strong consistency
By utilizing repeated runs of a strongly consistent batch engine to provide con‐
tinuous processing of unbounded datasets, Spark Streaming proved it possible to
have both correctness and low-latency results, at least for in-order datasets.

MillWheel—out-of-order processing
By coupling strong consistency and exactly-once processing with tools for rea‐
soning about time like watermarks and timers, MillWheel conquered the chal‐
lenge of robust stream processing over out-of-order data.

Kafka—durable streams, streams and tables
By applying the concept of a durable log to the problem of streaming transports,
Kafka brought back the warm, fuzzy feeling of replayability that had been lost by
ephemeral streaming transports like RabbitMQ and TCP sockets. And by popu‐
larizing the ideas of stream and table theory, it helped shed light on the concep‐
tual underpinnings of data processing in general.

Cloud Dataflow—unified batch plus streaming
By melding the out-of-order stream processing concepts from MillWheel with
the logical, automatically optimizable pipelines of Flume, Cloud Dataflow pro‐
vided a unified model for batch plus streaming data processing that provided the
flexibility to balance the tensions between correctness, latency, and cost to match
any given use case.

Flink—open source stream processing innovator
By rapidly bringing the power of out-of-order processing to the world of open
source and combining it with innovations of their own like distributed snapshots
and its related savepoints features, Flink raised the bar for open source stream
processing and helped lead the current charge of stream processing innovation
across the industry.
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Beam—portability
By providing a robust abstraction layer that incorporates the best ideas from
across the industry, Beam provides a portability layer positioned as the program‐
matic equivalent to the declarative lingua franca provided by SQL, while also
encouraging the adoption of innovative new ideas throughout the industry.

To be certain, these 10 projects and the sampling of their achievements that I’ve high‐
lighted here do not remotely encompass the full breadth of the history that has led the
industry to where it exists today. But they stand out to me as important and notewor‐
thy milestones along the way, which taken together paint an informative picture of
the evolution of stream processing over the past decade and a half. We’ve come a long
way since the early days of MapReduce, with a number of ups, downs, twists, and
turns along the way. Even so, there remains a long road of open problems ahead of us
in the realm of streaming systems. I’m excited to see what the future holds.
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