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With millions of malware files created each 
year and a flood of security-related data 
generated every day, security has become 
a “big data” problem. So, when defending 
against malware, why not think like a data 
scientist?

In Malware Data Science, security data scien-
tists Joshua Saxe and Hillary Sanders show 
you how to apply machine learning, statistics, 
and data visualization as you build your own 
detection and intelligence systems. Following 
an overview of basic reverse engineering con-
cepts like static and dynamic analysis, you’ll 
learn to measure code similarities in malware 
samples and use machine learning frame-
works like scikit-learn and Keras to build and 
train your own detectors.

Learn how to:

👿 Identify new malware written by the same 
adversary groups through shared code 
analysis

👿 Catch zero-day malware by building your 
own machine learning detection system

👿 Use ROC curves to measure the accuracy of 
your malware detector to help you select 
the best approach to a security problem

👿 Use data visualization to identify and 
explore malware campaigns, trends, and 
relationships

👿 Use Python to implement deep neural 
network–based detection systems

Whether you’re a malware analyst looking to 
add skills to your existing arsenal or a data 
scientist interested in attack detection and 
threat intelligence, Malware Data Science will 
help you stay ahead of the curve. 
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F o r e w o r d

Congratulations on picking up Malware Data Science. 
You’re on your way to equipping yourself with the 
skills necessary to become a cybersecurity profes-
sional. In this book, you’ll find a wonderful introduc-
tion to data science as applied to malware analysis, 
as well as the requisite skills and tools you need to be 
proficient at it. 

There are far more jobs in cybersecurity than there are qualified 
candidates, so the good news is that cybersecurity is a great field to get 
into. The bad news is that the skills required to stay current are changing 
rapidly. As is often the case, necessity is the mother of invention. With far 
more demand for skilled cybersecurity professionals than there is supply, 
data science algorithms are filling the gap by providing new insights and 
predictions about threats against networks. The traditional model of watch-
men monitoring network data is rapidly becoming obsolete as data science 
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is increasingly being used to find threat patterns in terabytes of data. And 
thank goodness for that, because monitoring a screen of alerts is about as 
exciting as monitoring a video camera surveillance system of a parking lot. 

So what exactly is data science and how does it apply to security? As 
you’ll see in the Introduction, data science applied to security is the art 
and science of using machine learning, data mining, and visualization to 
detect threats against networks. While you’ll find a lot of hyperbole around 
machine learning and artificial intelligence driven by marketing, there are, 
in fact, very good use cases for these technologies that are in production 
today. 

For instance, when it comes to malware detection, both the volume of 
malware production and the cost to the adversary in changing malware 
signatures has rendered signature-only based approaches to malware 
obsolete. Instead, antivirus companies are now training neural networks 
or other types of machine learning algorithms over very large datasets of 
malware to learn their characteristics, so that new variants of malware can 
be detected without having to update the model daily. The combination 
of signature-based and machine learning–based detection provides cover-
age for both known and unknown malware. This is a topic both Josh and 
Hillary are experts in and from which they speak from deep experience.

But malware detection is only one use case for data science. In fact, 
when it comes to finding threats on the network, today’s sophisticated 
adversaries often will not drop executable programs. Instead, they will 
exploit existing software for initial access and then leverage system tools 
to pivot from one machine to the next using the user privileges obtained 
through exploitation. From an adversarial point of view this approach 
doesn’t leave behind artifacts such as malware that antivirus software will 
detect. However, a good endpoint logging system or an endpoint detection 
and response (EDR) system will capture system level activities and send this 
telemetry to the cloud, from where analysts can attempt to piece together 
the digital footprints of an intruder. This process of combing through mas-
sive streams of data and continuously looking for patterns of intrusion is a 
problem well-suited for data science, specifically data mining with statistical 
algorithms and data visualization. You can expect more and more Security 
Operations Centers (SOCs) to adopt data mining and artificial intelligence 
technologies. It’s really the only way to cull through massive data sets of sys-
tem events to identify actual attacks. 

Cybersecurity is undergoing massive shifts in technology and its opera-
tions, and data science is driving the change. We are fortunate to have 
experts like Josh Saxe and Hillary Sanders not only share their expertise 
with us, but do it in such an engaging and accessible way. This is your 
opportunity to learn what they know and apply it to your own work so you 
can stay ahead of the changes in technology and the adversaries you’re 
charged with defeating.

Anup K. Ghosh, PhD
Founder, Invincea, Inc
Washington, DC
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I n t r o d u c t i o n

If you’re working in security, chances are 
you’re using data science more than ever 

before, even if you may not realize it. For 
example, your antivirus product uses data 

science algorithms to detect malware. Your firewall 
vendor may have data science algorithms detecting 
suspicious network activity. Your security information 
and event management (SIEM) software probably uses data science to iden-
tify suspicious trends in your data. Whether conspicuously or not, the entire 
security industry is moving toward incorporating more data science into secu-
rity products.

Advanced IT security professionals are incorporating their own custom 
machine learning algorithms into their workflows. For example, in recent 
conference presentations and news articles, security analysts at Target, 
Mastercard, and Wells Fargo all described developing custom data science 
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technologies that they use as part of their security workflows.1 If you’re not 
already on the data science bandwagon, there’s no better time to upgrade 
your skills to include data science into your security practice.

What Is Data Science?
Data science is a growing set of algorithmic tools that allow us to understand 
and make predictions about data using statistics, mathematics, and artful sta-
tistical data visualizations. More specific definitions exist, but generally, data 
science has three subcomponents: machine learning, data mining, and data 
visualization.

In the security context, machine learning algorithms learn from train-
ing data to detect new threats. These methods have been proven to detect 
malware that flies under the radar of traditional detection techniques like 
signatures. Data mining algorithms search security data for interesting 
patterns (such as relationships between threat actors) that might help us 
discern attack campaigns targeting our organizations. Finally, data visual-
ization renders sterile, tabular data into graphical format to make it easier 
for people to spot interesting and suspicious trends. I cover all three areas 
in depth in this book and show you how to apply them.

Why Data Science Matters for Security
Data science is critically important for the future of cybersecurity for three 
reasons: first, security is all about data. When we seek to detect cyber threats, 
we’re analyzing data in the form of files, logs, network packets, and other 
artifacts. Traditionally, security professionals didn’t use data science tech-
niques to make detections based on these data sources. Instead, they used 
file hashes, custom-written rules like signatures, and manually defined heu-
ristics. Although these techniques have their merits, they required hand-
crafted techniques for each type of attack, necessitating too much manual 
work to keep up with the changing cyber threat landscape. In recent years, 
data science techniques have become crucial in bolstering our ability to 
detect threats.

Second, data science is important to cybersecurity because the number 
of cyberattacks on the internet has grown dramatically. Take the growth of 
the malware underworld as an example. In 2008, there were about 1 mil-
lion unique malware executables known to the security community. By 
2012, there were 100 million. As this book goes to press in 2018, there are 
more than 700 million malicious executables known to the security commu-
nity (https://www.av-test.org/en/statistics/malware/), and this number is likely 
to grow.

1. Target (https://www.rsaconference.com/events/us17/agenda/sessions/6662-applied-machine-
learning-defeating-modern-malicious), Mastercard (https://blogs.wsj.com/cio/2017/11/15/artificial-
intelligence-transforms-hacker-arsenal/), and Wells Fargo (https://blogs.wsj.com/cio/2017/11/16/
the-morning-download-first-ai-powered-cyberattacks-are-detected/).
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Due to the sheer volume of malware, manual detection techniques 
such as signatures are no longer a reasonable method for detecting all 
cyberattacks. Because data science techniques automate much of the 
work that goes into detecting cyberattacks, and vastly decrease the mem-
ory usage needed to detect such attacks, they hold tremendous promise 
in defending networks and users as cyber threats grow.

Finally, data science matters for security because data science is the tech-
nical trend of the decade, both inside and outside of the security industry, 
and it will likely remain so through the next decade. Indeed, you’ve probably 
seen applications of data science everywhere—in personal voice assistants 
(Amazon Echo, Siri, and Google Home), self-driving cars, ad recommenda-
tion systems, web search engines, medical image analysis systems, and fitness 
tracking apps.

We can expect data science–driven systems to have major impacts in 
legal services, education, and other areas. Because data science has become 
a key enabler across the technical landscape, universities, major companies 
(Google, Facebook, Microsoft, and IBM), and governments are investing 
billions of dollars to improve data science tools. Thanks to these invest-
ments, data science tools will become even more adept at solving hard 
attack-detection problems.

Applying Data Science to Malware
This book focuses on data science as it applies to malware, which we define 
as executable programs written with malicious intent, because malware 
continues to be the primary means by which threat actors gain a foothold 
on networks and subsequently achieve their goals. For example, in the ran-
somware scourge that has emerged in recent years, attackers typically send 
users malicious email attachments that download ransomware executables 
(malware) to users’ machines, which then encrypt users’ data and ask them 
for a ransom to decrypt the data. Although skilled attackers working for 
governments sometimes avoid using malware altogether to fly under the 
radar of detection systems, malware continues to be the major enabling 
technology in cyberattacks today.

By homing in on a specific application of security data science rather 
than attempting to cover security data science broadly, this book aims to 
show more thoroughly how data science techniques can be applied to a 
major security problem. By understanding malware data science, you’ll 
be better equipped to apply data science to other areas of security, like 
detecting network attacks, phishing emails, or suspicious user behavior. 
Indeed, almost all the techniques you’ll learn in this book apply to build-
ing data science detection and intelligence systems in general, not just for 
malware.
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Who Should Read This Book?
This book is aimed toward security professionals who are interested in 
learning more about how to apply data science to computer security prob-
lems. If computer security and data science are new to you, you might find 
yourself having to look up terms to give yourself a little bit of context, but 
you can still read this book successfully. If you’re only interested in data 
science, but not security, this book is probably not for you.

About This Book
The first part of the book consists of three chapters that cover basic reverse 
engineering concepts necessary for understanding the malware data sci-
ence techniques discussed later in the book. If you’re new to malware, read 
the first three chapters first. If you’re an old hand at malware reverse engi-
neering, you can skip these chapters.

•	 Chapter 1: Basic Static Malware Analysis covers static analysis tech-
niques for picking apart malware files and discovering how they achieve 
malicious ends on our computers.

•	 Chapter 2: Beyond Basic Static Analysis: x86 Disassembly gives you a 
brief overview of x86 assembly language and how to disassemble and 
reverse engineer malware.

•	 Chapter 3: A Brief Introduction to Dynamic Analysis concludes the 
reverse engineering section of the book by discussing dynamic analysis, 
which involves running malware in controlled environments to learn 
about its behavior.

The next two chapters of the book, Chapters 4 and 5, focus on mal-
ware relationship analysis, which involves looking at similarities and dif-
ferences between collections of malware to identify malware campaigns 
against your organization, such as a ransomware campaign controlled by 
a group of cybercriminals, or a concerted, targeted attack on your orga-
nization. These stand-alone chapters are for readers who are interested 
not only in detecting malware, but also in extracting valuable threat intel-
ligence to learn who is attacking their network. If you’re less interested in 
threat intelligence and more interested in data science–driven malware 
detection, you can safely skip these chapters.

•	 Chapter 4: Identifying Attack Campaigns Using Malware Networks 
shows you how to analyze and visualize malware based on shared attri-
butes, such as the hostnames that malware programs call out to.

•	 Chapter 5: Shared Code Analysis explains how to identify and visual-
ize shared code relationships between malware samples, which can help 
you identify whether groups of malware samples came from one or mul-
tiple criminal groups.
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The next four chapters cover everything you need to know to under-
stand, apply, and implement machine learning–based malware detection 
systems. These chapters also provide a foundation for applying machine 
learning to other security contexts.

•	 Chapter 6: Understanding Machine Learning–Based Malware 
Detectors is an accessible, intuitive, and non-mathematical introduc-
tion to basic machine learning concepts. If you have a history with 
machine learning, this chapter will provide a convenient refresher.

•	 Chapter 7: Evaluating Malware Detection Systems shows you how to 
evaluate the accuracy of your machine learning systems using basic 
statistical methods so that you can select the best possible approach.

•	 Chapter 8: Building Machine Learning Detectors introduces open 
source machine learning tools you can use to build your own machine 
learning systems and explains how to use them.

•	 Chapter 9: Visualizing Malware Trends covers how to visualize malware 
threat data to reveal attack campaigns and trends using Python, and 
how to integrate data visualization into your day-to-day workflow when 
analyzing security data.

The last three chapters introduce deep learning, an advanced area 
of machine learning that involves a bit more math. Deep learning is a 
hot growth area within security data science, and these chapters provide 
enough to get you started.

•	 Chapter 10: Deep Learning Basics covers the basic concepts that 
underlie deep learning.

•	 Chapter 11: Building a Neural Network Malware Detector with Keras 
explains how to implement deep learning–based malware detection sys-
tems in Python using open source tools.

•	 Chapter 12: Becoming a Data Scientist concludes the book by sharing 
different pathways to becoming a data scientist and qualities that can 
help you succeed in the field.

•	 Appendix: An Overview of Datasets and Tools describes the data and 
example tool implementations accompanying the book.

How to Use the Sample Code and Data
No good programming book is complete without sample code to play with 
and extend on your own. Sample code and data accompany each chapter 
of this book and are described exhaustively in the appendix. All the code 
targets Python 2.7 in Linux environments. To access the code and data, 
you can download a VirtualBox Linux virtual machine, which has the 
code, data, and supporting open source tools all set up and ready to go, 
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and run it within your own VirtualBox environment. You can download 
the book’s accompanying data at http://www.malwaredatascience.com/, and 
you can download the VirtualBox for free at https://www.virtualbox.org/wiki/
Downloads. The code has been tested on Linux, but if you prefer to work 
outside of the Linux VirtualBox, the same code should work almost as well 
on MacOS, and to a lesser extent on Windows machines.

If you’d rather install the code and data in your own Linux environ-
ment, you can download them here: http://www.malwaredatascience.com/. 
You’ll find a directory for each chapter in the downloadable archive, 
and within each chapter’s directory there are code/ and data/ directories 
that contain the corresponding code and data. Code files correspond to 
chapter listings or sections, whichever makes more sense for the applica-
tion at hand. Some code files are exactly like the listings, whereas others 
have been changed slightly to make it easier for you to play with parame-
ters and other options. Code directories come with pip requirements.txt files, 
which give the open source libraries that the code in that chapter depends 
on to run. To install these libraries on your machine, simply type pip -r 
requirements.txt in each chapter’s code/ directory.

Now that you have access to the code and data for this book, let’s get 
started.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads


1
B a s i c  S t a t i c  M a l w a r e  A n a ly s i s

In this chapter we look at the basics of 
static malware analysis. Static analysis is 

performed by analyzing a program file’s 
disassembled code, graphical images, print-

able strings, and other on-disk resources. It refers to 
reverse engineering without actually running the pro-
gram. Although static analysis techniques have their 
shortcomings, they can help us understand a wide variety of malware. 
Through careful reverse engineering, you’ll be able to better understand 
the benefits that malware binaries provide attackers after they’ve taken 
possession of a target, as well as the ways attackers can hide and continue 
their attacks on an infected machine. As you’ll see, this chapter combines 
descriptions and examples. Each section introduces a static analysis tech-
nique and then illustrates its application in real-world analysis.



2   Chapter 1

I begin this chapter by describing the Portable Executable (PE) file 
format used by most Windows programs, and then examine how to use the 
popular Python library pefile to dissect a real-world malware binary. I then 
describe techniques such as imports analysis, graphical image analysis, 
and strings analysis. In all cases, I show you how to use open source tools 
to apply the analysis technique to real-world malware. Finally, at the end of 
the chapter, I introduce ways malware can make life difficult for malware 
analysts and discuss some ways to mitigate these issues.

You’ll find the malware sample used in the examples in this chapter in 
this book’s data under the directory /ch1. To demonstrate the techniques 
discussed in this chapter, we use ircbot.exe, an Internet Relay Chat (IRC) 
bot created for experimental use, as an example of the kinds of malware 
commonly observed in the wild. As such, the program is designed to stay 
resident on a target computer while connected to an IRC server. After ircbot​
.exe gets hold of a target, attackers can control the target computer via IRC, 
allowing them to take actions such as turning on a webcam to capture and 
surreptitiously extract video feeds of the target’s physical location, taking 
screenshots of the desktop, extracting files from the target machine, and so 
on. Throughout this chapter, I demonstrate how static analysis techniques 
can reveal the capabilities of this malware.

The Microsoft Windows Portable Executable Format
To perform static malware analysis, you need to understand the Windows 
PE format, which describes the structure of modern Windows program files 
such as .exe, .dll, and .sys files and defines the way they store data. PE files 
contain x86 instructions, data such as images and text, and metadata that a 
program needs in order to run.

The PE format was originally designed to do the following:

Tell Windows how to load a program into memory  The PE format 
describes which chunks of a file should be loaded into memory, and 
where. It also tells you where in the program code Windows should 
start a program’s execution and which dynamically linked code 
libraries should be loaded into memory.

Supply media (or resources) a running program may use in the course 
of its execution  These resources can include strings of characters like 
the ones in GUI dialogs or console output, as well as images or videos.

Supply security data such as digital code signatures  Windows uses 
such security data to ensure that code comes from a trusted source.

The PE format accomplishes all of this by leveraging the series of con-
structs shown in Figure 1-1.
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Figure 1-1: The PE file format

As the figure shows, the PE format includes a series of headers telling 
the operating system how to load the program into memory. It also includes 
a series of sections that contain the actual program data. Windows loads 
the sections into memory such that their memory offsets correspond to 
where they appear on disk. Let’s explore this file structure in more detail, 
starting with the PE header. We’ll skip over a discussion of the DOS header, 
which is a relic of the 1980s-era Microsoft DOS operating system and only 
present for compatibility reasons.

The PE Header
Shown at the bottom of Figure 1-1, above the DOS header u, is the PE 
header v, which defines a program’s general attributes such as binary 
code, images, compressed data, and other program attributes. It also tells 
us whether a program is designed for 32- or 64-bit systems. The PE header 
provides basic but useful contextual information to the malware analyst. For 
example, the header includes a timestamp field that can give away the time 
at which the malware author compiled the file. This happens when malware 
authors forget to replace this field with a bogus value, which they often do.

The Optional Header
The optional header w is actually ubiquitous in today’s PE executable 
programs, contrary to what its name suggests. It defines the location of 
the program’s entry point in the PE file, which refers to the first instruc-
tion the program runs once loaded. It also defines the size of the data 
that Windows loads into memory as it loads the PE file, the Windows sub-
system, the program targets (such as the Windows GUI or the Windows 
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command line), and other high-level details about the program. The 
information in this header can prove invaluable to reverse engineers, 
because a program’s entry point tells them where to begin reverse 
engineering.

Section Headers
Section headers x describe the data sections contained within a PE file. A 
section in a PE file is a chunk of data that either will be mapped into memory 
when the operating system loads a program or will contain instructions about 
how the program should be loaded into memory. In other words, a section 
is a sequence of bytes on disk that will either become a contiguous string of 
bytes in memory or inform the operating system about some aspect of the 
loading process.

Section headers also tell Windows what permissions it should grant to 
sections, such as whether they should be readable, writable, or executable 
by the program when it’s executing. For example, the .text section con-
taining x86 code will typically be marked readable and executable but not 
writable to prevent program code from accidentally modifying itself in the 
course of execution.

A number of sections, such as .text and .rsrc, are depicted in Figure 1-1. 
These get mapped into memory when the PE file is executed. Other special 
sections, such as the .reloc section, aren’t mapped into memory. We’ll dis-
cuss these sections as well. Let’s go over the sections shown in Figure 1-1.

The .text Section

Each PE program contains at least one section of x86 code marked execut-
able in its section header; these sections are almost always named .text y. 
We’ll disassemble the data in the .text section when performing program 
disassembly and reverse engineering in Chapter 2.

The .idata Section

The .idata section z, also called imports, contains the Import Address Table 
(IAT), which lists dynamically linked libraries and their functions. The 
IAT is among the most important PE structures to inspect when initially 
approaching a PE binary for analysis because it reveals the library calls 
a program makes, which in turn can betray the malware’s high-level 
functionality.

The Data Sections

The data sections in a PE file can include sections like .rsrc, .data, and 
.rdata, which store items such as mouse cursor images, button skins, audio, 
and other media used by a program. For example, the .rsrc section { 
in Figure 1-1 contains printable character strings that a program uses to 
render text as strings.
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The information in the .rsrc (resources) section can be vital to malware 
analysts because by examining the printable character strings, graphical 
images, and other assets in a PE file, they can gain vital clues about the 
file’s functionality. In “Examining Malware Images” on page 7, you’ll 
learn how to use the icoutils toolkit (including icotool and wrestool) to 
extract graphical images from malware binaries’ resources sections. Then, 
in “Examining Malware Strings” on page 8, you’ll learn how to extract 
printable strings from malware resources sections.

The .reloc Section

A PE binary’s code is not position independent, which means it will not 
execute correctly if it’s moved from its intended memory location to a new 
memory location. The .reloc section | gets around this by allowing code to 
be moved without breaking. It tells the Windows operating system to trans-
late memory addresses in a PE file’s code if the code has been moved so 
that the code still runs correctly. These translations usually involve adding 
or subtracting an offset from a memory address.

Although a PE file’s .reloc section may well contain information you’ll 
want to use in your malware analysis, we won’t discuss it further in this book 
because our focus is on applying machine learning and data analysis to 
malware, not doing the kind of hardcore reverse engineering that involves 
looking at relocations.

Dissecting the PE Format Using pefile
The pefile Python module, written and maintained by Ero Carerra, has 
become an industry-standard malware analysis library for dissecting PE 
files. In this section, I show you how to use pefile to dissect ircbot.exe. The 
ircbot.exe file can be found on the virtual machine accompanying this book 
in the directory ~/malware_data_science/ch1/data. Listing 1-1 assumes that 
ircbot.exe is in your current working directory.

Enter the following to install the pefile library so that we can import it 
within Python:

$ pip install pefile

Now, use the commands in Listing 1-1 to start Python, import the pefile 
module, and open and parse the PE file ircbot.exe using pefile.

$ python
>>> import pefile
>>> pe = pefile.PE("ircbot.exe")

Listing 1-1: Loading the pefile module and parsing a PE file (ircbot.exe)
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We instantiate pefile.PE, which is the core class implemented by the PE 
module. It parses PE files so that we can examine their attributes. By calling 
the PE constructor, we load and parse the specified PE file, which is ircbot.exe 
in this example. Now that we’ve loaded and parsed our file, run the code in 
Listing 1-2 to pull information from ircbot.exe’s PE fields.

# based on Ero Carrera's example code (pefile library author)
for section in pe.sections:
  print (section.Name, hex(section.VirtualAddress),
    hex(section.Misc_VirtualSize), section.SizeOfRawData )

Listing 1-2: Iterating through the PE file’s sections and printing information about them

Listing 1-3 shows the output.

('.text\x00\x00\x00', '0x1000', '0x32830', w207360)
('.rdata\x00\x00', '0x34000', '0x427a', 17408)
('.data\x00\x00\x00', '0x39000', '0x5cff8', 10752)
('.idata\x00\x00', '0x96000', '0xbb0', 3072)
('.reloc\x00\x00', '0x97000', '0x211d', 8704)

Listing 1-3: Pulling section data from ircbot.exe using Python’s pefile module

As you can see in Listing 1-3, we’ve pulled data from five different sec-
tions of the PE file: .text, .rdata, .data, .idata, and .reloc. The output is 
given as five tuples, one for each PE section pulled. The first entry on each 
line identifies the PE section. (You can ignore the series of \x00 null bytes, 
which are simply C-style null string terminators.) The remaining fields tell 
us what each section’s memory utilization will be once it’s loaded into mem-
ory and where in memory it will be found once loaded.

For example, 0x1000  is the base virtual memory address where these sec-
tions will be loaded. Think of this as the section’s base memory address. 
The 0x32830  in the virtual size field specifies the amount of memory required 
by the section once loaded. The 207360  in the third field represents the 
amount of data the section will take up within that chunk of memory.

In addition to using pefile to parse a program’s sections, we can also 
use it to list the DLLs a binary will load, as well as the function calls it will 
request within those DLLs. We can do this by dumping a PE file’s IAT. 
Listing 1-4 shows how to use pefile to dump the IAT for ircbot.exe.

$ python
pe = pefile.PE("ircbot.exe")
for entry in pe.DIRECTORY_ENTRY_IMPORT:
    print entry.dll
    for function in entry.imports:
        print '\t',function.name

Listing 1-4: Extracting imports from ircbot.exe

Listing 1-4 should produce the output shown in Listing 1-5 (truncated 
for brevity).
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KERNEL32.DLL
      GetLocalTime
      ExitThread
      CloseHandle

       WriteFile
       CreateFileA

      ExitProcess
       CreateProcessA

      GetTickCount
      GetModuleFileNameA
--snip--

Listing 1-5: Contents of the IAT of ircbot.exe, showing library functions used by this malware

As you can see in Listing 1-5, this output is valuable for malware analy-
sis because it lists a rich array of functions that the malware declares and 
will reference. For example, the first few lines of the output tell us that the 
malware will write to files using WriteFile , open files using the CreateFileA 
call , and create new processes using CreateProcessA . Although this is 
fairly basic information about the malware, it’s a start in understanding the 
malware’s behavior in more detail.

Examining Malware Images
To understand how malware may be designed to game a target, let’s look at 
the icons contained in its .rsrc section. For example, malware binaries are 
often designed to trick users into clicking them by masquerading as Word 
documents, game installers, PDF files, and so on. You also find images in 
the malware suggesting programs of interest to the attackers themselves, 
such as network attack tools and programs run by attackers for the remote 
control of compromised machines. I have even seen binaries containing 
desktop icons of jihadists, images of evil-looking cyberpunk cartoon char-
acters, and images of Kalashnikov rifles. For our sample image analysis, let’s 
consider a malware sample the security company Mandiant identified as 
having been crafted by a Chinese state-sponsored hacking group. You can 
find this sample malware in this chapter’s data directory under the name 
fakepdfmalware.exe. This sample uses an Adobe Acrobat icon to trick users 
into thinking it is an Adobe Acrobat document, when in fact it’s a malicious 
PE executable.

Before we can extract the images from the fakepdfmalware.exe binary 
using the Linux command line tool wrestool, we first need to create a direc-
tory to hold the images we’ll extract. Listing 1-6 shows how to do all this.

$ mkdir images
$ wrestool –x fakepdfmalware.exe –output=images
$ icotool –x –o images images/*.ico

Listing 1-6: Shell commands that extract images from a malware sample
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We first use mkdir images to create a directory to hold the extracted 
images. Next, we use wrestool to extract image resources (-x) from 
fakepdfmalware.exe to /images and then use icotool to extract (-x) and 
convert (-o) any resources in the Adobe .ico icon format into .png graphics 
so that we can view them using standard image viewer tools. If you don’t 
have wrestool installed on your system, you can download it at http://www​
.nongnu.org/icoutils/.

Once you’ve used wrestool to convert the images in the target execut-
able to the PNG format, you should be able open them in your favorite 
image viewer and see the Adobe Acrobat icon at various resolutions. As 
my example here demonstrates, extracting images and icons from PE files 
is relatively straightforward and can quickly reveal interesting and useful 
information about malware binaries. Similarly, we can easily extract print-
able strings from malware for more information, which we’ll do next.

Examining Malware Strings
Strings are sequences of printable characters within a program binary. 
Malware analysts often rely on strings in a malicious sample to get a quick 
sense of what may be going on inside it. These strings often contain things 
like HTTP and FTP commands that download web pages and files, IP 
addresses and hostnames that tell you what addresses the malware con-
nects to, and the like. Sometimes even the language used to write the 
strings can hint at a malware binary’s country of origin, though this can 
be faked. You may even find text in a string that explains in leetspeak the 
purpose of a malicious binary.

Strings can also reveal more technical information about a binary. For 
example, you may find information about the compiler used to create it, 
the programming language the binary was written in, embedded scripts or 
HTML, and so on. Although malware authors can obfuscate, encrypt, and 
compress all of these traces, even advanced malware authors often leave 
at least some traces exposed, making it particularly important to examine 
strings dumps when analyzing malware.

Using the strings Program
The standard way to view all strings in a file is to use the command line tool 
strings, which uses the following syntax:

$ strings filepath | less

This command prints all strings in a file to the terminal, line by line. 
Adding | less at the end prevents the strings from just scrolling across the 
terminal. By default, the strings command finds all printable strings with 
a minimum length of 4 bytes, but you can set a different minimum length 
and change various other parameters, as listed in the commands manual 
page. I recommend simply using the default minimum string length of 4, 

http://www.nongnu.org/icoutils/
http://www.nongnu.org/icoutils/
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but you can change the minimum string length using the –n option. For 
example, strings –n 10 filepath would extract only strings with a minimum 
length of 10 bytes.

Analyzing Your strings Dump
Now that we dumped a malware program’s printable strings, the challenge 
is to understand what the strings mean. For example, let’s say we dump the 
strings to the ircbotstring.txt file for ircbot.exe, which we explored earlier in 
this chapter using the pefile library, like this:

$ strings ircbot.exe > ircbotstring.txt

The contents of ircbotstring.txt contain thousands of lines of text, but 
some of these lines should stick out. For example, Listing 1-7 shows a bunch 
of lines extracted from the string dump that begin with the word DOWNLOAD.

[DOWNLOAD]: Bad URL, or DNS Error: %s.
[DOWNLOAD]: Update failed: Error executing file: %s.
[DOWNLOAD]: Downloaded %.1fKB to %s @ %.1fKB/sec. Updating.
[DOWNLOAD]: Opened: %s.
--snip--
[DOWNLOAD]: Downloaded %.1f KB to %s @ %.1f KB/sec.
[DOWNLOAD]: CRC Failed (%d != %d).
[DOWNLOAD]: Filesize is incorrect: (%d != %d).
[DOWNLOAD]: Update: %s (%dKB transferred).
[DOWNLOAD]: File download: %s (%dKB transferred).
[DOWNLOAD]: Couldn't open file: %s.

Listing 1-7: The strings output showing evidence that the malware can download files 
specified by the attacker onto a target machine

These lines indicate that ircbot.exe will attempt to download files speci-
fied by an attacker onto the target machine.

Let’s try analyzing another one. The string dump shown in Listing 1-8 
indicates that ircbot.exe can act as a web server that listens on the target 
machine for connections from the attacker.

 GET
 HTTP/1.0 200 OK

Server: myBot
Cache-Control: no-cache,no-store,max-age=0
pragma: no-cache
Content-Type: %s
Content-Length: %i
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s GMT
Connection: close
HTTP/1.0 200 OK

 Server: myBot
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Cache-Control: no-cache,no-store,max-age=0
pragma: no-cache
Content-Type: %s
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s GMT
Connection: close
HH:mm:ss
ddd, dd MMM yyyy
application/octet-stream
text/html

Listing 1-8: The strings output showing that the malware has an HTTP server to which the 
attacker can connect

Listing 1-8 shows a wide variety of HTTP boilerplates used by ircbot.exe 
to implement an HTTP server. It’s likely that this HTTP server allows the 
attacker to connect to a target machine via HTTP to issue commands, such 
as the command to take a screenshot of the victim’s desktop and send it back 
to the attacker. We see evidence of HTTP functionality throughout the list-
ing. For example, the GET method  requests data from an internet resource. 
The line HTTP/1.0 200 OK  is an HTTP string that returns the status code 200, 
indicating that all went well with an HTTP network transaction, and Server: 
myBot  indicates that the name of the HTTP server is myBot, a giveaway that 
ircbot.exe has a built-in HTTP server.

All of this information is useful in understanding and stopping a par-
ticular malware sample or malicious campaign. For example, knowing that 
a malware sample has an HTTP server that outputs certain strings when 
you connect to it allows you to scan your network to identify infected hosts.

Summary
In this chapter, you got a high-level overview of static malware analysis, 
which involves inspecting a malware program without actually running it. 
You learned about the PE file format that defines Windows .exe and .dll files, 
and you learned how to use the Python library pefile to dissect a real-world 
malware ircbot.exe binary. You also used static analysis techniques such as 
image analysis and strings analysis to extract more information from mal-
ware samples. Chapter 2 continues our discussion of static malware analysis 
with a focus on analyzing the assembly code that can be recovered from 
malware.
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To thoroughly understand a malicious 
program, we often need to go beyond 
basic static analysis of its sections, strings, 

imports, and images. This involves reverse 
engineering a program’s assembly code. Indeed, 

disassembly and reverse engineering lie at the heart 
of deep static analysis of malware samples.

Because reverse engineering is an art, technical craft, and science, a 
thorough exploration is beyond the scope of this chapter. My goal here is 
to introduce you to reverse engineering so that you can apply it to malware 
data science. Understanding this methodology is essential for successfully 
applying machine learning and data analysis to malware.

In this chapter I start with the concepts you’ll need to understand x86 
disassembly. Later in the chapter I show how malware authors attempt to 
bypass disassembly and discuss ways to mitigate these anti-analysis and 
anti-detection maneuvers. But first, let’s review some common disassembly 
methods as well as the basics of x86 assembly language.
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Disassembly Methods
Disassembly is the process by which we translate malware’s binary code into 
valid x86 assembly language. Malware authors generally write malware 
programs in a high-level language like C or C++ and then use a compiler 
to compile the source code into x86 binary code. Assembly language is 
the human-readable representation of this binary code. Therefore, dis-
assembling a malware program into assembly language is necessary to 
understand how it behaves at its core.

Unfortunately, disassembly is no easy feat because malware authors reg-
ularly employ tricks to thwart would-be reverse engineers. In fact, perfect 
disassembly in the face of deliberate obfuscation is an unsolved problem in 
computer science. Currently, only approximate, error-prone methods exist 
for disassembling such programs.

For example, consider the case of self-modifying code, or binary code that 
modifies itself as it executes. The only way to disassemble this code properly 
is to understand the program logic by which the code modifies itself, but 
that can be exceedingly complex.

Because perfect disassembly is currently impossible, we must use 
imperfect methods to accomplish this task. The method we’ll use is linear 
disassembly, which involves identifying the contiguous sequence of bytes in 
the Portable Executable (PE) file that corresponds to its x86 program code 
and then decoding these bytes. The key limitation of this approach is that 
it ignores subtleties about how instructions are decoded by the CPU in the 
course of program execution. Also, it doesn’t account for the various obfus-
cations malware authors sometimes use to make their programs harder to 
analyze.

The other methods of reverse engineering, which we won’t cover here, 
are the more complex disassembly methods used by industrial-grade disas-
semblers such as IDA Pro. These more advanced methods actually simulate 
or reason about program execution to discover which assembly instructions 
a program might reach as a result of a series of conditional branches.

Although this type of disassembly can be more accurate than linear 
disassembly, it’s far more CPU intensive than linear disassembly methods, 
making it less suitable for data science purposes where the focus is on disas-
sembling thousands or even millions of programs.

Before you can begin analysis using linear disassembly, however, you’ll 
need to review the basic components of assembly language.

Basics of x86 Assembly Language
Assembly language is the lowest-level human-readable programming lan-
guage for a given architecture, and it maps closely to the binary instruc-
tion format of a particular CPU architecture. A line of assembly language 
is almost always equivalent to a single CPU instruction. Because assembly is 
so low level, you can often retrieve it easily from a malware binary by using 
the right tools.
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Gaining basic proficiency in reading disassembled malware x86 code 
is easier than you might think. This is because most malware assembly 
code spends most of its time calling into the operating system by way of 
the Windows operating system’s dynamic-link libraries (DLLs), which are 
loaded into program memory at runtime. Malware programs use DLLs 
to do most of the real work, such as modifying the system registry, mov-
ing and copying files, making network connections and communicating 
via network protocols, and so on. Therefore, following malware assembly 
code often involves understanding the ways in which function calls are 
made from assembly and understanding what various DLL calls do. Of 
course, things can get much more complicated, but knowing this much 
can reveal a lot about the malware.

In the following sections I introduce some important assembly language 
concepts. I also explain some abstract concepts like control flow and control 
flow graphs. Finally, we disassemble the ircbot.exe program and explore how 
its assembly and control flow can give us insight into its purpose.

There are two major dialects of x86 assembly: Intel and AT&T. In this 
book I use Intel syntax, which can be obtained from all major disassemblers 
and is the syntax used in the official Intel documentation of the x86 CPU.

Let’s start by taking a look at CPU registers.

CPU Registers
Registers are small data storage units on which x86 CPUs perform compu-
tations. Because registers are located on the CPU itself, register access is 
orders of magnitude faster than memory access. This is why core compu-
tational operations, such as arithmetic and condition testing instructions, 
all target registers. It’s also why the CPU uses registers to store information 
about the status of running programs. Although many registers are avail-
able to experienced x86 assembly programmers, we’ll just focus on a few 
important ones here.

General-Purpose Registers

General-purpose registers are like scratch space for assembly programmers. 
On a 32-bit system, each of these registers contains 32, 16, or 8 bits of space 
against which we can perform arithmetic operations, bitwise operations, 
byte order–swapping operations, and more.

In common computational workflows, programs move data into regis-
ters from memory or from external hardware devices, perform some opera-
tions on this data, and then move the data back out to memory for storage. 
For example, to sort a long list, a program typically pulls list items in from 
an array in memory, compares them in the registers, and then writes the 
comparison results back out to memory.

To understand some of the nuances of the general-purpose register 
model in the Intel 32-bit architecture, take a look at Figure 2-1.
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Figure 2-1: Registers in the x86 architecture

The vertical axis shows the layout of the general-purpose registers, and 
the horizontal axis shows how EAX, EBX, ECX, and EDX are subdivided. 
EAX, EBX, ECX, and EDX are 32-bit registers that have smaller, 16-bit 
registers inside them: AX, BX, CX, and DX. As you can see in the figure, 
these 16-bit registers can be subdivided into upper and lower 8-bit registers: 
AH, AL, BH, BL, CH, CL, DH, and DL. Although it’s sometimes useful to 
address the subdivisions in EAX, EBX, ECX, and EDX, you’ll mostly see 
direct references to EAX, EBX, ECX, and EDX.

Stack and Control Flow Registers

The stack management registers store critical information about the pro-
gram stack, which is responsible for storing local variables for functions, 
arguments passed into functions, and control information relating to the 
program control flow. Let’s go over some of these registers.

In simple terms, the ESP register points to the top of the stack for 
the currently executing function, whereas the EBP register points to the 
bottom of the stack for the currently executing function. This is crucial 
information for modern programs, because it means that by referencing 
data relative to the stack rather than using its absolute address, procedural 
and object-oriented code can access local variables more gracefully and 
efficiently.

Although you won’t see direct references to the EIP register in x86 
assembly code, it’s important in security analysis, particularly in the con-
text of vulnerability research and buffer-overflow exploit development. 
This is because EIP contains the memory address of the currently execut-
ing instruction. Attackers can use buffer-overflow exploits to corrupt the 
value of the EIP register indirectly and take control of program execution.
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In addition to its role in exploitation, EIP is also important in the analy-
sis of malicious code deployed by malware. Using a debugger we can inspect 
EIP’s value at any moment, which helps us understand what code malware is 
executing at any particular time.

EFLAGS is a status register that contains CPU flags, which are bits 
that store status information about the state of the currently executing 
program. The EFLAGS register is central to the process of making condi-
tional branches, or changes in execution flow resulting from the outcome of 
if/then-style program logic, within x86 programs. Specifically, whenever 
an x86 assembly program checks whether some value is greater or less 
than zero and then jumps to a function based on the outcome of this test, 
the EFLAGS register plays an enabling role, as described in more detail in 
“Basic Blocks and Control Flow Graphs” on page 19.

Arithmetic Instructions
Instructions operate on general-purpose registers. You can perform simple 
computations with the general-purpose registers using arithmetic instruc-
tions. For example, add, sub, inc, dec, and mul are examples of arithmetic 
instructions you’ll encounter frequently in malware reverse engineering. 
Table 2-1 lists some examples of basic instructions and their syntax.

Table 2-1: Arithmetic Instructions

Instructions Description

add ebx, 100 Adds 100 to the value in EBX and then stores the result in EBX
sub ebx, 100 Subtracts 100 from the value in EBX and then stores the result 

in EBX
inc ah Increments the value in AH by 1
dec al Decrements the value in AL by 1

The add instruction adds two integers and stores the result in the first 
operand specified, whether this is a memory location or a register accord-
ing to the following syntax. Keep in mind only one argument can be a 
memory location. The sub instruction is similar to add, except it subtracts 
integers. The inc instruction increments a register or memory location’s 
integer value, whereas dec decrements a register or memory location’s inte-
ger value.

Data Movement Instructions
The x86 processor provides a robust set of instructions for moving data 
between registers and memory. These instructions provide the underlying 
mechanisms that allow us to manipulate data. The staple memory move-
ment instruction is the mov instruction. Table 2-2 shows how you can use the 
mov instruction to move data around.
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Table 2-2: Data Movement Instructions

Instructions Description

mov ebx,eax Moves the value in register EAX into register EBX
mov eax, [0x12345678] Moves the data at memory address 0x12345678 into 

the EAX register
mov edx, 1 Moves the value 1 into the register EDX
mov [0x12345678], eax Moves the value in EAX into the memory location 

0x12345678

Related to the mov instruction, the lea instruction loads the absolute 
memory address specified into the register used for getting a pointer to 
a memory location. For example, lea edx, [esp-4] subtracts 4 from the 
value in ESP and loads the resulting value into EDX.

Stack Instructions

The stack in x86 assembly is a data structure that allows you to push and 
pop values onto and off of it. This is similar to how you would add and 
remove plates on and off the top of a stack of plates.

Because control flow is often expressed through C-style function calls 
in x86 assembly and because these function calls use the stack to pass argu-
ments, allocate local variables, and remember what part of the program 
to return to after a function finishes executing, the stack and control flow 
need to be understood together.

The push instruction pushes values onto the program stack when the pro-
grammer wants to save a register value onto the stack, and the pop instruction 
deletes values from the stack and places them into a designated register.

The push instruction uses the following syntax to perform its operations:

push 1

In this example, the program points the stack pointer (the register 
ESP) to a new memory address, thereby making room for the value (1), 
which is now stored at the top location on the stack. Then it copies the 
value from the argument to the memory location the CPU has just made 
room for on the top of the stack.

Let’s contrast this with pop:

pop eax

The program uses pop to pop the top value off the stack and move it 
into a specified register. In this example, pop eax pops the top value off the 
stack and moves it into eax.

An unintuitive but important detail to understand about the x86 pro-
gram stack is that it grows downward in memory, so that the highest value 
on the stack is actually stored at the lowest address in stack memory. This 
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becomes very important to remember when you analyze assembly code that 
references data stored on the stack, as it can quickly get confusing unless 
you know the stack’s memory layout.

Because the x86 stack grows downward in memory, when the push instruc-
tion allocates space on the program stack for a new value, it decrements the 
value of ESP so that it points to a lower location in memory and then copies 
a value from the target register into that memory location, starting at the top 
address of the stack and growing up. Conversely, the pop instruction actually 
copies the top value off of the stack and then increments the value of ESP so 
it points to a higher memory location.

Control Flow Instructions

An x86 program’s control flow defines the network of possible instruction 
execution sequences a program may execute, depending on the data, 
device interactions, and other inputs the program might receive. Control 
flow instructions define a program’s control flow. They are more compli-
cated than stack instructions but still quite intuitive. Because control flow 
is often expressed through C-style function calls in x86 assembly, the stack 
and control flow are closely related. They’re also related because these 
function calls use the stack to pass arguments, allocate local variables, and 
remember what part of the program to return to after a function finishes 
executing.

The call and ret control flow instructions are the most important in 
terms of how programs call functions in x86 assembly and how programs 
return from functions after these functions are done executing.

The call instruction calls a function. Think of this as a function you 
might write in a higher-level language like C to allow the program to return 
to the instruction after the call instruction is invoked and the function has 
finished executing. You can invoke the call instruction using the following 
syntax, where address denotes the memory location where the function’s 
code begins:

call address

The call instruction does two things. First, it pushes the address of 
the instruction that will execute after the function call returns onto the 
top of the stack so that the program knows what address to return to after 
the called function finishes executing. Second, call replaces the current 
value of EIP with the value specified by the address operand. Then, the CPU 
begins execution at the new memory location pointed to by EIP.

Just as call initiates a function call, the ret instruction completes it. 
You can use the ret instruction on its own and without any parameter, as 
shown here:

ret
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When invoked, ret pops the top value off the stack, which we expect to 
be the saved program counter value (EIP) that the call instruction pushed 
onto the stack when the call instruction was invoked. Then it places the 
popped program counter value back into EIP and resumes execution.

The jmp instruction is another important control flow construction, 
which operates more simply than call. Instead of worrying about saving 
EIP, jmp simply tells the CPU to move to the memory address specified as 
its parameter and begin execution there. For example, jmp 0x12345678 tells 
the CPU to start executing the program code stored at memory location 
0x12345678 on the next instruction.

You may be wondering how you can make jmp and call instructions 
execute in a conditional way, such as “if the program has received a net-
work packet, execute the following function.” The answer is that x86 
assembly doesn’t have high-level constructs like if, then, else, else if, and 
so on. Instead, branching to an address within a program’s code typically 
requires two instructions: a cmp instruction, which checks the value in 
some register against some test value and stores the result of that test in 
the EFLAGS register, and a conditional branch instruction.

Most conditional branch instructions start with a j, which allows the 
program to jump to a memory address, and are post-fixed with letters that 
stand for the condition being tested. For example, jge tells the program to 
jump if greater than or equal to. This means that the value in the register 
being tested must be greater than or equal to the test value.

The cmp instruction uses the following syntax:

cmp register, memory location, or literal, register, memory location, or 
literal

As stated earlier, cmp compares the value in the specified general-purpose 
register with value and then stores the result of that comparison in the 
EFLAGS register.

The various conditional jmp instructions are then invoked as follows:

j* address

As you can see, we can prefix j to any number of conditional test instruc-
tions. For example, to jump only if the value tested is greater than or equal 
to the value in the register, use the following instruction:

jge address

Note that unlike the case of the call and ret instructions, the jmp fam-
ily of instructions never touches the program stack. In fact, in the case of 
the jmp family of instructions, the x86 program is responsible for tracking 
its own execution flow and potentially saving or deleting information about 
what addresses it has visited and where it should return to after a particular 
sequence of instructions has executed.
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Basic Blocks and Control Flow Graphs

Although x86 programs look sequential when we scroll through their code 
in a text editor, they actually have loops, conditional branches, and uncon-
ditional branches (control flow). All of these give each x86 program a net-
work structure. Let’s use the simple toy assembly program in Listing 2-1 to 
see how this works.

setup: # symbol standing in for address of instruction on the next line
 mov eax, 10

loopstart: # symbol standing in for address of the instruction on the next 
line

 sub eax, 1
 cmp 0, eax

jne $loopstart
loopend: # symbol standing in for address of the instruction on the next line
mov eax, 1
# more code would go here

Listing 2-1: Assembly program for understanding control flow graph

As you can see, this program initializes a counter to the value 10, stored 
in register EAX . Next, it does a loop in which the value in EAX is decre-
mented by 1  on each iteration. Finally, once EAX has reached a value 
of 0 , the program breaks out of the loop.

In the language of control flow graph analysis, we can think of these 
instructions as comprising three basic blocks. A basic block is a sequence 
of instructions that we know will always execute contiguously. In other 
words, a basic block always ends with either a branching instruction or an 
instruction that is the target of a branch, and it always begins with either 
the first instruction of the program, called the program’s entry point, or a 
branch target.

In Listing 2-1, you can see where the basic blocks of our simple pro-
gram begin and end. The first basic block is composed of the instruc-
tion mov eax, 10 under setup:. The second basic block is composed of lines 
beginning with sub eax, 1 through jne $loopstart under loopstart:, and 
the third starts at mov eax, 1 under loopend:. We can visualize the relation-
ships between the basic blocks using the graph in Figure 2-2. (We use the 
term graph synonymously with the term network; in computer science, these 
terms are interchangeable.)

loopstart:

sub eax, 1

cmp 0, eax

jne $loopstart

setup:

mov eax, 10

loopend:

move eax, 1

Figure 2-2: A visualization of the control flow graph of our simple assembly  
program
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If one basic block can ever flow into another basic block, we connect it, 
as shown in Figure 2-2. The figure shows that the setup basic block leads to 
the loopstart basic block, which repeats 10 times before it transitions to the 
loopend basic block. Real-world programs have control flow graphs such as 
these, but they’re much more complicated, with thousands of basic blocks 
and thousands of interconnections.

Disassembling ircbot.exe Using pefile and capstone
Now that you have a good understanding of the basics of assembly language, 
let’s disassemble the first 100 bytes of ircbot.exe’s assembly code using linear 
disassembly. To do this, we’ll use the open source Python libraries pefile 
(introduced in Chapter 1) and capstone, which is an open source disassem-
bly library that can disassemble 32-bit x86 binary code. You can install both 
of these libraries with pip using the following commands:

pip install pefile
pip install capstone

Once these two libraries are installed, we can leverage them to disas-
semble ircbot.exe using the code in Listing 2-2.

#!/usr/bin/python
import pefile
from capstone import *

# load the target PE file
pe = pefile.PE("ircbot.exe")

# get the address of the program entry point from the program header
entrypoint = pe.OPTIONAL_HEADER.AddressOfEntryPoint

# compute memory address where the entry code will be loaded into memory
entrypoint_address = entrypoint+pe.OPTIONAL_HEADER.ImageBase

# get the binary code from the PE file object
binary_code = pe.get_memory_mapped_image()[entrypoint:entrypoint+100]

# initialize disassembler to disassemble 32 bit x86 binary code
disassembler = Cs(CS_ARCH_X86, CS_MODE_32)

# disassemble the code
for instruction in disassembler.disasm(binary_code, entrypoint_address):
    print "%s\t%s" %(instruction.mnemonic, instruction.op_str)

Listing 2-2: Disassembling ircbot.exe

This should produce the following output:

 push    ebp
mov     ebp, esp
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push    -1
push    0x437588
push    0x41982c

 mov     eax, dword ptr fs:[0]
push    eax
mov     dword ptr fs:[0], esp

 add     esp, -0x5c
push    ebx
push    esi
push    edi
mov     dword ptr [ebp - 0x18], esp

 call    dword ptr [0x496308]
--snip--

Don’t worry about understanding all of the instructions in the dis-
assembly output: that would involve an understanding of assembly that 
goes beyond the scope of this book. However, you should feel comfortable 
with many of the instructions in the output and have some sense of what 
they do. For example, the malware pushes the value in register EBP onto 
the stack , saving its value. Then it proceeds to move the value in ESP 
into EBP and pushes some numerical values onto the stack. The program 
moves some data in memory into the EAX register , and it adds the value 
-0x5c to the value in the ESP register . Finally, the program uses the call 
instruction to call a function stored at the memory address 0x496308 .

Because this is not a book on reverse engineering, I won’t go into any more 
depth here about what the code means. What I’ve presented is a start to under-
standing how assembly language works. For more information on assembly lan-
guage, I recommend the Intel programmer’s manual at http://www.intel.com/
content/www/us/en/processors/architectures-software-developer-manuals.html.

Factors That Limit Static Analysis
In this chapter and Chapter 1, you learned about a variety of ways in which 
static analysis techniques can be used to elucidate the purpose and methods 
of a newly discovered malicious binary. Unfortunately, static analysis has 
limitations that render it less useful in some circumstances. For example, 
malware authors can employ certain offensive tactics that are far easier to 
implement than to defend against. Let’s take a look at some of these offensive 
tactics and see how to defend against them.

Packing
Malware packing is the process by which malware authors compress, encrypt, 
or otherwise mangle the bulk of their malicious program so that it appears 
inscrutable to malware analysts. When the malware is run, it unpacks itself 
and then begins execution. The obvious way around malware packing is to 
actually run the malware in a safe environment, a dynamic analysis tech-
nique I’ll cover in Chapter 3.

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
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N o t e 	 Software packing is also used by benign software installers for legitimate reasons. 
Benign software authors use packing to deliver their code because it allows them to 
compress program resources to reduce software installer download sizes. It also helps 
them thwart reverse engineering attempts by business competitors, and it provides a 
convenient way to bundle many program resources within a single installer file.

Resource Obfuscation
Another anti-detection, anti-analysis technique malware authors use is 
resource obfuscation. They obfuscate the way program resources, such as 
strings and graphical images, are stored on disk, and then deobfuscate 
them at runtime so they can be used by the malicious program. For exam-
ple, a simple obfuscation would be to add a value of 1 to all bytes in images 
and strings stored in the PE resources section and then subtract 1 from all 
of this data at runtime. Of course, any number of obfuscations are possible 
here, all of which make life difficult for malware analysts attempting to 
make sense of a malware binary using static analysis.

As with packing, one way around resource obfuscation is to just run the 
malware in a safe environment. When this is not an option, the only mitiga-
tion for resource obfuscation is to actually figure out the ways in which mal-
ware has obfuscated its resources and to manually deobfuscate them, which 
is what professional malware analysts often do.

Anti-disassembly Techniques
A third group of anti-detection, anti-analysis techniques used by malware 
authors are anti-disassembly techniques. These techniques are designed to 
exploit the inherent limitations of state-of-the-art disassembly techniques 
to hide code from malware analysts or make malware analysts think that 
a block of code stored on disk contains different instructions than it actu-
ally does.

An example of an anti-disassembly technique involves branching to a 
memory location that the malware author’s disassemblers will interpret as 
a different instruction, essentially hiding the malware’s true instructions 
from reverse engineers. Anti-disassembly techniques have huge potential 
and there’s no perfect way to defend against them. In practice, the two 
main defenses against these techniques are to run malware samples in a 
dynamic environment and to manually figure out where anti-disassembly 
strategies manifest within a malware sample and how to bypass them.

Dynamically Downloaded Data
A final class of anti-analysis techniques malware authors use involves exter-
nally sourcing data and code. For example, a malware sample may load 
code dynamically from an external server at malware startup time. If this is 
the case, static analysis will be useless against such code. Similarly, malware 
may source decryption keys from external servers at startup time and then 
use these keys to decrypt data or code that will be used in the malware’s 
execution.
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Obviously, if the malware is using an industrial-strength encryption 
algorithm, static analysis will not be sufficient to recover the encrypted data 
and code. Such anti-analysis and anti-detection techniques are quite power-
ful, and the only way around them is to acquire the code, data, or private 
keys on the external servers by some means and then use them in one’s 
analysis of the malware in question.

Summary
This chapter introduced x86 assembly code analysis and demonstrated how 
we can perform disassembly-based static analysis on ircbot.exe using open 
source Python tools. Although this is not meant to be a complete primer 
on x86 assembly, you should now feel comfortable enough that you have a 
starting place for figuring out what’s going on in a given malware assem-
bly dump. Finally, you learned ways in which malware authors can defend 
against disassembly and other static analysis techniques, and how you can 
mitigate these anti-analysis and anti-detection strategies. In Chapter 3, 
you’ll learn to conduct dynamic malware analysis that makes up for many 
of the weaknesses of static malware analysis.





3
A  B r i e f  I n t r o d u c t i o n  t o 

D y n a m i c  A n a ly s i s

In Chapter 2, you learned advanced static 
analysis techniques to disassemble the 
assembly code recovered from malware. 

Although static analysis can be an efficient 
way to gain useful information about malware 

by studying its different components on disk, it doesn’t 
allow us to observe malware behavior.

In this chapter, you’ll learn about the basics of dynamic malware analy-
sis. Unlike static analysis, which focuses on what malware looks like in file 
form, dynamic analysis consists of running malware in a safe, contained 
environment to see how it behaves. This is like introducing a dangerous 
bacterial strain into a sealed environment to see its effects on other cells.

Using dynamic analysis, we can get around common static analysis 
hurdles, such as packing and obfuscation, as well as gain more direct 
insight into the purpose of a given malware sample. We begin by explor-
ing basic dynamic analysis techniques, their relevance to malware data 
science, and their applications. We use open source tools like malwr.com to 
study examples of dynamic analysis in action. Note that this is a condensed 
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survey of the topic and is not intended to be comprehensive. For a more 
complete introduction, check out Practical Malware Analysis (No Starch 
Press, 2012).

Why Use Dynamic Analysis?
To understand why dynamic analysis matters, let’s consider the problem 
of packed malware. Recall that packing malware refers to compressing or 
obfuscating a malware’s x86 assembly code to hide the malicious nature of 
the program. A packed malware sample unpacks itself when it infects a tar-
get machine so that the code can execute.

We could try to disassemble a packed or obfuscated malware sample 
using the static analysis tools discussed in Chapter 2, but this is a laborious 
process. For example, with static analysis we’d first have to find the location 
of the obfuscated code in the malware file. Then we’d have to find the loca-
tion of the deobfuscation subroutines that deobfuscate this code so that it 
can run. After locating the subroutines, we’d have to figure out how this 
deobfuscation procedure works in order to perform it on the code. Only 
then could we begin the actual process of reverse engineering the mali-
cious code.

A simple yet clever alternative to this process is to execute the malware 
in a safe, contained environment called a sandbox. Running malware in a 
sandbox allows it to unpack itself as it would when infecting a real target. By 
simply running malware, we can find out what servers a particular malware 
binary connects to, what system configuration parameters it changes, and 
what device I/O (input/output) it attempts to perform.

Dynamic Analysis for Malware Data Science
Dynamic analysis is useful not only for malware reverse engineering but 
also for malware data science. Because dynamic analysis reveals what a 
malware sample does, we can compare its actions to those of other malware 
samples. For example, because dynamic analysis shows what files mal-
ware samples write to disk, we can use this data to connect those malware 
samples that write similar filenames to disk. These kinds of clues help us 
categorize malware samples based on common traits. They can even help 
us identify malware samples that were authored by the same groups or are 
part of the same campaigns.

Most importantly, dynamic analysis is useful for building machine 
learning–based malware detectors. We can train a detector to distinguish 
between malicious and benign binaries by observing their behaviors dur-
ing dynamic analysis. For example, after observing thousands of dynamic 
analysis logs from both malware and benign files, a machine learning system 
can learn that when msword.exe launches a process named powershell.exe, this 
action is malicious, but that when msword.exe launches Internet Explorer, 
this is probably harmless. Chapter 8 will go into more detail about how we 
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can build malware detectors using data based on both static and dynamic 
analysis. But before we create sophisticated malware detectors, let’s look at 
some basic tools for dynamic analysis.

Basic Tools for Dynamic Analysis
You can find a number of free, open source tools for dynamic analysis online. 
This section focuses on malwr.com and CuckooBox. The malwr.com site has a 
web interface that allows you to submit binaries for dynamic analysis for free. 
CuckooBox is a software platform that lets you set up your own dynamic anal-
ysis environment so that you can analyze binaries locally. The creators of the 
CuckooBox platform also operate malwr.com, and malwr.com runs CuckooBox 
behind the scenes. Therefore, learning how to analyze results on malwr.com 
will allow you to understand CuckooBox results.

NOTE    	 At print time, malwr.com’s CuckooBox interface was down for maintenance. Hopefully 
by the time you read this section the site will be back up. If not, the information provided 
in this chapter can be applied to output from your own CuckooBox instance, which you 
can set up by following the instructions at https://cuckoosandbox.org/.

Typical Malware Behaviors
The following are the major categories of actions a malware sample may 
take upon execution:

Modifying the file system  For example, writing a device driver to 
disk, changing system configuration files, adding new programs to 
the file system, and modifying registry keys to ensure the program 
auto-starts

Modifying the Windows registry to change the system configura-
tion  For example, changing firewall settings

Loading device drivers  For example, loading a device driver that 
records user keystrokes

Network actions  For example, resolving domain names and making 
HTTP requests

We’ll examine these behaviors in more detail using a malware sample 
and analyzing its report on malwr.com.

Loading a File on malwr.com
To run a malware sample through malwr.com, navigate to https://malwr​

.com/ and then click the Submit button to upload and submit a binary for 
analysis. We’ll use a binary whose SHA256 hash starts with the characters 
d676d95, which you can find in the data directory accompanying this chap-
ter. I encourage you to submit this binary to malwr.com and inspect the 
results yourself as we go. The submit page is shown in Figure 3-1. 

https://malwr.com
https://malwr.com
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Figure 3-1: The malware sample submission page

After you submit your sample through this form, the site should prompt 
you to wait for analysis to complete, which typically takes about five min-
utes. When the results load, you can inspect them to understand what the 
executable did when it was run in the dynamic analysis environment.

Analyzing Results on malwr.com
The results page for our sample should look something like Figure 3-2.

Figure 3-2: The top of the results page for a malware sample on malwr.com
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The results for this file illustrate some key aspects of dynamic analysis, 
which we’ll explore next.

Signatures Panel

The first two panels you’ll see on the results page are Analysis and File 
Details. These contain the time the file was run and other static details 
about the file. The panel I will focus on here is the Signatures panel, shown 
in Figure 3-3. This panel contains high-level information derived from the 
file itself and its behavior when it was run in the dynamic analysis environ-
ment. Let’s discuss what each of these signatures means.

Figure 3-3: The malwr.com signatures that match the behavior of our malware sample

The first three signatures shown in the figure result from static analysis 
(that is, these are results from the properties of the malware file itself, not 
its actions). The first signature simply tells us that a number of antivirus 
engines on the popular antivirus aggregator VirusTotal.com marked this file 
as malware. The second indicates that the binary contains compressed or 
encrypted data, a common sign of obfuscation. The third tells us that this 
binary was compressed with the popular UPX packer. Although these static 
indicators on their own don’t tell us what this file does, they do tell us that 
it’s likely malicious. (Note that the color doesn’t correspond to static versus 
dynamic categories; instead, it represents the severity of each rule, with 
red—the darker gray here—being more suspicious than yellow.)

The next three signatures result from dynamic analysis of the file. The 
first signature indicates that the program attempts to identify the system’s 
hardware and operating system. The second indicates that the program 
uses a pernicious feature of Windows known as Alternate Data Streams (ADS), 
which allows malware to hide data on disk such that it’s invisible when using 
standard file system browsing tools. The third signature indicates that the 
file changes the Windows registry so that when the system reboots, a pro-
gram that it specified will automatically execute. This would restart the mal-
ware whenever the user reboots their system.
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As you can see, even at the level of these automatically triggered sig-
natures, dynamic analysis adds significantly to our knowledge of the file’s 
intended behavior.

Screenshots Panel

Beneath the Signatures panel is the Screenshots panel. This panel shows a 
screenshot of the dynamic analysis environment desktop as the malware is 
running. Figure 3-4 shows an example of what this looks like.

Figure 3-4: A screen capture of our malware sample’s dynamic behavior

You can see that the malware we’re dealing with is ransomware, which is 
a type of malware that encrypts a target’s files and forces them to pay up if 
they want to get their data back. By simply running our malware, we were 
able to uncover its purpose without resorting to reverse engineering.

Modified System Objects Panel

A row of headings under Screenshots shows the malware sample’s network 
activity. Our binary did not engage in any network communications, but 
if it had, we would see the hosts it contacted here. Figure 3-5 shows the 
Summary panel.
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Figure 3-5: The Files tab of the Summary pane, showing which files  
our malware sample modified

This shows which system objects, like files, registry keys, and mutexes, 
the malware has modified.

Looking at the Files tab in Figure 3-6, it’s clear that this ransomware 
malware has indeed encrypted the user files on disk.

Figure 3-6: File paths in the Files tab of the Summary pane, suggesting  
that our sample is ransomware

After each file path is a file with a .locked extension, which we can infer 
is the encrypted version of the file it has replaced.

Next, we’ll look at the Registry Keys tab, shown in Figure 3-7. 

Figure 3-7: The Registry Keys tab of the Summary pane, showing which registry keys 
our malware sample modified
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The registry is a database that Windows uses to store configuration 
information. Configuration parameters are stored as registry keys, and 
these keys have associated values. Similar to file paths on the Windows file 
system, registry keys are backslash delimited. Malwr.com shows us what reg-
istry keys our malware modified. Although this isn’t shown in Figure 3-7, if 
you view the complete report on malwr.com, you should see that one notable 
registry key our malware changed is HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run, which is a registry key that tells Windows to run 
programs each time a user logs on. It’s very likely that our malware modifies 
this registry to tell Windows to restart the malware every time the system 
boots up, which ensures that the malware infection persists from reboot to 
reboot.

The Mutexes tab in the malwr.com report contains the names of the 
mutexes the malware created, as shown in Figure 3-8.

Figure 3-8: The Mutexes tab of the Summary pane, showing which  
mutexes our malware sample created

Mutexes are lock files that signal that a program has taken posses-
sion of some resource. Malware often uses mutexes to prevent itself from 
infecting a system twice. It turns out that at least one mutex created 
(CTF.TimListCache.FMPDefaultS-1-5-21-1547161642-507921405-839522115-
1004MUTEX.DefaultS-1-5-21-1547161642-507921405-839522115-1004 
ShimCacheMutex) is known by the security community to be associated 
with malware and may be serving this purpose here.

API Call Analysis

Clicking the Behavioral Analysis tab on the left panel of the malwr.com UI, 
as shown in Figure 3-9, should bring up detailed information about our 
malware binary’s behavior.

This shows what API calls were made by each process launched by the 
malware, along with their arguments and return values. Perusing this infor-
mation is time consuming and requires expert knowledge of Windows APIs. 
Although a detailed discussion of malware API call analysis is beyond the 
scope of this book, if you’re interested in learning more, you can look up 
individual API calls to discover their effects.
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Figure 3-9: The Behavioral Analysis pane of the malwr.com report for our  
malware sample, showing when API calls were made during the dynamic  
execution

Although malwr.com is a great resource for dynamically analyzing indi-
vidual malware samples, it isn’t great for performing dynamic analysis on 
large numbers of samples. Executing large numbers of samples in a dynamic 
environment is important for machine learning and data analysis because 
it identifies relationships between malware samples’ dynamic execution 
patterns. Creating machine learning systems that can detect instances of 
malware based on their dynamic execution patterns requires running thou-
sands of malware samples.

In addition to this limitation, malwr.com doesn’t provide malware analy-
sis results in machine-parseable formats like XML or JSON. To address 
these issues you must set up and run your own CuckooBox. Fortunately, 
CuckooBox is free and open source. It also comes with step-by-step 
instructions for setting up your very own dynamic analysis environment. 
I encourage you to do so by going to http://cuckoosandbox.org/. Now that 
you understand how to interpret dynamic malware results from malwr.com, 
which uses CuckooBox behind the scenes, you’ll also know how to analyze 
CuckooBox results once you have CuckooBox up and running.

Limitations of Basic Dynamic Analysis
Dynamic analysis is a powerful tool, but it is no malware analysis panacea. 
In fact, it has serious limitations. One limitation is that malware authors 
are aware of CuckooBox and other dynamic analysis frameworks and 
attempt to circumvent them by making their malware fail to execute when 
it detects that it’s running in CuckooBox. The CuckooBox maintainers 
are aware that malware authors try to do this, so they try to get around 
attempts by malware to circumvent CuckooBox. This cat-and-mouse game 
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plays out continuously such that some malware samples will inevitably 
detect that they are running in dynamic analysis environments and fail 
to execute when we try to run them.

Another limitation is that even without any circumvention attempts, 
dynamic analysis might not reveal important malware behaviors. Consider 
the case of a malware binary that connects back to a remote server upon 
execution and waits for commands to be issued. These commands may, for 
example, tell the malware sample to look for certain kinds of files on the 
victim host, to log keystrokes, or turn on the webcam. In this case, if the 
remote server sends no commands, or is no longer up, none of these mali-
cious behaviors will be revealed. Because of these limitations, dynamic 
analysis is not a fix-all for malware analysis. In fact, professional malware 
analysts combine dynamic and static analysis to achieve the best possible 
results.

Summary
In this chapter you ran dynamic analysis on a ransomware malware sample 
with malwr.com to analyze the results. You also learned about the advantages 
and shortcomings of dynamic analysis. Now that you’ve learned how to con-
duct basic dynamic analysis, you’re ready to dive into malware data science.

The remainder of this book focuses on performing malware data 
science on static analysis–based malware data. I’ll focus on static analy-
sis because it’s simpler and easier to get good results with compared to 
dynamic analysis, making it a good starting place for getting your hands 
dirty with malware data science. However, in each subsequent chapter I’ll 
also explain how you can apply data science methods to dynamic analysis–
based data.
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Id  e n t i f y i n g  A t t a c k  C a m p a i g n s 

Us  i n g  M a l w a r e  N e t w o r k s

Malware network analysis can turn malware 
datasets into valuable threat intelligence, 

revealing adversarial attack campaigns, 
common malware tactics, and sources of mal-

ware samples. This approach consists of analyzing the 
ways in which groups of malware samples are con-
nected by their shared attributes, whether those are 
embedded IP addresses, hostnames, strings of print-
able characters, graphics, or similar.

For example, Figure 4-1 shows an example of the power of malware 
network analysis in a chart that took only seconds to generate with the tech-
niques you’ll learn in this chapter.
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Figure 4-1: Nation-state malware's social network connections revealed via shared attri-
bute analysis

The figure displays a group of nation state–grade malware samples 
(represented as oval-shaped nodes) and their “social” interconnections 
(the lines connecting the nodes). The connections are based on the fact 
that these samples “call back” to the same hostnames and IP addresses, 
indicating they were deployed by the same attackers. As you’ll learn in 
this chapter, you can use these connections to help differentiate between 
a coordinated attack on your organization and a disparate array of crimi-
nally motivated attackers.

By the end of the chapter you will have learned:

•	 The fundamentals of network analysis theory as it relates to extracting 
threat intelligence from malware

•	 Ways to use visualizations to identify relationships between malware 
samples

•	 How to create, visualize, and extract intelligence from malware net-
works using Python and various open source toolkits for data analysis 
and visualization

•	 How to tie all this knowledge together to reveal and analyze attack cam-
paigns within real-world malware datasets
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Nodes and Edges
Before you can perform shared attribute analysis on malware, you need to 
understand some basics about networks. Networks are collections of con-
nected objects (called nodes). The connections between these nodes are 
referred to as edges. As abstract mathematical objects, the nodes in a net-
work can represent pretty much anything, as can their edges. What we care 
about for our purposes is the structure of the interconnections between 
these nodes and edges, as this can reveal telling details about malware.

When using networks to analyze malware, we can treat each individual 
malware file as the definition of a node, and we can treat relationships of 
interest (such as shared code or network behavior) as the definition of an 
edge. Similar malware files share edges and thus cluster together when we 
apply force-directed networks (you will see exactly how this works later). 
Alternatively, we can treat both malware samples and attributes as nodes 
unto themselves. For example, callback IP addresses have nodes, and so do 
malware samples. Whenever malware samples call back to a particular IP 
address, they are connected to that IP address node.

Networks of malware can be more complex than simply a set of nodes 
and edges. Specifically, they can have attributes attached to either nodes or 
edges, such as the percentage of code that two connected samples share. 
One common edge attribute is a weight, with greater weights indicating 
stronger connections between samples. Nodes may have their own attri-
butes, such as the file size of the malware samples they represent, but these 
are typically referred to only as attributes.

Bipartite Networks
A bipartite network is one whose nodes can be divided into two partitions 
(groups), where neither partition contains internal connections. Networks 
of this type can be used to show shared attributes between malware samples.

Figure 4-2 shows an example of a bipartite network in which malware 
sample nodes go in the bottom partition, and domain names the samples 
“call back” to (in order to communicate with the attacker) go in the other 
partition. Note that callbacks never connect directly to other callbacks, and 
malware samples never connect directly to other malware samples, as is 
characteristic of a bipartite network.

As you can see, even such a simple visualization reveals an important 
piece of intelligence: based on the malware samples’ shared callback servers, 
we can guess that sample_014 was probably deployed by the same attacker 
as sample_37D. We can also guess that sample_37D and sample_F7F probably 
share the same attacker, and that sample_014 and sample_F7F probably share 
the same attacker, because they’re connected by sample sample_37D (and 
indeed, the samples shown in Figure 4-2 all come from the same “APT1” 
Chinese attacker group).

NOTE    	 We’d like to thank Mandiant and Mila Parkour for curating the APT1 samples and 
making them available to the research community.
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Callback domain names

Malware samples

media.jobs
.advanced.com media.acx.org.ru media.aunewsonline

.com media.tzafrir.org.it

sample_014 sample_37D sample_F7F

Figure 4-2: A bipartite network. The nodes on top (the attributed partition) are callback domain names. 
The nodes on the bottom (malware partition) are malware samples.

As the number of nodes and connections in our network grow very 
large, we might want to see just how the malware samples are related, with-
out having to closely inspect all the attribute connections. We can examine 
malware sample similarity by creating a bipartite network projection, which is 
a simpler version of a bipartite network in which we link nodes in one parti-
tion of the network if they have nodes in the other partition (the attribute 
partition) in common. For example, in the case of the malware samples 
shown in Figure 4-1, we’d be creating a network in which malware samples 
are linked if they share callback domain names.

Figure 4-3 shows the projected network of the shared-callback servers 
of the entire Chinese APT1 dataset referred to previously.

Figure 4-3: A projection of malware samples from the APT1 dataset, showing  
connections between malware samples only if they share at least one server.  
The two big clusters were used in two different attack campaigns.



Identifying Attack Campaigns Using Malware Networks   39

The nodes here are malware samples, and they are linked if they share 
at least one callback server. By showing connections between malware 
samples only if they share callback servers, we can begin to see the overall 
“social network” of these malware samples. As you can see in Figure 4-3, 
two large groupings exist (the large square cluster in the left-center area 
and the circular cluster in the top-right area), which upon further inspec-
tion turn out to correspond to two different campaigns carried out over the 
APT1 group’s 10-year history.

Visualizing Malware Networks
As you perform shared attribute analysis of malware using networks, 
you’ll find that you rely heavily on network visualization software to 
create the networks like the ones shown thus far. This section introduces 
how these network visualizations can be created from an algorithmic 
perspective.

Crucially, the major challenge in doing network visualization is network 
layout, which is the process of deciding where to render each node in a net-
work within a two- or three-dimensional coordinate space, depending on 
whether you want your visualization to be two- or three-dimensional. When 
you’re placing nodes on a network, the ideal way is to place them in the coor-
dinate space such that their visual distance from one another is proportional 
to the shortest-path distance between them in the network. In other words, 
nodes that are two hops away from one another might be about two inches 
away from one another, and nodes that are three hops away might be about 
three inches apart. Doing this allows us to visualize clusters of similar nodes 
accurately to their actual relationship. As you’ll see in the next section, how-
ever, this is often difficult to achieve, especially when you’re working with 
more than three nodes.

The Distortion Problem
As it turns out, it’s often impossible to solve this network layout problem 
perfectly. Figure 4-4 illustrates this difficulty.

As you can see in these simple networks, all nodes are connected to all 
other nodes by edges of equal weights of 1. The ideal layout for these con-
nections would place all nodes equidistant from one another on the page. 
But as you can see, as we create networks of four and then five nodes, as in 
(c) and (d), we start to introduce progressively more distortion due to edges 
of unequal length. Unfortunately, we can only minimize, not eliminate this 
distortion, and that minimization becomes one of the major goals of net-
work visualization algorithms.
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a) Two connected nodes, no distortion,
all nodes equal length apart

b) Three connected nodes, no distortion,
all nodes equal length apart

c) Four connected nodes, some distortion,
some nodes closer than others

d) Five connected nodes, more distortion,
heterogeneous node distances

Figure 4-4: Perfect network layout is usually impossible on real-world malware networks. 
Simple cases like (a) and (b) allow us to lay out all nodes equidistantly. However, (c) adds 
distortion (the edges are no longer all equal length), and (d) shows even more distortion.

Force-Directed Algorithms
To best minimize layout distortion, computer scientists often use force-directed 
layout algorithms. Force-directed algorithms are based on physical simula-
tions of spring-like forces as well as magnetism. Simulating network edges as 
physical springs often leads to good node positioning, because the simulated 
springs push and pull to try to achieve uniform length between nodes and 
edges. To better visualize this concept, consider how a spring works: when 
you compress or stretch the spring, it “tries” to get back to its length at equi-
librium. These properties correlate well with our desire to have all the edges 
of our network be equal length. Force-directed algorithms are what we focus 
on in this chapter.

Building Networks with NetworkX
Now that you have a basic understanding of malware networks, you’re ready 
to learn how to create networks of malware relationships using the open 
source NetworkX Python network analysis library and the GraphViz open 
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source network visualization toolkit. I show you how to programmatically 
extract malware-related data and then use this data to build, visualize, and 
analyze networks to represent malware datasets.

Let’s begin with NetworkX, which is an open source project maintained 
by a team centered at Los Alamos National Laboratory and Python’s de facto 
network-processing library (recall that you can install the library dependen-
cies in this chapter, including NetworkX, by entering this chapter’s code 
and data directory and the command pip install -r requirements.txt). If you 
know Python, you should find NetworkX to be surprisingly easy. Use the 
code in Listing 4-1 to import NetworkX and instantiate a network.

#!/usr/bin/python
import networkx

# instantiate a network with no nodes and no edges.
network = networkx.Graph()

Listing 4-1: Instantiating a network

This code uses just one function call to the NetworkX Graph constructor 
to create a network in NetworkX.

N o t e 	 The NetworkX library uses the term graph in place of network sometimes, as the 
two terms are synonymous in computer science—they both indicate a set of nodes con-
nected by edges.

Adding Nodes and Edges
Now that we’ve instantiated a network, let’s add some nodes. A node in a 
NetworkX network can be any Python object. Here I show you how to add 
nodes of various types to our network:

nodes = ["hello","world",1,2,3]
for node in nodes:
    network.add_node(node)

As shown, we’ve added five nodes to our network: "hello", "world", 1, 2, 
and 3.

Then, to add edges, we call add_edge(), as shown next:

 network.add_edge("hello","world")
network.add_edge(1,2)
network.add_edge(1,3)

Here, we’re connecting some of these five nodes via edges. For example, 
the first line of code  connects the "hello" and "world" nodes together by 
creating an edge between them.
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Adding Attributes
NetworkX allows us to easily attach attributes to both nodes and edges. To 
attach an attribute to a node (and to access that attribute later), you can 
add the attribute as a keyword argument when you add the node to the net-
work, like this:

network.add_node(1,myattribute="foo")

To add an attribute later, access the network’s node dictionary using the 
following syntax:

network.node[1]["myattribute"] = "foo"

Then, to access the node, access the node dictionary:

print network.node[1]["myattribute"] # prints "foo"

As with nodes, you can add attributes to edges using keyword argu-
ments when you add the edges initially, as shown here:

network.add_edge("node1","node2",myattribute="attribute of an edge")

Similarly, you can add attributes to edges once they’ve been added to a 
network by using the edge dictionary, as shown here:

network.edge["node1"]["node2"]["myattribute"] = "attribute of an edge"

The edge dictionary is magical in that it allows you to access node attri-
butes the other way around, without having to worry about which node you 
refer to first, as shown in Listing 4-2.

 network.edge["node1"]["node2"]["myattribute"] = 321
 print network.edge["node2"]["node1"]["myattribute"]  # prints 321

Listing 4-2: Using the edge dictionary to access node attributes regardless of order

As you can see, the first line sets myattribute on an edge connecting 
node1 and node2 , and the second line accesses myattribute despite the node1 
and node2 references being flipped .

Saving Networks to Disk
To visualize our networks, we need to save them to disk from NetworkX in 
.dot format—a format commonly used in the network analysis world that 
can be imported into many network visualization toolkits. To save a network 
in .dot format, simply call the NetworkX write_dot() function, as shown in 
Listing 4-3.
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#!/usr/bin/python
import networkx
from networkx.drawing.nx_agraph import write_dot

# instantiate a network, add some nodes, and connect them
nodes = ["hello","world",1,2,3]
network = networkx.Graph()
for node in nodes:
    network.add_node(node)
network.add_edge("hello","world")
write_dot(unetwork,"network.dot")

Listing 4-3: Using write_dot() to save networks to disk

As you can see, at the end of the code, we use the write_dot() function 
to specify the network we want to save  as well as the path or filename we 
want to save it to .

Network Visualization with GraphViz
Once we have written a network to disk using the write_dot() NetworkX 
function, we can visualize the resulting file using GraphViz. GraphViz is 
the best available command line package for visualizing your networks. It’s 
supported by researchers at AT&T and has become a standard part of the 
network analysis toolbox used by data analysts. It contains a host of com-
mand line network layout tools that can be used to both lay out and render 
networks. GraphViz comes pre-installed on the virtual machine provided 
with this book and can also be downloaded at https://graphviz.gitlab.io/
download/. Each GraphViz command line tool ingests networks expressed 
in .dot format and can be invoked using the following syntax to render a 
network as a .png file:

$ <toolname> <dotfile> -T png –o <outputfile.png>

The fdp force-directed graph renderer is one GraphViz network visual-
ization tool. It uses the same basic command line interface as every other 
GraphViz tool, as shown here:

$ fdp apt1callback.dot –T png –o apt1callback.png

Here, we specify that we want to use the fdp tool and name the network 
.dot file we want to lay out, which is apt1callback.dot, found in the ~/ch3/ direc-
tory of the data accompanying this book. We specify –T png to indicate the 
format (PNG) we wish to use. Finally, we specify where we want the output 
file to be saved using -o apt1callback.png.

https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
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Using Parameters to Adjust Networks
The GraphViz tools include many parameters you can use to adjust the way 
your networks are drawn. Many of these parameters are set using the –G 
command-line flag in the following format:

G<parametername>=<parametervalue>

Two particularly useful parameters are overlap and splines. Set overlap 
to false to tell GraphViz not to allow any nodes to overlap one another. Use 
the splines parameter to tell GraphViz to draw curved rather than straight 
lines to make it easier to follow the edges on your networks. The following 
are some ways to set the overlap and splines parameters in GraphViz.

Use the following to prevent nodes from overlapping:

$ <toolname> <dotfile> -Goverlap=false -T png -o <outputfile.png>

Draw edges as curved lines (splines) to improve network readability:

$ <toolname> <dotfile> -Gsplines=true -T png -o <outputfile.png>

Draw edges as curved lines (splines) to improve network readability, 
and don’t allow nodes to visually overlap:

$ <toolname> <dotfile> -Gsplines=true –Goverlap=false -T png -o <outputfile.png>

Note that we simply list one parameter after the other: -Gsplines=true 
–Goverlap=false (the ordering doesn’t matter), followed by -T png -o 
<outputfile.png>.

In the next section, I go over some of the most useful GraphViz tools 
(in addition to fdp).

The GraphViz Command Line Tools
Here are some of the available GraphViz tools I have found most useful, as 
well as some sense of when it is appropriate to use each tool.

fdp

We used the fdp layout tool in the previous example, which we used to 
create a force-directed layout, as described in “Force-Directed Algorithms” 
on page 40. When you’re creating malware networks with fewer than 
500 nodes, fdp does a good job of revealing network structure in a reason-
able amount of time. But when you’re working with more than 500 nodes, 
and especially when connectivity between nodes is complex, you’ll find that 
fdp slows down fairly rapidly.
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To try out fdp on the APT1 shared callback server network shown in 
Figure 4-3, enter the following from the ch4 directory of the data accompa-
nying this book (you must have GraphViz installed):

$ fdp callback_servers_malware_projection.dot -T png -o fdp_servers.png –
Goverlap=false

This command will create a .png file (fdp_servers.png) that shows a net-
work like the one displayed in Figure 4-5.

Figure 4-5: Layout of the APT1 samples using the fdp tool

The fdp layout makes a number of themes apparent in the figure. First, 
two big clusters of samples are highly interrelated, as clearly seen in the 
upper-right and lower-left areas of the figure. Second, a number of pairs 
of samples are related, which can be seen in the lower right. Finally, many 
samples show no apparent relationship with one another and aren’t con-
nected to any other nodes. It’s important to recall that this visualization is 
based on shared callback server relationships between nodes. It’s possible 
that the unconnected samples are related to other samples in the figure 
by way of other kinds of relationships, such as shared code relationships—
relationships we’ll explore in Chapter 5.
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sfdp

The sfdp tool uses roughly the same approach to layout as fdp, but it scales 
better because it creates a hierarchy of simplifications, known as coarsenings, 
where nodes are merged into supernodes based on their proximity. After it 
completes its coarsenings, the sfdp tool lays out the merged versions of the 
graph that have far fewer nodes and edges, which dramatically speeds up 
the layout process. In this way, sfdp is able to perform fewer computations 
to find the best positions in the network. As a result, sfdp can lay out tens of 
thousands of nodes on a typical laptop, making it by far the best algorithm 
for laying out very large networks of malware.

This scalability comes at a cost, however: sfdp produces layouts that are 
sometimes less clear than layouts of the same-sized networks in fdp. For 
example, compare Figure 4-6, which I created using sfdp, to the network 
created with fdp, shown in Figure 4-5.

Figure 4-6: Layout of the APT1 samples' shared callback server network using the 
sfdp command

As you can see, there’s slightly more noise over each cluster in Figure 4-6, 
making it slightly harder to see what’s going on.

To create this network, enter the ch4 directory of the data accompanying 
this book and then enter the following code to produce the sfdp_servers.png 
image file shown in Figure 4-6:

$ sfdp callback_servers_malware_projection.dot -T png -o sfdp_servers.png –Goverlap=false
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Note how the first item in this code specifies that we’re using the tool 
sfdp, as opposed to fdp from before. Everything else is the same, save the 
output filename.

neato

The neato tool is the GraphViz implementation of a different force-directed 
network layout algorithm that creates simulated springs between all nodes 
(including unconnected nodes) to help push things to ideal positions, but 
at the cost of additional computation. It’s hard to know when neato will pro-
duce the best layout for a given network: my recommendation is that you try 
it, in conjunction with fdp, and see which layout you like more. Figure 4-7 
shows what the neato layout looks like on the APT1 shared callback server 
network.

Figure 4-7: Layout of the APT1 shared callback server network using the neato layout

As you can see, in this case neato produces a similar network layout to 
those produced by fdp and sfdp. For some datasets, however, you’ll find that 
neato produces a better or worse layout—you just have to try it with your data-
set and see. To try out neato, enter the following from the ch4 directory of the 
data accompanying this book; this should produce the neato_servers.png net-
work image file shown in Figure 4-7:

$ neato callback_servers_malware_projection.dot -T png -o neato_servers.png –Goverlap=false
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To create this network, we simply revise the code we used to create 
Figure 4-6 to specify that we want to use the tool neato and then save the 
.png to neato_servers.png. Now that you know how to create these network 
visualizations, let’s look at ways to improve them.

Adding Visual Attributes to Nodes and Edges
Beyond deciding on your general network layout, it can be useful to be able 
to specify how individual nodes and edges are to be rendered. For example, 
you might want to set edge thickness based on the strength of the connec-
tion between two nodes, or set node color based on what compromise each 
malware sample node is associated with, which would allow you to better 
visualize clusters of malware. NetworkX and GraphViz make it easy to do 
this by allowing you to specify visual attributes of nodes and edges simply by 
assigning values to a set of attributes. I discuss only a few such attributes in 
the sections that follow, but this topic is deep enough to fill an entire book.

Edge Width

To set the width of the border that GraphViz draws around nodes, or the 
line that it draws for edges, you can set the penwidth attribute of nodes and 
edges to a number of your choice, as shown in Listing 4-4.

#!/usr/bin/python
import networkx
from networkx.drawing.nx_agraph import writedot

 g = networkx.Graph()
g.add_node(1)
g.add_node(2)
g.add_edge(1,2,vpenwidth=10) # make the edge extra wide
write_dot(g,'network.dot')

Listing 4-4: Setting the penwidth attribute

Here, I create a simple network  with two nodes connected by an edge, 
and I set the penwidth attribute of the edge to 10  (the default value is 1).

Run this code, and you should see an image that looks like Figure 4-8.

1

2

Figure 4-8: A simple network with an edge  
that has a penwidth of 10

As you can see in Figure 4-8, a penwidth of 10 results in a very thick 
edge. The width of the edge (or, the thickness of the node’s border if 
you set the penwidth of a node) scales proportionally with the value of 
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the penwidth attribute, so choose accordingly. For example, if your edge 
strength values vary from 1 to 1000, but you want to be able to see all the 
edges, you might want to consider assigning penwidth attributes based on 
log scaling of your edge strength values.

Node and Edge Color

To set the color of a node’s border or an edge, use the color attribute. 
Listing 4-5 shows how to do this.

#!/usr/bin/python

import networkx
from networkx.drawing.nx_agraph import write_dot

g = networkx.Graph()
g.add_node(1,ucolor="blue") # make the node outline blue
g.add_node(2,vcolor="pink") # make the node outline pink
g.add_edge(1,2,wcolor="red") # make the edge red
write_dot(g,'network.dot')

Listing 4-5: Setting node and edge colors

Here, I create the same simple network I created in Listing 4-4, with 
two nodes and an edge connecting them. For each node that I create, I set 
its color value ( and ). I also set the color value for the edge  when I 
create it.

Figure 4-9 shows the result of Listing 4-5. As expected, you should see 
that the first node (the edge) and the second node each have a unique color. 
For a complete list of colors you can use, refer to http://www.graphviz.org/doc/
info/colors.html.

1

2

Figure 4-9: A simple network that demonstrates  
how to set node and edge colors

Colors can be used to show different classes of nodes and edges.

Node Shape

To set the shape of a node, use the shape attribute with a string specifying a 
shape, as defined at http://www.GraphViz.org/doc/info/shapes.html. Commonly 
used values are box, ellipse, circle, egg, diamond, triangle, pentagon, and hexagon. 
Listing 4-6 shows how to set the shape attribute of a node.

http://www.graphviz.org/doc/info/colors.html
http://www.graphviz.org/doc/info/colors.html
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#!/usr/bin/python

import networkx
from networkx.drawing.nx_agraph import write_dot

g = networkx.Graph()
g.add_node(1,ushape='diamond')
g.add_node(2,vshape='egg')
g.add_edge(1,2)

write_dot(g,'network.dot')

Listing 4-6: Setting node shapes

Similar to the way we set a node’s color, we simply use the shape keyword 
argument in the add_node() function to specify the shape we want each node 
to take. Here, we set the first node to a diamond shape  and the second 
node to an egg shape . The result of this code is shown in Figure 4-10.

1
2

Figure 4-10: A simple network that shows  
how we can set node shape

The results, showing a diamond-shaped node and an egg-shaped node, 
reflect the shapes that we specified in Listing 4-6.

Text Labels

Finally, GraphViz also allows you to add labels to nodes and edges with the 
label attribute. Although nodes are automatically labeled based on their 
assigned ID (for example, the label for a node added as 123 would be 123), 
you can specify labels using label=<my label attribute>. Unlike nodes, edges 
aren’t labeled by default, but you can assign them labels using the label attri-
bute. Listing 4-7 shows how to create our now familiar two-node network but 
with label attributes attached to both nodes and the connecting edge.

#!/usr/bin/python

import networkx
from networkx.drawing.nx_agraph import write_dot

g = networkx.Graph()
g.add_node(1,ulabel="first node")
g.add_node(2,vlabel="second node")
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g.add_edge(1,2,wlabel="link between first and second node")

write_dot(g,'network.dot')

Listing 4-7: Labeling nodes and edges

We label the nodes first node  and second node , respectively. We also 
label the edge connecting them as the link between first and second node . 
Figure 4-11 shows the graphical output we expect.

first node

second node

link between first and second node

Figure 4-11: A simple network that shows how  
we can label nodes and edges

Now that you know how to manipulate basic attributes of nodes and 
edges, you’re ready to start building networks from the ground up.

Building Malware Networks
We’ll begin our discussion of building malware networks by reproducing and 
expanding on the shared callback server example shown in Figure 4-1, and 
then examine shared image analysis of malware.

The following program extracts callback domain names from malware 
files and then builds a bipartite network of malware samples. Next, it per-
forms one projection of the network to show which malware samples share 
common callback servers, and it performs another projection to show which 
callback servers are called by common malware samples. Finally, the pro-
gram saves the three networks—the original bipartite network, the malware 
sample projection, and the callback server projection—as files so that they 
can be visualized with GraphViz.

I walk you through the program, piece by piece. The complete code 
can be found in the data accompanying this book at the file path ch4/
callback_server_network.py. 

Listing 4-8 shows how to get started by importing the requisite modules.

#!/usr/bin/python

import pefileu
import sys
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import argparse
import os
import pprint
import networkxv
import re
from networkx.drawing.nx_agraph import write_dot
import collections
from networkx.algorithms import bipartite

Listing 4-8: Importing modules

Of the requisite modules we imported, the most notable are the pefile 
PE parsing module , which we use to parse the target PE binaries, and the 
networkx library , which we use to create the malware attribute network.

Next, we parse the command line arguments by adding the code in 
Listing 4-9.

args = argparse.ArgumentParser("Visualize shared DLL import relationships 
between a directory of malware samples")
args.add_argument("target_path",help="directory with malware samples")
args.add_argument("output_file",help="file to write DOT file to")
args.add_argument("malware_projection",help="file to write DOT file to")
args.add_argument("resource_projection",help="file to write DOT file to")
args = args.parse_args()

Listing 4-9: Parsing command line arguments

These arguments include target_path  (the path to the directory where 
the malware we’re analyzing is), output_file  (the path where we write the 
complete network), malware_projection  (the path where we write a reduced 
version of the graph and show which malware samples share attributes), 
and resource_projection  (the path where we write a reduced version of 
the graph and show which attributes are seen together within the malware 
samples).

Now we’re ready to get into the core of the program. Listing 4-10 shows 
the code for creating a network for the program.

#!/usr/bin/python

import pefile
 import sys

import argparse
import os
import pprint
import networkx
import re
from networkx.drawing.nx_agraph import write_dot
import collections
from networkx.algorithms import bipartite

args = argparse.ArgumentParser(
"Visualize shared hostnames between a directory of malware samples"
)
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args.add_argument("target_path",help="directory with malware samples")
args.add_argument("output_file",help="file to write DOT file to")
args.add_argument("malware_projection",help="file to write DOT file to")
args.add_argument("hostname_projection",help="file to write DOT file to")
args = args.parse_args()
network = networkx.Graph()

valid_hostname_suffixes = map(
lambda string: string.strip(), open("domain_suffixes.txt")
)
valid_hostname_suffixes = set(valid_hostname_suffixes)

 def find_hostnames(string):
    possible_hostnames = re.findall(
    r'(?:[a-zA-Z0-9](?:[a-zA-Z0-9\-]{,61}[a-zA-Z0-9])?\.)+[a-zA-Z]{2,6}',
    string)
    valid_hostnames = filter(
            lambda hostname: hostname.split(".")[-1].lower() \
            in valid_hostname_suffixes,
            possible_hostnames
    )
    return valid_hostnames

# search the target directory for valid Windows PE executable files
for root,dirs,files in os.walk(args.target_path):
    for path in files:
        # try opening the file with pefile to see if it's really a PE file
        try:
            pe = pefile.PE(os.path.join(root,path))
        except pefile.PEFormatError:
            continue
        fullpath = os.path.join(root,path)
        # extract printable strings from the target sample

         strings = os.popen("strings '{0}'".format(fullpath)).read()

        # use the search_doc function in the included reg module 
        # to find hostnames

         hostnames = find_hostnames(strings)
        if len(hostnames):
            # add the nodes and edges for the bipartite network
            network.add_node(path,label=path[:32],color='black',penwidth=5,
            bipartite=0)
        for hostname in hostnames:

             network.add_node(hostname,label=hostname,color='blue',
               penwidth=10,bipartite=1)
            network.add_edge(hostname,path,penwidth=2)
        if hostnames:
            print "Extracted hostnames from:",path
            pprint.pprint(hostnames)

Listing 4-10: Creating the network

We first create a fresh network by calling the networkx.Graph() con-
structor . Then we define the function find_hostnames(), which extracts 
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hostnames from strings . Don’t worry too much about the mechanics of 
this function: it’s essentially a regular expression and some string-filtering 
code that tries its best to identify domains.

Next, we iterate through all the files in the target directory, checking 
whether they are PE files by seeing if the pefile.PE class is able to load them 
(if not, we do not analyze the files). Finally, we extract hostname attributes 
from the current file by first extracting all printable strings from the file  
and then searching the strings for embedded hostname resources . If we 
find any, we add them as nodes in our network and then add edges from the 
node for the current malware sample to the hostname resource nodes .

Now we’re ready to wrap up the program, as shown in Listing 4-11.

# write the dot file to disk
 write_dot(network, args.output_file)
 malware = set(n for n,d in network.nodes(data=True) if d['bipartite']==0)
 hostname = set(network)-malware

# use NetworkX's bipartite network projection function to produce the malware
# and hostname projections

 malware_network = bipartite.projected_graph(network, malware)
hostname_network = bipartite.projected_graph(network, hostname)

# write the projected networks to disk as specified by the user
 write_dot(malware_network,args.malware_projection)

write_dot(hostname_network,args.hostname_projection)

Listing 4-11: Writing networks to files

We start by writing our network to disk at the location specified in the 
command line arguments . Then we create the two reduced networks (the 
“projections” introduced earlier in this chapter) that show the malware rela-
tionships and the hostname resource relationships. We do this by first creat-
ing a Python set for containing the IDs of the malware nodes  and another 
Python set for the IDs of the resource nodes . We then use the NetworkX-
specific projected_graph() function  to get projections for the malware and 
resource sets, and we write these networks to disk at the specified locations .

And that’s it! You can use this program on any of the malware datasets 
in this book to see malware relationships between the shared hostname 
resources embedded in the files. You can even use it on your own datasets 
to see what threat intelligence you can glean through this mode of analysis.

Building a Shared Image Relationship Network
In addition to analyzing malware based on their shared callback servers, 
we can also analyze them based on their use of shared icons and other 
graphical assets. For example, Figure 4-12 shows a portion of the shared 
image analysis results for the Trojans found in ch4/data/Trojans.
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Figure 4-12: A visualization of the shared image asset network for a number of Trojans

You can see that all these Trojan horses pose as archive files and use 
the same archive file icon (shown in the center of the figure), even though 
they’re executables. The fact that they use exactly the same image as part 
of their effort to game the user indicates that they probably come from the 
same attacker. I confirmed this by running the malware samples through 
the Kaspersky antivirus engine, which assigns them all the same family 
name (ArchSMS).

Next, I show you how to produce the kind of visualization shown in 
Figure 4-12, in order to see shared-image relationships between malware 
samples. To extract the images from the malware, we use the helper library 
images, which in turn relies on wrestool (discussed in Chapter 1) to create 
the image_network.py program. Recall that wrestool extracts images from 
Windows executables.

Let’s walk through the process of creating a shared image network, 
starting with the first part of the code, shown in Listing 4-12.

#!/usr/bin/python

import pefile
import sys
import argparse
import os
import pprint
import logging
import networkx
import collections
import tempfile
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from networkx.drawing.nx_agraph import write_dot
from networkx.algorithms import bipartite

# Use argparse to parse any command line arguments

args = argparse.ArgumentParser(
"Visualize shared image relationships between a directory of malware samples"
)
args.add_argument("target_path",help="directory with malware samples")
args.add_argument("output_file",help="file to write DOT file to")
args.add_argument("malware_projection",help="file to write DOT file to")
args.add_argument("resource_projection",help="file to write DOT file to")
args = args.parse_args()
network = networkx.Graph()

 class ExtractImages():
    def __init__(self,target_binary):
        self.target_binary = target_binary
        self.image_basedir = None
        self.images = []

    def work(self):
        self.image_basedir = tempfile.mkdtemp()
        icondir = os.path.join(self.image_basedir,"icons")
        bitmapdir = os.path.join(self.image_basedir,"bitmaps")
        raw_resources = os.path.join(self.image_basedir,"raw")
        for directory in [icondir,bitmapdir,raw_resources]:
            os.mkdir(directory)
        rawcmd = "wrestool -x {0} -o {1} 2> \
                 /dev/null".format(
                 self.target_binary,raw_resources
                 )
        bmpcmd = "mv {0}/*.bmp {1} 2> /dev/null".format(
        raw_resources,bitmapdir
        )
        icocmd = "icotool -x {0}/*.ico -o {1} \
                  2> /dev/null".format(
                  raw_resources,icondir
                  )
        for cmd in [rawcmd,bmpcmd,icocmd]:
            try:
                os.system(cmd)
            except Exception,msg:
                pass
        for dirname in [icondir,bitmapdir]:
            for path in os.listdir(dirname):
                logging.info(path)
                path = os.path.join(dirname,path)
                imagehash = hash(open(path).read())
                if path.endswith(".png"):
                    self.images.append((path,imagehash))
                if path.endswith(".bmp"):
                    self.images.append((path,imagehash))
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    def cleanup(self):
        os.system("rm -rf {0}".format(self.image_basedir))

# search the target directory for PE files to extract images from
image_objects = []
for root,dirs,files in os.walk(args.target_path):v
    for path in files:
        # try to parse the path to see if it's a valid PE file
        try:
            pe = pefile.PE(os.path.join(root,path))
        except pefile.PEFormatError:
            continue

Listing 4-12: Parsing the initial argument and file-loading code in our shared image net-
work program

The program starts out much like the hostname graph program 
(starting at Listing 4-8) we just discussed. It first imports a number of 
modules, including pefile and networkx. Here, however, we also define the 
ExtractImages helper class , which we use to extract graphical assets from 
target malware samples. Then the program enters a loop in which we iter-
ate over all the target malware binaries .

Now that we are in our loop, it’s time to extract graphical assets from 
the target malware binaries using the ExtractImages class (which under the 
hood is a wrapper around the icoutils programs discussed in Chapter 1). 
Listing 4-13 shows the part of the code that does this.

        fullpath = os.path.join(root,path)
         images = ExtractImages(fullpath)
         images.work()

        image_objects.append(images)

        # create the network by linking malware samples to their images
         for path, image_hash in images.images:

            # set the image attribute on the image nodes to tell GraphViz to 
            # render images within these nodes
            if not image_hash in network:

                 network.add_node(image_hash,image=path,label='',type='image')
            node_name = path.split("/")[-1]
            network.add_node(node_name,type="malware")

             network.add_edge(node_name,image_hash)

Listing 4-13: Extracting graphical assets from target malware

First, we pass in a path to a target malware binary to the ExtractImages 
class , and then we call the resulting instance’s work() method . This 
results in the ExtractImages class creating a temporary directory in which it 
stores the malware images, and then storing a dictionary containing data 
about each image in the images class attribute.

Now that we have the list of extracted images from ExtractImages, we iter-
ate over it , creating a new network node for an image if we haven’t seen its 
hash before , and linking the currently processed malware sample to the 
image in the network .
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Now that we have created our network of malware samples linked to the 
images that they contain, we are ready to write the graph to disk, as shown 
in Listing 4-14.

# write the bipartite network, then do the two projections and write them
 write_dot(network, args.output_file)

malware = set(n for n,d in network.nodes(data=True) if d['type']=='malware')
resource = set(network) - malware
malware_network = bipartite.projected_graph(network, malware)
resource_network = bipartite.projected_graph(network, resource)

 write_dot(malware_network,args.malware_projection)
write_dot(resource_network,args.resource_projection)

Listing 4-14: Writing the graph to disk

We do this in exactly the same way that we did in Listing 4-11. First, we 
write the complete network to disk , and then we write the two projections 
(the projection for the malware and the projection for the images, which we 
refer to as resources here) to disk .

You can use image_network.py to analyze graphical assets in any of the 
malware datasets in this book, or to extract intelligence from malware data-
sets of your choice.

Summary
In this chapter, you learned about the tools and methods necessary to per-
form shared attribute analysis on your own malware datasets. Specifically, 
you learned how networks, bipartite networks, and bipartite network projec-
tions can help identify the social connections between malware samples, why 
network layout is central to network visualization, and how force-directed 
networks work. You also learned how to create and visualize malware net-
works using Python and open source tools like NetworkX. In Chapter 5, 
you’ll learn how to build malware networks based on shared code relation-
ships between samples.



5
S h a r e d  C o d e  A n a ly s i s

Suppose you discovered a new malware 
sample on your network. How would you 

begin to analyze it? You could submit it 
to a multi-engine antivirus scanner such as 

VirusTotal to learn what malware family it belongs 
to. However, such results are often unclear and 
ambiguous, because engines often label the malware in generic terms 
like “agent” that mean nothing. You could also run the sample through 
CuckooBox or some other malware sandbox to get a limited report on 
the malware sample’s callback servers and behaviors.

When these approaches don’t provide enough information, you may 
need to reverse-engineer the sample. At this stage, shared code analysis can 
dramatically improve your workflow. By revealing which previously analyzed 
samples the new malware sample is similar to, and thus revealing the code 
they share, shared code analysis allows you to reuse your previous analyses 
on new malware so that you’re not starting from scratch. Understanding 
where this previously seen malware came from can also help you figure out 
who may have deployed the malware.
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Shared code analysis, also called similarity analysis, is the process by which 
we compare two malware samples by estimating the percentage of precom-
pilation source code they share. It differs from shared attribute analysis, 
which compares malware samples based on their external attributes (the 
desktop icons they use, for example, or the servers they call out to).

In reverse engineering, shared code analysis helps identify samples that 
can be analyzed together (because they were generated from the same mal-
ware toolkit or are different versions of the same malware family), which 
can determine whether the same developers could have been responsible 
for a group of malware samples.

Consider the output shown in Listing 5-1, which comes from a program 
you’ll build later in this chapter to illustrate the value of malware shared 
code analysis. It shows previously seen samples that may share code with the 
new sample as well as comments made on those older samples.

Showing samples similar to WEBC2-GREENCAT_sample_E54CE5F0112C9FDFE86DB17E85A5E2C5
Sample name                                                      Shared code
[*] WEBC2-GREENCAT_sample_55FB1409170C91740359D1D96364F17B       0.9921875
[*] GREENCAT_sample_55FB1409170C91740359D1D96364F17B             0.9921875
[*] WEBC2-GREENCAT_sample_E83F60FB0E0396EA309FAF0AED64E53F       0.984375
    [comment] This sample was determined to definitely have come from the advanced persistent 
threat group observed last July on our West Coast network
[*] GREENCAT_sample_E83F60FB0E0396EA309FAF0AED64E53F             0.984375

Listing 5-1: The results of basic shared code analysis

Given a new sample, shared code estimation allows us to see, within 
seconds, which samples it likely shares code with and what we know about 
those samples. In this example, it reveals that a very similar sample is from 
a known APT, or advanced persistent threat, thus providing immediate context 
for this new malware.

We can also visualize sample shared code relationships using net-
work visualization, which you learned about in Chapter 4. For example, 
Figure 5-1 shows a network of shared code relationships between samples 
in an advanced persistent threat dataset.

As you can see from the visualization, automated shared code analy-
sis techniques can quickly uncover the existence of malware families that 
would have taken days or weeks to discover through manual analysis. In this 
chapter, you’ll learn to use these techniques to do the following:

•	 Identify new malware families that come from the same malware tool-
kits or were written by the same attackers.

•	 Determine code similarity between a new sample and previously seen 
samples.

•	 Visualize malware relationships to better understand code-sharing 
patterns between malware samples and to communicate your results 
to others.

•	 Use two proof-of-concept tools I built for this book that implement 
these ideas and allow you to see malware shared code relationships.



Shared Code Analysis   61

Figure 5-1: An example of the kind of visualization you will learn to create in this chapter, 
showing shared code relationships between some of the APT1 samples

First, I introduce the test malware samples you’ll be using in this 
chapter, which are the PLA APT1 samples from Chapter 4 and an assort-
ment of crimeware samples. Then, you learn about mathematical similar-
ity comparison and the concept of the Jaccard index, a set-theoretic method 
for comparing malware samples in terms of their shared features. Next, I 
introduce the concept of features to show how you can use them in con-
junction with the Jaccard index to approximate the amount of code two 
malware samples share. You also learn how to evaluate malware features 
in terms of their usefulness. Finally, we create visualizations of malware 
code sharing at multiple scales, as shown in Figure 5-1, by leveraging your 
knowledge of network visualization from Chapter 4.

M a lwa r e S a mpl e s Use d in T his Ch a p t e r

In this chapter, we use real-world malware families that share significant 
amounts of code with one another to do our experiments. These datasets are 
available thanks to Mandiant and Mila Parkour, who curated these samples 
and made them available to the research community. In reality, however, you 
might not know what family a malware sample belongs to, or to what degree 
your new malware samples are similar to previously seen samples. But going 
through examples where we do know will be good practice, because it allows 
us to verify that our automated inferences of sample similarity line up with our 
knowledge of which samples actually belong in the same group.

The first samples come from the APT1 dataset we used in Chapter 4 to 
demonstrate shared resource analysis. The other samples consist of thousands 

(continued)
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Preparing Samples for Comparison by Extracting Features
How do we even begin to think about estimating the amount of code two 
malicious binaries may have shared before they were compiled by attackers? 
There are many ways one might consider approaching this problem, but 
in the hundreds of computer science research papers that have been pub-
lished on the topic, a common theme has emerged: to estimate the amount 
of shared code between binaries, we group malware samples into “bags of 
features” before comparing.

By features I mean any malware attribute we might possibly want to 
consider in estimating the code similarity between samples. For example, 
the features we use could be the printable strings we can extract from the 
binaries. Instead of thinking of the samples as an interconnected system of 
functions, dynamic library imports, and so on, we think of malware as a bag 
of independent features for mathematical convenience (for example, a set of 
strings that have been extracted from the malware).

How Bag of Features Models Work
To understand how a bag of features works, consider a Venn diagram 
between two malware samples, as shown in Figure 5-2.

Here, sample A and sample B are shown as bags of features (features 
are represented as ellipses inside the Venn diagram). We can compare 
them by examining which features are shared between the two samples. 
Computing the overlap between two sets of features is fast, and can be 
used to compare malware samples’ similarity based on arbitrary features 
that we come up with.

of crimeware malware samples developed by criminals to steal people’s credit 
cards, turn their computers into zombie hosts hooked into botnets, and so on. 
These are real-world samples sourced from a commercial malware feed pro-
vided as a paid service for threat intelligence researchers.

To identify their family names, I have input each sample into the Kaspersky 
antivirus engine. Kaspersky was able to classify 30,104 of these samples with 
robust hierarchical classifications (such as trojan.win32.jorik.skor.akr, indicating 
the jorik.skor family), assigned a class of “unknown” to 41,830 samples, and 
assigned generic labels (such as, generically, “win32 Trojan”) to the remaining 
28,481 samples.

Because of the inconsistency of the Kaspersky labels (some Kaspersky 
label groupings, such as the jorik family, represent a very diffuse range of 
malware, whereas others, such as webprefix, represent a very specific set 
of variants) and the fact that Kaspersky often misses or mislabels malware, I 
selected seven malware classes that Kaspersky detects with high confidence. 
Specifically, these include the dapato, pasta, skor, vbna, webprefix, xtoober, 
and zango families.
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For example, when dealing with packed malware, we may want to 
use features based on malware dynamic run logs since running malware 
in a sandbox is a way to get malware to unpack itself. In other cases, we 
may use strings extracted from the static malware binary to perform the 
comparison.

Malware sample A Malware sample B

Features of the malware samples

Figure 5-2: An illustration of the “bag of features” model for malware code sharing 
analysis

In the case of dynamic malware analysis, we may want to compare 
samples based not just on what behaviors they share but also on the order 
in which they express behaviors, or what we call their sequences of behaviors. 
A common way to incorporate sequence information into malware sample 
comparisons is to extend the bag of features model to accommodate sequen-
tial data using N-grams.

What are N-Grams?
An N-gram is a subsequence of events that has a certain length, N, of some 
larger sequence of events. We extract this subsequence from a larger 
sequence by sliding a window over the sequential data. In other words, we 
get N-grams by iterating over a sequence and, at each step, recording the 
subsequence from the event at index i to the event at index i + N – 1, as 
shown in Figure 5-3.

In Figure 5-3, the sequence of integers (1,2,3,4,5,6,7) is translated into 
five different subsequences of length 3: (1,2,3), (2,3,4), (3,4,5), (4,5,6), 
(5,6,7).

Of course, we can do this with any sequential data. For example, using an 
N-gram word length of 2, the sentence “how now brown cow” yields the fol-
lowing subsequences: “how now”, “now brown”, and “brown cow.” In malware 
analysis, we would extract N-grams of sequential API calls that a malware 
sample made. Then we would represent the malware as a bag of features and 
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use N-gram features to compare the malware sample to some other malware 
sample’s N-grams, thereby incorporating sequence information into the bag 
of features comparison model.

1. N-grams
extracted

from
malware
execution
threads

2. Malware
sample

represented
as “bag of
N-grams”

N-gram 1

N-gram 2

N-gram 3

N-gram 4

N-gram 5

N-gram 1

N-gram 2

N-gram 3

N-gram 4

N-gram 5

1 2 3 4 5 6 7

Figure 5-3: A visual explanation of how we can extract N-grams from malware’s  
assembly instructions and dynamic API call sequences, where N = 3

Including sequence information in our comparison of malware samples 
has advantages and disadvantages. The advantage is that when order matters 
in the comparison (for example, when we care that API call A was observed 
before API call B, which was observed before API call C), it allows us to cap-
ture order, but when order is superfluous (for example, malware random-
izing the order of API calls A, B, and C on every run), it can actually make 
our shared code estimation much worse. Deciding whether to include order 
information in our malware shared code estimation work depends on what 
kind of malware we’re working with, and requires that we experiment.

Using the Jaccard Index to Quantify Similarity
Once you’ve represented a malware sample as a bag of features, you’ll need 
to measure the degree of similarity between that sample’s bag of features 
and some other sample’s bag of features. To estimate the extent of code 
sharing between two malware samples, we use a similarity function, which 
should have the following properties:

•	 It yields a normalized value such that all similarity comparisons between 
pairs of malware samples can be placed on a common scale. By conven-
tion, the function should yield a value ranging from 0 (no code sharing) 
to 1 (samples share 100 percent of their code).
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•	 The function should help us make accurate estimates of code shar-
ing between two samples (we can determine this empirically through 
experimentation).

•	 We should be able to easily understand why the function models code 
similarity well (it should not be a complicated mathematical black box 
that takes a lot of effort to understand or explain).

The Jaccard index is a simple function that has these properties. In fact, 
even though other mathematical approaches to code similarity estimation 
have been tried in the security research community (for example, cosine 
distance, L1 distance, Euclidean [L2] distance, and so on), the Jaccard 
index has emerged as the most widely adopted—and for good reason. It 
simply and intuitively expresses the degree of overlap between two sets of 
malware features, giving us the percentage of unique features common to 
both of the two sets normalized by the percentage of unique features that 
exist in either set.

Figure 5-4 illustrates examples of Jaccard index values.

Malware sample A Malware sample B

Jaccard index = 0 
= Shared attributes (0) / Total attributes (10)

Jaccard index = 1 
= Shared attributes (5) / Total attributes (5)

Jaccard index = 0.11 
= Shared attributes (1) / Total attributes (9)

Jaccard index = 0.4 
= Shared attributes (4) / Total attributes (10)

Malware sample A Malware sample B

Malware sample A Malware sample B Malware sample A Malware sample B

Figure 5-4: A visual illustration of the idea behind the Jaccard index

This illustrates four pairs of malware features extracted from four pairs 
of malware samples. Each image shows the features shared between the two 
sets, the features not shared between the two sets, and the resulting Jaccard 
index for the given pair of malware samples and associated features. You 
can see that the Jaccard index between the samples is simply the number 
of features shared between the samples divided by the total number of fea-
tures drawn in the Venn diagram.
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Using Similarity Matrices to Evaluate Malware Shared Code 
Estimation Methods

Let’s discuss four methods for determining whether two malware samples 
come from the same family: instruction sequence-based similarity, strings-
based similarity, Import Address Table–based similarity, and dynamic API 
call–based similarity. To compare these four methods, we’ll use a similarity 
matrix visualization technique. Our goal here will be to compare the rela-
tive strengths and weaknesses of each method in terms of its ability to illu-
minate shared code relationships between samples.

To get started, let’s go over the concept of a similarity matrix. Figure 5-5 
compares an imaginary set of four malware samples using a similarity matrix.
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Figure 5-5: An illustration of a notional similarity matrix

This matrix allows you to see the similarity relationship between all 
samples. You can see that some space is wasted in this matrix. For example, 
we don’t care about the similarities represented in shaded boxes, as these 
entries just contain comparisons between a given sample and itself. You can 
also see that the information on either side of the shaded boxes is repeated, 
so you only need to look at one or the other.

Figure 5-6 gives a real-world example of a malware similarity matrix. 
Note that due to the large number of malware samples shown in the figure, 
each similarity value is represented by a shaded pixel. Instead of render-
ing the names of each sample, we render the family names for each sample 
along the horizontal and vertical axes. A perfect similarity matrix would 
look like a chain of white squares running diagonally from the top left to 
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the bottom right, since the rows and columns representing each family are 
grouped together, and we expect all members of a given family to be similar 
to one another, but not samples from other families.
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Figure 5-6: A real-world malware similarity matrix computed over the seven malware 
families

In the results given in Figure 5-6, you can see that some of the family 
squares are completely white—these are good results, because white pixels 
within a family square indicate an inferred similarity relationship between 
samples of the same family. Some are much darker, which means we did 
not detect strong similarity relationships. Finally, sometimes there are lines 
of pixels outside the family squares, which are either evidence of related 
malware families or false positives, meaning that we detected code-sharing 
between families despite their being inherently different.

Next, we’ll use similarity matrix visualizations like Figure 5-6 to com-
pare the results of four different code-sharing estimation methods, starting 
with a description of instruction sequence-based similarity analysis.

Instruction Sequence-Based Similarity
The most intuitive way to compare two malware binaries in terms of the 
amount of code they share is by comparing their sequences of x86 assembly 
instructions, since samples that share sequences of instructions are likely 
to have shared, before compilation, actual source code. This requires disas-
sembling malware samples using, for example, the linear disassembly tech-
nique introduced in Chapter 2. Then we can use the N-gram extraction 
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approach I discussed previously to extract sequences of instructions in the 
order they appear in the .text section of the malware file. Finally, we can 
use the instruction N-grams to compute Jaccard indices between samples 
to estimate how much code we think they share.

The value we use for N during N-gram extraction depends on our analy-
sis goals. The larger N is, the larger our extracted instruction subsequences 
will be, and thus the harder it will be for malware samples’ sequences to 
match. Setting N to a large number helps identify only samples that are 
highly likely to share code with one another. On the other hand, you can 
make N smaller to look for subtle similarities between samples, or if you sus-
pect that the samples employ instruction reordering to obscure similarity 
analysis.

In Figure 5-7, N is set to 5, which is an aggressive setting that makes it 
harder for samples to match.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.0

0.1

depato

pasta

skor

vbna

webprefix

xtoober

zango

depato pasta skor webprefixvbna xtoober zango

Figure 5-7: The similarity matrix generated using instruction N-gram features. Using 
N = 5, we completely miss many families’ similarity relationships but do well on web
prefix and pasta.

The results in Figure 5-7 are not very compelling. While the instruction-
based similarity analysis correctly identifies similarities between some fami-
lies, it doesn’t within other families (for example, it detects few similarity 
relationships in dapato, skor, and vbna). It’s important to note, however, that 
there are few false positives in this analysis (false inferences of similarity 
between samples from different families, versus true inferences of similari-
ties within samples of the same family).

As you can see, a limitation of instruction subsequence shared code 
analysis is that it can miss many code-sharing relationships between samples. 
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This is because malware samples may be packed such that most of their 
instructions only become visible once we execute the malware samples and 
let them unpack themselves. Without unpacking our malware samples, the 
instruction sequence shared code estimation method will likely not work 
very well.

Even when we unpack our malware samples, the approach can be prob-
lematic, because of the noise introduced by the source code compilation 
process. Indeed, compilers can compile the same source code into radically 
different sequences of assembly instructions. Take, for example, the follow-
ing simple function written in C:

int f(void) {
    int a = 1;
    int b = 2;

    u return (a*b)+3;
}

You might think that regardless of compiler, the function would reduce 
to the same sequence of assembly instructions. But in fact, compilation 
depends heavily not just on what compiler you use, but also on the compiler 
settings. For example, compiling this function using the clang compiler 
under its default settings yields the following instructions corresponding to 
the line at u in the source code:

movl    $1, -4(%rbp)
movl    $2, -8(%rbp)
movl    -4(%rbp), %eax
imull   -8(%rbp), %eax
addl    $3, %eax

In contrast, compiling the same function with the –O3 flag set, which 
tells the compiler to optimize the code for speed, yields the following 
assembly for the same line of the source code:

movl    $5, %eax

The difference results from the fact that in the second example, the 
compiler pre-computed the result of the function instead of explicitly com-
puting it, as in the first compilation example. This means that if we com-
pared these functions based on instruction sequences, they wouldn’t appear 
at all similar, even though in reality they were compiled from exactly the 
same source code.

Beyond the problem of identical C and C++ code appearing to be 
very different when we’re looking at its assembly instructions, there’s an 
additional problem that arises when we compare binaries based on their 
assembly code: many malware binaries are now authored in high-level lan-
guages like C#. These binaries contain standard boilerplate assembly code 
that simply interprets these higher-level languages’ bytecode. So, although 
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binaries written in the same high-level language may share very similar x86 
instructions, their actual bytecode may reflect the fact that they come from 
very different source code.

Strings-Based Similarity
We can compute strings-based malware similarity by extracting all contigu-
ous printable sequences of characters in the samples and then computing 
the Jaccard index between all pairs of malware samples based on their 
shared string relationships.

This approach gets around the compiler problem because the strings 
extracted from a binary tend to be format strings defined by the program-
mer, which compilers as a general rule do not transform, regardless of 
which compilers the malware authors are using or what parameters they 
give the compilers. For example, a typical string extracted from a mal-
ware binary might read, “Started key logger at %s on %s and time %s.” 
Regardless of compiler settings, this string will tend to look identical 
among multiple binaries and is related to whether or not they’re based 
on the same source code base.

Figure 5-8 shows how well the string-based code-sharing metric identi-
fies the correct code-sharing relationships in the crimeware dataset.
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Figure 5-8: The similarity matrix generated using string features

At first glance, this method does far better at identifying the malware 
families than the instruction-based method, accurately recovering much 
of the similarity relationships for all seven families. However, unlike the 
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instruction similarity method, there are a few false positives, since it incor-
rectly predicts that xtoober and dapato share some level of code. It’s also 
worth noting that this method didn’t detect similarities between samples 
in some families, performing particularly poorly on the zango, skor, and 
dapato families.

Import Address Table–Based Similarity
We can compute what I call “Import Address Table–based similarity” by 
comparing the DLL imports made by malware binaries. The idea behind 
this approach is that even if the malware author has reordered instructions, 
obfuscated the initialized data section of the malware binary, and imple-
mented anti-debugger and anti-VM anti-analysis techniques, they may have 
left the exact same import declarations in place. The results for the Import 
Address Table method are shown in Figure 5-9.
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Figure 5-9: The similarity matrix generated using Import Address Table features

The figure shows that the Import Address Table method does better 
than any of the preceding methods at estimating the similarity relation-
ships between the webprefix and xtoober samples and does very well over-
all, even though it misses many of the skor, dapato, and vbna relationships. 
It’s also notable that this method gives few false positives on our experimen-
tal dataset.
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Dynamic API Call–Based Similarity
The final comparison method I introduce in this chapter is dynamic mal-
ware similarity. The advantage of comparing dynamic sequences is that 
even if malware samples are extremely obfuscated or packed, they will 
tend to perform similar sequences of actions within a sandboxed virtual 
machine as long as they’re derived from the same code or borrow code 
from one another. To implement this approach, you’ll need to run mal-
ware samples in a sandbox and record the API calls they make, extract 
N-grams of API calls from the dynamic logs, and finally compare the 
samples by taking the Jaccard index between their bags of N-grams.

Figure 5-10 shows that the dynamic N-gram similarity approach does 
about as well as the import and string methods in most cases.
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Figure 5-10: The similarity matrix generated using dynamic API call N-gram features

The imperfect results here show that this method is no panacea. Simply 
running malware in a sandbox is not sufficient to trigger many of its behav-
iors. Variations of a command line malware tool, for example, may or may 
not enable an important code module, and therefore execute different 
sequences of behavior, even though they may share most of their code.

Another problem is that some samples detect that they’re running in a 
sandbox and then promptly exit execution, leaving us with little informa-
tion to make comparisons. In summary, like the other similarity approaches 
I’ve outlined, dynamic API call sequence similarity isn’t perfect, but it can 
provide impressive insight into similarities between samples.
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Building a Similarity Graph
Now that you understand the concepts behind methods for identifying mal-
ware code sharing, let’s build a simple system that performs this analysis over 
a malware dataset.

First, we need to estimate the amount of code that samples share by 
extracting the features we would like to use. These could be any of the fea-
tures described previously, such as Import Address Table–based functions, 
strings, N-grams of instructions, or N-grams of dynamic behavior. Here, 
we’ll use printable string features because they perform well and are simple 
to extract and understand.

Once we’ve extracted the string features, we need to iterate over every 
pair of malware samples, comparing their features using the Jaccard index. 
Then, we need to build a code-sharing graph. To do this, we first need to 
decide on a threshold that defines how much code the two samples share—
a standard value I use in my research is 0.8. If the Jaccard index for a given 
pair of malware samples is above that value, we create a link between them 
for visualization. The final step is to study the graph to see which samples 
are connected by shared code relationships.

Listings 5-2 through 5-6 contain our sample program. Because the list-
ing is long, I break it into pieces and explain each piece as I go. Listing 5-2 
imports the libraries we’ll use, and declares the jaccard() function, which 
computes the Jaccard index between two samples’ sets of features.

#!/usr/bin/python

import argparse
import os
import networkx
from networkx.drawing.nx_pydot import write_dot
import itertools

def jaccard(set1, set2):
    """
    Compute the Jaccard distance between two sets by taking
    their intersection, union and then dividing the number
    of elements in the intersection by the number of elements
    in their union.
    """
    intersection = set1.intersection(set2)
    intersection_length = float(len(intersection))
    union = set1.union(set2)
    union_length = float(len(union))
    return intersection_length / union_length

Listing 5-2: The imports and a helper function to compute the Jaccard index between two 
samples

Next, in Listing 5-3, we declare two additional utility functions: 
getstrings(), which finds the set of printable string sequences within the 
malware files we’ll be analyzing, and pecheck(), which ensures that target 
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files are indeed Windows PE files. We’ll use these functions later when 
we’re performing feature extraction on the target malware binaries.

def getstrings(fullpath):
    """
    Extract strings from the binary indicated by the 'fullpath'
    parameter, and then return the set of unique strings in
    the binary.
    """
    strings = os.popen("strings '{0}'".format(fullpath)).read()
    strings = set(strings.split("\n"))
    return strings

def pecheck(fullpath):
    """
    Do a cursory sanity check to make sure 'fullpath' is
    a Windows PE executable (PE executables start with the
    two bytes 'MZ')
    """
    return open(fullpath).read(2) == "MZ"

Listing 5-3: Declaring the functions we’ll use in feature extraction

Next, in Listing 5-4, we parse our user’s command line arguments. 
These arguments include the target directory in which the malware we’ll 
be analyzing exists, the output .dot file to which we’ll write the shared code 
network we build, and the Jaccard index threshold, which determines how 
high the Jaccard index must be between two samples for the program to 
decide that they share a common code base with one another.

If __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Identify similarities between malware samples and build similarity graph"
    )

    parser.add_argument(
        "target_directory",
        help="Directory containing malware"
    )

    parser.add_argument(
        "output_dot_file",
        help="Where to save the output graph DOT file"
    )

    parser.add_argument(
        "--jaccard_index_threshold", "-j", dest="threshold", type=float,
        default=0.8, help="Threshold above which to create an 'edge' between samples"
    )

    args = parser.parse_args()

Listing 5-4: Parsing the user’s command line arguments
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Next, in Listing 5-5, we use the helper functions we declared earlier to 
do the main work of the program: finding PE binaries in the target direc-
tory, extracting features from them, and initializing a network that we’ll use 
to express similarity relationships between the binaries.

malware_paths = []  # where we'll store the malware file paths
malware_features = dict()  # where we'll store the malware strings
graph = networkx.Graph()  # the similarity graph

for root, dirs, paths in os.walk(args.target_directory):
    # walk the target directory tree and store all of the file paths
    for path in paths:
        full_path = os.path.join(root, path)
        malware_paths.append(full_path)

# filter out any paths that aren't PE files
malware_paths = filter(pecheck, malware_paths)

# get and store the strings for all of the malware PE files
for path in malware_paths:
    features = getstrings(path)
    print "Extracted {0} features from {1} ...".format(len(features), path)
    malware_features[path] = features

    # add each malware file to the graph
    graph.add_node(path, label=os.path.split(path)[-1][:10])

Listing 5-5: Extracting features from PE files in the target directory and initializing the 
shared code network

After extracting features from our target samples, we need to iter-
ate over every pair of malware samples, comparing their features using 
the Jaccard index. We do this in Listing 5-6. We also build a code-sharing 
graph where samples are linked together if their Jaccard index is above 
some user-defined threshold. The threshold I’ve found works best in my 
research is 0.8.

# iterate through all pairs of malware
for malware1, malware2 in itertools.combinations(malware_paths, 2):

    # compute the jaccard distance for the current pair
    jaccard_index = jaccard(malware_features[malware1], malware_features[malware2])

    # if the jaccard distance is above the threshold, add an edge
    if jaccard_index > args.threshold:
        print malware1, malware2, jaccard_index
        graph.add_edge(malware1, malware2, penwidth=1+(jaccard_index-args.threshold)*10)

# write the graph to disk so we can visualize it
write_dot(graph, args.output_dot_file)

Listing 5-6: Creating a code-sharing graph in Python
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The code in Listings 5-2 through 5-6 produces the chart shown in 
Figure 5-11 when applied to the APT1 malware samples. To visualize the 
chart, you need to use the fdp Graphviz tool (discussed in Chapter 4) to 
enter the command fdp -Tpng network.dot -o network.png. 

Figure 5-11: The complete string-based similarity graph for the APT1 samples

The amazing thing about this output is that within a few minutes, we 
reproduced much of the manual, painstaking work that the original ana-
lysts of the APT1 produced in their report, identifying many of the malware 
families used by these nation state–level attackers.

We know that our method has performed accurately relative to the 
manual reverse engineering work that these analysts performed, because 
the names on the nodes are the names given to them by the Mandiant ana-
lysts. You can see this in the way samples with similar names group together 
in the network visualization in Figure 5-11, such as the “STARSYPOUN” 
samples in the central circle. Because the malware in our network visualiza-
tion automatically groups together in a way that aligns with these family 
names, our method seems to “agree” with the Mandiant malware analysts. 
You can extend the code in Listings 5-2 through 5-6 and apply it to your 
own malware for similar intelligence.
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Scaling Similarity Comparisons
Although the code in Listings 5-2 through 5-6 works well for small malware 
datasets, it doesn’t work well for a large number of malware samples. This is 
because comparing all pairs of malware samples in a dataset grows quadrat-
ically with the number of samples. Specifically, the following equation gives 
the number of Jaccard index computations necessary to compute a similar-
ity matrix over a dataset of size n:

n n2

2
−

For example, let’s return to the similarity matrix in Figure 5-5 to see 
how many Jaccard indices we would need to compute the four samples. 
At first glance, you might say 16 (42), because that’s how many cells are in 
the matrix. However, because the bottom triangle of the matrix contains 
duplicates of the top triangle of the matrix, we don’t need to compute 
these twice. This means that we can subtract 6 from our total number of 
computations. Furthermore, we don’t need to compare malware samples to 
themselves, so we can eliminate the diagonal from the matrix, allowing us 
to subtract four more computations. 

The number of computations necessary is as follows:
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This seems manageable, until our dataset grows to 10,000 malware 
samples, for example, which would require 49,995,000 computations. A 
dataset that has 50,000 samples would require 1,249,975,000 Jaccard index 
computations!

To scale malware similarity comparisons, we need to use randomized 
comparison approximation algorithms. The basic idea is to allow for some 
error in our computation of comparisons in exchange for a reduction in 
computation time. For our purposes, an approximate comparison approach 
known as minhash serves this purpose beautifully. The minhash method 
allows us to compute the Jaccard index using approximation to avoid 
computing similarities between nonsimilar malware samples below some 
predefined similarity threshold so that we can analyze shared code relation-
ships between millions of samples.

Before you read about why minhash works, note that this is a tricky 
algorithm that can take some time to understand. If you decide to skip the 
“Minhash in Depth” section, just read the “Minhash in a Nutshell” section 
and use the code provided, and you should have no problems scaling your 
code sharing analysis.

Minhash in a Nutshell
Minhash takes a malware sample’s features and hashes them with k hash 
functions. For each hash function, we retain only the minimum value of the 
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hashes computed over all the features, so that the set of malware features 
is reduced to a fixed size array of k integers, which we call the minhashes. 
To compute the approximate Jaccard index between two samples based 
on their minhash arrays, you now just need to check how many of the k 
minhashes match, and divide that by k.

Magically, the number that falls out of these computations is a close 
approximation of the true Jaccard index between any two samples. The 
benefit of using minhash instead of a literal computation of the Jaccard 
index is that it’s much faster to compute.

In fact, we can even use minhash to cleverly index malware in a data-
base such that we only need to compute comparisons between malware 
samples that are likely to be similar because at least one of their hashes 
matched, thereby dramatically speeding up computation of similarities 
within malware datasets.

Minhash in Depth
Let’s now discuss the math behind minhash in depth. Figure 5-12 shows 
the sets of features (represented by the shaded circles) for two malware 
samples, how they are hashed and then sorted based on their hashes, and 
how they’re finally compared based on the value of the first element of 
each list.

Set of features from
malware sample A

Set of features from
malware sample B

Magic:
probability that

minimum (leftmost)
values match is

equal to the
Jaccard index

between
sample A and

sample B

Items hashed and sorted
based on hash value.

This is repeated multiple
times with multiple hash

functions to increase
accuracy of estimate.

Figure 5-12: An illustration of the idea behind minhash
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The probability that the first elements will match is equal to the Jaccard 
index between the samples. How this works is beyond the scope of this book, 
but this serendipitous fact is what lets us approximate the Jaccard index using 
hashes.

Of course, just performing this hashing, sorting, and first-element-
checking operation doesn’t tell us that much if we only do it once—the 
hashes either match or they don’t, and we can’t guess the underlying 
Jaccard index very accurately based on that one match. To get a better esti-
mate of this underlying value, we have to use k hash functions and repeat 
this operation k times, and then estimate the Jaccard index by dividing the 
number of times these first elements matched by k. Our expected error in 
estimating the Jaccard index is defined as the following:

1 0.

k

So the more times we perform this procedure, the more certain we’ll be 
(I tend to set k to 256 so that the estimate is off by 6 percent, on average).

Suppose we compute a minhash array for every malware sample in a 
malware dataset containing one million samples. How do we then use the 
minhashes to speed up the search for malware families in the dataset? We 
could iterate over every pair of malware samples in the dataset and com-
pare their minhash arrays, which would lead to 499,999,500,000 compari-
sons. Even though it’s faster to compare minhash arrays than to compute 
the Jaccard index, this is still way too many comparisons to make on mod-
ern hardware. We need some way of exploiting the minhashes to optimize 
the comparison process even more.

The standard approach to this problem is to use sketching combined 
with database indexing, which creates a system in which we compare only 
samples that we already know are highly likely to be similar. We make a 
sketch by hashing multiple minhashes together.

When we get a new sample, we check whether the database contains any 
sketches that match the new sample’s sketches. If so, the new sample is com-
pared with the matching samples using their minhash arrays to approximate 
the Jaccard index between the new sample and the older, similar samples. 
This avoids having to compare the new sample to all samples in the database, 
and instead comparing it to only those samples that are highly likely to have 
high Jaccard indices with this new sample.

Building a Persistent Malware Similarity Search System
Now that you’ve learned the pros and cons of using a variety of malware fea-
ture types to estimate shared code relationships between malware samples. 
You’ve also learned about the Jaccard index, similarity matrices, and the 
way in which minhash can make computing similarities between malware 
samples in even very large datasets tractable. With all this knowledge in 
hand, you understand all of the fundamental concepts necessary to build 
a scalable malware shared code search system.
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Listings 5-7 through 5-12 show an example of a simple system in which I 
index malware samples based on their string features. In your own work, you 
should feel confident in modifying this system to use other malware features, 
or extending it to support more visualization features. Because the listing is 
long, I’ve broken it up and we’ll cover each subsection in turn.

To begin, Listing 5-7 imports the Python packages required for our 
program.

#!/usr/bin/python

import argparse
import os
import murmur
import shelve
import numpy as np
from listings_5_2_to_5_6 import *

NUM_MINHASHES = 256
SKETCH_RATIO = 8

Listing 5-7: Importing Python modules and declaring minhash-related constants

Here, I import packages like murmur, shelve, and sim_graph. For example, 
murmur is a hashing library that we use to compute the minhash algorithm 
I just discussed. We use shelve, a simple database module included in the 
Python standard library, to store information about samples and their 
minhashes, which we use to compute similarities. We use listings_5_2​
_to_5_6.py to get functions for computing sample similarity.

We also declare two constants in Listing 5-7: NUM_MINHASHES and SKETCH​
_RATIO. These correspond to the number of minhashes and the ratio of 
minhashes to sketches we compute for each sample. Recall that the more 
minhashes and sketches we use, the more accurate our similarity compu-
tations. For example, 256 minhashes and a ratio of 8:1 (32 sketches) is 
enough to yield acceptable accuracy at a low computational cost.

Listing 5-8 implements database functionality that we use to initial-
ize, access, and delete the shelve database we use to store malware sample 
information.

 def wipe_database():
    """
    This problem uses the python standard library 'shelve' database to persist
    information, storing the database in the file 'samples.db' in the same
    directory as the actual Python script. 'wipe_database' deletes this file
    effectively reseting the system.
    """
    dbpath = "/".join(__file__.split('/')[:-1] + ['samples.db'])
    os.system("rm -f {0}".format(dbpath))

 def get_database():
    """
    Helper function to retrieve the 'shelve' database, which is a simple
    key value store.
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    """
    dbpath = "/".join(__file__.split('/')[:-1] + ['samples.db'])
    return shelve.open(dbpath,protocol=2,writeback=True)

Listing 5-8: Database helper functions

We define wipe_database()  to delete our program’s database in case we 
want to wipe out sample information we’ve stored and start over. Then we 
define get_database()  to open our database, creating it if it doesn’t yet exist, 
and then return a database object, allowing us to store and retrieve data 
about our malware samples.

Listing 5-9 implements a core piece of the code for our shared code 
analysis: minhash.

def minhash(features):
    """
    This is where the minhash magic happens, computing both the minhashes of
    a sample's features and the sketches of those minhashes. The number of
    minhashes and sketches computed is controlled by the NUM_MINHASHES and
    NUM_SKETCHES global variables declared at the top of the script.
    """
    minhashes = []
    sketches = []

     for i in range(NUM_MINHASHES):
        minhashes.append(

             min([murmur.string_hash(`feature`,i) for feature in features])
        )

     for i in xrange(0,NUM_MINHASHES,SKETCH_RATIO):
         sketch = murmur.string_hash(`minhashes[i:i+SKETCH_RATIO]`)

        sketches.append(sketch)
    return np.array(minhashes),sketches

Listing 5-9: Obtaining minhashes and sketches for a sample

We loop NUM_MINHASHES times  and append one minhash value. Each 
minhash value is computed by hashing all the features and then taking the 
minimum hash value. To perform this computation, we use the murmur pack-
age’s string_hash() function to hash the features, and then we take the mini-
mum value of the list of hashes by calling Python’s min() function .

The second argument of string_hash is a seed value, which causes the 
hash function to map to different hashes depending on the seed’s value. 
Because each minhash value requires a unique hash function such that all 
of our 256 min hash values aren’t identical, on each iteration we seed the 
string_hash function with our counter value i, which causes the features to 
map to different hashes on each iteration.

Then, we loop over the minhashes we’ve computed and use the 
minhashes to compute sketches . Recall that sketches are hashes of 
multiple minhashes, which we use for database indexing of our malware 
samples so that we can quickly retrieve samples that are likely to be simi-
lar to one another by querying the database. In the next code listing, we 



82   Chapter 5

loop over all of our sample’s minhashes with step size SKETCH_RATIO, hash-
ing each chunk of hashes as we go to obtain our sketches. Finally, we use 
murmur package’s string_hash function to hash the minhashes together .

Listing 5-10 uses get_database() from Listing 5-8, the getstrings() func-
tion from the sim_graph module we imported, and the minhash() function 
from Listing 5-9 to create a function that indexes samples into our system’s 
database.

def store_sample(path):
    """
    Function that stores a sample and its minhashes and sketches in the
    'shelve' database
    """

     db = get_database()
     features = getstrings(path)
     minhashes,sketches = minhash(features)

     for sketch in sketches:
        sketch = str(sketch)

         if not sketch in db:
            db[sketch] = set([path])
        else:
            obj = db[sketch]

             obj.add(path)
            db[sketch] = obj
        db[path] = {'minhashes':minhashes,'comments':[]}
        db.sync()

    print "Extracted {0} features from {1} ...".format(len(features),path)

Listing 5-10: Storing a sample’s minhashes in the shelve database by using its sketches 
as keys

We call get_database() , getstrings() , and minhash()  and then iter-
ate over our sample’s sketches starting at . Next, to index our samples in 
the database, we use a technique known as inverted indexing, which allows us 
to store samples based on their sketch values instead of an ID. More specifi-
cally, for each of a sample’s 32 sketch values, we look up that sketch’s record 
in the database and append our sample’s ID to the list of samples associated 
with that sketch. Here, we use a sample’s filesystem path as its ID.

You can see how this is implemented in the code: we loop over the 
sketches we’ve computed for a sample , we create a record for the sketch 
if it doesn’t already exist (associating our sample with the sketch while 
we’re at it) , and finally, we add the sample path to the sketch’s set of 
associated sample paths if the sketch’s record does exist .

Listing 5-11 shows the declaration of two important functions: 
comment_sample() and search_sample().

 def comment_sample(path):
    """
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    Function that allows a user to comment on a sample.  The comment the
    user provides shows up whenever this sample is seen in a list of similar
    samples to some new samples, allowing the user to reuse their
    knowledge about their malware database.
    """
    db = get_database()
    comment = raw_input("Enter your comment:")
    if not path in db:
        store_sample(path)
    comments = db[path]['comments']
    comments.append(comment)
    db[path]['comments'] = comments
    db.sync()
    print "Stored comment:", comment

 def search_sample(path):
    """
    Function searches for samples similar to the sample provided by the
    'path' argument, listing their comments, filenames, and similarity values
    """
    db = get_database()
    features = getstrings(path)
    minhashes, sketches = minhash(features)
    neighbors = []

     for sketch in sketches:
        sketch = str(sketch)

        if not sketch in db:
            continue

         for neighbor_path in db[sketch]:
            neighbor_minhashes = db[neighbor_path]['minhashes']
            similarity = (neighbor_minhashes == minhashes).sum() 
            / float(NUM_MINHASHES)
            neighbors.append((neighbor_path, similarity))

    neighbors = list(set(neighbors))
     neighbors.sort(key=lambda entry:entry[1], reverse=True)

    print ""
    print "Sample name".ljust(64), "Shared code estimate"
    for neighbor, similarity in neighbors:
        short_neighbor = neighbor.split("/")[-1]
        comments = db[neighbor]['comments']
        print str("[*] "+short_neighbor).ljust(64), similarity
        for comment in comments:
            print "\t[comment]",comment

Listing 5-11: Declaring functions that allow users to comment on samples and search for 
samples similar to a query sample
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As expected, comment_sample()  adds a user-defined comment record 
to a sample’s database record. This functionality is useful, because it allows 
users of the program to include insights gained from reverse-engineering 
a sample in the database such that when they see a new sample similar to 
samples they have comments for, they can leverage those comments to more 
rapidly understand the origins and purpose of the new sample.

Next, search_sample()  leverages minhash to find samples similar to 
a query sample. To do this, first we extract string features, minhashes, 
and sketches from the query sample. Then, we iterate over the sample’s 
sketches, looking up samples stored in the database that also have that 
sketch . For each sample that shares a sketch with the query sample, we 
compute its approximate Jaccard index using its minhashes . Finally, we 
report the most similar samples to the query sample to the user, along with 
any comments associated with these samples that have been stored in the 
database .

Listing 5-12 concludes our program’s code by implementing the 
argument-parsing part of our program.

if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description="""
Simple code-sharing search system which allows you to build up 
a database of malware samples (indexed by file paths) and
then search for similar samples given some new sample
"""
    )

    parser.add_argument(
        "-l", "--load", dest="load", default=None,
        help="Path to malware directory or file to store in database"
    )

    parser.add_argument(
        "-s", "--search", dest="search", default=None,
        help="Individual malware file to perform similarity search on"
    )

    parser.add_argument(
        "-c", "--comment", dest="comment", default=None,
        help="Comment on a malware sample path"
    )

    parser.add_argument(
        "-w", "--wipe", action="store_true", default=False,
        help="Wipe sample database"
    )

    args = parser.parse_args()
     if args.load:

        malware_paths = []  # where we'll store the malware file paths
        malware_features = dict()  # where we'll store the malware strings
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        for root, dirs, paths in os.walk(args.load):
            # walk the target directory tree and store all of the file paths
            for path in paths:
                full_path = os.path.join(root,path)
                malware_paths.append(full_path)

        # filter out any paths that aren't PE files
        malware_paths = filter(pecheck, malware_paths)

        # get and store the strings for all of the malware PE files
        for path in malware_paths:
            store_sample(path)

     if args.search:
        search_sample(args.search)

     if args.comment:
        comment_sample(args.comment)

     if args.wipe:
        wipe_database()

Listing 5-12: Performing similarity database updates and queries based on user command 
line arguments

Here, we allow users to load malware samples into the database so 
that these samples will be compared with new malware samples when 
users search similar samples in the database . Next, we allow users to 
search for samples similar to the sample the user has passed in , print-
ing the results to the terminal. We also allow the user to comment on 
samples already in the database . Finally, we allow the user to wipe the 
existing database .

Running the Similarity Search System
Once you’ve implemented this code, you can run the similarity search sys-
tem, which consists of four simple operations:

Load  Loading the samples into the system stores them in the system 
database for future code-sharing searches. You can load samples indi-
vidually or specify a directory, which the system will search recursively 
for PE files, loading them into the database. You can load samples into 
the database with the following command run in this chapter’s code 
directory:

python listings_5_7_to_5_12.py –l <path to directory or individual malware 
sample>
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Comment  Commenting on a sample is useful because it allows you 
to store knowledge about that sample. Also, when you see new samples 
similar to this sample, a similarity search over those samples will reveal 
the comments you made on the older, similar sample, thus speeding up 
your workflow. You can comment on a malware sample with the follow-
ing command:

python listings_5_7_to_5_12.py –c <path to malware sample>

Search  Given a single malware sample, searching identifies all similar 
samples in the database and prints them in descending order of simi-
larity. Also, any comments you might have made on those samples are 
printed. You can search for malware samples similar to a given sample 
using the following command:

python listings_5_7_to_5_12.py –s <path to malware sample>

Wipe  Wiping the database simply clears all records from the system 
database, which you can do with the following command:

python listings_5_7_to_5_12.py –w

Listing 5-13 shows what it looks like when we load the APT1 samples 
into the system.

mds@mds:~/malware_data_science/ch5/code$ python listings_5_7_to_5_12.py -l ../
data
Extracted 240 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_A8F259BB36E00D124963CFA9B86F502E ...
Extracted 272 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_0149B7BD7218AAB4E257D28469FDDB0D ...
Extracted 236 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_CC3A9A7B026BFE0E55FF219FD6AA7D94 ...
Extracted 272 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_1415EB8519D13328091CC5C76A624E3D ...
Extracted 236 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_7A670D13D4D014169C4080328B8FEB86 ...
Extracted 243 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_37DDD3D72EAD03C7518F5D47650C8572 ...
--snip--

Listing 5-13: Sample output from the loading data into the similarity search system imple-
mented in this chapter

And Listing 5-14 shows what it looks like when we perform a similarity 
search.

mds@mds:~/malware_data_science/ch5/code$ python listings_5_7_to_5_12.py –s \ 
../data/APT1_MALWARE_FAMILIES/GREENCAT/GREENCAT_sample/GREENCAT_sample_AB20\
8F0B517BA9850F1551C9555B5313



Shared Code Analysis   87

Sample name                                                      Shared code 
estimate
[*] GREENCAT_sample_5AEAA53340A281074FCB539967438E3F             1.0
[*] GREENCAT_sample_1F92FF8711716CA795FBD81C477E45F5             1.0
[*] GREENCAT_sample_3E69945E5865CCC861F69B24BC1166B6             1.0
[*] GREENCAT_sample_AB208F0B517BA9850F1551C9555B5313             1.0
[*] GREENCAT_sample_3E6ED3EE47BCE9946E2541332CB34C69             0.99609375
[*] GREENCAT_sample_C044715C2626AB515F6C85A21C47C7DD             0.6796875
[*] GREENCAT_sample_871CC547FEB9DBEC0285321068E392B8             0.62109375
[*] GREENCAT_sample_57E79F7DF13C0CB01910D0C688FCD296             0.62109375

Listing 5-14: Sample output from the similarity search system implemented in this chapter

Note that our system correctly determines that the query sample (a 
“greencat” sample) shares code with other greencat samples. If we didn’t 
have the luxury of already knowing these samples were members of the 
greencat family, our system would have just saved us a ton of reverse engi-
neering work. 

This similarity search system is only a small example of what would be 
implemented in a production similarity search system. But you should have 
no problem using what you learned so far to add visualization capabilities 
to the system and extend it to support multiple similarity search methods.

Summary
In this chapter, you learned how to identify shared code relationships 
between malware samples, compute code sharing similarity over thou-
sands of malware samples to identify new malware families, determine a 
new malware sample’s code similarity to thousands of previously seen mal-
ware samples, and visualize malware relationships to understand patterns 
of code sharing.

You should now feel comfortable adding shared code analysis to your 
malware analysis toolbox, which will allow you to gain fast intelligence over 
large volumes of malware and accelerate your malware analysis workflow.

In Chapters 6, 7, and 8, you’ll learn to build machine learning systems 
for detecting malware. Combining these detection techniques with what 
you’ve already learned will help you catch advanced malware that other 
tools miss, as well as analyze its relationships to other known malware to 
gain clues about who deployed the malware and what their goals are.





6
U n d e r s t a n d i n g  M a c h i n e 

L e a r n i n g – B a s e d  M a l w a r e 
D e t e c t o r s

With the open source machine learning 
tools available today, you can build cus-

tom, machine learning–based malware 
detection tools, whether as your primary 

detection tool or to supplement commercial solu-
tions, with relatively little effort.

But why build your own machine learning tools when commercial anti-
virus solutions are already available? When you have access to examples of 
particular threats, such as malware used by a certain group of attackers tar-
geting your network, building your own machine learning–based detection 
technologies can allow you to catch new examples of these threats. 

In contrast, commercial antivirus engines might miss these threats unless 
they already include signatures for them. Commercial tools are also “closed 
books”—that is, we don’t necessarily know how they work and we have limited 
ability to tune them. When we build our own detection methods, we know 
how they work and can tune them to our liking to reduce false positives or 
false negatives. This is helpful because in some applications you might be 
willing to tolerate more false positives in exchange for fewer false negatives 
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(for example, when you’re searching your network for suspicious files so that 
you can hand-inspect them to determine if they are malicious), and in other 
applications you might be willing to tolerate more false negatives in exchange 
for fewer false positives (for example, if your application blocks programs 
from executing if it determines they are malicious, meaning that false posi-
tives are disruptive to users).

In this chapter, you learn the process of developing your own detection 
tools at a high level. I start by explaining the big ideas behind machine learn-
ing, including feature spaces, decision boundaries, training data, underfit-
ting, and overfitting. Then I focus on four foundational approaches—logistic 
regression, k-nearest neighbors, decision trees, and random forest—and how 
these can be applied to perform detection.

You’ll then use what you learned in this chapter to learn how to evalu-
ate the accuracy of machine learning systems in Chapter 7 and implement 
machine learning systems in Python in Chapter 8. Let’s get started.

Steps for Building a Machine Learning–Based Detector
There is a fundamental difference between machine learning and other 
kinds of computer algorithms. Whereas traditional algorithms tell the com-
puter what to do, machine-learning systems learn how to solve a problem by 
example. For instance, rather than simply pulling from a set of preconfig-
ured rules, machine learning security detection systems can be trained to 
determine whether a file is bad or good by learning from examples of good 
and bad files.

The promise of machine learning systems for computer security is that 
they automate the work of creating signatures, and they have the potential 
to perform more accurately than signature-based approaches to malware 
detection, especially on new, previously unseen malware.

Essentially, the workflow we follow to build any machine learning–
based detector, including a decision tree, boils down to these steps:

1.	 Collect examples of malware and benignware. We will use these 
examples (called training examples) to train the machine learning 
system to recognize malware.

2.	 Extract features from each training example to represent the example 
as an array of numbers. This step also includes research to design good 
features that will help your machine learning system make accurate 
inferences.

3.	 Train the machine learning system to recognize malware using the fea-
tures we have extracted.

4.	 Test the approach on some data not included in our training examples 
to see how well our detection system works.

Let’s discuss each of these steps in more detail in the following sections.
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Gathering Training Examples
Machine learning detectors live or die by the training data provided to them. 
Your malware detector’s ability to recognize suspicious binaries depends 
heavily on the quantity and quality of training examples you provide. Be pre-
pared to spend much of your time gathering training examples when build-
ing machine learning–based detectors, because the more examples you feed 
your system, the more accurate it’s likely to be.

The quality of your training examples is also important. The malware 
and benignware you collect should mirror the kind of malware and benign-
ware you expect your detector to see when you ask it to decide whether new 
files are malicious or benign.

For example, if you want to detect malware from a specific threat actor 
group, you must collect as much malware as possible from that group for 
use in training your system. If your goal is to detect a broad class of mal-
ware (such as ransomware), it’s essential to collect as many representative 
samples of this class as possible.

By the same token, the benign training examples you feed your system 
should mirror the kinds of benign files you will ask your detector to analyze 
once you deploy it. For example, if you are working on detecting malware 
on a university network, you should train your system with a broad sampling 
of the benignware that students and university employees use, in order to 
avoid false positives. These benign examples would include computer games, 
document editors, custom software written by the university IT department, 
and other types of nonmalicious programs.

To give a real-world example, at my current day job, we built a detector 
that detects malicious Office documents. We spent about half the time on 
this project gathering training data, and this included collecting benign 
documents generated by more than a thousand of my company’s employees. 
Using these examples to train our system significantly reduced our false 
positive rate.

Extracting Features
To classify files as good or bad, we train machine learning systems by show-
ing them features of software binaries; these are file attributes that will help 
the system distinguish between good and bad files. For example, here are 
some features we might use to determine whether a file is good or bad:

•	 Whether it’s digitally signed

•	 The presence of malformed headers

•	 The presence of encrypted data

•	 Whether it has been seen on more than 100 network workstations

To obtain these features, we need to extract them from files. For 
example, we might write code to determine whether a file is digitally 
signed, has malformed headers, contains encrypted data, and so on. 
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Often, in security data science, we use a huge number of features in our 
machine learning detectors. For example, we might create a feature for 
every library call in the Win32 API, such that a binary would have that fea-
ture if it had the corresponding API call. We’ll revisit feature extraction in 
Chapter 8, where we discuss more advanced feature extraction concepts as 
well as how to use them to implement machine learning systems in Python.

Designing Good Features
Our goal should be to select features that yield the most accurate results. 
This section provides some general rules to follow.

First, when selecting features, choose ones that represent your best 
guess as to what might help a machine learning system distinguish bad 
files from good files. For example, the feature “contains encrypted data” 
might be a good marker for malware because we know that malware often 
contains encrypted data, and we’re guessing that benignware will contain 
encrypted data more rarely. The beauty of machine learning is that if this 
hypothesis is wrong, and benignware contains encrypted data just as often 
as malware does, the system will more or less ignore this feature. If our 
hypothesis is right, the system will learn to use the “contains encrypted 
data” feature to detect malware.

Second, don’t use so many features that your set of features becomes 
too large relative to the number of training examples for your detection 
system. This is what the machine learning experts call “the curse of dimen-
sionality.” For example, if you have a thousand features and only a thousand 
training examples, chances are you don’t have enough training examples to 
teach your machine learning system what each feature actually says about 
a given binary. Statistics tells us that it’s better to give your system a few fea-
tures relative to the number of training examples you have available and let 
it form well-founded beliefs about which features truly indicate malware.

Finally, make sure your features represent a range of hypotheses about 
what constitutes malware or benignware. For example, you may choose to 
build features related to encryption, such as whether a file uses encryption-
related API calls or a public key infrastructure (PKI), but make sure to also 
use features unrelated to encryption to hedge your bets. That way, if your 
system fails to detect malware based on one type of feature, it might still 
detect it using other features.

Training Machine Learning Systems
After you’ve extracted features from your training binaries, it’s time to train 
your machine learning system. What this looks like algorithmically depends 
completely on the machine learning approach you’re using. For example, 
training a decision tree approach (which we discuss shortly) involves a 
different learning algorithm than training a logistic regression approach 
(which we also discuss).

Fortunately, all machine learning detectors provide the same basic 
interface. You provide them with training data that contains features from 
sample binaries, as well as corresponding labels that tell the algorithm 
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which binaries are malware and which are benignware. Then the algo-
rithms learn to determine whether or not new, previously unseen binaries 
are malicious or benign. We cover training in more detail later in this 
chapter.

NOTE    	 In this book, we focus on a class of machine learning algorithms known as super-
vised machine learning algorithms. To train models using these algorithms, 
we tell them which examples are malicious and which are benign. Another class of 
machine learning algorithms, unsupervised algorithms, does not require us to 
know which examples are malicious or benign in our training set. These algorithms 
are much less effective at detecting malicious software and malicious behavior, and 
we will not cover them in this book. 

Testing Machine Learning Systems
Once you’ve trained your machine learning system, you need to check 
how accurate it is. You do this by running the trained system on data that 
you didn’t train it on and seeing how well it determines whether or not the 
binaries are malicious or benign. In security, we typically train our systems 
on binaries that we gathered up to some point in time, and then we test on 
binaries that we saw after that point in time, to measure how well our systems 
will detect new malware, and to measure how well our systems will avoid pro-
ducing false positives on new benignware. Most machine learning research 
involves thousands of iterations that go something like this: we create a 
machine learning system, test it, and then tweak it, train it again, and test it 
again, until we’re satisfied with the results. I’ll cover testing machine learn-
ing systems in detail in Chapter 8.

Let’s now discuss how a variety of machine learning algorithms work. 
This is the hard part of the chapter, but also the most rewarding if you take 
the time to understand it. In this discussion, I talk about the unifying ideas 
that underlie these algorithms and then move on to each algorithm in detail.

Understanding Feature Spaces and Decision Boundaries
Two simple geometric ideas can help you understand all machine learning–
based detection algorithms: the idea of a geometrical feature space and the 
idea of a decision boundary. A feature space is the geometrical space defined by 
the features you’ve selected, and a decision boundary is a geometrical structure 
running through this space such that binaries on one side of this boundary 
are defined as malware, and binaries on the other side of the boundary are 
defined as benignware. When we use a machine learning algorithm to clas-
sify files as malicious or benign, we extract features so that we can place the 
samples in the feature space, and then we check which side of the decision 
boundary the samples are on to determine whether the files are malware or 
benignware.

This geometrical way of understanding feature spaces and decision 
boundaries is accurate for systems that operate on feature spaces of one, 
two, or three dimensions (features), but it also holds for feature spaces with 
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millions of dimensions, even though it’s impossible to visualize or conceive 
of million-dimensional spaces. We’ll stick to examples with two dimensions 
in this chapter to make them easy to visualize, but just remember that real-
world security machine learning systems pretty much always use hundreds, 
thousands, or millions of dimensions, and the basic concepts we discuss in 
a two-dimensional context hold for real-world systems that have more than 
two dimensions.

Let’s create a toy malware detection problem to clarify the idea of a 
decision boundary in a feature space. Suppose we have a training dataset 
consisting of malware and benignware samples. Now suppose we extract 
the following two features from each binary: the percentage of the file 
that appears to be compressed, and the number of suspicious functions 
each binary imports. We can visualize our training dataset as shown in 
Figure 6-1 (bear in mind I created the data in the plot artificially, for 
example purposes).
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Figure 6-1: A plot of a sample dataset we’ll use in this chapter, where  
gray dots are benignware and black dots are malware

The two-dimensional space shown in Figure 6-1, which is defined by 
our two features, is the feature space for our sample dataset. You can see 
a clear pattern in which the black dots (the malware) are generally in 
the upper-right part of the space. In general, these have more suspicious 
imported function calls and more compressed data than the benignware, 
which mostly inhabits the lower-left part of the plot. Suppose, after view-
ing this plot, you were asked to create a malware detection system based 
solely on the two features we’re using here. It seems clear that, based on 
the data, you can formulate the following rule: if a binary has both a lot 
of compressed data and a lot of suspicious imported function calls, it’s 
malware, and if it has neither a lot of suspicious imported calls nor much 
compressed data, it’s benignware.
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In geometrical terms, we can visualize this rule as a diagonal line that 
separates the malware samples from the benignware samples in the feature 
space, such that binaries with sufficient compressed data and imported func-
tion calls (defined as malware) are above the line, and the rest of the bina-
ries (defined as benignware) are below the line. Figure 6-2 shows such a line, 
which we call a decision boundary.
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Defining a Malware Detection Decision Boundary
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Figure 6-2: A decision boundary drawn through our sample dataset,  
which defines a rule for detecting malware

As you can see from the line, most of the black (malware) dots are on 
one side of the boundary, and most of the gray (benignware) samples are on 
the other side of the decision boundary. Note that it’s impossible to draw a 
line that separates all of the samples from one another, because the black 
and gray clouds in this dataset overlap one another. But from looking at 
this example, it appears we’ve drawn a line that will correctly classify new 
malware samples and benignware samples in most cases, assuming they fol-
low the pattern seen in the data in this image.

In Figure 6-2, we manually drew a decision boundary through our data. 
But what if we want a more exact decision boundary and want to do it in an 
automated way? This is exactly what machine learning does. In other words, 
all machine learning detection algorithms look at data and use an auto-
mated process to determine the ideal decision boundary, such that there’s 
the greatest chance of correctly performing detection on new, previously 
unseen data.

Let’s look at the way a real-world, commonly used machine learning 
algorithm identifies a decision boundary within the sample data shown in 
Figure 6-3. This example uses an algorithm called logistic regression.
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Logistic Regression
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Figure 6-3: The decision boundary automatically created by training  
a logistic regression model

Notice that we’re using the same sample data we used in the previous 
plots, where gray dots are benignware and black dots are malware. The line 
running through the center of the plot is the decision boundary that the 
logistic regression algorithm learns by looking at the data. On the right side 
of the line, the logistic regression algorithm assigns a greater than 50 per-
cent probability that binaries are malware, and on the left side of the line, it 
assigns a less than 50 percent probability that a binary is malware.

Now note the shaded regions of the plot. The dark gray shaded region is 
the region where the logistic regression model is highly confident that files 
are malware. Any new file the logistic regression model sees that has features 
that land in this region should have a high probability of being malware. As 
we get closer and closer to the decision boundary, the model has less and 
less confidence about whether or not binaries are malware or benignware. 
Logistic regression allows us to easily move the line up into the darker region 
or down into the lighter region, depending on how aggressive we want to be 
about detecting malware. For example, if we move it down, we’ll catch more 
malware, but get more false positives. If we move it up, we’ll catch less mal-
ware, but get fewer false positives.

I want to emphasize that logistic regression, and all other machine 
learning algorithms, can operate in arbitrarily high dimensional feature 
spaces. Figure 6-4 illustrates how logistic regression works in a slightly 
higher dimensional feature space.

In this higher-dimensional space, the decision boundary is not a line, 
but a plane separating the points in the 3D volume. If we were to move to 
four or more dimensions, logistic regression would create a hyperplane, 
which is an n-dimensional plane-like structure that separates the malware 
from benignware points in this high dimensional space.
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Figure 6-4: A planar decision boundary through a  
hypothetical three dimensional feature space created  
by logistic regression

Because logistic regression is a relatively simple machine learning algo-
rithm, it can only create simple geometrical decision boundaries such as 
lines, planes, and higher dimensional planes. Other machine learning algo-
rithms can create decision boundaries that are more complex. Consider, for 
example, the decision boundary shown in Figure 6-5, given by the k-nearest 
neighbors algorithm (which I discuss in detail shortly).
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Figure 6-5: A decision boundary created by the k-nearest neighbors  
algorithm

As you can see, this decision boundary isn’t a plane: it’s a highly irregu-
lar structure. Also note that some machine learning algorithms can generate 
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disjointed decision boundaries, which define some regions of the feature 
space as malicious and some regions as benign, even if those regions are 
not contiguous. Figure 6-6 shows a decision boundary with this irregular 
structure, using a different sample dataset with a more complex pattern of 
malware and benignware in our sample feature space.
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Figure 6-6: A disjoint decision boundary created by the k-nearest  
neighbors algorithm

Even though the decision boundary is noncontiguous, it’s still common 
machine learning parlance to call these disjoint decision boundaries simply 
“decision boundaries.” You can use different machine learning algorithms 
to express different types of decision boundaries, and this difference in 
expressivity is why we might pick one machine learning algorithm over 
another for a given project.

Now that we’ve explored core machine learning concepts like feature 
spaces and decision boundaries, let’s discuss what machine learning practi-
tioners call overfitting and underfitting next.

What Makes Models Good or Bad: Overfitting and 
Underfitting

I can’t overemphasize the importance of overfitting and underfitting in 
machine learning. Avoiding both cases is what defines a good machine 
learning algorithm. Good, accurate detection models in machine learn-
ing capture the general trend in what the training data says about what 
distinguishes malware from benignware, without getting distracted by 
the outliers or the exceptions that prove the rule.
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Underfit models ignore outliers but fail to capture the general trend, 
resulting in poor accuracy on new, previously unseen binaries. Overfit 
models get distracted by outliers in ways that don’t reflect the general 
trend, and they yield poor accuracy on previously unseen binaries. 
Building machine learning malware detection models is all about captur-
ing the general trend that distinguishes the malicious from the benign.

Let’s use the examples of underfit, well fit, and overfit models in 
Figures 6-7, 6-8, and 6-9 to illustrate these terms. Figure 6-7 shows an 
underfit model.
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Figure 6-7: An underfit machine learning model

Here, you can see the black dots (malware) cluster in the upper-right 
region of the plot, and the gray dots (benignware) cluster in the lower 
left. However, our machine learning model simply slices the dots down 
the middle, crudely separating the data without capturing the diagonal 
trend. Because the model doesn’t capture the general trend, we say that it 
is underfit.

Also note that there are only two shades of certainty that the model 
gives in all of the regions of the plot: either the shade is dark gray or it’s 
white. In other words, the model is either absolutely certain that points 
in the feature space are malicious or absolutely certain they’re benign. 
This inability to express certainty correctly is also a reason this model is 
underfit.

Let’s contrast the underfit model in Figure 6-7 with the well-fit model in 
Figure 6-8.
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Figure 6-8: A well-fit machine learning model

In this case, the model not only captures the general trend in the data 
but also creates a reasonable model of certainty with respect to its estimate 
of which regions of the feature space are definitely malicious, definitely 
benign, or are in a gray area.

Note the decision line running from the top to the bottom of this 
plot. The model has a simple theory about what divides the malware 
from the benignware: a vertical line with a diagonal notch in the middle 
of the plot. Also note the shaded regions in the plot, which tells us that 
the model is only certain that data in the upper-right part of the plot are 
malware, and only certain that binaries in the lower-left corner of the plot 
are benignware.

Finally, let’s contrast the overfit model shown next in Figure 6-9 to 
the underfit model you saw in Figure 6-7 as well as the well-fit model in 
Figure 6-8.

The overfit model in Figure 6-9 fails to capture the general trend in 
the data. Instead, it obsesses over the exceptions in the data, including the 
handful of black dots (malware training examples) that occur in the cluster 
of gray dots (benign training examples) and draws decision boundaries 
around them. Similarly, it focuses on the handful of benignware examples 
that occur in the malware cluster, drawing boundaries around those as well.

This means that when we see new, previously unseen binaries that hap-
pen to have features that place them close to these outliers, the machine 
learning model will think they are malware when they are almost definitely 
benignware, and vice versa. In practice, this means that this model won’t be 
as accurate as it could be.
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Figure 6-9: An overfit machine learning model

Major Types of Machine Learning Algorithms
So far I’ve discussed machine learning in very general terms, touching on 
two machine learning methods: logistic regression and k-nearest neighbors. 
In the remainder of this chapter, we delve deeper and discuss logistic regres-
sion, k-nearest neighbors, decision trees, and random forest algorithms in 
more detail. We use these algorithms quite often in the security data science 
community. These algorithms are complex, but the ideas behind them are 
intuitive and straightforward.

First, let’s look at the sample datasets we use to explore the strengths 
and weaknesses of each algorithm, shown in Figure 6-10.

I created these datasets for example purposes. On the left, we have our 
simple dataset, which I’ve already used in Figures 6-7, 6-8, and 6-9. In this 
case, we can separate the black training examples (malware) from the gray 
training examples (benignware) using a simple geometric structure such as 
a line.

The dataset on the right, which I’ve already shown in Figure 6-6, is com-
plex because we can’t separate the malware from the benignware using a 
simple line. But there is still a clear pattern to the data: we just have to use 
more complex methods to create a decision boundary. Let’s see how differ-
ent algorithms perform with these two sample datasets.
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Simple Dataset
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Figure 6-10: The two sample datasets we use in this chapter, with black dots representing malware and gray 
dots representing benignware

Logistic Regression
As you learned previously, logistic regression is a machine learning algo-
rithm that creates a line, plane, or hyperplane (depending on how many 
features you provide) that geometrically separates your training malware 
from your training benignware. When you use the trained model to detect 
new malware, logistic regression checks whether a previously unseen binary 
is on the malware side or the benignware side of the boundary to deter-
mine whether it’s malicious or benign.

A limitation of logistic regression is that if your data can’t be sepa-
rated simply using a line or hyperplane, logistic regression is not the right 
solution. Whether or not you can use logistic regression for your problem 
depends on your data and your features. For example, if your problem has 
lots of individual features that on their own are strong indicators of mali-
ciousness (or “benignness”), then logistic regression might be a winning 
approach. If your data is such that you need to use complex relationships 
between features to decide that a file is malware, then another approach, 
like k-nearest neighbors, decision trees, or random forest, might make more 
sense.

To illustrate the strengths and weaknesses of logistic regression, let’s 
look at the performance of logistic regression on our two sample datasets, 
as shown in Figure 6-11. We see that logistic regression yields a very effec-
tive separation of the malware and benignware in our simple dataset (on 
the left). In contrast, the performance of logistic regression on our com-
plex dataset (on the right) is not effective. In this case, the logistic regres-
sion algorithm gets confused, because it can only express a linear decision 
boundary. You can see both binary types on both sides of the line, and the 
shaded gray confidence bands don’t really make any sense relative to the 
data. For this more complex dataset, we’d need to use an algorithm capable 
of expressing more geometric structures.
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Logistic Regression
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Figure 6-11: A decision boundary drawn through our sample datasets using logistic regression

The Math Behind Logistic Regression

Let’s now look at the math behind how logistic regression detects malware 
samples. Listing 6-1 shows Pythonic pseudocode for computing the prob-
ability that a binary is malware using logistic regression.

def logistic_regression(compressed_data, suspicious_calls, learned_parameters): u
compressed_data = compressed_data * learned_parameters["compressed_data_weight"]  
    suspicious_calls = suspicious_calls * learned_parameters["suspicious_calls_weight"]
score = compressed_data + suspicious_calls + bias w
    return logistic_function(score)

def logistic_function(score): x
    return 1/(1.0+math.e**(-score))

Listing 6-1: Pseudocode using logistic regression to calculate probability

Let’s step through the code to understand what this means. We first 
define the logistic_regression function  and its parameters. Its parameters 
are the features of the binary (compressed_data and suspicious_calls) that rep-
resent the amount of compressed data and the number of suspicious calls 
it makes, respectively, and the parameter learned_parameters stands for the 
elements of the logistic regression function that were learned by training 
the logistic regression model on training data. I discuss how the param-
eters were learned later in this chapter; for now, just accept that they were 
derived from the training data.

Then, we take the compressed_data feature  and multiply it by the 
compressed_data_weight parameter. This weight scales the feature up or 
down, depending on how indicative of malware the logistic regression 
function thinks this feature is. Note that the weight can also be negative, 
which indicates that the logistic regression model thinks that the feature 
is an indicator of a file being benign.
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On the line below that, we perform the same step for the suspicious_calls 
parameter. Then, we add these two weighted features together , plus add 
in a parameter called the bias parameter (also learned from training data). 
In sum, we take the compressed_data feature, scaled by how indicative of mali-
ciousness we believe it to be, add the suspicious_calls feature, also scaled by 
how indicative of maliciousness we believe it to be, and add the bias param-
eter, which indicates how suspicious the logistic regression model thinks we 
should be of files in general. The result of these additions and multiplications 
is a score indicating how likely it is that a given file is malicious.

Finally, we use logistic_function  to convert our suspiciousness score 
into a probability. Figure 6-12 visualizes how this function works.

0 2 4 6–2–4–6

0.5

1

Figure 6-12: A plot of the logistic function used in logistic regression

Here, the logistic function takes a score (shown on the x-axis) and 
translates it into a value that’s bounded between 0 and 1 (a probability).

How the Math Works

Let’s return to the decision boundaries you saw in Figure 6-11 to see how 
this math works in practice. Recall how we compute our probability:

logistic_function(feature1_weight * feature1 + feature2_weight*feature2 + bias)

For example, if we were to plot the resulting probabilities at every point 
in the feature spaces shown in Figure 6-11 using the same feature weights 
and bias parameter, we’d wind up with the shaded regions shown in the 
same figure, which shows where the model “thinks” malicious and benign 
samples lie, and with how much confidence.

If we were then to set a threshold of 0.5 (recall that at a probability 
of greater than 50 percent, files are defined as malicious), the line in 
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Figure 6-11 would appear as our decision boundary. I encourage you to 
experiment with my sample code, plug in some feature weights and a bias 
term, and try it yourself.

NOTE    	 Logistic regression doesn’t constrain us to using only two features. In reality, we usu-
ally use scores or hundreds or even thousands of features with logistic regression. But 
the math doesn’t change: we just compute our probability as follows for any number of 
features: 

logistic_function(feature1 * feature1_weight + feature2 * feature2_weight + 
feature3 * feature3_weight ... + bias)

So how exactly does logistic regression learn to place the decision 
boundary in the right place based on the training data? It uses an itera-
tive, calculus-based approach called gradient descent. We won’t get into the 
details of this approach in this book, but the basic idea is that the line, 
plane, or hyperplane (depending on the number of features you’re using) 
is iteratively adjusted such that it maximizes the probability that the logistic 
regression model will get the answer right when asked if a data point in the 
training set is either a malware sample or a benignware sample.

You can train logistic regression models to bias the logistic regression 
learning algorithm toward coming up with simpler or more complex theories 
about what constitutes malware and benignware. These training methods are 
beyond the scope of this book, but if you’re interested in learning about these 
helpful methods, I encourage you to Google “logistic regression and regular-
ization” and read explanations of them online.

When to Use Logistic Regression

Logistic regression has distinct advantages and disadvantages relative to 
other machine learning algorithms. An advantage of logistic regression 
is that one can easily interpret what a logistic regression model thinks 
constitutes benignware and malware. For example, we can understand a 
given logistic regression model by looking at its feature weights. Features 
that have high weight are those the model interprets as malicious. Features 
with negative weight are those the model believes are benignware. Logistic 
regression is a fairly simple approach, and when the data you’re working 
with contains clear indicators of maliciousness, it can work well. But when 
the data is more complex, logistic regression often fails.

Now let’s explore another simple machine learning approach that can 
express much more complex decision boundaries: k-nearest neighbors.

K-Nearest Neighbors
K-nearest neighbors is a machine learning algorithm based on the idea 
that if a binary in the feature space is close to other binaries that are 
malicious, then it’s malicious, and if its features place it close to binaries 
that are benign, it must be benign. More precisely, if the majority of the 
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k closest binaries to an unknown binary are malicious, the file is malicious. 
Note that k represents the number of nearby neighbors that we pick and 
define ourselves, depending on how many neighbors we think should be 
involved in determining whether a sample is benign or malicious.

In the real world, this makes intuitive sense. For example, if you have 
a dataset of weights and heights of both basketball players and table ten-
nis players, chances are that the basketball players’ weights and heights 
are likely closer to one another than they are to the measurements of 
table tennis players. Similarly, in a security setting, malware will often 
have similar features to other malware, and benignware will often have 
similar features to other benignware.

We can translate this idea into a k-nearest neighbors algorithm to com-
pute whether a binary is malicious or benign using the following steps:

1.	 Extract the binary’s features and find the k samples that are closest to it 
in the feature space.

2.	 Divide the number of malware samples that are close to the sample by k 
to get the percentage of nearest neighbors that are malicious.

3.	 If enough of the samples are malicious, define the sample as malicious.

Figure 6-13 shows how k-nearest neighbors algorithm works at a high 
level.
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Figure 6-13: An illustration of the way k-nearest neighbors can be used  
to detect previously unseen malware

We see a set of malware training examples in the upper left and a set of 
benignware examples in the lower right. We also see a new, unknown binary 
that is connected to its three nearest neighbors. In this case, we’ve set k to 3, 
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meaning we’re looking at the three nearest neighbors to unknown binaries. 
Because all three of the nearest neighbors are malicious, we’d classify this 
new binary as malicious.

The Math Behind K-Nearest Neighbors

Let’s now discuss the math that allows us to compute the distance between 
new, unknown binaries’ features and the samples in the training set. We 
use a distance function to do this, which tells us the distance between our 
new example and the examples in the training set. The most common dis-
tance function is Euclidean distance, which is the length of the shortest path 
between two points in our feature space. Listing 6-2 shows pseudocode for 
Euclidean distance in our sample two-dimensional feature space.

import math
def euclidean_distance(compression1,suspicious_calls1, compression2, suspicious_calls2): u
    comp_distance = (compression1-compression2)**2 v
    call_distance = (suspicious_calls1-suspicious_calls2)**2 w
    return math.sqrt(comp_distance + call_distance) x

Listing 6-2: Pseudocode for writing the euclidean_distance function

Let’s walk through how the math in this code works. Listing 6-2 takes 
a pair of samples and computes the distance between them based on the 
differences between their features. First, the caller passes in the features 
of the binaries , where compression1 is the compression feature of the 
first example, suspicious_calls1 is the suspicious_calls feature of the first 
example, compression2 is the compression feature of the second example, 
and suspicious_calls2 is the suspicious calls feature of the second example.

Then we compute the squared difference between the compres-
sion features of each sample , and we compute the squared difference 
between the suspicious calls feature of each sample . We won’t cover 
the reason we use squared distance, but note that the resulting difference 
is always positive. Finally, we compute the square root of the two differ-
ences, which is the Euclidean distance between the two feature vectors, 
and return it to the caller . Although there are other ways to compute 
distances between examples, Euclidean distance is the most commonly 
used with the k-nearest neighbors algorithm, and it works well for security 
data science problems.

Choosing the Number of Neighbors That Vote

Let’s now look at the kinds of decision boundaries and probabilities that a 
k-nearest neighbors algorithm produces for the sample datasets we’re using 
in this chapter. In Figure 6-14, I set k to 5, thus allowing five closest neigh-
bors to “vote.”
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Figure 6-14: The decision boundaries created by k-nearest neighbors when k is set to 5

But in Figure 6-15, I set k to 50, allowing the 50 closest neighbors to 
“vote.”
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Figure 6-15: The decision boundaries created by k-nearest neighbors when k is set to 50

Note the dramatic difference between the models depending on the 
number of neighbors that vote. The model in Figure 6-14 shows a gnarly, 
complex decision boundary for both datasets, which is overfit in the 
sense that it draws local decision boundaries around outliers, but under-
fit because it fails to capture the simple, general trends. In contrast, the 
model in Figure 6-15 is well-fit to both datasets, because it doesn’t get dis-
tracted by outliers and cleanly identifies general trends.

As you can see, k-nearest neighbors can produce a much more complex 
decision boundary than logistic regression. We can control the complexity 
of this boundary to guard against both over- and underfitting by chang-
ing k, the number of neighbors that get to vote on whether a sample is 
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malicious or benign. Whereas the logistic regression model in Figure 6-11 
got it completely wrong, k-nearest neighbors does well at separating the 
malware from the benignware, especially when we let 50 neighbors vote. 
Because k-nearest neighbors is not constrained by a linear structure and is 
simply looking at the nearest neighbors of each point to make a decision, it 
can create decision boundaries with arbitrary shapes, thus modeling com-
plex datasets much more effectively.

When to Use K-Nearest Neighbors

K-nearest neighbors is a good algorithm to consider when you have data 
where features don’t map cleanly onto the concept of suspiciousness, but 
closeness to malicious samples is a strong indicator of maliciousness. For 
example, if you’re trying to classify malware into families that share code, 
k-nearest neighbors might be a good algorithm to try, because you want to 
classify a malware sample into a family if its features are similar to known 
members of a given family.

Another reason to use k-nearest neighbors is that it provides clear 
explanations of why it has made a given classification decision. In other 
words, it’s easy to identify and compare similarities between samples and 
an unknown sample to figure out why the algorithm has classified it as mal-
ware or benignware.

Decision Trees
Decision trees are another frequently used machine learning method for 
solving detection problems. Decision trees automatically generate a series 
of questions through a training process to decide whether or not a given 
binary is malware, similar to the game Twenty Questions. Figure 6-16 shows 
a decision tree that I automatically generated by training it on the simple 
dataset we’ve been using in this chapter. Let’s follow the flow of the logic in 
the tree.

True False

True

True

True

True

False

False

False

False

Calls <= 40.111

Calls <= 33.836 P(malware) = 38% P(malware) = 94% Calls <= 46.955

P(malware) = 0% P(malware) = 3% P(malware) = 98% P(malware) = 100%

Compressed <= 37.254 Compressed <= 38.28

Figure 6-16: A decision tree learned for our simple dataset example
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The decision tree flow starts when we input the features we’ve extracted 
from a new, previously unseen binary into the tree. Then the tree defines 
the series of questions to ask of this binary’s features. The box at the top 
of the tree, which we call a node, asks the first question: is the number of 
suspicious calls in the tree less than or equal to 40.111? Note that the deci-
sion tree uses a floating point number here because we’ve normalized the 
number of suspicious calls in each binary to a range between 0 and 100. 
If the answer is “yes,” we ask another question: is the percentage of com-
pressed data in the file less than or equal to 37.254? If the answer is “yes,” 
we proceed to the next question: is the number of suspicious calls in the 
binary less than or equal to 33.836? If the answer is “yes,” we reach the end 
of the decision tree. At this point, the probability that the binary is malware 
is 0 percent.

Figure 6-17 shows a geometrical interpretation of this decision tree.

Decision Tree
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Figure 6-17: The decision boundary created by a decision tree for our  
simple dataset example

Here, the shaded regions indicate where the decision tree thinks 
samples are malicious. The lighter regions indicate where the decision 
tree thinks samples are benign. The probabilities assigned by the series of 
questions and answers in Figure 6-16 should correspond with those in the 
shaded regions in Figure 6-17.

Choosing a Good Root Node

So how do we use a machine learning algorithm to generate a decision 
tree like this from training data? The basic idea is that the decision tree 
starts with an initial question called a root node. The best root node is the 
one for which we get a “yes” answer for most if not all samples of one type, 
and a “no” answer for most if not all samples of the other type. For example, 
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in Figure 6-16, the root node question asks whether a previously unseen 
binary has 40.111 or fewer calls. (Note that the number of calls per binary 
here is normalized to a 0 to 100 scale, making floating point values valid.) 
As you can see from the vertical line in Figure 6-17, most of the benign data 
has less than this number, while most of the malware data has more than 
this number of suspicious calls, making this a good initial question to ask.

Picking Follow-Up Questions

After choosing a root node, pick the next questions using a method simi-
lar to the one we used to pick the root node. For example, the root node 
allowed us to split the samples into two groups: one group that has less than 
or equal to 40.111 suspicious calls (negative feature space) and another that 
has more than 40.111 suspicious calls (positive feature space). To choose 
the next question, we just need questions that will further distinguish the 
samples in each area of the feature space into malicious and benign train-
ing examples.

We can see this in the way the decision tree is structured in Figure 6-16 
and 6-17. For example, Figure 6-16 shows that after we ask an initial “root” 
question about the number of suspicious calls binaries make, we ask ques-
tions about how much compressed data binaries have. Figure 6-17 shows 
why we do this based on the data: after we ask our first question about suspi-
cious function calls, we have a crude decision boundary that separates most 
malware from most benignware in the plot. How can we refine the decision 
boundary further by asking follow-up questions? It’s clear visually that the 
next best question to ask, which will refine our decision boundary, will be 
about the amount of compressed data in the binaries.

When to Stop Asking Questions

At some point in our decision tree creation process, we need to decide 
when the decision tree should stop asking questions and simply determine 
whether a binary file is benign or malicious based on our certainty about 
our answer. One way is to simply limit the number of questions our decision 
tree can ask, or to limit its depth (the maximum number of questions we can 
ask of any binary). Another is to allow the decision tree to keep growing 
until we’re absolutely certain about whether or not every example in our 
training set is malware or benignware based on the structure of the tree.

The advantage of constraining the size of the tree is that if the tree 
is simpler, we have a greater chance of getting the answer right (think of 
Occam’s razor—the simpler the theory, the better). In other words, there’s 
less chance that the decision tree will overfit the training data if we keep it 
small.

Conversely, allowing the tree to grow to maximum size can be useful if 
we are underfitting the training data. For example, allowing the tree to grow 
further will increase the complexity of the decision boundary, which we’ll 
want to do if we’re underfitting. In general, machine learning practitioners 
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usually try multiple depths, or allow for maximum depth on previously 
unseen binaries, repeating this process until they get the most accurate 
results.

Using Pseudocode to Explore Decision Tree Generation Algorithms

Now let’s examine an automated decision tree generation algorithm. You 
learned that the basic idea behind this algorithm is to create the root node 
in the tree by finding the question that best increases our certainty about 
whether the training examples are malicious or benign, and then to find 
subsequent questions that will further increase our certainty. The algorithm 
should stop asking questions and make a decision once its certainty about 
the training examples has surpassed some threshold we set in advance.

Programmatically, we can do this recursively. The Python-like pseudo-
code in Listing 6-3 shows the complete process for building a decision tree 
in simplified form.

tree = Tree()
def add_question(training_examples):

     question = pick_best_question(training_examples)
     uncertainty_yes,yes_samples=ask_question(question,training_examples,"yes")
     uncertainty_no,no_samples=ask_question(question,training_examples,"no")
     if not uncertainty_yes < MIN_UNCERTAINTY:

        add_question(yes_samples)
     if not uncertainty_no < MIN_UNCERTAINTY:

        add_question(no_samples)
 add_question(training_examples)

Listing 6-3: Pseudocode for building a decision tree algorithm

The pseudocode recursively adds questions to a decision tree, begin-
ning with the root node and working its way down until the algorithm feels 
confident that the decision tree can provide a highly certain answer about 
whether a new file is benign or malicious.

When we start building the tree, we use pick_best_question() to pick our 
root node  (for now, don’t worry about how this function works). Then, 
we look at how much uncertainty we now have about the training samples 
for which the answer is “yes” to this initial question . This will help us to 
decide if we need to keep asking questions about these samples or if we can 
stop, and predict whether the samples are malicious or benign. We do the 
same for the samples for which we answered “no” for the initial question .

Next, we check if the uncertainty we have about the samples for which 
we answered “yes” (uncertainty_yes) is sufficiently low to decide whether 
they are malicious or benign . If we can determine whether they’re mali-
cious or benign at this point, we don’t ask any additional questions. But if 
we can’t, we call add_question() again, using yes_samples, or the number of 
samples for which we answered “yes,” as our input. This is a classic example 
of recursion, which is a function that calls itself. We’re using recursion to 
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repeat the same process we performed for the root node with a subset of 
training examples. The next if statement does the same thing for our “no” 
examples . Finally, we call our decision tree building function on our 
training examples .

How exactly pick_best_question() works involves math that is beyond 
the scope of this book, but the idea is simple. To pick the best question 
at any point in the decision tree building process, we look at the training 
examples about which we’re still uncertain, enumerate all the questions we 
could ask about them, and then pick the one that best reduces our uncer-
tainty about whether the examples are malware or benignware. We mea-
sure this reduction in uncertainty using a statistical measurement called 
information gain. This simple method for picking the best question works 
surprisingly well.

NOTE    	 This is a simplified example of how real-world, decision tree–generating, machine 
learning algorithms work. I’ve left out the math required to calculate how much a 
given question increases our certainty about whether or not a file is bad.

Let’s now look at the behavior of decision trees on the two sample data-
sets we’ve been using in this chapter. Figure 6-18 shows the decision bound-
ary learned by a decision tree detector.
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Figure 6-18: Decision boundaries for our sample datasets produced by a decision tree approach

In this case, instead of setting a maximum depth for the trees, we allow 
them to grow to the point where there are no false positives or false nega-
tives relative to the training data so that every training sample is correctly 
classified.

Notice that decision trees can only draw horizontal and vertical lines 
in the feature space, even when it seems clear and obvious that a curved 
or diagonal line might be more appropriate. This is because decision trees 
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only allow us to express simple conditions on individual features (such as 
greater than or equal to and less than or equal to), which always leads to 
horizontal or vertical lines.

You can also see that although the decision trees in these examples suc-
ceed in separating the benignware from the malware, the decision bound-
aries look highly irregular and have strange artifacts. For example, the 
malware region extends into the benignware region in strange ways, and 
vice versa. On the positive side, the decision tree does far better than logis-
tic regression at creating a decision boundary for the complex dataset.

Let’s now compare the decision trees in Figure 6-18 to the decision tree 
models in Figure 6-19.

Decision Tree (Limited Depth)
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Figure 6-19: Decision boundaries for our sample datasets produced by a limited-depth decision tree

The decision trees in Figure 6-19 use the same decision tree generation 
algorithm used for Figure 6-18, except I limit the tree depth to five nodes. 
This means that for any given binary, I can ask a maximum of five questions 
of its features.

The result is dramatic. Whereas the decision tree models shown in 
Figure 6-18 are clearly overfit, focusing on outliers and drawing overly com-
plex boundaries that fail to capture the general trend, the decision trees in 
Figure 6-19 fit the data much more elegantly, identifying a general pattern 
in both datasets without focusing on outliers (with one exception, the skin-
nier decision region in the upper-right area of the simple dataset). As you 
can see, picking a good maximum decision tree depth can have a big effect 
on your decision tree–based machine learning detector.

When to Use Decision Trees

Because decision trees are expressive and simple, they can learn both simple 
and highly irregular boundaries based on simple yes-or-no questions. We can 
also set the maximum depth to control how simple or complex their theories 
of what constitutes malware versus benignware should be.
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Unfortunately, the downside to decision trees is that they often simply 
do not result in very accurate models. The reason for this is complex, but 
it’s related to the fact that decision trees express jagged decision boundar-
ies, which don’t fit the training data in ways that generalize to previously 
unseen examples very well.

Similarly, decision trees don’t usually learn accurate probabilities around 
their decision boundaries. We can see this by inspecting the shaded regions 
around the decision boundary in Figure 6-19. The decay is not natural or 
gradual and doesn’t happen in the regions it should—areas where the mal-
ware and benignware examples overlap.

Next, I discuss the random forest approach, which combines multiple 
decision trees to yield far better results.

Random Forest
Although the security community relies heavily on decision trees for 
malware detection, they almost never use them individually. Instead, 
hundreds or thousands of decision trees are used in concert to make 
detections through an approach called random forest. Instead of training 
one decision tree, we train many, usually a hundred or more, but we train 
each decision tree differently so that it has a different perspective on the 
data. Finally, to decide whether a new binary is malicious or benign, we 
allow the decision trees to vote. The probability that a binary is malware 
is the number of positive votes divided by the total number of trees.

Of course, if all the decision trees are identical, they would all vote the 
same way, and the random forest would simply replicate the results of the 
individual decision trees. To address this, we want the decision trees to have 
different perspectives on what constitutes malware and benignware, and 
we use two methods, which I discuss next, to induce this diversity into our 
collection of decision trees. By inducing diversity, we generate a “wisdom of 
crowds” dynamic in our model, which typically results in a more accurate 
model.

We use the following steps to generate a random forest algorithm:

1.	 Training: for every tree out of the number we plan to generate (typi-
cally 100 or more)

•	 Randomly sample some training examples from our training set.

•	 Build a decision tree from the random sample.

•	 For each tree that we build, each time we consider “asking a ques-
tion,” consider asking a question of only a handful of features, and 
disregard the other features.

2.	 Detection on a previously unseen binary

•	 Run detection for each individual tree on the binary.

•	 Decide whether or not the binary is malware based on the number 
of trees that voted “yes.”
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To understand this in more detail, let’s examine the results generated 
by the random forest approach on our two sample datasets, as shown in 
Figure 6-20. These results were generated using 100 decision trees.
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Figure 6-20: Decision boundaries created using the random forest approach

In contrast to the individual decision tree results shown in Figures 6-18 
and 6-19, random forest can express much smoother and more intuitive 
decision boundaries for both simple and complex datasets than individ-
ual decision trees. Indeed, the random forest model fits the training data-
set very cleanly, with no jagged edges; the model seems to have learned 
good theories about what constitutes “malicious versus benign” for both 
datasets.

Additionally, the shaded regions are intuitive. For example, the fur-
ther you get from benign or malicious examples, the less certainty ran-
dom forest has about whether examples are malicious or benign. This 
bodes well for random forest’s performance on previously unseen bina-
ries. In fact, as you’ll see in the next chapter, random forest is the best 
performing model on previously unseen binaries of all the approaches 
discussed in this chapter.

To understand why random forest draws such clean decision boundar-
ies compared to individual decision trees, let’s think about what the 100 
decision trees are doing. Each tree sees only about two-thirds of the train-
ing data, and only gets to consider a randomly selected feature whenever it 
makes a decision about what question to ask. This means that behind the 
scenes, we have 100 diverse decision boundaries that get averaged to create 
the final decision boundaries in the examples (and the shaded regions). 
This “wisdom of crowds” dynamic creates an aggregate opinion that can 
identify the trends in the data in a much more sophisticated way than indi-
vidual decision trees can.
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Summary
In this chapter, you got a high-level introduction to machine learning–
based malware detection as well as four major approaches to machine 
learning: logistic regression, k-nearest neighbors, decision trees, and ran-
dom forests. Machine learning–based detection systems can automate the 
work of writing detection signatures, and they often perform better in prac-
tice than custom written signatures.

In the following chapters, I’ll show you how these approaches perform 
on real-world malware detection problems. Specifically, you’ll learn how 
to use open source, machine learning software to build machine learning 
detectors to accurately classify files as either malicious or benign, and how 
to use basic statistics to evaluate the performance of your detectors on pre-
viously unseen binaries.





7
E v a l u a t i n g  M a l w a r e 

D e t e c t i o n  S y s t e ms

In the previous chapter, you learned how 
machine learning can help you build mal-

ware detectors. In this chapter, you learn 
the basic concepts necessary to predict how 

malware detection systems will perform. The ideas 
you learn here will prove crucial in improving any 
malware detection system you build, because without 
a way to measure your system’s performance, you will not know how to 
improve it. Please note that while this chapter is dedicated to introducing 
basic evaluation concepts, Chapter 8 continues this thread, introducing 
essential evaluation concepts like cross-validation.

First, I introduce the basic ideas behind detection accuracy evaluation, 
and then I introduce more advanced ideas concerning the environment in 
which you deploy your system when evaluating its performance. To do this, I 
walk you through an evaluation of a hypothetical malware detection system.
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Four Possible Detection Outcomes
Suppose you run a malware detection system on a software binary and get 
the system’s “opinion” about whether the binary is malicious or benign. As 
illustrated in Figure 7-1, four possible outcomes may occur.
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Figure 7-1: The four possible detection outcomes

These outcomes can be defined as follows:

True positive  The binary is malware and the system says it is malware.

False negative  The binary is malware and the system says it’s not 
malware.

False positive  The binary is not malware and the system says it is 
malware.

True negative  The binary is not malware and the system says it’s not 
malware.

As you can see, there are two scenarios in which your malware detec-
tion system can produce inaccurate results: false negatives and false posi-
tives. In practice, true positive and true negative results are what we desire, 
but they are often difficult to obtain.

You’ll see these terms used throughout this chapter. In fact, most of 
detection evaluation theory is built on this simple vocabulary.

True and False Positive Rates
Now suppose you want to test the detection system’s accuracy using a set of 
benignware and malware. You can run the detector on each binary and keep 
count of which of the four possible outcomes the detector gives you over the 
entire test set. At this point, you need some summary statistics to give you an 
overall sense of the system’s accuracy (that is, how likely it is that your system 
will generate false positives or false negatives).



Evaluating Malware Detection Systems   121

One such summary statistic is the true positive rate of the detection 
system, which you can calculate by dividing the number of true positives 
on your test set by the total number of malware samples in your test set. 
Because this calculates the percentage of malware samples your system is 
able to detect, it measures your system’s ability to recognize malware when 
it “sees” malware.

However, simply knowing that your detection system will raise alarms 
when it sees malware is insufficient to evaluate its accuracy. For example, if 
you only used the true positive rate as an evaluation criterion, a simple func-
tion that says “yes, this is malware” on all files would yield a perfect true posi-
tive rate. The real test of a detection system is whether or not it says “yes, this 
is malware” when it sees malware and “no, this is not malware” when it sees 
benignware.

To measure a system’s ability to discern whether something is not mal-
ware, you also need to measure the system’s false positive rate, which is the 
rate at which your system issues a malware alarm when it sees benignware. 
You can calculate your system’s false positive rate by dividing the number of 
benign samples the system flags as malware by the total number of benign 
samples tested.

Relationship Between True and False Positive Rates
When designing a detection system, you want to keep the false positive rate 
as low as possible while keeping the true positive rate as high as possible. 
Unless you build a truly perfect malware detection system that is always right 
(which is really an impossibility given the evolving nature of malware), there 
will always be tension between the desire for a high true positive and the 
desire for a low false positive rate.

To see why this is the case, imagine a detection system that, before 
deciding whether or not a binary is malware, adds up all the evidence that 
the binary is malware to create a suspiciousness score for the binary. Let’s 
call this hypothetical suspiciousness-score-generating system MalDetect. 
Figure 7-2 shows an example of the values that MalDetect might output for 
12 sample binaries, where the circles represent individual software binaries. 
The further to the right a binary, the higher the suspiciousness score given 
by MalDetect.

Suspiciousness score according to detector

Benignware Malware

Figure 7-2: Suspiciousness scores output by the hypothetical MalDetect system for indi-
vidual software binaries

Suspiciousness scores are informative, but in order to calculate 
MalDetect’s true positive rate and false positive rate on our files, we 
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need to convert MalDetect’s suspiciousness scores to “yes” or “no” answers 
regarding whether or not a given software binary is malicious. To do this, 
we use a threshold rule. For example, we decide that if the suspiciousness 
score is greater or equal to some number, the binary in question raises a 
malware alarm. If the score is lower than the threshold, it doesn’t.

Such a threshold rule is the standard way to convert a suspiciousness 
score into a binary detection choice, but where should we set the threshold? 
The problem is that there is no right answer. Figure 7-3 shows the conun-
drum: the higher we set the threshold, the less likely we are to get false posi-
tives, but the more likely we are to get false negatives.

Suspiciousness score according to detector

Benignware Malware

This threshold would lead
to one false positive

and one false negative
(true positive rate: 0.83,
false positive rate: 0.17).

This threshold would lead
to two false positives

and zero false negatives
(true positive rate: 1.00,
false positive rate: 0.33).

This threshold would lead
to zero false positives

and three false negatives
(true positive rate: 0.50,
false positive rate: 0.00).

Figure 7-3: An illustration of the relationship between false positive rate and true positive 
rate when deciding on a threshold value

For example, let’s consider the leftmost threshold shown in Figure 7-3, 
where binaries to the left of the threshold are classified as benign and bina-
ries to its right are classified as malware. Because this threshold is low, we 
get a great true positive rate (classifying 100 percent of the malware samples 
correctly) but a terrible false positive rate (falsely classifying 33 percent of 
the benign samples as malicious).

Our intuition might be to increase the threshold so that only samples 
with a higher suspiciousness score are deemed to be malware. Such a solu-
tion is given by the middle threshold in Figure 7-3. Here, the false positive 
rate drops to 0.17, but unfortunately the true positive rate drops as well, 
to 0.83. If we continue to move the threshold to the right, as shown by the 
rightmost threshold, we eliminate any false positives, but detect only 50 per-
cent of the malware.

As you can see, there is no such thing as a perfect threshold. A detec-
tion threshold that yields a low false positive rate (good) will tend to miss 
more malware, yielding a low true positive rate (bad). Conversely, using 
a detection threshold that has a high true positive rate (good) will also 
increase the false positive rate (bad).
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ROC Curves
The tradeoff between the true positive rate and false positive rate of detec-
tion systems is a universal problem for all detectors, not just malware detec-
tors. Engineers and statisticians have thought long and hard about this 
phenomenon and come up with the Receiver Operating Characteristic (ROC) 
curve to describe and analyze it.

N o t e 	 If you’re confused by the phrase Receiver Operating Characteristic, don’t worry about 
it—this phrase is confusing and pertains to the context in which ROC curves were 
originally developed, which is radar-based detection of physical objects.

ROC curves characterize a detection system by plotting false positive 
rates against their associated true positive rates at various threshold settings. 
This helps us evaluate the tradeoff between lower false positive rates and 
higher true positive rates, and in doing so determine the “best” threshold 
for our situation.

For example, for our hypothetical MalDetect system from Figure 7-3, 
the system’s true positive rate is 0.5 when its false positive rate is 0 (low 
threshold), and the system’s true positive rate is 1.00 when the false posi-
tive rate is 0.33 (high threshold).

Figure 7-4 shows how this works in more detail.

The true and false positive rates of our detection
system at thresholds defined in Figure 7-3

The true and false positive rates of a notional
detection system at various thresholds

Measurements of the system at
various thresholds are interpolated

to form the ROC “curve.”
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how accurate a sensor that
simply generated a random
suspiciousness score would
be at increasing thresholds.

Figure 7-4: An illustration of what ROC curves mean and how they are constructed

To build the ROC curve, we start with the three thresholds used in 
Figure 7-3 and plot their resulting false and true positive rates, shown in 
the left half of Figure 7-3. The plot on the right of Figure 7-4 shows the 
same thing, but for all possible thresholds. As you can see, the higher the 
false positive rates, the higher the true positive rates. Similarly, the lower 
the false positive rates, the lower the true positive rates.
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The “curve” of the ROC curve is a line within the two-dimensional 
ROC plot that represents how we think our detection system will do on its 
true positive rate over all possible false positive values, and how we think 
our detection system will do on its false positive rate over all possible true 
positive values. There are multiple ways of generating such a curve, but that 
goes beyond the scope of this book.

One simple method, however, is to try many threshold values, observe 
the corresponding false and true positive rates, plot them, and connect the 
dots using a line. This connected line, shown in the right plot of Figure 7-4, 
becomes our ROC curve.

Considering Base Rates in Your Evaluation
As you’ve seen, ROC curves can tell you how your system will perform in 
terms of the rate at which it calls malicious binaries malicious (true posi-
tive rate) and the rate at which it calls benign binaries malicious (false 
positive rate). However, ROC curves will not tell you the percentage of your 
system’s alarms that will be true positives, which we call the precision of the 
system. The precision of a system is related to the percentage of binaries 
the system encounters that are actually malware, which we call the base 
rate. Here’s a breakdown of each term:

Precision  The percentage of system detection alarms that are true 
positives (meaning that they are detections of actual malware). In other 
words, precision is the detection system’s number of true positives / (true 
positives + false positives) when tested against some set of binaries.

Base rate  The percentage of the data fed to the system that has the 
quality we are looking for. In our case, base rate refers to the percentage 
of binaries that are actually malware.

We discuss how these two metrics are related in the next section.

How Base Rate Affects Precision
Although a detection system’s true and false positive rates do not change 
when the base rate changes, the system’s precision is affected by changes in 
the malware base rate—often dramatically. To see why this is true, let’s con-
sider the following two cases.

Suppose the false positive rate of MalDetect is 1 percent and the true 
positive rate is 100 percent. Now suppose we set MalDetect loose on a net-
work that we know upfront has no malware on it (perhaps the network 
has just been created from scratch in a laboratory). Because we know in 
advance there is no malware on the network, every alarm the MalDetect 
throws will by definition be a false positive, because the only binaries that 
MalDetect encounters will be benignware. In other words, precision will be 
0 percent.

In contrast, if we run MalDetect on a dataset composed of entirely 
malware, none of its alarms will ever be false positives: there simply will 
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never be an opportunity for MalDetect to generate a false positive since 
there is no benignware in the software dataset. Therefore, precision will 
be 100 percent.

In both of these extreme cases, the base rates have a huge impact on 
MalDetect’s precision, or the probability that its alarm is a false positive.

Estimating Precision in a Deployment Environment
You now know that depending on the proportion of malware in a test 
dataset (base rate), your system will yield very different precision values. 
What if you want to estimate the precision your system will have based on 
an estimate of the base rate of the environment in which you deploy it? All 
you have to do is use your deployment environment’s estimated base rate to 
estimate the variables in the precision formula: true positives / (true positives + 
false positives). You’ll need three numbers:

•	 True positive rate (TPR) of the system, or the percentage of malware 
samples the system will correctly detect

•	 False positive rate (FPR) of the system, or the percentage of benign 
samples the system will incorrectly alarm on

•	 Base rate (BR) of the binaries against which you will use the system (for 
example, the percentage of binaries downloaded from piracy sites you 
expect will be malware, if this is what you’ll be using your system on)

The numerator of the precision equation—the number of true posi-
tives—can be estimates by true positive rate × base rate, giving you the percent-
age of malware your system will correctly detect. Similarly, the denominator 
of the equation—that is, (true positives + false positives)—can be estimated by 
true positive rate × base rate + false positive rate × (1 – base rate), giving you the per-
centage of all binaries the system will alarm on by calculating the number of 
malware binaries that will be detected correctly plus the fraction of benign-
ware binaries for which false positives will be issued.

In sum, you calculate the expected precision of your system as follows:

precision
true positive rate base rate

true positive rate b
�

�
� aase rate false positive rate base rate� � �� �1

Let’s consider another example to see how base rate can have a pro-
found impact on the performance of a detection system. For example, sup-
pose we have a detection system that has an 80 percent true positive rate 
and a 10 percent false positive rate, and 50 percent of the software bina-
ries we run it against are expected to be malware. This would lead to an 
expected precision of 89 percent. But when the base rate is 10 percent, our 
precision drops to 47 percent.

What happens if our base rate is very low? For example, in a modern 
enterprise network, very few software binaries are actually malware. 
Using our precision equation, if we assume a base rate of 1 percent (1 in 
100 binaries are malware), we get a precision of about 7.5 percent, which 
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means that 92.5 percent of our system’s alarms would be false positives! 
And if we assume a base rate of 0.1 percent (1 in 1000 binaries are likely 
to be malware), we get a precision of 1 percent, meaning 99 percent of our 
system’s alarms would be false positives! Finally, at a base rate of 0.01 per-
cent (1 in 10,000 binaries are likely to be malware—probably the most 
realistic assumption on an enterprise network), our expected precision 
drops to 0.1 percent, meaning the overwhelming majority of our system’s 
alerts will be false positives.

One takeaway from this analysis is that detection systems that have 
high false positive rates will almost never be useful in enterprise settings, 
because their precision will be far too low. Therefore, a key goal in building 
malware detection systems is to minimize the false positive rate such that 
the precision of the system is reasonable.

Another related takeaway is that when you do the ROC curve analysis 
introduced earlier in this chapter, you should effectively ignore false positive 
rates over, say, 1 percent, if you are developing your system to be deployed in 
an enterprise setting, because any higher false positive rate will likely result 
in a system that has such low precision that it is rendered useless.

Summary
In this chapter, you learned basic detection evaluation concepts, including 
true positive rate, false positive rate, ROC curves, base rates, and precision. 
You saw how maximizing the true positive rate and minimizing the false 
positive rate are both important in building a malware detection system. 
Because of the way base rate affects precision, reducing the false positive 
rate is particularly important if you want to deploy your detection system 
within an enterprise.

If you don’t feel completely fluent in these concepts, don’t worry. You’ll 
get more practice with them in the next chapter, where you’ll build and 
evaluate a malware detection system from the ground up. In the process, 
you’ll learn additional machine learning–specific evaluation concepts that 
will help you improve your machine learning–based detectors.
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B u i l d i n g  M a c h i n e  L e a r n i n g 

D e t e c t o r s

Today, thanks to high-quality open source 
software that handles the heavy math-

ematical lifting of implementing machine 
learning systems, anyone who knows basic 

Python and understands the key concepts can use 
machine learning.

In this chapter, I show you how to build machine learning malware 
detection systems using scikit-learn, the most popular—and the best, in 
my opinion—open source machine learning package available. This chap-
ter contains a lot of sample code. The major code blocks are accessible in 
the directory malware_data_science/ch8/code, and the corresponding sample 
data is accessible in the directory malware_data_science/ch8/data in the code 
and data (and on the virtual machine) accompanying this book.

By following along with the text, examining the sample code, and try-
ing out the provided examples, you should be comfortable building and 
evaluating your own machine learning systems by the end of the chapter. 
You also learn to build a general malware detector and use the necessary 
tools to build malware detectors for specific malware families. The skills 



128   Chapter 8

you gain here will have a broad application, allowing you to apply machine 
learning to other security problems, such as detecting malicious emails or 
suspicious network streams.

First, you learn the terminology and concepts you need to know before 
using scikit-learn. Then, you use scikit-learn to implement a basic decision 
tree detector based on the decision tree concepts you learned in Chapter 
6. Next, you learn how to integrate feature extraction code with scikit-
learn to build a real-world malware detector that uses real-world feature 
extraction and a random forest approach to detect malware. Finally, you 
learn how to use scikit-learn to evaluate machine learning systems with the 
sample random forest detector.

Terminology and Concepts
Let’s review some terminology first. The open source library scikit-learn 
(sklearn for short) has become popular in the machine learning commu-
nity because it’s both powerful and easy to use. Many data scientists use 
the library within the computer security community and in other fields, 
and many rely on it as their main toolbox for performing machine learn-
ing tasks. Although sklearn is constantly being updated with new machine 
learning approaches, it provides a consistent programming interface that 
makes using these machine learning approaches simple.

Like many machine learning frameworks, sklearn requires training data 
in vector form. Vectors are arrays of numbers where each index in the array 
corresponds to a single feature of the training example software binary. 
For example, if the two features of software binaries our machine learning 
detector uses are is compressed and contains encrypted data, then our feature 
vector for a training example binary could be [0,1]. Here, the first index in 
the vector would represent whether or not the binary is compressed, with 
the zero indicating “no,” and the second index would represent whether or 
not the binary contains encrypted data, with the one indicating “yes.”

Vectors can be awkward to work with because you have to remember 
what feature each index maps to. Fortunately, sklearn provides helper code 
that translates other data representations to vector form. For example, you 
can use sklearn’s DictVectorizer class to transform dictionary representations 
of your training data (for instance, {"is compressed":1,"contains encrypted 
data":0}) into the vector representation that sklearn operates on, like [0,1]. 
Later, you can use the DictVectorizer to recover the mapping between the 
vector’s indices and the original feature names.

To train an sklearn-based detector, you need to pass in two separate 
objects to sklearn: feature vectors (as described previously) and a label 
vector. A label vector contains one number per training example, which 
corresponds, in our case, to whether or not the example is malware or 
benignware. For instance, if we pass three training examples to sklearn, 
and then pass the label vector [0,1,0], we’re telling sklearn that the first 
sample is benignware, the second sample is malware, and the third is 
benignware. By convention, machine learning engineers use a capital X 
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variable to represent the training data and a lowercase y variable to repre-
sent the labels. The difference in case reflects the convention in mathemat-
ics of capitalizing variables that represent matrices (which we can think 
of as arrays of vectors) and lowercasing variables that represent individual 
vectors. You’ll see this convention used in machine learning sample code 
online, and I use this convention for the remainder of this book to get you 
comfortable with it.

The sklearn framework uses other terminology that you might find new 
as well. Instead of calling machine learning–based detectors “detectors,” 
sklearn calls them “classifiers.” In this context, the term classifier simply 
means a machine learning system that categorizes things into two or more 
categories. Therefore, a detector (the term I use throughout this book) is a 
special type of a classifier that places things into two categories, like mal-
ware and benignware. Also, instead of using the term training, sklearn’s 
documentation and API often use the term fit. For example, you’ll see a 
sentence like “fit a machine learning classifier using training examples,” 
which is the equivalent to saying “train a machine learning detector using 
training examples.”

Finally, instead of using the term detect in the context of classifiers, 
sklearn uses the term predict. This term is used in sklearn’s framework, and 
in the machine learning community more generally, whenever a machine 
learning system is used to perform a task, whether to predict the value of a 
stock a week from now or detect whether an unknown binary is malware.

Building a Toy Decision Tree–Based Detector
Now that you’re familiar with sklearn’s technical terminology, let’s create 
a simple decision tree along the lines of what we discussed in Chapter 6, 
using the sklearn framework. Recall that decision trees play a “20 questions” 
type of game in which they ask a series of questions about input vectors 
to arrive at a decision concerning whether these vectors are malicious or 
benign. We walk through building a decision tree classifier, step by step, 
and then explore an example of a complete program. Listing 8-1 shows how 
to import the requisite modules from sklearn.

from sklearn import tree
from sklearn.feature_extraction import DictVectorizer

Listing 8-1: Importing sklearn modules

The first module we import, tree, is sklearn’s decision tree module. The 
second module, feature_extraction, is sklearn’s helper module from which we 
import the DictVectorizer class. The DictVectorizer class conveniently trans-
lates the training data provided in readable, dictionary form to the vector 
representation that sklearn requires to actually train machine learning 
detectors.

After we import the modules we need from sklearn, we instantiate the 
requisite sklearn classes, as shown in Listing 8-2.
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classifier = utree.DecisionTreeClassifier()
vectorizer = DictVectorizer(sparse=False)

Listing 8-2: Initializing the decision tree classifier and vectorizer

The first class we instantiate, DecisionTreeClassifier , represents our 
detector. Although sklearn provides a number of parameters that control 
exactly how our decision tree will work, here we don’t select any parameters 
so that we’re using sklearn’s default decision tree settings.

The next class we instantiate is DictVectorizer . We set sparse to False  
in the constructor, telling sklearn that we do not want it to use sparse vectors, 
which save memory but are complicated to work with. Because sklearn’s deci-
sion tree module can’t use sparse vectors, we turn this feature off.

Now that we have instantiated our classes, we can initialize some sample 
training data, as shown in Listing 8-3.

# declare toy training data
 training_examples = [

{'packed':1,'contains_encrypted':0},
{'packed':0,'contains_encrypted':0},
{'packed':1,'contains_encrypted':1},
{'packed':1,'contains_encrypted':0},
{'packed':0,'contains_encrypted':1},
{'packed':1,'contains_encrypted':0},
{'packed':0,'contains_encrypted':0},
{'packed':0,'contains_encrypted':0},
]

 ground_truth = [1,1,1,1,0,0,0,0]

Listing 8-3: Declaring training and label vectors

In this example, we initialize two structures—feature vectors and a 
label vector—that together comprise our training data. The feature vec-
tors, assigned to the training_examples variable , are given in dictionary 
form. As you can see, we’re using two simple features. The first is packed, 
which represents whether a given file is packed, and the second is contains​
_encrypted, which represents whether the file contains encrypted data. The 
label vector, which is assigned to the ground_truth variable , represents 
whether each training example is malicious or benign. In this book, and 
in general among security data scientists, 0 always stands for benign and 1 
always stands for malicious. In this case, the label vector declares that the 
first four feature vectors are malicious and the second four are benign.

Training Your Decision Tree Classifier
Now that we’ve declared our training vectors and label vector, let’s train our 
decision tree model by calling the decision tree class instance’s fit method, 
as shown in Listing 8-4.

# initialize the vectorizer with the training data
 vectorizer.fit(training_examples)
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# transform the training examples to vector form
 X = vectorizer.transform(training_examples)

y = ground_truth # call ground truth 'y', by convention

Listing 8-4: Initializing the vectorizer class with training data

The code in Listing 8-4 first initializes the vectorizer class that we 
initialized in Listing 8-2 by calling the fit method . Here, the fit 
method tells sklearn to create a mapping between the packed feature and 
the contains​_encrypted feature and vector array indices. Then we transform 
our dictionary-based feature vectors into numerical vector form by calling 
the vectorizer class’s transform method . Recall that we assign our feature 
vectors to a variable called X and our label vector to a variable called y, 
which is the naming convention in the machine learning community.

Now that we’re all set up with our training data, we can train our deci-
sion tree detector by calling the fit method on the decision tree classifier 
instances, like this:

# train the classifier (a.k.a. 'fit' the classifier)
classifier.fit(X,y)

As you can see, training the sklearn detector is as simple as that. But 
behind the scenes, sklearn is going through the algorithmic process of iden-
tifying a good decision tree for accurately detecting whether new software 
is malicious or benign, along the lines of the algorithm we discussed in the 
previous chapter.

Now that we’ve trained the detector, let’s use the code in Listing 8-5 to 
detect whether a binary is malicious or benign.

test_example = u{'packed':1,'contains_encrypted':0}
test_vector = vvectorizer.transform(test_example)

 print classifier.predict(test_vector) # prints [1]

Listing 8-5: Determining whether a binary is malicious

Here, we instantiate a dictionary-based feature vector for a hypothetical 
software binary , translate it to numerical vector form using vectorizer , 
which we declared earlier in our code, and then run the decision tree detec-
tor we built  to determine whether or not the binary is malicious.  You’ll 
see when we run the code that the classifier “thinks” that the new binary is 
malicious (because it gives a “1” as its output), and you’ll see why this is the 
case when we visualize our decision tree.

Visualizing the Decision Tree
We can visualize the decision tree that sklearn has automatically created 
based on our training data, as shown in Listing 8-6.

# visualize the decision tree
with open("classifier.dot","w") as output_file:
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     tree.export_graphviz(
        classifier,
        feature_names=vectorizer.get_feature_names(),
        out_file=output_file
    )

import os
os.system("dot classifier.dot -Tpng -o classifier.png")

Listing 8-6: Creating an image file of the decision tree using GraphViz

Here, we open a file called classifier.dot  to which we write a network 
representation of our decision tree using the export_graphviz() function that 
sklearn’s tree module provides. Then we call tree.export_graphviz  to write 
a GraphViz .dot file to classifier.dot, which writes a network representation 
of the decision tree to disk. Finally, we use the GraphViz dot command line 
program to create an image file that visualizes the decision tree, in a form 
that corresponds to what you learned about decision trees in Chapter 6. 
When you run this, you should get an output image file called classifier.png 
that looks like Figure 8-1.

packed <= 0.5000
gini = 0.5

samples = 8

gini = 0.4444
samples = 3

value = [2. 1.]

gini = 0.0000
samples = 1

value = [1. 0.]

gini = 0.4444
samples = 3

value = [1. 2.]

gini = 0.0000
samples = 1

value = [0. 1.]

contains_encrypted <= 0.5000
gini = 0.375
samples = 4

contains_encrypted <= 0.5000
gini = 0.375
samples = 4

Figure 8-1: Decision tree visualization

Although this decision tree visualization should be familiar from 
Chapter 6, it contains some new vocabulary. The first line in each box 
contains the name of the feature about which the node asks a question (in 
machine learning parlance, we say that the node “splits on” this feature). 
For example, the first node splits on the feature “packed”: if a binary is not 
packed, we move along the left arrow; otherwise, we move along the right 
arrow.

The second line of text in each box refers to that node’s gini index, 
which measures how much inequality there is between the malware and 
benignware training examples that match that node. The higher the gini 
index, the more skewed the samples that match that node are toward either 
benignware or malware. This means that a high gini index in each node is 
good, because the more the training examples skew toward either malware 
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or benignware, the more sure we are about whether new test examples are 
malware or benignware. The third line in each box just gives the number of 
training examples that matched that node.

You’ll notice that in the leaf nodes of the tree, the text in the box is dif-
ferent. These nodes don’t “ask a question;” instead, they provide an answer 
to the question “is this binary malicious or benign?” For example, in the 
leftmost leaf node, we have “value = [2. 1.],” which means that two benign 
training examples matched this node (not packed and not encrypted) and 
one malware training example matched the node. That is, if we reach this 
node, we’d assign a probability of 33 percent to the binary being malware 
(1 malware sample / 3 total samples = 33 percent). The gini value in these 
boxes shows how much information is gained about whether the binary is 
malware or benignware when we split on the question directly leading up 
to these nodes. As you can see, it can be useful to inspect visualizations of 
decision trees generated by sklearn to understand how our decision trees 
are making detections.

Complete Sample Code
Listing 8-7 shows the complete code for the decision tree workflow I have 
described thus far. This code should be easily legible to you now that we 
have worked through the code, piece by piece.

#!/usr/bin/python

# import sklearn modules
from sklearn import tree
from sklearn.feature_extraction import DictVectorizer

# initialize the decision tree classifier and vectorizer
classifier = tree.DecisionTreeClassifier()
vectorizer = DictVectorizer(sparse=False)

# declare toy training data
training_examples = [
{'packed':1,'contains_encrypted':0},
{'packed':0,'contains_encrypted':0},
{'packed':1,'contains_encrypted':1},
{'packed':1,'contains_encrypted':0},
{'packed':0,'contains_encrypted':1},
{'packed':1,'contains_encrypted':0},
{'packed':0,'contains_encrypted':0},
{'packed':0,'contains_encrypted':0},
]
ground_truth = [1,1,1,1,0,0,0,0]

# initialize the vectorizer with the training data
vectorizer.fit(training_examples)

# transform the training examples to vector form
X = vectorizer.transform(training_examples)
y = ground_truth # call ground truth 'y', by convention
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# train the classifier (a.k.a. 'fit' the classifier)
classifier.fit(X,y)

test_example = {'packed':1,'contains_encrypted':0}
test_vector = vectorizer.transform(test_example)
print `classifier.predict(test_vector)` # prints [1]

#visualize the decision tree
with open("classifier.dot","w") as output_file:
    tree.export_graphviz(
        classifier,
        feature_names=vectorizer.get_feature_names(),
        out_file=output_file
    )

import os
os.system("dot classifier.dot -Tpng -o classifier.png")

Listing 8-7: Complete decision tree workflow sample code

The sample machine learning malware detector we just explored dem-
onstrates how to get started with sklearn’s functionality, but it’s missing 
some essential features required for a real-world malware detector. Let’s 
now explore what a real-world malware detector entails.

Building Real-World Machine Learning Detectors with sklearn
To build a real-world detector, you need to use industrial-strength features 
of software binaries as well as write code to extract these features from soft-
ware binaries. Industrial-strength features are those that reflect the content 
of binaries in all their complexity, which means we need to use hundreds or 
thousands of features. By “extracting” features I mean that you have to write 
code that identifies the presence of these features within binaries. You also 
need to use thousands of training examples and train a machine learning 
model at scale. Finally, you need to use sklearn’s more advanced detection 
approaches because the simple decision tree approaches we just explored 
don’t provide sufficient detection accuracy.

Real-World Feature Extraction
The sample features I used previously, such as is packed and contains encrypted 
data, are simple toy examples, and these two features alone will never result in 
a working malware detector. As I mentioned previously, real-world malware 
detection systems use hundreds, thousands, or even millions of features. For 
example, a machine learning–based detector might use millions of character 
strings that occur in software binaries as features. Or it might use the values 
of software binary Portable Executable (PE) headers, the functions imported 
by a given binary, or some combination of all of these. Although we’ll work 
only with string features in this chapter, let’s take a moment to explore 
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common categories of features used in machine learning–based malware 
detection, starting with the string features.

String Features

The string features of a software binary are all the contiguous strings of 
printable characters in the file that are at least some minimum length (in 
this book, this minimum is set to five characters). For example, suppose a 
binary file contains the following sequences of printable characters:

["A", "The", "PE executable", "Malicious payload"]

In this case, the strings we can use as features would be "PE executable" 
and "Malicious payload" because these two strings have more than five char-
acters in them.

To transform string features into a format that sklearn can under-
stand, we need to put them into a Python dictionary. We do this by using 
the actual strings as dictionary keys and then setting their values to 1 to 
indicate that the binary in question contains that string. For example, the 
previous sample binary would get a feature vector of {"PE executable": 1, 
"Malicious payload": 1}. Of course, most software binaries have hundreds of 
printable strings in them, not just two, and these strings can contain rich 
information about what a program does.

In fact, string features work well with machine learning–based detection 
because they capture so much information about software binaries. If the 
binary is a packed malware sample, then it’s likely to have few informative 
strings, which in itself can be a giveaway that the file is malicious. On the 
other hand, if parts of the file’s resources section are not packed or obfus-
cated, then those strings reveal much about the file’s behavior. For example, 
if the binary program in question makes HTTP requests, it’s common to see 
strings such as "GET %s" in that file’s set of strings.

String features have some limitations, however. For example, they don’t 
capture anything about the actual logic of a binary program, because they 
don’t include actual program code. So, although strings can be useful fea-
tures even on packed binaries, they don’t reveal what packed binaries actually 
do. As a result, detectors based on string features are not ideal for detecting 
packed malware.

Portable Executable (PE) Header Features

PE header features are extracted from the PE header metadata that resides 
in every Windows .exe and .dll file. For more information on the format of 
these headers, refer to Chapter 1. To extract PE features from static pro-
gram binaries, you can use the code given in that chapter, and then encode 
file features in Python dictionary form, where the header field name is the 
dictionary key and the field value is the value corresponding to each key.

PE header features complement string features well. For example, 
whereas string features often do a good job of capturing the function calls 
and network transmissions made by a program, like the "GET %s" example, 
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PE header features capture information like a program binary’s compile 
timestamp, the layout of its PE sections, and which of those sections are 
marked executable and how large they are on disk. They also capture the 
amount of memory a program allocates upon startup, and many other run-
time characteristics of a program binary that string features don’t capture.

Even when you’re dealing with packed binaries, PE header features 
can still do a decent job of distinguishing packed malware from packed 
benignware. This is because although we cannot see packed binaries’ code 
because of obfuscation, we can still see how much space the code takes up 
on disk and how the binary is laid out on disk or compressed over a series 
of file sections. These are telling details that can help a machine learning 
system distinguish malware from benignware. On the downside, PE header 
features don’t capture the actual instructions a program executes when it is 
run, or the functions that it calls.

Import Address Table (IAT) Features

The Import Address Table (IAT), which you learned about in Chapter 1, is 
also an important source of machine learning features. The IAT contains a 
list of functions and libraries that a software binary imports from external 
DLL files. As such, the IAT contains important information about program 
behavior that you can use to complement the PE header features described 
in the previous section.

To use the IAT as a source of machine learning features, you need 
to represent each file as a dictionary of features, where the name of the 
imported library and function is the key, and the key maps to a 1, which 
indicates that the file in question contains that specific import (for 
example, the key "KERNEL32.DLL:LoadLibraryA", where KERNEL32.DLL is the 
DLL and LoadLibraryA is the function call). The feature dictionary result-
ing from computing IAT features in this way for a sample would look like 
{ KERNEL32.DLL:LoadLibraryA: 1, ... }, where we’d assign a 1 to any keys 
observed in a binary.

In my experience building malware detectors, I have found that IAT 
features rarely work well on their own—although these features capture 
useful high-level information about program behavior, the malware often 
obfuscates the IAT to make itself look like benignware. Even when malware 
contains no obfuscation, it often imports the same DLL calls that benignware 
also imports, making it hard to distinguish between malware and benignware 
simply based on IAT information. Finally, when malware is packed (com-
pressed or encrypted, such that the real malware code is only visible after 
the malware executes and uncompresses or unencrypts itself), the IAT only 
contains imports that the packer uses, not the imports that the malware uses. 
That said, when you use IAT features in conjunction with other features like 
PE header features and string features, they can boost system accuracy.

N-grams

So far you’ve learned about machine learning features that don’t involve 
any concept of ordering. For example, we discussed string features to 
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check whether or not a binary has a particular string, but not whether a 
particular string comes before or after another string in the layout of the 
binary on disk.

But sometimes order matters. For example, we might find that an 
important malware family imports only commonly used functions, but 
imports them in a very specific order, such that when we observe the 
functions in that order, we know we’re seeing that malware family and 
not benignware. To capture this kind of order information, you can use 
a machine learning concept called an N-gram.

N-grams sound more exotic than they are: they just involve laying out 
your features in the sequence in which they occur and then sliding a win-
dow of length n over the sequence, treating the sequence of features inside 
the window at each step as a single, aggregate feature. For example, if we 
had the sequence ["how", "now", "brown", "cow"] and we wanted to extract 
N-gram features of length 2 (n = 2) from this sequence, we would have 
[("how","now"), ("now","brown"), ("brown","cow")] as our features.

In the context of malware detection, some kinds of data are most natu-
rally represented as N-gram features. For example, when you disassemble a 
binary into its constituent instructions, like ["inc", "dec", "sub", "mov"], it 
makes sense to then use the N-gram approach to capture these sequences 
of instructions because representing a sequence of instructions can be use-
ful in detecting particular malware implementations. Alternatively, when 
you’re executing binaries to examine their dynamic behavior, you can use 
the N-gram approach to represent binaries’ sequences of API calls or high-
level behaviors.

I recommend experimenting with N-gram features in your machine 
learning–based malware detection systems whenever you’re working with 
data that occurs in some type of sequence. It often takes some trial and 
error to determine what number you should set n to, which determines 
the length of your N-grams. This trial and error involves varying the n 
value to see which value yields the best accuracy on your test data. Once 
you find the right number, N-grams can be powerful features for captur-
ing the actual sequential behaviors of program binaries, thereby boosting 
system accuracy.

Why You Can’t Use All Possible Features
Now that you know the strengths and weaknesses of different categories of 
features, you may be wondering why you can’t use all these features at once 
to build the best possible detector. There are a few reasons using all pos-
sible features is not a good idea.

First, extracting all the features we just explored takes a long time, which 
compromises how quickly your system can scan files. More importantly, if 
you use too many features on machine learning algorithms, you can run into 
memory issues and your system can take too long to train. This is why when 
building your systems, I recommend trying different features and honing in 
on those that work well on the kinds of malware you’re trying to detect (and 
the kinds of benignware you’re trying to avoid generating false positives on).
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Unfortunately, even if you do home in on one category of features, like 
string features, you’ll often have more features than most machine learning 
algorithms can handle. When using string features, you must have one fea-
ture for every unique string that occurs in your training data. For example, 
if training sample A contains the string "hello world", and training sample B 
contains the string "hello world!", then you’ll need to treat "hello world" and 
"hello world!" as two separate features. This means that when you’re dealing 
with thousands of training samples, you’ll quickly encounter thousands of 
unique strings, and your system will end up using that many features.

Using the Hashing Trick to Compress Features
To get around the problem of having too many features, you can use a 
popular and straightforward solution called the hashing trick, also known 
as feature hashing. The idea is as follows: suppose you have a million unique 
string features in your training set, but the machine learning algorithm and 
hardware you’re using can only deal with 4,000 unique features across the 
whole training set. You need some way of compressing a million features 
down to a feature vector that’s 4,000 entries long.

The hashing trick makes these million features fit within a feature 
space of 4,000 by hashing each feature into one of 4,000 indices. Then you 
add the value of your original feature to the number at that index in your 
4,000-dimensional feature vector. Of course, features often collide with this 
approach because their values are added together along the same dimension. 
This might affect system accuracy because the machine learning algorithm 
you’re using can’t “see” the value of individual features anymore. But in prac-
tice, this degradation in accuracy is often very small, and the benefit you get 
from the compressed representation of your features far outweighs this slight 
degradation that occurs because of the compression operation.

Implementing the Hashing Trick

To make these ideas clearer, I walk you through sample code that imple-
ments the hashing trick. Here I show this code to illustrate how the algo-
rithm works; later, we’ll use sklearn’s implementation of this function. Our 
sample code starts with a function declaration:

def apply_hashing_trick(feature_dict, vector_size=2000):

The apply_hashing_trick() function takes two parameters: the original 
feature dictionary and the size of the vector we store the smaller feature 
vector in after we apply the hashing trick.

Next, we create the new feature array using the following code:

    new_features = [0 for x in range(vector_size)]

The new_features array stores the feature information after applying 
the hashing trick. Then we perform the key operations of the hashing 
trick inside a for loop, like in Listing 8-8.
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    for key in ufeature_dict:
        array_index = vhash(key) % vector_size
        new_features[array_index] += wfeature_dict[key]

Listing 8-8: Using a for loop to perform a hash operation

Here, we use a for loop to iterate over every feature in the feature dic-
tionary . To do this, first we hash the keys of the dictionary (in the case 
of string features, these would correspond to the software binaries’ indi-
vidual strings) modulo vector_size such that the hash values are bounded 
between zero and vector_size – 1 . We store the result of this operation in 
the array_index variable.

Still within the for loop, we increment the value of the new_feature array 
entry at index array_index by the value in our original feature array . In 
the case of string features, where our feature values are set to 1 to indicate 
that the software binary has that particular string, we would increment this 
entry by one. In the case of PE header features, where features have a range 
of values (for example, corresponding to the amount of memory a PE sec-
tion will take up), we would add the value of the feature to the entry.

Finally, outside of the for loop, we simply return the new_features dic-
tionary, like this:

    return new_features

At this point, sklearn can operate on new_features using just thousands 
instead of millions of unique features.

Complete Code for the Hashing Trick

Listing 8-9 shows the complete code for the hashing trick, which should 
now be familiar to you.

def apply_hashing_trick(feature_dict,vector_size=2000):
    # create an array of zeros of length 'vector_size'
    new_features = [0 for x in range(vector_size)]

    # iterate over every feature in the feature dictionary
    for key in feature_dict:

        # get the index into the new feature array
        array_index = hash(key) % vector_size

        # add the value of the feature to the new feature array
        # at the index we got using the hashing trick
        new_features[array_index] += feature_dict[key]

    return new_features

Listing 8-9: Complete code for implementing the hashing trick
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As you have seen, the feature hashing trick is easy to implement on your 
own, and doing so ensures that you understand how it works. However, you 
can also just use sklearn’s implementation, which is easy to use and more 
optimized.

Using sklearn’s FeatureHasher

To use sklearn’s built-in implementation instead of implementing your 
own hashing solution, you need to first import sklearn’s FeatureHasher class, 
like this:

from sklearn.feature_extraction import FeatureHasher

Next, instantiate the FeatureHasher class:

hasher = FeatureHasher(n_features=2000)

To do this, you declare n_features to be the size of the new array that 
results from applying the hashing trick.

Then, to apply the hashing trick to some feature vectors, you simply run 
them through the FeatureHasher class’s transform method:

features = [{'how': 1, 'now': 2, 'brown': 4},{'cow': 2, '.': 5}]
hashed_features = hasher.transform(features)

The result is effectively the same as our custom implementation of 
the feature hashing trick shown in Listing 8-9. The difference is that here 
we’re simply using sklearn’s implementation, since it’s easier to use a well-
maintained machine learning library than our own code. The complete 
sample code is shown in Listing 8-10.

from sklearn.feature_extraction import FeatureHasher
hasher = FeatureHasher(n_features=10)
features = [{'how': 1, 'now': 2, 'brown': 4},{'cow': 2, '.': 5}]
hashed_features = hasher.transform(features)

Listing 8-10: Implementing FeatureHasher

There are a few things to note about feature hashing before we move 
on. First, as you may have guessed, feature hashing obfuscates the feature 
information you pass into a machine learning algorithm because it adds fea-
ture values together simply based on the fact that they hash to the same bin. 
This means that, in general, the fewer bins you use (or the more features 
you hash into some fixed numbers of bins), the worse your algorithm will 
perform. Surprisingly, machine learning algorithms can still work well even 
when using the hashing trick, and because we simply can’t deal with millions 
or billions of features on modern hardware, we usually have to use the fea-
ture hashing trick in security data science.

Another limitation of the feature hashing trick is that it makes it dif-
ficult or impossible to recover the original features you hashed when 
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analyzing the internals of your model. Take the example of decision trees: 
because we’re hashing arbitrary features into each entry of our feature 
vectors, we don’t know which of the features we added to a given entry is 
causing a decision tree algorithm to split on this entry, since any number of 
features could have caused the decision tree to think splitting on this entry 
was a good idea. Although this is a significant limitation, security data sci-
entists live with it because of the huge benefits of the feature hashing trick 
in compressing millions of features down to a manageable number.

Now that we’ve gone over the building blocks required for building 
a real-world malware detector, let’s explore how to build an end-to-end 
machine learning malware detector.

Building an Industrial-Strength Detector
From a software requirements perspective, our real-world detector will need 
to do three things: extract features from software binaries for use in training 
and detection, train itself to detect malware using training data, and actually 
perform detection on new software binaries. Let’s walk through the code that 
does each of these things, which will show you how it all fits together.

You can access the code I use in this section at malware_data_science/
ch8/code/complete_detector.py in the code accompanying this book, or at the 
same location in the virtual machine provided with this book. A one-line 
shell script, malware_data_science/ch8/code/run_complete_detector.sh, shows 
how to run the detector from the shell.

Extracting Features
To create our detector, the first thing we implement is code to extract fea-
tures from training binaries (I skip over boilerplate code here and focus 
on the core functions of the program). Extracting features involves extract-
ing the relevant data from training binaries, storing these features within a 
Python dictionary, and then, if we think our number of unique features will 
become prohibitively large, transforming them using sklearn’s implementa-
tion of the hashing trick.

For simplicity’s sake, we use only string features and choose to use the 
hashing trick. Listing 8-11 shows how to do both.

def get_string_features(upath,vhasher):
    # extract strings from binary file using regular expressions
    chars = r" -~"
    min_length = 5
    string_regexp = '[%s]{%d,}' % (chars, min_length)
    file_object = open(path)
    data = file_object.read()
    pattern = re.compile(string_regexp)
    strings = pattern.findall(data)

    # store string features in dictionary form
     string_features = {}
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    for string in strings:
        string_features[string] = 1

    # hash the features using the hashing trick
     hashed_features = hasher.transform([string_features])

    # do some data munging to get the feature array
    hashed_features = hashed_features.todense()
    hashed_features = numpy.asarray(hashed_features)
    hashed_features = hashed_features[0]

    # return hashed string features
     print "Extracted {0} strings from {1}".format(len(string_features),path)

    return hashed_features

Listing 8-11: Defining the get_string_features function

Here, we declare a single function called get_string_features that takes 
the path to the target binary  and an instance of sklearn’s feature hash-
ing class  as its arguments. Then we extract the target file’s strings using 
a regular expression, which parses out all printable strings of minimum 
length 5. Then, we store the features in a Python dictionary  for further 
processing by setting each string’s value to 1 in the dictionary, simply indi-
cating that that feature is present in the binary.

Next, we hash the features using sklearn’s hashing trick implementation 
by calling hasher. Notice that we wrap the string_features dictionary in a 
Python list as we pass it into the hasher instance  because sklearn requires 
that we pass in a list of dictionaries to be transformed, rather than a single 
dictionary.

Because we passed in our feature dictionary as a list of dictionaries, 
features are returned as a list of arrays. Additionally, they are returned in 
sparse format, a compressed representation that can be useful for processing 
large matrices, which we won’t discuss in this book. We need to get our data 
back into a normal numpy vector.

To get the data back into normal format, we call .todense() and 
.asarray(), and then select the first array in the list of hasher results to 
recover our final feature vector. The last step in the function is simply 
to return the feature vector hashed_features  to the caller.

Training the Detector
Because sklearn does most of the hard work of training machine learning 
systems, training a detector requires only a small amount of code once 
we’ve extracted machine learning features from our target binaries.

To train a detector, we first need to extract features from our training 
examples, and then instantiate the feature hasher and the sklearn machine 
learning detector we wish to use (in this case, we use a random forest clas-
sifier). Then we need to call sklearn’s fit method on the detector to train it 
on the examples’ binaries. Finally, we save the detector and feature hasher 
to disk so we can use them when we want to scan files in the future.
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Listing 8-12 shows the code for training the detector.

def uget_training_data(benign_path,malicious_path,hasher):
    def vget_training_paths(directory):
        targets = []
        for path in os.listdir(directory):
            targets.append(os.path.join(directory,path))
        return targets

     malicious_paths = get_training_paths(malicious_path)
     benign_paths = get_training_paths(benign_path)
     X = [get_string_features(path,hasher) 

    for path in malicious_paths + benign_paths]
    y = [1 for i in range(len(malicious_paths))] 
    + [0 for i in range(len(benign_paths))]
    return X, y
def ztrain_detector(X,y,hasher):
    classifier = tree.RandomForestClassifier()

     classifier.fit(X,y)
     pickle.dump((classifier,hasher),open("saved_detector.pkl","w+"))

Listing 8-12: Programming sklearn to train the detector

Let’s start by declaring the get_training_data() function , which extracts 
features from training examples we provide. The function has three argu-
ments: a path to a directory containing examples of benign binary programs 
(benign_path), a path to a directory containing examples of malicious binary 
programs (malicious_path), and an instance of the sklearn FeatureHasher class 
used to do feature hashing (hasher).

Next, we declare get_training_paths() , a local helper function that 
gets us the list of absolute file paths for files occurring in a given directory. 
In the next two lines, we use get_training_paths to get us the lists of paths 
that occur in the malicious  and benign  training example directories.

Finally, we extract our features and create our label vector. We do this 
by calling the get_string_features function described in Listing 8-11 on every 
training example file path . Notice that the label vector has a 1 for every 
malicious path and a 0 for every benign path, such that the numbers at the 
indices in the label vector correspond to the label of the feature vectors at 
those same indices in the X array. This is the form in which sklearn expects 
feature and label data, and it allows us to tell the library the label for each 
feature vector.

Now that we’ve finished extracting features and created our feature 
vector X and our label vector y, we’re ready to tell sklearn to train our detec-
tor using the feature vectors and the label vector.

We do this using the train_detector() function , which takes three 
arguments: the training example feature vectors (X), the label vector (y), 
and the instance of sklearn’s feature hasher (hasher). In the function body 
we instantiate tree.RandomForestClassifier, the sklearn detector. Then we 
pass X and y into the detector’s fit method to train it , and then use the 
Python pickle module  to save the detector and hasher for future use.
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Running the Detector on New Binaries
Now let’s go over how to use the saved detector we just trained to detect 
malware in new program binaries. Listing 8-13 shows how to write the 
scan_file() function to do this.

def scan_file(path):
    if not os.path.exists("saved_detector.pkl"):
        print "Train a detector before scanning files."
        sys.exit(1)

     with open("saved_detector.pkl") as saved_detector:
        classifier, hasher = pickle.load(saved_detector)
    features = vget_string_features(path,hasher)
    result_proba = wclassifier.predict_proba(features)[1]
    # if the user specifies malware_paths and 
    # benignware_paths, train a detector

     if result_proba > 0.5:
        print "It appears this file is malicious!",`result_proba`
    else:
        print "It appears this file is benign.",`result_proba`

Listing 8-13: Running the detector on new binaries

Here, we declare the scan_file() function to scan a file to determine 
whether it’s malicious or benign. Its only argument is the path to the binary 
that we are going to scan. The function’s first job is to load the saved detector 
and hasher from the pickle file to which they were saved .

Next, we extract features from the target file using the function 
get_string_features  we defined in Listing 8-11.

Finally, we call the detector’s predict method to decide whether or not 
the file in question is malicious, given the features extracted. We do this 
using the predict_proba method  of the classifier instance and select-
ing the second element of the array that it returns, which corresponds to 
the probability that the file is malicious. If this probability is above 0.5, or 
50 percent , we say the file is malicious; otherwise, we tell the user that it’s 
benign. We can change this decision threshold to something much higher 
to minimize false positives.

What We’ve Implemented So Far
Listing 8-14 shows the code for this small-scale but realistic malware detec-
tor in its entirety. I hope that the code reads fluidly to you now that you’ve 
seen how each individual piece works.

#!/usr/bin/python

import os
import sys
import pickle
import argparse
import re
import numpy
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from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import FeatureHasher

def get_string_features(path,hasher):
    # extract strings from binary file using regular expressions
    chars = r" -~"
    min_length = 5
    string_regexp = '[%s]{%d,}' % (chars, min_length)
    file_object = open(path)
    data = file_object.read()
    pattern = re.compile(string_regexp)
    strings = pattern.findall(data)

    # store string features in dictionary form
    string_features = {}
    for string in strings:
        string_features[string] = 1

    # hash the features using the hashing trick
    hashed_features = hasher.transform([string_features])

    # do some data munging to get the feature array
    hashed_features = hashed_features.todense()
    hashed_features = numpy.asarray(hashed_features)
    hashed_features = hashed_features[0]

    # return hashed string features
    print "Extracted {0} strings from {1}".format(len(string_features),path)
    return hashed_features

def scan_file(path):
    # scan a file to determine if it is malicious or benign
    if not os.path.exists("saved_detector.pkl"):
        print "Train a detector before scanning files."
        sys.exit(1)
    with open("saved_detector.pkl") as saved_detector:
        classifier, hasher = pickle.load(saved_detector)
    features = get_string_features(path,hasher)
    result_proba = classifier.predict_proba([features])[:,1]
    # if the user specifies malware_paths and 
    # benignware_paths, train a detector
    if result_proba > 0.5:
        print "It appears this file is malicious!",`result_proba`
    else:
        print "It appears this file is benign.",`result_proba`

def train_detector(benign_path,malicious_path,hasher):
    # train the detector on the specified training data
    def get_training_paths(directory):
        targets = []
        for path in os.listdir(directory):
            targets.append(os.path.join(directory,path))
        return targets
    malicious_paths = get_training_paths(malicious_path)
    benign_paths = get_training_paths(benign_path)
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    X = [get_string_features(path,hasher) for path in malicious_paths + benign_paths]
    y = [1 for i in range(len(malicious_paths))] + [0 for i in range(len(benign_paths))]
    classifier = tree.RandomForestClassifier(64)
    classifier.fit(X,y)
    pickle.dump((classifier,hasher),open("saved_detector.pkl","w+"))

def get_training_data(benign_path,malicious_path,hasher):
    def get_training_paths(directory):
        targets = []
        for path in os.listdir(directory):
            targets.append(os.path.join(directory,path))
        return targets
    malicious_paths = get_training_paths(malicious_path)
    benign_paths = get_training_paths(benign_path)
    X = [get_string_features(path,hasher) for path in malicious_paths + benign_paths]
    y = [1 for i in range(len(malicious_paths))] + [0 for i in range(len(benign_paths))]
    return X, y

parser = argparse.ArgumentParser("get windows object vectors for files")
parser.add_argument("--malware_paths",default=None,help="Path to malware training files")
parser.add_argument("--benignware_paths",default=None,help="Path to benignware training files")
parser.add_argument("--scan_file_path",default=None,help="File to scan")
args = parser.parse_args()

hasher = FeatureHasher(20000)
if args.malware_paths and args.benignware_paths:
    train_detector(args.benignware_paths,args.malware_paths,hasher)
elif args.scan_file_path:
    scan_file(args.scan_file_path)
else:
    print "[*] You did not specify a path to scan," \
        " nor did you specify paths to malicious and benign training files" \
        " please specify one of these to use the detector.\n"
    parser.print_help()

Listing 8-14: Basic machine learning malware detector code

Writing a machine learning–based malware detector is great, but evalu-
ating and improving its performance is necessary if you’re going to deploy 
the detector with any confidence in its efficacy. Next, you learn different 
ways to evaluate the performance of your detector.

Evaluating Your Detector’s Performance
Conveniently, sklearn contains code that makes it easy to evaluate detection 
systems using measurements like ROC curves, which you learned about in 
Chapter 7. The sklearn library also provides additional evaluation function-
ality specific to evaluating machine learning systems. For example, you can 
use sklearn’s functions for performing cross-validation, which is a powerful 
method for predicting how well your detector will work when you deploy it.
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In this section, you learn how to use sklearn to plot ROC curves that 
show your detector’s accuracy. You also learn about cross-validation and 
how to implement it with sklearn.

Using ROC Curves to Evaluate Detector Efficacy
Recall that Receiver Operating Characteristic (ROC) curves measure the 
changes in a detector’s true positive rate (the percentage of malware that it 
successfully detects) and false positive rate (the percentage of benignware 
that it falsely flags as malware) as you adjust its sensitivity.

The higher the sensitivity, the more false positives you will get but the 
greater your detection rate. The lower the sensitivity, the fewer false positives 
but also the fewer detections you’ll get. To compute a ROC curve you need a 
detector that can output a threat score such that the higher its value the more 
likely it is that a binary is malicious. Conveniently, sklearn’s implementations 
of decision trees, logistic regression, k-nearest neighbors, random forests, 
and other machine learning approaches covered in this book all provide the 
option of outputting a threat score that reflects whether a file is malware or 
benignware. Let’s explore how we can use ROC curves to determine a detec-
tor’s accuracy.

Computing ROC Curves
To compute a ROC curve for the machine learning detector we built in 
Listing 8-14, we need to do two things: first, define an experimental setup, 
and second, implement the experiment using sklearn’s metrics module. For 
our basic experimental setup, we’ll split our training examples in half such 
that we use the first half for training and the second half for computing the 
ROC curve. This split simulates the problem of detecting zero-day malware. 
Basically, by splitting the data, we’re telling the program, “show me one set 
of benignware and malware that I’ll use to learn how to identify malware 
and benignware, and then show me the other set to test me on how well 
I learned the concept of malware and benignware.” Because the detector 
has never seen the malware (or benignware) in the test set, this evaluation 
setup is a simple way to predict how well the detector will do against truly 
new malware.

Implementing this split with sklearn is straightforward. First, we add an 
option to the argument parser class of our detector program to signal that 
we want to evaluate the detector’s accuracy, like this:

parser.add_argument("--evaluate",default=False, 
action="store_true",help="Perform cross-validation")

Then, in the part of the program where we process command line argu-
ments, shown in Listing 8-15, we add another elif clause that handles the 
case that the user has added -evaluate to the command line arguments.
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elif args.malware_paths and args.benignware_paths and args.evaluate:
     hasher = FeatureHasher()

    X, y = vget_training_data(
    args.benignware_paths,args.malware_paths,hasher)
    evaluate(X,y,hasher)
def wevaluate(X,y,hasher):
    import random
    from sklearn import metrics
    from matplotlib import pyplot

Listing 8-15: Running the detector on new binaries

Let’s walk through this code in detail. First, we instantiate an sklearn 
feature hasher , get the training data we require for our evaluation experi-
ment , and then call a function named evaluate , which takes the training 
data (X, y) and the feature hasher instance (hasher) as its parameters and 
then imports three modules we need to perform the evaluation. We use the 
random module to randomly select which training examples to use for train-
ing the detector and which to use for testing it. We use the metrics module 
from sklearn to compute the ROC curve, and we use the pyplot module from 
matplotlib (the de facto standard Python library for data visualization) to 
visualize the ROC curve.

Splitting Data into Training and Test Sets
Now that we’ve randomly sorted the X and y arrays corresponding to our 
training data, we can split these arrays into equally sized training and test 
sets, as shown in Listing 8-16, which continues defining the evaluate() func-
tion begun in Listing 8-15.

     X, y = numpy.array(X), numpy.array(y)
     indices = range(len(y))
     random.shuffle(indices)
     X, y = X[indices], y[indices]

    splitpoint = len(X) * 0.5
     splitpoint = int(splitpoint)
     training_X, test_X = X[:splitpoint], X[splitpoint:]

    training_y, test_y = y[:splitpoint], y[splitpoint:]

Listing 8-16: Splitting the data into training and test sets

First, we convert X and y into numpy arrays , and then we create a list 
of indices corresponding to the number of elements in X and y . Next, we 
randomly shuffle these indices  and reorder X and y based on this new 
order . This sets us up to randomly assign samples to either our training 
set or our test set, ensuring that we don’t split the samples simply by the 
order in which they occur in our experimental data directory. To complete 
the random split, we divide the arrays in half by finding the array index 
that evenly splits the dataset in half, rounding this point to the nearest inte-
ger using the int() function , and then actually splitting the X and y arrays 
into training and test sets .
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Now that we have our training and test sets, we can instantiate and train 
our decision tree detector using the training data using the following:

    classifier = RandomForestClassifier()
    classifier.fit(training_X,training_y)

Then we use the trained classifier to get scores for our test examples 
corresponding to the likelihood that these test examples are malicious:

    scores = classifier.predict_proba(test_X)[:,-1]

Here, we call the predict_proba() method on our classifier, which pre-
dicts the probability that our test examples are benignware or malware. 
Then, using numpy indexing magic, we pull out only the probabilities that 
the samples are malicious, as opposed to benign. Keep in mind that these 
probabilities are redundant (for example, if the probability an example is 
malicious is 0.99, then the probability it’s benign is 0.01, since probabilities 
add up to 1.00), so all we need is the malware probability here.

Computing the ROC Curve
Now that we’ve computed malware probabilities (which we can also refer to 
as “scores”) using our detector, it’s time to compute our ROC curve. We do 
this by first calling the roc_curve function within sklearn’s metrics module, 
like this:

    fpr, tpr, thresholds = metrics.roc_curve(test_y, scores)

The roc_curve function tests a variety of decision thresholds, or score 
thresholds above which we would deem a software binary to be malicious, 
and measures what the false positive rate and true positive rate of the detec-
tor would be if we were to use that detector.

You can see that the roc_curve function takes two arguments: the label 
vector for our test examples (test_y) and the scores array, which contains our 
detector’s judgment about how malicious it thinks each training example 
is. The function returns three related arrays: fpr, tpr, and thresholds. These 
arrays are all of equal length, such that the false positive rate, true positive 
rate, and decision threshold at each index correspond to one another.

Now we can use matplotlib to visualize the ROC curve we just calcu-
lated. We do this by calling the plot method on matplotlib’s pyplot module, 
as shown here:

    pyplot.plot(fpr,tpr,'r-')
    pyplot.xlabel("Detector false positive rate")
    pyplot.ylabel("Detector true positive rate")
    pyplot.title("Detector ROC Curve")
    pyplot.show()
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We call the xlabel, ylabel, and title methods to label the chart’s axes 
and title, and then the show method to make the chart window pop up.

The resulting ROC curve is shown in Figure 8-2.
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Figure 8-2: Visualizing the detector’s ROC curve

You can see from the plot in Figure 8-2 that our detector performs well 
for such a basic example. At around a 1 percent false positive rate (10–2), it 
can detect about 94 percent of the malware samples in the test set. We’re 
only training it on a few hundred training examples here; to get better accu-
racy we’d need to train it on tens of thousands, hundreds of thousands, or 
even millions of examples (alas, scaling machine learning to this degree is 
beyond the scope of this book).

Cross-Validation
Although visualizing the ROC curve is useful, we can actually do better at 
predicting our detector’s real-world accuracy by performing many experi-
ments on our training data, not just one. Recall that to perform our test, we 
split our training examples in half, training the detector on the first half 
and testing it on the second half. This is really an insufficient test of our 
detector. In the real world, we won’t be measured on our accuracy on this 
particular set of test examples but rather on our accuracy on new, previ-
ously unseen malware. To get a better sense of how we’ll perform once we 
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deploy, we need to run more than just one experiment on one set of test 
data; we need to perform many experiments on many test sets and get a 
sense of the overall trend in accuracy.

We can use cross-validation to do this. The basic idea behind cross-
validation is to split our training examples into a number of folds (here I 
use three folds, but you can use more). For example, if you had 300 examples 
and decided to split them into three folds, the first 100 samples would go in 
the first fold, the second 100 would go in the second fold, and the third 100 
would go in the third fold.

Then we run three tests. In the first test, we train the system on folds 2 
and 3 and test the system on fold 1. On the second test, we repeat this pro-
cess but train the system on folds 1 and 3 and test the system on fold 2. On 
the third test, as you can probably predict by now, we train the system on 
folds 1 and 2 and test the system on fold 3. Figure 8-3 illustrates this cross-
validation process.
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Figure 8-3: A visualization of a sample cross-validation process

The sklearn library makes implementing cross-validation easy. To do 
this, let’s rewrite our evaluate function from Listing 8-15 as cv_evaluate.

def cv_evaluate(X,y,hasher):
    import random
    from sklearn import metrics
    from matplotlib import pyplot
    from sklearn.cross_validation import KFold

We start the cv_evaluate() function the same way we started our initial 
evaluation function, except that here we also import the KFold class from 
sklearn’s cross_validation module. K-fold cross-validation, or KFold for short, 
is synonymous with the type of cross-validation I just discussed and is the 
most common way to do cross-validation.

Next, we convert our training data to numpy arrays so that we can use 
numpy’s enhanced array indexing on it:

    X, y = numpy.array(X), numpy.array(y)

The following code actually starts the cross-validation process:

    fold_counter = 0
    for train, test in KFold(len(X),3,ushuffle=True):
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         training_X, training_y = X[train], y[train]
        test_X, test_y = X[test], y[test]

We first instantiate the KFold class, passing in the number of training 
examples we have as the first parameter and the number of folds we’d like 
to use as the second argument. The third argument, shuffle=True , tells 
sklearn to randomly sort our training data before dividing it into three folds. 
The KFold instance is actually an iterator that gives a different training or test 
example split on each iteration. Within the for loop, we assign the training 
instances and test instances to the training_X and training_y arrays  that 
contain the corresponding elements.

After preparing the training and test data, we’re ready to instantiate 
and train the RandomForestClassifier, as you’ve learned to do previously in 
this chapter:

        classifier = RandomForestClassifier()
        classifier.fit(training_X,training_y)

Finally, we compute a ROC curve for this particular fold and then plot a 
line that represents this ROC curve:

        scores = classifier.predict_proba(test_X)[:,-1]
        fpr, tpr, thresholds = metrics.roc_curve(test_y, scores)
        pyplot.semilogx(fpr,tpr,label="Fold number {0}".format(fold_counter))
        fold_counter += 1

Note that we don’t call the matplotlib show method to display the chart 
just yet. We do this after all the folds have been evaluated and we’re ready to 
show all three lines at once. As we did in the previous section, we label our 
axes and give the plot a title, like this:

    pyplot.xlabel("Detector false positive rate")
    pyplot.ylabel("Detector true positive rate")
    pyplot.title("Detector Cross-Validation ROC Curves")
    pyplot.legend()
    pyplot.grid()
    pyplot.show()

The resulting ROC curve is shown in Figure 8-4.
As you can see, our results were similar on every fold, but there is 

definitely some variation. Our detection rate (true positive rate) over the 
three runs averages about 90 percent at a 1 percent false positive rate. This 
estimate, which takes into account all three cross-validation experiments, 
is a more accurate estimate of our detector’s performance than we’d get 
if we just ran one experiment on our data; in that case, which samples we 
happened to use for training and testing would lead to a somewhat random 
outcome. By running more experiments, we can get a more robust sense of 
our solution’s efficacy.
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Figure 8-4: Plotting the detector’s ROC curve using cross-validation

Note that these results are not great because we’re training on a very 
small amount of data: a few hundred malware and benignware samples. 
At my day job, where we train large-scale machine learning malware detec-
tion systems, we usually train on hundreds of millions of samples. You don’t 
need hundreds of millions of samples to train your own malware detector, 
but you’ll want to assemble datasets of at least tens of thousands of samples 
to start getting really good performance (for example, a 90 percent detec-
tion rate at a 0.1 percent false positive rate).

Next Steps
So far, I covered how to use Python and sklearn to extract features from a 
training dataset of software binaries, and then train and evaluate a deci-
sion tree–based machine learning approach. To improve the system, you 
can use features other than or in addition to printable string features (for 
example, the PE header, instruction N-gram, or Import Address Table fea-
tures discussed previously), or you could use a different machine learning 
algorithm.

To make the detector more accurate, I recommend going beyond 
sklearn’s RandomForestClassifier (sklearn.ensemble.RandomForestClassifier) 
to try other classifiers. Recall from the previous chapter that random forest 
detectors are also based on decision trees, but instead of just one decision 
tree, they build many decision trees, randomizing the way they are built. To 
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determine whether a new file is malware or benignware, each of these deci-
sion trees makes individual decisions, which we combine by summing them 
up and dividing them by the total number of trees to get the average result.

You can also use other algorithms that sklearn provides, such as logistic 
regression. Using any of these algorithms can be as simple as doing a search 
and replace in the sample code discussed in this chapter. For example, in 
this chapter we instantiate and train our decision tree as follows:

        classifier = RandomForestClassifier()
        classifier.fit(training_X,training_y)

But you can simply replace that code with this:

        from sklearn.linear_model import LogisticRegression
        classifier = LogisticRegression()
        classifier.fit(training_X,training_y)

This replacement yields a logistic regression detector instead of a deci-
sion tree–based detector. By computing a new cross validation–based evalu-
ation of this Logistic Regression detector and comparing it to the results 
from Figure 8-4, you could determine which works better.

Summary
In this chapter, you learned the ins and outs of building machine learning–
based malware detectors. Specifically, you learned how to extract features 
from software binaries for machine learning, how to compress these fea-
tures using the hashing trick, and how to train machine learning–based 
malware detectors using these extracted features. You also learned how to 
plot ROC curves to examine the relationship between a detector’s detection 
threshold and its true and false positive rates. Finally, you learned about 
cross-validation, a more advanced evaluation concept, and other possible 
extensions to enhance the detector used in this chapter.

This concludes this book’s discussion of machine learning–based mal-
ware detection using sklearn. We’ll cover another set of machine learning 
methods, known as deep learning methods or artificial neural networks 
in Chapters 10 and 11. You now have the basic knowledge necessary to 
effectively use machine learning in the context of malware identification. 
I encourage you to read more about machine learning. Because computer 
security is in many ways a data analysis problem, machine learning is here 
to stay in the security industry and will continue to be useful not only in 
detecting malicious binaries but also in detecting malicious behavior in 
network traffic, system logs, and other contexts.

In the next chapter, we’ll take a deep dive into visualizing malware rela-
tionships, which can help us quickly understand the similarities and differ-
ences between large numbers of malware samples.



9
V i s u a l i z i n g  M a l w a r e  T r e n ds

Sometimes the best way to analyze malware 
collections is to visualize them. Visualizing 

security data allows us to quickly recognize 
trends in malware and within the threat land-

scape at large. These visualizations are often far more 
intuitive than nonvisual statistics, and they can help
communicate insights to diverse audiences. For example, in this chapter, 
you see how visualization can help us identify the types of malware preva-
lent in a dataset, the trends within malware datasets (the emergence of 
ransomware as a trend in 2016, for example), and the relative efficacy of 
commercial antivirus systems at detecting malware.

Working through these examples, you come away understanding how to 
create your own visualizations that can lead to valuable insights by using the 
Python data analysis package pandas, as well as the Python data visualization 
packages seaborn and matplotlib. The pandas package is used mostly for load-
ing and manipulating data and doesn’t have much to do with data visualiza-
tion itself, but it’s very useful for preparing data for visualization.
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Why Visualizing Malware Data Is Important
To see how visualizing malware data can be helpful, let’s go through two 
examples. The first visualization addresses the following question: is the 
antivirus industry’s ability to detect ransomware improving? The second 
visualization asks which malware types have trended over the period of a 
year. Let’s look at the first example shown in Figure 9-1.

Date

N
um

be
r o

f a
nt

iv
iru

s 
en

gi
ne

s 
th

at
 d

et
ec

te
d 

th
is 

sa
m

pl
e

Ransomware Detections Over Time

60

50

40

30

20

10

Jun 2016 Jul 2016 Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016 Jan 2017
0

Figure 9-1: Visualization of ransomware detections over time

I created this ransomware visualization using data collected from 
thousands of ransomware malware samples. This data contains the results 
of running 57 separate antivirus engines against each file. Each circle rep-
resents a malware sample. The y-axis represents how many detections, or 
positives, each malware sample received from the antivirus engines when it 
was scanned. Keep in mind that while this y-axis stops at 60, the maximum 
count for a given scan is 57, the total number of scanners. The x-axis repre-
sents when each malware sample was first seen on the malware analysis site 
VirusTotal.com and scanned.

In this plot, we can see the antivirus community’s ability to detect these 
malicious files started off relatively strong in June 2016, dipped around 
July 2016, and then steadily rose over the rest of the year. By the end of 2016, 
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ransomware files were still missed by an average of about 25 percent of anti-
virus engines, so we can conclude that the security community remained 
somewhat weak at detecting these files during this time.

To extend this investigation, you could create a visualization that shows 
which antivirus engines are detecting ransomware and at what rate, and how 
they are improving over time. Or you could look at some other category 
of malware (for example, Trojan horses). Such plots are useful in decid-
ing which antivirus engines to purchase, or deciding which kinds of mal-
ware you might want to design custom detection solutions for—perhaps to 
supplement a commercial antivirus detection system (for more on building 
custom detection systems, see Chapter 8).

Now let’s look at Figure 9-2, which is another sample visualization, 
created using the same dataset used for Figure 9-1.
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Figure 9-2: Visualization of per-family malware detections over time

Figure 9-2 shows the top 20 most common malware families and how 
frequently they occurred relative to one another over a 150-day period. The 
plot reveals some key insights: whereas the most popular malware family, 
Allaple.A, occurred consistently over the 150-day span, other malware fami-
lies, like Nemucod.FG, were prevalent for shorter spans of time and then 
went silent. A plot like this, generated using malware detected on your own 
workplace’s network, can reveal helpful trends showing what types of mal-
ware are involved in attacks against your organization over time. Without 
the creation of a comparison figure such as this one, understanding and 
comparing the relative peaks and volumes of these malware types over time 
would be difficult and time consuming.
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These two examples show how useful malware visualization can be. The 
rest of this chapter shows how to create your own visualizations. We start 
by discussing the sample dataset used in this chapter and then we use the 
pandas package to analyze the data. Finally, we use the matplotlib and seaborn 
packages to visualize the data.

Understanding Our Malware Dataset
The dataset we use contains data describing 37,000 unique malware bina-
ries collected by VirusTotal, a malware detection aggregation service. Each 
binary is labeled with four fields: the number of antivirus engines (out 
of 57) that flagged the binary as malicious (I call this the number of posi-
tives associated with each sample), the size of each binary, the binary’s type 
(bitcoin miner, keylogger, ransomware, trojan, or worm), and the date on 
which the binary was first seen. We’ll see that even with this fairly limited 
amount of metadata for each binary, we can analyze and visualize the data 
in ways that reveal important insights into the dataset.

Loading Data into pandas
The popular Python data analysis library pandas makes it easy to load data 
into analysis objects called DataFrames, and then provides methods to slice, 
transform, and analyze that repackaged data. We use pandas to load and 
analyze our data and prep it for easy visualization. Let’s use Listing 9-1 to 
define and load some sample data into the Python interpreter.

In [135]: import pandas

In [136]: example_data = [u{'column1': 1, 'column2': 2},
    ...:  {'column1': 10, 'column2': 32},
    ...:  {'column1': 3, 'column2': 58}]

In [137]: vpandas.DataFrame(example_data)
Out[137]:
  column1  column2
0        1        2
1       10       32
2        3       58

Listing 9-1: Loading data into pandas directly

Here we define some data, which we call example_data, as a list of 
Python dictionaries u. Once we have created this list of dicts, we pass it 
to the DataFrame constructor v to get the corresponding pandas DataFrame. 
Each of these dicts becomes a row in the resulting DataFrame. The keys in 
the dicts (column1 and column2) become columns. This is one way to load 
data into pandas directly.

You can also load data from external CSV files. Let’s use the code in 
Listing 9-2 to load this chapter’s dataset (available on the virtual machine 
or in the data and code archive that accompany this book).
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import pandas
malware = pandas.read_csv("malware_data.csv")

Listing 9-2: Loading data into pandas from an external CSV file

When you import malware_data.csv, the resulting malware object should 
look something like this:

      positives      size        type            fs_bucket
0             45    251592      trojan  2017-01-05 00:00:00
1             32    227048      trojan  2016-06-30 00:00:00
2             53    682593        worm  2016-07-30 00:00:00
3             39    774568      trojan  2016-06-29 00:00:00
4             29    571904      trojan  2016-12-24 00:00:00
5             31    582352      trojan  2016-09-23 00:00:00
6             50   2031661        worm  2017-01-04 00:00:00

We now have a pandas DataFrame composed of our malware dataset. It has 
four columns: positives (the number of antivirus detections out of 57 anti
virus engines for that sample), size (the number of bytes that malware binary 
takes up on disk), type (the type of malware, such as Trojan horse, worm, and 
so on), and fs_bucket (the date on which this malware was first seen).

Working with a pandas DataFrame
Now that we have our data in a pandas DataFrame, let’s look at how to access 
and manipulate it by calling the describe() method, as shown in Listing 9-3.

In [51]: malware.describe()
Out[51]:
         positives          size
count  37511.000000  3.751100e+04
mean      39.446536  1.300639e+06
std       15.039759  3.006031e+06
min        3.000000  3.370000e+02
25%       32.000000  1.653960e+05
50%       45.000000  4.828160e+05
75%       51.000000  1.290056e+06
max       57.000000  1.294244e+08

Listing 9-3: Calling the describe() method

As shown in Listing 9-3, calling the describe() method shows some 
useful statistics about our DataFrame. The first line, count, counts the total 
number of non-null positives rows, and the total number of non-null rows. 
The second line gives the mean, or average number of positives per sample, 
and the mean size of the malware samples. Next comes the standard devi-
ation for both positives and size, and the minimum value of each column 
in all the samples in the dataset. Finally, we see percentile values for each 
of the columns and the maximum value for the columns.
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Suppose we’d like to retrieve the data for one of the columns in the 
malware DataFrame, such as the positives column (to view the average num-
ber of detections each file has, for example, or plot a histogram showing 
the distribution of positives over the dataset). To do this, we simply write 
malware['positives'], which returns the positives column as a list of num-
bers, as shown in Listing 9-4.

In [3]: malware['positives']
Out[3]:
0        45
1        32
2        53
3        39
4        29
5        31
6        50
7        40
8        20
9        40
--snip--

Listing 9-4: Returning the positives column

After retrieving a column, we can compute statistics on it directly. For 
example, malware['positives']​.mean() computes the mean of the column, 
malware['positives']​.max() computes the maximum value, malware['positives']​
.min() computes the minimum value, and malware['positives']​.std() computes 
the standard deviation. Listing 9-5 shows examples of each.

In [7]: malware['positives'].mean()
Out[7]: 39.446535682866362

In [8]: malware['positives'].max()
Out[8]: 57

In [9]: malware['positives'].min()
Out[9]: 3

In [10]: malware['positives'].std()
Out[10]: 15.039759380778822

Listing 9-5: Calculating the mean, maximum, and minimum values and the standard 
deviation

We can also slice and dice the data to do more detailed analysis. For 
example, Listing 9-6 computes the mean positives for the trojan, bitcoin, 
and worm types of malware.

In [67]: malware[malware['type'] == 'trojan']['positives'].mean()
Out[67]: 33.43822473365119
	
In [68]: malware[malware['type'] == 'bitcoin']['positives'].mean()
Out[68]: 35.857142857142854
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In [69]: malware[malware['type'] == 'worm']['positives'].mean()
Out[69]: 49.90857904874796

Listing 9-6: Calculating the average detection rates of different malwares

We first select the rows of the DataFrame where type is set to trojan using 
the following notation: malware[malware['type'] == 'trojan']. To select the 
positives column of the resulting data and compute the mean, we extend 
this expression as follows: malware[malware['type'] == 'trojan']['positives']​
.mean(). Listing 9-6 yields an interesting result, which is that worms get 
detected more frequently than bitcoin mining and Trojan horse malware. 
Because 49.9 > 35.8 and 33.4, on average, malicious worm samples (49.9) 
are detected by more vendors than malicious bitcoin and trojan samples 
(35.8, 33.4).

Filtering Data Using Conditions
We can select a subset of the data using other conditions as well. For 
example, we can use “greater than” and “less than” style conditions on 
numerical data like malware file size to filter the data, and then compute 
statistics on the resulting subsets. This can be useful if we’re interested in 
finding out whether the effectiveness of the antivirus engines is related to 
file size. We can check this using the code in Listing 9-7.

In [84]: malware[malware['size'] > 1000000]['positives'].mean()
Out[84]: 33.507073192162373

In [85]: malware[malware['size'] > 2000000]['positives'].mean()
Out[85]: 32.761442050415432

In [86]: malware[malware['size'] > 3000000]['positives'].mean()
Out[86]: 27.20672682526661

In [87]: malware[malware['size'] > 4000000]['positives'].mean()
Out[87]: 25.652548725637182

In [88]: malware[malware['size'] > 5000000]['positives'].mean()
Out[88]: 24.411069317571197

Listing 9-7: Filtering the results by malware file size

Take the first line in the preceding code: first, we subset our DataFrame 
by only samples that have a size over one million (malware[malware['size'] 
> 1000000]). Then we grab the positives column and calculate the mean 
(['positives'].mean()), which is about 33.5. As we do this for higher and 
higher file sizes, we see that the average number of detections for each 
group goes down.  This means we’ve discovered that there is indeed a rela-
tionship between malware file size and the average number of antivirus 
engines that detect those malware samples, which is interesting and merits 
further investigation. We explore this visually next by using matplotlib and 
seaborn.
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Using matplotlib to Visualize Data
The go-to library for Python data visualization is matplotlib; in fact, most 
other Python visualization libraries are essentially convenience wrappers 
around matplotlib. It’s easy to use matplotlib with pandas: we use pandas to 
get, slice, and dice the data we want to plot, and we use matplotlib to plot it. 
The most useful matplotlib function for our purposes is the plot function. 
Figure 9-3 shows what the plot function can do.
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Figure 9-3: A plot of malware samples’ sizes and the number of antivirus detections

Here, I plot the positives and size attributes of our malware dataset. An 
interesting result emerges, as foreshadowed by our discussion of pandas in 
the previous section. It shows that small files and very large files are rarely 
detected by most of the 57 antivirus engines that scanned these files. Files 
of middling size (around 104.5–107) are detected by most engines, however. 
This may be because small files don’t contain enough information to allow 
engines to determine they are malicious, and big files are too slow to scan, 
causing many antivirus systems to punt on scanning them at all.

Plotting the Relationship Between Malware Size and Vendor Detections
Let’s walk through how to make the plot shown in Figure 9-3 by using the 
code in Listing 9-8.
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u import pandas
from matplotlib import pyplot
malware = vpandas.read_csv("malware_data.csv")
pyplot.plot(wmalware['size'], xmalware['positives'],
            y'bo', zalpha=0.01)
pyplot.xscale({"log")

| pyplot.ylim([0,57])
pyplot.xlabel("File size in bytes (log base-10)")
pyplot.ylabel("Number of detections")
pyplot.title("Number of Antivirus Detections Versus File Size")

} pyplot.show()

Listing 9-8: Visualizing data using the plot() function

As you can see, it doesn’t take much code to render this plot. Let’s walk 
through what each line does. First, we import u the necessary libraries, 
including pandas and the matplotlib library’s pyplot module. Then we call the 
read_csv function v, which, as you learned earlier, loads our malware data-
set into a pandas DataFrame.

Next we call the plot() function. The first argument to the function is 
the malware size data w, and the next argument is the malware positives 
data x, or the number of positive detections for each malware sample. 
These arguments define the data that matplotlib will plot, with the first 
argument representing the data to be shown on the x-axis and the sec-
ond representing the data to be shown on the y-axis. The next argument, 
'bo' y, tells matplotlib what color and shape to use to represent the data. 
Finally, we set alpha, or the transparency of the circles, to 0.1 z, so we can 
see how dense the data is within different regions of the plot, even when 
the circles completely overlap each other.

NOTE    	 The b in bo stands for blue, and the o stands for circle, meaning that we’re tell-
ing matplotlib to plot blue circles to represent our data. Other colors you can try are 
green (g), red (r), cyan (c), magenta (m), yellow (y), black (k), and white (w). Other 
shapes you can try are a point (.), a single pixel per data point (,), a square (s), and 
a pentagon (p). For complete details, see the matplotlib documentation at http://
matplotlib.org.

After we call the plot() function, we set the scale of the x-axis to be 
logarithmic {. This means that we’ll be viewing the malware size data in 
terms of powers of 10, making it easier to see the relationships between very 
small and very large files.

Now that we’ve plotted our data, we label our axes and title our plot. 
The x-axis represents the size of the malware file ("File size in bytes (log 
base-10)"), and the y-axis represents the number of detections ("Number of 
detections"). Because there are 57 antivirus engines we’re analyzing, we set 
the y-axis scale to the range 0 to 57 at |. Finally, we call the show() function } 
to display the plot. We could replace this call with pyplot.savefig("myplot.png") 
if we wanted to save the plot as an image instead.

Now that we’ve gone through an initial example, let’s do another.
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Plotting Ransomware Detection Rates
This time, let’s try reproducing Figure 9-1, the ransomware detection plot 
I showed at the beginning of this chapter. Listing 9-9 presents the entire 
code that plots our ransomware detections over time.

import dateutil
import pandas
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")
malware['fs_date'] = [dateutil.parser.parse(d) for d in malware['fs_bucket']]
ransomware = malware[malware['type'] == 'ransomware']
pyplot.plot(ransomware['fs_date'], ransomware['positives'], 'ro', alpha=0.05)
pyplot.title("Ransomware Detections Over Time")
pyplot.xlabel("Date")
pyplot.ylabel("Number of antivirus engine detections")
pyplot.show()

Listing 9-9: Plotting ransomware detection rates over time

Some of the code in Listing 9-9 should be familiar from what I’ve 
explained thus far, and some won’t be. Let’s walk through the code, line 
by line:

import dateutil

The helpful Python package dateutil enables you to easily parse dates 
from many different formats. We import dateutil because we’ll be parsing 
dates so we can visualize them.

import pandas
from matplotlib import pyplot

We also import the matplotlib library’s pyplot module as well as pandas.

malware = pandas.read_csv("malware_data.csv")
malware['fs_date'] = [dateutil.parser.parse(d) for d in malware['fs_bucket']]
ransomware = malware[malware['type'] == 'ransomware']

These lines read in our dataset and create a filtered dataset called 
ransomware that contains only ransomware samples, because that’s the type 
of data we’re interested in plotting here.

pyplot.plot(ransomware['fs_date'], ransomware['positives'], 'ro', alpha=0.05)
pyplot.title("Ransomware Detections Over Time")
pyplot.xlabel("Date")
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pyplot.ylabel("Number of antivirus engine detections")
pyplot.show()

These five lines of code mirror the code in Listing 9-8: they plot the 
data, title the plot, label its x- and y-axes, and then render everything to 
the screen (see Figure 9-4). Again, if we wanted to save this plot to disk, 
we could replace the pyplot.show() call with pyplot.savefig("myplot.png").
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Figure 9-4: Visualization of ransomware detections over time

Let’s try one more plot using the plot() function.

Plotting Ransomware and Worm Detection Rates
This time, instead of just plotting ransomware detections over time, let’s 
also plot worm detections in the same graph. What becomes clear in 
Figure 9-5 is that the antivirus industry is better at detecting worms (an 
older malware trend) than ransomware (a newer malware trend).

In this plot, we see how many antivirus engines detected mal-
ware samples (y-axis) over time (x-axis). Each red dot represents a 
type="ransomware" malware sample, whereas each blue dot represents 
a type="worm" sample. We can see that on average, more engines detect 
worm samples than ransomware samples. However, the number of 
engines detecting both samples has been trending slowly up over time.
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Figure 9-5: Visualization of ransomware and worm malware detections over time

Listing 9-10 shows the code for making this plot.

import dateutil
import pandas
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")
malware['fs_date'] = [dateutil.parser.parse(d) for d in malware['fs_bucket']]

ransomware = malware[malware['type'] == 'ransomware']
worms = malware[malware['type'] == 'worm']

pyplot.plot(ransomware['fs_date'], ransomware['positives'],
            'ro', label="Ransomware", markersize=3, alpha=0.05)
pyplot.plot(worms['fs_date'], worms['positives'], 
            'bo', label="Worm", markersize=3, alpha=0.05)
pyplot.legend(framealpha=1, markerscale=3.0)
pyplot.xlabel("Date")
pyplot.ylabel("Number of detections")
pyplot.ylim([0, 57])
pyplot.title("Ransomware and Worm Vendor Detections Over Time")
pyplot.show()

Listing 9-10: Plotting ransomware and worm detection rates over time
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Let’s walk through the code by looking at the first part of Listing 9-10:

import dateutil
import pandas
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")
malware['fs_date'] = [dateutil.parser.parse(d) for d in malware['fs_bucket']]

ransomware = malware[malware['type'] == 'ransomware']
u worms = malware[malware['type'] == "worm"]

--snip--

The code is similar to the previous example. The difference thus far 
is that we create the worm filtered version of our data u using the same 
method with which we create the ransomware filtered data. Now let’s take a 
look at the rest of the code:

--snip--
u pyplot.plot(ransomware['fs_date'], ransomware['positives'],

            'ro', label="Ransomware", markersize=3, alpha=0.05)
v pyplot.plot(worms['fs_bucket'], worms['positives'],

            'bo', label="Worm", markersize=3, alpha=0.05)
w pyplot.legend(framealpha=1, markerscale=3.0)

pyplot.xlabel("Date")
pyplot.ylabel("Number of detections")
pyplot.ylim([0,57])
pyplot.title("Ransomware and Worm Vendor Detections Over Time")
pyplot.show()
pyplot.gcf().clf()

The main difference between this code and Listing 9-9 is that we call 
the plot() function twice: once for the ransomware data using the ro selec-
tor u to create red circles, and once more on the worm data using the bo 
selector v to create blue circles for the worm data. Note that if we wanted 
to plot a third dataset, we could do this too. Also, unlike Listing 9-9, here, 
at w, we create a legend for our figure showing that the blue marks stand 
for worm malware and the red marks stand for ransomware.  The param-
eter framealpha determines how translucent the background of the legend 
is (by setting it to 1, we make it completely opaque), and the parameter 
markerscale scales the size of the markers in the legend (in this case, by a 
factor of three).

In this section, you’ve learned how to make some simple plots in 
matplotlib. However, let’s be honest—they’re not gorgeous. In the next 
section, we’re going to use another plotting library that should allow us 
to give our plots a more professional look, and help us implement more 
complex visualizations quickly.
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Using seaborn to Visualize Data
Now that we’ve discussed pandas and matplotlib, let’s move on to seaborn, which 
is a visualization library actually built on top of matplotlib but wrapped up 
in a slicker container. It includes built-in themes to style our graphics as 
well as premade higher-level functions that save time in performing more 
complicated analyses. These features make it simple and easy to produce 
sophisticated, beautiful plots.

To explore seaborn, let’s start by making a bar chart showing how many 
examples of each malware type we have in our dataset (see Figure 9-6).
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Figure 9-6: Bar chart plot of the different kinds of malware in this chapter’s dataset

Listing 9-11 shows the code to make this plot.

import pandas
from matplotlib import pyplot
import seaborn

u malware = pandas.read_csv("malware_data.csv")
v seaborn.countplot(x='type', data=malware)
w pyplot.show()

Listing 9-11: Creating a bar chart of malware counts by type

In this code, we first read in our data via pandas.read_csv u and then 
use seaborn’s countplot function to create a barplot of the type column in 
our DataFrame v. Finally, we make the plot appear by calling pyplot’s show() 
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method at w. Recall that seaborn wraps matplotlib, which means we need to 
ask matplotlib to display our seaborn figures. Now let’s move on to a more 
complex sample plot.

Plotting the Distribution of Antivirus Detections
The premise for the following plot is as follows: suppose we want to under-
stand the distribution (frequency) of antivirus detections across malware 
samples in our dataset to understand what percentage of malware is missed 
by most antivirus engines, and what percentage is detected by most engines. 
This information gives us a view of the efficacy of the commercial antivirus 
industry. We can do this by plotting a bar chart (a histogram) showing, for 
each number of detections, the proportion of malware samples that had 
that number of detections, as shown in Figure 9-7.
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Figure 9-7: Visualization of distribution of antivirus detections (positives)

The x-axis of this figure represents categories of malware samples, 
sorted by how many out of 57 total antivirus engines detected them. If a 
sample was detected as malicious by 50 of 57 engines, it is placed at 50, if 
it was only detected by 10 engines out of 57, it goes in the 10 category. The 
height of each bar is proportional to how many total samples ended up in 
that category.
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The plot makes it clear that many malware samples are detected by 
most of our 57 antivirus engines (shown by the big bump in frequen-
cies in the upper-rightmost region of the plot) but also that a substantial 
minority of samples are detected by a small number of engines (shown 
in the leftmost region of the plot). We don’t show samples that were 
detected by fewer than five engines because of the methodology I used 
to construct this dataset: I define malware as samples that five or more 
antivirus engines detect. This plotted result, with substantial numbers 
of samples receiving just 5–30 detections, indicates that there is still sig-
nificant disagreement between engines in malware detection. A sample 
that was detected as malware by 10 out of 57 engines either indicates that 
47 engines failed to detect it, or that 10 made a mistake and issued a false 
positive on a benign file. The latter possibility is very unlikely, because 
antivirus vendors’ products have very low false-positive rates: it’s much 
more likely that most engines missed these samples.

Making this plot requires just a few lines of plotting code, as shown in 
Listing 9-12.

import pandas
import seaborn
from matplotlib import pyplot
malware = pandas.read_csv("malware_data.csv")

u axis = seaborn.distplot(malware['positives'])
v axis.set(xlabel="Number of engines detecting each sample (out of 57)",

         ylabel="Amount of samples in the dataset",
         title="Commercial Antivirus Detections for Malware")
pyplot.show()

Listing 9-12: Plotting distribution of positives

The seaborn package has a built-in function to create distribution plots 
(histograms), and so all we’ve done is pass the distplot function the data 
we wanted to display, which is malware['positives'] u. Then we use the axis 
object returned by seaborn to configure the plot title, x-axis label, and y-axis 
label to describe our plot v.

Now let’s try a seaborn plot with two variables: the number of positive 
detections for malware (files with five or more detections) and their file 
sizes. We created this plot before with matplotlib in Figure 9-3, but we can 
achieve a more attractive and informative result using seaborn’s jointplot 
function. The resulting plot, shown in Figure 9-8, is richly informative but 
takes a bit of effort to understand at first, so let’s walk through it.

This plot is similar to the histogram we made in Figure 9-7, but instead of 
displaying the distribution of a single variable via bar heights, this plot shows 
the distributions of two variables (the size of a malware file, on the x-axis, 
and the number of detections, on the y-axis) via color intensity. The darker 
the region, the more data is in that region. For example, we can see that files 
most commonly have a size of about 105.5 and a positives value of about 53. 
The subplots on the top and right of the main plots show a smoothed version 
of the frequencies of the size and detections data, which reveal the distribu-
tion of detections (as we saw in the previous plot) and file sizes.
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Figure 9-8: Visualization of the distribution of malware file sizes versus  
positive detections

The center plot is the most interesting, because it shows the relation-
ship between size and positives. Instead of showing individual data points, 
like in Figure 9-3 with matplotlib, it shows the overall trend in a way that’s 
much clearer. This shows that very large malware files (size 106 and greater) 
are less commonly detected by antivirus engines, which tells us we might 
want to custom-build a solution that specializes in detecting such malware.

Creating this plot just requires one plotting call to seaborn, as shown in 
Listing 9-13.

import pandas
import seaborn
import numpy
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")
u axis=seaborn.jointplot(x=numpy.log10(malware['size']),

                       y=malware['positives'],
                       kind="kde")

v axis.set_axis_labels("Bytes in malware file (log base-10)",
                     "Number of engines detecting malware (out of 57)")
pyplot.show()

Listing 9-13: Plotting the distribution of malware file sizes vs. positive detections
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Here, we use seaborn’s jointplot function to create a joint distribution plot 
of the positives and size columns in our DataFrame u. Also, somewhat confus-
ingly, for seaborn’s jointplot function, we have to call a different function than 
in Listing 9-11 to label our axes: the set_axis_labels() function v, whose first 
argument is the x-axis label and whose second argument is the y-axis label.

Creating a Violin Plot
The last plot type we explore in this chapter is the seaborn violin plot. This 
plot allows us to elegantly explore the distribution of a given variable across 
several malware types. For example, suppose we’re interested in seeing the 
distribution of file sizes per malware type in our dataset. In this case, we 
can create a plot like Figure 9-9.
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Figure 9-9: Visualization of file sizes by malware type

On the y-axis of this plot are file sizes, represented as powers of 10. On 
the x-axis we enumerate each malware type. As you can see, the thickness 
of the bars representing each file type varies at different size levels, which 
show how much of the data for that malware type is of that size. For example, 
you can see that there’s a substantial number of very large ransomware files, 
and that worms tend to have smaller file sizes—probably because worms aim 
to spread rapidly across a network, and worm authors thus tend to minimize 
their file sizes. Knowing these patterns could potentially help us to classify 
unknown files better (a larger file being more likely to be ransomware and 
less likely to be a worm), or teach us what file sizes we should focus on in a 
defensive tool targeted at a specific type of malware.
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Making the violin plot takes one plotting call, as shown in Listing 9-14.

import pandas
import seaborn
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")

u axis = seaborn.violinplot(x=malware['type'], y=malware['size']) 
v axis.set(xlabel="Malware type", ylabel="File size in bytes (log base-10)",

         title="File Sizes by Malware Type", yscale="log")
w pyplot.show()

Listing 9-14: Creating a violin plot

In Listing 9-14, first we create the violin plot u. Next we tell seaborn to 
set the axis labels and title and to set the y-axis to log-scale v. Finally, we 
make the plot appear w. We can also make an analogous plot showing the 
number of positives for each malware type, as shown in Figure 9-10.
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Figure 9-10: Visualization of the number of antivirus positives (detections) per malware type

The only difference between Figure 9-9 and Figure 9-10 is that instead 
of looking at file size on the y-axis, we’re looking at the number of positives 
each file received. The results show some interesting trends. For example, 
ransomware is almost always detected by more than 30 scanners. The bitcoin, 
trojan, and keylogger malware types, in contrast, are detected by less than 
30 scanners a substantial portion of the time, meaning more of these types 
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are slipping past the security industry’s defenses (folks who don’t have the 
scanners that detect these files installed are likely getting infected by these 
samples). Listing 9-15 shows how to create the plot shown in Figure 9-10.

import pandas
import seaborn
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")

axis = seaborn.violinplot(x=malware['type'], y=malware['positives']) 
axis.set(xlabel="Malware type", ylabel="Number of vendor detections",
         title="Number of Detections by Malware Type")
pyplot.show()

Listing 9-15: Visualizing antivirus detections per malware type

The only differences in this code and the previous are that we pass 
the violinplot function different data (malware['positives'] instead of 
malware['size']), we label the axes differently, we set the title differently, 
and we omit setting the y-axis scale to log-10.

Summary
In this chapter, you learned how visualization of malware data allows you to 
get macroscopic insights into trending threats and the efficacy of security 
tools. You used pandas, matplotlib, and seaborn to create your own visualiza-
tions and gain insight into sample datasets.

You also learned how to use methods like describe() in pandas to show 
useful statistics and how to extract subsets of your dataset. You then used 
these subsets of data to create your own visualizations to assess improve-
ments in antivirus detections, analyze trending malware types, and answer 
other broader questions.

These are powerful tools that transform the security data you have into 
actionable intelligence that can inform the development of new tools and 
techniques. I hope you’ll learn more about data visualizations and incorpo-
rate them into your malware and security analysis workflow.



10
D e e p  L e a r n i n g  B a s i c s

Deep learning is a type of machine learn-
ing that has advanced rapidly in the past 

few years, due to improvements in process-
ing power and deep learning techniques. 

Usually, deep learning refers to deep, or many-layered, 
neural networks, which excel at performing very com-
plex, often historically human-centric tasks, like image 
recognition and language translation.

For example, detecting whether a file contains an exact copy of some 
malicious code you’ve seen before is simple for a computer program and 
doesn’t require advanced machine learning. But detecting whether a file 
contains malicious code that is somewhat similar to malicious code you’ve 
seen before is a far more complex task. Traditional signature-based detec-
tion schemes are rigid and perform poorly on never-before-seen or obfus-
cated malware, whereas deep learning models can see through superficial 
changes and identify core features that make a sample malicious. The same 



176   Chapter 10

goes for network activity, behavioral analysis, and other related fields. This 
ability to pick out useful characteristics within a mass of noise makes deep 
learning an extremely powerful tool for cybersecurity applications.

Deep learning is just a type of machine learning (we covered machine 
learning in general in Chapters 6 and 7). But it often leads to models that 
achieve better accuracy than approaches we discussed in these preceding 
chapters, which is why the entire field of machine learning has emphasized 
deep learning in the last five years or so. If you’re interested in working at 
the cutting edge of security data science, it’s essential to learn how to use 
deep learning. A note of caution, however: deep learning is harder to under-
stand than the machine learning approaches we discussed early in this book, 
and it requires some commitment, and high-school level calculus, to fully 
understand. You’ll find that the time you invest in understanding it will pay 
dividends in your security data science work in terms of your ability to build 
more accurate machine learning systems. So we urge you to read this chap-
ter carefully and work at understanding it until you get it! Let’s get started.

What Is Deep Learning?
Deep learning models learn to view their training data as a nested hierarchy 
of concepts, which allows them to represent incredibly complex patterns. 
In other words, these models not only take into consideration the original 
features you give them, but automatically combine these features to form 
new, optimized meta-features, which they then combine to form even more 
features, and so on.

“Deep” also refers to the architecture used to accomplish this, which 
usually consists of multiple layers of processing units, each using the pre-
vious layer’s outputs as its inputs. Each of these processing units is called a 
neuron, and the model architecture as a whole is called a neural network, or 
a deep neural network when there are many layers.

To see how this architecture can be helpful, let’s think about a pro-
gram that attempts to classify images either as a bicycle or a unicycle. For a 
human, this is an easy task, but programming a computer to look at a grid 
of pixels and tell which object it represents is quite difficult. Certain pixels 
that indicate that a unicycle exists in one image will mean something else 
entirely in the next if the unicycle has moved slightly, been placed at a dif-
ferent angle, or has a different color.

Deep learning models get past this by breaking the problem down into 
more manageable pieces. For example, a deep neural network’s first layer of 
neurons might first break down the image into parts and just identify low-
level visual features, like edges and borders of shapes in the image. These 
created features are fed into the next layer of the network to find patterns 
among the features. These patterns are then fed into subsequent layers, 
until the network is identifying general shapes and, eventually, complete 
objects. In our unicycle example, the first layer might find lines, the second 
might see lines forming circles, and the third might identify that certain 
circles are actually wheels. In this way, instead of looking at a mass of pixels, 
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the model can see that each image has a certain number of “wheel” meta-
features. It can then, for example, learn that two wheels likely indicate a 
bicycle, whereas one wheel means a unicycle.

In this chapter, we focus on how neural networks actually work, both 
mathematically and structurally. First, I use a very basic neural network as 
an example to explain exactly what a neuron is and how it connects to other 
neurons to create a neural network. Second, I describe the mathematical 
processes used to train these networks. Finally, I describe some popular 
types of neural networks, how they’re special, and what they’re good at. 
This will set you up nicely for Chapter 11, where you’ll actually create deep 
learning models in Python.

How Neural Networks Work
Machine learning models are simply big mathematical functions. For 
example, we take input data (such as an HTML file represented as a series 
of numbers), apply a machine learning function (such as a neural network), 
and we get an output that tells us how malicious the HTML file looks. Every 
machine learning model is just a function containing adjustable parameters 
that get optimized during the training process.

But how does a deep learning function actually work and what does it 
look like? Neural networks are, as the name implies, just networks of many 
neurons. So, before we can understand how neural networks work, we first 
need to know what a neuron is.

Anatomy of a Neuron
Neurons themselves are just a type of small, simple function. Figure 10-1 
shows what a single neuron looks like.
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Figure 10-1: Visualization of a single neuron
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You can see that input data comes in from the left, and a single output 
number comes out on the right (though some types of neurons generate 
multiple outputs). The value of the output is a function of the neuron’s 
input data and some parameters (which are optimized during training). 
Two steps occur inside every neuron to transform the input data into the 
output.

First, a weighted sum of the neuron’s inputs is calculated. In Figure 10-1, 
each input number, xi, travelling into the neuron gets multiplied by an asso-
ciated weight value, wi. The resulting values are added together (yielding a 
weighted sum) to which a bias term is added. The bias and weights are the 
parameters of the neuron that are modified during training to optimize the 
model.

Second, an activation function is applied to the weighted sum plus bias 
value. The purpose of an activation function is to apply a nonlinear transfor-
mation to the weighted sum, which is a linear transformation of the neuron’s 
input data. There are many common types of activation functions, and they 
tend to be quite simple. The only requirement of an activation function is 
that it’s differentiable, which enables us to use backpropagation to optimize 
parameters (we discuss this process shortly in “Training Neural Networks” 
on page 189).

Table 10-1 shows a variety of other common activation functions and 
explains which ones tend to be good for which purposes.

Table 10-1: Common Activation Functions

Name Plot Equation Description
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Just max(0, x). 
 
ReLUs enable fast 
learning and are more 
resilient to the vanish-
ing gradient problem 
(explained later in this 
chapter) compared to 
other functions, like the 
sigmoid.
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Name Plot Equation Description

Leaky 
ReLU
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Like normal ReLU, but 
instead of 0, a small 
constant fraction of x 
is returned. Generally 
you choose α to be 
very small, like 0.01. 
Also, α stays fixed dur-
ing training.
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This is just like leaky 
ReLU, but in PReLU, α 
is a parameter whose 
value is optimized 
during the training 
process, along with the 
standard weight and 
bias parameters.
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Like PReLU in that α 
is a parameter, but 
instead of going down 
infinitely with a slope 
of α when x < 0, the 
curve is bounded by α, 
because ex will always 
be between 0 and 1 
when x < 0.
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Just a step function: 
the function returns 0 
unless x ≥ 0, in which 
case the function 
returns 1.
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whose maximum value 
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Table 10-1: Common Activation Functions, continued

Name Plot Equation Description

Sigmoid

Input

O
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Because of the 
vanishing gradient 
problem (explained 
later in this chapter), 
sigmoid activa-
tion functions are 
often only used in 
the final layer of 
a neural network. 
Because the output 
is continuous and 
bounded between 
0 and 1, sigmoid 
neurons are a good 
proxy for output 
probabilities.

Softmax (multi-output)
f x e
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1 2for    , , ... ,

Outputs multiple 
values that sum to 1.
Softmax activation 
functions are often 
used in the final 
layer of a network 
to represent classifi-
cation probabilities, 
because Softmax 
forces all outputs 
from a neuron to 
sum to 1.

Rectified linear unit (ReLU) is by far the most common activation function 
used today, and it’s simply max(0, s). For example, let’s say your weighted 
sum plus bias value is called s. If s is above zero, then your neuron’s output 
is s, and if s is equal to or below zero, then your neuron’s output is 0. You 
can express the entire function of a ReLU neuron as simply max(0, weighted-
sum-of-inputs + bias), or more concretely, as the following for n inputs:

max , 0
1

w x bi i
i

n
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�
�

Nonlinear activation functions are actually a key reason why networks 
of such neurons are able to approximate any continuous function, which is a 
big reason why they’re so powerful. In the following sections, you learn how 
neurons are connected together to form a network, and later you’ll gain an 
understanding of why nonlinear activation functions are so important.

A Network of Neurons
To create a neural network, you arrange neurons in a directed graph (a net-
work) with a number of layers, connecting to form a much larger function. 
Figure 10-2 shows an example of a small neural network.
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Figure 10-2: Example of a very small, four-neuron neural network,  
where data is passed from neuron to neuron via the connections. 

In Figure 10-2, we have our original inputs: x1, x2, and x3 on the left 
side. Copies of these xi values are sent along the connections to each neu-
ron in the hidden layer (a layer of neurons whose output is not the final out-
put of the model), resulting in three output values, one from each neuron. 
Finally, each output of these three neurons is sent to a final neuron, which 
outputs the neural network’s final result.

Every connection in a neural network is associated with a weight 
parameter, w, and every neuron also contains a bias parameter, b (added 
to the weighted sum), so the total number of optimizable parameters in 
a basic neural network is the number of edges connecting an input to a 
neuron, plus the number of neurons. For example, in the network shown 
in Figure 10-2, there are 4 total neurons, plus 9 + 3 edges, yielding a total 
of 16 optimizable parameters. Because this is just an example, we’re using 
a very small neural network—real neural networks often have thousands of 
neurons and millions of connections.

Universal Approximation Theorem
A striking aspect of neural networks is that they are universal approxima-
tors: given enough neurons, and the right weight and bias values, a neural 
network can emulate basically any type of behavior. The neural network 
shown in Figure 10-2 is feed-forward, which means the data is always flowing 
forward (from left to right in the image).

The universal approximation theorem describes the concept of universal-
ity more formally. It states that a feed-forward network with a single hidden 
layer of neurons with nonlinear activation functions can approximate (with 
an arbitrarily small error) any continuous function on a compact subset of 
Rn.1 That’s a bit of a mouthful, but it just means that with enough neurons, 
a neural network can very closely approximate any continuous, bounded 
function with a finite number of inputs and outputs.

1. Rn can be thought of as an n-dimensional Euclidian space, where all numbers are real num-
bers. For example, R2 represents all possible real-valued tuples of length 2, like (3.5, –5).



182   Chapter 10

In other words, the theorem states that regardless of the function we 
want to approximate, there’s theoretically some neural network with the 
right parameters that can do the job. For example, if you draw a squiggly, 
continuous function, f(x), like in Figure 10-3, there exists some neural net-
work such that for every possible input of x, f(x) ≈ network(x), no matter 
how complicated the function f(x). This is one reason neural networks can 
be so powerful.

Input: x

O
ut

pu
t

f(x) = y
network(x) = ŷ

Figure 10-3: Example of how a small neural net could approximate a funky function. 
As the number of neurons grows, the difference between y and ŷ will approach 0.

In the next sections, we build a simple neural network by hand to help 
you understand how and why we can model such different types of behavior, 
given the right parameters. Although we do this on a very small scale using 
just a single input and output, the same principle holds true when you’re 
dealing with multiple inputs and outputs, and incredibly complex behaviors.

Building Your Own Neural Network
To see this universality in action, let’s try building our own neural net-
work. We start with two ReLU neurons, using a single input x, as shown 
in Figure 10-4. Then, we see how different weight and bias values (param-
eters) can be used to model different functions and outcomes.

x

wx�1 = 1

wx�2 = 1

Neuron 1

Neuron 2

bias1
= –1

bias2
= –2

max(0, s)

max(0, s)

Figure 10-4: Visualization of two neurons being fed input data x
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Here, both neurons have a weight of 1, and both use a ReLU activation 
function. The only difference between the two is that neuron1 applies a bias 
value of –1, while neuron2 applies a bias value of –2. Let’s see what happens 
when we feed neuron1 a few different values of x. Table 10-2 summarizes the 
results.

Table 10-2: Neuron1

Input Weighted sum Weighted sum + bias Output

x x * wx→1 x * wx→1 + bias1 max(0, x * wx→1 + bias1)

0 0 * 1 = 0 0 + –1 = –1 max(0, –1) = 0

1 1 * 1 = 1 1 + –1 = 0 max(0, 0) = 0

2 2 * 1 = 2 2 + –1 = 1 max(0, 1) = 1 

3 3 * 1 = 3 3 + –1 = 2 max(0, 2) = 2

4 4 * 1 = 4 4 + –1 = 3 max(0, 3) = 3

5 5 * 1 = 5 5 + –1 = 4 max(0, 4) = 4

The first column shows some sample inputs for x, and the second shows 
the resulting weighted sum. The third column adds the bias parameter, 
and the fourth column applies the ReLU activation function to yield the 
neuron’s output for a given input of x. Figure 10-5 shows the graph of the 
neuron1 function.

Neuron 1

Input: x
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–1

0

1

2

3

Figure 10-5: Visualization of neuron1 as a function. The  
x-axis represents the neuron’s single input value, and the  
y-axis represents the neuron’s output.

Because neuron1 has a bias of –1, the output of neuron1 stays at 0 
until the weighted sum goes above 1, and then it goes up with a certain 
slope, as you can see in Figure 10-5. That slope of 1 is associated with the 
wx→1 weight value of 1. Think about what would happen with a weight of 
2: because the weighted sum value would double, the angle in Figure 10-5 
would occur at x = 0.5 instead of x = 1, and the line would go up with a 
slope of 2 instead of 1.

Now let’s look at neuron2, which has a bias value of –2 (see Table 10-3).
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Table 10-3: Neuron2

Input Weighted sum Weighted sum + bias Output

x x * wx→2 (x * wx→2) + bias2 max(0, (x * wx→2) + bias2)

0 0 * 1 = 0 0 + –2 = –2 max(0, –2) = 0

1 1 * 1 = 1 1 + –2 = –1 max(0, –1) = 0

2 2 * 1 = 2 2 + –2 = 0 max(0, 0) = 0 

3 3 * 1 = 3 3 + –2 = 1 max(0, 1) = 1

4 4 * 1 = 4 4 + –2 = 2 max(0, 2) = 2

5 5 * 1 = 5 5 + –2 = 3 max(0, 3) = 3

Because neuron2’s bias is –2, the angle in Figure 10-6 occurs at x = 2 
instead of x = 1.

Neuron 2
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Figure 10-6: Visualization of neuron2 as a function

So now we’ve built two very simple functions (neurons), both doing noth-
ing over a set period, then going up infinitely with a slope of 1. Because we’re 
using ReLU neurons, the slope of each neuron’s function is affected by its 
weights, while its bias and weight terms both affect where the slope begins. 
When you use other activation functions, similar rules apply. By adjusting 
parameters, we could change the angle and slope of each neuron’s function 
however we wanted.

In order to achieve universality, however, we need to combine neurons 
together, which will allow us to approximate more complex functions. Let’s 
connect our two neurons up to a third neuron, as shown in Figure 10-7. 
This will create a small three-neuron network with a single hidden layer, 
composed of neuron1 and neuron2.

In Figure 10-7, input data x is sent to both neuron1 and neuron2. Then, 
neuron1 and neuron2’s outputs are sent as inputs to neuron3, which yields 
the network’s final output.



Deep Learning Basics   185

x

wx�1 = 1

wx�2 = 1

Neuron 1

Neuron 2

bias1
= –1

bias2
= –2

max(0, s)

max(0, s)

Neuron 3
bias3
= 0 max(0, s)

w1�3 = 2

w2�3 = –1

Figure 10-7: Visualization of a small three-neuron network

If you inspect the weights in Figure 10-7, you’ll notice that the weight 
w1→3 is 2, doubling neuron1’s contribution to neuron3. Meanwhile, w2→3 is 
–1, inverting neuron2’s contribution. In essence, neuron3 is simply applying 
its activation function to neuron1 * 2 – neuron2. Table 10-4 summarizes the 
inputs and corresponding outputs for the resulting network.

Table 10-4: A Three-Neuron Network

Original 
network 
input

Inputs to neuron3 Weighted sum Weighted sum + bias Final network output

x neuron1 neuron2 (neuron1 * w1→3) + 
(neuron2 * w2→3)

(neuron1 * w1→3) + 
(neuron2 * w2→3) + 
bias3

max(0, (neuron1 * w1→3) + 
(neuron2 * w2→3) + bias3)

0 0 0 (0 * 2) + (0 * –1) = 0 0 + 0 + 0 = 0 max(0, 0) = 0

1 0 0 (0 * 2) + (0 * –1) = 0 0 + 0 + 0 = 0 max(0, 0) = 0

2 1 0 (1 * 2) + (0 * –1) = 2 2 + 0 + 0 = 2 max(0, 2) = 2 

3 2 1 (2 * 2) + (1 * –1) = 3 4 + –1 + 0 = 3 max(0, 3) = 3

4 3 2 (3 * 2) + (2 * –1) = 4 6 + –2 + 0 = 4 max(0, 4) = 4

5 4 3 (4 * 2) + (3 * –1) = 5 8 + –3 + 0 = 5 max(0, 5) = 5

The first column shows original network input, x, followed by the 
resulting outputs of neuron1 and neuron2. The rest of the columns show 
how neuron3 processes the outputs: the weighted sum is calculated, bias 
is added, and finally in the last column the ReLU activation function is 
applied to achieve the neuron and network outputs for each original input 
value for x. Figure 10-8 shows the network’s function graph.
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Network Output
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Figure 10-8: Visualization of our network’s inputs and associated outputs

We can see that through the combination of these simple functions, we 
can create a graph that goes up for any period or slope desired over differ-
ent points, as we did in Figure 10-8. In other words, we’re much closer to 
being able to represent any finite function for our input x!

Adding Another Neuron to the Network
We’ve seen how to make our network’s function’s graph go up (with any 
slope) by adding neurons, but how would we make the graph go down? 
Let’s add another neuron (neuron4) to the mix, as shown in Figure 10-9.

x

wx�1 = 1

wx�2 = 1

w1�3 = 2

w2�3 = –1

Neuron 1
bias1
= –1 max(0, s)

Neuron 2
bias2
= –2 max(0, s)

Neuron 3
bias3
= 0 max(0, s)

Neuron 4
bias4
= –4 max(0, s)

wx�3 = 1
w4�3 = –2

Figure 10-9: Visualization of a small four-neuron network with a single hidden layer
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In Figure 10-9, input data x is sent to neuron1, neuron2, and neuron4. 
Their outputs are then fed as inputs to neuron3, which yields the network’s 
final output. Neuron4 is the same as neuron1 and neuron2, but with its bias 
set to –4. Table 10-5 summarizes the output of neuron4.

Table 10-5: Neuron4

Input Weighted sum Weighted sum + bias Output

x x * wx→4 (x * wx→4) + bias4 max(0, (x * wx→4) + bias4)

0 0 * 1 = 0 0 + –4 = –4 max(0, –4) = 0

1 1 * 1 = 1 1 + –4 = –3 max(0, –3) = 0

2 2 * 1 = 2 2 + –4 = –2 max(0, –2) = 0 

3 3 * 1 = 3 3 + –4 = –1 max(0, –1) = 0

4 4 * 1 = 4 4 + –4 = 0 max(0, 0) = 0

5 5 * 1 = 5 5 + –4 = 1 max(0, 1) = 1

To make our network graph descend, we subtract neuron4’s function 
from that of neuron1 and neuron2 in neuron3’s weighted sum by setting the 
weight connecting neuron4 to neuron3 to –2. Table 10-6 shows the new out-
put of the entire network.

Table 10-6: A Four-Neuron Network

Original 
network 
input

Inputs to neuron3 Weighted sum Weighted sum + 
bias

Final network 
output

x neuron1 neuron2 neuron4 (neuron1 * w1→3) + 
(neuron2 * w2→3) + 
(neuron4 * w4→3)

(neuron1 * w1→3) + 
(neuron2 * w2→3) + 
(neuron4 * w4→3) + 
bias3

max(0, (neuron1 * 
w1→3) + (neuron2 * 
w2→3) + (neuron4 * 
w4→3) + bias3)

0 0 0 0 (0 * 2) + (0 * –1) + 
(0 * –2) = 0

0 + 0 + 0 + 0 = 0 max(0, 0) = 0

1 0 0 0 (0 * 2) + (0 * –1) + 
(0 * –2) = 0

0 + 0 + 0 + 0 = 0 max (0, 0) = 1

2 1 0 0 (1 * 2) + (0 * –1) + 
(0 * –2) = 2

2 + 0 + 0 + 0 = 2 max (0, 2) = 2

3 2 1 0 (2 * 2) + (1 * –1) + 
(0 * –2) = 3

4 + –1 + 0 + 0 = 3 max (0, 3) = 3

4 3 2 0 (3 * 2) + (2 * –1) + 
(0 * –2) = 4

6 + –2 + 0 + 0 = 4 max (0, 4) = 4

5 4 3 1 (4 * 2) + (3 * –1) + 
(1 * –2) = 5

8 + –3 + –2 + 0 = 3 max (0, 3) = 3

Figure 10-10 shows what this looks like.
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Figure 10-10: Visualization of our four-neuron network

Hopefully, now you can see how the neural network architecture allows 
us to move up and down at any rate over any points on the graph, just by 
combining a number of simple neurons (universality!). We could continue 
adding more neurons to create far more sophisticated functions.

Automatic Feature Generation
You’ve learned that a neural network with a single hidden layer can approxi-
mate any finite function with enough neurons. That’s a pretty powerful idea. 
But what happens when we have multiple hidden layers of neurons? In short, 
automatic feature generation happens, which is perhaps an even more pow-
erful aspect of neural networks.

Historically, a big part of the process of building machine learning 
models was feature extraction. For an HTML file, a lot of time would be 
spent deciding what numeric aspects of an HTML file (number of section 
headers, number of unique words, and so on) might aid the model.

Neural networks with multiple layers and automatic feature genera-
tion allow us to offload a lot of that work. In general, if you give fairly raw 
features (such as characters or words in an HTML file) to a neural network, 
each layer of neurons can learn to represent those raw features in ways that 
work well as inputs to later layers. In other words, a neural network will learn 
to count the number of times the letter a shows up in an HTML document, 
if that’s particularly relevant to detecting malware, with no real input from a 
human saying that it is or isn’t.

In our image-processing bicycle example, nobody specifically told the 
network that edges or wheel meta-features were useful. The model learned 
that those features were useful as inputs to the next neuron layer during the 
training process. What’s especially useful is that these lower-level learned 
features can be used in different ways by later layers, which means that deep 
neural networks can estimate many incredibly complex patterns using far 
fewer neurons and parameters than a single-layered network could.

Not only do neural networks perform a lot of the feature extraction work 
that previously took a lot of time and effort, they do it in an optimized and 
space-efficient way, guided by the training process.
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Training Neural Networks
So far, we’ve explored how, given a large number of neurons and the right 
weights and bias terms, a neural network can approximate complex func-
tions. In all our examples so far, we set those weight and bias parameters 
manually. However, because real neural networks normally contain thou-
sands of neurons and millions of parameters, we need an efficient way to 
optimize these values.

Normally, when training a model, we start with a training dataset and a 
network with a bunch of non-optimized (randomly initialized) parameters. 
Training requires optimizing parameters to minimize an objective function. 
In supervised learning, where we’re trying to train our model to be able to 
predict a label, like 0 for “benign” and 1 for “malware,” that objective function 
is going to be related to the network’s prediction error during training. For 
some given input x (for example, a specific HTML file), this is the difference 
between the label y we know is correct (for example, 1.0 for “is malware”) 
and the output ̂y we get from the current network (for example, 0.7). You 
can think of the error as the difference between the predicted label ̂y and 
the known, true label y, where network x ŷ, and the network is trying to 
approximate some unknown function f, such that f(x) = y. In other words, 
network � f̂ .

The basic idea behind training networks is to feed a network an obser-
vation, x, from your training dataset, receive some output, ̂y , and then 
figure out how changing your parameters will shift ̂y closer to your goal, y. 
Imagine you’re in a spaceship with various knobs. You don’t know what each 
knob does, but you know the direction you want to go in (y). To solve the 
problem, you step on the gas and note the direction you went ( ŷ ). Then, 
you turn a knob just a tiny bit and step on the gas again. The difference 
between your first and second directions tells you how much that knob 
affects your direction. In this way, you can eventually figure out how to fly 
the spaceship quite well.

Training a neural network is similar. First, you feed a network an obser-
vation, x, from your training dataset, and you receive some output, ̂y . This 
step is called forward propagation because you feed your input x forward 
through the network to get your final output ̂y . Next, you determine how 
each parameter affects your output ̂y . For example, if your network’s output 
is 0.7, but you know the correct output should be closer to 1, you can try 
increasing a parameter, w, just a little bit, seeing whether ̂y gets closer to or 
further away from y, and by how much.2 This is called the partial derivative 
of ̂y with respect to w, or �̂y �w.

Parameters all throughout the network are then nudged just a tiny bit 
in a direction that causes ̂y to shift a little closer to y (and therefore network 
closer to f ). If �̂y �w is positive, then you know you should increase w by a 

2. In practice, increasing the parameter slightly and then reevaluating the network’s resulting 
output isn’t necessary. This is because the entire network is a differentiable function, which 
means that we can just calculate (∂ ∂ŷ w ) precisely and more rapidly using calculus. However, 
I find that thinking in terms of nudging and reevaluating tends to be more intuitive than 
using derivatives calculus.
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small amount (specifically, proportional to � �� � �y y wˆ ), so that your new ̂y 
will move slightly away from 0.7 and toward 1 (y). In other words, you teach 
your network to approximate the unknown function f by correcting its mis-
takes on training data with known labels.

The process of iteratively calculating these partial derivatives, updating 
parameters, and then repeating is called gradient descent. However, with a 
network of thousands of neurons, millions of parameters, and often millions 
of training observations, all of that calculus requires a lot of computation. 
To get around this, we use a neat algorithm called backpropagation that makes 
these calculations computationally feasible. At its core, backpropagation 
allows us to efficiently calculate partial derivatives along computational 
graphs like a neural network!

Using Backpropagation to Optimize a Neural Network
In this section, we construct a simple neural network to showcase how back-
propagation works. Let’s assume that we have a training example whose 
value is x = 2 and an associated true label of y = 10. Usually, x would be an 
array of many values, but let’s stick to a single value to keep things simple. 
Plugging in these values, we can see in Figure 10-11 that our network out-
puts a ̂y value of 5 with an input x value of 2.

x = 2

wx�1 = 1

wx�2 = 1

Neuron 1

Neuron 2

bias1
= 0

bias2
= 1

max(0, s)
= 2

max(0, s)
= 3

Neuron 3

bias3
= 0

max(0, s)
= 5

w1�3 = 1

w2�3 = 1

y = 5ˆ

Figure 10-11: Visualization of our three-neuron network, with an input of x = 2

To nudge our parameters so that our network’s output ̂y , given x = 2, 
moves closer to our known y value of 10, we need to calculate how w1→3 
affects our final output ̂y . Let’s see what happens when we increase w1→3 
by just a bit (say, 0.01). The weighted sum in neuron3 becomes 1.01 * 2 + 
(1 * 3), making the final output ̂y change from 5 to 5.02, resulting in an 
increase of 0.02. In other words, the partial derivative of ̂y with respect to 
w1→3 is 2, because changing w1→3 yields twice that change in ̂y .

Because y is 10 and our current output ̂y (given our current parameter 
values and x = 2) is 5, we now know that we should increase w1→3 by a small 
amount to move y closer to 10.
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That’s fairly simple. But we need to be able to know which direction to 
push all parameters in our network, not just ones in a neuron in the final 
layer. For example, what about wx→1? Calculating � � �ŷ wx 1 is more com-
plicated because it only indirectly affects ̂y . First, we ask neuron3’s function 
how ̂y is affected by neuron1’s output. If we change the output of neuron1 
from 2 to 2.01, the final output of the neuron3 changes from 5 to 5.01, so 
� � �ŷ neuron1 1 . To know how much wx→1 affects ̂y , we just have to mul-
tiply ∂ ∂ŷ neuron1 by how much wx→1 affects the output of neuron1. If we 
change wx→1 from 1 to 1.01, the output of neuron1 changes from 2 to 2.02, 
so � � �neuron1 1wx  is 2. Therefore:

�
�

�
�

�
�
�� �

ˆ ˆ
*

y
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y
wx x1 1
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Or:
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1 2 2

You may have noticed that we just used the chain rule.3

In other words, to figure out how a parameter like wx→1 deep inside a 
network affects our final output ̂y , we multiply the partial derivatives at each 
point along the path between our parameter wx→1 and ̂y . This means that if 
wx→1 is fed into a neuron whose outputs are fed into ten other neurons, cal-
culating wx→1’s effect on ̂y would involve summing over all the paths that led 
from wx→1 to ̂y , instead of just one. Figure 10-12 visualizes the paths affected 
by the sample weight parameter wx→2.

x
wx�2 ŷ

Figure 10-12: Visualization of the paths affected by wx→2 (shown  
in dark gray): the weight associated with the connection between  
input data x and the middle neuron in the first (leftmost) layer

3.  The chain rule is a formula for calculating the derivative of composite functions. For 
example, if f and g are both functions, and h is the composite function h(x) = f(g(x)), then 
the chain rule states that h′(x) = f ′(g(x)) * g ′(x), where f ′(x) indicates the partial derivative 
of a function, f, with respect to x.
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Note that the hidden layers in this network are not fully connected 
layers, which helps explain why the second hidden layer’s bottom neuron 
isn’t highlighted.

Path Explosion
But what happens when our network gets even larger? The number of paths 
we need to add to calculate the partial derivative of a low-level parameter 
increases exponentially. Consider a neuron whose output is fed into a layer 
of 1,000 neurons, whose outputs are fed into 1,000 more neurons, whose 
outputs are then fed into a final output neuron.

That results in one million paths! Luckily, going over every single path 
and then summing them to get the � �� �ŷ parameter is not necessary. This 
is where backpropagation comes in handy. Instead of walking along every 
single path that leads to our final output(s), ̂y , partial derivatives are calcu-
lated layer by layer, starting from the top down, or backward.

Using the chain rule logic from the last section, we can calculate any 
partial derivative �̂y �w , where w is a parameter connecting an output 
from layeri–1 to a neuroni in layeri, by summing over the following for all 
neuroni+1, where each neuroni+1 is a neuron in layeri+1 to which neuroni 
(w’s neuron) is connected:
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* *
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neuron
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neuron

1

1

By doing this layer by layer from the top down, we limit path explo-
sion by consolidating derivatives at each layer. In other words, derivatives 
calculated in a top-level layeri+1 (like � � �ŷ ineuron 1) are recorded to help 
calculate derivatives in layeri. Then to calculate derivatives in layeri–1, we 
use the saved derivatives from layeri (like ∂ ∂ŷ ineuron ). Then, layeri–2 uses 
derivatives from layeri–1, and so on and so forth. This trick greatly reduces 
the amount of calculations we have to repeat and helps us to train neural 
networks quickly.

Vanishing Gradient
One issue that very deep neural networks face is the vanishing gradient prob-
lem. Consider a weight parameter in the first layer of a neural network that 
has ten layers. The signal it gets from backpropagation is the summation of 
all paths’ signals from this weight’s neuron to the final output.

The problem is that each path’s signal is likely to be incredibly 
tiny, because we calculate that signal by multiplying partial derivatives 
at each point along the ten-neuron-deep path, all of which tend to be 
numbers smaller than 1. This means that a low-level neuron’s parameters 
are updated based on the summation of a massive number of very tiny 
numbers, many of which end up canceling one another out. As a result, it 
can be difficult for a network to coordinate sending a strong signal down 
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to parameters in lower layers. This problem gets exponentially worse as 
you add more layers. As you learn in the following section, certain network 
designs try to get around this pervasive problem.

Types of Neural Networks
For simplicity’s sake, every example I’ve shown you so far uses a type of net-
work called a feed-forward neural network. In reality, there are many other 
useful network structures you can use for different classes of problems. Let’s 
discuss some of the most common classes of neural networks and how they 
could be applied in a cybersecurity context.

Feed-Forward Neural Network
The simplest (and first) kind of neural network, a feed-forward neural net-
work, is kind of like a Barbie doll with no accessories: other types of neural 
networks are usually just variations on this “default” structure. The feed-
forward architecture should sound familiar: it consists of stacks of layers of 
neurons. Each layer of neurons is connected to some or all neurons in the 
next layer, but connections never go backward or form cycles, hence the 
name “feed forward.”

In feed-forward neural networks, every connection that exists is con-
necting a neuron (or original input) in layer i to a neuron in layer j > i. 
Each neuron in layer i doesn’t necessarily have to connect to every neuron 
in layer i + 1, but all connections must be feeding forward, connecting pre-
vious layers to later layers.

Feed-forward networks are generally the kind of network you throw at 
a problem first, unless you already know of another architecture that works 
particularly well on the problem at hand (such as convolutional neural net-
works for image recognition).

Convolutional Neural Network
A convolutional neural network (CNN) contains convolutional layers, where 
the input that feeds into each neuron is defined by a window that slides 
over the input space. Imagine a small square window sliding over a larger 
picture where only the pixels visible through the window will be connected 
to a specific neuron in the next layer. Then, the window slides, and the new 
set of pixels are connected to a new neuron. Figure 10-13 illustrates this.

The structure of these networks encourages localized feature learning. 
For example, it’s more useful for a network’s lower layers to focus on the 
relationship between nearby pixels in an image (which form edges, shapes, 
and so on) than to focus on the relationship between pixels randomly scat-
tered across an image (which are unlikely to mean much). The sliding win-
dows explicitly force this focus, which improves and speeds up learning in 
areas where local feature extraction is especially important.
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Figure 10-13: Visualization of a 2 × 2 convolutional window sliding over a 3 × 3 input 
space with a stride (step size) of 1, to yield a 2 × 2 output

Because of their ability to focus on localized sections of the input data, 
convolutional neural networks are extremely effective at image recognition 
and classification. They’ve also been shown to be effective for certain types 
of natural language processing, which has implications for cybersecurity.

After each convolutional window’s values are fed to specific neurons 
in a convolutional layer, a sliding window is again slid over these neurons’ 
outputs, but instead of them being fed to standard neurons (for example, 
ReLUs) with weights associated with each input, they’re fed to neurons that 
have no weights (that is, fixed at 1) and a max (or similar) activation func-
tion. In other words, a small window is slid over the convolutional layer’s 
outputs, and the maximum value of each window is taken and passed to 
the next layer. This is called a pooling layer. The purpose of pooling layers 
is to “zoom out” on the data (usually, an image), thereby reducing the size 
of the features for faster computation, while retaining the most important 
information.

Convolutional neural networks can have one or multiple sets of convo-
lutional and pooling layers. A standard architecture might include a con-
volutional layer, a pooling layer, followed by another set of convolutional 
and pooling layers, and finally a few fully connected layers, like in feed-
forward networks. The goal of this architecture is that these final fully 
connected layers receive fairly high-level features as inputs (think wheels 
on a unicycle), and as a result are able to accurately classify complex data 
(such as images).

Autoencoder Neural Network
An autoencoder is a type of neural network that tries to compress and then 
decompress an input with minimal difference between the original training 
input and the decompressed output. The goal of an autoencoder is to learn 
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an efficient representation for a set of data. In other words, autoencoders 
act like optimized lossy compression programs, where they compress input 
data into a smaller representation, then decompress it back to its original 
input size.

Instead of the neural network optimizing parameters by minimizing 
the difference between known labels (y) and predicted labels ( ŷ ) for a 
given input x, the network tries to minimize the difference between the 
original input x and the reconstructed output x̂.

Structurally, autoencoders are usually very similar to standard feed-
forward neural networks, except that middle layers contain fewer neurons 
than early and later stage layers, as shown in Figure 10-14.

Input layer
x

Output layer
x̂

Figure 10-14: Visualization of an autoencoder network

As you can see, the middle layer is much smaller than the leftmost 
(input) and rightmost (output) layers, which each have the same size. The 
last layer should always contain the same number of outputs as the original 
inputs, so each training input xi can be compared to its compressed and 
reconstructed cousin x̂i .

After an autoencoder network has been trained, it can be used for 
different purposes. Autoencoder networks can simply be used as efficient 
compress/decompress programs. For example, autoencoders trained to 
compress image files can create images that look far clearer than the same 
image compressed via JPEG to the same size.

Generative Adversarial Network
A generative adversarial network (GAN) is a system of two neural networks 
competing with each other to improve themselves at their respective tasks. 
Typically, the generative network tries to create fake samples (for example, 
some sort of image) from random noise. Then a second discriminator network 
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attempts to tell the difference between real samples and the fake, generated 
samples (for example, distinguishing between real images of a bedroom and 
generated images).

Both neural networks in a GAN are optimized with backpropagation. 
The generator network optimizes its parameters based on how well it fooled 
the discriminator network in a given round, while the discriminator net-
work optimizes its parameters based on how accurately it could discriminate 
between generated and real samples. In other words, their loss functions are 
direct opposites of one another.

GANs can be been used to generate real-looking data or enhance low-
quality or corrupted data.

Recurrent Neural Network
Recurrent networks (RRNs) are a relatively broad class of neural networks in 
which connections between neurons form directed cycles whose activation 
functions are dependent on time-steps. This allows the network to develop 
a memory, which helps it learn patterns in sequences of data. In RNNs, the 
inputs, the outputs, or both the inputs and outputs are some sort of time 
series.

RNNs are great for tasks where data order matters, like connected 
handwriting recognition, speech recognition, language translation, and 
time series analysis. In the context of cybersecurity, they’re relevant to 
problems like network traffic analysis, behavioral detection, and static file 
analysis. Because program code is similar to natural language in that order 
matters, it can be treated as a time series.

One issue with RNNs is that due to the vanishing gradient problem, 
each time-step introduced in an RNN is similar to an entire extra layer in 
a feed-forward neural network. During backpropagation, the vanishing 
gradient problem causes signals in lower-level layers (or in this case, earlier 
time-steps) to become incredibly faint.

A long short-term memory (LSTM) network is a special type of RNN designed 
to address this problem. LSTMs contain memory cells and special neurons that 
try to decide what information to remember and what information to forget. 
Tossing out most information greatly limits the vanishing gradient problem 
because it reduces path explosion.

ResNet
A ResNet (short for residual network) is a type of neural network that creates 
skip connections between neurons in early/shallow layers of the network to 
deeper layers by skipping one or more intermediate layers. Here the word 
residual refers to the fact that these networks learn to pass numerical infor-
mation directly between layers, without that numerical information having 
to pass through the kinds of activation functions we illustrated in Table 10-1.

This structure helps greatly reduce the vanishing gradient problem, 
which enables ResNets to be incredibly deep—sometimes more than 
100 layers.
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Very deep neural networks excel at modeling extremely complex, odd 
relationships in input data. Because ResNets are able to have so many layers, 
they are especially suited to complex problems. Like feed-forward neural 
networks, ResNets are important more because of their general effective-
ness at solving complex problems rather than their expertise in very specific 
problem areas.

Summary
In this chapter, you learned about the structure of neurons and how they 
are connected together to form neural networks. You also explored how 
these networks are trained via backpropagation, and you discovered some 
benefits and issues that neural networks have, such as universality, auto-
matic feature generation, and the vanishing gradient problem. Finally, 
you learned the structures and benefits of a few common types of neural 
networks.

In the next chapter, you’ll actually build neural networks to detect mal-
ware, using Python’s Keras package.





11
B u i l d i n g  a  N e u r a l  N e t w o r k 

M a l w a r e  D e t e c t o r  w i t h  K e r a s

A decade ago, building a functioning, scal-
able, and fast neural network was time con-

suming and required quite a lot of code. In 
the past few years, however, this process has become 
far less painful, as more and more high-level inter-
faces to neural network design have been developed. 
The Python package Keras is one of these interfaces.

In this chapter, I walk you through how to build a sample neural 
network using the Keras package. First, I explain how to define a model’s 
architecture in Keras. Second, we train this model to differentiate between 
benign and malicious HTML files, and you learn how to save and load such 
models. Third, using the Python package sklearn, you learn how to evaluate 
the model’s accuracy on validation data. Finally, we use what you’ve learned 
to integrate validation accuracy reporting into the model training process.

I encourage you to read this chapter while reading and editing the asso-
ciated code in the data accompanying this book. You can find all the code 
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discussed in this chapter there (organized into parameterized functions to 
make things easier to run and adjust), as well as a few extra examples. By 
the end of this chapter, you’ll feel ready to start building some networks of 
your own!

To run code listings in this chapter, you not only need to install the 
packages listed in this chapter’s ch11/requirements.txt file (pip install –r 
requirements.txt), but also follow the directions to install one of Keras’s 
backend engines on your system (TensorFlow, Theano, or CNTK). Install 
TensorFlow by following the directions here: https://www.tensorflow.org/
install/.

Defining a Model’s Architecture
To build a neural network, you need to define its architecture: which neu-
rons go where, how they connect to subsequent neurons, and how data 
flows through the whole thing. Luckily, Keras provides a simple, flexible 
interface to define all this. Keras actually supports two similar syntaxes for 
model definition, but we’re going to use the Functional API syntax, as it’s 
more flexible and powerful that the other (“sequential”) syntax.

When designing a model, you need three things: input, stuff in the 
middle that processes the input, and output. Sometimes your models will 
have multiple inputs, multiple outputs, and very complex stuff in the middle, 
but the basic idea is that when defining a model’s architecture, you’re just 
defining how the input—your data, such as features relating to an HTML 
file—flows through various neurons (stuff in the middle), until finally the 
last neurons end up yielding some output.

To define this architecture, Keras uses layers. A layer is a group of neu-
rons that all use the same type of activation function, all receive data from 
a previous layer, and all send their outputs to a subsequent layer of neurons. 
In a neural network, input data is generally fed to an initial layer of neu-
rons, which sends its outputs to a subsequent layer, which sends its outputs 
to another layer, and so on and so forth, until the last layer of neurons gen-
erates the network’s final output.

Listing 11-1 is an example of a simple model defined using Keras’s func-
tional API syntax. I encourage you to open a new Python file to write and 
run the code yourself as we walk through the code, line by line. Alternatively, 
you can try running the associated code in the data accompanying this book, 
either by copying and pasting parts of the ch11/model_architecture.py file into 
an ipython session or by running python ch11/model_architecture.py in a termi-
nal window.

 from keras import layers
 from keras.models import Model

input = layers.Input(wshape=(1024,), xdtype='float32')
 middle = layers.Dense(units=512, activation='relu')(input)
 output = layers.Dense(units=1, activation='sigmoid')(middle)

https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
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 model = Model(inputs=input, outputs=output)
model.compile(|optimizer='adam', 
              loss='binary_crossentropy', 
              metrics=['accuracy'])

Listing 11-1: Defining a simple model using functional API syntax

First, we import the Keras package’s layers submodule  as well as the 
Model class from Keras’s models submodule .

Next, we specify what kind of data this model will accept for one 
observation by passing a shape value (a tuple of integers)  and a data 
type (string)  to the layers.Input() function. Here, we declared that the 
input data to our model will be an array of 1,024 floats. If our input was, for 
example, a matrix of integers instead, the first line would look more like 
input = Input(shape=(100, 100,) dtype='int32').

N o t e 	 If the model takes in variable-sized inputs on one dimension, you can use None 
instead of a number—for example, (100, None,).

Next, we specify the layer of neurons that this input data will be sent to. 
To do this, we again use the layers submodule we imported, specifically the 
Dense function , to specify that this layer will be a densely connected (also 
called fully connected) layer, which means that every output from the previ-
ous layer is sent to every neuron in this layer. Dense is the most common type 
of layer you’ll likely use when developing Keras models. Others allow you to 
do things like change the shape of the data (Reshape) and implement your 
own custom layer (Lambda).

We pass the Dense function two arguments: units=512, to specify that 
we want 512 neurons in this layer, and activation='relu', to specify that we 
want these neurons to be rectified linear unit (ReLU) neurons. (Recall 
from Chapter 10 that ReLU neurons use a simple type of activation func-
tion that outputs whichever is larger: either 0, or the weighted sum of 
the neuron’s inputs.) We use layers.Dense(units=512, activation='relu') to 
define the layer, and then the last part of the line—(input)—declares the 
input to this layer (namely, our input object). It’s important to understand 
that this passing of input to our layer is how data flow is defined in the 
model, as opposed to the ordering of the lines of the code. 

In the next line, we define our model’s output layer, which again uses 
the Dense function. But this time, we designate only a single neuron to the 
layer and use a 'sigmoid' activation function , which is great for combining 
a lot of data into a single score between 0 and 1. The output layer takes the 
(middle) object as input, declaring that the outputs from our 512 neurons in 
our middle layer should all be sent to this neuron.

Now that we’ve defined our layers, we use the Model class from the models 
submodule to wrap up all these layers together as a model . Note that you 
only have to specify your input layer(s) and output layer(s). Because each 
layer after the first is given the preceding layer as input, the final output 
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layer contains all the information the model needs about the previous layers. 
We could have 10 more middle layers declared between our input and output 
layers, but the line of code at  would remain the same.

Compiling the Model
Finally, we need to compile our model. We’ve defined the model’s architec-
ture and flow of data, but we haven’t yet specified how we want the model to 
perform its training. To do this, we use our model’s own compile method and 
pass it three parameters:

•	 The first parameter, optimizer , specifies the type of backpropagation 
algorithm to use. You can specify the name of the algorithm you wish 
to use via a character string like we did here, or you can import an algo-
rithm directly from keras.optimizers to pass in specific parameters to 
the algorithm or even design your own.

•	 The loss parameter  specifies the thing that is minimized during 
the training process (backpropagation). Specifically, this specifies the 
formula you wish to use to represent the difference between your true 
training labels and your model’s predicted labels (output). Again, you 
can specify the name of a loss function, or pass in an actual function, 
like keras.losses.mean_squared_error.

•	 Lastly, for the metrics parameter , you can pass a list of metrics that 
you want Keras to report when analyzing model performance during and 
after training. Again, you can pass strings or actual metric functions, 
like ['categorical_accuracy', keras.metrics.top_k_categorical_accuracy].

After running the code in Listing 11-1, run model.summary() to see the 
model structure printed to your screen. Your output should look something 
like Figure 11-1.

Figure 11-1: Output of model.summary()
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Figure 11-1 shows the output of model.summary(). Each layer’s descrip-
tion is printed to the screen, along with the number of parameters associ-
ated with that layer. For example, the dense_1 layer has 524,800 parameters 
because each of its 512 neurons gets a copy of each of the 1,024 input values 
from the input layer, meaning that there are 1,024 × 512 weights. Add 512 
bias parameters, and you get 1,024 × 512 + 512 = 524,800.

Although we haven’t yet trained our model or tested it on validation 
data, this is a compiled Keras model that is ready to train!

N o t e 	 Check out the sample code in ch11/model_architecture.py for an example of a 
slightly more complex model!

Training the Model
To train our model, we need training data. The virtual machine that 
comes with this book includes a set of about half a million benign and 
malicious HTML files. This consists of two folders of benign (ch11/data/
html/benign_files/) and malicious (ch11/data/html/malicious_files/) HTML 
files. (Remember not to open these files in a browser!) In this section, we 
use these to train our neural network to predict whether an HTML file is 
benign (0) or malicious (1).

Extracting Features
To do this, we first need to decide how to represent our data. In other 
words, what features do we want to extract from each HTML file to 
use as input to our model? For example, we could simply pass the first 
1,000 characters in each HTML file to the model, we could pass in the 
frequency counts of all letters in the alphabet, or we could use an HTML 
parser to develop some more complex features. To make things easier, we’ll 
transform each variable-length, potentially very large HTML file into a uni-
formly sized, compressed representation that allows our model to quickly 
process and learn important patterns.

In this example, we transform each HTML file into a 1,024-length vec-
tor of category counts, where each category count represents the number 
of tokens in the HTML file whose hash resolved to the given category. 
Listing 11-2 shows the feature extraction code.

import numpy as np
import murmur
import re
import os

def read_file(sha, dir):
    with open(os.path.join(dir, sha), 'r') as fp:
       file = fp.read()
    return file
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def extract_features(sha, path_to_files_dir,
                     hash_dim=1024, usplit_regex=r"\s+"):

     file = read_file(sha=sha, dir=path_to_files_dir)
     tokens = re.split(pattern=split_regex, string=file) 

    # now take the modulo(hash of each token) so that each token is replaced
    # by bucket (category) from 1:hash_dim.
    token_hash_buckets = [

         (murmur.string_hash(w) % (hash_dim - 1) + 1) for w in tokens
    ]
    # Finally, we'll count how many hits each bucket got, so that our features
    # always have length hash_dim, regardless of the size of the HTML file:
    token_bucket_counts = np.zeros(hash_dim)
    # this returns the frequency counts for each unique value in
    # token_hash_buckets:
    buckets, counts = np.unique(token_hash_buckets, return_counts=True)
    # and now we insert these counts into our token_bucket_counts object:
    for bucket, count in zip(buckets, counts):

         token_bucket_counts[bucket] = count
    return np.array(token_bucket_counts)

Listing 11-2: Feature extraction code

You don’t have to understand all the details of this code to understand 
how Keras works, but I encourage you to read through the comments in the 
code to better understand what’s going on.

The extract_features function starts by reading in an HTML file as a big 
string  and then splits up this string into a set of tokens based on a regu-
lar expression . Next, the numeric hash of each token is taken, and these 
hashes are divided into categories by taking the modulo of each hash . 
The final set of features is the number of hashes in each category , like a 
histogram bin count. If you want, you can try altering the regular expres-
sion split_regex  that splits up the HTML file into chunks to see how it 
affects the resulting tokens and features.

If you skipped or didn’t understand all that, that’s okay: just know that 
our extract_features function takes the path to an HTML file as input and 
then transforms it into a feature array of length 1,024, or whatever hash_dim is.

Creating a Data Generator
Now we need to make our Keras model actually train on these features. When 
working with small amounts of data already loaded into memory, you can use 
a simple line of code like Listing 11-3 to train your model in Keras.

# first you would load in my_data and my_labels via some means, and then:
model.fit(my_data, my_labels, epochs=10, batch_size=32)

Listing 11-3: Training your model when data is already loaded into memory

However, this isn’t really useful when you start working with large 
amounts of data, because you can’t fit all your training data into your 
computer’s memory at once. To get around this, we use the slightly more 
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complex but more scalable model.fit_generator function. Instead of passing 
in all the training data at once to this function, you pass a generator that 
yields training data in batches so that your computer’s RAM won’t choke.

Python generators work just like Python functions, except they have a 
yield statement. Instead of returning a single result, generators return an 
object that can be called again and again to yield many, or infinite, sets of 
results. Listing 11-4 shows how we can create our own data generator using 
our feature extraction function.

def my_generator(benign_files, malicious_files,
                 path_to_benign_files, path_to_malicious_files,
                 batch_size, features_length=1024):
    n_samples_per_class = batch_size / 2

     assert len(benign_files) >= n_samples_per_class
    assert len(malicious_files) >= n_samples_per_class

     while True:
        ben_features = [
            extract_features(sha, path_to_files_dir=path_to_benign_files,
                             hash_dim=features_length)
            for sha in np.random.choice(benign_files, n_samples_per_class,
                                        replace=False)
        ]
        mal_features = [

             extract_features(sha, path_to_files_dir=path_to_malicious_files,
                             hash_dim=features_length)

             for sha in np.random.choice(malicious_files, n_samples_per_class,
                                        replace=False)
        ]

         all_features = ben_features + mal_features
        labels = [0 for i in range(n_samples_per_class)] + [1 for i in range(
                  n_samples_per_class)]

        idx = np.random.choice(range(batch_size), batch_size)
         all_features = np.array([np.array(all_features[i]) for i in idx]) 

        labels = np.array([labels[i] for i in idx]) 
         yield all_features, labels

Listing 11-4: Writing a data generator

First, the code makes two assert statements to check that enough 
data is there . Then inside a while  loop (so it’ll just iterate forever), 
both benign and malicious features are grabbed by choosing a random 
sample  of file keys and then extracting features for those files using our 
extract_features function . Next, the benign and malicious features and 
associated labels (0 and 1) are concatenated  and shuffled . Finally, 
these features and labels are returned .

Once instantiated, this generator should yield batch_size features and 
labels for the model to train on (50 percent malicious, 50 percent benign) 
each time the generator’s next() method is called.

Listing 11-5 shows how to create a training data generator using the 
data that comes with this book, and how to train our model by passing the 
generator to our model’s fit_generator method.



206   Chapter 11

import os

batch_size = 128
features_length = 1024
path_to_training_benign_files = 'data/html/benign_files/training/'
path_to_training_malicious_files = 'data/html/malicious_files/training/'
steps_per_epoch = 1000 # artificially small for example-code speed!

 train_benign_files = os.listdir(path_to_training_benign_files)
 train_malicious_files = os.listdir(path_to_training_malicious_files)

# make our training data generator!
 training_generator = my_generator(

    benign_files=train_benign_files,
    malicious_files=train_malicious_files,
    path_to_benign_files=path_to_training_benign_files,
    path_to_malicious_files=path_to_training_malicious_files,
    batch_size=batch_size,
    features_length=features_length
)

 model.fit_generator(
     generator=training_generator,
     steps_per_epoch=steps_per_epoch,
     epochs=10

)

Listing 11-5: Creating the training generator and using it to train the model

Try reading through this code to understand what’s happening. After 
importing a necessary package and creating some parameter variables, 
we read the filenames for our benign  and malicious training data  
into memory (but not the files themselves). We pass these values to our 
new my_generator function  to get our training data generator. Finally, 
using our model from Listing 11-1, we use the model’s built-in fit_generator 
method  to start training.

The fit_generator method takes three parameters. The generator param-
eter  specifies the data generator that produces training data for each 
batch. During training, parameters are updated once per batch by averag-
ing all the training observations’ signals for that batch. The steps_per_epoch 
parameter  sets the number of batches we want the model to process each 
epoch. As a result, the total number of observations the model sees per epoch 
is batch_size*steps_per_epoch. By convention, the number of observations a 
model sees per epoch should be equal to the dataset size, but in this chapter 
and in the virtual machine sample code, I reduce steps_per_epoch to make 
our code run faster. The epochs parameter  sets the number of epochs we 
want to run.

Try running this code in the ch11/ directory that accompanies this book. 
Depending on the power of your computer, each training epoch will take a 
certain amount of time to run. If you’re using an interactive session, feel free 
to cancel the process (ctrl-C) after a few epochs if it’s taking a while. This 
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will stop the training without losing progress. After you cancel the process 
(or the code completes), you’ll have a trained model! The readout on your 
virtual machine screen should look something like Figure 11-2.

Figure 11-2: Console output from training a Keras model

The top few lines note that TensorFlow, which is the default backend 
to Keras, has been loaded. You’ll also see some warnings like in Figure 11-2; 
these just mean that the training will be done on CPUs instead of GPUs 
(GPUs are often around 2–20 times faster for training neural networks, but 
for the purposes of this book, CPU-based training is fine). Finally, you’ll see 
a progress bar for each epoch indicating how much longer the given epoch 
will take, as well as the epoch’s loss and accuracy metrics.

Incorporating Validation Data
In the previous section, you learned how to train a Keras model on HTML 
files using the scalable fit_generator method. As you saw, the model prints 
statements during training, indicating each epoch’s current loss and accu-
racy statistics. However, what you really care about is how your trained 
model does on validation data, or data that it has never seen before. This 
better represents the kind of data your model will face in a real-life produc-
tion environment.

When trying to design better models and figure out how long to train 
your model for, you should try to maximize validation accuracy rather than 
training accuracy, the latter of which was shown in Figure 11-2. Even better 
would be using validation files originating from dates after the training 
data to better simulate a production environment.

Listing 11-6 shows how to load our validation features into memory 
using our my_generator function from Listing 11-4.

import os
path_to_validation_benign_files = 'data/html/benign_files/validation/'
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path_to_validation_malicious_files = 'data/html/malicious_files/validation/'
# get the validation keys:
val_benign_file_keys = os.listdir(path_to_validation_benign_files)
val_malicious_file_keys = os.listdir(path_to_validation_malicious_files)
# grab the validation data and extract the features:

 validation_data = my_generator(
    benign_files=val_benign_files,
    malicious_files=val_malicious_files,
    path_to_benign_files=path_to_validation_benign_files,
    path_to_malicious_files=path_to_validation_malicious_files,

     batch_size=10000,
    features_length=features_length

 ).next()

Listing 11-6: Reading validation features and labels into memory by using the 
my_generator function

This code is very similar to how we created our training data generator, 
except that the file paths have changed and now we want to load all the vali-
dation data into memory. So instead of just creating the generator, we create 
a validation data generator  with a large batch_size  equal to the number 
of files we want to validate on, and we immediately call its .next()  method 
just once.

Now that we have some validation data loaded into memory, Keras allows 
us to simply pass fit_generator() our validation data during training, as shown 
in Listing 11-7.

model.fit_generator(
     validation_data=validation_data,

    generator=training_generator,
    steps_per_epoch=steps_per_epoch,
    epochs=10
)

Listing 11-7: Using validation data for automatic monitoring during training

Listing 11-7 is almost identical to the end of Listing 11-5, except that 
validation_data is now passed to fit_generator . This helps enhance model 
monitoring by ensuring that validation loss and accuracy are calculated 
alongside training loss and accuracy.

Now, training statements should look something like Figure 11-3.

Figure 11-3: Console output from training a Keras model with validation data
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Figure 11-3 is similar to Figure 11-2, except that instead of just showing 
training loss and acc metrics for each epoch, now Keras also calculates and 
shows val_loss (validation loss) and val_acc (validation accuracy) for each 
epoch. In general, if validation accuracy is going down instead of up, that’s 
an indication your model is overfitting to your training data, and it would 
be best to halt training. If validation accuracy is going up, as is the case 
here, it means your model is still getting better and you should continue 
training.

Saving and Loading the Model
Now that you know how to build and train a neural network, let’s go over 
how to save it so you can share it with others.

Listing 11-8 shows how to save our trained model to an .h5 file  and 
reload  it (at a potentially later date).

from keras.models import load_model
# save the model

 model.save('my_model.h5')
# load the model back into memory from the file:

 same_model = load_model('my_model.h5') 

Listing 11-8: Saving and loading Keras models

Evaluating the Model
In the model training section, we observed some default model evaluation 
metrics like training loss and accuracy as well as validation loss and accu-
racy. Let’s now review some more complex metrics to better evaluate our 
models.

One useful metric for evaluating the accuracy of a binary predictor is 
called area under the curve (AUC). The curve refers to a Receiver Operating 
Characteristic (ROC) curve (see Chapter 8), which plots false-positive rates 
(x-axis) against true-positive rates (y-axis) for all possible score thresholds.

For example, our model tries to predict whether a file is malicious by 
using a score between 0 (benign) and 1 (malicious). If we choose a rela-
tively high score threshold to classify a file as malicious we’ll get fewer false-
positives (good) but also fewer true-positives (bad). On the other hand, if 
we choose a low score threshold, we’ll likely have a high false-positive rate 
(bad) but a very high detection rate (good).

These two sample possibilities would be represented as two points 
on our model’s ROC curve, where the first would be located toward the 
left side of the curve and the second near the right side. AUC represents 
all these possibilities by simply taking the area under this ROC curve, as 
shown in Figure 11-4.

In simple terms, an AUC of 0.5 represents the predictive capability of a 
coin flip, while an AUC of 1 is perfect.
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Figure 11-4: Various sample ROC curves. Each ROC curve (line)  
corresponds to a different AUC value.

Let’s use our validation data to calculate validation AUC using the code 
in Listing 11-9.

from sklearn import metrics

 validation_labels = validation_data[1]
 validation_scores = [el[0] for el in model.predict(validation_data[0])]
 fpr, tpr, thres = metrics.roc_curve(y_true=validation_labels,

                                    y_score=validation_scores)
 auc = metrics.auc(fpr, tpr)

print('Validation AUC = {}'.format(auc))

Listing 11-9: Calculating validation AUC using sklearn’s metric submodule

Here, we split our validation_data tuple into two objects: the valida-
tion labels represented by validation_labels , and flattened validation 
model predictions represented by validation_scores . Then, we use the 
metrics.roc_curve function from sklearn to calculate false-positive rates, 
true-positive rates, and associated threshold values for the model predic-
tions . Using these, we calculate our AUC metric, again using an sklearn 
function .

Although I won’t go over the function code here, you can also use 
the roc_plot() function included in the ch11/model_evaluation.py file in the 
data accompanying this book to plot the actual ROC curve, as shown in 
Listing 11-10.

from ch11.model_evaluation import roc_plot
roc_plot(fpr=fpr, tpr=tpr, path_to_file='roc_curve.png')

Listing 11-10: Creating a ROC curve plot using the roc_plot function from this book’s 
accompanying data, in ch11/model_evaluation.py
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Running the code in Listing 11-10 should generate a plot (saved to 
roc_curve.png) that looks like Figure 11-5.
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Figure 11-5: A ROC curve!

Each point in the ROC curve in Figure 11-5 represents a specific false-
positive rate (x-axis) and true-positive rate (y-axis) associated with various 
model prediction thresholds ranging from 0 to 1. As false-positive rates 
increase, true-positive rates increase, and vice versa. In production envi-
ronments, you generally have to pick a single threshold (a single point on 
this curve, assuming validation data mimics production data) with which 
to make your decision, based on your willingness to tolerate false positives, 
versus your willingness to risk allowing a malicious file to slip through the 
cracks.

Enhancing the Model Training Process with Callbacks
So far, you’ve learned how to design, train, save, load, and evaluate Keras 
models. Although this is really all you need to get a fairly good start, I also 
want to introduce Keras callbacks, which can make our model training pro-
cess even better.

A Keras callback represents a set of functions that Keras applies during 
certain stages of the training process. For example, you can use a Keras call-
back to make sure that an .h5 file is saved at the end of each epoch, or that 
validation AUC is printed to the screen at the end of each epoch. This can 
help record and inform you more precisely of how your model is doing dur-
ing the training process.

We begin by using a built-in callback, and then we try writing our own 
custom callback.
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Using a Built-in Callback
To use a built-in callback, simply pass your model’s fit_generator() method 
a callback instance during training. We’ll use the callbacks.ModelCheckpoint 
callback, which evaluates validation loss after each training epoch, and 
saves the current model to a file if the validation loss is smaller than any 
previous epoch’s validation losses. To do this, the callback needs access to 
our validation data, so we’ll pass that in to the fit_generator() method, as 
shown in Listing 11-11.

from keras import callbacks

model.fit_generator(
    generator=training_generator,
    # lowering steps_per_epoch so the example code runs fast:
    steps_per_epoch=50,
    epochs=5,
    validation_data=validation_data,
    callbacks=[
        callbacks.ModelCheckpoint(save_best_only=True,u

                                   filepath='results/best_model.h5',
                                   monitor='val_loss')

   ],
)

Listing 11-11: Adding a ModelCheckpoint callback to the training process

This code ensures that the model is overwritten  to a single file, 
'results/best_model.h5' , whenever 'val_loss'  (validation loss) reaches 
a new low.  This ensures that the current saved model ('results/best_model​
.h5') always represents the best model across all completed epochs with 
regard to validation loss.

Alternatively, we can use the code in Listing 11-12 to save the model 
after every epoch to a separate file regardless of validation loss.

callbacks.ModelCheckpoint(save_best_only=False,x
                           filepath='results/model_epoch_{epoch}.h5',

                          monitor='val_loss')

Listing 11-12: Adding a ModelCheckpoint callback to the training process that saves the 
model to a different file after each epoch

To do this, we use the same code in Listing 11-11 and the same func-
tion ModelCheckpoint, but with save_best_only=False  and a filepath that asks 
Keras to fill in the epoch number . Instead of only saving the single “best” 
version of our model, Listing 11-12’s callback saves each epoch’s version 
of our model, in results/model_epoch_0.h5, results/model_epoch_1.h5, results/
model_epoch_2.h5, and so on.
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Using a Custom Callback
Although Keras doesn’t support AUC, we can design our own custom call-
back to, for example, allow us to print AUC to the screen after each epoch.

To create a custom Keras callback, we need to create a class that inher-
its from keras.callbacks.Callback, the abstract base class used to build new 
callbacks. We can add one or more of a selection of methods, which will 
be run automatically during training, at times that their names specify: 
on_epoch_begin, on_epoch_end, on_batch_begin, on_batch_end, on_train_begin, and 
on_train_end.

Listing 11-13 shows how to create a callback that calculates and prints 
validation AUC to the screen at the end of each epoch.

import numpy as np
from keras import callbacks
from sklearn import metrics

 class MyCallback(callbacks.Callback):

     def on_epoch_end(self, epoch, logs={}):
         validation_labels = self.validation_data[1]

        validation_scores = self.model.predict(self.validation_data[0])
        # flatten the scores:
        validation_scores = [el[0] for el in validation_scores]
        fpr, tpr, thres = metrics.roc_curve(y_true=validation_labels,
                                            y_score=validation_scores)

         auc = metrics.auc(fpr, tpr)
        print('\n\tEpoch {}, Validation AUC = {}'.format(epoch,
                                                         np.round(auc, 6)))

model.fit_generator(
    generator=training_generator,
    # lowering steps_per_epoch so the example code runs fast:
    steps_per_epoch=50,
    epochs=5,

     validation_data=validation_data,
     callbacks=[

        callbacks.ModelCheckpoint('results/model_epoch_{epoch}.h5',
                                  monitor='val_loss',
                                  save_best_only=False,
                                  save_weights_only=False)
    ]
)

Listing 11-13: Creating and using a custom callback to print AUC to the screen after each 
training epoch

In this example, we first create our MyCallback class , which inherits 
from callbacks.Callbacks. Keeping things simple, we overwrite a single 
method, on_epoch_end , and give it two arguments expected by Keras: 
epoch and logs (a dictionary of log information), both of which Keras will 
supply when it calls the function during training.
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Then, we grab the validation_data , which is already stored in the self 
object thanks to callbacks.Callback inheritance, and we calculate and print 
out AUC  like we did in “Evaluating the Model” on page 209. Note that for 
this code to work, the validation data needs to be passed to fit_generator() so 
that the callback has access to self.validation_data during training . Finally, 
we tell the model to train and specify our new callback . The result should 
look something like Figure 11-6.

Figure 11-6: Console output from training a Keras model with a custom AUC callback

If what you really care about is minimizing validation AUC, this callback 
makes it easy to see how your model is doing during training, thus helping 
you assess whether you should stop the training process (for example, if vali-
dation accuracy is going consistently down over time).

Summary
In this chapter, you learned how to build your own neural network using 
Keras. You also learned to train, evaluate, save, and load it. You then learned 
how to enhance the model training process by adding built-in and custom 
callbacks. I encourage you to play around with the code accompanying this 
book to see what changes model architecture and feature extraction can 
have on model accuracy.

This chapter is meant to get your feet wet, but is not meant as a refer-
ence guide. Visit https://keras.io for the most up-to-date official documenta-
tion. I strongly encourage you to spend time researching aspects of Keras 
that interest you. Hopefully, this chapter has served as a good jumping-off 
point for all your security deep learning adventures!
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B e c o m i n g  a  D a t a  S c i e n t i s t

To conclude this book, let’s take a step 
back and discuss how you can make a life 

and career as a malware data scientist or 
a security data scientist in general. Although 

this is a nontechnical chapter, it’s just as important as 
the technical chapters in this book, if not more impor-
tant. This is because becoming a successful security 
data scientist involves much more than simply under-
standing the subject matter.

In this chapter, we the authors share our own career paths to becoming 
professional security data scientists. You’ll get a glimpse of what day-to-day 
life looks like as a security data scientist and what it takes to become an 
effective data scientist. We also share tips on how to approach data science 
problems and how to stay resilient in the face of inevitable challenges. 
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Paths to Becoming a Security Data Scientist
Because security data science is a new field, there are many paths to 
becoming a security data scientist. Whereas many data scientists receive 
formal training through graduate school, many others are self-taught. For 
example, I grew up in the 1990s computer hacking scene, where I learned 
to program in C and assembly and to write black-hat hacking tools. Later, I 
got a bachelor’s degree and then a master’s degree in the humanities before 
re-entering the tech world as a security software developer. Along the way, I 
taught myself data visualization and machine learning at night, finally mov-
ing into a formal security data science role at Sophos, a security research 
and development company. Hillary Sanders, my co-author on this book, 
studied statistics and economics in college, worked as a data scientist for a 
time, and later found work at a security company as a data scientist, picking 
up her security knowledge on the job.

Our team at Sophos is just as diverse. Our colleagues hold a number of 
degrees in a wide range of disciplines: psychology, data science, mathemat-
ics, biochemistry, statistics, and computer science. Although security data 
science is biased toward those with formal training in quantitative methods 
in science, it includes folks with varied backgrounds in these fields. And 
although scientific and quantitative training is helpful for learning security 
data science, my own experience suggests that it’s also possible to enter and 
excel in our field with a nontraditional background, as long as you’re will-
ing to teach yourself.

Excelling in security data science hinges on one’s willingness to con-
stantly learn new things. This is because practical knowledge is just as 
important as theoretical knowledge in our field, and you pick up practical 
knowledge through doing, not through school work.

Being willing to learn new things is also important because machine 
learning, network analysis, and data visualization are constantly changing, 
so what you learn in school quickly goes out of date. For example, deep 
learning has only taken off as a trend in the years since around 2012, and 
has developed rapidly since, so almost everyone in data science who gradu-
ated before then has had to teach themselves these powerful ideas. This is 
good news for those seeking to enter security data science professionally. 
Since those already in the field have to constantly teach themselves new 
skills, you can get a foot in the door by already knowing those skills.

A Day in the Life of a Security Data Scientist
A security data scientist’s job is to apply the type of skills taught in this book 
to hard security problems. But application of these skills tends to be embed-
ded within a larger workflow that involves other skills as well. Figure 12-1 
illustrates a typical workflow of a security data scientist, based on our expe-
rience and that of our colleagues at other companies and organizations.
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1. Identify a potential security
data science problem.

2. Identify data feeds that
can help solve the problem.

3. Experiment with potential
approaches before choosing one.

4. Evaluate the chosen approach
to predict real-world performance.

5. Deploy a data science system to
detect or analyze threats.

Figure 12-1: A model of the security data science workflow

As Figure 12-1 shows, the security data science workflow involves an inter-
play between five areas of work. The first area, problem identification, involves 
identifying security problems where data science can help. For example, we 
may hypothesize that identifying spear-phishing emails can be solved using 
data science methods, or that identifying the particular method used to 
obfuscate known malware is a problem worth investigating.

At this stage, any assumption that a given problem may be solvable with 
data science is just a hypothesis. When you have a hammer (data science), 
every problem can look like a nail (a machine learning, data visualization, 
or network analysis problem). We have to reflect on whether these prob-
lems are truly best addressed using data science methods, keeping in mind 
that it will take building a prototype data science solution and then testing 
this solution to better understand if data science actually provides the best 
solution.

When you’re working within an organization, identifying a good problem 
almost always involves interacting with stakeholders who are not themselves 
data scientists. For example, within our company, we often interface with 
product managers, executives, software developers, and salespeople who 
think that data science is like a magic wand that can solve any problem, or 
that data science is akin to “artificial intelligence” and therefore has some 
magical ability to achieve unrealistic results.

The key thing to remember when dealing with such stakeholders is 
to be honest about the capabilities and limitations of data science–based 
approaches, and to maintain a shrewd, measured attitude so that you 
don’t go chasing the wrong problems. You should discard problems for 
which there is no data to drive data science algorithms or no way to evalu-
ate whether your data science approaches are actually working, as well as 
problems you can clearly solve better through more manual methods.

For example, here are some problems we declined after others asked us 
to solve them: 

•	 Automatically identifying rogue employees who may be leaking data 
to competitors. There’s not enough data to drive a machine learning 
algorithm, but this could be pursued using data visualization or net-
work analysis.
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•	 Decrypting network traffic. The mathematics of machine learning show 
that machine learning is simply not capable of decrypting weapons-grade 
encrypted data!

•	 Automatically identifying phishing emails handcrafted to target spe-
cific employees based on detailed background knowledge of their 
lifestyle. Again, there’s not enough data to drive a machine learning 
algorithm, but this might be possible through the visualization of a 
time series or email data.

Once you do successfully identify a potential security data science prob-
lem, your next task is to identify data feeds you can use to help solve it using 
the data science techniques explained in this book. This is shown in step 2 
of Figure 12-1. At the end of the day, if you don’t have data feeds that you 
can use to train machine learning models, feed visualizations, or drive net-
work analysis that solves your chosen security problem, data science is prob-
ably not going to help you.

After you’ve selected a problem and identified data feeds that will allow 
you to build a data science–based solution to the problem, it’s time to begin 
building your solution. This actually happens in an iterative loop between 
steps 3 and 4 of Figure 12-1: you build something, evaluate it, improve it, 
reevaluate it, and so on. 

Finally, once your system is ready, you deploy it, as shown in step 5 of 
Figure 12-1. As long as your system stays deployed, you’ll need to go back 
and integrate new data feeds as they become available, try out new data 
science methods, and redeploy new versions of your system.

Traits of an Effective Security Data Scientist
Success in security data science depends a lot on your attitude. In this section, 
we list some mental attributes we’ve found are important to success in secu-
rity data science work.

Open-Mindedness
Data is full of surprises, and this disrupts what we thought we knew about a 
problem. It’s important to keep your mind open to your data proving your 
preconceived notions wrong. If you don’t, you’ll end up missing important 
learnings from your data, and even reading too much into random noise 
to convince yourself of a false theory. Fortunately, the more security data 
science you do, the more open-minded you’ll be about “learning” from 
your data, and the more okay you’ll be with how little you know and how 
much you have to learn from each new problem. In time, you’ll come to 
both enjoy and expect surprises from your data.

Boundless Curiosity
Data science projects are very different from software engineering and 
IT projects in that they require exploring data to find patterns, outliers, 



Becoming a Data Scientist   219

and trends, which we then leverage to build our systems. Identifying these 
dynamics is not easy: it often requires running hundreds of experiments 
or analyses to get a sense of the overall shape of your data and the stories 
hidden inside. Some people have a natural drive to run shrewdly designed 
experiments and to dig deeper into their data, almost addictively, whereas 
others don’t. The former is the type of person who tends to succeed at data 
science. Curiosity is therefore a requirement in this field because it’s what dif-
ferentiates our ability to arrive at a deep understanding of our data versus a 
shallow one. The more you can cultivate an attitude of curiosity when build-
ing models and visualizations of your data, the more useful your systems 
will be.

Obsession with Results
Once you’ve defined a good security data science problem and have begun 
iteratively trying solutions and evaluating them, an obsession with results 
may take hold of you, particularly on machine learning projects. This is a 
good sign. For example, when I’m heavily involved in a machine learning 
project, I have multiple experiments running 24 hours a day, 7 days a week. 
This means that I might wake up multiple times a night to check on the sta-
tus of the experiments, and often need to fix bugs and restart experiments 
at 3:00 in the morning. I tend to check in on my experiments before going 
to bed every night and multiple times throughout the weekend.

This kind of round-the-clock workflow is often necessary to build top-
of-the-line security data science systems. Without it, it’s easy to settle for 
mediocre results, failing to break out of ruts or overcome blockages built 
out of misplaced assumptions about the data.

Skepticism of Results
It’s easy to fool yourself into thinking you’re succeeding on a security data 
science project. For example, perhaps you set up your evaluation incorrectly, 
such that it appears your system’s accuracy is much better than it actually 
is. Evaluating your system on data that’s too similar to your training data or 
too dissimilar from real-world data is a common pitfall. You also might have 
inadvertently cherry-picked examples from your network visualization that 
you thought were useful but most users don’t find much value in. Or perhaps 
you worked so hard on your approach that you convinced yourself that the 
evaluation statistics are good, when in fact they’re not good enough to make 
your system useful in your real world. It’s important to maintain a healthy 
level of skepticism of your results, lest you find yourself in an embarrassing 
situation someday.

Where to Go from Here
We’ve covered a lot in this book, but we’ve also barely scratched the surface. 
If this book has convinced you to pursue security data science in a seri-
ous way, we have two recommendations for you: first, begin applying the 
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tools you’ve learned in this book to problems you care about immediately. 
Second, read more books on data science and security data science. Here 
are some examples of problems you might consider applying your new-
found skills to:

•	 Detecting malicious domain names

•	 Detecting malicious URLs

•	 Detecting malicious email attachments

•	 Visualizing network traffic to spot anomalies

•	 Visualizing email sender/recipient patterns to detect phishing emails

To expand your knowledge of data science methods, we recommend 
starting simple, with Wikipedia articles on the data science algorithms you 
want to learn more about. Wikipedia is a surprisingly accessible and author-
itative resource when it comes to data science, and it’s free. For those who 
want to go deeper, especially in machine learning, we recommend picking 
up books on linear algebra, probability theory, statistics, graph analytics, 
and multivariable calculus, or taking free online courses. Learning these 
fundamentals will pay dividends for the rest of your data science career, 
because they are the foundation on which our field rests. Beyond focusing 
on these fundamentals, we also recommend taking courses on or reading 
more “applied” books about Python, numpy, sklearn, matplotlib, seaborn, Keras, 
and any other tools covered in this book that are used heavily in the data 
science community.



A n  O v e r v i e w  o f  D a t a s e t s 
a n d T   o o l s

All data and code for this book 
are available for download at http://

www.​malwaredatascience.com/. Be warned: 
there is Windows malware in the data. If you unzip 
the data on a machine with an antivirus engine run-
ning on it, many of the malware examples will likely 
get deleted or quarantined. 

NOTE    	 We have modified a few bytes in each malware executable so as to disable it from 
executing. That being said, you can’t be too careful about where you store it. We 
recommend storing it on a non-Windows machine that’s isolated from your home 
or business network.

http://www.malwaredatascience.com/
http://www.malwaredatascience.com/
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Ideally, you should only experiment with the code and data within an iso-
lated virtual machine. For convenience, we’ve provided a VirtualBox Ubuntu 
instance at http://www.malwaredatascience.com/ that has the data and code pre-
loaded onto it, along with all the necessary open source libraries.

Overview of Datasets
Now let’s walk through the datasets that accompany each chapter of 
this book.

Chapter 1: Basic Static Malware Analysis
Recall that in Chapter 1 we walk through basic static analysis of a mal-
ware binary called ircbot.exe. This malware is an implant, meaning it hides 
on users’ systems and waits for commands from an attacker, allowing the 
attacker to collect private data from a victim’s computer or achieve mali-
cious ends like erasing the victim’s hard drive. This binary is available in 
the data accompanying this book at ch1/ircbot.exe.

We also use an example of fakepdfmalware.exe in this chapter (located 
at ch1/fakepdfmalware.exe). This is a malware program that has an Adobe 
Acrobat/PDF desktop icon to trick users into thinking they’re opening a 
PDF document when they’re actually running the malicious program and 
infecting their systems.

Chapter 2: Beyond Basic Static Analysis: x86 Disassembly
In this chapter we explore a deeper topic in malware reverse engineering: 
analyzing x86 disassembly. We reuse the ircbot.exe example from Chapter 1 
in this chapter.

Chapter 3: A Brief Introduction to Dynamic Analysis
For our discussion of dynamic malware analysis in Chapter 3, we experi-
ment with a ransomware example stored in the path ch3/d676d9dfab6a424 
2258362b8ff579cfe6e5e6db3f0cdd3e0069ace50f80af1c5 in the data accompany-
ing this book. The filename corresponds to the file’s SHA256 cryptographic 
hash. There’s nothing particularly special about this ransomware, which 
we got by searching VirusTotal.com’s malware database for examples of 
ransomware.

Chapter 4: Identifying Attack Campaigns Using Malware Networks
Chapter 4 introduces the application of network analysis and visualization 
to malware. To demonstrate these techniques, we use a set of high-quality 
malware samples used in high-profile attacks, focusing our analysis on a set 
of malware samples likely produced by a group within the Chinese military 
known to the security community as Advanced Persistent Threat 1 (or APT1 
for short).
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These samples and the APT1 group that generated them were discovered 
and made public by cybersecurity firm Mandiant. In its report (excerpted 
here) titled “APT1: Exposing One of China’s Cyber Espionage Units” (https://
www.fireeye​.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf), 
Mandiant found the following:

•	 Since 2006, Mandiant has observed APT1 compromise 141 companies 
spanning 20 major industries.

•	 APT1 has a well-defined attack methodology, honed over years and 
designed to steal large volumes of valuable intellectual property.

•	 Once APT1 has established access, they periodically revisit the victim’s 
network over several months or years and steal broad categories of intel-
lectual property, including technology blueprints, proprietary manu-
facturing processes, test results, business plans, pricing documents, 
partnership agreements, and emails and contact lists from victim orga-
nizations’ leadership.

•	 APT1 uses some tools and techniques that we have not yet observed 
being used by other groups including two utilities designed to steal 
email: GETMAIL and MAPIGET.

•	 APT1 maintained access to victim networks for an average of 356 days.

•	 The longest time period APT1 maintained access to a victim’s network 
was 1,764 days, or four years and ten months.

•	 Among other large-scale thefts of intellectual property, we have observed 
APT1 stealing 6.5TB of compressed data from a single organization over 
a ten-month time period.

•	 In the first month of 2011, APT1 successfully compromised at least 17 
new victims operating in 10 different industries.

As this excerpt of the report shows, the APT1 samples were used for high-
stakes, nation state–level espionage. These samples are available in the data 
accompanying this book at ch4/data/APT1_MALWARE_FAMILIES.

Chapter 5: Shared Code Analysis
Chapter 5 reuses the APT1 samples used in Chapter 4. For convenience, 
these samples are also located in the Chapter 5 directory, at ch5/data/
APT1_MALWARE_FAMILIES.

Chapter 6: Understanding Machine Learning–Based Malware Detectors and 
Chapter 7: Evaluating Malware Detection Systems
These conceptual chapters don’t require any sample data.
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Chapter 8: Building Machine Learning Detectors
Chapter 8 explores building machine learning–based malware detectors 
and uses 1,419 sample binaries as a sample dataset for training your own 
machine learning detection system. These binaries are located at ch8/data/
benignware for the benign samples and ch8/data/malware for the malware 
samples.

The dataset contains 991 benignware samples and 428 malware samples, 
and we got this data from VirusTotal.com. These samples are representative, 
in the malware case, of the kind of malware observed on the internet in 
2017 and, in the benignware case, of the kind of binaries users uploaded to 
VirusTotal.com in 2017.

Chapter 9: Visualizing Malware Trends
Chapter 9 explores data visualization and uses the sample data in the file 
ch9/code/malware_data.csv. Of the 37,511 data rows in the file, each row 
shows a record of an individual malware file, when it was first seen, how 
many antivirus products detected it, and what kind of malware it is (for 
example, Trojan horse, ransomware, and so on). This data was collected 
from VirusTotal.com.

Chapter 10: Deep Learning Basics
This chapter introduces deep neural networks and doesn’t use any 
sample data.

Chapter 11: Building a Neural Network Malware Detector with Keras
This chapter walks through building a neural network malware detector 
for detecting malicious and benign HTML files. Benign HTML files are 
from legitimate web pages, and the malicious web pages are from websites 
that attempt to infect victims via their web browsers. We got both of these 
datasets from VirusTotal.com using a paid subscription that allows access to 
millions of sample malicious and benign HTML pages.

All the data is stored at the root directory ch11/data/html. The benign-
ware is stored at ch11/data/html/benign_files, and the malware is stored at 
ch11/data/html/malicious_files. Additionally, within each of these directories 
are the subdirectories training and validation. The training directories con-
tain the files we train the neural network on in the chapter, and the valida-
tion directories contain the files we test the neural network on to assess its 
accuracy.

Chapter 12: Becoming a Data Scientist
Chapter 12 discusses how to become a data scientist and doesn’t use any 
sample data.
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Tool Implementation Guide
Although all the code in this book is sample code, intended to demonstrate the 
ideas in the book and not be taken whole cloth and used in the real world, 
some of the code we provide can be used as a tool in your own malware anal-
ysis work, particularly if you’re willing to extend it for your own purposes.

NOTE    	 Intended as examples and starting places for full-fledged malware data science tools, 
these tools are not robustly implemented. They have been tested on Ubuntu 17 and 
are expected to work on this platform, but with a bit of work around installing the 
right requirements, you should be able to get the tools to work on other platforms like 
macOS and other flavors of Linux fairly easily.

In this section, we walk through the nascent tools provided in this book 
in the order in which they appear.

Shared Hostname Network Visualization
A shared hostname network visualization tool is given in Chapter 4 and is 
located at ch4/code/listing-4-8.py. This tool extracts hostnames from target 
malware files and then shows connections between the files based on com-
mon hostnames contained in them.

The tool takes a directory of malware as its input and then outputs 
three GraphViz files that you can then visualize. To install the require-
ments for this tool, run the command run bash install_requirements.sh in 
the ch4/code directory. Listing A-1 shows the “help” output from the tool, 
after which we discuss what the parameters mean.

usage: Visualize shared hostnames between a directory of malware samples
       [-h] target_path output_file malware_projection hostname_projection

positional arguments:
   target_path          directory with malware samples
   output_file          file to write DOT file to
   malware_projection   file to write DOT file to
   hostname_projection  file to write DOT file to

optional arguments:
  -h, --help           show this help message and exit

Listing A-1: Help output from the shared hostname network visualization tool given in 
Chapter 4

As shown in Listing A-1, the shared hostname visualization tool 
requires four command line arguments: target_path , output_file , 
malware_projection , and hostname_projection . The parameter target_path 
is the path to the directory of malware samples you’d like to analyze. The 
output_file parameter is a path to the file where the program will write a 
GraphViz .dot file representing the network that links malware samples to 
the hostnames they contain.
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The malware_projection and hostname_projection parameters are also 
file paths and specify the locations where the program will write .dot files 
that represent these derived networks (for more on network projections, 
see Chapter 4). Once you’ve run the program, you can use the GraphViz 
suite discussed in Chapters 4 and 5 to visualize the networks. For example, 
you could use the command fdp malware_projection.dot -Tpng -o malware​
_projection.png to generate a file like the .png file rendered in Figure A-1 
on your own malware datasets.

Figure A-1: Sample output from the shared hostname visualization tool given in Chapter 4

Shared Image Network Visualization
We present a shared image network visualization tool in Chapter 4, which is 
located at ch4/code/listing-4-12.py. This program shows network relationships 
between malware samples based on embedded images they share.

The tool takes a directory of malware as its input and then outputs three 
GraphViz files that you can then visualize. To install the requirements for 
this tool, run the command run bash install_requirements.sh in the ch4/code 
directory. Let’s discuss the parameters in the “help” output from the tool 
(see Listing A-2).
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usage: Visualize shared image relationships between a directory of malware 
samples
       [-h] target_path output_file malware_projection resource_projection

positional arguments:
   target_path          directory with malware samples
   output_file          file to write DOT file to
   malware_projection   file to write DOT file to
   resource_projection  file to write DOT file to

optional arguments:
  -h, --help           show this help message and exit

Listing A-2: Help output from the shared resource network visualization tool given in 
Chapter 4

As shown in Listing A-2, the shared image relationships visualization 
tool requires four command line arguments: target_path , output_file , 
malware_projection , and resource_projection . Much like in the shared 
hostname program, here target_path is the path to the directory of malware 
samples you’d like to analyze, and output_file is a path to the file where the 
program will write a GraphViz .dot file representing the bipartite graph 
that links malware samples to the images they contain (bipartite graphs 
are discussed in Chapter 4). The malware_projection and resource_projection 
parameters are also file paths and specify the locations where the program 
will write .dot files that represent these networks.

As with the shared hostname program, once you’ve run the program, you 
can use the GraphViz suite to visualize the networks. For example, you could 
use the command fdp resource_projection.dot -Tpng -o resource​_projection.png 
on your own malware datasets to generate a file like the .png file rendered in 
Figure 4-12 on page 55.

Malware Similarity Visualization
In Chapter 5, we discuss malware similarity and shared code analysis and 
visualization. The first sample tool we provide is given in ch5/code/listing_5_1​
.py. This tool takes a directory containing malware as its input and then visu-
alizes shared code relationships between the malware samples in the direc-
tory. To install the requirements for this tool, run the command run bash 
install_requirements.sh in the ch5/code directory. Listing A-3 shows the help 
output for the tool.

usage: listing_5_1.py [-h] [--jaccard_index_threshold THRESHOLD]
                      target_directory output_dot_file

Identify similarities between malware samples and build similarity graph

positional arguments:
   target_directory      Directory containing malware
   output_dot_file       Where to save the output graph DOT file
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optional arguments:
  -h, --help            show this help message and exit

   --jaccard_index_threshold THRESHOLD, -j THRESHOLD
                        Threshold above which to create an 'edge' between
                        samples

Listing A-3: Help output from the malware similarity visualization tool given in Chapter 5

When you run this shared code analysis tool from the command line, you 
need to pass in two command line arguments: target_directory  and output_
dot_file . You can use the optional argument, jaccard_index_threshold , to 
set the threshold the program uses with the Jaccard index similarity between 
two samples to determine whether or not to create an edge between those 
samples. The Jaccard index is discussed in detail in Chapter 5.

Figure A-2 shows sample output from this tool once you’ve rendered 
the output_dot_file with the command fdp output_dot_file.dot -Tpng -o 
similarity_network.png. This is the shared code network inferred by the 
tool for the APT1 malware samples we just described.

Figure A-2: Sample output from the malware similarity analysis tool given in Chapter 5
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Malware Similarity Search System
The second code-sharing estimation tool we provide in Chapter 5 is given in 
ch5/code/listing_5_2.py. This tool allows you to index thousands of samples in 
a database and then perform a similarity search on them with a query mal-
ware sample, which lets you find malware samples that likely share code with 
that sample. To install the requirements for this tool, run the command run 
bash install_requirements.sh in the ch5/code directory. Listing A-4 shows the 
help output for the tool.

usage: listing_5_2.py [-h] [-l LOAD] [-s SEARCH] [-c COMMENT] [-w]

Simple code-sharing search system which allows you to build up a database of
malware samples (indexed by file paths) and then search for similar samples
given some new sample

optional arguments:
  -h, --help            show this help message and exit

   -l LOAD, --load LOAD Path to directory containing malware, or individual
                        malware file, to store in database

   -s SEARCH, --search SEARCH
                        Individual malware file to perform similarity search
                        on

   -c COMMENT, --comment COMMENT
                        Comment on a malware sample path

   -w, --wipe           Wipe sample database

Listing A-4: Help output from the malware similarity search system given in Chapter 5

This tool has four modes in which it can be run. The first mode, LOAD , 
loads malware into the similarity search database and takes a path as its 
parameter, which should point to a directory with malware in it. You can 
run LOAD multiple times and add new malware to the database each time.

The second mode, SEARCH , takes the path to an individual malware 
file as its parameter and then searches for similar samples in the database. 
The third mode, COMMENT , takes a malware sample path as its argument and 
then prompts you to enter a short textual comment about that sample. The 
advantage of using the COMMENT feature is that when you search for samples 
similar to a query malware sample, you see the comments corresponding to 
the similar sample, thus enriching your knowledge of the query sample.

The fourth mode, wipe , deletes all the data in the similarity search 
database, in case you want to start over and index a different malware data-
set. Listing A-5 shows some sample output from a SEARCH query, giving you 
a flavor for what the output from this tool looks like. Here we’ve indexed 
the APT1 samples described previously using the LOAD command and have 
subsequently searched the database for samples similar to one of the APT1 
samples.
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Showing samples similar to WEBC2-GREENCAT_sample_E54CE5F0112C9FDFE86DB17E85A5E2C5
Sample name                                                      Shared code
[*] WEBC2-GREENCAT_sample_55FB1409170C91740359D1D96364F17B       0.9921875
[*] GREENCAT_sample_55FB1409170C91740359D1D96364F17B             0.9921875
[*] WEBC2-GREENCAT_sample_E83F60FB0E0396EA309FAF0AED64E53F       0.984375
    [comment] This sample was determined to definitely have come from the advanced persistent
              threat group observed last July on our West Coast network
[*] GREENCAT_sample_E83F60FB0E0396EA309FAF0AED64E53F             0.984375

Listing A-5: Sample output for the malware similarity search system given in Chapter 5

Machine Learning Malware Detection System
The final tool you can use in your own malware analysis work is the machine 
learning malware detector used in Chapter 8, which can be found at ch8/
code/complete_detector.py. This tool allows you to train a malware detection sys-
tem on malware and benignware and then use this system to detect whether 
a new sample is malicious or benign. You can install the requirements for 
this tool by running the command bash install.sh in the ch8/code directory. 
Listing A-6 shows the help output for this tool.

usage: Machine learning malware detection system [-h]
                                         [--malware_paths MALWARE_PATHS]
                                         [--benignware_paths BENIGNWARE_PATHS]
                                         [--scan_file_path SCAN_FILE_PATH]
                                         [--evaluate]

optional arguments:
  -h, --help            show this help message and exit

   --malware_paths MALWARE_PATHS
                        Path to malware training files

   --benignware_paths BENIGNWARE_PATHS
                        Path to benignware training files

   --scan_file_path SCAN_FILE_PATH
                        File to scan

   --evaluate           Perform cross-validation

Listing A-6: Help output for the machine learning malware detection tool given in 
Chapter 8

This tool has three modes in which it can be run. The evaluate mode , 
tests the accuracy of the system on the data you select for training and eval-
uating the system. You can invoke this mode by running python complete​_
detector.py –malware_paths <path to directory with malware in it> --benignware​

_paths <path to directory with benignware in it> --evaluate. This command 
will invoke a matplotlib window showing your detector’s ROC curve (ROC 
curves are discussed in Chapter 7). Figure A-3 shows some sample output 
from evaluate mode.
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Figure A-3: Sample output from the malware detection tool provided in Chapter 8, run in 
evaluate mode

Training mode trains a malware detection model and saves it to disk. 
You can invoke this mode by running python complete_detector.py –malware​
_paths  <path to directory with malware in it> --benignware_paths  <path 

to directory with benignware in it>. Note that the only difference between 
this command invocation and the invocation of evaluate mode is that we’ve 
left off the --evaluate flag. The result of this command is that it generates 
a model that it saves to a file called saved_detector.pkl, which is saved in your 
current working directory.

The third mode, scan w, loads saved_detector.pkl and then scans a tar-
get file, predicting whether it’s malicious or not. Make sure you have run 
training mode before running a scan. You can run a scan by running 
python complete_detector.py –scan_file_path <PE EXE file> in the directory 
where you trained the system. The output will be a probability that the 
target file is malicious.





Note: Page numbers referring to figures 
and tables are followed by an italicized f 
or t respectively.

A
activation functions

common, 178t–180t
defined, 178

add_edge function, 41
add_node function, 49–50
add_question function, 112
add arithmetic instruction, 15
ADS (Alternate Data Streams), 29
Advanced Persistent Threat 1 attacker 

group. See APT1 attacker 
group

advanced persistent threats (APTs), 60
Allaple.A malware family, 157, 157f
Alternate Data Streams (ADS), 29
anti-disassembly techniques, 22
API calls, 32–33, 33f
apply_hashing_trick function, 138
APT1 (Advanced Persistent Threat 1) 

attacker group, 37–39, 38f, 
45–47, 45f–47f, 61, 61f, 76, 
76f, 86, 222–223

APTs (advanced persistent threats), 60
ArchSMS family of Trojans, 55
area under the curve (AUC), 209–210, 

210f, 213
arithmetic instructions, 15, 15t
.asarray method, 142
assembly language, defined, 12. See also 

x86 assembly language
AT&T, 43
AT&T syntax, 13
attributes, 37

adding to nodes and edges, 42
and edges, 48–51

AUC (area under the curve), 209–210, 
210f, 213

autoencoder neural networks, 
194–195, 195f

automatic feature generation, 188

B
backpropagation, 190–192, 190f–191f
bag of features model, 62–64, 63f

features, defined, 62
Jaccard index and, 65
N-grams, 63–64, 64f
order information and, 63–64
overview, 62–63

bar charts (histograms), 168–170, 
168f–169f

base virtual memory address, 6
basic blocks, 19–20
bias parameter, 104
bias term, 178, 181
bipartite networks, 37–39, 38f
bitcoin mining, 158, 160–161, 168f, 

172f–173f, 173

C
callbacks

built-in (Keras package), 212
creating shared callback 

relationship network, 51–54
custom, 213–214, 214f

call instruction, 17–18
capstone module, 20
Carerra, Ero, 5
chain rule, 191–192
cmp instruction, 18
CNNs (convolutional neural networks), 

193–194, 194f
coarsenings, 46
color attribute, 49
comment_sample function, 82–84
COMMENT mode, 229
compile method, 202

I n d e x



234   Index

compressed_data_weight parameter, 103
compressed_data parameter, 103–104
conditional branches, defined, 15
control flow, 17

graphs, 19–20, 19f
instructions, 17–18
registers, 14–15

convolutional neural networks (CNNs), 
193–194, 194f

CPU registers, 13–15, 14f
general-purpose registers, 13–14
stack and control flow registers, 

14–15
cross_validation module, 151
cross-validation, 150–153, 151f, 153f
CuckooBox software platform, 27, 

33–34, 59
“curse of dimensionality,” 92
cv_evaluate function, 151

D
dapato malware family, 62, 67f–68f, 

70f–72f
DataFrame objects, 158–161
data movement instructions, 15–20, 16t

basic blocks, 19–20, 19f
control flow graphs, 19–20, 19f
control flow instructions, 17–18
stack instructions, 16–17

data science, iii, iv
applying to malware, v
importance of, iv–v

.data section (in PE file format), 4
dateutil package, 164
dec arithmetic instruction, 15
decision boundaries, 93–98, 95f–98f

identifying with k-nearest 
neighbors, 97–98, 97f–98f

identifying with logistic regression, 
96–97, 96f–97f

overfit machine-learning model, 
100, 101f

underfit machine-learning model, 
99, 99f

well-fit machine-learning model, 
100, 100f

decision thresholds, 149
DecisionTreeClassifier class, 130

decision trees, 109–115, 109f–110f, 
113f–114f

decision tree–based detectors, 129
importing modules, 129
initializing sample training 

data, 130
instantiating classes, 130
sample code, 133–134
training, 130–131
visualizing, 131–133, 132f

follow-up questions, 111
limiting depth or number of 

questions, 111–112
pseudocode for, 112–113
root node, 110–111
when to use, 114–115

deep learning, 175–197, 216. See also 
neural networks

automatic feature generation, 188
building neural networks, 182–188
neurons, 176

anatomy of, 177–180
networks of, 180–181

overview, 176–177
training neural networks, 189–193
types of neural networks, 193–197
universal approximation theorem, 

181–182
deep neural networks. See neural 

networks
Dense function, 200–201
describe method, 159
detection accuracy evaluation, 119–126, 

146–153
base rates and precision, 124–126

effect of base rate on precision, 
124–125

estimating precision in 
deployment environment, 
125–126

with cross-validation, 150–153, 
151f, 153f

neural networks, 209–211, 210f–211f
possible detection outcomes, 

120, 120f
with ROC curves, 123–124, 123f, 

147–150, 150f
true and false positive rates, 

120–124
relationship between, 121–122, 

121f–122f
ROC curves, 123–124, 123f



Index   235

DictVectorizer class, 128–130
directed graphs, 180
distance functions, 107
DLLs (dynamic-link libraries), 13
DOS header (in PE file format), 3
.dot format, 42
dynamically downloaded data, 22–23
dynamic analysis, 25–34

bag of features model, 63
dataset for, 222
for disassembly, 26
limitations of, 33–34
for malware data science, 26
typical malware behaviors, 27
using malwr.com, 26–33

analyzing results, 28–33
limitations, 33
loading files, 27–28

dynamic API call–based similarity, 
72, 72f

dynamic-link libraries (DLLs), 13

E
EAX register, 14
EBP register, 14
EBX register, 14
ECX register, 14
edges, 37

adding attributes, 42
adding to shared relationship 

networks, 41
adding visual attributes to, 48–51

color, 49, 49f
text labels, 50–51
width, 48–49, 48f

EDX register, 14
EFLAGS register, 15
EIP register, 14–15
ELU activation function, 179t
entry point, 3, 19
epochs parameter, 206
ESP register, 14
euclidean_distance function, 107
Euclidean distance, 107
evaluate function, 148
evaluate mode, 231–232
evaluating malware detection systems. 

See detection accuracy 
evaluation

export_graphviz function, 132
extract_features function, 204–205
ExtractImages helper class, 56–57

F
fakepdfmalware.exe, 7
false negatives, defined, 120, 120f
false positives, 120, 120f

base rates and precision, 124–126
false positive rate, 121
relationship between true and false 

positive rates, 121–122, 
121f–122f

ROC curves, 123–124, 123f
fdp tool, 43–45, 45f, 76
feature_extraction module, 129
feature extraction, 134–138

Import Address Table features, 136
machine learning–based malware 

detectors, 90–92, 141–142
N-grams, 136–137
Portable Executable header 

features, 135–136
shared code analysis, 73, 75
string features, 135
training neural networks with Keras 

package, 203–204
why all possible features can’t be 

used at once, 137–138
FeatureHasher class, 140–141
feature hashing. See hashing trick
feature spaces, 93–98, 94f–98f
feed-forward neural networks, 181, 

181f, 193
fit_generator function, 204–206, 208, 

212, 214
fit method, 130–131, 142
flags, defined, 15
format strings, 70
forward propagation, 189–190

G
Gaussian activation function, 179t
generative adversarial networks 

(GANs), 195–196
generator parameter, 206
get_database function, 80–82
get_string_features function, 

141–142, 144
get_strings function, 82
get_training_data function, 143
get_training_paths function, 143
GETMAIL utility, 223
getstrings function, 73–74
–G flag, 44



236   Index

gini index, 132, 132f
gradient descent, 105, 190
Graph constructor, 41, 52–53
graphical image analysis, 7–8

converting extracted .ico files to 
.png graphics, 8

creating directory to hold extracted 
images, 7–8

extracting image resources using 
wrestool, 8

GraphViz, 76
decision tree–based detectors,  

131–133, 132f
malware network analysis, 43–51

adding visual attributes to 
nodes and edges, 48–51

fdp tool, 44–45, 45f
neato tool, 47–48, 47f
parameters, 44
sfdp tool, 46–47, 46f

similarity graphs, 76
ground_truth variable, 130

H
hashing trick (feature hashing), 

138–141
complete code for, 139–140
FeatureHasher class, 140–141
implementing, 138–139

hidden layer, 181
histograms (bar charts), 168–170, 

168f–169f
hostname_projection argument, 225
hyperplanes, 96, 97f

I
IAT. See Import Address Table
icoutils toolkit, 5
IDA Pro, 12
.idata section (imports) (in PE file 

format), 4
Identity activation function, 178t
Import Address Table (IAT), 4

dumping using pefile, 6–7
extracting features, 136
similarity analysis based on, 71, 71f

imports analysis, 6–7
inc arithmetic instruction, 15
information gain, 113
Input function, 200–201

instruction sequence–based 
similarity, 68f

limitations of, 68–70
overview, 67–68

Intel syntax, 13
Internet Relay Chat (IRC), 2
int function, 148
inverted indexing, 82
ircbot.exe bot, 2

disassembling, 20–21
dissecting, 5–7
dumping IAT, 6–7
strings analysis, 9–10

J
jaccard_index_threshold argument, 

227–228
jaccard function, 73
Jaccard index, 61, 65, 65f

building similarity graphs, 73–75
dynamic API call–based 

similarity, 72
instruction sequence–based 

similarity, 68
minhash method, 77–79
scaling similarity comparisons, 77
strings-based similarity, 70

jge instruction, 18
jmp instructions, 18
jointplot function, 171–172

K
Kaspersky, 62
Keras package, building neural 

networks with, 199–214
compiling model, 202–203, 202f
defining architecture of model, 

200–202
evaluating model, 209–211, 

210f–211f
layers, 200
saving and loading model, 209
syntaxes, 200
training model, 203–209, 211–214

built-in callbacks, 212
custom callbacks, 213–214, 214f
data generators, 204–207, 207f
feature extraction, 203–204
validation data, 207–209, 208f

keyloggers, 158, 168f, 172f–173f, 173



Index   237

KFold class, 151–152
K-fold cross-validation, 151
k-nearest neighbors, 105–109, 106f, 108f

identifying decision boundaries 
with, 97–98, 97f–98f

logistic regression vs., 108–109
math behind, 107
pseudocode for, 107
when to use, 109

L
label attribute, 50–51
layers submodule, 200–201
lea instruction, 16
Leaky ReLU activation function, 179t
learned_parameters parameter, 103
linear disassembly, 12

limitation of, 12
shared code analysis, 67–68

LOAD mode, 229
logistic_function function, 

103–104, 104f
logistic_regression function, 103
logistic regression, 102–105, 

103f–104f, 154
gradient descent, 105
identifying decision boundaries 

with, 96–97, 96f–97f
k-nearest neighbors vs., 108–109
limitation of, 102
math behind, 103–104
plot of logistic function, 104f
pseudocode for, 103
when to use, 105

long short-term memory (LSTM) 
networks, 196

Los Alamos National Laboratory, 41
loss parameter, 201–202

M
machine learning–based malware 

detectors, 89–117, 127–154
building basic detectors, 129

sample code, 133–134
training, 130–131
visualizing, 131–133, 132f

building overview, 90–93
collecting training examples, 

90–91
designing good features, 92

extracting features, 90–92
reasons for, 89–90
testing system, 90, 93
training system, 90, 92–93

building real-world detectors, 
141–146

complete code for, 144–146
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running detector on new 

binaries, 144
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dataset for, 224
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feature extraction, 134–138
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N-grams, 136–137
Portable Executable header 

features, 135–136
string features, 135
why all possible features can’t 
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supervised vs. unsupervised 
algorithms, 93

terminology and concepts, 128–129
tool for, 230–232, 231f
traditional algorithms vs., 90
types of algorithms, 101, 102f

decision trees, 109–115, 
109f–110f, 113f–114f

k-nearest neighbors, 97–98, 
97f–98f, 105–109, 106f, 108f

logistic regression, 96–97, 96f–
97f, 102–105, 103f–104f

random forest, 115–116, 116f
malware_projection argument, 52, 

225–227



238   Index

malware detection evaluation. 
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code for, 52–54
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parsing command line 
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file-loading code, 55–57
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dataset for, 222–223
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GraphViz, creating visualizations 

with, 43–51
fdp tool, 44–45, 45f
neato tool, 47–48, 47f
parameters, 44
sfdp tool, 46–47, 46f
visual attributes, 48–51

NetworkX library, creating 
networks with, 40–43

adding attributes, 42
adding nodes and edges, 41
saving networks to disk, 42–43
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projections, 38
shared code analysis and, 60–61
visualization challenges, 39–40

distortion problem, 39–40, 40f
force-directed algorithms, 40
network layout, 39–40

malware samples, 61–62, 222–224
malwr.com, 26–33, 28f

analyzing results on, 28–33
API calls, 32–33, 33f
modified system objects, 30–32
Screenshots panel, 30, 30f
Signatures panel, 29–30, 29f
Summary panel, 30–32, 31f–32f

limitations of, 33
loading files on, 27–28

Mandiant, 61, 76, 223
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Mastercard, iii
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worm detection rates, 
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metrics module, 147–148
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combined with sketching, 79
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overview, 77–78

minhash function, 82
ModelCheckpoint callback, 212
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models submodule, 201–202
mov instruction, 15–16
murmur module, 80, 82
mutexes, defined, 32
my_generator function, 205, 207–208
MyCallback class, 213–214

N
neato tool, 47–48, 47f
Nemucod.FG malware family, 157, 157f
NetworkX library, 40–43
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networks, 41–42

overview, 41
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automatic feature generation, 188
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adding to shared relationship 

networks, 41
adding visual attributes to, 48–51

color, 49, 49f
shape, 49–50, 50f
text labels, 50–51
width, 48–49
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70f–72f
PE. See Portable Executable file format
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registry keys, 32
.reloc section (in PE file format), 5
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seaborn package, 168–174, 168f
creating violin plots, 172–174, 
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sketches, 81–82
parsing user command line 

arguments, 84–85
sample output, 86–87
searching for similar samples, 86
wiping database, 86

scaling similarity comparisons, 
77–79
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disassembly and reverse 
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graphical image analysis, 7–8
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anti-disassembly techniques, 22
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22–23
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transform method, 131, 140
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underfit machine-learning models, 
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universal approximation theorem, 
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Y
yield statement, 205

Z
zango malware family, 62, 67f–68f, 

70f–72f





Malware Data Science is set in New Baskerville, Futura, Dogma, and 
TheSansMonoCondensed. 



UPDATES
Visit https://www.nostarch.com/malwaredatascience/ for updates, errata, and 
other information.

phone:
1.800.420.7240 or
1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

PRACTICAL BINARY ANALYSIS
Build Your Own Linux Tools for  
Binary Instrumentation, Analysis,  
and Disassembly
by dennis andriesse
december 2018, 456 pp., $59.99
isbn 978-1-59327-912-7

SERIOUS CRYPTOGRAPHY,  
2ND EDITION
A Practical Introduction to  
Modern Encryption
by jean-philippe aumasson
october 2024, 376 pp., $59.99
isbn 978-1-7185-0384-7

PRACTICAL MALWARE ANALYSIS
The Hands-On Guide to  
Dissecting Malicious Software
by michael sikorski and 
andrew honig
february 2012, 800 pp., $59.99
isbn 978-1-59327-290-6

ROOTKITS AND BOOTKITS
Reversing Modern Malware and  
Next Generation Threats
by alex matrosov, eugene  
rodionov, and sergey bratus
spring 2019, 504 pp., $49.95
isbn 978-1-59327-716-1

PENTESTING AZURE 
APPLICATIONS
The Definitive Guide to Testing and 
Securing Deployments
by matt burrough
july 2018, 216 pp., $39.99
isbn 978-1-59327-863-2

ATTACKING NETWORK PROTOCOLS
A Hacker’s Guide to Capture, Analysis, 
and Exploitation
by james forshaw
december 2017, 336 pp., $49.95
isbn 978-1-59327-750-5

More no-nonsense books from NO STARCH PRESS





Saxe 
Sanders

MalwareDataScience

Malware 
Data Science

Attack Detection and Attribution

AttackDetectionandAttribution

Joshua Saxe with Hillary Sanders
Foreword by Anup Ghosh, PhD

With millions of malware files created each 
year and a flood of security-related data 
generated every day, security has become 
a “big data” problem. So, when defending 
against malware, why not think like a data 
scientist?

In Malware Data Science, security data scien-
tists Joshua Saxe and Hillary Sanders show 
you how to apply machine learning, statistics, 
and data visualization as you build your own 
detection and intelligence systems. Following 
an overview of basic reverse engineering con-
cepts like static and dynamic analysis, you’ll 
learn to measure code similarities in malware 
samples and use machine learning frame-
works like scikit-learn and Keras to build and 
train your own detectors.

Learn how to:

👿	 Identify new malware written by the same 
adversary groups through shared code 
analysis

👿	 Catch zero-day malware by building your 
own machine learning detection system

👿	 Use ROC curves to measure the accuracy of 
your malware detector to help you select 
the best approach to a security problem

👿	 Use data visualization to identify and 
explore malware campaigns, trends, and 
relationships

👿	 Use Python to implement deep neural 
network–based detection systems

Whether you’re a malware analyst looking to 
add skills to your existing arsenal or a data 
scientist interested in attack detection and 
threat intelligence, Malware Data Science will 
help you stay ahead of the curve. 

About the Authors
Joshua Saxe is chief data scientist at Sophos, a 
major security software vendor, where he helps 
invent data science technologies for detecting 
Android-, Windows-, and web-based malicious 
programs. Before joining Sophos, Saxe spent 
five years leading DARPA-funded security data 
research projects for the US government.

Hillary Sanders is a senior software engi-
neer and data scientist at Sophos, where she 
has played a key role in inventing and produc-
tizing neural network, machine learning, and 
malware similarity analysis security technolo-
gies. She is a regular speaker at security confer-
ences like Black Hat USA and BSides Las Vegas.

“Stay ahead of the changes in technology and the 
adversaries you’re charged with defeating.” 
 — Anup Ghosh, PhD, founder of Invincea, Inc

TH E  F I N EST  I N  G E E K  E NTE RTA I N M E NT™
www.nostarch.com

Part of the proceeds from this book will be 
donated to the Environmental Defense Fund.

®


	Brief Contents 
	Contents in Detail 
	Foreword
	Acknowledgments
	Introduction
	What Is Data Science?
	Why Data Science Matters for Security
	Applying Data Science to Malware
	Who Should Read This Book?
	About This Book
	How to Use the Sample Code and Data

	Chapter 1: Basic Static Malware Analysis

	The Microsoft Windows Portable Executable Format
	The PE Header
	The Optional Header
	Section Headers

	Dissecting the PE Format Using pefile
	Examining Malware Images
	Examining Malware Strings
	Using the strings Program
	Analyzing Your strings Dump

	Summary

	Chapter 2: Beyond Basic Static Analysis: x86 Disassembly

	Disassembly Methods
	Basics of x86 Assembly Language
	CPU Registers
	Arithmetic Instructions
	Data Movement Instructions

	Disassembling ircbot.exe Using pefile and capstone
	Factors That Limit Static Analysis
	Packing
	Resource Obfuscation
	Anti-disassembly Techniques
	Dynamically Downloaded Data

	Summary

	Chapter 3: A Brief Introduction to Dynamic Analysis

	Why Use Dynamic Analysis?
	Dynamic Analysis for Malware Data Science
	Basic Tools for Dynamic Analysis
	Typical Malware Behaviors
	Loading a File on malwr.com
	Analyzing Results on malwr.com

	Limitations of Basic Dynamic Analysis
	Summary

	Chapter 4: Identifying Attack Campaigns Using Malware Networks

	Nodes and Edges
	Bipartite Networks
	Visualizing Malware Networks
	The Distortion Problem
	Force-Directed Algorithms

	Building Networks with NetworkX
	Adding Nodes and Edges
	Adding Attributes
	Saving Networks to Disk

	Network Visualization with GraphViz
	Using Parameters to Adjust Networks
	The GraphViz Command Line Tools
	Adding Visual Attributes to Nodes and Edges

	Building Malware Networks
	Building a Shared Image Relationship Network
	Summary

	Chapter 5: Shared Code Analysis

	Preparing Samples for Comparison by Extracting Features
	How Bag of Features Models Work
	What are N-Grams?

	Using the Jaccard Index to Quantify Similarity
	Using Similarity Matrices to Evaluate Malware Shared Code Estimation Methods
	Instruction Sequence-Based Similarity
	Strings-Based Similarity
	Import Address Table–Based Similarity
	Dynamic API Call–Based Similarity

	Building a Similarity Graph
	Scaling Similarity Comparisons
	Minhash in a Nutshell
	Minhash in Depth

	Building a Persistent Malware Similarity Search System
	Running the Similarity Search System
	Summary

	Chapter 6: Understanding Machine Learning–Based Malware Detectors

	Steps for Building a Machine Learning–Based Detector
	Gathering Training Examples
	Extracting Features
	Designing Good Features
	Training Machine Learning Systems
	Testing Machine Learning Systems

	Understanding Feature Spaces and Decision Boundaries
	What Makes Models Good or Bad: Overfitting and Underfitting
	Major Types of Machine Learning Algorithms
	Logistic Regression
	K-Nearest Neighbors
	Decision Trees
	Random Forest

	Summary

	Chapter 7: Evaluating Malware Detection Systems

	Four Possible Detection Outcomes
	True and False Positive Rates
	Relationship Between True and False Positive Rates
	ROC Curves

	Considering Base Rates in Your Evaluation
	How Base Rate Affects Precision
	Estimating Precision in a Deployment Environment

	Summary

	Chapter 8: Building Machine Learning Detectors

	Terminology and Concepts
	Building a Toy Decision Tree–Based Detector
	Training Your Decision Tree Classifier
	Visualizing the Decision Tree
	Complete Sample Code

	Building Real-World Machine Learning Detectors with sklearn
	Real-World Feature Extraction
	Why You Can’t Use All Possible Features
	Using the Hashing Trick to Compress Features

	Building an Industrial-Strength Detector
	Extracting Features
	Training the Detector
	Running the Detector on New Binaries
	What We’ve Implemented So Far

	Evaluating Your Detector’s Performance
	Using ROC Curves to Evaluate Detector Efficacy
	Computing ROC Curves
	Splitting Data into Training and Test Sets
	Computing the ROC Curve
	Cross-Validation

	Next Steps
	Summary

	Chapter 9: Visualizing Malware Trends

	Why Visualizing Malware Data Is Important
	Understanding Our Malware Dataset
	Loading Data into pandas
	Working with a pandas DataFrame
	Filtering Data Using Conditions

	Using matplotlib to Visualize Data
	Plotting the Relationship Between Malware Size and Detection
	Plotting Ransomware Detection Rates
	Plotting Ransomware and Worm Detection Rates

	Using seaborn to Visualize Data
	Plotting the Distribution of Antivirus Detections
	Creating a Violin Plot

	Summary

	Chapter 10: Deep Learning Basics

	What Is Deep Learning?
	How Neural Networks Work
	Anatomy of a Neuron
	A Network of Neurons
	Universal Approximation Theorem
	Building Your Own Neural Network
	Adding Another Neuron to the Network
	Automatic Feature Generation

	Training Neural Networks
	Using Backpropagation to Optimize a Neural Network
	Path Explosion
	Vanishing Gradient

	Types of Neural Networks
	Feed-Forward Neural Network
	Convolutional Neural Network
	Autoencoder Neural Network
	Generative Adversarial Network
	Recurrent Neural Network
	ResNet

	Summary

	Chapter 11: Building a Neural Network Malware Detector with Keras

	Defining a Model’s Architecture
	Compiling the Model
	Training the Model
	Extracting Features
	Creating a Data Generator
	Incorporating Validation Data
	Saving and Loading the Model

	Evaluating the Model
	Enhancing the Model Training Process with Callbacks
	Using a Built-in Callback
	Using a Custom Callback

	Summary

	Chapter 12: Becoming a Data Scientist

	Paths to Becoming a Security Data Scientist
	A Day in the Life of a Security Data Scientist
	Traits of an Effective Security Data Scientist
	Open-Mindedness
	Boundless Curiosity
	Obsession with Results
	Skepticism of Results

	Where to Go from Here

	Appendix: An Overview of Datasets and Tools

	Overview of Datasets
	Chapter 1: Basic Static Malware Analysis
	Chapter 2: Beyond Basic Static Analysis: x86 Disassembly
	Chapter 3: A Brief Introduction to Dynamic Analysis
	Chapter 4: Identifying Attack Campaigns Using Malware Networks
	Chapter 5: Shared Code Analysis
	Chapter 6: Understanding Machine Learning–Based Malware Detectors and Chapter 7: Evaluating Malware Detection Systems
	Chapter 8: Building Machine Learning Detectors
	Chapter 9: Visualizing Malware Trends
	Chapter 10: Deep Learning Basics
	Chapter 11: Building a Neural Network Malware Detector with Keras
	Chapter 12: Becoming a Data Scientist

	Tool Implementation Guide
	Shared Hostname Network Visualization
	Shared Image Network Visualization
	Malware Similarity Visualization
	Malware Similarity Search System
	Machine Learning Malware Detection System


	Index




