Malware
Jata Science

Attack Detectmn and Attribution

Joshua Saxe with Hillary Sanders
Foreword by Anup Ghosh, PhD

MALWARE DATA SCIENCE

MALWARE
DATA SCIENCE

Attack Detection and
Attribution

by Joshua Saxe
with Hillary Sanders

¢

no starch
press®

San Francisco

MALWARE DATA SCIENCE. Copyright © 2018 by Joshua Saxe with Hillary Sanders.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Sixth printing
2827262524 678910

ISBN-13: 978-1-59327-859-5 (print)
ISBN-13: 978-1-59327-860-1 (ebook)

® Published by No Starch Press®, Inc.
245 8th Street, San Francisco, CA 94103
phone: +1.415.863.9900

www.nostarch.com; info@nostarch.com

Publisher: William Pollock

Production Editor: Laurel Chun

Cover Illustration: Jonny Thomas

Interior Design: Octopod Studios

Developmental Editors: Annie Choi and William Pollock
Technical Reviewer: Gabor Szappanos

Copyeditor: Barton Reed

Compositor: Laurel Chun

Proofreader: James Fraleigh

Indexer: BIM Creatives, LLC

Library of Congress Control Number: 2018949204

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press iron logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective own-
ers. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using
the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in it.

(E]

To Alen Capalik,
for bringing me back to computers after a long hiatus

About the Authors

Joshua Saxe is Chief Data Scientist at the major security vendor Sophos,
where he leads a security data science research team. He’s also a princi-
pal inventor of Sophos’ neural network—based malware detector, which
defends tens of millions of Sophos customers from malware infections.
Before joining Sophos, Joshua spent five years leading DARPA-funded
security data research projects for the US government.

Hillary Sanders is a senior software engineer and data scientist at
Sophos, where she has played a key role in inventing and productizing
neural network, machine learning, and malware similarity analysis tech-
nologies. Before joining Sophos, Hillary was a data scientist at Premise
Data Corporation. She is a regular speaker at security conferences,
having given security data science talks at Blackhat USA and BSides
Las Vegas. She studied Statistics at UC Berkeley.

About the Technical Reviewer

Gabor Szappanos graduated from the Eotvos Lorand University

of Budapest with a degree in physics. His first job was developing
diagnostic software and hardware for nuclear power plants at the
Computer and Automation Research Institute. Gabor started antivirus
work in 1995 and joined VirusBuster in 2001, where he was responsible
for taking care of macro virus and script malware; in 2002, he became
head of the virus lab. Between 2008 and 2016, he was a member of the
board of directors in Anti-Malware Testing Standards Organizations
(AMTSO), and, in 2012, he joined Sophos as a Principal Malware
Researcher.

BRIEF CONTENTS

Foreword xvii
Acknowledgments L xix
Infroduction.o xxi
Chapter 1: Basic Static Malware Analysis. 1
Chapter 2: Beyond Basic Static Analysis: x86 Disassembly. 11
Chapter 3: A Brief Infroduction to Dynamic Analysis. 25
Chapter 4: Identifying Attack Campaigns Using Malware Networks. 35
Chapter 5: Shared Code Analysis 59
Chapter 6: Understanding Machine Learning-Based Malware Detectors. 89
Chapter 7: Evaluating Malware Detection Systems. 119
Chapter 8: Building Machine Learning Detectors 127
Chapter 9: Visualizing Malware Trends 155
Chapter 10: Deep Learning Basics. oo 175
Chapter 11: Building a Neural Network Malware Detector with Keras. 199
Chapter 12: Becoming a Data Scientist i 215
Appendix: An Overview of Datasetsand Tools 221

CONTENTS IN DETAIL

FOREWORD by Anup Ghosh xvii
ACKNOWLEDGMENTS xix
INTRODUCTION xXXi
What Is Data Science? XXii
Why Data Science Matters for Security. XXii
Applying Data Scienceto Malware xxiii
Who Should Read This Book® XXiv
About This Book.o Xxiv
How to Use the Sample Code and Data XXV
1
BASIC STATIC MALWARE ANALYSIS 1
The Microsoft Windows Portable Executable Format. 2
The PEHeader 3
The Optional Header 3
SectionHeaders. 4
Dissecting the PE Format Using pefile 5
Examining Malware Images 7
Examining Malware Strings. 8
Using the strings Program 8
Analyzing Your strings Dump 9
SUMMArY . .o 10
2
BEYOND BASIC STATIC ANALYSIS: X86 DISASSEMBLY 11
Disassembly Methods 12
Basics of x86 Assembly Language 12
CPURegisters. 13
Arithmetic Instructions 15
Data Movement Instructions L 15
Disassembling ircbot.exe Using pefile and capstone. 20
Factors That Limit Static Analysis 21
Packing . . . oo 21
Resource Obfuscation 22
Anti-disassembly Techniques. 22
Dynamically Downloaded Data 22

SUMMAIY . .ot 23

3
A BRIEF INTRODUCTION TO DYNAMIC ANALYSIS

Basic Tools for Dynamic Analysis.
Typical Malware Behaviors
loading a Fileonmalwr.com
Analyzing Results on malwr.com. L
Limitations of Basic Dynamic Analysis.
SUMMAIY « oo

4
IDENTIFYING ATTACK CAMPAIGNS
USING MALWARE NETWORKS

Nodesand Edges i
Bipartite Networks
Visualizing Malware Networks
The Distortion Problem.
Force-Directed Algorithms
Building Networks with NetworkX
Adding Nodesand Edges.
Adding Aftributes
Saving Networks to Disk
Network Visualization with GraphViz.
Using Parameters to Adjust Networks,
The GraphViz Command Line Tools
Adding Visual Attributes to Nodes and Edges
Building Malware Networks
Building a Shared Image Relationship Network
SUMMAIY o oo

5
SHARED CODE ANALYSIS

Preparing Samples for Comparison by Extracting Features
How Bag of Features Models Work.

Using the Jaccard Index to Quantify Similarity.
Using Similarity Matrices to Evaluate Malware Shared Code Estimation Methods
Instruction Sequence-Based Similarity L.
Strings-Based Similarity
Import Address Table-Based Similarity
Dynamic API Call-Based Similarity
Building a Similarity Graph.
Scaling Similarity Comparisons
Minhash ina Nutshell
MinhashinDepth o
Building a Persistent Malware Similarity Search System
Running the Similarity Search System
SUMMAIY © o e e

xii Contents in Detail

25

26
26
27
27
27
28
33
34

35

37
37
39
39
40
40
41
42
42
43
44
44
48
51
54
58

6
UNDERSTANDING MACHINE LEARNING-BASED
MALWARE DETECTORS

Steps for Building a Machine Learning-Based Detector.
Gathering Training Examples
Extracting Features L
Designing Good Features.
Training Machine Learning Systems.
Testing Machine Learning Systems
Understanding Feature Spaces and Decision Boundaries
What Makes Models Good or Bad: Overfitting and Underfitting
Major Types of Machine Learning Algorithms
Logistic Regression
K-Nearest Neighbors.
Decision Trees
Random Foresto
SUMMAIY . .

7
EVALUATING MALWARE DETECTION SYSTEMS

Four Possible Detection Qutcomes
True and False Positive Rates
Relationship Between True and False Positive Rates.
ROC Curves. . ..o

Considering Base Rates in Your Evaluation
How Base Rate Affects Precision.

SUMMAIY . .o

8
BUILDING MACHINE LEARNING DETECTORS

Terminology and Concepts it
Building a Toy Decision Tree-Based Detector.
Training Your Decision Tree Classifier
Visualizing the Decision Tree i
Complete Sample Code.
Building Real-World Machine Learning Detectors with sklearn
Real-World Feature Extraction
Why You Can’t Use All Possible Features.
Using the Hashing Trick to Compress Features
Building an Industrial-Strength Detector.
Extracting Features o
Training the Detector.
Running the Detector on New Binaries.
What We've Implemented SoFar.
Evaluating Your Detector’s Performance
Using ROC Curves to Evaluate Detector Efficacy.
Computing ROC Curves.t
Splitting Data into Training and Test Sets

Contents in Detail

119

120
120
121
123
124
124
125
126

xiii

Computingthe ROC Curve.o 149

Cross-Validation 150
Next Steps . . . o o 153
SUMMAIY .« o oo 154
9
VISUALIZING MALWARE TRENDS 155
Why Visualizing Malware Data Is Important 156
Understanding Our Malware Dataseto 158
loading Dataintopandas 158
Working with a pandas DataFrame 159
Filtering Data Using Conditions 161
Using matplotlib to Visualize Data 162
Plotting the Relationship Between Malware Size and Detection. 162
Plotting Ransomware Detection Rates. 164
Plotting Ransomware and Worm Defection Rates 165
Using seaborn to Visualize Datao 168
Plotting the Distribution of Antivirus Detections 169
CreatingaViolin Plot 172
SUMMAIY .« o oo 174
10
DEEP LEARNING BASICS 175
What Is Deep Learning® 176
How Neural Networks Work. 177
AnatomyofaNeuron 177
ANetworkof Neurons 180
Universal Approximation Theorem 181
Building Your Own Neural Network 182
Adding Another Neuron to the Network 186
Automatic Feature Generation 188
Training Neural Networks. 189
Using Backpropagation to Optimize a Neural Network. 190
Path Explosion 192
Vanishing Gradient. 192
Types of Neural Networks. 193
Feed-Forward Neural Network 193
Convolutional Neural Network o 193
Autoencoder Neural Network. o o 194
Generative Adversarial Network. 195
Recurrent Neural Network 196
ResNet . .. 196
SUMMAIY © o e 197
11
BUILDING A NEURAL NETWORK MALWARE DETECTOR
WITH KERAS 199
Defining a Model's Architecture. 200

Compilingthe Model 202

Training the Model. 203

Extracting Features 203
Creating a Data Generator 204
Incorporating ValidationData 207
Saving and loading the Model. L 209
Evaluatingthe Model 209
Enhancing the Model Training Process with Callbacks 211
Using a Builkin Callback 212
Using a Custom Callback. 213
SUMMAIY . . 214
12
BECOMING A DATA SCIENTIST 215
Paths to Becoming a Security Data Scientist. 216
A Day in the Life of a Security Data Scientfist 216
Traits of an Effective Security Data Scientist. 218
Open-Mindedness. i 218
Boundless Curiosityo 218
ObsessionwithResults. 219
Skepticismof Results 219
Whereto GofromHere 219
APPENDIX
AN OVERVIEW OF DATASETS AND TOOLS 221
Overview of Datasets oot 222
Chapter 1: Basic Static Malware Analysis 222
Chapter 2: Beyond Basic Static Analysis: x86 Disassembly 222
Chapter 3: A Brief Introduction to Dynamic Analysis 222
Chapter 4: Identifying Attack Campaigns Using Malware Networks 222
Chapter 5: Shared Code Analysis. 223
Chapter 6: Understanding Machine Learning-Based Malware Detectors
and Chapter 7: Evaluating Malware Detection Systems. 223
Chapter 8: Building Machine Learning Defectors 224
Chapter 9: Visualizing Malware Trends. 224
Chapter 10: Deep Learning Basics 224
Chapter 11: Building a Neural Network Malware Detector with Keras 224
Chapter 12: Becoming a Data Scientist. 224
Tool Implementation Guide 225
Shared Hostname Network Visualization. 225
Shared Image Network Visualization. 226
Malware Similarity Visualization. oo 227
Malware Similarity Search System 229
Machine Learning Malware Detection System. 230
INDEX 233

Contents in Detail XV

FOREWORD

Congratulations on picking up Malware Data Science.
You're on your way to equipping yourself with the
skills necessary to become a cybersecurity profes-
sional. In this book, you’ll find a wonderful introduc-
tion to data science as applied to malware analysis,
as well as the requisite skills and tools you need to be
proficient at it.

There are far more jobs in cybersecurity than there are qualified
candidates, so the good news is that cybersecurity is a great field to get
into. The bad news is that the skills required to stay current are changing
rapidly. As is often the case, necessity is the mother of invention. With far
more demand for skilled cybersecurity professionals than there is supply,
data science algorithms are filling the gap by providing new insights and
predictions about threats against networks. The traditional model of watch-
men monitoring network data is rapidly becoming obsolete as data science

xviii

Foreword

is increasingly being used to find threat patterns in terabytes of data. And
thank goodness for that, because monitoring a screen of alerts is about as
exciting as monitoring a video camera surveillance system of a parking lot.

So what exactly is data science and how does it apply to security? As
you’ll see in the Introduction, data science applied to security is the art
and science of using machine learning, data mining, and visualization to
detect threats against networks. While you'll find a lot of hyperbole around
machine learning and artificial intelligence driven by marketing, there are,
in fact, very good use cases for these technologies that are in production
today.

For instance, when it comes to malware detection, both the volume of
malware production and the cost to the adversary in changing malware
signatures has rendered signature-only based approaches to malware
obsolete. Instead, antivirus companies are now training neural networks
or other types of machine learning algorithms over very large datasets of
malware to learn their characteristics, so that new variants of malware can
be detected without having to update the model daily. The combination
of signature-based and machine learning—based detection provides cover-
age for both known and unknown malware. This is a topic both Josh and
Hillary are experts in and from which they speak from deep experience.

But malware detection is only one use case for data science. In fact,
when it comes to finding threats on the network, today’s sophisticated
adversaries often will not drop executable programs. Instead, they will
exploit existing software for initial access and then leverage system tools
to pivot from one machine to the next using the user privileges obtained
through exploitation. From an adversarial point of view this approach
doesn’t leave behind artifacts such as malware that antivirus software will
detect. However, a good endpoint logging system or an endpoint detection
and response (EDR) system will capture system level activities and send this
telemetry to the cloud, from where analysts can attempt to piece together
the digital footprints of an intruder. This process of combing through mas-
sive streams of data and continuously looking for patterns of intrusion is a
problem well-suited for data science, specifically data mining with statistical
algorithms and data visualization. You can expect more and more Security
Operations Centers (SOCs) to adopt data mining and artificial intelligence
technologies. It’s really the only way to cull through massive data sets of sys-
tem events to identify actual attacks.

Cybersecurity is undergoing massive shifts in technology and its opera-
tions, and data science is driving the change. We are fortunate to have
experts like Josh Saxe and Hillary Sanders not only share their expertise
with us, but do it in such an engaging and accessible way. This is your
opportunity to learn what they know and apply it to your own work so you
can stay ahead of the changes in technology and the adversaries you're
charged with defeating.

Anup K. Ghosh, PhD
Founder, Invincea, Inc
Washington, DC

ACKNOWLEDGMENTS

Thanks to Annie Choi, Laurel Chun, and Bill Pollock at No Starch Press
and to my copyeditor, Bart Reed. In all justice, they should be regarded as
co-authors of this book. Thanks in advance to the workers responsible for
printing, transporting, and selling copies of this book, and the engineers
responsible for its digital storage, transmission, and rendering. Thanks to
Hillary Sanders for bringing her remarkable talents to the project exactly
when they were needed. Gratitude to Gabor Szappanos for his excellent and
exacting technical review.

Thanks to my two year old daughter Maya, who, I'm happy to share,
slowed this project down dramatically. Thanks to Alen Capalik, Danny
Hillis, Chris Greamo, Anup Ghosh, and Joe Levy for their mentorship
over the past 10 years. Deep appreciation to the Defense Advanced
Research Projects Agency (DARPA) and Timothy Fraser for supporting
the research on which much of this book is based. Thanks to Mandiant,
and Mila Parkour, for obtaining and curating the APT1 malware samples
used for demonstration purposes in this book. Deep appreciation to the
authors of Python, NetworkX, matplotlib, numpy, sklearn, Keras, seaborn,
pefile, icoutils, malwr.com, CuckooBox, capstone, pandas, and sqlite for
your contributions to free and open source security and data science
software.

Tremendous gratitude to my parents, Maryl Gearhart and Geoff Saxe,
for introducing me to computers, for tolerating my teenage hacker phase
(and all the illegality that entailed), and for their boundless love and sup-
port. Thanks to Gary Glickman for his indispensable love and support.
Finally, thanks to Ksenya Gurshtein, my partner in life, for supporting me
in this endeavor completely and without hesitation.

Joshua Saxe
Thanks to Josh, for including me in this! Thanks to Ani Adhikari for being
an amazing teacher. Thanks to Jacob Michelini, because he really wanted

his name in a book.

Hillary Sanders

INTRODUCTION

If you're working in security, chances are
you’re using data science more than ever

before, even if you may not realize it. For
example, your antivirus product uses data
science algorithms to detect malware. Your firewall
vendor may have data science algorithms detecting
suspicious network activity. Your security information

and event management (SIEM) software probably uses data science to iden-
tify suspicious trends in your data. Whether conspicuously or not, the entire
security industry is moving toward incorporating more data science into secu-
rity products.

Advanced IT security professionals are incorporating their own custom
machine learning algorithms into their workflows. For example, in recent
conference presentations and news articles, security analysts at Target,
Mastercard, and Wells Fargo all described developing custom data science

technologies that they use as part of their security workflows." If you’re not
already on the data science bandwagon, there’s no better time to upgrade
your skills to include data science into your security practice.

What Is Data Science?

Data scienceis a growing set of algorithmic tools that allow us to understand
and make predictions about data using statistics, mathematics, and artful sta-
tistical data visualizations. More specific definitions exist, but generally, data
science has three subcomponents: machine learning, data mining, and data
visualization.

In the security context, machine learning algorithms learn from train-
ing data to detect new threats. These methods have been proven to detect
malware that flies under the radar of traditional detection techniques like
signatures. Data mining algorithms search security data for interesting
patterns (such as relationships between threat actors) that might help us
discern attack campaigns targeting our organizations. Finally, data visual-
ization renders sterile, tabular data into graphical format to make it easier
for people to spot interesting and suspicious trends. I cover all three areas
in depth in this book and show you how to apply them.

Why Data Science Matters for Security

Introduction

Data science is critically important for the future of cybersecurity for three
reasons: first, security is all about data. When we seek to detect cyber threats,
we’re analyzing data in the form of files, logs, network packets, and other
artifacts. Traditionally, security professionals didn’t use data science tech-
niques to make detections based on these data sources. Instead, they used
file hashes, custom-written rules like signatures, and manually defined heu-
ristics. Although these techniques have their merits, they required hand-
crafted techniques for each type of attack, necessitating too much manual
work to keep up with the changing cyber threat landscape. In recent years,
data science techniques have become crucial in bolstering our ability to
detect threats.

Second, data science is important to cybersecurity because the number
of cyberattacks on the internet has grown dramatically. Take the growth of
the malware underworld as an example. In 2008, there were about 1 mil-
lion unique malware executables known to the security community. By
2012, there were 100 million. As this book goes to press in 2018, there are
more than 700 million malicious executables known to the security commu-
nity (https://www.av-test.org/en/statistics/malware/), and this number is likely
to grow.

1. Target (hitps://www.rsaconference.com/events/usl7/agenda/sessions/6662-applied-machine-
learning-defeating-modern-malicious), Mastercard (https://blogs.wsj.com/cio/2017/11/15/artificial-
intelligence-transforms-hacker-arsenal/), and Wells Fargo (https://blogs.wsj.com/cio/2017/11/16/
the-morning-download-first-ai-powered-cyberattacks-are-detected/) .

Due to the sheer volume of malware, manual detection techniques
such as signatures are no longer a reasonable method for detecting all
cyberattacks. Because data science techniques automate much of the
work that goes into detecting cyberattacks, and vastly decrease the mem-
ory usage needed to detect such attacks, they hold tremendous promise
in defending networks and users as cyber threats grow.

Finally, data science matters for security because data science is the tech-
nical trend of the decade, both inside and outside of the security industry,
and it will likely remain so through the next decade. Indeed, you’ve probably
seen applications of data science everywhere—in personal voice assistants
(Amazon Echo, Siri, and Google Home), self-driving cars, ad recommenda-
tion systems, web search engines, medical image analysis systems, and fitness
tracking apps.

We can expect data science—driven systems to have major impacts in
legal services, education, and other areas. Because data science has become
a key enabler across the technical landscape, universities, major companies
(Google, Facebook, Microsoft, and IBM), and governments are investing
billions of dollars to improve data science tools. Thanks to these invest-
ments, data science tools will become even more adept at solving hard
attack-detection problems.

Applying Data Science to Malware

This book focuses on data science as it applies to malware, which we define
as executable programs written with malicious intent, because malware
continues to be the primary means by which threat actors gain a foothold
on networks and subsequently achieve their goals. For example, in the ran-
somware scourge that has emerged in recent years, attackers typically send
users malicious email attachments that download ransomware executables
(malware) to users’ machines, which then encrypt users’ data and ask them
for a ransom to decrypt the data. Although skilled attackers working for
governments sometimes avoid using malware altogether to fly under the
radar of detection systems, malware continues to be the major enabling
technology in cyberattacks today.

By homing in on a specific application of security data science rather
than attempting to cover security data science broadly, this book aims to
show more thoroughly how data science techniques can be applied to a
major security problem. By understanding malware data science, you’ll
be better equipped to apply data science to other areas of security, like
detecting network attacks, phishing emails, or suspicious user behavior.
Indeed, almost all the techniques you’ll learn in this book apply to build-
ing data science detection and intelligence systems in general, not just for
malware.

Introduction xxiii

XXiv

Who Should Read This Book?

This book is aimed toward security professionals who are interested in
learning more about how to apply data science to computer security prob-
lems. If computer security and data science are new to you, you might find
yourself having to look up terms to give yourself a little bit of context, but
you can still read this book successfully. If you're only interested in data
science, but not security, this book is probably not for you.

About This Book

Introduction

The first part of the book consists of three chapters that cover basic reverse
engineering concepts necessary for understanding the malware data sci-
ence techniques discussed later in the book. If you’re new to malware, read
the first three chapters first. If you're an old hand at malware reverse engi-
neering, you can skip these chapters.

e Chapter 1: Basic Static Malware Analysis covers static analysis tech-
niques for picking apart malware files and discovering how they achieve
malicious ends on our computers.

e Chapter 2: Beyond Basic Static Analysis: x86 Disassembly gives you a
brief overview of x86 assembly language and how to disassemble and
reverse engineer malware.

¢ Chapter 3: A Brief Introduction to Dynamic Analysis concludes the
reverse engineering section of the book by discussing dynamic analysis,
which involves running malware in controlled environments to learn
about its behavior.

The next two chapters of the book, Chapters 4 and 5, focus on mal-
ware relationship analysis, which involves looking at similarities and dif-
ferences between collections of malware to identify malware campaigns
against your organization, such as a ransomware campaign controlled by
a group of cybercriminals, or a concerted, targeted attack on your orga-
nization. These stand-alone chapters are for readers who are interested
not only in detecting malware, but also in extracting valuable threat intel-
ligence to learn who is attacking their network. If you're less interested in
threat intelligence and more interested in data science—driven malware
detection, you can safely skip these chapters.

e Chapter 4: Identifying Attack Campaigns Using Malware Networks
shows you how to analyze and visualize malware based on shared attri-
butes, such as the hostnames that malware programs call out to.

e Chapter 5: Shared Code Analysis explains how to identify and visual-
ize shared code relationships between malware samples, which can help
you identify whether groups of malware samples came from one or mul-
tiple criminal groups.

The next four chapters cover everything you need to know to under-
stand, apply, and implement machine learning—based malware detection
systems. These chapters also provide a foundation for applying machine
learning to other security contexts.

e Chapter 6: Understanding Machine Learning-Based Malware
Detectors is an accessible, intuitive, and non-mathematical introduc-
tion to basic machine learning concepts. If you have a history with
machine learning, this chapter will provide a convenient refresher.

¢ Chapter 7: Evaluating Malware Detection Systems shows you how to
evaluate the accuracy of your machine learning systems using basic
statistical methods so that you can select the best possible approach.

e Chapter 8: Building Machine Learning Detectors introduces open
source machine learning tools you can use to build your own machine
learning systems and explains how to use them.

e Chapter 9: Visualizing Malware Trends covers how to visualize malware
threat data to reveal attack campaigns and trends using Python, and
how to integrate data visualization into your day-to-day workflow when
analyzing security data.

The last three chapters introduce deep learning, an advanced area
of machine learning that involves a bit more math. Deep learning is a
hot growth area within security data science, and these chapters provide
enough to get you started.

e Chapter 10: Deep Learning Basics covers the basic concepts that
underlie deep learning.

e Chapter 11: Building a Neural Network Malware Detector with Keras
explains how to implement deep learning—based malware detection sys-
tems in Python using open source tools.

e Chapter 12: Becoming a Data Scientist concludes the book by sharing
different pathways to becoming a data scientist and qualities that can
help you succeed in the field.

e Appendix: An Overview of Datasets and Tools describes the data and
example tool implementations accompanying the book.

How to Use the Sample Code and Data

No good programming book is complete without sample code to play with
and extend on your own. Sample code and data accompany each chapter
of this book and are described exhaustively in the appendix. All the code
targets Python 2.7 in Linux environments. To access the code and data,
you can download a VirtualBox Linux virtual machine, which has the
code, data, and supporting open source tools all set up and ready to go,

Introduction XXV

xxvi

Introduction

and run it within your own VirtualBox environment. You can download
the book’s accompanying data at http://www.malwaredatascience.com/, and
you can download the VirtualBox for free at Attps://www.virtualbox.org/wiki/
Downloads. The code has been tested on Linux, but if you prefer to work
outside of the Linux VirtualBox, the same code should work almost as well
on MacOS, and to a lesser extent on Windows machines.

If you’d rather install the code and data in your own Linux environ-
ment, you can download them here: Attp://www.malwaredatascience.com,/.
You’'ll find a directory for each chapter in the downloadable archive,
and within each chapter’s directory there are code/ and data/ directories
that contain the corresponding code and data. Code files correspond to
chapter listings or sections, whichever makes more sense for the applica-
tion at hand. Some code files are exactly like the listings, whereas others
have been changed slightly to make it easier for you to play with parame-
ters and other options. Code directories come with pip requirements.txt files,
which give the open source libraries that the code in that chapter depends
on to run. To install these libraries on your machine, simply type pip -r
requirements.txt in each chapter’s code/ directory.

Now that you have access to the code and data for this book, let’s get
started.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

BASIC STATIC MALWARE ANALYSIS

In this chapter we look at the basics of
static malware analysis. Static analysis is
performed by analyzing a program file’s

disassembled code, graphical images, print-
able strings, and other on-disk resources. It refers to
reverse engineering without actually running the pro-
gram. Although static analysis techniques have their

shortcomings, they can help us understand a wide variety of malware.
Through careful reverse engineering, you’ll be able to better understand
the benefits that malware binaries provide attackers after they’ve taken
possession of a target, as well as the ways attackers can hide and continue
their attacks on an infected machine. As you'll see, this chapter combines
descriptions and examples. Each section introduces a static analysis tech-
nique and then illustrates its application in real-world analysis.

2

I begin this chapter by describing the Portable Executable (PE) file
format used by most Windows programs, and then examine how to use the
popular Python library pefile to dissect a real-world malware binary. I then
describe techniques such as imports analysis, graphical image analysis,
and strings analysis. In all cases, I show you how to use open source tools
to apply the analysis technique to real-world malware. Finally, at the end of
the chapter, I introduce ways malware can make life difficult for malware
analysts and discuss some ways to mitigate these issues.

You’ll find the malware sample used in the examples in this chapter in
this book’s data under the directory /chl. To demonstrate the techniques
discussed in this chapter, we use ircbot.exe, an Internet Relay Chat (IRC)
bot created for experimental use, as an example of the kinds of malware
commonly observed in the wild. As such, the program is designed to stay
resident on a target computer while connected to an IRC server. After irchot
.exe gets hold of a target, attackers can control the target computer via IRC,
allowing them to take actions such as turning on a webcam to capture and
surreptitiously extract video feeds of the target’s physical location, taking
screenshots of the desktop, extracting files from the target machine, and so
on. Throughout this chapter, I demonstrate how static analysis techniques
can reveal the capabilities of this malware.

The Microsoft Windows Portable Executable Format

Chapter 1

To perform static malware analysis, you need to understand the Windows
PE format, which describes the structure of modern Windows program files
such as .exe, .dll, and .sys files and defines the way they store data. PE files
contain x86 instructions, data such as images and text, and metadata that a
program needs in order to run.

The PE format was originally designed to do the following:

Tell Windows how to load a program into memory The PE format
describes which chunks of a file should be loaded into memory, and
where. It also tells you where in the program code Windows should
start a program’s execution and which dynamically linked code
libraries should be loaded into memory.

Supply media (or resources) a running program may use in the course
of its execution These resources can include strings of characters like
the ones in GUI dialogs or console output, as well as images or videos.

Supply security data such as digital code signatures Windows uses
such security data to ensure that code comes from a trusted source.

The PE format accomplishes all of this by leveraging the series of con-
structs shown in Figure 1-1.

@ .reloc section (memory translations)

@ .xsxc section (strings, images, . . .)

@ .idata section (imported libraries)

@ .text section (program code)

O Section headers

Increasing file offsets

© Optional header

® PE header

® DOS header

Figure 1-1: The PE file format

As the figure shows, the PE format includes a series of headers telling
the operating system how to load the program into memory. It also includes
a series of sections that contain the actual program data. Windows loads
the sections into memory such that their memory offsets correspond to
where they appear on disk. Let’s explore this file structure in more detail,
starting with the PE header. We’ll skip over a discussion of the DOS header,
which is a relic of the 1980s-era Microsoft DOS operating system and only
present for compatibility reasons.

The PE Header

Shown at the bottom of Figure 1-1, above the DOS header , is the PE
header @, which defines a program’s general attributes such as binary

code, images, compressed data, and other program attributes. It also tells

us whether a program is designed for 32- or 64-bit systems. The PE header
provides basic but useful contextual information to the malware analyst. For
example, the header includes a timestamp field that can give away the time
at which the malware author compiled the file. This happens when malware
authors forget to replace this field with a bogus value, which they often do.

The Optional Header

The optional header ® is actually ubiquitous in today’s PE executable
programs, contrary to what its name suggests. It defines the location of
the program’s entry point in the PE file, which refers to the first instruc-
tion the program runs once loaded. It also defines the size of the data
that Windows loads into memory as it loads the PE file, the Windows sub-
system, the program targets (such as the Windows GUI or the Windows

Basic Static Malware Analysis 3

4

Chapter 1

command line), and other high-level details about the program. The
information in this header can prove invaluable to reverse engineers,
because a program’s entry point tells them where to begin reverse
engineering.

Section Headers

Section headers @ describe the data sections contained within a PE file. A
section in a PE file is a chunk of data that either will be mapped into memory
when the operating system loads a program or will contain instructions about
how the program should be loaded into memory. In other words, a section

is a sequence of bytes on disk that will either become a contiguous string of
bytes in memory or inform the operating system about some aspect of the
loading process.

Section headers also tell Windows what permissions it should grant to
sections, such as whether they should be readable, writable, or executable
by the program when it’s executing. For example, the .text section con-
taining x86 code will typically be marked readable and executable but not
writable to prevent program code from accidentally modifying itself in the
course of execution.

A number of sections, such as .text and .rsrc, are depicted in Figure 1-1.
These get mapped into memory when the PE file is executed. Other special
sections, such as the .reloc section, aren’t mapped into memory. We’ll dis-
cuss these sections as well. Let’s go over the sections shown in Figure 1-1.

The .text Section

Each PE program contains at least one section of x86 code marked execut-
able in its section header; these sections are almost always named .text ©.

We’ll disassemble the data in the .text section when performing program

disassembly and reverse engineering in Chapter 2.

The .idata Section

The .idata section @, also called imports, contains the Import Address Table
(IAT), which lists dynamically linked libraries and their functions. The
IAT is among the most important PE structures to inspect when initially
approaching a PE binary for analysis because it reveals the library calls

a program makes, which in turn can betray the malware’s high-level
functionality.

The Data Sections

The data sections in a PE file can include sections like .rsrc, .data, and
.rdata, which store items such as mouse cursor images, button skins, audio,
and other media used by a program. For example, the .rsrc section @

in Figure 1-1 contains printable character strings that a program uses to
render text as strings.

The information in the .rsrc (resources) section can be vital to malware
analysts because by examining the printable character strings, graphical
images, and other assets in a PE file, they can gain vital clues about the
file’s functionality. In “Examining Malware Images” on page 7, you’ll
learn how to use the icoutils toolkit (including icotool and wrestool) to
extract graphical images from malware binaries’ resources sections. Then,
in “Examining Malware Strings” on page 8, you’ll learn how to extract
printable strings from malware resources sections.

The .reloc Section

A PE binary’s code is not position independent, which means it will not
execute correctly if it’s moved from its intended memory location to a new
memory location. The .reloc section @ gets around this by allowing code to
be moved without breaking. It tells the Windows operating system to trans-
late memory addresses in a PE file’s code if the code has been moved so
that the code still runs correctly. These translations usually involve adding
or subtracting an offset from a memory address.

Although a PE file’s .reloc section may well contain information you’ll
want to use in your malware analysis, we won’t discuss it further in this book
because our focus is on applying machine learning and data analysis to
malware, not doing the kind of hardcore reverse engineering that involves
looking at relocations.

Dissecting the PE Format Using pefile

The pefile Python module, written and maintained by Ero Carerra, has
become an industry-standard malware analysis library for dissecting PE
files. In this section, I show you how to use pefile to dissect ircbot.exe. The
ircbot.exe file can be found on the virtual machine accompanying this book
in the directory ~/malware_data_science/chl/data. Listing 1-1 assumes that
ircbot.exe is in your current working directory.

Enter the following to install the pefile library so that we can import it
within Python:

$ pip install pefile

Now, use the commands in Listing 1-1 to start Python, import the pefile
module, and open and parse the PE file é#rcbot.exe using pefile.

$ python
>>> import pefile
>>> pe = pefile.PE("ircbot.exe")

Listing 1-1: Loading the pefile module and parsing a PE file (ircbot.exe)

Basic Static Malware Analysis 5

6

Chapter 1

We instantiate pefile.PE, which is the core class implemented by the PE
module. It parses PE files so that we can examine their attributes. By calling
the PE constructor, we load and parse the specified PE file, which is érchot.exe
in this example. Now that we’ve loaded and parsed our file, run the code in
Listing 1-2 to pull information from ércbot.exe’s PE fields.

based on Ero Carrera's example code (pefile library author)
for section in pe.sections:
print (section.Name, hex(section.VirtualAddress),
hex(section.Misc_VirtualSize), section.SizeOfRawData)

Listing 1-2: Iterating through the PE file’s sections and printing information about them

Listing 1-3 shows the output.

.text\x00\x00\x00', @'0x1000', @®'0x32830', ©207360)
.rdata\x00\x00', '0x34000', 'Ox427a', 17408)
.data\x00\x00\x00"', '0x39000', 'Ox5cff8', 10752)
.idata\x00\x00', '0x96000', 'Oxbb0o', 3072)
.reloc\x00\x00', '0x97000', '0Ox211d', 8704)

AN AN AN A~

Listing 1-3: Pulling section data from ircbot.exe using Python’s pefile module

Asyou can see in Listing 1-3, we’ve pulled data from five different sec-
tions of the PE file: .text, .rdata, .data, .idata, and .reloc. The output is
given as five tuples, one for each PE section pulled. The first entry on each
line identifies the PE section. (You can ignore the series of \x00 null bytes,
which are simply C-style null string terminators.) The remaining fields tell
us what each section’s memory utilization will be once it’s loaded into mem-
ory and where in memory it will be found once loaded.

For example, 0x1000 @ is the base virtual memory address where these sec-
tions will be loaded. Think of this as the section’s base memory address.
The 0x32830 @ in the virtual size field specifies the amount of memory required
by the section once loaded. The 207360 ® in the third field represents the
amount of data the section will take up within that chunk of memory.

In addition to using pefile to parse a program’s sections, we can also
use it to list the DLLs a binary will load, as well as the function calls it will
request within those DLLs. We can do this by dumping a PE file’s IAT.
Listing 1-4 shows how to use pefile to dump the IAT for érchot.exe.

$ python
pe = pefile.PE("ircbot.exe")
for entry in pe.DIRECTORY_ENTRY_IMPORT:
print entry.dll
for function in entry.imports:
print '\t',function.name

Listing 1-4: Extracting imports from ircbot.exe

Listing 1-4 should produce the output shown in Listing 1-5 (truncated
for brevity).

KERNEL32.DLL
GetLocalTime
ExitThread
CloseHandle
WriteFile
CreateFileA
ExitProcess
® C(reateProcessA

GetTickCount

GetModuleFileNameA
--snip--

e

Listing 1-5: Contents of the IAT of ircbot.exe, showing library functions used by this malware

As you can see in Listing 1-5, this output is valuable for malware analy-
sis because it lists a rich array of functions that the malware declares and
will reference. For example, the first few lines of the output tell us that the
malware will write to files using WriteFile @, open files using the CreateFileA
call @, and create new processes using CreateProcessA ©. Although this is
fairly basic information about the malware, it’s a start in understanding the
malware’s behavior in more detail.

Examining Malware Images

To understand how malware may be designed to game a target, let’s look at
the icons contained in its .rsrc section. For example, malware binaries are
often designed to trick users into clicking them by masquerading as Word
documents, game installers, PDF files, and so on. You also find images in
the malware suggesting programs of interest to the attackers themselves,
such as network attack tools and programs run by attackers for the remote
control of compromised machines. I have even seen binaries containing
desktop icons of jihadists, images of evil-looking cyberpunk cartoon char-
acters, and images of Kalashnikov rifles. For our sample image analysis, let’s
consider a malware sample the security company Mandiant identified as
having been crafted by a Chinese state-sponsored hacking group. You can
find this sample malware in this chapter’s data directory under the name
Jakepdfmalware.exe. This sample uses an Adobe Acrobat icon to trick users
into thinking it is an Adobe Acrobat document, when in fact it’s a malicious
PE executable.

Before we can extract the images from the fakepdfmalware.exe binary
using the Linux command line tool wrestool, we first need to create a direc-
tory to hold the images we’ll extract. Listing 1-6 shows how to do all this.

$ mkdir images
$ wrestool -x fakepdfmalware.exe -output=images
$ icotool -x -o images images/*.ico

Listing 1-6: Shell commands that extract images from a malware sample

Basic Static Malware Analysis 7

We first use mkdir images to create a directory to hold the extracted
images. Next, we use wrestool to extract image resources (-x) from
Jakepdfmalware.exe to /images and then use icotool to extract (-x) and
convert (-o0) any resources in the Adobe .icoicon format into .png graphics
so that we can view them using standard image viewer tools. If you don’t
have wrestool installed on your system, you can download it at http://www
.nongnu.org/icoutils/.

Once you've used wrestool to convert the images in the target execut-
able to the PNG format, you should be able open them in your favorite
image viewer and see the Adobe Acrobat icon at various resolutions. As
my example here demonstrates, extracting images and icons from PE files
is relatively straightforward and can quickly reveal interesting and useful
information about malware binaries. Similarly, we can easily extract print-
able strings from malware for more information, which we’ll do next.

Examining Malware Strings

Chapter 1

Strings are sequences of printable characters within a program binary.
Malware analysts often rely on strings in a malicious sample to get a quick
sense of what may be going on inside it. These strings often contain things
like HTTP and FTP commands that download web pages and files, IP
addresses and hostnames that tell you what addresses the malware con-
nects to, and the like. Sometimes even the language used to write the
strings can hint at a malware binary’s country of origin, though this can
be faked. You may even find text in a string that explains in leetspeak the
purpose of a malicious binary.

Strings can also reveal more technical information about a binary. For
example, you may find information about the compiler used to create it,
the programming language the binary was written in, embedded scripts or
HTML, and so on. Although malware authors can obfuscate, encrypt, and
compress all of these traces, even advanced malware authors often leave
at least some traces exposed, making it particularly important to examine
strings dumps when analyzing malware.

Using the strings Program

The standard way to view all strings in a file is to use the command line tool
strings, which uses the following syntax:

$ strings filepath | less

This command prints all strings in a file to the terminal, line by line.
Adding | less at the end prevents the strings from just scrolling across the
terminal. By default, the strings command finds all printable strings with
a minimum length of 4 bytes, but you can set a different minimum length
and change various other parameters, as listed in the commands manual
page. I recommend simply using the default minimum string length of 4,

http://www.nongnu.org/icoutils/
http://www.nongnu.org/icoutils/

®Q

(3]

but you can change the minimum string length using the -n option. For
example, strings -n 10 filepath would extract only strings with a minimum
length of 10 bytes.

Analyzing Your strings Dump

Now that we dumped a malware program’s printable strings, the challenge
is to understand what the strings mean. For example, let’s say we dump the
strings to the ircbotstring.txt file for ircbot.exe, which we explored earlier in
this chapter using the pefile library, like this:

$ strings ircbot.exe > ircbotstring.txt

The contents of rcbotstring.txt contain thousands of lines of text, but
some of these lines should stick out. For example, Listing 1-7 shows a bunch
of lines extracted from the string dump that begin with the word DOWNLOAD.

[DOWNLOAD]: Bad URL, or DNS Error: %s.

[DOWNLOAD]: Update failed: Error executing file: %s.
[DOWNLOAD] : Downloaded %.1fKB to %s @ %.1fKB/sec. Updating.
[DOWNLOAD]: Opened: %s.

--snip--

[DOWNLOAD]: Downloaded %.1f KB to %s @ %.1f KB/sec.
[DOWNLOAD]: CRC Failed (%d != %d).

[DOWNLOAD]: Filesize is incorrect: (%d != %d).
[DOWNLOAD]: Update: %s (%dKB transferred).
[DOWNLOAD]: File download: %s (%dKB transferred).
[DOWNLOAD]: Couldn't open file: %s.

Listing 1-7: The strings output showing evidence that the malware can download files
specified by the attacker onto a target machine

These lines indicate that ircbot.exe will attempt to download files speci-
fied by an attacker onto the target machine.

Let’s try analyzing another one. The string dump shown in Listing 1-8
indicates that ércbot.exe can act as a web server that listens on the target
machine for connections from the attacker.

GET

HTTP/1.0 200 OK

Server: myBot
Cache-Control: no-cache,no-store,max-age=0
pragma: no-cache
Content-Type: %s
Content-Length: %i
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s GMT
Connection: close
HTTP/1.0 200 OK

Server: myBot

Basic Static Malware Analysis 9

10

Cache-Control: no-cache,no-store,max-age=0
pragma: no-cache
Content-Type: %s
Accept-Ranges: bytes
Date: %s %s GMT
Last-Modified: %s %s GMT
Expires: %s %s GMT
Connection: close
HH:mm:ss

ddd, dd MMM yyyy
application/octet-stream
text/html

Listing 1-8: The strings output showing that the malware has an HTTP server to which the
attacker can connect

Listing 1-8 shows a wide variety of HTTP boilerplates used by ércbot.exe
to implement an HTTP server. It’s likely that this HTTP server allows the
attacker to connect to a target machine via HTTP to issue commands, such
as the command to take a screenshot of the victim’s desktop and send it back
to the attacker. We see evidence of HTTP functionality throughout the list-
ing. For example, the GET method @ requests data from an internet resource.
The line HTTP/1.0 200 OK @ is an HTTP string that returns the status code 200,
indicating that all went well with an HTTP network transaction, and Server:
myBot © indicates that the name of the HTTP server is myBot, a giveaway that
irchot.exe has a built-in HTTP server.

All of this information is useful in understanding and stopping a par-
ticular malware sample or malicious campaign. For example, knowing that
a malware sample has an HTTP server that outputs certain strings when
you connect to it allows you to scan your network to identify infected hosts.

Summary

Chapter 1

In this chapter, you got a high-level overview of static malware analysis,
which involves inspecting a malware program without actually running it.
You learned about the PE file format that defines Windows .exe and .dll files,
and you learned how to use the Python library pefile to dissect a real-world
malware ircbot.exe binary. You also used static analysis techniques such as
image analysis and strings analysis to extract more information from mal-
ware samples. Chapter 2 continues our discussion of static malware analysis
with a focus on analyzing the assembly code that can be recovered from
malware.

BEYOND BASIC STATIC ANALYSIS:
X86 DISASSEMBLY

To thoroughly understand a malicious
program, we often need to go beyond

basic static analysis of its sections, strings,
imports, and images. This involves reverse

engineering a program’s assembly code. Indeed,
disassembly and reverse engineering lie at the heart
of deep static analysis of malware samples.

Because reverse engineering is an art, technical craft, and science, a
thorough exploration is beyond the scope of this chapter. My goal here is
to introduce you to reverse engineering so that you can apply it to malware
data science. Understanding this methodology is essential for successfully
applying machine learning and data analysis to malware.

In this chapter I start with the concepts you’ll need to understand x86
disassembly. Later in the chapter I show how malware authors attempt to
bypass disassembly and discuss ways to mitigate these anti-analysis and
anti-detection maneuvers. But first, let’s review some common disassembly
methods as well as the basics of x86 assembly language.

12

Disassembly Methods

Disassembly is the process by which we translate malware’s binary code into
valid x86 assembly language. Malware authors generally write malware
programs in a high-level language like C or C++ and then use a compiler
to compile the source code into x86 binary code. Assembly language is
the human-readable representation of this binary code. Therefore, dis-
assembling a malware program into assembly language is necessary to
understand how it behaves at its core.

Unfortunately, disassembly is no easy feat because malware authors reg-
ularly employ tricks to thwart would-be reverse engineers. In fact, perfect
disassembly in the face of deliberate obfuscation is an unsolved problem in
computer science. Currently, only approximate, error-prone methods exist
for disassembling such programs.

For example, consider the case of self-modifying code, or binary code that
modifies itself as it executes. The only way to disassemble this code properly
is to understand the program logic by which the code modifies itself, but
that can be exceedingly complex.

Because perfect disassembly is currently impossible, we must use
imperfect methods to accomplish this task. The method we’ll use is linear
disassembly, which involves identifying the contiguous sequence of bytes in
the Portable Executable (PE) file that corresponds to its x86 program code
and then decoding these bytes. The key limitation of this approach is that
it ignores subtleties about how instructions are decoded by the CPU in the
course of program execution. Also, it doesn’t account for the various obfus-
cations malware authors sometimes use to make their programs harder to
analyze.

The other methods of reverse engineering, which we won’t cover here,
are the more complex disassembly methods used by industrial-grade disas-
semblers such as IDA Pro. These more advanced methods actually simulate
or reason about program execution to discover which assembly instructions
a program might reach as a result of a series of conditional branches.

Although this type of disassembly can be more accurate than linear
disassembly, it’s far more CPU intensive than linear disassembly methods,
making it less suitable for data science purposes where the focus is on disas-
sembling thousands or even millions of programs.

Before you can begin analysis using linear disassembly, however, you’ll
need to review the basic components of assembly language.

Basics of x86 Assembly Language

Chapter 2

Assembly language is the lowest-level human-readable programming lan-
guage for a given architecture, and it maps closely to the binary instruc-
tion format of a particular CPU architecture. A line of assembly language
is almost always equivalent to a single CPU instruction. Because assembly is
so low level, you can often retrieve it easily from a malware binary by using
the right tools.

Gaining basic proficiency in reading disassembled malware x86 code
is easier than you might think. This is because most malware assembly
code spends most of its time calling into the operating system by way of
the Windows operating system’s dynamic-link libraries (DLLs), which are
loaded into program memory at runtime. Malware programs use DLLs
to do most of the real work, such as modifying the system registry, mov-
ing and copying files, making network connections and communicating
via network protocols, and so on. Therefore, following malware assembly
code often involves understanding the ways in which function calls are
made from assembly and understanding what various DLL calls do. Of
course, things can get much more complicated, but knowing this much
can reveal a lot about the malware.

In the following sections I introduce some important assembly language
concepts. I also explain some abstract concepts like control flow and control
flow graphs. Finally, we disassemble the ircbot.exe program and explore how
its assembly and control flow can give us insight into its purpose.

There are two major dialects of x86 assembly: Intel and AT&T. In this
book I use Intel syntax, which can be obtained from all major disassemblers
and is the syntax used in the official Intel documentation of the x86 CPU.

Let’s start by taking a look at CPU registers.

CPU Registers

Registers are small data storage units on which x86 CPUs perform compu-
tations. Because registers are located on the CPU itself, register access is
orders of magnitude faster than memory access. This is why core compu-
tational operations, such as arithmetic and condition testing instructions,
all target registers. It’s also why the CPU uses registers to store information
about the status of running programs. Although many registers are avail-
able to experienced x86 assembly programmers, we’ll just focus on a few
important ones here.

General-Purpose Registers

General-purpose registers are like scratch space for assembly programmers.
On a 32-bit system, each of these registers contains 32, 16, or 8 bits of space
against which we can perform arithmetic operations, bitwise operations,
byte order-swapping operations, and more.

In common computational workflows, programs move data into regis-
ters from memory or from external hardware devices, perform some opera-
tions on this data, and then move the data back out to memory for storage.
For example, to sort a long list, a program typically pulls list items in from
an array in memory, compares them in the registers, and then writes the
comparison results back out to memory.

To understand some of the nuances of the general-purpose register
model in the Intel 32-bit architecture, take a look at Figure 2-1.

Beyond Basic Static Analysis: x86 Disassembly 13

14

Chapter 2

16 bits 8 bits 8 bits

4 EAX AX AH Al
g
9 EBX BX BH BL
g
3 | Ecx X CH cL
©
s | Eox DX DH DL
o 4

ESI

EDI

ESP

EBP

32 bits

Figure 2-1: Registers in the x86 architecture

The vertical axis shows the layout of the general-purpose registers, and
the horizontal axis shows how EAX, EBX, ECX, and EDX are subdivided.
EAX, EBX, ECX, and EDX are 32-bit registers that have smaller, 16-bit
registers inside them: AX, BX, CX, and DX. As you can see in the figure,
these 16-bit registers can be subdivided into upper and lower 8-bit registers:
AH, AL, BH, BL, CH, CL, DH, and DL. Although it’s sometimes useful to
address the subdivisions in EAX, EBX, ECX, and EDX, you’ll mostly see
direct references to EAX, EBX, ECX, and EDX.

Stack and Control Flow Registers

The stack management registers store critical information about the pro-
gram stack, which is responsible for storing local variables for functions,
arguments passed into functions, and control information relating to the
program control flow. Let’s go over some of these registers.

In simple terms, the ESP register points to the top of the stack for
the currently executing function, whereas the EBP register points to the
bottom of the stack for the currently executing function. This is crucial
information for modern programs, because it means that by referencing
data relative to the stack rather than using its absolute address, procedural
and object-oriented code can access local variables more gracefully and
efficiently.

Although you won’t see direct references to the EIP register in x86
assembly code, it’s important in security analysis, particularly in the con-
text of vulnerability research and buffer-overflow exploit development.
This is because EIP contains the memory address of the currently execut-
ing instruction. Attackers can use buffer-overflow exploits to corrupt the
value of the EIP register indirectly and take control of program execution.

In addition to its role in exploitation, EIP is also important in the analy-
sis of malicious code deployed by malware. Using a debugger we can inspect
EIP’s value at any moment, which helps us understand what code malware is
executing at any particular time.

EFLAGS is a status register that contains CPU flags, which are bits
that store status information about the state of the currently executing
program. The EFLAGS register is central to the process of making condi-
tional branches, or changes in execution flow resulting from the outcome of
if/then-style program logic, within x86 programs. Specifically, whenever
an x86 assembly program checks whether some value is greater or less
than zero and then jumps to a function based on the outcome of this test,
the EFLAGS register plays an enabling role, as described in more detail in
“Basic Blocks and Control Flow Graphs” on page 19.

Arithmetic Instructions

Instructions operate on general-purpose registers. You can perform simple
computations with the general-purpose registers using arithmetic instruc-
tions. For example, add, sub, inc, dec, and mul are examples of arithmetic
instructions you’ll encounter frequently in malware reverse engineering.
Table 2-1 lists some examples of basic instructions and their syntax.

Table 2-1: Arithmetic Instructions

Instructions Description

add ebx, 100 Adds 100 to the value in EBX and then stores the result in EBX

sub ebx, 100 Subtracts 100 from the value in EBX and then stores the result
in EBX

inc ah Increments the value in AH by 1

dec al Decrements the value in AL by 1

The add instruction adds two integers and stores the result in the first
operand specified, whether this is a memory location or a register accord-
ing to the following syntax. Keep in mind only one argument can be a
memory location. The sub instruction is similar to add, except it subtracts
integers. The inc instruction increments a register or memory location’s
integer value, whereas dec decrements a register or memory location’s inte-
ger value.

Data Movement Instructions

The x86 processor provides a robust set of instructions for moving data
between registers and memory. These instructions provide the underlying
mechanisms that allow us to manipulate data. The staple memory move-
ment instruction is the mov instruction. Table 2-2 shows how you can use the
mov instruction to move data around.

Beyond Basic Static Analysis: x86 Disassembly 15

16

Chapter 2

Table 2-2: Data Movement Instructions

Instructions Description

mov ebx,eax Moves the value in register EAX into register EBX

mov eax, [0x12345678] Moves the data at memory address 0x12345678 into
the EAX register

mov edx, 1 Moves the value 1 into the register EDX

mov [0x12345678], eax Moves the value in EAX into the memory location
0x12345678

Related to the mov instruction, the lea instruction loads the absolute
memory address specified into the register used for getting a pointer to
a memory location. For example, lea edx, [esp-4] subtracts 4 from the
value in ESP and loads the resulting value into EDX.

Stack Instructions

The stack in x86 assembly is a data structure that allows you to push and
pop values onto and off of it. This is similar to how you would add and
remove plates on and off the top of a stack of plates.

Because control flow is often expressed through C-style function calls
in x86 assembly and because these function calls use the stack to pass argu-
ments, allocate local variables, and remember what part of the program
to return to after a function finishes executing, the stack and control flow
need to be understood together.

The push instruction pushes values onto the program stack when the pro-
grammer wants to save a register value onto the stack, and the pop instruction
deletes values from the stack and places them into a designated register.

The push instruction uses the following syntax to perform its operations:

push 1

In this example, the program points the stack pointer (the register
ESP) to a new memory address, thereby making room for the value (1),
which is now stored at the top location on the stack. Then it copies the
value from the argument to the memory location the CPU has just made
room for on the top of the stack.

Let’s contrast this with pop:

pop eax

The program uses pop to pop the top value off the stack and move it
into a specified register. In this example, pop eax pops the top value off the
stack and moves it into eax.

An unintuitive but important detail to understand about the x86 pro-
gram stack is that it grows downward in memory, so that the highest value
on the stack is actually stored at the lowest address in stack memory. This

becomes very important to remember when you analyze assembly code that
references data stored on the stack, as it can quickly get confusing unless
you know the stack’s memory layout.

Because the x86 stack grows downward in memory, when the push instruc-
tion allocates space on the program stack for a new value, it decrements the
value of ESP so that it points to a lower location in memory and then copies
avalue from the target register into that memory location, starting at the top
address of the stack and growing up. Conversely, the pop instruction actually
copies the top value off of the stack and then increments the value of ESP so
it points to a higher memory location.

Control Flow Instructions

An x86 program’s control flow defines the network of possible instruction
execution sequences a program may execute, depending on the data,
device interactions, and other inputs the program might receive. Control
flow instructions define a program’s control flow. They are more compli-
cated than stack instructions but still quite intuitive. Because control flow
is often expressed through C-style function calls in x86 assembly, the stack
and control flow are closely related. They’re also related because these
function calls use the stack to pass arguments, allocate local variables, and
remember what part of the program to return to after a function finishes
executing.

The call and ret control flow instructions are the most important in
terms of how programs call functions in x86 assembly and how programs
return from functions after these functions are done executing.

The call instruction calls a function. Think of this as a function you
might write in a higher-level language like C to allow the program to return
to the instruction after the call instruction is invoked and the function has
finished executing. You can invoke the call instruction using the following
syntax, where address denotes the memory location where the function’s
code begins:

call address

The call instruction does two things. First, it pushes the address of
the instruction that will execute after the function call returns onto the
top of the stack so that the program knows what address to return to after
the called function finishes executing. Second, call replaces the current
value of EIP with the value specified by the address operand. Then, the CPU
begins execution at the new memory location pointed to by EIP.

Just as call initiates a function call, the ret instruction completes it.
You can use the ret instruction on its own and without any parameter, as
shown here:

ret

Beyond Basic Static Analysis: x86 Disassembly 17

18

Chapter 2

When invoked, ret pops the top value off the stack, which we expect to
be the saved program counter value (EIP) that the call instruction pushed
onto the stack when the call instruction was invoked. Then it places the
popped program counter value back into EIP and resumes execution.

The jmp instruction is another important control flow construction,
which operates more simply than call. Instead of worrying about saving
EIP, jmp simply tells the CPU to move to the memory address specified as
its parameter and begin execution there. For example, jmp 0x12345678 tells
the CPU to start executing the program code stored at memory location
0x12345678 on the next instruction.

You may be wondering how you can make jmp and call instructions
execute in a conditional way, such as “if the program has received a net-
work packet, execute the following function.” The answer is that x86
assembly doesn’t have high-level constructs like if, then, else, else if, and
so on. Instead, branching to an address within a program’s code typically
requires two instructions: a cmp instruction, which checks the value in
some register against some test value and stores the result of that test in
the EFLAGS register, and a conditional branch instruction.

Most conditional branch instructions start with a j, which allows the
program to jump to a memory address, and are post-fixed with letters that
stand for the condition being tested. For example, jge tells the program to
jump if greater than or equal to. This means that the value in the register
being tested must be greater than or equal to the test value.

The cmp instruction uses the following syntax:

cmp register, memory location, or literal, register, memory location, or
literal

As stated earlier, cmp compares the value in the specified general-purpose
register with value and then stores the result of that comparison in the
EFLAGS register.

The various conditional jmp instructions are then invoked as follows:

j* address

As you can see, we can prefix j to any number of conditional test instruc-
tions. For example, to jump only if the value tested is greater than or equal
to the value in the register, use the following instruction:

jge address

Note that unlike the case of the call and ret instructions, the jmp fam-
ily of instructions never touches the program stack. In fact, in the case of
the jmp family of instructions, the x86 program is responsible for tracking
its own execution flow and potentially saving or deleting information about
what addresses it has visited and where it should return to after a particular
sequence of instructions has executed.

o0

Basic Blocks and Control Flow Graphs

Although x86 programs look sequential when we scroll through their code
in a text editor, they actually have loops, conditional branches, and uncon-
ditional branches (control flow). All of these give each x86 program a net-

work structure. Let’s use the simple toy assembly program in Listing 2-1 to

see how this works.

setup: # symbol standing in for address of instruction on the next line

mov eax, 10

loopstart: # symbol standing in for address of the instruction on the next
line

sub eax, 1

cmp 0, eax

jne $loopstart

loopend: # symbol standing in for address of the instruction on the next line
mov eax, 1

more code would go here

Listing 2-1: Assembly program for understanding control flow graph

As you can see, this program initializes a counter to the value 10, stored
in register EAX @. Next, it does a loop in which the value in EAX is decre-
mented by 1 @ on each iteration. Finally, once EAX has reached a value
of 0 ®, the program breaks out of the loop.

In the language of control flow graph analysis, we can think of these
instructions as comprising three basic blocks. A basic block is a sequence
of instructions that we know will always execute contiguously. In other
words, a basic block always ends with either a branching instruction or an
instruction that is the target of a branch, and it always begins with either
the first instruction of the program, called the program’s entry point, or a
branch target.

In Listing 2-1, you can see where the basic blocks of our simple pro-
gram begin and end. The first basic block is composed of the instruc-
tion mov eax, 10 under setup:. The second basic block is composed of lines
beginning with sub eax, 1 through jne $loopstart under loopstart:, and
the third starts at mov eax, 1 under loopend:. We can visualize the relation-
ships between the basic blocks using the graph in Figure 2-2. (We use the
term graph synonymously with the term network; in computer science, these
terms are interchangeable.)

_yr| loopstart:

setup: % sub eax, 1 loopend:

mov eax, 10 N cmp 0, eax move eax, 1

~] jne $loopstart

Figure 2-2: A visualization of the control flow graph of our simple assembly
program

Beyond Basic Static Analysis: x86 Disassembly 19

20

If one basic block can ever flow into another basic block, we connect it,
as shown in Figure 2-2. The figure shows that the setup basic block leads to
the loopstart basic block, which repeats 10 times before it transitions to the
loopend basic block. Real-world programs have control flow graphs such as
these, but they’re much more complicated, with thousands of basic blocks
and thousands of interconnections.

Disassembling ircbot.exe Using pefile and capstone

Chapter 2

Now that you have a good understanding of the basics of assembly language,
let’s disassemble the first 100 bytes of ircbot.exe’s assembly code using linear
disassembly. To do this, we’ll use the open source Python libraries pefile
(introduced in Chapter 1) and capstone, which is an open source disassem-
bly library that can disassemble 32-bit x86 binary code. You can install both
of these libraries with pip using the following commands:

pip install pefile
pip install capstone

Once these two libraries are installed, we can leverage them to disas-
semble ircbot.exe using the code in Listing 2-2.

#!/usr/bin/python
import pefile
from capstone import *

load the target PE file
pe = pefile.PE("ircbot.exe")

get the address of the program entry point from the program header
entrypoint = pe.OPTIONAL_HEADER.AddressOfEntryPoint

compute memory address where the entry code will be loaded into memory
entrypoint_address = entrypoint+pe.OPTIONAL_HEADER.ImageBase

get the binary code from the PE file object
binary_code = pe.get_memory_mapped_image()[entrypoint:entrypoint+100]

initialize disassembler to disassemble 32 bit x86 binary code
disassembler = Cs(CS_ARCH_X86, CS_MODE_32)

disassemble the code
for instruction in disassembler.disasm(binary_code, entrypoint_address):
print "%s\t%s" %(instruction.mnemonic, instruction.op_str)

Listing 2-2: Disassembling ircbot.exe

This should produce the following output:

push ebp
mov ebp, esp

push -1
push 0x437588
push 0x41982c
@ mov eax, dword ptr fs:[0]

push eax

mov dword ptr fs:[0], esp
© add esp, -0x5C

push ebx

push esi

push edi

mov dword ptr [ebp - 0x18], esp
0 call dword ptr [0x496308]
--snip--

Don’t worry about understanding all of the instructions in the dis-
assembly output: that would involve an understanding of assembly that
goes beyond the scope of this book. However, you should feel comfortable
with many of the instructions in the output and have some sense of what
they do. For example, the malware pushes the value in register EBP onto
the stack @, saving its value. Then it proceeds to move the value in ESP
into EBP and pushes some numerical values onto the stack. The program
moves some data in memory into the EAX register @, and it adds the value
-0x5c to the value in the ESP register ©. Finally, the program uses the call
instruction to call a function stored at the memory address 0x496308 @.

Because this is not a book on reverse engineering, I won’t go into any more
depth here about what the code means. What I've presented is a start to under-
standing how assembly language works. For more information on assembly lan-
guage, I recommend the Intel programmer’s manual at http://www.intel.com/
content/www/us/en/processors/architectures-software-developer-manuals. html.

Factors That Limit Static Analysis

In this chapter and Chapter 1, you learned about a variety of ways in which
static analysis techniques can be used to elucidate the purpose and methods
of a newly discovered malicious binary. Unfortunately, static analysis has
limitations that render it less useful in some circumstances. For example,
malware authors can employ certain offensive tactics that are far easier to
implement than to defend against. Let’s take a look at some of these offensive
tactics and see how to defend against them.

Packing

Malware packingis the process by which malware authors compress, encrypt,
or otherwise mangle the bulk of their malicious program so that it appears
inscrutable to malware analysts. When the malware is run, it unpacks itself
and then begins execution. The obvious way around malware packing is to
actually run the malware in a safe environment, a dynamic analysis tech-
nique I'll cover in Chapter 3.

Beyond Basic Static Analysis: x86 Disassembly 21

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

22

Chapter 2

Software packing is also used by benign software installers for legitimate reasons.
Benign software authors use packing to deliver their code because it allows them to
compress program resources to reduce software installer download sizes. It also helps
them thwart reverse engineering attempts by business competitors, and it provides a
convenient way to bundle many program resources within a single installer file.

Resource Obfuscation

Another anti-detection, anti-analysis technique malware authors use is
resource obfuscation. They obfuscate the way program resources, such as
strings and graphical images, are stored on disk, and then deobfuscate
them at runtime so they can be used by the malicious program. For exam-
ple, a simple obfuscation would be to add a value of 1 to all bytes in images
and strings stored in the PE resources section and then subtract 1 from all
of this data at runtime. Of course, any number of obfuscations are possible
here, all of which make life difficult for malware analysts attempting to
make sense of a malware binary using static analysis.

As with packing, one way around resource obfuscation is to just run the
malware in a safe environment. When this is not an option, the only mitiga-
tion for resource obfuscation is to actually figure out the ways in which mal-
ware has obfuscated its resources and to manually deobfuscate them, which
is what professional malware analysts often do.

Anti-disassembly Techniques

A third group of anti-detection, anti-analysis techniques used by malware
authors are anti-disassembly techniques. These techniques are designed to
exploit the inherent limitations of state-of-the-art disassembly techniques
to hide code from malware analysts or make malware analysts think that
a block of code stored on disk contains different instructions than it actu-
ally does.

An example of an anti-disassembly technique involves branching to a
memory location that the malware author’s disassemblers will interpret as
a different instruction, essentially hiding the malware’s true instructions
from reverse engineers. Anti-disassembly techniques have huge potential
and there’s no perfect way to defend against them. In practice, the two
main defenses against these techniques are to run malware samples in a
dynamic environment and to manually figure out where anti-disassembly
strategies manifest within a malware sample and how to bypass them.

Dynamically Downloaded Data

A final class of anti-analysis techniques malware authors use involves exter-
nally sourcing data and code. For example, a malware sample may load
code dynamically from an external server at malware startup time. If this is
the case, static analysis will be useless against such code. Similarly, malware
may source decryption keys from external servers at startup time and then
use these keys to decrypt data or code that will be used in the malware’s
execution.

Obviously, if the malware is using an industrial-strength encryption
algorithm, static analysis will not be sufficient to recover the encrypted data
and code. Such anti-analysis and anti-detection techniques are quite power-
ful, and the only way around them is to acquire the code, data, or private
keys on the external servers by some means and then use them in one’s
analysis of the malware in question.

Summary

This chapter introduced x86 assembly code analysis and demonstrated how
we can perform disassembly-based static analysis on ircbot.exe using open
source Python tools. Although this is not meant to be a complete primer
on x86 assembly, you should now feel comfortable enough that you have a
starting place for figuring out what’s going on in a given malware assem-
bly dump. Finally, you learned ways in which malware authors can defend
against disassembly and other static analysis techniques, and how you can
mitigate these anti-analysis and anti-detection strategies. In Chapter 3,
you’ll learn to conduct dynamic malware analysis that makes up for many
of the weaknesses of static malware analysis.

Beyond Basic Static Analysis: x86 Disassembly 23

A BRIEF INTRODUCTION TO
DYNAMIC ANALYSIS

In Chapter 2, you learned advanced static
analysis techniques to disassemble the

assembly code recovered from malware.
Although static analysis can be an efficient

way to gain useful information about malware
by studying its different components on disk, it doesn’t
allow us to observe malware behavior.

In this chapter, you’ll learn about the basics of dynamic malware analy-
sis. Unlike static analysis, which focuses on what malware looks like in file
form, dynamic analysis consists of running malware in a safe, contained
environment to see how it behaves. This is like introducing a dangerous
bacterial strain into a sealed environment to see its effects on other cells.

Using dynamic analysis, we can get around common static analysis
hurdles, such as packing and obfuscation, as well as gain more direct
insight into the purpose of a given malware sample. We begin by explor-
ing basic dynamic analysis techniques, their relevance to malware data
science, and their applications. We use open source tools like malwr.com to
study examples of dynamic analysis in action. Note that this is a condensed

26

survey of the topic and is not intended to be comprehensive. For a more
complete introduction, check out Practical Malware Analysis (No Starch
Press, 2012).

Why Use Dynamic Analysis?

To understand why dynamic analysis matters, let’s consider the problem

of packed malware. Recall that packing malware refers to compressing or
obfuscating a malware’s x86 assembly code to hide the malicious nature of
the program. A packed malware sample unpacks itself when it infects a tar-
get machine so that the code can execute.

We could try to disassemble a packed or obfuscated malware sample
using the static analysis tools discussed in Chapter 2, but this is a laborious
process. For example, with static analysis we’d first have to find the location
of the obfuscated code in the malware file. Then we’d have to find the loca-
tion of the deobfuscation subroutines that deobfuscate this code so that it
can run. After locating the subroutines, we’d have to figure out how this
deobfuscation procedure works in order to perform it on the code. Only
then could we begin the actual process of reverse engineering the mali-
cious code.

A simple yet clever alternative to this process is to execute the malware
in a safe, contained environment called a sandbox. Running malware in a
sandbox allows it to unpack itself as it would when infecting a real target. By
simply running malware, we can find out what servers a particular malware
binary connects to, what system configuration parameters it changes, and
what device I/O (input/output) it attempts to perform.

Dynamic Analysis for Malware Data Science

Chapter 3

Dynamic analysis is useful not only for malware reverse engineering but
also for malware data science. Because dynamic analysis reveals what a
malware sample does, we can compare its actions to those of other malware
samples. For example, because dynamic analysis shows what files mal-
ware samples write to disk, we can use this data to connect those malware
samples that write similar filenames to disk. These kinds of clues help us
categorize malware samples based on common traits. They can even help
us identify malware samples that were authored by the same groups or are
part of the same campaigns.

Most importantly, dynamic analysis is useful for building machine
learning—based malware detectors. We can train a detector to distinguish
between malicious and benign binaries by observing their behaviors dur-
ing dynamic analysis. For example, after observing thousands of dynamic
analysis logs from both malware and benign files, a machine learning system
can learn that when msword.exe launches a process named powershell.exe, this
action is malicious, but that when msword.exelaunches Internet Explorer,
this is probably harmless. Chapter 8 will go into more detail about how we

can build malware detectors using data based on both static and dynamic
analysis. But before we create sophisticated malware detectors, let’s look at
some basic tools for dynamic analysis.

Basic Tools for Dynamic Analysis

NOTE

You can find a number of free, open source tools for dynamic analysis online.
This section focuses on malwr.com and CuckooBox. The malwr.com site has a
web interface that allows you to submit binaries for dynamic analysis for free.
CuckooBox is a software platform that lets you set up your own dynamic anal-
ysis environment so that you can analyze binaries locally. The creators of the
CuckooBox platform also operate malwr.com, and malwr.com runs CuckooBox
behind the scenes. Therefore, learning how to analyze results on malwr.com
will allow you to understand CuckooBox results.

At print time, malwr.com’s CuckooBox interface was down for maintenance. Hopefully
by the time you read this section the site will be back wp. If not, the information provided
in this chapter can be applied to output from your own CuckooBox instance, which you
can set up by following the instructions at https://cuckoosandbox.org/.

Typical Malware Behaviors

The following are the major categories of actions a malware sample may
take upon execution:

Modifying the file system For example, writing a device driver to
disk, changing system configuration files, adding new programs to
the file system, and modifying registry keys to ensure the program
auto-starts

Modifying the Windows registry to change the system configura-
tion For example, changing firewall settings

Loading device drivers For example, loading a device driver that
records user keystrokes

Network actions For example, resolving domain names and making
HTTP requests

We’ll examine these behaviors in more detail using a malware sample
and analyzing its report on malwr.com.

Loading a File on malwr.com

To run a malware sample through malwr.com, navigate to https://malwr
.com/ and then click the Submit button to upload and submit a binary for
analysis. We’ll use a binary whose SHA256 hash starts with the characters
d676d95, which you can find in the data directory accompanying this chap-
ter. I encourage you to submit this binary to malwr.com and inspect the
results yourself as we go. The submit page is shown in Figure 3-1.

A Brief Introduction to Dynamic Analysis 27

https://malwr.com
https://malwr.com

28

Chapter 3

malwr-w

r Terms of Service

Select file

Analyze the sample
Share the sample

Private

Figure 3-1: The malware sample submission page

6+5=

After you submit your sample through this form, the site should prompt
you to wait for analysis to complete, which typically takes about five min-
utes. When the results load, you can inspect them to understand what the
executable did when it was run in the dynamic analysis environment.

Analyzing Results on malwr.com
The results page for our sample should look something like Figure 3-2.

L]
~ [
malwr
Quick Overview O ulalall
sis Tags: None #
Behavioral Analysis Analysis
ek /A CATEGORY STARTED COMPLETED
Dropped Fhes FILE 2016-12-30 11:56:05 2016-12-30 115822
File Details
FILE wordplugin exe
MAME
FILE 410112 bytes
SIZE
FILE PE32 executable (GUI) Intel 80386, for MS Windows. UPX compressed
TYPE
MD5 95597059bd252eB03cd95Tde683ce 1743
SHA1 ©861800abeB66r30018a950910006a1 beazad2l
SHA256 d6760%9dfab5a4242258362bE57 9 febeSebdb3odd3e006%ace50fE0alcs
SHA512 bdaca27f3aSb76baaso2694014dicE 1064 1540050b26/02cH eaTd94bdbicf3630c 54120054

Figure 3-2: The top of the results page for a malware sample on malwr.com

The results for this file illustrate some key aspects of dynamic analysis,
which we’ll explore next.

Signatures Panel

The first two panels you’ll see on the results page are Analysis and File
Details. These contain the time the file was run and other static details
about the file. The panel I will focus on here is the Signatures panel, shown
in Figure 3-3. This panel contains high-level information derived from the
file itself and its behavior when it was run in the dynamic analysis environ-
ment. Let’s discuss what each of these signatures means.

Signatures

VirusTotal as malicious

ssed using UPX

Collects information to fingerprint the system (MachineGuid, DigitalProductid,
SystemBiosDate)

Creates an Alternate Data Stream (ADS)

Installs itself for autorun at Windows startup

Figure 3-3: The malwr.com signatures that match the behavior of our malware sample

The first three signatures shown in the figure result from static analysis
(that is, these are results from the properties of the malware file itself, not
its actions). The first signature simply tells us that a number of antivirus
engines on the popular antivirus aggregator VirusTotal.com marked this file
as malware. The second indicates that the binary contains compressed or
encrypted data, a common sign of obfuscation. The third tells us that this
binary was compressed with the popular UPX packer. Although these static
indicators on their own don’t tell us what this file does, they do tell us that
it’s likely malicious. (Note that the color doesn’t correspond to static versus
dynamic categories; instead, it represents the severity of each rule, with
red—the darker gray here—being more suspicious than yellow.)

The next three signatures result from dynamic analysis of the file. The
first signature indicates that the program attempts to identify the system’s
hardware and operating system. The second indicates that the program
uses a pernicious feature of Windows known as Alternate Data Streams (ADS),
which allows malware to hide data on disk such that it’s invisible when using
standard file system browsing tools. The third signature indicates that the
file changes the Windows registry so that when the system reboots, a pro-
gram that it specified will automatically execute. This would restart the mal-
ware whenever the user reboots their system.

A Brief Introduction to Dynamic Analysis 29

30

Chapter 3

As you can see, even at the level of these automatically triggered sig-
natures, dynamic analysis adds significantly to our knowledge of the file’s
intended behavior.

Screenshots Panel

Beneath the Signatures panel is the Screenshots panel. This panel shows a
screenshot of the dynamic analysis environment desktop as the malware is
running. Figure 3-4 shows an example of what this looks like.

= —

All your files have been encrypted.

Al your files have been encrypted!

|All your documents (databases, texts, images, videos, musics elc.) were encrypted. The encryption was done using a secret key
that is now on our servers

|To decrypt your files you will need to buy the secret key from us. We are the only on the world who can provide this for you
Note that every 6 hours, a random file is parmanently deleted. The faster you are, the less files you will lose.

|Also, in 96 hours, the key will be permanently deleted and there will be no way of recovering your files.

[What can | do?

Contact us by email telling your ID (below) and wait for us to send the instructions.

Contact us by: ihumicane@sigaint.org

lAs a proof, you can send one encrypted file, so we will send it back decrypted. Use it as a guarantee that we can decrypt your files.

ext Russian Roulette fle deletion: Time until total loss:
hours, 59 minutes and 59 seconds 3 days, 23 hours, 59 minutes and 59 seconds
|ast (0] file deleted:
four 1D: Got the code?
S — o |
opy to clpboard See the fles 11 get back ¥ I'm 2 good bov

Figure 3-4: A screen capture of our malware sample’s dynamic behavior

You can see that the malware we’re dealing with is ransomware, which is
a type of malware that encrypts a target’s files and forces them to pay up if
they want to get their data back. By simply running our malware, we were
able to uncover its purpose without resorting to reverse engineering.

Modified System Objects Panel

A row of headings under Screenshots shows the malware sample’s network
activity. Our binary did not engage in any network communications, but
if it had, we would see the hosts it contacted here. Figure 3-5 shows the
Summary panel.

Summary

Registry Keys ~ Mutexes

C: \DOCUME~1\User\LOCALS~1\Temp\wordplugin.exe

C:\DOCUME~1

C:\DOCUME~1\User

C:\DOCUME~1\User\LOCALS~1

C:\DOCUME~1\User\LOCALS~1\Temp

C:\Documents and Settings\User\Local Settings\Temp\wordplugin.exe
C:\WINDOWS\system32\msctfime.ime

Figure 3-5: The Files tab of the Summary pane, showing which files
our malware sample modified

This shows which system objects, like files, registry keys, and mutexes,

the malware has modified.

Looking at the Files tab in Figure 3-6, it’s clear that this ransomware

malware has indeed encrypted the user files on disk.

C:\Perl\win32\cpan.ico
C:\Perl\win32\D3BAFC2EABAT13BR@5444C65E75689DA2 . locked
C:\Perl\win32\onion.ico
C:\Perl\win32\D3CDFF5FAGD613B812F44BD5F75199DD1FAB3 . locked
C:\Perl\win32\perldoc.ico
C:\Perl\win32\D@BOFF54A1DD13B22F31C65C756890ASFACECDEDI4AE . locked
C:\Perl\win32\perlhelp.ico
C:\Perl\win32\DOBOFFS54A1DD13B22F46C62D751E9ED2FEB2CDIC14DBAF25. locked

Figure 3-6: File paths in the Files tab of the Summary pane, suggesting
that our sample is ransomware

After each file path is a file with a .locked extension, which we can infer

is the encrypted version of the file it has replaced.
Next, we’ll look at the Registry Keys tab, shown in Figure 3-7.

Summary

Files Regisiry Keys ERSINENES

HKEY CURRENT_USER\Control Panel\Mouse

HKEY_CURRENT_USER\Software\AutoIt v3\AutoIt
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\IMM
HKEY_USERS\S-1-5-21-1547161642-587921485-839522115-1084\Software\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Layers

HKEY_CURRENT _USER\SOFTWARE\Microsoft\CTF
HKEY_LOCAL_MACHINE\Software\Microsoft\CTF\SystemShared
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\ComputerName
ActiveComputerName

Figure 3-7: The Registry Keys tab of the Summary pane, showing which registry keys

our malware sample modified

A Brief Introduction to Dynamic Analysis

31

32

Chapter 3

The registry is a database that Windows uses to store configuration
information. Configuration parameters are stored as registry keys, and
these keys have associated values. Similar to file paths on the Windows file
system, registry keys are backslash delimited. Malwr.com shows us what reg-
istry keys our malware modified. Although this isn’t shown in Figure 3-7, if
you view the complete report on malwr.com, you should see that one notable
registry key our malware changed is HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run, which is a registry key that tells Windows to run
programs each time a user logs on. It’s very likely that our malware modifies
this registry to tell Windows to restart the malware every time the system
boots up, which ensures that the malware infection persists from reboot to
reboot.

The Mutexes tab in the malwr.com report contains the names of the
mutexes the malware created, as shown in Figure 3-8.

Summary

Files Registry Keys

CTF.TimListCache.FMPDefaultS-1-5-21-1547161642-587921485-839522115-
1004MUTEX . Defaults-1-5-21-1547161642-587921485-839522115-1064
ShimCacheMutex

MSCTF.Shared.MUTEX. EMF

Figure 3-8: The Mutexes tab of the Summary pane, showing which
mutexes our malware sample created

Mutexes are lock files that signal that a program has taken posses-
sion of some resource. Malware often uses mutexes to prevent itself from
infecting a system twice. It turns out that at least one mutex created
(CTFE.TimListCache. FMPDefaultS-1-5-21-1547161642-507921405-839522115-
1004MUTEX . DefaultS-1-5-21-1547161642-507921405-839522115-1004
ShimCacheMutex) is known by the security community to be associated
with malware and may be serving this purpose here.

API Call Analysis

Clicking the Behavioral Analysis tab on the left panel of the malwr.com UI,
as shown in Figure 3-9, should bring up detailed information about our
malware binary’s behavior.

This shows what API calls were made by each process launched by the
malware, along with their arguments and return values. Perusing this infor-
mation is time consuming and requires expert knowledge of Windows APIs.
Although a detailed discussion of malware API call analysis is beyond the
scope of this book, if you're interested in learning more, you can look up
individual API calls to discover their effects.

malwr ¥

Static Analysis 10:56:07.199:56:07.299:56:07.399:56:07.439:56:07.599
Behavioral Analysis

Network Analysis

Dropped Files

Comment Board (0)

Figure 3-9: The Behavioral Analysis pane of the malwr.com report for our
malware sample, showing when API calls were made during the dynamic
execution

Although malwr.com is a great resource for dynamically analyzing indi-
vidual malware samples, it isn’t great for performing dynamic analysis on
large numbers of samples. Executing large numbers of samples in a dynamic
environment is important for machine learning and data analysis because
it identifies relationships between malware samples’ dynamic execution
patterns. Creating machine learning systems that can detect instances of
malware based on their dynamic execution patterns requires running thou-
sands of malware samples.

In addition to this limitation, malwr.com doesn’t provide malware analy-
sis results in machine-parseable formats like XML or JSON. To address
these issues you must set up and run your own CuckooBox. Fortunately,
CuckooBox is free and open source. It also comes with step-by-step
instructions for setting up your very own dynamic analysis environment.

I encourage you to do so by going to http://cuckoosandbox.org/. Now that
you understand how to interpret dynamic malware results from malwr.com,
which uses CuckooBox behind the scenes, you’ll also know how to analyze
CuckooBox results once you have CuckooBox up and running.

Limitations of Basic Dynamic Analysis

Dynamic analysis is a powerful tool, but it is no malware analysis panacea.
In fact, it has serious limitations. One limitation is that malware authors
are aware of CuckooBox and other dynamic analysis frameworks and
attempt to circumvent them by making their malware fail to execute when
it detects that it’s running in CuckooBox. The CuckooBox maintainers
are aware that malware authors try to do this, so they try to get around
attempts by malware to circumvent CuckooBox. This cat-and-mouse game

A Brief Introduction to Dynamic Analysis 33

34

plays out continuously such that some malware samples will inevitably
detect that they are running in dynamic analysis environments and fail
to execute when we try to run them.

Another limitation is that even without any circumvention attempts,
dynamic analysis might not reveal important malware behaviors. Consider
the case of a malware binary that connects back to a remote server upon
execution and waits for commands to be issued. These commands may, for
example, tell the malware sample to look for certain kinds of files on the
victim host, to log keystrokes, or turn on the webcam. In this case, if the
remote server sends no commands, or is no longer up, none of these mali-
cious behaviors will be revealed. Because of these limitations, dynamic
analysis is not a fix-all for malware analysis. In fact, professional malware
analysts combine dynamic and static analysis to achieve the best possible
results.

Summary

Chapter 3

In this chapter you ran dynamic analysis on a ransomware malware sample
with malwr.com to analyze the results. You also learned about the advantages
and shortcomings of dynamic analysis. Now that you've learned how to con-
duct basic dynamic analysis, you're ready to dive into malware data science.

The remainder of this book focuses on performing malware data
science on static analysis—based malware data. I’ll focus on static analy-
sis because it’s simpler and easier to get good results with compared to
dynamic analysis, making it a good starting place for getting your hands
dirty with malware data science. However, in each subsequent chapter I’ll
also explain how you can apply data science methods to dynamic analysis—
based data.

IDENTIFYING ATTACK CAMPAIGNS
USING MALWARE NETWORKS

Malware network analysis can turn malware
datasets into valuable threat intelligence,
revealing adversarial attack campaigns,

common malware tactics, and sources of mal-
ware samples. This approach consists of analyzing the
ways in which groups of malware samples are con-
nected by their shared attributes, whether those are
embedded IP addresses, hostnames, strings of print-
able characters, graphics, or similar.

For example, Figure 4-1 shows an example of the power of malware
network analysis in a chart that took only seconds to generate with the tech-
niques you'll learn in this chapter.

36

Chapter 4

Figure 4-1: Nation-state malware's social network connections revealed via shared attri-
bute analysis

The figure displays a group of nation state—grade malware samples
(represented as oval-shaped nodes) and their “social” interconnections
(the lines connecting the nodes). The connections are based on the fact
that these samples “call back” to the same hostnames and IP addresses,
indicating they were deployed by the same attackers. As you’ll learn in
this chapter, you can use these connections to help differentiate between
a coordinated attack on your organization and a disparate array of crimi-
nally motivated attackers.

By the end of the chapter you will have learned:

The fundamentals of network analysis theory as it relates to extracting
threat intelligence from malware

Ways to use visualizations to identify relationships between malware
samples

How to create, visualize, and extract intelligence from malware net-
works using Python and various open source toolkits for data analysis
and visualization

How to tie all this knowledge together to reveal and analyze attack cam-
paigns within real-world malware datasets

Nodes and Edges

Before you can perform shared attribute analysis on malware, you need to
understand some basics about networks. Networks are collections of con-
nected objects (called nodes). The connections between these nodes are
referred to as edges. As abstract mathematical objects, the nodes in a net-
work can represent pretty much anything, as can their edges. What we care
about for our purposes is the structure of the interconnections between
these nodes and edges, as this can reveal telling details about malware.

When using networks to analyze malware, we can treat each individual
malware file as the definition of a node, and we can treat relationships of
interest (such as shared code or network behavior) as the definition of an
edge. Similar malware files share edges and thus cluster together when we
apply force-directed networks (you will see exactly how this works later).
Alternatively, we can treat both malware samples and attributes as nodes
unto themselves. For example, callback IP addresses have nodes, and so do
malware samples. Whenever malware samples call back to a particular IP
address, they are connected to that IP address node.

Networks of malware can be more complex than simply a set of nodes
and edges. Specifically, they can have attributes attached to either nodes or
edges, such as the percentage of code that two connected samples share.
One common edge attribute is a weight, with greater weights indicating
stronger connections between samples. Nodes may have their own attri-
butes, such as the file size of the malware samples they represent, but these
are typically referred to only as attributes.

Bipartite Networks

NOTE

A bipartite network is one whose nodes can be divided into two partitions
(groups), where neither partition contains internal connections. Networks
of this type can be used to show shared attributes between malware samples.

Figure 4-2 shows an example of a bipartite network in which malware
sample nodes go in the bottom partition, and domain names the samples
“call back” to (in order to communicate with the attacker) go in the other
partition. Note that callbacks never connect directly to other callbacks, and
malware samples never connect directly to other malware samples, as is
characteristic of a bipartite network.

As you can see, even such a simple visualization reveals an important
piece of intelligence: based on the malware samples’ shared callback servers,
we can guess that sample_0I14 was probably deployed by the same attacker
as sample_37D. We can also guess that sample_37D and sample_F7F probably
share the same attacker, and that sample_014 and sample_F7F probably share
the same attacker, because they’re connected by sample sample_37D (and
indeed, the samples shown in Figure 4-2 all come from the same “APT1”
Chinese attacker group).

Wed like to thank Mandiant and Mila Parkour for curating the APTI samples and
making them available to the research community.

Identifying Attack Campaigns Using Malware Networks 37

Callback domain names

media.jobs di media. aunewsonlme di .
.advanced.com media.acx.org.ru media.tzafrir.org.it
Malware scmplex / \ / \ /

sample_014 sample_37D sample_F7F

Figure 4-2: A bipartite network. The nodes on top (the attributed partition) are callback domain names.
The nodes on the bottom (malware partition) are malware samples.

As the number of nodes and connections in our network grow very
large, we might want to see just how the malware samples are related, with-
out having to closely inspect all the attribute connections. We can examine
malware sample similarity by creating a bipartite network projection, which is
a simpler version of a bipartite network in which we link nodes in one parti-
tion of the network if they have nodes in the other partition (the attribute
partition) in common. For example, in the case of the malware samples
shown in Figure 4-1, we’d be creating a network in which malware samples
are linked if they share callback domain names.

Figure 4-3 shows the projected network of the shared-callback servers
of the entire Chinese APT1 dataset referred to previously.

Figure 4-3: A projection of malware samples from the APT1 dataset, showing
connections between malware samples only if they share at least one server.
The two big clusters were used in two different attack campaigns.

38 Chapter 4

The nodes here are malware samples, and they are linked if they share
at least one callback server. By showing connections between malware
samples only if they share callback servers, we can begin to see the overall
“social network” of these malware samples. As you can see in Figure 4-3,
two large groupings exist (the large square cluster in the left-center area
and the circular cluster in the top-right area), which upon further inspec-
tion turn out to correspond to two different campaigns carried out over the
APT1 group’s 10-year history.

Visualizing Malware Networks

As you perform shared attribute analysis of malware using networks,
you’ll find that you rely heavily on network visualization software to
create the networks like the ones shown thus far. This section introduces
how these network visualizations can be created from an algorithmic
perspective.

Crucially, the major challenge in doing network visualization is nefwork
layout, which is the process of deciding where to render each node in a net-
work within a two- or three-dimensional coordinate space, depending on
whether you want your visualization to be two- or three-dimensional. When
you’re placing nodes on a network, the ideal way is to place them in the coor-
dinate space such that their visual distance from one another is proportional
to the shortest-path distance between them in the network. In other words,
nodes that are two hops away from one another might be about two inches
away from one another, and nodes that are three hops away might be about
three inches apart. Doing this allows us to visualize clusters of similar nodes
accurately to their actual relationship. As you’ll see in the next section, how-
ever, this is often difficult to achieve, especially when you’re working with
more than three nodes.

The Distortion Problem

As it turns out, it’s often impossible to solve this network layout problem
perfectly. Figure 4-4 illustrates this difficulty.

As you can see in these simple networks, all nodes are connected to all
other nodes by edges of equal weights of 1. The ideal layout for these con-
nections would place all nodes equidistant from one another on the page.
But as you can see, as we create networks of four and then five nodes, as in
(c) and (d), we start to introduce progressively more distortion due to edges
of unequal length. Unfortunately, we can only minimize, not eliminate this
distortion, and that minimization becomes one of the major goals of net-
work visualization algorithms.

Identifying Attack Campaigns Using Malware Networks 39

40

a) Two connected nodes, no distortion, b) Three connected nodes, no distortion,

all nodes equal length apart all nodes equal length apart
c) Four connected nodes, some distortion, d) Five connected nodes, more distortion,
some nodes closer than others heterogeneous node distances

Figure 4-4: Perfect network layout is usually impossible on real-world malware networks.
Simple cases like (a) and (b) allow us to lay out all nodes equidistantly. However, (c) adds
distortion (the edges are no longer all equal length), and (d) shows even more distortion.

Force-Directed Algorithms

To best minimize layout distortion, computer scientists often use force-directed
layout algorithms. Force-directed algorithms are based on physical simula-
tions of spring-like forces as well as magnetism. Simulating network edges as
physical springs often leads to good node positioning, because the simulated
springs push and pull to try to achieve uniform length between nodes and
edges. To better visualize this concept, consider how a spring works: when
you compress or stretch the spring, it “tries” to get back to its length at equi-
librium. These properties correlate well with our desire to have all the edges
of our network be equal length. Force-directed algorithms are what we focus
on in this chapter.

Building Networks with NetworkX

Chapter 4

Now that you have a basic understanding of malware networks, you're ready
to learn how to create networks of malware relationships using the open
source NetworkX Python network analysis library and the GraphViz open

source network visualization toolkit. I show you how to programmatically
extract malware-related data and then use this data to build, visualize, and
analyze networks to represent malware datasets.

Let’s begin with NetworkX, which is an open source project maintained
by a team centered at Los Alamos National Laboratory and Python’s de facto
network-processing library (recall that you can install the library dependen-
cies in this chapter, including NetworkX, by entering this chapter’s code
and data directory and the command pip install -r requirements.txt). If you
know Python, you should find NetworkX to be surprisingly easy. Use the
code in Listing 4-1 to import NetworkX and instantiate a network.

#!/usr/bin/python
import networkx

instantiate a network with no nodes and no edges.
network = networkx.Graph()

Listing 4-1: Instantiating a network

This code uses just one function call to the NetworkX Graph constructor
to create a network in NetworkX.

The NetworkX library uses the term graph in place of network sometimes, as the
two terms are synonymous in computer science—rthey both indicate a set of nodes con-
nected by edges.

Adding Nodes and Edges

Now that we’ve instantiated a network, let’s add some nodes. A node in a
NetworkX network can be any Python object. Here I show you how to add
nodes of various types to our network:

nodes = ["hello","world",1,2,3]
for node in nodes:
network.add_node(node)

As shown, we’ve added five nodes to our network: "hello", "world", 1, 2,
and 3.
Then, to add edges, we call add_edge(), as shown next:

® network.add_edge("hello", "world")
network.add_edge(1,2)
network.add_edge(1,3)

Here, we’re connecting some of these five nodes via edges. For example,
the first line of code ® connects the "hello" and "world" nodes together by
creating an edge between them.

Identifying Attack Campaigns Using Malware Networks 41

2

Chapter 4

Adding Attributes

NetworkX allows us to easily attach attributes to both nodes and edges. To
attach an attribute to a node (and to access that attribute later), you can
add the attribute as a keyword argument when you add the node to the net-
work, like this:

network.add_node(1,myattribute="foo")

To add an attribute later, access the network’s node dictionary using the
following syntax:

network.node[1]["myattribute"] = "foo"

Then, to access the node, access the node dictionary:

print network.node[1]["myattribute"] # prints "foo"

As with nodes, you can add attributes to edges using keyword argu-
ments when you add the edges initially, as shown here:

network.add_edge("node1","node2",myattribute="attribute of an edge")

Similarly, you can add attributes to edges once they’ve been added to a
network by using the edge dictionary, as shown here:

network.edge["node1"]["node2"]["myattribute"] = "attribute of an edge"

The edge dictionary is magical in that it allows you to access node attri-
butes the other way around, without having to worry about which node you
refer to first, as shown in Listing 4-2.

network.edge["node1"]["node2"]["myattribute"] = 321
print network.edge["node2"]["node1"]["myattribute"] # prints 321

Listing 4-2: Using the edge dictionary to access node attributes regardless of order

As you can see, the first line sets myattribute on an edge connecting
nodel and node2 @, and the second line accesses myattribute despite the node1
and node2 references being flipped @.

Saving Networks to Disk

To visualize our networks, we need to save them to disk from NetworkX in
.dot format—a format commonly used in the network analysis world that
can be imported into many network visualization toolkits. To save a network
in .dot format, simply call the NetworkX write_dot() function, as shown in
Listing 4-3.

#!/usx/bin/python
import networkx
from networkx.drawing.nx_agraph import write_dot

instantiate a network, add some nodes, and connect them
nodes = ["hello","world",1,2,3]
network = networkx.Graph()
for node in nodes:
network.add_node(node)
network.add_edge("hello", "world")
write_dot(®network, ®"network.dot")

Listing 4-3: Using write_dot() to save networks to disk

As you can see, at the end of the code, we use the write_dot() function
to specify the network we want to save @ as well as the path or filename we
want to save it to @.

Network Visualization with GraphViz

Once we have written a network to disk using the write_dot() NetworkX
function, we can visualize the resulting file using GraphViz. GraphViz is
the best available command line package for visualizing your networks. It’s
supported by researchers at AT&T and has become a standard part of the
network analysis toolbox used by data analysts. It contains a host of com-
mand line network layout tools that can be used to both lay out and render
networks. GraphViz comes pre-installed on the virtual machine provided
with this book and can also be downloaded at https://graphviz.gitlab.io/
download/. Each GraphViz command line tool ingests networks expressed
in .dot format and can be invoked using the following syntax to render a
network as a .png file:

$ <toolname> <dotfile> -T png -o <outputfile.png>

The fdp force-directed graph renderer is one GraphViz network visual-
ization tool. It uses the same basic command line interface as every other
GraphViz tool, as shown here:

$ fdp apticallback.dot -T png -o apticallback.png

Here, we specify that we want to use the fdp tool and name the network
.dot file we want to lay out, which is apticallback.dot, found in the ~/ch3/ direc-
tory of the data accompanying this book. We specify -T png to indicate the
format (PNG) we wish to use. Finally, we specify where we want the output
file to be saved using -o apticallback.png.

Identifying Attack Campaigns Using Malware Networks 43

https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/

Using Parameters to Adjust Networks

The GraphViz tools include many parameters you can use to adjust the way
your networks are drawn. Many of these parameters are set using the -G
command-line flag in the following format:

G<parametername>=<parametervalue>

Two particularly useful parameters are overlap and splines. Set overlap
to false to tell GraphViz not to allow any nodes to overlap one another. Use
the splines parameter to tell GraphViz to draw curved rather than straight
lines to make it easier to follow the edges on your networks. The following
are some ways to set the overlap and splines parameters in GraphViz.

Use the following to prevent nodes from overlapping:

$ <toolname> <dotfile> -Goverlap=false -T png -o <outputfile.png>

Draw edges as curved lines (splines) to improve network readability:

$ <toolname> <dotfile> -Gsplines=true -T png -o <outputfile.png>

Draw edges as curved lines (splines) to improve network readability,
and don’t allow nodes to visually overlap:

$ <toolname> <dotfile> -Gsplines=true -Goverlap=false -T png -o <outputfile.png>

44

Chapter 4

Note that we simply list one parameter after the other: -Gsplines=true
-Goverlap=false (the ordering doesn’t matter), followed by -T png -o
<outputfile.png>.

In the next section, I go over some of the most useful GraphViz tools
(in addition to fdp).

The GraphViz Command Line Tools

Here are some of the available GraphViz tools I have found most useful, as
well as some sense of when it is appropriate to use each tool.

fdp

We used the fdp layout tool in the previous example, which we used to
create a force-directed layout, as described in “Force-Directed Algorithms’
on page 40. When you’re creating malware networks with fewer than

500 nodes, fdp does a good job of revealing network structure in a reason-
able amount of time. But when you’re working with more than 500 nodes,
and especially when connectivity between nodes is complex, you’ll find that
fdp slows down fairly rapidly.

”

To try out fdp on the APT1 shared callback server network shown in
Figure 4-3, enter the following from the ¢4 directory of the data accompa-
nying this book (you must have GraphViz installed):

$ fdp callback_servers_malware_projection.dot -T png -o fdp_servers.png -
Goverlap=false

This command will create a .png file (fdp_servers.png) that shows a net-
work like the one displayed in Figure 4-5.

Figure 4-5: Layout of the APTI1 samples using the fdp tool

The fdp layout makes a number of themes apparent in the figure. First,
two big clusters of samples are highly interrelated, as clearly seen in the
upper-right and lower-left areas of the figure. Second, a number of pairs
of samples are related, which can be seen in the lower right. Finally, many
samples show no apparent relationship with one another and aren’t con-
nected to any other nodes. It’s important to recall that this visualization is
based on shared callback server relationships between nodes. It’s possible
that the unconnected samples are related to other samples in the figure
by way of other kinds of relationships, such as shared code relationships—
relationships we’ll explore in Chapter 5.

Identifying Attack Campaigns Using Malware Networks 45

stdp

The sfdp tool uses roughly the same approach to layout as fdp, but it scales
better because it creates a hierarchy of simplifications, known as coarsenings,
where nodes are merged into supernodes based on their proximity. After it
completes its coarsenings, the sfdp tool lays out the merged versions of the
graph that have far fewer nodes and edges, which dramatically speeds up
the layout process. In this way, sfdp is able to perform fewer computations
to find the best positions in the network. As a result, sfdp can lay out tens of
thousands of nodes on a typical laptop, making it by far the best algorithm
for laying out very large networks of malware.

This scalability comes at a cost, however: sfdp produces layouts that are
sometimes less clear than layouts of the same-sized networks in fdp. For
example, compare Figure 4-6, which I created using sfdp, to the network
created with fdp, shown in Figure 4-5.

Figure 4-6: Layout of the APT1 samples' shared callback server network using the
sfdp command

As you can see, there’s slightly more noise over each cluster in Figure 4-6,
making it slightly harder to see what’s going on.

To create this network, enter the ¢h4 directory of the data accompanying
this book and then enter the following code to produce the sfdp_servers.png
image file shown in Figure 4-6:

$ sfdp callback_servers_malware_projection.dot -T png -o sfdp_servers.png -Goverlap=false

46

Chapter 4

Note how the first item in this code specifies that we’re using the tool
sfdp, as opposed to fdp from before. Everything else is the same, save the
output filename.

neato

The neato tool is the GraphViz implementation of a different force-directed
network layout algorithm that creates simulated springs between all nodes
(including unconnected nodes) to help push things to ideal positions, but
at the cost of additional computation. It’s hard to know when neato will pro-
duce the best layout for a given network: my recommendation is that you try
it, in conjunction with fdp, and see which layout you like more. Figure 4-7
shows what the neato layout looks like on the APT1 shared callback server
network.

Figure 4-7: Layout of the APT1 shared callback server network using the neato layout

As you can see, in this case neato produces a similar network layout to
those produced by fdp and sfdp. For some datasets, however, you’ll find that
neato produces a better or worse layout—you just have to try it with your data-
set and see. To try out neato, enter the following from the ci4 directory of the
data accompanying this book; this should produce the neato_servers.png net-
work image file shown in Figure 4-7:

$ neato callback_servers_malware_projection.dot -T png -o neato_servers.png -Goverlap=false

Identifying Attack Campaigns Using Malware Networks 47

48

Chapter 4

To create this network, we simply revise the code we used to create
Figure 4-6 to specify that we want to use the tool neato and then save the
.png to neato_servers.png. Now that you know how to create these network
visualizations, let’s look at ways to improve them.

Adding Visval Attributes to Nodes and Edges

Beyond deciding on your general network layout, it can be useful to be able
to specify how individual nodes and edges are to be rendered. For example,
you might want to set edge thickness based on the strength of the connec-
tion between two nodes, or set node color based on what compromise each
malware sample node is associated with, which would allow you to better
visualize clusters of malware. NetworkX and GraphViz make it easy to do
this by allowing you to specify visual attributes of nodes and edges simply by
assigning values to a set of attributes. I discuss only a few such attributes in
the sections that follow, but this topic is deep enough to fill an entire book.

Edge Width

To set the width of the border that GraphViz draws around nodes, or the
line that it draws for edges, you can set the penwidth attribute of nodes and
edges to a number of your choice, as shown in Listing 4-4.

#!/usr/bin/python
import networkx
from networkx.drawing.nx_agraph import writedot

g = networkx.Graph()

g.add_node(1)

g.add_node(2)

g.add_edge(1,2,@®penwidth=10) # make the edge extra wide
write dot(g, 'network.dot")

Listing 4-4: Setting the penwidth attribute

Here, I create a simple network @ with two nodes connected by an edge,
and I set the penwidth attribute of the edge to 10 @ (the default value is 1).
Run this code, and you should see an image that looks like Figure 4-8.

Figure 4-8: A simple network with an edge
that has a penwidth of 10

As you can see in Figure 4-8, a penwidth of 10 results in a very thick
edge. The width of the edge (or, the thickness of the node’s border if
you set the penwidth of a node) scales proportionally with the value of

the penwidth attribute, so choose accordingly. For example, if your edge
strength values vary from 1 to 1000, but you want to be able to see all the
edges, you might want to consider assigning penwidth attributes based on
log scaling of your edge strength values.

Node and Edge Color

To set the color of a node’s border or an edge, use the color attribute.
Listing 4-5 shows how to do this.

#!/usr/bin/python

import networkx
from networkx.drawing.nx_agraph import write_dot

g = networkx.Graph()

g.add_node(1,®color="blue") # make the node outline blue
g.add_node(2,®color="pink") # make the node outline pink
g.add_edge(1,2,®color="red") # make the edge red
write_dot(g, 'network.dot")

Listing 4-5: Setting node and edge colors

Here, I create the same simple network I created in Listing 4-4, with
two nodes and an edge connecting them. For each node that I create, I set
its color value (@ and @). I also set the color value for the edge ® when I
create it.

Figure 4-9 shows the result of Listing 4-5. As expected, you should see
that the first node (the edge) and the second node each have a unique color.
For a complete list of colors you can use, refer to http://www.graphviz.org/doc/
info/colors. html.

Figure 4-9: A simple network that demonstrates
how to set node and edge colors

Colors can be used to show different classes of nodes and edges.

Node Shape

To set the shape of a node, use the shape attribute with a string specifying a
shape, as defined at http://www.GraphViz.org/doc/info/shapes.html. Commonly
used values are box, ellipse, circle, egg, diamond, triangle, pentagon, and hexagon.
Listing 4-6 shows how to set the shape attribute of a node.

Identifying Attack Campaigns Using Malware Networks 49

http://www.graphviz.org/doc/info/colors.html
http://www.graphviz.org/doc/info/colors.html

#!/usr/bin/python

import networkx
from networkx.drawing.nx_agraph import write dot

g = networkx.Graph()
g.add_node(1, ®shape="diamond")
g.add_node(2,®shape="egg")
g.add_edge(1,2)

write_dot(g, 'network.dot")

Listing 4-6: Setting node shapes

Similar to the way we set a node’s color, we simply use the shape keyword
argument in the add_node() function to specify the shape we want each node
to take. Here, we set the first node to a diamond shape @ and the second
node to an egg shape @. The result of this code is shown in Figure 4-10.

Figure 4-10: A simple network that shows
how we can set node shape

The results, showing a diamond-shaped node and an egg-shaped node,
reflect the shapes that we specified in Listing 4-6.

Text Labels

Finally, GraphViz also allows you to add labels to nodes and edges with the
label attribute. Although nodes are automatically labeled based on their
assigned ID (for example, the label for a node added as 123 would be 123),
you can specify labels using label=<my label attribute>. Unlike nodes, edges
aren’t labeled by default, but you can assign them labels using the label attri-
bute. Listing 4-7 shows how to create our now familiar two-node network but
with label attributes attached to both nodes and the connecting edge.

#!/usr/bin/python

import networkx
from networkx.drawing.nx_agraph import write dot

g = networkx.Graph()

g.add_node(1,®label="first node")
g.add_node(2,®label="second node")

50 Chapter 4

g.add_edge(1,2,®label="1ink between first and second node")

write_dot(g, 'network.dot")

Listing 4-7: Labeling nodes and edges

We label the nodes first node @ and second node @, respectively. We also
label the edge connecting them as the link between first and second node ©.
Figure 4-11 shows the graphical output we expect.

first node

link between first and second node

second node

Figure 4-11: A simple network that shows how
we can label nodes and edges

Now that you know how to manipulate basic attributes of nodes and
edges, you're ready to start building networks from the ground up.

Building Malware Networks

We’ll begin our discussion of building malware networks by reproducing and
expanding on the shared callback server example shown in Figure 4-1, and
then examine shared image analysis of malware.

The following program extracts callback domain names from malware
files and then builds a bipartite network of malware samples. Next, it per-
forms one projection of the network to show which malware samples share
common callback servers, and it performs another projection to show which
callback servers are called by common malware samples. Finally, the pro-
gram saves the three networks—the original bipartite network, the malware
sample projection, and the callback server projection—as files so that they
can be visualized with GraphViz.

I walk you through the program, piece by piece. The complete code
can be found in the data accompanying this book at the file path ¢a4/
callback_server_network.py.

Listing 4-8 shows how to get started by importing the requisite modules.

#!/usr/bin/python

import pefile®
import sys

Identifying Attack Campaigns Using Malware Networks 51

52

Chapter 4

import argparse

import os

import pprint

import networkx®

import re

from networkx.drawing.nx_agraph import write dot
import collections

from networkx.algorithms import bipartite

Listing 4-8: Importing modules

Of the requisite modules we imported, the most notable are the pefile
PE parsing module @, which we use to parse the target PE binaries, and the
networkx library @, which we use to create the malware attribute network.

Next, we parse the command line arguments by adding the code in
Listing 4-9.

args = argparse.ArgumentParser("Visualize shared DLL import relationships
between a directory of malware samples")

args.add_argument(®"target path",help="directory with malware samples")
args.add_argument(®"output file",help="file to write DOT file to")
args.add_argument(®"malware_projection",help="file to write DOT file to")
args.add_argument(®"resource_projection”,help="file to write DOT file to")
args = args.parse_args()

Listing 4-9: Parsing command line arguments

These arguments include target_path @ (the path to the directory where
the malware we’re analyzing is), output_file @ (the path where we write the
complete network), malware_projection @ (the path where we write a reduced
version of the graph and show which malware samples share attributes),
and resource_projection @ (the path where we write a reduced version of
the graph and show which attributes are seen together within the malware
samples).

Now we’re ready to get into the core of the program. Listing 4-10 shows
the code for creating a network for the program.

#!/usx/bin/python

import pefile

import sys

import argparse

import os

import pprint

import networkx

import re

from networkx.drawing.nx_agraph import write dot
import collections

from networkx.algorithms import bipartite

args = argparse.ArgumentParser(
"Visualize shared hostnames between a directory of malware samples"

)

args.add_argument("target path",help="directory with malware samples")
args.add_argument("output_file",help="file to write DOT file to")
args.add_argument("malware_projection”,help="file to write DOT file to")
args.add_argument("hostname_projection",help="file to write DOT file to")
args = args.parse_args()

network = networkx.Graph()

valid _hostname_suffixes = map(
lambda string: string.strip(), open("domain_suffixes.txt")

valid_hostname_suffixes = set(valid_hostname_suffixes)
® def find_hostnames(string):
possible hostnames = re.findall(
r'(?:[a-zA-20-9](?:[a-zA-Z0-9\-]{,61}[a-zA-Z0-9])?\.)+[a-zA-Z]{2,6}",
string)
valid hostnames = filter(
lambda hostname: hostname.split(".")[-1].lower() \
in valid_hostname_suffixes,
possible_hostnames

)

return valid_hostnames

search the target directory for valid Windows PE executable files
for root,dirs,files in os.walk(args.target path):
for path in files:
try opening the file with pefile to see if it's really a PE file
try:
pe = pefile.PE(os.path.join(root,path))
except pefile.PEFormatError:
continue
fullpath = os.path.join(root,path)
extract printable strings from the target sample
® strings = os.popen("strings '{0}'".format(fullpath)).read()

use the search_doc function in the included reg module
to find hostnames
O hostnames = find_hostnames(strings)

if len(hostnames):
add the nodes and edges for the bipartite network
network.add node(path,label=path[:32],color="black’,penwidth=5,
bipartite=0)

for hostname in hostnames:

® network.add node(hostname,label=hostname,color="blue’,
penwidth=10,bipartite=1)

network.add_edge(hostname,path,penwidth=2)

if hostnames:
print "Extracted hostnames from:",path
pprint.pprint(hostnames)

Listing 4-10: Creating the network

We first create a fresh network by calling the networkx.Graph() con-
structor @. Then we define the function find_hostnames(), which extracts

Identifying Attack Campaigns Using Malware Networks 53

54

[

Building

Chapter 4

hostnames from strings @. Don’t worry too much about the mechanics of
this function: it’s essentially a regular expression and some string-filtering
code that tries its best to identify domains.

Next, we iterate through all the files in the target directory, checking
whether they are PE files by seeing if the pefile.PE class is able to load them
(if not, we do not analyze the files). Finally, we extract hostname attributes
from the current file by first extracting all printable strings from the file ©
and then searching the strings for embedded hostname resources @. If we
find any, we add them as nodes in our network and then add edges from the
node for the current malware sample to the hostname resource nodes ©.

Now we’re ready to wrap up the program, as shown in Listing 4-11.

write the dot file to disk

write_dot(network, args.output file)

malware = set(n for n,d in network.nodes(data=True) if d['bipartite’]==0)
hostname = set(network)-malware

use NetworkX's bipartite network projection function to produce the malware
and hostname projections

malware network = bipartite.projected_graph(network, malware)
hostname_network = bipartite.projected graph(network, hostname)

write the projected networks to disk as specified by the user
write dot(malware_network,args.malware_projection)
write_dot(hostname_network,args.hostname_projection)

Listing 4-11: Writing networks to files

We start by writing our network to disk at the location specified in the
command line arguments @. Then we create the two reduced networks (the
“projections” introduced earlier in this chapter) that show the malware rela-
tionships and the hostname resource relationships. We do this by first creat-
ing a Python set for containing the IDs of the malware nodes ® and another
Python set for the IDs of the resource nodes ®. We then use the NetworkX-
specific projected_graph() function @ to get projections for the malware and
resource sets, and we write these networks to disk at the specified locations .

And that’s it! You can use this program on any of the malware datasets
in this book to see malware relationships between the shared hostname
resources embedded in the files. You can even use it on your own datasets
to see what threat intelligence you can glean through this mode of analysis.

a Shared Image Relationship Network

In addition to analyzing malware based on their shared callback servers,
we can also analyze them based on their use of shared icons and other
graphical assets. For example, Figure 4-12 shows a portion of the shared
image analysis results for the Trojans found in ckh4/data/Trojans.

Hoas. Win32 ArchSMS hyuo_Sa69.cve

Hoax. Win2 ArchSMS hyyq_4330.cxc

| HEUR:Hoax. Win32. ArchSMS. gen_6fe5.exe

."""

Hoax Win32 ArchSMS hsd_| 26e.exe

Huu Wind2 ArchSMS.iakk_48baexe

Hoax Win32 ArchSMS hwsd_dfibe exe

Hoax Win32. ArchSM S hywo_2c00.exe

Hoax. Win32 ArchSMS. icvk_28daexe

Figure 4-12: A visualization of the shared image asset network for a number of Trojans

Hoax Win32 ArchSMS.iacs_21s0lexe

You can see that all these Trojan horses pose as archive files and use
the same archive file icon (shown in the center of the figure), even though
they’re executables. The fact that they use exactly the same image as part
of their effort to game the user indicates that they probably come from the
same attacker. I confirmed this by running the malware samples through
the Kaspersky antivirus engine, which assigns them all the same family
name (ArchSMS).

Next, I show you how to produce the kind of visualization shown in
Figure 4-12, in order to see shared-image relationships between malware
samples. To extract the images from the malware, we use the helper library
images, which in turn relies on wrestool (discussed in Chapter 1) to create
the image_network.py program. Recall that wrestool extracts images from
Windows executables.

Let’s walk through the process of creating a shared image network,
starting with the first part of the code, shown in Listing 4-12.

#!/usr/bin/python

import pefile
import sys

import argparse
import os

import pprint
import logging
import networkx
import collections
import tempfile

Identifying Attack Campaigns Using Malware Networks 35

56

Chapter 4

from networkx.drawing.nx_agraph import write dot
from networkx.algorithms import bipartite

Use argparse to parse any command line arguments

args = argparse.ArgumentParser(

"Visualize shared image relationships between a directory of malware samples”
)

args.add_argument("target path",help="directory with malware samples")
args.add_argument("output_file",help="file to write DOT file to")
args.add_argument("malware_projection",help="file to write DOT file to")
args.add_argument("resource_projection",help="file to write DOT file to")
args = args.parse_args()

network = networkx.Graph()

©® class ExtractImages():
def __init_ (self,target_binary):
self.target binary = target_binary
self.image basedir = None
self.images = []

def work(self):

self.image basedir = tempfile.mkdtemp()

icondir = os.path.join(self.image basedir,"icons")

bitmapdir = os.path.join(self.image_basedir, "bitmaps")

raw_resources = os.path.join(self.image_basedir,"raw"

for directory in [icondir,bitmapdir,raw_resources]:

os.mkdir(directory)

rawcmd = "wrestool -x {0} -o {1} 2> \
/dev/null" . format(
self.target_binary,raw_resources

)
bmpemd = "mv {0}/*.bmp {1} 2> /dev/null".format(
raw_resources,bitmapdir
)
icocmd = "icotool -x {0}/*.ico -0 {1} \
2> /dev/null".format(
raw_resources,icondir

for cmd in [rawcmd,bmpcmd,icocmd]:
try:
os.system(cmd)
except Exception,msg:
pass
for dirname in [icondir,bitmapdir]:
for path in os.listdir(dirname):
logging.info(path)
path = os.path.join(dirname,path)
imagehash = hash(open(path).read())
if path.endswith(".png"):
self.images.append((path,imagehash))
if path.endswith(".bmp"):
self.images.append((path,imagehash))

def cleanup(self):
os.system("rm -rf {0}".format(self.image basedir))

search the target directory for PE files to extract images from
image_objects = []
for root,dirs,files in os.walk(args.target path):@
for path in files:
try to parse the path to see if it's a valid PE file
try:
pe = pefile.PE(os.path.join(root,path))
except pefile.PEFormatError:
continue

Listing 4-12: Parsing the initial argument and file-loading code in our shared image net-
work program

The program starts out much like the hostname graph program
(starting at Listing 4-8) we just discussed. It first imports a number of
modules, including pefile and networkx. Here, however, we also define the
ExtractImages helper class @, which we use to extract graphical assets from
target malware samples. Then the program enters a loop in which we iter-
ate over all the target malware binaries @.

Now that we are in our loop, it’s time to extract graphical assets from
the target malware binaries using the ExtractImages class (which under the
hood is a wrapper around the icoutils programs discussed in Chapter 1).
Listing 4-13 shows the part of the code that does this.

fullpath = os.path.join(root,path)
©® images = ExtractImages(fullpath)
® images.work()

image_objects.append(images)

create the network by linking malware samples to their images

©® for path, image_hash in images.images:
set the image attribute on the image nodes to tell GraphViz to
render images within these nodes
if not image_hash in network:

O network.add node(image_hash,image=path,label="",type="image")
node_name = path.split("/")[-1]
network.add_node(node_name, type="malware")
© network.add_edge(node_name,image_hash)

Listing 4-13: Extracting graphical assets from target malware

First, we pass in a path to a target malware binary to the ExtractImages
class @, and then we call the resulting instance’s work() method @. This
results in the ExtractImages class creating a temporary directory in which it
stores the malware images, and then storing a dictionary containing data
about each image in the images class attribute.

Now that we have the list of extracted images from ExtractImages, we iter-
ate over it @, creating a new network node for an image if we haven’t seen its
hash before @, and linking the currently processed malware sample to the
image in the network ©.

Identifying Attack Campaigns Using Malware Networks 37

58

Now that we have created our network of malware samples linked to the
images that they contain, we are ready to write the graph to disk, as shown
in Listing 4-14.

write the bipartite network, then do the two projections and write them
write_dot(network, args.output file)

malware = set(n for n,d in network.nodes(data=True) if d['type']=="malware')
resource = set(network) - malware

malware network = bipartite.projected graph(network, malware)
resource_network = bipartite.projected graph(network, resource)

write dot(malware_network,args.malware_projection)
write dot(resource_network,args.resource_projection)

Listing 4-14: Writing the graph to disk

We do this in exactly the same way that we did in Listing 4-11. First, we
write the complete network to disk @, and then we write the two projections
(the projection for the malware and the projection for the images, which we
refer to as resources here) to disk @.

You can use image_network.py to analyze graphical assets in any of the
malware datasets in this book, or to extract intelligence from malware data-
sets of your choice.

Summary

Chapter 4

In this chapter, you learned about the tools and methods necessary to per-
form shared attribute analysis on your own malware datasets. Specifically,
you learned how networks, bipartite networks, and bipartite network projec-
tions can help identify the social connections between malware samples, why
network layout is central to network visualization, and how force-directed
networks work. You also learned how to create and visualize malware net-
works using Python and open source tools like NetworkX. In Chapter 5,
youw’ll learn how to build malware networks based on shared code relation-
ships between samples.

SHARED CODE ANALYSIS

Suppose you discovered a new malware
sample on your network. How would you
begin to analyze it? You could submit it

to a multi-engine antivirus scanner such as
VirusTotal to learn what malware family it belongs
to. However, such results are often unclear and

ambiguous, because engines often label the malware in generic terms
like “agent” that mean nothing. You could also run the sample through
CuckooBox or some other malware sandbox to get a limited report on
the malware sample’s callback servers and behaviors.

When these approaches don’t provide enough information, you may
need to reverse-engineer the sample. At this stage, shared code analysis can
dramatically improve your workflow. By revealing which previously analyzed
samples the new malware sample is similar to, and thus revealing the code
they share, shared code analysis allows you to reuse your previous analyses
on new malware so that you're not starting from scratch. Understanding
where this previously seen malware came from can also help you figure out
who may have deployed the malware.

Shared code analysis, also called similarity analysis, is the process by which
we compare two malware samples by estimating the percentage of precom-
pilation source code they share. It differs from shared attribute analysis,
which compares malware samples based on their external attributes (the
desktop icons they use, for example, or the servers they call out to).

In reverse engineering, shared code analysis helps identify samples that
can be analyzed together (because they were generated from the same mal-
ware toolkit or are different versions of the same malware family), which
can determine whether the same developers could have been responsible
for a group of malware samples.

Consider the output shown in Listing 5-1, which comes from a program
youw'll build later in this chapter to illustrate the value of malware shared
code analysis. It shows previously seen samples that may share code with the
new sample as well as comments made on those older samples.

Showing samples similar to WEBC2-GREENCAT_sample E54CE5F0112C9FDFE86DB17E85A5E2C5

Sample name Shared code
[*] WEBC2-GREENCAT sample 55FB1409170C91740359D1D96364F17B 0.9921875
[*] GREENCAT_sample_55FB1409170C91740359D1D96364F178B 0.9921875
[*] WEBC2-GREENCAT sample E83F60FBOE0396EA309FAFOAED64ES3F 0.984375

[comment] This sample was determined to definitely have come from the advanced persistent
threat group observed last July on our West Coast network
[*] GREENCAT sample E83F60FBOE0396EA309FAFOAED64ES3F 0.984375

Listing 5-1: The results of basic shared code analysis

Given a new sample, shared code estimation allows us to see, within
seconds, which samples it likely shares code with and what we know about
those samples. In this example, it reveals that a very similar sample is from
a known APT, or advanced persistent threat, thus providing immediate context
for this new malware.

We can also visualize sample shared code relationships using net-
work visualization, which you learned about in Chapter 4. For example,
Figure 5-1 shows a network of shared code relationships between samples
in an advanced persistent threat dataset.

As you can see from the visualization, automated shared code analy-
sis techniques can quickly uncover the existence of malware families that
would have taken days or weeks to discover through manual analysis. In this
chapter, you’ll learn to use these techniques to do the following:

e Identify new malware families that come from the same malware tool-
kits or were written by the same attackers.

e Determine code similarity between a new sample and previously seen
samples.

e Visualize malware relationships to better understand code-sharing
patterns between malware samples and to communicate your results
to others.

e Use two proof-of-concept tools I built for this book that implement
these ideas and allow you to see malware shared code relationships.

60 Chapter 5

T oI TS

W[-ZH('!-YAHD

GREENCAT.s

:\

GREENCAT.s GREEN!

LYAHO WEBC2-YAHO
\H__

\l.".EB(' 1-YAHO

¢ WEBC2-GRE
—

—
¢ SREENCAT s

v,

WEBC:-Y;\H_(D
G;{EENL’A'I'

|
<

—
EBC2-GREE
-

650A6FCA4S

POUN STARSYPOUN
@z -GREE wmrz-@

WEBC2-GREE
S~

|

Figure 5-1: An example of the kind of visualization you will learn to create in this chapter,
showing shared code relationships between some of the APT] samples

X T XSRS A D

First, I introduce the test malware samples you’ll be using in this
chapter, which are the PLA APT1 samples from Chapter 4 and an assort-
ment of crimeware samples. Then, you learn about mathematical similar-
ity comparison and the concept of the Jaccard index, a set-theoretic method
for comparing malware samples in terms of their shared features. Next, I
introduce the concept of features to show how you can use them in con-
junction with the Jaccard index to approximate the amount of code two
malware samples share. You also learn how to evaluate malware features
in terms of their usefulness. Finally, we create visualizations of malware
code sharing at multiple scales, as shown in Figure 5-1, by leveraging your
knowledge of network visualization from Chapter 4.

MALWARE SAMPLES USED IN THIS CHAPTER

In this chapter, we use real-world malware families that share significant
amounts of code with one another to do our experiments. These datasets are
available thanks to Mandiant and Mila Parkour, who curated these samples
and made them available to the research community. In reality, however, you
might not know what family a malware sample belongs to, or to what degree
your new malware samples are similar to previously seen samples. But going
through examples where we do know will be good practice, because it allows
us fo verify that our automated inferences of sample similarity line up with our
knowledge of which samples actually belong in the same group.

The first samples come from the APT1 dataset we used in Chapter 4 to
demonstrate shared resource analysis. The other samples consist of thousands

(continued)

Shared Code Analysis 61

62

of crimeware malware samples developed by criminals to steal people’s credit
cards, turn their computers into zombie hosts hooked into botnets, and so on.
These are real-world samples sourced from a commercial malware feed pro-
vided as a paid service for threat intelligence researchers.

To identify their family names, | have input each sample into the Kaspersky
antivirus engine. Kaspersky was able to classify 30,104 of these samples with
robust hierarchical classifications (such as trojan.win32.jorik.skor.akr, indicating
the jorik.skor family), assigned a class of “unknown” to 41,830 samples, and
assigned generic labels (such as, generically, “win32 Trojan”) to the remaining
28,481 samples.

Because of the inconsistency of the Kaspersky labels (some Kaspersky
label groupings, such as the jorik family, represent a very diffuse range of
malware, whereas others, such as webprefix, represent a very specific set
of variants) and the fact that Kaspersky often misses or mislabels malware, |
selected seven malware classes that Kaspersky detects with high confidence.
Specifically, these include the dapato, pasta, skor, vbna, webprefix, xtoober,
and zango families.

Preparing Samples for Comparison by Extracting Features

Chapter 5

How do we even begin to think about estimating the amount of code two
malicious binaries may have shared before they were compiled by attackers?
There are many ways one might consider approaching this problem, but

in the hundreds of computer science research papers that have been pub-
lished on the topic, a common theme has emerged: to estimate the amount
of shared code between binaries, we group malware samples into “bags of
features” before comparing.

By features 1 mean any malware attribute we might possibly want to
consider in estimating the code similarity between samples. For example,
the features we use could be the printable strings we can extract from the
binaries. Instead of thinking of the samples as an interconnected system of
functions, dynamic library imports, and so on, we think of malware as a bag
of independent features for mathematical convenience (for example, a set of
strings that have been extracted from the malware).

How Bag of Features Models Work

To understand how a bag of features works, consider a Venn diagram
between two malware samples, as shown in Figure 5-2.

Here, sample A and sample B are shown as bags of features (features
are represented as ellipses inside the Venn diagram). We can compare
them by examining which features are shared between the two samples.
Computing the overlap between two sets of features is fast, and can be
used to compare malware samples’ similarity based on arbitrary features
that we come up with.

For example, when dealing with packed malware, we may want to
use features based on malware dynamic run logs since running malware
in a sandbox is a way to get malware to unpack itself. In other cases, we
may use strings extracted from the static malware binary to perform the
comparison.

Malware sample A Malware sample B

Features of the malware samples

Figure 5-2: An illustration of the “bag of features” model for malware code sharing
analysis

In the case of dynamic malware analysis, we may want to compare
samples based not just on what behaviors they share but also on the order
in which they express behaviors, or what we call their sequences of behaviors.
A common way to incorporate sequence information into malware sample
comparisons is to extend the bag of features model to accommodate sequen-
tial data using N-grams.

What are N-Grams?

An N-gram is a subsequence of events that has a certain length, N, of some
larger sequence of events. We extract this subsequence from a larger
sequence by sliding a window over the sequential data. In other words, we
get N-grams by iterating over a sequence and, at each step, recording the
subsequence from the event at index i to the event at index i+ N—1, as
shown in Figure 5-3.

In Figure 5-3, the sequence of integers (1,2,3,4,5,6,7) is translated into
five different subsequences of length 3: (1,2,3), (2,3,4), (3,4,5), (4,5,6),
(5,6,7).

Of course, we can do this with any sequential data. For example, using an
N-gram word length of 2, the sentence “how now brown cow” yields the fol-
lowing subsequences: “how now”, “now brown”, and “brown cow.” In malware
analysis, we would extract N-grams of sequential API calls that a malware
sample made. Then we would represent the malware as a bag of features and

Shared Code Analysis 63

64

use N-gram features to compare the malware sample to some other malware
sample’s N-grams, thereby incorporating sequence information into the bag
of features comparison model.

1. N-grams
extracted
from
malware
execution
threads

N-gram 2

2. Malware
sample N-gram 4
represented N-gram 1
as “bag of N-gram 5
N-grams”

N-gram 3

Figure 5-3: A visual explanation of how we can extract N-grams from malware’s
assembly instructions and dynamic API call sequences, where N = 3

Including sequence information in our comparison of malware samples
has advantages and disadvantages. The advantage is that when order matters
in the comparison (for example, when we care that API call A was observed
before API call B, which was observed before API call C), it allows us to cap-
ture order, but when order is superfluous (for example, malware random-
izing the order of API calls A, B, and C on every run), it can actually make
our shared code estimation much worse. Deciding whether to include order
information in our malware shared code estimation work depends on what
kind of malware we’re working with, and requires that we experiment.

Using the Jaccard Index to Quantify Similarity

Chapter 5

Once you've represented a malware sample as a bag of features, you’ll need
to measure the degree of similarity between that sample’s bag of features
and some other sample’s bag of features. To estimate the extent of code
sharing between two malware samples, we use a similarity function, which
should have the following properties:

e Ityields a normalized value such that all similarity comparisons between
pairs of malware samples can be placed on a common scale. By conven-
tion, the function should yield a value ranging from 0 (no code sharing)
to 1 (samples share 100 percent of their code).

e The function should help us make accurate estimates of code shar-
ing between two samples (we can determine this empirically through
experimentation).

e We should be able to easily understand why the function models code
similarity well (it should not be a complicated mathematical black box
that takes a lot of effort to understand or explain).

The Jaccard index is a simple function that has these properties. In fact,
even though other mathematical approaches to code similarity estimation
have been tried in the security research community (for example, cosine
distance, L1 distance, Euclidean [L2] distance, and so on), the Jaccard
index has emerged as the most widely adopted—and for good reason. It
simply and intuitively expresses the degree of overlap between two sets of
malware features, giving us the percentage of unique features common to
both of the two sets normalized by the percentage of unique features that
exist in either set.

Figure 5-4 illustrates examples of Jaccard index values.

Jaccard index = 0 Jaccard index = 1
= Shared attributes (0) / Total attributes (10) = Shared attributes (5) / Total attributes (5)

Q Q Q
QOQO QQOO OQ

Malware sample A Malware sample A
Jaccard index = 0.11 Jaccard index = 0.4
= Shared attributes (1) / Total attributes (9) = Shared attributes (4) / Total attributes (10)
Malware sample A Malware sample A

Figure 5-4: A visual illustration of the idea behind the Jaccard index

This illustrates four pairs of malware features extracted from four pairs
of malware samples. Each image shows the features shared between the two
sets, the features not shared between the two sets, and the resulting Jaccard
index for the given pair of malware samples and associated features. You
can see that the Jaccard index between the samples is simply the number
of features shared between the samples divided by the total number of fea-
tures drawn in the Venn diagram.

Shared Code Analysis 65

66

Using Similarity Matrices to Evaluate Malware Shared Code
Estimation Methods

Chapter 5

Let’s discuss four methods for determining whether two malware samples
come from the same family: instruction sequence-based similarity, strings-
based similarity, Import Address Table—based similarity, and dynamic API
call-based similarity. To compare these four methods, we’ll use a similarity
matrix visualization technique. Our goal here will be to compare the rela-
tive strengths and weaknesses of each method in terms of its ability to illu-
minate shared code relationships between samples.

To get started, let’s go over the concept of a similarity matrix. Figure 5-5
compares an imaginary set of four malware samples using a similarity matrix.

Sample 1 Sample 2 Sample 3 Sample 4

Similarity Similarity Similarity Similarity
between between between between
1 and 1 1 and 2 1and 3 1 and 4

Similarity Similarity Similarity Similarity
between between between between
2and 1 2 and 2 2 and 3 2 and 4

Similarity Similarity Similarity Similarity
between between between between
3and 1 3 and 2 3 and 3 3 and 4

Similarity Similarity Similarity Similarity
between between between between
4 and 1 4 and 2 4 and 3 4 and 4

| Sample 4 | Sample 3 | Sample 2 | Sample 1 |

Figure 5-5: An illustration of a notional similarity matrix

This matrix allows you to see the similarity relationship between all
samples. You can see that some space is wasted in this matrix. For example,
we don’t care about the similarities represented in shaded boxes, as these
entries just contain comparisons between a given sample and itself. You can
also see that the information on either side of the shaded boxes is repeated,
so you only need to look at one or the other.

Figure 5-6 gives a real-world example of a malware similarity matrix.
Note that due to the large number of malware samples shown in the figure,
each similarity value is represented by a shaded pixel. Instead of render-
ing the names of each sample, we render the family names for each sample
along the horizontal and vertical axes. A perfect similarity matrix would
look like a chain of white squares running diagonally from the top left to

the bottom right, since the rows and columns representing each family are
grouped together, and we expect all members of a given family to be similar
to one another, but not samples from other families.

— 1.0
depato
P 0.9
pasta E ~a— Possible false positives 0.8
-

skor 0.7
False negatives 106

vbna (too much —
dark space) 10.5
40.4

webprefix Almost all true positives —=

0.3
0.2

indicate missed similarity 0.1

b2ellelel relationships (false negatives).

xtoober
Dark spaces in the squares
i

0.0

depato pasta skor vbna webprefix ~ xtoober zango

Figure 5-6: A real-world malware similarity matrix computed over the seven malware
families

In the results given in Figure 5-6, you can see that some of the family
squares are completely white—these are good results, because white pixels
within a family square indicate an inferred similarity relationship between
samples of the same family. Some are much darker, which means we did
not detect strong similarity relationships. Finally, sometimes there are lines
of pixels outside the family squares, which are either evidence of related
malware families or false positives, meaning that we detected code-sharing
between families despite their being inherently different.

Next, we’ll use similarity matrix visualizations like Figure 5-6 to com-
pare the results of four different code-sharing estimation methods, starting
with a description of instruction sequence-based similarity analysis.

Instruction Sequence-Based Similarity

The most intuitive way to compare two malware binaries in terms of the
amount of code they share is by comparing their sequences of x86 assembly
instructions, since samples that share sequences of instructions are likely
to have shared, before compilation, actual source code. This requires disas-
sembling malware samples using, for example, the linear disassembly tech-
nique introduced in Chapter 2. Then we can use the N-gram extraction

Shared Code Analysis 67

68

Chapter 5

approach I discussed previously to extract sequences of instructions in the
order they appear in the .text section of the malware file. Finally, we can
use the instruction N-grams to compute Jaccard indices between samples
to estimate how much code we think they share.

The value we use for N during N-gram extraction depends on our analy-
sis goals. The larger N is, the larger our extracted instruction subsequences
will be, and thus the harder it will be for malware samples’ sequences to
match. Setting N to a large number helps identify only samples that are
highly likely to share code with one another. On the other hand, you can
make N smaller to look for subtle similarities between samples, or if you sus-
pect that the samples employ instruction reordering to obscure similarity
analysis.

In Figure 5-7, N is set to 5, which is an aggressive setting that makes it
harder for samples to match.

—— 1.0

depat
epato 0.9
pasta 0.8
skor {0.7
4 0.6

vbna
105
104

webprefix
0.3
xtoober 02
0.1

zango
0.0

depato pasta skor vbna webprefix xtoober zango

Figure 5-7: The similarity matrix generated using instruction N-gram features. Using
N = 5, we completely miss many families’ similarity relationships but do well on web-
prefix and pasta.

The results in Figure 5-7 are not very compelling. While the instruction-
based similarity analysis correctly identifies similarities between some fami-
lies, it doesn’t within other families (for example, it detects few similarity
relationships in dapato, skor, and vbna). It’s important to note, however, that
there are few false positives in this analysis (false inferences of similarity
between samples from different families, versus true inferences of similari-
ties within samples of the same family).

As you can see, a limitation of instruction subsequence shared code
analysis is that it can miss many code-sharing relationships between samples.

This is because malware samples may be packed such that most of their
instructions only become visible once we execute the malware samples and
let them unpack themselves. Without unpacking our malware samples, the
instruction sequence shared code estimation method will likely not work
very well.

Even when we unpack our malware samples, the approach can be prob-
lematic, because of the noise introduced by the source code compilation
process. Indeed, compilers can compile the same source code into radically
different sequences of assembly instructions. Take, for example, the follow-
ing simple function written in C:

int f(void) {

int a = 1;
int b = 2;
O return (a*b)+3;

}

You might think that regardless of compiler, the function would reduce
to the same sequence of assembly instructions. But in fact, compilation
depends heavily not just on what compiler you use, but also on the compiler
settings. For example, compiling this function using the clang compiler
under its default settings yields the following instructions corresponding to
the line at @ in the source code:

movl $1, -4(%rbp)
movl $2, -8(%rbp)
mov1 -4(%rbp), %eax
imull -8(%rbp), %eax
addl $3, %eax

In contrast, compiling the same function with the -03 flag set, which
tells the compiler to optimize the code for speed, yields the following
assembly for the same line of the source code:

movl $5, %eax

The difference results from the fact that in the second example, the
compiler pre-computed the result of the function instead of explicitly com-
puting it, as in the first compilation example. This means that if we com-
pared these functions based on instruction sequences, they wouldn’t appear
at all similar, even though in reality they were compiled from exactly the
same source code.

Beyond the problem of identical C and C++ code appearing to be
very different when we’re looking at its assembly instructions, there’s an
additional problem that arises when we compare binaries based on their
assembly code: many malware binaries are now authored in high-level lan-
guages like C#. These binaries contain standard boilerplate assembly code
that simply interprets these higher-level languages’ bytecode. So, although

Shared Code Analysis 69

70

Chapter 5

binaries written in the same high-level language may share very similar x86
instructions, their actual bytecode may reflect the fact that they come from
very different source code.

Strings-Based Similarity

We can compute strings-based malware similarity by extracting all contigu-
ous printable sequences of characters in the samples and then computing
the Jaccard index between all pairs of malware samples based on their
shared string relationships.

This approach gets around the compiler problem because the strings
extracted from a binary tend to be format strings defined by the program-
mer, which compilers as a general rule do not transform, regardless of
which compilers the malware authors are using or what parameters they
give the compilers. For example, a typical string extracted from a mal-
ware binary might read, “Started key logger at %s on %s and time %s.”
Regardless of compiler settings, this string will tend to look identical
among multiple binaries and is related to whether or not they’re based
on the same source code base.

Figure 5-8 shows how well the string-based code-sharing metric identi-
fies the correct code-sharing relationships in the crimeware dataset.

1.0
depato 0.9
pasta 0.8
skor 0.7
10.6

vbna
0.5
0.4

webprefix
0.3
xtoober 02
0.1

zango
0.0

depato pasta skor vbna webprefix ~ xtoober zango

Figure 5-8: The similarity matrix generated using string features

At first glance, this method does far better at identifying the malware
families than the instruction-based method, accurately recovering much
of the similarity relationships for all seven families. However, unlike the

instruction similarity method, there are a few false positives, since it incor-
rectly predicts that xtoober and dapato share some level of code. It’s also
worth noting that this method didn’t detect similarities between samples
in some families, performing particularly poorly on the zango, skor, and
dapato families.

Import Address Table-Based Similarity

We can compute what I call “Import Address Table-based similarity” by
comparing the DLL imports made by malware binaries. The idea behind
this approach is that even if the malware author has reordered instructions,
obfuscated the initialized data section of the malware binary, and imple-
mented anti-debugger and anti-VM anti-analysis techniques, they may have
left the exact same import declarations in place. The results for the Import
Address Table method are shown in Figure 5-9.

1.0

depat
epalo & 0.9
pasta 0.8
skor 0.7
10.6

vbna
0.5
0.4

webprefix
0.3
xtoober 02
0.1

zango
0.0

depato pasta skor vbna webprefix xtoober zango

Figure 5-9: The similarity matrix generated using Import Address Table features

The figure shows that the Import Address Table method does better
than any of the preceding methods at estimating the similarity relation-
ships between the webprefix and xtoober samples and does very well over-
all, even though it misses many of the skor, dapato, and vbna relationships.
It’s also notable that this method gives few false positives on our experimen-
tal dataset.

Shared Code Analysis 71

72

Chapter 5

Dynamic API Call-Based Similarity

The final comparison method I introduce in this chapter is dynamic mal-
ware similarity. The advantage of comparing dynamic sequences is that
even if malware samples are extremely obfuscated or packed, they will
tend to perform similar sequences of actions within a sandboxed virtual
machine as long as they’re derived from the same code or borrow code
from one another. To implement this approach, you’ll need to run mal-
ware samples in a sandbox and record the API calls they make, extract
N-grams of API calls from the dynamic logs, and finally compare the
samples by taking the Jaccard index between their bags of N-grams.

Figure 5-10 shows that the dynamic N-gram similarity approach does
about as well as the import and string methods in most cases.

1.0
depato 09
pasta 0.8
skor 0.7
10.6

vbna
0.5
0.4

webprefix
0.3
xtoober 02
0.1

zango
0.0

depato pasta skor vbna webprefix xtoober zango

Figure 5-10: The similarity matrix generated using dynamic APl call N-gram features

The imperfect results here show that this method is no panacea. Simply
running malware in a sandbox is not sufficient to trigger many of its behav-
iors. Variations of a command line malware tool, for example, may or may
not enable an important code module, and therefore execute different
sequences of behavior, even though they may share most of their code.

Another problem is that some samples detect that they’re running in a
sandbox and then promptly exit execution, leaving us with little informa-
tion to make comparisons. In summary, like the other similarity approaches
I’'ve outlined, dynamic API call sequence similarity isn’t perfect, but it can
provide impressive insight into similarities between samples.

Building a Similarity Graph

Now that you understand the concepts behind methods for identifying mal-
ware code sharing, let’s build a simple system that performs this analysis over
a malware dataset.

First, we need to estimate the amount of code that samples share by
extracting the features we would like to use. These could be any of the fea-
tures described previously, such as Import Address Table—based functions,
strings, N-grams of instructions, or N-grams of dynamic behavior. Here,
we’ll use printable string features because they perform well and are simple
to extract and understand.

Once we’ve extracted the string features, we need to iterate over every
pair of malware samples, comparing their features using the Jaccard index.
Then, we need to build a code-sharing graph. To do this, we first need to
decide on a threshold that defines how much code the two samples share—
a standard value I use in my research is 0.8. If the Jaccard index for a given
pair of malware samples is above that value, we create a link between them
for visualization. The final step is to study the graph to see which samples
are connected by shared code relationships.

Listings 5-2 through 5-6 contain our sample program. Because the list-
ing is long, I break it into pieces and explain each piece as I go. Listing 5-2
imports the libraries we’ll use, and declares the jaccard() function, which
computes the Jaccard index between two samples’ sets of features.

#!/usr/bin/python

import argparse

import os

import networkx

from networkx.drawing.nx_pydot import write dot
import itertools

def jaccard(set1, set2):
Compute the Jaccard distance between two sets by taking
their intersection, union and then dividing the number
of elements in the intersection by the number of elements
in their union.
intersection = seti.intersection(set2)
intersection_length = float(len(intersection))
union = seti.union(set2)
union_length = float(len(union))
return intersection_length / union_length

Listing 5-2: The imports and a helper function to compute the Jaccard index between two
samples

Next, in Listing 5-3, we declare two additional utility functions:
getstrings(), which finds the set of printable string sequences within the
malware files we’ll be analyzing, and pecheck(), which ensures that target

Shared Code Analysis 73

files are indeed Windows PE files. We’ll use these functions later when
we're performing feature extraction on the target malware binaries.

def

def

getstrings(fullpath):

Extract strings from the binary indicated by the 'fullpath'
parameter, and then return the set of unique strings in
the binary.

strings = os.popen("strings '{0}'".format(fullpath)).read()
strings = set(strings.split("\n"))

return strings

pecheck(fullpath):

Do a cursory sanity check to make sure 'fullpath' is

a Windows PE executable (PE executables start with the
two bytes 'MZ'")

return open(fullpath).read(2) == "MZ"

Listing 5-3: Declaring the functions we'll use in feature extraction

Next, in Listing 5-4, we parse our user’s command line arguments.

These arguments include the target directory in which the malware we’ll
be analyzing exists, the output .dot file to which we’ll write the shared code
network we build, and the Jaccard index threshold, which determines how
high the Jaccard index must be between two samples for the program to
decide that they share a common code base with one another.

If __name__ ==

__main__":

parser = argparse.ArgumentParser(
description="Identify similarities between malware samples and build similarity graph"

)

parser.add_argument(
"target_directory",

help="Directory containing malware'

)

parser.add_argument(
"output_dot_file",
help="Where to save the output graph DOT file"

)

parser.add_argument(
"--jaccard_index_threshold", "-j", dest="threshold", type=float,
default=0.8, help="Threshold above which to create an 'edge' between samples"

)

args = parser.parse_args()

Listing 5-4: Parsing the user’s command line arguments

74

Chapter 5

Next, in Listing 5-5, we use the helper functions we declared earlier to
do the main work of the program: finding PE binaries in the target direc-
tory, extracting features from them, and initializing a network that we’ll use
to express similarity relationships between the binaries.

malware paths = [] # where we'll store the malware file paths
malware features = dict() # where we'll store the malware strings
graph = networkx.Graph() # the similarity graph

for root, dirs, paths in os.walk(args.target directory):
walk the target directory tree and store all of the file paths
for path in paths:
full path = os.path.join(root, path)
malware_paths.append(full_path)

filter out any paths that aren't PE files
malware paths = filter(pecheck, malware_paths)

get and store the strings for all of the malware PE files

for path in malware_paths:
features = getstrings(path)
print "Extracted {0} features from {1} ...".format(len(features), path)
malware features[path] = features

add each malware file to the graph
graph.add_node(path, label=os.path.split(path)[-1][:10])

Listing 5-5: Extracting features from PE files in the target directory and initializing the
shared code network

After extracting features from our target samples, we need to iter-
ate over every pair of malware samples, comparing their features using
the Jaccard index. We do this in Listing 5-6. We also build a code-sharing
graph where samples are linked together if their Jaccard index is above
some user-defined threshold. The threshold I've found works best in my
research is 0.8.

iterate through all pairs of malware
for malwarel, malware2 in itertools.combinations(malware paths, 2):

compute the jaccard distance for the current pair
jaccard_index = jaccard(malware_features[malware1l], malware features[malware2])

if the jaccard distance is above the threshold, add an edge
if jaccard_index > args.threshold:
print malware1, malware2, jaccard_index
graph.add_edge(malwarel, malware2, penwidth=1+(jaccard_index-args.threshold)*10)

write the graph to disk so we can visualize it
write_dot(graph, args.output_dot file)

Listing 5-6: Creating a code-sharing graph in Python

Shared Code Analysis 75

76

Chapter 5

The code in Listings 5-2 through 5-6 produces the chart shown in
Figure 5-11 when applied to the APT1 malware samples. To visualize the
chart, you need to use the fdp Graphviz tool (discussed in Chapter 4) to
enter the command fdp -Tpng network.dot -o network.png.

IR
ARSI
TR

Figure 5-11: The complete string-based similarity graph for the APT1 samples

The amazing thing about this output is that within a few minutes, we
reproduced much of the manual, painstaking work that the original ana-
lysts of the APT1 produced in their report, identifying many of the malware
families used by these nation state—level attackers.

We know that our method has performed accurately relative to the
manual reverse engineering work that these analysts performed, because
the names on the nodes are the names given to them by the Mandiant ana-
lysts. You can see this in the way samples with similar names group together
in the network visualization in Figure 5-11, such as the “STARSYPOUN”
samples in the central circle. Because the malware in our network visualiza-
tion automatically groups together in a way that aligns with these family
names, our method seems to “agree” with the Mandiant malware analysts.
You can extend the code in Listings 5-2 through 5-6 and apply it to your
own malware for similar intelligence.

Scaling Similarity Comparisons

Although the code in Listings 5-2 through 5-6 works well for small malware
datasets, it doesn’t work well for a large number of malware samples. This is
because comparing all pairs of malware samples in a dataset grows quadrat-
ically with the number of samples. Specifically, the following equation gives
the number of Jaccard index computations necessary to compute a similar-

ity matrix over a dataset of size n:

For example, let’s return to the similarity matrix in Figure 5-5 to see
how many Jaccard indices we would need to compute the four samples.
At first glance, you might say 16 (4%), because that’s how many cells are in
the matrix. However, because the bottom triangle of the matrix contains
duplicates of the top triangle of the matrix, we don’t need to compute
these twice. This means that we can subtract 6 from our total number of
computations. Furthermore, we don’t need to compare malware samples to
themselves, so we can eliminate the diagonal from the matrix, allowing us
to subtract four more computations.

The number of computations necessary is as follows:

2_ j—
4 4216 4=6
2 2

This seems manageable, until our dataset grows to 10,000 malware
samples, for example, which would require 49,995,000 computations. A
dataset that has 50,000 samples would require 1,249,975,000 Jaccard index
computations!

To scale malware similarity comparisons, we need to use randomized
comparison approximation algorithms. The basic idea is to allow for some
error in our computation of comparisons in exchange for a reduction in
computation time. For our purposes, an approximate comparison approach
known as minhash serves this purpose beautifully. The minhash method
allows us to compute the Jaccard index using approximation to avoid
computing similarities between nonsimilar malware samples below some
predefined similarity threshold so that we can analyze shared code relation-
ships between millions of samples.

Before you read about why minhash works, note that this is a tricky
algorithm that can take some time to understand. If you decide to skip the
“Minhash in Depth” section, just read the “Minhash in a Nutshell” section
and use the code provided, and you should have no problems scaling your
code sharing analysis.

Minhash in a Nutshell

Minhash takes a malware sample’s features and hashes them with %k hash
functions. For each hash function, we retain only the minimum value of the

Shared Code Analysis 77

78

Chapter 5

hashes computed over all the features, so that the set of malware features
is reduced to a fixed size array of k integers, which we call the minhashes.
To compute the approximate Jaccard index between two samples based
on their minhash arrays, you now just need to check how many of the &
minhashes match, and divide that by k.

Magically, the number that falls out of these computations is a close
approximation of the true Jaccard index between any two samples. The
benefit of using minhash instead of a literal computation of the Jaccard
index is that it’s much faster to compute.

In fact, we can even use minhash to cleverly index malware in a data-
base such that we only need to compute comparisons between malware
samples that are likely to be similar because at least one of their hashes
matched, thereby dramatically speeding up computation of similarities
within malware datasets.

Minhash in Depth

Let’s now discuss the math behind minhash in depth. Figure 5-12 shows
the sets of features (represented by the shaded circles) for two malware
samples, how they are hashed and then sorted based on their hashes, and
how they’re finally compared based on the value of the first element of
each list.

Set of features from Set of features from
malware sample A malware sample B

ltems hashed and sorted
based on hash value.

This is repeated multiple

times with multiple hash
functions to increase
accuracy of estimate.

T [@OBICIA@O

minimum (leftmost)
values match is
equal fo the
Jaccard index
between
sample A and
sample B

Figure 5-12: An illustration of the idea behind minhash

The probability that the first elements will match is equal to the Jaccard
index between the samples. How this works is beyond the scope of this book,
but this serendipitous fact is what lets us approximate the Jaccard index using
hashes.

Of course, just performing this hashing, sorting, and first-element-
checking operation doesn’t tell us that much if we only do it once—the
hashes either match or they don’t, and we can’t guess the underlying
Jaccard index very accurately based on that one match. To get a better esti-
mate of this underlying value, we have to use % hash functions and repeat
this operation k times, and then estimate the Jaccard index by dividing the
number of times these first elements matched by k. Our expected errorin
estimating the Jaccard index is defined as the following:

Lo

Jk

So the more times we perform this procedure, the more certain we’ll be
(I tend to set k to 256 so that the estimate is off by 6 percent, on average).

Suppose we compute a minhash array for every malware sample in a
malware dataset containing one million samples. How do we then use the
minhashes to speed up the search for malware families in the dataset? We
could iterate over every pair of malware samples in the dataset and com-
pare their minhash arrays, which would lead to 499,999,500,000 compari-
sons. Even though it’s faster to compare minhash arrays than to compute
the Jaccard index, this is still way too many comparisons to make on mod-
ern hardware. We need some way of exploiting the minhashes to optimize
the comparison process even more.

The standard approach to this problem is to use sketching combined
with database indexing, which creates a system in which we compare only
samples that we already know are highly likely to be similar. We make a
sketch by hashing multiple minhashes together.

When we get a new sample, we check whether the database contains any
sketches that match the new sample’s sketches. If so, the new sample is com-
pared with the matching samples using their minhash arrays to approximate
the Jaccard index between the new sample and the older, similar samples.
This avoids having to compare the new sample to all samples in the database,
and instead comparing it to only those samples that are highly likely to have
high Jaccard indices with this new sample.

Building a Persistent Malware Similarity Search System

Now that you’ve learned the pros and cons of using a variety of malware fea-
ture types to estimate shared code relationships between malware samples.
You've also learned about the Jaccard index, similarity matrices, and the
way in which minhash can make computing similarities between malware
samples in even very large datasets tractable. With all this knowledge in
hand, you understand all of the fundamental concepts necessary to build

a scalable malware shared code search system.

Shared Code Analysis 79

80

Chapter 5

Listings 5-7 through 5-12 show an example of a simple system in which I
index malware samples based on their string features. In your own work, you
should feel confident in modifying this system to use other malware features,
or extending it to support more visualization features. Because the listing is
long, I've broken it up and we’ll cover each subsection in turn.

To begin, Listing 5-7 imports the Python packages required for our
program.

#!/usr/bin/python

import argparse

import os

import murmur

import shelve

import numpy as np

from listings 5 2 to 5 6 import *

NUM_MINHASHES = 256
SKETCH_RATIO = 8

Listing 5-7: Importing Python modules and declaring minhash-related constants

Here, I import packages like murmur, shelve, and sim_graph. For example,
murmur is a hashing library that we use to compute the minhash algorithm
I just discussed. We use shelve, a simple database module included in the
Python standard library, to store information about samples and their
minhashes, which we use to compute similarities. We use listings_5_2
_to_5_6.py to get functions for computing sample similarity.

We also declare two constants in Listing 5-7: NUM_MINHASHES and SKETCH
_RATIO. These correspond to the number of minhashes and the ratio of
minhashes to sketches we compute for each sample. Recall that the more
minhashes and sketches we use, the more accurate our similarity compu-
tations. For example, 256 minhashes and a ratio of 8:1 (32 sketches) is
enough to yield acceptable accuracy at a low computational cost.

Listing 5-8 implements database functionality that we use to initial-
ize, access, and delete the shelve database we use to store malware sample
information.

® def wipe database():

This problem uses the python standard library 'shelve' database to persist
information, storing the database in the file 'samples.db' in the same
directory as the actual Python script. 'wipe database' deletes this file
effectively reseting the system.

dbpath = "/".join(__file__.split('/')[:-1] + ['samples.db'])

os.system("rm -f {0}".format(dbpath))

® def get_database():

Helper function to retrieve the 'shelve' database, which is a simple
key value store.

dbpath = "/".join(__file .split('/')[:-1] + ['samples.db'])
return shelve.open(dbpath,protocol=2,writeback=True)

Listing 5-8: Database helper functions

We define wipe_database() @ to delete our program’s database in case we
want to wipe out sample information we’ve stored and start over. Then we
define get_database() @ to open our database, creating it if it doesn’t yet exist,
and then return a database object, allowing us to store and retrieve data
about our malware samples.

Listing 5-9 implements a core piece of the code for our shared code
analysis: minhash.

def minhash(features):
This is where the minhash magic happens, computing both the minhashes of
a sample's features and the sketches of those minhashes. The number of
minhashes and sketches computed is controlled by the NUM_MINHASHES and
NUM_SKETCHES global variables declared at the top of the script.
minhashes = []
sketches = []
©® for i in range(NUM_MINHASHES):
minhashes.append(
® min([murmur.string hash(feature™,i) for feature in features])
)
® for i in xrange(0,NUM_MINHASHES,SKETCH RATIO):
O sketch = murmur.string_hash(*minhashes[i:1+SKETCH_RATIO]")
sketches.append(sketch)
return np.array(minhashes),sketches

Listing 5-9: Obtaining minhashes and sketches for a sample

We loop NUM_MINHASHES times @ and append one minhash value. Each
minhash value is computed by hashing all the features and then taking the
minimum hash value. To perform this computation, we use the murmur pack-
age’s string_hash() function to hash the features, and then we take the mini-
mum value of the list of hashes by calling Python’s min() function @.

The second argument of string_hash is a seed value, which causes the
hash function to map to different hashes depending on the seed’s value.
Because each minhash value requires a unique hash function such that all
of our 256 min hash values aren’t identical, on each iteration we seed the
string_hash function with our counter value i, which causes the features to
map to different hashes on each iteration.

Then, we loop over the minhashes we’ve computed and use the
minhashes to compute sketches ©. Recall that sketches are hashes of
multiple minhashes, which we use for database indexing of our malware
samples so that we can quickly retrieve samples that are likely to be simi-
lar to one another by querying the database. In the next code listing, we

Shared Code Analysis 81

82

Chapter 5

loop over all of our sample’s minhashes with step size SKETCH_RATIO, hash-
ing each chunk of hashes as we go to obtain our sketches. Finally, we use
murmur package’s string_hash function to hash the minhashes together @.

Listing 5-10 uses get_database() from Listing 5-8, the getstrings() func-
tion from the sim_graph module we imported, and the minhash() function
from Listing 5-9 to create a function that indexes samples into our system’s
database.

def store_sample(path):

Function that stores a sample and its minhashes and sketches in the
'shelve' database

db = get database()

features = getstrings(path)

minhashes,sketches = minhash(features)

© 0000

for sketch in sketches:
sketch = str(sketch)
© if not sketch in db:

db[sketch] = set([path])

else:
obj = db[sketch]

@ obj.add(path)

db[sketch] = obj

db[path] = {'minhashes':minhashes, 'comments':[]}

db.sync()

print "Extracted {0} features from {1} ...".format(len(features),path)

Listing 5-10: Storing a sample’s minhashes in the shelve database by using its sketches
as keys

We call get_database() @, getstrings() @, and minhash() © and then iter-
ate over our sample’s sketches starting at @. Next, to index our samples in
the database, we use a technique known as inverted indexing, which allows us
to store samples based on their skefch values instead of an ID. More specifi-
cally, for each of a sample’s 32 sketch values, we look up that sketch’s record
in the database and append our sample’s ID to the list of samples associated
with that sketch. Here, we use a sample’s filesystem path as its ID.

You can see how this is implemented in the code: we loop over the
sketches we’ve computed for a sample @, we create a record for the sketch
if it doesn’t already exist (associating our sample with the sketch while
we're at it) @, and finally, we add the sample path to the sketch’s set of
associated sample paths if the sketch’s record does exist @.

Listing 5-11 shows the declaration of two important functions:
comment_sample() and search_sample().

® def comment_sample(path):

Function that allows a user to comment on a sample. The comment the
user provides shows up whenever this sample is seen in a list of similar
samples to some new samples, allowing the user to reuse their
knowledge about their malware database.
db = get_database()
comment = raw_input("Enter your comment:")
if not path in db:
store_sample(path)
comments = db[path]['comments']
comments . append(comment)
db[path]['comments'] = comments
db.sync()
print "Stored comment:", comment

@® def search sample(path):

Function searches for samples similar to the sample provided by the

'path' argument, listing their comments, filenames, and similarity values

db = get_database()

features = getstrings(path)

minhashes, sketches = minhash(features)
neighbors = []

® for sketch in sketches:
sketch = str(sketch)

if not sketch in db:
continue

® for neighbor_path in db[sketch]:
neighbor _minhashes = db[neighbor path]['minhashes']
similarity = (neighbor_minhashes == minhashes).sum()
/ float(NUM_MINHASHES)
neighbors.append((neighbor_path, similarity))

neighbors = list(set(neighbors))
©® neighbors.sort(key=lambda entry:entry[1], reverse=True)
print ""
print "Sample name".ljust(64), "Shared code estimate"
for neighbor, similarity in neighbors:
short_neighbor = neighbor.split("/")[-1]
comments = db[neighbor]['comments']
print str("[*] "+short_neighbor).ljust(64), similarity
for comment in comments:
print "\t[comment]",comment

Listing 5-11: Declaring functions that allow users to comment on samples and search for
samples similar to a query sample

Shared Code Analysis

83

84

Chapter 5

As expected, comment_sample() @ adds a user-defined comment record
to a sample’s database record. This functionality is useful, because it allows
users of the program to include insights gained from reverse-engineering
a sample in the database such that when they see a new sample similar to
samples they have comments for, they can leverage those comments to more
rapidly understand the origins and purpose of the new sample.

Next, search_sample() @ leverages minhash to find samples similar to
a query sample. To do this, first we extract string features, minhashes,
and sketches from the query sample. Then, we iterate over the sample’s
sketches, looking up samples stored in the database that also have that
sketch @. For each sample that shares a sketch with the query sample, we
compute its approximate Jaccard index using its minhashes @. Finally, we
report the most similar samples to the query sample to the user, along with
any comments associated with these samples that have been stored in the
database ©.

Listing 5-12 concludes our program’s code by implementing the
argument-parsing part of our program.

if _name_ == "'_main_ ":
parser = argparse.ArgumentParser(
description="""

Simple code-sharing search system which allows you to build up
a database of malware samples (indexed by file paths) and
then search for similar samples given some new sample

)

parser.add_argument(
"-1", "--load", dest="load", default=None,
help="Path to malware directory or file to store in database"

)

parser.add_argument(

s", "--search", dest="search", default=None,
help="Individual malware file to perform similarity search on"

)

parser.add argument(
"-c", "--comment", dest="comment", default=None,
help="Comment on a malware sample path"

)

parser.add_argument(

w", "--wipe", action="store true", default=False,
help="Wipe sample database"

args = parser.parse_args()
® if args.load:
malware paths = [] # where we'll store the malware file paths
malware features = dict() # where we'll store the malware strings

for root, dirs, paths in os.walk(args.load):
walk the target directory tree and store all of the file paths
for path in paths:
full path = os.path.join(root,path)
malware_paths.append(full path)

filter out any paths that aren't PE files
malware paths = filter(pecheck, malware paths)

get and store the strings for all of the malware PE files
for path in malware_paths:
store sample(path)

® if args.search:
search_sample(args.search)

©® if args.comment:
comment_sample(args.comment)

O if args.wipe:
wipe_ database()

Listing 5-12: Performing similarity database updates and queries based on user command
line arguments

Here, we allow users to load malware samples into the database so
that these samples will be compared with new malware samples when
users search similar samples in the database @. Next, we allow users to
search for samples similar to the sample the user has passed in @, print-
ing the results to the terminal. We also allow the user to comment on
samples already in the database @. Finally, we allow the user to wipe the
existing database @.

Running the Similarity Search System

Once you've implemented this code, you can run the similarity search sys-
tem, which consists of four simple operations:

Load Loading the samples into the system stores them in the system
database for future code-sharing searches. You can load samples indi-
vidually or specify a directory, which the system will search recursively
for PE files, loading them into the database. You can load samples into
the database with the following command run in this chapter’s code
directory:

python listings 5 7 to 5 12.py -1 <path to directory or individual malware
sample>

Shared Code Analysis 85

86

Chapter 5

Comment Commenting on a sample is useful because it allows you

to store knowledge about that sample. Also, when you see new samples
similar to this sample, a similarity search over those samples will reveal
the comments you made on the older, similar sample, thus speeding up
your workflow. You can comment on a malware sample with the follow-
ing command:

python listings 5 7 to 5 12.py -c <path to malware sample>

Search Given a single malware sample, searching identifies all similar
samples in the database and prints them in descending order of simi-
larity. Also, any comments you might have made on those samples are
printed. You can search for malware samples similar to a given sample
using the following command:

python listings 5 7_to_5_12.py -s <path to malware sample>

Wipe Wiping the database simply clears all records from the system
database, which you can do with the following command:

python listings 5 7 to_5_12.py -w

Listing 5-13 shows what it looks like when we load the APT1 samples
into the system.

mds@mds :~/malware_data_science/ch5/code$ python listings 5 7 to_5 12.py -1 ../
data

Extracted 240 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_A8F259BB36E00D124963CFA9B86F502E ...

Extracted 272 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO sample 0149B7BD7218AABAE257D28469FDDBOD ...

Extracted 236 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample CC3A9A7BO26BFEOE55FF219FD6AA7DIA ...

Extracted 272 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_1415EB8519D13328091CC5C76A624E3D ...

Extracted 236 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO sample 7A670D13D4D014169C4080328B8FEBS6 ...

Extracted 243 attributes from ../data/APT1_MALWARE_FAMILIES/WEBC2-YAHOO/WEBC2-
YAHOO_sample/WEBC2-YAHOO_sample_37DDD3D72EADO3C7518F5D47650C8572 ...

--snip--

Listing 5-13: Sample output from the loading data into the similarity search system imple-
mented in this chapter

And Listing 5-14 shows what it looks like when we perform a similarity
search.

mds@nds :~/malware_data_science/ch5/code$ python listings 5 7 to 5 12.py -s \
../data/APT1_MALWARE_FAMILIES/GREENCAT/GREENCAT sample/GREENCAT sample AB20\
8F0B517BA9850F1551C9555B5313

Sample name Shared code
estimate

[*] GREENCAT sample_5AEAA53340A281074FCB539967438E3F 1.0
[*] GREENCAT sample 1F92FF8711716CA795FBD81C477E4SFS 1.0
[*] GREENCAT sample 3E69945E5865CCC861F69B24BC1166B6 1.0
[*] GREENCAT sample AB208FOB517BA9850F1551C9555B5313 1.0
[*] GREENCAT_sample_3E6ED3EE47BCE9946E2541332CB34C69 0.99609375
[*] GREENCAT_sample_C044715C2626AB515F6C85A21C47C7DD 0.6796875
[*] GREENCAT_Sample_871CC547FEB9DBEC0285321068E39238 0.62109375
[*] GREENCAT_sample_57E79F7DF13C0CB01910DOC688FCD296 0.62109375

Listing 5-14: Sample output from the similarity search system implemented in this chapter

Note that our system correctly determines that the query sample (a
“greencat” sample) shares code with other greencat samples. If we didn’t
have the luxury of already knowing these samples were members of the
greencat family, our system would have just saved us a ton of reverse engi-
neering work.

This similarity search system is only a small example of what would be
implemented in a production similarity search system. But you should have
no problem using what you learned so far to add visualization capabilities
to the system and extend it to support multiple similarity search methods.

Summary

In this chapter, you learned how to identify shared code relationships
between malware samples, compute code sharing similarity over thou-
sands of malware samples to identify new malware families, determine a
new malware sample’s code similarity to thousands of previously seen mal-
ware samples, and visualize malware relationships to understand patterns
of code sharing.

You should now feel comfortable adding shared code analysis to your
malware analysis toolbox, which will allow you to gain fast intelligence over
large volumes of malware and accelerate your malware analysis workflow.

In Chapters 6, 7, and 8, you’ll learn to build machine learning systems
for detecting malware. Combining these detection techniques with what
you've already learned will help you catch advanced malware that other
tools miss, as well as analyze its relationships to other known malware to
gain clues about who deployed the malware and what their goals are.

Shared Code Analysis 87

UNDERSTANDING MACHINE
LEARNING-BASED MALWARE
DETECTORS

With the open source machine learning
tools available today, you can build cus-

tom, machine learning—-based malware

detection tools, whether as your primary
detection tool or to supplement commercial solu-
tions, with relatively little effort.

But why build your own machine learning tools when commercial anti-
virus solutions are already available? When you have access to examples of
particular threats, such as malware used by a certain group of attackers tar-
geting your network, building your own machine learning—based detection
technologies can allow you to catch new examples of these threats.

In contrast, commercial antivirus engines might miss these threats unless
they already include signatures for them. Commercial tools are also “closed
books”—that is, we don’t necessarily know how they work and we have limited
ability to tune them. When we build our own detection methods, we know
how they work and can tune them to our liking to reduce false positives or
false negatives. This is helpful because in some applications you might be
willing to tolerate more false positives in exchange for fewer false negatives

90

(for example, when you’re searching your network for suspicious files so that
you can hand-inspect them to determine if they are malicious), and in other
applications you might be willing to tolerate more false negatives in exchange
for fewer false positives (for example, if your application blocks programs
from executing if it determines they are malicious, meaning that false posi-
tives are disruptive to users).

In this chapter, you learn the process of developing your own detection
tools at a high level. I start by explaining the big ideas behind machine learn-
ing, including feature spaces, decision boundaries, training data, underfit-
ting, and overfitting. Then I focus on four foundational approaches—Ilogistic
regression, k-nearest neighbors, decision trees, and random forest—and how
these can be applied to perform detection.

You’ll then use what you learned in this chapter to learn how to evalu-
ate the accuracy of machine learning systems in Chapter 7 and implement
machine learning systems in Python in Chapter 8. Let’s get started.

Steps for Building a Machine Learning-Based Detector

Chapter 6

There is a fundamental difference between machine learning and other
kinds of computer algorithms. Whereas traditional algorithms tell the com-
puter what to do, machine-learning systems learn how to solve a problem by
example. For instance, rather than simply pulling from a set of preconfig-
ured rules, machine learning security detection systems can be trained to
determine whether a file is bad or good by learning from examples of good
and bad files.

The promise of machine learning systems for computer security is that
they automate the work of creating signatures, and they have the potential
to perform more accurately than signature-based approaches to malware
detection, especially on new, previously unseen malware.

Essentially, the workflow we follow to build any machine learning—
based detector, including a decision tree, boils down to these steps:

1. Collect examples of malware and benignware. We will use these
examples (called training examples) to train the machine learning
system to recognize malware.

2. Extract features from each training example to represent the example
as an array of numbers. This step also includes research to design good
features that will help your machine learning system make accurate
inferences.

3. Train the machine learning system to recognize malware using the fea-
tures we have extracted.

4. Test the approach on some data not included in our training examples
to see how well our detection system works.

Let’s discuss each of these steps in more detail in the following sections.

Gathering Training Examples

Machine learning detectors live or die by the training data provided to them.
Your malware detector’s ability to recognize suspicious binaries depends
heavily on the quantity and quality of training examples you provide. Be pre-
pared to spend much of your time gathering training examples when build-
ing machine learning—based detectors, because the more examples you feed
your system, the more accurate it’s likely to be.

The quality of your training examples is also important. The malware
and benignware you collect should mirror the kind of malware and benign-
ware you expect your detector to see when you ask it to decide whether new
files are malicious or benign.

For example, if you want to detect malware from a specific threat actor
group, you must collect as much malware as possible from that group for
use in training your system. If your goal is to detect a broad class of mal-
ware (such as ransomware), it’s essential to collect as many representative
samples of this class as possible.

By the same token, the benign training examples you feed your system
should mirror the kinds of benign files you will ask your detector to analyze
once you deploy it. For example, if you are working on detecting malware
on a university network, you should train your system with a broad sampling
of the benignware that students and university employees use, in order to
avoid false positives. These benign examples would include computer games,
document editors, custom software written by the university IT department,
and other types of nonmalicious programs.

To give a real-world example, at my current day job, we built a detector
that detects malicious Office documents. We spent about half the time on
this project gathering training data, and this included collecting benign
documents generated by more than a thousand of my company’s employees.
Using these examples to train our system significantly reduced our false
positive rate.

Extracting Features

To classify files as good or bad, we train machine learning systems by show-
ing them features of software binaries; these are file attributes that will help
the system distinguish between good and bad files. For example, here are
some features we might use to determine whether a file is good or bad:

e Whether it’s digitally signed
e The presence of malformed headers
e The presence of encrypted data

e Whether it has been seen on more than 100 network workstations

To obtain these features, we need to extract them from files. For
example, we might write code to determine whether a file is digitally
signed, has malformed headers, contains encrypted data, and so on.

Understanding Machine Learing—Based Malware Detectors 91

Often, in security data science, we use a huge number of features in our
machine learning detectors. For example, we might create a feature for
every library call in the Win32 API, such that a binary would have that fea-
ture if it had the corresponding API call. We’ll revisit feature extraction in
Chapter 8, where we discuss more advanced feature extraction concepts as
well as how to use them to implement machine learning systems in Python.

Designing Good Features

Our goal should be to select features that yield the most accurate results.
This section provides some general rules to follow.

First, when selecting features, choose ones that represent your best
guess as to what might help a machine learning system distinguish bad
files from good files. For example, the feature “contains encrypted data”
might be a good marker for malware because we know that malware often
contains encrypted data, and we’re guessing that benignware will contain
encrypted data more rarely. The beauty of machine learning is that if this
hypothesis is wrong, and benignware contains encrypted data just as often
as malware does, the system will more or less ignore this feature. If our
hypothesis is right, the system will learn to use the “contains encrypted
data” feature to detect malware.

Second, don’t use so many features that your set of features becomes
too large relative to the number of training examples for your detection
system. This is what the machine learning experts call “the curse of dimen-
sionality.” For example, if you have a thousand features and only a thousand
training examples, chances are you don’t have enough training examples to
teach your machine learning system what each feature actually says about
a given binary. Statistics tells us that it’s better to give your system a few fea-
tures relative to the number of training examples you have available and let
it form well-founded beliefs about which features truly indicate malware.

Finally, make sure your features represent a range of hypotheses about
what constitutes malware or benignware. For example, you may choose to
build features related to encryption, such as whether a file uses encryption-
related API calls or a public key infrastructure (PKI), but make sure to also
use features unrelated to encryption to hedge your bets. That way, if your
system fails to detect malware based on one type of feature, it might still
detect it using other features.

Training Machine Learning Systems

After you've extracted features from your training binaries, it’s time to train
your machine learning system. What this looks like algorithmically depends
completely on the machine learning approach you’re using. For example,
training a decision tree approach (which we discuss shortly) involves a
different learning algorithm than training a logistic regression approach
(which we also discuss).

Fortunately, all machine learning detectors provide the same basic
interface. You provide them with training data that contains features from
sample binaries, as well as corresponding labels that tell the algorithm

92 Chapter 6

which binaries are malware and which are benignware. Then the algo-
rithms learn to determine whether or not new, previously unseen binaries
are malicious or benign. We cover training in more detail later in this
chapter.

In this book, we focus on a class of machine learning algorithms known as super-
vised machine learning algorithms. 7o train models using these algorithms,
we tell them which examples are malicious and which are benign. Another class of
machine learning algorithms, unsupervised algorithms, does not require us to
know which examples are malicious or benign in our training set. These algorithms
are much less effective at detecting malicious software and malicious behavior, and
we will not cover them in this book.

Testing Machine Learning Systems

Once you've trained your machine learning system, you need to check

how accurate it is. You do this by running the trained system on data that
you didn’t train it on and seeing how well it determines whether or not the
binaries are malicious or benign. In security, we typically train our systems
on binaries that we gathered up to some point in time, and then we test on
binaries that we saw after that point in time, to measure how well our systems
will detect new malware, and to measure how well our systems will avoid pro-
ducing false positives on new benignware. Most machine learning research
involves thousands of iterations that go something like this: we create a
machine learning system, test it, and then tweak it, train it again, and test it
again, until we’re satisfied with the results. I’ll cover testing machine learn-
ing systems in detail in Chapter 8.

Let’s now discuss how a variety of machine learning algorithms work.
This is the hard part of the chapter, but also the most rewarding if you take
the time to understand it. In this discussion, I talk about the unifying ideas
that underlie these algorithms and then move on to each algorithm in detail.

Understanding Feature Spaces and Decision Boundaries

Two simple geometric ideas can help you understand all machine learning—
based detection algorithms: the idea of a geometrical feature space and the
idea of a decision boundary. A feature spaceis the geometrical space defined by
the features you've selected, and a decision boundary is a geometrical structure
running through this space such that binaries on one side of this boundary
are defined as malware, and binaries on the other side of the boundary are
defined as benignware. When we use a machine learning algorithm to clas-
sify files as malicious or benign, we extract features so that we can place the
samples in the feature space, and then we check which side of the decision
boundary the samples are on to determine whether the files are malware or
benignware.

This geometrical way of understanding feature spaces and decision
boundaries is accurate for systems that operate on feature spaces of one,
two, or three dimensions (features), but it also holds for feature spaces with

Understanding Machine Learing—Based Malware Detectors 93

94

Chapter 6

millions of dimensions, even though it’s impossible to visualize or conceive
of million-dimensional spaces. We’ll stick to examples with two dimensions
in this chapter to make them easy to visualize, but just remember that real-
world security machine learning systems pretty much always use hundreds,
thousands, or millions of dimensions, and the basic concepts we discuss in
a two-dimensional context hold for real-world systems that have more than
two dimensions.

Let’s create a toy malware detection problem to clarify the idea of a
decision boundary in a feature space. Suppose we have a training dataset
consisting of malware and benignware samples. Now suppose we extract
the following two features from each binary: the percentage of the file
that appears to be compressed, and the number of suspicious functions
each binary imports. We can visualize our training dataset as shown in
Figure 6-1 (bear in mind I created the data in the plot artificially, for
example purposes).

Simple Dataset

100
g 80 4 . . ':
S
O
e)
el
9 60 4
v
o
Q.
€
S 40
xs]
€
3 T
g 20
< .
O T T T T
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-1: A plot of a sample dataset we'll use in this chapter, where
gray dots are benignware and black dots are malware

The two-dimensional space shown in Figure 6-1, which is defined by
our two features, is the feature space for our sample dataset. You can see
a clear pattern in which the black dots (the malware) are generally in
the upper-right part of the space. In general, these have more suspicious
imported function calls and more compressed data than the benignware,
which mostly inhabits the lower-left part of the plot. Suppose, after view-
ing this plot, you were asked to create a malware detection system based
solely on the two features we’re using here. It seems clear that, based on
the data, you can formulate the following rule: if a binary has both a lot
of compressed data and a lot of suspicious imported function calls, it’s
malware, and if it has neither a lot of suspicious imported calls nor much
compressed data, it’s benignware.

In geometrical terms, we can visualize this rule as a diagonal line that
separates the malware samples from the benignware samples in the feature
space, such that binaries with sufficient compressed data and imported func-
tion calls (defined as malware) are above the line, and the rest of the bina-
ries (defined as benignware) are below the line. Figure 6-2 shows such a line,
which we call a decision boundary.

Defining a Malware Detection Decision Boundary

100
o)
_ %,
) O, -
& 801 N\ P
© ' K Malware
3
el
9 60
)
8 .
ol
£
S 404
e
€
2
2 20-
<C
Benignware
0 T T
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-2: A decision boundary drawn through our sample dataset,
which defines a rule for detecting malware

As you can see from the line, most of the black (malware) dots are on
one side of the boundary, and most of the gray (benignware) samples are on
the other side of the decision boundary. Note that it’s impossible to draw a
line that separates all of the samples from one another, because the black
and gray clouds in this dataset overlap one another. But from looking at
this example, it appears we’ve drawn a line that will correctly classify new
malware samples and benignware samples in most cases, assuming they fol-
low the pattern seen in the data in this image.

In Figure 6-2, we manually drew a decision boundary through our data.
But what if we want a more exact decision boundary and want to do it in an
automated way? This is exactly what machine learning does. In other words,
all machine learning detection algorithms look at data and use an auto-
mated process to determine the ideal decision boundary, such that there’s
the greatest chance of correctly performing detection on new, previously
unseen data.

Let’s look at the way a real-world, commonly used machine learning
algorithm identifies a decision boundary within the sample data shown in
Figure 6-3. This example uses an algorithm called logistic regression.

Understanding Machine learning-Based Malware Detectors 95

96

Chapter 6

Logistic Regression

100

[ee]
o
L

o
o
L

I
o
1

Amount of compressed data (%)
N
3

O T T T T
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-3: The decision boundary automatically created by training
a logistic regression model

Notice that we’re using the same sample data we used in the previous
plots, where gray dots are benignware and black dots are malware. The line
running through the center of the plot is the decision boundary that the
logistic regression algorithm learns by looking at the data. On the right side
of the line, the logistic regression algorithm assigns a greater than 50 per-
cent probability that binaries are malware, and on the left side of the line, it
assigns a less than 50 percent probability that a binary is malware.

Now note the shaded regions of the plot. The dark gray shaded region is
the region where the logistic regression model is highly confident that files
are malware. Any new file the logistic regression model sees that has features
that land in this region should have a high probability of being malware. As
we get closer and closer to the decision boundary, the model has less and
less confidence about whether or not binaries are malware or benignware.
Logistic regression allows us to easily move the line up into the darker region
or down into the lighter region, depending on how aggressive we want to be
about detecting malware. For example, if we move it down, we’ll catch more
malware, but get more false positives. If we move it up, we’ll catch less mal-
ware, but get fewer false positives.

I want to emphasize that logistic regression, and all other machine
learning algorithms, can operate in arbitrarily high dimensional feature
spaces. Figure 6-4 illustrates how logistic regression works in a slightly
higher dimensional feature space.

In this higher-dimensional space, the decision boundary is not a line,
but a plane separating the points in the 3D volume. If we were to move to
four or more dimensions, logistic regression would create a hyperplane,
which is an n-dimensional plane-like structure that separates the malware
from benignware points in this high dimensional space.

Figure 6-4: A planar decision boundary through a
hypothetical three dimensional feature space created
by logistic regression

Because logistic regression is a relatively simple machine learning algo-
rithm, it can only create simple geometrical decision boundaries such as
lines, planes, and higher dimensional planes. Other machine learning algo-
rithms can create decision boundaries that are more complex. Consider, for
example, the decision boundary shown in Figure 6-5, given by the k-nearest
neighbors algorithm (which I discuss in detail shortly).

K-Nearest Neighbors

100
80
60 ~
40 +

20+

Amount of compressed data (%)

0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-5: A decision boundary created by the k-nearest neighbors
algorithm

As you can see, this decision boundary isn’t a plane: it’s a highly irregu-
lar structure. Also note that some machine learning algorithms can generate

Understanding Machine learning-Based Malware Detectors 97

98

disjointed decision boundaries, which define some regions of the feature
space as malicious and some regions as benign, even if those regions are
not contiguous. Figure 6-6 shows a decision boundary with this irregular
structure, using a different sample dataset with a more complex pattern of
malware and benignware in our sample feature space.

K-Nearest Neighbors

100

80

60 +

40 4

20 p a7, o

Amount of compressed data (%)

O T T T T
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-6: A disjoint decision boundary created by the k-nearest
neighbors algorithm

Even though the decision boundary is noncontiguous, it’s still common
machine learning parlance to call these disjoint decision boundaries simply
“decision boundaries.” You can use different machine learning algorithms
to express different types of decision boundaries, and this difference in
expressivity is why we might pick one machine learning algorithm over
another for a given project.

Now that we’ve explored core machine learning concepts like feature
spaces and decision boundaries, let’s discuss what machine learning practi-
tioners call overfitting and underfitting next.

What Makes Models Good or Bad: Overfitting and
Underfitting

Chapter 6

I can’t overemphasize the importance of overfitting and underfitting in
machine learning. Avoiding both cases is what defines a good machine
learning algorithm. Good, accurate detection models in machine learn-
ing capture the general trend in what the training data says about what
distinguishes malware from benignware, without getting distracted by
the outliers or the exceptions that prove the rule.

Underfit models ignore outliers but fail to capture the general trend,
resulting in poor accuracy on new, previously unseen binaries. Overfit
models get distracted by outliers in ways that don’t reflect the general
trend, and they yield poor accuracy on previously unseen binaries.
Building machine learning malware detection models is all about captur-
ing the general trend that distinguishes the malicious from the benign.

Let’s use the examples of underfit, well fit, and overfit models in
Figures 6-7, 6-8, and 6-9 to illustrate these terms. Figure 6-7 shows an
underfit model.

Underfit (Doesn’t Capture General Trend)

100

80 4

60 ~

40 ~

Amount of compressed data (%)

O T T T T
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-7: An underfit machine learning model

Here, you can see the black dots (malware) cluster in the upper-right
region of the plot, and the gray dots (benignware) cluster in the lower
left. However, our machine learning model simply slices the dots down
the middle, crudely separating the data without capturing the diagonal
trend. Because the model doesn’t capture the general trend, we say that it
is underfit.

Also note that there are only two shades of certainty that the model
gives in all of the regions of the plot: either the shade is dark gray or it’s
white. In other words, the model is either absolutely certain that points
in the feature space are malicious or absolutely certain they’re benign.
This inability to express certainty correctly is also a reason this model is
underfit.

Let’s contrast the underfit model in Figure 6-7 with the well-fit model in
Figure 6-8.

Understanding Machine Learning—Based Malware Detectors 99

100

Chapter 6

Well-Fit (Captures General Trend)

100

80

60

40 4

Amount of compressed data (%)

20 I

O 1 1 1 1
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-8: A well-fit machine learning model

In this case, the model not only captures the general trend in the data
but also creates a reasonable model of certainty with respect to its estimate
of which regions of the feature space are definitely malicious, definitely
benign, or are in a gray area.

Note the decision line running from the top to the bottom of this
plot. The model has a simple theory about what divides the malware
from the benignware: a vertical line with a diagonal notch in the middle
of the plot. Also note the shaded regions in the plot, which tells us that
the model is only certain that data in the upper-right part of the plot are
malware, and only certain that binaries in the lower-left corner of the plot
are benignware.

Finally, let’s contrast the overfit model shown next in Figure 6-9 to
the underfit model you saw in Figure 6-7 as well as the well-fit model in
Figure 6-8.

The overfit model in Figure 6-9 fails to capture the general trend in
the data. Instead, it obsesses over the exceptions in the data, including the
handful of black dots (malware training examples) that occur in the cluster
of gray dots (benign training examples) and draws decision boundaries
around them. Similarly, it focuses on the handful of benignware examples
that occur in the malware cluster, drawing boundaries around those as well.

This means that when we see new, previously unseen binaries that hap-
pen to have features that place them close to these outliers, the machine
learning model will think they are malware when they are almost definitely
benignware, and vice versa. In practice, this means that this model won’t be
as accurate as it could be.

Overfit (Fits to Outliers)

100

80

60 4

40 4

Amount of compressed data (%)

20+

0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-9: An overfit machine learning model

Major Types of Machine Learning Algorithms

So far I've discussed machine learning in very general terms, touching on
two machine learning methods: logistic regression and k-nearest neighbors.
In the remainder of this chapter, we delve deeper and discuss logistic regres-
sion, k-nearest neighbors, decision trees, and random forest algorithms in
more detail. We use these algorithms quite often in the security data science
community. These algorithms are complex, but the ideas behind them are
intuitive and straightforward.

First, let’s look at the sample datasets we use to explore the strengths
and weaknesses of each algorithm, shown in Figure 6-10.

I created these datasets for example purposes. On the left, we have our
simple dataset, which I've already used in Figures 6-7, 6-8, and 6-9. In this
case, we can separate the black training examples (malware) from the gray
training examples (benignware) using a simple geometric structure such as
a line.

The dataset on the right, which I've already shown in Figure 6-6, is com-
plex because we can’t separate the malware from the benignware using a
simple line. But there is still a clear pattern to the data: we just have to use
more complex methods to create a decision boundary. Let’s see how differ-
ent algorithms perform with these two sample datasets.

Understanding Machine Leaming-Based Malware Detectors 101

Simple Dataset Complex Dataset

—. 100 __100
O
5 80- g 80
el el
2 3
g 60 - 2 60 4
S s
S 401 § 40-
5 K]
£ 204 T 201
))
£ c .
< 0 . : : . < o — . ;
0 20 40 60 80 100 0 20 40 60 80 100
Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-10: The two sample datasets we use in this chapter, with black dots representing malware and gray
dots representing benignware

Logistic Regression

As you learned previously, logistic regression is a machine learning algo-
rithm that creates a line, plane, or hyperplane (depending on how many
features you provide) that geometrically separates your training malware
from your training benignware. When you use the trained model to detect
new malware, logistic regression checks whether a previously unseen binary
is on the malware side or the benignware side of the boundary to deter-
mine whether it’s malicious or benign.

A limitation of logistic regression is that if your data can’t be sepa-
rated simply using a line or hyperplane, logistic regression is not the right
solution. Whether or not you can use logistic regression for your problem
depends on your data and your features. For example, if your problem has
lots of individual features that on their own are strong indicators of mali-
ciousness (or “benignness”), then logistic regression might be a winning
approach. If your data is such that you need to use complex relationships
between features to decide that a file is malware, then another approach,
like k-nearest neighbors, decision trees, or random forest, might make more
sense.

To illustrate the strengths and weaknesses of logistic regression, let’s
look at the performance of logistic regression on our two sample datasets,
as shown in Figure 6-11. We see that logistic regression yields a very effec-
tive separation of the malware and benignware in our simple dataset (on
the left). In contrast, the performance of logistic regression on our com-
plex dataset (on the right) is not effective. In this case, the logistic regres-
sion algorithm gets confused, because it can only express a linear decision
boundary. You can see both binary types on both sides of the line, and the
shaded gray confidence bands don’t really make any sense relative to the
data. For this more complex dataset, we’d need to use an algorithm capable
of expressing more geometric structures.

102 Chapter 6

Logistic Regression

Simple Dataset Complex Dataset
100 100
2 80 2 80/
< <
3 3
2 60 2 604
o o
ol o : X
§ 40 § 40 i
O o
5 5
T 201 T 201 g
))
1] 1] .
< 0 . . : . < 0
0 20 40 60 80 100 0 20 40 60 80 100
Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-11: A decision boundary drawn through our sample datasets using logistic regression

The Math Behind Logistic Regression

Let’s now look at the math behind how logistic regression detects malware
samples. Listing 6-1 shows Pythonic pseudocode for computing the prob-
ability that a binary is malware using logistic regression.

def logistic_regression(compressed_data, suspicious_calls, learned_parameters): @
compressed_data = compressed_data * learned parameters["compressed_data_weight"] @
suspicious_calls = suspicious_calls * learned parameters["suspicious_calls weight"]
score = compressed _data + suspicious_calls + bias ©
return logistic_function(score)

def logistic_function(score): @
return 1/(1.0+math.e**(-score))

Listing 6-1: Pseudocode using logistic regression to calculate probability

Let’s step through the code to understand what this means. We first
define the logistic_regression function @ and its parameters. Its parameters
are the features of the binary (compressed_data and suspicious_calls) that rep-
resent the amount of compressed data and the number of suspicious calls
it makes, respectively, and the parameter learned_parameters stands for the
elements of the logistic regression function that were learned by training
the logistic regression model on training data. I discuss how the param-
eters were learned later in this chapter; for now, just accept that they were
derived from the training data.

Then, we take the compressed_data feature ® and multiply it by the
compressed_data_weight parameter. This weight scales the feature up or
down, depending on how indicative of malware the logistic regression
function thinks this feature is. Note that the weight can also be negative,
which indicates that the logistic regression model thinks that the feature
is an indicator of a file being benign.

Understanding Machine Learning-Based Malware Detectors 103

On the line below that, we perform the same step for the suspicious_calls
parameter. Then, we add these two weighted features together @, plus add
in a parameter called the bias parameter (also learned from training data).
In sum, we take the compressed_data feature, scaled by how indicative of mali-
ciousness we believe it to be, add the suspicious_calls feature, also scaled by
how indicative of maliciousness we believe it to be, and add the bias param-
eter, which indicates how suspicious the logistic regression model thinks we
should be of files in general. The result of these additions and multiplications
is a score indicating how likely it is that a given file is malicious.

Finally, we use logistic_function @ to convert our suspiciousness score
into a probability. Figure 6-12 visualizes how this function works.

1 —

05—

L | | | |
-6 -4 -2 0 2 4 6

Figure 6-12: A plot of the logistic function used in logistic regression

Here, the logistic function takes a score (shown on the x-axis) and
translates it into a value that’s bounded between 0 and 1 (a probability).

How the Math Works

Let’s return to the decision boundaries you saw in Figure 6-11 to see how
this math works in practice. Recall how we compute our probability:

logistic_function(featurel weight * featurel + feature2 weight*feature2 + bias)

104

Chapter 6

For example, if we were to plot the resulting probabilities at every point
in the feature spaces shown in Figure 6-11 using the same feature weights
and bias parameter, we’d wind up with the shaded regions shown in the
same figure, which shows where the model “thinks” malicious and benign
samples lie, and with how much confidence.

If we were then to set a threshold of 0.5 (recall that at a probability
of greater than 50 percent, files are defined as malicious), the line in

NOTE

Figure 6-11 would appear as our decision boundary. I encourage you to
experiment with my sample code, plug in some feature weights and a bias
term, and try it yourself.

Logistic regression doesn’t constrain us to using only two features. In reality, we usu-
ally use scores or hundreds or even thousands of features with logistic regression. But
the math doesn’t change: we just compute our probability as follows for any number of
features:

logistic_function(featurel * featurel weight + feature2 * feature2 weight +
feature3 * feature3_weight ... + bias)

So how exactly does logistic regression learn to place the decision
boundary in the right place based on the training data? It uses an itera-
tive, calculus-based approach called gradient descent. We won’t get into the
details of this approach in this book, but the basic idea is that the line,
plane, or hyperplane (depending on the number of features you're using)
is iteratively adjusted such that it maximizes the probability that the logistic
regression model will get the answer right when asked if a data point in the
training set is either a malware sample or a benignware sample.

You can train logistic regression models to bias the logistic regression
learning algorithm toward coming up with simpler or more complex theories
about what constitutes malware and benignware. These training methods are
beyond the scope of this book, but if you're interested in learning about these
helpful methods, I encourage you to Google “logistic regression and regular-
ization” and read explanations of them online.

When to Use Logistic Regression

Logistic regression has distinct advantages and disadvantages relative to
other machine learning algorithms. An advantage of logistic regression
is that one can easily interpret what a logistic regression model thinks
constitutes benignware and malware. For example, we can understand a
given logistic regression model by looking at its feature weights. Features
that have high weight are those the model interprets as malicious. Features
with negative weight are those the model believes are benignware. Logistic
regression is a fairly simple approach, and when the data you're working
with contains clear indicators of maliciousness, it can work well. But when
the data is more complex, logistic regression often fails.

Now let’s explore another simple machine learning approach that can
express much more complex decision boundaries: k-nearest neighbors.

K-Nearest Neighbors

K-nearest neighbors is a machine learning algorithm based on the idea
that if a binary in the feature space is close to other binaries that are
malicious, then it’s malicious, and if its features place it close to binaries
that are benign, it must be benign. More precisely, if the majority of the

Understanding Machine Learning—Based Malware Detectors 105

106

Chapter 6

k closest binaries to an unknown binary are malicious, the file is malicious.
Note that k represents the number of nearby neighbors that we pick and
define ourselves, depending on how many neighbors we think should be
involved in determining whether a sample is benign or malicious.

In the real world, this makes intuitive sense. For example, if you have
a dataset of weights and heights of both basketball players and table ten-
nis players, chances are that the basketball players’ weights and heights
are likely closer to one another than they are to the measurements of
table tennis players. Similarly, in a security setting, malware will often
have similar features to other malware, and benignware will often have
similar features to other benignware.

We can translate this idea into a k-nearest neighbors algorithm to com-
pute whether a binary is malicious or benign using the following steps:

1. Extract the binary’s features and find the k samples that are closest to it
in the feature space.

2. Divide the number of malware samples that are close to the sample by k
to get the percentage of nearest neighbors that are malicious.

3. If enough of the samples are malicious, define the sample as malicious.

Figure 6-13 shows how k-nearest neighbors algorithm works at a high
level.

Malware training

examples ‘

New, unknown : @
binary

: Benign training

Amount of compressed data (%)

examples

Number of suspicious function calls

Figure 6-13: An illustration of the way k-nearest neighbors can be used
to detect previously unseen malware

We see a set of malware training examples in the upper left and a set of
benignware examples in the lower right. We also see a new, unknown binary
that is connected to its three nearest neighbors. In this case, we've set k to 3,

meaning we’re looking at the three nearest neighbors to unknown binaries.
Because all three of the nearest neighbors are malicious, we’d classify this
new binary as malicious.

The Math Behind K-Nearest Neighbors

Let’s now discuss the math that allows us to compute the distance between
new, unknown binaries’ features and the samples in the training set. We
use a distance function to do this, which tells us the distance between our
new example and the examples in the training set. The most common dis-
tance function is Fuclidean distance, which is the length of the shortest path
between two points in our feature space. Listing 6-2 shows pseudocode for
Euclidean distance in our sample two-dimensional feature space.

import math

def euclidean distance(compressioni,suspicious callsi, compression2, suspicious calls2): @
comp_distance = (compressioni-compression2)**2 @
call_distance = (suspicious_callsi-suspicious_calls2)**2 @
return math.sqrt(comp_distance + call_distance) @

Listing 6-2: Pseudocode for writing the euclidean_distance function

Let’s walk through how the math in this code works. Listing 6-2 takes
a pair of samples and computes the distance between them based on the
differences between their features. First, the caller passes in the features
of the binaries @, where compressioni is the compression feature of the
first example, suspicious_calls1 is the suspicious_calls feature of the first
example, compression2 is the compression feature of the second example,
and suspicious_calls2 is the suspicious calls feature of the second example.

Then we compute the squared difference between the compres-
sion features of each sample @, and we compute the squared difference
between the suspicious calls feature of each sample ®. We won’t cover
the reason we use squared distance, but note that the resulting difference
is always positive. Finally, we compute the square root of the two differ-
ences, which is the Euclidean distance between the two feature vectors,
and return it to the caller @. Although there are other ways to compute
distances between examples, Euclidean distance is the most commonly
used with the k-nearest neighbors algorithm, and it works well for security
data science problems.

Choosing the Number of Neighbors That Vote

Let’s now look at the kinds of decision boundaries and probabilities that a
k-nearest neighbors algorithm produces for the sample datasets we're using
in this chapter. In Figure 6-14, I set & to 5, thus allowing five closest neigh-
bors to “vote.”

Understanding Machine Learing-Based Malware Detectors 107

K-Nearest Neighbors, 5 Neighbors

Simple Dataset Complex Dataset

100 100

80 80

ke i)

O O

el el

3 3

2 60 2 60

o (0]

& &

§ 40 § 40

() ()

s s

£ 20, £ 20

[e] o

£ 1S

< 9 . . < o{ - -

0 20 40 60 80 100 0 20 40 60 80 100

Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-14: The decision boundaries created by k-nearest neighbors when k is set to 5

But in Figure 6-15, I set k to 50, allowing the 50 closest neighbors to
“vote.”

K-Nearest Neighbors, 50 Neighbors

Simple Dataset Complex Dataset

100 100

80 4 80

60 4 60

40 40

20 1 20

Amount of compressed data (%)
Amount of compressed data (%)

0 0

0 20 40 60 80 100 0 20 40 60 80 100
Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-15: The decision boundaries created by k-nearest neighbors when k is set to 50

Note the dramatic difference between the models depending on the
number of neighbors that vote. The model in Figure 6-14 shows a gnarly,
complex decision boundary for both datasets, which is overfit in the
sense that it draws local decision boundaries around outliers, but under-
fit because it fails to capture the simple, general trends. In contrast, the
model in Figure 6-15 is well-fit to both datasets, because it doesn’t get dis-
tracted by outliers and cleanly identifies general trends.

As you can see, k-nearest neighbors can produce a much more complex
decision boundary than logistic regression. We can control the complexity
of this boundary to guard against both over- and underfitting by chang-
ing k, the number of neighbors that get to vote on whether a sample is

108 Chapter 6

malicious or benign. Whereas the logistic regression model in Figure 6-11
got it completely wrong, k-nearest neighbors does well at separating the
malware from the benignware, especially when we let 50 neighbors vote.
Because k-nearest neighbors is not constrained by a linear structure and is
simply looking at the nearest neighbors of each point to make a decision, it
can create decision boundaries with arbitrary shapes, thus modeling com-
plex datasets much more effectively.

When to Use K-Nearest Neighbors

K-nearest neighbors is a good algorithm to consider when you have data
where features don’t map cleanly onto the concept of suspiciousness, but
closeness to malicious samples is a strong indicator of maliciousness. For
example, if you're trying to classify malware into families that share code,
k-nearest neighbors might be a good algorithm to try, because you want to
classify a malware sample into a family if its features are similar to known
members of a given family.

Another reason to use k-nearest neighbors is that it provides clear
explanations of why it has made a given classification decision. In other
words, it’s easy to identify and compare similarities between samples and
an unknown sample to figure out why the algorithm has classified it as mal-
ware or benignware.

Decision Trees

Decision trees are another frequently used machine learning method for
solving detection problems. Decision trees automatically generate a series
of questions through a training process to decide whether or not a given
binary is malware, similar to the game Twenty Questions. Figure 6-16 shows
a decision tree that I automatically generated by training it on the simple
dataset we’ve been using in this chapter. Let’s follow the flow of the logic in
the tree.

[Calls <= 40.111]

True False

Compressed <=37. 254 Compressed <= 38. 28

V \ise '[;L/ \cise

[Co||s< 33. 836 P(mc|w0re) 38%] [P(mqlware) 94% Co||s< 46. 955]

T;/\ise T;Ue/\Fofe

[P(malware) = 0%] [P(malware) = 3%] [P(malwore) = 98%] [P(molware) = 100%]

Figure 6-16: A decision tree learned for our simple dataset example

Understanding Machine Learning—Based Malware Detectors 109

The decision tree flow starts when we input the features we’ve extracted
from a new, previously unseen binary into the tree. Then the tree defines
the series of questions to ask of this binary’s features. The box at the top
of the tree, which we call a node, asks the first question: is the number of
suspicious calls in the tree less than or equal to 40.111? Note that the deci-
sion tree uses a floating point number here because we’ve normalized the
number of suspicious calls in each binary to a range between 0 and 100.

If the answer is “yes,” we ask another question: is the percentage of com-
pressed data in the file less than or equal to 37.254? If the answer is “yes,”
we proceed to the next question: is the number of suspicious calls in the
binary less than or equal to 33.836? If the answer is “yes,” we reach the end
of the decision tree. At this point, the probability that the binary is malware
is 0 percent.

Figure 6-17 shows a geometrical interpretation of this decision tree.

Decision Tree

100

=3 80 E

g

O

O

e)

2 60

v

)

[o N

1S

S 404

°

€

2

g 20

<
O T T T T
0 20 40 60 80 100

Number of suspicious imported function calls

Figure 6-17: The decision boundary created by a decision tree for our
simple dataset example

Here, the shaded regions indicate where the decision tree thinks
samples are malicious. The lighter regions indicate where the decision
tree thinks samples are benign. The probabilities assigned by the series of
questions and answers in Figure 6-16 should correspond with those in the
shaded regions in Figure 6-17.

Choosing a Good Root Node

So how do we use a machine learning algorithm to generate a decision
tree like this from training data? The basic idea is that the decision tree
starts with an initial question called a root node. The best root node is the
one for which we get a “yes” answer for most if not all samples of one type,
and a “no” answer for most if not all samples of the other type. For example,

110 Chapter 6

in Figure 6-16, the root node question asks whether a previously unseen
binary has 40.111 or fewer calls. (Note that the number of calls per binary
here is normalized to a 0 to 100 scale, making floating point values valid.)
As you can see from the vertical line in Figure 6-17, most of the benign data
has less than this number, while most of the malware data has more than
this number of suspicious calls, making this a good initial question to ask.

Picking Follow-Up Questions

After choosing a root node, pick the next questions using a method simi-
lar to the one we used to pick the root node. For example, the root node
allowed us to split the samples into two groups: one group that has less than
or equal to 40.111 suspicious calls (negative feature space) and another that
has more than 40.111 suspicious calls (positive feature space). To choose
the next question, we just need questions that will further distinguish the
samples in each area of the feature space into malicious and benign train-
ing examples.

We can see this in the way the decision tree is structured in Figure 6-16
and 6-17. For example, Figure 6-16 shows that after we ask an initial “root”
question about the number of suspicious calls binaries make, we ask ques-
tions about how much compressed data binaries have. Figure 6-17 shows
why we do this based on the data: after we ask our first question about suspi-
cious function calls, we have a crude decision boundary that separates most
malware from most benignware in the plot. How can we refine the decision
boundary further by asking follow-up questions? It’s clear visually that the
next best question to ask, which will refine our decision boundary, will be
about the amount of compressed data in the binaries.

When to Stop Asking Questions

At some point in our decision tree creation process, we need to decide
when the decision tree should stop asking questions and simply determine
whether a binary file is benign or malicious based on our certainty about
our answer. One way is to simply limit the number of questions our decision
tree can ask, or to limit its depth (the maximum number of questions we can
ask of any binary). Another is to allow the decision tree to keep growing
until we’re absolutely certain about whether or not every example in our
training set is malware or benignware based on the structure of the tree.

The advantage of constraining the size of the tree is that if the tree
is simpler, we have a greater chance of getting the answer right (think of
Occam’s razor—the simpler the theory, the better). In other words, there’s
less chance that the decision tree will overfit the training data if we keep it
small.

Conversely, allowing the tree to grow to maximum size can be useful if
we are underfitting the training data. For example, allowing the tree to grow
further will increase the complexity of the decision boundary, which we’ll
want to do if we’re underfitting. In general, machine learning practitioners

Understanding Machine learning-Based Malware Detectors m

112

Chapter 6

usually try multiple depths, or allow for maximum depth on previously
unseen binaries, repeating this process until they get the most accurate
results.

Using Psevdocode to Explore Decision Tree Generation Algorithms

Now let’s examine an automated decision tree generation algorithm. You
learned that the basic idea behind this algorithm is to create the root node
in the tree by finding the question that best increases our certainty about
whether the training examples are malicious or benign, and then to find
subsequent questions that will further increase our certainty. The algorithm
should stop asking questions and make a decision once its certainty about
the training examples has surpassed some threshold we set in advance.

Programmatically, we can do this recursively. The Python-like pseudo-
code in Listing 6-3 shows the complete process for building a decision tree
in simplified form.

tree = Tree()
def add_question(training examples):
©® question = pick_best question(training_examples)
® uncertainty yes,yes samples=ask_question(question,training_examples,"yes")
® uncertainty no,no_samples=ask_question(question,training examples,"no"
O if not uncertainty yes < MIN_UNCERTAINTY:
add_question(yes_samples)
@ if not uncertainty no < MIN_UNCERTAINTY:
add_question(no_samples)
add_question(training examples)

Listing 6-3: Pseudocode for building a decision tree algorithm

The pseudocode recursively adds questions to a decision tree, begin-
ning with the root node and working its way down until the algorithm feels
confident that the decision tree can provide a highly certain answer about
whether a new file is benign or malicious.

When we start building the tree, we use pick_best_question() to pick our
root node @ (for now, don’t worry about how this function works). Then,
we look at how much uncertainty we now have about the training samples
for which the answer is “yes” to this initial question ®. This will help us to
decide if we need to keep asking questions about these samples or if we can
stop, and predict whether the samples are malicious or benign. We do the
same for the samples for which we answered “no” for the initial question ©.

Next, we check if the uncertainty we have about the samples for which
we answered “yes” (uncertainty_yes) is sufficiently low to decide whether
they are malicious or benign @. If we can determine whether they’re mali-
cious or benign at this point, we don’t ask any additional questions. But if
we can’t, we call add_question() again, using yes_samples, or the number of
samples for which we answered “yes,” as our input. This is a classic example
of recursion, which is a function that calls itself. We’re using recursion to

repeat the same process we performed for the root node with a subset of
training examples. The next if statement does the same thing for our “no”
examples ©. Finally, we call our decision tree building function on our
training examples ©.

How exactly pick_best_question() works involves math that is beyond
the scope of this book, but the idea is simple. To pick the best question
at any point in the decision tree building process, we look at the training
examples about which we’re still uncertain, enumerate all the questions we
could ask about them, and then pick the one that best reduces our uncer-
tainty about whether the examples are malware or benignware. We mea-
sure this reduction in uncertainty using a statistical measurement called
information gain. This simple method for picking the best question works
surprisingly well.

This is a simplified example of how real-world, decision tree—generating, machine
learning algorithms work. I've left out the math required to calculate how much a
given question increases our certainly about whether or not a file is bad.

Let’s now look at the behavior of decision trees on the two sample data-
sets we’ve been using in this chapter. Figure 6-18 shows the decision bound-
ary learned by a decision tree detector.

Decision Tree

Simple Dataset Complex Dataset
5 100 100
o
g 80; 3 80
- -
2 2
2 601 : g 60
< o
£ 40, S 40-
(8] (9]
s o :
€ 204 € 204 :
g £
< 0 r ' r r < 0 r . r
0 20 40 60 80 100 0 20 40 80 100
Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-18: Decision boundaries for our sample datasets produced by a decision tree approach

In this case, instead of setting a maximum depth for the trees, we allow
them to grow to the point where there are no false positives or false nega-
tives relative to the training data so that every training sample is correctly
classified.

Notice that decision trees can only draw horizontal and vertical lines
in the feature space, even when it seems clear and obvious that a curved
or diagonal line might be more appropriate. This is because decision trees

Understanding Machine Learning—Based Malware Detectors 13

only allow us to express simple conditions on individual features (such as
greater than or equal to and less than or equal to), which always leads to
horizontal or vertical lines.

You can also see that although the decision trees in these examples suc-
ceed in separating the benignware from the malware, the decision bound-
aries look highly irregular and have strange artifacts. For example, the
malware region extends into the benignware region in strange ways, and
vice versa. On the positive side, the decision tree does far better than logis-
tic regression at creating a decision boundary for the complex dataset.

Let’s now compare the decision trees in Figure 6-18 to the decision tree
models in Figure 6-19.

Decision Tree (Limited Depth)

Complex Dataset Simple Dataset
5 100 < 100
8 5
3 80] 3 80
o o
2 a
2 601 2 604 .
s a
5§ 40 £ 40
O o
5 : 5
€ 201 : € 201
=] 2
g : g
< O T T r r < O T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-19: Decision boundaries for our sample datasets produced by a limited-depth decision tree

The decision trees in Figure 6-19 use the same decision tree generation
algorithm used for Figure 6-18, except I limit the tree depth to five nodes.
This means that for any given binary, I can ask a maximum of five questions
of its features.

The result is dramatic. Whereas the decision tree models shown in
Figure 6-18 are clearly overfit, focusing on outliers and drawing overly com-
plex boundaries that fail to capture the general trend, the decision trees in
Figure 6-19 fit the data much more elegantly, identifying a general pattern
in both datasets without focusing on outliers (with one exception, the skin-
nier decision region in the upper-right area of the simple dataset). As you
can see, picking a good maximum decision tree depth can have a big effect
on your decision tree—based machine learning detector.

When to Use Decision Trees

Because decision trees are expressive and simple, they can learn both simple

and highly irregular boundaries based on simple yes-or-no questions. We can
also set the maximum depth to control how simple or complex their theories
of what constitutes malware versus benignware should be.

114 Chapter 6

Unfortunately, the downside to decision trees is that they often simply
do not result in very accurate models. The reason for this is complex, but
it’s related to the fact that decision trees express jagged decision boundar-
ies, which don’t fit the training data in ways that generalize to previously
unseen examples very well.

Similarly, decision trees don’t usually learn accurate probabilities around
their decision boundaries. We can see this by inspecting the shaded regions
around the decision boundary in Figure 6-19. The decay is not natural or
gradual and doesn’t happen in the regions it should—areas where the mal-
ware and benignware examples overlap.

Next, I discuss the random forest approach, which combines multiple
decision trees to yield far better results.

Random Forest

Although the security community relies heavily on decision trees for
malware detection, they almost never use them individually. Instead,
hundreds or thousands of decision trees are used in concert to make
detections through an approach called random forest. Instead of training
one decision tree, we train many, usually a hundred or more, but we train
each decision tree differently so that it has a different perspective on the
data. Finally, to decide whether a new binary is malicious or benign, we
allow the decision trees to vote. The probability that a binary is malware
is the number of positive votes divided by the total number of trees.

Of course, if all the decision trees are identical, they would all vote the
same way, and the random forest would simply replicate the results of the
individual decision trees. To address this, we want the decision trees to have
different perspectives on what constitutes malware and benignware, and
we use two methods, which I discuss next, to induce this diversity into our
collection of decision trees. By inducing diversity, we generate a “wisdom of
crowds” dynamic in our model, which typically results in a more accurate
model.

We use the following steps to generate a random forest algorithm:

1. Training: for every tree out of the number we plan to generate (typi-
cally 100 or more)

¢ Randomly sample some training examples from our training set.
¢ Build a decision tree from the random sample.

* For each tree that we build, each time we consider “asking a ques-
tion,” consider asking a question of only a handful of features, and
disregard the other features.

2. Detection on a previously unseen binary
¢ Run detection for each individual tree on the binary.

¢ Decide whether or not the binary is malware based on the number
of trees that voted “yes.”

Understanding Machine Learning-Based Malware Detectors 115

To understand this in more detail, let’s examine the results generated
by the random forest approach on our two sample datasets, as shown in
Figure 6-20. These results were generated using 100 decision trees.

Random Forest

Simple Dataset Complex Dataset
< 100 S 100
o

g 80/ 3 80
- -
o]
2 60+ 3 60 1
ol o
§ 40 § 404
Is) O
5 5
T 204 S 20+ :
g £ '
< 0 < 0 . . r .

0 20 40 60 80 100 0 20 40 60 80 100

Number of suspicious imported function calls Number of suspicious imported function calls

Figure 6-20: Decision boundaries created using the random forest approach

In contrast to the individual decision tree results shown in Figures 6-18
and 6-19, random forest can express much smoother and more intuitive
decision boundaries for both simple and complex datasets than individ-
ual decision trees. Indeed, the random forest model fits the training data-
set very cleanly, with no jagged edges; the model seems to have learned
good theories about what constitutes “malicious versus benign” for both
datasets.

Additionally, the shaded regions are intuitive. For example, the fur-
ther you get from benign or malicious examples, the less certainty ran-
dom forest has about whether examples are malicious or benign. This
bodes well for random forest’s performance on previously unseen bina-
ries. In fact, as you’ll see in the next chapter, random forest is the best
performing model on previously unseen binaries of all the approaches
discussed in this chapter.

To understand why random forest draws such clean decision boundar-
ies compared to individual decision trees, let’s think about what the 100
decision trees are doing. Each tree sees only about two-thirds of the train-
ing data, and only gets to consider a randomly selected feature whenever it
makes a decision about what question to ask. This means that behind the
scenes, we have 100 diverse decision boundaries that get averaged to create
the final decision boundaries in the examples (and the shaded regions).
This “wisdom of crowds” dynamic creates an aggregate opinion that can
identify the trends in the data in a much more sophisticated way than indi-
vidual decision trees can.

116 Chapter 6

Summary

In this chapter, you got a high-level introduction to machine learning-
based malware detection as well as four major approaches to machine
learning: logistic regression, k-nearest neighbors, decision trees, and ran-
dom forests. Machine learning—based detection systems can automate the
work of writing detection signatures, and they often perform better in prac-
tice than custom written signatures.

In the following chapters, I’ll show you how these approaches perform
on real-world malware detection problems. Specifically, you’ll learn how
to use open source, machine learning software to build machine learning
detectors to accurately classify files as either malicious or benign, and how
to use basic statistics to evaluate the performance of your detectors on pre-
viously unseen binaries.

Understanding Machine Leaming-Based Malware Detectors 17

EVALUATING MALWARE
DETECTION SYSTEMS

In the previous chapter, you learned how
machine learning can help you build mal-
ware detectors. In this chapter, you learn
the basic concepts necessary to predict how
malware detection systems will perform. The ideas

you learn here will prove crucial in improving any
malware detection system you build, because without

a way to measure your system’s performance, you will not know how to
improve it. Please note that while this chapter is dedicated to introducing
basic evaluation concepts, Chapter 8 continues this thread, introducing
essential evaluation concepts like cross-validation.

First, I introduce the basic ideas behind detection accuracy evaluation,
and then I introduce more advanced ideas concerning the environment in
which you deploy your system when evaluating its performance. To do this, I
walk you through an evaluation of a hypothetical malware detection system.

120

Four Possible Detection Outcomes

Chapter 7

Suppose you run a malware detection system on a software binary and get
the system’s “opinion” about whether the binary is malicious or benign. As
illustrated in Figure 7-1, four possible outcomes may occur.

Example is Example is not
malicious malicious

True positive False positive

Detector
alarms

False negative True negative

Detector does
not alarm

Figure 7-1: The four possible detection outcomes

These outcomes can be defined as follows:

True positive The binary is malware and the system says it is malware.

False negative The binary is malware and the system says it’s not
malware.
False positive The binary is not malware and the system says it is
malware.

True negative The binary is not malware and the system says it’s not
malware.

As you can see, there are two scenarios in which your malware detec-
tion system can produce inaccurate results: false negatives and false posi-
tives. In practice, true positive and true negative results are what we desire,
but they are often difficult to obtain.

You'll see these terms used throughout this chapter. In fact, most of
detection evaluation theory is built on this simple vocabulary.

True and False Positive Rates

Now suppose you want to test the detection system’s accuracy using a set of
benignware and malware. You can run the detector on each binary and keep
count of which of the four possible outcomes the detector gives you over the
entire test set. At this point, you need some summary statistics to give you an
overall sense of the system’s accuracy (that is, how likely it is that your system
will generate false positives or false negatives).

One such summary statistic is the true positive rate of the detection
system, which you can calculate by dividing the number of true positives
on your test set by the total number of malware samples in your test set.
Because this calculates the percentage of malware samples your system is
able to detect, it measures your system’s ability to recognize malware when
it “sees” malware.

However, simply knowing that your detection system will raise alarms
when it sees malware is insufficient to evaluate its accuracy. For example, if
you only used the true positive rate as an evaluation criterion, a simple func-
tion that says “yes, this is malware” on all files would yield a perfect true posi-
tive rate. The real test of a detection system is whether or not it says “yes, this
is malware” when it sees malware and “no, this is not malware” when it sees
benignware.

To measure a system’s ability to discern whether something is not mal-
ware, you also need to measure the system’s false positive rate, which is the
rate at which your system issues a malware alarm when it sees benignware.
You can calculate your system’s false positive rate by dividing the number of
benign samples the system flags as malware by the total number of benign
samples tested.

Relationship Between True and False Positive Rates

When designing a detection system, you want to keep the false positive rate
as low as possible while keeping the true positive rate as high as possible.
Unless you build a truly perfect malware detection system that is always right
(which is really an impossibility given the evolving nature of malware), there
will always be tension between the desire for a high true positive and the
desire for a low false positive rate.

To see why this is the case, imagine a detection system that, before
deciding whether or not a binary is malware, adds up all the evidence that
the binary is malware to create a suspiciousness score for the binary. Let’s
call this hypothetical suspiciousness-score-generating system MalDetect.
Figure 7-2 shows an example of the values that MalDetect might output for
12 sample binaries, where the circles represent individual software binaries.
The further to the right a binary, the higher the suspiciousness score given
by MalDetect.

Benignware @ Malware

Suspiciousness score according to detector

Figure 7-2: Suspiciousness scores output by the hypothetical MalDetect system for indi-
vidual software binaries

Suspiciousness scores are informative, but in order to calculate
MalDetect’s true positive rate and false positive rate on our files, we

Evaluating Malware Detection Systems 121

122

Chapter 7

need to convert MalDetect’s suspiciousness scores to “yes” or “no” answers
regarding whether or not a given software binary is malicious. To do this,
we use a threshold rule. For example, we decide that if the suspiciousness
score is greater or equal to some number, the binary in question raises a
malware alarm. If the score is lower than the threshold, it doesn’t.

Such a threshold rule is the standard way to convert a suspiciousness
score into a binary detection choice, but where should we set the threshold?
The problem is that there is no right answer. Figure 7-3 shows the conun-
drum: the higher we set the threshold, the less likely we are to get false posi-
tives, but the more likely we are to get false negatives.

This threshold would lead
to one false positive
and one false negative
(true positive rate: 0.83,
false positive rate: 0.17).

@ Malware

Benignware

Suspiciousness score according to defector

This threshold would lead
to two false positives
and zero false negatives
(true positive rate: 1.00,
false positive rate: 0.33).

This threshold would lead
to zero false positives
and three false negatives
(frue positive rate: 0.50,
false positive rate: 0.00).

Figure 7-3: An illustration of the relationship between false positive rate and true positive
rate when deciding on a threshold value

For example, let’s consider the leftmost threshold shown in Figure 7-3,
where binaries to the left of the threshold are classified as benign and bina-
ries to its right are classified as malware. Because this threshold is low, we
get a great true positive rate (classifying 100 percent of the malware samples
correctly) but a terrible false positive rate (falsely classifying 33 percent of
the benign samples as malicious).

Our intuition might be to increase the threshold so that only samples
with a higher suspiciousness score are deemed to be malware. Such a solu-
tion is given by the middle threshold in Figure 7-3. Here, the false positive
rate drops to 0.17, but unfortunately the true positive rate drops as well,
to 0.83. If we continue to move the threshold to the right, as shown by the
rightmost threshold, we eliminate any false positives, but detect only 50 per-
cent of the malware.

As you can see, there is no such thing as a perfect threshold. A detec-
tion threshold that yields a low false positive rate (good) will tend to miss
more malware, yielding a low true positive rate (bad). Conversely, using
a detection threshold that has a high true positive rate (good) will also
increase the false positive rate (bad).

ROC Curves

The tradeoff between the true positive rate and false positive rate of detec-
tion systems is a universal problem for all detectors, not just malware detec-
tors. Engineers and statisticians have thought long and hard about this
phenomenon and come up with the Receiver Operating Characteristic (ROC)
curve to describe and analyze it.

If you’re confused by the phrase Receiver Operating Characteristic, don’t worry about
it—this phraseis confusing and pertains to the context in which ROC curves were
originally developed, which is radar-based detection of physical objects.

ROC curves characterize a detection system by plotting false positive
rates against their associated true positive rates at various threshold settings.
This helps us evaluate the tradeoff between lower false positive rates and
higher true positive rates, and in doing so determine the “best” threshold
for our situation.

For example, for our hypothetical MalDetect system from Figure 7-3,
the system’s true positive rate is 0.5 when its false positive rate is 0 (low
threshold), and the system’s true positive rate is 1.00 when the false posi-
tive rate is 0.33 (high threshold).

Figure 7-4 shows how this works in more detail.

The true and false positive rates of our detection The true and false positive rates of a notional
system at thresholds defined in Figure 7-3 detection system at various thresholds

The dotted line represents
how accurate a sensor that
simply generated a random
suspiciousness score would
be at increasing thresholds.

7
7

True positive rate
True positive rate

Measurements of the system at
various thresholds are interpolated
1 to form the ROC “curve.”

0% > 100% 0% > 100%

False positive rate False positive rate

Figure 7-4: An illustration of what ROC curves mean and how they are constructed

To build the ROC curve, we start with the three thresholds used in
Figure 7-3 and plot their resulting false and true positive rates, shown in
the left half of Figure 7-3. The plot on the right of Figure 7-4 shows the
same thing, but for all possible thresholds. As you can see, the higher the
false positive rates, the higher the true positive rates. Similarly, the lower
the false positive rates, the lower the true positive rates.

Evaluating Malware Detection Systems 123

124

The “curve” of the ROC curve is a line within the two-dimensional
ROC plot that represents how we think our detection system will do on its
true positive rate over all possible false positive values, and how we think
our detection system will do on its false positive rate over all possible true
positive values. There are multiple ways of generating such a curve, but that
goes beyond the scope of this book.

One simple method, however, is to try many threshold values, observe
the corresponding false and true positive rates, plot them, and connect the
dots using a line. This connected line, shown in the right plot of Figure 7-4,
becomes our ROC curve.

Considering Base Rates in Your Evaluation

Chapter 7

As you've seen, ROC curves can tell you how your system will perform in
terms of the rate at which it calls malicious binaries malicious (true posi-
tive rate) and the rate at which it calls benign binaries malicious (false
positive rate). However, ROC curves will not tell you the percentage of your
system’s alarms that will be true positives, which we call the precision of the
system. The precision of a system is related to the percentage of binaries
the system encounters that are actually malware, which we call the base
rate. Here’s a breakdown of each term:

Precision The percentage of system detection alarms that are true
positives (meaning that they are detections of actual malware). In other
words, precision is the detection system’s number of true positives / (true
positives + false positives) when tested against some set of binaries.

Base rate The percentage of the data fed to the system that has the
quality we are looking for. In our case, base rate refers to the percentage
of binaries that are actually malware.

We discuss how these two metrics are related in the next section.

How Base Rate Affects Precision

Although a detection system’s true and false positive rates do not change
when the base rate changes, the system’s precision is affected by changes in
the malware base rate—often dramatically. To see why this is true, let’s con-
sider the following two cases.

Suppose the false positive rate of MalDetect is 1 percent and the true
positive rate is 100 percent. Now suppose we set MalDetect loose on a net-
work that we know upfront has no malware on it (perhaps the network
has just been created from scratch in a laboratory). Because we know in
advance there is no malware on the network, every alarm the MalDetect
throws will by definition be a false positive, because the only binaries that
MalDetect encounters will be benignware. In other words, precision will be
0 percent.

In contrast, if we run MalDetect on a dataset composed of entirely
malware, none of its alarms will ever be false positives: there simply will

never be an opportunity for MalDetect to generate a false positive since
there is no benignware in the software dataset. Therefore, precision will
be 100 percent.

In both of these extreme cases, the base rates have a huge impact on
MalDetect’s precision, or the probability that its alarm is a false positive.

Estimating Precision in a Deployment Environment

You now know that depending on the proportion of malware in a test
dataset (base rate), your system will yield very different precision values.
What if you want to estimate the precision your system will have based on
an estimate of the base rate of the environment in which you deploy it? All
you have to do is use your deployment environment’s estimated base rate to
estimate the variables in the precision formula: true positives / (true positives +
false positives). You’ll need three numbers:

e True positive rate (TPR) of the system, or the percentage of malware
samples the system will correctly detect

e False positive rate (FPR) of the system, or the percentage of benign
samples the system will incorrectly alarm on

e Base rate (BR) of the binaries against which you will use the system (for
example, the percentage of binaries downloaded from piracy sites you
expect will be malware, if this is what you’ll be using your system on)

The numerator of the precision equation—the number of true posi-
tives—can be estimates by true positive rate x base rate, giving you the percent-
age of malware your system will correctly detect. Similarly, the denominator
of the equation—that is, (true positives + false positives)—can be estimated by
true positive rate x base rate + false positive rate x (1 — base rate), giving you the per-
centage of all binaries the system will alarm on by calculating the number of
malware binaries that will be detected correctly plus the fraction of benign-
ware binaries for which false positives will be issued.

In sum, you calculate the expected precision of your system as follows:

true positive rate x base rate

precision = — —
true positive rate x base rate + false positive rate x (l — base rate)

Let’s consider another example to see how base rate can have a pro-
found impact on the performance of a detection system. For example, sup-
pose we have a detection system that has an 80 percent true positive rate
and a 10 percent false positive rate, and 50 percent of the software bina-
ries we run it against are expected to be malware. This would lead to an
expected precision of 89 percent. But when the base rate is 10 percent, our
precision drops to 47 percent.

What happens if our base rate is very low? For example, in a modern
enterprise network, very few software binaries are actually malware.
Using our precision equation, if we assume a base rate of 1 percent (1 in
100 binaries are malware), we get a precision of about 7.5 percent, which

Evaluating Malware Detection Systems 125

126

means that 92.5 percent of our system’s alarms would be false positives!
And if we assume a base rate of 0.1 percent (1 in 1000 binaries are likely
to be malware), we get a precision of 1 percent, meaning 99 percent of our
system’s alarms would be false positives! Finally, at a base rate of 0.01 per-
cent (1 in 10,000 binaries are likely to be malware—probably the most
realistic assumption on an enterprise network), our expected precision
drops to 0.1 percent, meaning the overwhelming majority of our system’s
alerts will be false positives.

One takeaway from this analysis is that detection systems that have
high false positive rates will almost never be useful in enterprise settings,
because their precision will be far too low. Therefore, a key goal in building
malware detection systems is to minimize the false positive rate such that
the precision of the system is reasonable.

Another related takeaway is that when you do the ROC curve analysis
introduced earlier in this chapter, you should effectively ignore false positive
rates over, say, 1 percent, if you are developing your system to be deployed in
an enterprise setting, because any higher false positive rate will likely result
in a system that has such low precision that it is rendered useless.

Summary

Chapter 7

In this chapter, you learned basic detection evaluation concepts, including
true positive rate, false positive rate, ROC curves, base rates, and precision.
You saw how maximizing the true positive rate and minimizing the false
positive rate are both important in building a malware detection system.
Because of the way base rate affects precision, reducing the false positive
rate is particularly important if you want to deploy your detection system
within an enterprise.

If you don’t feel completely fluent in these concepts, don’t worry. You’ll
get more practice with them in the next chapter, where you’ll build and
evaluate a malware detection system from the ground up. In the process,
you’ll learn additional machine learning—specific evaluation concepts that
will help you improve your machine learning—based detectors.

BUILDING MACHINE LEARNING
DETECTORS

Today, thanks to high-quality open source
software that handles the heavy math-

ematical lifting of implementing machine

learning systems, anyone who knows basic
Python and understands the key concepts can use
machine learning.

In this chapter, I show you how to build machine learning malware
detection systems using scikit-learn, the most popular—and the best, in
my opinion—open source machine learning package available. This chap-
ter contains a lot of sample code. The major code blocks are accessible in
the directory malware_data_science/ch8/code, and the corresponding sample
data is accessible in the directory malware_data_science/ch8/data in the code
and data (and on the virtual machine) accompanying this book.

By following along with the text, examining the sample code, and try-
ing out the provided examples, you should be comfortable building and
evaluating your own machine learning systems by the end of the chapter.
You also learn to build a general malware detector and use the necessary
tools to build malware detectors for specific malware families. The skills

128

you gain here will have a broad application, allowing you to apply machine
learning to other security problems, such as detecting malicious emails or
suspicious network streams.

First, you learn the terminology and concepts you need to know before
using scikit-learn. Then, you use scikit-learn to implement a basic decision
tree detector based on the decision tree concepts you learned in Chapter
6. Next, you learn how to integrate feature extraction code with scikit-
learn to build a real-world malware detector that uses real-world feature
extraction and a random forest approach to detect malware. Finally, you
learn how to use scikit-learn to evaluate machine learning systems with the
sample random forest detector.

Terminology and Concepts

Chapter 8

Let’s review some terminology first. The open source library scikit-learn
(sklearn for short) has become popular in the machine learning commu-
nity because it’s both powerful and easy to use. Many data scientists use
the library within the computer security community and in other fields,
and many rely on it as their main toolbox for performing machine learn-
ing tasks. Although sklearn is constantly being updated with new machine
learning approaches, it provides a consistent programming interface that
makes using these machine learning approaches simple.

Like many machine learning frameworks, sklearn requires training data
in vector form. Vectors are arrays of numbers where each index in the array
corresponds to a single feature of the training example software binary.
For example, if the two features of software binaries our machine learning
detector uses are is compressed and contains encrypted data, then our feature
vector for a training example binary could be [0,1]. Here, the first index in
the vector would represent whether or not the binary is compressed, with
the zero indicating “no,” and the second index would represent whether or
not the binary contains encrypted data, with the one indicating “yes.”

Vectors can be awkward to work with because you have to remember
what feature each index maps to. Fortunately, sklearn provides helper code
that translates other data representations to vector form. For example, you
can use sklearn’s DictVectorizer class to transform dictionary representations
of your training data (for instance, {"is compressed":1,"contains encrypted
data":0}) into the vector representation that sklearn operates on, like [0,1].
Later, you can use the DictVectorizer to recover the mapping between the
vector’s indices and the original feature names.

To train an sklearn-based detector, you need to pass in two separate
objects to sklearn: feature vectors (as described previously) and a label
vector. A label vector contains one number per training example, which
corresponds, in our case, to whether or not the example is malware or
benignware. For instance, if we pass three training examples to sklearn,
and then pass the label vector [0,1,0], we're telling sklearn that the first
sample is benignware, the second sample is malware, and the third is
benignware. By convention, machine learning engineers use a capital X

variable to represent the training data and a lowercase y variable to repre-
sent the labels. The difference in case reflects the convention in mathemat-
ics of capitalizing variables that represent matrices (which we can think

of as arrays of vectors) and lowercasing variables that represent individual
vectors. You’ll see this convention used in machine learning sample code
online, and I use this convention for the remainder of this book to get you
comfortable with it.

The sklearn framework uses other terminology that you might find new
as well. Instead of calling machine learning—based detectors “detectors,”
sklearn calls them “classifiers.” In this context, the term classifier simply
means a machine learning system that categorizes things into two or more
categories. Therefore, a detector (the term I use throughout this book) is a
special type of a classifier that places things into two categories, like mal-
ware and benignware. Also, instead of using the term training, sklearn’s
documentation and API often use the term fit. For example, you'll see a
sentence like “fit a machine learning classifier using training examples,”
which is the equivalent to saying “train a machine learning detector using
training examples.”

Finally, instead of using the term defect in the context of classifiers,
sklearn uses the term predict. This term is used in sklearn’s framework, and
in the machine learning community more generally, whenever a machine
learning system is used to perform a task, whether to predict the value of a
stock a week from now or detect whether an unknown binary is malware.

Building a Toy Decision Tree-Based Detector

Now that you're familiar with sklearn’s technical terminology, let’s create

a simple decision tree along the lines of what we discussed in Chapter 6,
using the sklearn framework. Recall that decision trees play a “20 questions”
type of game in which they ask a series of questions about input vectors

to arrive at a decision concerning whether these vectors are malicious or
benign. We walk through building a decision tree classifier, step by step,
and then explore an example of a complete program. Listing 8-1 shows how
to import the requisite modules from sklearn.

from sklearn import tree
from sklearn.feature_ extraction import DictVectorizer

Listing 8-1: Importing sklearn modules

The first module we import, tree, is sklearn’s decision tree module. The
second module, feature_extraction, is sklearn’s helper module from which we
import the DictVectorizer class. The DictVectorizer class conveniently trans-
lates the training data provided in readable, dictionary form to the vector
representation that sklearn requires to actually train machine learning
detectors.

After we import the modules we need from sklearn, we instantiate the
requisite sklearn classes, as shown in Listing 8-2.

Building Machine Learing Detectors 129

130

Chapter 8

classifier = @®tree.DecisionTreeClassifier()
vectorizer = @DictVectorizer(sparse=@False)

Listing 8-2: Initializing the decision tree classifier and vectorizer

The first class we instantiate, DecisionTreeClassifier @, represents our
detector. Although sklearn provides a number of parameters that control
exactly how our decision tree will work, here we don’t select any parameters
so that we’re using sklearn’s default decision tree settings.

The next class we instantiate is DictVectorizer @. We set sparse to False ©
in the constructor, telling sklearn that we do not want it to use sparse vectors,
which save memory but are complicated to work with. Because sklearn’s deci-
sion tree module can’t use sparse vectors, we turn this feature off.

Now that we have instantiated our classes, we can initialize some sample
training data, as shown in Listing 8-3.

declare toy training data
training _examples = [

{"packed' :1, 'contains_encrypted':0},
{"packed' :0, 'contains_encrypted':0},
{'packed':1, 'contains_encrypted':1},
{"packed':1, 'contains_encrypted':0},
{"packed’ :0, 'contains_encrypted':1},
{"packed':1, 'contains_encrypted':0},
{'packed" :0, 'contains_encrypted':0},
{"packed' :0, 'contains_encrypted':0},
]

ground_truth = [1,1,1,1,0,0,0,0]

Listing 8-3: Declaring training and label vectors

In this example, we initialize two structures—feature vectors and a
label vector—that together comprise our training data. The feature vec-
tors, assigned to the training_examples variable @, are given in dictionary
form. As you can see, we're using two simple features. The first is packed,
which represents whether a given file is packed, and the second is contains
_encrypted, which represents whether the file contains encrypted data. The
label vector, which is assigned to the ground_truth variable @, represents
whether each training example is malicious or benign. In this book, and
in general among security data scientists, 0 always stands for benign and 1
always stands for malicious. In this case, the label vector declares that the
first four feature vectors are malicious and the second four are benign.

Training Your Decision Tree Classifier

Now that we’ve declared our training vectors and label vector, let’s train our
decision tree model by calling the decision tree class instance’s fit method,
as shown in Listing 8-4.

initialize the vectorizer with the training data

©® vectorizer.fit(training_examples)

transform the training examples to vector form
vectorizer.transform(training_examples)
ground_truth # call ground truth 'y', by convention

< X
o

Listing 8-4: Initializing the vectorizer class with training data

The code in Listing 8-4 first initializes the vectorizer class that we
initialized in Listing 8-2 by calling the fit method @. Here, the fit
method tells sklearn to create a mapping between the packed feature and
the contains_encrypted feature and vector array indices. Then we transform
our dictionary-based feature vectors into numerical vector form by calling
the vectorizer class’s transform method @. Recall that we assign our feature
vectors to a variable called X and our label vector to a variable called vy,
which is the naming convention in the machine learning community.

Now that we’re all set up with our training data, we can train our deci-
sion tree detector by calling the fit method on the decision tree classifier
instances, like this:

train the classifier (a.k.a. 'fit' the classifier)
classifier.fit(X,y)

As you can see, training the sklearn detector is as simple as that. But
behind the scenes, sklearn is going through the algorithmic process of iden-
tifying a good decision tree for accurately detecting whether new software
is malicious or benign, along the lines of the algorithm we discussed in the
previous chapter.

Now that we’ve trained the detector, let’s use the code in Listing 8-5 to
detect whether a binary is malicious or benign.

test_example = @{'packed':1, 'contains_encrypted':0}
test_vector = @vectorizer.transform(test example)
print classifier.predict(test vector) # prints [1]

Listing 8-5: Determining whether a binary is malicious

Here, we instantiate a dictionary-based feature vector for a hypothetical
software binary @, translate it to numerical vector form using vectorizer @,
which we declared earlier in our code, and then run the decision tree detec-
tor we built ® to determine whether or not the binary is malicious. You'll
see when we run the code that the classifier “thinks” that the new binary is
malicious (because it gives a “1” as its output), and you’ll see why this is the
case when we visualize our decision tree.

Visualizing the Decision Tree

We can visualize the decision tree that sklearn has automatically created
based on our training data, as shown in Listing 8-6.

visualize the decision tree

with open(®"classifier.dot","w") as output file:

Building Machine Learning Detectors 131

132

Chapter 8

® tree.export_graphviz(
classifier,
feature_names=vectorizer.get feature names(),
out_file=output_file
)

import os
os.system("dot classifier.dot -Tpng -o classifier.png")

Listing 8-6: Creating an image file of the decision tree using GraphViz

Here, we open a file called classifier.dot @ to which we write a network
representation of our decision tree using the export_graphviz() function that
sklearn’s tree module provides. Then we call tree.export_graphviz @ to write
a GraphViz .dot file to classifier.dot, which writes a network representation
of the decision tree to disk. Finally, we use the GraphViz dot command line
program to create an image file that visualizes the decision tree, in a form
that corresponds to what you learned about decision trees in Chapter 6.
When you run this, you should get an output image file called classifier.png
that looks like Figure 8-1.

packed <= 0.5000
gini=0.5
samples = 8

contains_encrypted <= 0.5000
gini = 0.375

samples = 4

N

contains_encrypted <= 0.5000
gini = 0.375

samples = 4

N

gini = 0.4444 gini = 0.0000 gini = 0.4444 gini = 0.0000
samples = 3 samples = 1 samples = 3 samples = 1
value = [2. 1] valve = [1. 0] value = 1. 2] value = [0. 1.]

Figure 8-1: Decision tree visualization

Although this decision tree visualization should be familiar from
Chapter 6, it contains some new vocabulary. The first line in each box
contains the name of the feature about which the node asks a question (in
machine learning parlance, we say that the node “splits on” this feature).
For example, the first node splits on the feature “packed”: if a binary is not
packed, we move along the left arrow; otherwise, we move along the right
arrow.

The second line of text in each box refers to that node’s gini index,
which measures how much inequality there is between the malware and
benignware training examples that match that node. The higher the gini
index, the more skewed the samples that match that node are toward either
benignware or malware. This means that a high gini index in each node is
good, because the more the training examples skew toward either malware

or benignware, the more sure we are about whether new test examples are
malware or benignware. The third line in each box just gives the number of
training examples that matched that node.

You’ll notice that in the leaf nodes of the tree, the text in the box is dif-
ferent. These nodes don’t “ask a question;” instead, they provide an answer
to the question “is this binary malicious or benign?” For example, in the
leftmost leaf node, we have “value = [2. 1.],” which means that two benign
training examples matched this node (not packed and not encrypted) and
one malware training example matched the node. That is, if we reach this
node, we’d assign a probability of 33 percent to the binary being malware
(1 malware sample / 3 total samples = 33 percent). The gini value in these
boxes shows how much information is gained about whether the binary is
malware or benignware when we split on the question directly leading up
to these nodes. As you can see, it can be useful to inspect visualizations of
decision trees generated by sklearn to understand how our decision trees
are making detections.

Complete Sample Code

Listing 8-7 shows the complete code for the decision tree workflow I have
described thus far. This code should be easily legible to you now that we
have worked through the code, piece by piece.

#!/usr/bin/python

import sklearn modules
from sklearn import tree
from sklearn.feature_extraction import DictVectorizer

initialize the decision tree classifier and vectorizer
classifier = tree.DecisionTreeClassifier()
vectorizer = DictVectorizer(sparse=False)

declare toy training data
training examples = [

{"'packed':1, 'contains_encrypted':0},
{'packed' :0, 'contains_encrypted':0},
{'packed':1, 'contains_encrypted':1},
{'packed':1, 'contains_encrypted':0},
{'packed':0, 'contains_encrypted':1},
{'packed':1, 'contains_encrypted':0},
{'packed' :0, 'contains_encrypted':0},
{"'packed':0, 'contains_encrypted':0},
]

ground_truth = [1,1,1,1,0,0,0,0]

initialize the vectorizer with the training data
vectorizer.fit(training_examples)

transform the training examples to vector form

X = vectorizer.transform(training examples)
y = ground_truth # call ground truth 'y', by convention

Building Machine Learning Detectors 133

134

train the classifier (a.k.a. 'fit' the classifier)
classifier.fit(X,y)

test_example = {'packed':1,'contains_encrypted':0}
test vector = vectorizer.transform(test example)
print “classifier.predict(test vector)™ # prints [1]

fivisualize the decision tree
with open("classifier.dot","w") as output file:
tree.export_graphviz(
classifier,
feature_names=vectorizer.get feature names(),
out file=output file

)

import os
os.system("dot classifier.dot -Tpng -o classifier.png")

Listing 8-7: Complete decision tree workflow sample code

The sample machine learning malware detector we just explored dem-
onstrates how to get started with sklearn’s functionality, but it’s missing
some essential features required for a real-world malware detector. Let’s
now explore what a real-world malware detector entails.

Building Real-World Machine Learning Detectors with sklearn

Chapter 8

To build a real-world detector, you need to use industrial-strength features
of software binaries as well as write code to extract these features from soft-
ware binaries. Industrial-strength features are those that reflect the content
of binaries in all their complexity, which means we need to use hundreds or
thousands of features. By “extracting” features I mean that you have to write
code that identifies the presence of these features within binaries. You also
need to use thousands of training examples and train a machine learning
model at scale. Finally, you need to use sklearn’s more advanced detection
approaches because the simple decision tree approaches we just explored
don’t provide sufficient detection accuracy.

Real-World Feature Extraction

The sample features I used previously, such as is packed and contains encrypted
data, are simple toy examples, and these two features alone will never result in
a working malware detector. As I mentioned previously, real-world malware
detection systems use hundreds, thousands, or even millions of features. For
example, a machine learning—based detector might use millions of character
strings that occur in software binaries as features. Or it might use the values
of software binary Portable Executable (PE) headers, the functions imported
by a given binary, or some combination of all of these. Although we’ll work
only with string features in this chapter, let’s take a moment to explore

common categories of features used in machine learning—based malware
detection, starting with the string features.

String Features

The string features of a software binary are all the contiguous strings of
printable characters in the file that are at least some minimum length (in
this book, this minimum is set to five characters). For example, suppose a
binary file contains the following sequences of printable characters:

["A", "The", "PE executable", "Malicious payload"]

In this case, the strings we can use as features would be "PE executable"
and "Malicious payload" because these two strings have more than five char-
acters in them.

To transform string features into a format that sklearn can under-
stand, we need to put them into a Python dictionary. We do this by using
the actual strings as dictionary keys and then setting their values to 1 to
indicate that the binary in question contains that string. For example, the
previous sample binary would get a feature vector of {"PE executable": 1,
"Malicious payload": 1}. Of course, most software binaries have hundreds of
printable strings in them, not just two, and these strings can contain rich
information about what a program does.

In fact, string features work well with machine learning—based detection
because they capture so much information about software binaries. If the
binary is a packed malware sample, then it’s likely to have few informative
strings, which in itself can be a giveaway that the file is malicious. On the
other hand, if parts of the file’s resources section are not packed or obfus-
cated, then those strings reveal much about the file’s behavior. For example,
if the binary program in question makes HTTP requests, it’s common to see
strings such as "GET %s" in that file’s set of strings.

String features have some limitations, however. For example, they don’t
capture anything about the actual logic of a binary program, because they
don’t include actual program code. So, although strings can be useful fea-
tures even on packed binaries, they don’t reveal what packed binaries actually
do. As a result, detectors based on string features are not ideal for detecting
packed malware.

Portable Executable (PE) Header Features

PE header features are extracted from the PE header metadata that resides
in every Windows .exe and .dll file. For more information on the format of
these headers, refer to Chapter 1. To extract PE features from static pro-
gram binaries, you can use the code given in that chapter, and then encode
file features in Python dictionary form, where the header field name is the
dictionary key and the field value is the value corresponding to each key.
PE header features complement string features well. For example,
whereas string features often do a good job of capturing the function calls
and network transmissions made by a program, like the "GET %s" example,

Building Machine Learning Detectors 135

136

Chapter 8

PE header features capture information like a program binary’s compile
timestamp, the layout of its PE sections, and which of those sections are
marked executable and how large they are on disk. They also capture the
amount of memory a program allocates upon startup, and many other run-
time characteristics of a program binary that string features don’t capture.
Even when you're dealing with packed binaries, PE header features
can still do a decent job of distinguishing packed malware from packed
benignware. This is because although we cannot see packed binaries’ code
because of obfuscation, we can still see how much space the code takes up
on disk and how the binary is laid out on disk or compressed over a series
of file sections. These are telling details that can help a machine learning
system distinguish malware from benignware. On the downside, PE header
features don’t capture the actual instructions a program executes when it is
run, or the functions that it calls.

Import Address Table (IAT) Features

The Import Address Table (IAT), which you learned about in Chapter 1, is
also an important source of machine learning features. The IAT contains a
list of functions and libraries that a software binary imports from external
DLL files. As such, the IAT contains important information about program
behavior that you can use to complement the PE header features described
in the previous section.

To use the IAT as a source of machine learning features, you need
to represent each file as a dictionary of features, where the name of the
imported library and function is the key, and the key maps to a 1, which
indicates that the file in question contains that specific import (for
example, the key "KERNEL32.DLL:LoadLibraryA", where KERNEL32.DLL is the
DLL and LoadLibraryA is the function call). The feature dictionary result-
ing from computing IAT features in this way for a sample would look like
{ KERNEL32.DLL:LoadLibraryA: 1, ... }, where we’d assign a 1 to any keys
observed in a binary.

In my experience building malware detectors, I have found that IAT
features rarely work well on their own—although these features capture
useful high-level information about program behavior, the malware often
obfuscates the IAT to make itself look like benignware. Even when malware
contains no obfuscation, it often imports the same DLL calls that benignware
also imports, making it hard to distinguish between malware and benignware
simply based on IAT information. Finally, when malware is packed (com-
pressed or encrypted, such that the real malware code is only visible after
the malware executes and uncompresses or unencrypts itself), the IAT only
contains imports that the packer uses, not the imports that the malware uses.
That said, when you use IAT features in conjunction with other features like
PE header features and string features, they can boost system accuracy.

N-grams

So far you've learned about machine learning features that don’t involve
any concept of ordering. For example, we discussed string features to

check whether or not a binary has a particular string, but not whether a
particular string comes before or after another string in the layout of the
binary on disk.

But sometimes order matters. For example, we might find that an
important malware family imports only commonly used functions, but
imports them in a very specific order, such that when we observe the
functions in that order, we know we’re seeing that malware family and
not benignware. To capture this kind of order information, you can use
a machine learning concept called an N-gram.

N-grams sound more exotic than they are: they just involve laying out
your features in the sequence in which they occur and then sliding a win-
dow of length n over the sequence, treating the sequence of features inside
the window at each step as a single, aggregate feature. For example, if we
had the sequence ["how", "now", "brown", "cow"] and we wanted to extract
N-gram features of length 2 (n = 2) from this sequence, we would have
[("how","now"), ("now","brown"), ("brown","cow")] as our features.

In the context of malware detection, some kinds of data are most natu-
rally represented as N-gram features. For example, when you disassemble a
binary into its constituent instructions, like ["inc", "dec", "sub", "mov"], it
makes sense to then use the N-gram approach to capture these sequences
of instructions because representing a sequence of instructions can be use-
ful in detecting particular malware implementations. Alternatively, when
you’re executing binaries to examine their dynamic behavior, you can use
the N-gram approach to represent binaries’ sequences of API calls or high-
level behaviors.

I recommend experimenting with N-gram features in your machine
learning—based malware detection systems whenever you’re working with
data that occurs in some type of sequence. It often takes some trial and
error to determine what number you should set n to, which determines
the length of your N-grams. This trial and error involves varying the n
value to see which value yields the best accuracy on your test data. Once
you find the right number, N-grams can be powerful features for captur-
ing the actual sequential behaviors of program binaries, thereby boosting
system accuracy.

Why You Can’t Use All Possible Features

Now that you know the strengths and weaknesses of different categories of
features, you may be wondering why you can’t use all these features at once
to build the best possible detector. There are a few reasons using all pos-
sible features is not a good idea.

First, extracting all the features we just explored takes a long time, which
compromises how quickly your system can scan files. More importantly, if
you use too many features on machine learning algorithms, you can run into
memory issues and your system can take too long to train. This is why when
building your systems, I recommend trying different features and honing in
on those that work well on the kinds of malware you're trying to detect (and
the kinds of benignware you’re trying to avoid generating false positives on).

Building Machine Learning Detectors 137

138

Chapter 8

Unfortunately, even if you do home in on one category of features, like
string features, you’ll often have more features than most machine learning
algorithms can handle. When using string features, you must have one fea-
ture for every unique string that occurs in your training data. For example,
if training sample A contains the string "hello world", and training sample B
contains the string "hello world!", then youw'll need to treat "hello world" and
"hello world!" as two separate features. This means that when you’re dealing
with thousands of training samples, you’ll quickly encounter thousands of
unique strings, and your system will end up using that many features.

Using the Hashing Trick to Compress Features

To get around the problem of having too many features, you can use a
popular and straightforward solution called the hashing trick, also known
as feature hashing. The idea is as follows: suppose you have a million unique
string features in your training set, but the machine learning algorithm and
hardware youre using can only deal with 4,000 unique features across the
whole training set. You need some way of compressing a million features
down to a feature vector that’s 4,000 entries long.

The hashing trick makes these million features fit within a feature
space of 4,000 by hashing each feature into one of 4,000 indices. Then you
add the value of your original feature to the number at that index in your
4,000-dimensional feature vector. Of course, features often collide with this
approach because their values are added together along the same dimension.
This might affect system accuracy because the machine learning algorithm
you’re using can’t “see” the value of individual features anymore. But in prac-
tice, this degradation in accuracy is often very small, and the benefit you get
from the compressed representation of your features far outweighs this slight
degradation that occurs because of the compression operation.

Implementing the Hashing Trick

To make these ideas clearer, I walk you through sample code that imple-
ments the hashing trick. Here I show this code to illustrate how the algo-
rithm works; later, we’ll use sklearn’s implementation of this function. Our
sample code starts with a function declaration:

def apply_hashing_trick(feature_dict, vector size=2000):

The apply_hashing_trick() function takes two parameters: the original
feature dictionary and the size of the vector we store the smaller feature
vector in after we apply the hashing trick.

Next, we create the new feature array using the following code:

new_features = [0 for x in range(vector size)]

The new_features array stores the feature information after applying
the hashing trick. Then we perform the key operations of the hashing
trick inside a for loop, like in Listing 8-8.

for key in @feature_dict:
array_index = @®hash(key) % vector size
new_features[array index] += ©feature dict[key]

Listing 8-8: Using a for loop to perform a hash operation

Here, we use a for loop to iterate over every feature in the feature dic-
tionary @. To do this, first we hash the keys of the dictionary (in the case
of string features, these would correspond to the software binaries’ indi-
vidual strings) modulo vector_size such that the hash values are bounded
between zero and vector_size - 1 @. We store the result of this operation in
the array_index variable.

Still within the for loop, we increment the value of the new_feature array
entry at index array_index by the value in our original feature array ©. In
the case of string features, where our feature values are set to 1 to indicate
that the software binary has that particular string, we would increment this
entry by one. In the case of PE header features, where features have a range
of values (for example, corresponding to the amount of memory a PE sec-
tion will take up), we would add the value of the feature to the entry.

Finally, outside of the for loop, we simply return the new_features dic-
tionary, like this:

return new_features

At this point, sklearn can operate on new_features using just thousands
instead of millions of unique features.

Complete Code for the Hashing Trick

Listing 8-9 shows the complete code for the hashing trick, which should
now be familiar to you.

def apply_hashing_trick(feature_dict,vector size=2000):
create an array of zeros of length 'vector size'
new_features = [0 for x in range(vector_size)]

iterate over every feature in the feature dictionary
for key in feature dict:

get the index into the new feature array
array_index = hash(key) % vector size

add the value of the feature to the new feature array
at the index we got using the hashing trick
new_features[array index] += feature dict[key]

return new_features

Listing 8-9: Complete code for implementing the hashing trick

Building Machine Leaming Detectors 139

140

Chapter 8

As you have seen, the feature hashing trick is easy to implement on your
own, and doing so ensures that you understand how it works. However, you
can also just use sklearn’s implementation, which is easy to use and more
optimized.

Using sklearn’s FeatureHasher

To use sklearn’s built-in implementation instead of implementing your
own hashing solution, you need to first import sklearn’s FeatureHasher class,
like this:

from sklearn.feature_extraction import FeatureHasher

Next, instantiate the FeatureHasher class:

hasher = FeatureHasher(n_features=2000)

To do this, you declare n_features to be the size of the new array that
results from applying the hashing trick.

Then, to apply the hashing trick to some feature vectors, you simply run
them through the FeatureHasher class’s transform method:

features = [{'how': 1, 'now': 2, 'brown': 4},{'cow': 2, '.': 5}]
hashed_features = hasher.transform(features)

The result is effectively the same as our custom implementation of
the feature hashing trick shown in Listing 8-9. The difference is that here
we’re simply using sklearn’s implementation, since it’s easier to use a well-
maintained machine learning library than our own code. The complete
sample code is shown in Listing 8-10.

from sklearn.feature_extraction import FeatureHasher

hasher = FeatureHasher(n_features=10)

features = [{'how': 1, 'now': 2, 'brown': 4},{'cow': 2, '.': 5}]
hashed_features = hasher.transform(features)

Listing 8-10: Implementing FeatureHasher

There are a few things to note about feature hashing before we move
on. First, as you may have guessed, feature hashing obfuscates the feature
information you pass into a machine learning algorithm because it adds fea-
ture values together simply based on the fact that they hash to the same bin.
This means that, in general, the fewer bins you use (or the more features
you hash into some fixed numbers of bins), the worse your algorithm will
perform. Surprisingly, machine learning algorithms can still work well even
when using the hashing trick, and because we simply can’t deal with millions
or billions of features on modern hardware, we usually have to use the fea-
ture hashing trick in security data science.

Another limitation of the feature hashing trick is that it makes it dif-
ficult or impossible to recover the original features you hashed when

analyzing the internals of your model. Take the example of decision trees:
because we’re hashing arbitrary features into each entry of our feature
vectors, we don’t know which of the features we added to a given entry is
causing a decision tree algorithm to split on this entry, since any number of
features could have caused the decision tree to think splitting on this entry
was a good idea. Although this is a significant limitation, security data sci-
entists live with it because of the huge benefits of the feature hashing trick
in compressing millions of features down to a manageable number.

Now that we’ve gone over the building blocks required for building
a real-world malware detector, let’s explore how to build an end-to-end
machine learning malware detector.

Building an Industrial-Strength Detector

From a software requirements perspective, our real-world detector will need
to do three things: extract features from software binaries for use in training
and detection, train itself to detect malware using training data, and actually
perform detection on new software binaries. Let’s walk through the code that
does each of these things, which will show you how it all fits together.

You can access the code I use in this section at malware_data_science/
ch8/code/complete_detector.py in the code accompanying this book, or at the
same location in the virtual machine provided with this book. A one-line
shell script, malware_data_science/ch8/code/run_complete_detector.sh, shows
how to run the detector from the shell.

Extracting Features

To create our detector, the first thing we implement is code to extract fea-
tures from training binaries (I skip over boilerplate code here and focus
on the core functions of the program). Extracting features involves extract-
ing the relevant data from training binaries, storing these features within a
Python dictionary, and then, if we think our number of unique features will
become prohibitively large, transforming them using sklearn’s implementa-
tion of the hashing trick.

For simplicity’s sake, we use only string features and choose to use the
hashing trick. Listing 8-11 shows how to do both.

def get_string features(®path,®hasher):
extract strings from binary file using regular expressions
chars = r" -~"
min_length = 5
string regexp = '[%s]{%d,}"' % (chars, min_length)
file object = open(path)
data = file object.read()
pattern = re.compile(string_regexp)
strings = pattern.findall(data)

store string features in dictionary form
© string features = {}

Building Machine Learning Detectors 141

142

Chapter 8

for string in strings:
string features[string] = 1

hash the features using the hashing trick
® hashed_features = hasher.transform([string features])

do some data munging to get the feature array
hashed features = hashed_features.todense()
hashed_features = numpy.asarray(hashed_features)
hashed_features = hashed features[0]

return hashed string features
® print "Extracted {0} strings from {1}".format(len(string features),path)
return hashed features

Listing 8-11: Defining the get_string_features function

Here, we declare a single function called get_string_features that takes
the path to the target binary @ and an instance of sklearn’s feature hash-
ing class @ as its arguments. Then we extract the target file’s strings using
aregular expression, which parses out all printable strings of minimum
length 5. Then, we store the features in a Python dictionary @ for further
processing by setting each string’s value to 1 in the dictionary, simply indi-
cating that that feature is present in the binary.

Next, we hash the features using sklearn’s hashing trick implementation
by calling hasher. Notice that we wrap the string_features dictionary in a
Python list as we pass it into the hasher instance @ because sklearn requires
that we pass in a list of dictionaries to be transformed, rather than a single
dictionary.

Because we passed in our feature dictionary as a list of dictionaries,
features are returned as a list of arrays. Additionally, they are returned in
sparseformat, a compressed representation that can be useful for processing
large matrices, which we won’t discuss in this book. We need to get our data
back into a normal numpy vector.

To get the data back into normal format, we call .todense() and
.asarray(), and then select the first array in the list of hasher results to
recover our final feature vector. The last step in the function is simply
to return the feature vector hashed_features @ to the caller.

Training the Detector

Because sklearn does most of the hard work of training machine learning
systems, training a detector requires only a small amount of code once
we’ve extracted machine learning features from our target binaries.

To train a detector, we first need to extract features from our training
examples, and then instantiate the feature hasher and the sklearn machine
learning detector we wish to use (in this case, we use a random forest clas-
sifier). Then we need to call sklearn’s fit method on the detector to train it
on the examples’ binaries. Finally, we save the detector and feature hasher
to disk so we can use them when we want to scan files in the future.

Listing 8-12 shows the code for training the detector.

def @get training data(benign_path,malicious_path,hasher):
def @get training paths(directory):
targets = []
for path in os.listdir(directory):
targets.append(os.path.join(directory,path))
return targets
® malicious paths = get training paths(malicious_path)
O benign_paths = get training paths(benign_path)
® X = [get_string features(path,hasher)
for path in malicious_paths + benign_paths]
y = [1 for i in range(len(malicious_paths))]
+ [0 for i in range(len(benign_paths))]
return X, y
def @train_detector(X,y,hasher):
classifier = tree.RandomForestClassifier()
classifier.fit(X,y)

(7]
® pickle.dump((classifier,hasher),open("saved detector.pkl","w+"))

Listing 8-12: Programming sklearn to train the detector

Let’s start by declaring the get_training_data() function @, which extracts
features from training examples we provide. The function has three argu-
ments: a path to a directory containing examples of benign binary programs
(benign_path), a path to a directory containing examples of malicious binary
programs (malicious_path), and an instance of the sklearn FeatureHasher class
used to do feature hashing (hasher).

Next, we declare get_training_paths() @, a local helper function that
gets us the list of absolute file paths for files occurring in a given directory.
In the next two lines, we use get_training_paths to get us the lists of paths
that occur in the malicious ® and benign @ training example directories.

Finally, we extract our features and create our label vector. We do this
by calling the get_string_features function described in Listing 8-11 on every
training example file path ©. Notice that the label vector has a 1 for every
malicious path and a 0 for every benign path, such that the numbers at the
indices in the label vector correspond to the label of the feature vectors at
those same indices in the X array. This is the form in which sklearn expects
feature and label data, and it allows us to tell the library the label for each
feature vector.

Now that we’ve finished extracting features and created our feature
vector X and our label vector y, we’re ready to tell sklearn to train our detec-
tor using the feature vectors and the label vector.

We do this using the train_detector() function @, which takes three
arguments: the training example feature vectors (X), the label vector (y),
and the instance of sklearn’s feature hasher (hasher). In the function body
we instantiate tree.RandomForestClassifier, the sklearn detector. Then we
pass X and y into the detector’s fit method to train it @, and then use the
Python pickle module @ to save the detector and hasher for future use.

Building Machine Learning Detectors 143

Running the Detector on New Binaries

Now let’s go over how to use the saved detector we just trained to detect
malware in new program binaries. Listing 8-13 shows how to write the
scan_file() function to do this.

def scan_file(path):
if not os.path.exists("saved detector.pkl"):
print "Train a detector before scanning files."
sys.exit(1)
©® with open("saved detector.pkl") as saved detector:
classifier, hasher = pickle.load(saved detector)
features = @get_string features(path,hasher)
result_proba = @classifier.predict proba(features)[1]
if the user specifies malware paths and
benignware_paths, train a detector
O if result_proba > 0.5:
print "It appears this file is malicious!", result_proba®
else:
print "It appears this file is benign.", result_proba®

Listing 8-13: Running the detector on new binaries

Here, we declare the scan_file() function to scan a file to determine
whether it’s malicious or benign. Its only argument is the path to the binary
that we are going to scan. The function’s first job is to load the saved detector
and hasher from the pickle file to which they were saved @.

Next, we extract features from the target file using the function
get_string_features @ we defined in Listing 8-11.

Finally, we call the detector’s predict method to decide whether or not
the file in question is malicious, given the features extracted. We do this
using the predict_proba method ® of the classifier instance and select-
ing the second element of the array that it returns, which corresponds to
the probability that the file is malicious. If this probability is above 0.5, or
50 percent @, we say the file is malicious; otherwise, we tell the user that it’s
benign. We can change this decision threshold to something much higher
to minimize false positives.

What We’ve Implemented So Far

Listing 8-14 shows the code for this small-scale but realistic malware detec-
tor in its entirety. I hope that the code reads fluidly to you now that you've
seen how each individual piece works.

#!/usr/bin/python

import os
import sys
import pickle
import argparse
import re
import numpy

144 Chapier 8

from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import FeatureHasher

def

def

def

get_string features(path,hasher):

extract strings from binary file using regular expressions
chars = r"* -~"

min_length = 5

string regexp = '[%s]{%d,}"' % (chars, min_length)

file object = open(path)

data = file object.read()

pattern = re.compile(string_regexp)

strings = pattern.findall(data)

store string features in dictionary form
string features = {}
for string in strings:

string features[string] = 1

hash the features using the hashing trick
hashed_features = hasher.transform([string features])

do some data munging to get the feature array
hashed_features = hashed_features.todense()
hashed_features = numpy.asarray(hashed features)
hashed _features = hashed features[0]

return hashed string features
print "Extracted {0} strings from {1}".format(len(string_features),path)
return hashed_features

scan_file(path):
scan a file to determine if it is malicious or benign
if not os.path.exists("saved detector.pkl"):
print "Train a detector before scanning files."
sys.exit(1)
with open("saved detector.pkl") as saved detector:
classifier, hasher = pickle.load(saved detector)
features = get_string features(path,hasher)
result_proba = classifier.predict proba([features])[:,1]
if the user specifies malware paths and
benignware_paths, train a detector
if result_proba > 0.5:
print "It appears this file is malicious!", result proba"
else:
print "It appears this file is benign.", result_proba’

train_detector(benign path,malicious_path,hasher):
train the detector on the specified training data
def get_training paths(directory):
targets = []
for path in os.listdir(directory):
targets.append(os.path.join(directory,path))
return targets
malicious_paths = get training paths(malicious_path)
benign_paths = get_training paths(benign_path)

Building Machine Learning Detectors

145

def

X = [get_string features(path,hasher) for path in malicious_paths + benign paths]

y = [1 for i in range(len(malicious_paths))] + [0 for i in range(len(benign_paths))]
classifier = tree.RandomForestClassifier(64)

classifier.fit(X,y)

pickle.dump((classifier,hasher),open("saved_detector.pkl","w+"))

get training data(benign_path,malicious path,hasher):
def get_training paths(directory):
targets = []
for path in os.listdir(directory):
targets.append(os.path.join(directory,path))
return targets
malicious_paths = get_training_paths(malicious_path)
benign_paths = get training_paths(benign_path)
X = [get_string features(path,hasher) for path in malicious_paths + benign paths]
y = [1 for i in range(len(malicious_paths))] + [0 for i in range(len(benign paths))]
return X, y

parser = argparse.ArgumentParser("get windows object vectors for files")

parser.add argument("--malware_paths",default=None,help="Path to malware training files")
parser.add argument("--benignware paths",default=None,help="Path to benignware training files")
parser.add argument("--scan_file path",default=None,help="File to scan")

args = parser.parse_args()

hasher = FeatureHasher(20000)
if args.malware_paths and args.benignware paths:

train_detector(args.benignware_paths,args.malware_paths,hasher)

elif args.scan_file path:

scan_file(args.scan_file path)

else:

print "[*] You did not specify a path to scan,” \
" nor did you specify paths to malicious and benign training files" \
" please specify one of these to use the detector.\n"
parser.print_help()

Listing 8-14: Basic machine learning malware detector code

146

Writing a machine learning—based malware detector is great, but evalu-
ating and improving its performance is necessary if you're going to deploy
the detector with any confidence in its efficacy. Next, you learn different
ways to evaluate the performance of your detector.

Evaluating Your Detector’s Performance

Conveniently, sklearn contains code that makes it easy to evaluate detection
systems using measurements like ROC curves, which you learned about in

Chapter 7. The sklearn library also provides additional evaluation function-
ality specific to evaluating machine learning systems. For example, you can
use sklearn’s functions for performing cross-validation, which is a powerful
method for predicting how well your detector will work when you deploy it.

Chapter 8

In this section, you learn how to use sklearn to plot ROC curves that
show your detector’s accuracy. You also learn about cross-validation and
how to implement it with sklearn.

Using ROC Curves to Evaluate Detector Efficacy

Recall that Receiver Operating Characteristic (ROC) curves measure the
changes in a detector’s true positive rate (the percentage of malware that it
successfully detects) and false positive rate (the percentage of benignware
that it falsely flags as malware) as you adjust its sensitivity.

The higher the sensitivity, the more false positives you will get but the
greater your detection rate. The lower the sensitivity, the fewer false positives
but also the fewer detections you’ll get. To compute a ROC curve you need a
detector that can output a threat score such that the higher its value the more
likely it is that a binary is malicious. Conveniently, sklearn’s implementations
of decision trees, logistic regression, k-nearest neighbors, random forests,
and other machine learning approaches covered in this book all provide the
option of outputting a threat score that reflects whether a file is malware or
benignware. Let’s explore how we can use ROC curves to determine a detec-
tor’s accuracy.

Computing ROC Curves

To compute a ROC curve for the machine learning detector we built in
Listing 8-14, we need to do two things: first, define an experimental setup,
and second, implement the experiment using sklearn’s metrics module. For
our basic experimental setup, we’ll split our training examples in half such
that we use the first half for training and the second half for computing the
ROC curve. This split simulates the problem of detecting zero-day malware.
Basically, by splitting the data, we’re telling the program, “show me one set
of benignware and malware that I’ll use to learn how to identify malware
and benignware, and then show me the other set to test me on how well
I'learned the concept of malware and benignware.” Because the detector
has never seen the malware (or benignware) in the test set, this evaluation
setup is a simple way to predict how well the detector will do against truly
new malware.

Implementing this split with sklearn is straightforward. First, we add an
option to the argument parser class of our detector program to signal that
we want to evaluate the detector’s accuracy, like this:

parser.add_argument("--evaluate",default=False,
action="store_true",help="Perform cross-validation")

Then, in the part of the program where we process command line argu-
ments, shown in Listing 8-15, we add another elif clause that handles the
case that the user has added -evaluate to the command line arguments.

Building Machine Learning Detectors 147

148

Chapter 8

elif args.malware_paths and args.benignware_paths and args.evaluate:
® hasher = FeatureHasher()
X, y = @get_training data(
args.benignware paths,args.malware_paths,hasher)
evaluate(X,y,hasher)
def ®evaluate(X,y,hasher):
import random
from sklearn import metrics
from matplotlib import pyplot

Listing 8-15: Running the detector on new binaries

Let’s walk through this code in detail. First, we instantiate an sklearn
feature hasher @, get the training data we require for our evaluation experi-
ment @, and then call a function named evaluate ®, which takes the training
data (X, y) and the feature hasher instance (hasher) as its parameters and
then imports three modules we need to perform the evaluation. We use the
random module to randomly select which training examples to use for train-
ing the detector and which to use for testing it. We use the metrics module
from sklearn to compute the ROC curve, and we use the pyplot module from
matplotlib (the de facto standard Python library for data visualization) to
visualize the ROC curve.

Splitting Data into Training and Test Sets

Now that we’ve randomly sorted the X and y arrays corresponding to our
training data, we can split these arrays into equally sized training and test
sets, as shown in Listing 8-16, which continues defining the evaluate() func-
tion begun in Listing 8-15.

X, y = numpy.array(X), numpy.array(y)

indices = range(len(y))

random. shuffle(indices)

X, y = X[indices], y[indices]

splitpoint = len(X) * 0.5

splitpoint = int(splitpoint)

training X, test X = X[:splitpoint], X[splitpoint:]
training y, test y = y[:splitpoint], y[splitpoint:]

Q9 0000

Listing 8-16: Splitting the data into training and test sets

First, we convert X and y into numpy arrays @, and then we create a list
of indices corresponding to the number of elements in X and y @. Next, we
randomly shuffle these indices ® and reorder X and y based on this new
order @. This sets us up to randomly assign samples to either our training
set or our test set, ensuring that we don’t split the samples simply by the
order in which they occur in our experimental data directory. To complete
the random split, we divide the arrays in half by finding the array index
that evenly splits the dataset in half, rounding this point to the nearest inte-
ger using the int() function @, and then actually splitting the X and y arrays
into training and test sets ©.

Now that we have our training and test sets, we can instantiate and train
our decision tree detector using the training data using the following:

classifier = RandomForestClassifier()
classifier.fit(training X,training_y)

Then we use the trained classifier to get scores for our test examples
corresponding to the likelihood that these test examples are malicious:

scores = classifier.predict_proba(test X)[:,-1]

Here, we call the predict_proba() method on our classifier, which pre-
dicts the probability that our test examples are benignware or malware.
Then, using numpy indexing magic, we pull out only the probabilities that
the samples are malicious, as opposed to benign. Keep in mind that these
probabilities are redundant (for example, if the probability an example is
malicious is 0.99, then the probability it’s benign is 0.01, since probabilities
add up to 1.00), so all we need is the malware probability here.

Computing the ROC Curve

Now that we’ve computed malware probabilities (which we can also refer to
as “scores”) using our detector, it’s time to compute our ROC curve. We do
this by first calling the roc_curve function within sklearn’s metrics module,
like this:

fpr, tpr, thresholds = metrics.roc_curve(test_ y, scores)

The roc_curve function tests a variety of decision thresholds, or score
thresholds above which we would deem a software binary to be malicious,
and measures what the false positive rate and true positive rate of the detec-
tor would be if we were to use that detector.

You can see that the roc_curve function takes two arguments: the label
vector for our test examples (test_y) and the scores array, which contains our
detector’s judgment about how malicious it thinks each training example
is. The function returns three related arrays: fpr, tpr, and thresholds. These
arrays are all of equal length, such that the false positive rate, true positive
rate, and decision threshold at each index correspond to one another.

Now we can use matplotlib to visualize the ROC curve we just calcu-
lated. We do this by calling the plot method on matplotlib’s pyplot module,
as shown here:

pyplot.plot(fpr,tpr, 'r-")
pyplot.xlabel("Detector false positive rate")
pyplot.ylabel("Detector true positive rate")
pyplot.title("Detector ROC Curve")
pyplot.show()

Building Machine Learning Detectors 149

150

Chapter 8

We call the xlabel, ylabel, and title methods to label the chart’s axes
and title, and then the show method to make the chart window pop up.
The resulting ROC curve is shown in Figure 8-2.

Detector ROC Curve

1.0 -ﬂ — ROC curve —
P 0.8
g
2
8 0.6
: ||
S
o
© 04
[
0.2
0.0

102 10! 10°
Detector false positive rate

Figure 8-2: Visualizing the detector’s ROC curve

You can see from the plot in Figure 8-2 that our detector performs well
for such a basic example. At around a 1 percent false positive rate (10_2), it
can detect about 94 percent of the malware samples in the test set. We’re
only training it on a few hundred training examples here; to get better accu-
racy we’d need to train it on tens of thousands, hundreds of thousands, or
even millions of examples (alas, scaling machine learning to this degree is
beyond the scope of this book).

Cross-Validation

Although visualizing the ROC curve is useful, we can actually do better at
predicting our detector’s real-world accuracy by performing many experi-
ments on our training data, not just one. Recall that to perform our test, we
split our training examples in half, training the detector on the first half
and testing it on the second half. This is really an insufficient test of our
detector. In the real world, we won’t be measured on our accuracy on this
particular set of test examples but rather on our accuracy on new, previ-
ously unseen malware. To get a better sense of how we’ll perform once we

deploy, we need to run more than just one experiment on one set of test
data; we need to perform many experiments on many test sets and get a
sense of the overall trend in accuracy.

We can use cross-validation to do this. The basic idea behind cross-
validation is to split our training examples into a number of folds (here I
use three folds, but you can use more). For example, if you had 300 examples
and decided to split them into three folds, the first 100 samples would go in
the first fold, the second 100 would go in the second fold, and the third 100
would go in the third fold.

Then we run three tests. In the first test, we train the system on folds 2
and 3 and test the system on fold 1. On the second test, we repeat this pro-
cess but train the system on folds 1 and 3 and test the system on fold 2. On
the third test, as you can probably predict by now, we train the system on
folds 1 and 2 and test the system on fold 3. Figure 8-3 illustrates this cross-
validation process.

Fold 1 Fold 2 Fold 3

Experiment 1 | Use for testing || Use for training || Use for training

Experiment 2 | Use for training || Use for testing || Use for training

Experiment 3 | Use for training || Use for training || Use for testing

Figure 8-3: A visualization of a sample cross-validation process

The sklearn library makes implementing cross-validation easy. To do
this, let’s rewrite our evaluate function from Listing 8-15 as cv_evaluate.

def cv_evaluate(X,y,hasher):
import random
from sklearn import metrics
from matplotlib import pyplot
from sklearn.cross_validation import KFold

We start the cv_evaluate() function the same way we started our initial
evaluation function, except that here we also import the KFold class from
sklearn’s cross_validation module. K-fold cross-validation, or KFold for short,
is synonymous with the type of cross-validation I just discussed and is the
most common way to do cross-validation.

Next, we convert our training data to numpy arrays so that we can use
numpy’s enhanced array indexing on it:

X, y = numpy.array(X), numpy.array(y)

The following code actually starts the cross-validation process:

fold_counter = 0
for train, test in KFold(len(X),3,®shuffle=True):

Building Machine Learning Defectors 151

152

Chapter 8

® training X, training y = X[train], y[train]
test X, test y = X[test], y[test]

We first instantiate the KFold class, passing in the number of training
examples we have as the first parameter and the number of folds we’d like
to use as the second argument. The third argument, shuffle=True @, tells
sklearn to randomly sort our training data before dividing it into three folds.
The KFold instance is actually an iterator that gives a different training or test
example split on each iteration. Within the for loop, we assign the training
instances and test instances to the training X and training_y arrays @ that
contain the corresponding elements.

After preparing the training and test data, we’re ready to instantiate
and train the RandomForestClassifier, as you've learned to do previously in
this chapter:

classifier = RandomForestClassifier()
classifier.fit(training X,training_y)

Finally, we compute a ROC curve for this particular fold and then plot a
line that represents this ROC curve:

scores = classifier.predict_proba(test X)[:,-1]

fpr, tpr, thresholds = metrics.roc_curve(test y, scores)
pyplot.semilogx(fpr,tpr,label="Fold number {0}".format(fold_counter))
fold_counter += 1

Note that we don’t call the matplotlib show method to display the chart
just yet. We do this after all the folds have been evaluated and we’re ready to
show all three lines at once. As we did in the previous section, we label our
axes and give the plot a title, like this:

pyplot.xlabel("Detector false positive rate")
pyplot.ylabel("Detector true positive rate")
pyplot.title("Detector Cross-Validation ROC Curves")
pyplot.legend()

pyplot.grid()
pyplot.show()

The resulting ROC curve is shown in Figure 8-4.

As you can see, our results were similar on every fold, but there is
definitely some variation. Our detection rate (true positive rate) over the
three runs averages about 90 percent at a 1 percent false positive rate. This
estimate, which takes into account all three cross-validation experiments,
is a more accurate estimate of our detector’s performance than we’d get
if we just ran one experiment on our data; in that case, which samples we
happened to use for training and testing would lead to a somewhat random
outcome. By running more experiments, we can get a more robust sense of
our solution’s efficacy.

Detector Cross-Validation ROC Curves

1.0 4
» 08 |
B
()
2
806
(0]
2
S
3
o 04
[a)
0.2
— Fold number 0
Fold number 1
—— Fold number 2

10-2 10 100
Detector false positive rate

Figure 8-4: Plotting the detector’s ROC curve using cross-validation

Note that these results are not great because we’re training on a very
small amount of data: a few hundred malware and benignware samples.
At my day job, where we train large-scale machine learning malware detec-
tion systems, we usually train on hundreds of millions of samples. You don’t
need hundreds of millions of samples to train your own malware detector,
but you’ll want to assemble datasets of at least tens of thousands of samples
to start getting really good performance (for example, a 90 percent detec-
tion rate at a 0.1 percent false positive rate).

Next Steps

So far, I covered how to use Python and sklearn to extract features from a
training dataset of software binaries, and then train and evaluate a deci-
sion tree—based machine learning approach. To improve the system, you
can use features other than or in addition to printable string features (for
example, the PE header, instruction N-gram, or Import Address Table fea-
tures discussed previously), or you could use a different machine learning
algorithm.

To make the detector more accurate, I recommend going beyond
sklearn’s RandomForestClassifier (sklearn.ensemble.RandomForestClassifier)
to try other classifiers. Recall from the previous chapter that random forest
detectors are also based on decision trees, but instead of just one decision
tree, they build many decision trees, randomizing the way they are built. To

Building Machine Learning Detectors 153

154

determine whether a new file is malware or benignware, each of these deci-
sion trees makes individual decisions, which we combine by summing them
up and dividing them by the total number of trees to get the average result.

You can also use other algorithms that sklearn provides, such as logistic
regression. Using any of these algorithms can be as simple as doing a search
and replace in the sample code discussed in this chapter. For example, in
this chapter we instantiate and train our decision tree as follows:

classifier = RandomForestClassifier()
classifier.fit(training_X,training_y)

But you can simply replace that code with this:

from sklearn.linear model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(training_X,training_y)

This replacement yields a logistic regression detector instead of a deci-
sion tree—based detector. By computing a new cross validation—based evalu-
ation of this Logistic Regression detector and comparing it to the results
from Figure 8-4, you could determine which works better.

Summary

Chapter 8

In this chapter, you learned the ins and outs of building machine learning-
based malware detectors. Specifically, you learned how to extract features
from software binaries for machine learning, how to compress these fea-
tures using the hashing trick, and how to train machine learning—based
malware detectors using these extracted features. You also learned how to
plot ROC curves to examine the relationship between a detector’s detection
threshold and its true and false positive rates. Finally, you learned about
cross-validation, a more advanced evaluation concept, and other possible
extensions to enhance the detector used in this chapter.

This concludes this book’s discussion of machine learning—based mal-
ware detection using sklearn. We’ll cover another set of machine learning
methods, known as deep learning methods or artificial neural networks
in Chapters 10 and 11. You now have the basic knowledge necessary to
effectively use machine learning in the context of malware identification.

I encourage you to read more about machine learning. Because computer
security is in many ways a data analysis problem, machine learning is here
to stay in the security industry and will continue to be useful not only in
detecting malicious binaries but also in detecting malicious behavior in
network traffic, system logs, and other contexts.

In the next chapter, we’ll take a deep dive into visualizing malware rela-
tionships, which can help us quickly understand the similarities and differ-
ences between large numbers of malware samples.

VISUALIZING MALWARE TRENDS

Sometimes the best way to analyze malware
collections is to visualize them. Visualizing
security data allows us to quickly recognize

trends in malware and within the threat land-
scape at large. These visualizations are often far more
intuitive than nonvisual statistics, and they can help

communicate insights to diverse audiences. For example, in this chapter,
you see how visualization can help us identify the types of malware preva-
lent in a dataset, the trends within malware datasets (the emergence of
ransomware as a trend in 2016, for example), and the relative efficacy of
commercial antivirus systems at detecting malware.

Working through these examples, you come away understanding how to
create your own visualizations that can lead to valuable insights by using the
Python data analysis package pandas, as well as the Python data visualization
packages seaborn and matplotlib. The pandas package is used mostly for load-
ing and manipulating data and doesn’t have much to do with data visualiza-
tion itself, but it’s very useful for preparing data for visualization.

156

Why Visualizing Malware Data Is Important

Chapter @

To see how visualizing malware data can be helpful, let’s go through two
examples. The first visualization addresses the following question: is the
antivirus industry’s ability to detect ransomware improving? The second
visualization asks which malware types have trended over the period of a
year. Let’s look at the first example shown in Figure 9-1.

Ransomware Detections Over Time

60

50
e % T Y &i
") L ¥ @0 seis @1 gpes ey
40 = g“. ﬁ._..w;‘ ..yr._o'ﬁ;-,‘l_:_m_

N
o
|

[}
1

Number of antivirus engines that detected this sample
w
S
|

0 1 1] 1] 1 1
Jun 2016 Jul 2016 Aug 2016 Sep 2016 Oct 2016 Nov 2016 Dec 2016 Jan 2017

Date

Figure 9-1: Visualization of ransomware detections over time

I created this ransomware visualization using data collected from
thousands of ransomware malware samples. This data contains the results
of running 57 separate antivirus engines against each file. Each circle rep-
resents a malware sample. The y-axis represents how many detections, or
positives, each malware sample received from the antivirus engines when it
was scanned. Keep in mind that while this y-axis stops at 60, the maximum
count for a given scan is 57, the total number of scanners. The x-axis repre-
sents when each malware sample was first seen on the malware analysis site
VirusTotal.com and scanned.

In this plot, we can see the antivirus community’s ability to detect these
malicious files started off relatively strong in June 2016, dipped around
July 2016, and then steadily rose over the rest of the year. By the end of 2016,

ransomware files were still missed by an average of about 25 percent of anti-
virus engines, so we can conclude that the security community remained
somewhat weak at detecting these files during this time.

To extend this investigation, you could create a visualization that shows
which antivirus engines are detecting ransomware and at what rate, and how
they are improving over time. Or you could look at some other category
of malware (for example, Trojan horses). Such plots are useful in decid-
ing which antivirus engines to purchase, or deciding which kinds of mal-
ware you might want to design custom detection solutions for—perhaps to
supplement a commercial antivirus detection system (for more on building
custom detection systems, see Chapter 8).

Now let’s look at Figure 9-2, which is another sample visualization,
created using the same dataset used for Figure 9-1.

Malware Family Prevalence Over 150 Days

Worm:Win32/A||ap|e4A ee———— e o~~~
V|rus Win32/Virut. BR #
Virus:VBS/Ramnit.gen!C [}
TrojanDropper:Win32/Dinwod.B!bit —] g
TrojanlJS/Redirector. QE o _é Té!
TrojanDropper:Win32/Loring!rfn — A D o
Virus:Win32/Parite.B 075
TrojanDownloader:JS/Nemucod.FG g o
Virus: Win32/Madang.A Té -g
TrojanDownloader:HTML/Adodb.gen!A - %
TrojanDownloader:JS/Nemucod 8 °
Worm:Win32/Miralrfn 2 _83
Trojan:Win32/Dynamerlac % S
Virus:Win32/Ipamor.A q‘_>.) g
Exploit:HTML.IframeRef.gen — o
SoftwareBundler:Win32/Ogimant Iy
Virus:Win32/Ramnit.|
Trojan:JS/Hidelink. A
Trojan:Win32/Skeeyah.Alrfn : i i N N : .

0] 20 40 60 80 100 120 140

Time in days

Figure 9-2: Visualization of per-family malware detections over time

Figure 9-2 shows the top 20 most common malware families and how
frequently they occurred relative to one another over a 150-day period. The
plot reveals some key insights: whereas the most popular malware family,
Allaple.A, occurred consistently over the 150-day span, other malware fami-
lies, like Nemucod.FG, were prevalent for shorter spans of time and then
went silent. A plot like this, generated using malware detected on your own
workplace’s network, can reveal helpful trends showing what types of mal-
ware are involved in attacks against your organization over time. Without
the creation of a comparison figure such as this one, understanding and
comparing the relative peaks and volumes of these malware types over time
would be difficult and time consuming.

Visualizing Malware Trends 157

158

These two examples show how useful malware visualization can be. The
rest of this chapter shows how to create your own visualizations. We start
by discussing the sample dataset used in this chapter and then we use the
pandas package to analyze the data. Finally, we use the matplotlib and seaborn
packages to visualize the data.

Understanding Our Malware Dataset

Chapter 9

The dataset we use contains data describing 37,000 unique malware bina-
ries collected by VirusTotal, a malware detection aggregation service. Each
binary is labeled with four fields: the number of antivirus engines (out

of 57) that flagged the binary as malicious (I call this the number of posi-
tives associated with each sample), the size of each binary, the binary’s type
(bitcoin miner, keylogger, ransomware, trojan, or worm), and the date on
which the binary was first seen. We’ll see that even with this fairly limited
amount of metadata for each binary, we can analyze and visualize the data
in ways that reveal important insights into the dataset.

Loading Data into pandas

The popular Python data analysis library pandas makes it easy to load data
into analysis objects called DataFrames, and then provides methods to slice,
transform, and analyze that repackaged data. We use pandas to load and
analyze our data and prep it for easy visualization. Let’s use Listing 9-1 to
define and load some sample data into the Python interpreter.

In [135]: import pandas
In [136]: example data = [@{'columni': 1, 'column2': 2},
..: {'columni': 10, 'column2': 32},
: {'columni': 3, 'column2': 58}]

In [137]: @pandas.DataFrame(example_data)

Out[137]:

columnl column2
0 1 2
1 10 32
2 3 58

Listing 9-1: loading data into pandas directly

Here we define some data, which we call example_data, as a list of
Python dictionaries @. Once we have created this list of dicts, we pass it
to the DataFrame constructor @ to get the corresponding pandas DataFrame.
Each of these dicts becomes a row in the resulting DataFrame. The keys in
the dicts (columnl and column2) become columns. This is one way to load
data into pandas directly.

You can also load data from external CSV files. Let’s use the code in
Listing 9-2 to load this chapter’s dataset (available on the virtual machine
or in the data and code archive that accompany this book).

import pandas
malware = pandas.read csv("malware_data.csv")

Listing 9-2: Lloading data into pandas from an external CSV file

When you import malware_data.csv, the resulting malware object should
look something like this:

positives size type fs_bucket
0 45 251592 trojan 2017-01-05 00:00:00
1 32 227048 trojan 2016-06-30 00:00:00
2 53 682593 worm 2016-07-30 00:00:00
3 39 774568 trojan 2016-06-29 00:00:00
4 29 571904 trojan 2016-12-24 00:00:00
5 31 582352 trojan 2016-09-23 00:00:00
6 50 2031661 worm 2017-01-04 00:00:00

We now have a pandas DataFrame composed of our malware dataset. It has
four columns: positives (the number of antivirus detections out of 57 anti-
virus engines for that sample), size (the number of bytes that malware binary
takes up on disk), type (the type of malware, such as Trojan horse, worm, and
so on), and fs_bucket (the date on which this malware was first seen).

Working with a pandas DataFrame

Now that we have our data in a pandas DataFrame, let’s look at how to access
and manipulate it by calling the describe() method, as shown in Listing 9-3.

In [51]: malware.describe()

Out[51]:
positives size

count 37511.000000 3.751100e+04
mean 39.446536 1.300639e+06
std 15.039759 3.006031e+06
min 3.000000 3.370000e+02
25% 32.000000 1.653960e+05
50% 45.000000 4.828160e+05
75% 51.000000 1.290056€+06
max 57.000000 1.294244e+08

Listing 9-3: Calling the describe() method

As shown in Listing 9-3, calling the describe() method shows some
useful statistics about our DataFrame. The first line, count, counts the total
number of non-null positives rows, and the total number of non-null rows.
The second line gives the mean, or average number of positives per sample,
and the mean size of the malware samples. Next comes the standard devi-
ation for both positives and size, and the minimum value of each column
in all the samples in the dataset. Finally, we see percentile values for each
of the columns and the maximum value for the columns.

Visualizing Malware Trends 159

160

Chapter 9

Suppose we’d like to retrieve the data for one of the columns in the
malware DataFrame, such as the positives column (to view the average num-
ber of detections each file has, for example, or plot a histogram showing
the distribution of positives over the dataset). To do this, we simply write
malware['positives'], which returns the positives column as a list of num-
bers, as shown in Listing 9-4.

In [3]: malware['positives']
Out[3]:

45
32
53
39
29
31
50
40
20
40

o ooV WN PR O

-snip--

Listing 9-4: Returning the positives column

After retrieving a column, we can compute statistics on it directly. For
example, malware['positives'].mean() computes the mean of the column,
malware['positives'].max() computes the maximum value, malware['positives']
.min() computes the minimum value, and malware['positives'].std() computes
the standard deviation. Listing 9-5 shows examples of each.

In [7]: malware['positives'].mean()
Out[7]: 39.446535682866362

In [8]: malware['positives'].max()
Out[8]: 57

In [9]: malware['positives'].min()
Out[9]: 3

In [10]: malware['positives'].std()
Out[10]: 15.039759380778822

Listing 9-5: Calculating the mean, maximum, and minimum values and the standard
deviation

We can also slice and dice the data to do more detailed analysis. For
example, Listing 9-6 computes the mean positives for the trojan, bitcoin,
and worm types of malware.

In [67]: malware[malware['type'] == "trojan']['positives'].mean()
Out[67]: 33.43822473365119

In [68]: malware[malware['type'] == 'bitcoin']['positives'].mean()
Out[68]: 35.857142857142854

In [69]: malware[malware['type'] == 'worm']['positives'].mean()
Out[69]: 49.90857904874796

Listing 9-6: Calculating the average detection rates of different malwares

We first select the rows of the DataFrame where type is set to trojan using

the following notation: malware[malware['type'] == 'trojan']. To select the
positives column of the resulting data and compute the mean, we extend
this expression as follows: malware[malware['type'] == "trojan']['positives']

.mean(). Listing 9-6 yields an interesting result, which is that worms get
detected more frequently than bitcoin mining and Trojan horse malware.
Because 49.9 > 35.8 and 33.4, on average, malicious worm samples (49.9)

are detected by more vendors than malicious bitcoin and trojan samples
(35.8,33.4).

Filtering Data Using Conditions

We can select a subset of the data using other conditions as well. For
example, we can use “greater than” and “less than” style conditions on
numerical data like malware file size to filter the data, and then compute
statistics on the resulting subsets. This can be useful if we're interested in
finding out whether the effectiveness of the antivirus engines is related to
file size. We can check this using the code in Listing 9-7.

In [84]: malware[malware['size'] > 1000000]['positives’].mean()
Out[84]: 33.507073192162373

In [85]: malware[malware['size'] > 2000000]['positives'].mean()
Out[85]: 32.761442050415432

In [86]: malware[malware['size'] > 3000000]['positives’].mean()
Out[86]: 27.20672682526661

In [87]: malware[malware['size'] > 4000000]['positives'].mean()
Out[87]: 25.652548725637182

In [88]: malware[malware['size'] > 5000000]['positives'].mean()
Out[88]: 24.411069317571197

Listing 9-7- Filtering the results by malware file size

Take the first line in the preceding code: first, we subset our DataFrame
by only samples that have a size over one million (malware[malware['size"]
> 1000000]). Then we grab the positives column and calculate the mean
(['positives'].mean()), which is about 33.5. As we do this for higher and
higher file sizes, we see that the average number of detections for each
group goes down. This means we’ve discovered that there is indeed a rela-
tionship between malware file size and the average number of antivirus
engines that detect those malware samples, which is interesting and merits
further investigation. We explore this visually next by using matplotlib and
seaborn.

Visualizing Malware Trends 161

Number of detections

Using matplotlib to Visualize Data

The go-to library for Python data visualization is matplotlib; in fact, most
other Python visualization libraries are essentially convenience wrappers
around matplotlib. It’s easy to use matplotlib with pandas: we use pandas to
get, slice, and dice the data we want to plot, and we use matplotlib to plot it.
The most useful matplotlib function for our purposes is the plot function.
Figure 9-3 shows what the plot function can do.

Number of Antivirus Detections Versus File Size

504

404

301

204

104

8 e o8 o

108 104 10° 10¢ 107 108
File size in bytes (log base-10)

Figure 9-3: A plot of malware samples’ sizes and the number of antivirus detections

162

Chapter 9

Here, I plot the positives and size attributes of our malware dataset. An
interesting result emerges, as foreshadowed by our discussion of pandas in
the previous section. It shows that small files and very large files are rarely
detected by most of the 57 antivirus engines that scanned these files. Files
of middling size (around 10*°-107) are detected by most engines, however.
This may be because small files don’t contain enough information to allow
engines to determine they are malicious, and big files are too slow to scan,
causing many antivirus systems to punt on scanning them at all.

Plotting the Relationship Between Malware Size and Vendor Detections

Let’s walk through how to make the plot shown in Figure 9-3 by using the
code in Listing 9-8.

©® import pandas

from matplotlib import pyplot
malware = @pandas.read_csv("malware data.csv")
pyplot.plot(®malware['size'], @malware['positives'],

®'bo', ®alpha=0.01)
pyplot.xscale(@"log")
pyplot.ylim([0,57])
pyplot.xlabel("File size in bytes (log base-10)")
pyplot.ylabel("Number of detections")
pyplot.title("Number of Antivirus Detections Versus File Size")
pyplot.show()

Listing 9-8: Visualizing data using the plot() function

As you can see, it doesn’t take much code to render this plot. Let’s walk
through what each line does. First, we import @ the necessary libraries,
including pandas and the matplotlib library’s pyplot module. Then we call the
read_csv function @, which, as you learned earlier, loads our malware data-
set into a pandas DataFrame.

Next we call the plot() function. The first argument to the function is
the malware size data ©, and the next argument is the malware positives
data @, or the number of positive detections for each malware sample.
These arguments define the data that matplotlib will plot, with the first
argument representing the data to be shown on the x-axis and the sec-
ond representing the data to be shown on the y-axis. The next argument,
'bo' @, tells matplotlib what color and shape to use to represent the data.
Finally, we set alpha, or the transparency of the circles, to 0.1 @, so we can
see how dense the data is within different regions of the plot, even when
the circles completely overlap each other.

Theb in bo stands for blue, and the o stands for circle, meaning that we’re tell-

ing matplotlib to plot blue circles to represent our data. Other colors you can try are
green (g), red (r), cyan (c), magenta (m), yellow (y), black (k), and white (w). Other
shapes you can try are a point (.), a single pixel per data point (,), a square (s), and
a pentagon (p). For complete details, see the matplotlib documentation at http://
matplotlib.org.

After we call the plot() function, we set the scale of the x-axis to be
logarithmic @. This means that we’ll be viewing the malware size data in
terms of powers of 10, making it easier to see the relationships between very
small and very large files.

Now that we’ve plotted our data, we label our axes and title our plot.

The x-axis represents the size of the malware file ("File size in bytes (log
base-10)"), and the y-axis represents the number of detections ("Number of
detections"). Because there are 57 antivirus engines we’re analyzing, we set
the y-axis scale to the range 0 to 57 at @. Finally, we call the show() function ©
to display the plot. We could replace this call with pyplot.savefig("myplot.png")
if we wanted to save the plot as an image instead.

Now that we’ve gone through an initial example, let’s do another.

Visualizing Malware Trends 163

164

Chapter 9

Plotting Ransomware Detection Rates

This time, let’s try reproducing Figure 9-1, the ransomware detection plot
I showed at the beginning of this chapter. Listing 9-9 presents the entire
code that plots our ransomware detections over time.

import dateutil
import pandas
from matplotlib import pyplot

malware = pandas.read csv("malware data.csv")

malware['fs date'] = [dateutil.parser.parse(d) for d in malware['fs bucket']]
ransomware = malware[malware['type'] == 'ransomware']
pyplot.plot(ransomware['fs_date'], ransomware['positives'], 'ro', alpha=0.05)
pyplot.title("Ransomware Detections Over Time")

pyplot.xlabel("Date")

pyplot.ylabel("Number of antivirus engine detections")

pyplot.show()

Listing 9-9: Plotting ransomware detection rates over time

Some of the code in Listing 9-9 should be familiar from what I've
explained thus far, and some won’t be. Let’s walk through the code, line
by line:

import dateutil

The helpful Python package dateutil enables you to easily parse dates
from many different formats. We import dateutil because we’ll be parsing
dates so we can visualize them.

import pandas
from matplotlib import pyplot

We also import the matplotlib library’s pyplot module as well as pandas.

malware = pandas.read csv("malware data.csv")
malware['fs date'] = [dateutil.parser.parse(d) for d in malware['fs bucket']]
ransomware = malware[malware['type'] == 'ransomware']

These lines read in our dataset and create a filtered dataset called
ransomware that contains only ransomware samples, because that’s the type
of data we’re interested in plotting here.

pyplot.plot(ransomware['fs_date'], ransomware['positives'], 'ro', alpha=0.05)
pyplot.title("Ransomware Detections Over Time")
pyplot.xlabel("Date")

pyplot.ylabel("Number of antivirus engine detections")
pyplot.show()

These five lines of code mirror the code in Listing 9-8: they plot the

data, title the plot, label its x- and y-axes, and then render everything to

the screen (see Figure 9-4). Again, if we wanted to save this plot to disk,

we could replace the pyplot.show() call with pyplot.savefig("myplot.png").

Ransomware Detections Over Time

50

L

an

Number of antivirus engine detections

= e w2

201606 201607 201608 201609 2016-10 2016-11 2016-12 2017-01

Date

Figure 9-4: Visualization of ransomware detections over time

Let’s try one more plot using the plot() function.

Plotting Ransomware and Worm Detection Rates

This time, instead of just plotting ransomware detections over time, let’s

also plot worm detections in the same graph. What becomes clear in

Figure 9-5 is that the antivirus industry is better at detecting worms (an

older malware trend) than ransomware (a newer malware trend).

In this plot, we see how many antivirus engines detected mal-
ware samples (y-axis) over time (x-axis). Each red dot represents a
type="ransomware" malware sample, whereas each blue dot represents

a type="worm" sample. We can see that on average, more engines detect

worm samples than ransomware samples. However, the number of

engines detecting both samples has been trending slowly up over time.

Visualizing Malware Trends

165

Ransomware and Worm Vendor Detections Over Time

o . m W SIS S W UED O S W e
el - @ osa 08 @RS a0 00 0 & EEES TS RO 80 000 8 SIS - e
T @ mE S 0 OO0l DS D R SR S D 0 08 eSO S GED e G S G W
A B W WD O SN a0 S SRS O SRS G © 0 O S D SO WD O 0 G0 G
LSS0 B MENED NG O SR S T S 00 SE0S O G0N0 G s el
50- Bl] D SO @ 0 0 O r-‘ _I.ﬁ.-_ mnes
Ser e W B G O N S O D x BT GMeTT AEe o T oS
S B SOB® S O DD T - poeemSTEmE SE W UoEo s e e
ean oWmn W --'-—I - e : —~ bk l:.. ll - e l’.-= : : I_ ;:l'l- L
| L L - e el 8 EmESIEIE 3 @O & 0 G = e W™ ®on MBSO AD B o sems
e e BB T 00 1 VD IO O oD RS & W - - es anoEn » L - MEme cmEm 8 4 L DT
o moene Wne O can - e w g @ L] - LY - e a M o EEEEe O I enE e ©
g —— - see @e e SNBSS G ™ - © o ® - e W omw o W -
meoe o - emem - -n e T am - a - - 1 R - e e LEL] ma sens
a8 Jme o ean m L L] o E TN R Rl L] g L L - e a@me
404 e e S D ot S e Boe
- o cEmmT W Ao W - - © » - L L o o e - - -
17 L] - e PN MEEPol s @ 9Ee W 0D L 1) ¥ L] - = owe =
.E’ s Seteastet : s s - S ee T A
‘L-) e C .0
.g . . . “ . ' A .
© 304 a
L .
o«
o bt
5] .. -
e} L] L] 4 ™
£ H -
=) ™ *
Z 204 ° °
L
.
a .
10- . .
4 L L ¥ - " []
.
. . Ransomware a
: Worm - . *

T T T T T T T
201606 201607 201608 201609 2016-10 2016-11 2016-12
Date

Figure 9-5: Visualization of ransomware and worm malware detections over time

Listing 9-10 shows the code for making this plot.

201701

import dateutil
import pandas
from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")
malware['fs_date'] = [dateutil.parser.parse(d) for d in malware[

ransomware = malware[malware['type'] == 'ransomware']
worms = malware[malware['type'] == 'worm']

pyplot.plot(ransomware['fs_date'], ransomware['positives'],

'ro', label="Ransomware", markersize=3, alpha=0.05)
pyplot.plot(worms['fs_date'], worms['positives'],

'bo', label="Worm", markersize=3, alpha=0.05)
pyplot.legend(framealpha=1, markerscale=3.0)
pyplot.xlabel("Date")
pyplot.ylabel("Number of detections")
pyplot.ylim([0, 57])
pyplot.title("Ransomware and Worm Vendor Detections Over Time")
pyplot.show()

'fs_bucket']]

Listing 9-10: Plotting ransomware and worm detection rates over time

166 Chaprer 9

Let’s walk through the code by looking at the first part of Listing 9-10:

import dateutil
import pandas
from matplotlib import pyplot

malware = pandas.read csv("malware_data.csv")
malware['fs_date'] = [dateutil.parser.parse(d) for d in malware['fs bucket']]

ransomware = malware[malware['type'] == 'ransomware']
worms = malware[malware['type'] == "worm"
--snip--

The code is similar to the previous example. The difference thus far
is that we create the wornm filtered version of our data @ using the same
method with which we create the ransomware filtered data. Now let’s take a
look at the rest of the code:

--snip--
pyplot.plot(ransomware['fs_date'], ransomware['positives'],

'ro', label="Ransomware", markersize=3, alpha=0.05)
pyplot.plot(worms['fs bucket'], worms['positives'],

'bo', label="Worm", markersize=3, alpha=0.05)
pyplot.legend(framealpha=1, markerscale=3.0)
pyplot.xlabel("Date")
pyplot.ylabel("Number of detections™)
pyplot.ylim([0,57])
pyplot.title("Ransomware and Worm Vendor Detections Over Time")
pyplot.show()

pyplot.gcf().clf()

The main difference between this code and Listing 9-9 is that we call
the plot() function twice: once for the ransomware data using the ro selec-
tor @ to create red circles, and once more on the worm data using the bo
selector @ to create blue circles for the worm data. Note that if we wanted
to plot a third dataset, we could do this too. Also, unlike Listing 9-9, here,
at ©, we create a legend for our figure showing that the blue marks stand
for worm malware and the red marks stand for ransomware. The param-
eter framealpha determines how translucent the background of the legend
is (by setting it to 1, we make it completely opaque), and the parameter
markerscale scales the size of the markers in the legend (in this case, by a
factor of three).

In this section, you've learned how to make some simple plots in
matplotlib. However, let’s be honest—they’re not gorgeous. In the next
section, we’re going to use another plotting library that should allow us
to give our plots a more professional look, and help us implement more
complex visualizations quickly.

Visualizing Malware Trends 167

168

Using seaborn to Visualize Data

Chapter 9

o000

Now that we’ve discussed pandas and matplotlib, let’s move on to seaborn, which

is a visualization library actually built on top of matplotlib but wrapped up
in a slicker container. It includes built-in themes to style our graphics as
well as premade higher-level functions that save time in performing more
complicated analyses. These features make it simple and easy to produce
sophisticated, beautiful plots.

To explore seaborn, let’s start by making a bar chart showing how many
examples of each malware type we have in our dataset (see Figure 9-6).

18000
16000

14000

12000

10000

Count

8000

6000

4000

2000

0

trojan worm ransomware bitcoin keylogger
Type

Figure 9-6: Bar chart plot of the different kinds of malware in this chapter’s dataset

Listing 9-11 shows the code to make this plot.

import pandas
from matplotlib import pyplot
import seaborn

malware = pandas.read _csv("malware_data.csv")
seaborn.countplot(x="type', data=malware)
pyplot.show()

Listing 9-11: Creating a bar chart of malware counts by type

In this code, we first read in our data via pandas.read_csv @ and then
use seaborn’s countplot function to create a barplot of the type column in
our DataFrame @. Finally, we make the plot appear by calling pyplot’s show()

method at ©. Recall that seaborn wraps matplotlib, which means we need to
ask matplotlib to display our seaborn figures. Now let’s move on to a more
complex sample plot.

Plotting the Distribution of Antivirus Detections

The premise for the following plot is as follows: suppose we want to under-
stand the distribution (frequency) of antivirus detections across malware
samples in our dataset to understand what percentage of malware is missed
by most antivirus engines, and what percentage is detected by most engines.
This information gives us a view of the efficacy of the commercial antivirus
industry. We can do this by plotting a bar chart (a histogram) showing, for
each number of detections, the proportion of malware samples that had
that number of detections, as shown in Figure 9-7.

Commercial Antivirus Detections for Malware

0.08

0.07 1

o o
o o
O, o
1 1

Number of samples in the dataset
o
o
R
L

0.034
0.02- \
IH.
0.014 //\“x-m_ﬂ_,/_"/ \\
0.00 / . . . r T \
0 10 20 30 40 50 60

Number of engines detecting each sample (out of 57)

Figure 9-7: Visualization of distribution of antivirus detections (positives)

The x-axis of this figure represents categories of malware samples,
sorted by how many out of 57 total antivirus engines detected them. If a
sample was detected as malicious by 50 of 57 engines, it is placed at 50, if
it was only detected by 10 engines out of 57, it goes in the 10 category. The
height of each bar is proportional to how many total samples ended up in
that category.

Visualizing Malware Trends 169

170

Chapter 9

The plot makes it clear that many malware samples are detected by
most of our 57 antivirus engines (shown by the big bump in frequen-
cies in the upper-rightmost region of the plot) but also that a substantial
minority of samples are detected by a small number of engines (shown
in the leftmost region of the plot). We don’t show samples that were
detected by fewer than five engines because of the methodology I used
to construct this dataset: I define malware as samples that five or more
antivirus engines detect. This plotted result, with substantial numbers
of samples receiving just 5—-30 detections, indicates that there is still sig-
nificant disagreement between engines in malware detection. A sample
that was detected as malware by 10 out of 57 engines either indicates that
47 engines failed to detect it, or that 10 made a mistake and issued a false
positive on a benign file. The latter possibility is very unlikely, because
antivirus vendors’ products have very low false-positive rates: it’s much
more likely that most engines missed these samples.

Making this plot requires just a few lines of plotting code, as shown in
Listing 9-12.

import pandas

import seaborn

from matplotlib import pyplot

malware = pandas.read_csv("malware_data.csv")

axis = seaborn.distplot(malware['positives'])

axis.set(xlabel="Number of engines detecting each sample (out of 57)",
ylabel="Amount of samples in the dataset",
title="Commercial Antivirus Detections for Malware")

pyplot.show()

Listing 9-12: Plotting distribution of positives

The seaborn package has a built-in function to create distribution plots
(histograms), and so all we’ve done is pass the distplot function the data
we wanted to display, which is malware['positives'] @. Then we use the axis
object returned by seaborn to configure the plot title, x-axis label, and y-axis
label to describe our plot @.

Now let’s try a seaborn plot with two variables: the number of positive
detections for malware (files with five or more detections) and their file
sizes. We created this plot before with matplotlib in Figure 9-3, but we can
achieve a more attractive and informative result using seaborn’s jointplot
function. The resulting plot, shown in Figure 9-8, is richly informative but
takes a bit of effort to understand at first, so let’s walk through it.

This plot is similar to the histogram we made in Figure 9-7, but instead of
displaying the distribution of a single variable via bar heights, this plot shows
the distributions of fwo variables (the size of a malware file, on the x-axis,
and the number of detections, on the y-axis) via color intensity. The darker
the region, the more data is in that region. For example, we can see that files
most commonly have a size of about 10>° and a positives value of about 53.
The subplots on the top and right of the main plots show a smoothed version
of the frequencies of the size and detections data, which reveal the distribu-
tion of detections (as we saw in the previous plot) and file sizes.

P

{ pearsonr = -0.24; p = O}

604

X 2

40 - .

304

204

Number of engines detecting malware (out of 57)

3 4 5 6 7 8
Bytes in malware file (log base-10)

Figure 9-8: Visualization of the distribution of malware file sizes versus
positive detections

The center plot is the most interesting, because it shows the relation-
ship between size and positives. Instead of showing individual data points,
like in Figure 9-3 with matplotlib, it shows the overall trend in a way that’s
much clearer. This shows that very large malware files (size 10° and greater)
are less commonly detected by antivirus engines, which tells us we might
want to custom-build a solution that specializes in detecting such malware.

Creating this plot just requires one plotting call to seaborn, as shown in
Listing 9-13.

import pandas

import seaborn

import numpy

from matplotlib import pyplot

malware = pandas.read csv("malware_data.csv")
axis=seaborn.jointplot(x=numpy.logio(malware['size']),
y=malware['positives'],
kind="kde")
axis.set_axis_labels("Bytes in malware file (log base-10)",
"Number of engines detecting malware (out of 57)")
pyplot.show()

Listing 9-13: Plotting the distribution of malware file sizes vs. positive detections

Visualizing Malware Trends 171

172

Chapter 9

Here, we use seaborn’s jointplot function to create a joint distribution plot
of the positives and size columns in our DataFrame @. Also, somewhat confus-
ingly, for seaborn’s jointplot function, we have to call a different function than
in Listing 9-11 to label our axes: the set_axis_labels() function @, whose first
argument is the x-axis label and whose second argument is the y-axis label.

Creating a Violin Plot

The last plot type we explore in this chapter is the seaborn violin plot. This
plot allows us to elegantly explore the distribution of a given variable across
several malware types. For example, suppose we’re interested in seeing the
distribution of file sizes per malware type in our dataset. In this case, we
can create a plot like Figure 9-9.

File Sizes by Malware Type

'|08-

'Io5-
104-
'|o3-

trojan worm ransomware bitcoin keylogger

o
<
1

N
e

File size in bytes (log base-10)

Malware ype

Figure 9-9: Visualization of file sizes by malware type

On the y-axis of this plot are file sizes, represented as powers of 10. On
the x-axis we enumerate each malware type. As you can see, the thickness
of the bars representing each file type varies at different size levels, which
show how much of the data for that malware type is of that size. For example,
you can see that there’s a substantial number of very large ransomware files,
and that worms tend to have smaller file sizes—probably because worms aim
to spread rapidly across a network, and worm authors thus tend to minimize
their file sizes. Knowing these patterns could potentially help us to classify
unknown files better (a larger file being more likely to be ransomware and
less likely to be a worm), or teach us what file sizes we should focus on in a
defensive tool targeted at a specific type of malware.

®Q

Making the violin plot takes one plotting call, as shown in Listing 9-14.

import pandas
import seaborn
from matplotlib import pyplot

malware = pandas.read csv("malware_data.csv")

axis = seaborn.violinplot(x=malware['type'], y=malware['size'])

axis.set(xlabel="Malware type", ylabel="File size in bytes (log base-10)",
title="File Sizes by Malware Type", yscale="log")

pyplot.show()

Listing 9-14: Creating a violin plot

In Listing 9-14, first we create the violin plot @. Next we tell seaborn to
set the axis labels and title and to set the y-axis to log-scale @. Finally, we
make the plot appear ®. We can also make an analogous plot showing the
number of positives for each malware type, as shown in Figure 9-10.

Number of Detections by Malware Type

70

60 1

50 -+
2
Rl

8 40+
(]
<

- 304
c
2

> 20-
[]
o
£
=]

Z 10+

04

10

tro}on wc;rm ronsorlnware bik;oin keylc;gger
Malware type

Figure 9-10: Visualization of the number of antivirus positives (detections) per malware type

The only difference between Figure 9-9 and Figure 9-10 is that instead
of looking at file size on the y-axis, we’re looking at the number of positives
each file received. The results show some interesting trends. For example,
ransomware is almost always detected by more than 30 scanners. The bitcoin,
trojan, and keylogger malware types, in contrast, are detected by less than
30 scanners a substantial portion of the time, meaning more of these types

Visualizing Malware Trends 173

174

are slipping past the security industry’s defenses (folks who don’t have the
scanners that detect these files installed are likely getting infected by these
samples). Listing 9-15 shows how to create the plot shown in Figure 9-10.

import pandas
import seaborn
from matplotlib import pyplot

malware = pandas.read csv("malware data.csv")

axis = seaborn.violinplot(x=malware['type'], y=malware['positives'])

axis.set(xlabel="Malware type", ylabel="Number of vendor detections",
title="Number of Detections by Malware Type")

pyplot.show()

Listing 9-15: Visualizing antivirus detections per malware type

The only differences in this code and the previous are that we pass
the violinplot function different data (malware['positives'] instead of
malware['size']), we label the axes differently, we set the title differently,
and we omit setting the y-axis scale to log-10.

Summary

Chapter 9

In this chapter, you learned how visualization of malware data allows you to
get macroscopic insights into trending threats and the efficacy of security
tools. You used pandas, matplotlib, and seaborn to create your own visualiza-
tions and gain insight into sample datasets.

You also learned how to use methods like describe() in pandas to show
useful statistics and how to extract subsets of your dataset. You then used
these subsets of data to create your own visualizations to assess improve-
ments in antivirus detections, analyze trending malware types, and answer
other broader questions.

These are powerful tools that transform the security data you have into
actionable intelligence that can inform the development of new tools and
techniques. I hope you’ll learn more about data visualizations and incorpo-
rate them into your malware and security analysis workflow.

DEEP LEARNING BASICS

Deep learning is a type of machine learn-
ing that has advanced rapidly in the past
few years, due to improvements in process-

ing power and deep learning techniques.
Usually, deep learning refers to deep, or many-layered,
neural networks, which excel at performing very com-
plex, often historically human-centric tasks, like image
recognition and language translation.

For example, detecting whether a file contains an exact copy of some
malicious code you've seen before is simple for a computer program and
doesn’t require advanced machine learning. But detecting whether a file
contains malicious code that is somewhat similar to malicious code you've
seen before is a far more complex task. Traditional signature-based detec-
tion schemes are rigid and perform poorly on never-before-seen or obfus-
cated malware, whereas deep learning models can see through superficial
changes and identify core features that make a sample malicious. The same

176

goes for network activity, behavioral analysis, and other related fields. This
ability to pick out useful characteristics within a mass of noise makes deep
learning an extremely powerful tool for cybersecurity applications.

Deep learning is just a type of machine learning (we covered machine
learning in general in Chapters 6 and 7). But it often leads to models that
achieve better accuracy than approaches we discussed in these preceding
chapters, which is why the entire field of machine learning has emphasized
deep learning in the last five years or so. If you're interested in working at
the cutting edge of security data science, it’s essential to learn how to use
deep learning. A note of caution, however: deep learning is harder to under-
stand than the machine learning approaches we discussed early in this book,
and it requires some commitment, and high-school level calculus, to fully
understand. You’ll find that the time you invest in understanding it will pay
dividends in your security data science work in terms of your ability to build
more accurate machine learning systems. So we urge you to read this chap-
ter carefully and work at understanding it until you get it! Let’s get started.

What Is Deep Learning?

Chapter 10

Deep learning models learn to view their training data as a nested hierarchy
of concepts, which allows them to represent incredibly complex patterns.

In other words, these models not only take into consideration the original
features you give them, but automatically combine these features to form
new, optimized meta-features, which they then combine to form even more
features, and so on.

“Deep” also refers to the architecture used to accomplish this, which
usually consists of multiple layers of processing units, each using the pre-
vious layer’s outputs as its inputs. Each of these processing units is called a
neuron, and the model architecture as a whole is called a neural network, or
a deep neural network when there are many layers.

To see how this architecture can be helpful, let’s think about a pro-
gram that attempts to classify images either as a bicycle or a unicycle. For a
human, this is an easy task, but programming a computer to look at a grid
of pixels and tell which object it represents is quite difficult. Certain pixels
that indicate that a unicycle exists in one image will mean something else
entirely in the next if the unicycle has moved slightly, been placed at a dif-
ferent angle, or has a different color.

Deep learning models get past this by breaking the problem down into
more manageable pieces. For example, a deep neural network’s first layer of
neurons might first break down the image into parts and just identify low-
level visual features, like edges and borders of shapes in the image. These
created features are fed into the next layer of the network to find patterns
among the features. These patterns are then fed into subsequent layers,
until the network is identifying general shapes and, eventually, complete
objects. In our unicycle example, the first layer might find lines, the second
might see lines forming circles, and the third might identify that certain
circles are actually wheels. In this way, instead of looking at a mass of pixels,

the model can see that each image has a certain number of “wheel” meta-
features. It can then, for example, learn that two wheels likely indicate a
bicycle, whereas one wheel means a unicycle.

In this chapter, we focus on how neural networks actually work, both
mathematically and structurally. First, I use a very basic neural network as
an example to explain exactly what a neuron is and how it connects to other
neurons to create a neural network. Second, I describe the mathematical
processes used to train these networks. Finally, I describe some popular
types of neural networks, how they’re special, and what they’re good at.
This will set you up nicely for Chapter 11, where you’ll actually create deep
learning models in Python.

How Neural Networks Work

Machine learning models are simply big mathematical functions. For
example, we take input data (such as an HTML file represented as a series
of numbers), apply a machine learning function (such as a neural network),
and we get an output that tells us how malicious the HTML file looks. Every
machine learning model is just a function containing adjustable parameters
that get optimized during the training process.

But how does a deep learning function actually work and what does it
look like? Neural networks are, as the name implies, just networks of many
neurons. So, before we can understand how neural networks work, we first
need to know what a neuron is.

Anatomy of a Neuron

Neurons themselves are just a type of small, simple function. Figure 10-1
shows what a single neuron looks like.

Activation Output

function

Weighted sum

Input & + bias

Figure 10-1: Visualization of a single neuron

Deep Learning Basics 177

You can see that input data comes in from the left, and a single output
number comes out on the right (though some types of neurons generate
multiple outputs). The value of the output is a function of the neuron’s
input data and some parameters (which are optimized during training).
Two steps occur inside every neuron to transform the input data into the
output.

First, a weighted sum of the neuron’s inputs is calculated. In Figure 10-1,
each input number, x;, travelling into the neuron gets multiplied by an asso-
ciated weight value, w,. The resulting values are added together (yielding a
weighted sum) to which a bias term is added. The bias and weights are the
parameters of the neuron that are modified during training to optimize the
model.

Second, an activation function is applied to the weighted sum plus bias
value. The purpose of an activation function is to apply a nonlinear transfor-
mation to the weighted sum, which is a linear transformation of the neuron’s
input data. There are many common types of activation functions, and they
tend to be quite simple. The only requirement of an activation function is
that it’s differentiable, which enables us to use backpropagation to optimize
parameters (we discuss this process shortly in “Training Neural Networks”
on page 189).

Table 10-1 shows a variety of other common activation functions and
explains which ones tend to be good for which purposes.

Table 10-1: Common Activation Functions

Name Plot Equation Description
Identity 2 f(x) = x Basically: no activation
: function!
£ 0
O
-
-2
I T T T T T 1
-3 -2 -1 0 1 2 3
Input
RelU 2 f() {O forx <0 Just max(0, x).
X) =
L x forx >0 RelUs enable fast
a2 0 learning and are more
3 resilient to the vanish-
-1 ing gradient problem
(explained later in this
2 chapter) compared to
3 2 -1 0 1 2 3 other functions, like the
Input sigmoid.
178 Chapter 10

Name Plot Equation Description
Leaky 2 02001 ax forx <0 Like normal RelU, but
RelU =005 f(x) = { instead of 0, a small
L 1 —q=010 x forx >0 constant fraction of x
2 o is returned. Generally
3 you choose a to be
-1 very small, like 0.01.
Also, o stays fixed dur-
-2, T T T T . ing training.
3 -2 -1 0 1 2 3
Input
PRelU This is just like leak
f(x) = {ax forx <0 RelU, kl)ut in PReLU,y(x
= x forx >0 is a parameter whose
2 value is optimized
o during the training
process, along with the
standard weight and
—T bias parameters.
1 2 3
Input
ELU 2 - 0 =001 N Like PRelU in that a
: =050 f(x) = a(e -]) forx <0 g parameter, but
s =% x forx =0 instead of going down
2 9 — infinitely with a slope
o of & when x < 0, the
-1 - curve is bounded by o,
because " will always
-2 T T T T 1 be between 0 and 1
3 -2 -1 0 1 2 3 when x < 0.
Input
Ste 2 Just a step function:
P f(x)= {O forx <0 the functign returns O
1 Tforx >0 unless x > 0, in which
R case the function
o returns 1.
-1
-2
I 1 1 1 1 1 1
-3 -2 -1 0 1 2 3
Input
Gaussian 2 F(x) = e A bell-shaped curve
- whose maximum value
< ! tops out at 1 when
a 0 x=0.
3
-1
-2
I T T T T 1
-3 -2 -1 0 1 2 3
Input

Deep Learning Basics 179

Table 10-1: Common Activation Functions, continued

Name Plot

Equation Description

Sigmoid 2

Softmax

Output
o

(multi-output)

x Because of the
f(x) = vanishing gradient
problem (explained
later in this chapter),
sigmoid activa-
tion functions are
often only used in
—T —T the final layer of
3 -2 -1 0 1 2 3 a neural network.
Input Because the output
is continuous and
bounded between
0 and 1, sigmoid
neurons are a good
proxy for output
probabilities.

: Outputs multiple
f(x) -_° values that sum to 1.
FSonc;x activc;ion
. unctions are often
forj=12..K used in the final
layer of a network
to represent classifi-
cation probabilities,
because Softmax
forces all outputs
from a neuron to
sum to 1.

180

Chapter 10

Rectified linear unit (ReLU) is by far the most common activation function
used today, and it’s simply max (0, s). For example, let’s say your weighted
sum plus bias value is called s. If sis above zero, then your neuron’s output
is 5, and if sis equal to or below zero, then your neuron’s output is 0. You
can express the entire function of a ReLU neuron as simply max (0, weighted-
sum-of-inputs + bias), or more concretely, as the following for » inputs:

maX(O, Zwi *x; + b]

i=1

Nonlinear activation functions are actually a key reason why networks
of such neurons are able to approximate any continuous function, which is a
big reason why they’re so powerful. In the following sections, you learn how
neurons are connected together to form a network, and later you’ll gain an
understanding of why nonlinear activation functions are so important.

A Network of Neurons

To create a neural network, you arrange neurons in a directed graph (a net-
work) with a number of layers, connecting to form a much larger function.
Figure 10-2 shows an example of a small neural network.

Hidden layer

X, >

Output
X
X, > \

Figure 10-2: Example of a very small, four-neuron neural network,
where data is passed from neuron to neuron via the connections.

In Figure 10-2, we have our original inputs: x,, x,, and x5 on the left
side. Copies of these x, values are sent along the connections to each neu-
ron in the hidden layer (a layer of neurons whose output is not the final out-
put of the model), resulting in three output values, one from each neuron.
Finally, each output of these three neurons is sent to a final neuron, which
outputs the neural network’s final result.

Every connection in a neural network is associated with a weight
parameter, w, and every neuron also contains a bias parameter, b (added
to the weighted sum), so the total number of optimizable parameters in
a basic neural network is the number of edges connecting an input to a
neuron, plus the number of neurons. For example, in the network shown
in Figure 10-2, there are 4 total neurons, plus 9 + 3 edges, yielding a total
of 16 optimizable parameters. Because this is just an example, we’re using
a very small neural network—real neural networks often have thousands of
neurons and millions of connections.

Universal Approximation Theorem

A striking aspect of neural networks is that they are universal approxima-
tors: given enough neurons, and the right weight and bias values, a neural
network can emulate basically any type of behavior. The neural network
shown in Figure 10-2 is feed-forward, which means the data is always flowing
forward (from left to right in the image).

The universal approximation theorem describes the concept of universal-
ity more formally. It states that a feed-forward network with a single hidden
layer of neurons with nonlinear activation functions can approximate (with
an arbitrarily small error) any continuous function on a compact subset of
R". That’s a bit of a mouthful, but it just means that with enough neurons,
a neural network can very closely approximate any continuous, bounded
function with a finite number of inputs and outputs.

1. R" can be thought of as an n-dimensional Euclidian space, where all numbers are real num-
bers. For example, R’ represents all possible real-valued tuples of length 2, like (3.5, -5).

Deep learning Basics 181

182

Chapter 10

In other words, the theorem states that regardless of the function we
want to approximate, there’s theoretically some neural network with the
right parameters that can do the job. For example, if you draw a squiggly,
continuous function, f(x), like in Figure 10-3, there exists some neural net-
work such that for every possible input of x, f(x) = network(x), no matter
how complicated the function f(x). This is one reason neural networks can
be so powerful.

A A fix) =y
q 1L'||, i network(x) = y
(!} \I[VY A
Vil 4\
\ ML,
\ A by Py
_ ‘|L\ ey VW ﬂ"ﬁk(_ , .’\.!jr]‘_l‘
..3' I — III I Vi i - —
6 b 1 | ..r'a:'
W/ M
L |

Input: x

Figure 10-3: Example of how a small neural net could approximate a funky function.
As the number of neurons grows, the difference betweeny and y will approach O.

In the next sections, we build a simple neural network by hand to help
you understand how and why we can model such different types of behavior,
given the right parameters. Although we do this on a very small scale using
just a single input and output, the same principle holds true when you’re
dealing with multiple inputs and outputs, and incredibly complex behaviors.

Building Your Own Neural Network

To see this universality in action, let’s try building our own neural net-
work. We start with two ReLU neurons, using a single input x, as shown
in Figure 10-4. Then, we see how different weight and bias values (param-
eters) can be used to model different functions and outcomes.

Neuron 1

Figure 10-4: Visualization of two neurons being fed input data x

Here, both neurons have a weight of 1, and both use a ReLU activation
function. The only difference between the two is that neuron, applies a bias
value of —1, while neuron, applies a bias value of —2. Let’s see what happens
when we feed neuron, a few different values of x. Table 10-2 summarizes the
results.

Table 10-2: Neuron,

Input Weighted sum Weighted sum + bias Output

X x*w, x* w,,; + bias, max(0, x * w, ,; + bias))
0 0%1=0 0+-1=-1 max(0, —1) = 0

1 1%1=1 14-1=0 max(0, 0) = 0

2 2%1=2 24-1=1 max(0, 1) = 1

3 3*1=3 3+-1=2 max(0, 2) = 2

4 4*1=4 4+-1=3 max(0, 3) = 3

5 5*1=5 5+-1=4 max(0, 4) = 4

The first column shows some sample inputs for x, and the second shows
the resulting weighted sum. The third column adds the bias parameter,
and the fourth column applies the ReLLU activation function to yield the
neuron’s output for a given input of x. Figure 10-5 shows the graph of the
neuron, function.

Neuron 1

Neuron output

— O = N W

-2 -1 0 1 2 3 4

Input: x

Figure 10-5: Visualization of neuron, as a function. The
x-axis represents the neuron’s single input value, and the
y-axis represents the neuron’s output.

Because neuron, has a bias of -1, the output of neuron, stays at 0
until the weighted sum goes above 1, and then it goes up with a certain
slope, as you can see in Figure 10-5. That slope of 1 is associated with the
w,_,; weight value of 1. Think about what would happen with a weight of
2: because the weighted sum value would double, the angle in Figure 10-5
would occur at x = 0.5 instead of x =1, and the line would go up with a
slope of 2 instead of 1.

Now let’s look at neuron,, which has a bias value of -2 (see Table 10-3).

Deep Learning Basics 183

184

Chapter 10

Table 10-3: Neuron,

Input Weighted sum Weighted sum + bias Output

X x* W, (x * w,,) + bias, max(0, (x * w,) + bias,)
0 0*1=0 0+-2=-2 max(0, =2) = 0

1 1 %121 1 4-2=-1 max(0, 1) = 0

2 2%1=2 2+-2-0 max(0, 0) = 0

3 3*1=3 34+-2=1 max(0, 1) = 1

4 4%1=4 44-2=2 max(0, 2) = 2

5 5*1=5 5+-2=3 max(0, 3) = 3

Because neurony’s bias is =2, the angle in Figure 10-6 occurs at x = 2
instead of x= 1.

Neuron 2
. 3
3
£ 2
)
c 1
e
2 O
y4 _]J
T T T T T 1
-2 -1 0 1 2 3 4
Input: x

Figure 10-6: Visualization of neuron, as a function

So now we’ve built two very simple functions (neurons), both doing noth-
ing over a set period, then going up infinitely with a slope of 1. Because we’re
using ReLU neurons, the slope of each neuron’s function is affected by its
weights, while its bias and weight terms both affect where the slope begins.
When you use other activation functions, similar rules apply. By adjusting
parameters, we could change the angle and slope of each neuron’s function
however we wanted.

In order to achieve universality, however, we need to combine neurons
together, which will allow us to approximate more complex functions. Let’s
connect our two neurons up to a third neuron, as shown in Figure 10-7.
This will create a small three-neuron network with a single hidden layer,
composed of neuron; and neuron,.

In Figure 10-7, input data x is sent to both neuron, and neuron,. Then,
neuron; and neuron,’s outputs are sent as inputs to neuron,, which yields
the network’s final output.

Neuron 1

Figure 10-7: Visualization of a small three-neuron network

If you inspect the weights in Figure 10-7, you’ll notice that the weight
w)_,4 is 2, doubling neuron,’s contribution to neuron,. Meanwhile, w,_, is
-1, inverting neuron,’s contribution. In essence, neurong is simply applying
its activation function to neuron; * 2 — neuron,. Table 10-4 summarizes the
inputs and corresponding outputs for the resulting network.

Table 10-4: A Three-Neuron Network

Original Inputs to neuron, Weighted sum Weighted sum + bias Final network output

network

input

X neuron, neuron, (neuron; * w,) + (neuron; * wy 5) + max(0, (neuron; * wy 5] +
(neuron, * w,) (neuron, * wy_4) + (neuron, * w,_5) + bias;)

bias,

0 0 0 0*2)+(0*-1)=0 0+0+0=0 max(0, 0) = 0

1 0 0 0*2)+(0*-1)=0 0+0+0=0 max(0, 0) = 0

2 1 0 (1*2)+(0*-1)=2 2+0+0=2 max(0, 2) = 2

3 2 1 2*2)+(1*-1)=3 4+-1+0=3 max(0, 3) = 3

4 3 2 B*2)+(2*-1)=4 6+-2+0=4 max(0, 4) = 4

5 4 3 4*2)+(3*-1)=5 8+-3+0=5 max(0, 5) = 5

The first column shows original network input, x, followed by the
resulting outputs of neuron; and neuron,. The rest of the columns show
how neuron, processes the outputs: the weighted sum is calculated, bias
is added, and finally in the last column the ReLU activation function is
applied to achieve the neuron and network outputs for each original input
value for x. Figure 10-8 shows the network’s function graph.

Deep learning Basics 185

186

Chapter 10

Network Output

54
44
< 3
(o]
-~
5
2 24
[0
Z
]_
0

-2 -1 0 1 2 3 4 5
Input: x

Figure 10-8: Visualization of our network’s inputs and associated outputs

We can see that through the combination of these simple functions, we
can create a graph that goes up for any period or slope desired over differ-
ent points, as we did in Figure 10-8. In other words, we’re much closer to
being able to represent any finite function for our input x!

Adding Another Neuron to the Network

We’ve seen how to make our network’s function’s graph go up (with any
slope) by adding neurons, but how would we make the graph go down?
Let’s add another neuron (neuron,) to the mix, as shown in Figure 10-9.

Neuron 1

bias,

- max(0, s)

max(0, s)

max(0, s)

Figure 10-9: Visualization of a small four-neuron network with a single hidden layer

In Figure 10-9, input data x is sent to neuron,, neuron,, and neuron,.
Their outputs are then fed as inputs to neurong, which yields the network’s
final output. Neuron, is the same as neuron, and neuron,, but with its bias
set to —4. Table 10-5 summarizes the output of neuron,.

Table 10-5: Neuron,

Input Weighted sum Weighted sum + bias Output

X X* W4 (x * w,_,) + bias, max(0, (x * w,_,,) + bias,)
0 0*1=0 0+-4=-4 max(0, —4) = 0

1 1%1=1 1 4-4--3 max(0, =3) = 0

2 2%1=2 24+-4=2 max(0, -2) = 0

3 3*1=3 3+-4=-1 max(0, -1) =0

4 4*1=4 4+-4=0 max(0, 0) =0

5 5*1=5 5+-4=1 max(0, 1) =1

To make our network graph descend, we subtract neuron,’s function
from that of neuron; and neuron, in neuron,’s weighted sum by setting the
weight connecting neuron, to neuron, to —2. Table 10-6 shows the new out-
put of the entire network.

Table 10-6: A Four-Neuron Network

Original Inputs to neuron, Weighted sum Weighted sum + Final network

network bias output

input

X neuron; neuron, neuron, (neuron; * wy)+ (neuron; * wy_5) + max(O, (neuron, *
(neuron, * wy 5) + ([neuron, * wy)+ wy_5) + (neuron, *
(neurony * w, 5 (neuron, * w, 5) + w, 3) + (neuron, *

bias, w,_3) + biasj)

0 0 0 0*2)+(O0*-1)+ 0+0+0+0=0 max(0,0)=0
0*-2)=0

1 0 0 O0*2)+(0*-1)+ 0+0+0+0=0 max (0, 0) = 1
0*-2) =0

2 0 0 (1*2)+(0*-1)+ 2+0+0+0=2 max(0,2) =2
(0*-2) =2

3 1 0] 2*2)+(1*-1)+ 4+-1+0+0=3 max|(0,3)=3
(0*-2)=3

4 2 0 B*2)+(2*<1)+ 6+-2+0+0=4 max(0,4) =4
0*-2)=4

5 3 1 (4*2)+(3*-1)+ 8+-3+-2+0=3 max(0,3)=3
1*-2)=5

Figure 10-10 shows what this looks like.

Deep Learning Basics 187

188

Chapter 10

Network Output

5
3 4
3 3
g 2
2
2 1
z
o I) 1 1 1
0 2 4 6 8
Input: x

Figure 10-10: Visualization of our four-neuron network

Hopefully, now you can see how the neural network architecture allows
us to move up and down at any rate over any points on the graph, just by
combining a number of simple neurons (universality!). We could continue
adding more neurons to create far more sophisticated functions.

Avtomatic Feature Generation

You've learned that a neural network with a single hidden layer can approxi-
mate any finite function with enough neurons. That’s a pretty powerful idea.
But what happens when we have multiple hidden layers of neurons? In short,
automatic feature generation happens, which is perhaps an even more pow-
erful aspect of neural networks.

Historically, a big part of the process of building machine learning
models was feature extraction. For an HTML file, a lot of time would be
spent deciding what numeric aspects of an HTML file (number of section
headers, number of unique words, and so on) might aid the model.

Neural networks with multiple layers and automatic feature genera-
tion allow us to offload a lot of that work. In general, if you give fairly raw
features (such as characters or words in an HTML file) to a neural network,
each layer of neurons can learn to represent those raw features in ways that
work well as inputs to later layers. In other words, a neural network will learn
to count the number of times the letter a shows up in an HTML document,
if that’s particularly relevant to detecting malware, with no real input from a
human saying that it is or isn’t.

In our image-processing bicycle example, nobody specifically told the
network that edges or wheel meta-features were useful. The model learned
that those features were useful as inputs to the next neuron layer during the
training process. What'’s especially useful is that these lower-level learned
features can be used in different ways by later layers, which means that deep
neural networks can estimate many incredibly complex patterns using far
fewer neurons and parameters than a single-layered network could.

Not only do neural networks perform a lot of the feature extraction work
that previously took a lot of time and effort, they do it in an optimized and
space-efficient way, guided by the training process.

Training Neural Networks

So far, we’ve explored how, given a large number of neurons and the right
weights and bias terms, a neural network can approximate complex func-
tions. In all our examples so far, we set those weight and bias parameters
manually. However, because real neural networks normally contain thou-
sands of neurons and millions of parameters, we need an efficient way to
optimize these values.

Normally, when training a model, we start with a training dataset and a
network with a bunch of non-optimized (randomly initialized) parameters.
Training requires optimizing parameters to minimize an objective function.
In supervised learning, where we’re trying to train our model to be able to
predict a label, like 0 for “benign” and 1 for “malware,” that objective function
is going to be related to the network’s prediction error during training. For
some given input x (for example, a specific HTML file), this is the difference
between the label y we know is correct (for example, 1.0 for “is malware”)
and the output j we get from the current network (for example, 0.7). You
can think of the error as the difference between the predicted label y and
the known, true label y, where network (x) = §, and the network is trying to
approximate some unknown function f£, such that f(x) = y. In other words,
network = f .

The basic idea behind training networks is to feed a network an obser-
vation, x, from your training dataset, receive some output, j, and then
figure out how changing your parameters will shift j closer to your goal, y.
Imagine you’re in a spaceship with various knobs. You don’t know what each
knob does, but you know the direction you want to go in (y). To solve the
problem, you step on the gas and note the direction you went (j). Then,
you turn a knob just a tiny bit and step on the gas again. The difference
between your first and second directions tells you how much that knob
affects your direction. In this way, you can eventually figure out how to fly
the spaceship quite well.

Training a neural network is similar. First, you feed a network an obser-
vation, x, from your training dataset, and you receive some output, j. This
step is called forward propagation because you feed your input x forward
through the network to get your final output j. Next, you determine how
each parameter affects your output j. For example, if your network’s output
is 0.7, but you know the correct output should be closer to 1, you can try
increasing a parameter, w, just a little bit, seeing whether j gets closer to or
further away from y, and by how much.” This is called the partial derivative
of j with respect to w, or 85/0w.

Parameters all throughout the network are then nudged just a tiny bit
in a direction that causes j to shift a little closer to y (and therefore network
closer to f). If 0j/0w is positive, then you know you should increase w by a

2. In practice, increasing the parameter slightly and then reevaluating the network’s resulting
output isn’t necessary. This is because the entire network is a differentiable function, which
means that we can just calculate (8j/0w) precisely and more rapidly using calculus. However,
I find that thinking in terms of nudging and reevaluating tends to be more intuitive than
using derivatives calculus.

Deep Learning Basics 189

190

Chapter 10

small amount (specifically, proportional to 6(y - 5))/6141), so that your new j
will move slightly away from 0.7 and toward 1 (y). In other words, you teach
your network to approximate the unknown function fby correcting its mis-
takes on training data with known labels.

The process of iteratively calculating these partial derivatives, updating
parameters, and then repeating is called gradient descent. However, with a
network of thousands of neurons, millions of parameters, and often millions
of training observations, all of that calculus requires a lot of computation.
To get around this, we use a neat algorithm called backpropagation that makes
these calculations computationally feasible. At its core, backpropagation
allows us to efficiently calculate partial derivatives along computational
graphs like a neural network!

Using Backpropagation to Optimize a Neural Network

In this section, we construct a simple neural network to showcase how back-
propagation works. Let’s assume that we have a training example whose
value is x = 2 and an associated true label of y = 10. Usually, x would be an
array of many values, but let’s stick to a single value to keep things simple.
Plugging in these values, we can see in Figure 10-11 that our network out-
puts a jvalue of 5 with an input x value of 2.

Figure 10-11: Visualization of our three-neuron network, with an input of x = 2

To nudge our parameters so that our network’s output j, given x = 2,
moves closer to our known yvalue of 10, we need to calculate how w,_
affects our final output j. Let’s see what happens when we increase w,_,
by just a bit (say, 0.01). The weighted sum in neurong becomes 1.01 * 2 +
(1 * 3), making the final output j change from 5 to 5.02, resulting in an
increase of 0.02. In other words, the partial derivative of j with respect to
w,_,4 18 2, because changing w,_,; yields twice that change in .

Because yis 10 and our current output § (given our current parameter
values and x = 2) is 5, we now know that we should increase w,_; by a small
amount to move y closer to 10.

That’s fairly simple. But we need to be able to know which direction to
push all parameters in our network, not just ones in a neuron in the final
layer. For example, what about w,_,,? Calculating 0y/0w,_,, is more com-
plicated because it only indirectly affects j. First, we ask neuron,’s function
how j is affected by neuron,’s output. If we change the output of neuron,
from 2 to 2.01, the final output of the neuron, changes from 5 to 5.01, so
0y/0neuron, =1. To know how much w,_,; affects §, we just have to mul-
tiply 0j/0neuron, by how much w, ,; affects the output of neuron,. If we
change w,_,; from 1 to 1.01, the output of neuron; changes from 2 to 2.02,
so Oneuron, /Ow,_,, is 2. Therefore:

0y 0y . oneuron;
Ow,,, Oneuron, ow,
Or:
TG _1x9-9
au})cA)l

You may have noticed that we just used the chain rule.’
In other words, to figure out how a parameter like w,_,; deep inside a
network affects our final output §, we multiply the partial derivatives at each
point along the path between our parameter w,_,; and j. This means that if
w,_,, is fed into a neuron whose outputs are fed into ten other neurons, cal-
culating w,_;’s effect on j would involve summing over all the paths that led
from w,_, to y, instead of just one. Figure 10-12 visualizes the paths affected

by the sample weight parameter w,_,.

Figure 10-12: Visualization of the paths affected by w,_,, (shown
in dark gray): the weight associated with the connection between
input data x and the middle neuron in the first (leftmost) layer

3. The chain rule is a formula for calculating the derivative of composite functions. For
example, if fand gare both functions, and % is the composite function A(x) = f(g(x)), then
the chain rule states that 2’ (x) = f'(g(x)) * g'(x), where f'(x) indicates the partial derivative
of a function, f, with respect to x.

Deep Leaming Basics 191

192

Chapter 10

Note that the hidden layers in this network are not fully connected
layers, which helps explain why the second hidden layer’s bottom neuron
isn’t highlighted.

Path Explosion

But what happens when our network gets even larger? The number of paths
we need to add to calculate the partial derivative of a low-level parameter
increases exponentially. Consider a neuron whose output is fed into a layer
of 1,000 neurons, whose outputs are fed into 1,000 more neurons, whose
outputs are then fed into a final output neuron.

That results in one million paths! Luckily, going over every single path
and then summing them to get the 95/ (6parameter§ is not necessary. This
is where backpropagation comes in handy. Instead of walking along every
single path that leads to our final output(s), y, partial derivatives are calcu-
lated layer by layer, starting from the top down, or backward.

Using the chain rule logic from the last section, we can calculate any
partial derivative 0j/0w, where wis a parameter connecting an output
from layer,_ ;| to a neuron, in layer,, by summing over the following for all
neuron,,;, where each neuron,,, is a neuron in layer,,, to which neuron,
(w’s neuron) is connected:

0y . Oneuron,,, . dneuron,

Oneuron,,, Oneuron, Ow

By doing this layer by layer from the top down, we limit path explo-
sion by consolidating derivatives at each layer. In other words, derivatives
calculated in a top-level layer,,; (like 8y/dneuron,,,) are recorded to help
calculate derivatives in layer,. Then to calculate derivatives in layer, |, we
use the saved derivatives from layer; (like 0j/0neuron,). Then, layer, , uses
derivatives from layer, ;, and so on and so forth. This trick greatly reduces
the amount of calculations we have to repeat and helps us to train neural
networks quickly.

Vanishing Gradient

One issue that very deep neural networks face is the vanishing gradient prob-
lem. Consider a weight parameter in the first layer of a neural network that
has ten layers. The signal it gets from backpropagation is the summation of
all paths’ signals from this weight’s neuron to the final output.

The problem is that each path’s signal is likely to be incredibly
tiny, because we calculate that signal by multiplying partial derivatives
at each point along the ten-neuron-deep path, all of which tend to be
numbers smaller than 1. This means that a low-level neuron’s parameters
are updated based on the summation of a massive number of very tiny
numbers, many of which end up canceling one another out. As a result, it
can be difficult for a network to coordinate sending a strong signal down

to parameters in lower layers. This problem gets exponentially worse as
you add more layers. As you learn in the following section, certain network
designs try to get around this pervasive problem.

Types of Neural Networks

For simplicity’s sake, every example I've shown you so far uses a type of net-
work called a feed-forward neural network. In reality, there are many other
useful network structures you can use for different classes of problems. Let’s
discuss some of the most common classes of neural networks and how they
could be applied in a cybersecurity context.

Feed-Forward Neural Network

The simplest (and first) kind of neural network, a feed-forward neural net-
work, is kind of like a Barbie doll with no accessories: other types of neural
networks are usually just variations on this “default” structure. The feed-
forward architecture should sound familiar: it consists of stacks of layers of
neurons. Each layer of neurons is connected to some or all neurons in the
next layer, but connections never go backward or form cycles, hence the
name “feed forward.”

In feed-forward neural networks, every connection that exists is con-
necting a neuron (or original input) in layer ¢ to a neuron in layer j > i.
Each neuron in layer ¢ doesn’t necessarily have to connect to every neuron
in layer i + 1, but all connections must be feeding forward, connecting pre-
vious layers to later layers.

Feed-forward networks are generally the kind of network you throw at
a problem first, unless you already know of another architecture that works
particularly well on the problem at hand (such as convolutional neural net-
works for image recognition).

Convolutional Neural Network

A convolutional neural network (CNN) contains convolutional layers, where
the input that feeds into each neuron is defined by a window that slides
over the input space. Imagine a small square window sliding over a larger
picture where only the pixels visible through the window will be connected
to a specific neuron in the next layer. Then, the window slides, and the new
set of pixels are connected to a new neuron. Figure 10-13 illustrates this.

The structure of these networks encourages localized feature learning.
For example, it’s more useful for a network’s lower layers to focus on the
relationship between nearby pixels in an image (which form edges, shapes,
and so on) than to focus on the relationship between pixels randomly scat-
tered across an image (which are unlikely to mean much). The sliding win-
dows explicitly force this focus, which improves and speeds up learning in
areas where local feature extraction is especially important.

Deep Learning Basics 193

194

Chapter 10

Window 1 Window 2
1 0 0 1 0
w=0 w=0.5 15 w=0 w=0.5 15 2
0 1 1 0 1 1
w=1 w=1 w=1 w=1
0 1 1 0 1 1
Window 3 Window 4
0 1 0 0 1 0
2
0 1 0 1 1
w=0 w=0.5 w=0 w=0.5
0 1 1 0 1 1
w=1 w=1 w=1 w=1

Figure 10-13: Visualization of a 2 x 2 convolutional window sliding over a 3 x 3 input
space with a stride (step size) of 1, to yield a 2 x 2 output

Because of their ability to focus on localized sections of the input data,
convolutional neural networks are extremely effective at image recognition
and classification. They’ve also been shown to be effective for certain types
of natural language processing, which has implications for cybersecurity.

After each convolutional window’s values are fed to specific neurons
in a convolutional layer, a sliding window is again slid over these neurons’
outputs, but instead of them being fed to standard neurons (for example,
ReLLUs) with weights associated with each input, they’re fed to neurons that
have no weights (that is, fixed at 1) and a max (or similar) activation func-
tion. In other words, a small window is slid over the convolutional layer’s
outputs, and the maximum value of each window is taken and passed to
the next layer. This is called a pooling layer. The purpose of pooling layers
is to “zoom out” on the data (usually, an image), thereby reducing the size
of the features for faster computation, while retaining the most important
information.

Convolutional neural networks can have one or multiple sets of convo-
lutional and pooling layers. A standard architecture might include a con-
volutional layer, a pooling layer, followed by another set of convolutional
and pooling layers, and finally a few fully connected layers, like in feed-
forward networks. The goal of this architecture is that these final fully
connected layers receive fairly high-level features as inputs (think wheels
on a unicycle), and as a result are able to accurately classify complex data
(such as images).

Avtoencoder Neural Network

An autoencoderis a type of neural network that tries to compress and then
decompress an input with minimal difference between the original training
input and the decompressed output. The goal of an autoencoder is to learn

an efficient representation for a set of data. In other words, autoencoders
act like optimized lossy compression programs, where they compress input
data into a smaller representation, then decompress it back to its original
input size.

Instead of the neural network optimizing parameters by minimizing
the difference between known labels (y) and predicted labels (§) for a
given input x, the network tries to minimize the difference between the
original input x and the reconstructed output x.

Structurally, autoencoders are usually very similar to standard feed-
forward neural networks, except that middle layers contain fewer neurons
than early and later stage layers, as shown in Figure 10-14.

Input layer Output layer
X X
Y Y
- 4
A, 2
@ ()
Oy)
L = -~ |

) S O

- e, -
e\ S P o
NN ~ o
Q - z p Q
b+ NS e 2
= > ,>_<]

o

o i S J

- 3 Ty
>:<I :‘: S (le
¥ ™
)~)’j J 4
- - f S ()
\ s v - 4 -
- ez — o)
L JI # e 1 4
—~ P o >~
L/ i 4
("ﬁ' = ” -~ ™y
- - N
P | Y
L w
'S)
L o

Figure 10-14: Visualization of an autoencoder network

As you can see, the middle layer is much smaller than the leftmost
(input) and rightmost (output) layers, which each have the same size. The
last layer should always contain the same number of outputs as the original
inputs, so each training input x, can be compared to its compressed and
reconstructed cousin X;.

After an autoencoder network has been trained, it can be used for
different purposes. Autoencoder networks can simply be used as efficient
compress/decompress programs. For example, autoencoders trained to
compress image files can create images that look far clearer than the same
image compressed via JPEG to the same size.

Generative Adversarial Network

A generative adversarial network (GAN) is a system of two neural networks
competing with each other to improve themselves at their respective tasks.
Typically, the generative network tries to create fake samples (for example,
some sort of image) from random noise. Then a second discriminator network

Deep learning Basics 195

196

Chapter 10

attempts to tell the difference between real samples and the fake, generated
samples (for example, distinguishing between real images of a bedroom and
generated images).

Both neural networks in a GAN are optimized with backpropagation.
The generator network optimizes its parameters based on how well it fooled
the discriminator network in a given round, while the discriminator net-
work optimizes its parameters based on how accurately it could discriminate
between generated and real samples. In other words, their loss functions are
direct opposites of one another.

GANSs can be been used to generate real-looking data or enhance low-
quality or corrupted data.

Recurrent Neural Network

Recurrent networks (RRNs) are a relatively broad class of neural networks in
which connections between neurons form directed cycles whose activation
functions are dependent on time-steps. This allows the network to develop
a memory, which helps it learn patterns in sequences of data. In RNNs, the
inputs, the outputs, or both the inputs and outputs are some sort of time
series.

RNNs are great for tasks where data order matters, like connected
handwriting recognition, speech recognition, language translation, and
time series analysis. In the context of cybersecurity, they’re relevant to
problems like network traffic analysis, behavioral detection, and static file
analysis. Because program code is similar to natural language in that order
matters, it can be treated as a time series.

One issue with RNNs is that due to the vanishing gradient problem,
each time-step introduced in an RNN is similar to an entire extra layer in
a feed-forward neural network. During backpropagation, the vanishing
gradient problem causes signals in lower-level layers (or in this case, earlier
time-steps) to become incredibly faint.

A long short-term memory (LSTM) network is a special type of RNN designed
to address this problem. LSTMs contain memory cells and special neurons that
try to decide what information to remember and what information to forget.
Tossing out most information greatly limits the vanishing gradient problem
because it reduces path explosion.

ResNet

A ResNet (short for residual network) is a type of neural network that creates
skip connections between neurons in early/shallow layers of the network to
deeper layers by skipping one or more intermediate layers. Here the word
residual refers to the fact that these networks learn to pass numerical infor-
mation directly between layers, without that numerical information having
to pass through the kinds of activation functions we illustrated in Table 10-1.
This structure helps greatly reduce the vanishing gradient problem,
which enables ResNets to be incredibly deep—sometimes more than
100 layers.

Very deep neural networks excel at modeling extremely complex, odd
relationships in input data. Because ResNets are able to have so many layers,
they are especially suited to complex problems. Like feed-forward neural
networks, ResNets are important more because of their general effective-
ness at solving complex problems rather than their expertise in very specific
problem areas.

Summary

In this chapter, you learned about the structure of neurons and how they
are connected together to form neural networks. You also explored how
these networks are trained via backpropagation, and you discovered some
benefits and issues that neural networks have, such as universality, auto-
matic feature generation, and the vanishing gradient problem. Finally,
you learned the structures and benefits of a few common types of neural
networks.

In the next chapter, you’ll actually build neural networks to detect mal-
ware, using Python’s Keras package.

Deep Learning Basics 197

BUILDING A NEURAL NETWORK
MALWARE DETECTOR WITH KERAS

A decade ago, building a functioning, scal-

able, and fast neural network was time con-
suming and required quite a lot of code. In
the past few years, however, this process has become
far less painful, as more and more high-level inter-
faces to neural network design have been developed.
The Python package Keras is one of these interfaces.

In this chapter, I walk you through how to build a sample neural
network using the Keras package. First, I explain how to define a model’s
architecture in Keras. Second, we train this model to differentiate between
benign and malicious HTML files, and you learn how to save and load such
models. Third, using the Python package sklearn, you learn how to evaluate
the model’s accuracy on validation data. Finally, we use what you've learned
to integrate validation accuracy reporting into the model training process.

I encourage you to read this chapter while reading and editing the asso-
ciated code in the data accompanying this book. You can find all the code

200

discussed in this chapter there (organized into parameterized functions to
make things easier to run and adjust), as well as a few extra examples. By
the end of this chapter, you'll feel ready to start building some networks of
your own!

To run code listings in this chapter, you not only need to install the
packages listed in this chapter’s chll/requirements.ixt file (pip install -r
requirements.txt), but also follow the directions to install one of Keras’s
backend engines on your system (TensorFlow, Theano, or CNTK). Install
TensorFlow by following the directions here: https://www.tensorflow.org/
nstall/.

Defining a Model’s Architecture

Chapter 11

To build a neural network, you need to define its architecture: which neu-
rons go where, how they connect to subsequent neurons, and how data
flows through the whole thing. Luckily, Keras provides a simple, flexible
interface to define all this. Keras actually supports two similar syntaxes for
model definition, but we’re going to use the Functional API syntax, as it’s
more flexible and powerful that the other (“sequential”) syntax.

When designing a model, you need three things: input, stuff in the
middle that processes the input, and output. Sometimes your models will
have multiple inputs, multiple outputs, and very complex stuff in the middle,
but the basic idea is that when defining a model’s architecture, you're just
defining how the input—your data, such as features relating to an HTML
file—flows through various neurons (stuff in the middle), until finally the
last neurons end up yielding some output.

To define this architecture, Keras uses layers. A layeris a group of neu-
rons that all use the same type of activation function, all receive data from
a previous layer, and all send their outputs to a subsequent layer of neurons.
In a neural network, input data is generally fed to an initial layer of neu-
rons, which sends its outputs to a subsequent layer, which sends its outputs
to another layer, and so on and so forth, until the last layer of neurons gen-
erates the network’s final output.

Listing 11-1 is an example of a simple model defined using Keras’s func-
tional API syntax. I encourage you to open a new Python file to write and
run the code yourself as we walk through the code, line by line. Alternatively,
you can try running the associated code in the data accompanying this book,
either by copying and pasting parts of the chll/model_architecture.py file into
an ipython session or by running python chi1/model_architecture.py in a termi-
nal window.

from keras import layers
from keras.models import Model

input = layers.Input(®shape=(1024,), @dtype="'float32")
middle = layers.Dense(units=512, activation='relu')(input)
output = layers.Dense(units=1, activation='sigmoid')(middle)

https://www.tensorflow.org/install/
https://www.tensorflow.org/install/

NOTE

@ model = Model(inputs=input, outputs=output)

model.compile(®optimizer="adam",
©loss="binary_crossentropy',
®metrics=["accuracy'])

Listing 11-1: Defining a simple model using functional API syntax

First, we import the Keras package’s layers submodule @ as well as the
Model class from Keras’s models submodule @.

Next, we specify what kind of data this model will accept for one
observation by passing a shape value (a tuple of integers) ® and a data
type (string) @ to the layers.Input() function. Here, we declared that the
input data to our model will be an array of 1,024 floats. If our input was, for
example, a matrix of integers instead, the first line would look more like
input = Input(shape=(100, 100,) dtype='int32").

If the model takes in variable-sized inputs on one dimension, you can use None
instead of a number—for example, (100, None,).

Next, we specify the layer of neurons that this input data will be sent to.
To do this, we again use the layers submodule we imported, specifically the
Dense function ®, to specify that this layer will be a densely connected (also
called fully connected) layer, which means that every output from the previ-
ous layer is sent to every neuron in this layer. Dense is the most common type
of layer you’ll likely use when developing Keras models. Others allow you to
do things like change the shape of the data (Reshape) and implement your
own custom layer (Lambda).

We pass the Dense function two arguments: units=512, to specify that
we want 512 neurons in this layer, and activation="relu’, to specify that we
want these neurons to be rectified linear unit (ReLU) neurons. (Recall
from Chapter 10 that ReLU neurons use a simple type of activation func-
tion that outputs whichever is larger: either 0, or the weighted sum of
the neuron’s inputs.) We use layers.Dense(units=512, activation='relu') to
define the layer, and then the last part of the line— (input)—declares the
input to this layer (namely, our input object). It’s important to understand
that this passing of input to our layer is how data flow is defined in the
model, as opposed to the ordering of the lines of the code.

In the next line, we define our model’s output layer, which again uses
the Dense function. But this time, we designate only a single neuron to the
layer and use a 'sigmoid' activation function ®, which is great for combining
a lot of data into a single score between 0 and 1. The output layer takes the
(middle) object as input, declaring that the outputs from our 512 neurons in
our middle layer should all be sent to this neuron.

Now that we’ve defined our layers, we use the Model class from the models
submodule to wrap up all these layers together as a model @. Note that you
only have to specify your input layer(s) and output layer(s). Because each
layer after the first is given the preceding layer as input, the final output

Building a Neural Network Malware Detector with Keras 201

202

layer contains all the information the model needs about the previous layers.
We could have 10 more middle layers declared between our input and output
layers, but the line of code at @ would remain the same.

Compiling the Model

Chapter 11

Finally, we need to compile our model. We've defined the model’s architec-
ture and flow of data, but we haven’t yet specified how we want the model to
perform its training. To do this, we use our model’s own compile method and
pass it three parameters:

e The first parameter, optimizer ®, specifies the type of backpropagation
algorithm to use. You can specify the name of the algorithm you wish
to use via a character string like we did here, or you can import an algo-
rithm directly from keras.optimizers to pass in specific parameters to
the algorithm or even design your own.

e The loss parameter © specifies the thing that is minimized during
the training process (backpropagation). Specifically, this specifies the
formula you wish to use to represent the difference between your true
training labels and your model’s predicted labels (output). Again, you
can specify the name of a loss function, or pass in an actual function,
like keras.losses.mean_squared_error.

e Lastly, for the metrics parameter @, you can pass a list of metrics that
you want Keras to report when analyzing model performance during and
after training. Again, you can pass strings or actual metric functions,
like ['categorical accuracy', keras.metrics.top k categorical accuracy].

After running the code in Listing 11-1, run model.summary() to see the
model structure printed to your screen. Your output should look something
like Figure 11-1.

In [2]: model.summary()

Layer (type) Output Shape

input_1 (InputLayer) (None, 1024)

dense_1 (Dense) ~ (Nome, 512) 524800

dense_2 (Dense) (None, 1) 513

Trainable params: 525,313
Non-trainable params: @

Figure 11-1: Output of model. summary()

Figure 11-1 shows the output of model.summary(). Each layer’s descrip-
tion is printed to the screen, along with the number of parameters associ-
ated with that layer. For example, the dense_1 layer has 524,800 parameters
because each of its 512 neurons gets a copy of each of the 1,024 input values
from the input layer, meaning that there are 1,024 x 512 weights. Add 512
bias parameters, and you get 1,024 x 512 + 512 = 524,800.

Although we haven’t yet trained our model or tested it on validation
data, this is a compiled Keras model that is ready to train!

Check out the sample code in chl1l/model_architecture.py for an example of a
slightly more complex model!

Training the Model

To train our model, we need training data. The virtual machine that
comes with this book includes a set of about half a million benign and
malicious HTML files. This consists of two folders of benign (chll/data/
html/benign_files/) and malicious (chll/data/html/malicious_files/) HTML
files. (Remember not to open these files in a browser!) In this section, we
use these to train our neural network to predict whether an HTML file is
benign (0) or malicious (1).

Extracting Features

To do this, we first need to decide how to represent our data. In other
words, what features do we want to extract from each HTML file to

use as input to our model? For example, we could simply pass the first
1,000 characters in each HTML file to the model, we could pass in the
frequency counts of all letters in the alphabet, or we could use an HTML
parser to develop some more complex features. To make things easier, we’ll
transform each variable-length, potentially very large HTML file into a uni-
formly sized, compressed representation that allows our model to quickly
process and learn important patterns.

In this example, we transform each HTML file into a 1,024-length vec-
tor of category counts, where each category count represents the number
of tokens in the HTML file whose hash resolved to the given category.
Listing 11-2 shows the feature extraction code.

import numpy as np
import murmur
import re

import os

def read file(sha, dir):
with open(os.path.join(dir, sha), 'r') as fp:
file = fp.read()
return file

Building a Neural Network Malware Detector with Keras 203

204

Chapter 11

def extract features(sha, path_to files dir,
hash_dim=1024, @®split regex=r"\s+"):
® file = read file(sha=sha, dir=path_to files dir)
® tokens = re.split(pattern=split regex, string=file)
now take the modulo(hash of each token) so that each token is replaced
by bucket (category) from 1:hash_dim.
token_hash_buckets = [
O (murmur.string hash(w) % (hash_dim - 1) + 1) for w in tokens
]
Finally, we'll count how many hits each bucket got, so that our features
always have length hash_dim, regardless of the size of the HTML file:
token_bucket_counts = np.zeros(hash_dim)
this returns the frequency counts for each unique value in
token_hash_buckets:
buckets, counts = np.unique(token_hash_buckets, return_counts=True)
and now we insert these counts into our token_bucket_counts object:
for bucket, count in zip(buckets, counts):
© token bucket counts[bucket] = count
return np.array(token_bucket_counts)

Listing 11-2: Feature extraction code

You don’t have to understand all the details of this code to understand
how Keras works, but I encourage you to read through the comments in the
code to better understand what’s going on.

The extract_features function starts by reading in an HTML file as a big
string @ and then splits up this string into a set of tokens based on a regu-
lar expression ©. Next, the numeric hash of each token is taken, and these
hashes are divided into categories by taking the modulo of each hash @.
The final set of features is the number of hashes in each category ©, like a
histogram bin count. If you want, you can try altering the regular expres-
sion split_regex @ that splits up the HTML file into chunks to see how it
affects the resulting tokens and features.

If you skipped or didn’t understand all that, that’s okay: just know that
our extract_features function takes the path to an HTML file as input and
then transforms it into a feature array of length 1,024, or whatever hash_dim is.

Greating a Data Generator

Now we need to make our Keras model actually train on these features. When
working with small amounts of data already loaded into memory, you can use
a simple line of code like Listing 11-3 to train your model in Keras.

first you would load in my_data and my_labels via some means, and then:
model.fit(my data, my_labels, epochs=10, batch size=32)

Listing 11-3: Training your model when data is already loaded into memory

However, this isn’t really useful when you start working with large
amounts of data, because you can’t fit all your training data into your
computer’s memory at once. To get around this, we use the slightly more

complex but more scalable model.fit_generator function. Instead of passing
in all the training data at once to this function, you pass a generator that
yields training data in batches so that your computer’s RAM won’t choke.

Python generators work just like Python functions, except they have a
yield statement. Instead of returning a single result, generators return an
object that can be called again and again to yield many, or infinite, sets of
results. Listing 11-4 shows how we can create our own data generator using
our feature extraction function.

def my_generator(benign files, malicious_files,
path_to_benign_files, path_to malicious_files,
batch_size, features length=1024):
n_samples_per_class = batch_size / 2
©® assert len(benign_files) >= n_samples_per class
assert len(malicious files) >= n_samples per class
® while True:
ben_features = [
extract_features(sha, path_to files dir=path to benign files,
hash_dim=features_length)
for sha in np.random.choice(benign files, n_samples per class,
replace=False)

mal features = [
© extract_features(sha, path_to_files_dir=path_to malicious_files,
hash_dim=features_length)
O for sha in np.random.choice(malicious files, n_samples per class,
replace=False)
]
© all features = ben_features + mal_features
labels = [0 for i in range(n_samples_per class)] + [1 for i in range(
n_samples_per class)]

idx = np.random.choice(range(batch_size), batch_size)

@ all features = np.array([np.array(all features[i]) for i in idx])
labels = np.array([labels[i] for i in idx])

@ yield all features, labels

Listing 11-4: Writing a data generator

First, the code makes two assert statements to check that enough
data is there @. Then inside a while @ loop (so it’ll just iterate forever),
both benign and malicious features are grabbed by choosing a random
sample @ of file keys and then extracting features for those files using our
extract_features function ©. Next, the benign and malicious features and
associated labels (0 and 1) are concatenated © and shuffled ®. Finally,
these features and labels are returned @.

Once instantiated, this generator should yield batch_size features and
labels for the model to train on (50 percent malicious, 50 percent benign)
each time the generator’s next() method is called.

Listing 11-5 shows how to create a training data generator using the
data that comes with this book, and how to train our model by passing the
generator to our model’s fit_generator method.

Building a Neural Network Malware Detector with Keras 205

206

Chapter 11

import os

batch_size = 128

features_length = 1024

path_to_training benign files = 'data/html/benign_files/training/'
path_to training malicious files = 'data/html/malicious files/training/'
steps_per_epoch = 1000 # artificially small for example-code speed!

train_benign_files = os.listdir(path_to_training benign_files)
train_malicious files = os.listdir(path_to_training malicious files)

make our training data generator!

training generator = my generator(
benign_files=train_benign_files,
malicious files=train _malicious_files,
path_to_benign_files=path to_training benign files,
path_to malicious_files=path_to_training malicious_files,
batch_size=batch_size,
features_length=features_length

)

model.fit_generator(
® generator=training_generator,
@ steps_per_epoch=steps_per_epoch,
@ epochs=10

)

Listing 11-5: Creating the training generator and using it to train the model

Try reading through this code to understand what’s happening. After
importing a necessary package and creating some parameter variables,
we read the filenames for our benign @ and malicious training data @
into memory (but not the files themselves). We pass these values to our
new my_generator function © to get our training data generator. Finally,
using our model from Listing 11-1, we use the model’s built-in fit_generator
method @ to start training.

The fit_generator method takes three parameters. The generator param-
eter © specifies the data generator that produces training data for each
batch. During training, parameters are updated once per batch by averag-
ing all the training observations’ signals for that batch. The steps_per_epoch
parameter O sets the number of batches we want the model to process each
epoch. As a result, the total number of observations the model sees per epoch
is batch_size*steps_per_epoch. By convention, the number of observations a
model sees per epoch should be equal to the dataset size, but in this chapter
and in the virtual machine sample code, I reduce steps_per_epoch to make
our code run faster. The epochs parameter @ sets the number of epochs we
want to run.

Try running this code in the ¢h11/ directory that accompanies this book.
Depending on the power of your computer, each training epoch will take a
certain amount of time to run. If you're using an interactive session, feel free
to cancel the process (CTRL-C) after a few epochs if it’s taking a while. This

will stop the training without losing progress. After you cancel the process
(or the code completes), you'll have a trained model! The readout on your
virtual machine screen should look something like Figure 11-2.

Using TensorFlow backend.

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.7.5 locally

I tensorflow/stream_execut 0_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.7.5 locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.l locally

I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.7.5 locally

Epoch 1/1@

W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled use
tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled
tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled
tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled
tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled

tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled
NVIDIA: no NVIDIA devices found

E tensorflow/stream_executor/cuda/cuda_driver.cc:509] failed call to culnit: CUDA_ERROR_UNKNOWN

I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:145] kernel driver does not appear to be running on
39/39 7s 171ms/step - loss: @.3463 - acc: 0.8476

Epoch

39/39 7s 168ms/step - loss: 0.2181 - acc: 0.9139

Epoch

39/39 7s 168ms/step - loss: @.1864 - acc: 0.9253

Epoch

18/39 > ETA: 3s - loss: 0.1871 - acc: @.9262'

Figure 11-2: Console output from training a Keras model

The top few lines note that TensorFlow, which is the default backend
to Keras, has been loaded. You'll also see some warnings like in Figure 11-2;
these just mean that the training will be done on CPUs instead of GPUs
(GPUs are often around 2-20 times faster for training neural networks, but
for the purposes of this book, CPU-based training is fine). Finally, you’ll see
a progress bar for each epoch indicating how much longer the given epoch
will take, as well as the epoch’s loss and accuracy metrics.

Incorporating Validation Data

In the previous section, you learned how to train a Keras model on HTML
files using the scalable fit_generator method. As you saw, the model prints
statements during training, indicating each epoch’s current loss and accu-
racy statistics. However, what you really care about is how your trained
model does on validation data, or data that it has never seen before. This
better represents the kind of data your model will face in a real-life produc-
tion environment.

When trying to design better models and figure out how long to train
your model for, you should try to maximize validation accuracy rather than
lraining accuracy, the latter of which was shown in Figure 11-2. Even better
would be using validation files originating from dates after the training
data to better simulate a production environment.

Listing 11-6 shows how to load our validation features into memory
using our my_generator function from Listing 11-4.

import os
path_to_validation_benign files = 'data/html/benign_files/validation/'

Building a Neural Network Malware Detector with Keras 207

path_to_validation_malicious_files = 'data/html/malicious_files/validation/'
get the validation keys:
val benign file keys = os.listdir(path_to_validation benign files)
val malicious_file keys = os.listdir(path_to validation_malicious files)
grab the validation data and extract the features:
©® validation_data = my_generator(
benign_files=val benign_files,
malicious_files=val malicious_files,
path_to_benign_files=path_to_validation_benign files,
path _to malicious files=path to validation malicious files,
® batch_size=10000,
features_length=features_length
®).next()

Listing 11-6: Reading validation features and labels into memory by using the
my_generator function

This code is very similar to how we created our training data generator,
except that the file paths have changed and now we want to load all the vali-
dation data into memory. So instead of just creating the generator, we create
avalidation data generator @ with a large batch_size ® equal to the number
of files we want to validate on, and we immediately call its .next() ® method
just once.

Now that we have some validation data loaded into memory, Keras allows

us to simply pass fit_generator() our validation data during training, as shown
in Listing 11-7.

model.fit_generator(
® validation_data=validation_data,
generator=training_generator,
steps_per_epoch=steps per epoch,
epochs=10

)

Listing 11-7: Using validation data for automatic monitoring during training

Listing 11-7 is almost identical to the end of Listing 11-5, except that
validation_data is now passed to fit_generator @. This helps enhance model
monitoring by ensuring that validation loss and accuracy are calculated
alongside training loss and accuracy.

Now, training statements should look something like Figure 11-3.

Epoch 1/10
192ms/step - loss: @.1146 : : 0.5067 - val_acc:

184ms/step - loss: ©.1392 2 o : 9.2621 - val_acc:
189ms/step - loss: ©.1234 2 : 9.3382 - val_acc:

189ms/step - loss: 0.0981 = + 0.277@ - val_acc:

- 7s 189ms/step - loss: 0.1232 H : 9.3053 - val_acc:

- ETA: @s - loss: 9.1068 - acc:

Figure 11-3: Console output from training a Keras model with validation data

208 Chapter 11

Figure 11-3 is similar to Figure 11-2, except that instead of just showing
training loss and acc metrics for each epoch, now Keras also calculates and
shows val_loss (validation loss) and val_acc (validation accuracy) for each
epoch. In general, if validation accuracy is going down instead of up, that’s
an indication your model is overfitting to your training data, and it would
be best to halt training. If validation accuracy is going up, as is the case
here, it means your model is still getting better and you should continue
training.

Saving and Loading the Model

Now that you know how to build and train a neural network, let’s go over
how to save it so you can share it with others.

Listing 11-8 shows how to save our trained model to an .45 file ® and
reload @ it (at a potentially later date).

from keras.models import load_model

save the model
©® model.save('my _model.h5")

load the model back into memory from the file:
® same_model = load_model('my_model.h5")

Listing 11-8: Saving and loading Keras models

Evaluating the Model

In the model training section, we observed some default model evaluation
metrics like training loss and accuracy as well as validation loss and accu-
racy. Let’s now review some more complex metrics to better evaluate our
models.

One useful metric for evaluating the accuracy of a binary predictor is
called area under the curve (AUC). The curve refers to a Receiver Operating
Characteristic (ROC) curve (see Chapter 8), which plots false-positive rates
(x-axis) against true-positive rates (y-axis) for all possible score thresholds.

For example, our model tries to predict whether a file is malicious by
using a score between 0 (benign) and 1 (malicious). If we choose a rela-
tively high score threshold to classify a file as malicious we’ll get fewer false-
positives (good) but also fewer true-positives (bad). On the other hand, if
we choose a low score threshold, we’ll likely have a high false-positive rate
(bad) but a very high detection rate (good).

These two sample possibilities would be represented as two points
on our model’s ROC curve, where the first would be located toward the
left side of the curve and the second near the right side. AUC represents
all these possibilities by simply taking the area under this ROC curve, as
shown in Figure 11-4.

In simple terms, an AUC of 0.5 represents the predictive capability of a
coin flip, while an AUC of 1 is perfect.

Building a Neural Network Malware Detector with Keras 209

210

Chapter 11

© o000

ROC Curve

1.0 -
0.8 -
Q2
S
2 947 — AUC = 999
% 04 4 — AUC = .98
= AUC = .92
0.2 1 AUC = 77
00 - AUC = .5 (random/coin flip)

00 02 04 06 08 1.0

False positive rate

Figure 11-4: Various sample ROC curves. Each ROC curve (line)
corresponds to a different AUC value.

Let’s use our validation data to calculate validation AUC using the code
in Listing 11-9.

from sklearn import metrics

validation labels = validation data[1]

validation_scores = [el[0] for el in model.predict(validation data[0])]

fpr, tpr, thres = metrics.roc_curve(y true=validation_labels,
y_score=validation_scores)

auc = metrics.auc(fpr, tpr)

print('Validation AUC = {}'.format(auc))

Listing 11-9: Calculating validation AUC using sklearn’s metric submodule

Here, we split our validation_data tuple into two objects: the valida-
tion labels represented by validation_labels @, and flattened validation
model predictions represented by validation_scores @. Then, we use the
metrics.roc_curve function from sklearn to calculate false-positive rates,
true-positive rates, and associated threshold values for the model predic-
tions ©. Using these, we calculate our AUC metric, again using an sklearn
function @.

Although I won’t go over the function code here, you can also use
the roc_plot() function included in the chll/model_evaluation.py file in the
data accompanying this book to plot the actual ROC curve, as shown in
Listing 11-10.

from ch1l.model evaluation import roc plot
roc_plot(fpr=fpr, tpr=tpr, path_to file="roc_curve.png")

Listing 11-10: Creating a ROC curve plot using the roc_plot function from this book'’s
accompanying data, in ch11/model_evaluation.py

Running the code in Listing 11-10 should generate a plot (saved to
roc_curve.png) that looks like Figure 11-5.

ROC Curve

0.8

True positive rate

O.o T T Ll T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

Figure 11-5: A ROC curve!

Each point in the ROC curve in Figure 11-5 represents a specific false-
positive rate (x-axis) and true-positive rate (y-axis) associated with various
model prediction thresholds ranging from 0 to 1. As false-positive rates
increase, true-positive rates increase, and vice versa. In production envi-
ronments, you generally have to pick a single threshold (a single point on
this curve, assuming validation data mimics production data) with which
to make your decision, based on your willingness to tolerate false positives,
versus your willingness to risk allowing a malicious file to slip through the
cracks.

Enhancing the Model Training Process with Callbacks

So far, you've learned how to design, train, save, load, and evaluate Keras
models. Although this is really all you need to get a fairly good start, I also
want to introduce Keras callbacks, which can make our model training pro-
cess even better.

A Keras callback represents a set of functions that Keras applies during
certain stages of the training process. For example, you can use a Keras call-
back to make sure that an .45 file is saved at the end of each epoch, or that
validation AUC is printed to the screen at the end of each epoch. This can
help record and inform you more precisely of how your model is doing dur-
ing the training process.

We begin by using a built-in callback, and then we try writing our own
custom callback.

Building a Neural Network Malware Detector with Keras m

Using a Built-in Callback

To use a built-in callback, simply pass your model’s fit_generator() method
a callback instance during training. We’ll use the callbacks.ModelCheckpoint
callback, which evaluates validation loss after each training epoch, and
saves the current model to a file ifthe validation loss is smaller than any
previous epoch’s validation losses. To do this, the callback needs access to
our validation data, so we’ll pass that in to the fit_generator() method, as
shown in Listing 11-11.

from keras import callbacks

model.fit_generator(
generator=training generator,
lowering steps_per_epoch so the example code runs fast:
steps_per_epoch=50,
epochs=5,
validation_data=validation_data,
callbacks=[
callbacks.ModelCheckpoint(save_best _only=True, ®
® filepath="results/best_model.h5"',
® monitor="val loss")
1
)

Listing 11-11: Adding a ModelCheckpoint callback to the training process

This code ensures that the model is overwritten @ to a single file,
'results/best model.h5' @, whenever 'val loss' @ (validation loss) reaches
anew low. This ensures that the current saved model ('results/best_model
.h5") always represents the best model across all completed epochs with
regard to validation loss.

Alternatively, we can use the code in Listing 11-12 to save the model
after every epoch to a separate file regardless of validation loss.

callbacks.ModelCheckpoint(save_best_only=False,®
© filepath="results/model epoch {epoch}.h5',
monitor="val loss')

Listing 11-12: Adding a ModelCheckpoint callback to the training process that saves the
model to a different file after each epoch

To do this, we use the same code in Listing 11-11 and the same func-
tion ModelCheckpoint, but with save_best_only=False @ and a filepath that asks
Keras to fill in the epoch number @. Instead of only saving the single “best”
version of our model, Listing 11-12’s callback saves each epoch’s version
of our model, in results/model_epoch_0.h5, results/model_epoch_1.h5, results/
model_epoch_2.h5, and so on.

212 Chapter 11

Using a Custom Callback

Although Keras doesn’t support AUC, we can design our own custom call-
back to, for example, allow us to print AUC to the screen after each epoch.

To create a custom Keras callback, we need to create a class that inher-
its from keras.callbacks.Callback, the abstract base class used to build new
callbacks. We can add one or more of a selection of methods, which will
be run automatically during training, at times that their names specify:
on_epoch_begin, on_epoch_end, on_batch_begin, on_batch_end, on_train_begin, and
on_train_end.

Listing 11-13 shows how to create a callback that calculates and prints
validation AUC to the screen at the end of each epoch.

import numpy as np
from keras import callbacks
from sklearn import metrics

©® class MyCallback(callbacks.Callback):

® def on_epoch_end(self, epoch, logs={}):

® validation_labels = self.validation_data[1]
validation scores = self.model.predict(self.validation data[0])
flatten the scores:
validation_scores = [el[0] for el in validation_scores]
fpr, tpr, thres = metrics.roc_curve(y true=validation_labels,

y_score=validation_scores)

O auc = metrics.auc(fpr, tpr)

print('\n\tEpoch {}, Validation AUC = {}'.format(epoch,
np.round(auc, 6)))

model.fit generator(
generator=training_generator,
lowering steps_per epoch so the example code runs fast:
steps_per_epoch=50,
epochs=5,
© validation_data=validation_data,
® callbacks=[
callbacks.ModelCheckpoint('results/model epoch {epoch}.h5',
monitor="val loss',
save_best_only=False,
save_weights_only=False)

)

Listing 11-13: Creating and using a custom callback to print AUC fo the screen after each
training epoch

In this example, we first create our MyCallback class @, which inherits
from callbacks.Callbacks. Keeping things simple, we overwrite a single
method, on_epoch_end @, and give it two arguments expected by Keras:
epoch and logs (a dictionary of log information), both of which Keras will
supply when it calls the function during training.

Building a Neural Network Malware Detector with Keras 213

Then, we grab the validation_data @, which is already stored in the self
object thanks to callbacks.Callback inheritance, and we calculate and print
out AUC @ like we did in “Evaluating the Model” on page 209. Note that for
this code to work, the validation data needs to be passed to fit_generator() so
that the callback has access to self.validation_data during training @. Finally,
we tell the model to train and specify our new callback ®. The result should

look something like Figure 11-6.

Epoch
39/39] - 7s 186ms/step - loss: ©.1148

Epoch @, Validation AUC = 0.922248
Epoch 2/5
39/39 [eeesssssssssssssssssssssss==s] - 75 175ms/step - loss: 0.1308

Epoch 1, Validation AUC = ©.947984
Epoch
39/39 7 loss: ©.1120

Epoch 2, Validation AUC = 0.949036
Epoch 4/5
39/39 - 7s 179ms/step - loss: 0.1134

Epoch 5/5
22/39 [m=mm—mm———me

val_loss: @.3693 - val_acc: 0.8630

val_loss: @. val_acc

val_loss:

val_loss: @.3167 - val_acc

Figure 11-6: Console output from training a Keras model with a custom AUC callback

If what you really care about is minimizing validation AUC, this callback
makes it easy to see how your model is doing during training, thus helping
you assess whether you should stop the training process (for example, if vali-
dation accuracy is going consistently down over time).

Summary

In this chapter, you learned how to build your own neural network using
Keras. You also learned to train, evaluate, save, and load it. You then learned
how to enhance the model training process by adding built-in and custom
callbacks. I encourage you to play around with the code accompanying this
book to see what changes model architecture and feature extraction can

have on model accuracy.

This chapter is meant to get your feet wet, but is not meant as a refer-
ence guide. Visit https://keras.io for the most up-to-date official documenta-
tion. I strongly encourage you to spend time researching aspects of Keras
that interest you. Hopefully, this chapter has served as a good jumping-off
point for all your security deep learning adventures!

214 Chapter 11

BECOMING A DATA SCIENTIST

To conclude this book, let’s take a step
back and discuss how you can make a life
and career as a malware data scientist or

a security data scientist in general. Although
this is a nontechnical chapter, it’s just as important as
the technical chapters in this book, if not more impor-
tant. This is because becoming a successful security
data scientist involves much more than simply under-
standing the subject matter.

In this chapter, we the authors share our own career paths to becoming
professional security data scientists. You’ll get a glimpse of what day-to-day
life looks like as a security data scientist and what it takes to become an
effective data scientist. We also share tips on how to approach data science
problems and how to stay resilient in the face of inevitable challenges.

216

Paths to Becoming a Security Data Scientist

Because security data science is a new field, there are many paths to
becoming a security data scientist. Whereas many data scientists receive
formal training through graduate school, many others are self-taught. For
example, I grew up in the 1990s computer hacking scene, where I learned
to program in C and assembly and to write black-hat hacking tools. Later, I
got a bachelor’s degree and then a master’s degree in the humanities before
re-entering the tech world as a security software developer. Along the way, I
taught myself data visualization and machine learning at night, finally mov-
ing into a formal security data science role at Sophos, a security research
and development company. Hillary Sanders, my co-author on this book,
studied statistics and economics in college, worked as a data scientist for a
time, and later found work at a security company as a data scientist, picking
up her security knowledge on the job.

Our team at Sophos is just as diverse. Our colleagues hold a number of
degrees in a wide range of disciplines: psychology, data science, mathemat-
ics, biochemistry, statistics, and computer science. Although security data
science is biased toward those with formal training in quantitative methods
in science, it includes folks with varied backgrounds in these fields. And
although scientific and quantitative training is helpful for learning security
data science, my own experience suggests that it’s also possible to enter and
excel in our field with a nontraditional background, as long as you're will-
ing to teach yourself.

Excelling in security data science hinges on one’s willingness to con-
stantly learn new things. This is because practical knowledge is just as
important as theoretical knowledge in our field, and you pick up practical
knowledge through doing, not through school work.

Being willing to learn new things is also important because machine
learning, network analysis, and data visualization are constantly changing,
so what you learn in school quickly goes out of date. For example, deep
learning has only taken off as a trend in the years since around 2012, and
has developed rapidly since, so almost everyone in data science who gradu-
ated before then has had to teach themselves these powerful ideas. This is
good news for those seeking to enter security data science professionally.
Since those already in the field have to constantly teach themselves new
skills, you can get a foot in the door by already knowing those skills.

A Day in the Life of a Security Data Scientist

Chapter 12

A security data scientist’s job is to apply the type of skills taught in this book
to hard security problems. But application of these skills tends to be embed-
ded within a larger workflow that involves other skills as well. Figure 12-1
illustrates a typical workflow of a security data scientist, based on our expe-
rience and that of our colleagues at other companies and organizations.

1. Identify a potential security
data science problem.

5. Deploy a data science system to 2. |dentify data feeds that
detect or analyze threats. can help solve the problem.

A

\

3. Experiment with potential
approaches before choosing one.

4. Evaluate the chosen approach
to predict real-world performance.

A

Figure 12-1: A model of the security data science workflow

As Figure 12-1 shows, the security data science workflow involves an inter-
play between five areas of work. The first area, problem identification, involves
identifying security problems where data science can help. For example, we
may hypothesize that identifying spear-phishing emails can be solved using
data science methods, or that identifying the particular method used to
obfuscate known malware is a problem worth investigating.

At this stage, any assumption that a given problem may be solvable with
data science is just a hypothesis. When you have a hammer (data science),
every problem can look like a nail (a machine learning, data visualization,
or network analysis problem). We have to reflect on whether these prob-
lems are truly best addressed using data science methods, keeping in mind
that it will take building a prototype data science solution and then testing
this solution to better understand if data science actually provides the best
solution.

When you’re working within an organization, identifying a good problem
almost always involves interacting with stakeholders who are not themselves
data scientists. For example, within our company, we often interface with
product managers, executives, software developers, and salespeople who
think that data science is like a magic wand that can solve any problem, or
that data science is akin to “artificial intelligence” and therefore has some
magical ability to achieve unrealistic results.

The key thing to remember when dealing with such stakeholders is
to be honest about the capabilities and limitations of data science—based
approaches, and to maintain a shrewd, measured attitude so that you
don’t go chasing the wrong problems. You should discard problems for
which there is no data to drive data science algorithms or no way to evalu-
ate whether your data science approaches are actually working, as well as
problems you can clearly solve better through more manual methods.

For example, here are some problems we declined after others asked us
to solve them:

¢ Automatically identifying rogue employees who may be leaking data
to competitors. There’s not enough data to drive a machine learning
algorithm, but this could be pursued using data visualization or net-
work analysis.

Becoming a Data Scientist 217

218

¢ Decrypting network traffic. The mathematics of machine learning show
that machine learning is simply not capable of decrypting weapons-grade
encrypted data!

e Automatically identifying phishing emails handcrafted to target spe-
cific employees based on detailed background knowledge of their
lifestyle. Again, there’s not enough data to drive a machine learning
algorithm, but this might be possible through the visualization of a
time series or email data.

Once you do successfully identify a potential security data science prob-
lem, your next task is to identify data feeds you can use to help solve it using
the data science techniques explained in this book. This is shown in step 2
of Figure 12-1. At the end of the day, if you don’t have data feeds that you
can use to train machine learning models, feed visualizations, or drive net-
work analysis that solves your chosen security problem, data science is prob-
ably not going to help you.

After you've selected a problem and identified data feeds that will allow
you to build a data science—based solution to the problem, it’s time to begin
building your solution. This actually happens in an iterative loop between
steps 3 and 4 of Figure 12-1: you build something, evaluate it, improve it,
reevaluate it, and so on.

Finally, once your system is ready, you deploy it, as shown in step 5 of
Figure 12-1. As long as your system stays deployed, you’ll need to go back
and integrate new data feeds as they become available, try out new data
science methods, and redeploy new versions of your system.

Traits of an Effective Security Data Scientist

Chapter 12

Success in security data science depends a lot on your attitude. In this section,
we list some mental attributes we’ve found are important to success in secu-
rity data science work.

Open-Mindedness

Data is full of surprises, and this disrupts what we thought we knew about a
problem. It’s important to keep your mind open to your data proving your
preconceived notions wrong. If you don’t, you’ll end up missing important
learnings from your data, and even reading too much into random noise
to convince yourself of a false theory. Fortunately, the more security data
science you do, the more open-minded you’ll be about “learning” from
your data, and the more okay you’ll be with how little you know and how
much you have to learn from each new problem. In time, you’ll come to
both enjoy and expect surprises from your data.

Boundless Curiosity

Data science projects are very different from software engineering and
IT projects in that they require exploring data to find patterns, outliers,

and trends, which we then leverage to build our systems. Identifying these
dynamics is not easy: it often requires running hundreds of experiments

or analyses to get a sense of the overall shape of your data and the stories
hidden inside. Some people have a natural drive to run shrewdly designed
experiments and to dig deeper into their data, almost addictively, whereas
others don’t. The former is the type of person who tends to succeed at data
science. Curiosity is therefore a requirement in this field because it’s what dif-
ferentiates our ability to arrive at a deep understanding of our data versus a
shallow one. The more you can cultivate an attitude of curiosity when build-
ing models and visualizations of your data, the more useful your systems
will be.

Obsession with Results

Once you've defined a good security data science problem and have begun
iteratively trying solutions and evaluating them, an obsession with results
may take hold of you, particularly on machine learning projects. This is a
good sign. For example, when I'm heavily involved in a machine learning
project, I have multiple experiments running 24 hours a day, 7 days a week.
This means that I might wake up multiple times a night to check on the sta-
tus of the experiments, and often need to fix bugs and restart experiments
at 3:00 in the morning. I tend to check in on my experiments before going
to bed every night and multiple times throughout the weekend.

This kind of round-the-clock workflow is often necessary to build top-
of-the-line security data science systems. Without it, it’s easy to settle for
mediocre results, failing to break out of ruts or overcome blockages built
out of misplaced assumptions about the data.

Skepticism of Results

It’s easy to fool yourself into thinking youre succeeding on a security data
science project. For example, perhaps you set up your evaluation incorrectly,
such that it appears your system’s accuracy is much better than it actually

is. Evaluating your system on data that’s too similar to your training data or
too dissimilar from real-world data is a common pitfall. You also might have
inadvertently cherry-picked examples from your network visualization that
you thought were useful but most users don’t find much value in. Or perhaps
you worked so hard on your approach that you convinced yourself that the
evaluation statistics are good, when in fact they’re not good enough to make
your system useful in your real world. It’s important to maintain a healthy
level of skepticism of your results, lest you find yourself in an embarrassing
situation someday.

Where to Go from Here

We’ve covered a lot in this book, but we’ve also barely scratched the surface.
If this book has convinced you to pursue security data science in a seri-
ous way, we have two recommendations for you: first, begin applying the

Becoming a Data Scientist 219

220

Chapter 12

tools you've learned in this book to problems you care about immediately.
Second, read more books on data science and security data science. Here
are some examples of problems you might consider applying your new-
found skills to:

e Detecting malicious domain names

¢ Detecting malicious URLSs

e Detecting malicious email attachments

e Visualizing network traffic to spot anomalies

e Visualizing email sender/recipient patterns to detect phishing emails

To expand your knowledge of data science methods, we recommend
starting simple, with Wikipedia articles on the data science algorithms you
want to learn more about. Wikipedia is a surprisingly accessible and author-
itative resource when it comes to data science, and it’s free. For those who
want to go deeper, especially in machine learning, we recommend picking
up books on linear algebra, probability theory, statistics, graph analytics,
and multivariable calculus, or taking free online courses. Learning these
fundamentals will pay dividends for the rest of your data science career,
because they are the foundation on which our field rests. Beyond focusing
on these fundamentals, we also recommend taking courses on or reading
more “applied” books about Python, numpy, sklearn, matplotlib, seaborn, Keras,
and any other tools covered in this book that are used heavily in the data
science community.

NOTE

AN OVERVIEW OF DATASETS
AND TOOLS

All data and code for this book

are available for download at http://
www.malwaredatascience.com/. Be warned:

there is Windows malware in the data. If you unzip

the data on a machine with an antivirus engine run-

ning on it, many of the malware examples will likely

get deleted or quarantined.

We have modified a few bytes in each malware executable so as to disable it from
executing. That being said, you can’t be too careful about where you store it. We
recommend storing it on a non-Windows machine that’s isolated from your home
or business network.

http://www.malwaredatascience.com/
http://www.malwaredatascience.com/

Ideally, you should only experiment with the code and data within an iso-
lated virtual machine. For convenience, we’ve provided a VirtualBox Ubuntu
instance at http://www.malwaredatascience.com/ that has the data and code pre-
loaded onto it, along with all the necessary open source libraries.

Overview of Datasets

Now let’s walk through the datasets that accompany each chapter of
this book.

Chapter I: Basic Static Malware Analysis

Recall that in Chapter 1 we walk through basic static analysis of a mal-
ware binary called #rcbot.exe. This malware is an implant, meaning it hides
on users’ systems and waits for commands from an attacker, allowing the
attacker to collect private data from a victim’s computer or achieve mali-
cious ends like erasing the victim’s hard drive. This binary is available in
the data accompanying this book at chl/irchot.exe.

We also use an example of fakepdfmalware.exe in this chapter (located
at chl/fakepdfmalware.exe). This is a malware program that has an Adobe
Acrobat/PDF desktop icon to trick users into thinking they’re opening a
PDF document when they’re actually running the malicious program and
infecting their systems.

Chapter 2: Beyond Basic Static Analysis: x86 Disassembly

In this chapter we explore a deeper topic in malware reverse engineering:
analyzing x86 disassembly. We reuse the ércbot.exe example from Chapter 1
in this chapter.

Chapter 3: A Brief Introduction to Dynamic Analysis

For our discussion of dynamic malware analysis in Chapter 3, we experi-
ment with a ransomware example stored in the path ¢h3/d676d9dfab6a424
225836208ff579cfe6e5e6db3f0cdd3e0069ace50f80af1c5 in the data accompany-
ing this book. The filename corresponds to the file’s SHA256 cryptographic
hash. There’s nothing particularly special about this ransomware, which

we got by searching VirusTotal.com’s malware database for examples of
ransomware.

Chapter 4: Identifying Attack Campaigns Using Malware Networks

Chapter 4 introduces the application of network analysis and visualization
to malware. To demonstrate these techniques, we use a set of high-quality
malware samples used in high-profile attacks, focusing our analysis on a set
of malware samples likely produced by a group within the Chinese military
known to the security community as Advanced Persistent Threat 1 (or APT1
for short).

222 Appendix

These samples and the APT1 group that generated them were discovered
and made public by cybersecurity firm Mandiant. In its report (excerpted
here) titled “APT1: Exposing One of China’s Cyber Espionage Units” (https://
www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-aptI-report.pdf),
Mandiant found the following:

e Since 2006, Mandiant has observed APT1 compromise 141 companies
spanning 20 major industries.

e APTI has a well-defined attack methodology, honed over years and
designed to steal large volumes of valuable intellectual property.

e Once APT1 has established access, they periodically revisit the victim’s
network over several months or years and steal broad categories of intel-
lectual property, including technology blueprints, proprietary manu-
facturing processes, test results, business plans, pricing documents,
partnership agreements, and emails and contact lists from victim orga-
nizations’ leadership.

e APTI uses some tools and techniques that we have not yet observed
being used by other groups including two utilities designed to steal
email: GETMAIL and MAPIGET.

e APTI maintained access to victim networks for an average of 356 days.

e The longest time period APT1 maintained access to a victim’s network
was 1,764 days, or four years and ten months.

e Among other large-scale thefts of intellectual property, we have observed
APT1 stealing 6.5TB of compressed data from a single organization over
a ten-month time period.

e In the first month of 2011, APT1 successfully compromised at least 17
new victims operating in 10 different industries.

As this excerpt of the report shows, the APT1 samples were used for high-
stakes, nation state—level espionage. These samples are available in the data
accompanying this book at ch4/data/APTI_MALWARE_FAMILIES.

Chapter 5: Shared Code Analysis

Chapter 5 reuses the APT1 samples used in Chapter 4. For convenience,
these samples are also located in the Chapter 5 directory, at ch5/data/
APTI_MAILWARE_FAMILIES.

Chapter 6: Understanding Machine Learning—Based Malware Detectors and
Chapter 7: Evalvating Malware Detection Systems

These conceptual chapters don’t require any sample data.

An Overview of Datasets and Tools 223

224

Appendix

Chapter 8: Building Machine Learning Detectors

Chapter 8 explores building machine learning—based malware detectors
and uses 1,419 sample binaries as a sample dataset for training your own
machine learning detection system. These binaries are located at ch8/data/
benignware for the benign samples and c¢h8/data/malware for the malware
samples.

The dataset contains 991 benignware samples and 428 malware samples,
and we got this data from VirusTotal.com. These samples are representative,
in the malware case, of the kind of malware observed on the internet in
2017 and, in the benignware case, of the kind of binaries users uploaded to
VirusTotal.com in 2017.

Chapter 9: Visvalizing Malware Trends

Chapter 9 explores data visualization and uses the sample data in the file
ch9/code/malware_data.csv. Of the 37,5611 data rows in the file, each row
shows a record of an individual malware file, when it was first seen, how
many antivirus products detected it, and what kind of malware itis (for
example, Trojan horse, ransomware, and so on). This data was collected
from VirusTotal.com.

Chapter 10: Deep Learning Basics

This chapter introduces deep neural networks and doesn’t use any
sample data.

Chapter 11: Building a Neural Network Malware Detector with Keras

This chapter walks through building a neural network malware detector
for detecting malicious and benign HTML files. Benign HTML files are
from legitimate web pages, and the malicious web pages are from websites
that attempt to infect victims via their web browsers. We got both of these
datasets from VirusTotal.com using a paid subscription that allows access to
millions of sample malicious and benign HTML pages.

All the data is stored at the root directory chll/data/html. The benign-
ware is stored at chll/data/html/benign_files, and the malware is stored at
chll/data/html/malicious_files. Additionally, within each of these directories
are the subdirectories training and validation. The training directories con-
tain the files we train the neural network on in the chapter, and the valida-
tion directories contain the files we test the neural network on to assess its
accuracy.

Chapter 12: Becoming a Data Scientist

Chapter 12 discusses how to become a data scientist and doesn’t use any
sample data.

Tool Implementation Guide

NOTE

Although all the code in this book is sample code, intended to demonstrate the
ideas in the book and not be taken whole cloth and used in the real world,
some of the code we provide can be used as a tool in your own malware anal-
ysis work, particularly if you’re willing to extend it for your own purposes.

Intended as examples and starting places for full-fledged malware data science tools,
these tools are not robustly implemented. They have been tested on Ubuntu 17 and
are expected to work on this platform, but with a bit of work around installing the
right requirements, you should be able to get the tools to work on other plaiforms like
macOS and other flavors of Linux fairly easily.

In this section, we walk through the nascent tools provided in this book
in the order in which they appear.

Shared Hostname Network Visualization

A shared hostname network visualization tool is given in Chapter 4 and is
located at ch4/code/listing-4-8.py. This tool extracts hostnames from target
malware files and then shows connections between the files based on com-
mon hostnames contained in them.

The tool takes a directory of malware as its input and then outputs
three GraphViz files that you can then visualize. To install the require-
ments for this tool, run the command run bash install_requirements.sh in
the ch4/code directory. Listing A-1 shows the “help” output from the tool,
after which we discuss what the parameters mean.

usage: Visualize shared hostnames between a directory of malware samples
[-h] target_path output_file malware projection hostname_projection

positional arguments:

® target path directory with malware samples
® output_file file to write DOT file to

©® malware projection file to write DOT file to

O hostname_projection file to write DOT file to

optional arguments:
-h, --help show this help message and exit

Listing A-1: Help output from the shared hostname network visualization tool given in
Chapter 4

As shown in Listing A-1, the shared hostname visualization tool
requires four command line arguments: target_path @, output_file @,
malware_projection @, and hostname_projection @. The parameter target_path
is the path to the directory of malware samples you’d like to analyze. The
output_file parameter is a path to the file where the program will write a
GraphViz .dot file representing the network that links malware samples to
the hostnames they contain.

An Overview of Datasets and Tools 225

226

Appendix

The malware_projection and hostname_projection parameters are also
file paths and specify the locations where the program will write .dot files
that represent these derived networks (for more on network projections,
see Chapter 4). Once you've run the program, you can use the GraphViz
suite discussed in Chapters 4 and 5 to visualize the networks. For example,
you could use the command fdp malware_projection.dot -Tpng -o malware
_projection.png to generate a file like the .pngfile rendered in Figure A-1
on your own malware datasets.

| '\t ~ 1 ,-I g f " ..
A

A

1

—_—
—_—

|

|

Figure A-1: Sample output from the shared hostname visualization tool given in Chapter 4

Shared Image Network Visvalization

We present a shared image network visualization tool in Chapter 4, which is
located at ch4/code/listing-4-12.py. This program shows network relationships
between malware samples based on embedded images they share.

The tool takes a directory of malware as its input and then outputs three
GraphViz files that you can then visualize. To install the requirements for
this tool, run the command run bash install requirements.sh in the ch4/code
directory. Let’s discuss the parameters in the “help” output from the tool
(see Listing A-2).

usage: Visualize shared image relationships between a directory of malware
samples
[-h] target path output file malware_projection resource_projection

positional arguments:

® target path directory with malware samples
® output_file file to write DOT file to

® malware projection file to write DOT file to

O resource projection file to write DOT file to

optional arguments:
-h, --help show this help message and exit

Listing A-2: Help output from the shared resource network visualization tool given in
Chapter 4

As shown in Listing A-2, the shared image relationships visualization
tool requires four command line arguments: target_path @, output_file @,
malware projection ®, and resource projection @. Much like in the shared
hostname program, here target_path is the path to the directory of malware
samples you’d like to analyze, and output_file is a path to the file where the
program will write a GraphViz .dot file representing the bipartite graph
that links malware samples to the images they contain (bipartite graphs
are discussed in Chapter 4). The malware_projection and resource_projection
parameters are also file paths and specify the locations where the program
will write .dot files that represent these networks.

As with the shared hostname program, once you've run the program, you
can use the GraphViz suite to visualize the networks. For example, you could
use the command fdp resource projection.dot -Tpng -o resource projection.png
on your own malware datasets to generate a file like the .png file rendered in
Figure 4-12 on page 55.

Malware Similarity Visvalization

In Chapter 5, we discuss malware similarity and shared code analysis and
visualization. The first sample tool we provide is given in ch5/code/listing 5_1
.py. This tool takes a directory containing malware as its input and then visu-
alizes shared code relationships between the malware samples in the direc-
tory. To install the requirements for this tool, run the command run bash
install_requirements.sh in the ch5/code directory. Listing A-3 shows the help
output for the tool.

usage: listing 5 1.py [-h] [--jaccard index_threshold THRESHOLD]
target_directory output_dot_file

Identify similarities between malware samples and build similarity graph
positional arguments:

® target directory Directory containing malware
® output_dot file Where to save the output graph DOT file

An Overview of Datasets and Tools 227

228

Appendix

optional arguments:
-h, --help show this help message and exit

© --jaccard_index_threshold THRESHOLD, -j THRESHOLD

Threshold above which to create an 'edge' between
samples

Listing A-3: Help output from the malware similarity visualization tool given in Chapter 5

When you run this shared code analysis tool from the command line, you
need to pass in two command line arguments: target_directory @ and output_
dot_file @.You can use the optional argument, jaccard_index_threshold ®, to
set the threshold the program uses with the Jaccard index similarity between
two samples to determine whether or not to create an edge between those
samples. The Jaccard index is discussed in detail in Chapter 5.

Figure A-2 shows sample output from this tool once you’ve rendered
the output_dot_file with the command fdp output _dot file.dot -Tpng -o
similarity_network.png. This is the shared code network inferred by the
tool for the APT1 malware samples we just described.

iy

o o e 00 e WG
AT T TR :«.N

Figure A-2: Sample output from the malware similarity analysis tool given in Chapter 5

Malware Similarity Search System

The second code-sharing estimation tool we provide in Chapter 5 is given in
ch5/code/listing_5_2.py. This tool allows you to index thousands of samples in
a database and then perform a similarity search on them with a query mal-
ware sample, which lets you find malware samples that likely share code with
that sample. To install the requirements for this tool, run the command run
bash install_requirements.sh in the ch5/code directory. Listing A-4 shows the
help output for the tool.

usage: listing 5 2.py [-h] [-1 LOAD] [-s SEARCH] [-c COMMENT] [-w]

Simple code-sharing search system which allows you to build up a database of
malware samples (indexed by file paths) and then search for similar samples
given some new sample

optional arguments:
-h, --help show this help message and exit

©® -1 LOAD, --load LOAD Path to directory containing malware, or individual
malware file, to store in database

® -s SEARCH, --search SEARCH
Individual malware file to perform similarity search
on

© -c COMMENT, --comment COMMENT
Comment on a malware sample path

O -w, --wipe Wipe sample database

Listing A-4: Help output from the malware similarity search system given in Chapter 5

This tool has four modes in which it can be run. The first mode, LOAD @,
loads malware into the similarity search database and takes a path as its
parameter, which should point to a directory with malware in it. You can
run LOAD multiple times and add new malware to the database each time.

The second mode, SEARCH @, takes the path to an individual malware
file as its parameter and then searches for similar samples in the database.
The third mode, COMMENT @, takes a malware sample path as its argument and
then prompts you to enter a short textual comment about that sample. The
advantage of using the COMMENT feature is that when you search for samples
similar to a query malware sample, you see the comments corresponding to
the similar sample, thus enriching your knowledge of the query sample.

The fourth mode, wipe @, deletes all the data in the similarity search
database, in case you want to start over and index a different malware data-
set. Listing A-5 shows some sample output from a SEARCH query, giving you
a flavor for what the output from this tool looks like. Here we’ve indexed
the APT1 samples described previously using the LOAD command and have
subsequently searched the database for samples similar to one of the APT1
samples.

An Overview of Datasets and Tools 229

Showing samples similar to WEBC2-GREENCAT_sample_ E54CE5F0112C9FDFE86DB17E85A5E2C5

Sample name Shared code
[*] WEBC2-GREENCAT sample 55FB1409170C91740359D1D96364F17B 0.9921875
[*] GREENCAT_sample_ 55FB1409170C91740359D1D96364F178B 0.9921875
[*] WEBC2-GREENCAT sample E83F60FBOE0396EA309FAFOAED64ES3F 0.984375

[comment] This sample was determined to definitely have come from the advanced persistent
threat group observed last July on our West Coast network
[*] GREENCAT sample E83F60FBOE0396EA309FAFOAED64ES3F 0.984375

Listing A-5: Sample output for the malware similarity search system given in Chapter 5

Machine Learning Malware Detection System

The final tool you can use in your own malware analysis work is the machine
learning malware detector used in Chapter 8, which can be found at ch8/
code/complete_detector.py. This tool allows you to train a malware detection sys-
tem on malware and benignware and then use this system to detect whether
a new sample is malicious or benign. You can install the requirements for
this tool by running the command bash install.sh in the ch8/code directory.
Listing A-6 shows the help output for this tool.

usage: Machine learning malware detection system [-h]
[--malware_paths MALWARE_PATHS]
[--benignware_paths BENIGNWARE_PATHS]
[--scan_file _path SCAN_FILE_PATH]
[--evaluate]

optional arguments:
-h, --help show this help message and exit
©® --malware paths MALWARE_PATHS
Path to malware training files
® --benignware_paths BENIGNWARE_PATHS
Path to benignware training files
© --scan file path SCAN FILE PATH
File to scan
O --evaluate Perform cross-validation

Listing A-6: Help output for the machine learning malware detection tool given in
Chapter 8

This tool has three modes in which it can be run. The evaluate mode @,
tests the accuracy of the system on the data you select for training and eval-
uating the system. You can invoke this mode by running python complete_
detector.py -malware_paths <path to directory with malware in it> --benignware
_paths <path to directory with benignware in it> --evaluate. This command
will invoke a matplotlib window showing your detector’s ROC curve (ROC
curves are discussed in Chapter 7). Figure A-3 shows some sample output
from evaluate mode.

230 Appendix

Detector ROC Curve

1.0 "1 — ROC curve —;_,_/

=

o
©

o
o

o
I

Detector true positive rate

0.2

0.0

102 10! 100
Detector false positive rate

Figure A-3: Sample output from the malware detection tool provided in Chapter 8, run in
evaluate mode

Training mode trains a malware detection model and saves it to disk.
You can invoke this mode by running python complete_detector.py -malware
_paths @ <path to directory with malware in it> --benignware_paths @ <path
to directory with benignware in it>. Note that the only difference between
this command invocation and the invocation of evaluate mode is that we’ve
left off the --evaluate flag. The result of this command is that it generates
a model that it saves to a file called saved_detector.pkl, which is saved in your
current working directory.

The third mode, scan ®, loads saved_detector.pkl and then scans a tar-
get file, predicting whether it’s malicious or not. Make sure you have run
training mode before running a scan. You can run a scan by running
python complete_detector.py -scan_file path <PE EXE file> in the directory
where you trained the system. The output will be a probability that the
target file is malicious.

An Overview of Datasets and Tools 231

INDEX

Note: Page numbers referring to figures
and tables are followed by an italicized f
or {respectively.

A

activation functions
common, 178t-180¢
defined, 178
add_edge function, 41
add_node function, 49-50
add_question function, 112
add arithmetic instruction, 15
ADS (Alternate Data Streams), 29
Advanced Persistent Threat 1 attacker
group. See APT1 attacker
group
advanced persistent threats (APTs), 60
Allaple.A malware family, 157, 157f
Alternate Data Streams (ADS), 29
anti-disassembly techniques, 22
API calls, 32-33, 33f
apply_hashing_trick function, 138
APT1 (Advanced Persistent Threat 1)
attacker group, 37-39, 38/,
45-47, 45-477f, 61, 61f, 76,
76f, 86, 222-223
APTs (advanced persistent threats), 60
ArchSMS family of Trojans, 55
area under the curve (AUC), 209-210,
210f, 213
arithmetic instructions, 15, 15¢
.asarray method, 142
assembly language, defined, 12. See also
x86 assembly language
AT&T, 43
AT&T syntax, 13
attributes, 37
adding to nodes and edges, 42
and edges, 48-51
AUC (area under the curve), 209-210,
2101, 213

autoencoder neural networks,
194-195, 195f
automatic feature generation, 188

backpropagation, 190-192, 1901911
bag of features model, 62—-64, 63f
features, defined, 62
Jaccard index and, 65
N-grams, 63-64, 64f
order information and, 63-64
overview, 62—-63
bar charts (histograms), 168-170,
168/-169f
base virtual memory address, 6
basic blocks, 19-20
bias parameter, 104
bias term, 178, 181
bipartite networks, 37-39, 38f
bitcoin mining, 158, 160-161, 168/,
172/~173f, 173

C

callbacks
built-in (Keras package), 212
creating shared callback
relationship network, 51-54
custom, 213-214, 214f
call instruction, 17-18
capstone module, 20
Carerra, Ero, b
chain rule, 191-192
cmp instruction, 18
CNNs (convolutional neural networks),
193-194, 194f
coarsenings, 46
color attribute, 49
comment_sample function, 82—84
COMMENT mode, 229
compile method, 202

234

Index

compressed_data_weight parameter, 103
compressed_data parameter, 103-104
conditional branches, defined, 15
control flow, 17
graphs, 19-20, 19f
instructions, 17-18
registers, 14-15
convolutional neural networks (CNNs),
193-194, 194f
CPU registers, 13-15, 14f
general-purpose registers, 13-14
stack and control flow registers,
14-15
cross_validation module, 151
cross-validation, 150-153, 151f, 153/
CuckooBox software platform, 27,
33-34, 59
“curse of dimensionality,” 92
cv_evaluate function, 151

dapato malware family, 62, 67/~68f,
70/~72f
DataFrame objects, 158-161
data movement instructions, 15-20, 16¢
basic blocks, 19-20, 19f
control flow graphs, 19-20, 19f
control flow instructions, 17-18
stack instructions, 16—17
data science, iii, iv
applying to malware, v
importance of, iv—v
.data section (in PE file format), 4
dateutil package, 164
dec arithmetic instruction, 15
decision boundaries, 93-98, 95/~98f
identifying with k-nearest
neighbors, 97-98, 97/~98f
identifying with logistic regression,
96-97, 96/~97f
overfit machine-learning model,
100, 101f
underfit machine-learning model,
99, 99f
well-fit machine-learning model,
100, 1001
decision thresholds, 149
DecisionTreeClassifier class, 130

decision trees, 109-115, 109/~110f,
113/~114f
decision tree—based detectors, 129
importing modules, 129
initializing sample training
data, 130
instantiating classes, 130
sample code, 133-134
training, 130-131
visualizing, 131-133, 132f
follow-up questions, 111
limiting depth or number of
questions, 111-112
pseudocode for, 112-113
root node, 110-111
when to use, 114-115
deep learning, 175-197, 216. See also
neural networks
automatic feature generation, 188
building neural networks, 182-188
neurons, 176
anatomy of, 177-180
networks of, 180-181
overview, 176-177
training neural networks, 189-193
types of neural networks, 193-197
universal approximation theorem,
181-182
deep neural networks. Seeneural
networks
Dense function, 200-201
describe method, 159
detection accuracy evaluation, 119-126,
146-153
base rates and precision, 124-126
effect of base rate on precision,
124-125
estimating precision in
deployment environment,
125-126
with cross-validation, 150-153,
151f, 153f
neural networks, 209-211, 210/~211f
possible detection outcomes,
120, 120f
with ROC curves, 123-124, 123,
147-150, 1501
true and false positive rates,
120-124
relationship between, 121-122,
121/~122f
ROC curves, 123-124, 123f

DictVectorizer class, 128-130
directed graphs, 180
distance functions, 107
DLLs (dynamic-link libraries), 13
DOS header (in PE file format), 3
.dot format, 42
dynamically downloaded data, 22-23
dynamic analysis, 25—-34
bag of features model, 63
dataset for, 222
for disassembly, 26
limitations of, 33—34
for malware data science, 26
typical malware behaviors, 27
using malwr.com, 26—33
analyzing results, 28—-33
limitations, 33
loading files, 27-28
dynamic API call-based similarity,
72, 72f
dynamic-link libraries (DLLs), 13

EAX register, 14
EBP register, 14
EBX register, 14
ECX register, 14
edges, 37
adding attributes, 42
adding to shared relationship
networks, 41
adding visual attributes to, 48-51
color, 49, 49f
text labels, 50-51
width, 48-49, 48f
EDX register, 14
EFLAGS register, 15
EIP register, 14-15
ELU activation function, 179¢
entry point, 3, 19
epochs parameter, 206
ESP register, 14
euclidean_distance function, 107
Euclidean distance, 107
evaluate function, 148
evaluate mode, 231-232
evaluating malware detection systems.
See detection accuracy
evaluation
export_graphviz function, 132
extract_features function, 204-205
ExtractImages helper class, 56-57

F

Jakepdfmalware.exe, 7

false negatives, defined, 120, 120f
false positives, 120, 1201
base rates and precision, 124-126
false positive rate, 121
relationship between true and false
positive rates, 121-122,
121/~122f
ROC curves, 123-124, 123f
fdp tool, 43-45, 45f, 76
feature_extraction module, 129
feature extraction, 134-138
Import Address Table features, 136
machine learning—-based malware
detectors, 90-92, 141-142
N-grams, 136-137
Portable Executable header
features, 135-136
shared code analysis, 73, 75
string features, 135
training neural networks with Keras
package, 203-204
why all possible features can’t be
used at once, 137-138
FeatureHasher class, 140-141
feature hashing. See hashing trick
feature spaces, 93-98, 94/-98f
feed-forward neural networks, 181,
181f, 193
fit_generator function, 204-206, 208,
212, 214
fit method, 130-131, 142
flags, defined, 15
format strings, 70
forward propagation, 189-190

G

Gaussian activation function, 179¢
generative adversarial networks
(GANs), 195-196
generator parameter, 206
get_database function, 80-82
get_string features function,
141-142, 144
get_strings function, 82
get_training_data function, 143
get_training_paths function, 143
GETMALIL utility, 223
getstrings function, 73-74
-G flag, 44

Index 235

236

Index

gini index, 132, 132f
gradient descent, 105, 190
Graph constructor, 41, 52-53
graphical image analysis, 7-8
converting extracted .ico files to
.png graphics, 8
creating directory to hold extracted
images, 7-8
extracting image resources using
wrestool, 8
GraphViz, 76
decision tree—based detectors,
131-133, 132f
malware network analysis, 43-51
adding visual attributes to
nodes and edges, 48-51
fdp tool, 44-45, 45f
neato tool, 47-48, 47f
parameters, 44
sfdp tool, 46-47, 46/
similarity graphs, 76
ground_truth variable, 130

hashing trick (feature hashing),
138-141
complete code for, 139-140
FeatureHasher class, 140-141
implementing, 138-139
hidden layer, 181
histograms (bar charts), 168-170,
168/~169f
hostname_projection argument, 225
hyperplanes, 96, 97f

IAT. See Import Address Table

icoutils toolkit, b

IDA Pro, 12

.idata section (imports) (in PE file

format), 4

Identity activation function, 178t

Import Address Table (IAT), 4
dumping using pefile, 6-7
extracting features, 136
similarity analysis based on, 71, 71f

imports analysis, 6-7

inc arithmetic instruction, 15

information gain, 113

Input function, 200-201

instruction sequence—based
similarity, 68/

limitations of, 6870
overview, 67-68

Intel syntax, 13

Internet Relay Chat (IRC), 2

int function, 148

inverted indexing, 82

ircbot.exe bot, 2
disassembling, 20-21
dissecting, 5-7
dumping IAT, 6-7
strings analysis, 9-10

J

jaccard_index_threshold argument,
227-228
jaccard function, 73
Jaccard index, 61, 65, 65f
building similarity graphs, 73-75
dynamic API call-based
similarity, 72
instruction sequence—based
similarity, 68
minhash method, 77-79
scaling similarity comparisons, 77
strings-based similarity, 70
jge instruction, 18
jmp instructions, 18
jointplot function, 171-172

K

Kaspersky, 62
Keras package, building neural
networks with, 199-214
compiling model, 202-203, 202/
defining architecture of model,
200-202
evaluating model, 209-211,
210/~211f
layers, 200
saving and loading model, 209
syntaxes, 200
training model, 203-209, 211-214
built-in callbacks, 212
custom callbacks, 213-214, 214f
data generators, 204-207, 207f
feature extraction, 203-204
validation data, 207-209, 208/
keyloggers, 158, 168/, 172/~173f, 173

KFold class, 151-152
K-fold cross-validation, 151
k-nearest neighbors, 105-109, 106/, 108/
identifying decision boundaries
with, 97-98, 9798/
logistic regression vs., 108—-109
math behind, 107
pseudocode for, 107
when to use, 109

L

label attribute, 50-51
layers submodule, 200-201
lea instruction, 16
Leaky ReLU activation function, 179¢
learned_parameters parameter, 103
linear disassembly, 12
limitation of, 12
shared code analysis, 67-68
LOAD mode, 229
logistic_function function,
103-104, 1041
logistic_regression function, 103
logistic regression, 102-105,
103/~104f, 154
gradient descent, 105
identifying decision boundaries
with, 96-97, 96/~97f
k-nearest neighbors vs., 108-109
limitation of, 102
math behind, 103-104
plot of logistic function, 104f
pseudocode for, 103
when to use, 105
long short-term memory (LSTM)
networks, 196
Los Alamos National Laboratory, 41
loss parameter, 201-202

machine learning—-based malware
detectors, 89-117, 127-154
building basic detectors, 129
sample code, 133-134
training, 130-131
visualizing, 131-133, 132f
building overview, 90-93
collecting training examples,
90-91
designing good features, 92

extracting features, 90-92
reasons for, 89-90
testing system, 90, 93
training system, 90, 92-93
building real-world detectors,
141-146
complete code for, 144-146
feature extraction, 141-142
running detector on new
binaries, 144
training, 142-143
dataset for, 224
decision boundaries, 93-98,
95£-98f
evaluating detector
performance, 146
cross-validation, 150-153,
1511, 153f
ROC curves, 147-150, 150f
splitting data into training and
test sets, 148-149
feature extraction, 134-138
Import Address Table
features, 136
N-grams, 136-137
Portable Executable header
features, 135-136
string features, 135
why all possible features can’t
be used at once, 137-138
feature spaces, 93-98, 94/-98f
hashing trick, 138-141
complete code for, 139-140
FeatureHasher class, 140-141
implementing, 138-139
overfitting and underfitting, 98-99,
99£-101f
supervised vs. unsupervised
algorithms, 93
terminology and concepts, 128-129
tool for, 230-232, 231f
traditional algorithms vs., 90
types of algorithms, 101, 102f
decision trees, 109-115,
109/~110f, 113£~114f
k-nearest neighbors, 97-98,
97/~98f, 105-109, 106/, 108f
logistic regression, 96-97, 96/~
97, 102-105, 103/~104f
random forest, 115-116, 116/
malware_projection argument, 52,

225-227

Index 237

malware detection evaluation.
See detection accuracy
evaluation
malware network analysis, 35-58, 36/
attributes, defined, 37
bipartite networks, 37-39, 38f
creating shared callback
relationship network, 51-54,
225-226, 226f
code for, 52-54
importing modules, 51-52
parsing command line
arguments, 52
saving networks to disk, 54
creating shared image relationship
networks, 54-58, 551,
226-227
extracting graphical assets, 57
parsing initial argument and
file-loading code, 55-57
saving networks to disk, 58
dataset for, 222-223
edges, defined, 37
GraphViz, creating visualizations
with, 43-51
fdp tool, 44-45, 45f
neato tool, 47-48, 47f
parameters, 44
sfdp tool, 46—47, 46f
visual attributes, 48-51
NetworkX library, creating
networks with, 40-43
adding attributes, 42
adding nodes and edges, 41
saving networks to disk, 42—-43
nodes, defined, 37
projections, 38
shared code analysis and, 60-61
visualization challenges, 39-40
distortion problem, 39-40, 40f
force-directed algorithms, 40
network layout, 39-40
malware samples, 61-62, 222-224
malwr.com, 26-33, 28f
analyzing results on, 28-33
API calls, 32-33, 33f
modified system objects, 30-32
Screenshots panel, 30, 30f
Signatures panel, 29-30, 29f
Summary panel, 30-32, 31/~32f
limitations of, 33
loading files on, 27-28

Mandiant, 61, 76, 223
MAPIGET utility, 223
Mastercard, iii
matplotlib library, 148-150,
162-167, 162f
plotting ransomware and
worm detection rates,
165-167, 166/
plotting ransomware detection
rates, 164-165, 165/
plotting relationship between
malware size and detection,
162-163
max function, 160
mean function, 160-161
memory cells, 196
metrics module, 147-148
metrics parameter, 201-202
min function, 81, 160
minhash approach
combined with sketching, 79
math behind, 78-79, 78f
overview, 77-78
minhash function, 82
ModelCheckpoint callback, 212
Model class, 201
models submodule, 201-202
mov instruction, 15-16
murmur module, 80, 82
mutexes, defined, 32
my_generator function, 205, 207-208
MyCallback class, 213-214

neato tool, 47-48, 47f
Nemucod.FG malware family, 157, 157f
NetworkX library, 40-43
creating shared relationship
networks, 41-42
overview, 41
saving networks to disk, 42—-43
neural networks, 176, 177-188
automatic feature generation, 188
building
with four neurons, 186-188,
186/~187f, 187t
with three neurons, 184-186,
185/~186/, 185¢
with two neurons, 182-184,
182/-184f, 1831-184t

building with Keras package,
199-214
compiling model, 202-203, 202f
defining architecture of model,
200-202
evaluating model, 209-211,
210/~211f
saving and loading model, 209
training model, 203-209,
211-214
dataset for, 224
neurons, 176
anatomy of, 177-180, 177/,
178:-1801¢
networks of, 180-181, 181f
training, 189-193
using backpropagation,
190-192, 190/~191f
using forward propagation,
189-190
vanishing gradient problem,
192-193
types of, 193-197
autoencoder, 194-195, 195f
convolutional, 193-194, 194/
feed-forward, 193
generative adversarial, 195-196
recurrent, 196
ResNet, 196-197
universal approximation theorem,
181-182, 182f
neurons, 176
anatomy of, 177-180, 177, 178t-180¢
networks of, 180-181, 181/
next method, 205, 208
N-grams, 63-64, 64f
dynamic API call-based
similarity, 72
extracting features, 136-137
instruction sequence—based
similarity, 67-68
nodes, 37
adding attributes, 42
adding to shared relationship
networks, 41
adding visual attributes to, 48-51
color, 49, 49f
shape, 49-50, 501
text labels, 50-51
width, 48-49
in decision trees, 110-111
NUM_MINHASHES constant, 80—81

0

objective function, 189

optimizer parameter, 201-202

optional header (in PE file format), 3—-4

output_dot_file argument, 227-228

output_file argument, 52, 225, 227

overfit machine-learning models,
98-99, 101f

overlap parameter, 44

P

packing, 21
difficulty of disassembling packed
malware, 26
legitimate uses of, 22
pandas package, 158-161
filtering data using conditions, 161
loading data, 158-159
manipulating DataFrame, 159-161
Parkour, Mila, 61
pasta malware family, 62, 67/~68f,
70/~72f
PE. See Portable Executable file format
PE (Portable Executable) header, 3,
185-136
pecheck function, 73-74
pefile module, 5-7
disassembly using, 20
dumping IAT, 6-7
installing, 5, 20
opening and parsing files, 5-6
pulling information from PE
fields, 6
pefile PE parsing module, 51-52
penwidth attribute, 48—49
persistent malware similarity search
systems, 79-87
building
allowing users to search for and
comment on samples, 82—-84
implementing database
functionality, 80-81
importing packages, 80
indexing samples into system’s
database, 82
loading samples, 85
obtaining minhashes and
sketches, 81-82
parsing user command line
arguments, 84-85

Index 239

240

Index

persistent malware similarity search
systems, continued
commenting on samples, 86
sample output, 86—87
searching for similar samples, 86
wiping database, 86
pick_best_question function, 112-113
pickle module, 143-144
plot function, 162-163, 167
.png format, 43
pooling layer, 194
pop instruction, 16—17
Portable Executable (PE) file
format, 2-5
dissecting files using pefile, 5-7
entry point, 3
file structure, 2-5, 3f
DOS header, 3
optional header, 3—-4
PE header, 3
section headers, 4-5
sections, defined, 4
Portable Executable (PE) header, 3,
135-136
position independence, 5
precision, 124-126
effect of base rate on, 124-125
estimating in deployment
environment, 125-126
predict proba method, 144, 149
PRel.U activation function, 179¢
program stack, defined, 14
projected_graph function, 54
projections, 38
push instruction, 16-17
pyplot module, 148-149, 163

random forest
overview, 115-116, 116f
random forest—based detectors,
141-146
complete code for, 144-146
running detector on new
binaries, 144
training, 142-143
RandomForestClassifier class, 143, 152
ransomware, 30-31, 31f, 155-158, 156/,
158, 164-168, 165/~166/,
168f, 172-173, 172/~173f
.rdata section (in PE file format), 4

Receiver Operating Characteristic
curves. See ROC curves
rectified linear unit (ReLLU) activation
function, 177f, 178t, 180,
182f, 183-185, 201
recurrent neural networks (RNNs), 196
registry keys, 32
.reloc section (in PE file format), 5
ReL.U (rectified linear unit) activation
function, 177f, 178t, 180,
182f, 183-185, 201
ResNets (residual networks), 196-197
resource_projection argument, 52, 227
resource obfuscation, 22
ret instruction, 17-18
reverse engineering, 12
anti-disassembly techniques, 22
dynamic analysis for, 26
methods for, 12
shared code analysis, 60
using pefile and capstone, 20-21
RNNSs (recurrent neural networks), 196
ROC (Receiver Operating
Characteristic) curves,
123-124, 123f, 126, 147-150,
230-231, 231f
computing, 147-150
cross-validation, 151-152, 153f
neural networks, 209-210,
210/~211f
visualizing, 149, 150f
roc_curve function, 149, 210
.rsrc section (resources) (in PE file
format), 4-5

S

sandbox, 26
Sanders, Hillary, 216
savefig function, 165
scan_file function, 144
scan mode, 230-231
scikit-learn (sklearn) machine learning
package, 127-128
building basic decision tree—based
detectors, 129-134
building random forest-based
detectors, 141-146
evaluating detector performance,
146-153
feature extraction, 134-135
hashing trick, 140-141

terminology and concepts, 128-129
classifiers, 129
fit, 129
label vectors, 128-129
prediction, 129
vectors, 128
seaborn package, 168-174, 168f
creating violin plots, 172-174,
172/~173f
plotting distribution of antivirus
detections, 169-172,
169f, 171f
search_sample function, 82—84
SEARCH mode, 229
section headers (in PE file format), 4-5
.data section, 4
.idata section (imports), 4
.rdata section, 4
.reloc section, 5
.rsrc section (resources), 4-5
.text section, 4
security data scientists, 215-220
expanding knowledge of methods,
219-220
paths to becoming, 216
traits of effective, 218-219
curiosity, 218-219
obsession with results, 219
open-mindedness, 218
skepticism of results, 219
willingness to learn, 216
workflow of, 216-218, 217f
data feed identification, 218
dealing with stakeholders, 217
deployment, 218
problem identification, 217-218
solution building and
evaluation, 218
self-modifying code, 12
set_axis_labels function, 172
sfdp tool, 46-47, 46f
shape attribute, 49-50
shared attribute analysis. See malware
network analysis
shared code analysis (similarity
analysis), 59-87, 60, 61f
bag of features model, 62—-64, 63f
features, defined, 62
N-grams, 63-64, 64f
order information and, 63-64
overview, 62—63
dataset for, 223

Jaccard index, 64-65, 65f
persistent malware similarity search
systems, 79-87
allowing users to search for and
comment on samples, 82—-84
commenting on samples, 86
implementing database
functionality, 80-81
importing packages, 80
indexing samples into system
database, 82
loading samples, 85
obtaining minhashes and
sketches, 81-82
parsing user command line
arguments, 84-85
sample output, 86—87
searching for similar samples, 86
wiping database, 86
scaling similarity comparisons,
77-79
difficulties with, 77
minhash method, 77-79, 78f
similarity graphs, 73-76, 76f
declaring utility functions,
73-74
extracting features, 73, 75
importing libraries, 73
iterating through pairs, 75
Jaccard index threshold, 73
parsing user’s command line
arguments, 74
visualizing graphs, 76
similarity matrices, 6672, 66/~67f
concept of, 66
dynamic API call-based
similarity, 72, 72f
Import Address Table—based
similarity, 71, 71f
instruction sequence—based
similarity, 67-70, 68f
strings-based similarity,
70-71, 70f
tools for, 227-230, 228f
shared image relationship networks,
54-58, 551, 226-227
extracting graphical assets, 57
parsing initial argument and file-
loading code, 55-57
saving networks to disk, 58
shelve module, 80
show function, 152, 163, 165, 168

Index 241

242

Index

Sigmoid activation function, 180¢, 201
sim_graph module, 80, 82
similarity analysis. See shared code
analysis
similarity functions, 64-65
similarity graphs, 73-76, 76/
declaring utility functions, 73-74
extracting features, 73, 75
importing libraries, 73
iterating through pairs, 75
Jaccard index threshold, 73
parsing user’s command line
arguments, 74
visualizing graphs, 76
similarity matrices, 66-72, 66/~67f
dynamic API call-based similarity,
72,72f
Import Address Table—based
similarity, 71, 71f
instruction sequence—based
similarity, 67-70, 68f
strings-based similarity, 70-71, 70f
SKETCH_RATIO constant, 80, 82
sklearn. See scikit-learn machine
learning package
skor malware family, 62, 67/~68f,
70/-72f
Softmax activation function, 180¢
Sophos, 216
splines parameter, 44
split_regex expression, 203—-204
stack, defined, 16
stack instructions, 16-17
stack management registers, 14-15
static malware analysis, 1-23
dataset for, 222
disassembly and reverse
engineering, 12
methods for, 12
using pefile and capstone,
20-21
graphical image analysis, 7-8
imports analysis, 6-7
limitations of, 21-23
anti-disassembly techniques, 22
dynamically downloaded data,
22-23
packing, 21-22
resource obfuscation, 22
pefile module, 5-7
Portable Executable file format, 2-5
strings analysis, 8—10

std function, 160
Step activation function, 179¢
steps_per_epoch parameter, 206
string_hash function, 81-82
strings
defined, 8
feature extraction, 135, 141-142
strings analysis, 8-10
analyzing printable strings, 8-10
information revealed through, 8
printing all strings in a file to
terminal, 8-9
strings-based similarity, 70-71, 70f
strings tool, 8-10
sub arithmetic instruction, 15
summary function, 202-203, 202f
supernodes, 46
suspicious_calls parameter, 103-104
suspiciousness scores, 121-122,

121/-122f

T

Target, iii
target_directory argument, 227-228
target_path argument, 52, 225, 227
TensorFlow, 200, 207
.text section (in PE file format), 4
threat scores, 147
.todense method, 142
train_detector function, 143
training_examples variable, 130
transform method, 131, 140
tree module, 129
Trojans, 54-55, 55f, 158-161, 168f,
172173, 173
true negatives, defined, 120, 120/
true positives, 120, 1201
base rates and precision, 124-126
relationship between true and false
positive rates, 121-122,
121/~122f
ROC curves, 123-124, 123f
true positive rate, 121

underfit machine-learning models,
98-99, 99f

universal approximation theorem,
181-182, 182f

UPX packer, 29

\

validation_labels object, 210-211
validation_scores object, 210
vanishing gradient problem, 192-193
vbna malware family, 62, 67/~68,
70-72f
vectors, 128
violin plots, 172-174, 172/~173f
VirtualBox, vii—viii, 222
virtual size, 6
VirusTotal.com, 29, 59
visualization, 155-174
basic machine learning—based
malware detectors,
131-133, 132f
dataset for, 224
importance of, 156158, 157f
malware network analysis
challenges to, 40f
creating with GraphViz, 45/~47f
network analysis
challenges to, 39-40
creating with GraphViz, 43-51
ROC curves, 149, 150f, 152-153, 153f
shared code analysis, 76
using matplotlib, 162-167, 162f
plotting ransomware and
worm detection rates,
165-167, 166/
plotting ransomware detection
rates, 164-165, 165f
plotting relationship between
malware size and detection,
162-163
using pandas, 158-161
filtering data using
conditions, 161
loading data, 158-159
manipulating DataFrame,
159-161
using seaborn, 168-174, 168f
creating violin plots, 172-174,
172f-173f
plotting distribution of
antivirus detections,

169-172, 169/, 171

w

webprefix malware family, 62, 67/~68f,
70/~72f
weight attribute, 37
weight parameter, 178, 181
Wells Fargo, iii
Wikipedia, 220
wipe_database function, 80-81
wipe mode, 229
work method, 57
worms, 158-161, 165-167, 166/, 168,
172, 172/~173f
wrestool tool, b5
downloading, 8
extracting image resources, 7-8
write_dot function, 42-43

X

x86 assembly language, 12-20
arithmetic instructions, 15, 15¢
CPU registers, 13-15, 14f

general-purpose registers,
13-14
stack and control flow registers,
14-15
data movement instructions,
15-20, 16¢
basic blocks and control flow
graphs, 19-20, 19f
control flow instructions, 17-18
stack instructions, 16—17
dialects of, 13
shared code analysis, 67

xtoober malware family, 62, 67/~68,

70/~72f

Y

yield statement, 205

z

zango malware family, 62, 67/~68f,
70/~72f

Index 243

Malware Data Science is set in New Baskerville, Futura, Dogma, and
TheSansMonoCondensed.

UPDATES

Visit https://www.nostarch.com/malwaredatascience/ for updates, errata, and

other information.

More no-nonsense books from {@ NO STARCH PRESS

Practical
Binary Analysis

Build Your Own Linux Tools

Denis A

PRACTICAL BINARY ANALYSIS

Build Your Own Linux Tools for

Binary Instrumentation, Analysis,

and Disassembly

by DENNIS ANDRIESSE
DECEMBER 2018, 456 prpr., $59.99
ISBN 978-1-59327-912-7

- Seriaus
 Lryptography

Jean-Philippe A

SERIOUS CRYPTOGRAPHY,
2ND EDITION

APractical Introduction to

Modern Encryption

by JEAN-PHILIPPE AUMASSON
OCTOBER 2024, 376 pr., $59.99
ISBN 978-1-7185-0384-7

Pentesting Azure
Applications

The Definitive Guide to
Testing and Securing Deployments:

Watt Burrough (0

vty o 1 S 1

PENTESTING AZURE
APPLICATIONS

The Definitive Guide to Testing and
Securing Deployments

by MATT BURROUGH

JuLry 2018, 216 pp., $39.99
ISBN 978-1-59327-863-2

Rootkits
and Bootkits

Reversing Modern Malware and
Next Generation Threats

ROOTKITS AND BOOTKITS
Reversing Modern Malware and

Next Generation Threats

by ALEX MATROSOV, EUGENE
RODIONOV, and SERGEY BRATUS
SPRING 2019, 504 ppr., $49.95
I1SBN 978-1-59327-716-1

.~ Attacking
-~ Network

ATTACKING NETWORK PROTOCOLS
AHacker's Guide to Capture, Analysis,

and Exploitation

by JAMES FORSHAW

DECEMBER 2017, 336 pp., $49.95
1SBN 978-1-59327-750-5

Practical
Malware
Analysis

The Hands-On Guide to

Dissecting Malicious g
Software [

Michael Sikorski
and Andrew Honig
o byt Beich ®

PRACTICAL MALWARE ANALYSIS
The Hands-On Guide to

Dissecting Malicious Software

by MICHAEL SIKORSKI and
ANDREW HONIG

FEBRUARY 2012, 800 pp., $59.99
1SBN 978-1-59327-290-6

PHONE:
1.800.420.7240 or
1.415.863.9900

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

"Stay ahead of the changes in technology and the
adversaries you're charged with defeating."
— Anup Ghosh, PhD, founder of Invincea, Inc

With millions of malware files created each
year and a flood of security-related data
generated every day, security has become

a “big data” problem. So, when defending
against malware, why not think like a data
scientist?

In Malware Data Science, security data scien-
tists Joshua Saxe and Hillary Sanders show
you how to apply machine learning, statistics,
and data visualization as you build your own
detection and intelligence systems. Following
an overview of basic reverse engineering con-
cepts like static and dynamic analysis, you'll
learn to measure code similarities in malware
samples and use machine learning frame-
works like scikit-learn and Keras to build and
train your own detectors.

Learn how to:

%J Identify new malware written by the same
adversary groups through shared code
analysis

%J Catch zero-day malware by building your
own machine learning detection system

%J Use ROC curves to measure the accuracy of
your malware detector to help you select
the best approach to a security problem

&J Use data visualization to identify and
explore malware campaigns, trends, and
relationships

&J Use Python to implement deep neural
network-based detection systems

Whether you're a malware analyst looking to
add skills to your existing arsenal or a data
scientist interested in attack detection and
threat intelligence, Malware Data Science will
help you stay ahead of the curve.

About the Authors

JosHUA SAXE is chief data scientist at Sophos, a
major security software vendor, where he helps
invent data science technologies for detecting
Android-, Windows-, and web-based malicious
programs. Before joining Sophos, Saxe spent
five years leading DARPA-funded security data
research projects for the US government.

HILLARY SANDERS is a senior software engi-
neer and data scientist at Sophos, where she
has played a key role in inventing and produc-
tizing neural network, machine learning, and
malware similarity analysis security technolo-
gies. She is a regular speaker at security confer-
ences like Black Hat USA and BSides Las Vegas.

©

no starch
press’

THE FINEST IN GEEK ENTERTAINMENT™
www.nostarch.com

Part of the proceeds from this book will be
donated to the Environmental Defense Fund.

ISBN: 978-1-59327-859-5
54995

781593 278595

9

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What Is Data Science?
	Why Data Science Matters for Security
	Applying Data Science to Malware
	Who Should Read This Book?
	About This Book
	How to Use the Sample Code and Data

	Chapter 1: Basic Static Malware Analysis

	The Microsoft Windows Portable Executable Format
	The PE Header
	The Optional Header
	Section Headers

	Dissecting the PE Format Using pefile
	Examining Malware Images
	Examining Malware Strings
	Using the strings Program
	Analyzing Your strings Dump

	Summary

	Chapter 2: Beyond Basic Static Analysis: x86 Disassembly

	Disassembly Methods
	Basics of x86 Assembly Language
	CPU Registers
	Arithmetic Instructions
	Data Movement Instructions

	Disassembling ircbot.exe Using pefile and capstone
	Factors That Limit Static Analysis
	Packing
	Resource Obfuscation
	Anti-disassembly Techniques
	Dynamically Downloaded Data

	Summary

	Chapter 3: A Brief Introduction to Dynamic Analysis

	Why Use Dynamic Analysis?
	Dynamic Analysis for Malware Data Science
	Basic Tools for Dynamic Analysis
	Typical Malware Behaviors
	Loading a File on malwr.com
	Analyzing Results on malwr.com

	Limitations of Basic Dynamic Analysis
	Summary

	Chapter 4: Identifying Attack Campaigns Using Malware Networks

	Nodes and Edges
	Bipartite Networks
	Visualizing Malware Networks
	The Distortion Problem
	Force-Directed Algorithms

	Building Networks with NetworkX
	Adding Nodes and Edges
	Adding Attributes
	Saving Networks to Disk

	Network Visualization with GraphViz
	Using Parameters to Adjust Networks
	The GraphViz Command Line Tools
	Adding Visual Attributes to Nodes and Edges

	Building Malware Networks
	Building a Shared Image Relationship Network
	Summary

	Chapter 5: Shared Code Analysis

	Preparing Samples for Comparison by Extracting Features
	How Bag of Features Models Work
	What are N-Grams?

	Using the Jaccard Index to Quantify Similarity
	Using Similarity Matrices to Evaluate Malware Shared Code Estimation Methods
	Instruction Sequence-Based Similarity
	Strings-Based Similarity
	Import Address Table–Based Similarity
	Dynamic API Call–Based Similarity

	Building a Similarity Graph
	Scaling Similarity Comparisons
	Minhash in a Nutshell
	Minhash in Depth

	Building a Persistent Malware Similarity Search System
	Running the Similarity Search System
	Summary

	Chapter 6: Understanding Machine Learning–Based Malware Detectors

	Steps for Building a Machine Learning–Based Detector
	Gathering Training Examples
	Extracting Features
	Designing Good Features
	Training Machine Learning Systems
	Testing Machine Learning Systems

	Understanding Feature Spaces and Decision Boundaries
	What Makes Models Good or Bad: Overfitting and Underfitting
	Major Types of Machine Learning Algorithms
	Logistic Regression
	K-Nearest Neighbors
	Decision Trees
	Random Forest

	Summary

	Chapter 7: Evaluating Malware Detection Systems

	Four Possible Detection Outcomes
	True and False Positive Rates
	Relationship Between True and False Positive Rates
	ROC Curves

	Considering Base Rates in Your Evaluation
	How Base Rate Affects Precision
	Estimating Precision in a Deployment Environment

	Summary

	Chapter 8: Building Machine Learning Detectors

	Terminology and Concepts
	Building a Toy Decision Tree–Based Detector
	Training Your Decision Tree Classifier
	Visualizing the Decision Tree
	Complete Sample Code

	Building Real-World Machine Learning Detectors with sklearn
	Real-World Feature Extraction
	Why You Can’t Use All Possible Features
	Using the Hashing Trick to Compress Features

	Building an Industrial-Strength Detector
	Extracting Features
	Training the Detector
	Running the Detector on New Binaries
	What We’ve Implemented So Far

	Evaluating Your Detector’s Performance
	Using ROC Curves to Evaluate Detector Efficacy
	Computing ROC Curves
	Splitting Data into Training and Test Sets
	Computing the ROC Curve
	Cross-Validation

	Next Steps
	Summary

	Chapter 9: Visualizing Malware Trends

	Why Visualizing Malware Data Is Important
	Understanding Our Malware Dataset
	Loading Data into pandas
	Working with a pandas DataFrame
	Filtering Data Using Conditions

	Using matplotlib to Visualize Data
	Plotting the Relationship Between Malware Size and Detection
	Plotting Ransomware Detection Rates
	Plotting Ransomware and Worm Detection Rates

	Using seaborn to Visualize Data
	Plotting the Distribution of Antivirus Detections
	Creating a Violin Plot

	Summary

	Chapter 10: Deep Learning Basics

	What Is Deep Learning?
	How Neural Networks Work
	Anatomy of a Neuron
	A Network of Neurons
	Universal Approximation Theorem
	Building Your Own Neural Network
	Adding Another Neuron to the Network
	Automatic Feature Generation

	Training Neural Networks
	Using Backpropagation to Optimize a Neural Network
	Path Explosion
	Vanishing Gradient

	Types of Neural Networks
	Feed-Forward Neural Network
	Convolutional Neural Network
	Autoencoder Neural Network
	Generative Adversarial Network
	Recurrent Neural Network
	ResNet

	Summary

	Chapter 11: Building a Neural Network Malware Detector with Keras

	Defining a Model’s Architecture
	Compiling the Model
	Training the Model
	Extracting Features
	Creating a Data Generator
	Incorporating Validation Data
	Saving and Loading the Model

	Evaluating the Model
	Enhancing the Model Training Process with Callbacks
	Using a Built-in Callback
	Using a Custom Callback

	Summary

	Chapter 12: Becoming a Data Scientist

	Paths to Becoming a Security Data Scientist
	A Day in the Life of a Security Data Scientist
	Traits of an Effective Security Data Scientist
	Open-Mindedness
	Boundless Curiosity
	Obsession with Results
	Skepticism of Results

	Where to Go from Here

	Appendix: An Overview of Datasets and Tools

	Overview of Datasets
	Chapter 1: Basic Static Malware Analysis
	Chapter 2: Beyond Basic Static Analysis: x86 Disassembly
	Chapter 3: A Brief Introduction to Dynamic Analysis
	Chapter 4: Identifying Attack Campaigns Using Malware Networks
	Chapter 5: Shared Code Analysis
	Chapter 6: Understanding Machine Learning–Based Malware Detectors and Chapter 7: Evaluating Malware Detection Systems
	Chapter 8: Building Machine Learning Detectors
	Chapter 9: Visualizing Malware Trends
	Chapter 10: Deep Learning Basics
	Chapter 11: Building a Neural Network Malware Detector with Keras
	Chapter 12: Becoming a Data Scientist

	Tool Implementation Guide
	Shared Hostname Network Visualization
	Shared Image Network Visualization
	Malware Similarity Visualization
	Malware Similarity Search System
	Machine Learning Malware Detection System

	Index

